Time-dependent seismic tomography and its application to the...
geothermal area, 1996-2006 Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Time-dependent seismic tomography and its application to...
Time-dependent seismic tomography and its application to the Coso geothermal area, 1996-2006
Julian, B.R.; G.R. Foulger; F. Monastero
2008-04-01T23:59:59.000Z
Measurements of temporal changes in Earth structure are commonly determined using localearthquake tomography computer programs that invert multiple seismic-wave arrival time data sets separately and assume that any differences in the structural results arise from real temporal variations. This assumption is dangerous because the results of repeated tomography experiments would differ even if the structure did not change, simply because of variation in the seismic ray distribution caused by the natural variation in earthquake locations. Even if the source locations did not change (if only explosion data were used, for example), derived structures would inevitably differ because of observational errors. A better approach is to invert multiple data sets simultaneously, which makes it possible to determine what changes are truly required by the data. This problem is similar to that of seeking models consistent with initial assumptions, and techniques similar to the “damped least squares” method can solve it. We have developed a computer program, dtomo, that inverts multiple epochs of arrival-time measurements to determine hypocentral parameters and structural changes between epochs. We shall apply this program to data from the seismically active Coso geothermal area, California, in the near future. The permanent network operated there by the US Navy, supplemented by temporary stations, has provided excellent earthquake arrival-time data covering a span of more than a decade. Furthermore, structural change is expected in the area as a result of geothermal exploitation of the resource. We have studied the period 1996 through 2006. Our results to date using the traditional method show, for a 2-km horizontal grid spacing, an irregular strengthening with time of a negative VP/VS anomaly in the upper ~ 2 km of the reservoir. This progressive reduction in VP/VS results predominately from an increase of VS with respect to VP. Such a change is expected to result from effects of geothermal operations such as decreasing fluid pressure and the drying of argillaceous minerals such as illite.
Seismic Tomography: Definitions Lapo Boschi (lapo@erdw.ethz.ch)
Boschi, Lapo
Tomography Seismic tomography is the science of interpreting seismic measurements (seismograms) to derive; that is to say, solve the seismological inverse problem. Seismic data and their interpretation Seismic stationsSeismic Tomography: Definitions Lapo Boschi (lapo@erdw.ethz.ch) September 14, 2009 Seismic
Constrained optimization in seismic reflection tomography: an SQP ...
2004-07-06T23:59:59.000Z
Seismic reflection tomography is a method for determining a subsurface velocity model from the traveltimes of seismic waves reflecting on geological interfaces.
Temporal Integration of Seismic Traveltime Tomography
Ajo-Franklin, Jonathan B.
2005-06-01T23:59:59.000Z
Time-lapse geophysical measurements and seismic imaging methods in particular are powerful techniques
Nonlinear regularization techniques for seismic tomography
Loris, I. [Mathematics Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels (Belgium)], E-mail: igloris@vub.ac.be; Douma, H. [Department of Geosciences, Princeton University, Guyot Hall, Washington Road, Princeton, NJ 08544 (United States); Nolet, G. [Geosciences Azur, Universite de Nice-Sophia Antipolis, CNRS/IRD, 250 Rue Albert Einstein, Sophia Antipolis 06560 (France); Daubechies, I. [Program in Applied and Computational Mathematics, Princeton University, Fine Hall, Washington Road, Princeton, NJ 08544 (United States); Regone, C. [BP America Inc., 501 Westlake Park Blvd., Houston, TX 77079 (United States)
2010-02-01T23:59:59.000Z
The effects of several nonlinear regularization techniques are discussed in the framework of 3D seismic tomography. Traditional, linear, l{sub 2} penalties are compared to so-called sparsity promoting l{sub 1} and l{sub 0} penalties, and a total variation penalty. Which of these algorithms is judged optimal depends on the specific requirements of the scientific experiment. If the correct reproduction of model amplitudes is important, classical damping towards a smooth model using an l{sub 2} norm works almost as well as minimizing the total variation but is much more efficient. If gradients (edges of anomalies) should be resolved with a minimum of distortion, we prefer l{sub 1} damping of Daubechies-4 wavelet coefficients. It has the additional advantage of yielding a noiseless reconstruction, contrary to simple l{sub 2} minimization ('Tikhonov regularization') which should be avoided. In some of our examples, the l{sub 0} method produced notable artifacts. In addition we show how nonlinear l{sub 1} methods for finding sparse models can be competitive in speed with the widely used l{sub 2} methods, certainly under noisy conditions, so that there is no need to shun l{sub 1} penalizations.
Time-Dependent Seismic Tomography of the Coso Geothermal Area, 1996-2004 |
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformationThePty Ltd Jump to:Offshore Wind FarmRoad
Time-dependent seismic tomography of the Coso geothermal area, 1996-2004 |
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformationThePty Ltd Jump to:OffshoreOpen Energy
Time-dependent seismic tomography and its application to the Coso
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson EthanolTillson, New York: EnergyInformation
Review paper Seismic interferometry and ambient noise tomography in the British Isles
Review paper Seismic interferometry and ambient noise tomography in the British Isles Heather. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 2. Theory and method of seismic interferometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.2. Seismic interferometry across the Scottish Highlands
Seismic tomography constraints on reconstructing the Philippine Sea Plate and its margin
Handayani, Lina
2005-02-17T23:59:59.000Z
............................................................. 36 Japan Subduction Zone.................................................................. 41 Izu-Bonin Subduction Zone........................................................... 41 Ryukyu Subduction Zone.................................. 38 3.5 P-wave seismic tomography cross sections across Japan (C), Izu-Bonin(D), Mariana (E) and Java (F)......................................... 39 3.6 Tomography cross sections 1 to 5...
Multi-Resolution Seismic Tomography Based on Recursive Tessellation Hierarchy
Simmons, N A; Myers, S C; Ramirez, A
2009-07-01T23:59:59.000Z
A 3-D global tomographic model that reconstructs velocity structure at multiple scales and incorporates laterally variable seismic discontinuities is currently being developed. The model parameterization is node-based where nodes are placed along vertices defined by triangular tessellations of a spheroidal surface. The triangular tessellation framework is hierarchical. Starting with a tetrahexahedron representing the whole globe (1st level of the hierarchy, 24 faces), they divide each triangle of the tessellation into daughter triangles. The collection of all daughter triangles comprises the 2nd level of the tessellation hierarchy and further recursion produces an arbitrary number of tessellation levels and arbitrarily fine node-spacing. They have developed an inversion procedure that takes advantage of the recursive properties of the tessellation hierarchies by progressively solving for shorter wavelength heterogeneities. In this procedure, we first perform the tomographic inversion using a tessellation level with coarse node spacing. They find that a coarse node spacing of approximately 8{sup o} is adequate to capture bulk regional properties. They then conduct the tomographic inversion on a 4{sup o} tessellation level using the residuals and inversion results from the 8{sup o} run. In practice they find that the progressive tomography approach is robust, providing an intrinsic regularization for inversion stability and avoids the issue of predefining resolution levels. Further, determining average regional properties with coarser tessellation levels enables long-wavelength heterogeneities to account for sparsely sampled regions (or regions of the mantle where longer wavelength patterns of heterogeneity suffice) while allowing shorter length-scale heterogeneities to emerge where necessary. They demonstrate the inversion approach with a set of synthetic test cases that mimic the complex nature of data arrangements (mixed-determined inversion) common to most tomographic problems. They also apply the progressive inversion approach with Pn waves traveling within the Middle East region and compare the results to simple tomographic inversions. As expected from synthetic testing, the progressive approach results in detailed structure where there is high data density and broader regional anomalies where seismic information is sparse. The ultimate goal is to use these methods to produce a seamless, multi-resolution global tomographic model with local model resolution determined by the constraints afforded by available data. They envisage this new technique as the general approach to be employed for future multi-resolution model development with complex arrangements of regional and teleseismic information.
Paris-Sud XI, Université de
Evidence from threedimensional seismic tomography for a substantial accumulation of gas hydrate to be associated with the emplacement of hydrate, accompanying the invasion of the gas hydrate stability zone accumulation of gas hydrate in a fluidescape chimney in the Nyegga pockmark field, offshore Norway, J. Geophys
Brauchler, R.; Doetsch, J.; Dietrich, P.; Sauter, M.
2012-01-10T23:59:59.000Z
In this study, hydraulic and seismic tomographic measurements were used to derive a site-specific relationship between the geophysical parameter p-wave velocity and the hydraulic parameters, diffusivity and specific storage. Our field study includes diffusivity tomograms derived from hydraulic travel time tomography, specific storage tomograms, derived from hydraulic attenuation tomography, and p-wave velocity tomograms, derived from seismic tomography. The tomographic inversion was performed in all three cases with the SIRT (Simultaneous Iterative Reconstruction Technique) algorithm, using a ray tracing technique with curved trajectories. The experimental set-up was designed such that the p-wave velocity tomogram overlaps the hydraulic tomograms by half. The experiments were performed at a wellcharacterized sand and gravel aquifer, located in the Leine River valley near Göttingen, Germany. Access to the shallow subsurface was provided by direct-push technology. The high spatial resolution of hydraulic and seismic tomography was exploited to derive representative site-specific relationships between the hydraulic and geophysical parameters, based on the area where geophysical and hydraulic tests were performed. The transformation of the p-wave velocities into hydraulic properties was undertaken using a k-means cluster analysis. Results demonstrate that the combination of hydraulic and geophysical tomographic data is a promising approach to improve hydrogeophysical site characterization.
Seismic tomography constraints on reconstructing the Philippine Sea Plate and its margin
Handayani, Lina
2005-02-17T23:59:59.000Z
show the distribution of high velocity anomalies in the mantle of the Western Pacific, and that they represent subducted slabs. Using these recent tomography data, distribution maps of subducted slabs in the mantle beneath and surrounding the Philippine...
Visualization of time-dependent seismic vector fields with glyphs
McQuinn, Emmett
2010-01-01T23:59:59.000Z
tensor fields in geomechanics. Visualization Conference,single timestep of a geomechanics simulation. Glyph geometry
Compensation of some time dependent deformations in tomography
Boyer, Edmond
the measured attenuation function at time t. We suppose that ft(x) = ft (x) def = f t (x) where f with Philips Medical Systems Research, Paris, France. E-mail: sebastien.roux@philips.com. Â§This work
Teleseismic transmission and reflection tomography
Burdick, Scott A. (Scott Anthony)
2014-01-01T23:59:59.000Z
The aim of seismic tomography is to determine a model of Earth properties that best explain observed seismic data. In practice, the limitations placed on our observations and computational capabilities force us to make a ...
Probing the time dependence of dark energy
Barboza Edésio Jr, M. [Departamento de Física, Universidade do Estado do Rio Grande do Norte, Rua Professor Antônio Campos s/n, Mossoró (Brazil); Alcaniz, J.S., E-mail: edesiobarboza@uern.br, E-mail: alcaniz@on.br [Departamento de Astronomia, Observatório Nacional, Rua General José Cristino 77, Rio de Janeiro (Brazil)
2012-02-01T23:59:59.000Z
A new method to investigate a possible time-dependence of the dark energy equation of state w is proposed. We apply this methodology to a combination of data involving one of the most recent type Ia supernova sample (SNLS3) along with the current baryon acoustic oscillation and H(z) measurements. We show that current observations cannot rule out a non-evolving dark energy component (dw/dz = 0). The approach developed here reduces considerably the so-called smearing effect on w determinations and may be useful to probe a possible evolving dark energy component when applied to upcoming observational data.
Topological Effects of Synaptic Time Dependent Plasticity
James R. Kozloski; Guillermo A. Cecchi
2010-03-19T23:59:59.000Z
We show that the local Spike Timing-Dependent Plasticity (STDP) rule has the effect of regulating the trans-synaptic weights of loops of any length within a simulated network of neurons. We show that depending on STDP's polarity, functional loops are formed or eliminated in networks driven to normal spiking conditions by random, partially correlated inputs, where functional loops comprise weights that exceed a non-zero threshold. We further prove that STDP is a form of loop-regulating plasticity for the case of a linear network comprising random weights drawn from certain distributions. Thus a notable local synaptic learning rule makes a specific prediction about synapses in the brain in which standard STDP is present: that under normal spiking conditions, they should participate in predominantly feed-forward connections at all scales. Our model implies that any deviations from this prediction would require a substantial modification to the hypothesized role for standard STDP. Given its widespread occurrence in the brain, we predict that STDP could also regulate long range synaptic loops among individual neurons across all brain scales, up to, and including, the scale of global brain network topology.
Time dependence of Hawking radiation entropy
Page, Don N., E-mail: profdonpage@gmail.com [Department of Physics, 4-181 CCIS, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada)
2013-09-01T23:59:59.000Z
If a black hole starts in a pure quantum state and evaporates completely by a unitary process, the von Neumann entropy of the Hawking radiation initially increases and then decreases back to zero when the black hole has disappeared. Here numerical results are given for an approximation to the time dependence of the radiation entropy under an assumption of fast scrambling, for large nonrotating black holes that emit essentially only photons and gravitons. The maximum of the von Neumann entropy then occurs after about 53.81% of the evaporation time, when the black hole has lost about 40.25% of its original Bekenstein-Hawking (BH) entropy (an upper bound for its von Neumann entropy) and then has a BH entropy that equals the entropy in the radiation, which is about 59.75% of the original BH entropy 4?M{sub 0}{sup 2}, or about 7.509M{sub 0}{sup 2} ? 6.268 × 10{sup 76}(M{sub 0}/M{sub s}un){sup 2}, using my 1976 calculations that the photon and graviton emission process into empty space gives about 1.4847 times the BH entropy loss of the black hole. Results are also given for black holes in initially impure states. If the black hole starts in a maximally mixed state, the von Neumann entropy of the Hawking radiation increases from zero up to a maximum of about 119.51% of the original BH entropy, or about 15.018M{sub 0}{sup 2} ? 1.254 × 10{sup 77}(M{sub 0}/M{sub s}un){sup 2}, and then decreases back down to 4?M{sub 0}{sup 2} = 1.049 × 10{sup 77}(M{sub 0}/M{sub s}un){sup 2}.
Optimization Online - Constrained optimization in seismic reflection ...
F. Delbos
2004-07-07T23:59:59.000Z
Jul 7, 2004 ... Constrained optimization in seismic reflection tomography: an SQP augmented Lagrangian approach. F. Delbos (Frederic.Delbos ***at*** ifp.fr)
Ritzwolle, Mike
tomography to broad-band seismic data obtained in Europe, North Africa, the Middle East, and Central Asia
Seismic Imaging of the Earth's Interior (LBNL Summer Lecture Series)
Romanowicz, Barbara
2011-04-28T23:59:59.000Z
Summer Lecture Series 2006: Earth scientist Barbara Romanowicz discusses how she explores the deep structure and dynamics of the Earth using seismic tomography.
Time-dependent massless Dirac fermions in graphene
Boubakeur Khantoul; Andreas Fring
2015-05-08T23:59:59.000Z
Using the Lewis-Riesenfeld method of invariants we construct explicit analytical solutions for the massless Dirac equation in 2+1 dimensions describing quasi-particles in graphene. The Hamiltonian of the system considered contains some explicit time-dependence in addition to one resulting from being minimally coupled to a time-dependent magnetic field. The eigenvalue equations for the two spinor components of the Lewis-Riesenfeld invariant are found to decouple into a pair of supersymmetric invariants in a similar fashion as the known decoupling for the time-independent Dirac Hamiltonians.
Two-stream instability with time-dependent drift velocity
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Qin, Hong [PPPL; Davidson, Ronald C. [PPPL
2014-01-01T23:59:59.000Z
The classical two-stream instability driven by a constant relative drift velocity between two plasma components is extended to the case with time-dependent drift velocity. A solution method is developed to rigorously define and calculate the instability growth rate for linear perturbations relative to the time-dependent unperturbed two-stream motions. Stability diagrams for the oscillating two-stream instability are presented over a large region of parameter space. It is shown that the growth rate for the classical two-stream instability can be significantly reduced by adding an oscillatory component to the relative drift velocity.
Two-stream instability with time-dependent drift velocity
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Qin, Hong; Davidson, Ronald C.
2014-06-01T23:59:59.000Z
The classical two-stream instability driven by a constant relative drift velocity between two plasma components is extended to the case with time-dependent drift velocity. A solution method is developed to rigorously define and calculate the instability growth rate for linear perturbations relative to the time-dependent unperturbed two-stream motions. Stability diagrams for the oscillating two-stream instability are presented over a large region of parameter space. It is shown that the growth rate for the classical two-stream instability can be significantly reduced by adding an oscillatory component to the relative drift velocity.
Time-Dependent Interfacial Properties and DNAPL Mobility
Tuck, D.M.
1999-03-10T23:59:59.000Z
Interfacial properties play a major role in governing where and how dense nonaqueous phase liquids (DNAPLs) move in the subsurface. Interfacial tension and contact angle measurements were obtained for a simple, single component DNAPL (tetrachloroethene, PCE), complex laboratory DNAPLs (PCE plus Sudan IV dye), and a field DNAPL from the Savannah River Site (SRS) M-Area DNAPL (PCE, trichloroethene [TCE], and maching oils). Interfacial properties for complex DNAPLs were time-dependent, a phenomenon not observed for PCE alone. Drainage capillary pressure-saturation curves are strongly influenced by interfacial properties. Therefore time-dependence will alter the nature of DNAPL migration and penetration. Results indicate that the time-dependence of PCE with relatively high Sudan IV dye concentrations is comparable to that of the field DNAPL. Previous DNAPL mobility experiments in which the DNAPL was dyed should be reviewed to determine whether time-dependent properties influenced the resutls. Dyes appear to make DNAPL more complex, and therefore a more realistic analog for field DNAPLs than single component DNAPLs.
Time dependent solution for acceleration of tau-leaping
Fu, Jin, E-mail: iamfujin@hotmail.com [Department of Computer Science, University of California, Santa Barbara (United States)] [Department of Computer Science, University of California, Santa Barbara (United States); Wu, Sheng, E-mail: sheng@cs.ucsb.edu [Department of Computer Science, University of California, Santa Barbara (United States)] [Department of Computer Science, University of California, Santa Barbara (United States); Petzold, Linda R., E-mail: petzold@cs.ucsb.edu [Department of Computer Science, University of California, Santa Barbara (United States)
2013-02-15T23:59:59.000Z
The tau-leaping method is often effective for speeding up discrete stochastic simulation of chemically reacting systems. However, when fast reactions are involved, the speed-up for this method can be quite limited. One way to address this is to apply a stochastic quasi-steady state assumption. However we must be careful when using this assumption. If the fast subsystem cannot reach a steady distribution fast enough, the quasi-steady-state assumption will propagate error into the simulation. To avoid these errors, we propose to use the time dependent solution rather than the quasi-steady-state. Generally speaking, the time dependent solution is not easy to derive for an arbitrary network. However, for some common motifs we do have time dependent solutions. We derive the time dependent solutions for these motifs, and then show how they can be used with tau-leaping to achieve substantial speed-ups, including for a realistic model of blood coagulation. Although the method is complicated, we have automated it.
COLORADO FRONT RANGE SEISMICITY AND SEISMIC HAZARD
Sheehan, Anne F.
COLORADO FRONT RANGE SEISMICITY AND SEISMIC HAZARD Anne F. Sheehan University of Colorado, seismic, seismicity, crust, fault, hazard ABSTRACT Construction of seismic hazard and risk maps depends upon carefully constrained input parameters including background seismicity, seismic attenuation
Time Dependence of Particle Creation from Accelerating Mirrors
Michael R. R. Good; Paul R. Anderson; Charles R. Evans
2013-03-27T23:59:59.000Z
Particle production due to a quantized, massless, minimally coupled scalar field in two-dimensional flat spacetime with an accelerating mirror is investigated, with a focus on the time dependence of the process. We analyze first the classes of trajectories previously investigated by Carlitz and Willey and by Walker and Davies. We then analyze four new classes of trajectories, all of which can be expressed analytically and for which several ancillary properties can be derived analytically. The time dependence is investigated through the use of wave packets for the modes of the quantized field that are in the out vacuum state. It is shown for most of the trajectories studied that good time resolution of the particle production process can be obtained.
Reliability analysis of electric power systems including time dependent sources
Kim, Younjong
1987-01-01T23:59:59.000Z
Chairman of Advisory Committee: Chanan Singh A method for reliability analysis of electric power systems with time dependent sources, such as photovoltaic and wind generation, is introduced. The fluctuating characteristic of unconventional generation... and active solar. wind, geothermal, and hydropower. Of all the renewable energy technologies that have been the focus of encouraging government and private R k D efforts, photovoltaic generation and wind turbine generation appear to be the leading...
Time-dependent HF approach to SHE dynamics
A. S. Umar; V. E. Oberacker
2014-12-04T23:59:59.000Z
We employ the time-dependent Hartree-Fock (TDHF) method to study various aspects of the reactions utilized in searches for superheavy elements. These include capture cross-sections, quasifission, prediction of $P_{\\mathrm{CN}}$, and other interesting dynamical quantities. We show that the microscopic TDHF approach provides an important tool to shed some light on the nuclear dynamics leading to the formation of superheavy elements.
Time-Dependent Delayed Signatures From Energetic Photon Interrogations
D. R. Norman; J. L. Jones; B. W. Blackburn; S. M. Watson; K. J. Haskell
2006-08-01T23:59:59.000Z
A pulsed photonuclear interrogation environment is rich with time-dependent, material specific, radiation signatures. Exploitation of these signatures in the delayed time regime (>1us after the photon flash) has been explored through various detection schemes to identify both shielded nuclear material and nitrogen-based explosives. Prompt emission may also be invaluable for these detection methods. Numerical and experimental results, which utilize specially modified neutron and HpGe detectors, are presented which illustrate the efficacy of utilizing these time-dependent signatures. Optimal selection of the appropriate delayed time window is essential to these pulsed inspection systems. For explosive (ANFO surrogate) detection, both numerical models and experimental results illustrate that nearly all 14N(n,y) reactions have occurred within l00 us after the flash. In contrast, however, gamma-ray and neutron signals for nuclear material detection require a delay of several milliseconds after the photon pulse. In this case, any data collected too close to the photon flash results in a spectrum dominated by high energy signals which make it difficult to discern signatures from nuclear material. Specifically, two short-lived, high-energy fission fragments (97Ag(T1/2=5.1 s) and 94Sr(T1/2=75.2 s)) were measured and identified as indicators of the presence of fissionable material. These developments demonstrate that a photon inspection environment can be exploited for time-dependent, material specific signatures through the proper operation of specially modified detectors.
Time dependence of delayed neutron emission for fissionable isotope identification
Kinlaw, M.T.; Hunt, A.W. [Idaho Accelerator Center, Idaho State University, Pocatello, Idaho 83209-8263 (United States); Department of Physics, Idaho State University, Pocatello, Idaho 83209-8106 (United States)
2005-06-20T23:59:59.000Z
The time dependence of delayed neutron emission was examined as a method of fissionable isotope identification. A pulsed bremsstrahlung photon beam was used to induce photofission reactions in {sup 238}U, {sup 232}Th, and {sup 239}Pu targets. The resulting delayed neutron emission was recorded between irradiating pulses and is a well-known technique for fissionable material detection. Monitoring the decay of delayed neutron emission between irradiating pulses demonstrates the ability to not only detect the presence of fissionable materials, but also to identify which fissionable isotope is present.
Stochastic domain decomposition for time dependent adaptive mesh generation
Bihlo, Alexander; Walsh, Emily J
2015-01-01T23:59:59.000Z
The efficient generation of meshes is an important component in the numerical solution of problems in physics and engineering. Of interest are situations where global mesh quality and a tight coupling to the solution of the physical partial differential equation (PDE) is important. We consider parabolic PDE mesh generation and present a method for the construction of adaptive meshes in two spatial dimensions using stochastic domain decomposition that is suitable for an implementation in a multi- or many-core environment. Methods for mesh generation on periodic domains are also provided. The mesh generator is coupled to a time dependent physical PDE and the system is evolved using an alternating solution procedure. The method uses the stochastic representation of the exact solution of a parabolic linear mesh generator to find the location of an adaptive mesh along the (artificial) subdomain interfaces. The deterministic evaluation of the mesh over each subdomain can then be obtained completely independently us...
Subsystem real-time Time Dependent Density Functional Theory
Krishtal, Alisa; Pavanello, Michele
2015-01-01T23:59:59.000Z
We present the extension of Frozen Density Embedding (FDE) theory to real-time Time Dependent Density Functional Theory (rt-TDDFT). FDE a is DFT-in-DFT embedding method that allows to partition a larger Kohn-Sham system into a set of smaller, coupled Kohn-Sham systems. Additional to the computational advantage, FDE provides physical insight into the properties of embedded systems and the coupling interactions between them. The extension to rt-TDDFT is done straightforwardly by evolving the Kohn-Sham subsystems in time simultaneously, while updating the embedding potential between the systems at every time step. Two main applications are presented: the explicit excitation energy transfer in real time between subsystems is demonstrated for the case of the Na$_4$ cluster and the effect of the embedding on optical spectra of coupled chromophores. In particular, the importance of including the full dynamic response in the embedding potential is demonstrated.
Time-dependent Hamiltonians with 100% evolution speed efficiency
Raam Uzdin; Uwe Guenther; Saar Rahav; Nimrod Moiseyev
2012-07-23T23:59:59.000Z
The evolution speed in projective Hilbert space is considered for Hermitian Hamiltonians and for non-Hermitian (NH) ones. Based on the Hilbert-Schmidt norm and the spectral norm of a Hamiltonian, resource-related upper bounds on the evolution speed are constructed. These bounds are valid also for NH Hamiltonians and they are illustrated for an optical NH Hamiltonian and for a non-Hermitian $\\mathcal{PT}-$symmetric matrix Hamiltonian. Furthermore, the concept of quantum speed efficiency is introduced as measure of the system resources directly spent on the motion in the projective Hilbert space. A recipe for the construction of time-dependent Hamiltonians which ensure 100% speed efficiency is given. Generally these efficient Hamiltonians are NH but there is a Hermitian efficient Hamiltonian as well. Finally, the extremal case of a non-Hermitian non-diagonalizable Hamiltonian with vanishing energy difference is shown to produce a 100% efficient evolution with minimal resources consumption.
Relativistic Coulomb excitation within Time Dependent Superfluid Local Density Approximation
I. Stetcu; C. Bertulani; A. Bulgac; P. Magierski; K. J. Roche
2015-01-13T23:59:59.000Z
Within the framework of the unrestricted time-dependent density functional theory, we present for the first time an analysis of the relativistic Coulomb excitation of the heavy deformed open shell nucleus $^{238}$U. The approach is based on Superfluid Local Density Approximation (SLDA) formulated on a spatial lattice that can take into account coupling to the continuum, enabling self-consistent studies of superfluid dynamics of any nuclear shape. We have computed the energy deposited in the target nucleus as a function of the impact parameter, finding it to be significantly larger than the estimate using the Goldhaber-Teller model. The isovector giant dipole resonance, the dipole pygmy resonance and giant quadrupole modes were excited during the process. The one body dissipation of collective dipole modes is shown to lead a damping width $\\Gamma_\\downarrow \\approx 0.4$ MeV and the number of pre-equilibrium neutrons emitted has been quantified.
Time Dependent Hadronization via HERMES and EMC Data Consistency
K. Gallmeister; U. Mosel
2008-02-05T23:59:59.000Z
Using QCD-inspired time dependent cross sections for pre-hadrons we provide a combined analysis of available experimental data on hadron attenuation in DIS off nuclei as measured by HERMES with 12 and 27 GeV and by EMC with 100 and 280 GeV lepton beam energies. We extract the complete four-dimensional evolution of the pre-hadrons using the JETSET-part of PYTHIA. We find a remarkable sensitivity of nuclear attenuation data to the details of the time-evolution of cross sections. Only cross sections evolving linearly in time describe the available data in a wide kinematical regime. Predictions for experimental conditions at JLAB (5 and 12 GeV beam energies) are included.
Mass fluctuations and diffusion in time-dependent random environments
Giorgio Krstulovic; Rehab Bitane; Jeremie Bec
2012-03-27T23:59:59.000Z
A mass ejection model in a time-dependent random environment with both temporal and spatial correlations is introduced. When the environment has a finite correlation length, individual particle trajectories are found to diffuse at large times with a displacement distribution that approaches a Gaussian. The collective dynamics of diffusing particles reaches a statistically stationary state, which is characterized in terms of a fluctuating mass density field. The probability distribution of density is studied numerically for both smooth and non-smooth scale-invariant random environments. A competition between trapping in the regions where the ejection rate of the environment vanishes and mixing due to its temporal dependence leads to large fluctuations of mass. These mechanisms are found to result in the presence of intermediate power-law tails in the probability distribution of the mass density. For spatially differentiable environments, the exponent of the right tail is shown to be universal and equal to -3/2. However, at small values, it is found to depend on the environment. Finally, spatial scaling properties of the mass distribution are investigated. The distribution of the coarse-grained density is shown to posses some rescaling properties that depend on the scale, the amplitude of the ejection rate, and the H\\"older exponent of the environment.
Fukai, Tomoki
-timing-dependent plasiticity STDP characterizes the way of rewiring networks in an activity-dependent manner. This paper
Gowan, Joshua Smith
2012-07-16T23:59:59.000Z
River. Three seismic lines were surveyed, one across Cottonmouth Creek, and two parallel to the creek on either side. The data from the two parallel lines were processed using the 2-D seismic refraction tomography algorithm of Zelt and Smith...
Ambient noise seismic imaging Journal: McGraw Hill 2008 Yearbook of Science & Technology
Ritzwolle, Mike
ForReview Ambient noise seismic imaging Journal: McGraw Hill 2008 Yearbook of Science & Technology List of Authors: Ritzwoller, Michael Keywords: ambient noise, seismology, seismic tomography, Rayleigh wave, Love wave, surface wave Abstract: A recent innovation in seismic imaging based on using long time
Time Dependent Priority Queues Author(s): Leonard Kleinrock and Roy P. Finkelstein
Kleinrock, Leonard
Time Dependent Priority Queues Author(s): Leonard Kleinrock and Roy P. Finkelstein Source DEPENDENT PRIORITY QUEUES Leonard Kileinrock Universityof California,Los Angeles, California and Roy P
TIME DEPENDENT BREAKDOWN OF GATE OXIDE AND PREDICTION OF OXIDE GATE LIFETIME
Mahmoodi, Hamid
TIME DEPENDENT BREAKDOWN OF GATE OXIDE AND PREDICTION OF OXIDE GATE LIFETIME A thesis submitted Masters of Science In Engineering: Embedded System by Bin Wu San Francisco, California May, 2012 #12;CERTIFICATION OF APPROVAL I certify that I have read Time dependent Breakdown of Gate Oxide and Prediction
Drabold, David
]. The electronic structure calculations are based upon "FIREBALL96" of Sankey and co-workers [7]. Mat. Res. Soc of the electron dynamics of localized edge states in a-Si at room temperature by integrating the time dependent be computed by directly dealing with the electron dynamics from the time- dependent SchrÃ¶dinger equation
Mortar finite element discretization of the time dependent nonlinear Darcy's equations
Paris-Sud XI, Université de
Mortar finite element discretization of the time dependent nonlinear Darcy's equations by Karima variations have been handled in [1] and [6], while time-dependent Darcy's equations have been studied in [5 equations model the flow in a porous medium, but underground porous media are most often nonhomogeneous
Electronvibration coupling in time-dependent density-functional theory: Application to benzene
Bertsch George F.
Electronvibration coupling in time-dependent density-functional theory: Application to benzene G://jcp.aip.org/about/rights_and_permissions #12;Electronvibration coupling in time-dependent density-functional theory: Application to benzene G for electronvibration coupling, we apply it to the optical properties of the * transitions in benzene
Advanced Seismic While Drilling System
Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser
2008-06-30T23:59:59.000Z
A breakthrough has been discovered for controlling seismic sources to generate selectable low frequencies. Conventional seismic sources, including sparkers, rotary mechanical, hydraulic, air guns, and explosives, by their very nature produce high-frequencies. This is counter to the need for long signal transmission through rock. The patent pending SeismicPULSER{trademark} methodology has been developed for controlling otherwise high-frequency seismic sources to generate selectable low-frequency peak spectra applicable to many seismic applications. Specifically, we have demonstrated the application of a low-frequency sparker source which can be incorporated into a drill bit for Drill Bit Seismic While Drilling (SWD). To create the methodology of a controllable low-frequency sparker seismic source, it was necessary to learn how to maximize sparker efficiencies to couple to, and transmit through, rock with the study of sparker designs and mechanisms for (a) coupling the sparker-generated gas bubble expansion and contraction to the rock, (b) the effects of fluid properties and dynamics, (c) linear and non-linear acoustics, and (d) imparted force directionality. After extensive seismic modeling, the design of high-efficiency sparkers, laboratory high frequency sparker testing, and field tests were performed at the University of Texas Devine seismic test site. The conclusion of the field test was that extremely high power levels would be required to have the range required for deep, 15,000+ ft, high-temperature, high-pressure (HTHP) wells. Thereafter, more modeling and laboratory testing led to the discovery of a method to control a sparker that could generate low frequencies required for deep wells. The low frequency sparker was successfully tested at the Department of Energy Rocky Mountain Oilfield Test Center (DOE RMOTC) field test site in Casper, Wyoming. An 8-in diameter by 26-ft long SeismicPULSER{trademark} drill string tool was designed and manufactured by TII. An APS Turbine Alternator powered the SeismicPULSER{trademark} to produce two Hz frequency peak signals repeated every 20 seconds. Since the ION Geophysical, Inc. (ION) seismic survey surface recording system was designed to detect a minimum downhole signal of three Hz, successful performance was confirmed with a 5.3 Hz recording with the pumps running. The two Hz signal generated by the sparker was modulated with the 3.3 Hz signal produced by the mud pumps to create an intense 5.3 Hz peak frequency signal. The low frequency sparker source is ultimately capable of generating selectable peak frequencies of 1 to 40 Hz with high-frequency spectra content to 10 kHz. The lower frequencies and, perhaps, low-frequency sweeps, are needed to achieve sufficient range and resolution for realtime imaging in deep (15,000 ft+), high-temperature (150 C) wells for (a) geosteering, (b) accurate seismic hole depth, (c) accurate pore pressure determinations ahead of the bit, (d) near wellbore diagnostics with a downhole receiver and wired drill pipe, and (e) reservoir model verification. Furthermore, the pressure of the sparker bubble will disintegrate rock resulting in an increased overall rates of penetration. Other applications for the SeismicPULSER{trademark} technology are to deploy a low-frequency source for greater range on a wireline for Reverse Vertical Seismic Profiling (RVSP) and Cross-Well Tomography. Commercialization of the technology is being undertaken by first contacting stakeholders to define the value proposition for rig site services utilizing SeismicPULSER{trademark} technologies. Stakeholders include national oil companies, independent oil companies, independents, service companies, and commercial investors. Service companies will introduce a new Drill Bit SWD service for deep HTHP wells. Collaboration will be encouraged between stakeholders in the form of joint industry projects to develop prototype tools and initial field trials. No barriers have been identified for developing, utilizing, and exploiting the low-frequency SeismicPULSER{trademark} source in a
Second Quantized Scalar QED in Homogeneous Time-Dependent Electromagnetic Fields
Sang Pyo Kim
2014-09-04T23:59:59.000Z
We formulate the second quantization of a charged scalar field in homogeneous, time-dependent electromagnetic fields, in which the Hamiltonian is an infinite system of decoupled, time-dependent oscillators for electric fields, but it is another infinite system of coupled, time-dependent oscillators for magnetic fields. We then employ the quantum invariant method to find various quantum states for the charged field. For time-dependent electric fields, a pair of quantum invariant operators for each oscillator with the given momentum plays the role of the time-dependent annihilation and the creation operators, constructs the exact quantum states, and gives the vacuum persistence amplitude as well as the pair-production rate. We also find the quantum invariants for the coupled oscillators for the charged field in time-dependent magnetic fields and advance a perturbation method when the magnetic fields change adiabatically. Finally, the quantum state and the pair production are discussed when a time-dependent electric field is present in parallel to the magnetic field.
Global transition zone tomography Jeroen Ritsema1
Ritsema, Jeroen
Global transition zone tomography Jeroen Ritsema1 and Hendrik Jan van Heijst Seismological on accurate models of seismic velocity variation in the upper mantle transition zone (4001000 km depth. Such data provide new global transition zone constraints. We combined more than a million measurements
Boyarinov, V. F.; Kondrushin, A. E.; Fomichenko, P. A. [National Research Center, Kurchatov Inst., Kurchatov Sq. 1, Moscow (Russian Federation)
2012-07-01T23:59:59.000Z
Finite-difference time-dependent equations of Surface Harmonics method have been obtained for plane geometry. Verification of these equations has been carried out by calculations of tasks from 'Benchmark Problem Book ANL-7416'. The capacity and efficiency of the Surface Harmonics method have been demonstrated by solution of the time-dependent neutron transport equation in diffusion approximation. The results of studies showed that implementation of Surface Harmonics method for full-scale calculations will lead to a significant progress in the efficient solution of the time-dependent neutron transport problems in nuclear reactors. (authors)
UIUC Collector Erosion and Optical Lifetime Project Results: Time Dependent Exposures
Spila, Timothy P.
UIUC Collector Erosion and Optical Lifetime Project Results: Time Dependent Exposures Darren A is the lifetime of collector optics. Frequent replacement of the mirror system will detract from the economic
Optimal adaptive routing and traffic assignment in stochastic time-dependent networks
Gao, Song, 1976-
2005-01-01T23:59:59.000Z
A stochastic time-dependent (STD) network is defined by treating all link travel times at all time periods as random variables, with possible time-wise and link-wise stochastic dependency. A routing policy is a decision ...
First passage time statistics of Brownian motion with purely time dependent drift and diffusion
Molini, Annalisa; Katul, Gabriel G; Porporato, Amilcare
2010-01-01T23:59:59.000Z
Systems where resource availability approaches a critical threshold are common to many engineering and scientific applications and often necessitate the estimation of first passage time statistics of a Brownian motion (Bm) driven by time-dependent drift and diffusion coefficients. Modeling such systems requires solving the associated Fokker-Planck equation subject to an absorbing barrier. Conditional probabilities are classically derived via the method of images, whose applicability to time-dependent problems, including stochastic resonance, is discussed. First passage time statistics, such as the survival probabilities and first passage time densities are obtained analytically. The analysis includes the study of different functional forms of the time dependent drift and diffusion, such as power-law time dependence and different periodic drivers. As a case study of these theoretical results, a stochastic model for snow melt in mountain regions is presented where both temperature effects and snow-precipitation...
R. Quittmeyer
2006-09-25T23:59:59.000Z
This technical work plan (TWP) describes the efforts to develop and confirm seismic ground motion inputs used for preclosure design and probabilistic safety 'analyses and to assess the postclosure performance of a repository at Yucca Mountain, Nevada. As part of the effort to develop seismic inputs, the TWP covers testing and analyses that provide the technical basis for inputs to the seismic ground-motion site-response model. The TWP also addresses preparation of a seismic methodology report for submission to the U.S. Nuclear Regulatory Commission (NRC). The activities discussed in this TWP are planned for fiscal years (FY) 2006 through 2008. Some of the work enhances the technical basis for previously developed seismic inputs and reduces uncertainties and conservatism used in previous analyses and modeling. These activities support the defense of a license application. Other activities provide new results that will support development of the preclosure, safety case; these results directly support and will be included in the license application. Table 1 indicates which activities support the license application and which support licensing defense. The activities are listed in Section 1.2; the methods and approaches used to implement them are discussed in more detail in Section 2.2. Technical and performance objectives of this work scope are: (1) For annual ground motion exceedance probabilities appropriate for preclosure design analyses, provide site-specific seismic design acceleration response spectra for a range of damping values; strain-compatible soil properties; peak motions, strains, and curvatures as a function of depth; and time histories (acceleration, velocity, and displacement). Provide seismic design inputs for the waste emplacement level and for surface sites. Results should be consistent with the probabilistic seismic hazard analysis (PSHA) for Yucca Mountain and reflect, as appropriate, available knowledge on the limits to extreme ground motion at Yucca Mountain. (2) For probabilistic analyses supporting the demonstration of compliance with preclosure performance objectives, provide a mean seismic hazard curve for the surface facilities area. Results should be consistent with the PSHA for Yucca Mountain and reflect, as appropriate, available knowledge on the limits to extreme ground motion at Yucca Mountain. (3) For annual ground motion exceedance probabilities appropriate for postclosure analyses, provide site-specific seismic time histories (acceleration, velocity, and displacement) for the waste emplacement level. Time histories should be consistent with the PSHA and reflect available knowledge on the limits to extreme ground motion at Yucca Mountain. (4) In support of ground-motion site-response modeling, perform field investigations and laboratory testing to provide a technical basis for model inputs. Characterize the repository block and areas in which important-to-safety surface facilities will be sited. Work should support characterization and reduction of uncertainties in inputs to ground-motion site-response modeling. (5) On the basis of rock mechanics, geologic, and seismic information, determine limits on extreme ground motion at Yucca Mountain and document the technical basis for them. (6) Update the ground-motion site-response model, as appropriate, on the basis of new data. Expand and enhance the technical basis for model validation to further increase confidence in the site-response modeling. (7) Document seismic methodologies and approaches in reports to be submitted to the NRC. (8) Address condition reports.
Simons, Frederik Jozef Maurits, 1974-
2002-01-01T23:59:59.000Z
In this thesis, I explore the geophysical structure and evolution of the Australian continental lithosphere. I combine insights from isotropic and anisotropic seismic surface-wave tomography with an analysis of the anisotropy ...
High-fidelity numerical solution of the time-dependent Dirac equation
Almquist, Martin, E-mail: martin.almquist@it.uu.se [Uppsala University, Department of Information Technology, Lägerhyddsvägen 2, 752 37 Uppsala (Sweden); Mattsson, Ken [Uppsala University, Department of Information Technology, Lägerhyddsvägen 2, 752 37 Uppsala (Sweden); Edvinsson, Tomas [Uppsala University, Department of Chemistry – Ångström Laboratory, Lägerhyddsvägen 1, 751 21 Uppsala (Sweden)
2014-04-01T23:59:59.000Z
A stable high-order accurate finite difference method for the time-dependent Dirac equation is derived. Grid-convergence studies in 1-D and 3-D corroborate the analysis. The method is applied to time-resolved quantum tunneling where a comparison with the solution to the time-dependent Schrödinger equation in 1-D illustrates the differences between the two equations. In contrast to the conventional tunneling probability decay predicted by the Schrödinger equation, the Dirac equation exhibits Klein tunneling. Solving the time-dependent Dirac equation with a step potential in 3-D reveals that particle spin affects the tunneling process. The observed spin-dependent reflection allows for a new type of spin-selective measurements.
Time-dependent analytic solutions of quasi-steady shocks with cooling
P. Lesaffre
2007-05-22T23:59:59.000Z
I present time-dependent analytical solutions of quasi-steady shocks with cooling, where quasi-steady shocks are objects composed of truncated steady-state models of shocks at any intermediate time. I compare these solutions to simulations with a hydrodynamical code and finally discuss quasi-steady shocks as approximations to time-dependent shocks. Large departure of both the adiabatic and steady-state approximations from the quasi-steady solution emphasise the importance of the cooling history in determining the trajectory of a shock.
Models with time-dependent parameters using transform methods: application to Heston's model
Elices, A
2007-01-01T23:59:59.000Z
This paper presents a methodology to introduce time-dependent parameters for a wide family of models preserving their analytic tractability. This family includes hybrid models with stochastic volatility, stochastic interest-rates, jumps and their non-hybrid counterparts. The methodology is applied to Heston's model. A bootstrapping algorithm is presented for calibration. A case study works out the calibration of the time-dependent parameters to the volatility surface of the Eurostoxx 50 index. The methodology is also applied to the analytic valuation of forward start vanilla options driven by Heston's model. This result is used to explore the forward skew of the case study.
P- and S- wave tomography of the crust and uppermost mantle in China and surrounding areas
Sun, Youshun, 1970-
2005-01-01T23:59:59.000Z
This thesis involves inverting the seismic structure of the crust and uppermost mantle in China from the P- and S-wave travel-time tomography. The main contributions of this research are: 1) introducing the adaptive moving ...
Katsevich, Alexander J. (Los Alamos, NM); Ramm, Alexander G. (Manhattan, KS)
1996-01-01T23:59:59.000Z
Local tomographic data is used to determine the location and value of a discontinuity between a first internal density of an object and a second density of a region within the object. A beam of radiation is directed in a predetermined pattern through the region of the object containing the discontinuity. Relative attenuation data of the beam is determined within the predetermined pattern having a first data component that includes attenuation data through the region. The relative attenuation data is input to a pseudo-local tomography function, where the difference between the internal density and the pseudo-local tomography function is computed across the discontinuity. The pseudo-local tomography function outputs the location of the discontinuity and the difference in density between the first density and the second density.
Katsevich, A.J.; Ramm, A.G.
1996-07-23T23:59:59.000Z
Local tomographic data is used to determine the location and value of a discontinuity between a first internal density of an object and a second density of a region within the object. A beam of radiation is directed in a predetermined pattern through the region of the object containing the discontinuity. Relative attenuation data of the beam is determined within the predetermined pattern having a first data component that includes attenuation data through the region. The relative attenuation data is input to a pseudo-local tomography function, where the difference between the internal density and the pseudo-local tomography function is computed across the discontinuity. The pseudo-local tomography function outputs the location of the discontinuity and the difference in density between the first density and the second density. 7 figs.
Brolo, Alexandre G.
, and Department of Chemistry, UniVersity of Victoria, P. O. Box 3065, Victoria, British Columbia, Canada, V8W 3V6 ReceiVed: July 31, 2009; ReVised Manuscript ReceiVed: August 14, 2009 Time-dependent fluctuations
QUANTUM ENERGY EXPECTATION IN PERIODIC TIME-DEPENDENT HAMILTONIANS VIA GREEN
QUANTUM ENERGY EXPECTATION IN PERIODIC TIME-DEPENDENT HAMILTONIANS VIA GREEN FUNCTIONS CÂ´ESAR R. DE. Introduction 1 2. Average Energy and Green Functions 4 3. Applications 10 3.1. Time-Independent Hamiltonians 10(t). For each positive and discrete observable A (which we call a probe energy), we derive a formula
AN E-BASED MIXED FORMULATION FOR A TIME-DEPENDENT EDDY CURRENT PROBLEM
RodrÃguez, Rodolfo
AN E-BASED MIXED FORMULATION FOR A TIME-DEPENDENT EDDY CURRENT PROBLEM RAMIRO ACEVEDO, SALIM-quasistatic submodel usually called eddy current problem; see for instance [9, Chapter 8]. From the mathematical point this harmonic behavior, leading to the so-called time-harmonic eddy current problem. However, even in the case
AN ADAPTIVE FINITE ELEMENT METHOD FOR THE H -FORMULATION OF TIME-DEPENDENT EDDY CURRENT
AN ADAPTIVE FINITE ELEMENT METHOD FOR THE H - FORMULATION OF TIME-DEPENDENT EDDY CURRENT PROBLEMS, eddy current problem, adaptive finite element method, mul- tiply connected conductor, Team Workshop Problem 7 AMS subject classifications. 65M60, 65M50, 78A25 1. Introduction. Eddy currents appear in almost
SYNCHROTRON LIGHTCURVES OF BLAZARS IN A TIME-DEPENDENT SYNCHROTRON-SELF COMPTON COOLING SCENARIO
Zacharias, Michael; Schlickeiser, Reinhard, E-mail: mz@tp4.rub.de, E-mail: rsch@tp4.rub.de [Institut für Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universität Bochum, D-44780 Bochum (Germany)
2013-11-10T23:59:59.000Z
Blazars emit non-thermal radiation in all frequency bands from radio to ?-rays. Additionally, they often exhibit rapid flaring events at all frequencies with doubling timescale of the TeV and X-ray flux on the order of minutes, and such rapid flaring events are difficult to explain theoretically. We explore the effect of the synchrotron-self Compton cooling, which is inherently time-dependent, leading to a rapid cooling of the electrons. Having intensively discussed the resulting effects of this cooling scenario on the spectral energy distribution of blazars in previous papers, the effects of the time-dependent approach on the synchrotron lightcurve are investigated here. Taking into account the retardation due to the finite size of the source and the source geometry, we show that the time-dependent synchrotron-self Compton (SSC) cooling still has profound effects on the lightcurve compared to the usual linear (synchrotron and external Compton) cooling terms. This is most obvious if the SSC cooling takes longer than the light crossing timescale. Then, in most frequency bands, the variability timescale is up to an order of magnitude shorter than under linear cooling conditions. This is yet another strong indication that the time-dependent approach should be taken into account for modeling blazar flares from compact emission regions.
A time dependent solution for the operation of ion chambers in a high ionization background
Christos Velissaris
2005-01-17T23:59:59.000Z
We have derived a time dependent solution describing the development of space charge inside an ion chamber subjected to an externally caused ionization rate N. The solution enables the derivation of a formula that the operational parameters of the chamber must satisfy for saturation free operation. This formula contains a correction factor to account for the finite duration of the ionization rate N.
VISUAL QUERY OF TIME-DEPENDENT 3D WEATHER IN A GLOBAL GEOSPATIAL
Shaw, Chris
1 VISUAL QUERY OF TIME-DEPENDENT 3D WEATHER IN A GLOBAL GEOSPATIAL ENVIRONMENT William Ribarsky and Spatial Analysis Technologies, Georgia Institute of Technology This Technical Report is a draft WEATHER IN A GLOBAL GEOSPATIAL ENVIRONMENT William Ribarsky, Nickolas Faust, Zachary Wartell, Christopher
A ROUTE IMPROVEMENT ALGORITHM FOR THE VEHICLE ROUTING PROBLEM WITH TIME DEPENDENT TRAVEL TIMES
Bertini, Robert L.
. This research presents a new solution approach, an iterative route construction and improvement algorithm (IRCI such as greenhouse gases, noise, and air pollution. Routing models with time-varying travel times are gaining greater attention in vehicle routing literature and industry. However, research on the time dependent vehicle
Climate Projections Using Bayesian Model Averaging and Space-Time Dependence
Haran, Murali
Climate Projections Using Bayesian Model Averaging and Space-Time Dependence K. Sham Bhat, Murali Haran, Adam Terando, and Klaus Keller. Abstract Projections of future climatic changes are a key input to the design of climate change mitiga- tion and adaptation strategies. Current climate change projections
Paris-Sud XI, Université de
Parameter identification of nonlinear time-dependent rubber bushings models towards^atenay-Malabry, France Abstract Rubber bushings are extensively-used linking parts in a vehicle chassis that allow of the rubber bushings is useful to describe the significant characteristics of the vehicle's steering behaviour
Koch, Othmar
calculations of electronic structure. When a large number of states is involved, such a description be- comes The multiconfiguration time-dependent Hartree-Fock approach for the description of correlated few-electron dynamics ionization and electron spectra for the ground and first excited ionic channels are calculated for one
Boyer, Edmond
Time-dependent model for diluted magnetic semiconductors including band structure and confinement dynamics in confined diluted magnetic semiconductors induced by laser. The hole-spin relaxation process light-induced magnetization dynamics in ferro- magnetic films and in diluted magnetic semiconductors DMS
On the kinetic equation approach to pair production by time-dependent electric field
A. M. Fedotov; E. G. Gelfer; K. Yu. Korolev; S. A. Smolyansky
2010-08-12T23:59:59.000Z
We investigate the quantum kinetic approach to pair production from vacuum by time-dependent electric field. Equivalence between this approach and the more familiar S-matrix approach is explicitly established for both scalar and fermion cases. For the particular case of a constant electric field exact solution for kinetic equations is provided and the accuracy of low-density approximation is estimated.
INTERFACE CRACK PROPAGATION IN POROUS AND TIME-DEPENDENT MATERIALS ANALYZED WITH
Boyer, Edmond
INTERFACE CRACK PROPAGATION IN POROUS AND TIME-DEPENDENT MATERIALS ANALYZED WITH DISCRETE MODELS and the FPZ. From the point of view of design of structures, e.g. reinforced concrete structures, this size size, size effects, creep, ageing, fracture, viscoelastic- ity, time effect, concrete failure, discrete
Time-dependent variational approach to molecules in strong laser fields
Gross, E.K.U.
. Owing to their ultra-short duration, femtosecond pulses allow for the direct observation of chemicalTime-dependent variational approach to molecules in strong laser fields Thomas Kreibich a , Robert in strong laser fields using an ansatz for the wavefunction that explicitly incorporates the electron
Electronvibration coupling in time-dependent density-functional theory: Application to benzene
Bertsch George F.
Electronvibration coupling in time-dependent density-functional theory: Application to benzene G for electronvibration coupling, we apply it to the optical properties of the * transitions in benzene with the electronic excitations. In this work, we have chosen the benzene model for an exploratory study
Molecular-orbital-free algorithm for excited states in time-dependent perturbation theory
Tretiak, Sergei
with system size N is investigated by monitoring convergence behavior with respect to the quality of initial.1063/1.2965535 I. INTRODUCTION Matter responds to electromagnetic perturbation in a time-dependent fashion be described by its excitation spectrum. The excitation spectrum is of fundamental importance to many fields
MODELING SPACE-TIME DEPENDENT HELIUM BUBBLE EVOLUTION IN TUNGSTEN ARMOR UNDER IFE CONDITIONS
Ghoniem, Nasr M.
MODELING SPACE-TIME DEPENDENT HELIUM BUBBLE EVOLUTION IN TUNGSTEN ARMOR UNDER IFE CONDITIONS Qiyang dependent Helium transport in finite geometries, including the simultaneous transient production of defects of Helium bubbles. I. INTRODUCTION Helium production and helium bubble evolution in neutron
Kendall, R.P.; Campbell, K.
1997-08-01T23:59:59.000Z
This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project effort was directed toward preliminary geostatistical analysis of the Carpenteria Offshore Field as a precursor to the step of integrating time-dependent data into a geostatistical model of the Field.
T. R. Marsh
2000-11-01T23:59:59.000Z
I review the method of Doppler tomography which translates binary-star line profiles taken at a series of orbital phases into a distribution of emission over the binary. I begin with a discussion of the basic principles behind Doppler tomography, including a comparison of the relative merits of maximum entropy regularisation versus filtered back-projection for implementing the inversion. Following this I discuss the issue of noise in Doppler images and possible methods for coping with it. Then I move on to look at the results of Doppler Tomography applied to cataclysmic variable stars. Outstanding successes to date are the discovery of two-arm spiral shocks in cataclysmic variable accretion discs and the probing of the stream/magnetospheric interaction in magnetic cataclysmic variable stars. Doppler tomography has also told us much about the stream/disc interaction in non-magnetic systems and the irradiation of the secondary star in all systems. The latter indirectly reveals such effects as shadowing by the accretion disc or stream. I discuss all of these and finish with some musings on possible future directions for the method. At the end I include a tabulation of Doppler maps published in refereed journals.
Searches for Time Dependent Neutrino Sources with IceCube Data from 2008 to 2012
Aartsen, M G; Adams, J; Aguilar, J A; Ahlers, M; Ahrens, M; Altmann, D; Anderson, T; Arguelles, C; Arlen, T C; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Tjus, J Becker; Becker, K -H; BenZvi, S; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bos, F; Bose, D; Böser, S; Botner, O; Brayeur, L; Bretz, H -P; Brown, A M; Buzinsky, N; Casey, J; Casier, M; Cheung, E; Chirkin, D; Christov, A; Christy, B; Clark, K; Classen, L; Clevermann, F; Coenders, S; Cowen, D F; Silva, A H Cruz; Daughhetee, J; Davis, J C; Day, M; de André, J P A M; De Clercq, C; Dembinski, H; De Ridder, S; Desiati, P; de Vries, K D; de Wasseige, G; de With, M; DeYoung, T; D\\'\\iaz-Vélez, J C; Dumm, J P; Dunkman, M; Eagan, R; Eberhardt, B; Ehrhardt, T; Eichmann, B; Eisch, J; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Felde, J; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Frantzen, K; Fuchs, T; Gaisser, T K; Gaior, R; Gallagher, J; Gerhardt, L; Gier, D; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Goodman, J A; Góra, D; Grant, D; Gretskov, P; Groh, J C; Groß, A; Ha, C; Haack, C; Ismail, A Haj; Hallen, P; Hallgren, A; Halzen, F; Hanson, K; Hebecker, D; Heereman, D; Heinen, D; Helbing, K; Hellauer, R; Hellwig, D; Hickford, S; Hignight, J; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huang, F; Huelsnitz, W; Hulth, P O; Hultqvist, K; In, S; Ishihara, A; Jacobi, E; Jacobsen, J; Japaridze, G S; Jero, K; Jurkovic, M; Kaminsky, B; Kappes, A; Karg, T; Karle, A; Kauer, M; Keivani, A; Kelley, J L; Kheirandish, A; Kiryluk, J; Kläs, J; Klein, S R; Köhne, J -H; Kohnen, G; Kolanoski, H; Koob, A; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Kriesten, A; Krings, K; Kroll, G; Kroll, M; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Lanfranchi, J L; Larsen, D T; Larson, M J; Lesiak-Bzdak, M; Leuermann, M; Lünemann, J; Madsen, J; Maggi, G; Mahn, K B M; Maruyama, R; Mase, K; Matis, H S; Maunu, R; McNally, F; Meagher, K; Medici, M; Meli, A; Meures, T; Miarecki, S; Middell, E; Middlemas, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Niederhausen, H; Nowicki, S C; Nygren, D R; Obertacke, A; Olivas, A; Omairat, A; O'Murchadha, A; Palczewski, T; Paul, L; Penek, Ö; Pepper, J A; Heros, C Pérez de los; Pfendner, C; Pieloth, D; Pinat, E; Posselt, J; Price, P B; Przybylski, G T; Pütz, J; Quinnan, M; Rädel, L; Rameez, M; Rawlins, K; Redl, P; Rees, I; Reimann, R; Relich, M; Resconi, E; Rhode, W; Richman, M; Riedel, B; Robertson, S; Rodrigues, J P; Rongen, M; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Sander, H -G; Sandroos, J; Santander, M; Sarkar, S; Schatto, K; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Sestayo, Y; Seunarine, S; Shanidze, R; Smith, M W E; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stanisha, N A; Stasik, A; Stezelberger, T; Stokstad, R G; Stößl, A; Strahler, E A; Ström, R; Strotjohann, N L; Sullivan, G W; Sutherland, M; Taavola, H; Taboada, I; Tamburro, A; Ter-Antonyan, S; Terliuk, A; Teši?, G; Tilav, S; Toale, P A; Tobin, M N; Tosi, D; Tselengidou, M; Unger, E; Usner, M; Vallecorsa, S; van Eijndhoven, N; Vandenbroucke, J; van Santen, J; Vanheule, S; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Wallraff, M; Weaver, Ch; Wellons, M; Wendt, C; Westerhoff, S; Whelan, B J; Whitehorn, N; Wichary, C; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, D L; Xu, X W; Xu, Y; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zoll, M
2015-01-01T23:59:59.000Z
In this paper searches for flaring astrophysical neutrino sources and sources with periodic emission with the IceCube neutrino telescope are presented. In contrast to time integrated searches, where steady emission is assumed, the analyses presented here look for a time dependent signal of neutrinos using the information from the neutrino arrival times to enhance the discovery potential. A search was performed for correlations between neutrino arrival times and directions as well as neutrino emission following time dependent lightcurves, sporadic emission or periodicities of candidate sources. These include active galactic nuclei, soft $\\gamma$-ray repeaters, supernova remnants hosting pulsars, micro-quasars and X-ray binaries. The work presented here updates and extends previously published results to a longer period that covers four years of data from 2008 April 5 to 2012 May 16 including the first year of operation of the completed 86-string detector. The analyses did not find any significant time dependen...
Tretiak, Sergei [Los Alamos National Laboratory
2008-01-01T23:59:59.000Z
Four different numerical algorithms suitable for a linear scaling implementation of time-dependent Hartree-Fock and Kohn-Sham self-consistent field theories are examined. We compare the performance of modified Lanczos, Arooldi, Davidson, and Rayleigh quotient iterative procedures to solve the random-phase approximation (RPA) (non-Hermitian) and Tamm-Dancoff approximation (TDA) (Hermitian) eigenvalue equations in the molecular orbital-free framework. Semiempirical Hamiltonian models are used to numerically benchmark algorithms for the computation of excited states of realistic molecular systems (conjugated polymers and carbon nanotubes). Convergence behavior and stability are tested with respect to a numerical noise imposed to simulate linear scaling conditions. The results single out the most suitable procedures for linear scaling large-scale time-dependent perturbation theory calculations of electronic excitations.
Landau levels of scalar QED in time-dependent magnetic fields
Kim, Sang Pyo, E-mail: sangkim@kunsan.ac.kr
2014-05-15T23:59:59.000Z
The Landau levels of scalar QED undergo continuous transitions under a homogeneous, time-dependent magnetic field. We analytically formulate the Klein–Gordon equation for a charged spinless scalar as a Cauchy initial value problem in the two-component first order formalism and then put forth a measure that classifies the quantum motions into the adiabatic change, the nonadiabatic change, and the sudden change. We find the exact quantum motion and calculate the pair-production rate when the magnetic field suddenly changes as a step function. -- Highlights: •We study the Landau levels of scalar QED in time-dependent magnetic fields. •Instantaneous Landau levels make continuous transitions but keep parity. •The Klein–Gordon equation is expressed in the two-component first order formalism. •A measure is advanced that characterizes the quantum motions into three categories. •A suddenly changing magnetic field produces pairs of charged scalars from vacuum.
Fred Cooper; Gouranga C. Nayak
2006-12-29T23:59:59.000Z
We study the Schwinger mechanism for the pair production of fermions in the presence of an arbitrary time-dependent background electric field E(t) by directly evaluating the path integral. We obtain an exact non-perturbative result for the probability of fermion-antifermion pair production per unit time per unit volume per unit transverse momentum (of the fermion or antifermion) from the arbitrary time dependent electric field E(t) via Schwinger mechanism. We find that the exact non-perturbative result is independent of all the time derivatives d^nE(t)/dt^n, where n=1,2,....\\infty. This result has the same functional dependence on E as the Schwinger's constant electric field E result with the replacement: E -> E(t).
Time-dependent models of two-phase accretion discs around black holes
M. Mayer; J. E. Pringle
2006-12-28T23:59:59.000Z
We present time-dependent simulations of a two-phase accretion flow around a black hole. The accretion flow initially is composed of an optically thick and cool disc close to the midplane, while on top and below the disc there is a hot and optically thin corona. We consider several interaction mechanisms as heating of the disc by the corona and Compton cooling of the corona by the soft photons of the disc. Mass and energy can be exchanged between the disc and the corona due to thermal conduction. For the course of this more exploratory work, we limit ourselves to one particular model for a stellar mass black hole accreting at a low accretion rate. We confirm earlier both theoretical and observational results which show that at low accretion rates the disc close to the black hole cannot survive and is evaporated. Given the framework of this model, we now can follow through this phase of disc evaporation time dependently.
Experiments with a time-dependent, zonally averaged, seasonal, enery balance climatic model
Thompson, Starley Lee
1977-01-01T23:59:59.000Z
EXPERIMENTS WITH A TI&E-DEPENDENT, ZONALLY AVERAGED, SEASONAL, ENERGY BALANCE CLIMATIC MODEL A Thesis by STARLEY LEE THOMPSON Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the decree... of MASTER OF SCIENCE December 1977 Major Subject: Meteorology EXPERIMENTS WITH A TIME DEPENDENT~ ZONALLY AVERAGED~ SEASONAL, ENERGY BALANCE CLIMATIC MODEL A Thesis by STARLEY LEE THOMPSON Approved as to style and content by: (Chairman of Committee...
A numerical method of solving time-dependent Hartree-Fock-Bogoliubov equation with Gogny interaction
Y. Hashimoto; K. Nodeki
2007-07-20T23:59:59.000Z
A numerical method to solve time-dependent Hartree-Fock-Bogoliubov equation is proposed to treat the case with Gogny effective interaction. To check the feasibility of the method, it is applied to oxygen isotope O20 and small amplitude oscillations are calculated. The conservation of the nucleon numbers as well as energy expectation value is demonstrated. The strength distributions of the small amplitude quadrupole oscillations are also shown.
Time-dependent analysis of a fiber-optic passive-loop resonator
Crosignani, B.; Yariv, A.; Di Porto, P.
1986-04-01T23:59:59.000Z
A time-dependent analysis of an all-single-mode fiber-optic resonator is presented in which the input field is allowed to exhibit an arbitrary dependence on time. In particular, the transmissivity of the resonator is evaluated for an input field possessing an arbitrary temporal coherence, which allows one to consider the role of the source coherence time as compared with the fiber time delay.
Experiments with a time-dependent, zonally averaged, seasonal, enery balance climatic model
Thompson, Starley Lee
1977-01-01T23:59:59.000Z
EXPERIMENTS WITH A TI&E-DEPENDENT, ZONALLY AVERAGED, SEASONAL, ENERGY BALANCE CLIMATIC MODEL A Thesis by STARLEY LEE THOMPSON Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the decree... of MASTER OF SCIENCE December 1977 Major Subject: Meteorology EXPERIMENTS WITH A TIME DEPENDENT~ ZONALLY AVERAGED~ SEASONAL, ENERGY BALANCE CLIMATIC MODEL A Thesis by STARLEY LEE THOMPSON Approved as to style and content by: (Chairman of Committee...
Time dependent annealing of radiation - induced leakage currents in MOS devices
Terrell, J.M. (Booz Allen and Hamilton, Inc. Bethesda, MD (US)); Olkham, T.R.; Lelis, A.J.; Benedetto, J.M. (Harry Diamond Labs., Adelphi, MD (US))
1989-12-01T23:59:59.000Z
Results are presented showing the radiation response of several unhardened commercial 1.25-{mu}m bulk CMOS processes using LOCOS isolation technology. In all cases studied radiation-induced failure is caused by effects in the field oxide, and the radiation-induced {delta}V{sub T} in the channel region is usually small at the failure dose. Time dependent leakage current data for the field oxides are presented and discussed.
A Deterministic-Monte Carlo Hybrid Method for Time-Dependent Neutron Transport Problems
Justin Pounders; Farzad Rahnema
2001-10-01T23:59:59.000Z
A new deterministic-Monte Carlo hybrid solution technique is derived for the time-dependent transport equation. This new approach is based on dividing the time domain into a number of coarse intervals and expanding the transport solution in a series of polynomials within each interval. The solutions within each interval can be represented in terms of arbitrary source terms by using precomputed response functions. In the current work, the time-dependent response function computations are performed using the Monte Carlo method, while the global time-step march is performed deterministically. This work extends previous work by coupling the time-dependent expansions to space- and angle-dependent expansions to fully characterize the 1D transport response/solution. More generally, this approach represents and incremental extension of the steady-state coarse-mesh transport method that is based on global-local decompositions of large neutron transport problems. An example of a homogeneous slab is discussed as an example of the new developments.
The development of the time dependence of the nuclear EMP electric field
Eng, C
2009-10-30T23:59:59.000Z
The nuclear electromagnetic pulse (EMP) electric field calculated with the legacy code CHAP is compared with the field given by an integral solution of Maxwell's equations, also known as the Jefimenko equation, to aid our current understanding on the factors that affect the time dependence of the EMP. For a fair comparison the CHAP current density is used as a source in the Jefimenko equation. At first, the comparison is simplified by neglecting the conduction current and replacing the standard atmosphere with a constant density air slab. The simplicity of the resultant current density aids in determining the factors that affect the rise, peak and tail of the EMP electric field versus time. The three dimensional nature of the radiating source, i.e. sources off the line-of-sight, and the time dependence of the derivative of the current density with respect to time are found to play significant roles in shaping the EMP electric field time dependence. These results are found to hold even when the conduction current and the standard atmosphere are properly accounted for. Comparison of the CHAP electric field with the Jefimenko electric field offers a direct validation of the high-frequency/outgoing wave approximation.
Exact solution for the Green's function describing time-dependent thermal Comptonization
Peter A. Becker
2003-03-28T23:59:59.000Z
We obtain an exact, closed-form expression for the time-dependent Green's function solution to the Kompaneets equation. The result, which is expressed as the integral of a product of two Whittaker functions, describes the evolution in energy space of a photon distribution that is initially monoenergetic. Effects of spatial transport within a homogeneous scattering cloud are also included within the formalism. The Kompaneets equation that we solve includes both the recoil and energy diffusion terms, and therefore our solution for the Green's function approaches the Wien spectrum at large times. We show that the Green's function can be used to generate all of the previously known steady-state and time-dependent solutions to the Kompaneets equation. The new solution allows the direct determination of the spectrum, without the need to numerically solve the partial differential equation. Based upon the Green's function, we obtain a new time-dependent solution for the photon distribution resulting from the reprocessing of an optically thin bremsstrahlung initial spectrum with a low-energy cutoff. The new bremsstrahlung solution possesses a finite photon number density, and therefore it displays proper equilibration to a Wien spectrum at large times. The relevance of our results for the interpretation of emission from variable X-ray sources is discussed, with particular attention to the production of hard X-ray time lags, and the Compton broadening of narrow features such as iron lines.
Green, M.A.; Cook, N.G.W.; McEvilly, T.V.; Majer, E.L.; Witherspoon, P.A.
1987-04-20T23:59:59.000Z
Apparatus is described for placement in a borehole in the earth, which enables the generation of closely controlled seismic waves from the borehole. Pure torsional shear waves are generated by an apparatus which includes a stator element fixed to the borehole walls and a rotor element which is electrically driven to rapidly oscillate on the stator element to cause reaction forces transmitted through the borehole walls to the surrounding earth. Longitudinal shear waves are generated by an armature that is driven to rapidly oscillate along the axis of the borehole, to cause reaction forces transmitted to the surrounding earth. Pressure waves are generated by electrically driving pistons that press against opposite ends of a hydraulic reservoir that fills the borehole. High power is generated by energizing the elements for more than about one minute. 9 figs.
3-D seismic velocity and attenuation structures in the geothermal field
Nugraha, Andri Dian [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Syahputra, Ahmad [Geophyisical Engineering, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Geophyisical Engineering, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Fatkhan,; Sule, Rachmat [Applied Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Applied Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)
2013-09-09T23:59:59.000Z
We conducted delay time tomography to determine 3-D seismic velocity structures (Vp, Vs, and Vp/Vs ratio) using micro-seismic events in the geothermal field. The P-and S-wave arrival times of these micro-seismic events have been used as input for the tomographic inversion. Our preliminary seismic velocity results show that the subsurface condition of geothermal field can be fairly delineated the characteristic of reservoir. We then extended our understanding of the subsurface physical properties through determining of attenuation structures (Qp, Qs, and Qs/Qp ratio) using micro-seismic waveform. We combined seismic velocities and attenuation structures to get much better interpretation of the reservoir characteristic. Our preliminary attanuation structures results show reservoir characterization can be more clearly by using the 3-D attenuation model of Qp, Qs, and Qs/Qp ratio combined with 3-D seismic velocity model of Vp, Vs, and Vp/Vs ratio.
Pei, Dongfei; Nichols, Michael T.; Shohet, J. Leon, E-mail: shohet@engr.wisc.edu [Plasma Processing and Technology Laboratory, Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); King, Sean W.; Clarke, James S. [Intel Corporation, Hillsboro, Oregon 97124 (United States); Nishi, Yoshio [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States)
2014-09-01T23:59:59.000Z
Time-dependent dielectric breakdown (TDDB) is one of the major concerns for low-k dielectric materials. During plasma processing, low-k dielectrics are subjected to vacuum ultraviolet photon radiation and charged-particle bombardment. To examine the change of TDDB properties, time-to-breakdown measurements are made to porous SiCOH before and after plasma exposure. Significant discrepancies between mercury and solid-metal probes are observed and have been shown to be attributed to mercury diffusion into the dielectric porosities.
Adaptive-grid methods for time-dependent partial differential equations
Hedstrom, G.W.; Rodrique, G.H.
1981-01-01T23:59:59.000Z
This paper contains a survey of recent developments of adaptive-grid algorithms for time-dependent partial differential equations. Two lines of research are discussed. One involves the automatic selection of moving grids to follow propagating waves. The other is based on stationary grids but uses local mesh refinement in both space and time. Advantages and disadvantages of both approaches are discussed. The development of adaptive-grid schemes shows promise of greatly increasing our ability to solve problems in several spatial dimensions.
Classical-like behavior in quantum walks with inhomogeneous, time-dependent coin operators
Miquel Montero
2015-05-29T23:59:59.000Z
Although quantum walks exhibit distinctive properties that distinguish them from random walks, classical behavior can be recovered by destroying the coherence of the pure state associated to the quantum system. Here I show that this is not the only way: I introduce a quantum walk driven by an inhomogeneous, time-dependent coin operator, which mimics the statistical properties of a random walk. The quantum particle undergoes unitary evolution and, in fact, the coherence evidenced by the wave function can be used to revert the outcome of an accidental measure of its chirality.
Solution of the time-dependent diffusion equation using a conservation variational method
Wilson, Bruce Carl
1981-01-01T23:59:59.000Z
E. Lee The time-dependent concentration diffusion equation w1th radio- act1ve decay was solved us1ng a conservation variatlonal method and analytic exponent1al operator technique. The conservation var1ation- al method used Lagrange multipliers... Concentration in a one region slab w1th diffus1on and decay . 33 Error versus posit1on in the one region slab problem . Two isotope diffusion w1th decay in slab geometry. 36 Error versus posit1on in the two 1sotope slab d1ffusion problem . 37 Pebble bed...
Linear analysis of time dependent properties of Child-Langmuir flow
Rokhlenko, A. [Department of Mathematics, Rutgers University, Piscataway, New Jersey 08854-8019 (United States)
2013-01-15T23:59:59.000Z
We continue our analysis of the time dependent behavior of the electron flow in the Child-Langmuir system, removing an approximation used earlier. We find a modified set of oscillatory decaying modes with frequencies of the same order as the inverse of the electron transient time. This range (typically MHz) allows simple experimental detection and maybe exploitation. We then study the time evolution of the current in response to a slow change of the anode voltage where the same modes of oscillations appear too. The cathode current in this case is systematically advanced or retarded depending on the direction of the voltage change.
On the exact treatment of time-dependent self-interaction correction
Messud, J. [Universite de Toulouse, UPS, Laboratoire de Physique Theorique (IRSAMC), F-31062 Toulouse Cedex 04 (France); CNRS, LPT (IRSAMC), F-31062 Toulouse (France)], E-mail: messud@irsamc.ups-tlse.fr; Dinh, P.M. [Universite de Toulouse, UPS, Laboratoire de Physique Theorique (IRSAMC), F-31062 Toulouse Cedex 04 (France); CNRS, LPT (IRSAMC), F-31062 Toulouse (France); Reinhard, P.-G. [Institut fuer Theoretische Physik, Universitaet Erlangen, D-91058 Erlangen (Germany); Suraud, E. [Universite de Toulouse, UPS, Laboratoire de Physique Theorique (IRSAMC), F-31062 Toulouse Cedex 04 (France); CNRS, LPT (IRSAMC), F-31062 Toulouse (France)
2009-04-15T23:59:59.000Z
We present a new formulation of the time-dependent self-interaction correction (TDSIC). It is derived variationally obeying explicitly the constraints on orthonormality of the occupied single-particle orbitals. The thus emerging rather involved symmetry condition amongst the orbitals is dealt with using two separate sets of (occupied) single-particle wavefunctions, related by a unitary transformation. The double-set TDSIC scheme is well suited for numerical implementation. We present results for laser-excited dynamics in a 1D model for a molecule and in fully fledged 3D calculations.
On the Vlasov equation for Schwinger pair production in a time-dependent electric field
Adolfo Huet; Sang Pyo Kim; Christian Schubert
2015-01-26T23:59:59.000Z
Schwinger pair creation in a purely time-dependent electric field can be described through a quantum Vlasov equation describing the time evolution of the single-particle momentum distribution function. This equation exists in two versions, both of which can be derived by a Bogoliubov transformation, but whose equivalence is not obvious. For the spinless case, we show here that the difference between these two evolution equations corresponds to the one between the "in-out" and "in-in" formalisms. We give a simple relation between the asymptotic distribution functions generated by the two Vlasov equations. As examples we discuss the Sauter and single-soliton field cases.
Unitarity bounds and RG flows in time dependent quantum field theory
Xi Dong; Bart Horn; Eva Silverstein; Gonzalo Torroba
2012-03-08T23:59:59.000Z
We generalize unitarity bounds on operator dimensions in conformal field theory to field theories with spacetime dependent couplings. Below the energy scale of spacetime variation of the couplings, their evolution can strongly affect the physics, effectively shifting the infrared operator scaling and unitarity bounds determined from correlation functions in the theory. We analyze this explicitly for large-$N$ double-trace flows, and connect these to UV complete field theories. One motivating class of examples comes from our previous work on FRW holography, where this effect explains the range of flavors allowed in the dual, time dependent, field theory.
Unitarity Bounds and RG Flows in Time Dependent Quantum Field Theory
Dong, Xi; Horn, Bart; Silverstein, Eva; Torroba, Gonzalo; /Stanford U., ITP /Stanford U., Phys. Dept. /SLAC
2012-04-05T23:59:59.000Z
We generalize unitarity bounds on operator dimensions in conformal field theory to field theories with spacetime dependent couplings. Below the energy scale of spacetime variation of the couplings, their evolution can strongly affect the physics, effectively shifting the infrared operator scaling and unitarity bounds determined from correlation functions in the theory. We analyze this explicitly for large-N double-trace flows, and connect these to UV complete field theories. One motivating class of examples comes from our previous work on FRW holography, where this effect explains the range of flavors allowed in the dual, time dependent, field theory.
Matter pulse carving: Manipulating quantum wave packets via time-dependent absorption
Goussev, Arseni
2015-01-01T23:59:59.000Z
A pulse of matter waves may dramatically change its shape when traversing an absorbing barrier with time-dependent transparency. Here we show that this effect can be utilized for controlled manipulation of spatially-localized quantum states. In particular, in the context of atom-optics experiments, we explicitly demonstrate how the proposed approach can be used to generate spatially shifted, split, squeezed and cooled atomic wave packets. We expect our work to be useful in devising new interference experiments with atoms and molecules and, more generally, to enable new ways of coherent control of matter waves.
RodrÃguez, Rodolfo
Analysis of a FEM-BEM model posed on the conducting domain for the time-dependent eddy currentÂ´atica, Universidad de ConcepciÂ´on, Casilla 160-C, Concepcion, Chile. Abstract The three-dimensional eddy current time. Keywords: Boundary elements; eddy current problem; finite elements; time-dependent electromagnetic problem
Tominski, Christian
,psw,schumann}@informatik.uni-rostock.de Abstract The visual analysis of time dependent data is an essential task in many application fields Modern databases are capable of storing large amounts of multivariate time dependent data. Since such data could help understanding natural phenomena or business processes, temporal data analysis
Shaping state and time-dependent convergence rates in non-linear control and observer design
Winfried Lohmiller; Jean-Jacques E. Slotine
2010-04-17T23:59:59.000Z
This paper derives for non-linear, time-varying and feedback linearizable systems simple controller designs to achieve specified state-and timedependent complex convergence rates. This approach can be regarded as a general gain-scheduling technique with global exponential stability guarantee. Typical applications include the transonic control of an aircraft with strongly Mach or time-dependent eigenvalues or the state-dependent complex eigenvalue placement of the inverted pendulum. As a generalization of the LTI Luenberger observer a dual observer design technique is derived for a broad set of non-linear and time-varying systems, where so far straightforward observer techniques were not known. The resulting observer design is illustrated for non-linear chemical plants, the Van-der-Pol oscillator, the discrete logarithmic map series prediction and the lighthouse navigation problem. These results [23] allow one to shape globally the state- and time-dependent convergence behaviour ideally suited to the non-linear or time-varying system. The technique can also be used to provide analytic robustness guarantees against modelling uncertainties. The derivations are based on non-linear contraction theory [18], a comparatively recent dynamic system analysis tool whose results will be reviewed and extended.
Fission dynamics within time-dependent Hartree-Fock: deformation-induced fission
P. M. Goddard; P. D. Stevenson; A. Rios
2015-04-03T23:59:59.000Z
Background: Nuclear fission is a complex large-amplitude collective decay mode in heavy nuclei. Microscopic density functional studies of fission have previously concentrated on adiabatic approaches based on constrained static calculations ignoring dynamical excitations of the fissioning nucleus, and the daughter products. Purpose: To explore the ability of dynamic mean-field methods to describe fast fission processes beyond the fission barrier, using the nuclide $^{240}$Pu as an example. Methods: Time-dependent Hartree-Fock calculations based on the Skyrme interaction are used to calculate non-adiabatic fission paths, beginning from static constrained Hartree-Fock calculations. The properties of the dynamic states are interpreted in terms of the nature of their collective motion. Fission product properties are compared to data. Results: Parent nuclei constrained to begin dynamic evolution with a deformation less than the fission barrier exhibit giant-resonance-type behaviour. Those beginning just beyond the barrier explore large amplitude motion but do not fission, whereas those beginning beyond the two-fragment pathway crossing fission to final states which differ according to the exact initial deformation. Conclusions: Time-dependent Hartree-Fock is able to give a good qualitative and quantitative description of fast fission, provided one begins from a sufficiently deformed state.
Elastic capsules in shear flow: Analytical solutions for constant and time-dependent shear rates
Steffen Kessler; Reimar Finken; Udo Seifert
2009-02-26T23:59:59.000Z
We investigate the dynamics of microcapsules in linear shear flow within a reduced model with two degrees of freedom. In previous work for steady shear flow, the dynamic phases of this model, i.e. swinging, tumbling and intermittent behaviour, have been identified using numerical methods. In this paper, we integrate the equations of motion in the quasi-spherical limit analytically for time-constant and time-dependent shear flow using matched asymptotic expansions. Using this method, we find analytical expressions for the mean tumbling rate in general time-dependent shear flow. The capsule dynamics is studied in more detail when the inverse shear rate is harmonically modulated around a constant mean value for which a dynamic phase diagram is constructed. By a judicious choice of both modulation frequency and phase, tumbling motion can be induced even if the mean shear rate corresponds to the swinging regime. We derive expressions for the amplitude and width of the resonance peaks as a function of the modulation frequency.
Time-dependent and outflow boundary conditions for Dissipative Particle Dynamics
Lei Huan [Division of Applied Mathematics, Brown University, Providence, RI 02912 (United States); Fedosov, Dmitry A. [Division of Applied Mathematics, Brown University, Providence, RI 02912 (United States); Institut fuer Festkoerperforschung, Forschungszentrum Juelich, 52425 Juelich (Germany); Karniadakis, George Em, E-mail: George_Karniadakis@brown.ed [Division of Applied Mathematics, Brown University, Providence, RI 02912 (United States)
2011-05-10T23:59:59.000Z
We propose a simple method to impose both no-slip boundary conditions at fluid-wall interfaces and at outflow boundaries in fully developed regions for Dissipative Particle Dynamics (DPD) fluid systems. The procedure to enforce the no-slip condition is based on a velocity-dependent shear force, which is a generalized force to represent the presence of the solid-wall particles and to maintain locally thermodynamic consistency. We show that this method can be implemented in both steady and time-dependent fluid systems and compare the DPD results with the continuum limit (Navier-Stokes) results. We also develop a force-adaptive method to impose the outflow boundary conditions for fully developed flow with unspecified outflow velocity profile or pressure value. We study flows over the backward-facing step and in idealized arterial bifurcations using a combination of the two new boundary methods with different flow rates. Finally, we explore the applicability of the outflow method in time-dependent flow systems. The outflow boundary method works well for systems with Womersley number of O(1), i.e. when the pressure and flowrate at the outflow are approximately in-phase.
Beyond the pseudo-time-dependent approach: chemical models of dense core precursors
Hassel, G E; Bergin, E A
2010-01-01T23:59:59.000Z
Context: Chemical models of dense cloud cores often utilize the so-called pseudo-time-dependent approximation, in which the physical conditions are held fixed and uniform as the chemistry occurs. In this approximation, the initial abundances chosen, which are totally atomic in nature except for molecular hydrogen, are artificial. A more detailed approach to the chemistry of dense cold cores should include the physical evolution during their early stages of formation. Aims: Our major goal is to investigate the initial synthesis of molecular ices and gas-phase molecules as cold molecular gas begins to form behind a shock in the diffuse interstellar medium. The abundances calculated as the conditions evolve can then be utilized as reasonable initial conditions for a theory of the chemistry of dense cores. Methods: Hydrodynamic shock-wave simulations of the early stages of cold core formation are used to determine the time-dependent physical conditions for a gas-grain chemical network. We follow the cold post-sho...
Phenomenological memory-kernel master equations and time-dependent Markovian processes
L. Mazzola; E. -M. Laine; H. -P. Breuer; S. Maniscalco; J. Piilo
2011-03-03T23:59:59.000Z
Do phenomenological master equations with memory kernel always describe a non-Markovian quantum dynamics characterized by reverse flow of information? Is the integration over the past states of the system an unmistakable signature of non-Markovianity? We show by a counterexample that this is not always the case. We consider two commonly used phenomenological integro-differential master equations describing the dynamics of a spin 1/2 in a thermal bath. By using a recently introduced measure to quantify non-Markovianity [H.-P. Breuer, E.-M. Laine, and J. Piilo, Phys. Rev. Lett. 103, 210401 (2009)] we demonstrate that as far as the equations retain their physical sense, the key feature of non-Markovian behavior does not appear in the considered memory kernel master equations. Namely, there is no reverse flow of information from the environment to the open system. Therefore, the assumption that the integration over a memory kernel always leads to a non-Markovian dynamics turns out to be vulnerable to phenomenological approximations. Instead, the considered phenomenological equations are able to describe time-dependent and uni-directional information flow from the system to the reservoir associated to time-dependent Markovian processes.
Observation of time dependent dispersion in laboratory scale experiments with intact tuff
Rundberg, R.S.; Triay, I.R.; Ott, M.A.; Mitchell, A.J.
1989-12-01T23:59:59.000Z
The migration of radionuclides through intact tuff was studied using tuff from Yucca Mountain, Nevada. The tuff samples were both highly zeolitized ash-fall tuff from the Calico Hills and densely welded devitrified tuff from the Topopah Springs member of the Paintbrush tuff. Tritiated water and pertechnetate were used as conservative tracers. The sorbing tracers {sup 85}Sr, {sup 137}Cs, and {sup 133}Ba were used with the devitrified tuff only. Greater tailing in the elution curves of the densely welded tuff samples was observed that could be fit by adjusting the dispersion coefficient in the conventional Advection Dispersion Equation, ADE. The curves could be fit using time dependent dispersion as was previously observed for sediments and alluvium by Dieulin, Matheron, and de Marsily. The peak of strontium concentration was expected to arrive after 1.5 years based on the conventional ADE and assuming a linear K{sub d} of 26 ml/g. The observed elution had significant strontium in the first sample taken at 2 weeks after injection. The peak in the strontium elution occurred at 5 weeks. The correct arrival time for the strontium peak was achieved using a one dimensional analytic solution with time dependent dispersion. The dispersion coefficient as a function of time used to fit the conservative tracers was found to predict the peak arrival of the sorbing tracers. The K{sub d} used was the K{sub d} determined by the batch method on crushed tuff. 23 refs., 9 figs., 2 tabs.
Green, Michael A. (Oakland, CA); Cook, Neville G. W. (Lafayette, CA); McEvilly, Thomas V. (Berkeley, CA); Majer, Ernest L. (El Cirrito, CA); Witherspoon, Paul A. (Berkeley, CA)
1992-01-01T23:59:59.000Z
Apparatus is described for placement in a borehole in the earth, which enables the generation of closely controlled seismic waves from the borehole. Pure torsional shear waves are generated by an apparatus which includes a stator element fixed to the borehole walls and a rotor element which is electrically driven to rapidly oscillate on the stator element to cause reaction forces transmitted through the borehole walls to the surrounding earth. Logitudinal shear waves are generated by an armature that is driven to rapidly oscillate along the axis of the borehole relative to a stator that is clamped to the borehole, to cause reaction forces transmitted to the surrounding earth. Pressure waves are generated by electrically driving pistons that press against opposite ends of a hydraulic reservoir that fills the borehole. High power is generated by energizing the elements at a power level that causes heating to over 150.degree. C. within one minute of operation, but energizing the elements for no more than about one minute.
SEISMIC RAY THEORY Seismic Ray Theory presents the most comprehensive treatment of the seismic
Cerveny, Vlastislav
, and the interpretation of seismic measurements. The book presents a consistent treatment of the seismic ray method, based#12;SEISMIC RAY THEORY Seismic Ray Theory presents the most comprehensive treatment of the seismic ray method available. This method plays an important role in seismology, seismic exploration
Seismic Fracture Characterization Methods for Enhanced Geothermal...
Broader source: Energy.gov (indexed) [DOE]
Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Project objective: Make Seismic...
Ohmura, Shu; Kono, Hirohiko, E-mail: hirohiko-kono@m.tohoku.ac.jp [Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578 (Japan); Oyamada, Takayuki [Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027 (Japan); Kato, Tsuyoshi; Nakai, Katsunori [Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Koseki, Shiro [Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Osaka 599-8531 (Japan)
2014-09-21T23:59:59.000Z
Using the framework of multiconfiguration theory, where the wavefunction ?(t) of a many-electron system at time t is expanded as ?(t)=?{sub I}C{sub I}(t)?{sub I}(t) in terms of electron configurations (?{sub I}(t)), we divided the total electronic energy E(t) as E(t)=?{sub I}|C{sub I}(t)|{sup 2}E{sub I}(t) . Here E{sub I}(t) is the instantaneous phase changes of C{sub I}(t) regarded as a configurational energy associated with ?{sub I}(t). We then newly defined two types of time-dependent states: (i) a state at which the rates of population transfer among configurations are all zero; (ii) a state at which (E{sub I}(t)) associated with the quantum phases of C{sub I}(t) are all the same. We call the former time-dependent state a classical stationary state by analogy with the stationary (steady) states of classical reaction rate equations and the latter one a quantum stationary state. The conditions (i) and (ii) are satisfied simultaneously for the conventional stationary state in quantum mechanics. We numerically found for a LiH molecule interacting with a near-infrared (IR) field ?(t) that the condition (i) is satisfied whenever the average velocity of electrons is zero and the condition (ii) is satisfied whenever the average acceleration is zero. We also derived the chemical potentials ?{sub j}(t) for time-dependent natural orbitals ?{sub j}(t) of a many-electron system. The analysis of the electron dynamics of LiH indicated that the temporal change in ??{sub j}(t) ? ?{sub j}(t) + ?(t) · d{sub j}(t) ? ?{sub j}(0) correlates with the motion of the dipole moment of ?{sub j}(t), d{sub j}(t). The values ??{sub j}(t) are much larger than the energy ?{sub j}(t) directly supplied to ?{sub j}(t) by the field, suggesting that valence electrons exchange energy with inner shell electrons. For H{sub 2} in an intense near-IR field, the ionization efficiency of ?{sub j}(t) is correlated with ??{sub j}(t). Comparing ??{sub j}(t) to ?{sub j}(t), we found that energy accepting orbitals of ??{sub j}(t) > ?{sub j}(t) indicate high ionization efficiency. The difference between ??{sub j}(t) and ?{sub j}(t) is significantly affected by electron-electron interactions in real time.
Fission dynamics within time-dependent Hartree-Fock: deformation-induced fission
Goddard, P M; Rios, A
2015-01-01T23:59:59.000Z
Background: Nuclear fission is a complex large-amplitude collective decay mode in heavy nuclei. Microscopic density functional studies of fission have previously concentrated on adiabatic approaches based on constrained static calculations ignoring dynamical excitations of the fissioning nucleus, and the daughter products. Purpose: To explore the ability of dynamic mean-field methods to describe fast fission processes beyond the fission barrier, using the nuclide $^{240}$Pu as an example. Methods: Time-dependent Hartree-Fock calculations based on the Skyrme interaction are used to calculate non-adiabatic fission paths, beginning from static constrained Hartree-Fock calculations. The properties of the dynamic states are interpreted in terms of the nature of their collective motion. Fission product properties are compared to data. Results: Parent nuclei constrained to begin dynamic evolution with a deformation less than the fission barrier exhibit giant-resonance-type behaviour. Those beginning just beyond the ...
Solar Models: current epoch and time dependences, neutrinos, and helioseismological properties
John N. Bahcall; M. H. Pinsonneault; Sarbani Basu
2001-03-13T23:59:59.000Z
We calculate accurate solar models and report the detailed time dependences of important solar quantities. We use helioseismology to constrain the luminosity evolution of the sun and report the discovery of semi-convection in evolved solar models that include diffusion. In addition, we compare the computed sound speeds with the results of p-mode observations by BiSON, GOLF, GONG, LOWL, and MDI instruments. We contrast the neutrino predictions from a set of eight standard-like solar models and four deviant (or deficient) solar models with the results of solar neutrino experiments. For solar neutrino and for helioseismological applications, we present present-epoch numerical tabulations of characteristics of the standard solar model as a function of solar radius, including the principal physical and composition variables, sound speeds, neutrino fluxes, and functions needed for calculating solar neutrino oscillations.
Haxton, D. J.; Lawler, K. V. [Chemical Sciences and Ultrafast X-ray Science Laboratory, Lawrence Berkeley National Laboratory, Berkeley, California, 94720 (United States); McCurdy, C. W. [Chemical Sciences and Ultrafast X-ray Science Laboratory, Lawrence Berkeley National Laboratory, Berkeley, California, 94720 (United States); Departments of Applied Science and Chemistry, Davis, California, 95616 (United States)
2011-06-15T23:59:59.000Z
The multiconfiguration time-dependent Hartree-Fock (MCTDHF) method is formulated for treating the coupled electronic and nuclear dynamics of diatomic molecules without the Born-Oppenheimer approximation. The method treats the full dimensionality of the electronic motion, uses no model interactions, and is in principle capable of an exact nonrelativistic description of diatomics in electromagnetic fields. An expansion of the wave function in terms of configurations of orbitals whose dependence on internuclear distance is only that provided by the underlying prolate spheroidal coordinate system is demonstrated to provide the key simplifications of the working equations that allow their practical solution. Photoionization cross sections are also computed from the MCTDHF wave function in calculations using short pulses.
Optimal use of time dependent probability density data to extract potential energy surfaces
Lukas Kurtz; Herschel Rabitz; Regina de Vivie-Riedle
2001-11-09T23:59:59.000Z
A novel algorithm was recently presented to utilize emerging time dependent probability density data to extract molecular potential energy surfaces. This paper builds on the previous work and seeks to enhance the capabilities of the extraction algorithm: An improved method of removing the generally ill-posed nature of the inverse problem is introduced via an extended Tikhonov regularization and methods for choosing the optimal regularization parameters are discussed. Several ways to incorporate multiple data sets are investigated, including the means to optimally combine data from many experiments exploring different portions of the potential. Results are presented on the stability of the inversion procedure, including the optimal combination scheme, under the influence of data noise. The method is applied to the simulated inversion of a double well system.
Exact Analysis of the Adiabatic Invariants in Time-Dependent Harmonic Oscillator
Marko Robnik; Valery G. Romanovski
2005-06-16T23:59:59.000Z
The theory of adiabatic invariants has a long history and important applications in physics but is rarely rigorous. Here we treat exactly the general time-dependent 1-D harmonic oscillator, $\\ddot{q} + \\omega^2(t) q=0$ which cannot be solved in general. We follow the time-evolution of an initial ensemble of phase points with sharply defined energy $E_0$ and calculate rigorously the distribution of energy $E_1$ after time $T$, and all its moments, especially its average value $\\bar{E_1}$ and variance $\\mu^2$. Using our exact WKB-theory to all orders we get the exact result for the leading asymptotic behaviour of $\\mu^2$.
Studies of time dependence of fields in TEVATRON superconducting dipole magnets
Hanft, R.W.; Brown, B.C.; Herrup, D.A.; Lamm, M.J.; McInturff, A.D.; Syphers, M.J.
1988-08-22T23:59:59.000Z
The time variation in the magnetic field of a model Tevatron dipole magnet at constant excitation current has been studied. Variations in symmetry allowed harmonic components over long time ranges show a log t behavior indicative of ''flux creep.'' Both short time range and long time range behavior depend in a detailed way on the excitation history. Similar effects are seen in the remnant fields present in full-scale Tevatron dipoles following current ramping. Both magnitudes and time dependences are observed to depend on details for the ramps, such as ramp rate, flattop duration, and number of ramps. In a few magnets, variations are also seen in symmetry unallowed harmonics. 9 refs., 10 figs.
Time-Dependent CP Violation Effects in Partially Reconstructed $B^0 \\to D^* ?$ Decays
T. Gershon; for the Belle Collaboration
2005-07-08T23:59:59.000Z
We report measurements of time-dependent decay rates for $B^0 \\to D^{*\\mp} \\pi^\\pm$ decays and extraction of CP violation parameters related to $\\phi_3$. We use a partial reconstruction technique, whereby signal events are identified using information only from the primary pion and the charged pion from the decay of the $D^{*\\mp}$. The analysis uses $140 {\\rm fb}^{-1}$ of data accumulated at the $\\Upsilon(4S)$ resonance with the Belle detector at the KEKB asymmetric-energy $e^{+}e^{-}$ collider. We measure the CP violation parameters $S^+ = 0.035 \\pm 0.041 ({\\rm stat}) \\pm 0.018 ({\\rm syst})$ and $S^- = 0.025 \\pm 0.041 ({\\rm stat}) \\pm 0.018 ({\\rm syst})$.
Hebbian Spike-Timing Dependent Self-Organization in Pulsed Neural Networks
2001-01-01T23:59:59.000Z
We present a mechanism of unsupervised competitive learning and development of topology preserving self-organizing maps of spiking neurons. The information encoding is based on the precise timing of single spike events. The work provides a competitive learning algorithm that is based on the relative timing of the pre- and post-synaptic spikes, local synapse competitions within a single neuron and global competition via lateral connections. Furthermore, we present part of the experimental work on the capability of the suggested mechanism to perform topology preserving mapping and competitive learning. The results show that our model covers the main characteristic behaviour of the standard SOM but uses a computationally more powerful timing-dependent spike encoding.
Time-dependent Ginzburg-Landau equations for mixed d- and s-wave superconductors
Zhu, JX; Kim, WK; Ting, CS; Hu, Chia-Ren.
1998-01-01T23:59:59.000Z
is such an approach. PRB 580163-1829/98/58~22!/15020~15!/$15.00 for mixed d- and s-wave superconductors Kim, and C. S. Ting y of Houston, Houston, Texas 77204 n Hu , College Station, Texas 77843 t received 2 July 1998! s ~TDGL! for superconductors of mixed d... 2 2k? y 2 !~ k? x8 2 2k? y8 2 !, ~2.7! D * ~ R,k;v!5Ds*~R;v!1Dd*~R;v!~k? x 2 2k? y 2 !, ~2.8! where Vd and Vs are positive so that both the d- and s- PRB 58 TIME-DEPENDENT GINZBURG-LANDA channel interactions are attractive. The d...
Engineering of Quantum State by Time-Dependent Decoherence-Free Subspaces
S. L. Wu
2015-02-27T23:59:59.000Z
We apply the time-dependent decoherence-free subspace theory to a Markovian open quantum system in order to present a novel proposal for quantum-state engineering program. By quantifying the purity of the quantum state, we verify that the quantum-state engineering process designed via our method is completely unitary within any total engineering time. Even though the controls on the open quantum system are not perfect, the asymptotic purity is still robust. Owing to its ability to completely resist decoherence and the lack of restraint in terms of the total engineering time, our proposal is suitable for multitask quantum-state engineering program. Therefore, this proposal is not only useful for achieving the quantum-state engineering program experimentally, it also helps us build both a quantum simulation and quantum information equipment in reality.
Problem-free time-dependent variational principle for open quantum systems
Joubert-Doriol, Loic
2015-01-01T23:59:59.000Z
Methods of quantum nuclear wave-function dynamics have become very efficient in simulating large isolated systems using the time-dependent variational principle (TDVP). However, a straightforward extension of the TDVP to the density matrix framework gives rise to methods that do not conserve the energy in the isolated system limit and the total system population for open systems where only energy exchange with the environment is allowed. These problems arise when the system density is in a mixed state and is simulated using an incomplete basis. Thus, the basis set incompleteness, which is inevitable in practical calculations, creates artificial channels for energy and population dissipation. To overcome this unphysical behavior, we have introduced a constrained Lagrangian formulation of TDVP applied to the non-stochastic open system Schrodinger equation (NOSSE) [L. Joubert-Doriol, I. G. Ryabinkin, and A. F. Izmaylov, J. Chem. Phys. 141, 234112 (2014)]. While our formulation can be applied to any variational a...
Solution of the Two-Dimensional Time-Dependent Schroedinger Equation Applied to Nuclear Proton Decay
Rizea, M. [National Institute of Physics and Nuclear Engineering, 'Horia Hulubei', PO Box MG-6, Bucharest (Romania); Carjan, N. [Centre d'Etudes Nucleaires de Bordeaux-Gradignan, UMR 5797, CNRS/IN2P3-Universite Bordeaux 1, BP 120, 33175 Gradignan Cedex (France)
2009-09-09T23:59:59.000Z
A rigorous approach to study the temporal evolution of physical processes is to follow the development in time of a given initial state, by numerically solving the time-dependent Schroedinger equation. This represents a natural modeling of the dynamical behaviour. We considered the equation in two spatial coordinates, to describe deformed nuclear shapes. The Hamiltonian is discretized by special, functionally fitted difference formulae of the derivatives and then a Crank-Nicolson scheme is applied. The resulting linear system with large sparse matrix is solved by a variant of Conjugate Gradient Method. The numerical solution has been used to the description of the proton decay. We also discuss the treatment of numerical boundary conditions, the preparation of the initial wavefunction and the calculation of the decay rate through the flux.
Gradient Symplectic Algorithms for Solving the Schroedinger Equation with Time-Dependent Potentials
Chin, S A
2002-01-01T23:59:59.000Z
We show that the method of factorizing the evolution operator to fourth order with purely positive coefficients, in conjunction with Suzuki's method of implementing time-ordering of operators, produces a new class of powerful algorithms for solving the Schroedinger equation with time-dependent potentials. When applied to the Walker-Preston model of a diatomic molecule in a strong laser field, these algorithms can have fourth order error coefficients that are three orders of magnitude smaller than the Forest-Ruth algorithm using the same number of Fast Fourier Transforms. When compared to the second order split-operator method, some of these algorithms can achieve comparable convergent accuracy at step sizes 50 times as large. Morever, we show that these algorithms belong to a one-parameter family of algorithms, and that the parameter can be further optimized for specific applications.
Gradient Symplectic Algorithms for Solving the Schroedinger Equation with Time-Dependent Potentials
S. A. Chin; C. R. Chen
2002-03-05T23:59:59.000Z
We show that the method of factorizing the evolution operator to fourth order with purely positive coefficients, in conjunction with Suzuki's method of implementing time-ordering of operators, produces a new class of powerful algorithms for solving the Schroedinger equation with time-dependent potentials. When applied to the Walker-Preston model of a diatomic molecule in a strong laser field, these algorithms can have fourth order error coefficients that are three orders of magnitude smaller than the Forest-Ruth algorithm using the same number of Fast Fourier Transforms. When compared to the second order split-operator method, some of these algorithms can achieve comparable convergent accuracy at step sizes 50 times as large. Morever, we show that these algorithms belong to a one-parameter family of algorithms, and that the parameter can be further optimized for specific applications.
In situ study on low-k interconnect time-dependent-dielectric-breakdown mechanisms
Boon Yeap, Kong, E-mail: KongBoon.Yeap@globalfoundries.com [GLOBALFOUNDRIES, Fab8, 400 Stonebreak Rd. Extension, Malta, New York 12020 (United States); Fraunhofer Institute for Ceramic Technologies and Systems, Maria-Reiche-Str. 2, D-01109 Dresden (Germany); Gall, Martin; Liao, Zhongquan; Sander, Christoph; Muehle, Uwe; Zschech, Ehrenfried [Fraunhofer Institute for Ceramic Technologies and Systems, Maria-Reiche-Str. 2, D-01109 Dresden (Germany); Justison, Patrick [GLOBALFOUNDRIES, Fab8, 400 Stonebreak Rd. Extension, Malta, New York 12020 (United States); Aubel, Oliver; Hauschildt, Meike; Beyer, Armand; Vogel, Norman [GLOBALFOUNDRIES Dresden Module One LLC and Co. KG, Wilschdorfer Landstr. 101, D-01109 Dresden (Germany)
2014-03-28T23:59:59.000Z
An in situ transmission-electron-microscopy methodology is developed to observe time-dependent dielectric breakdown (TDDB) in an advanced Cu/ultra-low-k interconnect stack. A test structure, namely a “tip-to-tip” structure, was designed to localize the TDDB degradation in small dielectrics regions. A constant voltage is applied at 25?°C to the “tip-to-tip” structure, while structural changes are observed at nanoscale. Cu nanoparticle formation, agglomeration, and migration processes are observed after dielectric breakdown. The Cu nanoparticles are positively charged, since they move in opposite direction to the electron flow. Measurements of ionic current, using the Triangular-Voltage-Stress method, suggest that Cu migration is not possible before dielectric breakdown, unless the Cu/ultra-low-k interconnect stacks are heated to 200?°C and above.
Zhu, Hong-Ming; Chen, Jin-Wang; Pan, Xiao-Yin, E-mail: panxiaoyin@nbu.edu.cn [Department of Physics, Ningbo University, Ningbo 315211 (China)] [Department of Physics, Ningbo University, Ningbo 315211 (China); Sahni, Viraht [Department of Physics, Brooklyn College and The Graduate School of the City University of New York, New York, New York 10016 (United States)] [Department of Physics, Brooklyn College and The Graduate School of the City University of New York, New York, New York 10016 (United States)
2014-01-14T23:59:59.000Z
We derive via the interaction “representation” the many-body wave function for harmonically confined electrons in the presence of a magnetostatic field and perturbed by a spatially homogeneous time-dependent electric field—the Generalized Kohn Theorem (GKT) wave function. In the absence of the harmonic confinement – the uniform electron gas – the GKT wave function reduces to the Kohn Theorem wave function. Without the magnetostatic field, the GKT wave function is the Harmonic Potential Theorem wave function. We further prove the validity of the connection between the GKT wave function derived and the system in an accelerated frame of reference. Finally, we provide examples of the application of the GKT wave function.
Time-dependent simulation of prebunched one and two-beam free electron laser
Mirian, N. S., E-mail: najmeh.mirian@ipm.ir [School of Particle and Accelerator Physics, Institute for Research in Fundamental Sciences (IPM), Post code 19395-5531 Tehran (Iran, Islamic Republic of); Maraghechi, B. [Department of Physics, Amirkabir University of Technology, Post code 15875-4413 Tehran (Iran, Islamic Republic of)] [Department of Physics, Amirkabir University of Technology, Post code 15875-4413 Tehran (Iran, Islamic Republic of)
2014-04-15T23:59:59.000Z
A numerical simulation in one-dimension is conducted to study the slippage effects on prebunched free electron laser. A technique for the simulation of time dependent free electron lasers (FEL) to model the slippage effects is introduced, and the slowly varying envelope approximation in both z and t is used to illustrate the temporal behaviour in the prebunched FEL. Slippage effect on prebunched two-beam FEL is compared with the one-beam modeling. The evaluation of the radiation pulse energy, thermal and phase distribution, and radiation pulse shape in one-beam and two-beam modeling is studied. It was shown that the performance is considerably undermined when the slippage time is comparable to the pulse duration. However, prebunching reduces the slippage. Prebunching also leads to the radiation pulse with a single smooth spike.
Decay of the Loschmidt echo in a time-dependent environment
Fernando M. Cucchietti; Caio H. Lewenkopf; Horacio M. Pastawski
2006-01-11T23:59:59.000Z
We study the decay rate of the Loschmidt echo or fidelity in a chaotic system under a time-dependent perturbation $V(q,t)$ with typical strength $\\hbar/\\tau_{V}$. The perturbation represents the action of an uncontrolled environment interacting with the system, and is characterized by a correlation length $\\xi_0$ and a correlation time $\\tau_0$. For small perturbation strengths or rapid fluctuating perturbations, the Loschmidt echo decays exponentially with a rate predicted by the Fermi Golden Rule, $1/\\tilde{\\tau}= \\tau_{c}/\\tau_{V}^2$, where typically $\\tau_{c} \\sim \\min[\\tau_{0},\\xi_0/v]$ with $v$ the particle velocity. Whenever the rate $1/\\tilde{\\tau}$ is larger than the Lyapunov exponent of the system, a perturbation independent Lyapunov decay regime arises. We also find that by speeding up the fluctuations (while keeping the perturbation strength fixed) the fidelity decay becomes slower, and hence, one can protect the system against decoherence.
A cyclic time-dependent Markov process to model daily patterns in wind turbine power production
Scholz, Teresa; Estanqueiro, Ana
2013-01-01T23:59:59.000Z
Wind energy is becoming a top contributor to the renewable energy mix, which raises potential reliability issues for the grid due to the fluctuating nature of its source. To achieve adequate reserve commitment and to promote market participation, it is necessary to provide models that can capture daily patterns in wind power production. This paper presents a cyclic inhomogeneous Markov process, which is based on a three-dimensional state-space (wind power, speed and direction). Each time-dependent transition probability is expressed as a Bernstein polynomial. The model parameters are estimated by solving a constrained optimization problem: The objective function combines two maximum likelihood estimators, one to ensure that the Markov process long-term behavior reproduces the data accurately and another to capture daily fluctuations. A convex formulation for the overall optimization problem is presented and its applicability demonstrated through the analysis of a case-study. The proposed model is capable of r...
Chemical dynamics in the gas phase: Time-dependent quantum mechanics of chemical reactions
Gray, S.K. [Argonne National Laboratory, IL (United States)
1993-12-01T23:59:59.000Z
A major goal of this research is to obtain an understanding of the molecular reaction dynamics of three and four atom chemical reactions using numerically accurate quantum dynamics. This work involves: (i) the development and/or improvement of accurate quantum mechanical methods for the calculation and analysis of the properties of chemical reactions (e.g., rate constants and product distributions), and (ii) the determination of accurate dynamical results for selected chemical systems, which allow one to compare directly with experiment, determine the reliability of the underlying potential energy surfaces, and test the validity of approximate theories. This research emphasizes the use of recently developed time-dependent quantum mechanical methods, i.e. wave packet methods.
Multi-fluid transport code modeling of time-dependent recycling in ELMy H-mode
Pigarov, A. Yu.; Krasheninnikov, S. I.; Hollmann, E. M. [University of California at San Diego, La Jolla, California 92093 (United States); Rognlien, T. D.; Lasnier, C. J. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Unterberg, E. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)
2014-06-15T23:59:59.000Z
Simulations of a high-confinement-mode (H-mode) tokamak discharge with infrequent giant type-I ELMs are performed by the multi-fluid, multi-species, two-dimensional transport code UEDGE-MB, which incorporates the Macro-Blob approach for intermittent non-diffusive transport due to filamentary coherent structures observed during the Edge Localized Modes (ELMs) and simple time-dependent multi-parametric models for cross-field plasma transport coefficients and working gas inventory in material surfaces. Temporal evolutions of pedestal plasma profiles, divertor recycling, and wall inventory in a sequence of ELMs are studied and compared to the experimental time-dependent data. Short- and long-time-scale variations of the pedestal and divertor plasmas where the ELM is described as a sequence of macro-blobs are discussed. It is shown that the ELM recovery includes the phase of relatively dense and cold post-ELM divertor plasma evolving on a several ms scale, which is set by the transport properties of H-mode barrier. The global gas balance in the discharge is also analyzed. The calculated rates of working gas deposition during each ELM and wall outgassing between ELMs are compared to the ELM particle losses from the pedestal and neutral-beam-injection fueling rate, correspondingly. A sensitivity study of the pedestal and divertor plasmas to model assumptions for gas deposition and release on material surfaces is presented. The performed simulations show that the dynamics of pedestal particle inventory is dominated by the transient intense gas deposition into the wall during each ELM followed by continuous gas release between ELMs at roughly a constant rate.
Multi-fluid transport code modeling of time-dependent recycling in ELMy H-mode
Pigarov, A. Yu. [University of California, San Diego; Krasheninnikov, S. I. [University of California, La Jolla; Rognlien, T. D. [Lawrence Livermore National Laboratory (LLNL); Hollmann, E. M. [University of California, San Diego; Lasnier, C. J. [Lawrence Livermore National Laboratory (LLNL); Unterberg, Ezekial A [ORNL
2014-01-01T23:59:59.000Z
Simulations of a high-confinement-mode (H-mode) tokamak discharge with infrequent giant type-I ELMs are performed by the multi-fluid, multi-species, two-dimensional transport code UEDGE-MB, which incorporates the Macro-Blob approach for intermittent non-diffusive transport due to filamentary coherent structures observed during the Edge Localized Modes (ELMs) and simple time-dependent multi-parametric models for cross-field plasma transport coefficients and working gas inventory in material surfaces. Temporal evolutions of pedestal plasma profiles, divertor recycling, and wall inventory in a sequence of ELMs are studied and compared to the experimental time-dependent data. Short- and long-time-scale variations of the pedestal and divertor plasmas where the ELM is described as a sequence of macro-blobs are discussed. It is shown that the ELM recovery includes the phase of relatively dense and cold post-ELM divertor plasma evolving on a several ms scale, which is set by the transport properties of H-mode barrier. The global gas balance in the discharge is also analyzed. The calculated rates of working gas deposition during each ELM and wall outgassing between ELMs are compared to the ELM particle losses from the pedestal and neutral-beam-injection fueling rate, correspondingly. A sensitivity study of the pedestal and divertor plasmas to model assumptions for gas deposition and release on material surfaces is presented. The performed simulations show that the dynamics of pedestal particle inventory is dominated by the transient intense gas deposition into the wall during each ELM followed by continuous gas release between ELMs at roughly a constant rate.
TIME-DEPENDENT PHOTOIONIZATION OF GASEOUS NEBULAE: THE PURE HYDROGEN CASE
Garcia, J.; Elhoussieny, E. E.; Bautista, M. A. [Department of Physics, Western Michigan University, Kalamazoo, MI 49008 (United States); Kallman, T. R., E-mail: javier@head.cfa.harvard.edu, E-mail: manuel.bautista@wmich.edu, E-mail: ehab.elhoussieny@wmich.edu, E-mail: timothy.r.kallman@nasa.gov [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)
2013-09-20T23:59:59.000Z
We study the problem of time-dependent photoionization of low density gaseous nebulae subjected to sudden changes in the intensity of ionizing radiation. To this end, we write a computer code that solves the full time-dependent energy balance, ionization balance, and radiation transfer equations in a self-consistent fashion for a simplified pure hydrogen case. It is shown that changes in the ionizing radiation yield ionization/thermal fronts that propagate through the cloud, but the propagation times and response times to such fronts vary widely and nonlinearly from the illuminated face of the cloud to the ionization front (IF). IF/thermal fronts are often supersonic, and in slabs initially in pressure equilibrium such fronts yield large pressure imbalances that are likely to produce important dynamical effects in the cloud. Further, we studied the case of periodic variations in the ionizing flux. It is found that the physical conditions of the plasma have complex behaviors that differ from any steady-state solution. Moreover, even the time average of ionization and temperature is different from any steady-state case. This time average is characterized by overionization and a broader IF with respect to the steady-state solution for a mean value of the radiation flux. Around the time average of physical conditions there is a large dispersion in instantaneous conditions, particularly across the IF, which increases with the period of radiation flux variations. Moreover, the variations in physical conditions are asynchronous along the slab due to the combination of nonlinear propagation times for thermal fronts/IFs and equilibration times.
Double-Difference Tomography for Sequestration MVA
Westman, Erik
2008-12-31T23:59:59.000Z
Analysis of synthetic data was performed to determine the most cost-effective tomographic monitoring system for a geologic carbon sequestration injection site. Double-difference tomographic inversion was performed on 125 synthetic data sets: five stages of CO2 plume growth, five seismic event regions, and five geophone arrays. Each resulting velocity model was compared quantitatively to its respective synthetic velocity model to determine an accuracy value. The results were examined to determine a relationship between cost and accuracy in monitoring, verification, and accounting applications using double-difference tomography. The geophone arrays with widely-varying geophone locations, both laterally and vertically, performed best. Additionally, double difference seismic tomography was performed using travel time data from a carbon sequestration site at the Aneth oil field in southeast Utah as part of a Department of Energy initiative on monitoring, verification, and accounting (MVA) of sequestered CO2. A total of 1,211 seismic events were recorded from a borehole array consisting of 22 geophones. Artificial velocity models were created to determine the ease with which different CO2 plume locations and sizes can be detected. Most likely because of the poor geophone arrangement, a low velocity zone in the Desert Creek reservoir can only be detected when regions of test site containing the highest ray path coverage are considered. MVA accuracy and precision may be improved through the use of a receiver array that provides more comprehensive ray path coverage.
Computed tomography of cryogenic cells
2001-01-01T23:59:59.000Z
COMPUTED TOMOGRAPHY OF CRYOGENIC CELLS G. SCHNEIDER, and E.absorption, computed tomography (CT) can be performed. Sincethis work is to apply computed tomography, which has already
Chu, Shih-I; Zhou, Zhongyuan
2009-10-27T23:59:59.000Z
We propose a time-dependent density functional theoretical (TDDFT) approach in momentum (\\mathcal{P} ) space for the study of electron transport in molecular devices under arbitrary biases. The basic equation of motion, which is a time...
Bertini, Robert L.
that minimizes vehicle emissions during design of routes in congested environments with time-dependent travel speeds, hard time windows, andcapacityconstraints.ThiscreatesanewtypeofVRP,theemissions vehicle routing problem (EVRP). BACKGROUND AND LITERATURE REVIEW There is extensive literature related to vehicle
Mehdi Farzanehpour; I. V. Tokatly
2015-06-29T23:59:59.000Z
We use analytic (current) density-potential maps of time-dependent (current) density functional theory (TD(C)DFT) to inverse engineer analytically solvable time-dependent quantum problems. In this approach the driving potential (the control signal) and the corresponding solution of the Schr\\"odinger equation are parametrized analytically in terms of the basic TD(C)DFT observables. We describe the general reconstruction strategy and illustrate it with a number of explicit examples. First we consider the real space one-particle dynamics driven by a time-dependent electromagnetic field and recover, from the general TDDFT reconstruction formulas, the known exact solution for a driven oscillator with a time-dependent frequency. Then we use analytic maps of the lattice TD(C)DFT to control quantum dynamics in a discrete space. As a first example we construct a time-dependent potential which generates prescribed dynamics on a tight-binding chain. Then our method is applied to the dynamics of spin-1/2 driven by a time dependent magnetic field. We design an analytic control pulse that transfers the system from the ground to excited state and vice versa. This pulse generates the spin flip thus operating as a quantum NOT gate.
Quantization and instability of the damped harmonic oscillator subject to a time-dependent force
Majima, H., E-mail: majima@rs.kagu.tus.ac.jp; Suzuki, A., E-mail: asuzuki@rs.kagu.tus.ac.jp
2011-12-15T23:59:59.000Z
We consider the one-dimensional motion of a particle immersed in a potential field U(x) under the influence of a frictional (dissipative) force linear in velocity (-{gamma}x) and a time-dependent external force (K(t)). The dissipative system subject to these forces is discussed by introducing the extended Bateman's system, which is described by the Lagrangian: L=mxy-U(x+1/2 y)+U(x-1/2 y)+({gamma})/2 (xy-yx)-xK(t)+yK(t), which leads to the familiar classical equations of motion for the dissipative (open) system. The equation for a variable y is the time-reversed of the x motion. We discuss the extended Bateman dual Lagrangian and Hamiltonian by setting U(x{+-}y/2)=1/2 k(x{+-}y/2){sup 2} specifically for a dual extended damped-amplified harmonic oscillator subject to the time-dependent external force. We show the method of quantizing such dissipative systems, namely the canonical quantization of the extended Bateman's Hamiltonian H. The Heisenberg equations of motion utilizing the quantized Hamiltonian H surely lead to the equations of motion for the dissipative dynamical quantum systems, which are the quantum analog of the corresponding classical systems. To discuss the stability of the quantum dissipative system due to the influence of an external force K(t) and the dissipative force, we derived a formula for transition amplitudes of the dissipative system with the help of the perturbation analysis. The formula is specifically applied for a damped-amplified harmonic oscillator subject to the impulsive force. This formula is used to study the influence of dissipation such as the instability due to the dissipative force and/or the applied impulsive force. - Highlights: > A method of quantizing dissipative systems is presented. > In order to obtain the method, we apply Bateman's dual system approach. > A formula for a transition amplitude is derived. > We use the formula to study the instability of the dissipative systems.
Prediction of Iron K-Edge Absorption Spectra Using Time-Dependent Density Functional Theory
George, S.DeBeer; Petrenko, T.; Neese, F.
2009-05-14T23:59:59.000Z
Iron K-edge X-ray absorption pre-edge features have been calculated using a time-dependent density functional approach. The influence of functional, solvation, and relativistic effects on the calculated energies and intensities has been examined by correlation of the calculated parameters to experimental data on a series of 10 iron model complexes, which span a range of high-spin and low-spin ferrous and ferric complexes in O{sub h} to T{sub d} geometries. Both quadrupole and dipole contributions to the spectra have been calculated. We find that good agreement between theory and experiment is obtained by using the BP86 functional with the CP(PPP) basis set on the Fe and TZVP one of the remaining atoms. Inclusion of solvation yields a small improvement in the calculated energies. However, the inclusion of scalar relativistic effects did not yield any improved correlation with experiment. The use of these methods to uniquely assign individual spectral transitions and to examine experimental contributions to backbonding is discussed.
Short- and Long- Time Transport Structures in a Three Dimensional Time Dependent Flow
Rodolphe Chabreyrie; Stefan G. Llewellyn Smith
2014-05-08T23:59:59.000Z
Lagrangian transport structures for three-dimensional and time-dependent fluid flows are of great interest in numerous applications, particularly for geophysical or oceanic flows. In such flows, chaotic transport and mixing can play important environmental and ecological roles, for examples in pollution spills or plankton migration. In such flows, where simulations or observations are typically available only over a short time, understanding the difference between short-time and long-time transport structures is critical. In this paper, we use a set of classical (i.e. Poincar\\'e section, Lyapunov exponent) and alternative (i.e. finite time Lyapunov exponent, Lagrangian coherent structures) tools from dynamical systems theory that analyze chaotic transport both qualitatively and quantitatively. With this set of tools we are able to reveal, identify and highlight differences between short- and long-time transport structures inside a flow composed of a primary horizontal contra-rotating vortex chain, small lateral oscillations and a weak Ekman pumping. The difference is mainly the existence of regular or extremely slowly developing chaotic regions that are only present at short time.
Time-dependent Radiation Transfer in the Internal Shock Model Scenario for Blazar Jets
Manasvita Joshi; Markus Boettcher
2010-11-13T23:59:59.000Z
We describe the time-dependent radiation transfer in blazar jets, within the internal shock model. We assume that the central engine, which consists of a black hole and an accretion disk, spews out relativistic shells of plasma with different velocity, mass, and energy. We consider a single inelastic collision between a faster (inner) and a slower (outer) moving shell. We study the dynamics of the collision and evaluate the subsequent emission of radiation via the synchrotron and synchrotron self Compton (SSC) processes after the interaction between the two shells has begun. The collision results in the formation of a forward shock (FS) and a reverse shock (RS) that convert the ordered bulk kinetic energy of the shells into magnetic field energy and accelerate the particles, which then radiate. We assume a cylindrical geometry for the emission region of the jet. We treat the self-consistent radiative transfer by taking into account the inhomogeneity in the photon density throughout the region. In this paper, we focus on understanding the effects of varying relevant input parameters on the simulated spectral energy distribution (SED) and spectral variability patterns.
Tsujita, K.; Endo, T.; Yamamoto, A. [Nagoya University, Department of Material, Physics and Energy Engineering, Furo-cho, Chikusa-ku, Nagoya, 464-8603 (Japan)
2013-07-01T23:59:59.000Z
An efficient numerical method for time-dependent transport equation, the mutigrid amplitude function (MAF) method, is proposed. The method of characteristics (MOC) is being widely used for reactor analysis thanks to the advances of numerical algorithms and computer hardware. However, efficient kinetic calculation method for MOC is still desirable since it requires significant computation time. Various efficient numerical methods for solving the space-dependent kinetic equation, e.g., the improved quasi-static (IQS) and the frequency transform methods, have been developed so far mainly for diffusion calculation. These calculation methods are known as effective numerical methods and they offer a way for faster computation. However, they have not been applied to the kinetic calculation method using MOC as the authors' knowledge. Thus, the MAF method is applied to the kinetic calculation using MOC aiming to reduce computation time. The MAF method is a unified numerical framework of conventional kinetic calculation methods, e.g., the IQS, the frequency transform, and the theta methods. Although the MAF method is originally developed for the space-dependent kinetic calculation based on the diffusion theory, it is extended to transport theory in the present study. The accuracy and computational time are evaluated though the TWIGL benchmark problem. The calculation results show the effectiveness of the MAF method. (authors)
Probability of loss of assured safety in systems with multiple time-dependent failure modes.
Helton, Jon Craig; Pilch, Martin M.; Sallaberry, Cedric M.
2012-09-01T23:59:59.000Z
Weak link (WL)/strong link (SL) systems are important parts of the overall operational design of high-consequence systems. In such designs, the SL system is very robust and is intended to permit operation of the entire system under, and only under, intended conditions. In contrast, the WL system is intended to fail in a predictable and irreversible manner under accident conditions and render the entire system inoperable before an accidental operation of the SL system. The likelihood that the WL system will fail to deactivate the entire system before the SL system fails (i.e., degrades into a configuration that could allow an accidental operation of the entire system) is referred to as probability of loss of assured safety (PLOAS). Representations for PLOAS for situations in which both link physical properties and link failure properties are time-dependent are derived and numerically evaluated for a variety of WL/SL configurations, including PLOAS defined by (i) failure of all SLs before failure of any WL, (ii) failure of any SL before failure of any WL, (iii) failure of all SLs before failure of all WLs, and (iv) failure of any SL before failure of all WLs. The effects of aleatory uncertainty and epistemic uncertainty in the definition and numerical evaluation of PLOAS are considered.
Photon and neutrino spectra of time-dependent photospheric models of gamma-ray bursts
Asano, K. [Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8582 (Japan); Mészáros, P., E-mail: asanok@icrr.u-tokyo.ac.jp, E-mail: nnp@astro.psu.edu [Department of Astronomy and Astrophysics, Department of Physics, Center for Particle and Gravitational Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States)
2013-09-01T23:59:59.000Z
Thermal photons from the photosphere may be the primary source of the observed prompt emission of gamma-ray bursts (GRBs). In order to produce the observed non-thermal spectra, some kind of dissipation mechanism near the photosphere is required. In this paper we numerically simulate the evolution of the photon spectrum in a relativistically expanding shell with a time-dependent numerical code. We consider two basic models. One is a leptonic model, where a dissipation mechanism heats the thermal electrons maintaining their high temperature. The other model involves a cascade process induced by pp(pn)-collisions which produce high-energy electrons, modify the thermal spectrum, and emit neutrinos. The qualitative properties of the photon spectra are mainly determined by the optical depth at which the dissipation mechanism sets in. Too large optical depths lead to a broad and curved spectrum contradicting the observations, while for optical depths smaller than unity the spectral hardness becomes softer than observed. A significant shift of the spectral peak energy to higher energies due to a large energy injection can lead to an overly broad spectral shape. We show ideal parameter ranges for which these models are able to reproduce the observed spectra. For the pn-collision model, the neutrino fluence in the 10–100 GeV range is well above the atmospheric neutrino fluence, but its detection is challenging for presently available detectors.
Neutrino and cosmic-ray release from gamma-ray bursts: Time-dependent simulations
Asano, Katsuaki [Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8582 (Japan); Mészáros, Peter, E-mail: asanok@icrr.u-tokyo.ac.jp, E-mail: nnp@psu.edu [Department of Astronomy and Astrophysics, Department of Physics, Center for Particle and Gravitational Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States)
2014-04-10T23:59:59.000Z
We revisit the neutrino and ultra-high-energy cosmic-ray (UHECR) production from gamma-ray bursts (GRBs) with time-dependent simulations for the proton-induced cascades. This method can generate self-consistent photon, neutrino, and escaped neutron spectra. To obtain the integrated background spectra, we take into account the distributions of the burst luminosity and pulse duration timescale. A benchmark case with standard GRB luminosity function, a bulk Lorentz factor ? = 300, and a proton to gamma-ray luminosity fraction f{sub p} = 10 is consistent with both the neutrino upper limits and the observed UHECR intensity at ?10{sup 20} eV, while requiring a different type of UHECR source at the ankle. For the benchmark case, the GRBs in the bright end of the luminosity function, which contribute most of the neutrinos, have their photon spectrum substantially distorted by secondary photons. Such bright GRBs are few in number, and reducing their f{sub p} eliminates the distortion and reduces the neutrino production. Even if we neglect the contribution of the brightest GRBs, the UHECR production rate at energies corresponding to the Greisen-Zatsepin-Kuzmin limit is almost unchanged. These nominal GRB models, especially with L {sub iso} ? 10{sup 53} erg s{sup –1}, appear to meet the current constraints as far as being candidate UHECR sources above the ankle energy.
Dissipation dynamics and spin-orbit force in time-dependent Hartree-Fock theory
Gao-Feng Dai; Lu Guo; En-Guang Zhao; Shan-Gui Zhou
2014-10-21T23:59:59.000Z
We investigate the one-body dissipation dynamics in heavy-ion collisions of $^{16}{\\rm O}$+$^{16}{\\rm O}$ using a fully three-dimensional time-dependent Hartree-Fock (TDHF) theory with the modern Skyrme energy functional and without any symmetry restrictions. The energy dissipation is revealed to decrease in deep-inelastic collisions of the light systems as the bombarding energy increases owing to the competition between collective motion and single-particle degrees of freedom. The role of spin-orbit force is given particular emphasis in deep-inelastic collisions. The spin-orbit force causes a significant enhancement of the dissipation. The time-even coupling of spin-orbit force plays a dominant role at low energies, while the influence of time-odd terms is notable at high energies. About 40-65\\% of the total dissipation depending on the different parameter sets is predicted to arise from the spin-orbit force. The theoretical fusion cross section has a reasonably good agreement with the experimental data, considering that no free parameters are adjusted to reaction dynamics in the TDHF approach.
Cédric Simenel; Philippe Chomaz; Gilles De France
2007-08-24T23:59:59.000Z
The equilibration of macroscopic degrees of freedom during the fusion of heavy nuclei, like the charge and the shape, are studied in the Time-Dependent Hartree-Fock theory. The pre-equilibrium Giant Dipole Resonance (GDR) is used to probe the fusion path. It is shown that such isovector collective state is excited in N/Z asymmetric fusion and to a less extent in mass asymmetric systems. The characteristics of this GDR are governed by the structure of the fused system in its preequilibrium phase, like its deformation, rotation and vibration. In particular, we show that a lowering of the pre-equilibrium GDR energy is expected as compared to the statistical one. Revisiting experimental data, we extract an evidence of this lowering for the first time. We also quantify the fusion-evaporation enhancement due to gamma-ray emission from the pre-equilibrium GDR. This cooling mechanism along the fusion path may be suitable to synthesize in the future super heavy elements using radioactive beams with strong N/Z asymmetries in the entrance channel.
F. J. Beron-Vera; M. J. Olascoaga; M. G. Brown
2005-10-19T23:59:59.000Z
It has been recently argued that near-integrable nonautonomous one-degree-of-freedom Hamiltonian systems are constrained by KAM theory even when the time-dependent (nonintegrable) part of the Hamiltonian is given in the form of a superposition of time-periodic functions with incommensurate frequencies. Furthermore, such systems are constrained by one fewer integral of motion than is required to render the system completely integrable. As a consequence, the phase space in systems of this type is expected to be partitioned into nonintersecting regular and chaotic regions. In this note we provide numerical evidence of the existence of such a characteristic mixed phase space structure. This is done by considering the problem of acoustic ray dynamics in deep ocean environments, which is naturally described as a nonautonomous one-degree-of-freedom Hamiltonian system with a multiply periodic Hamiltonian in the independent (time-like) variable. Also, we discuss the implications of a mixed phase space for the dynamics of that geophysical system and another one which describes Lagrangian motion in the ocean. The latter is also naturally described as a nonautonomous one-degree-of-freedom Hamiltonian system with a multiply time-periodic Hamiltonian.
Measurement of Time-Dependent CP Asymmetries in B0 to D(*)D Decays
Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Tisserand, V.; Zghiche, A.; /Annecy, LAPP; Grauges, E.; /Barcelona, IFAE; Palano, A.; Pappagallo, M.; Pompili, A.; /Bari U. /INFN, Bari; Chen, J.C.; Qi, N.D.; Rong, G.; Wang, P.; Zhu, Y.S.; /Beijing, Inst. High Energy Phys.; Eigen, G.; Ofte, I.; Stugu, B. /Bergen U. /LBL, Berkeley /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San
2005-06-24T23:59:59.000Z
The authors present a first measurement of CP asymmetries in neutral B decays to D{sup +}D{sup -}, and updated CP asymmetry measurements in decays to D*{sup +}D{sup -} and D*{sup -}D{sup +}. They use fully-reconstructed decays collected in a data sample of (232 {+-} 3) x 10{sup 6} {Upsilon}(4S) {yields} B{bar B} events in the BABAR detector at the PEp-II asymmetric-energy B Factory at SLAC. they determine the time-dependent asymmetry parameters to be S{sub D*{sup +}D{sup -}} = -0.54 {+-} 0.35 {+-} 0.07, C{sub D*{sup +}D{sup -}} = 0.09 {+-} 0.25 {+-} 0.06, S{sub D*{sup -}D{sup +}} = -0.29 {+-} 0.33 {+-} 0.07, C{sub D*{sup -}D{sup +}} = 0.17 {+-} 0.24 {+-} 0.04, S{sub D{sup +}D{sup -}} = -0.29 {+-} 0.63 {+-} 0.06, and C{sub D{sup +}D{sup -}} = 0.11 {+-} 0.35 {+-} 0.06, where in each case the first error is statistical and the second error is systematic.
Nguyen Trung Thành; Larisa Beilina; Michael V. Klibanov; Michael A. Fiddy
2014-06-13T23:59:59.000Z
We consider the problem of imaging of objects buried under the ground using backscattering experimental time dependent measurements generated by a single point source or one incident plane wave. In particular, we estimate dielectric constants of those objects using the globally convergent inverse algorithm of Beilina and Klibanov. Our algorithm is tested on experimental data collected using a microwave scattering facility at the University of North Carolina at Charlotte. There are two main challenges working with this type of experimental data: (i) there is a huge misfit between these data and computationally simulated data, and (ii) the signals scattered from the targets may overlap with and be dominated by the reflection from the ground's surface. To overcome these two challenges, we propose new data preprocessing steps to make the experimental data to be approximately the same as the simulated ones, as well as to remove the reflection from the ground's surface. Results of total 25 data sets of both non blind and blind targets indicate a good accuracy.
USING MICRO-SEISMICITY AND SEISMIC VELOCITIES TO MAP SUBSURFACE...
GEOTHERMAL FIELD, CALIFORNIA Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: USING MICRO-SEISMICITY AND SEISMIC VELOCITIES TO MAP...
Using Micro-Seismicity and Seismic Velocities to Map Subsurface...
Geothermal Field California Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Using Micro-Seismicity and Seismic Velocities to Map Subsurface...
Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone...
Central Nevada Seismic Zone Region (Biasi, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At...
Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone...
navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone Region (Biasi, Et Al., 2008) Exploration...
Modulated Luminescent Tomography
2015-01-28T23:59:59.000Z
modalities behave differently than Photoacoustic and Thermoacoustic Tomography, where the ex- citation is highly diffusive but the emitted ultrasound signal ...
Mathematics of thermoacoustic tomography
Peter Kuchment; Leonid Kunyansky
2007-10-21T23:59:59.000Z
The paper presents a survey of mathematical problems, techniques, and challenges arising in the Thermoacoustic and Photoacoustic Tomography.
Seismic Imaging and Monitoring
Huang, Lianjie [Los Alamos National Laboratory
2012-07-09T23:59:59.000Z
I give an overview of LANL's capability in seismic imaging and monitoring. I present some seismic imaging and monitoring results, including imaging of complex structures, subsalt imaging of Gulf of Mexico, fault/fracture zone imaging for geothermal exploration at the Jemez pueblo, time-lapse imaging of a walkway vertical seismic profiling data for monitoring CO{sub 2} inject at SACROC, and microseismic event locations for monitoring CO{sub 2} injection at Aneth. These examples demonstrate LANL's high-resolution and high-fidelity seismic imaging and monitoring capabilities.
Seismic characterization of fractures
JM Carcione
2014-06-07T23:59:59.000Z
Seismic characterization of fractures. José M. Carcione, OGS, Italy. Fractured geological formations are generally represented with a stress-strain relation.
Reep, J. W.; Bradshaw, S. J. [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States)] [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States); Klimchuk, J. A., E-mail: jeffrey.reep@rice.edu, E-mail: stephen.bradshaw@rice.edu, E-mail: james.a.klimchuk@nasa.gov [NASA Goddard Space Flight Center, Solar Physics Lab., Code 671, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)
2013-02-20T23:59:59.000Z
The time dependence of heating in solar active regions can be studied by analyzing the slope of the emission measure distribution coolward of the peak. In a previous study we showed that low-frequency heating can account for 0% to 77% of active region core emission measures. We now turn our attention to heating by a finite succession of impulsive events for which the timescale between events on a single magnetic strand is shorter than the cooling timescale. We refer to this scenario as a 'nanoflare train' and explore a parameter space of heating and coronal loop properties with a hydrodynamic model. Our conclusions are (1) nanoflare trains are consistent with 86% to 100% of observed active region cores when uncertainties in the atomic data are properly accounted for; (2) steeper slopes are found for larger values of the ratio of the train duration {Delta} {sub H} to the post-train cooling and draining timescale {Delta} {sub C}, where {Delta} {sub H} depends on the number of heating events, the event duration and the time interval between successive events ({tau} {sub C}); (3) {tau} {sub C} may be diagnosed from the width of the hot component of the emission measure provided that the temperature bins are much smaller than 0.1 dex; (4) the slope of the emission measure alone is not sufficient to provide information about any timescale associated with heating-the length and density of the heated structure must be measured for {Delta} {sub H} to be uniquely extracted from the ratio {Delta} {sub H}/{Delta} {sub C}.
Tong, Xiao-Min; Chu, Shih-I
2000-02-01T23:59:59.000Z
We present a general time-dependent approach for efficient and accurate treatment of high-resolution spectrocopy and quantum dynamics. The procedure is applied to an ab initio time-dependent study of three-dimensional ...
New Paradigm for Seismic Networks: Crowd-Sourced Seismic Networks,
Greer, Julia R.
#12;New Paradigm for Seismic Networks: Crowd-Sourced Seismic Networks, including Buildings Tom Egill Hauksson #12;SCSN: what does it encompass? Â· ~360 Seismic Stations Â· ~60 stations from partners SCSN/SCEDC total of ~26 FTE's #12;Crowd Sourced Networks Â· Current broadband seismic network
Harilal, S. S.
Electron-ion relaxation time dependent signal enhancement in ultrafast double-pulse laser of collinear double-pulse compared to single-pulse ultrafast laser induced breakdown spectroscopy. Our results showed that the significant signal enhancement noticed in the double pulse scheme is strongly correlated
. Hedin, Ion Cyclotron Heating in Toroidal Plasmas, Ph.D. thesis, Royal Institute of Technology StockholmTowards a 3D time dependent Fokker-Planck solver for modelling RF heating in realistic tokamak supercomputers and the need for predictive tools to guide the experiments, modelling radio frequency heating
Christensen, Kim
Time-dependent extinction rate and species abundance in a tangled-nature model of biological properties. The macrodynamics exhibit intermittent two-mode switching with a gradually decreasing extinction sense. The form of the species abundance curve compares well with observed func- tional forms. The model
Anitescu, Mihai
-Dependent Nuclear Reactor Simulations 1 H. F. Striplinga, , M. Anitescub , M. L. Adamsa aNuclear Engineering Bateman and transport equations, which govern the time-dependent neutronic behavior of a nuclear reactor framework for computing the adjoint variable to nuclear engineering problems gov- erned by a set
Gonçalves, W. C. [Departamento de Física, Faculdade de Ciências, Univ Estadual Paulista - UNESP, Caixa Postal 473, CEP 17033-360, Bauru, SP (Brazil)] [Departamento de Física, Faculdade de Ciências, Univ Estadual Paulista - UNESP, Caixa Postal 473, CEP 17033-360, Bauru, SP (Brazil); Sardella, E. [Departamento de Física, Faculdade de Ciências, Univ Estadual Paulista - UNESP, Caixa Postal 473, CEP 17033-360, Bauru, SP (Brazil) [Departamento de Física, Faculdade de Ciências, Univ Estadual Paulista - UNESP, Caixa Postal 473, CEP 17033-360, Bauru, SP (Brazil); UNESP-Universidade Estadual Paulista, IPMet-Instituto de Pesquisas Meteorológicas, CEP 17048-699 Bauru, SP (Brazil); Becerra, V. F. [Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium)] [Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); Miloševi?, M. V.; Peeters, F. M. [Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium) [Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); Departamento de Física, Universidade Federal do Ceará, 60455-900 Fortaleza, Ceará (Brazil)
2014-04-15T23:59:59.000Z
The time-dependent Ginzburg-Landau formalism for (d + s)-wave superconductors and their representation using auxiliary fields is investigated. By using the link variable method, we then develop suitable discretization of these equations. Numerical simulations are carried out for a mesoscopic superconductor in a homogeneous perpendicular magnetic field which revealed peculiar vortex states.
and response of molecules and solids, the reliability of time- dependent density functional theory (TDDFT)1 photovoltaic design,5,6 dynamics of molecules in strong laser fields,7 including coupling to ions,8 and at that captures correlated electron dynamics for systems of these sizes. Although in theory exact, the reliability
Mofrad, Mohammad R. K.
number mass/heat transport in a fully developed pipe flow. Ó 2002 Elsevier Science B.V. All rights of physics and engineering. Examples are heat transfer processes in rubber extrusion, plastic castingA characteristic/finite element algorithm for time-dependent 3-D advection-dominated transport
Turbocharging Quantum Tomography.
Blume-Kohout, Robin J; Gamble, John King,; Nielsen, Erik; Maunz, Peter Lukas Wilhelm; Scholten, Travis L.; Rudinger, Kenneth Michael
2015-01-01T23:59:59.000Z
Quantum tomography is used to characterize quantum operations implemented in quantum information processing (QIP) hardware. Traditionally, state tomography has been used to characterize the quantum state prepared in an initialization procedure, while quantum process tomography is used to characterize dynamical operations on a QIP system. As such, tomography is critical to the development of QIP hardware (since it is necessary both for debugging and validating as-built devices, and its results are used to influence the next generation of devices). But tomography su %7C ers from several critical drawbacks. In this report, we present new research that resolves several of these flaws. We describe a new form of tomography called gate set tomography (GST), which unifies state and process tomography, avoids prior methods critical reliance on precalibrated operations that are not generally available, and can achieve unprecedented accuracies. We report on theory and experimental development of adaptive tomography protocols that achieve far higher fidelity in state reconstruction than non-adaptive methods. Finally, we present a new theoretical and experimental analysis of process tomography on multispin systems, and demonstrate how to more e %7C ectively detect and characterize quantum noise using carefully tailored ensembles of input states.
Fracture Properties From Seismic Scattering
Burns, Daniel R.
2007-01-01T23:59:59.000Z
Fractures scatter seismic energy and this energy can be analyzed to provide information about fracture
Method of migrating seismic records
Ober, Curtis C. (Las Lunas, NM); Romero, Louis A. (Albuquerque, NM); Ghiglia, Dennis C. (Longmont, CO)
2000-01-01T23:59:59.000Z
The present invention provides a method of migrating seismic records that retains the information in the seismic records and allows migration with significant reductions in computing cost. The present invention comprises phase encoding seismic records and combining the encoded seismic records before migration. Phase encoding can minimize the effect of unwanted cross terms while still allowing significant reductions in the cost to migrate a number of seismic records.
Electron tomography of defects
Sharp, Joanne
2010-10-12T23:59:59.000Z
. . . . . . . . . . . . . . . . . . . 36 2.6 Limitations of electron tomography . . . . . . . . . . . . . . . 37 2.6.1 The missing wedge . . . . . . . . . . . . . . . . . . . . 37 2.6.2 Minimum reliable spacing of features . . . . . . . . . . 39 3 Tomography of dislocations using weak... ELECTRON TOMOGRAPHY OF DEFECTS This dissertation is submitted for the degree of Doctor of Philosophy by Joanne Sharp Of Wolfson College Submitted 26th April 2010 Acknowledgements This dissertation is the result of my own work and includes nothing...
R. R. Borges; F. S. Borges; A. M. Batista; E. L. Lameu; R. L. Viana; K. C. Iarosz; I. L. Caldas; M. A. F. Sanjuán
2015-03-07T23:59:59.000Z
In this paper, we study the effects of spike timing-dependent plasticity on synchronisation in a network of Hodgkin-Huxley neurons. Neuron plasticity is a flexible property of a neuron and its network to change temporarily or permanently their biochemical, physiological, and morphological characteristics, in order to adapt to the environment. Regarding the plasticity, we consider Hebbian rules, specifically for spike timing-dependent plasticity (STDP), and with regard to network, we consider that the connections are randomly distributed. We analyse the synchronisation and desynchronisation according to an input level and probability of connections. Moreover, we verify that the transition for synchronisation depends on the neuronal network architecture, and the external perturbation level.
Constrained optimization in seismic reflection tomography: an SQP ...
on a 3D real data set: the introduction of constraints coming both from well logs and. from geological knowledge allows us to reduce the under-determination of ...
Horner, D.A.; Colgan, J.; Martin, F.; McCurdy, C.W.; Pindzola, M.S.; Rescigno, T.N.
2004-06-01T23:59:59.000Z
Symmetrized complex amplitudes for the double photoionization of helium are computed by the time-dependent close-coupling and exterior complex scaling methods, and it is demonstrated that both methods are capable of the direct calculation of these amplitudes. The results are found to be in excellent agreement with each other and in very good agreement with results of other ab initio methods and experiment.
Reservoir permeability from seismic attribute analysis
Goloshubin, G.
2008-01-01T23:59:59.000Z
of the reservoir permeability based on seismic and log data.seismic reservoir response based on well and 3D seismic datadata analysis we suggest seismic imaging of the reservoir
Riede, Julia
2013-01-01T23:59:59.000Z
In this work, it has been shown that the time dependent Xe-135 inventory in the TRIGA Mark II reactor in Vienna, Austria can be measured via gamma spectrometry even in the presence of strong background radiation. It is focussing on the measurement of (but not limited to) the nuclide Xe-135. The time dependent Xe-135 inventory of the TRIGA Mark II reactor Vienna has been measured using a temporary beam line between one fuel element of the core placed onto the thermal column after shutdown and a detector system located just above the water surface of the reactor tank. For the duration of one week, multiple gamma ray spectra were recorded automatically, starting each afternoon after reactor shutdown until the next morning. One measurement series has been recorded over the weekend. The Xe-135 peaks were extracted from a total of 1227 recorded spectra using an automated peak search algorithm and analyzed for their time-dependent properties. Although the background gamma radiation present in the core after shutdown...
Julia Riede; Helmuth Boeck
2013-07-29T23:59:59.000Z
In this work, it has been shown that the time dependent Xe-135 inventory in the TRIGA Mark II reactor in Vienna, Austria can be measured via gamma spectrometry even in the presence of strong background radiation. It is focussing on the measurement of (but not limited to) the nuclide Xe-135. The time dependent Xe-135 inventory of the TRIGA Mark II reactor Vienna has been measured using a temporary beam line between one fuel element of the core placed onto the thermal column after shutdown and a detector system located just above the water surface of the reactor tank. For the duration of one week, multiple gamma ray spectra were recorded automatically, starting each afternoon after reactor shutdown until the next morning. One measurement series has been recorded over the weekend. The Xe-135 peaks were extracted from a total of 1227 recorded spectra using an automated peak search algorithm and analyzed for their time-dependent properties. Although the background gamma radiation present in the core after shutdown was large especially in the lower energy range, the Xe-135 peak located at 249.8 keV could be extracted from the most spectra where present and could be compared to theoretical calculations.
Russell, Clifford Marlow
1992-01-01T23:59:59.000Z
of tomography was discovered by Radon in 1917. Radon, a mathematician, solved the problem for an n-dimensional function with n-I dimensional projectors as related to gravitational equations. Radon's technique is not the only mathematical basis for tomography...
Bizais, Y.; Zubal, I.G.; Rowe, R.W.; Bennett, G.W.; Brill, A.B.
1982-01-01T23:59:59.000Z
Emission tomography using two orthogonal sets of projections through seven pinhole collimators is considered. This paper describes the acquisition system, the reconstruction algorithm, presents results obtained in phantom studies, and discusses the advantages and disadvantages of this method over conventional Seven Pinhole Tomography.
Seismic Fracture Characterization Methods for Enhanced Geothermal...
Broader source: Energy.gov (indexed) [DOE]
Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report Seismic Fracture Characterization Methods for...
Seismic Structure And Seismicity Of The Cooling Lava Lake Of...
Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Seismic Structure And Seismicity Of The Cooling Lava Lake Of Kilauea Iki, Hawaii Abstract The...
Evaluation of a Vector Hypercube for Seismic Modelling Seismic modelling
Renaut, Rosemary
Evaluation of a Vector Hypercube for Seismic Modelling Abstract Seismic modelling is a computationally to produce realistic seismic traces intensive problem. A 2D syn- Rosemary Renautt and Johnny equation is the first step in the generation of a synthetic seismogram as an aid in the interpretation
Seismic viscoelastic attenuation Submitted to
Cormier, Vernon F.
Seismic viscoelastic attenuation Submitted to: Encyclopedia of Solid Earth Geophysics Harsh Gupta-3046 USA E-mail: vernon.cormier@uconn.edu Tel: 860-486-3547 Fax: 860-486-3346 #12;SEISMIC VISCOELASTIC ATTENUATION Synonyms Seismic intrinsic attenuation Definitions Linear viscoelastic attenuation. The loss
Wetmiller, R.J.; Lyons, J.A.; Shannon, W.E.; Munro, P.S.; Thomas, J.T.; Andrew, M.D.; Lapointe, S.P.; Lamontagne, M.; Wong, C.; Anglin, F.M.; Adams, J.; Cajka, M.G.; McNeil, W.; Drysdale, J.A. (Geological Survey of Canada, Ottawa, ON (Canada))
1992-05-01T23:59:59.000Z
This is a progress report of work carried out under the terms of a research agreement entitled the Canadian Seismic Agreement'' between the US Nuclear Regulatory Commission (USNRC), the Canadian Commercial Corporation and the Geophysics Division of the Geological Survey of Canada (GD/GSC) during the period from July 01, 1989 to June 30, 1990. The Canadian Seismic Agreement'' supports generally the operation of various seismograph stations in eastern Canada and the collection and analysis of earthquake data for the purpose of mitigating seismic hazards in eastern Canada and the northeastern US. The specific activities carried out in this one-year period are summarized below under four headings; Eastern Canada Telemetred Network and local network developments, Datalab developments, strong-motion network developments and earthquake activity. During this period the first surface fault unequivocably determined to have accompanied a historic earthquake in eastern North America, occurred in northern Quebec.
Basham, P.W.; Lyons, J.A.; Drysdale, J.A.; Shannon, W.E.; Andersen, F.; Hayman, R.B.; Wetmiller, R.J.
1983-11-01T23:59:59.000Z
The ECTN network has remained stable over the past year; progress on the new concentrator software has been slow. Major developments have taken place in the Ottawa Data Laboratory including the installation of a new VAX system and further development of the Seismic Analysis Monitor software. A new initiative has been the development of hardware and software for the Sudbury Local Telemetered Network, which can be considered a prototype for a smart outstation. The performance of the ECTN over the past year is described along with a summary of eastern Canadian seismicity during the reporting period and a list of EPB research publications on eastern Canadian seismicity during the past year. 4 figures, 3 tables.
Gomez, Antonio; DeRego, Paul Jeffrey; Ferrel, Patrick Andrew; Thom, Robert Anthony; Trujillo, Joshua J.; Herridge, Brian
2014-08-19T23:59:59.000Z
An apparatus for generating seismic waves includes a housing, a strike surface within the housing, and a hammer movably disposed within the housing. An actuator induces a striking motion in the hammer such that the hammer impacts the strike surface as part of the striking motion. The actuator is selectively adjustable to change characteristics of the striking motion and characteristics of seismic waves generated by the impact. The hammer may be modified to change the physical characteristics of the hammer, thereby changing characteristics of seismic waves generated by the hammer. The hammer may be disposed within a removable shock cavity, and the apparatus may include two hammers and two shock cavities positioned symmetrically about a center of the apparatus.
A. S. Umar; V. E. Oberacker
2007-09-25T23:59:59.000Z
We study fusion reactions of the $^{64}$Ni+$^{64}$Ni system using the density-constrained time-dependent Hartree-Fock (TDHF) formalism. In this formalism the fusion barriers are directly obtained from TDHF dynamics. In addition, we incorporate the entrance channel alignments of the slightly deformed (oblate) $^{64}$Ni nuclei due to dynamical Coulomb excitation. We show that alignment leads to a fusion barrier distribution and alters the naive picture for defining which energies are actually sub-barrier. We also show that core polarization effects could play a significant role in fusion cross section calculations.
Gouranga C Nayak
2009-10-02T23:59:59.000Z
We study non-perturbative gluon pair production from arbitrary time dependent chromo-electric field E^a(t) with arbitrary color index a =1,2,...8 via Schwinger mechanism in arbitrary covariant background gauge \\alpha. We show that the probability of non-perturbative gluon pair production per unit time per unit volume per unit transverse momentum \\frac{dW}{d^4xd^2p_T} is independent of gauge fixing parameter \\alpha. Hence the result obtained in the Fynman-'t Hooft gauge, \\alpha=1, is the correct gauge invariant and gauge parameter \\alpha independent result.
Zhang, Yu; Biggs, Jason D.; Healion, Daniel; Govind, Niranjan; Mukamel, Shaul
2012-11-21T23:59:59.000Z
We report simulations of X-ray absorption near edge structure (XANES), resonant inelastic X-ray scattering (RIXS) and 1D stimulated X-ray Raman spectroscopy (SXRS) signals of cysteine at the oxygen, nitrogen and sulfur K and L2,3 edges. The simulated XANES signals from the restricted window time-dependent density functional theory (REW-TDDFT) and the static exchange (STEX) method are compared with experiments, showing that REW-TDDFT is more accurate and computationally less expensive than STEX. Simulated RIXS and 1D SXRS signals from REW-TDDFT give some insights on the correlation of different excitations in the molecule.
Partha Bagchi; Ajit M. Srivastava
2014-11-20T23:59:59.000Z
Rapid thermalization in ultra-relativistic heavy-ion collisions leads to fast changing potential between a heavy quark and antiquark from zero temperature potential to the finite temperature one. Time dependent perturbation theory can then be used to calculate the survival probability of the initial quarkonium state. In view of very short time scales of thermalization at RHIC and LHC energies, we calculate the survival probability of $J/\\psi$ and $\\Upsilon$ using sudden approximation. Our results show that quarkonium decay may be significant even when temperature of QGP remains low enough so that the conventional quarkonium melting due to Debye screening is ineffective.
Kilpatrick, Peter K.
Dynamic Asphaltene-Resin Exchange at the Oil/Water Interface: Time-Dependent W/O Emulsion Stability for Asphaltene/Resin Model Oils Xiaoli Yang, Vincent J. Verruto, and Peter K. Kilpatrick* Department of Chemical was used to determine the time-dependent stability of water-in- oil emulsions in which asphaltenes
Measurement of time-dependent CP asymmetry in B{sup 0}{yields}ccK{sup (*)0} decays
Aubert, B.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V. [Laboratoire d'Annecy-le-Vieux de Physique des Particules (LAPP), Universite de Savoie, CNRS/IN2P3, F-74941 Annecy-Le-Vieux (France); Tico, J. Garra; Grauges, E. [Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona (Spain); Lopez, L.; Palano, A.; Pappagallo, M. [INFN Sezione di Bari, I-70126 Bari (Italy); Dipartmento di Fisica, Universita di Bari, I-70126 Bari (Italy); Eigen, G.; Stugu, B.; Sun, L. [University of Bergen, Institute of Physics, N-5007 Bergen (Norway); Battaglia, M.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G. [Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720 (United States)] (and others)
2009-04-01T23:59:59.000Z
We present updated measurements of time-dependent CP asymmetries in fully reconstructed neutral B decays containing a charmonium meson. The measurements reported here use a data sample of (465{+-}5)x10{sup 6} {upsilon}(4S){yields}BB decays collected with the BABAR detector at the PEP-II asymmetric energy e{sup +}e{sup -} storage rings operating at the SLAC National Accelerator Laboratory. The time-dependent CP asymmetry parameters measured from J{psi}K{sub S}{sup 0}, J{psi}K{sub L}{sup 0}, {psi}(2S)K{sub S}{sup 0}, {eta}{sub c}K{sub S}{sup 0}, {chi}{sub c1}K{sub S}{sup 0}, and J/{psi}K*(892){sup 0} decays are: C{sub f}=0.024{+-}0.020(stat){+-}0.016(syst) and -{eta}{sub f}S{sub f}=0.687{+-}0.028(stat){+-}0.012(syst)
Measurement of CP Content and Time-Dependent CP Violation in B0 --> D*+D*- Decays
Anderson, Jacob M.
2009-01-05T23:59:59.000Z
This dissertation presents the measurement of the Cp-odd fraction and time-dependent CP violation parameters for the B{sup 0} {yields} D*{sup +} D*{sup -} decay. These results are based on the full BABAR dataset of (467 {+-} 5) x 10{sup 6} B{bar B} pairs collected at the PEP-II B Factory at the Stanford Linear Accelerator Center. An angular analysis finds that the CP-odd fraction of the B{sup 0} {yields} D*{sup +} D*{sup -} decay is R{sub {perpendicular}} = 0.158 {+-} 0.028 {+-} 0.006, where the first uncertainty is statistical, and the second is systematic. A fit to the flavor-tagged, time-dependent, angular decay rate yields C{sub +} = 0.02 {+-} 0.12 {+-} 0.02; C{sub {perpendicular}} = 0.41 {+-} 0.50 {+-} 0.08; S{sub +} = -0.76 {+-} 0.16 {+-} 0.04; S{sub {perpendicular}} = -1.81 {+-} 0.71 {+-} 0.16, for the CP-odd ({perpendicular}) and CP-even (+) contributions. Constraining these two contributions to be the same results in C = 0.047 {+-} 0.091 {+-} 0.019; S = -0.71 {+-} 0.16 {+-} 0.03. These measurements are consistent with the Standard Model and with measurements of sin2{beta} from B{sup 0} {yields} (c{bar c})K{sup 0} decays.
Measurement of Time-Dependent CP-Violating Asymmetries in B^0 Meson Decays to eta' K^0_L
Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Tisserand, V.; Zghiche, A.; /Annecy, LAPP; Grauges, E.; /Barcelona, IFAE; Palano, A.; Pappagallo, M.; Pompili, A.; /Bari U. /INFN, Bari; Chen, J.C.; Qi, N.D.; Rong, G.; Wang, P.; Zhu, Y.S.; /Beijing, Inst. High Energy Phys.; Eigen, G.; Ofte, I.; Stugu, B. /Bergen U. /LBL, Berkeley /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San
2005-08-23T23:59:59.000Z
The authors present a preliminary measurement of CP-violating parameters S and C from fits of the time-dependence of B{sup 0} meson decays to {eta}'K{sub L}{sup 0}. The data were recorded with the BABAR detector at PEP-II and correspond to 232 x 10{sup 6} B{bar B} pairs produced in e{sup +}e{sup -} annihilation through the {Upsilon}(4S) resonance. By fitting the time-dependent CP asymmetry of the reconstructed B{sup 0} {yields} {eta}'K{sub L}{sup 0} events, they find S = 0.60 {+-} 0.31 {+-} 0.04 and C = 0.10 {+-} 0.21 {+-} 0.03, where the first error quoted is statistical and the second is systematic. They also perform a combined fit using both {eta}'K{sub S}{sup 0} and {eta}'K{sub L}{sup 0} data, and find S = 0.36 {+-} 0.13 {+-} 0.03 and C = -0.16 {+-} 0.09 {+-} 0.02.
Thermoacoustic tomography, variable sound speed Plamen Stefanov
Stefanov, Plamen
Thermoacoustic tomography, variable sound speed Plamen Stefanov Purdue University Based on a joint work with Gunther Uhlmann Plamen Stefanov (Purdue University ) Thermoacoustic tomography, variable sound speed 1 / 18 #12;Formulation Main Problem Thermoacoustic Tomography In thermoacoustic tomography
Krause, Pascal; Schlegel, H. Bernhard [Department of Chemistry, Wayne State University, Detroit, Michigan 48202-3489 (United States)
2014-11-07T23:59:59.000Z
The strong field ionization rates for ethylene, trans 1,3-butadiene, and trans,trans 1,3,5-hexatriene have been calculated using time-dependent configuration interaction with single excitations and a complex absorbing potential (TDCIS-CAP). The calculations used the aug-cc-pVTZ basis set with a large set of diffuse functions (3 s, 2 p, 3 d, and 1 f) on each atom. The absorbing boundary was placed 3.5 times the van der Waals radius from each atom. The simulations employed a seven-cycle cosine squared pulse with a wavelength of 800 nm. Ionization rates were calculated for intensities ranging from 0.3 × 10{sup 14} W/cm{sup 2} to 3.5 × 10{sup 14} W/cm{sup 2}. Ionization rates along the molecular axis increased markedly with increasing conjugation length. By contrast, ionization rates perpendicular to the molecular axis were almost independent of the conjugation length.
Tanimura, Yusuke; Scamps, Guillaume
2015-01-01T23:59:59.000Z
Given a set of collective variables, a method is proposed to obtain the associated conjugated collective momenta and masses starting from a microscopic time-dependent mean-field theory. The construction of pairs of conjugated variables is the first step to bridge microscopic and macroscopic approaches. The method is versatile and can be applied to study a large class of nuclear processes. An illustration is given here with the fission of $^{258}$Fm. Using the quadrupole moment and eventually higher-order multipole moments, the associated collective masses are estimated along the microscopic mean-field evolution. When more than one collective variable are considered, it is shown that the off-diagonal matrix elements of the inertia play a crucial role. Using the information on the quadrupole moment and associated momentum, the collective evolution is studied. It is shown that dynamical effects beyond the adiabatic limit are important. Nuclei formed after fission tend to stick together for longer time leading to...
Challacombe, Matt [Los Alamos National Laboratory
2009-01-01T23:59:59.000Z
An algorithm for solution of the Time-Dependent Self-Consistent-Field (TD-SCF) equations is developed, based on dual solution channels for non-linear optimization of the Tsiper functional [J.Phys.B, 34 L401 (2001)]. This formulation poses the TD-SCF problem as two Rayleigh quotients, coupled weakly through biorthogonality. Convergence rates for the Random Phase Approximation (RPA) are found to be equivalent to the Tamm-Dancoff approximation (TDA). Moreover, the variational nature of the quotient is robust to approximation errors, allowing linear scaling solution to the bulk limit of the RPA matrix-eigenvalue and exchange operator problem for molecular wires with extended conjugation, including polyphenylene vinylene and the (4,3) nanotube.
Gouranga C. Nayak
2011-05-23T23:59:59.000Z
We study the Schwinger mechanism in QCD in the presence of an arbitrary time-dependent chromo-electric background field $E^a(t)$ with arbitrary color index $a$=1,2,...8 in SU(3). We obtain an exact result for the non-perturbative quark (antiquark) production from an arbitrary $E^a(t)$ by directly evaluating the path integral. We find that the exact result is independent of all the time derivatives $\\frac{d^nE^a(t)}{dt^n}$ where $n=1,2,...\\infty$. This result has the same functional dependence on two Casimir invariants $[E^a(t)E^a(t)]$ and $[d_{abc}E^a(t)E^b(t)E^c(t)]^2$ as the constant chromo-electric field $E^a$ result with the replacement: $E^a \\rightarrow E^a(t)$. This result relies crucially on the validity of the shift conjecture, which has not yet been established.
Measurement of the Time-dependent CP Asymmetry inB to D(*)_CP h0 Decays
Aubert, B.
2007-03-14T23:59:59.000Z
The authors report a measurement of the time-dependent CP-asymmetry parameters S and C in color-suppressed B{sup 0} {yields} D{sup (*)0}h{sup 0} decays, where h{sup 0} is a {pi}{sup 0}, {eta}, or {omega} meson, and the D{sup 0} decays to one of the CP eigenstates K{sup +}K{sup -}, K{sub S}{sup 0}{pi}{sup 0}, or K{sub S}{sup 0}{omega}. The data sample consists of 383 x 10{sup 6} {Upsilon}(4S) {yields} B{bar B} decays collected with the BABAR detector at the PEP-II asymmetric-energy B-factory at SLAC. The results are S = -0.56 {+-} 0.23 {+-} 0.05 and C = -0.23 {+-} 0.16 {+-} 0.04, where the first error is statistical and the second is systematic.
Hirata, So; Head-Gordon, Martin P.; Szczepanski, Jan; Vala, Martin
2003-06-19T23:59:59.000Z
A uniform, comprehensive theoretical interpretation of spectroscopic data is presented for 53 radical ion species of polycyclic aromatic hydrocarbons (PAHâ€™s) with the aid of (Tammâ€“Dancoff) time-dependent density functional theory (TDDFT). TDDFT is capable of predicting the transition energies to the low-lying excited states of PAH ions with quantitative accuracy (the standard deviation from experimental results being less than 0.3 eV) and their intensity patterns qualitatively correctly. The accuracy is hardly affected by the sizes of PAH ions (azulene through dinaphthocoronene), the types of transitions (Koopmans or satellite transitions), the types of orbi-tals involved (ï°*â†ï°, ï°*â†ï³, or ï³*â†ï° transitions), the types of ions (cations or anions), or other geometrical or electronic perturbations (non-planarity, sp3 carbons, or heterocyclic or non-benzenoid rings)
Wopperer, P; Reinhard, P -G; Suraud, E
2014-01-01T23:59:59.000Z
Various ways to analyze the dynamical response of clusters and molecules to electromagnetic perturbations exist. Particularly rich information can be obtained from measuring the properties of electrons emitted in the course of the excitation dynamics. Such an analysis of electron signals covers total ionization, Photo-Electron Spectra, Photoelectron Angular Distributions, and ideally combined PES/PAD, with a long history in molecular physics, also increasingly used in cluster physics. Recent progress in the design of new light sources (high intensity and/or frequency, ultra short pulses) opens new possibilities for measurements and thus has renewed the interest on the analysis of dynamical scenarios through these observables, well beyond a simple access to a density of states. This, in turn, has motivated many theoretical investigations of the dynamics of electronic emission for molecules and clusters. A theoretical tool of choice is here Time-Dependent Density Functional Theory (TDDFT) propagated in real tim...
Vladislav V. Serov; A. S. Kheifets
2014-10-30T23:59:59.000Z
We analyze a transfer ionization (TI) reaction in the fast proton-helium collision $\\rm H^+ + He \\to H^0 + He^{2+} + e^-$ by solving a time-dependent Schr\\"odinger equation (TDSE) under the classical projectile motion approximation in one-dimensional kinematics. In addition, we construct various time independent analogues of our model using lowest order perturbation theory in the form of the Born series. By comparing various aspects of the TDSE and the Born series calculations, we conclude that the recent discrepancies of experimental and theoretical data may be attributed to deficiency of the Born models used by other authors. We demonstrate that the correct Born series for TI should include the momentum space overlap between the double ionization amplitude and the wave function of the transferred electron.
Interaction between O{sub 2} and ZnO films probed by time-dependent second-harmonic generation
Andersen, S. V., E-mail: sva@nano.aau.dk [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4A, DK-9220 Aalborg Øst (Denmark); Vandalon, V.; Bosch, R. H. E. C.; Loo, B. W. H. van de; Kessels, W. M. M., E-mail: w.m.m.kessels@tue.nl [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Pedersen, K. [Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4A, DK-9220 Aalborg Øst (Denmark)
2014-02-03T23:59:59.000Z
The interaction between O{sub 2} and ZnO thin films prepared by atomic layer deposition has been investigated by time-dependent second-harmonic generation, by probing the electric field induced by adsorbed oxygen molecules on the surface. The second-harmonic generated signal decays upon laser exposure due to two-photon assisted desorption of O{sub 2}. Blocking and unblocking the laser beam for different time intervals reveals the adsorption rate of O{sub 2} onto ZnO. The results demonstrate that electric field induced second-harmonic generation provides a versatile non-contact probe of the adsorption kinetics of molecules on ZnO thin films.
Chatterjee, Subhasish; Menon, Vinod M
2012-01-01T23:59:59.000Z
Quantum dots play a promising role in the development of novel optical and biosensing devices. In this study, we investigated steady-state and time-dependent luminescence properties of InGaP/ZnS core/shell colloidal quantum dots in a solution phase at room temperature. The steady state experiments exhibited an emission maximum at 650 nm with full width at half maximum of ~ 85 nm, and strong first-excitonic absorption peak at 600 nm. The time-resolved luminescence measurements depicted a bi-exponential decay profile with lifetimes of {\\tau}1\\sim 47 ns and {\\tau} 2\\sim 142 ns at the emission maximum. Additionally, luminescence quenching and lifetime reduction due to resonance energy transfer between the quantum dot and an absorber are demonstrated. Our results support the plausibility of using these InGaP quantum dots as an effective alternative to highly toxic conventional Cd or Pb based colloidal quantum dots for biological applications.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Bahinipati, S.; Trabelsi, K.; Kinoshita, K.; Arinstein, K.; Aulchenko, V.; Aushev, T.; Bakich, A. M.; Balagura, V.; Barberio, E.; Belous, K.; Bhardwaj, V.; Bhuyan, B.; Bischofberger, M.; Bondar, A.; Bozek, A.; Bra?ko, M.; Chen, A.; Chen, P.; Cheon, B. G.; Chiang, C.-C.; Cho, I.-S.; Cho, K.; Choi, Y.; Dalseno, J.; Doležal, Z.; Drásal, Z.; Eidelman, S.; Gabyshev, N.; Golob, B.; Ha, H.; Horii, Y.; Hoshi, Y.; Hou, W.-S.; Hsiung, Y. B.; Hyun, H. J.; Ishikawa, A.; Iwabuchi, M.; Iwasaki, Y.; Iwashita, T.; Julius, T.; Kang, J. H.; Kiesling, C.; Kim, H. J.; Kim, M. J.; Ko, B. R.; Kobayashi, N.; Kodyš, P.; Križan, P.; Kumita, T.; Kwon, Y.-J.; Kyeong, S.-H.; Lange, J. S.; Lee, M. J.; Lee, S.-H.; Li, J.; Liu, C.; Louvot, R.; Matyja, A.; McOnie, S.; Miyabayashi, K.; Miyata, H.; Miyazaki, Y.; Mohanty, G. B.; Nakao, M.; Natkaniec, Z.; Neubauer, S.; Nishida, S.; Nitoh, O.; Ogawa, S.; Ohshima, T.; Pakhlov, P.; Park, C. W.; Petri?, M.; Piilonen, L. E.; Poluektov, A.; Röhrken, M.; Sahoo, H.; Sakai, Y.; Schneider, O.; Schwanda, C.; Schwartz, A. J.; Sevior, M. E.; Shapkin, M.; Shen, C. P.; Shiu, J.-G.; Smerkol, P.; Sohn, Y.-S.; Sokolov, A.; Solovieva, E.; Stani?, S.; Stari?, M.; Sumisawa, K.; Sumiyoshi, T.; Tanaka, S.; Teramoto, Y.; Uchida, M.; Uehara, S.; Uglov, T.; Unno, Y.; Uno, S.; Varner, G.; Vinokurova, A.; Wang, C. H.; Won, E.; Yabsley, B. D.; Yamashita, Y.; Zhang, C. C.; Zhang, Z. P.; Zhou, P.; Zivko, T.; Zupanc, A.
2011-07-01T23:59:59.000Z
We report results on time-dependent CP asymmetries in B?D*??± decays based on a data sample containing 657×10? BB¯ pairs collected with the Belle detector at the KEKB asymmetric-energy e?e? collider at the ?(4S) resonance. We use a partial reconstruction technique, wherein signal B?D*??± events are identified using information only from the fast pion from the B decay and the slow pion from the subsequent decay of the D*?, where the former (latter) corresponds to D*?(D*?) final states. We obtain CP violation parameters S?=+0.061±0.018 (stat)±0.012 (syst) and S?=+0.031±0.019 (stat)±0.015 (syst).
Wetmiller, R.J.; Lyons, J.A.; Shannon, W.E.; Munro, P.S.; Thomas, J.T.; Andrew, M.D.; Lamontagne, M.; Wong, C.; Anglin, F.M.; Plouffe, M.; Adams, J.; Drysdale, J.A. (Geological Survey of Canada, Ottawa, ON (Canada). Geophysics Div.)
1990-04-01T23:59:59.000Z
During the period of this report, the contract resources were spent on operation and maintenance of the Eastern Canada Telemetred Network (ECTN), development of special purpose local network systems, servicing and maintenance of the strong-motion seismograph network in eastern Canada, operation of the Ottawa data lab and earthquake monitoring and reporting. Of special note in this period was the final completion of the Sudbury (SLTN) and Charlevoix (CLTN) local networks and the integration of their data processing and analysis requirements in the regular analysis stream for ECTN data. These networks now acquire high quality digital data for detailed analysis of seismic activity and source properties from these two areas, thus effectively doubling the amount of seismic data being received by the Ottawa data lab. 37 refs., 17 figs., 2 tabs.
Telnov, Dmitry A.; Chu, Shih-I
2000-12-13T23:59:59.000Z
In the framework of the Floquet formulation of time-dependent density functional theory we present several exact relations involving different parts of the quasienergy functional. These relations hold when the exact densities ...
Seismic Facies Characterization By Scale Analysis
Herrmann, Felix J.
2000-01-01T23:59:59.000Z
Over the years, there has been an ongoing struggle to relate well-log and seismic data due to the inherent bandwidth limitation of seismic data, the problem of seismic amplitudes, and the apparent inability to delineate ...
SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION
Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin
2003-04-01T23:59:59.000Z
In this report we will show results of seismic and well log derived attenuation attributes from a deep water Gulf of Mexico data set. This data was contributed by Burlington Resources and Seitel Inc. The data consists of ten square kilometers of 3D seismic data and three well penetrations. We have computed anomalous seismic absorption attributes on the seismic data and have computed Q from the well log curves. The results show a good correlation between the anomalous absorption (attenuation) attributes and the presence of gas as indicated by well logs.
Frequent-Interval Seismic CPTu
Office of Environmental Management (EM)
PE NPH Engineering Manager, DOE-SR Motivation The seismic piezocone penetration test (SCPTu) utilized at SRS because it provides rapid and thorough site characterization....
Seismic Fracture Characterization Methods for Enhanced Geothermal...
Broader source: Energy.gov (indexed) [DOE]
Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Principal Investigator: John H. Queen Hi-Q Geophysical Inc. Track Name: Seismicity and Reservoir Fracture...
Regularized Equally Sloped Tomography Algorithm for Low Dose X-Ray Computed Tomography
Zhao, Yunzhe
2012-01-01T23:59:59.000Z
based imaging computed tomography extraction algorithms and10 2.2. Computed Tomography reconstruction theory andcontrast X-ray computed tomography for observing biological
Regularized Equally Sloped Tomography Algorithm for Low Dose X-Ray Computed Tomography
Zhao, Yunzhe
2012-01-01T23:59:59.000Z
based imaging computed tomography extraction algorithms andcontrast X-ray computed tomography for observing biological10 2.2. Computed Tomography reconstruction theory and
Ionospheric Correction Using Tomography
Stanford University
re- quirements on the order of ones of meters with safety of life integrity requirements which delay algorithms. The capability of ionospheric tomography is demon- strated by a time series of 3D°N 30°N 30°N 40°N 40°N 50°N 50°N 60°N 60°N Figure 1: The NSTB reference network geometry is comprised
J. C. Dunlop
2007-07-10T23:59:59.000Z
The status of the use of hard probes in heavy ion collisions at RHIC is reviewed. The discovery of strong jet quenching at RHIC is a major success. However, in order to make full use of this new phenomenon for full jet emission tomography of the properties of the collision zone further development is needed, both experimentally and theoretically.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Röhrken, M.; Adachi, I.; Aihara, H.; Asner, D. M.; Aulchenko, V.; Aushev, T.; Bakich, A. M.; Barrett, M.; Belous, K.; Bhardwaj, V.; Bhuyan, B.; Bischofberger, M.; Bondar, A.; Bonvicini, G.; Bozek, A.; Bra?ko, M.; Brovchenko, O.; Browder, T. E.; Chang, M.-C.; Chen, A.; Chen, P.; Cheon, B. G.; Chilikin, K.; Cho, I.-S.; Cho, K.; Choi, Y.; Dalseno, J.; Doležal, Z.; Drásal, Z.; Drutskoy, A.; Eidelman, S.; Fast, J. E.; Feindt, M.; Gaur, V.; Gabyshev, N.; Garmash, A.; Goh, Y. M.; Haba, J.; Hayashii, H.; Horii, Y.; Hoshi, Y.; Hou, W.-S.; Hsiung, Y. B.; Hyun, H. J.; Iijima, T.; Ishikawa, A.; Itoh, R.; Iwabuchi, M.; Iwasaki, Y.; Julius, T.; Kang, J. H.; Kawasaki, T.; Kiesling, C.; Kim, H. J.; Kim, H. O.; Kim, J. B.; Kim, J. H.; Kim, K. T.; Kim, M. J.; Kim, Y. J.; Kinoshita, K.; Ko, B. R.; Koblitz, S.; Kodyš, P.; Korpar, S.; Kouzes, R. T.; Križan, P.; Krokovny, P.; Kronenbitter, B.; Kuhr, T.; Kumita, T.; Kwon, Y.-J.; Lee, S.-H.; Li, J.; Li, Y.; Libby, J.; Liu, C.; Liu, Y.; Liu, Z. Q.; Liventsev, D.; Louvot, R.; Miyabayashi, K.; Miyata, H.; Mizuk, R.; Mohanty, G. B.; Moll, A.; Mori, T.; Muramatsu, N.; Nagasaka, Y.; Nakano, E.; Nakao, M.; Natkaniec, Z.; Nishida, S.; Nitoh, O.; Ogawa, S.; Ohshima, T.; Okuno, S.; Olsen, S. L.; Ozaki, H.; Pakhlova, G.; Park, C. W.; Park, H.; Park, H. K.; Park, K. S.; Pedlar, T. K.; Pestotnik, R.; Petri?, M.; Piilonen, L. E.; Poluektov, A.; Prim, M.; Prothmann, K.; Ritter, M.; Ryu, S.; Sahoo, H.; Sakai, Y.; Sanuki, T.; Sato, Y.; Schneider, O.; Schwanda, C.; Schwartz, A. J.; Senyo, K.; Seon, O.; Sevior, M. E.; Shapkin, M.; Shen, C. P.; Shibata, T.-A.; Shiu, J.-G.; Shwartz, B.; Sibidanov, A.; Simon, F.; Singh, J. B.; Smerkol, P.; Sohn, Y.-S.; Sokolov, A.; Solovieva, E.; Stani?, S.; Stari?, M.; Sumisawa, K.; Sumiyoshi, T.; Trabelsi, K.; Uchida, M.; Uehara, S.; Unno, Y.; Uno, S.; Urquijo, P.; Vanhoefer, P.; Varner, G.; Varvell, K. E.; Vorobyev, V.; Wang, C. H.; Wang, M.-Z.; Wang, P.; Watanabe, M.; Watanabe, Y.; Williams, K. M.; Won, E.; Yamamoto, H.; Yamashita, Y.; Zander, D.; Zhang, Z. P.; Zhilich, V.; Zhulanov, V.; Zupanc, A.
2012-05-01T23:59:59.000Z
We report measurements of branching fractions and time-dependent CP asymmetries in B??D?D? and B??D*±D? decays using a data sample that contains (772±11)×10?BB¯¯¯ pairs collected at the ?(4S) resonance with the Belle detector at the KEKB asymmetric-energy e?e? collider. We determine the branching fractions to be B(B??D?D?)=(2.12±0.16±0.18)×10?? and B(B??D*±D?)=(6.14±0.29±0.50)×10??. We measure CP asymmetry parameters SD?D?=–1.06+0.21–0.14±0.08 and CD?D?=–0.43±0.16±0.05 in B??D?D? and AD*D=+0.06±0.05±0.02, SD*D=–0.78±0.15±0.05, CD*D=–0.01±0.11±0.04, ?SD*D=–0.13±0.15±0.04 and ?CD*D=+0.12±0.11±0.03 in B??D*±D?, where the first uncertainty is statistical and the second is systematic. We exclude the conservation of CP symmetry in both decays at equal to or greater than 4? significance.
Kuan, W.; Abdou, M.A. [Univ. of California, Los Angeles, CA (United States); Willms, R.S. [Los Alamos National Lab., NM (United States)
1994-12-31T23:59:59.000Z
The dynamic behavior of the fuel cycle in a fusion reactor is of crucial importance due to the need to keep track of the large amount of tritium being constantly produced, transported, and processed in the reactor system. Because tritium is a source of radioactivity, loss and exhaust to the environment must be kept to a minimum. With ITER advancing to its Engineering Design phase, there is a need to accurately predict the dynamic tritium inventories and flow rates throughout the fuel cycle and to study design variations to meet the demands of low tritium inventory. In this paper, time-dependent inventories and flow rates for several components of the fuel cycle are modeled and studied through the use of a new modular-type model for the dynamic simulation of the fuel cycle in a fusion reactor. The complex dynamic behavior in the modeled subsystems is analyzed using this new model. Previous dynamic models focusing on the fuel cycle dealt primarily with a residence time parameter ({tau}{sub res}) defining each subsystem of the model. In this modular model, this residence time approach is avoided in favor of a more accurate and flexible model that utilizes real design parameters and operating schedules of the various subsystems modeled.
Yusuke Tanimura; Denis Lacroix; Guillaume Scamps
2015-05-21T23:59:59.000Z
Given a set of collective variables, a method is proposed to obtain the associated conjugated collective momenta and masses starting from a microscopic time-dependent mean-field theory. The construction of pairs of conjugated variables is the first step to bridge microscopic and macroscopic approaches. The method is versatile and can be applied to study a large class of nuclear processes. An illustration is given here with the fission of $^{258}$Fm. Using the quadrupole moment and eventually higher-order multipole moments, the associated collective masses are estimated along the microscopic mean-field evolution. When more than one collective variable are considered, it is shown that the off-diagonal matrix elements of the inertia play a crucial role. Using the information on the quadrupole moment and associated momentum, the collective evolution is studied. It is shown that dynamical effects beyond the adiabatic limit are important. Nuclei formed after fission tend to stick together for longer time leading to a dynamical scission point at larger distance between nuclei compared to the one anticipated from the adiabatic energy landscape. The effective nucleus-nucleus potential felt by the emitted nuclei is finally extracted.
Thomas Mädler
2013-03-27T23:59:59.000Z
Perturbations of the linearized vacuum Einstein equations on a null cone in the Bondi-Sachs formulation of General Relativity can be derived from a single master function with spin weight two, which is related to the Weyl scalar \\Psi_0, and which is determined by a simple wave equation. Utilizing a standard spin representation of the tensors on a sphere and two different approaches to solve the master equation, we are able to determine two simple and explicitly time-dependent solutions. Both solutions, of which one is asymptotically flat, comply with the regularity conditions at the vertex of the null cone. For the asymptotically flat solution we calculate the corresponding linearized perturbations, describing all multipoles of spin-2 waves that propagate on a Minkowskian background spacetime. We also analyze the asymptotic behavior of this solution at null infinity using a Penrose compactification, and calculate the Weyl scalar, \\Psi_4. Because of its simplicity, the asymptotically flat solution presented here is ideally suited for testbed calculations in the Bondi-Sachs formulation of numerical relativity. It may be considered as a sibling of the well-known Teukolsky-Rinne solutions, on spacelike hypersurfaces, for a metric adapted to null hypersurfaces.
Javier Ortensi; Abderrafi M Ougouag
2009-07-01T23:59:59.000Z
The Doppler feedback mechanism is a major contributor to the passive safety of gas-cooled, graphite-moderated high temperature reactors that use fuel based on Tristructural-Isotropic coated particles. It follows that the correct prediction of the magnitude and time-dependence of this feedback effect is essential to the conduct of safety analyses for these reactors. We present a fuel conduction model for obtaining better estimates of the temperature feedback during moderate and fast transients. The fuel model has been incorporated in the CYNOD-THERMIX-KONVEK suite of coupled codes as a single TRISO particle within each calculation cell. The heat generation rate is scaled down from the neutronic solution and a Dirichlet boundary condition is imposed as the bulk graphite temperature from the thermal-hydraulic solution. This simplified approach yields similar results to those obtained with more complex methods, requiring multi-TRISO calculations within one control volume, but with much less computational effort. We provide an analysis of the hypothetical total control ejection event in the PBMR-400 design that clearly depicts the improvement in the predictions of the fuel temperature.
Mihaila, B. [Institute of Environmental Research and Engineering, Bucharest (Romania); Cuculeanu, V. [National Institute of Meteorology and Hydrology, Bucharest (Romania)
1994-08-01T23:59:59.000Z
On the basis of the radioactivity levels in aerosol and atmospheric deposition samples due to the Chernobyl accident, the resuspension factor of {sup 137}Cs as a four-parameter function has been inferred. The standard procedure to derive the dependence of resuspension on time assumes that the initial deposit is instantaneous. A simple method assuming a constant deposition rate over a fixed period has been proposed. Also, based on existing experimental data, an attempt was made to consider a realistic time dependence of the deposition rate to cope with the particular case of the Chernobyl accident. The differences between the two models are outlined. The Chernobyl direct deposit has been assumed to be the deposit measured between 30 April and 30 June 1986. The calculated values of the resuspension factor are consistent with the IAEA`s recommended model and depend on the rainfall that occurred in June 1986 and the site-specific disturbance conditions during the first 100 d following 1 July 1986 and only on artificial disturbance by humans and vehicles after that. 16 refs., 5 figs., 3 tabs.
Miyagi, Haruhide; Bojer Madsen, Lars [Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C (Denmark)] [Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C (Denmark)
2014-04-28T23:59:59.000Z
The time-dependent restricted-active-space self-consistent-field singles (TD-RASSCF-S) method is presented for investigating TD many-electron dynamics in atoms and molecules. Adopting the SCF notion from the muticonfigurational TD Hartree-Fock (MCTDHF) method and the RAS scheme (single-orbital excitation concept) from the TD configuration-interaction singles (TDCIS) method, the TD-RASSCF-S method can be regarded as a hybrid of them. We prove that, for closed-shell N{sub e}-electron systems, the TD-RASSCF-S wave function can be fully converged using only N{sub e}/2 + 1 ? M ? N{sub e} spatial orbitals. Importantly, based on the TD variational principle, the converged TD-RASSCF-S wave function with M = N{sub e} is more accurate than the TDCIS wave function. The accuracy of the TD-RASSCF-S approach over the TDCIS is illustrated by the calculation of high-order harmonic generation spectra for one-dimensional models of atomic helium, beryllium, and carbon in an intense laser pulse. The electronic dynamics during the process is investigated by analyzing the behavior of electron density and orbitals. The TD-RASSCF-S method is accurate, numerically tractable, and applicable for large systems beyond the capability of the MCTDHF method.
Overview of seismic panel activities
Bandyopadhyay, K.K.
1991-01-01T23:59:59.000Z
In January 1991, the DOE-EM appointed a Seismic Panel to develop seismic criteria that can be used for evaluation of underground storage tanks containing high level radioactive wastes. The Panel expects to issue the first draft of the criteria report in January 1992. This paper provides an overview of the Panel's activities and briefly discusses the criteria. 3 refs.
SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION
Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin
2002-10-01T23:59:59.000Z
RSI has access to two synthetic seismic programs: Osiris seismic modeling system provided by Odegaard (Osiris) and synthetic seismic program, developed by SRB, implementing the Kennett method for normal incidence. Achieving virtually identical synthetic seismic traces from these different programs serves as cross-validation for both. The subsequent experiments have been performed with the Kennett normal incidence code because: We have access to the source code, which allowed us to easily control computational parameters and integrate the synthetics computations with our graphical and I/O systems. This code allows to perform computations and displays on a PC in MatLab or Octave environment, which is faster and more convenient. The normal incidence model allows us to exclude from the synthetic traces some of the physical effects that take place in 3-D models (like inhomogeneous waves) but have no relevance to the topic of our investigation, which is attenuation effects on seismic reflection and transmission.
Seismic Design Expectations Report
Office of Environmental Management (EM)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transfer to FundPreparedContinuingHearings Â»Seismic Design
Seismic Fragility Analysis of a Degraded Condensate Storage Tank
Nie, J.; Braverman, J.; Hofmayer, C.; Choun, Y-S.; Kim, M.K.; Choi, I-K.
2011-05-16T23:59:59.000Z
The Korea Atomic Energy Research Institute (KAERI) and Brookhaven National Laboratory are conducting a collaborative research project to develop seismic capability evaluation technology for degraded structures and components in nuclear power plants (NPPs). One of the goals of this collaboration endeavor is to develop seismic fragility analysis methods that consider the potential effects of age-related degradation of structures, systems, and components (SSCs). The essential part of this collaboration is aimed at achieving a better understanding of the effects of aging on the performance of SSCs and ultimately on the safety of NPPs. A recent search of the degradation occurrences of structures and passive components (SPCs) showed that the rate of aging related degradation in NPPs was not significantly large but increasing, as the plants get older. The slow but increasing rate of degradation of SPCs can potentially affect the safety of the older plants and become an important factor in decision making in the current trend of extending the operating license period of the plants (e.g., in the U.S. from 40 years to 60 years, and even potentially to 80 years). The condition and performance of major aged NPP structures such as the containment contributes to the life span of a plant. A frequent misconception of such low degradation rate of SPCs is that such degradation may not pose significant risk to plant safety. However, under low probability high consequence initiating events, such as large earthquakes, SPCs that have slowly degraded over many years could potentially affect plant safety and these effects need to be better understood. As part of the KAERI-BNL collaboration, a condensate storage tank (CST) was analyzed to estimate its seismic fragility capacities under various postulated degradation scenarios. CSTs were shown to have a significant impact on the seismic core damage frequency of a nuclear power plant. The seismic fragility capacity of the CST was developed for five cases: (1) a baseline analysis where the design condition (undegraded) is assumed, (2) a scenario with degraded stainless steel tank shell, (3) a scenario with degraded anchor bolts, (4) a scenario with anchorage concrete cracking, and (5) a perfect correlation of the above three degradation scenarios. This paper will present the methodology for the time-dependent fragility calculation and discuss the insights drawn from this study. To achieve a better understanding of the effects of aging on the performance of structures and passive components (SPCs) in nuclear power plants (NPPs), the Korea Atomic Energy Research Institute (KAERI) and Brookhaven National Laboratory (BNL) are collaborating to develop seismic fragility analysis methods that consider age-related degradation of SPCs. The rate of age-related degradation of SPCs was not found to be significantly large, but increasing as the plants get older. The slow but increasing rate of degradation of SPCs can potentially affect the safety of the older plants and become an important factor in decision making in the current trend of extending the operating license period of the plants (e.g., in the U.S. from 40 years to 60 years, and even potentially to 80 years). In this paper, a condensate storage tank (CST) was analyzed to estimate its seismic fragility capacities under various postulated degradation scenarios. This paper will present the methodology for the time-dependent fragility calculation and discuss the insights drawn from this study.
Lucas J. Fernández-Alcázar; Horacio M. Pastawski
2015-02-27T23:59:59.000Z
We present a model for decoherence in time-dependent transport. It boils down into a form of wave function that undergoes a smooth stochastic drift of the phase in a local basis, the Quantum Drift (QD) model. This drift is nothing else but a local energy fluctuation. Unlike Quantum Jumps (QJ) models, no jumps are present in the density as the evolution is unitary. As a first application, we address the transport through a resonant state $\\left\\vert 0\\right\\rangle $ that undergoes decoherence. We show the equivalence with the decoherent steady state transport in presence of a B\\"{u}ttiker's voltage probe. In order to test the dynamics, we consider two many-spin systems whith a local energy fluctuation. A two-spin system is reduced to a two level system (TLS) that oscillates among $\\left\\vert 0\\right\\rangle $ $\\equiv $ $ \\left\\vert \\uparrow \\downarrow \\right\\rangle $ and $\\left\\vert 1\\right\\rangle \\equiv $ $\\left\\vert \\downarrow \\uparrow \\right\\rangle $. We show that QD model recovers not only the exponential damping of the oscillations in the low perturbation regime, but also the non-trivial bifurcation of the damping rates at a critical point, i.e. the quantum dynamical phase transition. We also address the spin-wave like dynamics of local polarization in a spin chain. The QD average solution has about half the dispersion respect to the mean dynamics than QJ. By evaluating the Loschmidt Echo (LE), we find that the pure states $\\left\\vert 0\\right\\rangle $ and $\\left\\vert 1\\right \\rangle $ are quite robust against the local decoherence. In contrast, the LE, and hence coherence, decays faster when the system is in a superposition state. Because its simple implementation, the method is well suited to assess decoherent transport problems as well as to include decoherence in both one-body and many-body dynamics.
Bradshaw, S. J.; Reep, J. W. [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States); Klimchuk, J. A., E-mail: stephen.bradshaw@rice.edu, E-mail: jeffrey.reep@rice.edu, E-mail: james.a.klimchuk@nasa.gov [NASA Goddard Space Flight Center, Solar Physics Lab., Code 671, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)
2012-10-10T23:59:59.000Z
Observational measurements of active region emission measures contain clues to the time dependence of the underlying heating mechanism. A strongly nonlinear scaling of the emission measure with temperature indicates a large amount of hot plasma relative to warm plasma. A weakly nonlinear (or linear) scaling of the emission measure indicates a relatively large amount of warm plasma, suggesting that the hot active region plasma is allowed to cool and so the heating is impulsive with a long repeat time. This case is called low-frequency nanoflare heating, and we investigate its feasibility as an active region heating scenario here. We explore a parameter space of heating and coronal loop properties with a hydrodynamic model. For each model run, we calculate the slope {alpha} of the emission measure distribution EM(T){proportional_to}T {sup {alpha}}. Our conclusions are: (1) low-frequency nanoflare heating is consistent with about 36% of observed active region cores when uncertainties in the atomic data are not accounted for; (2) proper consideration of uncertainties yields a range in which as many as 77% of observed active regions are consistent with low-frequency nanoflare heating and as few as zero; (3) low-frequency nanoflare heating cannot explain observed slopes greater than 3; (4) the upper limit to the volumetric energy release is in the region of 50 erg cm{sup -3} to avoid unphysical magnetic field strengths; (5) the heating timescale may be short for loops of total length less than 40 Mm to be consistent with the observed range of slopes; (6) predicted slopes are consistently steeper for longer loops.
Morzan, Uriel N.; Ramírez, Francisco F.; Scherlis, Damián A., E-mail: damian@qi.fcen.uba.ar, E-mail: mcgl@qb.ffyb.uba.ar [Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires (C1428EHA) (Argentina); Oviedo, M. Belén; Sánchez, Cristián G. [Departamento de Matemática y Física, Facultad de Ciencias Químicas, INFIQC, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba (Argentina)] [Departamento de Matemática y Física, Facultad de Ciencias Químicas, INFIQC, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba (Argentina); Lebrero, Mariano C. González, E-mail: damian@qi.fcen.uba.ar, E-mail: mcgl@qb.ffyb.uba.ar [Instituto de Química y Fisicoquímica Biológicas, IQUIFIB, CONICET (Argentina)] [Instituto de Química y Fisicoquímica Biológicas, IQUIFIB, CONICET (Argentina)
2014-04-28T23:59:59.000Z
This article presents a time dependent density functional theory (TDDFT) implementation to propagate the Kohn-Sham equations in real time, including the effects of a molecular environment through a Quantum-Mechanics Molecular-Mechanics (QM-MM) hamiltonian. The code delivers an all-electron description employing Gaussian basis functions, and incorporates the Amber force-field in the QM-MM treatment. The most expensive parts of the computation, comprising the commutators between the hamiltonian and the density matrix—required to propagate the electron dynamics—, and the evaluation of the exchange-correlation energy, were migrated to the CUDA platform to run on graphics processing units, which remarkably accelerates the performance of the code. The method was validated by reproducing linear-response TDDFT results for the absorption spectra of several molecular species. Two different schemes were tested to propagate the quantum dynamics: (i) a leap-frog Verlet algorithm, and (ii) the Magnus expansion to first-order. These two approaches were confronted, to find that the Magnus scheme is more efficient by a factor of six in small molecules. Interestingly, the presence of iron was found to seriously limitate the length of the integration time step, due to the high frequencies associated with the core-electrons. This highlights the importance of pseudopotentials to alleviate the cost of the propagation of the inner states when heavy nuclei are present. Finally, the methodology was applied to investigate the shifts induced by the chemical environment on the most intense UV absorption bands of two model systems of general relevance: the formamide molecule in water solution, and the carboxy-heme group in Flavohemoglobin. In both cases, shifts of several nanometers are observed, consistently with the available experimental data.
SEISMIC INTERFEROMETRY FOR TEMPORAL MONITORING Norimitsu Nakata
Snieder, Roel
SEISMIC INTERFEROMETRY FOR TEMPORAL MONITORING by Norimitsu Nakata #12;c Copyright by Norimitsu Seismic interferometry, where one computes coherency of waves between two or more receivers and averages from the first study related to seismic interferometry (although the name of seismic interferometry has
Reservoir Characterization Using Intelligent Seismic Inversion
Mohaghegh, Shahab
reservoir performance. Field Development #12;- Issues about the data and problems regarding data analysis characterization studies. - Inverse modeling of reservoir properties from the seismic data is known as seismic inversion. SEISMIC LOGS #12;1. Does a relationship exist between seismic data and reservoir characteristics
Seismic event classification system
Dowla, Farid U. (Castro Valley, CA); Jarpe, Stephen P. (Brentwood, CA); Maurer, William (Livermore, CA)
1994-01-01T23:59:59.000Z
In the computer interpretation of seismic data, the critical first step is to identify the general class of an unknown event. For example, the classification might be: teleseismic, regional, local, vehicular, or noise. Self-organizing neural networks (SONNs) can be used for classifying such events. Both Kohonen and Adaptive Resonance Theory (ART) SONNs are useful for this purpose. Given the detection of a seismic event and the corresponding signal, computation is made of: the time-frequency distribution, its binary representation, and finally a shift-invariant representation, which is the magnitude of the two-dimensional Fourier transform (2-D FFT) of the binary time-frequency distribution. This pre-processed input is fed into the SONNs. These neural networks are able to group events that look similar. The ART SONN has an advantage in classifying the event because the types of cluster groups do not need to be pre-defined. The results from the SONNs together with an expert seismologist's classification are then used to derive event classification probabilities.
Seismic event classification system
Dowla, F.U.; Jarpe, S.P.; Maurer, W.
1994-12-13T23:59:59.000Z
In the computer interpretation of seismic data, the critical first step is to identify the general class of an unknown event. For example, the classification might be: teleseismic, regional, local, vehicular, or noise. Self-organizing neural networks (SONNs) can be used for classifying such events. Both Kohonen and Adaptive Resonance Theory (ART) SONNs are useful for this purpose. Given the detection of a seismic event and the corresponding signal, computation is made of: the time-frequency distribution, its binary representation, and finally a shift-invariant representation, which is the magnitude of the two-dimensional Fourier transform (2-D FFT) of the binary time-frequency distribution. This pre-processed input is fed into the SONNs. These neural networks are able to group events that look similar. The ART SONN has an advantage in classifying the event because the types of cluster groups do not need to be pre-defined. The results from the SONNs together with an expert seismologist's classification are then used to derive event classification probabilities. 21 figures.
Katsevich, Alexander J. (Los Alamos, NM); Ramm, Alexander G. (Manhattan, KS)
1996-01-01T23:59:59.000Z
Local tomography is enhanced to determine the location and value of a discontinuity between a first internal density of an object and a second density of a region within the object. A beam of radiation is directed in a predetermined pattern through the region of the object containing the discontinuity. Relative attenuation data of the beam is determined within the predetermined pattern having a first data component that includes attenuation data through the region. In a first method for evaluating the value of the discontinuity, the relative attenuation data is inputted to a local tomography function .function..sub..LAMBDA. to define the location S of the density discontinuity. The asymptotic behavior of .function..sub..LAMBDA. is determined in a neighborhood of S, and the value for the discontinuity is estimated from the asymptotic behavior of .function..sub..LAMBDA.. In a second method for evaluating the value of the discontinuity, a gradient value for a mollified local tomography function .gradient..function..sub..LAMBDA..epsilon. (x.sub.ij) is determined along the discontinuity; and the value of the jump of the density across the discontinuity curve (or surface) S is estimated from the gradient values.
Integrated system for seismic evaluations
Xu, J.; Philippacopoulos, A.J.; Miller, C.A.; Costantino, C.J.; Graves, H.
1989-01-01T23:59:59.000Z
This paper describes the various features of the Seismic Module of the CARES system (Computer Analysis for Rapid Evaluation of Structures). This system was developed by Brookhaven National Laboratory (BNL) for the US Nuclear Regulatory Commission to perform rapid evaluations of structural behavior and capability of nuclear power plant facilities. The CARES is structured in a modular format. Each module performs a specific type of analysis i.e., static or dynamic, linear or nonlinear, etc. This paper describes the features of the Seismic Module in particular. The development of the Seismic Module of the CARES system is based on an approach which incorporates all major aspects of seismic analysis currently employed by the industry into an integrated system that allows for carrying out interactively computations of structural response to seismic motions. The code operates on a PC computer system and has multi-graphics capabilities. It has been designed with user friendly features and it allows for interactive manipulation of various analysis phases during the seismic design process. The capabilities of the seismic module include (a) generation of artificial time histories compatible with given design ground response spectra, (b) development of Power Spectral Density (PSD) functions associated with the seismic input, (c) deconvolution analysis using vertically propagating shear waves through a given soil profile, and (d) development of in-structure response spectra or corresponding PSD's. It should be pointed out that these types of analyses can also be performed individually by using available computer codes such as FLUSH, SAP, etc. The uniqueness of the CARES, however, lies on its ability to perform all required phases of the seismic analysis in an integrated manner. 5 refs., 6 figs.
annual hanford seismic: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
of the resulting distributions 5. Include the seismic hazard 64 Probabilistic seismic risk analysis of existing buildings in regions with moderate seismicity Physics...
alternate seismic support: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
of the resulting distributions 5. Include the seismic hazard 76 Probabilistic seismic risk analysis of existing buildings in regions with moderate seismicity Physics...
Non-Linear Seismic Soil Structure Interaction (SSI) Method for...
Office of Environmental Management (EM)
Non-Linear Seismic Soil Structure Interaction (SSI) Method for Developing Non-Linear Seismic SSI Analysis Techniques Non-Linear Seismic Soil Structure Interaction (SSI) Method for...
Assessing Beyond Design Basis Seismic Events and Implications...
Office of Environmental Management (EM)
on Seismic Risk Assessing Beyond Design Basis Seismic Events and Implications on Seismic Risk September 19, 2012 Presenter: Jeffrey Kimball, Technical Specialist (Seismologist)...
SEISMIC ANALYSIS FOR PRECLOSURE SAFETY
E.N. Lindner
2004-12-03T23:59:59.000Z
The purpose of this seismic preclosure safety analysis is to identify the potential seismically-initiated event sequences associated with preclosure operations of the repository at Yucca Mountain and assign appropriate design bases to provide assurance of achieving the performance objectives specified in the Code of Federal Regulations (CFR) 10 CFR Part 63 for radiological consequences. This seismic preclosure safety analysis is performed in support of the License Application for the Yucca Mountain Project. In more detail, this analysis identifies the systems, structures, and components (SSCs) that are subject to seismic design bases. This analysis assigns one of two design basis ground motion (DBGM) levels, DBGM-1 or DBGM-2, to SSCs important to safety (ITS) that are credited in the prevention or mitigation of seismically-initiated event sequences. An application of seismic margins approach is also demonstrated for SSCs assigned to DBGM-2 by showing a high confidence of a low probability of failure at a higher ground acceleration value, termed a beyond-design basis ground motion (BDBGM) level. The objective of this analysis is to meet the performance requirements of 10 CFR 63.111(a) and 10 CFR 63.111(b) for offsite and worker doses. The results of this calculation are used as inputs to the following: (1) A classification analysis of SSCs ITS by identifying potential seismically-initiated failures (loss of safety function) that could lead to undesired consequences; (2) An assignment of either DBGM-1 or DBGM-2 to each SSC ITS credited in the prevention or mitigation of a seismically-initiated event sequence; and (3) A nuclear safety design basis report that will state the seismic design requirements that are credited in this analysis. The present analysis reflects the design information available as of October 2004 and is considered preliminary. The evolving design of the repository will be re-evaluated periodically to ensure that seismic hazards are properly evaluated and identified. This document supersedes the seismic classifications, assignments, and computations in ''Seismic Analysis for Preclosure Safety'' (BSC 2004a).
Seismicity and seismic stress in the Coso Range, Coso geothermal...
seismic stress in the Coso Range, Coso geothermal field, and Indian Wells Valley region, Southeast-Central California Jump to: navigation, search OpenEI Reference LibraryAdd to...
Amplitude Analysis and Measurement of the Time-dependent CP Asymmetry of B0 to KsKsKs Decays
Lees, J.P.
2012-04-11T23:59:59.000Z
We present the first results on the Dalitz-plot structure and improved measurements of the time-dependent CP-violation parameters of the process B{sup 0} {yields} K{sub S}{sup 0}K{sub S}{sup 0}K{sub S}{sup 0} obtained using 468 x 10{sup 6} B{bar B} decays collected with the BABAR detector at the PEP-II asymmetric-energy B factory at SLAC. The Dalitz-plot structure is probed by a time-integrated amplitude analysis that does not distinguish between B{sup 0} and {bar B}{sup 0} decays. We measure the total inclusive branching fraction {Beta}(B{sup 0} {yields} K{sub S}{sup 0}K{sub S}{sup 0}K{sub S}{sup 0}) = (6.19 {+-} 0.48 {+-} 0.15 {+-} 0.12) x 10{sup -6}, where the first uncertainty is statistical, the second is systematic, and the third represents the Dalitz-plot signal model dependence. We also observe evidence for the intermediate resonant states f{sub 0}(980), f{sub 0}(1710), and f{sub 2}(2010). Their respective product branching fractions are measured to be (2.70{sub -1.19}{sup +1.25} {+-} 0.36 {+-} 1.17) x 10{sup -6}, (0.50{sub -0.24}{sup +0.46} {+-} 0.04 {+-} 0.10) x 10{sup -6}, and (0.54{sub -0.20}{sup +0.21} {+-} 0.03 {+-} 0.52) x 10{sup -6}. Additionally, we determine the mixing-induced CP-violation parameters to be S = -0.94{sub -0.21}{sup +0.24} {+-} 0.06 and C = -0.17 {+-} 0.18 {+-} 0.04, where the first uncertainty is statistical and the second is systematic. These values are in agreement with the standard model expectation.
Alonso, Juan J. [Stanford University; Iaccarino, Gianluca [Stanford University
2013-08-25T23:59:59.000Z
The following is the final report covering the entire period of this aforementioned grant, June 1, 2011 - May 31, 2013 for the portion of the effort corresponding to Stanford University (SU). SU has partnered with Sandia National Laboratories (PI: Mike S. Eldred) and Purdue University (PI: Dongbin Xiu) to complete this research project and this final report includes those contributions made by the members of the team at Stanford. Dr. Eldred is continuing his contributions to this project under a no-cost extension and his contributions to the overall effort will be detailed at a later time (once his effort has concluded) on a separate project submitted by Sandia National Laboratories. At Stanford, the team is made up of Profs. Alonso, Iaccarino, and Duraisamy, post-doctoral researcher Vinod Lakshminarayan, and graduate student Santiago Padron. At Sandia National Laboratories, the team includes Michael Eldred, Matt Barone, John Jakeman, and Stefan Domino, and at Purdue University, we have Prof. Dongbin Xiu as our main collaborator. The overall objective of this project was to develop a novel, comprehensive methodology for uncertainty quantification by combining stochastic expansions (nonintrusive polynomial chaos and stochastic collocation), the adjoint approach, and fusion with experimental data to account for aleatory and epistemic uncertainties from random variable, random field, and model form sources. The expected outcomes of this activity were detailed in the proposal and are repeated here to set the stage for the results that we have generated during the time period of execution of this project: 1. The rigorous determination of an error budget comprising numerical errors in physical space and statistical errors in stochastic space and its use for optimal allocation of resources; 2. A considerable increase in efficiency when performing uncertainty quantification with a large number of uncertain variables in complex non-linear multi-physics problems; 3. A solution to the long-time integration problem of spectral chaos approaches; 4. A rigorous methodology to account for aleatory and epistemic uncertainties, to emphasize the most important variables via dimension reduction and dimension-adaptive refinement, and to support fusion with experimental data using Bayesian inference; 5. The application of novel methodologies to time-dependent reliability studies in wind turbine applications including a number of efforts relating to the uncertainty quantification in vertical-axis wind turbine applications. In this report, we summarize all accomplishments in the project (during the time period specified) focusing on advances in UQ algorithms and deployment efforts to the wind turbine application area. Detailed publications in each of these areas have also been completed and are available from the respective conference proceedings and journals as detailed in a later section.
Investigating the point seismic array concept with seismic rotation measurements.
Abbott, Robert E.; Aldridge, David Franklin
2009-02-01T23:59:59.000Z
Spatially-distributed arrays of seismometers are often utilized to infer the speed and direction of incident seismic waves. Conventionally, individual seismometers of the array measure one or more orthogonal components of rectilinear particle motion (displacement, velocity, or acceleration). The present work demonstrates that measure of both the particle velocity vector and the particle rotation vector at a single point receiver yields sufficient information to discern the type (compressional or shear), speed, and direction of an incident plane seismic wave. Hence, the approach offers the intriguing possibility of dispensing with spatially-extended received arrays, with their many problematic deployment, maintenance, relocation, and post-acquisition data processing issues. This study outlines straightforward mathematical theory underlying the point seismic array concept, and implements a simple cross-correlation scanning algorithm for determining the azimuth of incident seismic waves from measured acceleration and rotation rate data. The algorithm is successfully applied to synthetic seismic data generated by an advanced finite-difference seismic wave propagation modeling algorithm. Application of the same azimuth scanning approach to data acquired at a site near Yucca Mountain, Nevada yields ambiguous, albeit encouraging, results. Practical issues associated with rotational seismometry are recognized as important, but are not addressed in this investigation.
Wetmiller, R.J.; Lyons, J.A.; Shannon, W.E.; Munro, P.S.; Thomas, J.T.; Andrew, M.D.; Lamontagne, M.; Wong, C., Anglin, F.M.; Plouffe, M.; Lapointe, S.P.; Adams, J.; Drysdale, J.A. (Geological Survey of Canada, Ottawa, ON (Canada). Geophysics Div.)
1990-04-01T23:59:59.000Z
This is the twenty-first progress report under the agreement entitled Canadian Seismic Agreement between the US Nuclear Regulatory Commission (NRC) and the Canadian Commercial Corporation. Activities undertaken by the Geophysics Division of the Geological Survey of Canada (GD/GSC) during the period from July 01, 1988 to June 30, 1989 and supported in part by the NRC agreement are described below under four headings; Eastern Canada Telemetred Network and local network developments, Datalab developments, strong motion network developments and earthquake activity. In this time period eastern Canada experienced its largest earthquake in over 50 years. This earthquake, which has been christened the Saguenay earthquake, has provided a wealth of new data pertinent to earthquake engineering studies in eastern North America and is the subject of many continuing studies, which are presently being carried out at GD and elsewhere. 41 refs., 21 figs., 7 tabs.
Downhole hydraulic seismic generator
Gregory, Danny L. (Corrales, NM); Hardee, Harry C. (Albuquerque, NM); Smallwood, David O. (Albuquerque, NM)
1992-01-01T23:59:59.000Z
A downhole hydraulic seismic generator system for transmitting energy wave vibrations into earth strata surrounding a borehole. The system contains an elongated, unitary housing operably connected to a well head aboveground by support and electrical cabling, and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a hydraulic oscillator containing a double-actuating piston whose movement is controlled by an electro-servovalve regulating a high pressure hydraulic fluid flow into and out of upper and lower chambers surrounding the piston. The spent hydraulic fluid from the hydraulic oscillator is stored and pumped back into the system to provide high pressure fluid for conducting another run at the same, or a different location within the borehole.
Seismic anisotropy of fractured rock
M. Schoenberg, C. M. Sayers
2000-02-18T23:59:59.000Z
of seismic anisotropy to determine the orientation of fracture sets is of ... this assumption of noninteraction does not imply that the ... conventional (2-subscript) condensed 6 x 6 matrix notation,. 11. 6, while ... have simple physical interpretations.
Thermoacoustic tomography with variable sound speed
2009-10-26T23:59:59.000Z
We study the mathematical model of thermoacoustic tomography in media with a ... In thermoacoustic tomography, a short electro-magnetic pulse is sent through ...
Cañizares, Claudio A.
system model. Keywords: Power system control, voltage stability, voltage collapse, reactive power1 Accepted for publication at IEEE Trans. Power Systems, July 2000, paper No. PE-006PRS (08 is first presented with the help of a simple test system. The time dependence of the control actions
Yacob Ben-Aryeh
2008-07-29T23:59:59.000Z
The general theory of time-dependent frequency and time-dependent mass ('effective mass') is described.The general theory for time-dependent harmonic- oscillator is applied in the present research for studying certain quantum effects in the interferometers for detecting gravitational waves.When an astronomical binary system approaches its point of coalescence the gravitational wave intensity and frequency are increasing and this can lead to strong deviations from the simple description of harmonic-oscillations for the interferometric masses on which the mirrors are placed.It is shown that under such condtions the harmonic-oscillations of these masses can be described by mechanical harmonic-oscillators with time-dependent frequency and effective-mass. In the present theoretical model the effective-mass is decreasing with time describing pumping phenomena in which the oscillator amplitude is increasing with time . The quantization of this system is analyzed by the use of the adiabatic approximation. It is found that the increase of the gravitational wave intensity, within the adiabatic approximation, leads to squeezing phenomena where the quantum noise in one quadrature is increased and in the other quadrature is decreased.
Down hole periodic seismic generator
Hardee, Harry C. (Albuquerque, NM); Hills, Richard G. (Las Cruces, NM); Striker, Richard P. (Albuquerque, NM)
1989-01-01T23:59:59.000Z
A down hole periodic seismic generator system for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.
Advanced downhole periodic seismic generator
Hardee, Harry C. (Albuquerque, NM); Hills, Richard G. (Las Cruces, NM); Striker, Richard P. (Albuquerque, NM)
1991-07-16T23:59:59.000Z
An advanced downhole periodic seismic generator system for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.
Positron Emission Tomography (PET)
DOE R&D Accomplishments [OSTI]
Welch, M. J.
1990-01-00T23:59:59.000Z
Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET.
Radial reflection diffraction tomography
Lehman, Sean K.
2012-12-18T23:59:59.000Z
A wave-based tomographic imaging method and apparatus based upon one or more rotating radially outward oriented transmitting and receiving elements have been developed for non-destructive evaluation. At successive angular locations at a fixed radius, a predetermined transmitting element can launch a primary field and one or more predetermined receiving elements can collect the backscattered field in a "pitch/catch" operation. A Hilbert space inverse wave (HSIW) algorithm can construct images of the received scattered energy waves using operating modes chosen for a particular application. Applications include, improved intravascular imaging, bore hole tomography, and non-destructive evaluation (NDE) of parts having existing access holes.
Stored Luminescence Computed Tomography
Cong, Wenxiang; Wang, Ge
2013-01-01T23:59:59.000Z
The phosphor nanoparticles made of doped semiconductors, pre-excited by well-collimated X-ray radiation, were recently reported for their light emission upon NIR light stimulation. The characteristics of X-ray energy storage and NIR stimulated emission is highly desirable to design targeting probes and improve molecular and cellular imaging. Here we propose stored luminescence computed tomography (SLCT), perform realistic numerical simulation, and demonstrate a much-improved spatial resolution in a preclinical research context. The future opportunities are also discussed along this direction.
Newberry Seismic Deployment Fieldwork Report
Wang, J; Templeton, D C
2012-03-21T23:59:59.000Z
This report summarizes the seismic deployment of Lawrence Livermore National Laboratory (LLNL) Geotech GS-13 short-period seismometers at the Newberry Enhanced Geothermal System (EGS) Demonstration site located in Central Oregon. This Department of Energy (DOE) demonstration project is managed by AltaRock Energy Inc. AltaRock Energy had previously deployed Geospace GS-11D geophones at the Newberry EGS Demonstration site, however the quality of the seismic data was somewhat low. The purpose of the LLNL deployment was to install more sensitive sensors which would record higher quality seismic data for use in future seismic studies, such as ambient noise correlation, matched field processing earthquake detection studies, and general EGS microearthquake studies. For the LLNL deployment, seven three-component seismic stations were installed around the proposed AltaRock Energy stimulation well. The LLNL seismic sensors were connected to AltaRock Energy Gueralp CMG-DM24 digitizers, which are powered by AltaRock Energy solar panels and batteries. The deployment took four days in two phases. In phase I, the sites were identified, a cavity approximately 3 feet deep was dug and a flat concrete pad oriented to true North was made for each site. In phase II, we installed three single component GS-13 seismometers at each site, quality controlled the data to ensure that each station was recording data properly, and filled in each cavity with native soil.
Medical Imaging Computed Tomography (CT)
Massey, Thomas N.
Module 10 Medical Imaging · X-rays · Computed Tomography (CT) · Positron Emission Tomography (PET Sources PET-TOF #12;Four Sources PET #12;Four Sources PET-TOF #12;PET Scan MRI CT scan #12;Endocrine Gland,000 pixels! #12;Modern Example of CT Scan with the addition of Surface Shading Standard CT With Surface
Steiner, Elisabeth, E-mail: elisabeth.steiner@akhwien.at [Division of Medical Radiation Physics, Department of Radiation Oncology, Comprehensive Cancer Center, Medical University of Vienna, Vienna (Austria) [Division of Medical Radiation Physics, Department of Radiation Oncology, Comprehensive Cancer Center, Medical University of Vienna, Vienna (Austria); Department of Radiation Oncology, Comprehensive Cancer Center, Medical University of Vienna, Vienna (Austria); Georg, Dietmar [Division of Medical Radiation Physics, Department of Radiation Oncology, Comprehensive Cancer Center, Medical University of Vienna, Vienna (Austria) [Division of Medical Radiation Physics, Department of Radiation Oncology, Comprehensive Cancer Center, Medical University of Vienna, Vienna (Austria); Department of Radiation Oncology, Comprehensive Cancer Center, Medical University of Vienna, Vienna (Austria); Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna (Austria); Goldner, Gregor [Department of Radiation Oncology, Comprehensive Cancer Center, Medical University of Vienna, Vienna (Austria) [Department of Radiation Oncology, Comprehensive Cancer Center, Medical University of Vienna, Vienna (Austria); Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna (Austria); Stock, Markus [Division of Medical Radiation Physics, Department of Radiation Oncology, Comprehensive Cancer Center, Medical University of Vienna, Vienna (Austria) [Division of Medical Radiation Physics, Department of Radiation Oncology, Comprehensive Cancer Center, Medical University of Vienna, Vienna (Austria); Department of Radiation Oncology, Comprehensive Cancer Center, Medical University of Vienna, Vienna (Austria); Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna (Austria)
2013-07-15T23:59:59.000Z
Purpose: To investigate intrafraction prostate and patient motion during different radiation therapy treatments as a function of treatment time; included were prostate patients with an endorectal balloon (ERB). Margins accounting for setup uncertainties and intrafraction motion were determined. Methods and Materials: The study included 17 patients undergoing prostate cancer radiation therapy. All patients received 3 fiducial gold markers implanted in the prostate and were then immobilized in the supine position with a knee support and treated with an ERB. Twelve patients with intermediate risk for pelvic lymph node metastases received intensity modulated radiation therapy (IMRT), and 5 patients at low risk received a 4-field box treatment. After setup based on skin marks, patients were imaged with a stereoscopic imaging system. If the marker displacement exceeded a 3-mm tolerance relative to planning computed tomography, patients were shifted and verification images were taken. All patients underwent additional imaging after treatment; IMRT patients also received additional imaging at halftime of treatment. Prostate and bone drifts were evaluated as a function of treatment time for more than 600 fractions, and margins were extracted. Results: Patient motion evaluated by bone match was strongly patient dependent but in general was smallest in the superior-inferior (SI) direction. Prostate drifts were less patient dependent, showing an increase with treatment time in the SI and anterior-posterior (AP) directions. In the lateral (LAT) direction, the prostate stayed rather stable. Mean treatment times were 5.5 minutes for 4-field box, 10 minutes for 5-field boost IMRT, and 15 minutes or more for 9-field boost and 9-field pelvic IMRT treatments. Margins resulted in 2.2 mm, 3.9 mm, and 4.3 mm for 4-field box; 3.7 mm, 2.6 mm, and 3.6 mm for 5-field boost IMRT; 2.3 mm, 3.9 mm, and 6.2 mm for 9-field boost IMRT; and 4.2 mm, 5.1 mm, and 6.6 mm for 9-field pelvic IMRT in the LAT, SI, and AP directions, respectively. Conclusion: Intrafraction prostate and patient displacement increased with treatment time, showing different behaviors for the single directions of movement. Repositioning of the patients during long treatments or shorter treatment times will be necessary to further reduce the treatment margin.
Three-Dimensional Seismic Imaging of the Ryepatch Geothermal Reservoir
Feighner, Mark A.
2010-01-01T23:59:59.000Z
support in the interpretation of the seismic and tomographicinterpretation is partially supported by the re- h s flection seismic
Machine Learning for Seismic Signal Processing: Seismic Phase Classification on a Manifold
Meyer, Francois
Machine Learning for Seismic Signal Processing: Seismic Phase Classification on a Manifold Juan--In this research, we consider the supervised learning problem of seismic phase classification. In seismology, knowledge of the seismic activity arrival time and phase leads to epicenter localization and surface
Probabilistic seismic risk analysis of existing buildings in regions with moderate seismicity
Paris-Sud XI, UniversitÃ© de
Probabilistic seismic risk analysis of existing buildings in regions with moderate seismicity C to apply an approach based on risk for the seismic assessment of existing buildings. In this innovative analytical seismic assessment methods, as the ratio between the capacity and the requirement of the current
Seismic vulnerability analysis of moderate seismicity areas using in situ experimental
Paris-Sud XI, UniversitÃ© de
Seismic vulnerability analysis of moderate seismicity areas using in situ experimental techniques (LGIT), LCPC, CNRS, UniversitÃ© Joseph Fourier Grenoble Abstract Seismic vulnerability analysis. This curve is particularly interesting in moderate seismic areas. This methodology is applied to the Grenoble
Radiated seismic energy from coda measurements and no scaling in apparent stress with seismic moment
Prieto, GermÃ¡n A.
Radiated seismic energy from coda measurements and no scaling in apparent stress with seismic March 2010; accepted 9 April 2010; published 31 August 2010. [1] The seismic coda consists of scattered of radiated wave energy. We apply an empirical Green's function (EGF) method to the seismic coda in order
Seismic Attribute Analysis Using Higher Order Statistics
Greenidge, Janelle Candice
2009-05-15T23:59:59.000Z
Seismic data processing depends on mathematical and statistical tools such as convolution, crosscorrelation and stack that employ second-order statistics (SOS). Seismic signals are non-Gaussian and therefore contain information beyond SOS. One...
Calibration of Seismic Attributes for Reservoir Characterization
Pennington, Wayne D.
2002-05-29T23:59:59.000Z
This project is intended to enhance the ability to use seismic data for the determination of rock and fluid properties through an improved understanding of the physics underlying the relationships between seismic attributes and formation.
Evaluation of strategies for seismic design
Tsertikidou, Despoina
2012-01-01T23:59:59.000Z
Current trends in seismic design require a new approach, oriented in satisfying motion related design requirements and limiting both structural and non-structural damage. Seismic isolation and damping devices are currently ...
Seismic imaging using higher order statistics
Srinivasan, Karthik
1999-01-01T23:59:59.000Z
Improvements in seismic resolution beyond typical seismic wavelength will have significant implications for hydrocarbon exploration and production. Conventional imaging algorithms can be derived as a least squared optimization problem in which...
Prayitno, T. B., E-mail: trunk-002@unj.ac.id [Physics Department, Faculty of Mathematics and Natural Science, Universitas Negeri Jakarta, Jl. Pemuda Rawamangun no. 10, Jakarta, 13220 (Indonesia)
2014-03-24T23:59:59.000Z
We have imposed the conditions in order to preserve the real-valued partition function in the case of onedimensional Gross-Pitaevskii equation coupled by time-dependent potential. In this case we have solved the Gross-Pitaevskii equation by means of the time-dependent perturbation theory by extending the previous work of Kivshar et al. [Phys. Lett A 278, 225–230 (2001)]. To use the method, we have treated the equation as the macroscopic quantum oscillator and found that the expression of the partition function explicitly has complex values. In fact, we have to choose not only the appropriate functions but also the suitable several values of the potential to keep the real-valued partition function.
Measurement of Time-Dependent CP Asymmetries and the CP-Odd Fraction in the Decay B0->D*+D*-
Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Tisserand, V.; Zghiche, A.; /Annecy, LAPP; Grauges, E.; /Barcelona, IFAE; Palano, A.; Pappagallo, M.; Pompili, A.; /Bari U. /INFN, Bari; Chen, J.C.; Qi, N.D.; Rong, G.; Wang, P.; Zhu, Y.S.; /Beijing, Inst. High Energy Phys.; Eigen, G.; Ofte, I.; Stugu, B. /Bergen U. /LBL, Berkeley /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San
2005-07-06T23:59:59.000Z
We present an updated measurement of time-dependent CP asymmetries and the CP-odd fraction in the decay B{sup 0} D*{sup +}D*{sup -} using 232 x 10{sup 6} B{bar B} pairs collected by the BABAR detector at the PEP-II B factory. We determine the CP-odd fraction to be 0.125 {+-} 0.044(stat) {+-} 0.007(syst). The time-dependent CP asymmetry parameters C{sub +} and S{sub +} are determined to be 0.06 {+-} 0.17(stat) {+-} 0.03(syst) and -0.75 {+-} 0.25(stat) {+-} 0.03(syst), respectively. The Standard Model predicts these parameters to be 0 and -sin2{beta}, respectively, in the absence of penguin amplitude contributions.
SEISMIC IMAGING WITH THE GENERALIZED RADON ...
2008-07-29T23:59:59.000Z
SEISMIC IMAGING WITH THE GENERALIZED RADON. TRANSFORM AND DOUBLE BEAMFORMING: A CURVELET. TRANSFORM PERSPECTIVE. M V DE ...
Development of a HT Seismic Tool
Broader source: Energy.gov [DOE]
The program objective is to design; fabricate and field test two high temperature (HT) seismic tools in an EGS application.
Quantifying the {sup 12}C+{sup 12}C sub-Coulomb fusion with the time-dependent wave-packet method
Diaz-Torres, Alexis; Wiescher, Michael [ECT, Strada delle Tabarelle 286, I-38123 Villazzano, Trento (Italy); JINA and Department of Physics, University of Notre Dame, IN 46656 (United States)
2012-10-20T23:59:59.000Z
This contribution provides a preliminary study of the {sup 12}C+{sup 12}C sub-Coulomb fusion reaction using the time-dependent wave-packet method within a nuclear molecular picture. The theoretical sub-Coulomb fusion resonances seem to correspond well with observations. The present method might be a more suitable tool for expanding the cross-section predictions towards lower energies than the commonly used potential-model approximation.
Impact of seismic resolution on geostatistical techniques
Mukerji, T.; Rio, P.; Mavko, G.M.
1995-12-31T23:59:59.000Z
Seismic measurements are often incorporated in geostatistical techniques for estimation and simulation of petrophysical properties such as porosity. The good correlation between seismic and rock properties provides a basis for these techniques. Seismic data have a wide spatial coverage not available in log or core data. However, each seismic measurement has a characteristic response function determined by the source-receiver geometry and signal bandwidth. The image response of the seismic measurement gives a filtered version of the true velocity image. Therefore the seismic image we obtain cannot reflect exactly the true seismic velocity at all scales of spatial heterogeneities present in the earth. The seismic response function can be conveniently approximated in the spatial spectral domain using a Born approximation. Our goal is to study how the seismic image response affects the estimation of variograms and spatial scales, and its impact on geostatistical results. Limitations of view angles and signal bandwidth not only smoothes the seismic image, increasing the variogram range, but can also introduce anisotropic spatial structures in the image. We can add value to the seismic data by better characterizing an quantifying these attributes. As an exercise we present example of seismically assisted cosimulation of porosity between wells.
April 22, 2010 Seismic Reflection VI
Ito, Garrett
4/21/2010 1 GG450 April 22, 2010 Seismic Reflection VI Data Interpretation II Today's material section Chrono- stratigraphic section Relations of strata to boundaries of a depositional sequence Seismic stratigraphic reflection terminations within an idealized seismic sequence Reflection configurations #12
Seismic, shock, and vibration isolation - 1988
Chung, H. (Argonne National Lab., Argonne, IL (US)); Mostaghel, N. (Univ. of Utah, Salt Lake City, UT (US))
1988-01-01T23:59:59.000Z
This book contains papers presented at a conference on pressure vessels and piping. Topics covered include: Design of R-FBI bearings for seismic isolation; Benefits of vertical and horizontal seismic isolation for LMR nuclear reactor units; and Some remarks on the use and perspectives of seismic isolation for fast reactors.
BOOK REVIEW Seismic Communication and Adventure
Munshi-South, Jason
BOOK REVIEW Seismic Communication and Adventure Among African Elephants The Elephant's Secret Sense in Namibia as she first develops the hypothesis that elephants can communicate using seismic signals. Science documenting the elephants' listening behavior and responses to seismic cues. However, these scientific
SEISMIC VULNERABILITY ASSESSMENT USING AMBIENT VIBRATIONS
Paris-Sud XI, UniversitÃ© de
SEISMIC VULNERABILITY ASSESSMENT USING AMBIENT VIBRATIONS: METHOD AND VALIDATION Clotaire Michel, France cmichel@obs.ujf-grenoble.fr Abstract Seismic vulnerability in wide areas is usually assessed like USA or Italy. France is a country with moderate seismicity so that it requires lower-cost methods
SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW
Santos, Juan
SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW J. E. Santos1, G. B. Savioli2, J. M. Carcione3, DÂ´e, Argentina SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW Â p. #12;Introduction. I Storage of CO2). SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW Â p. #12;Introduction. II CO2 is separated from natural
Ultrasound-modulated optical tomography
Nam, Haewon
2004-09-30T23:59:59.000Z
Ultrasound-modulated optical tomography is modeled by a linear integral equation and an inverse problem involving a diffusion equation in n spatial dimensions, n=2, 3. Based on measured data, the optical absorption coefficient ?...
Mathematical Problems of Thermoacoustic Tomography
Nguyen, Linh V.
2010-10-12T23:59:59.000Z
Thermoacoustic tomography (TAT) is a newly emerging modality in biomedical imaging. It combines the good contrast of electromagnetic and good resolution of ultrasound imaging. The mathematical model of TAT is the observability problem for the wave...
Seismic Performance Requirements for WETF
Hans Jordan
2001-01-01T23:59:59.000Z
This report develops recommendations for requirements on the Weapons Engineering Tritium Facility (WETF) performance during seismic events. These recommendations are based on fragility estimates of WETF structures, systems, and components that were developed by LANL experts during facility walkdowns. They follow DOE guidance as set forth in standards DOE-STD-1021-93, ''Natural Phenomena Hazards Performance Categorization Guidelines for Structures, Systems, and Components'' and DOE-STD-1020-94, ''Natural Phenomena Hazards Design and Evaluation Criteria for Department of Energy Facilities''. Major recommendations are that WETF institute a stringent combustible loading control program and that additional seismic bracing and anchoring be provided for gloveboxes and heavy equipment.
Double-Difference Tomography for Sequestration MVA [monitoring, verification, and accounting
Westman, Erik
2012-12-31T23:59:59.000Z
Analysis of synthetic data was performed to determine the most cost-effective tomographic monitoring system for a geologic carbon sequestration injection site. Double-difference tomographic inversion was performed on 125 synthetic data sets: five stages of CO2 plume growth, five seismic event regions, and five geophone arrays. Each resulting velocity model was compared quantitatively to its respective synthetic velocity model to determine an accuracy value. The results were examined to determine a relationship between cost and accuracy in monitoring, verification, and accounting applications using double-difference tomography. The geophone arrays with widely-varying geophone locations, both laterally and vertically, performed best. Additionally, double difference seismic tomography was performed using travel time data from a carbon sequestration site at the Aneth oil field in southeast Utah as part of a Department of Energy initiative on monitoring, verification, and accounting (MVA) of sequestered CO2. A total of 1,211 seismic events were recorded from a borehole array consisting of 22 geophones. Artificial velocity models were created to determine the ease with which different CO2 plume locations and sizes can be detected. Most likely because of the poor geophone arrangement, a low velocity zone in the Desert Creek reservoir can only be detected when regions of test site containing the highest ray path coverage are considered. MVA accuracy and precision may be improved through the use of a receiver array that provides more comprehensive ray path coverage.
EMISSION AND TRANSMISSION NOISE PROPAGATION IN POSITRON EMISSION COMPUTED TOMOGRAPHY
Gullberg, G.T.
2010-01-01T23:59:59.000Z
High Resolution Computed Tomography of Positron Emitters,"of Dynamic Emission Computed Tomography," J. Nucl. Med. ~:IN POSITRON EMISSION COMPUTED TOMOGRAPHY RECEIVED lAWRENCE
SINGLE-PHOTON EMISSION COMPUTED TOMOGRAPHY: COMPENSATION FOR CONSTANT ATTENUATION
Gullberg, Grant T.
2013-01-01T23:59:59.000Z
in radionuclide computed tomography," IEEE Trans. Nucl.49. M.E.Phelps, Emission computed tomography,~~ Seminars inSINGLE-PHOTON EMISSION COMPUTED TOMOGRAPHY: COMPENSATION FOR
Artifact Simulating Fracture on Cervical Spine Computed Tomography
Shockley, Lee W.; Kendall, John L.
2011-01-01T23:59:59.000Z
on Cervical Spine Computed Tomography Lee W. Shockley, MD,patient with computed tomography concerning significant C3-scalp laceration. Computed tomography (CT) of her head was
Thermal Neutron Computed Tomography of Soil Water and Plant Roots
Leanne G. Tumlinson; Hungyuan Liu; Wendy K. Silk; Jan W. Hopmans
2007-01-01T23:59:59.000Z
2000. 3D neutron computed tomography: Requirements and2002. Using x-ray computed tomography in hydrology: Systems,of neutron computed tomography in the geosciences. Nucl.
Application of neutron computed tomography in the geosciences
Wilding, M.; Shields, K.; Lesher, C. E.
2005-01-01T23:59:59.000Z
of neutron computed tomography in the geosciences Martinthat applies neutron computed tomography (CT) to geologicalthe use of neutron computed tomography (CT) in the analy-
Hyperdense Cerebral Sinus Vein Thrombosis on Computed Tomography
Zeina, Abdel-Rauf; Kassem, Eiass; Klein, Adi; Nachtigal, Alicia
2010-01-01T23:59:59.000Z
Vein Thrombosis on Computed Tomography Abdel-Rauf Zeina*1. Unenhanced axial computed tomography (CT) (a-c) shows theBrain unenhanced computed tomography (CT) on admission
Frequency of Incidental Findings on Computed Tomography of Trauma Patients
Devine, Alicia S; Jackson, Corinne S; Lyons, Lisa; Mason, Jon D
2010-01-01T23:59:59.000Z
findings on trauma computed tomography scans: experience atfindings in brain computed tomography scans of 3000 headfindings on chest computed tomography angiography performed
Patient Attitudes Regarding Consent for Emergency Department Computed Tomographies
Weigner, Michael B; Basham, Hilary F; Dewar, Kate M; Rupp, Valerie A; Cornelius, Llewellyn; Greenberg, Marna Rayl
2014-01-01T23:59:59.000Z
associated with common Computed Tomography examinations andRegarding Consent for Computed Tomographies ucm2007191.htm.for Emergency Department Computed Tomographies Lehigh Valley
advanced computed tomography: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
2007-01-01 4 Geometric Tomography: A Limited-View Approach for Computed Tomography Computer Technologies and Information Sciences Websites Summary: Geometric Tomography: A...
Fuel storage basin seismic analysis
Kanjilal, S.K.; Winkel, B.V.
1991-08-01T23:59:59.000Z
The 105-KE and 105-KW Fuel Storage Basins were constructed more than 35 years ago as repositories for irradiated fuel from the K East and K West Reactors. Currently, the basins contain irradiated fuel from the N Reactor. To continue to use the basins as desired, seismic adequacy in accordance with current US Department of Energy facility requirements must be demonstrated. The 105-KE and 105-KW Basins are reinforced concrete, belowground reservoirs with a 16-ft water depth. The entire water retention boundary, which currently includes a portion of the adjacent reactor buildings, must be qualified for the Hanford Site design basis earthquake. The reactor building interface joints are sealed against leakage with rubber water stops. Demonstration of the seismic adequacy of these interface joints was initially identified as a key issue in the seismic qualification effort. The issue of water leakage through seismicly induced cracks was also investigated. This issue, coupled with the relatively complex geometry of the basins, dictated a need for three-dimensional modeling. A three-dimensional soil/structure interaction model was developed with the SASSI computer code. The development of three-dimensional models of the interfacing structures using the ANSYS code was also found to be necessary. 8 refs., 7 figs., 1 tab.
SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION
Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin
2003-12-01T23:59:59.000Z
We have developed and tested technology for a new type of direct hydrocarbon detection. The method uses inelastic rock properties to greatly enhance the sensitivity of surface seismic methods to the presence of oil and gas saturation. These methods include use of energy absorption, dispersion, and attenuation (Q) along with traditional seismic attributes like velocity, impedance, and AVO. Our approach is to combine three elements: (1) a synthesis of the latest rock physics understanding of how rock inelasticity is related to rock type, pore fluid types, and pore microstructure, (2) synthetic seismic modeling that will help identify the relative contributions of scattering and intrinsic inelasticity to apparent Q attributes, and (3) robust algorithms that extract relative wave attenuation attributes from seismic data. This project provides: (1) Additional petrophysical insight from acquired data; (2) Increased understanding of rock and fluid properties; (3) New techniques to measure reservoir properties that are not currently available; and (4) Provide tools to more accurately describe the reservoir and predict oil location and volumes. These methodologies will improve the industry's ability to predict and quantify oil and gas saturation distribution, and to apply this information through geologic models to enhance reservoir simulation. We have applied for two separate patents relating to work that was completed as part of this project.
Kazuhiro Yamamoto; Gen Nakamura
2011-03-09T23:59:59.000Z
First-order quantum correction to the Larmor radiation is investigated on the basis of the scalar QED on a homogeneous background of time-dependent electric field, which is a generalization of a recent work by Higuchi and Walker so as to be extended for an accelerated charged particle in a relativistic motion. We obtain a simple approximate formula for the quantum correction in the limit of the relativistic motion when the direction of the particle motion is parallel to that of the electric field.
Gross, E.K.U.
Time-dependent approach to electron pumping in open quantum systems G. Stefanucci,1,2,* S. Kurth,1 time-dependent approach to investigate the motion of electrons in quantum pump device configurations that for pumping across a single potential barrier, electrons are transported in pockets and the transport
Seismic Volume Visualization for Horizon Extraction Daniel Patel
present a novel system for rapidly interpret- ing and visualizing seismic volumetric data. First we to seismic data interpretation. Keywords: Seismic interpretation, Seismic horizons, Volume ren- dering hydrocarbons are trapped. In this paper we present a system for rapid interpretation of seismic reflection
Seismic Isolation Working Meeting Gap Analysis Report
Justin Coleman; Piyush Sabharwall
2014-09-01T23:59:59.000Z
The ultimate goal in nuclear facility and nuclear power plant operations is operating safety during normal operations and maintaining core cooling capabilities during off-normal events including external hazards. Understanding the impact external hazards, such as flooding and earthquakes, have on nuclear facilities and NPPs is critical to deciding how to manage these hazards to expectable levels of risk. From a seismic risk perspective the goal is to manage seismic risk. Seismic risk is determined by convolving the seismic hazard with seismic fragilities (capacity of systems, structures, and components (SSCs)). There are large uncertainties associated with evolving nature of the seismic hazard curves. Additionally there are requirements within DOE and potential requirements within NRC to reconsider updated seismic hazard curves every 10 years. Therefore opportunity exists for engineered solutions to manage this seismic uncertainty. One engineered solution is seismic isolation. Current seismic isolation (SI) designs (used in commercial industry) reduce horizontal earthquake loads and protect critical infrastructure from the potentially destructive effects of large earthquakes. The benefit of SI application in the nuclear industry is being recognized and SI systems have been proposed, in the American Society of Civil Engineers (ASCE) 4 standard, to be released in 2014, for Light Water Reactors (LWR) facilities using commercially available technology. However, there is a lack of industry application to the nuclear industry and uncertainty with implementing the procedures outlined in ASCE-4. Opportunity exists to determine barriers associated with implementation of current ASCE-4 standard language.
Tomography of a laser wakefield accelerator Tomography of a laser wakefield accelerator
history of laser-plasma accelerators is reviewed. The excitation of plasma waves by ultra-short laser Tomography of a laser wakefield accelerator Tomography of a laser wakefield accelerator 692220024 #12; Tomography of a laser wakefield accelerator i #12; Tomography of a laser
Eckhard Strobel; She-Sheng Xue
2014-07-18T23:59:59.000Z
We present an analytic calculation of the semiclassical electron-positron pair creation rate by time-dependent electrical fields. We use two methods, first the imaginary time method in the WKB-approximation and second the world-line instanton approach. The analytic tools for both methods are generalized to time-dependent electric fields with more than one component. For the WKB method an expansion of the momentum spectrum of produced pairs around the canonical momentum $\\vec{P}=0$ is presented which simplifies the computation of the pair creation rate. We argue that the world-line instanton method of [Dunne et al., Phys. Rev. D73, 065028 (2006)] implicitly performs this expansion of the momentum spectrum around $\\vec{P}=0$. Accordingly the generalization to more than one component is shown to agree with the WKB result obtained via this expansion. However the expansion is only a good approximation for the cases where the momentum spectrum is peaked around $\\vec{P}=0$. Thus the expanded WKB result and the world-line instanton method of [Dunne et al., Phys. Rev. D73, 065028 (2006)] as well as the generalized method presented here are only applicable in these cases. We study the two component case of a rotating electric field and find a new analytic closed form for the momentum spectrum using the generalized WKB method. The momentum spectrum for this field is not peaked around $\\vec{P}=0$.
Analysis of seismic anisotropy in 3D multi-component seismic data
Qian, Zhongping
2010-01-01T23:59:59.000Z
The importance of seismic anisotropy has been recognized by the oil industry since its first observation in hydrocarbon reservoirs in 1986, and the application of seismic anisotropy to solve geophysical problems has been ...
Thermoacoustic and Photoacoustic Tomography ... - Purdue University
Plamen Stefanov
2010-11-09T23:59:59.000Z
Thermoacoustic and Photoacoustic Tomography with a variable continuous or discontinuous sound speed. Plamen Stefanov. Purdue University. Based on a ...
Mathematics of Thermoacoustic and Photoacoustic Tomography
Kuchment, Peter
2007-01-01T23:59:59.000Z
The paper presents a survey of mathematical problems, techniques, and challenges arising in the Thermoacoustic and Photoacoustic Tomography.
Electron tomography of dislocation structures
Liu, G.S.; House, S.D.; Kacher, J. [Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green St., Urbana, IL 61801 (United States); Tanaka, M.; Higashida, K. [Department of Materials Science and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Robertson, I.M., E-mail: irobertson@wisc.edu [Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green St., Urbana, IL 61801 (United States); Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706 (United States)
2014-01-15T23:59:59.000Z
Recent developments in the application of electron tomography for characterizing microstructures in crystalline solids are described. The underlying principles for electron tomography are presented in the context of typical challenges in adapting the technique to crystalline systems and in using diffraction contrast imaging conditions. Methods for overcoming the limitations associated with the angular range, the number of acquired images, and uniformity of image contrast are introduced. In addition, a method for incorporating the real space coordinate system into the tomogram is presented. As the approach emphasizes development of experimental solutions to the challenges, the solutions developed and implemented are presented in the form of examples.
DISPLACEMENT BASED SEISMIC DESIGN CRITERIA
HOFMAYER,C.H.
1999-03-29T23:59:59.000Z
The USNRC has initiated a project to determine if any of the likely revisions to traditional earthquake engineering practice are relevant to seismic design of the specialized structures, systems and components of nuclear power plants and of such significance to suggest that a change in design practice might be warranted. As part of the initial phase of this study, a literature survey was conducted on the recent changes in seismic design codes/standards, on-going activities of code-writing organizations/communities, and published documents on displacement-based design methods. This paper provides a summary of recent changes in building codes and on-going activities for future codes. It also discusses some technical issues for further consideration.
SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION
Joel Walls; M.T. Taner; Gary Mavko; Jack Dvorkin
2002-01-01T23:59:59.000Z
In Section 1 of this first report we will describe the work we are doing to collect and analyze rock physics data for the purpose of modeling seismic attenuation from other measurable quantities such as porosity, water saturation, clay content and net stress. This work and other empirical methods to be presented later, will form the basis for ''Q pseudo-well modeling'' that is a key part of this project. In Section 2 of this report, we will show the fundamentals of a new method to extract Q, dispersion, and attenuation from field seismic data. The method is called Gabor-Morlet time-frequency decomposition. This technique has a number of advantages including greater stability and better time resolution than spectral ratio methods.
Korneev, Valeri A. (Lafayette, CA); Bakulin, Andrey (Houston, TX)
2009-10-13T23:59:59.000Z
The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.
Korneev, Valeri A [LaFayette, CA
2009-05-05T23:59:59.000Z
The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.
Nuclear component horizontal seismic restraint
Snyder, Glenn J. (Lynchburg, VA)
1988-01-01T23:59:59.000Z
A nuclear component horizontal seismic restraint. Small gaps limit horizontal displacement of components during a seismic occurrence and therefore reduce dynamic loadings on the free lower end. The reactor vessel and reactor guard vessel use thicker section roll-forged rings welded between the vessel straight shell sections and the bottom hemispherical head sections. The inside of the reactor guard vessel ring forging contains local vertical dovetail slots and upper ledge pockets to mount and retain field fitted and installed blocks. As an option, the horizontal displacement of the reactor vessel core support cone can be limited by including shop fitted/installed local blocks in opposing alignment with the reactor vessel forged ring. Beams embedded in the wall of the reactor building protrude into apertures in the thermal insulation shell adjacent the reactor guard vessel ring and have motion limit blocks attached thereto to provide to a predetermined clearance between the blocks and reactor guard vessel ring.
Mathematics of thermoacoustic and photoacoustic tomography
Mathematics of thermoacoustic and photoacoustic tomography Peter Kuchment and Leonid Kunyansky in the Thermoacoustic and Photoacoustic To- mography. 1 Introduction Medical tomography has had a huge impact on medical succesfull example of such a combination is the Thermoacoustic Tomography (TAT) (also abbreviated as TCT) [50
PROGRAMME SPECIFICATION Programme name Radiography (Computed Tomography);
Weyde, Tillman
1 PROGRAMME SPECIFICATION KEY FACTS Programme name Radiography (Computed Tomography); Radiography in a clinical speciality, for example, Computed Tomography, you must successfully complete the Computed-time The postgraduate programmes in Radiography provide advanced education in #12;2 Computed Tomography and Medical
S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES
S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES COMMISSION platform for distributed hybrid testing #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN? Celestina Overview Implementation Validation Next steps #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES
SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES ENISTAT: Experimental and
SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES ENISTAT: Experimental-TA Project #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES Partners (Users) Â· METU Ragueneau Â· SCHOECK (Germany): Steffen Scheer, Seref Diler #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES
S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES
S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES COMMISSION Database: Architecture and implementation #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN Conclusions #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES 3 SERIES Concluding
Oklahoma seismic network. Final report
Luza, K.V.; Lawson, J.E. Jr. [Oklahoma Geological Survey, Norman, OK (United States)]|[Univ. of Oklahoma, Norman, OK (United States). Energy Center
1993-07-01T23:59:59.000Z
The US Nuclear Regulatory Commission has established rigorous guidelines that must be adhered to before a permit to construct a nuclear-power plant is granted to an applicant. Local as well as regional seismicity and structural relationships play an integral role in the final design criteria for nuclear power plants. The existing historical record of seismicity is inadequate in a number of areas of the Midcontinent region because of the lack of instrumentation and (or) the sensitivity of the instruments deployed to monitor earthquake events. The Nemaha Uplift/Midcontinent Geophysical Anomaly is one of five principal areas east of the Rocky Mountain front that has a moderately high seismic-risk classification. The Nemaha uplift, which is common to the states of Oklahoma, Kansas, and Nebraska, is approximately 415 miles long and 12-14 miles wide. The Midcontinent Geophysical Anomaly extends southward from Minnesota across Iowa and the southeastern corner of Nebraska and probably terminates in central Kansas. A number of moderate-sized earthquakes--magnitude 5 or greater--have occurred along or west of the Nemaha uplift. The Oklahoma Geological Survey, in cooperation with the geological surveys of Kansas, Nebraska, and Iowa, conducted a 5-year investigation of the seismicity and tectonic relationships of the Nemaha uplift and associated geologic features in the Midcontinent. This investigation was intended to provide data to be used to design nuclear-power plants. However, the information is also being used to design better large-scale structures, such as dams and high-use buildings, and to provide the necessary data to evaluate earthquake-insurance rates in the Midcontinent.
SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION
Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin
2003-10-01T23:59:59.000Z
In this report we will show the fundamental concepts of two different methods to compute seismic energy absorption. The first methods gives and absolute value of Q and is based on computation with minimum phase operators. The second method gives a relative energy loss compared to a background trend. This method is a rapid, qualitative indicator of anomalous absorption and can be combined with other attributes such as band limited acoustic impedance to indicate areas of likely gas saturation.
Time Dependence of ACIS Contamination
Grant, Catherine E.
· Viewable by ACIS when HRC-S is at the HRMA focus · Observed on ingress and egress from radiation belts
Time Dependence of ACIS Contamination
Grant, Catherine E.
. Viewable by ACIS when HRCS is at the HRMA focus . Observed on ingress and egress from radiation belts
TIME-DEPENDENT MAXWELL'S EQUATIONS*
Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716. (monklath.udel. ... The plan of the paperis as follows. In 2 we .... which states that the energy in the discrete system is independent of time. This energy ...
INVERSE SCATTERING OF SEISMIC DATA WITH THE ...
1910-61-22T23:59:59.000Z
We discuss the inverse scattering of seismic reflection data making use of the generalized Radon transform. Through an extension, the relevant transform attains ...
SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW
santos
SEISMIC MONITORING OF. CARBON DIOXIDE FLUID FLOW. J. E. Santos. 1. , G. B. Savioli. 2. , J. M. Carcione. 3. , D. Gei. 3. 1. CONICET, IGPUBA, Fac.
Finite element approximation of coupled seismic and ...
zyserman
layer, having a thickness of about 10 nm. Finite element approximation of coupled seismic and electromagnetic waves in gas hydrate-bearing sediments – p.
Hanford site seismic monitoring instrumentation plan
Reidel, S.P.
1996-02-29T23:59:59.000Z
This document provides a plan to comply with the seismic monitoring provisions of US DOE Order 5480.28, Natural Phenomena Hazards.
Infrasound Generation from the HH Seismic Hammer.
Jones, Kyle Richard
2014-10-01T23:59:59.000Z
The HH Seismic hammer is a large, %22weight-drop%22 source for active source seismic experiments. This system provides a repetitive source that can be stacked for subsurface imaging and exploration studies. Although the seismic hammer was designed for seismological studies it was surmised that it might produce energy in the infrasonic frequency range due to the ground motion generated by the 13 metric ton drop mass. This study demonstrates that the seismic hammer generates a consistent acoustic source that could be used for in-situ sensor characterization, array evaluation and surface-air coupling studies for source characterization.
Opportunities for improving regulations governing the seismic...
Office of Environmental Management (EM)
Support DOE NPH Design AN APPLICATION OF THE SSHAC LEVEL 3 PROCESS TO THE PROBABILISTIC SEISMIC HAZARD ANALYSIS FOR NUCLEAR FACILITIES AT THE HANFORD SITE, EASTERN WASHINGTON, USA...
Seismic stimulation for enhanced oil recovery
Pride, S.R.
2008-01-01T23:59:59.000Z
aims to enhance oil production by sending seismic wavesbe expected to enhance oil production. INTRODUCTION The hopethe reservoir can cause oil production to increase. Quite
Seismic Fracture Characterization Methods for Enhanced Geothermal...
Broader source: Energy.gov (indexed) [DOE]
5 4.5.2 Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Presentation Number: 022 Investigator: Queen, John (Hi-Q Geophysical Inc.) Objectives: To develop...
Introduction to Positron Emission Tomography
Oakes, Terry
range: 1-10 mm Gamma-Ray range: 10 mm - 8 positron annihilation #12;Positron Emission Tomography #12;P.E.T. measures Concentration of Radioactivity 1) Gamma-rays escape from body: External detection possible. 2) Two gamma rays emitted at 180 when a positron annihilates: The annihilation occured somewhere
Modeling-Computer Simulations At Central Nevada Seismic Zone...
Modeling-Computer Simulations At Central Nevada Seismic Zone Region (Biasi, Et Al., 2009) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region...
Protocol for Addressing Induced Seismicity Associated with Enhanced...
Office of Environmental Management (EM)
Protocol for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems Protocol for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems This...
Application of the Computer Program SASSI for Seismic SSI Analysis...
Office of Environmental Management (EM)
the Computer Program SASSI for Seismic SSI Analysis of WTP Facilities Application of the Computer Program SASSI for Seismic SSI Analysis of WTP Facilities Application of the...
Effects of Seismic Motion Incoherency on SSI and SSSI Responses...
Office of Environmental Management (EM)
Effects of Seismic Motion Incoherency on SSI and SSSI Responses of Nuclear Structures for Different Soil Site Conditions Effects of Seismic Motion Incoherency on SSI and SSSI...
An Asymptotic Model of Seismic Reflection from a Permeable Layer
Silin, Dmitriy; Goloshubin, Gennady
2010-01-01T23:59:59.000Z
Hilterman, F.J. : Seismic Amplitude Interpretation. Number 4interpretations of some poroelasticity coef?cients. For instance, we demonstrate that the An Asymptotic Model of Seismic
The INL Seismic Risk Assessment Project: Requirements for Addressing...
Office of Environmental Management (EM)
Seismic Hazard Analysis AN APPLICATION OF THE SSHAC LEVEL 3 PROCESS TO THE PROBABILISTIC SEISMIC HAZARD ANALYSIS FOR NUCLEAR FACILITIES AT THE HANFORD SITE, EASTERN WASHINGTON, USA...
The Idaho National Laboratory (INL) Senior Seismic Hazard Analysis...
Office of Environmental Management (EM)
SEISMIC HAZARD ANALYSIS FOR NUCLEAR FACILITIES AT THE HANFORD SITE, EASTERN WASHINGTON, USA A Probabilistic Seismic Hazard Analysis Update Review for Two DOE Sites and NGA-East...
DOE New Madrid Seismic Zone Electric Utility Workshop Summary...
Office of Environmental Management (EM)
New Madrid Seismic Zone Electric Utility Workshop Summary Report - August 2010 DOE New Madrid Seismic Zone Electric Utility Workshop Summary Report - August 2010 The DOE New Madrid...
Compound and Elemental Analysis At Central Nevada Seismic Zone...
Central Nevada Seismic Zone Region (Laney, 2005) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Compound and Elemental...
Joint inversion of electrical and seismic data for Fracture char...
Broader source: Energy.gov (indexed) [DOE]
Joint inversion of electrical and seismic data for Fracture char. and Imaging of Fluid Flow in Geothermal Systems Joint inversion of electrical and seismic data for Fracture char....
Seismic Technology Adapted to Analyzing and Developing Geothermal...
Broader source: Energy.gov (indexed) [DOE]
Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Seismic Technology Adapted to Analyzing and Developing...
Application of Random Vibration Theory Methodology for Seismic...
Office of Environmental Management (EM)
Application of Random Vibration Theory Methodology for Seismic Soil-Structure Interaction Analysis Application of Random Vibration Theory Methodology for Seismic Soil-Structure...
Improved measurement of time-dependent CP violation in B{sup 0}{yields}J/{psi}{pi}{sup 0} decays
Lee, S. E.; Kim, S. K.; Lee, M. J. [Seoul National University, Seoul (Korea, Republic of); Miyabayashi, K.; Hayashii, H.; Kataoka, S. U.; Noguchi, S.; Sekiya, A. [Nara Women's University, Nara (Japan); Aihara, H.; Iwasaki, M. [Department of Physics, University of Tokyo, Tokyo (Japan); Aushev, T. [Ecole Polytecnique Federale Lausanne, EPFL, Lausanne (Switzerland); Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Aziz, T. [Tata Institute of Fundamental Research, Mumbai (India); Bakich, A. M.; McOnie, S.; Varvell, K. E. [University of Sydney, Sydney, New South Wales (Australia); Balagura, V.; Chistov, R.; Liventsev, D.; Medvedeva, T.; Mizuk, R. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation)] (and others)
2008-04-01T23:59:59.000Z
We report improved measurements of time-dependent CP violation parameters for B{sup 0}(B{sup 0}){yields}J/{psi}{pi}{sup 0} decay. This analysis is based on 535x10{sup 6} BB pairs accumulated at the {upsilon}(4S) resonance with the Belle detector at the KEKB asymmetric-energy e{sup +}e{sup -} collider. From the distribution of proper time intervals between the two B decays, we obtain the following CP violation parameters S{sub J/{psi}}{sub {pi}{sup 0}}=-0.65{+-}0.21(stat){+-}0.05(syst) and A{sub J/{psi}}{sub {pi}{sup 0}}=+0.08{+-}0.16(stat){+-}0.05(syst),which are consistent with standard model expectations.
Measurements of the Branching Fraction and Time-Dependent CP Asymmetries of B0 to J/Psi pi0 Decays.
Aubert, B.
2005-08-04T23:59:59.000Z
The authors present measurements of the branching fraction and time-dependent CP asymmetries in B{sup 0} {yields} J/{psi} {pi}{sup 0} decays based on (231.8 {+-} 2.6) x 10{sup 6} {Upsilon}(4S) {yields} B{bar B} decays collected with the BABAR detector at the PEP-II asymmetric-energy B factory at SLAC during the years 1999-2004. We obtain a branching fraction {Beta}(B{sup 0} {yields} J/{psi}{pi}{sup 0}) = (1.94 {+-} 0.22 (stat) {+-} 0.17 (syst)) x 10{sup -5}. They also measure the CP asymmetry parameters C = -0.21 {+-} 0.26 (stat) {+-} 0.09 (syst) and S = -0.68 {+-} 0.30 (stat) {+-} 0.04 (syst). All results presented in this paper are preliminary.
Van Doorsselaere, Tom; Wardle, Nick; Jansari, Kishan; Verwichte, Erwin; Nakariakov, Valery M. [CFSA, Physics Department, University of Warwick, Coventry CV4 7AL (United Kingdom); Del Zanna, Giulio, E-mail: Tom.VanDoorsselaere@wis.kuleuven.BE [DAMTP, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)
2011-02-01T23:59:59.000Z
We use observations of a slow magnetohydrodynamic wave in the corona to determine for the first time the value of the effective adiabatic index, using data from the Extreme-ultraviolet Imaging Spectrometer on board Hinode. We detect oscillations in the electron density, using the CHIANTI atomic database to perform spectroscopy. From the time-dependent wave signals from multiple spectral lines the relationship between relative density and temperature perturbations is determined, which allows in turn to measure the effective adiabatic index to be {gamma}{sub eff} = 1.10 {+-} 0.02. This confirms that the thermal conduction along the magnetic field is very efficient in the solar corona. The thermal conduction coefficient is measured from the phase lag between the temperature and density, and is shown to be compatible with Spitzer conductivity.
Carrera, Juan J.; Chu, Shih-I; Tong, Xiao-Min
2005-06-21T23:59:59.000Z
We present an ab initio nonpertubative investigation of the mechanisms responsible for the production of very-high-order harmonic generation (HHG) from Ar atoms and Ar+ ions by means of the self-interaction-free time-dependent density...
Chu, Shih-I; Telnov, Dmitry A.
2009-04-03T23:59:59.000Z
We present a time-dependent density-functional-theory approach for the ab initio study of the effect of correlated multielectron responses on the multiphoton ionization (MPI) of diatomic molecules N2, O2, and F2 in intense ...
Seismic of the territory Toktogul reservoir, Kyrgyzstan
Kamchybekov, Murataly; Yegemberdiyeva, Kuliya [Institute of Seismology of National Academy Science Kyrgyz Republic (Kyrgyzstan)
2008-07-08T23:59:59.000Z
In connection with that this seismic in the territory of Naryn cascade maybe has its peculiarity in cludding in the territory Toktogul reservoir before of the building of the Toktogul dam, during of the building and after accordingly was decided to consider the seismic in this space of times. The arm of the present paper is estimation seismic of the territory Toktogul reservoir for different times: before of the building of the Toktogul dam (1960-1973), during its filling (1974-1980) and since start it's of the uninterruptedly exploitation to present time (1981-2006). The territory in that located the cascade of Naryn River is considered that seismic active in the Central part of the Tien Shan. The tectonic motions are become here intensity. The presence of the large faults is complicating significantly the seismic situation of the study region.
SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION
Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin
2003-04-01T23:59:59.000Z
In this report we will show some new Q related seismic attributes on the Burlington-Seitel data set. One example will be called Energy Absorption Attribute (EAA) and is based on a spectral analysis. The EAA algorithm is designed to detect a sudden increase in the rate of exponential decay in the relatively higher frequency portion of the spectrum. In addition we will show results from a hybrid attribute that combines attenuation with relative acoustic impedance to give a better indication of commercial gas saturation.
Newberry EGS Seismic Velocity Model
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Templeton, Dennise
We use ambient noise correlation (ANC) to create a detailed image of the subsurface seismic velocity at the Newberry EGS site down to 5 km. We collected continuous data for the 22 stations in the Newberry network, together with 12 additional stations from the nearby CC, UO and UW networks. The data were instrument corrected, whitened and converted to single bit traces before cross correlation according to the methodology in Benson (2007). There are 231 unique paths connecting the 22 stations of the Newberry network. The additional networks extended that to 402 unique paths crossing beneath the Newberry site.
Newberry EGS Seismic Velocity Model
Templeton, Dennise
2013-10-01T23:59:59.000Z
We use ambient noise correlation (ANC) to create a detailed image of the subsurface seismic velocity at the Newberry EGS site down to 5 km. We collected continuous data for the 22 stations in the Newberry network, together with 12 additional stations from the nearby CC, UO and UW networks. The data were instrument corrected, whitened and converted to single bit traces before cross correlation according to the methodology in Benson (2007). There are 231 unique paths connecting the 22 stations of the Newberry network. The additional networks extended that to 402 unique paths crossing beneath the Newberry site.
Yoshimura, K.; Sakashita, S. [Radioactive Waste Management Funding and Research Center, Tokyo (Japan); Ando, K.; Bruines, P. [Civil Engineering Technical Division, Obayashi Corporation, Tokyo (Japan); Blechschmidt, I. [National Cooperative for the Disposal of Radioactive Waste, Wettingen (Switzerland); Kickmaier, W. [University of Applied Sciences, Northern Switzerland, Brugg (Switzerland); Onishi, Y.; Nishiyama, S. [Graduate School of Engineering, Kyoto University, Kyoto (Japan)
2007-07-01T23:59:59.000Z
The objective of this study is to establish a technique to obtain hydraulic conductivity distribution in granite rock masses using seismic tomography. We apply the characteristic that elastic wave velocity disperses in fully saturated porous media on frequency and this velocity dispersion is governed by the hydraulic conductivity - this characteristic has been confirmed in laboratory experiments. The feasibility and design of the field experiment was demonstrated in a first step with numerical simulations. In a second step we applied the technique to the fractured granite at the Grimsel Test Site in Switzerland. The emphasis of the field campaign was on the evaluation of the range of applicability of this technique. The field campaign was structured in three steps, each one corresponding to a larger spatial scale. First, the seismic tomography was applied to a small area - the two boreholes were located at a distance of 1.5 m. In the following step, we selected a larger area, in which the distance of the boreholes amounts to 10 m and the field corresponds to a more complex geology. Finally we applied the testing to a field where the borehole distance was of the order of 75 m. We also drilled a borehole to confirm hydraulic characteristic and reviewed hydraulic model in the 1.5 m cross-hole location area. The results from the field campaign are presented and their application to the various fields are discussed and evaluated. (authors)
Self-guided quantum tomography
Christopher Ferrie
2014-11-10T23:59:59.000Z
We introduce a self-learning tomographic technique in which the experiment guides itself to an estimate of its own state. Self-guided quantum tomography (SGQT) uses measurements to directly test hypotheses in an iterative algorithm which converges to the true state. We demonstrate through simulation on many qubits that SGQT is a more efficient and robust alternative to the usual paradigm of taking a large amount of informationally complete data and solving the inverse problem of post-processed state estimation.
Fault properties from seismic Q M. H. Worthington1
Cambridge, University of
®cally concerned with the analysis and interpretation of some vertical seismic pro®ling (VSP) data from a holeFault properties from seismic Q M. H. Worthington1 and J. A. Hudson2 1 T. H. Huxley School of seismic Q from a North Sea vertical seismic pro®ling data set has revealed an abrupt increase
Interactive Seismic Interpretation with Piecewise Global Energy Minimization
Interactive Seismic Interpretation with Piecewise Global Energy Minimization Thomas H¨ollt King and horizons. However, seismic interpretation and horizon tracing is a difficult and error-prone task, often starts with creating a model of the subsurface structures, the seismic interpretation. A seismic
SEISMIC GEOTECHNICAL INVESTIGATIONS FOR BRIDGES M. K. Yegian
Yegian, Mishac
1 SEISMIC GEOTECHNICAL INVESTIGATIONS FOR BRIDGES M. K. Yegian 1 , F. ASCE ABSTRACT Seismic and impedance calculations; assessment of foundation performance under the design seismic loads; and in the case of existing bridges, if deemed necessary, design of seismic retrofit measures. The outcomes of each
Seismic response of fractures and induced anisotropy in poroelastic media
Santos, Juan
Seismic response of fractures and induced anisotropy in poroelastic media Juan E. Santos stituto) and R. MartÂ´inez Corredor (UNLP) Department of Mathematics, University of Calgary, October 2014 Seismic variations of velocity and attenuation of seismic waves. Seismic response of fractures and induced anisotropy
SERIES workshopSERIES workshop Role of research infrastructures in seismic rehabilitationRole of research infrastructures in seismic rehabilitationRole of research infrastructures in seismic rehabilitationRole of research infrastructures in seismic rehabilitation Istanbul, 8Istanbul, 8--9 February 20129
Seismic transducer modeling using ABAQUS
Stephen R. Novascone
2004-05-01T23:59:59.000Z
A seismic transducer, known as an orbital vibrator, consists of a rotating imbalance driven by an electric motor. When suspended in a liquid-filled wellbore, vibrations of the device are coupled to the surrounding geologic media. In this mode, an orbital vibrator can be used as an efficient rotating dipole source for seismic imaging. Alternately, the motion of an orbital vibrator is affected by the physical properties of the surrounding media. From this point of view, an orbital vibrator can be used as a stand-alone sensor. The reaction to the surroundings can be sensed and recorded by geophones inside the orbital vibrator. These reactions are a function of the media’s physical properties such as modulus, damping, and density, thereby identifying the rock type. This presentation shows how the orbital vibrator and surroundings were modeled with an ABAQUS acoustic FEM. The FEM is found to compare favorably with theoretical predictions. A 2D FEM and analytical model are compared to an experimental data set. Each model compares favorably with the data set.
T'Jampens, Stephane; /Orsay
2006-09-18T23:59:59.000Z
This thesis presents the full-angular time-dependent analysis of the vector-vector channel B{sub d}{sup 0} {yields} J/{psi}(K{sub S}{sup 0}{pi}{sup 0})*{sup 0}. After a review of the CP violation in the B meson system, the phenomenology of the charmonium-K*(892) channels is exposed. The method for the measurement of the transversity amplitudes of the B {yields} J/{psi}K*(892), based on a pseudo-likelihood method, is then exposed. The results from a 81.9 fb{sup -1} of collected data by the BABAR detector at the {Upsilon}(4S) resonance peak are |A{sub 0}|{sup 2} = 0.565 {+-} 0.011 {+-} 0.004, |A{sub {parallel}}|{sup 2} = 0.206 {+-} 0.016 {+-} 0.007, |A{sub {perpendicular}}|{sup 2} = 0.228 {+-} 0.016 {+-} 0.007, {delta}{sub {parallel}} = -2.766 {+-} 0.105 {+-} 0.040 and {delta}{sub {perpendicular}} = 2.935 {+-} 0.067 {+-} 0.040. Note that ({delta}{sub {parallel}}, {delta}{sub {perpendicular}}) {yields} (-{delta}{sub {parallel}}, {pi} - {delta}{sub {perpendicular}}) is also a solution. The strong phases {delta}{sub {parallel}} and {delta}{sub {perpendicular}} are at {approx}> 3{sigma} from {+-}{pi}, signing the presence of final state interactions and the breakdown of the factorization hypothesis. The forward-backward analysis of the K{pi} mass spectrum revealed the presence of a coherent S-wave interfering with the K*(892). It is the first evidence of this wave in the K{pi} system coming from a B meson. The particularity of the B{sub d}{sup 0} {yields} J/{psi}(K{sub S}{sup 0}{pi}{sup 0})*{sup 0} channel is to have a time-dependent but also an angular distribution which allows to measure sin 2{beta} but also cos2{beta}. The results from an unbinned maximum likelihood fit are sin 2{beta} = -0.10 {+-} 0.57 {+-} 0.14 and cos 2{beta} = 3.32{sub -0.96}{sup +0.76} {+-} 0.27 with the transversity amplitudes fixed to the values given above. The other solution for the strong phases flips the sign of cos 2{beta}. Theoretical considerations based on the s-quark helicity conservation favor the choice of the strong phases given above, leading to a positive sign for cos 2{beta}. The sign of cos 2{beta} is the one predicted by the Standard Model.
ten Brink, Uri S.
Seismic hazard from the Hispaniola subduction zone: Correction to "Historical perspective on seismic hazard to Hispaniola and the northeast Caribbean region" Uri S. ten Brink, William H. Bakun), Seismic hazard from the Hispaniola subduction zone: Correction to "Historical perspective on seismic
Paris-Sud XI, UniversitÃ© de
Seismic Wave Propagation in Alluvial Basins and Influence of Site-City Interaction 1 Seismic Wave of alluvial deposits have a major influence on seismic wave propagation and amplification. However influence seismic wave propagation near the free surface. In this paper, the influence of surface structures
Seismic margins and calibration of piping systems
Shieh, L.C.; Tsai, N.C.; Yang, M.S.; Wong, W.L.
1985-01-01T23:59:59.000Z
The Seismic Safety Margins Research Program (SSMRP) is a US Nuclear Regulatory Commission-funded, multiyear program conducted by Lawrence Livermore National Laboratory (LLNL). Its objective is to develop a complete, fully coupled analysis procedure for estimating the risk of earthquake-induced radioactive release from a commercial nuclear power plant and to determine major contributors to the state-of-the-art seismic and systems analysis process and explicitly includes the uncertainties in such a process. The results will be used to improve seismic licensing requirements for nuclear power plants. In Phase I of SSMRP, the overall seismic risk assessment methodology was developed and assembled. The application of this methodology to the seismic PRA (Probabilistic Risk Assessment) at the Zion Nuclear Power Plant has been documented. This report documents the method deriving response factors. The response factors, which relate design calculated responses to best estimate values, were used in the seismic response determination of piping systems for a simplified seismic probablistic risk assessment. 13 references, 31 figures, 25 tables.
Seismicity parameters preceding moderate to major earthquakes
von Seggern, D.; Alexander, S.S.; Baag, C.
1981-10-10T23:59:59.000Z
Seismic events reported in the bulletins of the two large arrays, LASA and NORSAR, were merged with those from the NEIS bulletin for the period 1970-1977. Using a lower cutoff of m/sub b/ = 5.8, 510 'main shocks' within the P range of LASA or NORSAR were selected for this period; and various seismicity trends prior to them were investigated. A search for definite foreshocks, based on a significantly short time delay to the main shock, revealed that the true rate of foreshock occurrence was less than 20%. Foreshocks are almost exclusively associated with shallow (h<100 km) main shocks. Averaging shows that the seismicity level around the main shock increases somewhat for 10 days before main shocks; this feature peaks in the last 3--4 hours prior to the main shocks. Again by averaging, the seismicity about main shocks is shown to tend with time toward the main shock as its origin time is approached, but the average effect is small (approx.10% change).Using a new variable to track the departures from both spatial and temporal randomness, the Poisson-like behavior of deeper seismicity (>100 km) was demonstrated. For shallow events (<100 km) this variable reveals numerous instances of clustering and spatial-temporal seismic gaps, with little tendency toward a uniformity of behavior prior to main shocks. A statistical test of the validity of seismic precursors was performed for approximately 90 main shock regions which had sufficient seismicity. Using a five-variable vector, (interevent time, interevent distance, magnitude, epicentral distance to main shock, and depth difference relative to main shock) for each event in a 'precursory' time window of 500 days before the main shock and for each event in a 'normal' time window of 500 days before that, the null hypothesis of equal vector means between the two groups was tested. At 90% confidence levels, less than 30% of the main shock regions were thus found to exhibit precursory seismicity changes.
Seismic Pulses Derivation from the Study of Source Signature Characteristics
Rahman, Syed Mustafizur; Nawawi, M. N. Mohd.; Saad, Rosli [School of Physics, Univeristi Sains Malaysia, 11800 USM, Pulau Pinang (Malaysia)
2010-07-07T23:59:59.000Z
This paper deals with a deterministic technique for the derivation of seismic pulses by the study of source characteristics. The spectral characteristics of the directly or the nearest detected seismic signal is analyzed and considered as the principle source signature. Using this signature seismic pulses are derived with accurate time position in the seismic traces. The technique is applied on both synthetic and field refraction seismic traces. In both cases it has estimated that the accurate time shifts along with amplitude coefficients.
THERMOACOUSTIC TOMOGRAPHY ARISING IN BRAIN IMAGING ...
2011-02-21T23:59:59.000Z
In this paper, we study the mathematical model of thermoacoustic and photoacoustic tomography for a sound speed that jumps across a smooth closed surface.
Imaging and sensing based on muon tomography
Morris, Christopher L; Saunders, Alexander; Sossong, Michael James; Schultz, Larry Joe; Green, J. Andrew; Borozdin, Konstantin N; Hengartner, Nicolas W; Smith, Richard A; Colthart, James M; Klugh, David C; Scoggins, Gary E; Vineyard, David C
2012-10-16T23:59:59.000Z
Techniques, apparatus and systems for detecting particles such as muons for imaging applications. Subtraction techniques are described to enhance the processing of the muon tomography data.
Algorithm for Rapid Tomography of Gas Concentrations
Price, P.N.
2008-01-01T23:59:59.000Z
sensing and computed tomography in industrial hygiene.American Industrial Hygiene Association Journal 51: 1165-indoor air. American Industrial Hygiene Association Journal
Metal Artifact Reduction in Computed Tomography /
Karimi, Seemeen
2014-01-01T23:59:59.000Z
Monoenergetic imaging of dual-energy CT reduces artifactsartifact reduction by dual energy computed tomography usingimage re- construction for dual energy X-ray transmission
Measurements of time-dependent CP violation in B{sup 0}{yields}{psi}(2S)K{sub S}{sup 0} decays
Sahoo, H.; Browder, T. E.; Li, J.; Varner, G. [University of Hawaii, Honolulu, Hawaii 96822 (United States); Trabelsi, K.; Adachi, I.; Haba, J.; Hazumi, M.; Itoh, R.; Katayama, N.; Kichimi, H.; Krokovny, P.; Nakao, M.; Nishida, S.; Sakai, Y.; Sumisawa, K.; Takasaki, F.; Tanaka, M.; Uehara, S.; Uno, S. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan)] (and others)
2008-05-01T23:59:59.000Z
We report improved measurements of time-dependent CP violation parameters for B{sup 0}(B{sup 0}){yields}{psi}(2S)K{sub S}{sup 0}. This analysis is based on a data sample of 657x10{sup 6} BB pairs collected at the {upsilon}(4S) resonance with the Belle detector at the KEKB energy-asymmetric e{sup +}e{sup -} collider. We fully reconstruct one neutral B meson in the {psi}(2S)K{sub S}{sup 0} CP-eigenstate decay channel, and the flavor of the accompanying B meson is identified to be either B{sup 0} or B{sup 0} from its decay products. CP violation parameters are obtained from the asymmetries in the distributions of the proper-time intervals between the two B decays: S{sub {psi}}{sub (2S)K{sub S{sup 0}}=+0.72{+-}0.09(stat){+-}0.03(syst), A{sub {psi}}{sub (2S)}K{sub S{sup 0}}=+0.04{+-}0.07(stat){+-}0.05(syst). These results are in agreement with results from measurements of B{sup 0}{yields}J/{psi}K{sup 0}.
Suzuki, Yasumitsu; Maitra, Neepa T; Gross, E K U
2015-01-01T23:59:59.000Z
We study the exact nuclear time-dependent potential energy surface (TDPES) for laser-induced electron localization with a view to eventually developing a mixed quantum-classical dynamics method for strong-field processes. The TDPES is defined within the framework of the exact factorization [A. Abedi, N. T. Maitra, and E. K. U. Gross, Phys. Rev. Lett. 105, 123002 (2010)] and contains the exact effect of the couplings to the electronic subsystem and to any external fields within a scalar potential. We compare its features with those of the quasistatic potential energy surfaces (QSPES) often used to analyse strong-field processes. We show that the gauge-independent component of the TDPES has a mean-field-like character very close to the density-weighted average of the QSPESs. Oscillations in this component are smoothened out by the gauge-dependent component, and both components are needed to yield the correct force on the nuclei. Once the localization begins to set in, the gradient of the exact TDPES tracks one ...
Zhao, Bin [Center for Theoretical and Computational Chemistry and State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)] [Center for Theoretical and Computational Chemistry and State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Zhang, Dong-H.; Sun, Zhigang, E-mail: zsun@dicp.ac.cn [Center for Theoretical and Computational Chemistry and State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China) [Center for Theoretical and Computational Chemistry and State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Lee, Soo-Y. [Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore)] [Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore)
2014-04-28T23:59:59.000Z
A framework for quantum state-to-state integral and differential cross sections of triatomic reactive scattering using the Multi-Configuration Time-Dependent Hartree (MCTDH) method is introduced, where a modified version of the Heidelberg MCTDH package is applied. Parity of the system is adopted using only non-negative helicity quantum numbers, which reduces the basis set size of the single particle functions in angular degree of freedom almost by half. The initial wave packet is constructed in the space-fixed frame, which can accurately account for the centrifugal potential. By using the reactant-coordinate-based method, the product state-resolved information can be accurately extracted. Test calculations are presented for the H + H{sub 2} reactive scattering. This work demonstrates the capability of the MCTDH method for extracting accurate state-to-state integral and differential cross sections. As an efficient scheme for high-dimensional problems, the MCTDH method may be promising for the study of product state-resolved cross sections for polyatomic reactive systems.
Measurement of the Time-Dependent CP-Violating Asymmetry in $B^0 \\to K^{0}_s\\pi^0\\gamma$ Decays
Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Tisserand, V.; Zghiche, A.; /Annecy, LAPP; Grauges, E.; /Barcelona, IFAE; Palano, A.; Pappagallo, M.; Pompili, A.; /Bari U. /INFN, Bari; Chen, J.C.; Qi, N.D.; Rong, G.; Wang, P.; Zhu, Y.S.; /Beijing, Inst. High Energy Phys.; Eigen, G.; Ofte, I.; Stugu, B. /Bergen U. /LBL, Berkeley /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San
2005-07-12T23:59:59.000Z
We present a measurement of the time-dependent CP-violating asymmetry in B{sup 0} {yields} K*{sup 0}{gamma} decays with K*{sup 0} {yields} K{sub S}{sup 0}{pi}{sup 0} based on 232 million {Upsilon}(4S) {yields} B{bar B} decays collected with the BABAR detector at the PEP-II asymmetric-energy e{sup +}e{sup -} collider at SLAC. In a sample containing 157 {+-} 16 signal decays, we measure S{sub K*{sup 0}{gamma}} = -0.21 {+-} 0.40 {+-} 0.05 and C{sub K*{sup 0}{gamma}} = -0.40 {+-} 0.23 {+-} 0.03, where the first error is statistical and the second systematic. We also explore B{sup 0} {yields} K{sub S}{sup 0}{pi}{sup 0}{gamma} decays with 1.1 < m{sub K{sub S}{sup 0}{pi}{sup 0}} < 1.8 GeV/c{sup 2} and find 59 {+-} 13 signal events with S{sub K{sub S}{sup 0}{pi}{sup 0}{gamma}} = 0.9 {+-} 1.0 {+-} 0.2 and C{sub K{sub S}{sup 0}{pi}{sup 0}{gamma}} = -1.0 {+-} 0.5 {+-} 0.2.
Dutta, Tirthankar
2011-01-01T23:59:59.000Z
We investigate the effect of static electron-phonon coupling, on real-time dynamics of spin and charge transport in $\\pi$-conjugated polyene chains. The polyene chain is modeled by the Pariser-Parr-Pople Hamiltonian with dimerized nearest-neighbor parameter $t_{0}(1+\\delta)$ for short bonds and $t_{0}(1-\\delta)$ for long bonds, and long-range electron-electron interactions. We follow the time evolution of the spin and charge using time-dependent DMRG technique, when a hole is injected at one end of the chain in its ground state. We find that spin and charge dynamics followed through spin and charge velocities, depend both on chain length and extent of dimerization, $\\delta$. Analysis of the results requires focusing on physical quantities such as average spin and charge polarizations, particularly in the large dimerization limit. In the dimerization range 0.0 $\\le$ $\\delta$ $\\le$ 0.15, spin-charge dynamics is found to have a well defined behavior, with spin-charge separation (measured as the ratio of charge v...
Aubert, Bernard; Bona, M.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; /Annecy, LAPP; Garra Tico, J.; Grauges, E.; /Barcelona U., ECM; Lopez, L.; Palano, Antimo; Pappagallo, M.; /Bari U. /INFN, Bari; Eigen, G.; Stugu, Bjarne; Sun, L.; /Bergen U.; Abrams, G.S.; Battaglia, M.; Brown, D.N.; Cahn, Robert N.; Jacobsen, R.G.; /LBL, Berkeley /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /Ferrara U. /INFN, Ferrara /Frascati /Genoa U. /INFN, Genoa /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa U. /Iowa State U. /Johns Hopkins U. /Karlsruhe U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /Consorzio Milano Ricerche /INFN, Milan /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /Napoli Seconda U. /INFN, Naples /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /Padua U. /INFN, Padua /Paris U., VI-VII /Pennsylvania U. /Perugia U. /INFN, Perugia /INFN, Pisa /Princeton U. /Banca di Roma /Frascati /Rostock U. /Rutherford /DSM, DAPNIA, Saclay /South Carolina U. /SLAC /Stanford U., Phys. Dept. /SUNY, Albany /Tennessee U. /Texas U. /Texas U., Dallas /Turin U. /INFN, Turin /Trieste U. /INFN, Trieste /Valencia U., IFIC /Victoria U. /Warwick U. /Wisconsin U., Madison
2008-08-04T23:59:59.000Z
The authors present evidence of D{sup 0}-{bar D}{sup 0} mixing using a time-dependent amplitude analysis of the decay D{sup 0} {yields} K{sup +}{pi}{sup -}{pi}{sup 0} in a data sample of 384 fb{sup -1} collected with the BABAR detector at the PEP-II e{sup +}e{sup -} collider at SLAC. Assuming CP conservation, they measure the mixing parameters x{prime}{sub K{pi}{pi}{sup 0}} = [2.61{sub -0.68}{sup +0.57}(stat.) {+-} 0.39(syst.)]%, y{prime}{sub K{pi}{pi}{sup 0}} = [-0.06{sub -0.64}{sup +0.55}(stat.) {+-} 0.34(syst.)]%. The confidence level for the data to be consistent with the no-mixing hypothesis is 0.1%, including systematic uncertainties. This result is inconsistent with the no-mixing hypothesis with a significance of 3.2 standard deviations. They find no evidence of CP violation in mixing.
Nakata, Ayako; Tsuneda, Takao; Hirao, Kimihiko [Advanced Science Institute, RIKEN, Wako 351-0198 (Japan); CREST, Japan Science and Technology Agency, Kawaguchi 332-0012 (Japan)
2011-12-14T23:59:59.000Z
A long-range corrected (LC) time-dependent density functional theory (TDDFT) incorporating relativistic effects with spin-orbit couplings is presented. The relativistic effects are based on the two-component zeroth-order regular approximation Hamiltonian. Before calculating the electronic excitations, we calculated the ionization potentials (IPs) of alkaline metal, alkaline-earth metal, group 12 transition metal, and rare gas atoms as the minus orbital (spinor) energies on the basis of Koopmans' theorem. We found that both long-range exchange and spin-orbit coupling effects are required to obtain Koopmans' IPs, i.e., the orbital (spinor) energies, quantitatively in DFT calculations even for first-row transition metals and systems containing large short-range exchange effects. We then calculated the valence excitations of group 12 transition metal atoms and the Rydberg excitations of rare gas atoms using spin-orbit relativistic LC-TDDFT. We found that the long-range exchange and spin-orbit coupling effects significantly contribute to the electronic spectra of even light atoms if the atoms have low-lying excitations between orbital spinors of quite different electron distributions.
Baiardi, Alberto; Barone, Vincenzo [Scuola Normale Superiore, piazza dei Cavalieri 7, I-56126 Pisa (Italy); Bloino, Julien [Scuola Normale Superiore, piazza dei Cavalieri 7, I-56126 Pisa (Italy); Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti OrganoMetallici (ICCOM-CNR), UOS di Pisa, Area della Ricerca CNR, Via G. Moruzzi 1, I-56124 Pisa (Italy)
2014-09-21T23:59:59.000Z
We present a new formulation of the time-dependent theory of Resonance-Raman spectroscopy (TD-RR). Particular attention has been devoted to the generality of the framework and to the possibility of including different effects (Duschinsky mixing, Herzberg-Teller contributions). Furthermore, the effects of different harmonic models for the intermediate electronic state are also investigated. Thanks to the implementation of the TD-RR procedure within a general-purpose quantum-chemistry program, both solvation and leading anharmonicity effects have been included in an effective way. The reliability and stability of our TD-RR implementation are validated against our previously proposed and well-tested time-independent procedure. Practical applications are illustrated with some closed- and open-shell medium-size molecules (anthracene, phenoxyl radical, benzyl radical) and the simulated spectra are compared to the experimental results. More complex and larger systems, not limited to organic compounds, can be also studied, as shown for the case of Tris(bipyridine)ruthenium(II) chloride.
Silverstein, Daniel W.; Govind, Niranjan; van Dam, Hubertus JJ; Jensen, Lasse
2013-12-10T23:59:59.000Z
A parallel implementation of analytical time-dependent density functional theory gra- dients is presented for the quantum chemistry program NWChem. The implementation is based on the Lagrangian approach developed by Furche and Ahlrichs. To validate our implementation, we first calculate the Stokes shifts for a range of organic dye molecules using a diverse set of exchange-correlation functionals (traditional density functionals, global hybrids and range-separated hybrids) followed by simulations of the one-photon absorption and resonance Raman scattering spectrum of the phenoxyl radical, the well-studied dye molecule rhodamine 6G and a molecular host-guest complex (TTF?CBPQT4+). The study of organic dye molecules illustrates that B3LYP and CAM-B3LYP generally give the best agreement with experimentally determined Stokes shifts unless the excited state is a charge transfer state. Absorption, resonance Raman, and fluorescence simulations for the phenoxyl radical indicate that explicit solvation may be required for accurate characterization. For the host-guest complex and rhodamine 6G, it is demonstrated that absorption spectra can be simulated in good agreement with experiment for most exchange-correlation functionals. However, because one-photon absorption spectra generally lack well-resolved vibrational features, resonance Raman simulations are necessary to evaluate the accuracy of the exchange-correlation functional for describing a potential energy surface.
Seismic Structure of Shallow Lithosphere at Locations of Distinctive Seafloor Spreading /
Henig, Ashlee Shae
2013-01-01T23:59:59.000Z
Lithologic interpretations of our seismic results are guidedx and z. Interpretation of the 2D seismic velocity models (to aid in interpretation of rock type from seismic velocity.
Assessment of seismic margin calculation methods
Kennedy, R.P.; Murray, R.C.; Ravindra, M.K.; Reed, J.W.; Stevenson, J.D.
1989-03-01T23:59:59.000Z
Seismic margin review of nuclear power plants requires that the High Confidence of Low Probability of Failure (HCLPF) capacity be calculated for certain components. The candidate methods for calculating the HCLPF capacity as recommended by the Expert Panel on Quantification of Seismic Margins are the Conservative Deterministic Failure Margin (CDFM) method and the Fragility Analysis (FA) method. The present study evaluated these two methods using some representative components in order to provide further guidance in conducting seismic margin reviews. It is concluded that either of the two methods could be used for calculating HCLPF capacities. 21 refs., 9 figs., 6 tabs.
On reconstruction and time reversal in thermoacoustic tomography in acoustically
Kuchment, Peter
On reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous of recent approaches to the reconstruction in thermoacoustic/photoacoustic tomography: backprojection of the problem of sound speed recovery is also provided. Keywords: Tomography, thermoacoustic, wave equation. AMS
Two-dimensional ultrasonic computed tomography of growing bones.
Paris-Sud XI, Université de
Two-dimensional ultrasonic computed tomography of growing bones. P. Lasaygues, E. Franceschini, R: Ultrasonic Computed Tomography, Bone imaging, Born approximation, iterative distorted method I. INTRODUCTION imaging process, using ultrasonic computed tomography. Although this method is known to provide
Computational confocal tomography for simultaneous reconstruction of objects, occlusions,
Fainman, Yeshaiahu
Computational confocal tomography for simultaneous reconstruction of objects, occlusions computationally intense and novel reconstruction methods that we called "compu- tational confocal tomography." The key to computed tomography is the collection of projections of the data over a range of angles
CLINICAL RESEARCH Clinical Trials Coronary Computed Tomography Angiography
CLINICAL RESEARCH Clinical Trials Coronary Computed Tomography Angiography for Early Triage computed tomography angiography (CTA) in patients with acute chest pain. Background Triage of chest pain disease (CAD), 31% had nonobstructive disease, and 19% had inconclusive or positive computed tomography
Dynamic Computed Tomography, an algebraic reconstruction method with
Promayon, Emmanuel
Dynamic Computed Tomography, an algebraic reconstruction method with deformation compensation Sofia . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2 Computed Tomography . . . . . . . . . . . . . . . . . . . . . . 8 1.3 Dynamic Computed . . . . . . . . . . . . . . . . . . . . . 9 2 Basic tools for Computed Tomography 10 2.1 The Radon Transform
2015-01-01T23:59:59.000Z
multidetector computed tomography angiography. Transplantof Radiology CT: computed tomography IF: incidental findings
Utilization of Computed Tomography Angiography in the Evaluation of Acute Pulmonary Embolus
Constantino, Mary; Randall, Geneva; Gosselin, Marc; Vegas, Carl; Brandt, Marissa; Spinning, Kristopher
2007-01-01T23:59:59.000Z
providers. Utilization of Computed Tomography Angiography inappropriate use of computed tomography angiography (CTA) in
SMACS. Probabilistic Seismic Analysis System
Johnson, J.J.; Maslenikov, O.R.; Tiong, L.W.; Mraz, M.J. [EQE Incorporated, San Ramon, CA (United States); Bumpus, S.; Gerhard, M.A. [Lawrence Livermore National Lab., CA (United States)
1992-01-14T23:59:59.000Z
The SMACS (Seismic Methodology Analysis Chain with Statistics) system of computer programs is one of the major computational tools of the U.S. NRC Seismic Safety Margins Research Program (SSMRP). SMACS is comprised of the core program SMAX, which performs the SSI response analyses, five preprocessing programs, and two postprocessors. The preprocessing programs include: GLAY and CLAN, which generate the nominal impedance matrices and wave scattering vectors for surface-founded structures; INSSIN, which projects the dynamic properties of structures to the foundation in the form of modal participation factors and mass matrices; SAPPAC, which projects the dynamic and pseudostatic properties of multiply-supported piping systems to the support locations, and LNGEN, which can be used to generate the multiplication factors to be applied to the nominal soil, structural, and subsystem properties for each of the response calculations in accounting for random variations of these properties. The postprocessors are: PRESTO, which performs statistical operations on the raw data from the response vectors that SMAX produces to calculate best fit lognormal distributions for each response location, and CHANGO, which manipulates the data produced by PRESTO to produce other results of interest to the user. Also included is the computer program SAP4 (a modified version of the University of California, Berkeley SAPIV program), a general linear structural analysis program used for eigenvalue extractions and pseudostatic mode calculations of the models of major structures and subsystems. SAP4 is used to prepare input to the INSSIN and SAPPAC preprocessing programs. The GLAY and CLAN programs were originally developed by J.E. Luco (UCSD) and H.L. Wong (USC).
ADAPTIVE AND ROBUST TECHNIQUES (ART) FOR THERMOACOUSTIC TOMOGRAPHY
Xie, Yao
ADAPTIVE AND ROBUST TECHNIQUES (ART) FOR THERMOACOUSTIC TOMOGRAPHY By YAO XIE A DISSERTATION.1 Thermoacoustic Tomography . . . . . . . . . . . . . . . . . . . . . 1 1.2 Image Reconstruction Algorithms for TAT
HEAVY-ION RADIOGRAPHY AND HEAVY-ION COMPUTED TOMOGRAPHY
Fabrikant, J.I.
2010-01-01T23:59:59.000Z
RADIOGRAPHY AND HEAVY-ION COMPUTED TOMOGRAPHY 1,2 Jacob I .RADIOGRAPHY AND HEAVY-ION COMPUTED TOMOGRAPHY J I Fabrikant,
Using X-Ray Computed Tomography in Pore Structure Characterization...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Using X-Ray Computed Tomography in Pore Structure Characterization for a Berea Sandstone: Resolution Effect. Using X-Ray Computed Tomography in Pore Structure Characterization for...
4-D seismic technologies: intersurvey calibration
Kelley, Jeffrey Paul
1998-01-01T23:59:59.000Z
seismic data sets at different times in the production life of a reservoir, calibrating, then comparing the data sets and interpreting intersurvey differences in terms of fluid change or movement. In practice 4-D (time-lapse) analysis is typically...
4-D seismic technologies: intersurvey calibration
Kelley, Jeffrey Paul
1998-01-01T23:59:59.000Z
seismic data sets at different times in the production life of a reservoir, calibrating, then comparing the data sets and interpreting intersurvey differences in terms of fluid change or movement. In practice 4-D (time-lapse) ...
Non-physical energy in seismic interferometry
King, Simon James
2012-06-25T23:59:59.000Z
Non-physical arrivals produced by seismic interferometry, the process whereby Green’s functions are synthesized between two points by cross-correlation, crossconvolution or deconvolution, are often considered to provide ...
Study of induced seismicity for reservoir characterization
Li, Junlun, Ph. D. Massachusetts Institute of Technology
2013-01-01T23:59:59.000Z
The main goal of the thesis is to characterize the attributes of conventional and unconventional reservoirs through passive seismicity. The dissertation is comprised of the development and applications of three new methods, ...
Seismic assessment strategies for masonry structures
DeJong, Matthew J. (Matthew Justin)
2009-01-01T23:59:59.000Z
Masonry structures are vulnerable to earthquakes, but their seismic assessment remains a challenge. This dissertation develops and improves several strategies to better understand the behavior of masonry structures under ...
Seismic retrofitting of deficient Canadian buildings
Gemme, Marie-Claude
2009-01-01T23:59:59.000Z
Many developed countries such as Canada and the United States are facing a significant infrastructure crisis. Most of their facilities have been built with little consideration of seismic design and durability issues. As ...
Reservoir fracture characterizations from seismic scattered waves
Fang, Xinding
2012-01-01T23:59:59.000Z
The measurements of fracture parameters, such as fracture orientation, fracture density and fracture compliance, in a reservoir is very important for field development and exploration. Traditional seismic methods for ...
Bayesian estimation of resistivities from seismic velocities
Werthmüller, Dieter
2014-06-30T23:59:59.000Z
I address the problem of finding a background model for the estimation of resistivities in the earth from controlled-source electromagnetic (CSEM) data by using seismic data and well logs as constraints. Estimation of ...
Thermoacoustic Tomography in Elastic Media
Justin Tittelfitz
2011-10-11T23:59:59.000Z
We investigate the problem of recovering the initial displacement f for a solution u of a linear, isotropic, non-homogeneous elastic wave equation, given measurements of u on [0,T] x \\partial \\Omega, where \\Omega\\subset\\R^3 is some bounded domain containing the support of f. For the acoustic wave equation, this problem is known as thermoacoustic tomography (TAT), and has been well-studied; for the elastic wave equation, the situation is somewhat more subtle, and we give sufficient conditions on the Lam\\'e parameters to ensure that recovery is possible.
Fourier Transform Quantum State Tomography
Mohammadreza Mohammadi; Agata M. Branczyk; Daniel F. V. James
2013-01-17T23:59:59.000Z
We propose a technique for performing quantum state tomography of photonic polarization-encoded multi-qubit states. Our method uses a single rotating wave plate, a polarizing beam splitter and two photon-counting detectors per photon mode. As the wave plate rotates, the photon counters measure a pseudo-continuous signal which is then Fourier transformed. The density matrix of the state is reconstructed using the relationship between the Fourier coefficients of the signal and the Stokes' parameters that represent the state. The experimental complexity, i.e. different wave plate rotation frequencies, scales linearly with the number of qubits.
Decision analysis for seismic retrofit of structures
Williams, Ryan J.
2009-05-15T23:59:59.000Z
of earthquakes as deterministic statements that will not occur for a long time rather than as probabilistic statements about the events (May 2004). Due to the aforementioned concerns regarding the decreased likelihood of building damage from seismic activity...-05, American Society of Civil Engineers, Reston, VA. Bai, J.-W., Hueste, M. B., and Gardoni, P. (2007). ?A probabilistic framework for the assessment of structural losses due to seismic events.? J. Struct. Engrg., submitted for review. Bracci, J. M...
Seismic interpretation of the Wind River Mountains
Van Voorhis, David
1982-01-01T23:59:59.000Z
SEISMIC INTERPBETATICN OF THE BIND RIVER MOUNTAINS A Thesis DAVID VAN VOORHIS Submitted to the Graduate College of Texas ACM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE Auqust 'l982 Majcr Subject...: Geophysics SEISNIC INTERFRETATION OF THE HIND RIVER NOUNTAINS A Thes is by DAVID VAN VOORBIS Approved as to style and content by: (Chairman cf. Committee) (N em ber } m (Head of Department) August l 982 ABSTRACT Seismic Interpretation of the Wind...
Fluid driven torsional dipole seismic source
Hardee, Harry C. (Albuquerque, NM)
1991-01-01T23:59:59.000Z
A compressible fluid powered oscillating downhole seismic source device capable of periodically generating uncontaminated horizontally-propagated, shear waves is provided. A compressible fluid generated oscillation is created within the device which imparts an oscillation to a housing when the device is installed in a housing such as the cylinder off an existing downhole tool, thereby a torsional seismic source is established. Horizontal waves are transferred to the surrounding bore hole medium through downhole clamping.
Forecasting Seismic Signatures of Stellar Magnetic Activity
W. A. Dziembowski
2007-09-17T23:59:59.000Z
For the Sun, a tight correlation between various activity measures and oscillation frequencies is well documented. For other stars, we have abundant data on magnetic activity and its changes but not yet on its seismic signature. A prediction of the activity induced frequency changes in stars based on scaling the solar relations is presented. This seismic signature of the activity should be measurable in the data expected within few years.
Randy O. Laine; Douglas N. C. Lin; Shawfeng Dong
2008-04-07T23:59:59.000Z
The unanticipated discovery of the first close-in planet around 51 Peg has rekindled the notion that shortly after their formation outside the snow line, some planets may have migrated to the proximity of their host stars because of their tidal interaction with their nascent disks. If these planets indeed migrated to their present-day location, their survival would require a halting mechanism in the proximity of their host stars. Most T Tauri stars have strong magnetic fields which can clear out a cavity in the innermost regions of their circumstellar disks and impose magnetic induction on the nearby young planets. Here we consider the possibility that a magnetic coupling between young stars and planets could quench the planet's orbital evolution. After a brief discussion of the complexity of the full problem, we focus our discussion on evaluating the permeation and ohmic dissipation of the time dependent component of the stellar magnetic field in the planet's interior. Adopting a model first introduced by C. G. Campbell for interacting binary stars, we determine the modulation of the planetary response to the tilted magnetic field of a non-synchronously spinning star. We first compute the conductivity in the young planets, which indicates that the stellar field can penetrate well into the planet's envelope in a synodic period. For various orbital configurations, we show that the energy dissipation rate inside the planet is sufficient to induce short-period planets to inflate. This process results in mass loss via Roche lobe overflow and in the halting of the planet's orbital migration.
Milisavljevic, Dan; Margutti, Raffaella; Soderberg, Alicia M.; Chomiuk, Laura; Sanders, Nathan E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)] [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Pignata, Giuliano; Bufano, Filomena [Departamento de Ciencias Fisicas, Universidad Andres Bello, Avda. Republica 252, Santiago (Chile)] [Departamento de Ciencias Fisicas, Universidad Andres Bello, Avda. Republica 252, Santiago (Chile); Fesen, Robert A.; Parrent, Jerod T. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Lab, Hanover, NH 03755 (United States)] [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Lab, Hanover, NH 03755 (United States); Parker, Stuart [Parkdale Observatory, 225 Warren Road, RDl Oxford, Canterbury 7495 (New Zealand)] [Parkdale Observatory, 225 Warren Road, RDl Oxford, Canterbury 7495 (New Zealand); Mazzali, Paolo [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Strasse 1, D-85748 Garching (Germany)] [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Strasse 1, D-85748 Garching (Germany); Pian, Elena [Kavli Institute for Theoretical Physics, Kohn Hall, University of California at Santa Barbara, Santa Barbara, CA 93106-4030 (United States)] [Kavli Institute for Theoretical Physics, Kohn Hall, University of California at Santa Barbara, Santa Barbara, CA 93106-4030 (United States); Pickering, Timothy; Buckley, David A. H.; Crawford, Steven M.; Gulbis, Amanda A. S.; Hettlage, Christian [South African Astronomical Observatory, P.O. Box 9, Observatory 7935, Cape Town (South Africa)] [South African Astronomical Observatory, P.O. Box 9, Observatory 7935, Cape Town (South Africa); Hooper, Eric; Nordsieck, Kenneth H. [Department of Astronomy, University of Wisconsin, Madison, WI 53706 (United States)] [Department of Astronomy, University of Wisconsin, Madison, WI 53706 (United States); O'Donoghue, Darragh, E-mail: dmilisav@cfa.harvard.edu [Southern African Large Telescope, P.O. Box 9, Observatory 7935, Cape Town (South Africa)] [Southern African Large Telescope, P.O. Box 9, Observatory 7935, Cape Town (South Africa); and others
2013-04-10T23:59:59.000Z
We present X-ray, UV/optical, and radio observations of the stripped-envelope, core-collapse supernova (SN) 2011ei, one of the least luminous SNe IIb or Ib observed to date. Our observations begin with a discovery within {approx}1 day of explosion and span several months afterward. Early optical spectra exhibit broad, Type II-like hydrogen Balmer profiles that subside rapidly and are replaced by Type Ib-like He-rich features on a timescale of one week. High-cadence monitoring of this transition suggests absorption attributable to a high-velocity ({approx}> 12, 000 km s{sup -1}) H-rich shell, which is likely present in many Type Ib events. Radio observations imply a shock velocity of v Almost-Equal-To 0.13 c and a progenitor star average mass-loss rate of M-dot {approx}1.4 Multiplication-Sign 10{sup -5} M{sub sun} yr{sup -1} (assuming wind velocity v{sub w} = 10{sup 3} km s{sup -1}). This is consistent with independent constraints from deep X-ray observations with Swift-XRT and Chandra. Overall, the multi-wavelength properties of SN 2011ei are consistent with the explosion of a lower-mass (3-4 M{sub Sun }), compact (R{sub *} {approx}< 1 Multiplication-Sign 10{sup 11} cm), He-core star. The star retained a thin hydrogen envelope at the time of explosion, and was embedded in an inhomogeneous circumstellar wind suggestive of modest episodic mass loss. We conclude that SN 2011ei's rapid spectral metamorphosis is indicative of time-dependent classifications that bias estimates of the relative explosion rates for Type IIb and Ib objects, and that important information about a progenitor star's evolutionary state and mass loss immediately prior to SN explosion can be inferred from timely multi-wavelength observations.
Winey, J. M.; Gupta, Y. M. [Institute for Shock Physics and Department of Physics, Washington State University, Pullman, Washington 99164 (United States)
2014-07-21T23:59:59.000Z
Understanding and modeling the response of hcp metals to high stress impulsive loading is challenging because the lower crystal symmetry, compared to cubic metals, results in a significantly more complex material response. To gain insight into the inelastic deformation of hcp metals subjected to high dynamic stresses, shock wave compression of single crystals provides a useful approach because different inelastic deformation mechanisms can be examined selectively by shock compression along different crystal orientations. As a representative example, we report, here, on wave propagation simulations for beryllium (Be) single crystals shocked along the c-axis, a-axis, and several low-symmetry directions to peak stresses reaching 7?GPa. The simulations utilized a time-dependent, anisotropic material model that incorporated dislocation dynamics, deformation twinning, and shear cracking based descriptions of inelastic deformation. The simulation results showed good overall agreement with measured wave profiles for all the different crystal orientations examined [Pope and Johnson, J. Appl. Phys. 46, 720 (1975)], including features arising from wave mode coupling due to the highly anisotropic inelastic response of Be. This good agreement demonstrates that the measured profiles can be understood in terms of dislocation slip along basal, prismatic, and pyramidal planes, together with deformation twinning along (101{sup ¯}2) planes. Our results show that the response of shocked Be single crystals involves the simultaneous operation of multiple, distinct inelastic deformation mechanisms for all orientations except the c-axis. For shocked c-axis Be, the measured wave profiles do not provide good discrimination between pyramidal slip and other inelastic deformation mechanisms, such as shear cracking. The findings presented here provide insight into the complex inelastic deformation response of shocked Be single crystals and are expected to be useful for other hcp crystals. More broadly, the present work demonstrates the potential of shock wave propagation along low-symmetry directions to examine, and discriminate between, different inelastic deformation mechanisms in crystalline solids.
Measurement of the time-dependent CP asymmetries in $B_s^0\\rightarrow J/\\psi K_{\\rm S}^0$
Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Bel, Lennaert; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bertolin, Alessandro; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Bizzeti, Andrea; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borgia, Alessandra; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Braun, Svende; Brett, David; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casanova Mohr, Raimon; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cavallero, Giovanni; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Counts, Ian; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Di Ruscio, Francesco; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dreimanis, Karlis; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fol, Philip; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garofoli, Justin; Garra Tico, Jordi; Garrido, Lluis; Gascon, David; Gaspar, Clara; Gastaldi, Ugo; Gauld, Rhorry; Gavardi, Laura; Gazzoni, Giulio; Geraci, Angelo; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Gianì, Sebastiana; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, Vladimir; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo
2015-01-01T23:59:59.000Z
The first measurement of decay-time-dependent CP asymmetries in the decay $B_s^0\\rightarrow J/\\psi K_{\\rm S}^0$ and an updated measurement of the ratio of branching fractions $\\mathcal{B}(B_s^0\\rightarrow J/\\psi K_{\\rm S}^0)/\\mathcal{B}(B_d^0\\rightarrow J/\\psi K_{\\rm S}^0)$ are presented. The results are obtained using data corresponding to an integrated luminosity of 3.0 fb$^{-1}$ of proton-proton collisions recorded with the LHCb detector at centre-of-mass energies of 7 and 8 TeV. The results on the CP asymmetries are $A_{\\Delta\\Gamma}(B_s^0\\rightarrow J/\\psi K_{\\rm S}^0) = 0.49_{-0.65}^{+0.77}(stat) \\pm 0.06(syst)$, $C_{\\rm dir}(B_s^0\\rightarrow J/\\psi K_{\\rm S}^0) = -0.28 \\pm 0.41(stat) \\pm 0.08(syst)$ and $S_{\\rm mix}(B_s^0\\rightarrow J/\\psi K_{\\rm S}^0) = -0.08 \\pm 0.40(stat) \\pm 0.08(syst)$. The ratio $\\mathcal{B}(B_s^0\\rightarrow J/\\psi K_{\\rm S}^0)/\\mathcal{B}(B_d^0\\rightarrow J/\\psi K_{\\rm S}^0)$ is measured to be $0.0431 \\pm 0.0017(stat) \\pm 0.0012(syst) \\pm 0.0025(f_s/f_d)$, where the last uncerta...
Pokorna, Sarka; Jurkiewicz, Piotr; Hof, Martin, E-mail: martin.hof@jh-inst.cas.cz [J. Heyrovský Institute of Physical Chemistry of the Academy of Sciences of the Czech Republic v.v.i., Dolejskova 3, 18223 Prague 8 (Czech Republic); Vazdar, Mario [Division of Organic Chemistry and Biochemistry, Rudjer Boškovi? Institute, P.O.B. 180, HR-10002 Zagreb (Croatia); Cwiklik, Lukasz [J. Heyrovský Institute of Physical Chemistry of the Academy of Sciences of the Czech Republic v.v.i., Dolejskova 3, 18223 Prague 8 (Czech Republic); Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic); Jungwirth, Pavel [Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic); Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere (Finland)
2014-12-14T23:59:59.000Z
Time-dependent fluorescence shift (TDFS) of Laurdan embedded in phospholipid bilayers reports on hydration and mobility of the phospholipid acylgroups. Exchange of H{sub 2}O with D{sub 2}O prolongs the lifetime of lipid-water and lipid-water-lipid interactions, which is reflected in a significantly slower TDFS kinetics. Combining TDFS measurements in H{sub 2}O and D{sub 2}O hydrated bilayers with atomistic molecular dynamics (MD) simulations provides a unique tool for characterization of the hydrogen bonding at the acylgroup level of lipid bilayers. In this work, we use this approach to study the influence of fluoride anions on the properties of cationic bilayers composed of trimethylammonium-propane (DOTAP). The results obtained for DOTAP are confronted with those for neutral phosphatidylcholine (DOPC) bilayers. Both in DOTAP and DOPC H{sub 2}O/D{sub 2}O exchange prolongs hydrogen-bonding lifetime and does not disturb bilayer structure. These results are confirmed by MD simulations. TDFS experiments show, however, that for DOTAP this effect is cancelled in the presence of fluoride ions. We interpret these results as evidence that strongly hydrated fluoride is able to steal water molecules that bridge lipid carbonyls. Consequently, when attracted to DOTAP bilayer, fluoride disrupts the local hydrogen-bonding network, and the differences in TDFS kinetics between H{sub 2}O and D{sub 2}O hydrated bilayers are no longer observed. A distinct behavior of fluoride is also evidenced by MD simulations, which show different lipid-ion binding for Cl{sup ?} and F{sup ?}.
Tirthankar Dutta; S. Ramasesha
2011-12-29T23:59:59.000Z
We investigate the effect of static electron-phonon coupling, on real-time dynamics of spin and charge transport in $\\pi$-conjugated polyene chains. The polyene chain is modeled by the Pariser-Parr-Pople Hamiltonian with dimerized nearest-neighbor parameter $t_{0}(1+\\delta)$ for short bonds and $t_{0}(1-\\delta)$ for long bonds, and long-range electron-electron interactions. We follow the time evolution of the spin and charge using time-dependent density matrix renormalization group technique, when a hole is injected at one end of the chain in its ground state. We find that spin and charge dynamics followed through spin and charge velocities, depend both on chain length and extent of dimerization, $\\delta$. Analysis of the results requires focusing on physical quantities such as average spin and charge polarizations, particularly in the large dimerization limit. In the dimerization range 0.0 $\\le$ $\\delta$ $\\le$ 0.15, spin-charge dynamics is found to have a well defined behavior, with spin-charge separation (measured as the ratio of charge velocity to spin velocity) as well as, the total amount of charge and spin transported in a given time, along the chain, decreasing as dimerization increases. However, in the range 0.3 $\\le$ $\\delta$ $\\le$ 0.5, it is observed that the dynamics of spin and charge transport becomes complicated. It is observed that for large $\\delta$ values, spin-charge separation is suppressed and the injected hole fails to travel the entire length of the chain.
the Wilkes Subglacial Basin and the Aurora Subglacial Basin, but dispersion curves show that sediment a model for crustal shear wave velocities in the Transantarctic Mountains and surrounding areas of East velocities, which may be related to the presence of sediment, are observed at shallow depths beneath
Surface Impedance Tomography for Antarctic Sea Ice
Golden, Kenneth M.
Surface Impedance Tomography for Antarctic Sea Ice C. Sampsona , K. M. Goldena , A. Gullya , A. P, Australia Abstract During the 2007 SIPEX expedition in pack ice off the coast of East Antarctica, we measured the electrical conductivity of sea ice via surface impedance tomography. Resistance data from
Efficiency of quantum state tomography for qubits
Koichi Yamagata
2011-05-19T23:59:59.000Z
The efficiency of quantum state tomography is discussed from the point of view of quantum parameter estimation theory, in which the trace of the weighted covariance is to be minimized. It is shown that tomography is optimal only when a special weight is adopted.
REVIEW Open Access Micro computed tomography for
Paris-Sud XI, Université de
REVIEW Open Access Micro computed tomography for vascular exploration Lyubomir Zagorchev1 studies. Micro Computed Tomography (micro-CT) has emerged in recent years as the preferred modality and suggestions aimed at making micro-CT more accurate, replicable, and robust. Introduction Micro Computed
Acoustic and Seismic Modalities for Unattended Ground Sensors
Elbring, G.J.; Ladd, M.D.; McDonald, T.S.; Sleefe, G.E.
1999-03-31T23:59:59.000Z
In this paper, we have presented the relative advantages and complementary aspects of acoustic and seismic ground sensors. A detailed description of both acoustic and seismic ground sensing methods has been provided. Acoustic and seismic phenomenology including source mechanisms, propagation paths, attenuation, and sensing have been discussed in detail. The effects of seismo-acoustic and acousto-seismic interactions as well as recommendations for minimizing seismic/acoustic cross talk have been highlighted. We have shown representative acoustic and seismic ground sensor data to illustrate the advantages and complementary aspects of the two modalities. The data illustrate that seismic transducers often respond to acoustic excitation through acousto-seismic coupling. Based on these results, we discussed the implications of this phenomenology on the detection, identification, and localization objectives of unattended ground sensors. We have concluded with a methodology for selecting the preferred modality (acoustic and/or seismic) for a particular application.
Seismic behavior of structural silicone glazing
Zarghamee, M.S.; Schwartz, T.A. [Simpson Gumpertz and Heger Inc., Arlington, MA (United States); Gladstone, M. [Dow Corning Corp., Fremont, CA (United States)
1996-12-31T23:59:59.000Z
In seismic events, glass curtain walls undergo racking deformation, while the flat glass lites do not rack due to their high shear stiffness. If the glass curtain wall is not isolated from the building frame by specifically designed connections that accommodate relative motion, seismic racking motion of the building frame will demand significant resiliency of the sealant that secures the glass to the curtain wall framing. In typical four-sided structural silicone glazing systems used in buildings with unbraced moment frames, the magnitude of seismic racking is likely to stress the sealants significantly beyond the sealant design strength. In this paper, the extent of the expected seismic racking motion, the behavior of the structural silicone glazing when subjected to the expected racking motion, and the field performance of a building with four-sided structural silicone glazing during the Northridge earthquake are discussed. The details of a curtain wall design concept consisting of shop-glazed subframes connected to the building frame and the connections that accommodate seismic motion of the subframe relative to the building frame is developed. Specific recommendations are made for the design of the four-sided structural silicone glazing systems for seismic loads.
Webb, Spahr C.
, Petrologic and Seismic Expedition (GLIMPSE) study area from seismic refraction data R. Chadwick Holmes,1, Intraplate Melting, Petrologic and Seismic Expedition (GLIMPSE) experiment investigated the velocity in the Gravity Lineations, Intraplate Melting, Petrologic and Seismic Expedition (GLIMPSE) study area from
Seismic Line Location Map Hot Pot Project, Humboldt County, Nevada 2010
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Lane, Michael
Location of seismic lines carried out under DOE funded project Advanced Seismic Data Analysis Program (The Hot Pot Project).
Seismic Line Location Map Hot Pot Project, Humboldt County, Nevada 2010
Lane, Michael
2012-01-01T23:59:59.000Z
Location of seismic lines carried out under DOE funded project Advanced Seismic Data Analysis Program (The Hot Pot Project).
Second and Third Quarters Hanford Seismic Report for Fiscal Year 1999
Hartshorn, Donald C.; Reidel, Stephen P.; Rohay, Alan C.
1999-10-08T23:59:59.000Z
Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site.
Bacchetta, Justine; Wesseling-Perry, Katherine; Gilsanz, Vicente; Gales, Barbara; Pereira, Renata C; Salusky, Isidro B
2013-01-01T23:59:59.000Z
and quantitative computed tomography. Pediatric Rheumatologyand quantitative computed tomography Justine Bacchetta 1 ,by quantitative computed tomography (QCT) and their
SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION
Joel Walls; M.T. Taner; Gary Mavko; Jack Dvorkin
2002-07-01T23:59:59.000Z
In fully-saturated rock and at ultrasonic frequencies, the microscopic squirt flow induced between the stiff and soft parts of the pore space by an elastic wave is responsible for velocity-frequency dispersion and attenuation. In the seismic frequency range, it is the macroscopic cross-flow between the stiffer and softer parts of the rock. We use the latter hypothesis to introduce simple approximate equations for velocity-frequency dispersion and attenuation in a fully water saturated reservoir. The equations are based on the assumption that in heterogeneous rock and at a very low frequency, the effective elastic modulus of the fully-saturated rock can be estimated by applying a fluid substitution procedure to the averaged (upscaled) dry frame whose effective porosity is the mean porosity and the effective elastic modulus is the Backus-average (geometric mean) of the individual dry-frame elastic moduli of parts of the rock. At a higher frequency, the effective elastic modulus of the saturated rock is the Backus-average of the individual fully-saturated-rock elastic moduli of parts of the rock. The difference between the effective elastic modulus calculated separately by these two methods determines the velocity-frequency dispersion. The corresponding attenuation is calculated from this dispersion by using (e.g.) the standard linear solid attenuation model.
Roadmap: Radiologic Imaging Sciences -Computed Tomography (with AAS Radiologic Technology) -
Sheridan, Scott
Roadmap: Radiologic Imaging Sciences - Computed Tomography (with AAS Radiologic Technology 34084 Computed Tomography and Magnetic Resonance Imaging Sectional Anatomy I 2 C RIS 44021 Patient Management in Computed Tomography (CT) 2 C RIS 44025 Computed Tomography (CT) Clinical Education I 3 C
Reconstruction Algorithm for Single Photon Emission Computed Tomography and its
Fokas, A. S.
Reconstruction Algorithm for Single Photon Emission Computed Tomography and its Numerical Emission Tomography and of Single Photon Emission Computed Tomography are not only two of the most measured by the usual computed tomography. Thus the basic mathematical problem in SPECT is to determine
Positron emission tomography wrist detector
Schlyer, David J. (Bellport, NY); O'Connor, Paul (Bellport, NY); Woody, Craig (Setauket, NY); Junnarkar, Sachin Shrirang (Sound Beach, NY); Radeka, Veljko (Bellport, NY); Vaska, Paul (Sound Beach, NY); Pratte, Jean-Francois (Stony Brook, NY)
2006-08-15T23:59:59.000Z
A method of serially transferring annihilation information in a compact positron emission tomography (PET) scanner includes generating a time signal representing a time-of-occurrence of an annihilation event, generating an address signal representing a channel detecting the annihilation event, and generating a channel signal including the time and address signals. The method also includes generating a composite signal including the channel signal and another similarly generated channel signal concerning another annihilation event. An apparatus that serially transfers annihilation information includes a time signal generator, address signal generator, channel signal generator, and composite signal generator. The time signal is asynchronous and the address signal is synchronous to a clock signal. A PET scanner includes a scintillation array, detection array, front-end array, and a serial encoder. The serial encoders include the time signal generator, address signal generator, channel signal generator, and composite signal generator.
State tomography via weak measurements
Shengjun Wu
2013-02-01T23:59:59.000Z
Recent work has revealed that the wave function of a pure state can be measured directly and that complementary knowledge of a quantum system can be obtained simultaneously by weak measurements. However, the original scheme applies only to pure states, and it is not efficient because most of the data are discarded by post-selection. Here, we propose tomography schemes for pure states and for mixed states via weak measurements, and our schemes are more efficient because we do not discard any data. Furthermore, we demonstrate that any matrix element of a general state can be directly read from an appropriate weak measurement. The density matrix (with all of its elements) represents all that is directly accessible from a general measurement.
Collimator-free photon tomography
Dilmanian, F. Avraham (Yaphank, NY); Barbour, Randall L. (Westbury, NY)
1998-10-06T23:59:59.000Z
A method of uncollimated single photon emission computed tomography includes administering a radioisotope to a patient for producing gamma ray photons from a source inside the patient. Emissivity of the photons is measured externally of the patient with an uncollimated gamma camera at a plurality of measurement positions surrounding the patient for obtaining corresponding energy spectrums thereat. Photon emissivity at the plurality of measurement positions is predicted using an initial prediction of an image of the source. The predicted and measured photon emissivities are compared to obtain differences therebetween. Prediction and comparison is iterated by updating the image prediction until the differences are below a threshold for obtaining a final prediction of the source image.
Collimator-free photon tomography
Dilmanian, F.A.; Barbour, R.L.
1998-10-06T23:59:59.000Z
A method of uncollimated single photon emission computed tomography includes administering a radioisotope to a patient for producing gamma ray photons from a source inside the patient. Emissivity of the photons is measured externally of the patient with an uncollimated gamma camera at a plurality of measurement positions surrounding the patient for obtaining corresponding energy spectrums thereat. Photon emissivity at the plurality of measurement positions is predicted using an initial prediction of an image of the source. The predicted and measured photon emissivities are compared to obtain differences therebetween. Prediction and comparison is iterated by updating the image prediction until the differences are below a threshold for obtaining a final prediction of the source image. 6 figs.
Annual Hanford Seismic Report for Fiscal Year 2004
Hartshorn, Donald C.; Reidel, Steve P.; Rohay, Alan C.
2004-12-07T23:59:59.000Z
This report describes seismic activity at and around the Hanford Site during Fiscal Year 2004. It is also the first description of seismic activity during the fourth quarter of FY04.
Seismic Reflection Studies in Long Valley Caldera, Califomia
Black, Ross A.; Deemer, Sharon J.; Smithson, Scott B.
1991-03-10T23:59:59.000Z
Seismic reflection studies in Long Valley caldera, California, indicate that seismic methods may be successfully employed to image certain types of features in young silicic caldera environments. However, near-surface ...
Seismic Facies Classification And Identification By Competitive Neural Networks
Saggaf, Muhammad M.
2000-01-01T23:59:59.000Z
We present an approach based on competitive networks for the classification and identification of reservoir facies from seismic data. This approach can be adapted to perform either classification of the seismic facies based ...
A Study of SSI Effects Incorporating Seismic Wave Incoherence...
Office of Environmental Management (EM)
A Study of SSI Effects Incorporating Seismic Wave Incoherence within the DOE Complex A Study of SSI Effects Incorporating Seismic Wave Incoherence within the DOE Complex A Study of...
Time-lapse seismic monitoring of subsurface fluid flow
Yuh, Sung H.
2004-09-30T23:59:59.000Z
Time-lapse seismic monitoring repeats 3D seismic imaging over a reservoir to map fluid movements in a reservoir. During hydrocarbon production, the fluid saturation, pressure, and temperature of a reservoir change, thereby altering the acoustic...
Motion based seismic design and loss estimation of diagrid structures
Liptack, Robert J. (Robert Jeffrey)
2013-01-01T23:59:59.000Z
Diagrids are becoming an increasingly popular structural system in high rise design and construction. Little research has been performed on the seismic performance of Diagrids and how it integrates with seismic loss ...
Characterization of the Virgo Seismic Environment
The Virgo Collaboration; T. Accadia; F. Acernese; P. Astone; G. Ballardin; F. Barone; M. Barsuglia; A. Basti; Th. S. Bauer; M. Bebronne; M. G. Beker; A. Belletoile; M. Bitossi; M. A. Bizouard; M. Blom; F. Bondu; L. Bonelli; R. Bonnand; V. Boschi; L. Bosi; B. Bouhou; S. Braccini; C. Bradaschia; M. Branchesi; T. Briant; A. Brillet; V. Brisson; T. Bulik; H. J. Bulten; D. Buskulic; C. Buy; G. Cagnoli; E. Calloni; B. Canuel; F. Carbognani; F. Cavalier; R. Cavalieri; G. Cella; E. Cesarini; O. Chaibi; E. Chassande-Mottin; A. Chincarini; A. Chiummo; F. Cleva; E. Coccia; P. -F. Cohadon; C. N. Colacino; J. Colas; A. Colla; M. Colombini; A. Conte; M. Coughlin; J. -P. Coulon; E. Cuoco; S. DAntonio; V. Dattilo; M. Davier; R. Day; R. De Rosa; G. Debreczeni; W. Del Pozzo; M. del Prete; L. Di Fiore; A. Di Lieto; M. Di Paolo Emilio; A. Di Virgilio; A. Dietz; M. Drago; G. Endroczi; V. Fafone; I. Ferrante; F. Fidecaro; I. Fiori; R. Flaminio; L. A. Forte; J. -D. Fournier; J. Franc; S. Frasca; F. Frasconi; M. Galimberti; L. Gammaitoni; F. Garufi; M. E. Gaspar; G. Gemme; E. Genin; A. Gennai; A. Giazotto; R. Gouaty; M. Granata; C. Greverie; G. M. Guidi; J. -F. Hayau; A. Heidmann; H. Heitmann; P. Hello; P. Jaranowski; I. Kowalska; A. Krolak; N. Leroy; N. Letendre; T. G. F. Li; N. Liguori; M. Lorenzini; V. Loriette; G. Losurdo; E. Majorana; I. Maksimovic; N. Man; M. Mantovani; F. Marchesoni; F. Marion; J. Marque; F. Martelli; A. Masserot; C. Michel; L. Milano; Y. Minenkov; M. Mohan; N. Morgado; A. Morgia; S. Mosca; B. Mours; L. Naticchioni; F. Nocera; G. Pagliaroli; L. Palladino; C. Palomba; F. Paoletti; M. Parisi; A. Pasqualetti; R. Passaquieti; D. Passuello; G. Persichetti; F. Piergiovanni; M. Pietka; L. Pinard; R. Poggiani; M. Prato; G. A. Prodi; M. Punturo; P. Puppo; D. S. Rabeling; I. Racz; P. Rapagnani; V. Re; T. Regimbau; F. Ricci; F. Robinet; A. Rocchi; L. Rolland; R. Romano; D. Rosinska; P. Ruggi; B. Sassolas; D. Sentenac; L. Sperandio; R. Sturani; B. Swinkels; M. Tacca; L. Taffarello; A. Toncelli; M. Tonelli; O. Torre; E. Tournefier; F. Travasso; G. Vajente; J. F. J. van den Brand; C. Van Den Broeck; S. van der Putten; M. Vasuth; M. Vavoulidis; G. Vedovato; D. Verkindt; F. Vetrano; A. Vicere; J. -Y. Vinet; S. Vitale; H. Vocca; R. L. Ward; M. Was; M. Yvert; A. Zadrozny; J. -P. Zendri
2011-08-08T23:59:59.000Z
The Virgo gravitational wave detector is an interferometer (ITF) with 3km arms located in Pisa, Italy. From July to October 2010, Virgo performed its third science run (VSR3) in coincidence with the LIGO detectors. Despite several techniques adopted to isolate the interferometer from the environment, seismic noise remains an important issue for Virgo. Vibrations produced by the detector infrastructure (such as air conditioning units, water chillers/heaters, pumps) are found to affect Virgo's sensitivity, with the main coupling mechanisms being through beam jitter and scattered light processes. The Advanced Virgo (AdV) design seeks to reduce ITF couplings to environmental noise by having most vibration-sensitive components suspended and in-vacuum, as well as muffle and relocate loud machines. During the months of June and July 2010, a Guralp-3TD seismometer was stationed at various locations around the Virgo site hosting major infrastructure machines. Seismic data were examined using spectral and coherence analysis with seismic probes close to the detector. The primary aim of this study was to identify noisy machines which seismically affect the ITF environment and thus require mitigation attention. Analyzed machines are located at various distances from the experimental halls, ranging from 10m to 100m. An attempt is made to measure the attenuation of emitted noise at the ITF and correlate it to the distance from the source and to seismic attenuation models in soil.
Salvo: Seismic imaging software for complex geologies
OBER,CURTIS C.; GJERTSEN,ROB; WOMBLE,DAVID E.
2000-03-01T23:59:59.000Z
This report describes Salvo, a three-dimensional seismic-imaging software for complex geologies. Regions of complex geology, such as overthrusts and salt structures, can cause difficulties for many seismic-imaging algorithms used in production today. The paraxial wave equation and finite-difference methods used within Salvo can produce high-quality seismic images in these difficult regions. However this approach comes with higher computational costs which have been too expensive for standard production. Salvo uses improved numerical algorithms and methods, along with parallel computing, to produce high-quality images and to reduce the computational and the data input/output (I/O) costs. This report documents the numerical algorithms implemented for the paraxial wave equation, including absorbing boundary conditions, phase corrections, imaging conditions, phase encoding, and reduced-source migration. This report also describes I/O algorithms for large seismic data sets and images and parallelization methods used to obtain high efficiencies for both the computations and the I/O of seismic data sets. Finally, this report describes the required steps to compile, port and optimize the Salvo software, and describes the validation data sets used to help verify a working copy of Salvo.
Chu, Shih-I; Tong, Xiao-Min
2001-06-12T23:59:59.000Z
We present a detailed study of the multiphoton ionization and high-order harmonic generation (HHG) processes of rare-gas atoms (He, Ne, and Ar) in intense pulsed laser fields by means of a self-interaction-free time-dependent density...
First Quarter Seismic Report for Fiscal Year 2006
Rohay, Alan C.; Reidel, Stephen P.; Hartshorn, Donald C.; Sweeney, Mark D.; Clayton, Ray E.
2006-09-01T23:59:59.000Z
This report describes the earthquake data collected from October 2005 to December 2005 from the Hanford Seismic Network
Seismic velocity and Q anisotropy in fractured poroelastic media
Introduction. Seismic wave propagation through fractures is an important subject in hydrocarbon exploration geophysics, mining and reservoir characterization ...
Teleseismic-Seismic Monitoring At Dixie Valley Geothermal Area...
Engineered Geothermal Systems Through Integrated Geophysical, Geologic and Geochemical Interpretation the Seismic Analysis Component Additional References Retrieved from "http:...
Towards the Understanding of Induced Seismicity in Enhanced Geothermal...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Continuum through Discontinuum Representations: Capturing Reservoir Stimulation, Evolution and Induced Seismicity Microearthquake Technology for EGS Fracture Characterization...
Method for processing seismic data to identify anomalous absorption zones
Taner, M. Turhan
2006-01-03T23:59:59.000Z
A method is disclosed for identifying zones anomalously absorptive of seismic energy. The method includes jointly time-frequency decomposing seismic traces, low frequency bandpass filtering the decomposed traces to determine a general trend of mean frequency and bandwidth of the seismic traces, and high frequency bandpass filtering the decomposed traces to determine local variations in the mean frequency and bandwidth of the seismic traces. Anomalous zones are determined where there is difference between the general trend and the local variations.
Geothermometry At Central Nevada Seismic Zone Region (Shevenell...
ENERGYGeothermal Home Exploration Activity: Geothermometry At Central Nevada Seismic Zone Region (Shevenell & De Rocher, 2005) Exploration Activity Details Location...
Geographic Information System At Central Nevada Seismic Zone...
Home Exploration Activity: Geographic Information System At Central Nevada Seismic Zone Region (Laney, 2005) Exploration Activity Details Location Central Nevada...
Teleseismic-Seismic Monitoring At Yellowstone Region (Chatterjee...
navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Yellowstone Region (Chatterjee, Et Al., 1985) Exploration Activity...
The Seismic Analyzer: Interpreting and Illustrating 2D Seismic Data Daniel Patel, Christopher for quickly interpreting and illustrating 2D slices of seismic volumetric reflection data. Searching for oil of the seismic data prior to interpretation. We improve the annotation of seismic structures by applying novel
Expressive Visualization and Rapid Interpretation of Seismic Volumes
Expressive Visualization and Rapid Interpretation of Seismic Volumes Daniel Patel Thesis, Christopher Giertsen, John Thurmond, Eduard Gr¨oller The Seismic Analyzer: Interpreting and Illustrating 2D of Seismic Data Published in: Vision, Modelling and Visualization (VMV) 2007 Authors: Daniel Patel
Knowledge Assisted Visualization Knowledge-assisted visualization of seismic data
for knowledge-assisted annotation and computer-assisted interpretation of seismic data for oil and gas, using seismic interpretation, is performed that makes it fit very naturally into the paradigmKnowledge Assisted Visualization Knowledge-assisted visualization of seismic data Daniel Patel a
Staged Hybrid Genetic Search for Seismic Data Imaging
Whitley, Darrell
Christof Stork yy and Tony Kusuma yy Abstract --- Seismic data interpretation problems are typ icallyStaged Hybrid Genetic Search for Seismic Data Imaging Keith E. Mathias, y L. Darrell Whitley, y. Geological exploration em ploys seismic reflection surveys to obtain subsurface im ages of geologic beds
Finding hydrocarbons in the classroom using "free" seismic interpretation software
Finding hydrocarbons in the classroom using "free" seismic interpretation software WAYNE D Technological Univer- sity, we recently introduced a new course in seismic processing and interpretation of this paper is to pro- vide details of the class assignment in seismic interpretation, and to encourage
STOCHASTIC SEISMIC EMISSION FROM ACOUSTIC GLORIES AND THE QUIET SUN
Braun, Douglas C.
STOCHASTIC SEISMIC EMISSION FROM ACOUSTIC GLORIES AND THE QUIET SUN A.-C. DONEA1, C. LINDSEY2 and D; accepted 8 January 2000) Abstract. Helioseismic images of multipolar active regions show enhanced seismic'. The acoustic glories contain elements that sustain an average seismic emission 50% greater than similar
Tutorial on seismic interferometry: Part 1 --Basic principles and applications
Snieder, Roel
Tutorial on seismic interferometry: Part 1 -- Basic principles and applications Kees Wapenaar1 , Deyan Draganov1 , Roel Snieder2 , Xander Campman3 , and Arie Verdel3 ABSTRACT Seismic interferometry is the retrieval of seismic surface-wave responses from ambient noise and the subsequent tomographic determination
Seismic Retrofitting of RC Frames with RC Infilling
Seismic Retrofitting of RC Frames with RC Infilling SERIES Workshop: "Role of research infrastructures in seismic rehabilitation" 8 - 9 February 2012, Istanbul, Turkey C. Z. Chrysostomou, N. Kyriakides, P. Kotronis, P. Roussis, M. Poljansek, F. Taucer RC Infilling of Existing RC Structures for Seismic
Global seismic monitoring as probabilistic inference Nimar S. Arora
Russell, Stuart
Global seismic monitoring as probabilistic inference Nimar S. Arora Department of Computer Science of the Comprehensive Nuclear-Test-Ban Treaty (CTBT), primarily through detection and localization of seismic events. We nuclear explosions. A global network of seismic, radionuclide, hydroacoustic, and infrasound sensors
Seismic Observation Systems in Nagoya University and Publication of Data
Southern California, University of
Seismic Observation Systems in Nagoya University and Publication of Data Nobuo Fukuwa,a) Jun Tobita,b) and Hiroaki Kojimac) This paper reports the current situation of the seismic monitoring program conducted by Nagoya University. First, the system for observing seismic ground motion in the Tokai Region is described
Seismic Engineering Research Infrastructures for European Synergies (SERIES)
Seismic Engineering Research Infrastructures for European Synergies (SERIES) M.N. Fardis University of Patras, Greece SUMMARY: Through the 4-year project SERIES (Seismic Engineering Research Infrastructures of their research. It also helps them to enhance their potential, by jointly developing novel seismic testing
Seismic shape parameters estimation and ground-roll suppression using
Spagnolini, Umberto
Seismic shape parameters estimation and ground-roll suppression using vector-sensor beamforming the problem of estimating the shape parameters of seismic wavefields in linear arrays. The purpose of the subsurface layers from the seismic wavefields registered by surface sensors. However, only the waves
Seismic Velocity Estimation from Time Migration Maria Kourkina Cameron
Cameron, Maria Kourkina
Seismic Velocity Estimation from Time Migration by Maria Kourkina Cameron Diplom (Moscow Institute Dung-Hai Lee Spring 2007 #12;Seismic Velocity Estimation from Time Migration Copyright c 2007 by Maria Kourkina Cameron #12;Abstract Seismic Velocity Estimation from Time Migration by Maria Kourkina Cameron
S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES
S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES COMMISSION General Committee Final workshop Ispra (IT), May 30 th, 2013 MAID project : Seismic behavior of L- and T-shaped unreinforced Masonry shear walls including Acoustic Isolation Devices #12;SEISMIC ENGINEERING RESEARCH
S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES
S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES COMMISSION, In memory of Prof. Roy Severn #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES Â· Project Framework Â· Experimental Campaign Â· Outcome Outline #12;SEISMIC ENGINEERING RESEARCH
Seismic Data Reconstruction via Shearlet-Regularized Directional Inpainting
Steidl, Gabriele
Seismic Data Reconstruction via Shearlet-Regularized Directional Inpainting SÂ¨oren HÂ¨auser and Jianwei Ma May 15, 2012 We propose a new method for seismic data reconstruction by directional weighted of thousands of meters with a good resolution, the seismic method has become the most commonly used geophysical
Parallel Seismic Ray Tracing in a Global Earth Model
Genaud, StÃ©phane
1 Parallel Seismic Ray Tracing in a Global Earth Model Marc Grunberg * , StÃ©phane Genaud of the Earth interior, and seismic tomogra- phy is a means to improve knowledge in this #28;eld. In order present in this paper the de- sign of a software program implement- ing a fast seismic ray
LITHOLOGY-FLUID INVERSION FROM PRESTACK SEISMIC DATA
Eidsvik, Jo
LITHOLOGY-FLUID INVERSION FROM PRESTACK SEISMIC DATA MARIT ULVMOEN Department of Mathematical of the study is on lithology-fluid inversion from prestack seismic data in a 3D reservoir. The inversion relates the lithology-fluid classes to elastic variables and the seismic data, and it follows the lines
Lithology-Fluid Inversion based on Prestack Seismic Data
Eidsvik, Jo
Lithology-Fluid Inversion based on Prestack Seismic Data Marit Ulvmoen Summary The focus of the study is on lithology-fluid inversion from prestack seismic data. The target zone is a 3D reservoir model. The likelihood model relates the lithology-fluid classes to elastic variables and the seismic
Seismic petrophysics: An applied science for reservoir geophysics
Seismic petrophysics: An applied science for reservoir geophysics WAYNE D. PENNINGTON, Michigan a number of seismic attributes, using either prestack or poststack data, or even both in combination's intuition and, per- haps, wishful thinking, as a guide. This short paper introduces a new term "seismic
New events discovered in the Apollo lunar seismic data
Shearer, Peter
New events discovered in the Apollo lunar seismic data R. C. Bulow, C. L. Johnson,1 and P. M processing tools to revisit the Apollo lunar seismic data set with the goal of extending and further), New events discovered in the Apollo lunar seismic data, J. Geophys. Res., 110, E10003, doi:10
Seismic response of steel suspension bridge
McCallen, D.B. [Lawrence Livermore National Lab., CA (United States); Astaneh-Asl, A. [California Univ., Berkeley, CA (United States). Dept. of Civil and Environmental Engineering
1996-11-01T23:59:59.000Z
Performing accurate, realistic numerical simulations of the seismic response of long-span bridges presents a significant challenge to the fields of earthquake engineering and seismology. Suspension bridges in particular represent some of the largest and most important man-made structures and ensuring the seismic integrity of these mega-structures is contingent on accurate estimations of earthquake ground motions and accurate computational simulations of the structure/foundation system response. A cooperative, multi-year research project between the Univ. of California and LLNL was recently initiated to study engineering and seismological issues essential for simulating the response of major structures. Part of this research project is focused on the response of the long-span bridges with the San Francisco-Oakland Bay Bridge serving as a case study. This paper reports on the status of this multi-disciplinary research project with emphasis on the numerical simulation of the transient seismic response of the Bay Bridge.
Binary Tomography with Deblurring Stefan Weber1
SchnÃ¶rr, Christoph
Binary Tomography with Deblurring Stefan Weber1 , Thomas SchÂ¨ule1,3 , Attila Kuba2 , and Christoph-Verlag Berlin Heidelberg 2006 #12;376 S. Weber et al. quality of the reconstructed images. The correction
Development of the seismic input for use in the seismic safety margins research program
Bernreuter, D.L.; Chung, D.H.
1980-01-29T23:59:59.000Z
This paper briefly outlines the overall systems approach being developed for the Seismic Safety Margins Research Program. The unique features of the approach being taken to reduce the uncertainty in the seismic input for this program are discussed. These unique features will include extensive use of expert opinion, earthquake rupture simulation studies and the way in which the seismic hazard is incorporated into the overall systems analysis. Some very preliminary results are also given for the Zion site which is the power plant chosen for analysis in Phase I of the program.
Evaluation of the Deployable Seismic Verification System at the Pinedale Seismic Research Facility
Carr, D.B.
1993-08-01T23:59:59.000Z
The intent of this report is to examine the performance of the Deployable Seismic Verification System (DSVS) developed by the Department of Energy (DOE) through its national laboratories to support monitoring of underground nuclear test treaties. A DSVS was installed at the Pinedale Seismic Research Facility (PSRF) near Boulder, Wyoming during 1991 and 1992. This includes a description of the system and the deployment site. System performance was studied by looking at four areas: system noise, seismic response, state of health (SOH) and operational capabilities.
Coleman, Justin [Idaho National Laboratory
2014-09-01T23:59:59.000Z
Risk calculations should focus on providing best estimate results, and associated insights, for evaluation and decision-making. Specifically, seismic probabilistic risk assessments (SPRAs) are intended to provide best estimates of the various combinations of structural and equipment failures that can lead to a seismic induced core damage event. However, in general this approach has been conservative, and potentially masks other important events (for instance, it wasn’t the seismic motions that caused the Fukushima core melt events, but the tsunami ingress into the facility).
Generic seismic ruggedness of power plant equipment
Merz, K.L. (Anco Engineers, Inc., Culver City, CA (United States))
1991-08-01T23:59:59.000Z
This report updates the results of a program with the overall objective of demonstrating the generic seismic adequacy of as much nuclear power plant equipment as possible by means of collecting and evaluating existing seismic qualification test data. These data are then used to construct ruggedness'' spectra below which equipment in operating plants designed to earlier earthquake criteria would be generically adequate. This document is an EPRI Tier 1 Report. The report gives the methodology for the collection and evaluation of data which are used to construct a Generic Equipment Ruggedness Spectrum (GERs) for each equipment class considered. The GERS for each equipment class are included in an EPRI Tier 2 Report with the same title. Associated with each GERS are inclusion rules, cautions, and checklists for field screening of in-place equipment for GERS applicability. A GERS provides a measure of equipment seismic resistance based on available test data. As such, a GERS may also be used to judge the seismic adequacy of similar new or replacement equipment or to estimate the seismic margin of equipment re-evaluated with respect to earthquake levels greater than considered to date, resulting in fifteen finalized GERS. GERS for relays (included in the original version of this report) are now covered in a separate report (NP-7147). In addition to the presentation of GERS, the Tier 2 report addresses the applicability of GERS to equipment of older vintage, methods for estimating amplification factors for evaluating devices installed in cabinets and enclosures, and how seismic test data from related studies relate to the GERS approach. 28 refs., 5 figs., 4 tabs.
2008-01-01T23:59:59.000Z
multi- detector row computed tomography for the evaluationwith multislice computed tomography. J Am Coll Cardiol 2001;multi- detector-row computed tomography: Results in 102
Karlsberg, Ronald P.; Budoff, Matthew J.; Thomson, Louise E.; Friedman, John D.; Berman, Daniel S.
2010-01-01T23:59:59.000Z
introduction of coronary computed tomography in a cardiologyphoton emission computed tomography (SPECT) myocardialÁ Multi-slice computed tomography Á Multi-detector computed
Potentially Low Cost Solution to Extend Use of Early Generation Computed Tomography
Tonna, Joseph E; Balanoff, Amy M; Lewin, Matthew R; Saandari, Namjilmaa; Wintermark, Max
2010-01-01T23:59:59.000Z
of Early Generation Computed Tomography Joseph E. Tonna, MD*two- dimensional (2D) computed tomography (CT) images. ThisWhile many modern computed tomography (CT) scanners contain
2014-01-01T23:59:59.000Z
DJ, Hall EJ. Computed tomography-an increasing source ofin Patients with Computed Tomography-proven Stones JeffNon-contrast computed tomography (CT) is widely regarded as
Verrucous carcinoma of the foot affecting the bone: Utility of the computed tomography scanner
García-Gavín, J; González-Vilas, D; Rodríguez-Pazos, L; Sánchez-Aguilar, D; Toribio, J
2010-01-01T23:59:59.000Z
Frassica FJ, Fishman EK. Computed tomography of the bones ofbone: Utility of the computed tomography scanner J García-of bone invasion. Computed tomography (CT) showed a lytic
Adherence to Head Computed Tomography Guidelines in the Setting of Mild Traumatic Brain Injury
Jones, Landon A; Morley, Eric J; Grant, William D; Wojcik, Susan M; Paolo, William F
2014-01-01T23:59:59.000Z
Adherence to Head Computed Tomography Guidelines for Mildal Adherence to Head Computed Tomography Guidelines system,non-contrast head computed tomography (CT) in patients with
Evaluation of a EMCCD detector for emission-transmission computed tomography
Teo, B K; Shestakova, I; Sun, M; Barber, W C; Nagarkar, V V; Hasegawa, B H
2006-01-01T23:59:59.000Z
emission-transmission computed-tomography imaging system,”for Emission-Transmission Computed Tomography B. K. Teo, I.sion-transmission computed tomography. The detector has an
Characterization of Biological Effects of Computed Tomography by Assessing the DNA Damage Response
Elgart, Shona Robin
2014-01-01T23:59:59.000Z
Brenner DJ, Hall EJ. Computed Tomography - An IncreasingSmith-Bindman R. Is Computed Tomography Safe? New Englandof X-ray Trends: Computed Tomography 2005 – 06 Preliminary
Grover, Casey A; Close, Reb JH; Villarreal, Kathy; Goldman, Lee M
2010-01-01T23:59:59.000Z
33. Brenner DJ, Hall EJ. Computed tomography – an increasingReduce Visits and Computed Tomography Casey A. Grover* Rebof total images in all computed tomography (CT) scans during
2014-01-01T23:59:59.000Z
Injury from Chest Computed Tomography for Blunt Trauma Markthe use of chest computed tomography (CT), (CCT) in bluntinjury. 6,7 Chest computed tomography (CCT) evaluation for
Budoff, MJ; Bloom, SA; Chow, BJ; Chandler, AB; Cole, JH
2015-01-01T23:59:59.000Z
Event CCTA= Coronary computed tomography angiography; MACE=CONFIRM (COroNary computed tomography angiography evaluationcalcium scoring and computed tomography angiography: current
Statistical Estimation of Quantum Tomography Protocols Quality
Yu. I. Bogdanov; G. Brida; M. Genovese; S. P. Kulik; E. V. Moreva; A. P. Shurupov
2010-02-18T23:59:59.000Z
A novel operational method for estimating the efficiency of quantum state tomography protocols is suggested. It is based on a-priori estimation of the quality of an arbitrary protocol by means of universal asymptotic fidelity distribution and condition number, which takes minimal value for better protocol. We prove the adequacy of the method both with numerical modeling and through the experimental realization of several practically important protocols of quantum state tomography.
Nonlinear Seismic Response Of Single Piles
Cairo, R.; Conte, E.; Dente, G. [University of Calabria, Dipartimento di Difesa del Suolo, Rende (Italy)
2008-07-08T23:59:59.000Z
In this paper, a method is proposed to analyse the seismic response of single piles under nonlinear soil condition. It is based on the Winkler foundation model formulated in the time domain, which makes use of p-y curves described by the Ramberg-Osgood relationship. The analyses are performed referring to a pile embedded in two-layer soil profiles with different sharp stiffness contrast. Italian seismic records are used as input motion. The calculated bending moments in the pile are compared to those obtained using other theoretical solutions.
Advanced motor driven clamped borehole seismic receiver
Engler, B.P.; Sleefe, G.E.; Striker, R.P.
1993-02-23T23:59:59.000Z
A borehole seismic tool is described including a borehole clamp which only moves perpendicular to the borehole. The clamp is driven by an electric motor, via a right angle drive. When used as a seismic receiver, the tool has a three part housing, two of which are hermetically sealed. Accelerometers or geophones are mounted in one hermetically sealed part, the electric motor in the other hermetically sealed part, and the clamp and right angle drive in the third part. Preferably the tool includes cable connectors at both ends. Optionally a shear plate can be added to the clamp to extend the range of the tool.
Microstructural Changes in Elastomers Seismic Devices
Buonsanti, Michele [Dipartimento Meccanica e Materiali, Facolta di Ingegneria, Universita Mediterranea, loc. Feo di Vito 89060 Reggio Calabria (Italy)
2008-07-08T23:59:59.000Z
Today elastomers or rubber materials are present in many seismic devices since they are fundamental tools for energy dissipation. The ground motion effects on the elastomers seismic isolator produces, in addition to horizontal displacements, even rotation respect to the vertical axis. These last effects make torsion action on the devices plane other in all components. We focus our attention on the circular elastomers sheet under warping actions. We observe some material volume fraction in a different phase and the analysis shows the evolution phases linked with inhomogeneous deformation field. Finally it appears, under cyclic loading conditions, a stress-softening phenomenon (i.e. Mullins effects) as correlation to continuum damage mechanism.