Time-dependent seismic tomography and its application to the...
changes in Earth structure are commonly determined using local earthquake tomography computer programs that invert multiple seismic-wave arrival time data sets separately and...
Seismic Tomography: Definitions Lapo Boschi (lapo@erdw.ethz.ch)
Boschi, Lapo
Seismic Tomography: Definitions Lapo Boschi (lapo@erdw.ethz.ch) September 14, 2009 Seismic Tomography Seismic tomography is the science of interpreting seismic measurements (seismograms) to derive information about the structure of the Earth. This course does not cover the techniques of seismic observation
Constrained optimization in seismic reflection tomography: an SQP ...
2004-07-06T23:59:59.000Z
Seismic reflection tomography is a method for determining a subsurface velocity model from the traveltimes of seismic waves reflecting on geological interfaces.
Temporal Integration of Seismic Traveltime Tomography
Ajo-Franklin, Jonathan B.
2005-06-01T23:59:59.000Z
Time-lapse geophysical measurements and seismic imaging methods in particular are powerful techniques
Nonlinear regularization techniques for seismic tomography
Loris, I. [Mathematics Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels (Belgium)], E-mail: igloris@vub.ac.be; Douma, H. [Department of Geosciences, Princeton University, Guyot Hall, Washington Road, Princeton, NJ 08544 (United States); Nolet, G. [Geosciences Azur, Universite de Nice-Sophia Antipolis, CNRS/IRD, 250 Rue Albert Einstein, Sophia Antipolis 06560 (France); Daubechies, I. [Program in Applied and Computational Mathematics, Princeton University, Fine Hall, Washington Road, Princeton, NJ 08544 (United States); Regone, C. [BP America Inc., 501 Westlake Park Blvd., Houston, TX 77079 (United States)
2010-02-01T23:59:59.000Z
The effects of several nonlinear regularization techniques are discussed in the framework of 3D seismic tomography. Traditional, linear, l{sub 2} penalties are compared to so-called sparsity promoting l{sub 1} and l{sub 0} penalties, and a total variation penalty. Which of these algorithms is judged optimal depends on the specific requirements of the scientific experiment. If the correct reproduction of model amplitudes is important, classical damping towards a smooth model using an l{sub 2} norm works almost as well as minimizing the total variation but is much more efficient. If gradients (edges of anomalies) should be resolved with a minimum of distortion, we prefer l{sub 1} damping of Daubechies-4 wavelet coefficients. It has the additional advantage of yielding a noiseless reconstruction, contrary to simple l{sub 2} minimization ('Tikhonov regularization') which should be avoided. In some of our examples, the l{sub 0} method produced notable artifacts. In addition we show how nonlinear l{sub 1} methods for finding sparse models can be competitive in speed with the widely used l{sub 2} methods, certainly under noisy conditions, so that there is no need to shun l{sub 1} penalizations.
Time-Dependent Seismic Tomography of the Coso Geothermal Area, 1996-2004 |
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective JumpInc., 2010)PtyO'reilly interviews ToddOpen
Time-dependent seismic tomography of the Coso geothermal area, 1996-2004 |
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective JumpInc., 2010)PtyO'reillyOpen Energy
Time-dependent seismic tomography and its application to the Coso
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump JumpAl., 1978)Tillman County,Open Energy
Review paper Seismic interferometry and ambient noise tomography in the British Isles
Review paper Seismic interferometry and ambient noise tomography in the British Isles Heather. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 2. Theory and method of seismic interferometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.2. Seismic interferometry across the Scottish Highlands
Investigating the stratigraphy of an alluvial aquifer using crosswell seismic traveltime tomography
Barrash, Warren
can be used in situations where surface seismic reflection has failed e.g., Liberty et al., 1999Investigating the stratigraphy of an alluvial aquifer using crosswell seismic traveltime tomography In this study, we investigate the use of crosswell P-wave seismic tomography to obtain spatially extensive
THE VALUE OF BOREHOLE -TO-SURFACE INFORMATION IN NEAR-SURFACE CROSSWELL SEISMIC TOMOGRAPHY
Barrash, Warren
seismic reflection cannot (e.g. Liberty et al., 1999; Musil et al., 2002). The images producedTHE VALUE OF BOREHOLE -TO-SURFACE INFORMATION IN NEAR-SURFACE CROSSWELL SEISMIC TOMOGRAPHY Geoff J properties is important in many fields. One method that can image the seismic velocity structure
Multi-Resolution Seismic Tomography Based on Recursive Tessellation Hierarchy
Simmons, N A; Myers, S C; Ramirez, A
2009-07-01T23:59:59.000Z
A 3-D global tomographic model that reconstructs velocity structure at multiple scales and incorporates laterally variable seismic discontinuities is currently being developed. The model parameterization is node-based where nodes are placed along vertices defined by triangular tessellations of a spheroidal surface. The triangular tessellation framework is hierarchical. Starting with a tetrahexahedron representing the whole globe (1st level of the hierarchy, 24 faces), they divide each triangle of the tessellation into daughter triangles. The collection of all daughter triangles comprises the 2nd level of the tessellation hierarchy and further recursion produces an arbitrary number of tessellation levels and arbitrarily fine node-spacing. They have developed an inversion procedure that takes advantage of the recursive properties of the tessellation hierarchies by progressively solving for shorter wavelength heterogeneities. In this procedure, we first perform the tomographic inversion using a tessellation level with coarse node spacing. They find that a coarse node spacing of approximately 8{sup o} is adequate to capture bulk regional properties. They then conduct the tomographic inversion on a 4{sup o} tessellation level using the residuals and inversion results from the 8{sup o} run. In practice they find that the progressive tomography approach is robust, providing an intrinsic regularization for inversion stability and avoids the issue of predefining resolution levels. Further, determining average regional properties with coarser tessellation levels enables long-wavelength heterogeneities to account for sparsely sampled regions (or regions of the mantle where longer wavelength patterns of heterogeneity suffice) while allowing shorter length-scale heterogeneities to emerge where necessary. They demonstrate the inversion approach with a set of synthetic test cases that mimic the complex nature of data arrangements (mixed-determined inversion) common to most tomographic problems. They also apply the progressive inversion approach with Pn waves traveling within the Middle East region and compare the results to simple tomographic inversions. As expected from synthetic testing, the progressive approach results in detailed structure where there is high data density and broader regional anomalies where seismic information is sparse. The ultimate goal is to use these methods to produce a seamless, multi-resolution global tomographic model with local model resolution determined by the constraints afforded by available data. They envisage this new technique as the general approach to be employed for future multi-resolution model development with complex arrangements of regional and teleseismic information.
Surface-to-tunnel seismic tomography studies at Yucca Mountain, Nevada
Korneev, Valeri A.
Surface-to-tunnel seismic tomography studies at Yucca Mountain, Nevada Roland Gritto, Valeri A in the proposed nuclear waste repository area at Yucca Mountain, Nevada. A 5-km-long source line and a 3-km-long receiver line were located on top of Yucca Mountain ridge and inside the Exploratory Study Facility (ESF
Using seismic tomography to characterize fracture systems induced by hydraulic fracturing
Fehler, M.; Rutledge, J.
1995-01-01T23:59:59.000Z
Microearthquakes induced by hydraulic fracturing have been studied by many investigators to characterize fracture systems created by the fracturing process and to better understand the locations of energy resources in the earth`s subsurface. The pattern of the locations often contains a great deal of information about the fracture system stimulated during the hydraulic fracturing. Seismic tomography has found applications in many areas for characterizing the subsurface of the earth. It is well known that fractures in rock influence both the P and S velocities of the rock. The influence of the fractures is a function of the geometry of the fractures, the apertures and number of fractures, and the presence of fluids in the fractures. In addition, the temporal evolution of the created fracture system can be inferred from the temporal changes in seismic velocity and the pattern of microearthquake locations. Seismic tomography has been used to infer the spatial location of a fracture system in a reservoir that was created by hydraulic fracturing.
Brauchler, R.; Doetsch, J.; Dietrich, P.; Sauter, M.
2012-01-10T23:59:59.000Z
In this study, hydraulic and seismic tomographic measurements were used to derive a site-specific relationship between the geophysical parameter p-wave velocity and the hydraulic parameters, diffusivity and specific storage. Our field study includes diffusivity tomograms derived from hydraulic travel time tomography, specific storage tomograms, derived from hydraulic attenuation tomography, and p-wave velocity tomograms, derived from seismic tomography. The tomographic inversion was performed in all three cases with the SIRT (Simultaneous Iterative Reconstruction Technique) algorithm, using a ray tracing technique with curved trajectories. The experimental set-up was designed such that the p-wave velocity tomogram overlaps the hydraulic tomograms by half. The experiments were performed at a wellcharacterized sand and gravel aquifer, located in the Leine River valley near Gttingen, Germany. Access to the shallow subsurface was provided by direct-push technology. The high spatial resolution of hydraulic and seismic tomography was exploited to derive representative site-specific relationships between the hydraulic and geophysical parameters, based on the area where geophysical and hydraulic tests were performed. The transformation of the p-wave velocities into hydraulic properties was undertaken using a k-means cluster analysis. Results demonstrate that the combination of hydraulic and geophysical tomographic data is a promising approach to improve hydrogeophysical site characterization.
Time Dependent Density Functional Theory An introduction
Botti, Silvana
Time Dependent Density Functional Theory An introduction Francesco Sottile LSI, Ecole Polytechnique (ETSF) Time Dependent Density Functional Theory Palaiseau, 7 February 2012 1 / 32 #12;Outline 1 Frontiers 4 Perspectives and Resources Francesco Sottile (ETSF) Time Dependent Density Functional Theory
Time Dependent Density Functional Theory An Introduction
Botti, Silvana
Time Dependent Density Functional Theory An Introduction Francesco Sottile Laboratoire des Solides) Belfast, 29 Jun 2007 Time Dependent Density Functional Theory Francesco Sottile #12;Intro Formalism Dependent Density Functional Theory Francesco Sottile #12;Intro Formalism Results Resources Outline 1
Time Dependent Density Functional Theory An introduction
Botti, Silvana
Time Dependent Density Functional Theory An introduction Francesco Sottile LSI, Ecole Polytechnique) Time Dependent Density Functional Theory Palaiseau, 26 May 2014 1 / 62 #12;Outline 1 Introduction: why and Resources Francesco Sottile (ETSF) Time Dependent Density Functional Theory Palaiseau, 26 May 2014 2 / 62
Teleseismic transmission and reflection tomography
Burdick, Scott A. (Scott Anthony)
2014-01-01T23:59:59.000Z
The aim of seismic tomography is to determine a model of Earth properties that best explain observed seismic data. In practice, the limitations placed on our observations and computational capabilities force us to make a ...
Cosmologies with a time dependent vacuum
Joan Sola
2011-02-09T23:59:59.000Z
The idea that the cosmological term, Lambda, should be a time dependent quantity in cosmology is a most natural one. It is difficult to conceive an expanding universe with a strictly constant vacuum energy density, namely one that has remained immutable since the origin of time. A smoothly evolving vacuum energy density that inherits its time-dependence from cosmological functions, such as the Hubble rate or the scale factor, is not only a qualitatively more plausible and intuitive idea, but is also suggested by fundamental physics, in particular by quantum field theory (QFT) in curved space-time. To implement this notion, is not strictly necessary to resort to ad hoc scalar fields, as usually done in the literature (e.g. in quintessence formulations and the like). A "running" Lambda term can be expected on very similar grounds as one expects (and observes) the running of couplings and masses with a physical energy scale in QFT. Furthermore, the experimental evidence that the equation of state of the dark energy could be evolving with time/redshift (including the possibility that it might currently behave phantom-like) suggests that a time-variable Lambda term (possibly accompanied by a variable Newton's gravitational coupling G=G(t)) could account in a natural way for all these features. Remarkably enough, a class of these models (the "new cosmon") could even be the clue for solving the old cosmological constant problem, including the coincidence problem.
Time dependent particle emission from fission products
Holloway, Shannon T [Los Alamos National Laboratory; Kawano, Toshihiko [Los Alamos National Laboratory; Moller, Peter [Los Alamos National Laboratory
2010-01-01T23:59:59.000Z
Decay heating following nuclear fission is an important factor in the design of nuclear facilities; impacting a variety of aspects ranging from cooling requirements to shielding design. Calculations of decay heat, often assumed to be a simple product of activity and average decay product energy, are complicated by the so called 'pandemonium effect'. Elucidated in the 1970's this complication arises from beta-decays feeding high-energy nuclear levels; redistributing the available energy between betas and gammas. Increased interest in improving the theoretical predictions of decay probabilities has been, in part, motivated by the recent experimental effort utilizing the Total Absorption Gamma-ray Spectrometer (TAGS) to determine individual beta-decay transition probabilities to individual nuclear levels. Accurate predictions of decay heating require a detailed understanding of these transition probabilities, accurate representation of particle decays as well as reliable predictions of temporal inventories from fissioning systems. We will discuss a recent LANL effort to provide a time dependent study of particle emission from fission products through a combination of Quasiparticle Random Phase Approximation (QRPA) predictions of beta-decay probabilities, statistical Hauser-Feshbach techniques to obtain particle and gamma-ray emissions in statistical Hauser-Feshbach and the nuclear inventory code, CINDER.
Topological Effects of Synaptic Time Dependent Plasticity
James R. Kozloski; Guillermo A. Cecchi
2010-03-19T23:59:59.000Z
We show that the local Spike Timing-Dependent Plasticity (STDP) rule has the effect of regulating the trans-synaptic weights of loops of any length within a simulated network of neurons. We show that depending on STDP's polarity, functional loops are formed or eliminated in networks driven to normal spiking conditions by random, partially correlated inputs, where functional loops comprise weights that exceed a non-zero threshold. We further prove that STDP is a form of loop-regulating plasticity for the case of a linear network comprising random weights drawn from certain distributions. Thus a notable local synaptic learning rule makes a specific prediction about synapses in the brain in which standard STDP is present: that under normal spiking conditions, they should participate in predominantly feed-forward connections at all scales. Our model implies that any deviations from this prediction would require a substantial modification to the hypothesized role for standard STDP. Given its widespread occurrence in the brain, we predict that STDP could also regulate long range synaptic loops among individual neurons across all brain scales, up to, and including, the scale of global brain network topology.
Time dependence of Hawking radiation entropy
Page, Don N., E-mail: profdonpage@gmail.com [Department of Physics, 4-181 CCIS, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada)
2013-09-01T23:59:59.000Z
If a black hole starts in a pure quantum state and evaporates completely by a unitary process, the von Neumann entropy of the Hawking radiation initially increases and then decreases back to zero when the black hole has disappeared. Here numerical results are given for an approximation to the time dependence of the radiation entropy under an assumption of fast scrambling, for large nonrotating black holes that emit essentially only photons and gravitons. The maximum of the von Neumann entropy then occurs after about 53.81% of the evaporation time, when the black hole has lost about 40.25% of its original Bekenstein-Hawking (BH) entropy (an upper bound for its von Neumann entropy) and then has a BH entropy that equals the entropy in the radiation, which is about 59.75% of the original BH entropy 4?M{sub 0}{sup 2}, or about 7.509M{sub 0}{sup 2} ? 6.268 10{sup 76}(M{sub 0}/M{sub s}un){sup 2}, using my 1976 calculations that the photon and graviton emission process into empty space gives about 1.4847 times the BH entropy loss of the black hole. Results are also given for black holes in initially impure states. If the black hole starts in a maximally mixed state, the von Neumann entropy of the Hawking radiation increases from zero up to a maximum of about 119.51% of the original BH entropy, or about 15.018M{sub 0}{sup 2} ? 1.254 10{sup 77}(M{sub 0}/M{sub s}un){sup 2}, and then decreases back down to 4?M{sub 0}{sup 2} = 1.049 10{sup 77}(M{sub 0}/M{sub s}un){sup 2}.
Time Dependent Density Functional Theory Application to Extended Systems
Botti, Silvana
Time Dependent Density Functional Theory Application to Extended Systems Francesco Sottile Facility (ETSF) Donostia, 25 July 2007 Time Dependent Density Functional Theory Francesco Sottile #12 Density Functional Theory Francesco Sottile #12;Linear Periodic systems ALDA The Quest for the Holy
Optimization Online - Constrained optimization in seismic reflection ...
F. Delbos
2004-07-07T23:59:59.000Z
Jul 7, 2004 ... Constrained optimization in seismic reflection tomography: an SQP augmented Lagrangian approach. F. Delbos (Frederic.Delbos ***at*** ifp.fr)
Time Dependent Density Functional Theory Applications, limitations and ... new frontiers
Botti, Silvana
Time Dependent Density Functional Theory Applications, limitations and ... new frontiers Francesco Spectroscopy Facility (ETSF) Vienna, 19 January 2007 1/55 Time Dependent Density Functional Theory Francesco Sottile #12;Time-Dependent Density Functional Theory Applications and results: The ETSF Outline 1 Time
EFFECTIVE MAXWELL EQUATIONS FROM TIME-DEPENDENT DENSITY FUNCTIONAL THEORY
Bigelow, Stephen
EFFECTIVE MAXWELL EQUATIONS FROM TIME-DEPENDENT DENSITY FUNCTIONAL THEORY WEINAN E, JIANFENG LU and magnetic fields are derived starting from time-dependent density functional theory. Effective permittivity with the density functional theory [24] instead of the many-body Schr¨odinger or Dirac equations. This is because
Time-dependent potential-functional embedding theory
Huang, Chen, E-mail: chenh@lanl.gov [Theoretical Division, Los Alamos National Laboratory, New Mexico 87544 (United States)] [Theoretical Division, Los Alamos National Laboratory, New Mexico 87544 (United States); Libisch, Florian [Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstrae 8-10/136, 1040 Vienna (Austria)] [Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstrae 8-10/136, 1040 Vienna (Austria); Peng, Qing [Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)] [Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Carter, Emily A., E-mail: eac@princeton.edu [Department of Mechanical and Aerospace Engineering and Chemistry, Program in Applied and Computational Mathematics, and Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544 (United States)
2014-03-28T23:59:59.000Z
We introduce a time-dependent potential-functional embedding theory (TD-PFET), in which atoms are grouped into subsystems. In TD-PFET, subsystems can be propagated by different suitable time-dependent quantum mechanical methods and their interactions can be treated in a seamless, first-principles manner. TD-PFET is formulated based on the time-dependent quantum mechanics variational principle. The action of the total quantum system is written as a functional of the time-dependent embedding potential, i.e., a potential-functional formulation. By exploiting the Runge-Gross theorem, we prove the uniqueness of the time-dependent embedding potential under the constraint that all subsystems share a common embedding potential. We derive the integral equation that such an embedding potential needs to satisfy. As proof-of-principle, we demonstrate TD-PFET for a Na{sub 4} cluster, in which each Na atom is treated as one subsystem and propagated by time-dependent Kohn-Sham density functional theory (TDDFT) using the adiabatic local density approximation (ALDA). Our results agree well with a direct TDDFT calculation on the whole Na{sub 4} cluster using ALDA. We envision that TD-PFET will ultimately be useful for studying ultrafast quantum dynamics in condensed matter, where key regions are solved by highly accurate time-dependent quantum mechanics methods, and unimportant regions are solved by faster, less accurate methods.
The time-dependent Born-Oppenheimer approximation
Gianluca Panati; Herbert Spohn; Stefan Teufel
2007-12-28T23:59:59.000Z
We explain why the conventional argument for deriving the time-dependent Born-Oppenheimer approximation is incomplete and review recent mathematical results, which clarify the situation and at the same time provide a systematic scheme for higher order corrections. We also present a new elementary derivation of the correct second-order time-dependent Born-Oppenheimer approximation and discuss as applications the dynamics near a conical intersection of potential surfaces and reactive scattering.
Seismic Imaging of the Earth's Interior (LBNL Summer Lecture Series)
Romanowicz, Barbara
2011-04-28T23:59:59.000Z
Summer Lecture Series 2006: Earth scientist Barbara Romanowicz discusses how she explores the deep structure and dynamics of the Earth using seismic tomography.
Two-stream instability with time-dependent drift velocity
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Qin, Hong [PPPL; Davidson, Ronald C. [PPPL
2014-01-01T23:59:59.000Z
The classical two-stream instability driven by a constant relative drift velocity between two plasma components is extended to the case with time-dependent drift velocity. A solution method is developed to rigorously define and calculate the instability growth rate for linear perturbations relative to the time-dependent unperturbed two-stream motions. Stability diagrams for the oscillating two-stream instability are presented over a large region of parameter space. It is shown that the growth rate for the classical two-stream instability can be significantly reduced by adding an oscillatory component to the relative drift velocity.
Theoretical and Numerical Analysis of Polarization for Time Dependent Radiative
Bal, Guillaume
transport equation with respect to the polariza- tion parameters solve the matrix-valued radiative transferTheoretical and Numerical Analysis of Polarization for Time Dependent Radiative Transfer Equations@math.stanford.edu Abstract We consider the matrix-valued radiative transfer equations for the Stokes param- eters
Effective Maxwell equations from time-dependent density functional theory
Weinan E; Jianfeng Lu; Xu Yang
2010-10-23T23:59:59.000Z
The behavior of interacting electrons in a perfect crystal under macroscopic external electric and magnetic fields is studied. Effective Maxwell equations for the macroscopic electric and magnetic fields are derived starting from time-dependent density functional theory. Effective permittivity and permeability coefficients are obtained.
Time dependent solution for acceleration of tau-leaping
Fu, Jin, E-mail: iamfujin@hotmail.com [Department of Computer Science, University of California, Santa Barbara (United States)] [Department of Computer Science, University of California, Santa Barbara (United States); Wu, Sheng, E-mail: sheng@cs.ucsb.edu [Department of Computer Science, University of California, Santa Barbara (United States)] [Department of Computer Science, University of California, Santa Barbara (United States); Petzold, Linda R., E-mail: petzold@cs.ucsb.edu [Department of Computer Science, University of California, Santa Barbara (United States)
2013-02-15T23:59:59.000Z
The tau-leaping method is often effective for speeding up discrete stochastic simulation of chemically reacting systems. However, when fast reactions are involved, the speed-up for this method can be quite limited. One way to address this is to apply a stochastic quasi-steady state assumption. However we must be careful when using this assumption. If the fast subsystem cannot reach a steady distribution fast enough, the quasi-steady-state assumption will propagate error into the simulation. To avoid these errors, we propose to use the time dependent solution rather than the quasi-steady-state. Generally speaking, the time dependent solution is not easy to derive for an arbitrary network. However, for some common motifs we do have time dependent solutions. We derive the time dependent solutions for these motifs, and then show how they can be used with tau-leaping to achieve substantial speed-ups, including for a realistic model of blood coagulation. Although the method is complicated, we have automated it.
Exponential Fermi acceleration in general time-dependent billiards
Benjamin Batisti?
2014-04-07T23:59:59.000Z
It is shown, that under very general conditions, a generic time-dependent billiard, for which a phase-space of corresponding static (frozen) billiards is of the mixed type, exhibits the exponential Fermi acceleration in the adiabatic limit. The velocity dynamics in the adiabatic regime is represented as an integral over a path through the abstract space of invariant components of corresponding static billiards, where the paths are generated probabilistically in terms of transition-probability matrices. We study the statistical properties of possible paths and deduce the conditions for the exponential Fermi acceleration. The exponential Fermi acceleration and theoretical concepts presented in the paper are demonstrated numerically in four different time-dependent billiards.
Adiabatic Decoupling and Time-Dependent Born-Oppenheimer Theory
Herbert Spohn; Stefan Teufel
2001-11-09T23:59:59.000Z
We reconsider the time-dependent Born-Oppenheimer theory with the goal to carefully separate between the adiabatic decoupling of a given group of energy bands from their orthogonal subspace and the semiclassics within the energy bands. Band crossings are allowed and our results are local in the sense that they hold up to the first time when a band crossing is encountered. The adiabatic decoupling leads to an effective Schroedinger equation for the nuclei, including contributions from the Berry connection.
Time-dependent first-principles approaches to PV materials
Miyamoto, Yoshiyuki [Nanosystem Research Institute, AIST, Central 2, 1-1-1, Umezono, Tsukuba, 305-8568 (Japan)
2013-12-10T23:59:59.000Z
Computational scheme for designing photovoltaic (PV) materials is presented. First-principles electron dynamics of photo-excitation and subsequent electron-hole splitting is performed based on the time-dependent density functional theory. Photo-induced enhancement of dipole moment was observed in a polar crystal and a donor-acceptor molecular pair. These experiences will pave a way to design PV material from first-principles simulations.
Time-dependent HF approach to SHE dynamics
A. S. Umar; V. E. Oberacker
2014-12-04T23:59:59.000Z
We employ the time-dependent Hartree-Fock (TDHF) method to study various aspects of the reactions utilized in searches for superheavy elements. These include capture cross-sections, quasifission, prediction of $P_{\\mathrm{CN}}$, and other interesting dynamical quantities. We show that the microscopic TDHF approach provides an important tool to shed some light on the nuclear dynamics leading to the formation of superheavy elements.
Time-Dependent Delayed Signatures From Energetic Photon Interrogations
D. R. Norman; J. L. Jones; B. W. Blackburn; S. M. Watson; K. J. Haskell
2006-08-01T23:59:59.000Z
A pulsed photonuclear interrogation environment is rich with time-dependent, material specific, radiation signatures. Exploitation of these signatures in the delayed time regime (>1us after the photon flash) has been explored through various detection schemes to identify both shielded nuclear material and nitrogen-based explosives. Prompt emission may also be invaluable for these detection methods. Numerical and experimental results, which utilize specially modified neutron and HpGe detectors, are presented which illustrate the efficacy of utilizing these time-dependent signatures. Optimal selection of the appropriate delayed time window is essential to these pulsed inspection systems. For explosive (ANFO surrogate) detection, both numerical models and experimental results illustrate that nearly all 14N(n,y) reactions have occurred within l00 us after the flash. In contrast, however, gamma-ray and neutron signals for nuclear material detection require a delay of several milliseconds after the photon pulse. In this case, any data collected too close to the photon flash results in a spectrum dominated by high energy signals which make it difficult to discern signatures from nuclear material. Specifically, two short-lived, high-energy fission fragments (97Ag(T1/2=5.1 s) and 94Sr(T1/2=75.2 s)) were measured and identified as indicators of the presence of fissionable material. These developments demonstrate that a photon inspection environment can be exploited for time-dependent, material specific signatures through the proper operation of specially modified detectors.
Time dependence of delayed neutron emission for fissionable isotope identification
Kinlaw, M.T.; Hunt, A.W. [Idaho Accelerator Center, Idaho State University, Pocatello, Idaho 83209-8263 (United States); Department of Physics, Idaho State University, Pocatello, Idaho 83209-8106 (United States)
2005-06-20T23:59:59.000Z
The time dependence of delayed neutron emission was examined as a method of fissionable isotope identification. A pulsed bremsstrahlung photon beam was used to induce photofission reactions in {sup 238}U, {sup 232}Th, and {sup 239}Pu targets. The resulting delayed neutron emission was recorded between irradiating pulses and is a well-known technique for fissionable material detection. Monitoring the decay of delayed neutron emission between irradiating pulses demonstrates the ability to not only detect the presence of fissionable materials, but also to identify which fissionable isotope is present.
Time-dependent density-functional theory for open systems
Xiao Zheng; Fan Wang; Chi Yung Yam; Yan Mo; GuanHua Chen
2007-02-27T23:59:59.000Z
By introducing the self-energy density functionals for the dissipative interactions between the reduced system and its environment, we develop a time-dependent density-functional theory formalism based on an equation of motion for the Kohn-Sham reduced single-electron density matrix of the reduced system. Two approximate schemes are proposed for the self-energy density functionals, the complete second order approximation and the wide-band limit approximation. A numerical method based on the wide-band limit approximation is subsequently developed and implemented to simulate the steady and transient current through various realistic molecular devices. Simulation results are presented and discussed.
Electromagnetic Field Quantization in Time-Dependent Dielectric Media
Xiao-Min Bei; Zhong-Zhu Liu
2011-04-18T23:59:59.000Z
We present a Gupta-Bleuler quantization scheme for the electromagnetic field in time-dependent dielectric media. Starting from the Maxwell equations, a generalization of the Lorentz gauge condition adapted to time varying dielectrics is derived. Using this gauge, a Gupta-Bleuler approach to quantize all polarizations of the radiation field and the corresponding constraint condition are introduced. This new approach is different from the quantized electromagnetic field in vacuum in the sense that here the contributions of unphysical photons cannot be thoroughly eliminated, which further lead to a surface charge density. Finally, a discussion of potential experimental tests and possible implication is also made.
ROUTING IN TIME-DEPENDENT AND LABELED NETWORKS
Barrett, C. L. (Christopher L.); Bisset, K. R. (Keith R.); Jacob, R. (Riko); Konjevod, G. (Goran); Marathe, M. V. (Madhav V.)
2001-01-01T23:59:59.000Z
We study routing problems in time-dependent and edge and/or vertex-labeled transportation networks. Labels allow one to express a number of discrete properties of the edges and nodes. The main focus is a unified algorithm that efficiently solves a number of seemingly unrelated problems in transportation science. Experimental data gained from modeling practical situations suggest that the formalism allows interesting compromises between the conflicting goals of generality and efficiency. 1. We use edge/vertex labels in the framework of Formal Language Constrained Path Problems to handle discrete choice constraints. The label set is usually small and does not depend on the graph. Edge labels induct! path labels, which allows us to impose feasibility constraints on the set of paths considered as shortest path candidates. Second, we propose monotonic piecewise-linear traversal functions to represent the time-dependent aspect of link delays. The applications that can be modeled include scheduled transit and time-windows. 3. Third, we combine the above models and capture a variety of natural problems in transportatiou science such as time-window constrained trip-chaining. The results demonstrate the robustness of the proposed formalisms. As evidence for our claims of practical efficiency in a realistic setting, we report preliminary computational experience from TRANSIMS case studies of Portland, Oregon.
E-Print Network 3.0 - advancements seismic refraction Sample...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
19 Seismic Tomography Robert L. Nowack and Cuiping Li Summary: Ves Experiment Data In this example, seismic refraction data from the TomoVes experiment 54 is used to...
Subsystem real-time Time Dependent Density Functional Theory
Krishtal, Alisa; Pavanello, Michele
2015-01-01T23:59:59.000Z
We present the extension of Frozen Density Embedding (FDE) theory to real-time Time Dependent Density Functional Theory (rt-TDDFT). FDE a is DFT-in-DFT embedding method that allows to partition a larger Kohn-Sham system into a set of smaller, coupled Kohn-Sham systems. Additional to the computational advantage, FDE provides physical insight into the properties of embedded systems and the coupling interactions between them. The extension to rt-TDDFT is done straightforwardly by evolving the Kohn-Sham subsystems in time simultaneously, while updating the embedding potential between the systems at every time step. Two main applications are presented: the explicit excitation energy transfer in real time between subsystems is demonstrated for the case of the Na$_4$ cluster and the effect of the embedding on optical spectra of coupled chromophores. In particular, the importance of including the full dynamic response in the embedding potential is demonstrated.
Time-dependent current density functional theory on a lattice
I. V. Tokatly
2010-11-11T23:59:59.000Z
A rigorous formulation of time-dependent current density functional theory (TDCDFT) on a lattice is presented. The density-to-potential mapping and the ${\\cal V}$-representability problems are reduced to a solution of a certain nonlinear lattice Schr\\"odinger equation, to which the standard existence and uniqueness results for nonliner differential equations are applicable. For two versions of the lattice TDCDFT we prove that any continuous in time current density is locally ${\\cal V}$-representable (both interacting and noninteracting), provided in the initial state the local kinetic energy is nonzero everywhere. In most cases of physical interest the ${\\cal V}$-representability should also hold globally in time. These results put the application of TDCDFT to any lattice model on a firm ground, and open a way for studying exact properties of exchange correlation potentials.
Time-dependent resonant magneto-optical rotation
Dziczek, Dariusz
2015-01-01T23:59:59.000Z
Results of a fairly straightforward experiment on resonant magneto-optical rotation by rubidium-87 atoms revealed strong time-dependence of the polarization plane of light emerging from atomic vapors following a sudden irradiation with a laser beam. The rotation of the plane appears as a not direct consequence of the influence of the magnetic field on atoms. Reported measurements conducted using a vapor cell without any buffer gas or an anti-relaxation wall coating show that transmitted light has initially the same (linear) polarization as the incident one. Rotation of the polarization plane caused by an axial magnetic field develops in time scales similar to the pace of establishing the optical pumping/relaxation equilibrium in the atomic ensemble. The traditional passive Faraday rotation picture providing working description for the resonant magneto-optical effects in steady-state conditions does not explain the observed sequence of evolution of the polarization. The picture has to be augmented with analysi...
Time Dependent Hadronization via HERMES and EMC Data Consistency
K. Gallmeister; U. Mosel
2008-02-05T23:59:59.000Z
Using QCD-inspired time dependent cross sections for pre-hadrons we provide a combined analysis of available experimental data on hadron attenuation in DIS off nuclei as measured by HERMES with 12 and 27 GeV and by EMC with 100 and 280 GeV lepton beam energies. We extract the complete four-dimensional evolution of the pre-hadrons using the JETSET-part of PYTHIA. We find a remarkable sensitivity of nuclear attenuation data to the details of the time-evolution of cross sections. Only cross sections evolving linearly in time describe the available data in a wide kinematical regime. Predictions for experimental conditions at JLAB (5 and 12 GeV beam energies) are included.
E-Print Network 3.0 - ambient seismic noise Sample Search Results
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
.M. Shapiro, and Y. Yang, Processing seismic ambient noise data to obtain reliable broad-band surface wave... wave tomography of the ... Source: Ritzwolle, Mike -...
Mass fluctuations and diffusion in time-dependent random environments
Giorgio Krstulovic; Rehab Bitane; Jeremie Bec
2012-03-27T23:59:59.000Z
A mass ejection model in a time-dependent random environment with both temporal and spatial correlations is introduced. When the environment has a finite correlation length, individual particle trajectories are found to diffuse at large times with a displacement distribution that approaches a Gaussian. The collective dynamics of diffusing particles reaches a statistically stationary state, which is characterized in terms of a fluctuating mass density field. The probability distribution of density is studied numerically for both smooth and non-smooth scale-invariant random environments. A competition between trapping in the regions where the ejection rate of the environment vanishes and mixing due to its temporal dependence leads to large fluctuations of mass. These mechanisms are found to result in the presence of intermediate power-law tails in the probability distribution of the mass density. For spatially differentiable environments, the exponent of the right tail is shown to be universal and equal to -3/2. However, at small values, it is found to depend on the environment. Finally, spatial scaling properties of the mass distribution are investigated. The distribution of the coarse-grained density is shown to posses some rescaling properties that depend on the scale, the amplitude of the ejection rate, and the H\\"older exponent of the environment.
Time Dependent Hadronic Modeling of Flat Spectrum Radio Quasars
Diltz, Christopher; Fossati, Giovanni
2015-01-01T23:59:59.000Z
We introduce a new time-dependent lepto-hadronic model for blazar emission that takes into account the radiation emitted by secondary particles, such as pions and muons, from photo hadronic interactions. Starting from a baseline parameter set guided by a fit to the spectral energy distribution of the blazar 3C 279, we perform a parameter study to investigate the effects of perturbations of the input parameters to mimic different flaring events to study the resulting lightcurves in the optical, X-ray, high energy (HE: E > 100 MeV) and very-high-energy (VHE: E > 100 GeV) gamma-rays as well as the neutrino emission associated with charged-pion and muon decay. We find that flaring events from an increase in the efficiency of Fermi II acceleration will produce a positive correlation between all bandpasses and a marked plateau in the HE gamma-ray lightcurve. We also predict a distinctive dip in the HE lightcurve for perturbations caused by a change in the proton injection spectral index. These plateaus / dips could...
Mukamel, Shaul
Intermolecular forces and nonbonded interactions: Superoperator nonlinear time-dependent density-functional-theory oscillator (CEO) eigenmodes of linearized time-dependent density-functional theory. Closed expressions response [3538] with time- dependent density-functional theory (TDDFT) [21,3943] to develop a systematic
Gowan, Joshua Smith
2012-07-16T23:59:59.000Z
River. Three seismic lines were surveyed, one across Cottonmouth Creek, and two parallel to the creek on either side. The data from the two parallel lines were processed using the 2-D seismic refraction tomography algorithm of Zelt and Smith...
Ambient noise seismic imaging Journal: McGraw Hill 2008 Yearbook of Science & Technology
Ritzwolle, Mike
ForReview Ambient noise seismic imaging Journal: McGraw Hill 2008 Yearbook of Science & Technology List of Authors: Ritzwoller, Michael Keywords: ambient noise, seismology, seismic tomography, Rayleigh wave, Love wave, surface wave Abstract: A recent innovation in seismic imaging based on using long time
Time Dependent Priority Queues Author(s): Leonard Kleinrock and Roy P. Finkelstein
Kleinrock, Leonard
Time Dependent Priority Queues Author(s): Leonard Kleinrock and Roy P. Finkelstein Source DEPENDENT PRIORITY QUEUES Leonard Kileinrock Universityof California,Los Angeles, California and Roy P
Advanced Seismic While Drilling System
Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser
2008-06-30T23:59:59.000Z
A breakthrough has been discovered for controlling seismic sources to generate selectable low frequencies. Conventional seismic sources, including sparkers, rotary mechanical, hydraulic, air guns, and explosives, by their very nature produce high-frequencies. This is counter to the need for long signal transmission through rock. The patent pending SeismicPULSER{trademark} methodology has been developed for controlling otherwise high-frequency seismic sources to generate selectable low-frequency peak spectra applicable to many seismic applications. Specifically, we have demonstrated the application of a low-frequency sparker source which can be incorporated into a drill bit for Drill Bit Seismic While Drilling (SWD). To create the methodology of a controllable low-frequency sparker seismic source, it was necessary to learn how to maximize sparker efficiencies to couple to, and transmit through, rock with the study of sparker designs and mechanisms for (a) coupling the sparker-generated gas bubble expansion and contraction to the rock, (b) the effects of fluid properties and dynamics, (c) linear and non-linear acoustics, and (d) imparted force directionality. After extensive seismic modeling, the design of high-efficiency sparkers, laboratory high frequency sparker testing, and field tests were performed at the University of Texas Devine seismic test site. The conclusion of the field test was that extremely high power levels would be required to have the range required for deep, 15,000+ ft, high-temperature, high-pressure (HTHP) wells. Thereafter, more modeling and laboratory testing led to the discovery of a method to control a sparker that could generate low frequencies required for deep wells. The low frequency sparker was successfully tested at the Department of Energy Rocky Mountain Oilfield Test Center (DOE RMOTC) field test site in Casper, Wyoming. An 8-in diameter by 26-ft long SeismicPULSER{trademark} drill string tool was designed and manufactured by TII. An APS Turbine Alternator powered the SeismicPULSER{trademark} to produce two Hz frequency peak signals repeated every 20 seconds. Since the ION Geophysical, Inc. (ION) seismic survey surface recording system was designed to detect a minimum downhole signal of three Hz, successful performance was confirmed with a 5.3 Hz recording with the pumps running. The two Hz signal generated by the sparker was modulated with the 3.3 Hz signal produced by the mud pumps to create an intense 5.3 Hz peak frequency signal. The low frequency sparker source is ultimately capable of generating selectable peak frequencies of 1 to 40 Hz with high-frequency spectra content to 10 kHz. The lower frequencies and, perhaps, low-frequency sweeps, are needed to achieve sufficient range and resolution for realtime imaging in deep (15,000 ft+), high-temperature (150 C) wells for (a) geosteering, (b) accurate seismic hole depth, (c) accurate pore pressure determinations ahead of the bit, (d) near wellbore diagnostics with a downhole receiver and wired drill pipe, and (e) reservoir model verification. Furthermore, the pressure of the sparker bubble will disintegrate rock resulting in an increased overall rates of penetration. Other applications for the SeismicPULSER{trademark} technology are to deploy a low-frequency source for greater range on a wireline for Reverse Vertical Seismic Profiling (RVSP) and Cross-Well Tomography. Commercialization of the technology is being undertaken by first contacting stakeholders to define the value proposition for rig site services utilizing SeismicPULSER{trademark} technologies. Stakeholders include national oil companies, independent oil companies, independents, service companies, and commercial investors. Service companies will introduce a new Drill Bit SWD service for deep HTHP wells. Collaboration will be encouraged between stakeholders in the form of joint industry projects to develop prototype tools and initial field trials. No barriers have been identified for developing, utilizing, and exploiting the low-frequency SeismicPULSER{trademark} source in a
Iyengar, Srinivasan S.
methodologies employed in gas- phase1 and condensed-phase chemical dynamics.2 When uti- lized, the BornShannon Entropy Based Time-Dependent Deterministic Sampling for Efficient "On-the-Fly" Quantum, United States Received October 14, 2010 Abstract: A new set of time-dependent deterministic sampling
Adiabatic Decoupling and Time-Dependent Born-Oppenheimer Herbert Spohn and Stefan Teufel
Adiabatic Decoupling and Time-Dependent Born-Oppenheimer Theory Herbert Spohn and Stefan Teufel: spohn@ma.tum.de, teufel@ma.tum.de July 9, 2001 Abstract We reconsider the time-dependent Born-Oppenheimer , and heavy nuclei, mass M which depends on the type of nucleus. Born and Oppenheimer [3] wanted to explain
A Time--Dependent Born--Oppenheimer Approximation with Exponentially Small Error Estimates
A Time--Dependent Born--Oppenheimer Approximation with Exponentially Small Error Estimates George A accurate time--dependent Born-- Oppenheimer approximation for molecular quantum mechanics. We study is the usual Born--Oppenheimer expansion parameter ffl, where ffl 4 is the ratio of the electron mass divided
Author's personal copy The time dependent vehicle routing problem with time windows
Bertini, Robert L.
: (a) formulate a time dependent vehicle routing problem with a general cost function and time windowAuthor's personal copy The time dependent vehicle routing problem with time windows: Benchmark College of Engineering and Computer Science, PO Box 0751, Portland State University, Portland, OR 97207
On the Floquet formulation of time-dependent density functional theory
On the Floquet formulation of time-dependent density functional theory Neepa T. Maitra *, Kieron by Elsevier Science B.V. Ground-state density functional theory (DFT) [1] has been tremendously successful generalized ground-state density functional theory to time-dependent problems (TDDFT) [4]. TDDFT has become
Spin-Multiplet Energies from Time-Dependent Density-Functional Theory
Gross, E.K.U.
Spin-Multiplet Energies from Time-Dependent Density-Functional Theory M. Petersilka and E, density-functional theory (DFT) [1, 2, 3, 4, 5] has enjoyed increas- ing popularity in the #12;eld energies which is based on time-dependent density- functional theory (TDDFT) [26]. In the linear response
Phase-space explorations in time-dependent density functional theory A.K. Rajam a
Phase-space explorations in time-dependent density functional theory A.K. Rajam a , Paul Hessler b online xxxx Keywords: Time-dependent density functional theory Phase-space Momentum-distributions Density to phase-space densities, discuss some formal aspects of such a ``phase-space density functional theory
Efficient computation of the coupling matrix in Time-Dependent Density Functional Theory
Lorin, Emmanuel
Efficient computation of the coupling matrix in Time-Dependent Density Functional Theory Emmanuel arising in time-dependent density functional theory. The two important aspects involved, solution- dopotentials within density functional theory (DFT) [1]. This approach has been used to predict mechanical
Time-dependent Density Functional Theory Miguel A. L. Marques and E. K. U. Gross
Wu, Zhigang
Time-dependent Density Functional Theory Miguel A. L. Marques and E. K. U. Gross 1 Introduction Time-dependent density-functional theory (TDDFT) extends the basic ideas of ground-state density-functional is the one-body electron density, n(r, t). The advantages are clear: The many-body wave-function, a function
Time dependence of particle creation from accelerating mirrors Michael R. R. Good*
Anderson, Paul R.
time resolution of the particle production process can be obtained. DOI: 10.1103/PhysRevD.88 that has been largely unexplored is the study of the time dependence of the particle production process dependence of creation. One way to explore the time dependence of particle production is through the use
R. Quittmeyer
2006-09-25T23:59:59.000Z
This technical work plan (TWP) describes the efforts to develop and confirm seismic ground motion inputs used for preclosure design and probabilistic safety 'analyses and to assess the postclosure performance of a repository at Yucca Mountain, Nevada. As part of the effort to develop seismic inputs, the TWP covers testing and analyses that provide the technical basis for inputs to the seismic ground-motion site-response model. The TWP also addresses preparation of a seismic methodology report for submission to the U.S. Nuclear Regulatory Commission (NRC). The activities discussed in this TWP are planned for fiscal years (FY) 2006 through 2008. Some of the work enhances the technical basis for previously developed seismic inputs and reduces uncertainties and conservatism used in previous analyses and modeling. These activities support the defense of a license application. Other activities provide new results that will support development of the preclosure, safety case; these results directly support and will be included in the license application. Table 1 indicates which activities support the license application and which support licensing defense. The activities are listed in Section 1.2; the methods and approaches used to implement them are discussed in more detail in Section 2.2. Technical and performance objectives of this work scope are: (1) For annual ground motion exceedance probabilities appropriate for preclosure design analyses, provide site-specific seismic design acceleration response spectra for a range of damping values; strain-compatible soil properties; peak motions, strains, and curvatures as a function of depth; and time histories (acceleration, velocity, and displacement). Provide seismic design inputs for the waste emplacement level and for surface sites. Results should be consistent with the probabilistic seismic hazard analysis (PSHA) for Yucca Mountain and reflect, as appropriate, available knowledge on the limits to extreme ground motion at Yucca Mountain. (2) For probabilistic analyses supporting the demonstration of compliance with preclosure performance objectives, provide a mean seismic hazard curve for the surface facilities area. Results should be consistent with the PSHA for Yucca Mountain and reflect, as appropriate, available knowledge on the limits to extreme ground motion at Yucca Mountain. (3) For annual ground motion exceedance probabilities appropriate for postclosure analyses, provide site-specific seismic time histories (acceleration, velocity, and displacement) for the waste emplacement level. Time histories should be consistent with the PSHA and reflect available knowledge on the limits to extreme ground motion at Yucca Mountain. (4) In support of ground-motion site-response modeling, perform field investigations and laboratory testing to provide a technical basis for model inputs. Characterize the repository block and areas in which important-to-safety surface facilities will be sited. Work should support characterization and reduction of uncertainties in inputs to ground-motion site-response modeling. (5) On the basis of rock mechanics, geologic, and seismic information, determine limits on extreme ground motion at Yucca Mountain and document the technical basis for them. (6) Update the ground-motion site-response model, as appropriate, on the basis of new data. Expand and enhance the technical basis for model validation to further increase confidence in the site-response modeling. (7) Document seismic methodologies and approaches in reports to be submitted to the NRC. (8) Address condition reports.
Second Quantized Scalar QED in Homogeneous Time-Dependent Electromagnetic Fields
Sang Pyo Kim
2014-09-04T23:59:59.000Z
We formulate the second quantization of a charged scalar field in homogeneous, time-dependent electromagnetic fields, in which the Hamiltonian is an infinite system of decoupled, time-dependent oscillators for electric fields, but it is another infinite system of coupled, time-dependent oscillators for magnetic fields. We then employ the quantum invariant method to find various quantum states for the charged field. For time-dependent electric fields, a pair of quantum invariant operators for each oscillator with the given momentum plays the role of the time-dependent annihilation and the creation operators, constructs the exact quantum states, and gives the vacuum persistence amplitude as well as the pair-production rate. We also find the quantum invariants for the coupled oscillators for the charged field in time-dependent magnetic fields and advance a perturbation method when the magnetic fields change adiabatically. Finally, the quantum state and the pair production are discussed when a time-dependent electric field is present in parallel to the magnetic field.
Brief review related to the foundations of time-dependent density functional theory
Thomas A. Niehaus; Norman H. March
2009-04-28T23:59:59.000Z
The electron density $n(\\rb,t)$, which is the central tool of time-dependent density functional theory, is presently considered to be derivable from a one-body time-dependent potential $V(\\rb,t)$, via one-electron wave functions satisfying a time- dependent Schr\\"{o}dinger equation. This is here related via a generalized equation of motion to a Dirac density matrix now involving $t$. Linear response theory is then surveyed, with a special emphasis on the question of causality with respect to the density dependence of the potential. Extraction of $V(\\rb,t)$ for solvable models is also proposed.
Boyarinov, V. F.; Kondrushin, A. E.; Fomichenko, P. A. [National Research Center, Kurchatov Inst., Kurchatov Sq. 1, Moscow (Russian Federation)
2012-07-01T23:59:59.000Z
Finite-difference time-dependent equations of Surface Harmonics method have been obtained for plane geometry. Verification of these equations has been carried out by calculations of tasks from 'Benchmark Problem Book ANL-7416'. The capacity and efficiency of the Surface Harmonics method have been demonstrated by solution of the time-dependent neutron transport equation in diffusion approximation. The results of studies showed that implementation of Surface Harmonics method for full-scale calculations will lead to a significant progress in the efficient solution of the time-dependent neutron transport problems in nuclear reactors. (authors)
A FINITE ELEMENT MODEL FOR THE TIME-DEPENDENT JOULE HEATING PROBLEM*
Larsson, Stig
.3) 0 system models the electric heating* *ial differential equation describing the electric heating of a conducting body. We prove err* *or A FINITE ELEMENT MODEL FOR THE TIME-DEPENDENT JOULE HEATING PROBLEM
Optimal adaptive routing and traffic assignment in stochastic time-dependent networks
Gao, Song, 1976-
2005-01-01T23:59:59.000Z
A stochastic time-dependent (STD) network is defined by treating all link travel times at all time periods as random variables, with possible time-wise and link-wise stochastic dependency. A routing policy is a decision ...
UIUC Collector Erosion and Optical Lifetime Project Results: Time Dependent Exposures
Spila, Timothy P.
UIUC Collector Erosion and Optical Lifetime Project Results: Time Dependent Exposures Darren A is the lifetime of collector optics. Frequent replacement of the mirror system will detract from the economic
Simms, Frank Robert
1973-01-01T23:59:59.000Z
TIME DEPENDENT ELLIPSOIDAL RESIDUAL VELOCITY DISTRIBUTIONS FOR SELF-GRAVITATING SYSTEMS OF COLLISIONLESS PARTICLES A Thesis by FRANK ROBERT SINS Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE May 1973 Major Subject: Physi cs TIME DEPENDENT ELLIPSOIDAL RESIDUAL VELOCITY DISTRIBUTIONS FOR SELF-GRAVITATING SYSTEMS OF COLLISIONLESS PARTICLES A Thesis by FRANK ROBERT SIMMS Approved as to style...
Phase space theory of Bose-Einstein condensates and time-dependent modes
B. J. Dalton
2012-07-20T23:59:59.000Z
A phase space theory approach for treating dynamical behaviour of Bose-Einstein condensates applicable to situations such as interferometry with BEC in time-dependent double well potentials is presented. Time-dependent mode functions are used, chosen so that one, two,.. highly occupied modes describe well the physics of interacting condensate bosons in time dependent potentials at well below the transition temperature. Time dependent mode annihilation, creation operators are represented by time dependent phase variables, but time independent total field annihilation, creation operators are represented by time independent field functions. Two situations are treated, one (mode theory) is where specific mode annihilation, creation operators and their related phase variables and distribution functions are dealt with, the other (field theory) is where only field creation, annihilation operators and their related field functions and distribution functionals are involved. The paper focuses on the hybrid approach, where the modes are divided up between condensate (highly occupied) modes and non-condensate (sparsely occupied) modes. It is found that there are extra terms in the Ito stochastic equations both for the stochastic phases and stochastic fields, involving coupling coefficients defined via overlap integrals between mode functions and their time derivatives. For the hybrid approach both the Fokker-Planck and functional Fokker-Planck equations differ from those derived via the correspondence rules, the drift vectors are unchanged but the diffusion matrices contain additional terms involving the coupling coefficients. Results are also presented for the combined approach where all the modes are treated as one set.
Simons, Frederik Jozef Maurits, 1974-
2002-01-01T23:59:59.000Z
In this thesis, I explore the geophysical structure and evolution of the Australian continental lithosphere. I combine insights from isotropic and anisotropic seismic surface-wave tomography with an analysis of the anisotropy ...
High-fidelity numerical solution of the time-dependent Dirac equation
Almquist, Martin, E-mail: martin.almquist@it.uu.se [Uppsala University, Department of Information Technology, Lgerhyddsvgen 2, 752 37 Uppsala (Sweden); Mattsson, Ken [Uppsala University, Department of Information Technology, Lgerhyddsvgen 2, 752 37 Uppsala (Sweden); Edvinsson, Tomas [Uppsala University, Department of Chemistry ngstrm Laboratory, Lgerhyddsvgen 1, 751 21 Uppsala (Sweden)
2014-04-01T23:59:59.000Z
A stable high-order accurate finite difference method for the time-dependent Dirac equation is derived. Grid-convergence studies in 1-D and 3-D corroborate the analysis. The method is applied to time-resolved quantum tunneling where a comparison with the solution to the time-dependent Schrdinger equation in 1-D illustrates the differences between the two equations. In contrast to the conventional tunneling probability decay predicted by the Schrdinger equation, the Dirac equation exhibits Klein tunneling. Solving the time-dependent Dirac equation with a step potential in 3-D reveals that particle spin affects the tunneling process. The observed spin-dependent reflection allows for a new type of spin-selective measurements.
Criteria for shear banding in time-dependent flows of complex fluids
Robyn L. Moorcroft; Suzanne M. Fielding
2013-01-21T23:59:59.000Z
Within a highly generalised theoretical framework for the flow properties of complex fluids, we study the onset of shear banding in the three most common time-dependent experimental protocols: step stress, step strain and shear startup. By means of a linear stability analysis we derive a fluid-universal criterion for the onset of banding, separately for each protocol, that depends only on the shape of the experimentally measured time-dependent rheological response function, independent of the constitutive law and internal state variables of the particular fluid in question. Our predictions thus have the same status, in these time-dependent flows, as the widely known criterion for banding in steady state (of negatively sloping shear stress vs. shear rate). We support them with simulations of the rolie-poly model of polymeric fluids, the soft glassy rheology model, and a fluidity model.
A Time-Dependent Born-Oppenheimer Approximation with Exponentially Small Error Estimates
George A. Hagedorn; Alain Joye
2000-05-03T23:59:59.000Z
We present the construction of an exponentially accurate time-dependent Born-Oppenheimer approximation for molecular quantum mechanics. We study molecular systems whose electron masses are held fixed and whose nuclear masses are proportional to $\\epsilon^{-4}$, where $\\epsilon$ is a small expansion parameter. By optimal truncation of an asymptotic expansion, we construct approximate solutions to the time-dependent Schr\\"odinger equation that agree with exact normalized solutions up to errors whose norms are bounded by $\\ds C \\exp(-\\gamma/\\epsilon^2)$, for some C and $\\gamma>0$.
Models with time-dependent parameters using transform methods: application to Heston's model
Elices, A
2007-01-01T23:59:59.000Z
This paper presents a methodology to introduce time-dependent parameters for a wide family of models preserving their analytic tractability. This family includes hybrid models with stochastic volatility, stochastic interest-rates, jumps and their non-hybrid counterparts. The methodology is applied to Heston's model. A bootstrapping algorithm is presented for calibration. A case study works out the calibration of the time-dependent parameters to the volatility surface of the Eurostoxx 50 index. The methodology is also applied to the analytic valuation of forward start vanilla options driven by Heston's model. This result is used to explore the forward skew of the case study.
Time-dependent analytic solutions of quasi-steady shocks with cooling
P. Lesaffre
2007-05-22T23:59:59.000Z
I present time-dependent analytical solutions of quasi-steady shocks with cooling, where quasi-steady shocks are objects composed of truncated steady-state models of shocks at any intermediate time. I compare these solutions to simulations with a hydrodynamical code and finally discuss quasi-steady shocks as approximations to time-dependent shocks. Large departure of both the adiabatic and steady-state approximations from the quasi-steady solution emphasise the importance of the cooling history in determining the trajectory of a shock.
Climate Projections Using Bayesian Model Averaging and Space-Time Dependence
Haran, Murali
Climate Projections Using Bayesian Model Averaging and Space-Time Dependence K. Sham Bhat, Murali Haran, Adam Terando, and Klaus Keller. Abstract Projections of future climatic changes are a key input to the design of climate change mitiga- tion and adaptation strategies. Current climate change projections
A Time{Dependent Born{Oppenheimer Approximation with Exponentially Small Error Estimates
Joye, Alain
A Time{Dependent Born{Oppenheimer Approximation with Exponentially Small Error Estimates George A{ Oppenheimer approximation for molecular quantum mechanics. We study molecular systems whose electron masses. The small parameter that governs the approximation is the usual Born{Oppenheimer expansion parameter #15
A Time--Dependent Born--Oppenheimer Approximation with Exponentially Small Error Estimates
Hagedorn, George A.
A Time--Dependent Born--Oppenheimer Approximation with Exponentially Small Error Estimates George A--dependent Born-- Oppenheimer approximation for molecular quantum mechanics. We study molecular systems whose parameter that governs the approximation is the usual Born--Oppenheimer expansion parameter #, where # 4
The AC Stark E#ect, Time--Dependent Born--Oppenheimer Approximation, and
Rousse, Vidian
The AC Stark E#ect, Time--Dependent Born--Oppenheimer Approximation, and Franck--Condon Factors by a classical oscillatory electric field, and we employ the Born--Oppenheimer approximation for the molecule. We-- Condon factors that we compute explicitly to leading order in the Born--Oppenheimer parameter. We also
The AC Stark E ect, Time{Dependent Born{Oppenheimer Approximation, and
Hagedorn, George A.
The AC Stark E#11;ect, Time{Dependent Born{Oppenheimer Approximation, and Franck{Condon Factors the laser pulse by a classical oscillatory electric #12;eld, and we employ the Born{Oppenheimer. These amplitudes contain Franck{ Condon factors that we compute explicitly to leading order in the Born{Oppenheimer
On the kinetic equation approach to pair production by time-dependent electric field
A. M. Fedotov; E. G. Gelfer; K. Yu. Korolev; S. A. Smolyansky
2010-08-12T23:59:59.000Z
We investigate the quantum kinetic approach to pair production from vacuum by time-dependent electric field. Equivalence between this approach and the more familiar S-matrix approach is explicitly established for both scalar and fermion cases. For the particular case of a constant electric field exact solution for kinetic equations is provided and the accuracy of low-density approximation is estimated.
VISUAL QUERY OF TIME-DEPENDENT 3D WEATHER IN A GLOBAL GEOSPATIAL
Shaw, Chris
1 VISUAL QUERY OF TIME-DEPENDENT 3D WEATHER IN A GLOBAL GEOSPATIAL ENVIRONMENT William Ribarsky and Spatial Analysis Technologies, Georgia Institute of Technology This Technical Report is a draft WEATHER IN A GLOBAL GEOSPATIAL ENVIRONMENT William Ribarsky, Nickolas Faust, Zachary Wartell, Christopher
A ROUTE IMPROVEMENT ALGORITHM FOR THE VEHICLE ROUTING PROBLEM WITH TIME DEPENDENT TRAVEL TIMES
Bertini, Robert L.
. This research presents a new solution approach, an iterative route construction and improvement algorithm (IRCI such as greenhouse gases, noise, and air pollution. Routing models with time-varying travel times are gaining greater attention in vehicle routing literature and industry. However, research on the time dependent vehicle
ORBITAL FUNCTIONALS IN STATIC AND TIME-DEPENDENT DENSITY FUNCTIONAL THEORY
Gross, E.K.U.
ORBITAL FUNCTIONALS IN STATIC AND TIME-DEPENDENT DENSITY FUNCTIONAL THEORY E.K.U. Gross, T-97074 Wurzburg Germany INTRODUCTION Density functional theory (DFT) is among the most powerful quantum statements: 1 #12; 1. The ground-state density n uniquely determines the ground-state wave function [n
Parameter-free calculation of response functions in time dependent density functional theory
Botti, Silvana
Parameter-free calculation of response functions in time dependent density functional theory - Quasiparticle approach - Density functional approach Mapping theory to describe spectra of solids in TDDFT Towards an efficient (fast) theory Conclusions #12;Dielectric function of the material Vtot = -1 Vext Non
INTERFACE CRACK PROPAGATION IN POROUS AND TIME-DEPENDENT MATERIALS ANALYZED WITH
Boyer, Edmond
INTERFACE CRACK PROPAGATION IN POROUS AND TIME-DEPENDENT MATERIALS ANALYZED WITH DISCRETE MODELS and the FPZ. From the point of view of design of structures, e.g. reinforced concrete structures, this size size, size effects, creep, ageing, fracture, viscoelastic- ity, time effect, concrete failure, discrete
A Self-Assembly Model of Time-Dependent Glue Sudheer Sahu
Reif, John H.
A Self-Assembly Model of Time-Dependent Glue Strength Sudheer Sahu ¡ , Peng Yin ¡ , and John H,py,reif£ @cs.duke.edu Abstract. We propose a self-assembly model in which the glue strength between two and study cataly- sis and self-replication in the tile assembly. We then study the tile complexity
QUANTUM ENERGY EXPECTATION IN PERIODIC TIME-DEPENDENT HAMILTONIANS VIA GREEN
QUANTUM ENERGY EXPECTATION IN PERIODIC TIME-DEPENDENT HAMILTONIANS VIA GREEN FUNCTIONS C´ESAR R. DE. Introduction 1 2. Average Energy and Green Functions 4 3. Applications 10 3.1. Time-Independent Hamiltonians 10(t). For each positive and discrete observable A (which we call a probe energy), we derive a formula
Brolo, Alexandre G.
, and Department of Chemistry, UniVersity of Victoria, P. O. Box 3065, Victoria, British Columbia, Canada, V8W 3V6 ReceiVed: July 31, 2009; ReVised Manuscript ReceiVed: August 14, 2009 Time-dependent fluctuations
Instability of time-dependent wind-driven ocean gyres Paul C. F. van der Vaart
Schuttelaars, Henk
Instability of time-dependent wind-driven ocean gyres Paul C. F. van der Vaart Institute for Marine, Delft, the Netherlands Daniel Calvete Department Fisica Aplicada, UPC, Barcelona, Spain Henk A September 2002 The wind-driven ocean circulation at midlatitudes is susceptible to several types
Spatial and time-dependent distribution of plasma parameters in the metal-halide arc lamp.
Paris-Sud XI, Université de
Spatial and time-dependent distribution of plasma parameters in the metal-halide arc lamp. A. Khakhaev, L. Luizova, K. Ekimov and A. Soloviev Petrozavodsk State University, Russia The metal-halide arc lamp is an effective light source and its investigation has a long history, but even at present some
MODELING SPACE-TIME DEPENDENT HELIUM BUBBLE EVOLUTION IN TUNGSTEN ARMOR UNDER IFE CONDITIONS
Ghoniem, Nasr M.
MODELING SPACE-TIME DEPENDENT HELIUM BUBBLE EVOLUTION IN TUNGSTEN ARMOR UNDER IFE CONDITIONS Qiyang dependent Helium transport in finite geometries, including the simultaneous transient production of defects of Helium bubbles. I. INTRODUCTION Helium production and helium bubble evolution in neutron
Kendall, R.P.; Campbell, K.
1997-08-01T23:59:59.000Z
This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project effort was directed toward preliminary geostatistical analysis of the Carpenteria Offshore Field as a precursor to the step of integrating time-dependent data into a geostatistical model of the Field.
Egbert, Hal; Walker, Ronald; Flocchini, R.
2007-01-01T23:59:59.000Z
Kevin Shields, Optimization of neutron tomography for rapidNEUTRON TOMOGRAPHY AND SPACE Hal Egbert, Ronald Walker, R.industrial applications[1]. Neutron Computed Tomography was
Green, M.A.; Cook, N.G.W.; McEvilly, T.V.; Majer, E.L.; Witherspoon, P.A.
1987-04-20T23:59:59.000Z
Apparatus is described for placement in a borehole in the earth, which enables the generation of closely controlled seismic waves from the borehole. Pure torsional shear waves are generated by an apparatus which includes a stator element fixed to the borehole walls and a rotor element which is electrically driven to rapidly oscillate on the stator element to cause reaction forces transmitted through the borehole walls to the surrounding earth. Longitudinal shear waves are generated by an armature that is driven to rapidly oscillate along the axis of the borehole, to cause reaction forces transmitted to the surrounding earth. Pressure waves are generated by electrically driving pistons that press against opposite ends of a hydraulic reservoir that fills the borehole. High power is generated by energizing the elements for more than about one minute. 9 figs.
P- and S- wave tomography of the crust and uppermost mantle in China and surrounding areas
Sun, Youshun, 1970-
2005-01-01T23:59:59.000Z
This thesis involves inverting the seismic structure of the crust and uppermost mantle in China from the P- and S-wave travel-time tomography. The main contributions of this research are: 1) introducing the adaptive moving ...
Born-Oppenheimer approximation and beyond for time-dependent electronic processes
Cederbaum, L. S. [Theoretische Chemie, Physikalisch-Chemisches Institut, Universitaet Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg (Germany)
2008-03-28T23:59:59.000Z
Explicit computations of electronic motion in time and space are gradually becoming feasible and available. The knowledge of this motion is of relevance by itself but is also important for understanding available and predicting future experiments on the electronic time scale. In electronic processes of interest, usually several and even many stationary electronic states participate and the obvious question arises on how to describe the accompanying quantum nuclear dynamics at least on the time scale of the process. In this work, we attempt to study the nuclear dynamics in the framework of a fully time-dependent Born-Oppenheimer approximation. Additionally, we attempt to go beyond this approximation by introducing the coupling of several electronic wavepackets by the nuclear wavepackets. In this context, we also discuss a time-dependent transformation to diabatic electronic wavepackets. A simple but critical model of charge transfer is analyzed in some detail on various levels of approximation and also solved exactly.
Landau levels of scalar QED in time-dependent magnetic fields
Kim, Sang Pyo, E-mail: sangkim@kunsan.ac.kr
2014-05-15T23:59:59.000Z
The Landau levels of scalar QED undergo continuous transitions under a homogeneous, time-dependent magnetic field. We analytically formulate the KleinGordon equation for a charged spinless scalar as a Cauchy initial value problem in the two-component first order formalism and then put forth a measure that classifies the quantum motions into the adiabatic change, the nonadiabatic change, and the sudden change. We find the exact quantum motion and calculate the pair-production rate when the magnetic field suddenly changes as a step function. -- Highlights: We study the Landau levels of scalar QED in time-dependent magnetic fields. Instantaneous Landau levels make continuous transitions but keep parity. The KleinGordon equation is expressed in the two-component first order formalism. A measure is advanced that characterizes the quantum motions into three categories. A suddenly changing magnetic field produces pairs of charged scalars from vacuum.
Fred Cooper; Gouranga C. Nayak
2006-12-29T23:59:59.000Z
We study the Schwinger mechanism for the pair production of fermions in the presence of an arbitrary time-dependent background electric field E(t) by directly evaluating the path integral. We obtain an exact non-perturbative result for the probability of fermion-antifermion pair production per unit time per unit volume per unit transverse momentum (of the fermion or antifermion) from the arbitrary time dependent electric field E(t) via Schwinger mechanism. We find that the exact non-perturbative result is independent of all the time derivatives d^nE(t)/dt^n, where n=1,2,....\\infty. This result has the same functional dependence on E as the Schwinger's constant electric field E result with the replacement: E -> E(t).
Searches for Time Dependent Neutrino Sources with IceCube Data from 2008 to 2012
Aartsen, M G; Adams, J; Aguilar, J A; Ahlers, M; Ahrens, M; Altmann, D; Anderson, T; Arguelles, C; Arlen, T C; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Tjus, J Becker; Becker, K -H; BenZvi, S; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bos, F; Bose, D; Bser, S; Botner, O; Brayeur, L; Bretz, H -P; Brown, A M; Buzinsky, N; Casey, J; Casier, M; Cheung, E; Chirkin, D; Christov, A; Christy, B; Clark, K; Classen, L; Clevermann, F; Coenders, S; Cowen, D F; Silva, A H Cruz; Daughhetee, J; Davis, J C; Day, M; de Andr, J P A M; De Clercq, C; Dembinski, H; De Ridder, S; Desiati, P; de Vries, K D; de Wasseige, G; de With, M; DeYoung, T; D\\'\\iaz-Vlez, J C; Dumm, J P; Dunkman, M; Eagan, R; Eberhardt, B; Ehrhardt, T; Eichmann, B; Eisch, J; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Felde, J; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Frantzen, K; Fuchs, T; Gaisser, T K; Gaior, R; Gallagher, J; Gerhardt, L; Gier, D; Gladstone, L; Glsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Goodman, J A; Gra, D; Grant, D; Gretskov, P; Groh, J C; Gro, A; Ha, C; Haack, C; Ismail, A Haj; Hallen, P; Hallgren, A; Halzen, F; Hanson, K; Hebecker, D; Heereman, D; Heinen, D; Helbing, K; Hellauer, R; Hellwig, D; Hickford, S; Hignight, J; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huang, F; Huelsnitz, W; Hulth, P O; Hultqvist, K; In, S; Ishihara, A; Jacobi, E; Jacobsen, J; Japaridze, G S; Jero, K; Jurkovic, M; Kaminsky, B; Kappes, A; Karg, T; Karle, A; Kauer, M; Keivani, A; Kelley, J L; Kheirandish, A; Kiryluk, J; Kls, J; Klein, S R; Khne, J -H; Kohnen, G; Kolanoski, H; Koob, A; Kpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Kriesten, A; Krings, K; Kroll, G; Kroll, M; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Lanfranchi, J L; Larsen, D T; Larson, M J; Lesiak-Bzdak, M; Leuermann, M; Lnemann, J; Madsen, J; Maggi, G; Mahn, K B M; Maruyama, R; Mase, K; Matis, H S; Maunu, R; McNally, F; Meagher, K; Medici, M; Meli, A; Meures, T; Miarecki, S; Middell, E; Middlemas, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Niederhausen, H; Nowicki, S C; Nygren, D R; Obertacke, A; Olivas, A; Omairat, A; O'Murchadha, A; Palczewski, T; Paul, L; Penek, ; Pepper, J A; Heros, C Prez de los; Pfendner, C; Pieloth, D; Pinat, E; Posselt, J; Price, P B; Przybylski, G T; Ptz, J; Quinnan, M; Rdel, L; Rameez, M; Rawlins, K; Redl, P; Rees, I; Reimann, R; Relich, M; Resconi, E; Rhode, W; Richman, M; Riedel, B; Robertson, S; Rodrigues, J P; Rongen, M; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Sander, H -G; Sandroos, J; Santander, M; Sarkar, S; Schatto, K; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schneberg, S; Schnwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Sestayo, Y; Seunarine, S; Shanidze, R; Smith, M W E; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stanisha, N A; Stasik, A; Stezelberger, T; Stokstad, R G; Stl, A; Strahler, E A; Strm, R; Strotjohann, N L; Sullivan, G W; Sutherland, M; Taavola, H; Taboada, I; Tamburro, A; Ter-Antonyan, S; Terliuk, A; Tei?, G; Tilav, S; Toale, P A; Tobin, M N; Tosi, D; Tselengidou, M; Unger, E; Usner, M; Vallecorsa, S; van Eijndhoven, N; Vandenbroucke, J; van Santen, J; Vanheule, S; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Wallraff, M; Weaver, Ch; Wellons, M; Wendt, C; Westerhoff, S; Whelan, B J; Whitehorn, N; Wichary, C; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, D L; Xu, X W; Xu, Y; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zoll, M
2015-01-01T23:59:59.000Z
In this paper searches for flaring astrophysical neutrino sources and sources with periodic emission with the IceCube neutrino telescope are presented. In contrast to time integrated searches, where steady emission is assumed, the analyses presented here look for a time dependent signal of neutrinos using the information from the neutrino arrival times to enhance the discovery potential. A search was performed for correlations between neutrino arrival times and directions as well as neutrino emission following time dependent lightcurves, sporadic emission or periodicities of candidate sources. These include active galactic nuclei, soft $\\gamma$-ray repeaters, supernova remnants hosting pulsars, micro-quasars and X-ray binaries. The work presented here updates and extends previously published results to a longer period that covers four years of data from 2008 April 5 to 2012 May 16 including the first year of operation of the completed 86-string detector. The analyses did not find any significant time dependen...
Time-dependent density functional theory quantum transport simulation in non-orthogonal basis
Kwok, Yan Ho; Xie, Hang; Yam, Chi Yung; Chen, Guan Hua, E-mail: ghc@everest.hku.hk [Department of Chemistry, The University of Hong Kong, Pokfulam Road (Hong Kong); Zheng, Xiao [Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China)] [Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China)
2013-12-14T23:59:59.000Z
Basing on the earlier works on the hierarchical equations of motion for quantum transport, we present in this paper a first principles scheme for time-dependent quantum transport by combining time-dependent density functional theory (TDDFT) and Keldysh's non-equilibrium Green's function formalism. This scheme is beyond the wide band limit approximation and is directly applicable to the case of non-orthogonal basis without the need of basis transformation. The overlap between the basis in the lead and the device region is treated properly by including it in the self-energy and it can be shown that this approach is equivalent to a lead-device orthogonalization. This scheme has been implemented at both TDDFT and density functional tight-binding level. Simulation results are presented to demonstrate our method and comparison with wide band limit approximation is made. Finally, the sparsity of the matrices and computational complexity of this method are analyzed.
Zahn, Jochen
2015-01-01T23:59:59.000Z
In the framework of quantum electrodynamics (QED) in external potentials, we introduce a method to compute the time-dependence of the expectation value of the current density for time-dependent homogeneous external electric fields. We apply it to the so-called Sauter pulse. For late times, our results agree with the asymptotic value due to electron-positron pair production. For sub-critical peak field strengths, or results agree very well with the general expression derived by Serber for the linearization in the external field. In particular, the expectation value of the current density at intermediate times can be much greater than at asymptotic times. We comment on consequences of these findings for recent proposals to test the Schwinger effect with high intensity lasers using processes at intermediate times.
Time dependent annealing of radiation - induced leakage currents in MOS devices
Terrell, J.M. (Booz Allen and Hamilton, Inc. Bethesda, MD (US)); Olkham, T.R.; Lelis, A.J.; Benedetto, J.M. (Harry Diamond Labs., Adelphi, MD (US))
1989-12-01T23:59:59.000Z
Results are presented showing the radiation response of several unhardened commercial 1.25-{mu}m bulk CMOS processes using LOCOS isolation technology. In all cases studied radiation-induced failure is caused by effects in the field oxide, and the radiation-induced {delta}V{sub T} in the channel region is usually small at the failure dose. Time dependent leakage current data for the field oxides are presented and discussed.
On the existence of effective potentials in time-dependent density functional theory
M. Ruggenthaler; M. Penz; D. Bauer
2009-11-10T23:59:59.000Z
We investigate the existence and properties of effective potentials in time-dependent density functional theory. We outline conditions for a general solution of the corresponding Sturm-Liouville boundary value problems. We define the set of potentials and v-representable densities, give a proof of existence of the effective potentials under certain restrictions, and show the set of v-representable densities to be independent of the interaction.
A numerical method of solving time-dependent Hartree-Fock-Bogoliubov equation with Gogny interaction
Y. Hashimoto; K. Nodeki
2007-07-20T23:59:59.000Z
A numerical method to solve time-dependent Hartree-Fock-Bogoliubov equation is proposed to treat the case with Gogny effective interaction. To check the feasibility of the method, it is applied to oxygen isotope O20 and small amplitude oscillations are calculated. The conservation of the nucleon numbers as well as energy expectation value is demonstrated. The strength distributions of the small amplitude quadrupole oscillations are also shown.
A Deterministic-Monte Carlo Hybrid Method for Time-Dependent Neutron Transport Problems
Justin Pounders; Farzad Rahnema
2001-10-01T23:59:59.000Z
A new deterministic-Monte Carlo hybrid solution technique is derived for the time-dependent transport equation. This new approach is based on dividing the time domain into a number of coarse intervals and expanding the transport solution in a series of polynomials within each interval. The solutions within each interval can be represented in terms of arbitrary source terms by using precomputed response functions. In the current work, the time-dependent response function computations are performed using the Monte Carlo method, while the global time-step march is performed deterministically. This work extends previous work by coupling the time-dependent expansions to space- and angle-dependent expansions to fully characterize the 1D transport response/solution. More generally, this approach represents and incremental extension of the steady-state coarse-mesh transport method that is based on global-local decompositions of large neutron transport problems. An example of a homogeneous slab is discussed as an example of the new developments.
The development of the time dependence of the nuclear EMP electric field
Eng, C
2009-10-30T23:59:59.000Z
The nuclear electromagnetic pulse (EMP) electric field calculated with the legacy code CHAP is compared with the field given by an integral solution of Maxwell's equations, also known as the Jefimenko equation, to aid our current understanding on the factors that affect the time dependence of the EMP. For a fair comparison the CHAP current density is used as a source in the Jefimenko equation. At first, the comparison is simplified by neglecting the conduction current and replacing the standard atmosphere with a constant density air slab. The simplicity of the resultant current density aids in determining the factors that affect the rise, peak and tail of the EMP electric field versus time. The three dimensional nature of the radiating source, i.e. sources off the line-of-sight, and the time dependence of the derivative of the current density with respect to time are found to play significant roles in shaping the EMP electric field time dependence. These results are found to hold even when the conduction current and the standard atmosphere are properly accounted for. Comparison of the CHAP electric field with the Jefimenko electric field offers a direct validation of the high-frequency/outgoing wave approximation.
Exact solution for the Green's function describing time-dependent thermal Comptonization
Peter A. Becker
2003-03-28T23:59:59.000Z
We obtain an exact, closed-form expression for the time-dependent Green's function solution to the Kompaneets equation. The result, which is expressed as the integral of a product of two Whittaker functions, describes the evolution in energy space of a photon distribution that is initially monoenergetic. Effects of spatial transport within a homogeneous scattering cloud are also included within the formalism. The Kompaneets equation that we solve includes both the recoil and energy diffusion terms, and therefore our solution for the Green's function approaches the Wien spectrum at large times. We show that the Green's function can be used to generate all of the previously known steady-state and time-dependent solutions to the Kompaneets equation. The new solution allows the direct determination of the spectrum, without the need to numerically solve the partial differential equation. Based upon the Green's function, we obtain a new time-dependent solution for the photon distribution resulting from the reprocessing of an optically thin bremsstrahlung initial spectrum with a low-energy cutoff. The new bremsstrahlung solution possesses a finite photon number density, and therefore it displays proper equilibration to a Wien spectrum at large times. The relevance of our results for the interpretation of emission from variable X-ray sources is discussed, with particular attention to the production of hard X-ray time lags, and the Compton broadening of narrow features such as iron lines.
Katsevich, A.J.; Ramm, A.G.
1996-07-23T23:59:59.000Z
Local tomographic data is used to determine the location and value of a discontinuity between a first internal density of an object and a second density of a region within the object. A beam of radiation is directed in a predetermined pattern through the region of the object containing the discontinuity. Relative attenuation data of the beam is determined within the predetermined pattern having a first data component that includes attenuation data through the region. The relative attenuation data is input to a pseudo-local tomography function, where the difference between the internal density and the pseudo-local tomography function is computed across the discontinuity. The pseudo-local tomography function outputs the location of the discontinuity and the difference in density between the first density and the second density. 7 figs.
Katsevich, Alexander J. (Los Alamos, NM); Ramm, Alexander G. (Manhattan, KS)
1996-01-01T23:59:59.000Z
Local tomographic data is used to determine the location and value of a discontinuity between a first internal density of an object and a second density of a region within the object. A beam of radiation is directed in a predetermined pattern through the region of the object containing the discontinuity. Relative attenuation data of the beam is determined within the predetermined pattern having a first data component that includes attenuation data through the region. The relative attenuation data is input to a pseudo-local tomography function, where the difference between the internal density and the pseudo-local tomography function is computed across the discontinuity. The pseudo-local tomography function outputs the location of the discontinuity and the difference in density between the first density and the second density.
Green, Michael A. (Oakland, CA); Cook, Neville G. W. (Lafayette, CA); McEvilly, Thomas V. (Berkeley, CA); Majer, Ernest L. (El Cirrito, CA); Witherspoon, Paul A. (Berkeley, CA)
1992-01-01T23:59:59.000Z
Apparatus is described for placement in a borehole in the earth, which enables the generation of closely controlled seismic waves from the borehole. Pure torsional shear waves are generated by an apparatus which includes a stator element fixed to the borehole walls and a rotor element which is electrically driven to rapidly oscillate on the stator element to cause reaction forces transmitted through the borehole walls to the surrounding earth. Logitudinal shear waves are generated by an armature that is driven to rapidly oscillate along the axis of the borehole relative to a stator that is clamped to the borehole, to cause reaction forces transmitted to the surrounding earth. Pressure waves are generated by electrically driving pistons that press against opposite ends of a hydraulic reservoir that fills the borehole. High power is generated by energizing the elements at a power level that causes heating to over 150.degree. C. within one minute of operation, but energizing the elements for no more than about one minute.
3-D seismic velocity and attenuation structures in the geothermal field
Nugraha, Andri Dian [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Syahputra, Ahmad [Geophyisical Engineering, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Geophyisical Engineering, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Fatkhan,; Sule, Rachmat [Applied Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Applied Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)
2013-09-09T23:59:59.000Z
We conducted delay time tomography to determine 3-D seismic velocity structures (Vp, Vs, and Vp/Vs ratio) using micro-seismic events in the geothermal field. The P-and S-wave arrival times of these micro-seismic events have been used as input for the tomographic inversion. Our preliminary seismic velocity results show that the subsurface condition of geothermal field can be fairly delineated the characteristic of reservoir. We then extended our understanding of the subsurface physical properties through determining of attenuation structures (Qp, Qs, and Qs/Qp ratio) using micro-seismic waveform. We combined seismic velocities and attenuation structures to get much better interpretation of the reservoir characteristic. Our preliminary attanuation structures results show reservoir characterization can be more clearly by using the 3-D attenuation model of Qp, Qs, and Qs/Qp ratio combined with 3-D seismic velocity model of Vp, Vs, and Vp/Vs ratio.
Hurd, J.W.
1983-01-01T23:59:59.000Z
The 750 keV H/sup +/ beam at LAMPF has a transverse phase-space time-dependent transient during the first 200 ..mu..s of each 750-..mu..s-long macro-pulse. The time dependence is documented in an earlier report. Further studies indicate that the time dependence is due to space-charge neutralization resulting from secondary emission of electrons produced by collisions of the H/sup +/ and H/sub 2//sup +/ beams on the transport walls. One of several possible solutions has been tested and has proven successful in eliminating the time dependence of the beam entering the linac.
T. R. Marsh
2000-11-01T23:59:59.000Z
I review the method of Doppler tomography which translates binary-star line profiles taken at a series of orbital phases into a distribution of emission over the binary. I begin with a discussion of the basic principles behind Doppler tomography, including a comparison of the relative merits of maximum entropy regularisation versus filtered back-projection for implementing the inversion. Following this I discuss the issue of noise in Doppler images and possible methods for coping with it. Then I move on to look at the results of Doppler Tomography applied to cataclysmic variable stars. Outstanding successes to date are the discovery of two-arm spiral shocks in cataclysmic variable accretion discs and the probing of the stream/magnetospheric interaction in magnetic cataclysmic variable stars. Doppler tomography has also told us much about the stream/disc interaction in non-magnetic systems and the irradiation of the secondary star in all systems. The latter indirectly reveals such effects as shadowing by the accretion disc or stream. I discuss all of these and finish with some musings on possible future directions for the method. At the end I include a tabulation of Doppler maps published in refereed journals.
SEISMIC RAY THEORY Seismic Ray Theory presents the most comprehensive treatment of the seismic
Cerveny, Vlastislav
#12;SEISMIC RAY THEORY Seismic Ray Theory presents the most comprehensive treatment of the seismic ray method available. This method plays an important role in seismology, seismic exploration, and the interpretation of seismic measurements. The book presents a consistent treatment of the seismic ray method, based
COLORADO FRONT RANGE SEISMICITY AND SEISMIC HAZARD
Sheehan, Anne F.
COLORADO FRONT RANGE SEISMICITY AND SEISMIC HAZARD Anne F. Sheehan University of Colorado at Boulder, 2200 Colorado Avenue, Boulder, CO 80309 John D. Godchaux Trinity University, San Antonio, TX Noah Hughes University of Colorado at Boulder, 2200 Colorado Avenue, Boulder, CO 80309 Key Terms: earthquake
Seismic Fracture Characterization Methods for Enhanced Geothermal...
Broader source: Energy.gov (indexed) [DOE]
Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Project objective: Make Seismic...
Fast ground-state cooling of mechanical resonators with time-dependent optical cavities
Li Yong [Department of Physics and Center of Theoretical and Computational Physics, University of Hong Kong, Pokfulam Road (Hong Kong); Beijing Computational Science Research Center, Beijing 100084 (China); Wu Lianao [Department of Theoretical Physics and History of Science, The Basque Country University (EHU/UPV), P.O. Box 644, ES-48080 Bilbao (Spain); IKERBASQUE, Basque Foundation for Science, ES-48011 Bilbao (Spain); Wang, Z. D. [Department of Physics and Center of Theoretical and Computational Physics, University of Hong Kong, Pokfulam Road (Hong Kong)
2011-04-15T23:59:59.000Z
We propose a feasible scheme to cool down a mechanical resonator (MR) in a three-mirror cavity optomechanical system with controllable external optical driving fields. Under the Born-Oppenheimer approximation, the whole dynamics of the mechanical resonator and cavities is reduced to that of a time-dependent harmonic oscillator, whose effective frequency can be controlled through the optical driving fields. The fast cooling of the MR can be realized by controlling the amplitude of the optical driving fields. Significantly, we further show that the ground-state cooling may be achieved via the three-mirror cavity optomechanical system without the resolved sideband condition.
On the Vlasov equation for Schwinger pair production in a time-dependent electric field
Adolfo Huet; Sang Pyo Kim; Christian Schubert
2015-01-26T23:59:59.000Z
Schwinger pair creation in a purely time-dependent electric field can be described through a quantum Vlasov equation describing the time evolution of the single-particle momentum distribution function. This equation exists in two versions, both of which can be derived by a Bogoliubov transformation, but whose equivalence is not obvious. For the spinless case, we show here that the difference between these two evolution equations corresponds to the one between the "in-out" and "in-in" formalisms. We give a simple relation between the asymptotic distribution functions generated by the two Vlasov equations. As examples we discuss the Sauter and single-soliton field cases.
Solution of the time-dependent diffusion equation using a conservation variational method
Wilson, Bruce Carl
1981-01-01T23:59:59.000Z
the resulting differential equat1ons using the analytic exponential operator techn1que. The analyt1c exponential operator techn1que is not subject to the t1me-step 11m1tat1ons of the fin1te differ ence method applied to the time der1vat1ve. However... developed in this thesis uses Lagrange multipliers to minimize the time-dependent diffusion equation functional, subject to the physical constra1nt of conserva- tion. The resulting set of coupled differential equat1ons were solved using the analyt1c...
New Set of Time-Dependent Ginzburg-Landau Equations for Dirty Superconductors Near Tc
Hu, Chia-Ren.
1980-01-01T23:59:59.000Z
P H Y SIC A L R E VIE W B VOLUME 21, NUMBER 7 1 APRIL 1980 New set of time-dependent Ginzburl-Landau equations for dirty superconductors near T, Chia-ken Hu Depart?te?t o/ I h&'sif. ?, T('xas ARM U?i I'eI;si(I'. College Stalio?. Tixa.'t 77843... by Gor'kov and Eliashberg. ' They identified the difficulty in achieving this task with the singular nature of the BCS density of states at the gap fre- quency, ' and avoided it by restricting themselves to gapless superconductors containing a high...
Momentum space iterative solution of the time-dependent Schrdinger equation
Kiss, G. Zs.; Borbly, S.; Nagy, L. [Faculty of Physics, Babe?-Bolyai University, str. Kog?lniceanu nr. 1, 400084 Cluj (Romania)
2013-11-13T23:59:59.000Z
We present a novel approach, the iterative solution of the time-dependent Schrdinger equation (iTDSE model), for the investigation of atomic systems interacting with external laser fields. This model is the extension of the momentum-space strong-field approximation (MSSFA) [1], in which the Coulomb potential was considered only as a first order perturbation. In the iTDSE approach higher order terms were gradually introduced until convergence was achieved. Benchmark calculations were done on the hydrogen atom, and the obtained results were compared to the direct numerical solution [2].
New probabilistic modeling and simulation methods for complex time-dependent systems
Bartholomew, R.J.
1985-01-01T23:59:59.000Z
This paper is a tutorial that presents a new method of modeling the probabilistic description of failure mechanisms in complex, time-dependent systems. The method of modeling employs a state vector differential equation representation of cumulative failure probabilities derived from Markov models associated with certain generic fault trees, and the method automatically includes common cause/common mode statistical dependencies, as well as time-related dependencies not considered in the literature previously. Simulations of these models employ a population dynamics representation of a probability space involving probability particle transitions among the Markov disjoint states. The particle transitions are governed by a random, Monte Carlo selection process.
Linear analysis of time dependent properties of Child-Langmuir flow
Rokhlenko, A. [Department of Mathematics, Rutgers University, Piscataway, New Jersey 08854-8019 (United States)
2013-01-15T23:59:59.000Z
We continue our analysis of the time dependent behavior of the electron flow in the Child-Langmuir system, removing an approximation used earlier. We find a modified set of oscillatory decaying modes with frequencies of the same order as the inverse of the electron transient time. This range (typically MHz) allows simple experimental detection and maybe exploitation. We then study the time evolution of the current in response to a slow change of the anode voltage where the same modes of oscillations appear too. The cathode current in this case is systematically advanced or retarded depending on the direction of the voltage change.
Pei, Dongfei; Nichols, Michael T.; Shohet, J. Leon, E-mail: shohet@engr.wisc.edu [Plasma Processing and Technology Laboratory, Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); King, Sean W.; Clarke, James S. [Intel Corporation, Hillsboro, Oregon 97124 (United States); Nishi, Yoshio [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States)
2014-09-01T23:59:59.000Z
Time-dependent dielectric breakdown (TDDB) is one of the major concerns for low-k dielectric materials. During plasma processing, low-k dielectrics are subjected to vacuum ultraviolet photon radiation and charged-particle bombardment. To examine the change of TDDB properties, time-to-breakdown measurements are made to porous SiCOH before and after plasma exposure. Significant discrepancies between mercury and solid-metal probes are observed and have been shown to be attributed to mercury diffusion into the dielectric porosities.
Adaptive-grid methods for time-dependent partial differential equations
Hedstrom, G.W.; Rodrique, G.H.
1981-01-01T23:59:59.000Z
This paper contains a survey of recent developments of adaptive-grid algorithms for time-dependent partial differential equations. Two lines of research are discussed. One involves the automatic selection of moving grids to follow propagating waves. The other is based on stationary grids but uses local mesh refinement in both space and time. Advantages and disadvantages of both approaches are discussed. The development of adaptive-grid schemes shows promise of greatly increasing our ability to solve problems in several spatial dimensions.
Measurement of time dependent fields in high gradient superconducting quadrupoles for the Tevatron
Lamm, M.J.; Coulter, K.; Gourlay, S.; Jaffery, T.S.
1990-10-01T23:59:59.000Z
Magnetic field measurements have been performed on prototype and production magnets from two high gradient superconducting quadrupoles designs. One design is a double shell quadrupole with 36 strand Rutherford cable. The other design is a single shell quadrupole with 5 individually monolithic strands connected in series. These magnets have similar bore diameters and cable dimensions. However, there are significant differences between the two designs, as well as differences between prototype and production magnets within each design, with regard to Cu to superconductor ratio, filament diameter and filament spacing to strand diameter. The time dependence of fixed currents of the measured magnetic fields is discussed. 9 refs., 6 figs., 1 tab.
On the exact treatment of time-dependent self-interaction correction
Messud, J. [Universite de Toulouse, UPS, Laboratoire de Physique Theorique (IRSAMC), F-31062 Toulouse Cedex 04 (France); CNRS, LPT (IRSAMC), F-31062 Toulouse (France)], E-mail: messud@irsamc.ups-tlse.fr; Dinh, P.M. [Universite de Toulouse, UPS, Laboratoire de Physique Theorique (IRSAMC), F-31062 Toulouse Cedex 04 (France); CNRS, LPT (IRSAMC), F-31062 Toulouse (France); Reinhard, P.-G. [Institut fuer Theoretische Physik, Universitaet Erlangen, D-91058 Erlangen (Germany); Suraud, E. [Universite de Toulouse, UPS, Laboratoire de Physique Theorique (IRSAMC), F-31062 Toulouse Cedex 04 (France); CNRS, LPT (IRSAMC), F-31062 Toulouse (France)
2009-04-15T23:59:59.000Z
We present a new formulation of the time-dependent self-interaction correction (TDSIC). It is derived variationally obeying explicitly the constraints on orthonormality of the occupied single-particle orbitals. The thus emerging rather involved symmetry condition amongst the orbitals is dealt with using two separate sets of (occupied) single-particle wavefunctions, related by a unitary transformation. The double-set TDSIC scheme is well suited for numerical implementation. We present results for laser-excited dynamics in a 1D model for a molecule and in fully fledged 3D calculations.
Matter pulse carving: Manipulating quantum wave packets via time-dependent absorption
Goussev, Arseni
2015-01-01T23:59:59.000Z
A pulse of matter waves may dramatically change its shape when traversing an absorbing barrier with time-dependent transparency. Here we show that this effect can be utilized for controlled manipulation of spatially-localized quantum states. In particular, in the context of atom-optics experiments, we explicitly demonstrate how the proposed approach can be used to generate spatially shifted, split, squeezed and cooled atomic wave packets. We expect our work to be useful in devising new interference experiments with atoms and molecules and, more generally, to enable new ways of coherent control of matter waves.
Tominski, Christian
,psw,schumann}@informatik.uni-rostock.de Abstract The visual analysis of time dependent data is an essential task in many application fields Modern databases are capable of storing large amounts of multivariate time dependent data. Since such data could help understanding natural phenomena or business processes, temporal data analysis
Accurate Ground-State Energies of Solids and Molecules from Time-Dependent Density-Functional Theory
Thygesen, Kristian
-dissipation theorem with time-dependent density- functional theory. The key ingredient is a renormalization scheme be obtained from time- dependent density-functional theory (TDDFT) through the Dyson equation ð? ¼ KS ð? þ KS density-functional theory (DFT), one needs a rather involved approximation for the xc energy in order
Lin, Xi
Time-dependent density functional theory with ultrasoft pseudopotentials: Real-time electron 2006 A practical computational scheme based on time-dependent density functional theory TDDFT density functional theory22 TDDFT . Density functional theory DFT 23 with the Kohn-Sham reference kinetic
-dependent density-functional theory Peter Elliott and Neepa T. Maitra Department of Physics and Astronomy, Hunter March 2012; published 22 May 2012) Many recent applications of time-dependent density functional theory-dependent density functional theory (TDDFT) is an exact reformulation of the time-dependent quantum mechanics
Bertsch George F.
Dipole oscillations in Bose-Fermi mixtures in the time-dependent Gross-Pitaevskii and Vlasov equations Tomoyuki Maruyama1,2,3 and George F. Bertsch1 1 Institute for Nuclear Theory, University with the time-dependent Gross-Pitaevskii equation and the Vlasov equation. While the Bose gas oscillates
Current density partitioning in time-dependent current density functional theory
Mosquera, Martn A. [Department of Chemistry, Purdue University, West Lafayette, Indiana 47907 (United States)] [Department of Chemistry, Purdue University, West Lafayette, Indiana 47907 (United States); Wasserman, Adam, E-mail: awasser@purdue.edu [Department of Chemistry, Purdue University, West Lafayette, Indiana 47907 (United States) [Department of Chemistry, Purdue University, West Lafayette, Indiana 47907 (United States); Department of Physics, Purdue University, West Lafayette, Indiana 47907 (United States)
2014-05-14T23:59:59.000Z
We adapt time-dependent current density functional theory to allow for a fragment-based solution of the many-electron problem of molecules in the presence of time-dependent electric and magnetic fields. Regarding a molecule as a set of non-interacting subsystems that individually evolve under the influence of an auxiliary external electromagnetic vector-scalar potential pair, the partition 4-potential, we show that there are one-to-one mappings between this auxiliary potential, a sharply-defined set of fragment current densities, and the total current density of the system. The partition electromagnetic (EM) 4-potential is expressed in terms of the real EM 4-potential of the system and a gluing EM 4-potential that accounts for exchange-correlation effects and mutual interaction forces between fragments that are required to yield the correct electron dynamics. We prove the zero-force theorem for the fragmented system, establish a variational formulation in terms of action functionals, and provide a simple illustration for a charged particle in a ring.
Beyond the pseudo-time-dependent approach: chemical models of dense core precursors
Hassel, G E; Bergin, E A
2010-01-01T23:59:59.000Z
Context: Chemical models of dense cloud cores often utilize the so-called pseudo-time-dependent approximation, in which the physical conditions are held fixed and uniform as the chemistry occurs. In this approximation, the initial abundances chosen, which are totally atomic in nature except for molecular hydrogen, are artificial. A more detailed approach to the chemistry of dense cold cores should include the physical evolution during their early stages of formation. Aims: Our major goal is to investigate the initial synthesis of molecular ices and gas-phase molecules as cold molecular gas begins to form behind a shock in the diffuse interstellar medium. The abundances calculated as the conditions evolve can then be utilized as reasonable initial conditions for a theory of the chemistry of dense cores. Methods: Hydrodynamic shock-wave simulations of the early stages of cold core formation are used to determine the time-dependent physical conditions for a gas-grain chemical network. We follow the cold post-sho...
Elastic capsules in shear flow: Analytical solutions for constant and time-dependent shear rates
Steffen Kessler; Reimar Finken; Udo Seifert
2009-02-26T23:59:59.000Z
We investigate the dynamics of microcapsules in linear shear flow within a reduced model with two degrees of freedom. In previous work for steady shear flow, the dynamic phases of this model, i.e. swinging, tumbling and intermittent behaviour, have been identified using numerical methods. In this paper, we integrate the equations of motion in the quasi-spherical limit analytically for time-constant and time-dependent shear flow using matched asymptotic expansions. Using this method, we find analytical expressions for the mean tumbling rate in general time-dependent shear flow. The capsule dynamics is studied in more detail when the inverse shear rate is harmonically modulated around a constant mean value for which a dynamic phase diagram is constructed. By a judicious choice of both modulation frequency and phase, tumbling motion can be induced even if the mean shear rate corresponds to the swinging regime. We derive expressions for the amplitude and width of the resonance peaks as a function of the modulation frequency.
Incorporation of particle collisions in the time-dependent Hartree-Fock approximation
Wong, C.Y.
1982-01-01T23:59:59.000Z
In the time-dependent Hartree-Fock (TDHF) approximation, particles interact only through the mean field, and the collisions between particles are not included. Previously, we formulated the extended time-dependent Hartree-Fock (ETDHF) approximation to include particle collisions in terms of a temporal variation of the occupation probability n/sub lambda/ for the single-particle states. In the simplest approximation, the single-particle potential is modified only through the particle density which depends on n/sub lambda/. We wish to refine the extended TDHF approximation by studying how particle collisions affect the single-particle potential. We find that it acquires two second-order contributions which are state-dependent and are the generalization of the core polarization and correlation contributions one encounters in the study of the nucleon-nucleus optical potentials. In consequence, concepts such as energy-dependent single-particle potentials and effective masses may be properly introduced in the extended TDHF approximation. We also wish to review the conservation of energy in the ETDHF approximation. We find that the total energy should include a second-order contribution due to correlations arising from particle collisions.
Observation of time dependent dispersion in laboratory scale experiments with intact tuff
Rundberg, R.S.; Triay, I.R.; Ott, M.A.; Mitchell, A.J.
1989-12-01T23:59:59.000Z
The migration of radionuclides through intact tuff was studied using tuff from Yucca Mountain, Nevada. The tuff samples were both highly zeolitized ash-fall tuff from the Calico Hills and densely welded devitrified tuff from the Topopah Springs member of the Paintbrush tuff. Tritiated water and pertechnetate were used as conservative tracers. The sorbing tracers {sup 85}Sr, {sup 137}Cs, and {sup 133}Ba were used with the devitrified tuff only. Greater tailing in the elution curves of the densely welded tuff samples was observed that could be fit by adjusting the dispersion coefficient in the conventional Advection Dispersion Equation, ADE. The curves could be fit using time dependent dispersion as was previously observed for sediments and alluvium by Dieulin, Matheron, and de Marsily. The peak of strontium concentration was expected to arrive after 1.5 years based on the conventional ADE and assuming a linear K{sub d} of 26 ml/g. The observed elution had significant strontium in the first sample taken at 2 weeks after injection. The peak in the strontium elution occurred at 5 weeks. The correct arrival time for the strontium peak was achieved using a one dimensional analytic solution with time dependent dispersion. The dispersion coefficient as a function of time used to fit the conservative tracers was found to predict the peak arrival of the sorbing tracers. The K{sub d} used was the K{sub d} determined by the batch method on crushed tuff. 23 refs., 9 figs., 2 tabs.
Ohmura, Shu; Kono, Hirohiko, E-mail: hirohiko-kono@m.tohoku.ac.jp [Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578 (Japan); Oyamada, Takayuki [Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027 (Japan); Kato, Tsuyoshi; Nakai, Katsunori [Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Koseki, Shiro [Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Osaka 599-8531 (Japan)
2014-09-21T23:59:59.000Z
Using the framework of multiconfiguration theory, where the wavefunction ?(t) of a many-electron system at time t is expanded as ?(t)=?{sub I}C{sub I}(t)?{sub I}(t) in terms of electron configurations (?{sub I}(t)), we divided the total electronic energy E(t) as E(t)=?{sub I}|C{sub I}(t)|{sup 2}E{sub I}(t) . Here E{sub I}(t) is the instantaneous phase changes of C{sub I}(t) regarded as a configurational energy associated with ?{sub I}(t). We then newly defined two types of time-dependent states: (i) a state at which the rates of population transfer among configurations are all zero; (ii) a state at which (E{sub I}(t)) associated with the quantum phases of C{sub I}(t) are all the same. We call the former time-dependent state a classical stationary state by analogy with the stationary (steady) states of classical reaction rate equations and the latter one a quantum stationary state. The conditions (i) and (ii) are satisfied simultaneously for the conventional stationary state in quantum mechanics. We numerically found for a LiH molecule interacting with a near-infrared (IR) field ?(t) that the condition (i) is satisfied whenever the average velocity of electrons is zero and the condition (ii) is satisfied whenever the average acceleration is zero. We also derived the chemical potentials ?{sub j}(t) for time-dependent natural orbitals ?{sub j}(t) of a many-electron system. The analysis of the electron dynamics of LiH indicated that the temporal change in ??{sub j}(t) ? ?{sub j}(t) + ?(t) d{sub j}(t) ? ?{sub j}(0) correlates with the motion of the dipole moment of ?{sub j}(t), d{sub j}(t). The values ??{sub j}(t) are much larger than the energy ?{sub j}(t) directly supplied to ?{sub j}(t) by the field, suggesting that valence electrons exchange energy with inner shell electrons. For H{sub 2} in an intense near-IR field, the ionization efficiency of ?{sub j}(t) is correlated with ??{sub j}(t). Comparing ??{sub j}(t) to ?{sub j}(t), we found that energy accepting orbitals of ??{sub j}(t) > ?{sub j}(t) indicate high ionization efficiency. The difference between ??{sub j}(t) and ?{sub j}(t) is significantly affected by electron-electron interactions in real time.
Chemical dynamics in the gas phase: Time-dependent quantum mechanics of chemical reactions
Gray, S.K. [Argonne National Laboratory, IL (United States)
1993-12-01T23:59:59.000Z
A major goal of this research is to obtain an understanding of the molecular reaction dynamics of three and four atom chemical reactions using numerically accurate quantum dynamics. This work involves: (i) the development and/or improvement of accurate quantum mechanical methods for the calculation and analysis of the properties of chemical reactions (e.g., rate constants and product distributions), and (ii) the determination of accurate dynamical results for selected chemical systems, which allow one to compare directly with experiment, determine the reliability of the underlying potential energy surfaces, and test the validity of approximate theories. This research emphasizes the use of recently developed time-dependent quantum mechanical methods, i.e. wave packet methods.
Solution of the Two-Dimensional Time-Dependent Schroedinger Equation Applied to Nuclear Proton Decay
Rizea, M. [National Institute of Physics and Nuclear Engineering, 'Horia Hulubei', PO Box MG-6, Bucharest (Romania); Carjan, N. [Centre d'Etudes Nucleaires de Bordeaux-Gradignan, UMR 5797, CNRS/IN2P3-Universite Bordeaux 1, BP 120, 33175 Gradignan Cedex (France)
2009-09-09T23:59:59.000Z
A rigorous approach to study the temporal evolution of physical processes is to follow the development in time of a given initial state, by numerically solving the time-dependent Schroedinger equation. This represents a natural modeling of the dynamical behaviour. We considered the equation in two spatial coordinates, to describe deformed nuclear shapes. The Hamiltonian is discretized by special, functionally fitted difference formulae of the derivatives and then a Crank-Nicolson scheme is applied. The resulting linear system with large sparse matrix is solved by a variant of Conjugate Gradient Method. The numerical solution has been used to the description of the proton decay. We also discuss the treatment of numerical boundary conditions, the preparation of the initial wavefunction and the calculation of the decay rate through the flux.
Gradient Symplectic Algorithms for Solving the Schroedinger Equation with Time-Dependent Potentials
Chin, S A
2002-01-01T23:59:59.000Z
We show that the method of factorizing the evolution operator to fourth order with purely positive coefficients, in conjunction with Suzuki's method of implementing time-ordering of operators, produces a new class of powerful algorithms for solving the Schroedinger equation with time-dependent potentials. When applied to the Walker-Preston model of a diatomic molecule in a strong laser field, these algorithms can have fourth order error coefficients that are three orders of magnitude smaller than the Forest-Ruth algorithm using the same number of Fast Fourier Transforms. When compared to the second order split-operator method, some of these algorithms can achieve comparable convergent accuracy at step sizes 50 times as large. Morever, we show that these algorithms belong to a one-parameter family of algorithms, and that the parameter can be further optimized for specific applications.
Gradient Symplectic Algorithms for Solving the Schroedinger Equation with Time-Dependent Potentials
S. A. Chin; C. R. Chen
2002-03-05T23:59:59.000Z
We show that the method of factorizing the evolution operator to fourth order with purely positive coefficients, in conjunction with Suzuki's method of implementing time-ordering of operators, produces a new class of powerful algorithms for solving the Schroedinger equation with time-dependent potentials. When applied to the Walker-Preston model of a diatomic molecule in a strong laser field, these algorithms can have fourth order error coefficients that are three orders of magnitude smaller than the Forest-Ruth algorithm using the same number of Fast Fourier Transforms. When compared to the second order split-operator method, some of these algorithms can achieve comparable convergent accuracy at step sizes 50 times as large. Morever, we show that these algorithms belong to a one-parameter family of algorithms, and that the parameter can be further optimized for specific applications.
Zhu, Hong-Ming; Chen, Jin-Wang; Pan, Xiao-Yin, E-mail: panxiaoyin@nbu.edu.cn [Department of Physics, Ningbo University, Ningbo 315211 (China)] [Department of Physics, Ningbo University, Ningbo 315211 (China); Sahni, Viraht [Department of Physics, Brooklyn College and The Graduate School of the City University of New York, New York, New York 10016 (United States)] [Department of Physics, Brooklyn College and The Graduate School of the City University of New York, New York, New York 10016 (United States)
2014-01-14T23:59:59.000Z
We derive via the interaction representation the many-body wave function for harmonically confined electrons in the presence of a magnetostatic field and perturbed by a spatially homogeneous time-dependent electric fieldthe Generalized Kohn Theorem (GKT) wave function. In the absence of the harmonic confinement the uniform electron gas the GKT wave function reduces to the Kohn Theorem wave function. Without the magnetostatic field, the GKT wave function is the Harmonic Potential Theorem wave function. We further prove the validity of the connection between the GKT wave function derived and the system in an accelerated frame of reference. Finally, we provide examples of the application of the GKT wave function.
Mauger, F; Uzer, T
2015-01-01T23:59:59.000Z
We discuss the place of angular momentum conservation in theoretical and numerical models for high harmonic generation (HHG). Recent experimental work [A. Fleischer et al., Nature Photonics 8, 543 (2014)] has shown conflicting results regarding the conservation of the (photon) angular momentum in HHG. Here we show that simulations using classical (laser and HHG) fields do not conserve angular momentum and that the properties of HHG spectra are actually due to more general discrete time-dependent symmetries that apply equally well for atoms and molecules (here illustrated with He, H3+, Ne+ and H2 models). To conclude, we propose a configuration to test for the accuracy of these simulations compared to selection rule predictions.
Decay of the Loschmidt echo in a time-dependent environment
Fernando M. Cucchietti; Caio H. Lewenkopf; Horacio M. Pastawski
2006-01-11T23:59:59.000Z
We study the decay rate of the Loschmidt echo or fidelity in a chaotic system under a time-dependent perturbation $V(q,t)$ with typical strength $\\hbar/\\tau_{V}$. The perturbation represents the action of an uncontrolled environment interacting with the system, and is characterized by a correlation length $\\xi_0$ and a correlation time $\\tau_0$. For small perturbation strengths or rapid fluctuating perturbations, the Loschmidt echo decays exponentially with a rate predicted by the Fermi Golden Rule, $1/\\tilde{\\tau}= \\tau_{c}/\\tau_{V}^2$, where typically $\\tau_{c} \\sim \\min[\\tau_{0},\\xi_0/v]$ with $v$ the particle velocity. Whenever the rate $1/\\tilde{\\tau}$ is larger than the Lyapunov exponent of the system, a perturbation independent Lyapunov decay regime arises. We also find that by speeding up the fluctuations (while keeping the perturbation strength fixed) the fidelity decay becomes slower, and hence, one can protect the system against decoherence.
The quantum behavior of general time dependent quadratic systems linearly coupled to a bath
J. Twamley
1993-02-12T23:59:59.000Z
In this paper we solve for the quantum propagator of a general time dependent system quadratic in both position and momentum, linearly coupled to an infinite bath of harmonic oscillators. We work in the regime where the quantum optical master equation is valid. We map this master equation to a Schroedinger equation on Super-Hilbert space and utilize Lie Algebraic techniques to solve for the dynamics in this space. We then map back to the original Hilbert space to obtain the solution of the quantum dynamics. The Lie Algebraic techniques used are preferable to the standard Wei-Norman methods in that only coupled systems of first order ordinary differential equations and purely algebraic equations need only be solved. We look at two examples.
Studies of time dependence of fields in TEVATRON superconducting dipole magnets
Hanft, R.W.; Brown, B.C.; Herrup, D.A.; Lamm, M.J.; McInturff, A.D.; Syphers, M.J.
1988-08-22T23:59:59.000Z
The time variation in the magnetic field of a model Tevatron dipole magnet at constant excitation current has been studied. Variations in symmetry allowed harmonic components over long time ranges show a log t behavior indicative of ''flux creep.'' Both short time range and long time range behavior depend in a detailed way on the excitation history. Similar effects are seen in the remnant fields present in full-scale Tevatron dipoles following current ramping. Both magnitudes and time dependences are observed to depend on details for the ramps, such as ramp rate, flattop duration, and number of ramps. In a few magnets, variations are also seen in symmetry unallowed harmonics. 9 refs., 10 figs.
Hebbian Spike-Timing Dependent Self-Organization in Pulsed Neural Networks
2001-01-01T23:59:59.000Z
We present a mechanism of unsupervised competitive learning and development of topology preserving self-organizing maps of spiking neurons. The information encoding is based on the precise timing of single spike events. The work provides a competitive learning algorithm that is based on the relative timing of the pre- and post-synaptic spikes, local synapse competitions within a single neuron and global competition via lateral connections. Furthermore, we present part of the experimental work on the capability of the suggested mechanism to perform topology preserving mapping and competitive learning. The results show that our model covers the main characteristic behaviour of the standard SOM but uses a computationally more powerful timing-dependent spike encoding.
Engineering of Quantum State by Time-Dependent Decoherence-Free Subspaces
S. L. Wu
2015-02-27T23:59:59.000Z
We apply the time-dependent decoherence-free subspace theory to a Markovian open quantum system in order to present a novel proposal for quantum-state engineering program. By quantifying the purity of the quantum state, we verify that the quantum-state engineering process designed via our method is completely unitary within any total engineering time. Even though the controls on the open quantum system are not perfect, the asymptotic purity is still robust. Owing to its ability to completely resist decoherence and the lack of restraint in terms of the total engineering time, our proposal is suitable for multitask quantum-state engineering program. Therefore, this proposal is not only useful for achieving the quantum-state engineering program experimentally, it also helps us build both a quantum simulation and quantum information equipment in reality.
Guido, Ciro A., E-mail: ciro.guido@ecp.fr; Cortona, Pietro [Laboratoire Structures, Proprits et Modlisation des Solides (SPMS), CNRS UMR 8580, cole Centrale Paris, Grande Voie des Vignes, F-92295 Chtenay-Malabry (France)] [Laboratoire Structures, Proprits et Modlisation des Solides (SPMS), CNRS UMR 8580, cole Centrale Paris, Grande Voie des Vignes, F-92295 Chtenay-Malabry (France); Adamo, Carlo [Laboratoire dlectrochimie, Chimie des Interfaces et Modlisation pour lEnergie, CNRS UMR-7575, Chimie ParisTech, 11 rue P. et M. Curie, F-75231 Paris Cedex 05 (France) [Laboratoire dlectrochimie, Chimie des Interfaces et Modlisation pour lEnergie, CNRS UMR-7575, Chimie ParisTech, 11 rue P. et M. Curie, F-75231 Paris Cedex 05 (France); Institut Universitaire de France, 103 Bd Saint-Michel, F-75005 Paris (France)
2014-03-14T23:59:59.000Z
We extend our previous definition of the metric ?r for electronic excitations in the framework of the time-dependent density functional theory [C. A. Guido, P. Cortona, B. Mennucci, and C. Adamo, J. Chem. Theory Comput. 9, 3118 (2013)], by including a measure of the difference of electronic position variances in passing from occupied to virtual orbitals. This new definition, called ?, permits applications in those situations where the ?r-index is not helpful: transitions in centrosymmetric systems and Rydberg excitations. The ?-metric is then extended by using the Natural Transition Orbitals, thus providing an intuitive picture of how locally the electron density changes during the electronic transitions. Furthermore, the ? values give insight about the functional performances in reproducing different type of transitions, and allow one to define a confidence radius for GGA and hybrid functionals.
A cyclic time-dependent Markov process to model daily patterns in wind turbine power production
Scholz, Teresa; Estanqueiro, Ana
2013-01-01T23:59:59.000Z
Wind energy is becoming a top contributor to the renewable energy mix, which raises potential reliability issues for the grid due to the fluctuating nature of its source. To achieve adequate reserve commitment and to promote market participation, it is necessary to provide models that can capture daily patterns in wind power production. This paper presents a cyclic inhomogeneous Markov process, which is based on a three-dimensional state-space (wind power, speed and direction). Each time-dependent transition probability is expressed as a Bernstein polynomial. The model parameters are estimated by solving a constrained optimization problem: The objective function combines two maximum likelihood estimators, one to ensure that the Markov process long-term behavior reproduces the data accurately and another to capture daily fluctuations. A convex formulation for the overall optimization problem is presented and its applicability demonstrated through the analysis of a case-study. The proposed model is capable of r...
Time-dependent simulation of prebunched one and two-beam free electron laser
Mirian, N. S., E-mail: najmeh.mirian@ipm.ir [School of Particle and Accelerator Physics, Institute for Research in Fundamental Sciences (IPM), Post code 19395-5531 Tehran (Iran, Islamic Republic of); Maraghechi, B. [Department of Physics, Amirkabir University of Technology, Post code 15875-4413 Tehran (Iran, Islamic Republic of)] [Department of Physics, Amirkabir University of Technology, Post code 15875-4413 Tehran (Iran, Islamic Republic of)
2014-04-15T23:59:59.000Z
A numerical simulation in one-dimension is conducted to study the slippage effects on prebunched free electron laser. A technique for the simulation of time dependent free electron lasers (FEL) to model the slippage effects is introduced, and the slowly varying envelope approximation in both z and t is used to illustrate the temporal behaviour in the prebunched FEL. Slippage effect on prebunched two-beam FEL is compared with the one-beam modeling. The evaluation of the radiation pulse energy, thermal and phase distribution, and radiation pulse shape in one-beam and two-beam modeling is studied. It was shown that the performance is considerably undermined when the slippage time is comparable to the pulse duration. However, prebunching reduces the slippage. Prebunching also leads to the radiation pulse with a single smooth spike.
Solar Models: current epoch and time dependences, neutrinos, and helioseismological properties
John N. Bahcall; M. H. Pinsonneault; Sarbani Basu
2001-03-13T23:59:59.000Z
We calculate accurate solar models and report the detailed time dependences of important solar quantities. We use helioseismology to constrain the luminosity evolution of the sun and report the discovery of semi-convection in evolved solar models that include diffusion. In addition, we compare the computed sound speeds with the results of p-mode observations by BiSON, GOLF, GONG, LOWL, and MDI instruments. We contrast the neutrino predictions from a set of eight standard-like solar models and four deviant (or deficient) solar models with the results of solar neutrino experiments. For solar neutrino and for helioseismological applications, we present present-epoch numerical tabulations of characteristics of the standard solar model as a function of solar radius, including the principal physical and composition variables, sound speeds, neutrino fluxes, and functions needed for calculating solar neutrino oscillations.
Haxton, D. J.; Lawler, K. V. [Chemical Sciences and Ultrafast X-ray Science Laboratory, Lawrence Berkeley National Laboratory, Berkeley, California, 94720 (United States); McCurdy, C. W. [Chemical Sciences and Ultrafast X-ray Science Laboratory, Lawrence Berkeley National Laboratory, Berkeley, California, 94720 (United States); Departments of Applied Science and Chemistry, Davis, California, 95616 (United States)
2011-06-15T23:59:59.000Z
The multiconfiguration time-dependent Hartree-Fock (MCTDHF) method is formulated for treating the coupled electronic and nuclear dynamics of diatomic molecules without the Born-Oppenheimer approximation. The method treats the full dimensionality of the electronic motion, uses no model interactions, and is in principle capable of an exact nonrelativistic description of diatomics in electromagnetic fields. An expansion of the wave function in terms of configurations of orbitals whose dependence on internuclear distance is only that provided by the underlying prolate spheroidal coordinate system is demonstrated to provide the key simplifications of the working equations that allow their practical solution. Photoionization cross sections are also computed from the MCTDHF wave function in calculations using short pulses.
X-ray streak camera temporal resolution improvement using a longitudinal time-dependent field
Qiang, Ji; Qiang, J.; Byrd, J.M.; Feng, J.; Huang, G.
2008-05-09T23:59:59.000Z
X-ray streak cameras (XSC) have been known to be one of the fastest detectors forultrafast X-ray science. A number of applications in material science, biochemistry, accelerator physics, require sub-picosecond resolution to study new phenomena. Inthis paper, we report on a new method which can potentially improve the temporal resolution of a streak camera down to 100 femtoseconds. This method uses a time-dependent acceleration field to lengthen the photoelectron bunch, significantlyimproving the time resolution as well as reducing the time dispersion caused byinitial energy spread and the effects fromthe space charge forces. A computer simulation of an XSC using this method shows significant improvement in the resolution.
Time-Dependent Green's Functions Description of One-Dimensional Nuclear Mean-Field Dynamics
Rios, Arnau; Danielewicz, Pawel; Barker, Brent [National Superconducting Cyclotron Laboratory, and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-1321 (United States)
2009-05-07T23:59:59.000Z
The time-dependent Green's functions formalism provides a consistent description of the time evolution of quantum many-body systems, either in the mean-field approximation or in more sophisticated correlated approaches. We describe an attempt to apply this formalism to the mean-field dynamics of symmetric reactions for one-dimensional nuclear slabs. We pay particular attention to the off-diagonal elements of the Green's functions in real space representation. Their importance is quantified by means of an elimination scheme based on a super-operator cut-off field and their relevance for the global time evolution is assessed. The Wigner function and its structure in the mean-field approximation is also discussed.
Short- and Long- Time Transport Structures in a Three Dimensional Time Dependent Flow
Chabreyrie, Rodolphe
2014-01-01T23:59:59.000Z
Lagrangian transport structures for three-dimensional and time-dependent fluid flows are of great interest in numerous applications, particularly for geophysical or oceanic flows. In such flows, chaotic transport and mixing can play important environmental and ecological roles, for examples in pollution spills or plankton migration. In such flows, where simulations or observations are typically available only over a short time, understanding the difference between short-time and long-time transport structures is critical. In this paper, we use a set of classical (i.e. Poincar\\'e section, Lyapunov exponent) and alternative (i.e. finite time Lyapunov exponent, Lagrangian coherent structures) tools from dynamical systems theory that analyze chaotic transport both qualitatively and quantitatively. With this set of tools we are able to reveal, identify and highlight differences between short- and long-time transport structures inside a flow composed of a primary horizontal contra-rotating vortex chain, small later...
Optimal use of time dependent probability density data to extract potential energy surfaces
Lukas Kurtz; Herschel Rabitz; Regina de Vivie-Riedle
2001-11-09T23:59:59.000Z
A novel algorithm was recently presented to utilize emerging time dependent probability density data to extract molecular potential energy surfaces. This paper builds on the previous work and seeks to enhance the capabilities of the extraction algorithm: An improved method of removing the generally ill-posed nature of the inverse problem is introduced via an extended Tikhonov regularization and methods for choosing the optimal regularization parameters are discussed. Several ways to incorporate multiple data sets are investigated, including the means to optimally combine data from many experiments exploring different portions of the potential. Results are presented on the stability of the inversion procedure, including the optimal combination scheme, under the influence of data noise. The method is applied to the simulated inversion of a double well system.
Problem-free time-dependent variational principle for open quantum systems
Joubert-Doriol, Loic
2015-01-01T23:59:59.000Z
Methods of quantum nuclear wave-function dynamics have become very efficient in simulating large isolated systems using the time-dependent variational principle (TDVP). However, a straightforward extension of the TDVP to the density matrix framework gives rise to methods that do not conserve the energy in the isolated system limit and the total system population for open systems where only energy exchange with the environment is allowed. These problems arise when the system density is in a mixed state and is simulated using an incomplete basis. Thus, the basis set incompleteness, which is inevitable in practical calculations, creates artificial channels for energy and population dissipation. To overcome this unphysical behavior, we have introduced a constrained Lagrangian formulation of TDVP applied to the non-stochastic open system Schrodinger equation (NOSSE) [L. Joubert-Doriol, I. G. Ryabinkin, and A. F. Izmaylov, J. Chem. Phys. 141, 234112 (2014)]. While our formulation can be applied to any variational a...
TIME-DEPENDENT PHOTOIONIZATION OF GASEOUS NEBULAE: THE PURE HYDROGEN CASE
Garcia, J.; Elhoussieny, E. E.; Bautista, M. A. [Department of Physics, Western Michigan University, Kalamazoo, MI 49008 (United States); Kallman, T. R., E-mail: javier@head.cfa.harvard.edu, E-mail: manuel.bautista@wmich.edu, E-mail: ehab.elhoussieny@wmich.edu, E-mail: timothy.r.kallman@nasa.gov [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)
2013-09-20T23:59:59.000Z
We study the problem of time-dependent photoionization of low density gaseous nebulae subjected to sudden changes in the intensity of ionizing radiation. To this end, we write a computer code that solves the full time-dependent energy balance, ionization balance, and radiation transfer equations in a self-consistent fashion for a simplified pure hydrogen case. It is shown that changes in the ionizing radiation yield ionization/thermal fronts that propagate through the cloud, but the propagation times and response times to such fronts vary widely and nonlinearly from the illuminated face of the cloud to the ionization front (IF). IF/thermal fronts are often supersonic, and in slabs initially in pressure equilibrium such fronts yield large pressure imbalances that are likely to produce important dynamical effects in the cloud. Further, we studied the case of periodic variations in the ionizing flux. It is found that the physical conditions of the plasma have complex behaviors that differ from any steady-state solution. Moreover, even the time average of ionization and temperature is different from any steady-state case. This time average is characterized by overionization and a broader IF with respect to the steady-state solution for a mean value of the radiation flux. Around the time average of physical conditions there is a large dispersion in instantaneous conditions, particularly across the IF, which increases with the period of radiation flux variations. Moreover, the variations in physical conditions are asynchronous along the slab due to the combination of nonlinear propagation times for thermal fronts/IFs and equilibration times.
Multi-fluid transport code modeling of time-dependent recycling in ELMy H-mode
Pigarov, A. Yu.; Krasheninnikov, S. I.; Hollmann, E. M. [University of California at San Diego, La Jolla, California 92093 (United States); Rognlien, T. D.; Lasnier, C. J. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Unterberg, E. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)
2014-06-15T23:59:59.000Z
Simulations of a high-confinement-mode (H-mode) tokamak discharge with infrequent giant type-I ELMs are performed by the multi-fluid, multi-species, two-dimensional transport code UEDGE-MB, which incorporates the Macro-Blob approach for intermittent non-diffusive transport due to filamentary coherent structures observed during the Edge Localized Modes (ELMs) and simple time-dependent multi-parametric models for cross-field plasma transport coefficients and working gas inventory in material surfaces. Temporal evolutions of pedestal plasma profiles, divertor recycling, and wall inventory in a sequence of ELMs are studied and compared to the experimental time-dependent data. Short- and long-time-scale variations of the pedestal and divertor plasmas where the ELM is described as a sequence of macro-blobs are discussed. It is shown that the ELM recovery includes the phase of relatively dense and cold post-ELM divertor plasma evolving on a several ms scale, which is set by the transport properties of H-mode barrier. The global gas balance in the discharge is also analyzed. The calculated rates of working gas deposition during each ELM and wall outgassing between ELMs are compared to the ELM particle losses from the pedestal and neutral-beam-injection fueling rate, correspondingly. A sensitivity study of the pedestal and divertor plasmas to model assumptions for gas deposition and release on material surfaces is presented. The performed simulations show that the dynamics of pedestal particle inventory is dominated by the transient intense gas deposition into the wall during each ELM followed by continuous gas release between ELMs at roughly a constant rate.
Multi-fluid transport code modeling of time-dependent recycling in ELMy H-mode
Pigarov, A. Yu. [University of California, San Diego; Krasheninnikov, S. I. [University of California, La Jolla; Rognlien, T. D. [Lawrence Livermore National Laboratory (LLNL); Hollmann, E. M. [University of California, San Diego; Lasnier, C. J. [Lawrence Livermore National Laboratory (LLNL); Unterberg, Ezekial A [ORNL
2014-01-01T23:59:59.000Z
Simulations of a high-confinement-mode (H-mode) tokamak discharge with infrequent giant type-I ELMs are performed by the multi-fluid, multi-species, two-dimensional transport code UEDGE-MB, which incorporates the Macro-Blob approach for intermittent non-diffusive transport due to filamentary coherent structures observed during the Edge Localized Modes (ELMs) and simple time-dependent multi-parametric models for cross-field plasma transport coefficients and working gas inventory in material surfaces. Temporal evolutions of pedestal plasma profiles, divertor recycling, and wall inventory in a sequence of ELMs are studied and compared to the experimental time-dependent data. Short- and long-time-scale variations of the pedestal and divertor plasmas where the ELM is described as a sequence of macro-blobs are discussed. It is shown that the ELM recovery includes the phase of relatively dense and cold post-ELM divertor plasma evolving on a several ms scale, which is set by the transport properties of H-mode barrier. The global gas balance in the discharge is also analyzed. The calculated rates of working gas deposition during each ELM and wall outgassing between ELMs are compared to the ELM particle losses from the pedestal and neutral-beam-injection fueling rate, correspondingly. A sensitivity study of the pedestal and divertor plasmas to model assumptions for gas deposition and release on material surfaces is presented. The performed simulations show that the dynamics of pedestal particle inventory is dominated by the transient intense gas deposition into the wall during each ELM followed by continuous gas release between ELMs at roughly a constant rate.
Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone...
navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone Region (Biasi, Et Al., 2008) Exploration...
USING MICRO-SEISMICITY AND SEISMIC VELOCITIES TO MAP SUBSURFACE...
USING MICRO-SEISMICITY AND SEISMIC VELOCITIES TO MAP SUBSURFACE GEOLOGIC AND HYDROLOGIC STRUCTURE WITHIN THE COSO GEOTHERMAL FIELD, CALIFORNIA Jump to: navigation, search OpenEI...
Using Micro-Seismicity and Seismic Velocities to Map Subsurface...
OpenEI Reference LibraryAdd to library Conference Paper: Using Micro-Seismicity and Seismic Velocities to Map Subsurface Geologic and Hydrologic Structure Within the Coso...
Chu, Shih-I; Zhou, Zhongyuan
2009-10-27T23:59:59.000Z
We propose a time-dependent density functional theoretical (TDDFT) approach in momentum (\\mathcal{P} ) space for the study of electron transport in molecular devices under arbitrary biases. The basic equation of motion, which is a time...
Bertini, Robert L.
that minimizes vehicle emissions during design of routes in congested environments with time-dependent travel speeds, hard time windows, andcapacityconstraints.ThiscreatesanewtypeofVRP,theemissions vehicle routing problem (EVRP). BACKGROUND AND LITERATURE REVIEW There is extensive literature related to vehicle
Seismic Imaging and Monitoring
Huang, Lianjie [Los Alamos National Laboratory
2012-07-09T23:59:59.000Z
I give an overview of LANL's capability in seismic imaging and monitoring. I present some seismic imaging and monitoring results, including imaging of complex structures, subsalt imaging of Gulf of Mexico, fault/fracture zone imaging for geothermal exploration at the Jemez pueblo, time-lapse imaging of a walkway vertical seismic profiling data for monitoring CO{sub 2} inject at SACROC, and microseismic event locations for monitoring CO{sub 2} injection at Aneth. These examples demonstrate LANL's high-resolution and high-fidelity seismic imaging and monitoring capabilities.
Seismic characterization of fractures
JM Carcione
2014-06-07T23:59:59.000Z
Seismic characterization of fractures. Jos M. Carcione, OGS, Italy. Fractured geological formations are generally represented with a stress-strain relation.
Cdric Simenel; Philippe Chomaz; Gilles De France
2007-08-24T23:59:59.000Z
The equilibration of macroscopic degrees of freedom during the fusion of heavy nuclei, like the charge and the shape, are studied in the Time-Dependent Hartree-Fock theory. The pre-equilibrium Giant Dipole Resonance (GDR) is used to probe the fusion path. It is shown that such isovector collective state is excited in N/Z asymmetric fusion and to a less extent in mass asymmetric systems. The characteristics of this GDR are governed by the structure of the fused system in its preequilibrium phase, like its deformation, rotation and vibration. In particular, we show that a lowering of the pre-equilibrium GDR energy is expected as compared to the statistical one. Revisiting experimental data, we extract an evidence of this lowering for the first time. We also quantify the fusion-evaporation enhancement due to gamma-ray emission from the pre-equilibrium GDR. This cooling mechanism along the fusion path may be suitable to synthesize in the future super heavy elements using radioactive beams with strong N/Z asymmetries in the entrance channel.
F. J. Beron-Vera; M. J. Olascoaga; M. G. Brown
2005-10-19T23:59:59.000Z
It has been recently argued that near-integrable nonautonomous one-degree-of-freedom Hamiltonian systems are constrained by KAM theory even when the time-dependent (nonintegrable) part of the Hamiltonian is given in the form of a superposition of time-periodic functions with incommensurate frequencies. Furthermore, such systems are constrained by one fewer integral of motion than is required to render the system completely integrable. As a consequence, the phase space in systems of this type is expected to be partitioned into nonintersecting regular and chaotic regions. In this note we provide numerical evidence of the existence of such a characteristic mixed phase space structure. This is done by considering the problem of acoustic ray dynamics in deep ocean environments, which is naturally described as a nonautonomous one-degree-of-freedom Hamiltonian system with a multiply periodic Hamiltonian in the independent (time-like) variable. Also, we discuss the implications of a mixed phase space for the dynamics of that geophysical system and another one which describes Lagrangian motion in the ocean. The latter is also naturally described as a nonautonomous one-degree-of-freedom Hamiltonian system with a multiply time-periodic Hamiltonian.
A TIME-DEPENDENT METHOD FOR CHARACTERIZING THE DIFFUSION OF RADON-222 IN CONCRETE
Zapalac, Geordie H.
1981-07-01T23:59:59.000Z
The porosity and diffusion length of concrete have been determined by measuring the time-dependent diffusion of radon through a thin slab of the material, One surface of the slab is exposed to a large, fixed radon concentration beginning at t=0. The radon that diffuses out of a portion of the opposite surface is collected during several contiguous time intervals. The total activity collected over a set of intervals beginning at t=0 and the steady-state flux of activity are used to calculate the porosity and diffusion length, As a test of these parameters, they are then used to predict the activity collected during other time intervals and for other sample thicknesses, Samples from two types of concrete were tested: one type yielded a porosity of 0.068 and a diffusion length of 12.6 cm; the respective values for the other were 0.32 and 16.9 cm. The predicted and experimental results agreed well, thereby verifying the assumption that concrete may be treated as a homogenous diffusion medium for radon.
Design and Implementation of BCM Rule Based on Spike-Timing Dependent Plasticity
Azghadi, Mostafa Rahimi; Iannella, Nicolangelo; Abbott, Derek
2012-01-01T23:59:59.000Z
The Bienenstock-Cooper-Munro (BCM) and Spike Timing-Dependent Plasticity (STDP) rules are two experimentally verified form of synaptic plasticity where the alteration of synaptic weight depends upon the rate and the timing of pre- and post-synaptic firing of action potentials, respectively. Previous studies have reported that under specific conditions, i.e. when a random train of Poissonian distributed spikes are used as inputs, and weight changes occur according to STDP, it has been shown that the BCM rule is an emergent property. Here, the applied STDP rule can be either classical pair-based STDP rule, or the more powerful triplet-based STDP rule. In this paper, we demonstrate the use of two distinct VLSI circuit implementations of STDP to examine whether BCM learning is an emergent property of STDP. These circuits are stimulated with random Poissonian spike trains. The first circuit implements the classical pair-based STDP, while the second circuit realizes a previously described triplet-based STDP rule. T...
Time-dependent Radiation Transfer in the Internal Shock Model Scenario for Blazar Jets
Manasvita Joshi; Markus Boettcher
2010-11-13T23:59:59.000Z
We describe the time-dependent radiation transfer in blazar jets, within the internal shock model. We assume that the central engine, which consists of a black hole and an accretion disk, spews out relativistic shells of plasma with different velocity, mass, and energy. We consider a single inelastic collision between a faster (inner) and a slower (outer) moving shell. We study the dynamics of the collision and evaluate the subsequent emission of radiation via the synchrotron and synchrotron self Compton (SSC) processes after the interaction between the two shells has begun. The collision results in the formation of a forward shock (FS) and a reverse shock (RS) that convert the ordered bulk kinetic energy of the shells into magnetic field energy and accelerate the particles, which then radiate. We assume a cylindrical geometry for the emission region of the jet. We treat the self-consistent radiative transfer by taking into account the inhomogeneity in the photon density throughout the region. In this paper, we focus on understanding the effects of varying relevant input parameters on the simulated spectral energy distribution (SED) and spectral variability patterns.
Tsujita, K.; Endo, T.; Yamamoto, A. [Nagoya University, Department of Material, Physics and Energy Engineering, Furo-cho, Chikusa-ku, Nagoya, 464-8603 (Japan)
2013-07-01T23:59:59.000Z
An efficient numerical method for time-dependent transport equation, the mutigrid amplitude function (MAF) method, is proposed. The method of characteristics (MOC) is being widely used for reactor analysis thanks to the advances of numerical algorithms and computer hardware. However, efficient kinetic calculation method for MOC is still desirable since it requires significant computation time. Various efficient numerical methods for solving the space-dependent kinetic equation, e.g., the improved quasi-static (IQS) and the frequency transform methods, have been developed so far mainly for diffusion calculation. These calculation methods are known as effective numerical methods and they offer a way for faster computation. However, they have not been applied to the kinetic calculation method using MOC as the authors' knowledge. Thus, the MAF method is applied to the kinetic calculation using MOC aiming to reduce computation time. The MAF method is a unified numerical framework of conventional kinetic calculation methods, e.g., the IQS, the frequency transform, and the theta methods. Although the MAF method is originally developed for the space-dependent kinetic calculation based on the diffusion theory, it is extended to transport theory in the present study. The accuracy and computational time are evaluated though the TWIGL benchmark problem. The calculation results show the effectiveness of the MAF method. (authors)
Probability of loss of assured safety in systems with multiple time-dependent failure modes.
Helton, Jon Craig; Pilch, Martin M.; Sallaberry, Cedric M.
2012-09-01T23:59:59.000Z
Weak link (WL)/strong link (SL) systems are important parts of the overall operational design of high-consequence systems. In such designs, the SL system is very robust and is intended to permit operation of the entire system under, and only under, intended conditions. In contrast, the WL system is intended to fail in a predictable and irreversible manner under accident conditions and render the entire system inoperable before an accidental operation of the SL system. The likelihood that the WL system will fail to deactivate the entire system before the SL system fails (i.e., degrades into a configuration that could allow an accidental operation of the entire system) is referred to as probability of loss of assured safety (PLOAS). Representations for PLOAS for situations in which both link physical properties and link failure properties are time-dependent are derived and numerically evaluated for a variety of WL/SL configurations, including PLOAS defined by (i) failure of all SLs before failure of any WL, (ii) failure of any SL before failure of any WL, (iii) failure of all SLs before failure of all WLs, and (iv) failure of any SL before failure of all WLs. The effects of aleatory uncertainty and epistemic uncertainty in the definition and numerical evaluation of PLOAS are considered.
Short- and Long- Time Transport Structures in a Three Dimensional Time Dependent Flow
Rodolphe Chabreyrie; Stefan G. Llewellyn Smith
2014-05-08T23:59:59.000Z
Lagrangian transport structures for three-dimensional and time-dependent fluid flows are of great interest in numerous applications, particularly for geophysical or oceanic flows. In such flows, chaotic transport and mixing can play important environmental and ecological roles, for examples in pollution spills or plankton migration. In such flows, where simulations or observations are typically available only over a short time, understanding the difference between short-time and long-time transport structures is critical. In this paper, we use a set of classical (i.e. Poincar\\'e section, Lyapunov exponent) and alternative (i.e. finite time Lyapunov exponent, Lagrangian coherent structures) tools from dynamical systems theory that analyze chaotic transport both qualitatively and quantitatively. With this set of tools we are able to reveal, identify and highlight differences between short- and long-time transport structures inside a flow composed of a primary horizontal contra-rotating vortex chain, small lateral oscillations and a weak Ekman pumping. The difference is mainly the existence of regular or extremely slowly developing chaotic regions that are only present at short time.
Nguyen Trung Thnh; Larisa Beilina; Michael V. Klibanov; Michael A. Fiddy
2014-06-13T23:59:59.000Z
We consider the problem of imaging of objects buried under the ground using backscattering experimental time dependent measurements generated by a single point source or one incident plane wave. In particular, we estimate dielectric constants of those objects using the globally convergent inverse algorithm of Beilina and Klibanov. Our algorithm is tested on experimental data collected using a microwave scattering facility at the University of North Carolina at Charlotte. There are two main challenges working with this type of experimental data: (i) there is a huge misfit between these data and computationally simulated data, and (ii) the signals scattered from the targets may overlap with and be dominated by the reflection from the ground's surface. To overcome these two challenges, we propose new data preprocessing steps to make the experimental data to be approximately the same as the simulated ones, as well as to remove the reflection from the ground's surface. Results of total 25 data sets of both non blind and blind targets indicate a good accuracy.
Photon and neutrino spectra of time-dependent photospheric models of gamma-ray bursts
Asano, K. [Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8582 (Japan); Mszros, P., E-mail: asanok@icrr.u-tokyo.ac.jp, E-mail: nnp@astro.psu.edu [Department of Astronomy and Astrophysics, Department of Physics, Center for Particle and Gravitational Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States)
2013-09-01T23:59:59.000Z
Thermal photons from the photosphere may be the primary source of the observed prompt emission of gamma-ray bursts (GRBs). In order to produce the observed non-thermal spectra, some kind of dissipation mechanism near the photosphere is required. In this paper we numerically simulate the evolution of the photon spectrum in a relativistically expanding shell with a time-dependent numerical code. We consider two basic models. One is a leptonic model, where a dissipation mechanism heats the thermal electrons maintaining their high temperature. The other model involves a cascade process induced by pp(pn)-collisions which produce high-energy electrons, modify the thermal spectrum, and emit neutrinos. The qualitative properties of the photon spectra are mainly determined by the optical depth at which the dissipation mechanism sets in. Too large optical depths lead to a broad and curved spectrum contradicting the observations, while for optical depths smaller than unity the spectral hardness becomes softer than observed. A significant shift of the spectral peak energy to higher energies due to a large energy injection can lead to an overly broad spectral shape. We show ideal parameter ranges for which these models are able to reproduce the observed spectra. For the pn-collision model, the neutrino fluence in the 10100 GeV range is well above the atmospheric neutrino fluence, but its detection is challenging for presently available detectors.
Double-Difference Tomography for Sequestration MVA
Westman, Erik
2008-12-31T23:59:59.000Z
Analysis of synthetic data was performed to determine the most cost-effective tomographic monitoring system for a geologic carbon sequestration injection site. Double-difference tomographic inversion was performed on 125 synthetic data sets: five stages of CO2 plume growth, five seismic event regions, and five geophone arrays. Each resulting velocity model was compared quantitatively to its respective synthetic velocity model to determine an accuracy value. The results were examined to determine a relationship between cost and accuracy in monitoring, verification, and accounting applications using double-difference tomography. The geophone arrays with widely-varying geophone locations, both laterally and vertically, performed best. Additionally, double difference seismic tomography was performed using travel time data from a carbon sequestration site at the Aneth oil field in southeast Utah as part of a Department of Energy initiative on monitoring, verification, and accounting (MVA) of sequestered CO2. A total of 1,211 seismic events were recorded from a borehole array consisting of 22 geophones. Artificial velocity models were created to determine the ease with which different CO2 plume locations and sizes can be detected. Most likely because of the poor geophone arrangement, a low velocity zone in the Desert Creek reservoir can only be detected when regions of test site containing the highest ray path coverage are considered. MVA accuracy and precision may be improved through the use of a receiver array that provides more comprehensive ray path coverage.
New Paradigm for Seismic Networks: Crowd-Sourced Seismic Networks,
Greer, Julia R.
#12;New Paradigm for Seismic Networks: Crowd-Sourced Seismic Networks, including Buildings Tom Egill Hauksson #12;SCSN: what does it encompass? · ~360 Seismic Stations · ~60 stations from partners SCSN/SCEDC total of ~26 FTE's #12;Crowd Sourced Networks · Current broadband seismic network
Evaluation of a Vector Hypercube for Seismic Modelling Seismic modelling
Renaut, Rosemary
Evaluation of a Vector Hypercube for Seismic Modelling Abstract Seismic modelling is a computationally to produce realistic seismic traces intensive problem. A 2D syn- Rosemary Renautt and Johnny of seismic data. The two-dimensional wave equation which describes the propagation of stress waves
Lucas J. Fernndez-Alczar; Horacio M. Pastawski
2015-01-26T23:59:59.000Z
We present a model for decoherence in time-dependent transport. It boils down into a form of wave function that undergoes a smooth stochastic drift of the phase in a local basis, the Quantum Drift (QD) model. This drift is nothing else but a local energy fluctuation. Unlike Quantum Jumps (QJ) models, no jumps are present in the density as the evolution is unitary. As a first application, we address the transport through a resonant state $\\left\\vert 0\\right\\rangle $ that undergoes decoherence. We show the equivalence with the decoherent steady state transport in presence of a B\\"{u}ttiker's voltage probe. In order to test the dynamics, we consider two many-spin systems whith a local energy fluctuation. A two-spin system is reduced to a two level system (TLS) that oscillates among $\\left\\vert 0\\right\\rangle $ $\\equiv $ $ \\left\\vert \\uparrow \\downarrow \\right\\rangle $ and $\\left\\vert 1\\right\\rangle \\equiv $ $\\left\\vert \\downarrow \\uparrow \\right\\rangle $. We show that QD model recovers not only the exponential damping of the oscillations in the low perturbation regime, but also the non-trivial bifurcation of the damping rates at a critical point, i.e. the quantum dynamical phase transition. We also address the spin-wave like dynamics of local polarization in a spin chain. The QD average solution has about half the dispersion respect to the mean dynamics than QJ. By evaluating the Loschmidt Echo (LE), we find that the pure states $\\left\\vert 0\\right\\rangle $ and $\\left\\vert 1\\right \\rangle $ are quite robust against the local decoherence. In contrast, the LE, and hence coherence, decays faster when the system is in a superposition state. Because its simple implementation, the method is well suited to assess decoherent transport problems as well as to include decoherence in both one-body and many-body dynamics.
Reep, J. W.; Bradshaw, S. J. [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States)] [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States); Klimchuk, J. A., E-mail: jeffrey.reep@rice.edu, E-mail: stephen.bradshaw@rice.edu, E-mail: james.a.klimchuk@nasa.gov [NASA Goddard Space Flight Center, Solar Physics Lab., Code 671, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)
2013-02-20T23:59:59.000Z
The time dependence of heating in solar active regions can be studied by analyzing the slope of the emission measure distribution coolward of the peak. In a previous study we showed that low-frequency heating can account for 0% to 77% of active region core emission measures. We now turn our attention to heating by a finite succession of impulsive events for which the timescale between events on a single magnetic strand is shorter than the cooling timescale. We refer to this scenario as a 'nanoflare train' and explore a parameter space of heating and coronal loop properties with a hydrodynamic model. Our conclusions are (1) nanoflare trains are consistent with 86% to 100% of observed active region cores when uncertainties in the atomic data are properly accounted for; (2) steeper slopes are found for larger values of the ratio of the train duration {Delta} {sub H} to the post-train cooling and draining timescale {Delta} {sub C}, where {Delta} {sub H} depends on the number of heating events, the event duration and the time interval between successive events ({tau} {sub C}); (3) {tau} {sub C} may be diagnosed from the width of the hot component of the emission measure provided that the temperature bins are much smaller than 0.1 dex; (4) the slope of the emission measure alone is not sufficient to provide information about any timescale associated with heating-the length and density of the heated structure must be measured for {Delta} {sub H} to be uniquely extracted from the ratio {Delta} {sub H}/{Delta} {sub C}.
Fracture Properties From Seismic Scattering
Burns, Daniel R.
2007-01-01T23:59:59.000Z
Fractures scatter seismic energy and this energy can be analyzed to provide information about fracture
Method of migrating seismic records
Ober, Curtis C. (Las Lunas, NM); Romero, Louis A. (Albuquerque, NM); Ghiglia, Dennis C. (Longmont, CO)
2000-01-01T23:59:59.000Z
The present invention provides a method of migrating seismic records that retains the information in the seismic records and allows migration with significant reductions in computing cost. The present invention comprises phase encoding seismic records and combining the encoded seismic records before migration. Phase encoding can minimize the effect of unwanted cross terms while still allowing significant reductions in the cost to migrate a number of seismic records.
Truhlar, Donald G
Testing time-dependent density functional theory with depopulated molecular orbitals for predicting functionals for time-dependent density functional theory calculations of valence and Rydberg electronic functional that performs well for both ground-state properties and time-dependent density functional theory
Anitescu, Mihai
-Dependent Nuclear Reactor Simulations 1 H. F. Striplinga, , M. Anitescub , M. L. Adamsa aNuclear Engineering Bateman and transport equations, which govern the time-dependent neutronic behavior of a nuclear reactor framework for computing the adjoint variable to nuclear engineering problems gov- erned by a set
Gonalves, W. C. [Departamento de Fsica, Faculdade de Cincias, Univ Estadual Paulista - UNESP, Caixa Postal 473, CEP 17033-360, Bauru, SP (Brazil)] [Departamento de Fsica, Faculdade de Cincias, Univ Estadual Paulista - UNESP, Caixa Postal 473, CEP 17033-360, Bauru, SP (Brazil); Sardella, E. [Departamento de Fsica, Faculdade de Cincias, Univ Estadual Paulista - UNESP, Caixa Postal 473, CEP 17033-360, Bauru, SP (Brazil) [Departamento de Fsica, Faculdade de Cincias, Univ Estadual Paulista - UNESP, Caixa Postal 473, CEP 17033-360, Bauru, SP (Brazil); UNESP-Universidade Estadual Paulista, IPMet-Instituto de Pesquisas Meteorolgicas, CEP 17048-699 Bauru, SP (Brazil); Becerra, V. F. [Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium)] [Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); Miloevi?, M. V.; Peeters, F. M. [Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium) [Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); Departamento de Fsica, Universidade Federal do Cear, 60455-900 Fortaleza, Cear (Brazil)
2014-04-15T23:59:59.000Z
The time-dependent Ginzburg-Landau formalism for (d + s)-wave superconductors and their representation using auxiliary fields is investigated. By using the link variable method, we then develop suitable discretization of these equations. Numerical simulations are carried out for a mesoscopic superconductor in a homogeneous perpendicular magnetic field which revealed peculiar vortex states.
and response of molecules and solids, the reliability of time- dependent density functional theory (TDDFT)1 photovoltaic design,5,6 dynamics of molecules in strong laser fields,7 including coupling to ions,8 and at that captures correlated electron dynamics for systems of these sizes. Although in theory exact, the reliability
Christensen, Kim
Time-dependent extinction rate and species abundance in a tangled-nature model of biological properties. The macrodynamics exhibit intermittent two-mode switching with a gradually decreasing extinction sense. The form of the species abundance curve compares well with observed func- tional forms. The model
A Self-assembly Model of Time-Dependent Glue Sudheer Sahu, Peng Yin, and John H. Reif
Reif, John H.
A Self-assembly Model of Time-Dependent Glue Strength Sudheer Sahu, Peng Yin, and John H. Reif Abstract Self-assembly is a ubiquitous process in which small objects self- organize into larger model for theoretical studies of self-assembly. We propose a refined self-assembly model in which
Dabiri, John O.
Effect of time-dependent piston velocity program on vortex ring formation in a piston An analytical model describing laminar vortex ring formation in a nozzle flow generator piston/ cylinder.1063/1.2188918 I. INTRODUCTION Vortex rings are usually generated in the laboratory by the motion of a piston
Harilal, S. S.
Electron-ion relaxation time dependent signal enhancement in ultrafast double-pulse laser of collinear double-pulse compared to single-pulse ultrafast laser induced breakdown spectroscopy. Our results showed that the significant signal enhancement noticed in the double pulse scheme is strongly correlated
Mofrad, Mohammad R. K.
number mass/heat transport in a fully developed pipe flow. 2002 Elsevier Science B.V. All rights of physics and engineering. Examples are heat transfer processes in rubber extrusion, plastic castingA characteristic/finite element algorithm for time-dependent 3-D advection-dominated transport
Three-dimensional optical tomography with the equation of radiative transfer
Hielscher, Andreas
on a transport-backtransport method applied to the two-dimensional time-dependent equation of radiative transferThree-dimensional optical tomography with the equation of radiative transfer Gassan S. Abdoulaev reconstruction scheme that is based on the time-independent equation of radiative transfer (ERT) and allows
Modulated Luminescent Tomography
2015-01-28T23:59:59.000Z
modalities behave differently than Photoacoustic and Thermoacoustic Tomography, where the ex- citation is highly diffusive but the emitted ultrasound signal...
Jackson, B. V.; Hick, P. P.; Bisi, M. M.; Clover, J. M.; Buffington, A.
2010-01-01T23:59:59.000Z
to Constrain and Better-Forecast Remote-Sensing Observationsa decade to reconstruct and forecast coronal mass ejectionset al. , 2009b). In this forecast, IPS results are compared
Seismic Fracture Characterization Methods for Enhanced Geothermal...
Broader source: Energy.gov (indexed) [DOE]
Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report Seismic Fracture Characterization Methods for...
Seismic Structure And Seismicity Of The Cooling Lava Lake Of...
Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Seismic Structure And Seismicity Of The Cooling Lava Lake Of Kilauea Iki, Hawaii Abstract The...
R. R. Borges; F. S. Borges; A. M. Batista; E. L. Lameu; R. L. Viana; K. C. Iarosz; I. L. Caldas; M. A. F. Sanjun
2015-03-07T23:59:59.000Z
In this paper, we study the effects of spike timing-dependent plasticity on synchronisation in a network of Hodgkin-Huxley neurons. Neuron plasticity is a flexible property of a neuron and its network to change temporarily or permanently their biochemical, physiological, and morphological characteristics, in order to adapt to the environment. Regarding the plasticity, we consider Hebbian rules, specifically for spike timing-dependent plasticity (STDP), and with regard to network, we consider that the connections are randomly distributed. We analyse the synchronisation and desynchronisation according to an input level and probability of connections. Moreover, we verify that the transition for synchronisation depends on the neuronal network architecture, and the external perturbation level.
Horner, D.A.; Colgan, J.; Martin, F.; McCurdy, C.W.; Pindzola, M.S.; Rescigno, T.N.
2004-06-01T23:59:59.000Z
Symmetrized complex amplitudes for the double photoionization of helium are computed by the time-dependent close-coupling and exterior complex scaling methods, and it is demonstrated that both methods are capable of the direct calculation of these amplitudes. The results are found to be in excellent agreement with each other and in very good agreement with results of other ab initio methods and experiment.
Gomez, Antonio; DeRego, Paul Jeffrey; Ferrel, Patrick Andrew; Thom, Robert Anthony; Trujillo, Joshua J.; Herridge, Brian
2014-08-19T23:59:59.000Z
An apparatus for generating seismic waves includes a housing, a strike surface within the housing, and a hammer movably disposed within the housing. An actuator induces a striking motion in the hammer such that the hammer impacts the strike surface as part of the striking motion. The actuator is selectively adjustable to change characteristics of the striking motion and characteristics of seismic waves generated by the impact. The hammer may be modified to change the physical characteristics of the hammer, thereby changing characteristics of seismic waves generated by the hammer. The hammer may be disposed within a removable shock cavity, and the apparatus may include two hammers and two shock cavities positioned symmetrically about a center of the apparatus.
Wetmiller, R.J.; Lyons, J.A.; Shannon, W.E.; Munro, P.S.; Thomas, J.T.; Andrew, M.D.; Lapointe, S.P.; Lamontagne, M.; Wong, C.; Anglin, F.M.; Adams, J.; Cajka, M.G.; McNeil, W.; Drysdale, J.A. (Geological Survey of Canada, Ottawa, ON (Canada))
1992-05-01T23:59:59.000Z
This is a progress report of work carried out under the terms of a research agreement entitled the Canadian Seismic Agreement'' between the US Nuclear Regulatory Commission (USNRC), the Canadian Commercial Corporation and the Geophysics Division of the Geological Survey of Canada (GD/GSC) during the period from July 01, 1989 to June 30, 1990. The Canadian Seismic Agreement'' supports generally the operation of various seismograph stations in eastern Canada and the collection and analysis of earthquake data for the purpose of mitigating seismic hazards in eastern Canada and the northeastern US. The specific activities carried out in this one-year period are summarized below under four headings; Eastern Canada Telemetred Network and local network developments, Datalab developments, strong-motion network developments and earthquake activity. During this period the first surface fault unequivocably determined to have accompanied a historic earthquake in eastern North America, occurred in northern Quebec.
Basham, P.W.; Lyons, J.A.; Drysdale, J.A.; Shannon, W.E.; Andersen, F.; Hayman, R.B.; Wetmiller, R.J.
1983-11-01T23:59:59.000Z
The ECTN network has remained stable over the past year; progress on the new concentrator software has been slow. Major developments have taken place in the Ottawa Data Laboratory including the installation of a new VAX system and further development of the Seismic Analysis Monitor software. A new initiative has been the development of hardware and software for the Sudbury Local Telemetered Network, which can be considered a prototype for a smart outstation. The performance of the ECTN over the past year is described along with a summary of eastern Canadian seismicity during the reporting period and a list of EPB research publications on eastern Canadian seismicity during the past year. 4 figures, 3 tables.
Seismic viscoelastic attenuation Submitted to
Cormier, Vernon F.
Seismic viscoelastic attenuation Submitted to: Encyclopedia of Solid Earth Geophysics Harsh Gupta-3046 USA E-mail: vernon.cormier@uconn.edu Tel: 860-486-3547 Fax: 860-486-3346 #12;SEISMIC VISCOELASTIC ATTENUATION Synonyms Seismic intrinsic attenuation Definitions Linear viscoelastic attenuation. The loss
Riede, Julia
2013-01-01T23:59:59.000Z
In this work, it has been shown that the time dependent Xe-135 inventory in the TRIGA Mark II reactor in Vienna, Austria can be measured via gamma spectrometry even in the presence of strong background radiation. It is focussing on the measurement of (but not limited to) the nuclide Xe-135. The time dependent Xe-135 inventory of the TRIGA Mark II reactor Vienna has been measured using a temporary beam line between one fuel element of the core placed onto the thermal column after shutdown and a detector system located just above the water surface of the reactor tank. For the duration of one week, multiple gamma ray spectra were recorded automatically, starting each afternoon after reactor shutdown until the next morning. One measurement series has been recorded over the weekend. The Xe-135 peaks were extracted from a total of 1227 recorded spectra using an automated peak search algorithm and analyzed for their time-dependent properties. Although the background gamma radiation present in the core after shutdown...
Julia Riede; Helmuth Boeck
2013-07-29T23:59:59.000Z
In this work, it has been shown that the time dependent Xe-135 inventory in the TRIGA Mark II reactor in Vienna, Austria can be measured via gamma spectrometry even in the presence of strong background radiation. It is focussing on the measurement of (but not limited to) the nuclide Xe-135. The time dependent Xe-135 inventory of the TRIGA Mark II reactor Vienna has been measured using a temporary beam line between one fuel element of the core placed onto the thermal column after shutdown and a detector system located just above the water surface of the reactor tank. For the duration of one week, multiple gamma ray spectra were recorded automatically, starting each afternoon after reactor shutdown until the next morning. One measurement series has been recorded over the weekend. The Xe-135 peaks were extracted from a total of 1227 recorded spectra using an automated peak search algorithm and analyzed for their time-dependent properties. Although the background gamma radiation present in the core after shutdown was large especially in the lower energy range, the Xe-135 peak located at 249.8 keV could be extracted from the most spectra where present and could be compared to theoretical calculations.
Turbocharging Quantum Tomography.
Blume-Kohout, Robin J; Gamble, John King,; Nielsen, Erik; Maunz, Peter Lukas Wilhelm; Scholten, Travis L.; Rudinger, Kenneth Michael
2015-01-01T23:59:59.000Z
Quantum tomography is used to characterize quantum operations implemented in quantum information processing (QIP) hardware. Traditionally, state tomography has been used to characterize the quantum state prepared in an initialization procedure, while quantum process tomography is used to characterize dynamical operations on a QIP system. As such, tomography is critical to the development of QIP hardware (since it is necessary both for debugging and validating as-built devices, and its results are used to influence the next generation of devices). But tomography su %7C ers from several critical drawbacks. In this report, we present new research that resolves several of these flaws. We describe a new form of tomography called gate set tomography (GST), which unifies state and process tomography, avoids prior methods critical reliance on precalibrated operations that are not generally available, and can achieve unprecedented accuracies. We report on theory and experimental development of adaptive tomography protocols that achieve far higher fidelity in state reconstruction than non-adaptive methods. Finally, we present a new theoretical and experimental analysis of process tomography on multispin systems, and demonstrate how to more e %7C ectively detect and characterize quantum noise using carefully tailored ensembles of input states.
A. S. Umar; V. E. Oberacker
2007-09-25T23:59:59.000Z
We study fusion reactions of the $^{64}$Ni+$^{64}$Ni system using the density-constrained time-dependent Hartree-Fock (TDHF) formalism. In this formalism the fusion barriers are directly obtained from TDHF dynamics. In addition, we incorporate the entrance channel alignments of the slightly deformed (oblate) $^{64}$Ni nuclei due to dynamical Coulomb excitation. We show that alignment leads to a fusion barrier distribution and alters the naive picture for defining which energies are actually sub-barrier. We also show that core polarization effects could play a significant role in fusion cross section calculations.
Scaramuzzino, F. [Department of Mathematics, University of Messina (Italy)
2009-09-09T23:59:59.000Z
This paper considers a qualitative analysis of the solution of a pure exchange general economic equilibrium problem according to two independent parameters. Some recently results obtained by the author in the static and the dynamic case have been collected. Such results have been applied in a particular parametric case: it has been focused the attention on a numerical application for which the existence of the solution of time-depending parametric variational inequality that describes the equilibrium conditions has been proved by means of the direct method. By using MatLab computation after a linear interpolation, the curves of equilibrium have been visualized.
Gouranga C Nayak
2009-10-02T23:59:59.000Z
We study non-perturbative gluon pair production from arbitrary time dependent chromo-electric field E^a(t) with arbitrary color index a =1,2,...8 via Schwinger mechanism in arbitrary covariant background gauge \\alpha. We show that the probability of non-perturbative gluon pair production per unit time per unit volume per unit transverse momentum \\frac{dW}{d^4xd^2p_T} is independent of gauge fixing parameter \\alpha. Hence the result obtained in the Fynman-'t Hooft gauge, \\alpha=1, is the correct gauge invariant and gauge parameter \\alpha independent result.
J. Schirmer
2010-10-20T23:59:59.000Z
According to a recent paper by G. Vignale [Phys. Rev. A 77, 062511 (2008), arXiv:0803.2727], the problems arising in the original derivation of time-dependent density functional theory (TDDFT) based on the Runge-Gross (RG) action-integral functional (AIF) are due to an incorrect variational principle (VP). This argument and the proposed modification of the VP are critically analyzed. The more fundamental problem, though, is the indefiniteness of the RG AIF. In contrast to a widely held belief, that indefiniteness is not eliminated in the variational procedure, which unwittingly is corroborated by Vignale's initial point.
Zhang, Yu; Biggs, Jason D.; Healion, Daniel; Govind, Niranjan; Mukamel, Shaul
2012-11-21T23:59:59.000Z
We report simulations of X-ray absorption near edge structure (XANES), resonant inelastic X-ray scattering (RIXS) and 1D stimulated X-ray Raman spectroscopy (SXRS) signals of cysteine at the oxygen, nitrogen and sulfur K and L2,3 edges. The simulated XANES signals from the restricted window time-dependent density functional theory (REW-TDDFT) and the static exchange (STEX) method are compared with experiments, showing that REW-TDDFT is more accurate and computationally less expensive than STEX. Simulated RIXS and 1D SXRS signals from REW-TDDFT give some insights on the correlation of different excitations in the molecule.
Baer, Roi
Real-time linear response for time-dependent density-functional theory Roi Baer Department a linear-response approach for time-dependent density-functional theories using time-adiabatic functionals ground state. This ground state can be treated using density-functional theory, where the density n0(r) 2
Herbert, John
and time-dependent density functional theory excitation energies, including charge-transfer excited states energies within time-dependent density functional theory, is systematically evaluated, and optimal values. THEORETICAL BACKGROUND Generalized gradient approximations GGAs in density functional theory DFT are quite
Kilpatrick, Peter K.
Dynamic Asphaltene-Resin Exchange at the Oil/Water Interface: Time-Dependent W/O Emulsion Stability for Asphaltene/Resin Model Oils Xiaoli Yang, Vincent J. Verruto, and Peter K. Kilpatrick* Department of Chemical was used to determine the time-dependent stability of water-in- oil emulsions in which asphaltenes
Measurement of the Time-Dependent CP Asymmetry of Partially Reconstructed B0 to D*+D*- Decays
Lees, J. P.
2012-08-13T23:59:59.000Z
We present a new measurement of the time-dependent CP asymmetry of B{sup 0} {yields}D*{sup +}D*{sup -} decays using (471 {+-} 5) million B{bar B} pairs collected with the BABAR detector at the PEP-II B Factory at the SLAC National Accelerator Laboratory. Using the technique of partial reconstruction, we measure the time-dependent CP asymmetry parameters S = -0.34 {+-} 0.12 {+-} 0.05 and C = +0:15 {+-} 0.09 {+-} 0.04. Using the value for the CP-odd fraction R{perpendicular} = 0.158 {+-} 0.028 {+-} 0.006, previously measured by BABAR with fully reconstructed B{sup 0} {yields} D{sup *+}D{sup *-} events, we extract the CP-even components S{sub +} = -0.49 {+-} 0.18 {+-} 0.07 {+-} 0.04 and C{sub +} = +0.15 {+-} 0.09 {+-} 0.04. In each case, the first uncertainty is statistical and the second is systematic; the third uncertainty on S{sub +} is the contribution from the uncertainty on R{perpendicular}. The measured value of the CP-even component S{sub +} is consistent with the value of sin 2{beta} measured in b {yields} (c{bar c})s transitions, and with the Standard Model expectation of small penguin contributions.
M. Carrega; P. Solinas; A. Braggio; M. Sassetti; U. Weiss
2014-12-22T23:59:59.000Z
We establish the path integral approach for the time-dependent heat exchange of an externally driven quantum system coupled to a thermal reservoir. We derive the relevant influence functional and present an exact formal expression for the moment generating functional which carries all statistical properties of the heat exchange process for general linear dissipation. The general method is applied to the time-dependent average heat transfer in the dissipative two-state system. We show that the heat can be written as a convolution integral which involves the population and coherence correlation functions of the two-state system and additional correlations due to a polarization of the reservoir. The corresponding expression can be solved in the weak-damping limit both for white noise and for quantum mechanical coloured noise. The implications of pure quantum effects are discussed. Altogether a complete description of the dynamics of the average heat transfer ranging from the classical regime down to zero temperature is achieved.
Measurement of time-dependent CP asymmetry in B{sup 0}{yields}ccK{sup (*)0} decays
Aubert, B.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V. [Laboratoire d'Annecy-le-Vieux de Physique des Particules (LAPP), Universite de Savoie, CNRS/IN2P3, F-74941 Annecy-Le-Vieux (France); Tico, J. Garra; Grauges, E. [Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona (Spain); Lopez, L.; Palano, A.; Pappagallo, M. [INFN Sezione di Bari, I-70126 Bari (Italy); Dipartmento di Fisica, Universita di Bari, I-70126 Bari (Italy); Eigen, G.; Stugu, B.; Sun, L. [University of Bergen, Institute of Physics, N-5007 Bergen (Norway); Battaglia, M.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G. [Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720 (United States)] (and others)
2009-04-01T23:59:59.000Z
We present updated measurements of time-dependent CP asymmetries in fully reconstructed neutral B decays containing a charmonium meson. The measurements reported here use a data sample of (465{+-}5)x10{sup 6} {upsilon}(4S){yields}BB decays collected with the BABAR detector at the PEP-II asymmetric energy e{sup +}e{sup -} storage rings operating at the SLAC National Accelerator Laboratory. The time-dependent CP asymmetry parameters measured from J{psi}K{sub S}{sup 0}, J{psi}K{sub L}{sup 0}, {psi}(2S)K{sub S}{sup 0}, {eta}{sub c}K{sub S}{sup 0}, {chi}{sub c1}K{sub S}{sup 0}, and J/{psi}K*(892){sup 0} decays are: C{sub f}=0.024{+-}0.020(stat){+-}0.016(syst) and -{eta}{sub f}S{sub f}=0.687{+-}0.028(stat){+-}0.012(syst)
Measurement of CP Content and Time-Dependent CP Violation in B0 --> D*+D*- Decays
Anderson, Jacob M.; /SLAC; ,
2009-01-05T23:59:59.000Z
This dissertation presents the measurement of the Cp-odd fraction and time-dependent CP violation parameters for the B{sup 0} {yields} D*{sup +} D*{sup -} decay. These results are based on the full BABAR dataset of (467 {+-} 5) x 10{sup 6} B{bar B} pairs collected at the PEP-II B Factory at the Stanford Linear Accelerator Center. An angular analysis finds that the CP-odd fraction of the B{sup 0} {yields} D*{sup +} D*{sup -} decay is R{sub {perpendicular}} = 0.158 {+-} 0.028 {+-} 0.006, where the first uncertainty is statistical, and the second is systematic. A fit to the flavor-tagged, time-dependent, angular decay rate yields C{sub +} = 0.02 {+-} 0.12 {+-} 0.02; C{sub {perpendicular}} = 0.41 {+-} 0.50 {+-} 0.08; S{sub +} = -0.76 {+-} 0.16 {+-} 0.04; S{sub {perpendicular}} = -1.81 {+-} 0.71 {+-} 0.16, for the CP-odd ({perpendicular}) and CP-even (+) contributions. Constraining these two contributions to be the same results in C = 0.047 {+-} 0.091 {+-} 0.019; S = -0.71 {+-} 0.16 {+-} 0.03. These measurements are consistent with the Standard Model and with measurements of sin2{beta} from B{sup 0} {yields} (c{bar c})K{sup 0} decays.
Bizais, Y.; Zubal, I.G.; Rowe, R.W.; Bennett, G.W.; Brill, A.B.
1982-01-01T23:59:59.000Z
Emission tomography using two orthogonal sets of projections through seven pinhole collimators is considered. This paper describes the acquisition system, the reconstruction algorithm, presents results obtained in phantom studies, and discusses the advantages and disadvantages of this method over conventional Seven Pinhole Tomography.
Wetmiller, R.J.; Lyons, J.A.; Shannon, W.E.; Munro, P.S.; Thomas, J.T.; Andrew, M.D.; Lamontagne, M.; Wong, C.; Anglin, F.M.; Plouffe, M.; Adams, J.; Drysdale, J.A. (Geological Survey of Canada, Ottawa, ON (Canada). Geophysics Div.)
1990-04-01T23:59:59.000Z
During the period of this report, the contract resources were spent on operation and maintenance of the Eastern Canada Telemetred Network (ECTN), development of special purpose local network systems, servicing and maintenance of the strong-motion seismograph network in eastern Canada, operation of the Ottawa data lab and earthquake monitoring and reporting. Of special note in this period was the final completion of the Sudbury (SLTN) and Charlevoix (CLTN) local networks and the integration of their data processing and analysis requirements in the regular analysis stream for ECTN data. These networks now acquire high quality digital data for detailed analysis of seismic activity and source properties from these two areas, thus effectively doubling the amount of seismic data being received by the Ottawa data lab. 37 refs., 17 figs., 2 tabs.
Seismic Facies Characterization By Scale Analysis
Herrmann, Felix J.
2000-01-01T23:59:59.000Z
Over the years, there has been an ongoing struggle to relate well-log and seismic data due to the inherent bandwidth limitation of seismic data, the problem of seismic amplitudes, and the apparent inability to delineate ...
Frequent-Interval Seismic CPTu
Office of Environmental Management (EM)
PE NPH Engineering Manager, DOE-SR Motivation The seismic piezocone penetration test (SCPTu) utilized at SRS because it provides rapid and thorough site characterization....
Seismic Fracture Characterization Methods for Enhanced Geothermal...
Broader source: Energy.gov (indexed) [DOE]
Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Principal Investigator: John H. Queen Hi-Q Geophysical Inc. Track Name: Seismicity and Reservoir Fracture...
Gouranga C. Nayak
2011-05-23T23:59:59.000Z
We study the Schwinger mechanism in QCD in the presence of an arbitrary time-dependent chromo-electric background field $E^a(t)$ with arbitrary color index $a$=1,2,...8 in SU(3). We obtain an exact result for the non-perturbative quark (antiquark) production from an arbitrary $E^a(t)$ by directly evaluating the path integral. We find that the exact result is independent of all the time derivatives $\\frac{d^nE^a(t)}{dt^n}$ where $n=1,2,...\\infty$. This result has the same functional dependence on two Casimir invariants $[E^a(t)E^a(t)]$ and $[d_{abc}E^a(t)E^b(t)E^c(t)]^2$ as the constant chromo-electric field $E^a$ result with the replacement: $E^a \\rightarrow E^a(t)$. This result relies crucially on the validity of the shift conjecture, which has not yet been established.
Measurement of the Time-dependent CP Asymmetry inB to D(*)_CP h0 Decays
Aubert, B.
2007-03-14T23:59:59.000Z
The authors report a measurement of the time-dependent CP-asymmetry parameters S and C in color-suppressed B{sup 0} {yields} D{sup (*)0}h{sup 0} decays, where h{sup 0} is a {pi}{sup 0}, {eta}, or {omega} meson, and the D{sup 0} decays to one of the CP eigenstates K{sup +}K{sup -}, K{sub S}{sup 0}{pi}{sup 0}, or K{sub S}{sup 0}{omega}. The data sample consists of 383 x 10{sup 6} {Upsilon}(4S) {yields} B{bar B} decays collected with the BABAR detector at the PEP-II asymmetric-energy B-factory at SLAC. The results are S = -0.56 {+-} 0.23 {+-} 0.05 and C = -0.23 {+-} 0.16 {+-} 0.04, where the first error is statistical and the second is systematic.
Vladislav V. Serov; A. S. Kheifets
2014-10-30T23:59:59.000Z
We analyze a transfer ionization (TI) reaction in the fast proton-helium collision $\\rm H^+ + He \\to H^0 + He^{2+} + e^-$ by solving a time-dependent Schr\\"odinger equation (TDSE) under the classical projectile motion approximation in one-dimensional kinematics. In addition, we construct various time independent analogues of our model using lowest order perturbation theory in the form of the Born series. By comparing various aspects of the TDSE and the Born series calculations, we conclude that the recent discrepancies of experimental and theoretical data may be attributed to deficiency of the Born models used by other authors. We demonstrate that the correct Born series for TI should include the momentum space overlap between the double ionization amplitude and the wave function of the transferred electron.
Lopata, Kenneth A.; Govind, Niranjan
2013-11-12T23:59:59.000Z
We present a real-time time-dependent density functional theory (RT-TDDFT) prescription for capturing near and post-ionization excitations based on non-Hermitian von Neumann density matrix propagation with atom-centered basis sets, tuned range-separated DFT, and a phenomenological imaginary molecular orbital-based absorbing potential to mimic coupling to the continuum. The computed extreme ultraviolet absorption spectra for acetylene (C2H2), water (H2O), and Freon 12 (CF2Cl2) agree well with electron energy loss spectroscopy (EELS) data over the range 0 to 50 eV. The absorbing potential removes spurious high energy finite basis artifacts, yielding correct bound to bound transitions, metastable (autoionizing) resonance states, and consistent overall absorption shapes.
Dominikowska, Justyna, E-mail: justyna@uni.lodz.pl; Domagala, Malgorzata; Palusiak, Marcin [Department of Theoretical and Structural Chemistry, University of ?d?, Pomorska 163/165, 90-236 ?d? (Poland)] [Department of Theoretical and Structural Chemistry, University of ?d?, Pomorska 163/165, 90-236 ?d? (Poland)
2014-01-28T23:59:59.000Z
A theoretical study of singlet state cations of polycyclic aromatic hydrocarbons is performed. Appropriate symmetry suitable for further calculations is chosen for each of the systems studied. The excitation states of such species are obtained by the time dependent density functional theory (TD-DFT) method. The computations are performed using both Pople and electronic response properties basis sets. The results obtained with the use of different basis sets are compared. The electronic transitions are described and the relationships for the lowest-lying transitions states of different species are found. The properties of in-plane and out-of-plane transitions are also delineated. The TD-DFT results are compared with the experimental data available.
Hirata, So; Head-Gordon, Martin P.; Szczepanski, Jan; Vala, Martin
2003-06-19T23:59:59.000Z
A uniform, comprehensive theoretical interpretation of spectroscopic data is presented for 53 radical ion species of polycyclic aromatic hydrocarbons (PAH’s) with the aid of (Tamm–Dancoff) time-dependent density functional theory (TDDFT). TDDFT is capable of predicting the transition energies to the low-lying excited states of PAH ions with quantitative accuracy (the standard deviation from experimental results being less than 0.3 eV) and their intensity patterns qualitatively correctly. The accuracy is hardly affected by the sizes of PAH ions (azulene through dinaphthocoronene), the types of transitions (Koopmans or satellite transitions), the types of orbi-tals involved (*←, *←, or *← transitions), the types of ions (cations or anions), or other geometrical or electronic perturbations (non-planarity, sp3 carbons, or heterocyclic or non-benzenoid rings)
Krause, Pascal; Schlegel, H. Bernhard [Department of Chemistry, Wayne State University, Detroit, Michigan 48202-3489 (United States)
2014-11-07T23:59:59.000Z
The strong field ionization rates for ethylene, trans 1,3-butadiene, and trans,trans 1,3,5-hexatriene have been calculated using time-dependent configuration interaction with single excitations and a complex absorbing potential (TDCIS-CAP). The calculations used the aug-cc-pVTZ basis set with a large set of diffuse functions (3 s, 2 p, 3 d, and 1 f) on each atom. The absorbing boundary was placed 3.5 times the van der Waals radius from each atom. The simulations employed a seven-cycle cosine squared pulse with a wavelength of 800 nm. Ionization rates were calculated for intensities ranging from 0.3 10{sup 14} W/cm{sup 2} to 3.5 10{sup 14} W/cm{sup 2}. Ionization rates along the molecular axis increased markedly with increasing conjugation length. By contrast, ionization rates perpendicular to the molecular axis were almost independent of the conjugation length.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Bahinipati, S.; Trabelsi, K.; Kinoshita, K.; Arinstein, K.; Aulchenko, V.; Aushev, T.; Bakich, A. M.; Balagura, V.; Barberio, E.; Belous, K.; Bhardwaj, V.; Bhuyan, B.; Bischofberger, M.; Bondar, A.; Bozek, A.; Bra?ko, M.; Chen, A.; Chen, P.; Cheon, B. G.; Chiang, C.-C.; Cho, I.-S.; Cho, K.; Choi, Y.; Dalseno, J.; Doleal, Z.; Drsal, Z.; Eidelman, S.; Gabyshev, N.; Golob, B.; Ha, H.; Horii, Y.; Hoshi, Y.; Hou, W.-S.; Hsiung, Y. B.; Hyun, H. J.; Ishikawa, A.; Iwabuchi, M.; Iwasaki, Y.; Iwashita, T.; Julius, T.; Kang, J. H.; Kiesling, C.; Kim, H. J.; Kim, M. J.; Ko, B. R.; Kobayashi, N.; Kody, P.; Krian, P.; Kumita, T.; Kwon, Y.-J.; Kyeong, S.-H.; Lange, J. S.; Lee, M. J.; Lee, S.-H.; Li, J.; Liu, C.; Louvot, R.; Matyja, A.; McOnie, S.; Miyabayashi, K.; Miyata, H.; Miyazaki, Y.; Mohanty, G. B.; Nakao, M.; Natkaniec, Z.; Neubauer, S.; Nishida, S.; Nitoh, O.; Ogawa, S.; Ohshima, T.; Pakhlov, P.; Park, C. W.; Petri?, M.; Piilonen, L. E.; Poluektov, A.; Rhrken, M.; Sahoo, H.; Sakai, Y.; Schneider, O.; Schwanda, C.; Schwartz, A. J.; Sevior, M. E.; Shapkin, M.; Shen, C. P.; Shiu, J.-G.; Smerkol, P.; Sohn, Y.-S.; Sokolov, A.; Solovieva, E.; Stani?, S.; Stari?, M.; Sumisawa, K.; Sumiyoshi, T.; Tanaka, S.; Teramoto, Y.; Uchida, M.; Uehara, S.; Uglov, T.; Unno, Y.; Uno, S.; Varner, G.; Vinokurova, A.; Wang, C. H.; Won, E.; Yabsley, B. D.; Yamashita, Y.; Zhang, C. C.; Zhang, Z. P.; Zhou, P.; Zivko, T.; Zupanc, A.
2011-07-01T23:59:59.000Z
We report results on time-dependent CP asymmetries in B?D*?? decays based on a data sample containing 65710? BB pairs collected with the Belle detector at the KEKB asymmetric-energy e?e? collider at the ?(4S) resonance. We use a partial reconstruction technique, wherein signal B?D*?? events are identified using information only from the fast pion from the B decay and the slow pion from the subsequent decay of the D*?, where the former (latter) corresponds to D*?(D*?) final states. We obtain CP violation parameters S?=+0.0610.018 (stat)0.012 (syst) and S?=+0.0310.019 (stat)0.015 (syst).
Ptri, J
2012-01-01T23:59:59.000Z
(abridged) Pulsar activity and its related radiation mechanism are usually explained by invoking some plasma processes occurring inside the magnetosphere. Despite many detailed local investigations, the global electrodynamics around those neutron stars remains poorly described. Better understanding of these compact objects requires a deep and accurate knowledge of their immediate electromagnetic surrounding within the magnetosphere and its link to the relativistic pulsar wind. The aim of this work is to present accurate solutions to the nearly stationary force-free pulsar magnetosphere and its link to the striped wind, for various spin periods and arbitrary inclination. To this end, the time-dependent Maxwell equations are solved in spherical geometry in the force-free approximation using a vector spherical harmonic expansion of the electromagnetic field. An exact analytical enforcement of the divergenceless of the magnetic part is obtained by a projection method. Special care has been given to design an algo...
Interaction between O{sub 2} and ZnO films probed by time-dependent second-harmonic generation
Andersen, S. V., E-mail: sva@nano.aau.dk [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4A, DK-9220 Aalborg st (Denmark); Vandalon, V.; Bosch, R. H. E. C.; Loo, B. W. H. van de; Kessels, W. M. M., E-mail: w.m.m.kessels@tue.nl [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Pedersen, K. [Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4A, DK-9220 Aalborg st (Denmark)
2014-02-03T23:59:59.000Z
The interaction between O{sub 2} and ZnO thin films prepared by atomic layer deposition has been investigated by time-dependent second-harmonic generation, by probing the electric field induced by adsorbed oxygen molecules on the surface. The second-harmonic generated signal decays upon laser exposure due to two-photon assisted desorption of O{sub 2}. Blocking and unblocking the laser beam for different time intervals reveals the adsorption rate of O{sub 2} onto ZnO. The results demonstrate that electric field induced second-harmonic generation provides a versatile non-contact probe of the adsorption kinetics of molecules on ZnO thin films.
Overview of seismic panel activities
Bandyopadhyay, K.K.
1991-01-01T23:59:59.000Z
In January 1991, the DOE-EM appointed a Seismic Panel to develop seismic criteria that can be used for evaluation of underground storage tanks containing high level radioactive wastes. The Panel expects to issue the first draft of the criteria report in January 1992. This paper provides an overview of the Panel's activities and briefly discusses the criteria. 3 refs.
Seismic Design Expectations Report
Office of Environmental Management (EM)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNGInternational Energy Agency |Award ofRenewable EnergySecurity &Seismic
Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone...
Unknown References Glenn Biasi, Leiph Preston, Ileana Tibuleac (2009) Body Wave Tomography For Regional Scale Assessment Of Geothermal Indicators In The Western Great Basin...
Seismic event classification system
Dowla, F.U.; Jarpe, S.P.; Maurer, W.
1994-12-13T23:59:59.000Z
In the computer interpretation of seismic data, the critical first step is to identify the general class of an unknown event. For example, the classification might be: teleseismic, regional, local, vehicular, or noise. Self-organizing neural networks (SONNs) can be used for classifying such events. Both Kohonen and Adaptive Resonance Theory (ART) SONNs are useful for this purpose. Given the detection of a seismic event and the corresponding signal, computation is made of: the time-frequency distribution, its binary representation, and finally a shift-invariant representation, which is the magnitude of the two-dimensional Fourier transform (2-D FFT) of the binary time-frequency distribution. This pre-processed input is fed into the SONNs. These neural networks are able to group events that look similar. The ART SONN has an advantage in classifying the event because the types of cluster groups do not need to be pre-defined. The results from the SONNs together with an expert seismologist's classification are then used to derive event classification probabilities. 21 figures.
Seismic event classification system
Dowla, Farid U. (Castro Valley, CA); Jarpe, Stephen P. (Brentwood, CA); Maurer, William (Livermore, CA)
1994-01-01T23:59:59.000Z
In the computer interpretation of seismic data, the critical first step is to identify the general class of an unknown event. For example, the classification might be: teleseismic, regional, local, vehicular, or noise. Self-organizing neural networks (SONNs) can be used for classifying such events. Both Kohonen and Adaptive Resonance Theory (ART) SONNs are useful for this purpose. Given the detection of a seismic event and the corresponding signal, computation is made of: the time-frequency distribution, its binary representation, and finally a shift-invariant representation, which is the magnitude of the two-dimensional Fourier transform (2-D FFT) of the binary time-frequency distribution. This pre-processed input is fed into the SONNs. These neural networks are able to group events that look similar. The ART SONN has an advantage in classifying the event because the types of cluster groups do not need to be pre-defined. The results from the SONNs together with an expert seismologist's classification are then used to derive event classification probabilities.
SEISMIC INTERFEROMETRY FOR TEMPORAL MONITORING Norimitsu Nakata
Snieder, Roel
SEISMIC INTERFEROMETRY FOR TEMPORAL MONITORING by Norimitsu Nakata #12;c Copyright by Norimitsu Seismic interferometry, where one computes coherency of waves between two or more receivers and averages from the first study related to seismic interferometry (although the name of seismic interferometry has
Seismic Fragility Analysis of a Degraded Condensate Storage Tank
Nie, J.; Braverman, J.; Hofmayer, C.; Choun, Y-S.; Kim, M.K.; Choi, I-K.
2011-05-16T23:59:59.000Z
The Korea Atomic Energy Research Institute (KAERI) and Brookhaven National Laboratory are conducting a collaborative research project to develop seismic capability evaluation technology for degraded structures and components in nuclear power plants (NPPs). One of the goals of this collaboration endeavor is to develop seismic fragility analysis methods that consider the potential effects of age-related degradation of structures, systems, and components (SSCs). The essential part of this collaboration is aimed at achieving a better understanding of the effects of aging on the performance of SSCs and ultimately on the safety of NPPs. A recent search of the degradation occurrences of structures and passive components (SPCs) showed that the rate of aging related degradation in NPPs was not significantly large but increasing, as the plants get older. The slow but increasing rate of degradation of SPCs can potentially affect the safety of the older plants and become an important factor in decision making in the current trend of extending the operating license period of the plants (e.g., in the U.S. from 40 years to 60 years, and even potentially to 80 years). The condition and performance of major aged NPP structures such as the containment contributes to the life span of a plant. A frequent misconception of such low degradation rate of SPCs is that such degradation may not pose significant risk to plant safety. However, under low probability high consequence initiating events, such as large earthquakes, SPCs that have slowly degraded over many years could potentially affect plant safety and these effects need to be better understood. As part of the KAERI-BNL collaboration, a condensate storage tank (CST) was analyzed to estimate its seismic fragility capacities under various postulated degradation scenarios. CSTs were shown to have a significant impact on the seismic core damage frequency of a nuclear power plant. The seismic fragility capacity of the CST was developed for five cases: (1) a baseline analysis where the design condition (undegraded) is assumed, (2) a scenario with degraded stainless steel tank shell, (3) a scenario with degraded anchor bolts, (4) a scenario with anchorage concrete cracking, and (5) a perfect correlation of the above three degradation scenarios. This paper will present the methodology for the time-dependent fragility calculation and discuss the insights drawn from this study. To achieve a better understanding of the effects of aging on the performance of structures and passive components (SPCs) in nuclear power plants (NPPs), the Korea Atomic Energy Research Institute (KAERI) and Brookhaven National Laboratory (BNL) are collaborating to develop seismic fragility analysis methods that consider age-related degradation of SPCs. The rate of age-related degradation of SPCs was not found to be significantly large, but increasing as the plants get older. The slow but increasing rate of degradation of SPCs can potentially affect the safety of the older plants and become an important factor in decision making in the current trend of extending the operating license period of the plants (e.g., in the U.S. from 40 years to 60 years, and even potentially to 80 years). In this paper, a condensate storage tank (CST) was analyzed to estimate its seismic fragility capacities under various postulated degradation scenarios. This paper will present the methodology for the time-dependent fragility calculation and discuss the insights drawn from this study.
Mihaila, B. [Institute of Environmental Research and Engineering, Bucharest (Romania); Cuculeanu, V. [National Institute of Meteorology and Hydrology, Bucharest (Romania)
1994-08-01T23:59:59.000Z
On the basis of the radioactivity levels in aerosol and atmospheric deposition samples due to the Chernobyl accident, the resuspension factor of {sup 137}Cs as a four-parameter function has been inferred. The standard procedure to derive the dependence of resuspension on time assumes that the initial deposit is instantaneous. A simple method assuming a constant deposition rate over a fixed period has been proposed. Also, based on existing experimental data, an attempt was made to consider a realistic time dependence of the deposition rate to cope with the particular case of the Chernobyl accident. The differences between the two models are outlined. The Chernobyl direct deposit has been assumed to be the deposit measured between 30 April and 30 June 1986. The calculated values of the resuspension factor are consistent with the IAEA`s recommended model and depend on the rainfall that occurred in June 1986 and the site-specific disturbance conditions during the first 100 d following 1 July 1986 and only on artificial disturbance by humans and vehicles after that. 16 refs., 5 figs., 3 tabs.
Haruhide Miyagi; Lars Bojer Madsen
2014-05-21T23:59:59.000Z
The time-dependent restricted-active-space self-consistent-field singles (TD-RASSCF-S) method is presented for investigating TD many-electron dynamics in atoms and molecules. Adopting the SCF notion from the muticonfigurational TD Hartree-Fock (MCTDHF) method and the RAS scheme (single-orbital excitation concept) from the TD configuration-interaction singles (TDCIS) method, the TD-RASSCF-S method can be regarded as a hybrid of them. We prove that, for closed-shell $N_{\\rm e}$-electron systems, the TD-RASSCF-S wave function can be fully converged using only $N_{\\rm e}/2+1\\le M\\le N_{\\rm e}$ spatial orbitals. Importantly, based on the TD variational principle, the converged TD-RASSCF-S wave function with $M= N_{\\rm e}$ is more accurate than the TDCIS wave function. The accuracy of the TD-RASSCF-S approach over the TDCIS is illustrated by the calculation of high-order harmonic generation spectra for one-dimensional models of atomic helium, beryllium, and carbon in an intense laser pulse. The electronic dynamics during the process is investigated by analyzing the behavior of electron density and orbitals. The TD-RASSCF-S method is accurate, numerically tractable, and applicable for large systems beyond the capability of the MCTDHF method.
Delmotte, Blaise; Plouraboue, Franck; Climent, Eric
2015-01-01T23:59:59.000Z
We present a new development of the force-coupling method (FCM) to address the accurate simulation of a large number of interacting micro-swimmers. Our approach is based on the squirmer model, which we adapt to the FCM framework, resulting in a method that is suitable for simulating semi-dilute squirmer suspensions. Other effects, such as steric interactions, can be readily considered with our model. We test our method by comparing the velocity field around a single squirmer and the pairwise interactions between two squirmers with exact solutions to the Stokes equations and results given by other numerical methods. We also illustrate our method's ability to describe spheroidal swimmer shapes and biologically-relevant time-dependent swimming gaits. We detail the numerical algorithm used to compute the hydrodynamic coupling between a large collection ($10^4-10 ^5$) of micro-swimmers. Using this methodology, we investigate the emergence of polar order in a suspension of squirmers and show that for large domains,...
Huix-Rotllant, Miquel, E-mail: miquel.huix@gmail.com; Ferr, Nicolas, E-mail: nicolas.ferre@univ-amu.fr [Institut de Chimie Radicalaire (UMR-7273), Aix-Marseille Universit, CNRS, 13397 Marseille Cedex 20 (France)] [Institut de Chimie Radicalaire (UMR-7273), Aix-Marseille Universit, CNRS, 13397 Marseille Cedex 20 (France)
2014-04-07T23:59:59.000Z
Even though time-dependent density-functional theory (TDDFT) works generally well for describing excited states energies and properties in the Franck-Condon region, it can dramatically fail in predicting photochemistry, notably when electronic state crossings occur. Here, we assess the ability of TDDFT to describe the photochemistry of an important class of triplet sensitizers, namely, aromatic ketones. We take acetophenone as a test molecule, for which accurate ab initio results exist in the literature. Triplet acetophenone is generated thanks to an exotic three-state crossing involving one singlet and two triplets states (i.e., a simultaneous intersystem crossing and triplet conical intersection), thus being a stringent test for approximate TDDFT. We show that most exchange-correlation functionals can only give a semi-qualitative picture of the overall photochemistry, in which the three-state crossing is rather represented as a triplet conical intersection separated from the intersystem crossing. The best result overall is given by the double hybrid functional mPW2PLYP, which is even able to reproduce quantitatively the three-state crossing region. We rationalize this results by noting that double hybrid functionals include a larger portion of double excitation character to the excited states.
Miyagi, Haruhide; Bojer Madsen, Lars [Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C (Denmark)] [Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C (Denmark)
2014-04-28T23:59:59.000Z
The time-dependent restricted-active-space self-consistent-field singles (TD-RASSCF-S) method is presented for investigating TD many-electron dynamics in atoms and molecules. Adopting the SCF notion from the muticonfigurational TD Hartree-Fock (MCTDHF) method and the RAS scheme (single-orbital excitation concept) from the TD configuration-interaction singles (TDCIS) method, the TD-RASSCF-S method can be regarded as a hybrid of them. We prove that, for closed-shell N{sub e}-electron systems, the TD-RASSCF-S wave function can be fully converged using only N{sub e}/2 + 1 ? M ? N{sub e} spatial orbitals. Importantly, based on the TD variational principle, the converged TD-RASSCF-S wave function with M = N{sub e} is more accurate than the TDCIS wave function. The accuracy of the TD-RASSCF-S approach over the TDCIS is illustrated by the calculation of high-order harmonic generation spectra for one-dimensional models of atomic helium, beryllium, and carbon in an intense laser pulse. The electronic dynamics during the process is investigated by analyzing the behavior of electron density and orbitals. The TD-RASSCF-S method is accurate, numerically tractable, and applicable for large systems beyond the capability of the MCTDHF method.
Kuan, W.; Abdou, M.A. [Univ. of California, Los Angeles, CA (United States); Willms, R.S. [Los Alamos National Lab., NM (United States)
1994-12-31T23:59:59.000Z
The dynamic behavior of the fuel cycle in a fusion reactor is of crucial importance due to the need to keep track of the large amount of tritium being constantly produced, transported, and processed in the reactor system. Because tritium is a source of radioactivity, loss and exhaust to the environment must be kept to a minimum. With ITER advancing to its Engineering Design phase, there is a need to accurately predict the dynamic tritium inventories and flow rates throughout the fuel cycle and to study design variations to meet the demands of low tritium inventory. In this paper, time-dependent inventories and flow rates for several components of the fuel cycle are modeled and studied through the use of a new modular-type model for the dynamic simulation of the fuel cycle in a fusion reactor. The complex dynamic behavior in the modeled subsystems is analyzed using this new model. Previous dynamic models focusing on the fuel cycle dealt primarily with a residence time parameter ({tau}{sub res}) defining each subsystem of the model. In this modular model, this residence time approach is avoided in favor of a more accurate and flexible model that utilizes real design parameters and operating schedules of the various subsystems modeled.
Integrated system for seismic evaluations
Xu, J.; Philippacopoulos, A.J.; Miller, C.A.; Costantino, C.J.; Graves, H.
1989-01-01T23:59:59.000Z
This paper describes the various features of the Seismic Module of the CARES system (Computer Analysis for Rapid Evaluation of Structures). This system was developed by Brookhaven National Laboratory (BNL) for the US Nuclear Regulatory Commission to perform rapid evaluations of structural behavior and capability of nuclear power plant facilities. The CARES is structured in a modular format. Each module performs a specific type of analysis i.e., static or dynamic, linear or nonlinear, etc. This paper describes the features of the Seismic Module in particular. The development of the Seismic Module of the CARES system is based on an approach which incorporates all major aspects of seismic analysis currently employed by the industry into an integrated system that allows for carrying out interactively computations of structural response to seismic motions. The code operates on a PC computer system and has multi-graphics capabilities. It has been designed with user friendly features and it allows for interactive manipulation of various analysis phases during the seismic design process. The capabilities of the seismic module include (a) generation of artificial time histories compatible with given design ground response spectra, (b) development of Power Spectral Density (PSD) functions associated with the seismic input, (c) deconvolution analysis using vertically propagating shear waves through a given soil profile, and (d) development of in-structure response spectra or corresponding PSD's. It should be pointed out that these types of analyses can also be performed individually by using available computer codes such as FLUSH, SAP, etc. The uniqueness of the CARES, however, lies on its ability to perform all required phases of the seismic analysis in an integrated manner. 5 refs., 6 figs.
Seismicity and seismic stress in the Coso Range, Coso geothermal...
seismic stress in the Coso Range, Coso geothermal field, and Indian Wells Valley region, Southeast-Central California Jump to: navigation, search OpenEI Reference LibraryAdd to...
Seismicity and Improved Velocity Structure in Kuwait
Gok, R M; Rodgers, A J; Al-Enezi, A
2006-01-26T23:59:59.000Z
The Kuwait National Seismic Network (KNSN) began operation in 1997 and consists of nine three-component stations (eight short-period and one broadband) and is operated by the Kuwait Institute for Scientific Research. Although the region is largely believed to be aseismic, considerable local seismicity is recorded by KNSN. Seismic events in Kuwait are clustered in two main groups, one in the south and another in the north. The KNSN station distribution is able to capture the southern cluster within the footprint of the network but the northern cluster is poorly covered. Events tend to occur at depths ranging from the free surface to about 20 km. Events in the northern cluster tend to be deeper than those in south, however this might be an artifact of the station coverage. We analyzed KNSN recordings of nearly 200 local events to improve understanding of seismic events and crustal structure in Kuwait, performing several analyses with increasing complexity. First, we obtained an optimized one-dimensional (1D) velocity model for the entire region using the reported KNSN arrival times and routine locations. The resulting model is consistent with a recently obtained model from the joint inversion of receiver functions and surface wave group velocities. Crustal structure is capped by the thick ({approx} 7 km) sedimentary rocks of the Arabian Platform underlain by normal velocities for stable continental crust. Our new model has a crustal thickness of 44 km, constrained by an independent study of receiver functions and surface wave group velocities by Pasyanos et al (2006). Locations and depths of events after relocation with the new model are broadly consistent with those reported by KISR, although a few events move more than a few kilometers. We then used a double-difference tomography technique (tomoDD) to jointly locate the events and estimate three-dimensional (3D) velocity structure. TomoDD is based on hypoDD relocation algorithm and it makes use of both absolute and relative arrival times. We obtained {approx}1500 absolute P and S arrival times and {approx}3200 P and S wave arrival time differences. Event locations do not change greatly when 3D velocity structure is included. Three-dimensional velocity structure, where resolvable, does not differ greatly from our optimized 1D model, indicating that the improved 1D model is adequate for routine event location. Finally, we calculated moment magnitudes, MW, for nearly 155 events using the coda magnitude technique of Mayeda et al., (2003). The fact that most of the relocated events occur below the known sedimentary structures extending to 7 km suggests that they are tectonic in origin. Shallow events within the sedimentary crust in the (southern) Minagish region may be related to oil field activities, although the current study cannot unambiguously determine the source of current seismicity in Kuwait. The improved velocity model reduces the scatter of travel time residuals relative to the locations reported in the KNSN bulletin and may be used for ground motion prediction and hazard estimate studies in Kuwait.
Downhole hydraulic seismic generator
Gregory, Danny L. (Corrales, NM); Hardee, Harry C. (Albuquerque, NM); Smallwood, David O. (Albuquerque, NM)
1992-01-01T23:59:59.000Z
A downhole hydraulic seismic generator system for transmitting energy wave vibrations into earth strata surrounding a borehole. The system contains an elongated, unitary housing operably connected to a well head aboveground by support and electrical cabling, and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a hydraulic oscillator containing a double-actuating piston whose movement is controlled by an electro-servovalve regulating a high pressure hydraulic fluid flow into and out of upper and lower chambers surrounding the piston. The spent hydraulic fluid from the hydraulic oscillator is stored and pumped back into the system to provide high pressure fluid for conducting another run at the same, or a different location within the borehole.
Wetmiller, R.J.; Lyons, J.A.; Shannon, W.E.; Munro, P.S.; Thomas, J.T.; Andrew, M.D.; Lamontagne, M.; Wong, C., Anglin, F.M.; Plouffe, M.; Lapointe, S.P.; Adams, J.; Drysdale, J.A. (Geological Survey of Canada, Ottawa, ON (Canada). Geophysics Div.)
1990-04-01T23:59:59.000Z
This is the twenty-first progress report under the agreement entitled Canadian Seismic Agreement between the US Nuclear Regulatory Commission (NRC) and the Canadian Commercial Corporation. Activities undertaken by the Geophysics Division of the Geological Survey of Canada (GD/GSC) during the period from July 01, 1988 to June 30, 1989 and supported in part by the NRC agreement are described below under four headings; Eastern Canada Telemetred Network and local network developments, Datalab developments, strong motion network developments and earthquake activity. In this time period eastern Canada experienced its largest earthquake in over 50 years. This earthquake, which has been christened the Saguenay earthquake, has provided a wealth of new data pertinent to earthquake engineering studies in eastern North America and is the subject of many continuing studies, which are presently being carried out at GD and elsewhere. 41 refs., 21 figs., 7 tabs.
Investigating the point seismic array concept with seismic rotation measurements.
Abbott, Robert E.; Aldridge, David Franklin
2009-02-01T23:59:59.000Z
Spatially-distributed arrays of seismometers are often utilized to infer the speed and direction of incident seismic waves. Conventionally, individual seismometers of the array measure one or more orthogonal components of rectilinear particle motion (displacement, velocity, or acceleration). The present work demonstrates that measure of both the particle velocity vector and the particle rotation vector at a single point receiver yields sufficient information to discern the type (compressional or shear), speed, and direction of an incident plane seismic wave. Hence, the approach offers the intriguing possibility of dispensing with spatially-extended received arrays, with their many problematic deployment, maintenance, relocation, and post-acquisition data processing issues. This study outlines straightforward mathematical theory underlying the point seismic array concept, and implements a simple cross-correlation scanning algorithm for determining the azimuth of incident seismic waves from measured acceleration and rotation rate data. The algorithm is successfully applied to synthetic seismic data generated by an advanced finite-difference seismic wave propagation modeling algorithm. Application of the same azimuth scanning approach to data acquired at a site near Yucca Mountain, Nevada yields ambiguous, albeit encouraging, results. Practical issues associated with rotational seismometry are recognized as important, but are not addressed in this investigation.
Geometric Tomography: A Limited-View Approach for Computed Tomography
Corso, Jason J.
Geometric Tomography: A Limited-View Approach for Computed Tomography Peter B. Noël, Jinhui Xu Keywords Computed Tomography; Geometric Compressed Sensing; Topo- logical Peeling. ABSTRACT Computed to generate 3D data, denoted f, directly from projec- tions, denoted g. Thus, the projection relationship can
Morzan, Uriel N.; Ramrez, Francisco F.; Scherlis, Damin A., E-mail: damian@qi.fcen.uba.ar, E-mail: mcgl@qb.ffyb.uba.ar [Departamento de Qumica Inorgnica, Analtica y Qumica Fsica/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires (C1428EHA) (Argentina); Oviedo, M. Beln; Snchez, Cristin G. [Departamento de Matemtica y Fsica, Facultad de Ciencias Qumicas, INFIQC, Universidad Nacional de Crdoba, Ciudad Universitaria, X5000HUA Crdoba (Argentina)] [Departamento de Matemtica y Fsica, Facultad de Ciencias Qumicas, INFIQC, Universidad Nacional de Crdoba, Ciudad Universitaria, X5000HUA Crdoba (Argentina); Lebrero, Mariano C. Gonzlez, E-mail: damian@qi.fcen.uba.ar, E-mail: mcgl@qb.ffyb.uba.ar [Instituto de Qumica y Fisicoqumica Biolgicas, IQUIFIB, CONICET (Argentina)] [Instituto de Qumica y Fisicoqumica Biolgicas, IQUIFIB, CONICET (Argentina)
2014-04-28T23:59:59.000Z
This article presents a time dependent density functional theory (TDDFT) implementation to propagate the Kohn-Sham equations in real time, including the effects of a molecular environment through a Quantum-Mechanics Molecular-Mechanics (QM-MM) hamiltonian. The code delivers an all-electron description employing Gaussian basis functions, and incorporates the Amber force-field in the QM-MM treatment. The most expensive parts of the computation, comprising the commutators between the hamiltonian and the density matrixrequired to propagate the electron dynamics, and the evaluation of the exchange-correlation energy, were migrated to the CUDA platform to run on graphics processing units, which remarkably accelerates the performance of the code. The method was validated by reproducing linear-response TDDFT results for the absorption spectra of several molecular species. Two different schemes were tested to propagate the quantum dynamics: (i) a leap-frog Verlet algorithm, and (ii) the Magnus expansion to first-order. These two approaches were confronted, to find that the Magnus scheme is more efficient by a factor of six in small molecules. Interestingly, the presence of iron was found to seriously limitate the length of the integration time step, due to the high frequencies associated with the core-electrons. This highlights the importance of pseudopotentials to alleviate the cost of the propagation of the inner states when heavy nuclei are present. Finally, the methodology was applied to investigate the shifts induced by the chemical environment on the most intense UV absorption bands of two model systems of general relevance: the formamide molecule in water solution, and the carboxy-heme group in Flavohemoglobin. In both cases, shifts of several nanometers are observed, consistently with the available experimental data.
Bradshaw, S. J.; Reep, J. W. [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States); Klimchuk, J. A., E-mail: stephen.bradshaw@rice.edu, E-mail: jeffrey.reep@rice.edu, E-mail: james.a.klimchuk@nasa.gov [NASA Goddard Space Flight Center, Solar Physics Lab., Code 671, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)
2012-10-10T23:59:59.000Z
Observational measurements of active region emission measures contain clues to the time dependence of the underlying heating mechanism. A strongly nonlinear scaling of the emission measure with temperature indicates a large amount of hot plasma relative to warm plasma. A weakly nonlinear (or linear) scaling of the emission measure indicates a relatively large amount of warm plasma, suggesting that the hot active region plasma is allowed to cool and so the heating is impulsive with a long repeat time. This case is called low-frequency nanoflare heating, and we investigate its feasibility as an active region heating scenario here. We explore a parameter space of heating and coronal loop properties with a hydrodynamic model. For each model run, we calculate the slope {alpha} of the emission measure distribution EM(T){proportional_to}T {sup {alpha}}. Our conclusions are: (1) low-frequency nanoflare heating is consistent with about 36% of observed active region cores when uncertainties in the atomic data are not accounted for; (2) proper consideration of uncertainties yields a range in which as many as 77% of observed active regions are consistent with low-frequency nanoflare heating and as few as zero; (3) low-frequency nanoflare heating cannot explain observed slopes greater than 3; (4) the upper limit to the volumetric energy release is in the region of 50 erg cm{sup -3} to avoid unphysical magnetic field strengths; (5) the heating timescale may be short for loops of total length less than 40 Mm to be consistent with the observed range of slopes; (6) predicted slopes are consistently steeper for longer loops.
Lucas J. Fernndez-Alczar; Horacio M. Pastawski
2015-02-27T23:59:59.000Z
We present a model for decoherence in time-dependent transport. It boils down into a form of wave function that undergoes a smooth stochastic drift of the phase in a local basis, the Quantum Drift (QD) model. This drift is nothing else but a local energy fluctuation. Unlike Quantum Jumps (QJ) models, no jumps are present in the density as the evolution is unitary. As a first application, we address the transport through a resonant state $\\left\\vert 0\\right\\rangle $ that undergoes decoherence. We show the equivalence with the decoherent steady state transport in presence of a B\\"{u}ttiker's voltage probe. In order to test the dynamics, we consider two many-spin systems whith a local energy fluctuation. A two-spin system is reduced to a two level system (TLS) that oscillates among $\\left\\vert 0\\right\\rangle $ $\\equiv $ $ \\left\\vert \\uparrow \\downarrow \\right\\rangle $ and $\\left\\vert 1\\right\\rangle \\equiv $ $\\left\\vert \\downarrow \\uparrow \\right\\rangle $. We show that QD model recovers not only the exponential damping of the oscillations in the low perturbation regime, but also the non-trivial bifurcation of the damping rates at a critical point, i.e. the quantum dynamical phase transition. We also address the spin-wave like dynamics of local polarization in a spin chain. The QD average solution has about half the dispersion respect to the mean dynamics than QJ. By evaluating the Loschmidt Echo (LE), we find that the pure states $\\left\\vert 0\\right\\rangle $ and $\\left\\vert 1\\right \\rangle $ are quite robust against the local decoherence. In contrast, the LE, and hence coherence, decays faster when the system is in a superposition state. Because its simple implementation, the method is well suited to assess decoherent transport problems as well as to include decoherence in both one-body and many-body dynamics.
Down hole periodic seismic generator
Hardee, Harry C. (Albuquerque, NM); Hills, Richard G. (Las Cruces, NM); Striker, Richard P. (Albuquerque, NM)
1989-01-01T23:59:59.000Z
A down hole periodic seismic generator system for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.
Advanced downhole periodic seismic generator
Hardee, Harry C. (Albuquerque, NM); Hills, Richard G. (Las Cruces, NM); Striker, Richard P. (Albuquerque, NM)
1991-07-16T23:59:59.000Z
An advanced downhole periodic seismic generator system for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.
Newberry Seismic Deployment Fieldwork Report
Wang, J; Templeton, D C
2012-03-21T23:59:59.000Z
This report summarizes the seismic deployment of Lawrence Livermore National Laboratory (LLNL) Geotech GS-13 short-period seismometers at the Newberry Enhanced Geothermal System (EGS) Demonstration site located in Central Oregon. This Department of Energy (DOE) demonstration project is managed by AltaRock Energy Inc. AltaRock Energy had previously deployed Geospace GS-11D geophones at the Newberry EGS Demonstration site, however the quality of the seismic data was somewhat low. The purpose of the LLNL deployment was to install more sensitive sensors which would record higher quality seismic data for use in future seismic studies, such as ambient noise correlation, matched field processing earthquake detection studies, and general EGS microearthquake studies. For the LLNL deployment, seven three-component seismic stations were installed around the proposed AltaRock Energy stimulation well. The LLNL seismic sensors were connected to AltaRock Energy Gueralp CMG-DM24 digitizers, which are powered by AltaRock Energy solar panels and batteries. The deployment took four days in two phases. In phase I, the sites were identified, a cavity approximately 3 feet deep was dug and a flat concrete pad oriented to true North was made for each site. In phase II, we installed three single component GS-13 seismometers at each site, quality controlled the data to ensure that each station was recording data properly, and filled in each cavity with native soil.
Amplitude Analysis and Measurement of the Time-dependent CP Asymmetry of B0 to KsKsKs Decays
Lees, J.P.
2012-04-11T23:59:59.000Z
We present the first results on the Dalitz-plot structure and improved measurements of the time-dependent CP-violation parameters of the process B{sup 0} {yields} K{sub S}{sup 0}K{sub S}{sup 0}K{sub S}{sup 0} obtained using 468 x 10{sup 6} B{bar B} decays collected with the BABAR detector at the PEP-II asymmetric-energy B factory at SLAC. The Dalitz-plot structure is probed by a time-integrated amplitude analysis that does not distinguish between B{sup 0} and {bar B}{sup 0} decays. We measure the total inclusive branching fraction {Beta}(B{sup 0} {yields} K{sub S}{sup 0}K{sub S}{sup 0}K{sub S}{sup 0}) = (6.19 {+-} 0.48 {+-} 0.15 {+-} 0.12) x 10{sup -6}, where the first uncertainty is statistical, the second is systematic, and the third represents the Dalitz-plot signal model dependence. We also observe evidence for the intermediate resonant states f{sub 0}(980), f{sub 0}(1710), and f{sub 2}(2010). Their respective product branching fractions are measured to be (2.70{sub -1.19}{sup +1.25} {+-} 0.36 {+-} 1.17) x 10{sup -6}, (0.50{sub -0.24}{sup +0.46} {+-} 0.04 {+-} 0.10) x 10{sup -6}, and (0.54{sub -0.20}{sup +0.21} {+-} 0.03 {+-} 0.52) x 10{sup -6}. Additionally, we determine the mixing-induced CP-violation parameters to be S = -0.94{sub -0.21}{sup +0.24} {+-} 0.06 and C = -0.17 {+-} 0.18 {+-} 0.04, where the first uncertainty is statistical and the second is systematic. These values are in agreement with the standard model expectation.
Alonso, Juan J. [Stanford University; Iaccarino, Gianluca [Stanford University
2013-08-25T23:59:59.000Z
The following is the final report covering the entire period of this aforementioned grant, June 1, 2011 - May 31, 2013 for the portion of the effort corresponding to Stanford University (SU). SU has partnered with Sandia National Laboratories (PI: Mike S. Eldred) and Purdue University (PI: Dongbin Xiu) to complete this research project and this final report includes those contributions made by the members of the team at Stanford. Dr. Eldred is continuing his contributions to this project under a no-cost extension and his contributions to the overall effort will be detailed at a later time (once his effort has concluded) on a separate project submitted by Sandia National Laboratories. At Stanford, the team is made up of Profs. Alonso, Iaccarino, and Duraisamy, post-doctoral researcher Vinod Lakshminarayan, and graduate student Santiago Padron. At Sandia National Laboratories, the team includes Michael Eldred, Matt Barone, John Jakeman, and Stefan Domino, and at Purdue University, we have Prof. Dongbin Xiu as our main collaborator. The overall objective of this project was to develop a novel, comprehensive methodology for uncertainty quantification by combining stochastic expansions (nonintrusive polynomial chaos and stochastic collocation), the adjoint approach, and fusion with experimental data to account for aleatory and epistemic uncertainties from random variable, random field, and model form sources. The expected outcomes of this activity were detailed in the proposal and are repeated here to set the stage for the results that we have generated during the time period of execution of this project: 1. The rigorous determination of an error budget comprising numerical errors in physical space and statistical errors in stochastic space and its use for optimal allocation of resources; 2. A considerable increase in efficiency when performing uncertainty quantification with a large number of uncertain variables in complex non-linear multi-physics problems; 3. A solution to the long-time integration problem of spectral chaos approaches; 4. A rigorous methodology to account for aleatory and epistemic uncertainties, to emphasize the most important variables via dimension reduction and dimension-adaptive refinement, and to support fusion with experimental data using Bayesian inference; 5. The application of novel methodologies to time-dependent reliability studies in wind turbine applications including a number of efforts relating to the uncertainty quantification in vertical-axis wind turbine applications. In this report, we summarize all accomplishments in the project (during the time period specified) focusing on advances in UQ algorithms and deployment efforts to the wind turbine application area. Detailed publications in each of these areas have also been completed and are available from the respective conference proceedings and journals as detailed in a later section.
Enhanced migration of seismic data
Carrion, P.M. (PPPG/UFBA, Instituto de Geociencias, Rua Gaetano Moura 123, Federacao, 40.210 Salvador, Bahia (BR))
1990-10-01T23:59:59.000Z
The so-called enhanced migration which uses diffraction tomography as the repair tool for correction of amplitudes (reflection coefficients) of migrated sections is discussed. As with any linearized procedure, diffraction tomography requires knowledge of the initial model. It is suggested that the initial model is taken as the migrated image. It will be demonstrated that diffraction tomography applied to the data residuals improves the amplitudes of the migrated images. Migration is redefined as the reconstruction of the wavefront sets of distributions (reflection interfaces), and the inversion process as tomographic correction of migrated images.
Machine Learning for Seismic Signal Processing: Seismic Phase Classification on a Manifold
Meyer, Francois
Machine Learning for Seismic Signal Processing: Seismic Phase Classification on a Manifold Juan--In this research, we consider the supervised learning problem of seismic phase classification. In seismology, knowledge of the seismic activity arrival time and phase leads to epicenter localization and surface
Probabilistic seismic risk analysis of existing buildings in regions with moderate seismicity
Paris-Sud XI, Université de
Probabilistic seismic risk analysis of existing buildings in regions with moderate seismicity C to apply an approach based on risk for the seismic assessment of existing buildings. In this innovative analytical seismic assessment methods, as the ratio between the capacity and the requirement of the current
Seismic vulnerability analysis of moderate seismicity areas using in situ experimental
Paris-Sud XI, Université de
Seismic vulnerability analysis of moderate seismicity areas using in situ experimental techniques (LGIT), LCPC, CNRS, Université Joseph Fourier Grenoble Abstract Seismic vulnerability analysis. This curve is particularly interesting in moderate seismic areas. This methodology is applied to the Grenoble
Radiated seismic energy from coda measurements and no scaling in apparent stress with seismic moment
Prieto, Germán A.
Radiated seismic energy from coda measurements and no scaling in apparent stress with seismic March 2010; accepted 9 April 2010; published 31 August 2010. [1] The seismic coda consists of scattered of radiated wave energy. We apply an empirical Green's function (EGF) method to the seismic coda in order
Chu, Shih-I
the Floquet formulation of time-dependent density functional theory Dmitry A. Telnov and Shih-I Chu Department-dependent density functional theory we present several exact relations involving different parts of the quasienergy.012514 PACS number s : 71.45.Gm, 71.15.Mb, 31.15.Ew I. INTRODUCTION Time-independent density functional theory
Mukamel, Shaul
Generalized time-dependent density-functional-theory response functions for spontaneous density shifted the focus of elec- tronic structure theory from the many-body wave function to the charge density response and spontaneous fluctuations of many-electron systems. The pth-order density response functions
Yacob Ben-Aryeh
2008-07-29T23:59:59.000Z
The general theory of time-dependent frequency and time-dependent mass ('effective mass') is described.The general theory for time-dependent harmonic- oscillator is applied in the present research for studying certain quantum effects in the interferometers for detecting gravitational waves.When an astronomical binary system approaches its point of coalescence the gravitational wave intensity and frequency are increasing and this can lead to strong deviations from the simple description of harmonic-oscillations for the interferometric masses on which the mirrors are placed.It is shown that under such condtions the harmonic-oscillations of these masses can be described by mechanical harmonic-oscillators with time-dependent frequency and effective-mass. In the present theoretical model the effective-mass is decreasing with time describing pumping phenomena in which the oscillator amplitude is increasing with time . The quantization of this system is analyzed by the use of the adiabatic approximation. It is found that the increase of the gravitational wave intensity, within the adiabatic approximation, leads to squeezing phenomena where the quantum noise in one quadrature is increased and in the other quadrature is decreased.
Evaluation of strategies for seismic design
Tsertikidou, Despoina
2012-01-01T23:59:59.000Z
Current trends in seismic design require a new approach, oriented in satisfying motion related design requirements and limiting both structural and non-structural damage. Seismic isolation and damping devices are currently ...
Seismic Attribute Analysis Using Higher Order Statistics
Greenidge, Janelle Candice
2009-05-15T23:59:59.000Z
Seismic data processing depends on mathematical and statistical tools such as convolution, crosscorrelation and stack that employ second-order statistics (SOS). Seismic signals are non-Gaussian and therefore contain information beyond SOS. One...
Multiphase fluid flow and time lapse seismics
santos
Time-lapse seismic surveys aim to monitor the migration and dispersal of the CO2 ... of CO2-brine flow and seismic wave propagation to model and monitor CO2...
Subsurface imaging with reverse vertical seismic profiles
Krasovec, Mary L. (Mary Lee), 1972-
2001-01-01T23:59:59.000Z
This thesis presents imaging results from a 3D reverse vertical seismic profile (RVSP) dataset measured at a hydrocarbon bearing pinnacle reef in northern Michigan. The study presented many challenges in seismic data ...
Development of a HT Seismic Tool
Broader source: Energy.gov [DOE]
The program objective is to design; fabricate and field test two high temperature (HT) seismic tools in an EGS application.
SEISMIC IMAGING WITH THE GENERALIZED RADON ...
2008-07-29T23:59:59.000Z
SEISMIC IMAGING WITH THE GENERALIZED RADON. TRANSFORM AND DOUBLE BEAMFORMING: A CURVELET. TRANSFORM PERSPECTIVE. M V DE...
BOOK REVIEW Seismic Communication and Adventure
Munshi-South, Jason
BOOK REVIEW Seismic Communication and Adventure Among African Elephants The Elephant's Secret Sense in Namibia as she first develops the hypothesis that elephants can communicate using seismic signals. Science documenting the elephants' listening behavior and responses to seismic cues. However, these scientific
SEISMIC VULNERABILITY ASSESSMENT USING AMBIENT VIBRATIONS
Paris-Sud XI, Université de
SEISMIC VULNERABILITY ASSESSMENT USING AMBIENT VIBRATIONS: METHOD AND VALIDATION Clotaire Michel, France cmichel@obs.ujf-grenoble.fr Abstract Seismic vulnerability in wide areas is usually assessed like USA or Italy. France is a country with moderate seismicity so that it requires lower-cost methods
SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW
Santos, Juan
SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW J. E. Santos1, G. B. Savioli2, J. M. Carcione3, D´e, Argentina SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW p. #12;Introduction. I Storage of CO2). SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW p. #12;Introduction. II CO2 is separated from natural
Seismic, shock, and vibration isolation - 1988
Chung, H. (Argonne National Lab., Argonne, IL (US)); Mostaghel, N. (Univ. of Utah, Salt Lake City, UT (US))
1988-01-01T23:59:59.000Z
This book contains papers presented at a conference on pressure vessels and piping. Topics covered include: Design of R-FBI bearings for seismic isolation; Benefits of vertical and horizontal seismic isolation for LMR nuclear reactor units; and Some remarks on the use and perspectives of seismic isolation for fast reactors.
Russell, Clifford Marlow
2012-06-07T23:59:59.000Z
to make the Donner Algorithms run. TABLE OF CONTEliiTS CHAPTF. . R I NEI. TRON RADIOGRAPHY . I. 1 Background . I. 2 Theory . l. 3 Neutron Beam Characterization I. 4 Image Detectors . COMPI'TED TOMOGRAPHY . Il I Background . II. 2 Notation II. 3... data which is generated by rays traveling (and being attenuated) in straight lines. However in neutron radiography, what is measured is, to most extents, the levels of neutrons which are not attenuated. Neutrons are particles. They scatter...
Katsevich, Alexander J. (Los Alamos, NM); Ramm, Alexander G. (Manhattan, KS)
1996-01-01T23:59:59.000Z
Local tomography is enhanced to determine the location and value of a discontinuity between a first internal density of an object and a second density of a region within the object. A beam of radiation is directed in a predetermined pattern through the region of the object containing the discontinuity. Relative attenuation data of the beam is determined within the predetermined pattern having a first data component that includes attenuation data through the region. In a first method for evaluating the value of the discontinuity, the relative attenuation data is inputted to a local tomography function .function..sub..LAMBDA. to define the location S of the density discontinuity. The asymptotic behavior of .function..sub..LAMBDA. is determined in a neighborhood of S, and the value for the discontinuity is estimated from the asymptotic behavior of .function..sub..LAMBDA.. In a second method for evaluating the value of the discontinuity, a gradient value for a mollified local tomography function .gradient..function..sub..LAMBDA..epsilon. (x.sub.ij) is determined along the discontinuity; and the value of the jump of the density across the discontinuity curve (or surface) S is estimated from the gradient values.
Generalized local emission tomography
Katsevich, Alexander J. (Los Alamos, NM)
1998-01-01T23:59:59.000Z
Emission tomography enables locations and values of internal isotope density distributions to be determined from radiation emitted from the whole object. In the method for locating the values of discontinuities, the intensities of radiation emitted from either the whole object or a region of the object containing the discontinuities are inputted to a local tomography function .function..sub..LAMBDA..sup.(.PHI.) to define the location S of the isotope density discontinuity. The asymptotic behavior of .function..sub..LAMBDA..sup.(.PHI.) is determined in a neighborhood of S, and the value for the discontinuity is estimated from the asymptotic behavior of .function..sub..LAMBDA..sup.(.PHI.) knowing pointwise values of the attenuation coefficient within the object. In the method for determining the location of the discontinuity, the intensities of radiation emitted from an object are inputted to a local tomography function .function..sub..LAMBDA..sup.(.PHI.) to define the location S of the density discontinuity and the location .GAMMA. of the attenuation coefficient discontinuity. Pointwise values of the attenuation coefficient within the object need not be known in this case.
Optical Tomography in two dimensions
so-called diffused tomography [SGKZ]. Other areas of applications are atmospheric remote sensing [Bi], nuclear physics (see [MC] for a review), etc. We describe...
Caucasus Seismic Information Network: Data and Analysis Final Report
Randolph Martin; Mary Krasovec; Spring Romer; Timothy O'Connor; Emanuel G. Bombolakis; Youshun Sun; Nafi Toksoz
2007-02-22T23:59:59.000Z
The geology and tectonics of the Caucasus region (Armenia, Azerbaijan, and Georgia) are highly variable. Consequently, generating a structural model and characterizing seismic wave propagation in the region require data from local seismic networks. As of eight years ago, there was only one broadband digital station operating in the region an IRIS station at Garni, Armenia and few analog stations. The Caucasus Seismic Information Network (CauSIN) project is part of a nulti-national effort to build a knowledge base of seismicity and tectonics in the region. During this project, three major tasks were completed: 1) collection of seismic data, both in event catalogus and phase arrival time picks; 2) development of a 3-D P-wave velocity model of the region obtained through crustal tomography; 3) advances in geological and tectonic models of the region. The first two tasks are interrelated. A large suite of historical and recent seismic data were collected for the Caucasus. These data were mainly analog prior to 2000, and more recently, in Georgia and Azerbaijan, the data are digital. Based on the most reliable data from regional networks, a crustal model was developed using 3-D tomographic inversion. The results of the inversion are presented, and the supporting seismic data are reported. The third task was carried out on several fronts. Geologically, the goal of obtaining an integrated geological map of the Caucasus on a scale of 1:500,000 was initiated. The map for Georgia has been completed. This map serves as a guide for the final incorporation of the data from Armenia and Azerbaijan. Description of the geological units across borders has been worked out and formation boundaries across borders have been agreed upon. Currently, Armenia and Azerbaijan are working with scientists in Georgia to complete this task. The successful integration of the geologic data also required addressing and mapping active faults throughout the greater Caucasus. Each of the major faults in the region were identified and the probability of motion were assessed. Using field data and seismicity, the relative activity on each of these faults was determined. Furthermore, the sense of motion along the faults was refined using GPS, fault plane solutions, and detailed field studies. During the course of the integration of the active fault data, the existence of the proposed strike slip Borjomi-Kazbeki fault was brought into question. Although it had been incorporated in many active tectonic models over the past decade, field geologists and geophysicists in Georgia questioned its existence. Detailed field studies were carried out to determine the existence of the fault and estimate the slip along it; and it was found that the fault zone did not exist. Therefore, the convergence rate in the greater Caucasus must be reinterpreted in terms of thrust mechanisms, instead of strike-slip on the Borjomi-Kazbeki fault zone.
Quantifying the {sup 12}C+{sup 12}C sub-Coulomb fusion with the time-dependent wave-packet method
Diaz-Torres, Alexis; Wiescher, Michael [ECT, Strada delle Tabarelle 286, I-38123 Villazzano, Trento (Italy); JINA and Department of Physics, University of Notre Dame, IN 46656 (United States)
2012-10-20T23:59:59.000Z
This contribution provides a preliminary study of the {sup 12}C+{sup 12}C sub-Coulomb fusion reaction using the time-dependent wave-packet method within a nuclear molecular picture. The theoretical sub-Coulomb fusion resonances seem to correspond well with observations. The present method might be a more suitable tool for expanding the cross-section predictions towards lower energies than the commonly used potential-model approximation.
Radial reflection diffraction tomography
Lehman, Sean K.
2012-12-18T23:59:59.000Z
A wave-based tomographic imaging method and apparatus based upon one or more rotating radially outward oriented transmitting and receiving elements have been developed for non-destructive evaluation. At successive angular locations at a fixed radius, a predetermined transmitting element can launch a primary field and one or more predetermined receiving elements can collect the backscattered field in a "pitch/catch" operation. A Hilbert space inverse wave (HSIW) algorithm can construct images of the received scattered energy waves using operating modes chosen for a particular application. Applications include, improved intravascular imaging, bore hole tomography, and non-destructive evaluation (NDE) of parts having existing access holes.
Positron Emission Tomography (PET)
DOE R&D Accomplishments [OSTI]
Welch, M. J.
1990-01-00T23:59:59.000Z
Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone byDear Friend,Arthur J. NozikAtom Probe Tomography Atom Probe
Thermoacoustic tomography with variable sound speed
2009-10-26T23:59:59.000Z
We study the mathematical model of thermoacoustic tomography in media with a ... In thermoacoustic tomography, a short electro-magnetic pulse is sent through...
Electrical Impedance Tomography Liliana Borcea
Borcea, Liliana
Electrical Impedance Tomography Liliana Borcea #3; September 3, 2002 Abstract We review theoretical and numerical studies of the inverse problem of electrical impedance tomography which seeks the electrical conductivity and permittivity inside a body, given simul- taneous measurements of electrical currents
Seismic Isolation Working Meeting Gap Analysis Report
Justin Coleman; Piyush Sabharwall
2014-09-01T23:59:59.000Z
The ultimate goal in nuclear facility and nuclear power plant operations is operating safety during normal operations and maintaining core cooling capabilities during off-normal events including external hazards. Understanding the impact external hazards, such as flooding and earthquakes, have on nuclear facilities and NPPs is critical to deciding how to manage these hazards to expectable levels of risk. From a seismic risk perspective the goal is to manage seismic risk. Seismic risk is determined by convolving the seismic hazard with seismic fragilities (capacity of systems, structures, and components (SSCs)). There are large uncertainties associated with evolving nature of the seismic hazard curves. Additionally there are requirements within DOE and potential requirements within NRC to reconsider updated seismic hazard curves every 10 years. Therefore opportunity exists for engineered solutions to manage this seismic uncertainty. One engineered solution is seismic isolation. Current seismic isolation (SI) designs (used in commercial industry) reduce horizontal earthquake loads and protect critical infrastructure from the potentially destructive effects of large earthquakes. The benefit of SI application in the nuclear industry is being recognized and SI systems have been proposed, in the American Society of Civil Engineers (ASCE) 4 standard, to be released in 2014, for Light Water Reactors (LWR) facilities using commercially available technology. However, there is a lack of industry application to the nuclear industry and uncertainty with implementing the procedures outlined in ASCE-4. Opportunity exists to determine barriers associated with implementation of current ASCE-4 standard language.
Analysis of seismic anisotropy in 3D multi-component seismic data
Qian, Zhongping
2010-01-01T23:59:59.000Z
The importance of seismic anisotropy has been recognized by the oil industry since its first observation in hydrocarbon reservoirs in 1986, and the application of seismic anisotropy to solve geophysical problems has been ...
Korneev, Valeri A. (Lafayette, CA); Bakulin, Andrey (Houston, TX)
2009-10-13T23:59:59.000Z
The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.
Korneev, Valeri A [LaFayette, CA
2009-05-05T23:59:59.000Z
The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.
Nuclear component horizontal seismic restraint
Snyder, Glenn J. (Lynchburg, VA)
1988-01-01T23:59:59.000Z
A nuclear component horizontal seismic restraint. Small gaps limit horizontal displacement of components during a seismic occurrence and therefore reduce dynamic loadings on the free lower end. The reactor vessel and reactor guard vessel use thicker section roll-forged rings welded between the vessel straight shell sections and the bottom hemispherical head sections. The inside of the reactor guard vessel ring forging contains local vertical dovetail slots and upper ledge pockets to mount and retain field fitted and installed blocks. As an option, the horizontal displacement of the reactor vessel core support cone can be limited by including shop fitted/installed local blocks in opposing alignment with the reactor vessel forged ring. Beams embedded in the wall of the reactor building protrude into apertures in the thermal insulation shell adjacent the reactor guard vessel ring and have motion limit blocks attached thereto to provide to a predetermined clearance between the blocks and reactor guard vessel ring.
DISPLACEMENT BASED SEISMIC DESIGN CRITERIA
HOFMAYER,C.H.
1999-03-29T23:59:59.000Z
The USNRC has initiated a project to determine if any of the likely revisions to traditional earthquake engineering practice are relevant to seismic design of the specialized structures, systems and components of nuclear power plants and of such significance to suggest that a change in design practice might be warranted. As part of the initial phase of this study, a literature survey was conducted on the recent changes in seismic design codes/standards, on-going activities of code-writing organizations/communities, and published documents on displacement-based design methods. This paper provides a summary of recent changes in building codes and on-going activities for future codes. It also discusses some technical issues for further consideration.
Oklahoma seismic network. Final report
Luza, K.V.; Lawson, J.E. Jr. [Oklahoma Geological Survey, Norman, OK (United States)]|[Univ. of Oklahoma, Norman, OK (United States). Energy Center
1993-07-01T23:59:59.000Z
The US Nuclear Regulatory Commission has established rigorous guidelines that must be adhered to before a permit to construct a nuclear-power plant is granted to an applicant. Local as well as regional seismicity and structural relationships play an integral role in the final design criteria for nuclear power plants. The existing historical record of seismicity is inadequate in a number of areas of the Midcontinent region because of the lack of instrumentation and (or) the sensitivity of the instruments deployed to monitor earthquake events. The Nemaha Uplift/Midcontinent Geophysical Anomaly is one of five principal areas east of the Rocky Mountain front that has a moderately high seismic-risk classification. The Nemaha uplift, which is common to the states of Oklahoma, Kansas, and Nebraska, is approximately 415 miles long and 12-14 miles wide. The Midcontinent Geophysical Anomaly extends southward from Minnesota across Iowa and the southeastern corner of Nebraska and probably terminates in central Kansas. A number of moderate-sized earthquakes--magnitude 5 or greater--have occurred along or west of the Nemaha uplift. The Oklahoma Geological Survey, in cooperation with the geological surveys of Kansas, Nebraska, and Iowa, conducted a 5-year investigation of the seismicity and tectonic relationships of the Nemaha uplift and associated geologic features in the Midcontinent. This investigation was intended to provide data to be used to design nuclear-power plants. However, the information is also being used to design better large-scale structures, such as dams and high-use buildings, and to provide the necessary data to evaluate earthquake-insurance rates in the Midcontinent.
S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES
S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES COMMISSION platform for distributed hybrid testing #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN? Celestina Overview Implementation Validation Next steps #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES
SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES ENISTAT: Experimental and
SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES ENISTAT: Experimental-TA Project #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES Partners (Users) · METU Ragueneau · SCHOECK (Germany): Steffen Scheer, Seref Diler #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES
S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES
S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES COMMISSION Database: Architecture and implementation #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN Conclusions #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES 3 SERIES Concluding
Seismic stimulation for enhanced oil recovery
Pride, S.R.
2008-01-01T23:59:59.000Z
aims to enhance oil production by sending seismic wavesbe expected to enhance oil production. INTRODUCTION The hopethe reservoir can cause oil production to increase. Quite
Seismic Fracture Characterization Methods for Enhanced Geothermal...
Broader source: Energy.gov (indexed) [DOE]
5 4.5.2 Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Presentation Number: 022 Investigator: Queen, John (Hi-Q Geophysical Inc.) Objectives: To develop...
Mapping Diffuse Seismicity for Geothermal Reservoir Management...
Broader source: Energy.gov (indexed) [DOE]
Templeton David B. Harris Lawrence Livermore Natl. Lab. Seismicity and Reservoir Fracture Characterization May 18, 2010 This presentation does not contain any proprietary...
INVERSE SCATTERING OF SEISMIC DATA WITH THE ...
1910-61-22T23:59:59.000Z
We discuss the inverse scattering of seismic reflection data making use of the generalized Radon transform. Through an extension, the relevant transform attains...
SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW
santos
SEISMIC MONITORING OF. CARBON DIOXIDE FLUID FLOW. J. E. Santos. 1. , G. B. Savioli. 2. , J. M. Carcione. 3. , D. Gei. 3. 1. CONICET, IGPUBA, Fac.
Finite Element Approximation of Coupled Seismic and ...
2009-02-15T23:59:59.000Z
numerical approximation of coupled seismic and electromagnetic waves in 2D bounded fluid- saturated porous media, with absorbing boundary conditions at...
Finite element approximation of coupled seismic and ...
zyserman
layer, having a thickness of about 10 nm. Finite element approximation of coupled seismic and electromagnetic waves in gas hydrate-bearing sediments p.
Hanford site seismic monitoring instrumentation plan
Reidel, S.P.
1996-02-29T23:59:59.000Z
This document provides a plan to comply with the seismic monitoring provisions of US DOE Order 5480.28, Natural Phenomena Hazards.
Infrasound Generation from the HH Seismic Hammer.
Jones, Kyle Richard
2014-10-01T23:59:59.000Z
The HH Seismic hammer is a large, %22weight-drop%22 source for active source seismic experiments. This system provides a repetitive source that can be stacked for subsurface imaging and exploration studies. Although the seismic hammer was designed for seismological studies it was surmised that it might produce energy in the infrasonic frequency range due to the ground motion generated by the 13 metric ton drop mass. This study demonstrates that the seismic hammer generates a consistent acoustic source that could be used for in-situ sensor characterization, array evaluation and surface-air coupling studies for source characterization.
Seismic stimulation for enhanced oil recovery
Pride, S.R.
2008-01-01T23:59:59.000Z
that in a declining oil reservoir, seismic waves sent acrosswells. Because oil reservoirs are often at kilometers orproximity to the oil reservoir. Our analysis suggests there
Double-Difference Tomography for Sequestration MVA [monitoring, verification, and accounting
Westman, Erik
2012-12-31T23:59:59.000Z
Analysis of synthetic data was performed to determine the most cost-effective tomographic monitoring system for a geologic carbon sequestration injection site. Double-difference tomographic inversion was performed on 125 synthetic data sets: five stages of CO2 plume growth, five seismic event regions, and five geophone arrays. Each resulting velocity model was compared quantitatively to its respective synthetic velocity model to determine an accuracy value. The results were examined to determine a relationship between cost and accuracy in monitoring, verification, and accounting applications using double-difference tomography. The geophone arrays with widely-varying geophone locations, both laterally and vertically, performed best. Additionally, double difference seismic tomography was performed using travel time data from a carbon sequestration site at the Aneth oil field in southeast Utah as part of a Department of Energy initiative on monitoring, verification, and accounting (MVA) of sequestered CO2. A total of 1,211 seismic events were recorded from a borehole array consisting of 22 geophones. Artificial velocity models were created to determine the ease with which different CO2 plume locations and sizes can be detected. Most likely because of the poor geophone arrangement, a low velocity zone in the Desert Creek reservoir can only be detected when regions of test site containing the highest ray path coverage are considered. MVA accuracy and precision may be improved through the use of a receiver array that provides more comprehensive ray path coverage.
Takashi Nakatsukasa
2012-10-01T23:59:59.000Z
We present the basic concepts and our recent developments in the density functional approaches with the Skyrme functionals for describing nuclear dynamics at low energy. The time-dependent density-functional theory (TDDFT) is utilized for the exact linear response with an external perturbation. For description of collective dynamics beyond the perturbative regime, we present a theory of a decoupled collective submanifold to describe for a slow motion based on the TDDFT. Selected applications are shown to demonstrate the quality of their performance and feasibility. Advantages and disadvantages in the numerical aspects are also discussed.
Kazuhiro Yamamoto; Gen Nakamura
2011-03-09T23:59:59.000Z
First-order quantum correction to the Larmor radiation is investigated on the basis of the scalar QED on a homogeneous background of time-dependent electric field, which is a generalization of a recent work by Higuchi and Walker so as to be extended for an accelerated charged particle in a relativistic motion. We obtain a simple approximate formula for the quantum correction in the limit of the relativistic motion when the direction of the particle motion is parallel to that of the electric field.
Telnov, Dmitry A.; Chu, Shih-I
2000-12-13T23:59:59.000Z
uri2rju U F L , ~7!Exact relations of the quasienergy functio from the Floquet formulation of tim Dmitry A. Telno Department of Chemistry, University of Kansas, and Kansas Ce ~Received 15 July 2000; pu In the framework of the Floquet formulation... monochromatic field! to illustrate the general appli- cability of the exact relations. The model has some intrinsic limitations since it exhibits the motion prescribed by the har- monic potential theorem, which is only a subset of general time-dependent behavior...
Gross, E.K.U.
Time-dependent approach to electron pumping in open quantum systems G. Stefanucci,1,2,* S. Kurth,1 time-dependent approach to investigate the motion of electrons in quantum pump device configurations that for pumping across a single potential barrier, electrons are transported in pockets and the transport
Protocol for Addressing Induced Seismicity Associated with Enhanced...
Office of Environmental Management (EM)
Protocol for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems Protocol for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems This...
Joint inversion of electrical and seismic data for Fracture char...
Broader source: Energy.gov (indexed) [DOE]
Joint inversion of electrical and seismic data for Fracture char. and Imaging of Fluid Flow in Geothermal Systems Joint inversion of electrical and seismic data for Fracture char....
Modeling-Computer Simulations At Central Nevada Seismic Zone...
Modeling-Computer Simulations At Central Nevada Seismic Zone Region (Biasi, Et Al., 2009) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region...
DOE New Madrid Seismic Zone Electric Utility Workshop Summary...
Broader source: Energy.gov (indexed) [DOE]
New Madrid Seismic Zone Electric Utility Workshop Summary Report - August 2010 DOE New Madrid Seismic Zone Electric Utility Workshop Summary Report - August 2010 The DOE New Madrid...
Compound and Elemental Analysis At Central Nevada Seismic Zone...
Central Nevada Seismic Zone Region (Laney, 2005) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Compound and Elemental...
Evaluation of the SRS Seismic Hazard Considering the EPRI 2013...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Evaluation of the SRS Seismic Hazard Considering the EPRI 2013 Ground Motion Model Evaluation of the SRS Seismic Hazard Considering the EPRI 2013 Ground Motion Model Evaluation of...
Poroelastic modeling of seismic boundary conditions across a fracture
2007-07-20T23:59:59.000Z
Permeability of a fracture can affect how the fracture interacts with seismic waves. ... characteristic parameters that control the seismic response of single...
Eckhard Strobel; She-Sheng Xue
2014-07-18T23:59:59.000Z
We present an analytic calculation of the semiclassical electron-positron pair creation rate by time-dependent electrical fields. We use two methods, first the imaginary time method in the WKB-approximation and second the world-line instanton approach. The analytic tools for both methods are generalized to time-dependent electric fields with more than one component. For the WKB method an expansion of the momentum spectrum of produced pairs around the canonical momentum $\\vec{P}=0$ is presented which simplifies the computation of the pair creation rate. We argue that the world-line instanton method of [Dunne et al., Phys. Rev. D73, 065028 (2006)] implicitly performs this expansion of the momentum spectrum around $\\vec{P}=0$. Accordingly the generalization to more than one component is shown to agree with the WKB result obtained via this expansion. However the expansion is only a good approximation for the cases where the momentum spectrum is peaked around $\\vec{P}=0$. Thus the expanded WKB result and the world-line instanton method of [Dunne et al., Phys. Rev. D73, 065028 (2006)] as well as the generalized method presented here are only applicable in these cases. We study the two component case of a rotating electric field and find a new analytic closed form for the momentum spectrum using the generalized WKB method. The momentum spectrum for this field is not peaked around $\\vec{P}=0$.
TIME-DEPENDENT MAXWELL'S EQUATIONS*
Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716. (monklath.udel. ... The plan of the paperis as follows. In 2 we .... which states that the energy in the discrete system is independent of time. This energy...
Seismic monitoring at The Geysers
Majer, E.L.; Romero, A.; Vasco, D.; Kirkpatrick, A.; Peterson, J.E. [Lawrence Berkeley Lab., CA (United States); Zucca, J.J.; Hutchings, L.J.; Kasameyer, P.W. [Lawrence Livermore National Lab., CA (United States)
1993-04-01T23:59:59.000Z
During the last several years Lawrence Berkeley Laboratory (LBL) and Lawrence Livermore National Laboratory (LLNL) have been working with industry partners at The Geysers geothermal field to evaluate and develop methods for applying the results of microearthquake (MEQ) monitoring. It is a well know fact that seismicity at The Geysers is a common occurrence, however, there have been many studies and papers written on the origin and significance of the seismicity. The attitude toward MEQ data ranges from being nothing more than an curious artifact of the production activities, to being a critical tool in evaluating the reservoir performance. The purpose of the work undertaken b y LBL and LLNL is to evaluate the utility, as well as the methods and procedures used in of MEQ monitoring, recommend the most cost effective implementation of the methods, and if possible link physical processes and parameters to the generation of MEQ activity. To address the objectives above the MEQ work can be categorized into two types of studies. The first type is the direct analysis of the spatial and temporal distribution of MEQ activity and studying the nature of the source function relative to the physical or chemical processes causing the seismicity. The second broad area of study is imaging the reservoir/geothermal areas with the energy created by the MEQ activity and inferring the physical and/or chemical properties within the zone of imaging. The two types of studies have obvious overlap, and for a complete evaluation and development require high quality data from arrays of multicomponent stations. Much of the effort to date at The Geysers by both DOE and the producers has concentrated establishing a high quality data base. It is only within the last several years that this data base is being fully evaluated for the proper and cost effective use of MEQ activity. Presented here are the results to date of DOE`s effort in the acquisition and analysis of the MEQ data.
Newberry EGS Seismic Velocity Model
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Templeton, Dennise
We use ambient noise correlation (ANC) to create a detailed image of the subsurface seismic velocity at the Newberry EGS site down to 5 km. We collected continuous data for the 22 stations in the Newberry network, together with 12 additional stations from the nearby CC, UO and UW networks. The data were instrument corrected, whitened and converted to single bit traces before cross correlation according to the methodology in Benson (2007). There are 231 unique paths connecting the 22 stations of the Newberry network. The additional networks extended that to 402 unique paths crossing beneath the Newberry site.
Newberry EGS Seismic Velocity Model
Templeton, Dennise
2013-10-01T23:59:59.000Z
We use ambient noise correlation (ANC) to create a detailed image of the subsurface seismic velocity at the Newberry EGS site down to 5 km. We collected continuous data for the 22 stations in the Newberry network, together with 12 additional stations from the nearby CC, UO and UW networks. The data were instrument corrected, whitened and converted to single bit traces before cross correlation according to the methodology in Benson (2007). There are 231 unique paths connecting the 22 stations of the Newberry network. The additional networks extended that to 402 unique paths crossing beneath the Newberry site.
Seismic Techniques | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton AbbeyA JumpSeagoville,SecretEmissionsSeismic
Seismicity in Azerbaijan and Adjacent Caspian Sea
Panahi, Behrouz M. [Geology Institute, Azerbaijan National Academy of Sciences, 29-A H. Javid Ave., Baku 1143 (Azerbaijan)
2006-03-23T23:59:59.000Z
So far no general view on the geodynamic evolution of the Black Sea to the Caspian Sea region is elaborated. This is associated with the geological and structural complexities of the region revealed by geophysical, geochemical, petrologic, structural, and other studies. A clash of opinions on geodynamic conditions of the Caucasus region, sometimes mutually exclusive, can be explained by a simplified interpretation of the seismic data. In this paper I analyze available data on earthquake occurrences in Azerbaijan and the adjacent Caspian Sea region. The results of the analysis of macroseismic and instrumental data, seismic regime, and earthquake reoccurrence indicate that a level of seismicity in the region is moderate, and seismic event are concentrated in the shallow part of the lithosphere. Seismicity is mostly intra-plate, and spatial distribution of earthquake epicenters does not correlate with the plate boundaries.
Seismic transducer modeling using ABAQUS
Stephen R. Novascone
2004-05-01T23:59:59.000Z
A seismic transducer, known as an orbital vibrator, consists of a rotating imbalance driven by an electric motor. When suspended in a liquid-filled wellbore, vibrations of the device are coupled to the surrounding geologic media. In this mode, an orbital vibrator can be used as an efficient rotating dipole source for seismic imaging. Alternately, the motion of an orbital vibrator is affected by the physical properties of the surrounding media. From this point of view, an orbital vibrator can be used as a stand-alone sensor. The reaction to the surroundings can be sensed and recorded by geophones inside the orbital vibrator. These reactions are a function of the medias physical properties such as modulus, damping, and density, thereby identifying the rock type. This presentation shows how the orbital vibrator and surroundings were modeled with an ABAQUS acoustic FEM. The FEM is found to compare favorably with theoretical predictions. A 2D FEM and analytical model are compared to an experimental data set. Each model compares favorably with the data set.
P. Maksimovic
1999-01-26T23:59:59.000Z
We present a study of time dependent B{sup 0}-{anti B}{sup 0} mixing in p{anti p} collisions at 1.8 TeV using 110 pb{sup -1} collected with the CDF detector at the Fermilab Tevatron Collider. B mesons are partially reconstructed using the semileptonic decays B{sup 0}{yields}l{sup +}D{sup (*)-}X and B{sup +}{yields}l{sup +}{anti D}{sup 0}X (and their charge conjugates). B meson-charged pion correlations are used in order to determine the flavor of the B meson at t=0. Such correlations are expected to arise from pions produced in the fragmentation chain and also from B{sup **} decays. We measure the efficiency and purity of this flavor tagging method for both charged and neutral B mesons.
Govind, Niranjan; De Jong, Wibe A.
2014-02-21T23:59:59.000Z
We report simulations of the X-ray absorption near edge structure (XANES) at the Cl K-edge of actinide hexahalides MCl62- (M = U, Np, Pu) and the UOCl5- complex using linear-response time-dependent density functional theory (LR-TDDFT) extended for core excitations. To the best of our knowledge, these are the first calculations of the Cl K-edge spectra of NpCl62- and PuCl62-. In addition, the spectra are simulated with and without the environmental effects of the host crystal as well as ab initio molecular dynamics (AIMD) to capture the dynamical effects due to atomic motion. The calculated spectra are compared with experimental results, where available and the observed trends are discussed.
Improved measurement of time-dependent CP violation in B{sup 0}{yields}J/{psi}{pi}{sup 0} decays
Lee, S. E.; Kim, S. K.; Lee, M. J. [Seoul National University, Seoul (Korea, Republic of); Miyabayashi, K.; Hayashii, H.; Kataoka, S. U.; Noguchi, S.; Sekiya, A. [Nara Women's University, Nara (Japan); Aihara, H.; Iwasaki, M. [Department of Physics, University of Tokyo, Tokyo (Japan); Aushev, T. [Ecole Polytecnique Federale Lausanne, EPFL, Lausanne (Switzerland); Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Aziz, T. [Tata Institute of Fundamental Research, Mumbai (India); Bakich, A. M.; McOnie, S.; Varvell, K. E. [University of Sydney, Sydney, New South Wales (Australia); Balagura, V.; Chistov, R.; Liventsev, D.; Medvedeva, T.; Mizuk, R. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation)] (and others)
2008-04-01T23:59:59.000Z
We report improved measurements of time-dependent CP violation parameters for B{sup 0}(B{sup 0}){yields}J/{psi}{pi}{sup 0} decay. This analysis is based on 535x10{sup 6} BB pairs accumulated at the {upsilon}(4S) resonance with the Belle detector at the KEKB asymmetric-energy e{sup +}e{sup -} collider. From the distribution of proper time intervals between the two B decays, we obtain the following CP violation parameters S{sub J/{psi}}{sub {pi}{sup 0}}=-0.65{+-}0.21(stat){+-}0.05(syst) and A{sub J/{psi}}{sub {pi}{sup 0}}=+0.08{+-}0.16(stat){+-}0.05(syst),which are consistent with standard model expectations.
Van Doorsselaere, Tom; Wardle, Nick; Jansari, Kishan; Verwichte, Erwin; Nakariakov, Valery M. [CFSA, Physics Department, University of Warwick, Coventry CV4 7AL (United Kingdom); Del Zanna, Giulio, E-mail: Tom.VanDoorsselaere@wis.kuleuven.BE [DAMTP, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)
2011-02-01T23:59:59.000Z
We use observations of a slow magnetohydrodynamic wave in the corona to determine for the first time the value of the effective adiabatic index, using data from the Extreme-ultraviolet Imaging Spectrometer on board Hinode. We detect oscillations in the electron density, using the CHIANTI atomic database to perform spectroscopy. From the time-dependent wave signals from multiple spectral lines the relationship between relative density and temperature perturbations is determined, which allows in turn to measure the effective adiabatic index to be {gamma}{sub eff} = 1.10 {+-} 0.02. This confirms that the thermal conduction along the magnetic field is very efficient in the solar corona. The thermal conduction coefficient is measured from the phase lag between the temperature and density, and is shown to be compatible with Spitzer conductivity.
Waldo, R.W.
1980-05-01T23:59:59.000Z
Time-dependent delayed neutron emission is of interest in reactor design, reactor dynamics, and nuclear physics studies. The delayed neutrons from neutron-induced fission of /sup 232/U, /sup 237/Np, /sup 238/Pu, /sup 241/Am, /sup 242m/Am, /sup 245/Cm, and /sup 249/Cf were studied for the first time. The delayed neutron emission from /sup 232/Th, /sup 233/U, /sup 235/U, /sup 238/U, /sup 239/Pu, /sup 241/Pu, and /sup 242/Pu were measured as well. The data were used to develop an empirical expression for the total delayed neutron yield. The expression gives accurate results for a large variety of nuclides from /sup 232/Th to /sup 252/Cf. The data measuring the decay of delayed neutrons with time were used to derive another empirical expression predicting the delayed neutron emission with time. It was found that nuclides with similar mass-to-charge ratios have similar decay patterns. Thus the relative decay pattern of one nuclide can be established by any measured nuclide with a similar mass-to-charge ratio. A simple fission product yield model was developed and applied to delayed neutron precursors. It accurately predicts observed yield and decay characteristics. In conclusion, it is possible to not only estimate the total delayed neutron yield for a given nuclide but the time-dependent nature of the delayed neutrons as well. Reactors utilizing recycled fuel or burning actinides are likely to have inventories of fissioning nuclides that have not been studied until now. The delayed neutrons from these nuclides can now be incorporated so that their influence on the stability and control of reactors can be delineated. 8 figures, 39 tables.
Three-Dimensional Seismic Imaging of the Ryepatch Geothermal Reservoir
Feighner, Mark A.
2010-01-01T23:59:59.000Z
hydrothermal al- teration would combine to reduce the effectiveness of standard 3-D seismic processing.
SEISMIC GEOTECHNICAL INVESTIGATIONS FOR BRIDGES M. K. Yegian
Yegian, Mishac
1 SEISMIC GEOTECHNICAL INVESTIGATIONS FOR BRIDGES M. K. Yegian 1 , F. ASCE ABSTRACT Seismic and impedance calculations; assessment of foundation performance under the design seismic loads; and in the case of existing bridges, if deemed necessary, design of seismic retrofit measures. The outcomes of each
SERIES workshopSERIES workshop Role of research infrastructures in seismic rehabilitationRole of research infrastructures in seismic rehabilitationRole of research infrastructures in seismic rehabilitationRole of research infrastructures in seismic rehabilitation Istanbul, 8Istanbul, 8--9 February 20129
Seismic margins and calibration of piping systems
Shieh, L.C.; Tsai, N.C.; Yang, M.S.; Wong, W.L.
1985-01-01T23:59:59.000Z
The Seismic Safety Margins Research Program (SSMRP) is a US Nuclear Regulatory Commission-funded, multiyear program conducted by Lawrence Livermore National Laboratory (LLNL). Its objective is to develop a complete, fully coupled analysis procedure for estimating the risk of earthquake-induced radioactive release from a commercial nuclear power plant and to determine major contributors to the state-of-the-art seismic and systems analysis process and explicitly includes the uncertainties in such a process. The results will be used to improve seismic licensing requirements for nuclear power plants. In Phase I of SSMRP, the overall seismic risk assessment methodology was developed and assembled. The application of this methodology to the seismic PRA (Probabilistic Risk Assessment) at the Zion Nuclear Power Plant has been documented. This report documents the method deriving response factors. The response factors, which relate design calculated responses to best estimate values, were used in the seismic response determination of piping systems for a simplified seismic probablistic risk assessment. 13 references, 31 figures, 25 tables.
Structural concepts and details for seismic design
Not Available
1991-09-01T23:59:59.000Z
This manual discusses building and building component behavior during earthquakes, and provides suggested details for seismic resistance which have shown by experience to provide adequate performance during earthquakes. Special design and construction practices are also described which, although they might be common in some high-seismic regions, may not be common in low and moderate seismic-hazard regions of the United States. Special attention is given to describing the level of detailing appropriate for each seismic region. The UBC seismic criteria for all seismic zones is carefully examined, and many examples of connection details are given. The general scope of discussion is limited to materials and construction types common to Department of Energy (DOE) sites. Although the manual is primarily written for professional engineers engaged in performing seismic-resistant design for DOE facilities, the first two chapters, plus the introductory sections of succeeding chapters, contain descriptions which are also directed toward project engineers who authorize, review, or supervise the design and construction of DOE facilities. 88 refs., 188 figs.
ten Brink, Uri S.
Seismic hazard from the Hispaniola subduction zone: Correction to "Historical perspective on seismic hazard to Hispaniola and the northeast Caribbean region" Uri S. ten Brink, William H. Bakun), Seismic hazard from the Hispaniola subduction zone: Correction to "Historical perspective on seismic
Paris-Sud XI, Université de
Seismic Wave Propagation in Alluvial Basins and Influence of Site-City Interaction 1 Seismic Wave of alluvial deposits have a major influence on seismic wave propagation and amplification. However influence seismic wave propagation near the free surface. In this paper, the influence of surface structures
Seismic Pulses Derivation from the Study of Source Signature Characteristics
Rahman, Syed Mustafizur; Nawawi, M. N. Mohd.; Saad, Rosli [School of Physics, Univeristi Sains Malaysia, 11800 USM, Pulau Pinang (Malaysia)
2010-07-07T23:59:59.000Z
This paper deals with a deterministic technique for the derivation of seismic pulses by the study of source characteristics. The spectral characteristics of the directly or the nearest detected seismic signal is analyzed and considered as the principle source signature. Using this signature seismic pulses are derived with accurate time position in the seismic traces. The technique is applied on both synthetic and field refraction seismic traces. In both cases it has estimated that the accurate time shifts along with amplitude coefficients.
TE Connectivity Finds Answers in Tomography
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
TE Connectivity Finds Answers in Tomography TE Connectivity Finds Answers in Tomography Print Thursday, 22 August 2013 10:50 TE Connectivity is a world leader in connectivity-the...
Assessment of seismic margin calculation methods
Kennedy, R.P.; Murray, R.C.; Ravindra, M.K.; Reed, J.W.; Stevenson, J.D.
1989-03-01T23:59:59.000Z
Seismic margin review of nuclear power plants requires that the High Confidence of Low Probability of Failure (HCLPF) capacity be calculated for certain components. The candidate methods for calculating the HCLPF capacity as recommended by the Expert Panel on Quantification of Seismic Margins are the Conservative Deterministic Failure Margin (CDFM) method and the Fragility Analysis (FA) method. The present study evaluated these two methods using some representative components in order to provide further guidance in conducting seismic margin reviews. It is concluded that either of the two methods could be used for calculating HCLPF capacities. 21 refs., 9 figs., 6 tabs.
Carrera, Juan J.; Chu, Shih-I; Tong, X. M.
2005-06-21T23:59:59.000Z
We present an ab initio nonpertubative investigation of the mechanisms responsible for the production of very-high-order harmonic generation (HHG) from Ar atoms and Ar+ ions by means of the self-interaction-free time-dependent density...
Thermoacoustic and Photoacoustic Tomography ... - Purdue University
Plamen Stefanov
2010-11-09T23:59:59.000Z
Thermoacoustic and Photoacoustic Tomography with a variable continuous or discontinuous sound speed. Plamen Stefanov. Purdue University. Based on a...
Electron tomography of dislocation structures
Liu, G.S.; House, S.D.; Kacher, J. [Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green St., Urbana, IL 61801 (United States); Tanaka, M.; Higashida, K. [Department of Materials Science and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Robertson, I.M., E-mail: irobertson@wisc.edu [Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green St., Urbana, IL 61801 (United States); Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706 (United States)
2014-01-15T23:59:59.000Z
Recent developments in the application of electron tomography for characterizing microstructures in crystalline solids are described. The underlying principles for electron tomography are presented in the context of typical challenges in adapting the technique to crystalline systems and in using diffraction contrast imaging conditions. Methods for overcoming the limitations associated with the angular range, the number of acquired images, and uniformity of image contrast are introduced. In addition, a method for incorporating the real space coordinate system into the tomogram is presented. As the approach emphasizes development of experimental solutions to the challenges, the solutions developed and implemented are presented in the form of examples.
SMACS. Probabilistic Seismic Analysis System
Johnson, J.J.; Maslenikov, O.R.; Tiong, L.W.; Mraz, M.J. [EQE Incorporated, San Ramon, CA (United States); Bumpus, S.; Gerhard, M.A. [Lawrence Livermore National Lab., CA (United States)
1992-01-14T23:59:59.000Z
The SMACS (Seismic Methodology Analysis Chain with Statistics) system of computer programs is one of the major computational tools of the U.S. NRC Seismic Safety Margins Research Program (SSMRP). SMACS is comprised of the core program SMAX, which performs the SSI response analyses, five preprocessing programs, and two postprocessors. The preprocessing programs include: GLAY and CLAN, which generate the nominal impedance matrices and wave scattering vectors for surface-founded structures; INSSIN, which projects the dynamic properties of structures to the foundation in the form of modal participation factors and mass matrices; SAPPAC, which projects the dynamic and pseudostatic properties of multiply-supported piping systems to the support locations, and LNGEN, which can be used to generate the multiplication factors to be applied to the nominal soil, structural, and subsystem properties for each of the response calculations in accounting for random variations of these properties. The postprocessors are: PRESTO, which performs statistical operations on the raw data from the response vectors that SMAX produces to calculate best fit lognormal distributions for each response location, and CHANGO, which manipulates the data produced by PRESTO to produce other results of interest to the user. Also included is the computer program SAP4 (a modified version of the University of California, Berkeley SAPIV program), a general linear structural analysis program used for eigenvalue extractions and pseudostatic mode calculations of the models of major structures and subsystems. SAP4 is used to prepare input to the INSSIN and SAPPAC preprocessing programs. The GLAY and CLAN programs were originally developed by J.E. Luco (UCSD) and H.L. Wong (USC).
Discrete Tomography: A Neural Network Approach
Kosters, Walter
Abstract Tomography tries to reconstruct an object from a number of projections in multiple directions quality reconstructions from a limited set of projections, while avoiding image artifacts that are often present in traditional approaches. 1 Introduction Tomography, or more especially computed tomography
Seismic assessment strategies for masonry structures
DeJong, Matthew J. (Matthew Justin)
2009-01-01T23:59:59.000Z
Masonry structures are vulnerable to earthquakes, but their seismic assessment remains a challenge. This dissertation develops and improves several strategies to better understand the behavior of masonry structures under ...
Seismic retrofitting of deficient Canadian buildings
Gemme, Marie-Claude
2009-01-01T23:59:59.000Z
Many developed countries such as Canada and the United States are facing a significant infrastructure crisis. Most of their facilities have been built with little consideration of seismic design and durability issues. As ...
Stormwater Pollution Prevention Plan Seismic Phase II
Stormwater Pollution Prevention Plan Seismic Phase II Prepared by: Environment, Health and Safety Division Environmental Services Group May 2010 Revision 1 Ernest Orlando Lawrence Berkeley National ..................................................................................................................... 15 2.1.1 Demolition of Building 25/25B
Reservoir fracture characterizations from seismic scattered waves
Fang, Xinding
2012-01-01T23:59:59.000Z
The measurements of fracture parameters, such as fracture orientation, fracture density and fracture compliance, in a reservoir is very important for field development and exploration. Traditional seismic methods for ...
Bayesian estimation of resistivities from seismic velocities
Werthmller, Dieter
2014-06-30T23:59:59.000Z
I address the problem of finding a background model for the estimation of resistivities in the earth from controlled-source electromagnetic (CSEM) data by using seismic data and well logs as constraints. Estimation of ...
Non-physical energy in seismic interferometry
King, Simon James
2012-06-25T23:59:59.000Z
Non-physical arrivals produced by seismic interferometry, the process whereby Greens functions are synthesized between two points by cross-correlation, crossconvolution or deconvolution, are often considered to provide ...
Study of induced seismicity for reservoir characterization
Li, Junlun, Ph. D. Massachusetts Institute of Technology
2013-01-01T23:59:59.000Z
The main goal of the thesis is to characterize the attributes of conventional and unconventional reservoirs through passive seismicity. The dissertation is comprised of the development and applications of three new methods, ...
4-D seismic technologies: intersurvey calibration
Kelley, Jeffrey Paul
2012-06-07T23:59:59.000Z
seismic data sets at different times in the production life of a reservoir, calibrating, then comparing the data sets and interpreting intersurvey differences in terms of fluid change or movement. In practice 4-D (time-lapse) analysis is typically...
T'Jampens, Stephane; /Orsay
2006-09-18T23:59:59.000Z
This thesis presents the full-angular time-dependent analysis of the vector-vector channel B{sub d}{sup 0} {yields} J/{psi}(K{sub S}{sup 0}{pi}{sup 0})*{sup 0}. After a review of the CP violation in the B meson system, the phenomenology of the charmonium-K*(892) channels is exposed. The method for the measurement of the transversity amplitudes of the B {yields} J/{psi}K*(892), based on a pseudo-likelihood method, is then exposed. The results from a 81.9 fb{sup -1} of collected data by the BABAR detector at the {Upsilon}(4S) resonance peak are |A{sub 0}|{sup 2} = 0.565 {+-} 0.011 {+-} 0.004, |A{sub {parallel}}|{sup 2} = 0.206 {+-} 0.016 {+-} 0.007, |A{sub {perpendicular}}|{sup 2} = 0.228 {+-} 0.016 {+-} 0.007, {delta}{sub {parallel}} = -2.766 {+-} 0.105 {+-} 0.040 and {delta}{sub {perpendicular}} = 2.935 {+-} 0.067 {+-} 0.040. Note that ({delta}{sub {parallel}}, {delta}{sub {perpendicular}}) {yields} (-{delta}{sub {parallel}}, {pi} - {delta}{sub {perpendicular}}) is also a solution. The strong phases {delta}{sub {parallel}} and {delta}{sub {perpendicular}} are at {approx}> 3{sigma} from {+-}{pi}, signing the presence of final state interactions and the breakdown of the factorization hypothesis. The forward-backward analysis of the K{pi} mass spectrum revealed the presence of a coherent S-wave interfering with the K*(892). It is the first evidence of this wave in the K{pi} system coming from a B meson. The particularity of the B{sub d}{sup 0} {yields} J/{psi}(K{sub S}{sup 0}{pi}{sup 0})*{sup 0} channel is to have a time-dependent but also an angular distribution which allows to measure sin 2{beta} but also cos2{beta}. The results from an unbinned maximum likelihood fit are sin 2{beta} = -0.10 {+-} 0.57 {+-} 0.14 and cos 2{beta} = 3.32{sub -0.96}{sup +0.76} {+-} 0.27 with the transversity amplitudes fixed to the values given above. The other solution for the strong phases flips the sign of cos 2{beta}. Theoretical considerations based on the s-quark helicity conservation favor the choice of the strong phases given above, leading to a positive sign for cos 2{beta}. The sign of cos 2{beta} is the one predicted by the Standard Model.
Decision analysis for seismic retrofit of structures
Williams, Ryan J.
2009-05-15T23:59:59.000Z
of earthquakes as deterministic statements that will not occur for a long time rather than as probabilistic statements about the events (May 2004). Due to the aforementioned concerns regarding the decreased likelihood of building damage from seismic activity...-05, American Society of Civil Engineers, Reston, VA. Bai, J.-W., Hueste, M. B., and Gardoni, P. (2007). ?A probabilistic framework for the assessment of structural losses due to seismic events.? J. Struct. Engrg., submitted for review. Bracci, J. M...
Seismic interpretation of the Wind River Mountains
Van Voorhis, David
1982-01-01T23:59:59.000Z
SEISMIC INTERPBETATICN OF THE BIND RIVER MOUNTAINS A Thesis DAVID VAN VOORHIS Submitted to the Graduate College of Texas ACM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE Auqust 'l982 Majcr Subject...: Geophysics SEISNIC INTERFRETATION OF THE HIND RIVER NOUNTAINS A Thes is by DAVID VAN VOORBIS Approved as to style and content by: (Chairman cf. Committee) (N em ber } m (Head of Department) August l 982 ABSTRACT Seismic Interpretation of the Wind...
Fluid driven torsional dipole seismic source
Hardee, Harry C. (Albuquerque, NM)
1991-01-01T23:59:59.000Z
A compressible fluid powered oscillating downhole seismic source device capable of periodically generating uncontaminated horizontally-propagated, shear waves is provided. A compressible fluid generated oscillation is created within the device which imparts an oscillation to a housing when the device is installed in a housing such as the cylinder off an existing downhole tool, thereby a torsional seismic source is established. Horizontal waves are transferred to the surrounding bore hole medium through downhole clamping.
Forecasting Seismic Signatures of Stellar Magnetic Activity
W. A. Dziembowski
2007-09-17T23:59:59.000Z
For the Sun, a tight correlation between various activity measures and oscillation frequencies is well documented. For other stars, we have abundant data on magnetic activity and its changes but not yet on its seismic signature. A prediction of the activity induced frequency changes in stars based on scaling the solar relations is presented. This seismic signature of the activity should be measurable in the data expected within few years.
Computed tomography:the details.
Doerry, Armin Walter
2007-07-01T23:59:59.000Z
Computed Tomography (CT) is a well established technique, particularly in medical imaging, but also applied in Synthetic Aperture Radar (SAR) imaging. Basic CT imaging via back-projection is treated in many texts, but often with insufficient detail to appreciate subtleties such as the role of non-uniform sampling densities. Herein are given some details often neglected in many texts.
Acoustic and Seismic Modalities for Unattended Ground Sensors
Elbring, G.J.; Ladd, M.D.; McDonald, T.S.; Sleefe, G.E.
1999-03-31T23:59:59.000Z
In this paper, we have presented the relative advantages and complementary aspects of acoustic and seismic ground sensors. A detailed description of both acoustic and seismic ground sensing methods has been provided. Acoustic and seismic phenomenology including source mechanisms, propagation paths, attenuation, and sensing have been discussed in detail. The effects of seismo-acoustic and acousto-seismic interactions as well as recommendations for minimizing seismic/acoustic cross talk have been highlighted. We have shown representative acoustic and seismic ground sensor data to illustrate the advantages and complementary aspects of the two modalities. The data illustrate that seismic transducers often respond to acoustic excitation through acousto-seismic coupling. Based on these results, we discussed the implications of this phenomenology on the detection, identification, and localization objectives of unattended ground sensors. We have concluded with a methodology for selecting the preferred modality (acoustic and/or seismic) for a particular application.
Zhao, Bin [Center for Theoretical and Computational Chemistry and State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)] [Center for Theoretical and Computational Chemistry and State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Zhang, Dong-H.; Sun, Zhigang, E-mail: zsun@dicp.ac.cn [Center for Theoretical and Computational Chemistry and State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China) [Center for Theoretical and Computational Chemistry and State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Lee, Soo-Y. [Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore)] [Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore)
2014-04-28T23:59:59.000Z
A framework for quantum state-to-state integral and differential cross sections of triatomic reactive scattering using the Multi-Configuration Time-Dependent Hartree (MCTDH) method is introduced, where a modified version of the Heidelberg MCTDH package is applied. Parity of the system is adopted using only non-negative helicity quantum numbers, which reduces the basis set size of the single particle functions in angular degree of freedom almost by half. The initial wave packet is constructed in the space-fixed frame, which can accurately account for the centrifugal potential. By using the reactant-coordinate-based method, the product state-resolved information can be accurately extracted. Test calculations are presented for the H + H{sub 2} reactive scattering. This work demonstrates the capability of the MCTDH method for extracting accurate state-to-state integral and differential cross sections. As an efficient scheme for high-dimensional problems, the MCTDH method may be promising for the study of product state-resolved cross sections for polyatomic reactive systems.
Dutta, Tirthankar
2011-01-01T23:59:59.000Z
We investigate the effect of static electron-phonon coupling, on real-time dynamics of spin and charge transport in $\\pi$-conjugated polyene chains. The polyene chain is modeled by the Pariser-Parr-Pople Hamiltonian with dimerized nearest-neighbor parameter $t_{0}(1+\\delta)$ for short bonds and $t_{0}(1-\\delta)$ for long bonds, and long-range electron-electron interactions. We follow the time evolution of the spin and charge using time-dependent DMRG technique, when a hole is injected at one end of the chain in its ground state. We find that spin and charge dynamics followed through spin and charge velocities, depend both on chain length and extent of dimerization, $\\delta$. Analysis of the results requires focusing on physical quantities such as average spin and charge polarizations, particularly in the large dimerization limit. In the dimerization range 0.0 $\\le$ $\\delta$ $\\le$ 0.15, spin-charge dynamics is found to have a well defined behavior, with spin-charge separation (measured as the ratio of charge v...
Aubert, Bernard; Bona, M.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; /Annecy, LAPP; Garra Tico, J.; Grauges, E.; /Barcelona U., ECM; Lopez, L.; Palano, Antimo; Pappagallo, M.; /Bari U. /INFN, Bari; Eigen, G.; Stugu, Bjarne; Sun, L.; /Bergen U.; Abrams, G.S.; Battaglia, M.; Brown, D.N.; Cahn, Robert N.; Jacobsen, R.G.; /LBL, Berkeley /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /Ferrara U. /INFN, Ferrara /Frascati /Genoa U. /INFN, Genoa /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa U. /Iowa State U. /Johns Hopkins U. /Karlsruhe U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /Consorzio Milano Ricerche /INFN, Milan /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /Napoli Seconda U. /INFN, Naples /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /Padua U. /INFN, Padua /Paris U., VI-VII /Pennsylvania U. /Perugia U. /INFN, Perugia /INFN, Pisa /Princeton U. /Banca di Roma /Frascati /Rostock U. /Rutherford /DSM, DAPNIA, Saclay /South Carolina U. /SLAC /Stanford U., Phys. Dept. /SUNY, Albany /Tennessee U. /Texas U. /Texas U., Dallas /Turin U. /INFN, Turin /Trieste U. /INFN, Trieste /Valencia U., IFIC /Victoria U. /Warwick U. /Wisconsin U., Madison
2008-08-04T23:59:59.000Z
The authors present evidence of D{sup 0}-{bar D}{sup 0} mixing using a time-dependent amplitude analysis of the decay D{sup 0} {yields} K{sup +}{pi}{sup -}{pi}{sup 0} in a data sample of 384 fb{sup -1} collected with the BABAR detector at the PEP-II e{sup +}e{sup -} collider at SLAC. Assuming CP conservation, they measure the mixing parameters x{prime}{sub K{pi}{pi}{sup 0}} = [2.61{sub -0.68}{sup +0.57}(stat.) {+-} 0.39(syst.)]%, y{prime}{sub K{pi}{pi}{sup 0}} = [-0.06{sub -0.64}{sup +0.55}(stat.) {+-} 0.34(syst.)]%. The confidence level for the data to be consistent with the no-mixing hypothesis is 0.1%, including systematic uncertainties. This result is inconsistent with the no-mixing hypothesis with a significance of 3.2 standard deviations. They find no evidence of CP violation in mixing.
Measurements of time-dependent CP violation in B{sup 0}{yields}{psi}(2S)K{sub S}{sup 0} decays
Sahoo, H.; Browder, T. E.; Li, J.; Varner, G. [University of Hawaii, Honolulu, Hawaii 96822 (United States); Trabelsi, K.; Adachi, I.; Haba, J.; Hazumi, M.; Itoh, R.; Katayama, N.; Kichimi, H.; Krokovny, P.; Nakao, M.; Nishida, S.; Sakai, Y.; Sumisawa, K.; Takasaki, F.; Tanaka, M.; Uehara, S.; Uno, S. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan)] (and others)
2008-05-01T23:59:59.000Z
We report improved measurements of time-dependent CP violation parameters for B{sup 0}(B{sup 0}){yields}{psi}(2S)K{sub S}{sup 0}. This analysis is based on a data sample of 657x10{sup 6} BB pairs collected at the {upsilon}(4S) resonance with the Belle detector at the KEKB energy-asymmetric e{sup +}e{sup -} collider. We fully reconstruct one neutral B meson in the {psi}(2S)K{sub S}{sup 0} CP-eigenstate decay channel, and the flavor of the accompanying B meson is identified to be either B{sup 0} or B{sup 0} from its decay products. CP violation parameters are obtained from the asymmetries in the distributions of the proper-time intervals between the two B decays: S{sub {psi}}{sub (2S)K{sub S{sup 0}}=+0.72{+-}0.09(stat){+-}0.03(syst), A{sub {psi}}{sub (2S)}K{sub S{sup 0}}=+0.04{+-}0.07(stat){+-}0.05(syst). These results are in agreement with results from measurements of B{sup 0}{yields}J/{psi}K{sup 0}.
Baiardi, Alberto; Barone, Vincenzo [Scuola Normale Superiore, piazza dei Cavalieri 7, I-56126 Pisa (Italy); Bloino, Julien [Scuola Normale Superiore, piazza dei Cavalieri 7, I-56126 Pisa (Italy); Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti OrganoMetallici (ICCOM-CNR), UOS di Pisa, Area della Ricerca CNR, Via G. Moruzzi 1, I-56124 Pisa (Italy)
2014-09-21T23:59:59.000Z
We present a new formulation of the time-dependent theory of Resonance-Raman spectroscopy (TD-RR). Particular attention has been devoted to the generality of the framework and to the possibility of including different effects (Duschinsky mixing, Herzberg-Teller contributions). Furthermore, the effects of different harmonic models for the intermediate electronic state are also investigated. Thanks to the implementation of the TD-RR procedure within a general-purpose quantum-chemistry program, both solvation and leading anharmonicity effects have been included in an effective way. The reliability and stability of our TD-RR implementation are validated against our previously proposed and well-tested time-independent procedure. Practical applications are illustrated with some closed- and open-shell medium-size molecules (anthracene, phenoxyl radical, benzyl radical) and the simulated spectra are compared to the experimental results. More complex and larger systems, not limited to organic compounds, can be also studied, as shown for the case of Tris(bipyridine)ruthenium(II) chloride.
Silverstein, Daniel W.; Govind, Niranjan; van Dam, Hubertus JJ; Jensen, Lasse
2013-12-10T23:59:59.000Z
A parallel implementation of analytical time-dependent density functional theory gra- dients is presented for the quantum chemistry program NWChem. The implementation is based on the Lagrangian approach developed by Furche and Ahlrichs. To validate our implementation, we first calculate the Stokes shifts for a range of organic dye molecules using a diverse set of exchange-correlation functionals (traditional density functionals, global hybrids and range-separated hybrids) followed by simulations of the one-photon absorption and resonance Raman scattering spectrum of the phenoxyl radical, the well-studied dye molecule rhodamine 6G and a molecular host-guest complex (TTF?CBPQT4+). The study of organic dye molecules illustrates that B3LYP and CAM-B3LYP generally give the best agreement with experimentally determined Stokes shifts unless the excited state is a charge transfer state. Absorption, resonance Raman, and fluorescence simulations for the phenoxyl radical indicate that explicit solvation may be required for accurate characterization. For the host-guest complex and rhodamine 6G, it is demonstrated that absorption spectra can be simulated in good agreement with experiment for most exchange-correlation functionals. However, because one-photon absorption spectra generally lack well-resolved vibrational features, resonance Raman simulations are necessary to evaluate the accuracy of the exchange-correlation functional for describing a potential energy surface.
Yoshimura, K.; Sakashita, S. [Radioactive Waste Management Funding and Research Center, Tokyo (Japan); Ando, K.; Bruines, P. [Civil Engineering Technical Division, Obayashi Corporation, Tokyo (Japan); Blechschmidt, I. [National Cooperative for the Disposal of Radioactive Waste, Wettingen (Switzerland); Kickmaier, W. [University of Applied Sciences, Northern Switzerland, Brugg (Switzerland); Onishi, Y.; Nishiyama, S. [Graduate School of Engineering, Kyoto University, Kyoto (Japan)
2007-07-01T23:59:59.000Z
The objective of this study is to establish a technique to obtain hydraulic conductivity distribution in granite rock masses using seismic tomography. We apply the characteristic that elastic wave velocity disperses in fully saturated porous media on frequency and this velocity dispersion is governed by the hydraulic conductivity - this characteristic has been confirmed in laboratory experiments. The feasibility and design of the field experiment was demonstrated in a first step with numerical simulations. In a second step we applied the technique to the fractured granite at the Grimsel Test Site in Switzerland. The emphasis of the field campaign was on the evaluation of the range of applicability of this technique. The field campaign was structured in three steps, each one corresponding to a larger spatial scale. First, the seismic tomography was applied to a small area - the two boreholes were located at a distance of 1.5 m. In the following step, we selected a larger area, in which the distance of the boreholes amounts to 10 m and the field corresponds to a more complex geology. Finally we applied the testing to a field where the borehole distance was of the order of 75 m. We also drilled a borehole to confirm hydraulic characteristic and reviewed hydraulic model in the 1.5 m cross-hole location area. The results from the field campaign are presented and their application to the various fields are discussed and evaluated. (authors)
Seismic Line Location Map Hot Pot Project, Humboldt County, Nevada 2010
Lane, Michael
2012-01-01T23:59:59.000Z
Location of seismic lines carried out under DOE funded project Advanced Seismic Data Analysis Program (The Hot Pot Project).
Seismic Line Location Map Hot Pot Project, Humboldt County, Nevada 2010
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Lane, Michael
Location of seismic lines carried out under DOE funded project Advanced Seismic Data Analysis Program (The Hot Pot Project).
Winey, J. M.; Gupta, Y. M. [Institute for Shock Physics and Department of Physics, Washington State University, Pullman, Washington 99164 (United States)
2014-07-21T23:59:59.000Z
Understanding and modeling the response of hcp metals to high stress impulsive loading is challenging because the lower crystal symmetry, compared to cubic metals, results in a significantly more complex material response. To gain insight into the inelastic deformation of hcp metals subjected to high dynamic stresses, shock wave compression of single crystals provides a useful approach because different inelastic deformation mechanisms can be examined selectively by shock compression along different crystal orientations. As a representative example, we report, here, on wave propagation simulations for beryllium (Be) single crystals shocked along the c-axis, a-axis, and several low-symmetry directions to peak stresses reaching 7?GPa. The simulations utilized a time-dependent, anisotropic material model that incorporated dislocation dynamics, deformation twinning, and shear cracking based descriptions of inelastic deformation. The simulation results showed good overall agreement with measured wave profiles for all the different crystal orientations examined [Pope and Johnson, J. Appl. Phys. 46, 720 (1975)], including features arising from wave mode coupling due to the highly anisotropic inelastic response of Be. This good agreement demonstrates that the measured profiles can be understood in terms of dislocation slip along basal, prismatic, and pyramidal planes, together with deformation twinning along (101{sup }2) planes. Our results show that the response of shocked Be single crystals involves the simultaneous operation of multiple, distinct inelastic deformation mechanisms for all orientations except the c-axis. For shocked c-axis Be, the measured wave profiles do not provide good discrimination between pyramidal slip and other inelastic deformation mechanisms, such as shear cracking. The findings presented here provide insight into the complex inelastic deformation response of shocked Be single crystals and are expected to be useful for other hcp crystals. More broadly, the present work demonstrates the potential of shock wave propagation along low-symmetry directions to examine, and discriminate between, different inelastic deformation mechanisms in crystalline solids.
Measurement of the time-dependent CP asymmetries in $B_s^0\\rightarrow J/\\psi K_{\\rm S}^0$
Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Bel, Lennaert; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bertolin, Alessandro; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Bizzeti, Andrea; Blake, Thomas; Blanc, Frdric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borgia, Alessandra; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Braun, Svende; Brett, David; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casanova Mohr, Raimon; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cavallero, Giovanni; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Counts, Ian; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Dlage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Di Ruscio, Francesco; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Surez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dreimanis, Karlis; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Frber, Christian; Farinelli, Chiara; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fol, Philip; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; Garca Pardias, Julin; Garofoli, Justin; Garra Tico, Jordi; Garrido, Lluis; Gascon, David; Gaspar, Clara; Gastaldi, Ugo; Gauld, Rhorry; Gavardi, Laura; Gazzoni, Giulio; Geraci, Angelo; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Gian, Sebastiana; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, Vladimir; Gbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gndara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugs, Eugeni; Graverini, Elena; Graziani, Giacomo
2015-01-01T23:59:59.000Z
The first measurement of decay-time-dependent CP asymmetries in the decay $B_s^0\\rightarrow J/\\psi K_{\\rm S}^0$ and an updated measurement of the ratio of branching fractions $\\mathcal{B}(B_s^0\\rightarrow J/\\psi K_{\\rm S}^0)/\\mathcal{B}(B_d^0\\rightarrow J/\\psi K_{\\rm S}^0)$ are presented. The results are obtained using data corresponding to an integrated luminosity of 3.0 fb$^{-1}$ of proton-proton collisions recorded with the LHCb detector at centre-of-mass energies of 7 and 8 TeV. The results on the CP asymmetries are $A_{\\Delta\\Gamma}(B_s^0\\rightarrow J/\\psi K_{\\rm S}^0) = 0.49_{-0.65}^{+0.77}(stat) \\pm 0.06(syst)$, $C_{\\rm dir}(B_s^0\\rightarrow J/\\psi K_{\\rm S}^0) = -0.28 \\pm 0.41(stat) \\pm 0.08(syst)$ and $S_{\\rm mix}(B_s^0\\rightarrow J/\\psi K_{\\rm S}^0) = -0.08 \\pm 0.40(stat) \\pm 0.08(syst)$. The ratio $\\mathcal{B}(B_s^0\\rightarrow J/\\psi K_{\\rm S}^0)/\\mathcal{B}(B_d^0\\rightarrow J/\\psi K_{\\rm S}^0)$ is measured to be $0.0431 \\pm 0.0017(stat) \\pm 0.0012(syst) \\pm 0.0025(f_s/f_d)$, where the last uncerta...
Tirthankar Dutta; S. Ramasesha
2011-12-29T23:59:59.000Z
We investigate the effect of static electron-phonon coupling, on real-time dynamics of spin and charge transport in $\\pi$-conjugated polyene chains. The polyene chain is modeled by the Pariser-Parr-Pople Hamiltonian with dimerized nearest-neighbor parameter $t_{0}(1+\\delta)$ for short bonds and $t_{0}(1-\\delta)$ for long bonds, and long-range electron-electron interactions. We follow the time evolution of the spin and charge using time-dependent density matrix renormalization group technique, when a hole is injected at one end of the chain in its ground state. We find that spin and charge dynamics followed through spin and charge velocities, depend both on chain length and extent of dimerization, $\\delta$. Analysis of the results requires focusing on physical quantities such as average spin and charge polarizations, particularly in the large dimerization limit. In the dimerization range 0.0 $\\le$ $\\delta$ $\\le$ 0.15, spin-charge dynamics is found to have a well defined behavior, with spin-charge separation (measured as the ratio of charge velocity to spin velocity) as well as, the total amount of charge and spin transported in a given time, along the chain, decreasing as dimerization increases. However, in the range 0.3 $\\le$ $\\delta$ $\\le$ 0.5, it is observed that the dynamics of spin and charge transport becomes complicated. It is observed that for large $\\delta$ values, spin-charge separation is suppressed and the injected hole fails to travel the entire length of the chain.
Randy O. Laine; Douglas N. C. Lin; Shawfeng Dong
2008-04-07T23:59:59.000Z
The unanticipated discovery of the first close-in planet around 51 Peg has rekindled the notion that shortly after their formation outside the snow line, some planets may have migrated to the proximity of their host stars because of their tidal interaction with their nascent disks. If these planets indeed migrated to their present-day location, their survival would require a halting mechanism in the proximity of their host stars. Most T Tauri stars have strong magnetic fields which can clear out a cavity in the innermost regions of their circumstellar disks and impose magnetic induction on the nearby young planets. Here we consider the possibility that a magnetic coupling between young stars and planets could quench the planet's orbital evolution. After a brief discussion of the complexity of the full problem, we focus our discussion on evaluating the permeation and ohmic dissipation of the time dependent component of the stellar magnetic field in the planet's interior. Adopting a model first introduced by C. G. Campbell for interacting binary stars, we determine the modulation of the planetary response to the tilted magnetic field of a non-synchronously spinning star. We first compute the conductivity in the young planets, which indicates that the stellar field can penetrate well into the planet's envelope in a synodic period. For various orbital configurations, we show that the energy dissipation rate inside the planet is sufficient to induce short-period planets to inflate. This process results in mass loss via Roche lobe overflow and in the halting of the planet's orbital migration.
Milisavljevic, Dan; Margutti, Raffaella; Soderberg, Alicia M.; Chomiuk, Laura; Sanders, Nathan E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)] [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Pignata, Giuliano; Bufano, Filomena [Departamento de Ciencias Fisicas, Universidad Andres Bello, Avda. Republica 252, Santiago (Chile)] [Departamento de Ciencias Fisicas, Universidad Andres Bello, Avda. Republica 252, Santiago (Chile); Fesen, Robert A.; Parrent, Jerod T. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Lab, Hanover, NH 03755 (United States)] [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Lab, Hanover, NH 03755 (United States); Parker, Stuart [Parkdale Observatory, 225 Warren Road, RDl Oxford, Canterbury 7495 (New Zealand)] [Parkdale Observatory, 225 Warren Road, RDl Oxford, Canterbury 7495 (New Zealand); Mazzali, Paolo [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Strasse 1, D-85748 Garching (Germany)] [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Strasse 1, D-85748 Garching (Germany); Pian, Elena [Kavli Institute for Theoretical Physics, Kohn Hall, University of California at Santa Barbara, Santa Barbara, CA 93106-4030 (United States)] [Kavli Institute for Theoretical Physics, Kohn Hall, University of California at Santa Barbara, Santa Barbara, CA 93106-4030 (United States); Pickering, Timothy; Buckley, David A. H.; Crawford, Steven M.; Gulbis, Amanda A. S.; Hettlage, Christian [South African Astronomical Observatory, P.O. Box 9, Observatory 7935, Cape Town (South Africa)] [South African Astronomical Observatory, P.O. Box 9, Observatory 7935, Cape Town (South Africa); Hooper, Eric; Nordsieck, Kenneth H. [Department of Astronomy, University of Wisconsin, Madison, WI 53706 (United States)] [Department of Astronomy, University of Wisconsin, Madison, WI 53706 (United States); O'Donoghue, Darragh, E-mail: dmilisav@cfa.harvard.edu [Southern African Large Telescope, P.O. Box 9, Observatory 7935, Cape Town (South Africa)] [Southern African Large Telescope, P.O. Box 9, Observatory 7935, Cape Town (South Africa); and others
2013-04-10T23:59:59.000Z
We present X-ray, UV/optical, and radio observations of the stripped-envelope, core-collapse supernova (SN) 2011ei, one of the least luminous SNe IIb or Ib observed to date. Our observations begin with a discovery within {approx}1 day of explosion and span several months afterward. Early optical spectra exhibit broad, Type II-like hydrogen Balmer profiles that subside rapidly and are replaced by Type Ib-like He-rich features on a timescale of one week. High-cadence monitoring of this transition suggests absorption attributable to a high-velocity ({approx}> 12, 000 km s{sup -1}) H-rich shell, which is likely present in many Type Ib events. Radio observations imply a shock velocity of v Almost-Equal-To 0.13 c and a progenitor star average mass-loss rate of M-dot {approx}1.4 Multiplication-Sign 10{sup -5} M{sub sun} yr{sup -1} (assuming wind velocity v{sub w} = 10{sup 3} km s{sup -1}). This is consistent with independent constraints from deep X-ray observations with Swift-XRT and Chandra. Overall, the multi-wavelength properties of SN 2011ei are consistent with the explosion of a lower-mass (3-4 M{sub Sun }), compact (R{sub *} {approx}< 1 Multiplication-Sign 10{sup 11} cm), He-core star. The star retained a thin hydrogen envelope at the time of explosion, and was embedded in an inhomogeneous circumstellar wind suggestive of modest episodic mass loss. We conclude that SN 2011ei's rapid spectral metamorphosis is indicative of time-dependent classifications that bias estimates of the relative explosion rates for Type IIb and Ib objects, and that important information about a progenitor star's evolutionary state and mass loss immediately prior to SN explosion can be inferred from timely multi-wavelength observations.
Pokorna, Sarka; Jurkiewicz, Piotr; Hof, Martin, E-mail: martin.hof@jh-inst.cas.cz [J. Heyrovsk Institute of Physical Chemistry of the Academy of Sciences of the Czech Republic v.v.i., Dolejskova 3, 18223 Prague 8 (Czech Republic); Vazdar, Mario [Division of Organic Chemistry and Biochemistry, Rudjer Bokovi? Institute, P.O.B. 180, HR-10002 Zagreb (Croatia); Cwiklik, Lukasz [J. Heyrovsk Institute of Physical Chemistry of the Academy of Sciences of the Czech Republic v.v.i., Dolejskova 3, 18223 Prague 8 (Czech Republic); Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nm. 2, 16610 Prague 6 (Czech Republic); Jungwirth, Pavel [Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nm. 2, 16610 Prague 6 (Czech Republic); Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere (Finland)
2014-12-14T23:59:59.000Z
Time-dependent fluorescence shift (TDFS) of Laurdan embedded in phospholipid bilayers reports on hydration and mobility of the phospholipid acylgroups. Exchange of H{sub 2}O with D{sub 2}O prolongs the lifetime of lipid-water and lipid-water-lipid interactions, which is reflected in a significantly slower TDFS kinetics. Combining TDFS measurements in H{sub 2}O and D{sub 2}O hydrated bilayers with atomistic molecular dynamics (MD) simulations provides a unique tool for characterization of the hydrogen bonding at the acylgroup level of lipid bilayers. In this work, we use this approach to study the influence of fluoride anions on the properties of cationic bilayers composed of trimethylammonium-propane (DOTAP). The results obtained for DOTAP are confronted with those for neutral phosphatidylcholine (DOPC) bilayers. Both in DOTAP and DOPC H{sub 2}O/D{sub 2}O exchange prolongs hydrogen-bonding lifetime and does not disturb bilayer structure. These results are confirmed by MD simulations. TDFS experiments show, however, that for DOTAP this effect is cancelled in the presence of fluoride ions. We interpret these results as evidence that strongly hydrated fluoride is able to steal water molecules that bridge lipid carbonyls. Consequently, when attracted to DOTAP bilayer, fluoride disrupts the local hydrogen-bonding network, and the differences in TDFS kinetics between H{sub 2}O and D{sub 2}O hydrated bilayers are no longer observed. A distinct behavior of fluoride is also evidenced by MD simulations, which show different lipid-ion binding for Cl{sup ?} and F{sup ?}.
Second and Third Quarters Hanford Seismic Report for Fiscal Year 1999
Hartshorn, Donald C.; Reidel, Stephen P.; Rohay, Alan C.
1999-10-08T23:59:59.000Z
Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site.
Seismic tomography constraints on reconstructing the Philippine Sea Plate and its margin
Handayani, Lina
2005-02-17T23:59:59.000Z
The Philippine Sea Plate has been surrounded by subduction zones throughout Cenozoic time due to the convergence of the Eurasian, Pacific and Indian-Australian plates. Existing Philippine Sea Plate reconstructions have been made based primarily...
Antarctica and the Ross Sea region of West Antarctica using Rayleigh wave Green's functions estimated from at periods between 5 and 23 s. The velocity maps are inverted for shear velocities across the region using- tribute to advancing our understanding of glacial movement and how it is influenced by the subglacial
Earthquake Forecast via Neutrino Tomography
Bin Wang; Ya-Zheng Chen; Xue-Qian Li
2011-03-29T23:59:59.000Z
We discuss the possibility of forecasting earthquakes by means of (anti)neutrino tomography. Antineutrinos emitted from reactors are used as a probe. As the antineutrinos traverse through a region prone to earthquakes, observable variations in the matter effect on the antineutrino oscillation would provide a tomography of the vicinity of the region. In this preliminary work, we adopt a simplified model for the geometrical profile and matter density in a fault zone. We calculate the survival probability of electron antineutrinos for cases without and with an anomalous accumulation of electrons which can be considered as a clear signal of the coming earthquake, at the geological region with a fault zone, and find that the variation may reach as much as 3% for $\\bar \
Self-guided quantum tomography
Christopher Ferrie
2014-11-10T23:59:59.000Z
We introduce a self-learning tomographic technique in which the experiment guides itself to an estimate of its own state. Self-guided quantum tomography (SGQT) uses measurements to directly test hypotheses in an iterative algorithm which converges to the true state. We demonstrate through simulation on many qubits that SGQT is a more efficient and robust alternative to the usual paradigm of taking a large amount of informationally complete data and solving the inverse problem of post-processed state estimation.
Characterization of the Virgo Seismic Environment
The Virgo Collaboration; T. Accadia; F. Acernese; P. Astone; G. Ballardin; F. Barone; M. Barsuglia; A. Basti; Th. S. Bauer; M. Bebronne; M. G. Beker; A. Belletoile; M. Bitossi; M. A. Bizouard; M. Blom; F. Bondu; L. Bonelli; R. Bonnand; V. Boschi; L. Bosi; B. Bouhou; S. Braccini; C. Bradaschia; M. Branchesi; T. Briant; A. Brillet; V. Brisson; T. Bulik; H. J. Bulten; D. Buskulic; C. Buy; G. Cagnoli; E. Calloni; B. Canuel; F. Carbognani; F. Cavalier; R. Cavalieri; G. Cella; E. Cesarini; O. Chaibi; E. Chassande-Mottin; A. Chincarini; A. Chiummo; F. Cleva; E. Coccia; P. -F. Cohadon; C. N. Colacino; J. Colas; A. Colla; M. Colombini; A. Conte; M. Coughlin; J. -P. Coulon; E. Cuoco; S. DAntonio; V. Dattilo; M. Davier; R. Day; R. De Rosa; G. Debreczeni; W. Del Pozzo; M. del Prete; L. Di Fiore; A. Di Lieto; M. Di Paolo Emilio; A. Di Virgilio; A. Dietz; M. Drago; G. Endroczi; V. Fafone; I. Ferrante; F. Fidecaro; I. Fiori; R. Flaminio; L. A. Forte; J. -D. Fournier; J. Franc; S. Frasca; F. Frasconi; M. Galimberti; L. Gammaitoni; F. Garufi; M. E. Gaspar; G. Gemme; E. Genin; A. Gennai; A. Giazotto; R. Gouaty; M. Granata; C. Greverie; G. M. Guidi; J. -F. Hayau; A. Heidmann; H. Heitmann; P. Hello; P. Jaranowski; I. Kowalska; A. Krolak; N. Leroy; N. Letendre; T. G. F. Li; N. Liguori; M. Lorenzini; V. Loriette; G. Losurdo; E. Majorana; I. Maksimovic; N. Man; M. Mantovani; F. Marchesoni; F. Marion; J. Marque; F. Martelli; A. Masserot; C. Michel; L. Milano; Y. Minenkov; M. Mohan; N. Morgado; A. Morgia; S. Mosca; B. Mours; L. Naticchioni; F. Nocera; G. Pagliaroli; L. Palladino; C. Palomba; F. Paoletti; M. Parisi; A. Pasqualetti; R. Passaquieti; D. Passuello; G. Persichetti; F. Piergiovanni; M. Pietka; L. Pinard; R. Poggiani; M. Prato; G. A. Prodi; M. Punturo; P. Puppo; D. S. Rabeling; I. Racz; P. Rapagnani; V. Re; T. Regimbau; F. Ricci; F. Robinet; A. Rocchi; L. Rolland; R. Romano; D. Rosinska; P. Ruggi; B. Sassolas; D. Sentenac; L. Sperandio; R. Sturani; B. Swinkels; M. Tacca; L. Taffarello; A. Toncelli; M. Tonelli; O. Torre; E. Tournefier; F. Travasso; G. Vajente; J. F. J. van den Brand; C. Van Den Broeck; S. van der Putten; M. Vasuth; M. Vavoulidis; G. Vedovato; D. Verkindt; F. Vetrano; A. Vicere; J. -Y. Vinet; S. Vitale; H. Vocca; R. L. Ward; M. Was; M. Yvert; A. Zadrozny; J. -P. Zendri
2011-08-08T23:59:59.000Z
The Virgo gravitational wave detector is an interferometer (ITF) with 3km arms located in Pisa, Italy. From July to October 2010, Virgo performed its third science run (VSR3) in coincidence with the LIGO detectors. Despite several techniques adopted to isolate the interferometer from the environment, seismic noise remains an important issue for Virgo. Vibrations produced by the detector infrastructure (such as air conditioning units, water chillers/heaters, pumps) are found to affect Virgo's sensitivity, with the main coupling mechanisms being through beam jitter and scattered light processes. The Advanced Virgo (AdV) design seeks to reduce ITF couplings to environmental noise by having most vibration-sensitive components suspended and in-vacuum, as well as muffle and relocate loud machines. During the months of June and July 2010, a Guralp-3TD seismometer was stationed at various locations around the Virgo site hosting major infrastructure machines. Seismic data were examined using spectral and coherence analysis with seismic probes close to the detector. The primary aim of this study was to identify noisy machines which seismically affect the ITF environment and thus require mitigation attention. Analyzed machines are located at various distances from the experimental halls, ranging from 10m to 100m. An attempt is made to measure the attenuation of emitted noise at the ITF and correlate it to the distance from the source and to seismic attenuation models in soil.
Salvo: Seismic imaging software for complex geologies
OBER,CURTIS C.; GJERTSEN,ROB; WOMBLE,DAVID E.
2000-03-01T23:59:59.000Z
This report describes Salvo, a three-dimensional seismic-imaging software for complex geologies. Regions of complex geology, such as overthrusts and salt structures, can cause difficulties for many seismic-imaging algorithms used in production today. The paraxial wave equation and finite-difference methods used within Salvo can produce high-quality seismic images in these difficult regions. However this approach comes with higher computational costs which have been too expensive for standard production. Salvo uses improved numerical algorithms and methods, along with parallel computing, to produce high-quality images and to reduce the computational and the data input/output (I/O) costs. This report documents the numerical algorithms implemented for the paraxial wave equation, including absorbing boundary conditions, phase corrections, imaging conditions, phase encoding, and reduced-source migration. This report also describes I/O algorithms for large seismic data sets and images and parallelization methods used to obtain high efficiencies for both the computations and the I/O of seismic data sets. Finally, this report describes the required steps to compile, port and optimize the Salvo software, and describes the validation data sets used to help verify a working copy of Salvo.
Annual Hanford Seismic Report for Fiscal Year 2004
Hartshorn, Donald C.; Reidel, Steve P.; Rohay, Alan C.
2004-12-07T23:59:59.000Z
This report describes seismic activity at and around the Hanford Site during Fiscal Year 2004. It is also the first description of seismic activity during the fourth quarter of FY04.
Time-lapse seismic monitoring of subsurface fluid flow
Yuh, Sung H.
2004-09-30T23:59:59.000Z
Time-lapse seismic monitoring repeats 3D seismic imaging over a reservoir to map fluid movements in a reservoir. During hydrocarbon production, the fluid saturation, pressure, and temperature of a reservoir change, thereby altering the acoustic...
Motion based seismic design and loss estimation of diagrid structures
Liptack, Robert J. (Robert Jeffrey)
2013-01-01T23:59:59.000Z
Diagrids are becoming an increasingly popular structural system in high rise design and construction. Little research has been performed on the seismic performance of Diagrids and how it integrates with seismic loss ...
S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES
civilization documentary, economic, social and even political or spiritual value #12;SEISMIC ENGINEERINGS E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES COMMISSION of Research Infrastructures in Performance-based Earthquake Engineering Shaking table testing of models
Three-Dimensional Seismic Imaging of the Ryepatch Geothermal Reservoir
Feighner, Mark A.
2010-01-01T23:59:59.000Z
at Well 46-28, Rye Patch Geothermal Field, Pershing County,Seismic Survey, Rye Patch Geothermal Field, Pershing County,Seismic Survey, Rye Patch Geothermal Field, Pershing County,
Seismic stratigraphy and structure of the Progreso Basin, Ecuador
Goyes Arroyo, Patricio
1987-01-01T23:59:59.000Z
Background Geologic Setting and Location Previous Work Stratigraphy of the Progreso Basin and Vicinity . . II METHODS Seismic Stratigraphic Analysis Magnetic Source Depth Determination III SEISMIC STRATIGRAPHY . Seismic Depositional Sequences Seismic... proliferation of names and e. ges for the same rocks and formations complicates correlation between basins. The origin of the basins is not clear and the previous concepts of the evolution of the region h''s tsesis ol ows the style and format of the Bulletin...
Method for processing seismic data to identify anomalous absorption zones
Taner, M. Turhan
2006-01-03T23:59:59.000Z
A method is disclosed for identifying zones anomalously absorptive of seismic energy. The method includes jointly time-frequency decomposing seismic traces, low frequency bandpass filtering the decomposed traces to determine a general trend of mean frequency and bandwidth of the seismic traces, and high frequency bandpass filtering the decomposed traces to determine local variations in the mean frequency and bandwidth of the seismic traces. Anomalous zones are determined where there is difference between the general trend and the local variations.
Geothermometry At Central Nevada Seismic Zone Region (Shevenell...
ENERGYGeothermal Home Exploration Activity: Geothermometry At Central Nevada Seismic Zone Region (Shevenell & De Rocher, 2005) Exploration Activity Details Location...
Teleseismic-Seismic Monitoring At Yellowstone Region (Chatterjee...
navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Yellowstone Region (Chatterjee, Et Al., 1985) Exploration Activity...
Computation of seismic attenuation and dispersion due to ...
masson@localhost.localdomain (masson)
2006-07-08T23:59:59.000Z
Jun 23, 2006 ... Seismic attenuation and dispersion are numerically computed for synthetic porous materials that contain arbitrary amounts of mesoscopic-.
First Quarter Seismic Report for Fiscal Year 2006
Rohay, Alan C.; Reidel, Stephen P.; Hartshorn, Donald C.; Sweeney, Mark D.; Clayton, Ray E.
2006-09-01T23:59:59.000Z
This report describes the earthquake data collected from October 2005 to December 2005 from the Hanford Seismic Network
STOCHASTIC SEISMIC EMISSION FROM ACOUSTIC GLORIES AND THE QUIET SUN
Braun, Douglas C.
STOCHASTIC SEISMIC EMISSION FROM ACOUSTIC GLORIES AND THE QUIET SUN A.-C. DONEA1, C. LINDSEY2 and D; accepted 8 January 2000) Abstract. Helioseismic images of multipolar active regions show enhanced seismic'. The acoustic glories contain elements that sustain an average seismic emission 50% greater than similar
Tutorial on seismic interferometry: Part 1 --Basic principles and applications
Snieder, Roel
Tutorial on seismic interferometry: Part 1 -- Basic principles and applications Kees Wapenaar1 , Deyan Draganov1 , Roel Snieder2 , Xander Campman3 , and Arie Verdel3 ABSTRACT Seismic interferometry is the retrieval of seismic surface-wave responses from ambient noise and the subsequent tomographic determination
Seismic Retrofitting of RC Frames with RC Infilling
Seismic Retrofitting of RC Frames with RC Infilling SERIES Workshop: "Role of research infrastructures in seismic rehabilitation" 8 - 9 February 2012, Istanbul, Turkey C. Z. Chrysostomou, N. Kyriakides, P. Kotronis, P. Roussis, M. Poljansek, F. Taucer RC Infilling of Existing RC Structures for Seismic
Global seismic monitoring as probabilistic inference Nimar S. Arora
Russell, Stuart
Global seismic monitoring as probabilistic inference Nimar S. Arora Department of Computer Science of the Comprehensive Nuclear-Test-Ban Treaty (CTBT), primarily through detection and localization of seismic events. We nuclear explosions. A global network of seismic, radionuclide, hydroacoustic, and infrasound sensors
Seismic Observation Systems in Nagoya University and Publication of Data
Southern California, University of
Seismic Observation Systems in Nagoya University and Publication of Data Nobuo Fukuwa,a) Jun Tobita,b) and Hiroaki Kojimac) This paper reports the current situation of the seismic monitoring program conducted by Nagoya University. First, the system for observing seismic ground motion in the Tokai Region is described
Seismic Engineering Research Infrastructures for European Synergies (SERIES)
Seismic Engineering Research Infrastructures for European Synergies (SERIES) M.N. Fardis University of Patras, Greece SUMMARY: Through the 4-year project SERIES (Seismic Engineering Research Infrastructures of their research. It also helps them to enhance their potential, by jointly developing novel seismic testing
Seismic shape parameters estimation and ground-roll suppression using
Spagnolini, Umberto
Seismic shape parameters estimation and ground-roll suppression using vector-sensor beamforming the problem of estimating the shape parameters of seismic wavefields in linear arrays. The purpose of the subsurface layers from the seismic wavefields registered by surface sensors. However, only the waves
Seismic Velocity Estimation from Time Migration Maria Kourkina Cameron
Cameron, Maria Kourkina
Seismic Velocity Estimation from Time Migration by Maria Kourkina Cameron Diplom (Moscow Institute Dung-Hai Lee Spring 2007 #12;Seismic Velocity Estimation from Time Migration Copyright c 2007 by Maria Kourkina Cameron #12;Abstract Seismic Velocity Estimation from Time Migration by Maria Kourkina Cameron
S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES
S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES COMMISSION General Committee Final workshop Ispra (IT), May 30 th, 2013 MAID project : Seismic behavior of L- and T-shaped unreinforced Masonry shear walls including Acoustic Isolation Devices #12;SEISMIC ENGINEERING RESEARCH
S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES
S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES COMMISSION, In memory of Prof. Roy Severn #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES · Project Framework · Experimental Campaign · Outcome Outline #12;SEISMIC ENGINEERING RESEARCH
Seismic Data Reconstruction via Shearlet-Regularized Directional Inpainting
Steidl, Gabriele
Seismic Data Reconstruction via Shearlet-Regularized Directional Inpainting S¨oren H¨auser and Jianwei Ma May 15, 2012 We propose a new method for seismic data reconstruction by directional weighted of thousands of meters with a good resolution, the seismic method has become the most commonly used geophysical
Parallel Seismic Ray Tracing in a Global Earth Model
Genaud, Stéphane
1 Parallel Seismic Ray Tracing in a Global Earth Model Marc Grunberg * , Stéphane Genaud of the Earth interior, and seismic tomogra- phy is a means to improve knowledge in this #28;eld. In order present in this paper the de- sign of a software program implement- ing a fast seismic ray
Seismic Volume Visualization for Horizon Extraction Daniel Patel
Seismic Volume Visualization for Horizon Extraction Daniel Patel Christian Michelsen Research¨oller § Institute of Computer Graphics and Algorithms, Vienna University of Technology, Austria ABSTRACT Seismic present a novel system for rapidly interpret- ing and visualizing seismic volumetric data. First we
LITHOLOGY-FLUID INVERSION FROM PRESTACK SEISMIC DATA
Eidsvik, Jo
LITHOLOGY-FLUID INVERSION FROM PRESTACK SEISMIC DATA MARIT ULVMOEN Department of Mathematical of the study is on lithology-fluid inversion from prestack seismic data in a 3D reservoir. The inversion relates the lithology-fluid classes to elastic variables and the seismic data, and it follows the lines
Lithology-Fluid Inversion based on Prestack Seismic Data
Eidsvik, Jo
Lithology-Fluid Inversion based on Prestack Seismic Data Marit Ulvmoen Summary The focus of the study is on lithology-fluid inversion from prestack seismic data. The target zone is a 3D reservoir model. The likelihood model relates the lithology-fluid classes to elastic variables and the seismic
Seismic petrophysics: An applied science for reservoir geophysics
Seismic petrophysics: An applied science for reservoir geophysics WAYNE D. PENNINGTON, Michigan a number of seismic attributes, using either prestack or poststack data, or even both in combination's intuition and, per- haps, wishful thinking, as a guide. This short paper introduces a new term "seismic
Evaluation of the Deployable Seismic Verification System at the Pinedale Seismic Research Facility
Carr, D.B.
1993-08-01T23:59:59.000Z
The intent of this report is to examine the performance of the Deployable Seismic Verification System (DSVS) developed by the Department of Energy (DOE) through its national laboratories to support monitoring of underground nuclear test treaties. A DSVS was installed at the Pinedale Seismic Research Facility (PSRF) near Boulder, Wyoming during 1991 and 1992. This includes a description of the system and the deployment site. System performance was studied by looking at four areas: system noise, seismic response, state of health (SOH) and operational capabilities.
Coleman, Justin [Idaho National Laboratory
2014-09-01T23:59:59.000Z
Risk calculations should focus on providing best estimate results, and associated insights, for evaluation and decision-making. Specifically, seismic probabilistic risk assessments (SPRAs) are intended to provide best estimates of the various combinations of structural and equipment failures that can lead to a seismic induced core damage event. However, in general this approach has been conservative, and potentially masks other important events (for instance, it wasnt the seismic motions that caused the Fukushima core melt events, but the tsunami ingress into the facility).
Development of the seismic input for use in the seismic safety margins research program
Bernreuter, D.L.; Chung, D.H.
1980-01-29T23:59:59.000Z
This paper briefly outlines the overall systems approach being developed for the Seismic Safety Margins Research Program. The unique features of the approach being taken to reduce the uncertainty in the seismic input for this program are discussed. These unique features will include extensive use of expert opinion, earthquake rupture simulation studies and the way in which the seismic hazard is incorporated into the overall systems analysis. Some very preliminary results are also given for the Zion site which is the power plant chosen for analysis in Phase I of the program.
THERMOACOUSTIC TOMOGRAPHY ARISING IN BRAIN IMAGING ...
2011-02-21T23:59:59.000Z
In this paper, we study the mathematical model of thermoacoustic and photoacoustic tomography for a sound speed that jumps across a smooth closed surface.
Imaging and sensing based on muon tomography
Morris, Christopher L; Saunders, Alexander; Sossong, Michael James; Schultz, Larry Joe; Green, J. Andrew; Borozdin, Konstantin N; Hengartner, Nicolas W; Smith, Richard A; Colthart, James M; Klugh, David C; Scoggins, Gary E; Vineyard, David C
2012-10-16T23:59:59.000Z
Techniques, apparatus and systems for detecting particles such as muons for imaging applications. Subtraction techniques are described to enhance the processing of the muon tomography data.
Advanced motor driven clamped borehole seismic receiver
Engler, Bruce P. (Sandoval County, NM); Sleefe, Gerard E. (Bernalillo County, NM); Striker, Richard P. (Bernalillo County, NM)
1993-01-01T23:59:59.000Z
A borehole seismic tool including a borehole clamp which only moves perpendicular to the borehole. The clamp is driven by an electric motor, via a right angle drive. When used as a seismic receiver, the tool has a three part housing, two of which are hermetically sealed. Accelerometers or geophones are mounted in one hermetically sealed part, the electric meter in the other hermetically sealed part, and the clamp and right angle drive in the third part. Preferably the tool includes cable connectors at both ends. Optionally a shear plate can be added to the clamp to extend the range of the tool.
Seismic Search for Strange Quark Nuggets
Eugene T. Herrin; Doris C. Rosenbaum; Vigdor L. Teplitz
2005-12-30T23:59:59.000Z
Bounds on masses and abundances of Strange Quark Nuggets (SQNs) are inferred from a seismic search on Earth. Potential SQN bounds from a possible seismic search on the Moon are reviewed and compared with Earth capabilities. Bounds are derived from the data taken by seismometers implanted on the Moon by the Apollo astronauts. We show that the Apollo data implies that the abundance of SQNs in the region of 10 kg to one ton must be at least an order of magnitude less than would saturate the dark matter in the solar neighborhood.
Down-hole periodic seismic generator
Hardee, H.C.; Hills, R.G.; Striker, R.P.
1982-10-28T23:59:59.000Z
A down hole periodic seismic generator system is disclosed for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.
Seismic Crystals And Earthquake Shield Application
B. Baykant Alagoz; Serkan Alagoz
2009-05-15T23:59:59.000Z
We theoretically demonstrate that earthquake shield made of seismic crystal can damp down surface waves, which are the most destructive type for constructions. In the paper, seismic crystal is introduced in aspect of band gaps (Stop band) and some design concepts for earthquake and tsunami shielding were discussed in theoretical manner. We observed in our FDTD based 2D elastic wave simulations that proposed earthquake shield could provide about 0.5 reductions in magnitude of surface wave on the Richter scale. This reduction rate in magnitude can considerably reduce destructions in the case of earthquake.
Advanced motor driven clamped borehole seismic receiver
Engler, B.P.; Sleefe, G.E.; Striker, R.P.
1993-02-23T23:59:59.000Z
A borehole seismic tool is described including a borehole clamp which only moves perpendicular to the borehole. The clamp is driven by an electric motor, via a right angle drive. When used as a seismic receiver, the tool has a three part housing, two of which are hermetically sealed. Accelerometers or geophones are mounted in one hermetically sealed part, the electric motor in the other hermetically sealed part, and the clamp and right angle drive in the third part. Preferably the tool includes cable connectors at both ends. Optionally a shear plate can be added to the clamp to extend the range of the tool.
Foxall, W; Schultz, C A; Tralli, D M
2004-09-21T23:59:59.000Z
The development of a suborbital or spaceborne system to monitor seismic waves poses an intriguing prospect for advancing the state of seismology. This capability would enable an unprecedented global mapping of the velocity structure of the earth's crust, understanding of earthquake rupture dynamics and wave propagation effects, and event source location, characterization and discrimination that are critical for both fundamental earthquake research and nuclear non-proliferation applications. As part of an ongoing collaboration between LLNL and JPL, an advanced mission concept study assessed architectural considerations and operational and data delivery requirements, extending two prior studies by each organization--a radar-based satellite system (JPL) for earthquake hazard assessment and a feasibility study of space- or UAV-based laser seismometer systems (LLNL) for seismic event monitoring. Seismic wave measurement requirements include lower bounds on detectability of specific seismic sources of interest and wave amplitude accuracy for different levels of analysis, such as source characterization, discrimination and tomography, with a 100 {micro}m wave amplitude resolution for waves nominally traveling 5 km/s, an upper frequency bound based on explosion and earthquake surface displacement spectra, and minimum horizontal resolution (1-5 km) and areal coverage, in general and for targeted observations. For a radar system, corresponding engineering and operational factors include: Radar frequency (dictated by required wave amplitude measurement accuracy and maximizing ranging, Doppler or interferometric sensitivity), time sampling (maximum seismic wave frequency and velocity), and overall system considerations such as mass, power and data rate. Technical challenges include characterization of, and compensation for, phase distortion resulting from atmospheric and ionospheric perturbations and turbulence, and effects of ground scattering characteristics and seismic ground motion on phase coherence over interferometric time intervals. Since the temporal sampling requirement may be finer than that possible for a high-altitude sensor to traverse a synthetic aperture length, a geostationary, real-aperture Ka-band system or constellation for equatorial and moderate-latitude global coverage is one option considered. The short wavelength would maximize interferometric sensitivity to small surface displacements and minimize required antenna area. Engineering issues include the design and deployment of a large ({approx} 100m) fixed aperture antenna; and fast electronic beam steering (entire aperture within nominal 1 s interferometric interval) with high-efficiency integrated transmit/receive modules. For a suborbital system, platform instability is an issue whereas at high earth orbit signal-to-noise and attendant power requirements dominate. Data delivery requirements include large-volume data storage and transmission; development of real-time, on-board event detection and processing algorithms, and data management structures for these very large data sets. A far-term roadmap would comprise a proof-of-concept demonstration using a laser or radar system mounted on a stratospheric balloon or UAV to image seismic wavefields from planned events (e.g. large mine blasts and/or purpose-designed explosions) and earthquake targets of opportunity. The technological challenges to developing any such seismic monitoring system, whether laser- or radar-based, are at this stage enormous. However, these concept studies suggest the long-term feasibility of such a system and drive the development of enabling technologies while fostering collaboration on meeting scientific and operational challenges of agencies such as NASA, DOE and DoD.
Computed Tomography software and standards
Azevedo, S.G.; Martz, H.E.; Skeate, M.F.; Schneberk, D.J.; Roberson, G.P.
1990-02-20T23:59:59.000Z
This document establishes the software design, nomenclature, and conventions for industrial Computed Tomography (CT) used in the Nondestructive Evaluation Section at Lawrence Livermore National Laboratory. It is mainly a users guide to the technical use of the CT computer codes, but also presents a proposed standard for describing CT experiments and reconstructions. Each part of this document specifies different aspects of the CT software organization. A set of tables at the end describes the CT parameters of interest in our project. 4 refs., 6 figs., 1 tab.
Chu, Shih-I
Self-interaction-free time-dependent density-functional theory for molecular processes in strong work of Hohenberg and Kohn 1 and Kohn and Sham 2 , the steady-state density-functional theory DFT has-electron systems, within the density-functional theory, is much less developed. The central theme of the modern
Understanding Atom Probe Tomography of Oxide-Supported Metal...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Atom Probe Tomography of Oxide-Supported Metal Nanoparticles by Correlation with Atomic Resolution Electron Understanding Atom Probe Tomography of Oxide-Supported Metal...
Using X-Ray Computed Tomography in Pore Structure Characterization...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Using X-Ray Computed Tomography in Pore Structure Characterization for a Berea Sandstone: Resolution Effect. Using X-Ray Computed Tomography in Pore Structure Characterization for...
Seismic isolation of two dimensional periodic foundations
Yan, Y.; Mo, Y. L., E-mail: yilungmo@central.uh.edu [University of Houston, Houston, Texas 77004 (United States); Laskar, A. [Indian Institute of Technology Bombay, Powai, Mumbai (India); Cheng, Z.; Shi, Z. [Beijing Jiaotong University, Beijing (China); Menq, F. [University of Texas, Austin, Texas 78712 (United States); Tang, Y. [Argonne National Laboratory, Argonne, Illinois 60439 (United States)
2014-07-28T23:59:59.000Z
Phononic crystal is now used to control acoustic waves. When the crystal goes to a larger scale, it is called periodic structure. The band gaps of the periodic structure can be reduced to range from 0.5?Hz to 50?Hz. Therefore, the periodic structure has potential applications in seismic wave reflection. In civil engineering, the periodic structure can be served as the foundation of upper structure. This type of foundation consisting of periodic structure is called periodic foundation. When the frequency of seismic waves falls into the band gaps of the periodic foundation, the seismic wave can be blocked. Field experiments of a scaled two dimensional (2D) periodic foundation with an upper structure were conducted to verify the band gap effects. Test results showed the 2D periodic foundation can effectively reduce the response of the upper structure for excitations with frequencies within the frequency band gaps. When the experimental and the finite element analysis results are compared, they agree well with each other, indicating that 2D periodic foundation is a feasible way of reducing seismic vibrations.
Reservoir permeability from seismic attribute analysis
Silin, Dmitriy; Goloshubin, G.; Silin, D.; Vingalov, V.; Takkand, G.; Latfullin, M.
2008-02-15T23:59:59.000Z
In case of porous fluid-saturated medium the Biot's poroelasticity theory predicts a movement of the pore fluid relative to the skeleton on seismic wave propagation through the medium. This phenomenon opens an opportunity for investigation of the flow properties of the hydrocarbon-saturated reservoirs. It is well known that relative fluid movement becomes negligible at seismic frequencies if porous material is homogeneous and well cemented. In this case the theory predicts an underestimated seismic wave velocity dispersion and attenuation. Based on Biot's theory, Helle et al. (2003) have numerically demonstrated the substantial effects on both velocity and attenuation by heterogeneous permeability and saturation in the rocks. Besides fluid flow effect, the effects of scattering (Gurevich, et al., 1997) play very important role in case of finely layered porous rocks and heterogeneous fluid saturation. We have used both fluid flow and scattering effects to derive a frequency-dependent seismic attribute which is proportional to fluid mobility and applied it for analysis of reservoir permeability.
Distributed computing of Seismic Imaging Algorithms
Emami, Masnida; Jaberi, Nasrin
2012-01-01T23:59:59.000Z
The primary use of technical computing in the oil and gas industries is for seismic imaging of the earth's subsurface, driven by the business need for making well-informed drilling decisions during petroleum exploration and production. Since each oil/gas well in exploration areas costs several tens of millions of dollars, producing high-quality seismic images in a reasonable time can significantly reduce the risk of drilling a "dry hole". Similarly, these images are important as they can improve the position of wells in a billion-dollar producing oil field. However seismic imaging is very data- and compute-intensive which needs to process terabytes of data and require Gflop-years of computation (using "flop" to mean floating point operation per second). Due to the data/computing intensive nature of seismic imaging, parallel computing are used to process data to reduce the time compilation. With introducing of Cloud computing, MapReduce programming model has been attracted a lot of attention in parallel and di...
Harder, S. H., Killer, K. C., Worthington, L. L., Snelson, C. M.
2010-09-02T23:59:59.000Z
Contrary to popular belief, charge weight is not the most important engineering parameter determining the seismic amplitudes generated by a shot. The scientific literature has long claimed that the relationship, A ~R2L1/2, where A is the seismic amplitude generated by a shot, R is the radius of the seismic charge and L is the length of that charge, holds. Assuming the coupling to the formation and the pressure generated by the explosive are constants, this relationship implies that the one should be able to increase the charge radius while decreasing the charge length and obtain more seismic amplitude with less charge weight. This has significant implications for the economics of lithospheric seismic shots, because shallower holes and small charge sizes decrease cost. During the Bighorns Array Seismic Experiment (BASE) conducted in the summer of 2010, 24 shots with charge sizes ranging from 110 to 900 kg and drill hole diameters of 300 and 450 mm were detonated and recorded by an array of up to 2000 single-channel Texan seismographs. Maximum source-receiver offset of 300 km. Five of these shots were located within a one-acre square in an effort to eliminate coupling effects due to differing geological formations. We present a quantitative comparison of the data from these five shots to experimentally test the equation above.
Calibration of Seismic Attributes for Reservoir Characterization
Wayne D. Pennington
2002-09-29T23:59:59.000Z
The project, "Calibration of Seismic Attributes for Reservoir Characterization," is now complete. Our original proposed scope of work included detailed analysis of seismic and other data from two to three hydrocarbon fields; we have analyzed data from four fields at this level of detail, two additional fields with less detail, and one other 2D seismic line used for experimentation. We also included time-lapse seismic data with ocean-bottom cable recordings in addition to the originally proposed static field data. A large number of publications and presentations have resulted from this work, inlcuding several that are in final stages of preparation or printing; one of these is a chapter on "Reservoir Geophysics" for the new Petroleum Engineering Handbook from the Society of Petroleum Engineers. Major results from this project include a new approach to evaluating seismic attributes in time-lapse monitoring studies, evaluation of pitfalls in the use of point-based measurements and facies classifications, novel applications of inversion results, improved methods of tying seismic data to the wellbore, and a comparison of methods used to detect pressure compartments. Some of the data sets used are in the public domain, allowing other investigators to test our techniques or to improve upon them using the same data. From the public-domain Stratton data set we have demonstrated that an apparent correlation between attributes derived along 'phantom' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the public-domain Boonsville data set we developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures, to subdivide regional facies determined from logs into productive and non-productive subfacies, and we developed a method involving cross-correlation of seismic waveforms to provide a reliable map of the various facies present in the area. The Wamsutter data set led to the use of unconventional attributes including lateral incoherence and horizon-dependent impedance variations to indicate regions of former sand bars and current high pressure, respectively, and to evaluation of various upscaling routines. The Teal South data set has provided a surprising set of results, leading us to develop a pressure-dependent velocity relationship and to conclude that nearby reservoirs are undergoing a pressure drop in response to the production of the main reservoir, implying that oil is being lost through their spill points, never to be produced. Additional results were found using the public-domain Waha and Woresham-Bayer data set, and some tests of technologies were made using 2D seismic lines from Michigan and the western Pacific ocean.
CALIBRATION OF SEISMIC ATTRIBUTES FOR RESERVOIR CHARACTERIZATION
Wayne D. Pennington; Horacio Acevedo; Aaron Green; Joshua Haataja; Shawn Len; Anastasia Minaeva; Deyi Xie
2002-10-01T23:59:59.000Z
The project, ''Calibration of Seismic Attributes for Reservoir Calibration,'' is now complete. Our original proposed scope of work included detailed analysis of seismic and other data from two to three hydrocarbon fields; we have analyzed data from four fields at this level of detail, two additional fields with less detail, and one other 2D seismic line used for experimentation. We also included time-lapse seismic data with ocean-bottom cable recordings in addition to the originally proposed static field data. A large number of publications and presentations have resulted from this work, including several that are in final stages of preparation or printing; one of these is a chapter on ''Reservoir Geophysics'' for the new Petroleum Engineering Handbook from the Society of Petroleum Engineers. Major results from this project include a new approach to evaluating seismic attributes in time-lapse monitoring studies, evaluation of pitfalls in the use of point-based measurements and facies classifications, novel applications of inversion results, improved methods of tying seismic data to the wellbore, and a comparison of methods used to detect pressure compartments. Some of the data sets used are in the public domain, allowing other investigators to test our techniques or to improve upon them using the same data. From the public-domain Stratton data set we have demonstrated that an apparent correlation between attributes derived along ''phantom'' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the public-domain Boonsville data set we developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures, to subdivide regional facies determined from logs into productive and non-productive subfacies, and we developed a method involving cross-correlation of seismic waveforms to provide a reliable map of the various facies present in the area. The Wamsutter data set led to the use of unconventional attributes including lateral incoherence and horizon-dependent impedance variations to indicate regions of former sand bars and current high pressure, respectively, and to evaluation of various upscaling routines. The Teal South data set has provided a surprising set of results, leading us to develop a pressure-dependent velocity relationship and to conclude that nearby reservoirs are undergoing a pressure drop in response to the production of the main reservoir, implying that oil is being lost through their spill points, never to be produced. Additional results were found using the public-domain Waha and Woresham-Bayer data set, and some tests of technologies were made using 2D seismic lines from Michigan and the western Pacific ocean.
Surface Impedance Tomography for Antarctic Sea Ice
Golden, Kenneth M.
Surface Impedance Tomography for Antarctic Sea Ice C. Sampsona , K. M. Goldena , A. Gullya , A. P, Australia Abstract During the 2007 SIPEX expedition in pack ice off the coast of East Antarctica, we measured the electrical conductivity of sea ice via surface impedance tomography. Resistance data from
ALGEBRAIC ASPECTS OF EMISSION TOMOGRAPHY WITH ABSORPTION
Tijdeman, Robert
ALGEBRAIC ASPECTS OF EMISSION TOMOGRAPHY WITH ABSORPTION L. Hajdu and R. Tijdeman Abstract of emission tomography with absorption, con- sider a ray (such as light or X-ray) transmitting through #1; e #22;x ; where #22; #21; 0 denotes the absorption coe?cient of the material, and x is the length
Fast Globally Convergent Reconstruction in Emission Tomography
Rangarajan, Anand
considerable speedup by using only a subset of the projection data per sub- iteration. However, OSEM1 Fast Globally Convergent Reconstruction in Emission Tomography Using COSEM, an Incremental EM globally convergent incremental EM algorithms for reconstruction in emission tomography, COSEM- ML
Induced seismicity associated with enhanced geothermal system
Majer, Ernest; Majer, Ernest L.; Baria, Roy; Stark, Mitch; Oates, Stephen; Bommer, Julian; Smith, Bill; Asanuma, Hiroshi
2006-09-26T23:59:59.000Z
Enhanced Geothermal Systems (EGS) offer the potential to significantly add to the world energy inventory. As with any development of new technology, some aspects of the technology has been accepted by the general public, but some have not yet been accepted and await further clarification before such acceptance is possible. One of the issues associated with EGS is the role of microseismicity during the creation of the underground reservoir and the subsequent extraction of the energy. The primary objectives of this white paper are to present an up-to-date review of the state of knowledge about induced seismicity during the creation and operation of enhanced geothermal systems, and to point out the gaps in knowledge that if addressed will allow an improved understanding of the mechanisms generating the events as well as serve as a basis to develop successful protocols for monitoring and addressing community issues associated with such induced seismicity. The information was collected though literature searches as well as convening three workshops to gather information from a wide audience. Although microseismicity has been associated with the development of production and injection operations in a variety of geothermal regions, there have been no or few adverse physical effects on the operations or on surrounding communities. Still, there is public concern over the possible amount and magnitude of the seismicity associated with current and future EGS operations. It is pointed out that microseismicity has been successfully dealt with in a variety of non-geothermal as well as geothermal environments. Several case histories are also presented to illustrate a variety of technical and public acceptance issues. It is concluded that EGS Induced seismicity need not pose any threat to the development of geothermal resources if community issues are properly handled. In fact, induced seismicity provides benefits because it can be used as a monitoring tool to understand the effectiveness of the EGS operations and shed light on the mechanics of the reservoir.
Seismic modelling of a fractured carbonate reservoir in Abu Dhabi, United Arab Emirates
Ali, Mohammed
Seismic modelling of a fractured carbonate reservoir in Abu Dhabi, United Arab Emirates Mohammed Y is required to optimize hydrocarbon production. A rock containing parallel fractures can be seismically to the seismic wavelength. Seismic anisotropy may be detectable from attributes of pre-stack 3-D seismic data
Boyer, Edmond
1 ABSTRACT: Modern seismic codes recommend the design of ductile structures able to absorb seismic energy through high plastic deformation. Since seismic ductile design relies on an accurate control-concrete composite structures; Material properties variability; Seismic design; capacity design. 1 GENERAL CONTEXT
Positron emission tomography wrist detector
Schlyer, David J. (Bellport, NY); O'Connor, Paul (Bellport, NY); Woody, Craig (Setauket, NY); Junnarkar, Sachin Shrirang (Sound Beach, NY); Radeka, Veljko (Bellport, NY); Vaska, Paul (Sound Beach, NY); Pratte, Jean-Francois (Stony Brook, NY)
2006-08-15T23:59:59.000Z
A method of serially transferring annihilation information in a compact positron emission tomography (PET) scanner includes generating a time signal representing a time-of-occurrence of an annihilation event, generating an address signal representing a channel detecting the annihilation event, and generating a channel signal including the time and address signals. The method also includes generating a composite signal including the channel signal and another similarly generated channel signal concerning another annihilation event. An apparatus that serially transfers annihilation information includes a time signal generator, address signal generator, channel signal generator, and composite signal generator. The time signal is asynchronous and the address signal is synchronous to a clock signal. A PET scanner includes a scintillation array, detection array, front-end array, and a serial encoder. The serial encoders include the time signal generator, address signal generator, channel signal generator, and composite signal generator.
Collimator-free photon tomography
Dilmanian, F.A.; Barbour, R.L.
1998-10-06T23:59:59.000Z
A method of uncollimated single photon emission computed tomography includes administering a radioisotope to a patient for producing gamma ray photons from a source inside the patient. Emissivity of the photons is measured externally of the patient with an uncollimated gamma camera at a plurality of measurement positions surrounding the patient for obtaining corresponding energy spectrums thereat. Photon emissivity at the plurality of measurement positions is predicted using an initial prediction of an image of the source. The predicted and measured photon emissivities are compared to obtain differences therebetween. Prediction and comparison is iterated by updating the image prediction until the differences are below a threshold for obtaining a final prediction of the source image. 6 figs.
Collimator-free photon tomography
Dilmanian, F. Avraham (Yaphank, NY); Barbour, Randall L. (Westbury, NY)
1998-10-06T23:59:59.000Z
A method of uncollimated single photon emission computed tomography includes administering a radioisotope to a patient for producing gamma ray photons from a source inside the patient. Emissivity of the photons is measured externally of the patient with an uncollimated gamma camera at a plurality of measurement positions surrounding the patient for obtaining corresponding energy spectrums thereat. Photon emissivity at the plurality of measurement positions is predicted using an initial prediction of an image of the source. The predicted and measured photon emissivities are compared to obtain differences therebetween. Prediction and comparison is iterated by updating the image prediction until the differences are below a threshold for obtaining a final prediction of the source image.
Seismic switch for strong motion measurement
Harben, Philip E. (Oakley, CA); Rodgers, Peter W. (Santa Barbara, CA); Ewert, Daniel W. (Patterson, CA)
1995-01-01T23:59:59.000Z
A seismic switching device that has an input signal from an existing microseismic station seismometer and a signal from a strong motion measuring instrument. The seismic switch monitors the signal level of the strong motion instrument and passes the seismometer signal to the station data telemetry and recording systems. When the strong motion instrument signal level exceeds a user set threshold level, the seismometer signal is switched out and the strong motion signal is passed to the telemetry system. The amount of time the strong motion signal is passed before switching back to the seismometer signal is user controlled between 1 and 15 seconds. If the threshold level is exceeded during a switch time period, the length of time is extended from that instant by one user set time period.
On seismic signatures of rapid variation
G. Houdek; D. O. Gough
2006-12-01T23:59:59.000Z
We present an improved model for an asteroseismic diagnostic contained in the frequency spacing of low-degree acoustic modes. By modelling in a realistic manner regions of rapid variation of dynamically relevant quantities, which we call acoustic glitches, we can derive signatures of the gross properties of those glitches. In particular, we are interested in measuring properties that are related to the helium ionization zones and to the rapid variation in the background state associated with the lower boundary of the convective envelope. The formula for the seismic diagnostic is tested against a sequence of theoretical models of the Sun, and is compared with seismic diagnostics published previously by Monteiro & Thompson (1998, 2005) and by Basu et al. (2004).
Seismic switch for strong motion measurement
Harben, P.E.; Rodgers, P.W.; Ewert, D.W.
1995-05-30T23:59:59.000Z
A seismic switching device is described that has an input signal from an existing microseismic station seismometer and a signal from a strong motion measuring instrument. The seismic switch monitors the signal level of the strong motion instrument and passes the seismometer signal to the station data telemetry and recording systems. When the strong motion instrument signal level exceeds a user set threshold level, the seismometer signal is switched out and the strong motion signal is passed to the telemetry system. The amount of time the strong motion signal is passed before switching back to the seismometer signal is user controlled between 1 and 15 seconds. If the threshold level is exceeded during a switch time period, the length of time is extended from that instant by one user set time period. 11 figs.
Characterization of the Virgo Seismic Environment
Accadia, T; Astone, P; Ballardin, G; Barone, F; Barsuglia, M; Basti, A; Bauer, Th S; Bebronne, M; Beker, M G; Belletoile, A; Bitossi, M; Bizouard, M A; Blom, M; Bondu, F; Bonelli, L; Bonnand, R; Boschi, V; Bosi, L; Bouhou, B; Braccini, S; Bradaschia, C; Branchesi, M; Briant, T; Brillet, A; Brisson, V; Bulik, T; Bulten, H J; Buskulic, D; Buy, C; Cagnoli, G; Calloni, E; Canuel, B; Carbognani, F; Cavalier, F; Cavalieri, R; Cella, G; Cesarini, E; Chaibi, O; Chassande-Mottin, E; Chincarini, A; Chiummo, A; Cleva, F; Coccia, E; Cohadon, P -F; Colacino, C N; Colas, J; Colla, A; Colombini, M; Conte, A; Coughlin, M; Coulon, J -P; Cuoco, E; DAntonio, S; Dattilo, V; Davier, M; Day, R; De Rosa, R; Debreczeni, G; Del Pozzo, W; del Prete, M; Di Fiore, L; Di Lieto, A; Emilio, M Di Paolo; Di Virgilio, A; Dietz, A; Drago, M; Endroczi, G; Fafone, V; Ferrante, I; Fidecaro, F; Fiori, I; Flaminio, R; Forte, L A; Fournier, J -D; Franc, J; Frasca, S; Frasconi, F; Galimberti, M; Gammaitoni, L; Garufi, F; Gaspar, M E; Gemme, G; Genin, E; Gennai, A; Giazotto, A; Gouaty, R; Granata, M; Greverie, C; Guidi, G M; Hayau, J -F; Heidmann, A; Heitmann, H; Hello, P; Jaranowski, P; Kowalska, I; Krolak, A; Leroy, N; Letendre, N; Li, T G F; Liguori, N; Lorenzini, M; Loriette, V; Losurdo, G; Majorana, E; Maksimovic, I; Man, N; Mantovani, M; Marchesoni, F; Marion, F; Marque, J; Martelli, F; Masserot, A; Michel, C; Milano, L; Minenkov, Y; Mohan, M; Morgado, N; Morgia, A; Mosca, S; Mours, B; Naticchioni, L; Nocera, F; Pagliaroli, G; Palladino, L; Palomba, C; Paoletti, F; Parisi, M; Pasqualetti, A; Passaquieti, R; Passuello, D; Persichetti, G; Piergiovanni, F; Pietka, M; Pinard, L; Poggiani, R; Prato, M; Prodi, G A; Punturo, M; Puppo, P; Rabeling, D S; Racz, I; Rapagnani, P; Re, V; Regimbau, T; Ricci, F; Robinet, F; Rocchi, A; Rolland, L; Romano, R; Rosinska, D; Ruggi, P; Sassolas, B; Sentenac, D; Sperandio, L; Sturani, R; Swinkels, B; Tacca, M; Taffarello, L; Toncelli, A; Tonelli, M; Torre, O; Tournefier, E; Travasso, F; Vajente, G; Brand, J F J van den; Broeck, C Van Den; van der Putten, S; Vasuth, M; Vavoulidis, M; Vedovato, G; Verkindt, D; Vetrano, F; Vicere, A; Vinet, J -Y; Vitale, S; Vocca, H; Ward, R L; Was, M; Yvert, M; Zadrozny, A; Zendri, J -P
2011-01-01T23:59:59.000Z
The Virgo gravitational wave detector is an interferometer (ITF) with 3km arms located in Pisa, Italy. From July to October 2010, Virgo performed its third science run (VSR3) in coincidence with the LIGO detectors. Despite several techniques adopted to isolate the interferometer from the environment, seismic noise remains an important issue for Virgo. Vibrations produced by the detector infrastructure (such as air conditioning units, water chillers/heaters, pumps) are found to affect Virgo's sensitivity, with the main coupling mechanisms being through beam jitter and scattered light processes. The Advanced Virgo (AdV) design seeks to reduce ITF couplings to environmental noise by having most vibration-sensitive components suspended and in-vacuum, as well as muffle and relocate loud machines. During the months of June and July 2010, a Guralp-3TD seismometer was stationed at various locations around the Virgo site hosting major infrastructure machines. Seismic data were examined using spectral and coherence ana...
Development of a hydraulic borehole seismic source
Cutler, R.P.
1998-04-01T23:59:59.000Z
This report describes a 5 year, $10 million Sandia/Industry project to develop an advanced borehole seismic source for use in oil and gas exploration and production. The development Team included Sandia, Chevron, Amoco, Conoco, Exxon, Raytheon, Pelton, and GRI. The seismic source that was developed is a vertically oriented, axial point force, swept frequency, clamped, reaction-mass vibrator design. It was based on an early Chevron prototype, but the new tool incorporates a number of improvements which make it far superior to the original prototype. The system consists of surface control electronics, a special heavy duty fiber optic wireline and draw works, a cablehead, hydraulic motor/pump module, electronics module, clamp, and axial vibrator module. The tool has a peak output of 7,000 lbs force and a useful frequency range of 5 to 800 Hz. It can operate in fluid filled wells with 5.5-inch or larger casing to depths of 20,000 ft and operating temperatures of 170 C. The tool includes fiber optic telemetry, force and phase control, provisions to add seismic receiver arrays below the source for single well imaging, and provisions for adding other vibrator modules to the tool in the future. The project yielded four important deliverables: a complete advanced borehole seismic source system with all associated field equipment; field demonstration surveys funded by industry showing the utility of the system; industrial sources for all of the hardware; and a new service company set up by their industrial partner to provide commercial surveys.
Short-Period Seismic Noise in Vorkuta (Russia)
Kishkina, S B; Spivak, A A; Sweeney, J J
2008-05-15T23:59:59.000Z
Cultural development of new subpolar areas of Russia is associated with a need for detailed seismic research, including both mapping of regional seismicity and seismic monitoring of specific mining enterprises. Of special interest are the northern territories of European Russia, including shelves of the Kara and Barents Seas, Yamal Peninsula, and the Timan-Pechora region. Continuous seismic studies of these territories are important now because there is insufficient seismological knowledge of the area and an absence of systematic data on the seismicity of the region. Another task of current interest is the necessity to consider the seismic environment in the design, construction, and operation of natural gas extracting enterprises such as the construction of the North European Gas Pipeline. Issues of scientific importance for seismic studies in the region are the complex geodynamical setting, the presence of permafrost, and the complex tectonic structure. In particular, the Uralian Orogene (Fig. 1) strongly affects the propagation of seismic waves. The existing subpolar seismic stations [APA (67,57{sup o}N; 33,40{sup o}E), LVZ (67,90{sup o}N; 34,65{sup o}E), and NRIL (69,50{sup o}N; 88,40{sup o}E)] do not cover the extensive area between the Pechora and Ob Rivers (Fig. 1). Thus seismic observations in the Vorkuta area, which lies within the area of concern, represent a special interest. Continuous recording at a seismic station near the city of Vorkuta (67,50{sup o}N; 64,11{sup o}E) [1] has been conducted since 2005 for the purpose of regional seismic monitoring and, more specifically, detection of seismic signals caused by local mining enterprises. Current surveys of local seismic noise [7,8,9,11], are particularly aimed at a technical survey for the suitability of the site for installation of a small-aperture seismic array, which would include 10-12 recording instruments, with the Vorkuta seismic station as the central element. When constructed, this seismic array will considerably improve the recording capacity of regional and local seismic events. It will allow detection of signatures of seismic waves propagating in submeridional and sublatitudinal directions. The latter is of special interest not only to access the influence of the Urals on propagation patterns of seismic waves, but also to address other questions, such as the structure and dynamic characteristics of the internal dynamo of the Earth [9,13]. Recording seismic waves at low angular distances from seismically active subpolar zones will allow us to collect data on vortical and convective movements in subpolar lithosphere blocks and at the boundary of the inner core of the Earth, possibly giving essential clues to the modeling of the Earth's electromagnetic field [3,13]. The present study considers basic features of seismic noise at the Vorkuta station obtained through the analysis of seismic records from March, 2006 till December, 2007.
High vertical resolution crosswell seismic imaging
Lazaratos, Spyridon K. (Houston, TX)
1999-12-07T23:59:59.000Z
A method for producing high vertical resolution seismic images from crosswell data is disclosed. In accordance with one aspect of the disclosure, a set of vertically spaced, generally horizontally extending continuous layers and associated nodes are defined within a region between two boreholes. The specific number of nodes is selected such that the value of a particular characteristic of the subterranean region at each of the nodes is one which can be determined from the seismic data. Once values are established at the nodes, values of the particular characteristic are assigned to positions between the node points of each layer based on the values at node within that layer and without regard to the values at node points within any other layer. A seismic map is produced using the node values and the assigned values therebetween. In accordance with another aspect of the disclosure, an approximate model of the region is established using direct arrival traveltime data. Thereafter, the approximate model is adjusted using reflected arrival data. In accordance with still another aspect of the disclosure, correction is provided for well deviation. An associated technique which provides improvements in ray tracing is also disclosed.
Basis for seismic provisions of DOE-STD-1020
Kennedy, R.C. [RPK Structural Mechanics Consulting, Yorba Linda, CA (United States); Short, S.A. [EQE International, Inc., San Francisco, CA (United States)
1994-04-01T23:59:59.000Z
DOE-STD-1020 provides for a graded approach for the seismic design and evaluation of DOE structures, systems, and components (SSC). Each SSC is assigned to a Performance Category (PC) with a performance description and an approximate annual probability of seismic-induced unacceptable performance, P{sub F}. The seismic annual probability performance goals for PC 1 through 4 for which specific seismic design and evaluation criteria are presented. DOE-STD-1020 also provides a seismic design and evaluation procedure applicable to achieve any seismic performance goal annual probability of unacceptable performance specified by the user. The desired seismic performance goal is achieved by defining the seismic hazard in terms of a site-specified design/evaluation response spectrum (called herein, the Design/Evaluation Basis Earthquake, DBE). Probabilistic seismic hazard estimates are used to establish the DBE. The resulting seismic hazard curves define the amplitude of the ground motion as a function of the annual probability of exceedance P{sub H} of the specified seismic hazard. Once the DBE is defined, the SSC is designed or evaluated for this DBE using adequately conservative deterministic acceptance criteria. To be adequately conservative, the acceptance criteria must introduce an additional reduction in the risk of unacceptable performance below the annual risk of exceeding the DBE. The ratio of the seismic hazard exceedance probability P{sub H} to the performance goal probability P{sub F} is defined herein as the risk reduction ratio. The required degree of conservatism in the deterministic acceptance criteria is a function of the specified risk reduction ratio.
Third Quarter Hanford Seismic Report for Fiscal Year 2005
Reidel, Steve P.; Rohay, Alan C.; Hartshorn, Donald C.; Clayton, Ray E.; Sweeney, Mark D.
2005-09-01T23:59:59.000Z
Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 41 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. For the Hanford Seismic Network, there were 337 triggers during the third quarter of fiscal year 2005. Of these triggers, 20 were earthquakes within the Hanford Seismic Network. The largest earthquake within the Hanford Seismic Network was a magnitude 1.3 event May 25 near Vantage, Washington. During the third quarter, stratigraphically 17 (85%) events occurred in the Columbia River basalt (approximately 0-5 km), no events in the pre-basalt sediments (approximately 5-10 km), and three (15%) in the crystalline basement (approximately 10-25 km). During the first quarter, geographically five (20%) earthquakes occurred in swarm areas, 10 (50%) earthquakes were associated with a major geologic structure, and 5 (25%) were classified as random events.
Seismic fragility estimates for corroded reinforced concrete bridge structures with two-column bents
Zhong, Jinquan
2009-05-15T23:59:59.000Z
To assess the losses associated with future earthquakes, seismic vulnerability functions are commonly used to correlate the damage or loss of a structure to the level of seismic intensity. A common procedure in seismic vulnerability assessment...
Seismic fragility and retrofitting for a reinforced concrete flat-slab structure
Bai, Jong-Wha
2004-09-30T23:59:59.000Z
The effectiveness of seismic retrofitting applied to enhance seismic performance was assessed for a five-story reinforced concrete (RC) flat-slab building structure in the central United States. In addition to this, an assessment of seismic...
Develpment of a low Cost Method to Estimate the Seismic Signiture...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Develpment of a low Cost Method to Estimate the Seismic Signiture of a Geothemal Field from Ambient Seismic Noise Analysis Develpment of a low Cost Method to Estimate the Seismic...
Seismic Risk Assessment of Port Facilities Ung Jin Na, Samit Ray Chaudhuri
Shinozuka, Masanobu
Seismic Risk Assessment of Port Facilities Ung Jin Na, Samit Ray Chaudhuri Faculty Advisor : Prof Estimation Methodology Applications (in progress) Port of Long Beach · Seismic Risk Assessment, Decision & Vertical movement, Settlement of Apron Seismic Vulnerability - quay Wall
Braun, Douglas C.
PRINCIPLES OF SEISMIC HOLOGRAPHY FOR DIAGNOSTICS OF THE SHALLOW SUBPHOTOSPHERE Charles Lindsey develop the wave-mechanical formalism for phase-correlation computational seismic holography headinggs: Sun: activity -- Sun: helioseismology -- sunspots 1. INTRODUCTION Computational seismic
SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES Earthquake Engineering Research Infrastructures (RI) in regions of high seismicity. · Limited access of the Scientific and Technical (S resources at some RIs. #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES KEY POINTS
Seismic Assessment and Retrofit of Existing Multi-Column Bent Bridges
Seismic Assessment and Retrofit of Existing Multi-Column Bent Bridges By Cole C. Mc ................................................................................................................................... 6 Seismic Activity in Western Washington State Approach Bridge Modeling .............................................11 Seismic Excitations
Seismic fragility curves for reinforced concrete buildings A Dissertation Submitted in Partial dissertation entitled "Seismic fragility curves for reinforced concrete frame and wall- frame buildings. Buildings designed for seismic loading, and buildings designed only for gravity loads, are considered
Exploring the Earths subsurface with virtual seismic sources and receivers
Nicolson, Heather Johan
2011-11-24T23:59:59.000Z
Traditional methods of imaging the Earths subsurface using seismic waves require an identifiable, impulsive source of seismic energy, for example an earthquake or explosive source. Naturally occurring, ambient seismic waves form an ever...
The Seismic Analyzer: Interpreting and Illustrating 2D Seismic Data Daniel Patel, Christopher for quickly interpreting and illustrating 2D slices of seismic volumetric reflection data. Searching for oil and gas involves creating a structural overview of seismic reflection data to identify hydrocarbon
Data Acquisition-Manipulation At Central Nevada Seismic Zone...
- 2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Central Nevada Seismic Zone Region (Coolbaugh, Et Al., 2005...
Seismic Reflection Data and Conceptual Models for Geothermal...
failure of seismic reflection data to image thesubsurface demonstrates the robust reliability of aconceptual model approach to geothermal exploration thatemphasizes the...
Statistical study of seismicity associated with geothermal reservoirs...
include the Imperial Valley, Coso, The Geysers, Lassen, and the San Jacinto fault. The spatial characteristics of the random and clustered components of the seismicity are...
Development of an Updated Induced Seismicity Protocol for the...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Peer Review seismic024majer.pdf More Documents & Publications Microseismic Study with LBNL - Monitoring the Effect of Injection of Fluids from the Lake County Pipeline on...
Towards the Understanding of Induced Seismicity in Enhanced Geothermal...
Broader source: Energy.gov (indexed) [DOE]
Gritto (PI), AIT Doug Dreger, UCB Oliver Heidbach, GFZ Larry Hutchings (Presenter), LBNL 2 | US DOE Geothermal Program UCB * EGS operations rely on small-scale seismicity to...
Seismic Technology Adapted to Analyzing and Developing Geothermal...
GEDCO, RARE Technology, and Sercel, Inc. to combine multicomponent seismic technology and rock physics modeling that will lead to the ability to image and analyze geothermal...
Teleseismic-Seismic Monitoring At Walker-Lane Transitional Zone...
Zone Region (Biasi, Et Al., 2008) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Teleseismic-Seismic Monitoring Activity...
Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Geothermal...
Steck, Et Al., 1998) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Geothermal Area...
Seismic Technology Adapted to Analyzing and Developing Geothermal...
Broader source: Energy.gov (indexed) [DOE]
of geothermal prospects beneath volcanic outcrops. Seismic-based quantification of fracture orientation and intensity will result in optimal positioning of geothermal wells....
Seismic Technology Adapted to Analyzing and Developing Geothermal...
Broader source: Energy.gov (indexed) [DOE]
of geothermal prospects beneath volcanic outcrops. * Seismic-based quantification of fracture orientation and intensity will result in optimal positioning of geothermal wells. *...
Towards the Understanding of Induced Seismicity in Enhanced Geothermal...
Broader source: Energy.gov (indexed) [DOE]
Office eere.energy.gov * EGS operations rely on small-scale seismicity to delineate fracture extent, fracture type and pathways for water * EGS operations need to understand...
Joint inversion of electrical and seismic data for Fracture char...
Broader source: Energy.gov (indexed) [DOE]
Joint inversion of electrical and seismic data for Fracture char. and Imaging of Fluid Flow in Geothermal Systems Michael Batzle, PI Colorado School of Mines Track Name: Fluid...
Modeling-Computer Simulations At Central Nevada Seismic Zone...
Central Nevada Seismic Zone Geothermal Region Exploration Technique Modeling-Computer Simulations Activity Date Usefulness not indicated DOE-funding Unknown References J. W....
Geodetic Survey At Central Nevada Seismic Zone Region (Blewitt...
ENERGYGeothermal Home Exploration Activity: Geodetic Survey At Central Nevada Seismic Zone Region (Blewitt Et Al, 2005) Exploration Activity Details Location Central...
Teleseismic-Seismic Monitoring At Kilauea Southwest Rift And...
navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Kilauea Southwest Rift And South Flank Area (Wyss, Et Al., 2001)...
Geodetic Survey At Central Nevada Seismic Zone Region (Blewitt...
Blewitt, Et Al., 2003) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Geodetic Survey Activity Date Usefulness useful...
Teleseismic-Seismic Monitoring At Nw Basin & Range Region (Biasi...
Teleseismic-Seismic Monitoring At Nw Basin & Range Region (Biasi, Et Al., 2008) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration...
Teleseismic-Seismic Monitoring At Valles Caldera - Sulphur Springs...
Valles Caldera - Sulphur Springs Geothermal Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date 1993 - 1993 Usefulness useful DOE-funding Unknown...
Teleseismic-Seismic Monitoring At Northern Basin & Range Region...
Location Northern Basin and Range Geothermal Region Exploration Technique Teleseismic-Seismic Monitoring Activity Date Usefulness useful regional reconnaissance DOE-funding...
Seismic Mapping Of The Subsurface Structure At The Ryepatch Geothermal...
Reservoir Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Seismic Mapping Of The Subsurface Structure At The Ryepatch Geothermal Reservoir Abstract In...
Field Mapping At Central Nevada Seismic Zone Region (Blewitt...
Region (Blewitt, Et Al., 2003) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Field Mapping Activity Date Usefulness...
Teleseismic-Seismic Monitoring At Kilauea Summit Area (Chouet...
navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Kilauea Summit Area (Chouet & Aki, 1981) Exploration Activity Details...
Geographic Information System At Central Nevada Seismic Zone...
Home Exploration Activity: Geographic Information System At Central Nevada Seismic Zone Region (Coolbaugh, Et Al., 2005 - 2) Exploration Activity Details Location...
Field Mapping At Central Nevada Seismic Zone Region (Shevenell...
Shevenell, Et Al., 2008) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Field Mapping Activity Date Usefulness could be...
Geographic Information System At Central Nevada Seismic Zone...
Central Nevada Seismic Zone Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown...
Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Geothermal...
navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Geothermal Area (Roberts, Et Al., 1991)...