Powered by Deep Web Technologies
Note: This page contains sample records for the topic "time period heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

PERIODIC HEAT REPORT  

NLE Websites -- All DOE Office Websites (Extended Search)

186.00 TripHigh tc Date MO:DAY 1.00: 16.00 TripHigh tc Time HR:MIN 10.00: 9.00 Ports Temp: Avg, High, Low 19.00, 21.00, 17.00 Coils Temp: Avg, High, Low 19.00, 21.00,...

2

Multi-period design of heat exchanger networks  

Science Journals Connector (OSTI)

Heat exchanger networks are an integral part of chemical processes as they recover available heat and reduce utility consumption, thereby improving the overall economics of an industrial plant. This paper focuses on heat exchanger network design for multi-period operation wherein the operating conditions of a process may vary with time. A typical example is the hydrotreating process in petroleum refineries where the operators increase reactor temperature to compensate for catalyst deactivation. Superstructure based multi-period models for heat exchanger network design have been proposed previously employing deterministic optimisation algorithms, e.g. (Aaltola, 2002; Verheyen and Zhang, 2006). Stochastic optimisation algorithms have also been applied for the design of flexible heat exchanger networks recently (Ma et al., 2007, 2008). The present work develops an optimisation approach using simulated annealing for design of heat exchanger networks for multi-period operation. A comparison of the new optimisation approach with previous deterministic optimisation based design approaches is presented to illustrate the utilisation of simulated annealing in design of optimal heat exchanger network configurations for multi-period operation.

Muhammad Imran Ahmad; Nan Zhang; Megan Jobson; Lu Chen

2012-01-01T23:59:59.000Z

3

Property:TimePeriod | Open Energy Information  

Open Energy Info (EERE)

TimePeriod TimePeriod Jump to: navigation, search This is a property of type String. Pages using the property "TimePeriod" Showing 25 pages using this property. (previous 25) (next 25) 0 0.4 kV remote control (Smart Grid Project) + Not available + 2 220 kV SSSC device for power flow control (Smart Grid Project) + Jul 2009 Jul 2014 + A A complete and normalized 61850 substation (Smart Grid Project) + Oct 2009 Dec 2015 + ADELE Project AACAES (Smart Grid Project) + Dec 2009 Dec 2013 + AFTER A Framework for electrical power sysTems vulnerability identification, dEfense and Restoration (Smart Grid Project) + 2011-2014 + AFTER A Framework for electrical power sysTems vulnerability identification, dEfense and Restoration (Smart Grid Project) (Belgium) + 2011-2014 +

4

Emissions from Idling Trucks for Extended Time Periods | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Idling Trucks for Extended Time Periods Emissions from Idling Trucks for Extended Time Periods 2002 DEER Conference Presentation: Oak Ridge National Laboratory 2002deerlewis.pdf...

5

Technical Note Solution of periodic heating problems by the  

E-Print Network (OSTI)

.R. Barber * Department of Mechanical Engineering, 2250 GG Brown Laboratory, University of Michigan, Ann in sliding solids [2], regenerative heat exchangers [3], solar heating systems [4] and heat con- duction

Barber, James R.

6

Real-time Multi-period truckload routing problems  

E-Print Network (OSTI)

In this thesis we consider a multi-period truckload pick-up and delivery problem dealing with real-time requests over a finite time horizon. We introduce the notion of postponement of requests, whereby the company can ...

Limpaitoon, Tanachai

2008-01-01T23:59:59.000Z

7

A comprehensive study on the important faults in heat pump system during the warranty period  

Science Journals Connector (OSTI)

Abstract The heat pump market has become mature in many countries. There are millions of heat pumps installed worldwide. So any improvement in the installation, operation, and maintenance of heat pump systems can save a considerable amount of energy and cost, and reduce Green House Emissions to a large extent. The present study suggests a Smart Fault Detection and Diagnosis (SFDD) mechanism as the essential part of the next generation of heat pumps. A SFDD mechanism can minimize the installation and control errors, decrease the performance degradation during operation, avoid unnecessary visual inspections and components replacement, and reduce the maintenance cost and down-time of the system. To develop a SFDD mechanism, the first essential step is to obtain knowledge about the most common and expensive faults experienced by heat pumps. The heat pump manufacturers are one of the best sources to find out the most common and costliest faults occurring in heat pump systems during the first few years of their life. The present paper, as the first part of two, describes the results from a comprehensive study done on the most recent faults which were reported to some of the heat pump manufacturers in Sweden during the warranty period. The most common and the costliest faults in the Air/Air, Air/Water, Brine/Water, and exhaust air heat pumps are presented. Some of the faults such as faulty pressure switches or fans are only related to the heat pump unit, i.e. the thermodynamic cycle which facilitates the heat pumping cycle. Some of the common and expensive faults such as faulty shuttle or shunt valve are related to the faulty components in the heating systems. Generally, the results show that faults in Control and Electronics are almost the most common and costliest faults in all types of heat pumps. Faults in Control and Electronics include any fault related to control unit, electrical faults (such as short circuit, etc.), Printed Circuit Board (PCB), display, soft starter, overcurrent and motor protection relay, etc.

Hatef Madani; Erica Roccatello

2014-01-01T23:59:59.000Z

8

Combined Heat and Power: A Technology Whose Time Has Come  

E-Print Network (OSTI)

for Combined Heat and Power, U.S. E NVTL . P ROT . A GENCY CCombined Heat and Power: A Technology Whose Time Has ComeD.C. COMBINED HEAT AND POWER A. Create an Organization to

Ferraina, Steven

2014-01-01T23:59:59.000Z

9

Time period Annual mean [DOC] 95% CI (mg l-1)  

E-Print Network (OSTI)

.3 Time period Annual mean [SRP] ± 95% CI (mg l-1) SEPA EQS category mean Oct 2006 - Sept 2007* 16.8 ± 4 of different development activities. Building up a time series of DOC and soluble reactive phosphorus (SRP, SRP, total oxidised nitrogen and alkalinity. In addition, streamwater sampling has continued at five

10

The effect of periodic unsteady wakes on boundary layer transition and heat transfer on a curved plate.  

E-Print Network (OSTI)

??The effect of unsteady periodic wakes on heat transfer and boundary layer transition was investigated on a constant curvature heat transfer curved plate in a (more)

Wright, Lance Cole

2012-01-01T23:59:59.000Z

11

Particle energization through time-periodic helical magnetic fields  

E-Print Network (OSTI)

We solve for the motion of charged particles in a helical time-periodic ABC (Arnold-Beltrami-Childress) magnetic field. The magnetic field lines of a stationary ABC field with coefficients A=B=C=1 are chaotic, and we show ...

Mitra, Dhrubaditya

12

A Computational Analysis of Smart Timing Decisions for Heating Based on an Air-to-Water Heat pump SMARTER EUROPE E-world energy & water 2014 Proceedings page 1  

E-Print Network (OSTI)

A Computational Analysis of Smart Timing Decisions for Heating Based on an Air-to-Water Heat pump Decisions for Heating Based on an Air-to-Water Heat pump Jan Treur VU University Amsterdam, Agent Systems be most efficient to use this energy in these periods. For air to water heat pumps a similar issue occurs

Treur, Jan

13

Tables for solution of the heat-conduction equation with a time-dependent heating rate  

E-Print Network (OSTI)

Tables are presented for the solution of the transient onedimensional heat flow in a solid body of constant material properties with the heating rate at one boundary dependent on time. These tables allow convenient and ...

Bergles A. E.

1962-01-01T23:59:59.000Z

14

Combined Heat and Power: A Technology Whose Time Has Come  

E-Print Network (OSTI)

energy efficient and environmentally friendly technology.Combined Heat and Power: A Technology Whose Time Has Comesteps to utilize the technology. 9 The average increase in

Ferraina, Steven

2014-01-01T23:59:59.000Z

15

Property:Building/SPPurchasedEngyForPeriodMwhYrDstrtHeating | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrDstrtHeating SPPurchasedEngyForPeriodMwhYrDstrtHeating Jump to: navigation, search This is a property of type String. District heating Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrDstrtHeating" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 2067.0 + Sweden Building 05K0002 + 492.2 + Sweden Building 05K0003 + 473.4 + Sweden Building 05K0004 + 1763.0 + Sweden Building 05K0005 + 605.0 + Sweden Building 05K0006 + 1727.0 + Sweden Building 05K0007 + 1448.0 + Sweden Building 05K0008 + 844.0 + Sweden Building 05K0009 + 2176.0 + Sweden Building 05K0010 + 61.0 + Sweden Building 05K0011 + 967.0 + Sweden Building 05K0012 + 1185.0 + Sweden Building 05K0013 + 1704.0 + Sweden Building 05K0014 + 154.0 + Sweden Building 05K0015 + 145.0 +

16

Development of periodic response factors for use with the radiant time series method  

SciTech Connect

Harris and McQuiston (1988) developed conduction transfer function (CTF) coefficients corresponding to 41 representative wall assemblies and 42 representative roof assemblies for use with the transfer function method (TFM). They also developed a grouping procedure that allows design engineers to determine the correct representative wall or roof assembly that most closely matches a specific wall or roof assembly. The CTF coefficients and the grouping procedure have been summarized in the ASHRAE Handbook--Fundamentals (1989, 1993, 1997) and the ASHRAE Cooling and Heating Load Calculation Manual, second edition. More recently, a new, simplified design cooling load calculation procedure, the radiant time series method (RTSM), has been developed. The RTSM uses periodic response factors to model transient conductive heat transfer. While not a true manual load calculation procedure, it is quite feasible to implement the RTSM in a spreadsheet. To be useful in such an environment, it would be desirable to have a pre-calculated set of periodic response factors. Accordingly, a set of periodic response factors has been calculated and is presented in this paper.

Spitler, J.D.; Fisher, D.E.

1999-07-01T23:59:59.000Z

17

On-line measurement of heat of combustion. Final report, period ended 30 April 1988  

SciTech Connect

An experimental method for an on-line measurement of heat of combustion of a gaseous hydrocarbon fuel mixture of unknown composition is developed. It involves combustion of a test gas with a known quantity of air to achieve a predetermined oxygen concentration level in the combustion products. This is accomplished by a feedback controller which maintains the gas volumetric flow rate at a level consistent with the desired oxygen concentration in the products. The heat of combustion is determined from a known correlation with the gas volumetric flow rate. An on-line microcomputer accesses the gas volumetric flow data, and displays the heat of combustion values at desired time intervals.

Chaturvedi, S.K.; Chegini, H.

1988-07-01T23:59:59.000Z

18

Attractiveness of periodic orbits in parametrically forced systems with time-increasing friction  

E-Print Network (OSTI)

Attractiveness of periodic orbits in parametrically forced systems with time-increasing friction-dimensional systems subject to a periodic force and study numer- ically how a time-varying friction affects oscillator in the presence of friction. We find that, if the damping coefficient increases in time up

19

A FINITE ELEMENT MODEL FOR THE TIME-DEPENDENT JOULE HEATING PROBLEM*  

E-Print Network (OSTI)

.3) 0 system models the electric heating* *ial differential equation describing the electric heating of a conducting body. We prove err* *or A FINITE ELEMENT MODEL FOR THE TIME-DEPENDENT JOULE HEATING PROBLEM

Larsson, Stig

20

Attractiveness of periodic orbits in parametrically forced systems with time-increasing friction  

E-Print Network (OSTI)

Attractiveness of periodic orbits in parametrically forced systems with time- increasing friction with time-increasing friction Michele Bartuccelli,1,a) Jonathan Deane,1,b) and Guido Gentile2,c) 1 oscillator in the presence of friction, and study numerically how time-varying friction affects the dynamics

Bartuccelli, Michele

Note: This page contains sample records for the topic "time period heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

QUANTUM ENERGY EXPECTATION IN PERIODIC TIME-DEPENDENT HAMILTONIANS VIA GREEN  

E-Print Network (OSTI)

QUANTUM ENERGY EXPECTATION IN PERIODIC TIME-DEPENDENT HAMILTONIANS VIA GREEN FUNCTIONS C´ESAR R. DE. Introduction 1 2. Average Energy and Green Functions 4 3. Applications 10 3.1. Time-Independent Hamiltonians 10(t). For each positive and discrete observable A (which we call a probe energy), we derive a formula

22

Global Clock, Physical Time Order and Pending Period Analysis in Multiprocessor Systems  

E-Print Network (OSTI)

In multiprocessor systems, various problems are treated with Lamport's logical clock and the resultant logical time orders between operations. However, one often needs to face the high complexities caused by the lack of logical time order information in practice. In this paper, we utilize the \\emph{global clock} to infuse the so-called \\emph{pending period} to each operation in a multiprocessor system, where the pending period is a time interval that contains the performed time of the operation. Further, we define the \\emph{physical time order} for any two operations with disjoint pending periods. The physical time order is obeyed by any real execution in multiprocessor systems due to that it is part of the truly happened operation orders restricted by global clock, and it is then proven to be independent and consistent with traditional logical time orders. The above novel yet fundamental concepts enables new effective approaches for analyzing multiprocessor systems, which are named \\emph{pending period analy...

Chen, Yunji; Hu, Weiwu

2009-01-01T23:59:59.000Z

23

CHP: It's Time for Combined Heat and Power  

E-Print Network (OSTI)

and export 16. Creates local jobs for installation, operation and maintenance 17. Supports competitive electricity market structure General Conclusion It is very much in the PUBLIC interest to support CHP distributed energy even if the private incentives... of use Electricity Electricity Heat Heat Combined Heat and Power Conventional Generation Building Load Power Plant fuel (66 units of remote energy) Boiler fuel (34 units of on-site energy) CHP fuel (x units of on-site energy) Losses Losses 20 29 20...

Herweck, R.

24

Quantum Energy Expectation in Periodic Time-Dependent hamiltonians via Green Functions  

E-Print Network (OSTI)

Let $U_F$ be the Floquet operator of a time periodic hamiltonian $H(t)$. For each positive and discrete observable $A$ (which we call a {\\em probe energy}), we derive a formula for the Laplace time average of its expectation value up to time $T$ in terms of its eigenvalues and Green functions at the circle of radius $e^{1/T}$. Some simple applications are provided which support its usefulness.

Cesar R. de Oliveira; Mariza S. Simsen

2009-07-31T23:59:59.000Z

25

Time-Resolved Synchrotron X-ray Diffraction on Pulse Laser Heated Iron in Diamond Anvil Cell  

SciTech Connect

The authors present time-resolved synchrotron x-ray diffraction to probe the {var_epsilon}-{delta} phase transition of iron during pulse-laser heating in a diamond anvil cell. The system utilizes a monochromatic synchrotron x-ray beam, a two-dimensional pixel array x-ray detector and a dual beam, double side laser-heating system. Multiple frames of the diffraction images are obtained in real-time every 22 ms over 500 ms of the entire pulse heating period. The results show the structural evolution of iron phases at 17 GPa, resulting in thermal expansion coefficient 1/V({Delta}V/{Delta}T){sub p} = 7.1 * 10{sup -6}/K for {var_epsilon}-Fe and 2.4 * 10{sup -5}/K for {gamma}-Fe, as well as the evidence for metastability of {gamma}-Fe at low temperatures below the {var_epsilon}-{gamma} phase boundary.

Yoo, C S; Wei, H; Dias, R; Shen, G; Smith, J; Chen, J Y; Evans, W

2011-09-21T23:59:59.000Z

26

UC Berkeley Heat/Ventilation Curtailment Period DECEMBER 24, 2011 through JANUARY 1, 2012  

E-Print Network (OSTI)

and January 1, 2012 in order to conserve energy, most campus buildings will be closed and heat and ventilation that a building be exempt from energy curtailment. If you would like to request that your building be exempt from. Technical questions or concerns about energy curtailment can be directed to Gilbert Escobar at 3

California at Irvine, University of

27

A Gaussian Process Based Online Change Detection Algorithm for Monitoring Periodic Time Series  

SciTech Connect

Online time series change detection is a critical component of many monitoring systems, such as space and air-borne remote sensing instruments, cardiac monitors, and network traffic profilers, which continuously analyze observations recorded by sensors. Data collected by such sensors typically has a periodic (seasonal) component. Most existing time series change detection methods are not directly applicable to handle such data, either because they are not designed to handle periodic time series or because they cannot operate in an online mode. We propose an online change detection algorithm which can handle periodic time series. The algorithm uses a Gaussian process based non-parametric time series prediction model and monitors the difference between the predictions and actual observations within a statistically principled control chart framework to identify changes. A key challenge in using Gaussian process in an online mode is the need to solve a large system of equations involving the associated covariance matrix which grows with every time step. The proposed algorithm exploits the special structure of the covariance matrix and can analyze a time series of length T in O(T^2) time while maintaining a O(T) memory footprint, compared to O(T^4) time and O(T^2) memory requirement of standard matrix manipulation methods. We experimentally demonstrate the superiority of the proposed algorithm over several existing time series change detection algorithms on a set of synthetic and real time series. Finally, we illustrate the effectiveness of the proposed algorithm for identifying land use land cover changes using Normalized Difference Vegetation Index (NDVI) data collected for an agricultural region in Iowa state, USA. Our algorithm is able to detect different types of changes in a NDVI validation data set (with ~80% accuracy) which occur due to crop type changes as well as disruptive changes (e.g., natural disasters).

Chandola, Varun [ORNL; Vatsavai, Raju [ORNL

2011-01-01T23:59:59.000Z

28

Time series study of urban rainfall suppression during clean-up periods  

E-Print Network (OSTI)

and relatively clean sites through the time range before and during their clean-up periods to see how the air quality may affect the precipitation amount. By comparing the annual precipitation amount between two polluted sites with different elevations we...

Geng, Jun

2008-10-10T23:59:59.000Z

29

Time series study of urban rainfall suppression during clean-up periods  

E-Print Network (OSTI)

and relatively clean sites through the time range before and during their clean-up periods to see how the air quality may affect the precipitation amount. By comparing the annual precipitation amount between two polluted sites with different elevations we...

Geng, Jun

2009-05-15T23:59:59.000Z

30

LINEAR TIME PERIODIC MODELLING OF POWER ELECTRONIC DEVICES FOR POWER SYSTEM HARMONIC ANALYSIS AND SIMULATION  

E-Print Network (OSTI)

LINEAR TIME PERIODIC MODELLING OF POWER ELECTRONIC DEVICES FOR POWER SYSTEM HARMONIC ANALYSIS by simulation. 1. INTRODUCTION The variety and the wide spread use of power electronic devices in the power networks is due to their diverse and multiple functions: compensation, protection and interface

Boyer, Edmond

31

Periodic Charging Scheme for Fixed-Priority Real-Time Systems with Renewable Energy  

E-Print Network (OSTI)

to the limited capacity of the energy storage unit. With energy harvesting, in theory it becomes possiblePeriodic Charging Scheme for Fixed-Priority Real-Time Systems with Renewable Energy Mario Bambagini, Fairfax, VA, USA e-mail: aydin@cs.gmu.edu Abstract--Energy harvesting systems are gaining increasing

Aydin, Hakan

32

Periodicity detection and localization using spike timing from the AER EAR  

E-Print Network (OSTI)

Periodicity detection and localization using spike timing from the AER EAR Theodore Yu1 , Andrew Event Representation (AER) where each spike carries the identity of the sender. There are a handful of silicon cochleae with an Address Event type representation [4][5][6][7]. The AER EAR chip that we use

Liu, Shih-Chii

33

HEAT TRANSFERS IN A DOUBLE SKIN ROOF VENTILATED BY NATURAL CONVECTION IN SUMMER TIME  

E-Print Network (OSTI)

1 HEAT TRANSFERS IN A DOUBLE SKIN ROOF VENTILATED BY NATURAL CONVECTION IN SUMMER TIME P. H or in tropical and arid countries. In this work, radiation, convection and conduction heat transfers-dimensional numerical simulation of the heat transfers through the double skin reveals the most important parameters

Boyer, Edmond

34

Reactor Decay Heat in 239Pu: Solving the Gamma Discrepancy in the 43000-s Cooling Period  

SciTech Connect

The {beta} feeding probability of {sup 102,104,105,106,107}Tc, {sup 105}Mo, and {sup 101}Nb nuclei, which are important contributors to the decay heat in nuclear reactors, has been measured using the total absorption technique. We have coupled for the first time a total absorption spectrometer to a Penning trap in order to obtain sources of very high isobaric purity. Our results solve a significant part of a long-standing discrepancy in the {gamma} component of the decay heat for {sup 239}Pu in the 4-3000 s range.

Algora, A.; Sonzogni, A.; Algora,A.; Jordan,D.; Tain,J.L.; Rubio,B.; Agramunt,J.; Perez-Cerdan,A.B.; Molina,F; Caballero,L.; Nacher,E.; Krasznahorkay,A.; Hunyadi,M.D.; Gulyas,J; Vitez,A.; Csatlos,M.; Csige,L.; Aysto,J.; Penttila,H.; Moore,I.D.; Eronen,T.; Jokinen,A.; Nieminen,A.; Hakala,J.; Karvonen,P.; Kankainen,A.; Saastamoinen,A.; Rissanen,J.; Kessler,T.; Weber,C.; Ronkainen,J.; Rahaman,S.; Elomaa,V.; Rinta-Antila,S.; Hager,U.; Sonoda,T.; Burkard,K.; Huller,W.; Batist,L.; Gelletly,W.; Nichols,A.L.; Yoshida,T.; Sonzogni,A.A.; Perajarvi,K.

2010-11-08T23:59:59.000Z

35

LONG-TIME SOLVABILITY OF THE NAVIER-STOKES-BOUSSINESQ EQUATIONS WITH ALMOST PERIODIC INITIAL LARGE DATA  

E-Print Network (OSTI)

LONG-TIME SOLVABILITY OF THE NAVIER-STOKES-BOUSSINESQ EQUATIONS WITH ALMOST PERIODIC INITIAL LARGE Sapporo 060-0810, Japan Keywords: Navier-Stokes equation, Boussinesq approximation, almost periodic of solutions of the Navier-Stokes-Boussinesq equations with spatially almost periodic large data when

Ibrahim, Slim

36

Website link prediction using a Markov chain model based on multiple time periods  

Science Journals Connector (OSTI)

Growing size and complexity of many websites have made navigation through these sites increasingly difficult. Attempting to automatically predict the next page for a website user to visit has many potential benefits, for example in site navigation, automatic tour generation, adaptive web applications, recommendation systems, web server optimisation, web search and web pre-fetching. This paper describes an approach to link prediction using a Markov chain model based on an exponentially smoothed transition probability matrix which incorporates site usage statistics collected over multiple time periods. The improved performance of this approach compared to earlier methods is also discussed.

Shantha Jayalal; Chris Hawksley; Pearl Brereton

2007-01-01T23:59:59.000Z

37

Output-Only Modal Analysis of Linear Time Periodic Systems with Application to Wind Turbine Simulation Data  

Science Journals Connector (OSTI)

Many important systems, such as turbomachinery, helicopters and wind turbines, must be modeled with linear time ... predict resonance phenomena. Time periodic effects in wind turbines might arise due to stratific...

Matthew S. Allen; Michael W. Sracic

2011-01-01T23:59:59.000Z

38

Attractiveness of periodic orbits in parametrically forced systemswith time-increasing friction  

E-Print Network (OSTI)

We consider dissipative one-dimensional systems subject to a periodic force and study numerically how a time-varying friction affects the dynamics. As a model system, particularly suited for numerical analysis, we investigate the driven cubic oscillator in the presence of friction. We find that, if the damping coefficient increases in time up to a final constant value, then the basins of attraction of the leading resonances are larger than they would have been if the coefficient had been fixed at that value since the beginning. From a quantitative point of view, the scenario depends both on the final value and the growth rate of the damping coefficient. The relevance of the results for the spin-orbit model are discussed in some detail.

Michele Bartuccelli; Jonathan Deane; Guido Gentile

2012-07-18T23:59:59.000Z

39

Energy Saving Measures of Heating Network - Computerized Real-time Control System  

E-Print Network (OSTI)

ICEBO2006, Shenzhen, ChinaHVAC Technologies for Energy Efficiency, Vol. IV-12-9 Energy Saving Measures of Heating Network ?Computerized Real-time Control System Jieyan Zhang Service Bureau, Deputy-director, State...

Zhang, J.

2006-01-01T23:59:59.000Z

40

Multi-start iterated local search for the periodic vehicle routing problem with time windows and time spread constraints on services  

Science Journals Connector (OSTI)

In the field of high-value shipment transportation, companies are faced to the malevolence problem. The risk of ambush increases with the predictability of vehicle routes. This paper addresses a very hard periodic vehicle routing problem with time windows, ... Keywords: Iterated local search, Periodic vehicle routing, Security constraints, Time window

Julien Michallet; Christian Prins; Lionel Amodeo; Farouk Yalaoui; Grgoire Vitry

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "time period heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Time-delayed feedback control of unstable periodic orbits near a subcritical Hopf bifurcation  

E-Print Network (OSTI)

We show that Pyragas delayed feedback control can stabilize an unstable periodic orbit (UPO) that arises from a generic subcritical Hopf bifurcation of a stable equilibrium in an n-dimensional dynamical system. This extends results of Fiedler et al. [PRL 98, 114101 (2007)], who demonstrated that such feedback control can stabilize the UPO associated with a two-dimensional subcritical Hopf normal form. Pyragas feedback requires an appropriate choice of a feedback gain matrix for stabilization, as well as knowledge of the period of the targeted UPO. We apply feedback in the directions tangent to the two-dimensional center manifold. We parameterize the feedback gain by a modulus and a phase angle, and give explicit formulae for choosing these two parameters given the period of the UPO in a neighborhood of the bifurcation point. We show, first heuristically, and then rigorously by a center manifold reduction for delay differential equations, that the stabilization mechanism involves a highly degenerate Hopf bifurcation problem that is induced by the time-delayed feedback. When the feedback gain modulus reaches a threshold for stabilization, both of the genericity assumptions associated with a two-dimensional Hopf bifurcation are violated: the eigenvalues of the linearized problem do not cross the imaginary axis as the bifurcation parameter is varied, and the real part of the cubic coefficient of the normal form vanishes. Our analysis of this degenerate bifurcation problem reveals two qualitatively distinct cases when unfolded in a two-parameter plane. In each case, Pyragas-type feedback successfully stabilizes the branch of small-amplitude UPOs in a neighborhood of the original bifurcation point, provided that the phase angle satisfies a certain restriction.

Genevieve Brown; Claire M. Postlethwaite; Mary Silber

2010-06-17T23:59:59.000Z

42

USING CENTER HOLE HEAT TRANSFER TO REDUCE FORMATION TIMES FOR CERAMIC WASTE FORMS FROM PYROPROCESSING  

SciTech Connect

The waste produced from processing spent fuel from the EBR II reactor must be processed into a waste form suitable for long term storage in Yucca Mountain. The method chosen produces zeolite granules mixed with glass frit, which must then be converted into a solid. This is accomplished by loading it into a can and heating to 900 C in a furnace regulated at 915 C. During heatup to 900 C, the zeolite and glass frit react and consolidate to produce a sodalite monolith. The resultant ceramic waste form (CWF) is then cooled. The waste is 52 cm in diameter and initially 300 cm long but consolidates to 150 cm long during the heating process. After cooling it is then inserted in a 5-DHLW/DOE SNF Long Canister. Without intervention, the waste takes 82 hours to heat up to 900 C in a furnace designed to geometrically fit the cylindrical waste form. This paper investigates the reduction in heating times possible with four different methods of additional heating through a center hole. The hole size is kept small to maximize the amount of CWF that is processed in a single run. A hole radius of 1.82 cm was selected which removes only 1% of the CWF. A reference computation was done with a specified inner hole surface temperature of 915 C to provide a benchmark for the amount of improvement which can be made. It showed that the heatup time can potentially be reduced to 43 hours with center hole heating. The first method, simply pouring high temperature liquid aluminum into the hole, did not produce any noticeable effect on reducing heat up times. The second method, flowing liquid aluminum through the hole, works well as long as the velocity is high enough (2.5 cm/sec) to prevent solidification of the aluminum during the initial front movement of the aluminum into the center hole. The velocity can be reduced to 1 cm/sec after the initial front has traversed the ceramic. This procedure reduces the formation time to near that of the reference case. The third method, flowing a gas through the center hole, also works well as long as the heat capacity times the velocity of the gas is equivalent to that of the flowing aluminum, and the velocity is high enough to produce an intermediate size heat transfer coefficient. The fourth method, using an electric heater, works well and heater sizes between 500 to 1000 Watts are adequate. These later three methods all can reduce the heatup time to 44 hours.

Kenneth J. Bateman; Charles W. Solbrig

2006-07-01T23:59:59.000Z

43

DIAGNOSING THE TIME DEPENDENCE OF ACTIVE REGION CORE HEATING FROM THE EMISSION MEASURE. II. NANOFLARE TRAINS  

SciTech Connect

The time dependence of heating in solar active regions can be studied by analyzing the slope of the emission measure distribution coolward of the peak. In a previous study we showed that low-frequency heating can account for 0% to 77% of active region core emission measures. We now turn our attention to heating by a finite succession of impulsive events for which the timescale between events on a single magnetic strand is shorter than the cooling timescale. We refer to this scenario as a 'nanoflare train' and explore a parameter space of heating and coronal loop properties with a hydrodynamic model. Our conclusions are (1) nanoflare trains are consistent with 86% to 100% of observed active region cores when uncertainties in the atomic data are properly accounted for; (2) steeper slopes are found for larger values of the ratio of the train duration {Delta} {sub H} to the post-train cooling and draining timescale {Delta} {sub C}, where {Delta} {sub H} depends on the number of heating events, the event duration and the time interval between successive events ({tau} {sub C}); (3) {tau} {sub C} may be diagnosed from the width of the hot component of the emission measure provided that the temperature bins are much smaller than 0.1 dex; (4) the slope of the emission measure alone is not sufficient to provide information about any timescale associated with heating-the length and density of the heated structure must be measured for {Delta} {sub H} to be uniquely extracted from the ratio {Delta} {sub H}/{Delta} {sub C}.

Reep, J. W.; Bradshaw, S. J. [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States)] [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States); Klimchuk, J. A., E-mail: jeffrey.reep@rice.edu, E-mail: stephen.bradshaw@rice.edu, E-mail: james.a.klimchuk@nasa.gov [NASA Goddard Space Flight Center, Solar Physics Lab., Code 671, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)

2013-02-20T23:59:59.000Z

44

Modeling the Variability of Single-Cell Lag Times for Listeria innocua Populations after Sublethal and Lethal Heat Treatments  

Science Journals Connector (OSTI)

...the shift of the distribution assumed to be...cell). After heat treatments in...resulted in a loss of viability...the preceding heat treatment. This...single-cell lag time distributions of Listeria cells exposed to heat treatments of...treatment in which no loss of viability occurred...

A. Mtris; S. M. George; B. M. Mackey; J. Baranyi

2008-09-26T23:59:59.000Z

45

Real-time imaging of the spatial distribution of rf-heating in NMR samples during broadband decoupling  

E-Print Network (OSTI)

by the temperature control system. Moreover, as the heating is spatially inhomogeneous, higher temperature increases of the numerical simulations. Since electric fields manifest themselves by rf-heating, the E-field distributionReal-time imaging of the spatial distribution of rf-heating in NMR samples during broadband

Wider, Gerhard

46

Towards a 3D time dependent Fokker-Planck solver for modelling RF heating in realistic tokamak geometry  

E-Print Network (OSTI)

. Hedin, Ion Cyclotron Heating in Toroidal Plasmas, Ph.D. thesis, Royal Institute of Technology StockholmTowards a 3D time dependent Fokker-Planck solver for modelling RF heating in realistic tokamak supercomputers and the need for predictive tools to guide the experiments, modelling radio frequency heating

47

Residence time distribution and heat transfer in circular pipe fitted with longitudinal rectangular wings  

Science Journals Connector (OSTI)

Abstract Numerical simulations are used to analyze the heat and mass transfer in a circular pipe fitted with longitudinal rectangular vortex generators for Reynolds number between 7500 and 15,000 based on the pipe diameter. The aim of the present study is to test and quantify the mixing efficiency of a new solution able to avoid the bypass region that exists in the center of the high efficiency vortex static mixer (HEV), and also to enhance the heat transfer without increasing the pressure losses. The rectangular wings used here generate each a streamwise counter-rotating vortex pair sweeping the volume of the mixer and act as internal agitator on the flow. The particle dispersion is investigated by analyzing Poincar sections and by studying the residence time distribution (RTD). The two approaches show much better mass transfer performance and better mixing homogeneity for the new wings arrangement. The heat transfer is also investigated and it is shown that the thermal enhancement factor in the new arrangement is much greater than that of the conventional systems used in the industry. When compared to the HEV heat exchangers it is shown that the thermal enhancement in the present configuration reaches about 40% relative to the classic HEV and 15% relative to the reversed HEV.

Charbel Habchi; Jean-Luc Harion

2014-01-01T23:59:59.000Z

48

Non-preemptive scheduling of periodic and aperiodic tasks in the hard real-time systems  

E-Print Network (OSTI)

S. 38 40 11 Enumeration tree search . 42 12 Optimizing two requests in the LOQS globally. 13 Identifying dynamic dominant requests. 14 Dispatching requests in ZOgS. 50 51 15 Extraction algorithm. 53 16 Extraction algorithm by heuristic... in hard real ? time environment, the measure- ment criteria for a good algorithm can be a success ratio and a decision time required for dispatching. The success ratio, when a certain algorithm is used, is the ratio of number of tash sets which...

Oh, Hoon

1992-01-01T23:59:59.000Z

49

Op%mal Scheduling of Combined Heat and Power (CHP) Plants1 under Time-sensi%ve Electricity Prices  

E-Print Network (OSTI)

1 Op%mal Scheduling of Combined Heat and Power (CHP) Plants1 under Time. Combined heat and power genera%on plants are also called co-genera%on plants. #12. #12;Facing the challenge of variability, the power grid is in transi

Grossmann, Ignacio E.

50

Real-Time Combined Heat and Power Operational Strategy Using a Hierarchical Optimization Algorithm  

SciTech Connect

Existing attempts to optimize the operation of Combined Heat and Power (CHP) systems for building applications have two major limitations: the electrical and thermal loads are obtained from historical weather profiles; and the CHP system models ignore transient responses by using constant equipment efficiencies. This paper considers the transient response of a building combined with a hierarchical CHP optimal control algorithm to obtain a real-time integrated system that uses the most recent weather and electric load information. This is accomplished by running concurrent simulations of two transient building models. The first transient building model uses current as well as forecast input information to obtain short term predictions of the thermal and electric building loads. The predictions are then used by an optimization algorithm, i.e., a hierarchical controller, that decides the amount of fuel and of electrical energy to be allocated at the current time step. In a simulation, the actual physical building is not available and, hence, to simulate a real-time environment, a second, building model with similar but not identical input loads are used to represent the actual building. A state-variable feedback loop is completed at the beginning of each time step by copying, i.e., measuring, the state variable from the actual building and restarting the predictive model using these ?measured? values as initial conditions. The simulation environment presented in this paper features nonlinear effects such as the dependence of the heat exchanger effectiveness on their operating conditions. The results indicate that the CHP engine operation dictated by the proposed hierarchical controller with uncertain weather conditions have the potential to yield significant savings when compared to conventional systems using current values of electricity and fuel prices.

Yun, Kyung Tae; Cho, Heejin; Luck, Rogelio; Mago, Pedro J.

2011-06-01T23:59:59.000Z

51

Effects of Time, Heat, and Oxygen on K Basin Sludge Agglomeration, Strength, and Solids Volume  

SciTech Connect

Sludge disposition will be managed in two phases under the K Basin Sludge Treatment Project. The first phase is to retrieve the sludge that currently resides in engineered containers in the K West (KW) Basin pool at ~10 to 18C. The second phase is to retrieve the sludge from interim storage in the sludge transport and storage containers (STSCs) and treat and package it in preparation for eventual shipment to the Waste Isolation Pilot Plant. The work described in this report was conducted to gain insight into how sludge may change during long-term containerized storage in the STSCs. To accelerate potential physical and chemical changes, the tests were performed at temperatures and oxygen partial pressures significantly greater than those expected in the T Plant canyon cells where the STSCs will be stored. Tests were conducted to determine the effects of 50C oxygenated water exposure on settled quiescent uraninite (UO2) slurry and a full simulant of KW containerized sludge to determine the effects of oxygen and heat on the composition and mechanical properties of sludge. Shear-strength measurements by vane rheometry also were conducted for UO2 slurry, mixtures of UO2 and metaschoepite (UO32H2O), and for simulated KW containerized sludge. The results from these tests and related previous tests are compared to determine whether the settled solids in the K Basin sludge materials change in volume because of oxidation of UO2 by dissolved atmospheric oxygen to form metaschoepite. The test results also are compared to determine if heating or other factors alter sludge volumes and to determine the effects of sludge composition and settling times on sludge shear strength. It has been estimated that the sludge volume will increase with time because of a uranium metal ? uraninite ? metaschoepite oxidation sequence. This increase could increase the number of containers required for storage and increase overall costs of sludge management activities. However, the volume might decrease because of decreases in the water-volume fraction caused by sludge solid reactions, compaction, or intergrowth and recrystallization of metaschoepite. In that case, fewer STSCs may be needed, but the shear strength would increase, and this could challenge recovery by water jet erosion and require more aggressive retrieval methods. Overall, the tests described herein indicate that the settled solids volume remains the same or decreases with time. The only case for which the sludge solids volumes increase with time is for the expansion factor attendant upon the anoxic corrosion of uranium metal to produce UO2 and subsequent reaction with oxygen to form equimolar UO2.25 and UO32H2O.

Delegard, Calvin H.; Sinkov, Sergey I.; Schmidt, Andrew J.; Daniel, Richard C.; Burns, Carolyn A.

2011-01-04T23:59:59.000Z

52

An analysis of the periodic heat flow through the wall of an infinitely long hollow cylinder by electric analogy  

E-Print Network (OSTI)

from both systems for the most part were practically identical. Figure 10. Typical Temperature Time Lag ? Sinusoidal 1. 0 0. 8 h(r 0 I ro I ri 4. 0 2. 0 r ro t-t d t -t im d 0 4 0. 2 0. 25 0. 50 0. 75 1. 00 r-ri ro-ri Figure 11. Steady... State Temperature Distribution 1. 0 kp &c ro-r ) 2= 1. 00 0. 8 0. 2 t-t d t, -t im d 0. 6 0. 2 0. 5 Te per ture h(r ri ro Vari -rt) tion ? Si usoi al 1. 0 0. 2 0. 25 0. 50 r ? ri r -ri 0. 75 Figure 12. Limits of Temperature...

McCallie, Bobby G

2012-06-07T23:59:59.000Z

53

DIAGNOSING THE TIME-DEPENDENCE OF ACTIVE REGION CORE HEATING FROM THE EMISSION MEASURE. I. LOW-FREQUENCY NANOFLARES  

SciTech Connect

Observational measurements of active region emission measures contain clues to the time dependence of the underlying heating mechanism. A strongly nonlinear scaling of the emission measure with temperature indicates a large amount of hot plasma relative to warm plasma. A weakly nonlinear (or linear) scaling of the emission measure indicates a relatively large amount of warm plasma, suggesting that the hot active region plasma is allowed to cool and so the heating is impulsive with a long repeat time. This case is called low-frequency nanoflare heating, and we investigate its feasibility as an active region heating scenario here. We explore a parameter space of heating and coronal loop properties with a hydrodynamic model. For each model run, we calculate the slope {alpha} of the emission measure distribution EM(T){proportional_to}T {sup {alpha}}. Our conclusions are: (1) low-frequency nanoflare heating is consistent with about 36% of observed active region cores when uncertainties in the atomic data are not accounted for; (2) proper consideration of uncertainties yields a range in which as many as 77% of observed active regions are consistent with low-frequency nanoflare heating and as few as zero; (3) low-frequency nanoflare heating cannot explain observed slopes greater than 3; (4) the upper limit to the volumetric energy release is in the region of 50 erg cm{sup -3} to avoid unphysical magnetic field strengths; (5) the heating timescale may be short for loops of total length less than 40 Mm to be consistent with the observed range of slopes; (6) predicted slopes are consistently steeper for longer loops.

Bradshaw, S. J.; Reep, J. W. [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States); Klimchuk, J. A., E-mail: stephen.bradshaw@rice.edu, E-mail: jeffrey.reep@rice.edu, E-mail: james.a.klimchuk@nasa.gov [NASA Goddard Space Flight Center, Solar Physics Lab., Code 671, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)

2012-10-10T23:59:59.000Z

54

Time resolved optical spectroscopy to examine chemical decomposition of energetic materials under static high pressure and pulsed heating conditions  

SciTech Connect

The study of the deflagration or detonation reactions of energetic materials is challenging due to the high pressure, high temperature, and time domain under which the reactions occur. Experimental measurements are presented that demonstrate the ability to continuously monitor the global reaction times and reaction sequences associated with chemical reactions under these conditions. Time resolved absorption spectroscopy is used in conjunction with a high pressure gem anvil cell to probe the real-time chemical processes during pulsed-heating. Samples are initiated by a rapid thermal jump induced by absorption of a single laser pulse. Time resolved absorption spectroscopy of 3,6 trinitroethylamine tetrazine reaction is demonstrated by the real time measurement of the decrease in the {pi}-{pi}* absorption at 100 ns temporal resolution during laser heating at pressures up to 3.5 GPa.

Russell, T.P. [Naval Research Lab., Washington, DC (United States). Chemistry Div.; Allen, T.M.; Gupta, Y.M. [Washington State Univ., Pullman, WA (United States). Shock Dynamics Center

1996-07-01T23:59:59.000Z

55

Use of Time-Aggregated Data in Economic Screening Analyses of Combined Heat and Power Systems  

SciTech Connect

Combined heat and power (CHP) projects (also known as cogeneration projects) usually undergo a series of assessments and viability checks before any commitment is made. A screening analysis, with electrical and thermal loads characterized on an annual basis, may be performed initially to quickly determine the economic viability of the proposed project. Screening analyses using time-aggregated data do not reflect several critical cost influences, however. Seasonal and diurnal variations in electrical and thermal loads, as well as time-of-use utility pricing structures, can have a dramatic impact on the economics. A more accurate economic assessment requires additional detailed data on electrical and thermal demand (e.g., hourly load data), which may not be readily available for the specific facility under study. Recent developments in CHP evaluation tools, however, can generate the needed hourly data through the use of historical data libraries and building simulation. This article utilizes model-generated hourly load data for four potential CHP applications and compares the calculated cost savings of a CHP system when evaluated on a time-aggregated (i.e., annual) basis to the savings when evaluated on an hour-by-hour basis. It is observed that the simple, aggregated analysis forecasts much greater savings (i.e., greater economic viability) than the more detailed hourly analysis. The findings confirm that the simpler tool produces results with a much more optimistic outlook, which, if taken by itself, might lead to erroneous project decisions. The more rigorous approach, being more reflective of actual requirements and conditions, presents a more accurate economic comparison of the alternatives, which, in turn, leads to better decision risk management.

Hudson II, Carl Randy [ORNL

2004-09-01T23:59:59.000Z

56

Summary of Time Period-Based and Other Approximation Methods for Determining the Capacity Value of Wind and Solar in the United States: September 2010 - February 2012  

SciTech Connect

This paper updates previous work that describes time period-based and other approximation methods for estimating the capacity value of wind power and extends it to include solar power. The paper summarizes various methods presented in utility integrated resource plans, regional transmission organization methodologies, regional stakeholder initiatives, regulatory proceedings, and academic and industry studies. Time period-based approximation methods typically measure the contribution of a wind or solar plant at the time of system peak - sometimes over a period of months or the average of multiple years.

Rogers, J.; Porter, K.

2012-03-01T23:59:59.000Z

57

Potential of thermal insulation and solar thermal energy in domestic hot water and space heating and cooling sectors in Lebanon in the period 2010 - 2030.  

E-Print Network (OSTI)

??The potential of thermal insulation and solar thermal energy in domestic water heating, space heating and cooling in residential and commercial buildings Lebanon is studied (more)

Zaatari, Z.A.R.

2012-01-01T23:59:59.000Z

58

Modeling reaction quench times in the waste heat boiler of a Claus plant  

SciTech Connect

At the high temperatures found in the modified Claus reaction furnace, the thermal decomposition and oxidation of H[sub 2]S yields large quantities of desirable products, gaseous hydrogen (H[sub 2]) and sulfur (S[sub 2]). However, as the temperature of the gas stream is lowered in the waste heat boiler (WHB) located downstream of the furnace, the reverse reaction occurs leading to reassociation of H[sub 2] and S[sub 2] molecules. To examine the reaction quenching capabilities of the WHB, a rigorous computer model was developed incorporating recently published intrinsic kinetic data. A sensitivity study performed with the model demonstrated that WHBs have a wide range of operation with gas mass flux in the tubes from 4 to 24 kg/(m[sup 2] [center dot] s). Most important, the model showed that is was possible to operate WHBs such that quench times could be decreased to 40 ms, which is a reduction by 60% compared to a base case scenario. Furthermore, hydrogen production could be increased by over 20% simply by reconfiguring the WHB tubes.

Nasato, L.V.; Karan, K.; Mehrotra, A.K.; Behie, L.A. (Univ. of Calgary, Alberta (Canada). Dept. of Chemical and Petroleum Engineering)

1994-01-01T23:59:59.000Z

59

A systematic periodicity and time-variable modulation search in RXTE ASM data : methods, findings, and implications for astrophysical X-ray sources  

E-Print Network (OSTI)

In this work, we present the results of a general search for periodicities and for time-variable modulation strength in X-ray sources using data from the All-Sky Monitor onboard the Rossi X-ray Timing Explorer. New findings, ...

Harris, Robert J., S.M. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

60

Integrating preconcentrator heat controller  

DOE Patents (OSTI)

A method and apparatus for controlling the electric resistance heating of a metallic chemical preconcentrator screen, for example, used in portable trace explosives detectors. The length of the heating time-period is automatically adjusted to compensate for any changes in the voltage driving the heating current across the screen, for example, due to gradual discharge or aging of a battery. The total deposited energy in the screen is proportional to the integral over time of the square of the voltage drop across the screen. Since the net temperature rise, .DELTA.T.sub.s, of the screen, from beginning to end of the heating pulse, is proportional to the total amount of heat energy deposited in the screen during the heating pulse, then this integral can be calculated in real-time and used to terminate the heating current when a pre-set target value has been reached; thereby providing a consistent and reliable screen temperature rise, .DELTA.T.sub.s, from pulse-to-pulse.

Bouchier, Francis A. (Albuquerque, NM); Arakaki, Lester H. (Edgewood, NM); Varley, Eric S. (Albuquerque, NM)

2007-10-16T23:59:59.000Z

Note: This page contains sample records for the topic "time period heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Time sequenced heating of multiple layers in a hydrocarbon containing formation  

DOE Patents (OSTI)

A method for treating a hydrocarbon containing formation may include providing heat to a first hydrocarbon layer in the formation from a first heater located in an opening in the formation. The opening and the first heater may have a horizontal or inclined portion located in the first hydrocarbon layer and at least one connecting portion extending between the horizontal or inclined portion and the surface. Isolation material is placed in the opening such that the isolation material partially isolates the layer in which the horizontal or inclined portion of the first heater is located. An additional horizontal or inclined opening portion that extends from at least one of the connecting portions of the opening is formed in a second hydrocarbon layer. A second heater to provide heat the second hydrocarbon formation is placed in the additional substantially horizontal opening portion.

Goldberg, Bernard (Houston, TX); Hale, Arthur Herman (Houston, TX); Miller, David Scott (Katy, TX); Vinegar, Harold J. (Bellaire, TX)

2009-12-22T23:59:59.000Z

62

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to faciliate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

63

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

64

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate intallation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

65

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1981-01-01T23:59:59.000Z

66

Water Heating | OpenEI  

Open Energy Info (EERE)

Water Heating Water Heating Dataset Summary Description Provides total and average household expenditures on energy for water heating in the United States in 2005. Source EIA Date Released September 01st, 2008 (6 years ago) Date Updated January 01st, 2009 (6 years ago) Keywords Energy Expenditures Residential Water Heating Data application/vnd.ms-excel icon 2005_Total.Expenditures.for_.Water_.Heating_EIA.Sep_.2008.xls (xls, 70.1 KiB) application/vnd.ms-excel icon 2005_Avg.Expenditures.for_.Water_.Heating_EIA.Sep_.2008.xls (xls, 69.1 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 2005 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote

67

Time-varying autoregressive model for spectral analysis of microseismic experiments and long-period volcanic events  

Science Journals Connector (OSTI)

......parts of the signal. The study of long-term phenomena, such as resonance...operations, carbon capture and storage and waste water disposal, suffers from...experiments, or CO2 injection and storage. Likewise, a better time-frequency......

J. B. Tary; R. H. Herrera; M. van der Baan

2014-01-01T23:59:59.000Z

68

Extension and improvement of Central Station District heating budget period 1 and 2, Krakow Clean Fossil Fuels and Energy Efficiency Program. Final report  

SciTech Connect

Project aim was to reduce pollution levels in the City of Krakow through the retirement of coal-fired (hand and mechanically-stoked) boiler houses. This was achieved by identifying attractive candidates and connecting them to the Krakow district heating system, thus permitting them to eliminate boiler operations. Because coal is less costly than district hot water, the district heating company Miejskie Przedsiebiorstwo Energetyki Cieplnej S.A., henceforth identified as MPEC, needed to provide potential customers with incentives for purchasing district heat. These incentives consisted of offerings which MPEC made to the prospective client. The offerings presented the economic and environmental benefits to district heating tie-in and also could include conservation studies of the facilities, so that consumption of energy could be reduced and the cost impact on operations mitigated. Because some of the targeted boiler houses were large, the capacity of the district heating network required enhancement at strategic locations. Consequently, project construction work included both enhancement to the district piping network as well as facility tie-ins. The process of securing new customers necessitated the strengthening of MPEC`s competitive position in Krakow`s energy marketplace, which in turn required improvements in marketing, customer service, strategic planning, and project management. Learning how US utilities address these challenges became an integral segment of the project`s scope.

NONE

1997-07-01T23:59:59.000Z

69

JOURNAL OF STRUCTURAL ENGINEERING / MAY 2001 / 527 APPARENT PERIODS OF A BUILDING. II: TIME-FREQUENCY ANALYSIS  

E-Print Network (OSTI)

of a two-part paper, the analysis of the apparent frequency of a seven-story reinforced-concrete hotel. The results also suggest ``self healing'' believed to result from settlement of the soil with time and dynamic compaction from aftershock shaking. Implications of such high variability of the system frequency

Southern California, University of

70

Time-varying autoregressive model for spectral analysis of microseismic experiments and long-period volcanic events  

Science Journals Connector (OSTI)

......than the brittle failure energy corresponding to the...a part of the missing energy. Fluid injection monitoring...applications, such as geothermal operations, carbon capture...limitation. As the needs in energy are growing and climate...and their computational cost. 2 METHODS 2.1 Short-time......

J. B. Tary; R. H. Herrera; M. van der Baan

2014-01-01T23:59:59.000Z

71

Ion Heating in the Dense Plasma Focus  

Science Journals Connector (OSTI)

The collapse phase of a dense plasma focus gun operating in deuterium was studied using streak photography and time resolved x?ray and neutron measuring techniques. The streak photographs showing the radial motion of the luminous front at various axial positions indicate a collapsing luminous front at the time of the current collapse followed by an expanding front and a recompression. The luminosity then disappears for a period of several hundred nanoseconds during which time the neutrons are emitted. Estimates of shock heating and magnetic compressional heating were made from the streak pictures and a calculation of plasma heating due to viscous forces arising from axial motion of the plasma was carried out. The effects of shock heating magnetic compressional heating and viscous heating are shown to be sufficient to produce an ion temperature of several kilovolts.

A. J. Toepfer; D. R. Smith; E. H. Beckner

1971-01-01T23:59:59.000Z

72

Minimization of the external heating power by long fusion power rise-up time for self-ignition access in the helical reactor FFHR2m  

Science Journals Connector (OSTI)

Minimization of the external heating power to access self-ignition is advantageous to increase the reactor design flexibility and to reduce the capital and operating costs of the plasma heating device in a helical reactor. In this work we have discovered that a larger density limit leads to a smaller value of the required confinement enhancement factor, a lower density limit margin reduces the external heating power and over 300?s of the fusion power rise-up time makes it possible to reach a minimized heating power. While the fusion power rise-up time in a tokamak is limited by the OH transformer flux or the current drive capability, any fusion power rise-up time can be employed in a helical reactor for reducing the thermal stresses of the blanket and shields, because the confinement field is generated by the external helical coils.

O. Mitarai; A. Sagara; H. Chikaraishi; S. Imagawa; K. Watanabe; A.A. Shishkin; O. Motojima

2007-01-01T23:59:59.000Z

73

The Parkes multibeam pulsar survey: VII. Timing of four millisecond pulsars and the underlying spin period distribution of the Galactic millisecond pulsar population  

E-Print Network (OSTI)

We present timing observations of four millisecond pulsars discovered in the Parkes 20-cm multibeam pulsar survey of the Galactic plane. PSRs J1552-4937 and J1843-1448 are isolated objects with spin periods of 6.28 and 5.47 ms respectively. PSR J1727-2946 is in a 40-day binary orbit and has a spin period of 27 ms. The 4.43-ms pulsar J1813-2621 is in a circular 8.16-day binary orbit around a low-mass companion star with a minimum companion mass of 0.2 solar masses. Combining these results with detections from five other Parkes multibeam surveys, gives a well-defined sample of 56 pulsars with spin periods below 20 ms. We develop a likelihood analysis to constrain the functional form which best describes the underlying distribution of spin periods for millisecond pulsars. The best results were obtained with a log-normal distribution. A gamma distribution is less favoured, but still compatible with the observations. Uniform, power-law and Gaussian distributions are found to be inconsistent with the data. Galactic...

Lorimer, D R; Manchester, R N; Possenti, A; Lyne, A G; McLaughlin, M A; Kramer, M; Hobbs, G; Stairs, I H; Burgay, M; Eatough, R P; Keith, M J; Faulkner, A J; D'Amico, N; Camilo, F; Corongiu, A; Crawford, F

2015-01-01T23:59:59.000Z

74

Time-averaged heat transfer and pressure measurements and comparison with prediction for a two-stage turbine  

SciTech Connect

Time-averaged Stanton number and surface-pressure distributions are reported for the first-stage vane row and the first-stage blade row of the Rocketdyne Space Shuttle Main Engine two-stage fuel-side turbine. These measurements were made at 10, 50, and 90 percent span on both the pressure and suction surfaces of the component. Stanton-number distributions are also reported for the second-stage vane at 50 percent span. A shock tube is used as a short-duration source of heated and pressurized air to which the turbine is subjected. Platinum thin-film gages are used to obtain the heat-flux measurements and miniature silicone-diaphragm pressure transducers are used to obtain the surface pressure measurements. The first-stage vane Stanton number distributions are compared with predictions obtained using a quasi-three dimensional Navier-Stokes solution and a version of STAN5. This same N-S technique was also used to obtain predictions for the first blade and the second vane.

Dunn, M.G.; Kim, J. (Calspan-UB Research Center, Buffalo, NY (United States)); Boyle, R.J. (NASA Lewis Research Center, Cleveland, OH (United States)); Civinskas, K.C.

1994-01-01T23:59:59.000Z

75

Minimal universal quantum heat machine  

E-Print Network (OSTI)

In traditional thermodynamics the Carnot cycle yields the ideal performance bound of heat engines and refrigerators. We propose and analyze a minimal model of a heat machine that can play a similar role in quantum regimes. The minimal model consists of a single two-level system with periodically modulated energy splitting that is permanently, weakly, coupled to two spectrally-separated heat baths at different temperatures. The equation of motion allows to compute the stationary power and heat currents in the machine consistently with the second-law of thermodynamics. This dual-purpose machine can act as either an engine or a refrigerator (heat pump) depending on the modulation rate. In both modes of operation the maximal Carnot efficiency is reached at zero power. We study the conditions for finite-time optimal performance for several variants of the model. Possible realizations of the model are discussed.

David Gelbwaser-Klimovsky; Robert Alicki; Gershon Kurizki

2012-09-06T23:59:59.000Z

76

2014-11-25 Issuance: Energy Conservation Standards for Small, Large, and Very Large Air-cooled Commercial Package Air Conditioning and Heating Equipment; Extension of Public Comment Period  

Energy.gov (U.S. Department of Energy (DOE))

This document is a pre-publication Federal Register extension of the public comment period regarding energy conservation standards for small, large and very large air-cool commercial package air conditioning and heating equipment, as issued by the Deputy Assistant Secretary for Energy Efficiency on November 25, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

77

Modeling the time and energy behavior of the GCR intensity in the periods of low activity around the last three solar minima  

E-Print Network (OSTI)

Using the simple model for the description of the GCR modulation in the heliosphere and the sets of parameters discussed in the accompanying paper we model some features of the time and energy behavior of the GCR intensity near the Earth observed during periods of low solar activity around three last solar minima. In order to understand the mechanisms underlying these features in the GCR behavior, we use the suggested earlier decomposition of the calculated intensity into the partial intensities corresponding to the main processes (diffusion, adiabatic losses, convection and drifts).

Krainev, M B; Kalinin, M S; Svirzhevskaya, A K; Svirzhevsky, N S

2014-01-01T23:59:59.000Z

78

Time-Dependent Nonlinear Hadley Circulation  

Science Journals Connector (OSTI)

The time-dependent Hadley circulation is studied numerically in a nonlinear, nearly inviscid, axially symmetric primitive equation model, with the heating varying periodically on an annual cycle. The annual average of the Hadley circulation ...

Ming Fang; Ka Kit Tung

1999-06-01T23:59:59.000Z

79

The relationship between induction case depth and load power for high frequency, high load power and short heating time  

Science Journals Connector (OSTI)

The relationship between induction case depth and load power is derived. Excellent agreement is obtained between ... calculated from the derived equation and the experimental data obtained for a constant heating ...

W. T. Shieh

1972-06-01T23:59:59.000Z

80

Metal-like heat conduction in laser-excited InSb probed by picosecond time-resolved x-ray diffraction  

Science Journals Connector (OSTI)

A semiconductor (InSb) showed transient metal-like heat conduction after excitation of a dense electron-hole plasma via short and intense light pulses. A related ultrafast strain relaxation was detected using picosecond time-resolved x-ray diffraction. The deduced heat conduction was, by a factor of 30, larger than the lattice contribution. The anomalously high heat conduction can be explained once the contribution from the degenerate photocarrier plasma is taken into account. The magnitude of the effect could provide the means for guiding heat in semiconductor nanostructures. In the course of this work, a quantitative model for the carrier dynamics in laser-irradiated semiconductors has been developed, which does not rely on any adjustable parameters or ad hoc assumptions. The model includes various light absorption processes (interband, free carrier, two photon, and dynamical Burstein-Moss shifts), ambipolar diffusion, energy transport (heat and chemical potential), electrothermal effects, Auger recombination, collisional excitation, and scattering (elastic and inelastic). The model accounts for arbitrary degrees of degeneracy.

P. Sondhauss, O. Synnergren, T. N. Hansen, S. E. Canton, H. Enquist, A. Srivastava, and J. Larsson

2008-09-10T23:59:59.000Z

Note: This page contains sample records for the topic "time period heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Performance of Horizontal Field Earth-Coupled Heat Pumps  

E-Print Network (OSTI)

An alternative to traditional methods of residential heating and cooling is the heat pump. However, heat pumps which use the outside air as a heat source/sink become inefficient during the periods of highest demand. Another possible heat source...

Abbott, C. A.

1986-01-01T23:59:59.000Z

82

Heat storage with CREDA  

SciTech Connect

The principle of operation of ETS or Electric Thermal Storage is discussed in this book. As can be seen by the diagram presented, heating elements buried deep within the core are energized during off-peak periods or periods of lower cost energy. These elements charge the core to a per-determined level, then during the on-peak periods when the cost of electricity is higher or demand is higher, the heat is extracted from the core. The author discusses how this technology has progressed to the ETS equipment of today; this being the finer control of charging rates and extraction of heat from the core.

Beal, T. (Fostoria Industries, Fostoria, OH (US))

1987-01-01T23:59:59.000Z

83

Effects of variations in holding time, curing temperature, and treatment period on selected physical properties of concrete made with type III cement and steam cured at atmospheric pressure  

E-Print Network (OSTI)

g H a t4 0 lV FI I og . ng ~9 g~) o sn IS% Rl HZOIMX8 fhISSRlJRXl 5400 5000 140% 4600 4200 3$00 165 F IE54 r 3400 3000 2600 2 3 4 5 6 HOLDING TINE IN HOURS FIGURE 16 COHSRESSIVE STRENGTH vS RUINING TINE, TREATNRNT PERIOD... 3800 3400 $000 3 2 4 5 6 HOLDING TINE IN HOURS PIGURE 1$. OPPRESSIVE STRENGTH vs HOLDING TINE, TREATNENT PERIOD - 16 HRS, ) AGE - 7 DAYS 39 6200 140 F 5000 4600 4200 3SOO 3400 2 3 4 3, 6 HOLDING TINE IN HOURS 'FIGURE 19. CQNFRESSIVE...

Burleson, Kenneth Stewart

2012-06-07T23:59:59.000Z

84

Many-body energy localization transition in periodically driven systems  

SciTech Connect

According to the second law of thermodynamics the total entropy of a system is increased during almost any dynamical process. The positivity of the specific heat implies that the entropy increase is associated with heating. This is generally true both at the single particle level, like in the Fermi acceleration mechanism of charged particles reflected by magnetic mirrors, and for complex systems in everyday devices. Notable exceptions are known in noninteracting systems of particles moving in periodic potentials. Here the phenomenon of dynamical localization can prevent heating beyond certain threshold. The dynamical localization is known to occur both at classical (FermiUlam model) and at quantum levels (kicked rotor). However, it was believed that driven ergodic systems will always heat without bound. Here, on the contrary, we report strong evidence of dynamical localization transition in both classical and quantum periodically driven ergodic systems in the thermodynamic limit. This phenomenon is reminiscent of many-body localization in energy space. -- Highlights: A dynamical localization transition in periodically driven ergodic systems is found. This phenomenon is reminiscent of many-body localization in energy space. Our results are valid for classical and quantum systems in the thermodynamic limit. At critical frequency, the short time expansion for the evolution operator breaks down. The transition is associated to a divergent time scale.

DAlessio, Luca, E-mail: dalessio@buphy.bu.edu [Physics Department, Boston University, Boston, MA 02215 (United States) [Physics Department, Boston University, Boston, MA 02215 (United States); Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States); Polkovnikov, Anatoli, E-mail: asp@bu.edu [Physics Department, Boston University, Boston, MA 02215 (United States)] [Physics Department, Boston University, Boston, MA 02215 (United States)

2013-06-15T23:59:59.000Z

85

Solar water heating technical support. Technical report for November 1997--April 1998 and final report  

SciTech Connect

This progress report covers the time period November 1, 1997 through April 30, 1998, and also summarizes the project as the final report. The topics of the report include certification of solar collectors for water heating systems, modeling and testing of solar collectors and gas water heater backup systems, ratings of collectors for specific climates, and solar pool heating systems.

Huggins, J.

1998-10-01T23:59:59.000Z

86

A microsecond time resolved x-ray absorption near edge structure synchrotron study of phase transitions in Fe undergoing ramp heating at high pressure  

SciTech Connect

We report a microsecond time-resolved x-ray absorption near edge structure study using synchrotron radiation to dynamically detect structural phase transitions in Fe undergoing rapid heating along a quasi-isochoric path. Within a few ms, we observed two structural phase transitions, which transform the ambient bcc phase of Fe into the fcc phase, and then into the liquid phase. This example illustrates the opportunities offered by energy dispersive x-ray absorption spectroscopy in the study of matter under extreme dynamic conditions. Advanced simulations are compared to these data.

Marini, C.; Mathon, O.; Pascarelli, S. [European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, BP220, 38043 Grenoble Cedex (France); Occelli, F.; Torchio, R.; Recoules, V.; Loubeyre, P. [CEA, Bruyeres le Chatel, 91297 Arpajon Cedex (France)

2014-03-07T23:59:59.000Z

87

Heat flow in anharmonic crystals with internal and external stochastic baths: A convergent polymer expansion for a model with discrete time and long range interparticle interaction  

E-Print Network (OSTI)

We investigate a chain of oscillators with anharmonic on-site potentials, with long range interparticle interactions, and coupled both to external and internal stochastic thermal reservoirs of Ornstein-Uhlenbeck type. We develop an integral representation, a la Feynman-Kac, for the correlations and the heat current. We assume the approximation of discrete times in the integral formalism (together with a simplification in a subdominant part of the harmonic interaction) in order to develop a suitable polymer expansion for the model. In the regime of strong anharmonicity, strong harmonic pinning, and for the interparticle interaction with integrable polynomial decay, we prove the convergence of the polymer expansion uniformly in volume (number of sites and time). We also show that the two-point correlation decays in space such as the interparticle interaction. The existence of a convergent polymer expansion is of practical interest: it establishes a rigorous support for a perturbative analysis of the heat flow problem and for the computation of the thermal conductivity in related anharmonic crystals, including those with inhomogeneous potentials and long range interparticle interactions.

Emmanuel Pereira; Mateus S. Mendona; Humberto C. F. Lemos

2014-11-23T23:59:59.000Z

88

Two-sided estimates on Dirichlet heat kernels for time-dependent parabolic operators with singular drifts  

E-Print Network (OSTI)

, -domain in Rd , where d 1 and (0, 1]. Our operator is L + µ · x, where L is a time-dependent uniformly Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(2011-0009685) 2Panki Kim is supported by Basic Science Research Program through the National Re- search Foundation of Korea(NRF) grant

Kim, Panki

89

Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pumps Heat Pumps Heat Pumps Geothermal heat pumps are expensive to install but pay for themselves over time in reduced heating and cooling costs. Learn more about how geothermal heat pumps heat and cool buildings by concentrating the naturally existing heat contained within the earth -- a clean, reliable, and renewable source of energy. In moderate climates, heat pumps can be an energy-efficient alternative to furnaces and air conditioners. Several types of heat pumps are available, including air-source; geothermal; ductless, mini-split; and absorption heat pumps. Learn more about the different options and how to use your heat pump efficiently to save money and energy at home. Featured Heat Pump Systems A heat pump can provide an alternative to using your air conditioner. | Photo courtesy of iStockPhoto/LordRunar.

90

Molecular heat pump  

E-Print Network (OSTI)

We propose a novel molecular device that pumps heat against a thermal gradient. The system consists of a molecular element connecting two thermal reservoirs that are characterized by different spectral properties. The pumping action is achieved by applying an external force that periodically modulates molecular levels. This modulation affects periodic oscillations of the internal temperature of the molecule and the strength of its coupling to each reservoir resulting in a net heat flow in the desired direction. The heat flow is examined in the slow and fast modulation limits and for different modulation waveforms, thus making it possible to optimize the device performance.

Dvira Segal; Abraham Nitzan

2005-10-11T23:59:59.000Z

91

A study of the utility of heat collectors in reducing the response time of automatic fire sprinklers located in production modules of Building 707  

SciTech Connect

Several of the ten production Modules in Building 707 at the Department of Energy Rocky Flats Plant recently underwent an alteration which can adversely affect the performance of the installed automatic fire sprinkler systems. The Modules have an approximate floor to ceiling height of 17.5 ft. The alterations involved removing the drop ceilings in the Modules which had been at a height of 12 ft above the floor. The sprinkler systems were originally installed with the sprinkler heads located below the drop ceiling in accordance with the nationally recognized NFPA 13, Standard for the Installation of Automatic Sprinkler Systems. The ceiling removal affects the sprinkler`s response time and also violates NFPA 13. The scope of this study included evaluation of the feasibility of utilizing heat collectors to reduce the delays in sprinkler response created by the removal of the drop ceilings. The study also includes evaluation of substituting quick response sprinklers for the standard sprinklers currently in place, in combination with a heat collector.

Shanley, J.H. Jr.; Budnick, E.K. Jr. [Hughes Associates, Inc., Wheaton, MD (United States)

1990-01-01T23:59:59.000Z

92

Investigation of Heat Transfer and Combustion in the Advanced Fluidized Bed Combustor (FBC).  

SciTech Connect

This technical report summarizes the research conducted and progress achieved during the period from January 1, 1997 to March 30, 1997. The systematic tests were conducted to investigate the thermal performance and heat transfer effect on the exploratory hot model. Test results were analyzed to understand thermal performance, heat balance, and heat transfer effect on exploratory hot model. Temperature was measured at different locations of the combustor chamber. The temperature was decreased along the increase the distance from the bottom of the combustor chamber. The heat loss from the combustor wall to the environment is a great portion of the total heat transfer. The flame enthalpy and heat loss at the reactor center changed along the reactor height. The heat loss into the cooling water for case A is about two times lager than that of case B. The heat transfer coefficient from gas to the environment increased as the flame temperature increased.

Lee, S.W.

1997-04-01T23:59:59.000Z

93

PreHeat: Controlling Home Heating Using Occupancy Prediction  

E-Print Network (OSTI)

@comp.lancs.ac.uk ABSTRACT Home heating is a major factor in worldwide energy use. Our system, PreHeat, aims to more, and measuring actual gas consumption and occupancy. In UK homes PreHeat both saved gas and reduced MissTime (the Home heating uses more energy than any other residential energy expenditure including air conditioning

Krumm, John

94

On the solution of the Heaviside - Klein - Gordon thermal equation for heat transport in graphene  

E-Print Network (OSTI)

We report studies of the solution of the Heaviside - Klein - Gordon thermal equation. As the result it is shown that the solution consists of two components: the fast thermal wave and slow diffusion for very large (compared to relaxation time) time period. We argue that the fast thermal wave can be recognized as the indication of the ballistic heat transport. As an example we consider the ballistic heat transport in graphene.

Magdalena Pelc

2007-11-26T23:59:59.000Z

95

Residential Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

This chart highlights residential heating oil prices for the current and This chart highlights residential heating oil prices for the current and past heating season. As you can see, prices have started the heating season, about 40 to 50 cents per gallon higher than last year at this time. The data presented are from EIA's State Heating Oil and Propane Program. We normally collect and publish this data twice a month, but given the low stocks and high prices, we started tracking the prices weekly. These data will also be used to determine the price trigger mechanism for the Northeast Heating Oil Reserve. The data are published at a State and regional level on our web site. The slide is to give you some perspective of what is happening in these markets, since you probably will get a number of calls from local residents about their heating fuels bills

96

FEMP--Geothermal Heat Pumps  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

heat pump-like an air conditioner or refrigera- heat pump-like an air conditioner or refrigera- tor-moves heat from one place to another. In the summer, a geothermal heat pump (GHP) operating in a cooling mode lowers indoor temperatures by transferring heat from inside a building to the ground outside or below it. Unlike an air condition- er, though, a heat pump's process can be reversed. In the winter, a GHP extracts heat from the ground and transfers it inside. Also, the GHP can use waste heat from summer air-conditioning to provide virtually free hot-water heating. The energy value of the heat moved is typically more than three times the electricity used in the transfer process. GHPs are efficient and require no backup heat because the earth stays at a relatively moderate temperature throughout the year.

97

Heat Pump System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pump System Basics Heat Pump System Basics Heat Pump System Basics August 19, 2013 - 11:02am Addthis Like a refrigerator, heat pumps use electricity to move heat from a cool space into a warm space, making the cool space cooler and the warm space warmer. Because they move heat rather than generate heat, heat pumps can provide up to four times the amount of energy they consume. Air-Source Heat Pump Transfers heat between the inside of a building and the outside air. Ductless Mini-Split Heat Pump Ductless versions of air-source heat pumps. Absorption Heat Pump Uses heat as its energy source. Geothermal Heat Pumps Use the constant temperature of the earth as the exchange medium instead of the outside air temperature. Addthis Related Articles A heat pump can provide an alternative to using your air conditioner. | Photo courtesy of iStockPhoto/LordRunar.

98

Geothermal Heat Pumps- Heating Mode  

Energy.gov (U.S. Department of Energy (DOE))

In winter, fluid passing through this vertical, closed loop system is warmed by the heat of the earth; this heat is then transferred to the building.

99

Surface heat fluxes in the Western Equatorial Pacific Ocean  

Science Journals Connector (OSTI)

Estimates of the components of the surface heat flux in the Western Equatorial Pacific Ocean are presented for a 22-day period, ... found that the net heat flux into the ocean over the 22-day period is not...

N. C. Wells

1995-10-01T23:59:59.000Z

100

Heat Pumps | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

heat pump can deliver one-and-a-half to three times more heat energy to a home than the electrical energy it consumes. | Photo courtesy of iStockPhotoYinYang. If you live in a...

Note: This page contains sample records for the topic "time period heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Optimal Checkpointing Period: Time vs. Energy  

E-Print Network (OSTI)

is focusing on the characteris- tics, features, and challenges of High Performance Computing (HPC) systems-purpose error recovery technique in high performance computing is checkpoint and rollback recovery

Paris-Sud XI, Université de

102

Waste Heat as Energy Source  

Science Journals Connector (OSTI)

References on waste heat utilization were compiled, covering citations from the NTIS data base for the period 1964 to March 1978. The bibliography contains 253 abstracts, 37 of which are new entries to the pre...

Prof. Dr. Anthony Delyannis; Dr. Euridike-Emmy Delyannis

1980-01-01T23:59:59.000Z

103

Definition: Heat | Open Energy Information  

Open Energy Info (EERE)

Heat Heat Jump to: navigation, search Dictionary.png Heat Heat is the form of energy that is transferred between systems or objects with different temperatures (flowing from the high-temperature system to the low-temperature system). Also referred to as heat energy or thermal energy. Heat is typically measured in Btu, calories or joules. Heat flow, or the rate at which heat is transferred between systems, has the same units as power: energy per unit time (J/s).[1][2][3][4] View on Wikipedia Wikipedia Definition In physics and chemistry, heat is energy in transfer between a system and its surroundings other than by work or transfer of matter. The transfer can occur in two simple ways, conduction, and radiation, and in a more complicated way called convective circulation. Heat is not a property

104

Laser-induced short time scale thermal chemistry of perfluoropolyether lubricant films  

SciTech Connect

The authors investigate the effect of heating a perfluoropolyether lubricant film in a localized area for relatively short time periods using laser irradiation versus conventional oven heating. These experiments help provide understanding on how flash temperatures generated at frictional contacts affect the thermal chemistry of lubricant films. In these experiments, a CO{sub 2} laser heats a 50 {micro}m wide area of a silicon wafer for time periods ranging from 0.1 to 60 s. The surface temperature within the heated area (up to 280 C in these experiments) is monitored with a second laser by measuring the change in reflectivity near the center of the heated area. A major difference observed for laser heating compared to oven heating is that the effective evaporation rate is orders of magnitude higher for laser heating. If the lubricant film is heated for sufficiently long enough time at high temperatures, the authors are able to observe thermal bonding of the lubricant via its alcohol end groups to the silicon oxide surface, followed by thermal decomposition of the lubricant molecules. After laser heating, the authors are able to observe the diffusion of lubricant back into the localized heated area using a combination of optical microscopy and imaging ellipsometry.

Heller, J.; Mate, C.J.; Poon, C.C.; Tam, A.C.

1999-11-09T23:59:59.000Z

105

Analysis of a solar assisted heat pump system for indoor swimming pool water and space heating  

Science Journals Connector (OSTI)

Solar energy application is a good alternative to replace primary energy source especially for large-scale installations. Heat pumps are also effective means to reduce primary energy consumption. This paper describes a case study with a new design of solar assisted heat pump (SAHP) for indoor swimming pool space- and water-heating purposes. The system design procedure was first presented. The entire system was then modeled via the TRNSYS simulation environment and the energy performance was evaluated based on the winter time operation schedule. Economic analysis with a range of collector areas was also performed. The simulation results show that the overall system COP can reach 4.5, and the fractional factor of energy saving is 79% as compared to the conventional energy system. The economical payback period is less than 5years.

T.T. Chow; Y. Bai; K.F. Fong; Z. Lin

2012-01-01T23:59:59.000Z

106

Heat transfer at the mold-metal interface in permanent mold casting of aluminum alloys project. Annual project status report for the period October 1, 1997 to September 30, 1998  

SciTech Connect

In the first year of this three-year project, substantial progress has been achieved. This project on heat transfer coefficients in metal permanent mold casting is being conducted in three areas. They are the theoretical study at the University of Michigan, the experimental investigations of squeeze casting and semi-solid casting at CMI-Tech Center, and the experimental investigation of low pressure permanent mold casting at Amcast Automotive. U-M did an initial geometry which was defined for ProCAST to solve, and then a geometry half the size was defined and solved using the same boundary conditions. A conceptual mold geometry was examined and is represented as an axisymmetric element.Furthermore, the influences of the localized heat transfer coefficients on the casting process were carefully studied. The HTC Evaluator has been proposed and initially developed by the U-M team. The Reference and the Database Modules of the HTC Evaluator have been developed, and extensively tested. A series of technical barriers have been cited and potential solutions have been surveyed. At the CMI-Tech Center, the Kistler direct cavity pressure measurement system has been purchased and tested. The calibrations has been evaluated. The probe is capable of sensing a light finger pressure. The experimental mold has been designed and modified. The experimental mold has been designed and modified. The first experiment is scheduled for October 14, 1998. The geometry of the experimental hockey-puck casting has been given to the U-M team for numerical analysis.

Pehlke, R.D.; Hao, S.W.

1998-09-30T23:59:59.000Z

107

Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas-  

Open Energy Info (EERE)

Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples Details Activities (5) Areas (5) Regions (0) Abstract: Surface heat flow measurements over active geothermal systems indicate strongly positive thermal anomalies. Whereas in "normal" geothermal settings, the surface heat flow is usually below 100-120 mW m- 2, in active geothermal areas heat flow values as high as several watts per meter squared can be found. Systematic interpretation of heat flow patterns sheds light on heat transfer mechanisms at depth on different lateral, depth and time scales. Borehole temperature profiles in active geothermal

108

Heat Pump Water Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heaters Water Heaters Heat Pump Water Heaters May 4, 2012 - 5:21pm Addthis A diagram of a heat pump water heater. A diagram of a heat pump water heater. What does this mean for me? Heat pump water heaters can be two to three times more energy efficient than conventional electric storage water heaters. Heat pump water heaters work in locations that remain in the 40º-90ºF range year-round. Most homeowners who have heat pumps use them to heat and cool their homes. But a heat pump also can be used to heat water -- either as stand-alone water heating system, or as combination water heating and space conditioning system. How They Work Heat pump water heaters use electricity to move heat from one place to another instead of generating heat directly. Therefore, they can be two to

109

Susanville District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

110

Heating Oil and Propane Update  

Gasoline and Diesel Fuel Update (EIA)

State Energy Offices State Energy Offices Q1: What price should be reported to EIA when submitting weekly data? EIA requests that you collect / report the residential credit price (keep-full prices being preferred) and that all prices exclude taxes for the Monday of each survey week, even if that Monday falls on a holiday. Prices should not include discounts for payment of cash or for payment made within a short period of time. However, if a company deals exclusively in cash, then this price should be reported and noted in the file sent to EIA. Q2: When is this data due to EIA each week? The EIA-877 "Winter Heating Fuels Telephone Survey" will begin the first Monday in October. Data should be submitted to EIA as soon as they are available but no later than noon on Tuesday of each week. Data collection

111

Characterization of self-propagating formation reactions in Ni/Zr multilayered foils using reaction heats, velocities, and temperature-time profiles  

We report on intermetallic formation reactions in vapor-deposited multilayered foils of Ni/Zr with 70 nm bilayers and overall atomic ratios of Ni:Zr, 2 Ni:Zr, and 7 Ni:2 Zr. The sequence of alloy phase formation and the stored energy is evaluated at slow heating rates (~1 K/s) using differential scanning calorimetry (DSC) traces to 725C. All three chemistries initially form a Ni-Zr amorphous phase which crystallizes first to the intermetallic NiZr. The heat of reaction to the final phase is 34-36 kJ/mol atom for all chemistries. Intermetallic formation reactions are also studied at rapid heating rates (greater than 105 K/s) in high temperature, self-propagating reactions which can be ignited in these foils by an electric spark. We find that reaction velocities and maximum reaction temperatures (Tmax) are largely independent of foil chemistry at 0.6 0.1 m/s and 1220 50 K, respectively, and that the measured Tmax is more than 200 K lower than predicted adiabatic temperatures (Tad). The difference between Tmax and Tad is explained by the prediction that transformation to the final intermetallic phases occurs after Tmax and results in the release of 20-30 % of the total heat of reaction and a delay in rapid cooling.

Barron, S. C.; Knepper, R.; Walker, N.; Weihs, T. P.

2011-01-11T23:59:59.000Z

112

Solar Water Heating System Maintenance and Repair | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heating System Maintenance and Repair Water Heating System Maintenance and Repair Solar Water Heating System Maintenance and Repair May 30, 2012 - 2:35pm Addthis Rooftop solar water heaters need regular maintenance to operate at peak efficiency. | Photo from iStockphoto.com Rooftop solar water heaters need regular maintenance to operate at peak efficiency. | Photo from iStockphoto.com Solar energy systems require periodic inspections and routine maintenance to keep them operating efficiently. Also, from time to time, components may need repair or replacement. You should also take steps to prevent scaling, corrosion, and freezing. You might be able to handle some of the inspections and maintenance tasks on your own, but others may require a qualified technician. Ask for a cost estimate in writing before having any work done. For some systems, it may

113

Design and Operational Planning of Energy Networks Based on Combined Heat and Power Units  

Science Journals Connector (OSTI)

For each time period and sector, big-M constraints 13 model the heat (generated by the energy generator installed in the sector) transferred to the heat storage tank of the sector (Q?sit). ... Heat and electricity demand data for the reference case have been taken from the Milton Keynes Energy Park data set provided by the U.K. Energy Research Centre Energy Data Centre. ... Cardoso, G.; Stadler, M.; Siddiqui, A.; Marnay, C.; Deforest, N.; Barbosa-Pvoa, A.; Ferro, P.Microgrid reliability modeling and battery scheduling using stochastic linear programming Electric Power Syst. ...

Nikolaos E. Koltsaklis; Georgios M. Kopanos; Michael C. Georgiadis

2014-03-05T23:59:59.000Z

114

Ocean heat transport in a Simple Ocean Data Assimilation (SODA): structure, mechanisms, and impacts on climate  

E-Print Network (OSTI)

that heat advection by ocean currents plays in the anthropogenic warming of the world?s oceans. From Barnet et al., 2005.???????????????????......... 14 2.1 Meridional heat transport in PW across 40N o in the Atlantic Ocean based on monthly... and (b) trend of oceanic heat transport in ! PW"decade #1 for the period 1958-2001 in SODA-1.4.2.... 29 3.2 Same as Fig. 3.1 except for SODA-1.4.0??????????????.. 31 3.3 Time-mean of zonal-averaged meridional currents in ! cm"s #1...

Zheng, Yangxing

2009-05-15T23:59:59.000Z

115

Alternative cooling resource for removing the residual heat of reactor  

SciTech Connect

The Recirculated Cooling Water (RCW) system of a Candu reactor is a closed cooling system which delivers demineralized water to coolers and components in the Service Building, the Reactor Building, and the Turbine Building and the recirculated cooling water is designed to be cooled by the Raw Service Water (RSW). During the period of scheduled outage, the RCW system provides cooling water to the heat exchangers of the Shutdown Cooling System (SDCS) in order to remove the residual heat of the reactor, so the RCW heat exchangers have to operate at all times. This makes it very hard to replace the inlet and outlet valves of the RCW heat exchangers because the replacement work requires the isolation of the RCW. A task force was formed to prepare a plan to substitute the recirculated water with the chilled water system in order to cool the SDCS heat exchangers. A verification test conducted in 2007 proved that alternative cooling was possible for the removal of the residual heat of the reactor and in 2008 the replacement of inlet and outlet valves of the RCW heat exchangers for both Wolsong unit 3 and 4 were successfully completed. (authors)

Park, H. C.; Lee, J. H.; Lee, D. S.; Jung, C. Y.; Choi, K. Y. [Korea Hydro and Nuclear Power Co., Ltd., 260 Naa-ri Yangnam-myeon Gyeongju-si, Gyeonasangbuk-do, 780-815 (Korea, Republic of)

2012-07-01T23:59:59.000Z

116

Heat Stroke  

NLE Websites -- All DOE Office Websites (Extended Search)

stress, from exertion or hot environments, places stress, from exertion or hot environments, places workers at risk for illnesses such as heat stroke, heat exhaustion, or heat cramps. Heat Stroke A condition that occurs when the body becomes unable to control its temperature, and can cause death or permanent disability. Symptoms ■ High body temperature ■ Confusion ■ Loss of coordination ■ Hot, dry skin or profuse sweating ■ Throbbing headache ■ Seizures, coma First Aid ■ Request immediate medical assistance. ■ Move the worker to a cool, shaded area. ■ Remove excess clothing and apply cool water to their body. Heat Exhaustion The body's response to an excessive loss of water and salt, usually through sweating. Symptoms ■ Rapid heart beat ■ Heavy sweating ■ Extreme weakness or fatigue ■

117

Enhancing the heat transfer in a heat treatment furnace through improving the combustion process in the radiation tubes  

Science Journals Connector (OSTI)

......energy efficiency in the heating processes. The heat...chamber and lead to shorter heating time to achieve the objective...chamber as a part of oil quenching heat treatment...energy efficiency in the heating processes. The heat...The rising of fuel prices and the increasing requirements......

E. M. Elmabrouk; Y. Wu

2012-02-01T23:59:59.000Z

118

Heat collector  

DOE Patents (OSTI)

A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

Merrigan, Michael A. (Santa Cruz, NM)

1984-01-01T23:59:59.000Z

119

Heat collector  

DOE Patents (OSTI)

A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

Merrigan, M.A.

1981-06-29T23:59:59.000Z

120

TimeDependent Nonlinear Hadley Circulation Ming Fang and Ka Kit Tung  

E-Print Network (OSTI)

Time­Dependent Nonlinear Hadley Circulation Ming Fang and Ka Kit Tung Department of Applied Mathematics University of Washington Seattle, WA February 19, 1998 0 #12; Abstract The time­dependent Hadley, with the heating varying periodically on an annual cycle. The annual average of the Hadley circulation strength

Tung, Ka-Kit

Note: This page contains sample records for the topic "time period heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Time-Dependent Nonlinear Hadley Circulation Ming Fang and Ka Kit Tung  

E-Print Network (OSTI)

Time-Dependent Nonlinear Hadley Circulation Ming Fang and Ka Kit Tung Department of Applied Mathematics University of Washington Seattle, WA February 19, 1998 0 #12;Abstract The time-dependent Hadley, with the heating varying periodically on an annual cycle. The annual average of the Hadley circulation strength

Tung, Ka-Kit

122

Investigation of periodic multilayers  

E-Print Network (OSTI)

Periodic multilayers of various periods were prepared according to an algorithm proposed by the authors. The reflectivity properties of these systems were investigated using neutron reflectometry.The obtained experimental results were compared with the theoretical expectations. In first approximation, the results proved the main features of the theoretical predictions. These promising results initiate further research of such systems.

Bodnarchuck, V; Ignatovich, V; Veres, T; Yaradaykin, S

2009-01-01T23:59:59.000Z

123

Consumer Winter Heating Oil Costs  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: Using the Northeast as a regional focus for heating oil, the typical oil-heated household consumes about 680 gallons of oil during the winter, assuming that weather is "normal." The previous three winters were warmer than average and generated below normal consumption rates. Last winter, consumers saw large increases over the very low heating oil prices seen during the winter of 1998-1999 but, outside of the cold period in late January/early February they saw relatively low consumption rates due to generally warm weather. Even without particularly sharp cold weather events this winter, we think consumers are likely to see higher average heating oil prices than were seen last winter. If weather is normal, our projections imply New England heating oil

124

Impacts of Water Quality on Residential Water Heating Equipment  

SciTech Connect

Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.

Widder, Sarah H.; Baechler, Michael C.

2013-11-01T23:59:59.000Z

125

Time evolution of the ion temperature in the T-10 tokamak during simultaneous pellet injection and electron-cyclotron resonance heating  

Science Journals Connector (OSTI)

Results are presented from studies of the time evolution of the ion temperature in the T-10 tokamak in the course of injection of several (up to five) deuterium pellets into a deuterium plasma the electron compon...

Yu. V. Gott; Yu. D. Pavlov; A. A. Borshchagovski?; E. P. Gorbunov

2007-12-01T23:59:59.000Z

126

An analysis of periodic heat flow through a plane slab  

E-Print Network (OSTI)

slices of thickness ax = L/5 and. two half-slices of tJ:ickness ax/2 = L/10 as shown in I~'igure 1, and the center plane of eacn slice was indexed. o 1 (~6 X 2 nx i ax+ t t 0 DX bx Dx ~ax ? ~- Ax Dx ' CFOSS SECTION OP SLAB DIVID' 'D INTO SLIC... because it is always zero. tl t2 t5 t4 t. 0 1 2 5 6 1000. 0 1150. 5 1258. 8 1582. 6 1500. 0 1608, 7 1707. 1 0 200. 0 226. 1 $15. 8 561. 7 /t )8 0 0 80. 0 106. 4 160. 4 1 / 0 0 0 $2. 0 4o. 0 7'-' 1 0 0 0 0 12. 8 0 0 0 0 0...

Gibson, Daniel Morgan

1958-01-01T23:59:59.000Z

127

Long-Period Solar Variability  

SciTech Connect

Terrestrial climate records and historical observations of the Sun suggest that the Sun undergoes aperiodic oscillations in radiative output and size over time periods of centuries and millenia. Such behavior can be explained by the solar convective zone acting as a nonlinear oscillator, forced at the sunspot-cycle frequency by variations in heliomagnetic field strength. A forced variant of the Lorenz equations can generate a time series with the same characteristics as the solar and climate records. The timescales and magnitudes of oscillations that could be caused by this mechanism are consistent with what is known about the Sun and terrestrial climate.

GAUTHIER,JOHN H.

2000-07-20T23:59:59.000Z

128

Intrinsically irreversible heat engine  

DOE Patents (OSTI)

A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

Wheatley, J.C.; Swift, G.W.; Migliori, A.

1984-01-01T23:59:59.000Z

129

Solar Water Heating and Design Processes  

Science Journals Connector (OSTI)

Solar energy has been used to heat water for many years, and the design requirements of solar water heating equipment have been studied for ... because that upto this time other sources of energy have been more economical

H. P. Garg

1987-01-01T23:59:59.000Z

130

Solar powered heat pump construction. [silica gel adsorbent with solar regenerator  

SciTech Connect

Disclosed is a solar powered heat pump useful for both heating and cooling building space and for providing refrigeration. The device operates on a chemical effect (Adsorption) intermittent heat pump cycle in which the moderately high temperature heat generated by insolation is used to drive the desorber. The device has inherent thermal storage, can be factory built, sealed, and tested, can be electronically controlled for completely automatic operation, and includes a built-in back-up heater which obviates the need for installation of a separate back-up heating system. It can be manufactured from inexpensive materials such as glass, and implodes rather than explodes on failure. A preferred embodiment of the device is designed as a modular unit which can readily be combined with others of identical design to produce a solar powered battery panel for heating and cooling. This embodiment preferably comprises a tubular enclosure defining a pair of chambers separated by a valve. A first chamber is packed with silica gel (Or an equivalent adsorbent material) arranged such that mass and heat transfer through the gel take place rapidly and in comparable time periods. The first chamber is surrounded by a larger diameter, solar radiation transparent housing and the annular space between the chamber and housing is evacuated. The enclosure is mounted together with a diffuse light reflector which focuses sunlight toward the first chamber. Heat exchangers provide thermal communication between respective chambers and a pair of duct portions adapted for connection to a building heat distribution system.

Berg, C.A.

1980-11-04T23:59:59.000Z

131

Heating System Specification Specification of Heating System  

E-Print Network (OSTI)

Appendix A Heating System Specification /* Specification of Heating System (loosely based */ requestHeat : Room ­? bool; 306 #12; APPENDIX A. HEATING SYSTEM SPECIFICATION 307 /* user inputs */ livingPattern : Room ­? behaviour; setTemp : Room ­? num; heatSwitchOn, heatSwitchOff, userReset : simple

Day, Nancy

132

Budget Period 1  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Budget Period 1 Budget Period 1 Budget Period 2 Budget Period 3 0.0% 0.0% 0.0% PMC123.1 - Budget Justification for SF 424A Budget 0 Additional Explanations/Comments (as necessary) *IMPORTANT: In the space provided below (or as an attachment) provide a complete explanation and the full calculations used to derive the total indirect costs. If the total indirect costs are a cumulative amount of more than one calculation or rate application, the explanation and calculations should identify all rates used, along with the base they were applied to (and how the base was derived), and a total for each (along with grand total). The rates and how they are applied should not be averaged to get one indirect cost percentage. NOTE: The indirect rate should be applied to both the Federal Share and Recipient Cost Share.

133

State of Connecticut Middle Distillate Monitoring Program for the period July 1986-June 1987: (Final report)  

SciTech Connect

Heating oil prices both retail and wholesale and stock levels are presented for the state of Connecticut for the period October 1, 1986 through May 4, 1987. (AT)

Not Available

1987-06-01T23:59:59.000Z

134

Techno-economic analysis of using corn stover to supply heat and power to a corn ethanol plant - Part 2: Cost of heat and power generation systems  

SciTech Connect

This paper presents a techno-economic analysis of corn stover fired process heating (PH) and the combined heat and power (CHP) generation systems for a typical corn ethanol plant (ethanol production capacity of 170 dam3). Discounted cash flow method was used to estimate both the capital and operating costs of each system and compared with the existing natural gas fired heating system. Environmental impact assessment of using corn stover, coal and natural gas in the heat and/or power generation systems was also evaluated. Coal fired process heating (PH) system had the lowest annual operating cost due to the low fuel cost, but had the highest environmental and human toxicity impacts. The proposed combined heat and power (CHP) generation system required about 137 Gg of corn stover to generate 9.5 MW of electricity and 52.3 MW of process heat with an overall CHP efficiency of 83.3%. Stover fired CHP system would generate an annual savings of 3.6 M$ with an payback period of 6 y. Economics of the coal fired CHP system was very attractive compared to the stover fired CHP system due to lower fuel cost. But the greenhouse gas emissions per Mg of fuel for the coal fired CHP system was 32 times higher than that of stover fired CHP system. Corn stover fired heat and power generation system for a corn ethanol plant can improve the net energy balance and add environmental benefits to the corn to ethanol biorefinery.

Mani, Sudhagar [University of Georgia; Sokhansanj, Shahabaddine [ORNL; Togore, Sam [U.S. Department of Energy; Turhollow Jr, Anthony F [ORNL

2010-03-01T23:59:59.000Z

135

Field Measurements of Heating System Efficiency in Nine Electrically-Heated Manufactured Homes.  

SciTech Connect

This report presents the results of field measurements of heating efficiency performed on nine manufactured homes sited in the Pacific Northwest. The testing procedure collects real-time data on heating system energy use and heating zone temperatures, allowing direct calculation of heating system efficiency.

Davis, Bob; Siegel, J.; Palmiter, L.; Baylon, D.

1996-07-01T23:59:59.000Z

136

Periodic thermodynamics of laser-driven molecular motor  

Science Journals Connector (OSTI)

Operation of a laser-driven nano-motor inevitably generates a non-trivial amount of heat, which can possibly lead to instability or even hinder the motor's continual running. This work quantitatively examines the overheating problem for a recently proposed laser-operated molecular locomotive. We present a single-molecule cooling theory, in which molecular details of the locomotive system are explicitly treated. This theory is able to quantitatively predict cooling efficiency for various candidates of molecular systems for the locomotive, and also suggests concrete strategies for improving the locomotive's cooling. It is found that water environment is able to cool the hot locomotive down to room temperature within 100 picoseconds after photon absorption. This cooling time is a few orders of magnitude shorter than the typical time for laser operation, effectively preventing any overheating for the nano-locomotive. However, when the cooling is less effective in non-aqueous environment, residual heat may build up. A continuous running of the motor will then lead to a periodic thermodynamics, which is a common character of many laser-operated nano-devices.

Li Dan; Zheng Wen-Wei; Wang Zhi-Song

2008-01-01T23:59:59.000Z

137

Heat Distribution Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Distribution Systems Distribution Systems Heat Distribution Systems May 16, 2013 - 5:26pm Addthis Radiators are used in steam and hot water heating. | Photo courtesy of ©iStockphoto/Jot Radiators are used in steam and hot water heating. | Photo courtesy of ©iStockphoto/Jot Heat is distributed through your home in a variety of ways. Forced-air systems use ducts that can also be used for central air conditioning and heat pump systems. Radiant heating systems also have unique heat distribution systems. That leaves two heat distribution systems -- steam radiators and hot water radiators. Steam Radiators Steam heating is one of the oldest heating technologies, but the process of boiling and condensing water is inherently less efficient than more modern systems, plus it typically suffers from significant lag times between the

138

Waste-heat recovery in batch processes using heat storage  

SciTech Connect

The waste-heat recovery in batch processes has been studied using the pinch-point method. The aim of the work has been to investigate theoretical and practical approaches to the design of heat-exchanger networks, including heat storage, for waste-heat recovery in batch processes. The study is limited to the incorporation of energy-storage systems based on fixed-temperature variable-mass stores. The background for preferring this to the alternatives (variable-temperature fixed-mass and constant-mass constant-temperature (latent-heat) stores) is given. It is shown that the maximum energy-saving targets as calculated by the pinch-point method (time average model, TAM) can be achieved by locating energy stores at either end of each process stream. This theoretically large number of heat-storage tanks (twice the number of process streams) can be reduced to just a few tanks. A simple procedure for determining a number of heat-storage tanks sufficient to achieve the maximum energy-saving targets as calculated by the pinch-point method is described. This procedure relies on combinatorial considerations, and could therefore be labeled the combinatorial method for incorporation of heat storage in heat-exchanger networks. Qualitative arguments justifying the procedure are presented. For simple systems, waste-heat recovery systems with only three heat-storage temperatures (a hot storage, a cold storage, and a heat store at the pinch temperature) often can achieve the maximum energy-saving targets. Through case studies, six of which are presented, it is found that a theoretically large number of heat-storage tanks (twice the number of process streams) can be reduced to just a few tanks. The description of these six cases is intended to be sufficiently detailed to serve as benchmark cases for development of alternative methods.

Stoltze, S.; Mikkelsen, J.; Lorentzen, B.; Petersen, P.M.; Qvale, B. [Technical Univ. of Denmark, Lyngby (Denmark). Lab. for Energetics

1995-06-01T23:59:59.000Z

139

Periodic pumping tests  

Science Journals Connector (OSTI)

......pumping period. The considered penetration depth (eq. 6) constitutes...well transmitted beyond the penetration depth. It is only a question...measurable. In contrast, flow rate measured at the pumping well...subsurface volume represented by penetration depth.) We cannot exclude......

Jrg Renner; Mareike Messar

2006-10-01T23:59:59.000Z

140

Geothermal district heating systems  

SciTech Connect

Ten district heating demonstration projects and their present status are described. The projects are Klamath County YMCA, Susanville District Heating, Klamath Falls District Heating, Reno Salem Plaza Condominium, El Centro Community Center Heating/Cooling, Haakon School and Business District Heating, St. Mary's Hospital, Diamond Ring Ranch, Pagosa Springs District Heating, and Boise District Heating.

Budney, G.S.; Childs, F.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "time period heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The Onset of Ion Heating During Magnetic Reconnection with a Strong Guide Field  

E-Print Network (OSTI)

The onset of the acceleration of ions during magnetic reconnection is explored via particle-in-cell simulations in the limit of a strong ambient guide field that self-consistently and simultaneously follow the motions of protons and $\\alpha$ particles. Heating parallel to the local magnetic field during reconnection with a guide field is strongly reduced compared with the reconnection of anti-parallel magnetic fields. The dominant heating of thermal ions during guide field reconnection results from pickup behavior of ions during their entry into reconnection exhausts and dominantly produces heating perpendicular rather than parallel to the local magnetic field. Pickup behavior requires that the ion transit time across the exhaust boundary (with a transverse scale of the order of the ion sound Larmor radius) be short compared with the ion cyclotron period. This translates into a threshold in the strength of reconnecting magnetic field that favors the heating of ions with high mass-to-charge. A simulation with ...

Drake, J F

2014-01-01T23:59:59.000Z

142

ME 519: THEORY OF HEAT TRANSFER Instructor  

E-Print Network (OSTI)

ME 519: THEORY OF HEAT TRANSFER Fall 2014 Instructor: Class time: Classroom: Office Hours: Prof Tuesday 4­5pm or by appointment Class description This course will cover the fundamentals of heat transfer. An introductory course in heat transfer (ME 419 or equivalent) is pre-requisite. Grading 20% Homework 25% Exam 1

Lin, Xi

143

Water and Space Heating Heat Pumps  

E-Print Network (OSTI)

This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other domestic water heating systems. Domestic water is generally provided through...

Kessler, A. F.

1985-01-01T23:59:59.000Z

144

ARM - Measurement - Radiative heating rate  

NLE Websites -- All DOE Office Websites (Extended Search)

govMeasurementsRadiative heating rate govMeasurementsRadiative heating rate ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Radiative heating rate The heating rate due to the divergence of long and shortwave radiative flux. Categories Radiometric, Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. External Instruments MOLTS : Model Output Location Time Series Datastreams MOLTS : Model Output Location Time Series Datastreams MOLTSEDASSNDCLASS1 : Model Output Loc. Time Ser. (MOLTS): EDAS

145

Cab Heating and Cooling  

SciTech Connect

Schneider National, Inc., SNI, has concluded the Cab Heating and Cooling evaluation of onboard, engine off idling solutions. During the evaluation period three technologies were tested, a Webasto Airtronic diesel fired heater for cold weather operation, and two different approaches to cab cooling in warm weather, a Webasto Parking Cooler, phase change storage system and a Bergstrom Nite System, a 12 volt electrical air conditioning approach to cooling. Diesel fired cab heaters were concluded to provide adequate heat in winter environments down to 10 F. With a targeted idle reduction of 17%, the payback period is under 2 years. The Webasto Parking Cooler demonstrated the viability of this type of technology, but required significant driver involvement to achieve maximum performance. Drivers rated the technology as ''acceptable'', however, in individual discussions it became apparent they were not satisfied with the system limitations in hot weather, (over 85 F). The Bergstrom Nite system was recognized as an improvement by drivers and required less direct driver input to operate. While slightly improved over the Parking Cooler, the hot temperature limitations were only slightly better. Neither the Parking Cooler or the Nite System showed any payback potential at the targeted 17% idle reduction. Fleets who are starting at a higher idle baseline may have a more favorable payback.

Damman, Dennis

2005-10-31T23:59:59.000Z

146

Effective Rate Period  

NLE Websites -- All DOE Office Websites (Extended Search)

Fiscal Year 2014 Fiscal Year 2014 Effective Rate Period As of Beginning of the FY 10/01/2013 - 09/30/2014 Mid-Year Changes (if applicable) 10/01/2013 - 09/30/2014 Power Rates Annual Revenue Requirement Rate Schedule Power Revenue Requirement $73,441,557 CV-F13 Base Resource Revenue Requirement $69,585,875 First Preference Revenue Requirement $3,855,682

147

Heat transfer and heat exchangers reference handbook  

SciTech Connect

The purpose of this handbook is to provide Rocky Flats personnel with an understanding of the basic concepts of heat transfer and the operation of heat exchangers.

Not Available

1991-01-15T23:59:59.000Z

148

Heating systems for heating subsurface formations  

DOE Patents (OSTI)

Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)

2011-04-26T23:59:59.000Z

149

Displacement of the electron cyclotron resonance heating region and time evolution of the characteristics of short-wavelength turbulence in the 3D magnetic configuration of the L-2M stellarator  

Science Journals Connector (OSTI)

Reflection of the heating extraordinary microwave incident obliquely onto the surface of the electron cyclotron resonance (ECR) at the second harmonic ... stellarator was studied experimentally. The plasma was heated

G. M. Batanov; V. D. Borzosekov; L. V. Kolik; E. M. Konchekov

2014-10-01T23:59:59.000Z

150

Heat exchanger  

DOE Patents (OSTI)

A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

Brackenbury, Phillip J. (Richland, WA)

1986-01-01T23:59:59.000Z

151

Heat exchanger  

DOE Patents (OSTI)

A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

Brackenbury, P.J.

1983-12-08T23:59:59.000Z

152

Heat balance for two commercial broiler barns with solar preheated ventilation air  

Science Journals Connector (OSTI)

In temperate climatic zones, solar air heaters can reduce heating loads, and increase winter ventilation rates thereby improving inside air quality and livestock performance without additional fuel input. A heat balance was carried out to measure bird heat production under field conditions on two commercial broiler barns to evaluate the impact of solar heated ventilation air on bird performance, and identify strategies to reduce winter heating load. Located 40km east of Montreal, Canada, the experimental broiler barns were identically built with three floors housing 6500 birds per floor in an all-in all-out fashion. Equipped with solar air pre-heaters over their fresh air inlets, the barns were instrumented to monitor inlet, inside and outside air conditions, ventilation rate and heating system operating time. The effects on bird performance were observed from November 2007 to March 2009 by alternating their operation between the barns. The measured sensible and total heat productions of 4.5W and 8.4W, respectively, for 1kg birds corresponded to laboratory measured values. Bird performance was not affected by the solar air pre-heaters which increased the ventilation rate above normal during only 20% of the daytime period. Room air temperature stratification resulted in 2040kW of heat losses during the winter, representing 25% of the total natural gas heat load. Because inside air moved directly to the fans, large and rapid increases in ventilation inlet air temperature, produced by the solar air pre-heaters, resulted in further heat losses equivalent to 15% of the solar energy recovered. Sustainable energy management in livestock barns requiring heating should incorporate an air mixing system to eliminate air temperature stratification and improve fan flows.

Sbastien Cordeau; Suzelle Barrington

2010-01-01T23:59:59.000Z

153

Helium Refrigerator Design for Pulsed Heat Load in Tokamaks  

SciTech Connect

Nuclear fusion reactors of the Tokamak type will be operated in a pulsed mode requiring the helium refrigerator to remove periodically large heat loads in time steps of approximately one hour. What are the necessary steps for a refrigerator to cope with such load variations?A series of numerical simulations has been performed indicating the possibility of an active refrigerator control with low exergetic losses. A basic comparison is made between the largest existing refrigerator sizes and the size required to service for example the ITER requirements.

Kuendig, A.; Schoenfeld, H. [Linde Kryotechnik AG, Dattlikonerstrasse 5, CH-8422 Pfungen (Switzerland)

2006-04-27T23:59:59.000Z

154

CONDUCTION HEAT TRANSFER Dr. Ruhul Amin Fall 2011  

E-Print Network (OSTI)

ME 525 CONDUCTION HEAT TRANSFER Dr. Ruhul Amin Fall 2011 Office: 201C Roberts Hall Lecture Room of conduction heat transfer. Important results which are useful for engineering application will also: 121 Roberts Hall Phone: 994-6295 Lecture Periods: 12:45- 2:00, TR TEXT: Heat Conduction, M. N. Ozisik

Dyer, Bill

155

Segmented heat exchanger  

DOE Patents (OSTI)

A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

Baldwin, Darryl Dean (Lafayette, IN); Willi, Martin Leo (Dunlap, IL); Fiveland, Scott Byron (Metamara, IL); Timmons, Kristine Ann (Chillicothe, IL)

2010-12-14T23:59:59.000Z

156

High Operating Temperature Liquid Metal Heat Transfer Fluids  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquid Metal Liquid Metal Heat Transfer Fluids UCLA, UCB, Yale DE-EE0005941 | April 15, 2013 | Ju 1.1 Thermochemistry modeling * Continue CALPHAD based calculations to search for optimal ternary alloy compositions. * Initiate development of liquid density models. 1.2 Combinatorial synthesis and characterization * Pipe-Liquid interaction of compositional library * More alloys, alloy additions and effect on liquidus temperatures * Iteratively optimize the compositions. 1.3 Corrosion characterization and mitigation * Tune static corrosion testing systems for testing over an extended period of time. * Perform analysis of the micro mechanical testing on the oxide layers. 1.4 Heat transfer characterization and modeling * Complete the construction of the flow loop and perform experiments to measure

157

Low-temperature heat capacity of solid HD  

Science Journals Connector (OSTI)

The heat capacity at the saturated vapor pressure Cs has been measured for a single sample of solid HD over the temperature range 0.4 to 8 K for various concentrations of J=1 impurities of H2 and D2. The variation in J=1 concentration in the sample was due to conversion to the J=0 rotational ground state over a period of time of approximately one month. In the limit of zero J=1 concentration, Cs fitted a T3 dependence characterized by a Debye temperature of 101 K. An analysis is given of the contribution to the heat capacity from electric quadrupole-quadrupole pair interactions of the J=1 impurities in the solid.

J. H. Constable; A. Q. McGee; J. R. Gaines

1975-04-15T23:59:59.000Z

158

Industrial Heating with Creosote Pitch  

Science Journals Connector (OSTI)

Industrial Heating with Creosote Pitch ... TO REDUCE the demand for imported petroleum fuel oil, some British plants are using a mixture of creosote and pitch, obtained during the manufacture of city gas. ... Thus these tar oils, the most commonly used being creosote pitch, must be maintained at a temperature of not less than 90 F. at all times and delivered warm into suitably heated tanks. ...

C. H. S. TUPHOLME

1942-05-10T23:59:59.000Z

159

Time lags of the kilohertz quasi-periodic oscillations in the low-mass X-ray binaries 4U 160852 and 4U 163653  

Science Journals Connector (OSTI)

......the rms spectra of both kHz QPOs under the assumption that the time lags of both kHz QPOs are due to reflection...down-scattered by cold plasma in the accretion disc...apply to the case of the kHz QPOs, as long as the...down-scattering medium is the atmosphere of the disc. If we fit......

Marcio G. B. de Avellar; Mariano Mndez; Andrea Sanna; Jorge E. Horvath

2013-01-01T23:59:59.000Z

160

Ball Packings with Periodic Constraints  

Science Journals Connector (OSTI)

We call a periodic ball packing in $$d$$d-dimensional Euclidean space periodically (resp. strictly) jammed with respect to a period lattice $$\\varLambda $$ if there are no nontrivial motions of the balls that preserve $$\\varLambda $$ (resp. that maintain ... Keywords: 52C17, Ball packings, Jamming, Periodic packings, Rigidity, Tensegrities

Robert Connelly, Jeffrey D. Shen, Alexander D. Smith

2014-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "time period heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Thermal behavior of spiral fin-and-tube heat exchanger having fly ash deposit  

SciTech Connect

This research investigates the effect of fly-ash deposit on thermal performance of a cross-flow heat exchanger having a set of spiral finned-tubes as a heat transfer surface. A stream of warm air having high content of fly-ash is exchanging heat with a cool water stream in the tubes. In this study, the temperature of the heat exchanger surface is lower than the dew point temperature of air, thus there is condensation of moisture in the air stream on the heat exchanger surface. The affecting parameters such as the fin spacing, the air mass flow rate, the fly-ash mass flow rate and the inlet temperature of warm air are varied while the volume flow rate and the inlet temperature of the cold water stream are kept constant at 10 l/min and 5 C, respectively. From the experiment, it is found that as the testing period is shorter than 8 h the thermal resistance due to the fouling increases with time. Moreover, the deposit of fly-ash on the heat transfer surface is directly proportional to the dust-air ratio and the amount of condensate on heat exchange surface. However, the deposit of fly-ash is inversely proportional to the fin spacing. The empirical model for evaluating the thermal resistance is also developed in this work and the simulated results agree well with those of the measured data. (author)

Nuntaphan, Atipoang [Thermal Technology Research Laboratory, Mae Moh Training Center, Electricity Generating Authority of Thailand, Mae Moh, Lampang 52220 (Thailand); Kiatsiriroat, Tanongkiat [Department of Mechanical Engineering, Chiang Mai University, Chiang Mai 50200 (Thailand)

2007-08-15T23:59:59.000Z

162

DURING THIS REPORTING PERIOD, WE ISSUED 45 REPORTS; IDENTIFIED...  

Energy Savers (EERE)

components that have a limited lifetime due to their use of tritium, a radioactive gas which decays over time. Periodic replacement of these components is necessary to...

163

New subdwarf B star periods  

E-Print Network (OSTI)

Subdwarf B (sdB) stars are thought to be helium burning stars with low mass hydrogen envelopes. Several evolutionary paths have been proposed to explain the formation of these systems. One of these scenarios is the evolution of the sdB progenitor within a binary system. We have looked systematically at bright sdB stars from the PG survey. By taking spectra at several different epochs we have measured the radial velocity shifts caused by the motion of the sdB star within the binary. Our data have been taken over a long time base line (2 years) which allowed us to find longer period binaries than known before. Here we present results for 29 sdB systems.

L. Morales-Rueda; P. F. L. Maxted; T. R. Marsh; R. C. North

2002-09-26T23:59:59.000Z

164

Heat pulse propagation studies in TFTR  

SciTech Connect

The time scales for sawtooth repetition and heat pulse propagation are much longer (10's of msec) in the large tokamak TFTR than in previous, smaller tokamaks. This extended time scale coupled with more detailed diagnostics has led us to revisit the analysis of the heat pulse propagation as a method to determine the electron heat diffusivity, chi/sub e/, in the plasma. A combination of analytic and computer solutions of the electron heat diffusion equation are used to clarify previous work and develop new methods for determining chi/sub e/. Direct comparison of the predicted heat pulses with soft x-ray and ECE data indicates that the space-time evolution is diffusive. However, the chi/sub e/ determined from heat pulse propagation usually exceeds that determined from background plasma power balance considerations by a factor ranging from 2 to 10. Some hypotheses for resolving this discrepancy are discussed. 11 refs., 19 figs., 1 tab.

Fredrickson, E.D.; Callen, J.D.; Colchin, R.J.; Efthimion, P.C.; Hill, K.W.; Izzo, R.; Mikkelsen, D.R.; Monticello, D.A.; McGuire, K.; Bell, J.D.

1986-02-01T23:59:59.000Z

165

Ball Packings with Periodic Constraints  

E-Print Network (OSTI)

We call a periodic ball packing in d-dimensional Euclidean space periodically (strictly) jammed with respect to a period lattice if there are no nontrivial motions of the balls that preserve the period (that maintain some period with smaller or equal volume). In particular, we call a packing consistently periodically (strictly) jammed if it is periodically (strictly) jammed on every one of its periods. After extending a well-known bar framework and stress condition to strict jamming, we prove that a packing with period Lambda is consistently strictly jammed if and only if it is strictly jammed with respect to Lambda and consistently periodically jammed. We next extend a result about rigid unit mode spectra in crystallography to characterize periodic jamming on sublattices. After that, we prove that there are finitely many strictly jammed packings of m unit balls and other similar results. An interesting example shows that the size of the first sublattice on which a packing is first periodically unjammed is not bounded. Finally, we find an example of a consistently periodically jammed packing of low density \\delta = \\frac{4 \\pi}{6 \\sqrt{3} + 11} + \\epsilon ~ 0.59, where \\epsilon is an arbitrarily small positive number. Throughout the paper, the statements for the closely related notions of periodic infinitesimal rigidity and affine infinitesimal rigidity for tensegrity frameworks are also given.

Robert Connelly; Jeffrey D. Shen; Alexander D. Smith

2013-01-04T23:59:59.000Z

166

Natural Zeolites in Solar Energy Heating, Cooling, and Energy Storage  

Science Journals Connector (OSTI)

...thereby reducing the energy consumption by almost half. The concept...heat, or any type of fossil fuel. This heat pump has two operating...of the internal combustion engine as the heat source for the...utilizing the waste heat of the engine with a 60 sec cycling time...

Dimiter I. Tchernev

167

Floatable solar heat modules  

SciTech Connect

A floating solar heat module for swimming pools comprises a solid surface for conducting heat from the sun's rays to the water and further includes a solid heat storage member for continual heating even during the night. A float is included to maintain the solar heat module on the surface of the pool. The solid heat storage medium is a rolled metal disk which is sandwiched between top and bottom heat conducting plates, the top plate receiving the heat of the sun's rays through a transparent top panel and the bottom plate transferring the heat conducted through the top plate and rolled disk to the water.

Ricks, J.W.

1981-09-29T23:59:59.000Z

168

Heat Pump Water Heating Modeling in EnergyPlus  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pump Water Heater Modeling Heat Pump Water Heater Modeling in EnergyPlus Building America Residential Energy Efficiency Stakeholder Meeting Eric Wilson Craig Christensen March 1, 2012 2 Modeling Issues Results Motivation Heat Pump Water Heater Modeling... 3 Gap: Existing analysis tools cannot accurately model HPWHs with reasonable runtime. 4 What have we achieved so far? Laboratory Evaluations 14 x Field Monitoring 5 Closing the Gap Laboratory Evaluations 6 sec timestep hourly timestep 14 x Field Monitoring CARB 6 Why is modeling important? * Performance varies: Can't just use EF * System interaction o HPWH affects building heating and cooling o Space conditions affect HPWH performance 7 Modeling Goals * Manage Risks o Accuracy o Run time o Occupant satisfaction * Flexibility to explore the effects of:

169

Heat Pump for High School Heat Recovery  

E-Print Network (OSTI)

ICEBO2006, Shenzhen, China Renewable Energy Resources and a Greener Future Vol.VIII-12-1 Heat Pump for High School Bathroom Heat Recovery Kunrong Huang Hanqing Wang Xiangjiang Zhou Associate professor Professor Professor School...

Huang, K.; Wang, H.; Zhou, X.

2006-01-01T23:59:59.000Z

170

District heating campaign in Sweden  

SciTech Connect

During the fall of 1994 a district heating campaign was conducted in Sweden. The campaign was initiated because the Swedish district heating companies agreed that it was time to increase knowledge and awareness of district heating among the general public, especially among potential customers. The campaign involved many district heating companies and was organized as a special project. Advertising companies, media advisers, consultants and investigators were also engaged. The campaign was conducted in two stages, a national campaign followed by local campaign was conducted in two stages, a national campaign followed by local campaigns. The national campaign was conducted during two weeks of November 1994 and comprised advertising on commercial TV and in the press.

Stalebrant, R.E. [Swedish District Heating Association, Stockholm (Sweden)

1995-09-01T23:59:59.000Z

171

Pagosa Springs District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

Pagosa Springs District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low...

172

Boise City Geothermal District Heating District Heating Low Temperatur...  

Open Energy Info (EERE)

Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boise City Geothermal District Heating District Heating...

173

San Bernardino District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

San Bernardino District Heating District Heating Low Temperature Geothermal Facility Facility San Bernardino District Heating Sector Geothermal energy Type District Heating...

174

Kethcum District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal...

175

Philip District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal...

176

Midland District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Midland District Heating District Heating Low Temperature Geothermal Facility Facility Midland District Heating Sector Geothermal energy Type District Heating Location Midland,...

177

Combined Heat and Power, Waste Heat, and District Energy | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Combined Heat and Power, Waste Heat, and District Energy Combined Heat and Power, Waste Heat, and District Energy Presentation-given at the Fall 2011 Federal Utility Partnership...

178

Waste Heat Management Options for Improving Industrial Process Heating Systems  

Energy.gov (U.S. Department of Energy (DOE))

This presentation covers typical sources of waste heat from process heating equipment, characteristics of waste heat streams, and options for recovery including Combined Heat and Power.

179

Guide to Geothermal Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Heat Pumps Work Using a heat exchanger, a geothermal heat pump can move heat from one space to another. In summer, the geothermal heat pump extracts heat from a building...

180

PERIODIC GLOW DISCHARGE REPORT  

NLE Websites -- All DOE Office Websites (Extended Search)

GLOW DISCHARGE REPORT GLOW DISCHARGE REPORT TIME: Jan 11 2014 11:29:09:000PM Power Supply ON/OFF Status OFF Power Supply Fault Status FAULT Power Supply Standby Status ON Power Supply Interlock Status NOT OK HV Power Resistors Status NORMAL Power Supply Voltage 52.00 Power Supply Current -71.00 Electrode 1 Voltage -15.00 Electrode 1 Current -79.00 Electrode 2 Voltage -14.00 Electrode 2 Current -70.00 ROSS 1 Status OPEN ROSS 2 Status OPEN ROSS 1 Common Line OPEN ROSS 2 Common Line OPEN IGBT1 Enable DISABLE IGBT2 Enable DISABLE

Note: This page contains sample records for the topic "time period heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Climate, extreme heat, and electricity demand in California  

SciTech Connect

Climate projections from three atmosphere-ocean climate models with a range of low to mid-high temperature sensitivity forced by the Intergovernmental Panel for Climate Change SRES higher, middle, and lower emission scenarios indicate that, over the 21st century, extreme heat events for major cities in heavily air-conditioned California will increase rapidly. These increases in temperature extremes are projected to exceed the rate of increase in mean temperature, along with increased variance. Extreme heat is defined here as the 90 percent exceedance probability (T90) of the local warmest summer days under the current climate. The number of extreme heat days in Los Angeles, where T90 is currently 95 F (32 C), may increase from 12 days to as many as 96 days per year by 2100, implying current-day heat wave conditions may last for the entire summer, with earlier onset. Overall, projected increases in extreme heat under the higher A1fi emission scenario by 2070-2099 tend to be 20-30 percent higher than those projected under the lower B1 emission scenario, ranging from approximately double the historical number of days for inland California cities (e.g. Sacramento and Fresno), up to four times for previously temperate coastal cities (e.g. Los Angeles, San Diego). These findings, combined with observed relationships between high temperature and electricity demand for air-conditioned regions, suggest potential shortfalls in transmission and supply during T90 peak electricity demand periods. When the projected extreme heat and peak demand for electricity are mapped onto current availability, maintaining technology and population constant only for demand side calculations, we find the potential for electricity deficits as high as 17 percent. Similar increases in extreme heat days are suggested for other locations across the U.S. southwest, as well as for developing nations with rapidly increasing electricity demands. Electricity response to recent extreme heat events, such as the July 2006 heat wave in California, suggests that peak electricity demand will challenge current supply, as well as future planned supply capacities when population and income growth are taken into account.

Miller, N.L.; Hayhoe, K.; Jin, J.; Auffhammer, M.

2008-04-01T23:59:59.000Z

182

Woven heat exchanger  

DOE Patents (OSTI)

This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

Piscitella, R.R.

1984-07-16T23:59:59.000Z

183

HEATING 7. 1 user's manual  

SciTech Connect

HEATING is a FORTRAN program designed to solve steady-state and/or transient heat conduction problems in one-, two-, or three- dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heating generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- and position-dependent. The boundary conditions, which may be surface-to-boundary or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General graybody radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING is variably dimensioned and utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution (for one-dimensional or two-dimensional problems), and conjugate gradient. Transient problems may be solved using one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method (which for some circumstances allows a time step greater than the CEP stability criterion). The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.

Childs, K.W.

1991-07-01T23:59:59.000Z

184

Comparison of an impedance heating system to mineral insulated heat trace for power tower applications  

SciTech Connect

A non-conventional type of heating system is being tested at Sandia National Laboratories for solar thermal power tower applications. In this system, called impedance heating, electric current flows directly through the pipe to maintain the desired temperature. The pipe becomes the resistor where the heat is generated. Impedance heating has many advantages over previously used mineral insulated (MI) heat trace. An impedance heating system should be much more reliable than heat trace cable since delicate junctions and cabling are not used and the main component, a transformer, is inherently reliable. A big advantage of impedance heating is the system can be sized to rapidly heat up the piping to provide rapid response times necessary in cyclic power plants such as solar power towers. In this paper, experimental results from testing an impedance heating system are compared to MI heat trace. The authors found impedance heating was able to heat piping rapidly and effectively. There were not significant stray currents and impedance heating did not affect instrumentation.

Pacheco, J.E.; Kolb, W.J.

1997-03-01T23:59:59.000Z

185

Towards Intelligent District Heating.  

E-Print Network (OSTI)

??A district heating system consists of one or more production units supplying energy in the form of heated water through a distribution pipe network to (more)

Johansson, Christian

2010-01-01T23:59:59.000Z

186

Total Space Heat-  

Annual Energy Outlook 2012 (EIA)

Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

187

ARM - Heat Index Calculations  

NLE Websites -- All DOE Office Websites (Extended Search)

FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Heat Index Calculations Heat Index is an index that combines air temperature and relative...

188

PERIODIC CRYO REPORT  

NLE Websites -- All DOE Office Websites (Extended Search)

CRYO REPORT CRYO REPORT TIME: Jan 11 2014 11:29:09:000PM LN2 tank pressure, psi 63.00 LN2 main tank level,inch 48.05 LN2 resv tank level,inch 179.00 Cryostat pressure, psi 0.01 LN2 sump level, inch 0.00 LN2 pump speed, rpm 0.27 LN2 pump pressure, psi 0.00 Scanner OK DIBORANE SYSTEM CRYBOR CONC1 OK CRYBOR CONC2 OK CRYBOR INST1 OK CRYBOR INST2 OK RESISTANCE COIL TEMPERATURES, deg C EF1U, deg C 34.66 EF1L 21.94 EF2U 26.93 EF2L 21.70 EF3U 41.54 EF3L 36.42 EFCU 18.28 EFCL 8.16

189

STEO October 2012 - home heating supplies  

U.S. Energy Information Administration (EIA) Indexed Site

Natural gas, propane, and electricity supplies seen plentiful Natural gas, propane, and electricity supplies seen plentiful this winter for U.S. home heating Supplies of the major heating fuels used by most U.S. households are expected to be plentiful this winter, with the possible exception of heating oil, which is consumed mostly by households in the Northeast. Heating oil stocks are expected to be low in the East Coast and Gulf Coast states. And with New York state requiring heating oil with lower sulfur levels for the first time, the heating oil market is expected to be tighter this winter, according to the U.S. Energy Information Administration's new winter fuels forecast. However, U.S. inventories of natural gas, the most common primary heating fuel used by households and a key fuel for electricity generation, is expected to reach 3.9 trillion cubic feet by

190

Heating and cooling of municipal buildings with waste heat from ground water  

SciTech Connect

The feasibility of using waste heat from municipal water wells to replace natural gas for heating of the City Hall, Fire Station, and Community Hall in Wilmer, Texas was studied. At present, the 120/sup 0/F well water is cooled by dissipating the excess heat through evaporative cooling towers before entering the distribution system. The objective of the study was to determine the pumping cycle of the well and determine the amount of available heat from the water for a specified period. This data were correlated with the heating and cooling demand of the City's buildings, and a conceptual heat recovery system will be prepared. The system will use part or all of the excess heat from the water to heat the buildings, thereby eliminating the use of natural gas. The proposed geothermal retrofit of the existing natural gas heating system is not economical because the savings in natural gas does not offset the capital cost of the new equipment and the annual operating and maintenance costs. The fuel savings and power costs are a virtual trade-off over the 25-year period. The installation and operation of the system was estimated to cost $105,000 for 25 years which is an unamortized expense. In conclusion, retrofitting the City of Wilmer's municipal buildings is not feasible based on the economic analysis and fiscal projections as presented.

Morgan, D.S.; Hochgraf, J.

1980-10-01T23:59:59.000Z

191

Forward period analysis and the long term simulation of a periodic Hamiltonian system  

E-Print Network (OSTI)

The period of a Morse oscillator and mathematical pendulum system are obtained, accurate to 100 significant digits, by forward period analysis (FPA). From these results, the long-term [0, 10^60] (time unit) solutions, which overlap from the Planck time to the age of the universe, are computed reliably and quickly with a parallel multiple-precision Taylor series (PMT) scheme. The application of FPA to periodic systems can reduce the computation loops of long-term reliable simulation from O(t^(1+1/M)) to O(lnt+t/h0) where T is the period, M the order and h0 a constant step-size. This scheme provides a way to generate reference solutions to test other schemes' long-term simulations.

Pengfei Wang

2014-10-23T23:59:59.000Z

192

The evaluation of a 4000-home geothermal heat pump retrofit at Fort Polk, Louisiana: Final Report  

SciTech Connect

This report documents an independent evaluation of an energy retrofit of 4,003 family housing units at Fort Polk, Louisiana, under an energy savings performance contract (ESPC). Replacement of the heating, cooling, and water heating systems in these housing units with geothermal heat pumps (GHPs) anchored the retrofit; low-flow shower heads and compact fluorescent lighting were also installed, as well as attic insulation where needed. Statistically valid findings indicate that the project will save 25.8 million kWh, or 32.5% of the pre-retrofit whole-community electrical consumption, and 100% of the whole-community natural gas previously used for space conditioning and water heating (260,000 therms) in a typical meteorological year. At the end-use level, the GHPs were found to save about 42% of the pre-retrofit electrical consumption for heating, cooling, and water heating in housing units that were all-electric in the pre-retrofit period. This report also demonstrates an improved method of predicting energy savings. Using an engineering model calibrated to pre-retrofit energy use data collected in the field, the method predicted actual energy savings on one of the electric feeders at Fort Polk with a very high degree of accuracy. The accuracy of this model was in turn dependent on data-calibrated models of the geothermal heat pump and ground heat exchanger that are described in this report. In addition this report documents the status of vertical borehole ground heat exchanger (BHEx) design methods at the time this project was designed, and demonstrates methods of using data collected from operating GHP systems to benchmark BHEx design methods against a detailed engineering model calibrated to date. The authors also discuss the ESPC`s structure and implementation and how the experience gained here can contribute to the success of future ESPCs.

Hughes, P.J.; Shonder, J.A.

1998-03-01T23:59:59.000Z

193

Absorption cooling in district heating network: Temperature difference examination in hot water circuit.  

E-Print Network (OSTI)

?? Absorption cooling system driven by district heating network is relized as a smart strategy in Sweden. During summer time when the heating demand is (more)

Yuwardi, Yuwardi

2013-01-01T23:59:59.000Z

194

Investigation of Latent-Heat Storage Systems for Green Building Applications  

Science Journals Connector (OSTI)

In green building applications, highest energy demands are needed for air conditioning to ... heat storage systems during the usage of solar energy and ground-sourced heat pump systems for ... period, analyses sh...

Devrim Aydin; Zafer Utlu; Olcay Kincay

2014-01-01T23:59:59.000Z

195

No. 2 heating oil/propane program 1994--1995. Final report  

SciTech Connect

During the 1994--95 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy`s (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October 1994 through March 1995. This program augmented the existing Massachusetts data collection system and served several important functions. The information helped the federal and state governments respond to consumer, congressional and media inquiries regarding No. 2 oil and propane. The information also provided policy decision-makers with timely, accurate and consistent data to monitor current heating oil and propane markets and develop appropriate state responses when necessary. In addition, the communication network between states and the DOE was strengthened through this program. This final report begins with an overview of the unique events that had an impact on the petroleum markets prior to and during the reporting period. Next, the report summarizes the results from residential heating oil and propane price surveys conducted by DOER over the 1994--95 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by EIA and distributed to the states. Finally, the report outlines DOER`s use of the data.

McBrien, J.

1995-05-01T23:59:59.000Z

196

Embedding a chaotic signature in a periodic train: can periodic signals be chaotic?  

E-Print Network (OSTI)

We show how a chaotic system can be locked to emit a periodic waveform belonging to its chaotic attractor. We numerically demonstrate our idea in a system composed of a semiconductor laser driven to chaos by optical feedback from a short external cavity. The clue is the injection of an appropriate periodic signal that modulates the phase and amplitude of the intra-cavity radiation, a chaotic analogy of conventional mode-locking. The result is a time process that manifests a chaotic signature embedded in a long-scale periodic train.

Antonio Mecozzi; Cristian Antonelli

2008-12-11T23:59:59.000Z

197

Evaluation of Waste Heat Recovery and Utilization from Residential Appliances and Fixtures  

SciTech Connect

Executive Summary In every home irrespective of its size, location, age, or efficiency, heat in the form of drainwater or dryer exhaust is wasted. Although from a waste stream, this energy has the potential for being captured, possibly stored, and then reused for preheating hot water or air thereby saving operating costs to the homeowner. In applications such as a shower and possibly a dryer, waste heat is produced at the same time as energy is used, so that a heat exchanger to capture the waste energy and return it to the supply is all that is needed. In other applications such as capturing the energy in drainwater from a tub, dishwasher, or washing machine, the availability of waste heat might not coincide with an immediate use for energy, and consequently a heat exchanger system with heat storage capacity (i.e. a regenerator) would be necessary. This study describes a two-house experimental evaluation of a system designed to capture waste heat from the shower, dishwasher clothes washer and dryer, and to use this waste heat to offset some of the hot water energy needs of the house. Although each house was unoccupied, they were fitted with equipment that would completely simulate the heat loads and behavior of human occupants including operating the appliances and fixtures on a demand schedule identical to Building American protocol (Hendron, 2009). The heat recovery system combined (1) a gravity-film heat exchanger (GFX) installed in a vertical section of drainline, (2) a heat exchanger for capturing dryer exhaust heat, (3) a preheat tank for storing the captured heat, and (4) a small recirculation pump and controls, so that the system could be operated anytime that waste heat from the shower, dishwasher, clothes washer and dryer, and in any combination was produced. The study found capturing energy from the dishwasher and clothes washer to be a challenge since those two appliances dump waste water over a short time interval. Controls based on the status of the dump valve on these two appliances would have eliminated uncertainty in knowing when waste water was flowing and the recovery system operated. The study also suggested that capture of dryer exhaust heat to heat incoming air to the dryer should be examined as an alternative to using drying exhaust energy for water heating. The study found that over a 6-week test period, the system in each house was able to recover on average approximately 3000 W-h of waste heat daily from these appliance and showers with slightly less on simulated weekdays and slightly more on simulated weekends which were heavy wash/dry days. Most of these energy savings were due to the shower/GFX operation, and the least savings were for the dishwasher/GFX operation. Overall, the value of the 3000 W-h of displaced energy would have been $0.27/day based on an electricity price of $.09/kWh. Although small for today s convention house, these savings are significant for a home designed to approach maximum affordable efficiency where daily operating costs for the whole house are less than a dollar per day. In 2010 the actual measured cost of energy in one of the simulated occupancy houses which waste heat recovery testing was undertaken was $0.77/day.

Tomlinson, John J [ORNL; Christian, Jeff [Oak Ridge National Laboratory (ORNL); Gehl, Anthony C [ORNL

2012-09-01T23:59:59.000Z

198

Heating Oil and Propane Update  

Gasoline and Diesel Fuel Update (EIA)

Holiday Release Schedule Holiday Release Schedule The Heating Oil and Propane Update is produced during the winter heating season, which extends from October through March of each year. The standard release time and day of the week will be at 1:00 p. m. (Eastern time) on Wednesdays with the following exceptions. All times are Eastern. Data for: Alternate Release Date Release Day Release Time Holiday October 14, 2013 October 17, 2013 Thursday Cancelled Columbus/EIA Closed November 11, 2013 November 14, 2013 Thursday 1:00 p.m. Veterans December 23, 2013 December 27, 2013 Friday 1:00 p.m. Christmas December 30, 2013 January 3, 2014 Friday 1:00 p.m. New Year's January 20, 2014 January 23, 2014 Thursday 1:00 p.m. Martin Luther King Jr. February 17, 2014 February 20, 2014 Thursday 1:00 p.m. President's

199

Rotary magnetic heat pump  

DOE Patents (OSTI)

A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

Kirol, L.D.

1987-02-11T23:59:59.000Z

200

Heat pipes for use in a magnetic field  

DOE Patents (OSTI)

A heat pipe configuration for use in a magnetic field environment of a fusion reactor is disclosed. Heat pipes for operation in a magnetic field when liquid metal working fluids are used are optimized by flattening of the heat pipes having an unobstructed annulus which significantly reduces the adverse side region effect of the prior known cylindrically configured heat pipes. The flattened heat pipes operating in a magnetic field can remove 2--3 times the heat as a cylindrical heat pipe of the same cross sectional area. 4 figs.

Werner, R.W.; Hoffman, M.A.

1983-07-19T23:59:59.000Z

Note: This page contains sample records for the topic "time period heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Thulium-170 heat source  

SciTech Connect

An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

Walter, C.E.; Van Konynenburg, R.; VanSant, J.H.

1990-09-06T23:59:59.000Z

202

Thulium-170 heat source  

DOE Patents (OSTI)

An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

Walter, Carl E. (Pleasanton, CA); Van Konynenburg, Richard (Livermore, CA); VanSant, James H. (Tracy, CA)

1992-01-01T23:59:59.000Z

203

Heat Treating Apparatus  

DOE Patents (OSTI)

Apparatus for heat treating a heat treatable material including a housing having an upper opening for receiving a heat treatable material at a first temperature, a lower opening, and a chamber therebetween for heating the heat treatable material to a second temperature higher than the first temperature as the heat treatable material moves through the chamber from the upper to the lower opening. A gas supply assembly is operatively engaged to the housing at the lower opening, and includes a source of gas, a gas delivery assembly for delivering the gas through a plurality of pathways into the housing in countercurrent flow to movement of the heat treatable material, whereby the heat treatable material passes through the lower opening at the second temperature, and a control assembly for controlling conditions within the chamber to enable the heat treatable material to reach the second temperature and pass through the lower opening at the second temperature as a heated material.

De Saro, Robert (Annandale, NJ); Bateman, Willis (Sutton Colfield, GB)

2002-09-10T23:59:59.000Z

204

THE STORAGE OF HEAT AND ELECTRICITY  

Science Journals Connector (OSTI)

...repressurized gas fields, or gas-filled underground cavities. Natural gas can even be transported...gravel in connection with solar heating of dwellings...dry ice, and liquefied gases. The durations of time...steam on its way to a turbine. Sensible heat in recuperators...

Bertrand A. Landry

1961-01-01T23:59:59.000Z

205

Thermoelectric heat exchange element  

DOE Patents (OSTI)

A thermoelectric heat exchange module includes a first substrate including a heat receptive side and a heat donative side and a series of undulatory pleats. The module may also include a thermoelectric material layer having a ZT value of 1.0 or more disposed on at least one of the heat receptive side and the heat donative side, and an electrical contact may be in electrical communication with the thermoelectric material layer.

Callas, James J. (Peoria, IL); Taher, Mahmoud A. (Peoria, IL)

2007-08-14T23:59:59.000Z

206

Heat Integrate Heat Engines in Process Plants  

E-Print Network (OSTI)

and refrigeration systems. In many instances these real heat engines may appear as a complex process consisting of flash vessels, heat exchangers, compressors, furnaces, etc. See Figure 18a, which shows a simplified diagram of a "steam Rankine cycle." How... and rejection profiles of the real machine. For example, the heat acceptance and re jection profiles for the steam Rankine cycle shown in Figure 18a have been drawn on T,H coordinates in Figure 18b. Thus providing we know the heat acceptance and rejection...

Hindmarsh, E.; Boland, D.; Townsend, D. W.

207

The long time behavior of diffusion in tilted periodic potentials  

E-Print Network (OSTI)

Sep 18, 2013 ... as front propagation describing the evolution of an interface driven by an external force through ... and T is the absolute temperature), and ?W is a standard d-

2013-09-18T23:59:59.000Z

208

PERIOD ERROR ESTIMATION FOR THE KEPLER ECLIPSING BINARY CATALOG  

SciTech Connect

The Kepler Eclipsing Binary Catalog (KEBC) describes 2165 eclipsing binaries identified in the 115 deg{sup 2} Kepler Field based on observations from Kepler quarters Q0, Q1, and Q2. The periods in the KEBC are given in units of days out to six decimal places but no period errors are provided. We present the PEC (Period Error Calculator) algorithm, which can be used to estimate the period errors of strictly periodic variables observed by the Kepler Mission. The PEC algorithm is based on propagation of error theory and assumes that observation of every light curve peak/minimum in a long time-series observation can be unambiguously identified. The PEC algorithm can be efficiently programmed using just a few lines of C computer language code. The PEC algorithm was used to develop a simple model that provides period error estimates for eclipsing binaries in the KEBC with periods less than 62.5 days: log {sigma}{sub P} Almost-Equal-To - 5.8908 + 1.4425(1 + log P), where P is the period of an eclipsing binary in the KEBC in units of days. KEBC systems with periods {>=}62.5 days have KEBC period errors of {approx}0.0144 days. Periods and period errors of seven eclipsing binary systems in the KEBC were measured using the NASA Exoplanet Archive Periodogram Service and compared to period errors estimated using the PEC algorithm.

Mighell, Kenneth J. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Plavchan, Peter [NASA Exoplanet Science Institute, California Institute of Technology, Pasadena, CA 91125 (United States)

2013-06-15T23:59:59.000Z

209

Periodicities in gamma ray bursts  

Science Journals Connector (OSTI)

Gamma ray burst models based on magnetic neutron stars face a problem of account for the scarcity of observed periods. Both this scarcity and the typical period found when any is detected are explained if the neutron stars are accreting in binary systems

Kent S. Wood

1984-01-01T23:59:59.000Z

210

Optimal joule heating of the subsurface  

DOE Patents (OSTI)

A method for simultaneously heating the subsurface and imaging the effects of the heating is disclosed. This method combines the use of tomographic imaging (electrical resistance tomography or ERT) to image electrical resistivity distribution underground, with joule heating by electrical currents injected in the ground. A potential distribution is established on a series of buried electrodes resulting in energy deposition underground which is a function of the resistivity and injection current density. Measurement of the voltages and currents also permits a tomographic reconstruction of the resistivity distribution. Using this tomographic information, the current injection pattern on the driving electrodes can be adjusted to change the current density distribution and thus optimize the heating. As the heating changes conditions, the applied current pattern can be repeatedly adjusted (based on updated resistivity tomographs) to affect real time control of the heating.

Berryman, J.G.; Daily, W.D.

1994-07-05T23:59:59.000Z

211

Cloud Properties and Radiative Heating Rates for TWP  

DOE Data Explorer (OSTI)

A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites located in the Tropical Western Pacific (TWP) region. The cloud properties retrieval is a conditional retrieval that applies various retrieval techniques depending on the available data, that is if lidar, radar or both instruments detect cloud. This Combined Remote Sensor Retrieval Algorithm (CombRet) produces vertical profiles of liquid or ice water content (LWC or IWC), droplet effective radius (re), ice crystal generalized effective size (Dge), cloud phase, and cloud boundaries. The algorithm was compared with 3 other independent algorithms to help estimate the uncertainty in the cloud properties, fluxes, and heating rates (Comstock et al. 2013). The dataset is provided at 2 min temporal and 90 m vertical resolution. The current dataset is applied to time periods when the MMCR (Millimeter Cloud Radar) version of the ARSCL (Active Remotely-Sensed Cloud Locations) Value Added Product (VAP) is available. The MERGESONDE VAP is utilized where temperature and humidity profiles are required. Future additions to this dataset will utilize the new KAZR instrument and its associated VAPs.

Comstock, Jennifer

212

Cloud Properties and Radiative Heating Rates for TWP  

SciTech Connect

A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites located in the Tropical Western Pacific (TWP) region. The cloud properties retrieval is a conditional retrieval that applies various retrieval techniques depending on the available data, that is if lidar, radar or both instruments detect cloud. This Combined Remote Sensor Retrieval Algorithm (CombRet) produces vertical profiles of liquid or ice water content (LWC or IWC), droplet effective radius (re), ice crystal generalized effective size (Dge), cloud phase, and cloud boundaries. The algorithm was compared with 3 other independent algorithms to help estimate the uncertainty in the cloud properties, fluxes, and heating rates (Comstock et al. 2013). The dataset is provided at 2 min temporal and 90 m vertical resolution. The current dataset is applied to time periods when the MMCR (Millimeter Cloud Radar) version of the ARSCL (Active Remotely-Sensed Cloud Locations) Value Added Product (VAP) is available. The MERGESONDE VAP is utilized where temperature and humidity profiles are required. Future additions to this dataset will utilize the new KAZR instrument and its associated VAPs.

Comstock, Jennifer

2013-11-07T23:59:59.000Z

213

ARM - Measurement - Sensible heat flux  

NLE Websites -- All DOE Office Websites (Extended Search)

govMeasurementsSensible heat flux govMeasurementsSensible heat flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Sensible heat flux The time rate of flow for the energy transferred from a warm or hot surface to whatever is touching it, typically air. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CO2FLX : Carbon Dioxide Flux Measurement Systems ECOR : Eddy Correlation Flux Measurement System EBBR : Energy Balance Bowen Ratio Station

214

ARM - Measurement - Latent heat flux  

NLE Websites -- All DOE Office Websites (Extended Search)

govMeasurementsLatent heat flux govMeasurementsLatent heat flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Latent heat flux The time rate of flow for the specific enthalpy difference between two phases of a substance at the same temperature, typically water. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CO2FLX : Carbon Dioxide Flux Measurement Systems ECOR : Eddy Correlation Flux Measurement System EBBR : Energy Balance Bowen Ratio Station

215

Heat transfer system  

DOE Patents (OSTI)

A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

McGuire, Joseph C. (Richland, WA)

1982-01-01T23:59:59.000Z

216

Wound tube heat exchanger  

DOE Patents (OSTI)

What is disclosed is a wound tube heat exchanger in which a plurality of tubes having flattened areas are held contiguous adjacent flattened areas of tubes by a plurality of windings to give a double walled heat exchanger. The plurality of windings serve as a plurality of effective force vectors holding the conduits contiguous heat conducting walls of another conduit and result in highly efficient heat transfer. The resulting heat exchange bundle is economical and can be coiled into the desired shape. Also disclosed are specific embodiments such as the one in which the tubes are expanded against their windings after being coiled to insure highly efficient heat transfer.

Ecker, Amir L. (Duncanville, TX)

1983-01-01T23:59:59.000Z

217

Heat Exchangers for Solar Water Heating Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems May 30, 2012 - 3:40pm Addthis Image of a heat exchanger. | Photo from iStockphoto.com Image of a heat exchanger. | Photo from iStockphoto.com Solar water heating systems use heat exchangers to transfer solar energy absorbed in solar collectors to the liquid or air used to heat water or a space. Heat exchangers can be made of steel, copper, bronze, stainless steel, aluminum, or cast iron. Solar heating systems usually use copper, because it is a good thermal conductor and has greater resistance to corrosion. Types of Heat Exchangers Solar water heating systems use three types of heat exchangers: Liquid-to-liquid A liquid-to-liquid heat exchanger uses a heat-transfer fluid that

218

Periodic  

NLE Websites -- All DOE Office Websites (Extended Search)

04 04 by C.G. Wohl (LBNL). Adapted from the Commission of Atomic Weights and Isotopic Abundances, "Atomic Weights of the Elements 1995," Pure and Applied Chemistry 68, 2339 (1996), and G. Audi and A.H. Wapstra, "The 1993 Mass Evaluation," Nucl. Phys. A565, 1 (1993). The atomic number (top left) is the number of protons in the nucleus. The atomic mass (bottom) is weighted by isotopic abundances in the Earth's surface. For a new determination of atomic masses, not weighted by abundances, see G. Audi, A.H. Wapstra, and C. Thibault, Nucl. Phys. A729, 337 (2003). Atomic masses are relative to the mass of the carbon-12 isotope, defined to be exactly 12 unified atomic mass units (u). Errors range from 1 to 9 in the last digit quoted. Relative isotopic abundances often vary considerably, both in natural and commercial samples. A number in parentheses is the mass of the longest-lived

219

Heat flux solarimeter  

SciTech Connect

The solarimeter presented in this work is easy to assemble. It is calibrated and its performance is validated by means of Hottel's method. Finally, the curves obtained with this solarimeter are compared to the ones obtained with a commercial solarimeter. This device is based on the evaluation of the heat flow in a metal rod. In consequence, measurements are not affected by ambient temperature variations. On the other hand, there is a linear relationship between the temperatures measured at the rod ends and the incident radiation, as can be concluded both from the theory of its operation and the calibration lines obtained. The results obtained from the global irradiance measurements in the area of Los Polvorines (Buenos Aires Province), together with a preliminary evaluation of the solarimeter's response time, are presented in this work. (author)

Sartarelli, A.; Vera, S.; Cyrulies, E. [Instituto de Desarrollo Humano, Univ. Nac. de Gral. Sarmiento (IDH, UNGS), Los Polvorines (Argentina); Echarri, R. [Instituto de Desarrollo Humano, Univ. Nac. de Gral. Sarmiento (IDH, UNGS), Los Polvorines (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Samson, I. [INTEC (Instituto Tecnologico Santo Domingo), Santo Domingo (Dominican Republic)

2010-12-15T23:59:59.000Z

220

Can Bohmian trajectories account for quantum recurrences having classical periodicities?  

E-Print Network (OSTI)

Quantum systems in specific regimes display recurrences at the period of the periodic orbits of the corresponding classical system. We investigate the excited hydrogen atom in a magnetic field -- a prototypical system of 'quantum chaos' -- from the point of view of the de Broglie Bohm (BB) interpretation of quantum mechanics. The trajectories predicted by BB theory are computed and contrasted with the time evolution of the wavefunction, which shows pronounced features at times matching the period of closed orbits of the classical hydrogen in a magnetic field problem. Individual BB trajectories do not possess these periodicities and cannot account for the quantum recurrences. These recurrences can however be explained by BB theory by considering the ensemble of trajectories compatible with an initial statistical distribution, although none of the trajectories of the ensemble are periodic, rendering unclear the dynamical origin of the classical periodicities.

A. Matzkin

2006-07-14T23:59:59.000Z

Note: This page contains sample records for the topic "time period heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

DNS on turbulent heat transfer of viscoelastic fluid flow in a plane channel with transverse rectangular orifices  

Science Journals Connector (OSTI)

Heat-transfer characteristics of a viscoelastic turbulence past rectangular orifices were investigated in the context of the reduction effects of fluid elasticity on drag and heat transfer. To simulate the fully-developed channel flow through transverse orifices located periodically at intervals of 6.4 times channel height, we imposed periodic conditions at the upstream and downstream boundaries. To discuss the dissimilarity between the velocity and thermal fields, the molecular Prandtl number was set to be 1.0 and any temperature dependence of the fluid and rheological properties was not considered. In the present condition, the ratio of the reduction rates in drag and heat transfer was found to be 2.8:1.0, revealing that the present flow configuration is better than a smooth channel for avoiding the heat-transfer reduction. This phenomenon was attributed to the sustainment of the quasi-streamwise vortex downstream of the reattachment point despite the absence of strong spanwise vortices emanating from the orifice edge in the viscoelastic fluid. The longitudinal vortices behind the reattachment point caused a high turbulent heat flux and increased the local Nusselt number.

Takahiro Tsukahara; Tomohiro Kawase; Yasuo Kawaguchi

2013-01-01T23:59:59.000Z

222

CHAPTER XV - TIME SERIES  

Science Journals Connector (OSTI)

Publisher Summary This chapter provides an overview of time series. A time series is a set of observations of a variable made at different points of time and arranged in chronological order, each observation representing the value of the variable either at a given moment or during the interval of time between this observation and the preceding one. In general, the observations forming a time-series as made at equidistant intervals of time are considered. The factors affecting time-series may be recurring or nonrecurring, or evolutionary, periodic, or random. The method of moving averages consists in determining the average value for a certain number of terms of a time series and taking this average as the trend normal value for the middle of the period covered in the calculation of the average, that is, the period extent of the moving average.

ISAAC PAENSON

1970-01-01T23:59:59.000Z

223

PHYS 101 Lecture 32 -Temperature and heat 32 -1 2001 by David Boal, Simon Fraser University. All rights reserved; further copying or resale is strictly prohibited.  

E-Print Network (OSTI)

of the transfer of heat. What is heat? In times past, heat was thought of as a fluid that flowed from one object and heat What's important: · definitions of temperature and heat · heat transfer DemonstrationsPHYS 101 Lecture 32 - Temperature and heat 32 - 1 © 2001 by David Boal, Simon Fraser University

Boal, David

224

The orbital period of the eclipsing dwarf nova CG Draconis  

E-Print Network (OSTI)

We have performed time resolved photometry on the dwarf nova CG Dra and have established for the first time that it is an eclipsing system. By measuring the times of the eclipses, we determined the orbital period as 0.18864(4) d, or 4h 31m 38 +/- 3s. This value is consistent with the shorter of two periods proposed from earlier spectroscopic studies. The orbital period places CG Dra above the period gap. The symmetrical eclipses are of short duration (FWHM 18+/-2 min, or 0.066(7) of the orbital period) and shallow (average 0.16+/-0.02 mag), suggesting a grazing eclipse which is consistent with an orbital inclination just above the critical value. Flickering persists through the eclipse which means that the flickering source is not occulted by the secondary star.

Jeremy Shears; David Boyd; Steve Brady; Roger Pickard

2008-02-04T23:59:59.000Z

225

Geothermal Heat Pumps  

Energy.gov (U.S. Department of Energy (DOE))

The Geothermal Technologies Office focuses only on electricity generation. For additional information about geothermal heating and cooling and ground source heat pumps, please visit the U.S. Department of Energy (DOE)'s Buildings Technologies Office.

226

HEAT TRANSFER FLUIDS  

E-Print Network (OSTI)

The choice of heat transfer fluids has significant effects on the performance, cost, and reliability of solar thermal systems. In this chapter, we evaluate existing heat transfer fluids such as oils and molten salts based ...

Lenert, Andrej

2012-01-01T23:59:59.000Z

227

Residential heating oil price  

Annual Energy Outlook 2012 (EIA)

heating oil price decreases The average retail price for home heating oil fell 6.3 cents from a week ago to 2.91 per gallon. That's down 1.10 from a year ago, based on the...

228

Residential heating oil price  

U.S. Energy Information Administration (EIA) Indexed Site

heating oil price decreases The average retail price for home heating oil fell 7.5 cents from a week ago to 2.84 per gallon. That's down 1.22 from a year ago, based on the...

229

Residential heating oil price  

NLE Websites -- All DOE Office Websites (Extended Search)

heating oil price decreases The average retail price for home heating oil fell 7.6 cents from a week ago to 2.97 per gallon. That's down 1.05 from a year ago, based on the...

230

Residential heating oil price  

NLE Websites -- All DOE Office Websites (Extended Search)

heating oil price decreases The average retail price for home heating oil fell 3.6 cents from a week ago to 3.04 per gallon. That's down 99.4 cents from a year ago, based on the...

231

Heating Degree Days, by State (Weighted by Population, per 2000 Census) |  

Open Energy Info (EERE)

66 66 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142278566 Varnish cache server Heating Degree Days, by State (Weighted by Population, per 2000 Census) Dataset Summary Description The National Oceanic and Atmospheric Administration's (NOAA) National Environmental Satellite, Data, and Information Services (NESDIS), in conjunction with the National Climatic Data Center (NCDC) publish monthly and annual climate data by state for the U.S., including, heating degree days (total number of days per month and per year). The average values for each state are weighted by population, using 2000 Census data. The base temperature for this dataset is 65 degrees F. Included here are monthly and annual values averaged over several periods of time: 1931-2000, 1931-60, 1941-70, 1951-80, 1961-90, 1971-2000 (standard deviation is also provided). Detailed monthly climatic information (including heating degree days) is available for the time period between 1895 and 2011, from NOAA (http://www7.ncdc.noaa.gov/CDO/CDODivisionalSelect.jsp#).

232

Retrofit of a Heat-Exchanger Network by Considering Heat-Transfer Enhancement and Fouling  

Science Journals Connector (OSTI)

Besides, for network-topology modifications the capital cost associated with the related pipe and civil work is high, and the negative financial impact of production losses resulting from plant shut down during the lengthy periods of a retrofit is also a concern. ... One way is to add heat-transfer enhancement to the cold side in a heat exchanger to increase the cold-side heat-transfer coefficients, and the other is to change the network structure to reassign the temperature distribution in the network. ... An existing industrial PHT network is simulated using a dynamic, distributed math. ...

Yufei Wang; Robin Smith

2013-06-07T23:59:59.000Z

233

Photo-heating and the fate of hard photons during the reionisation of HeII by quasars  

E-Print Network (OSTI)

We use a combination of analytic and numerical arguments to consider the impact of quasar photo-heating during HeII reionisation on the thermal evolution of the intergalactic medium (IGM). We demonstrate that rapid (\\Delta z 10^4 K) photo-heating is difficult to achieve across the entire IGM unless quasar spectra are significantly harder than implied by current observational constraints. Although filtering of intrinsic quasar radiation through dense regions in the IGM does increase the mean excess energy per HeII photo-ionisation, it also weakens the radiation intensity and lowers the photo-ionisation rate, preventing rapid heating over time intervals shorter than the local photo-ionisation timescale. Moreover, the hard photons responsible for the strongest heating are more likely to deposit their energy inside dense clumps. The abundance of such clumps is, however, uncertain and model-dependent, leading to a fairly large uncertainty in the photo-heating rates. Nevertheless, although some of the IGM may be exposed to a hardened and weakened ionising background for long periods, most of the IGM must instead be reionised by the more abundant, softer photons and with accordingly modest heating rates (\\Delta T < 10^4 K). The repeated ionisation of fossil quasar HeIII regions does not increase the net heating because the recombination times in these regions typically exceed the IGM cooling times and the average time lag between successive rounds of quasar activity. Detailed line-of-sight radiative transfer simulations confirm these expectations and predict a rich thermal structure in the IGM during HeII reionisation. [Abridged

James S. Bolton; S. Peng Oh; Steven R. Furlanetto

2008-07-16T23:59:59.000Z

234

Propane: A Mid-heating Season Assessment  

Gasoline and Diesel Fuel Update (EIA)

9, 2001 9, 2001 Propane - A Mid-Heating Season Assessment by David Hinton and Alice Lippert, Petroleum Division, Office of Oil and Gas, Energy Information Administration In early October 2000, the Energy Information Administration (EIA) forecast that heating fuel markets would be expected to start the season with much higher prices and lower inventories than in recent years. While this assessment was true for both the heating oil and natural gas markets, propane markets actually began the season with adequate supplies but with high prices. Since EIA's forecast, propane inventories have plunged nearly 20 million barrels from their peak during the first half of the 2000-01 heating season while propane prices have continued to soar even higher than expected during this same period. This report will analyze some

235

MA HEAT Loan Overview  

Energy.gov (U.S. Department of Energy (DOE))

Presents information on the success of Massachusetts's HEAT loan offerings and how the financing tool is funded.

236

Ductless Heat Pumps  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Heaters Showerheads Residential Weatherization Performance Tested Comfort Systems Ductless Heat Pumps New Construction Residential Marketing Toolkit Retail Sales...

237

Heat Pump Water Heaters  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Heaters Showerheads Residential Weatherization Performance Tested Comfort Systems Ductless Heat Pumps New Construction Residential Marketing Toolkit Retail Sales...

238

Solar heat receiver  

DOE Patents (OSTI)

A receiver is described for converting solar energy to heat a gas to temperatures from 700 to 900/sup 0/C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

Hunt, A.J.; Hansen, L.J.; Evans, D.B.

1982-09-29T23:59:59.000Z

239

Electric resistive space heating  

Science Journals Connector (OSTI)

The cost of heating residential buildings using electricity is compared to the cost employing gas or oil. (AIP)

David Bodansky

1985-01-01T23:59:59.000Z

240

Liquid heat capacity lasers  

DOE Patents (OSTI)

The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

2007-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "time period heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Heat Transfer Guest Editorial  

E-Print Network (OSTI)

Journal of Heat Transfer Guest Editorial We are indeed delighted in bringing out this special issue was showcased in diverse areas such as traditional heat and mass transfer, lab-on-chip, sensors, biomedical applica- tions, micromixers, fuel cells, and microdevices. Selected papers in the field of heat transfer

Kandlikar, Satish

242

Acoustic Heating Peter Ulmschneider  

E-Print Network (OSTI)

Acoustic Heating Peter Ulmschneider lnstitut fiir Theoretische Astrophysik der Universitat waves are a viable and prevalent heating mechanism both in early- and in late-type stars. Acoustic heating appears to be a dominant mechanism for situations where magnetic fields are weak or absent

Ulmschneider, Peter

243

Ammoniated salt heat pump  

SciTech Connect

A thermochemical heat pump/energy storage system using liquid ammoniate salts is described. The system, which can be used for space heating or cooling, provides energy storage for both functions. The bulk of the energy is stored as chemical energy and thus can be stored indefinitely. The system is well suited to use with a solar energy source or industrial waste heat.

Haas, W.R.; Jaeger, F.J.; Giordano, T.J.

1981-01-01T23:59:59.000Z

244

Pioneering Heat Pump Project  

Energy.gov (U.S. Department of Energy (DOE))

Project objectives: To install and monitor an innovative WaterFurnace geothermal system that is technologically advanced and evolving; To generate hot water heating from a heat pump that uses non-ozone depleting refrigerant CO2. To demonstrate the energy efficiency of this system ground source heat pump system.

245

Observing ocean heat content using satellite gravity and altimetry  

E-Print Network (OSTI)

: ocean heat content, altimetry, satellite gravity, steric height, remote sensing Citation: Jayne, S. RObserving ocean heat content using satellite gravity and altimetry Steven R. Jayne1,2 and John M with satellite measurements of the Earth's time-varying gravity to give improved estimates of the ocean's heat

Jayne, Steven

246

Home Heating | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Home Heating Everything you need to know about home heating, including how heating systems work, the different types on the market and proper maintenance. Read more Thermostats...

247

Water Heating | Department of Energy  

Energy Savers (EERE)

Energy Saver Water Heating Water Heating Infographic: Water Heaters 101 Infographic: Water Heaters 101 Everything you need to know about saving money on water heating costs....

248

Encouraging Combined Heat and Power in California Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Encouraging Combined Heat and Power in California Buildings Encouraging Combined Heat and Power in California Buildings Title Encouraging Combined Heat and Power in California Buildings Publication Type Report LBNL Report Number LBNL-6267E Year of Publication 2013 Authors Stadler, Michael, Markus Groissböck, Gonçalo Cardoso, Andreas Müller, and Judy Lai Abstract Governor Brown's research priorities include an additional 6.5 GW of combined heat and power (CHP) by 2030. As of 2009, roughly 0.25 GW of small natural gas and biogas fired CHP is documented by the Self-Generation Incentive Program (SGIP) database. The SGIP is set to expire, and the anticipated grid de-carbonization based on the development of 20 GW of renewable energy will influence the CHP adoption. Thus, an integrated optimization approach for this analysis was chosen that allows optimizing the adoption of distributed energy resources (DER) such as photovoltaics (PV), CHP, storage technologies, etc. in the California commercial sector from the building owners' perspective. To solve this DER adoption problem the Distributed Energy Resources Customer Adoption Model (DER-CAM), developed by the Lawrence Berkeley National Laboratory and used extensively to address the problem of optimally investing and scheduling DER under multiple settings, has been used. The application of CHP at large industrial sites is well known, and much of its potential is already being realized. Conversely, commercial sector CHP, especially those above 50 to 100 kW peak electricity load, is widely overlooked. In order to analyze the role of DER in CO2 reduction, 147 representative sites in different climate zones were selected from the California Commercial End Use Survey (CEUS). About 8000 individual optimization runs, with different assumptions for the electric tariffs, natural gas costs, marginal grid CO2 emissions, and nitrogen oxide treatment costs, SGIP, fuel cell lifetime, fuel cell efficiency, PV installation costs, and payback periods for investments have been performed. The most optimistic CHP potential contribution in this sector in 2020 will be 2.7 GW. However, this result requires a SGIP in 2020, 46% average electric efficiency for fuel cells, a payback period for investments of 10 years, and a CO2 focused approach of the building owners. In 2030 it will be only 2.5 GW due to the anticipated grid de-carbonization. The 2030 result requires a 60% electric efficiency and 20 year life time for fuel cells, a payback period of 10 years, and a CO2 minimization strategy of building owners. Finally, the possible CHP potential in 2030 shows a significant variance between 0.2 GW and 2.5 GW, demonstrating the complex interactions between technologies, policies, and customer objectives.

249

minimum weight topology optimization subject to unsteady heat ...  

E-Print Network (OSTI)

UNSTEADY HEAT EQUATION AND SPACE-TIME POINTWISE .... Assuming the physical domain is discretized into a uniform Cartesian grid and the topology...

2011-05-13T23:59:59.000Z

250

Dynamic Scheduling of Skippable Periodic Tasks: Issues and Proposals  

E-Print Network (OSTI)

-Chetto and Audrey Marchand IRCCyN, University of Nantes, Nantes, FRANCE Email: {maryline.chetto, audrey.marchand Scheduling of Skippable Periodic Tasks in Weakly-Hard Real-Time Systems," by M. Silly-Chetto, and A. Marchand

Paris-Sud XI, Université de

251

Energy 101: Geothermal Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy 101: Geothermal Heat Pumps Energy 101: Geothermal Heat Pumps Energy 101: Geothermal Heat Pumps January 4, 2011 - 12:15pm Addthis An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together. John Schueler John Schueler Former New Media Specialist, Office of Public Affairs Quick Facts Heat pump systems can lower energy bills by up to 70% over traditional types of heating systems. During this time of year, many homeowners are searching for ways to reduce steep heating costs. One of the options they should consider during the

252

Energy 101: Geothermal Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy 101: Geothermal Heat Pumps Energy 101: Geothermal Heat Pumps Energy 101: Geothermal Heat Pumps January 4, 2011 - 12:15pm Addthis An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together. John Schueler John Schueler Former New Media Specialist, Office of Public Affairs Quick Facts Heat pump systems can lower energy bills by up to 70% over traditional types of heating systems. During this time of year, many homeowners are searching for ways to reduce steep heating costs. One of the options they should consider during the

253

Spectrally enhancing near-field radiative heat transfer by exciting magnetic polariton in SiC gratings  

E-Print Network (OSTI)

In the present work, we theoretically demonstrate, for the first time, that near field radiative transport between 1D periodic grating microstructures separated by subwavelength vacuum gaps can be significantly enhanced by exciting magnetic resonance or polariton. Fluctuational electrodynamics that incorporates scattering matrix theory with rigorous coupled wave analysis is employed to exactly calculate the near field radiative heat flux between two SiC gratings. Besides the well known coupled surface phonon polaritons (SPhP), an additional spectral radiative heat flux peak, which is due to magnetic polariton, is found within the phonon absorption band of SiC. The mechanisms, behaviors and interplays between magnetic polariton, coupled SPhP, single interface SPhP, and Wood's anomaly in the near field radiative transport are elucidated in detail. The findings will open up a new way to control near field radiative heat transfer by magnetic resonance with micro or nanostructured metamaterials.

Yang, Yue

2015-01-01T23:59:59.000Z

254

Heat transfer studies, quarterly report  

SciTech Connect

Drying in subresidually-saturated systems at elevated temperatures has been studied for two different operating conditions. One condition started with flowing nitrogen gas through the test section and simultaneously heating up the porous medium at the same time (denoted in what follows as the ``transient heating case``). The other condition started initially with heating up the porous medium with no flow, and then running the nitrogen gas flow through the test section after a steady-state temperature distribution had been reached (denoted in what follows as the ``steady heating case``). A 90{degrees}C isothermal boundary condition was set on the aluminum wall. An average of 9% discrepancy in the mass balance calculation compared to the digital balance measurement has been found in the transient heating case. An average of 4.3% discrepancy in the mass balance calculation compared to the digital balance measurement has been found after the nitrogen gas flowed through test section for the steady heating case. A large discrepancy has also been found before the nitrogen gas admitted to the test section. This is because some of subresidual water in the test section has been drained out from the bottom due to the gravity effect and the strong convection flow in the porous medium before the nitrogen gas is admitted. This discrepancy may be reduced by closing the end tube at bottom before the nitrogen gas is admitted to the test section. The drying characteristics of this system are reported. A theoretical study has also been initiated in an attempt to supplement the experimental results, and this system is described in the report. A one-dimensional transient system is assumed in which a two-component (condensable and noncondensable) gas mixture flows through a porous medium with evaporation. The numerical calculation will be performed in the future work to compare to the experimental results.

Boehm, R.; Chen, Y.T.; Sathappan, A.K.

1996-01-19T23:59:59.000Z

255

HEATING AND COOLING PROTOSTELLAR DISKS  

SciTech Connect

We examine heating and cooling in protostellar disks using three-dimensional radiation-MHD calculations of a patch of the Solar nebula at 1 AU, employing the shearing-box and flux-limited radiation diffusion approximations. The disk atmosphere is ionized by stellar X-rays, well coupled to magnetic fields, and sustains a turbulent accretion flow driven by magnetorotational instability, while the interior is resistive and magnetically dead. The turbulent layers are heated by absorbing the light from the central star and by dissipating the magnetic fields. They are optically thin to their own radiation and cool inefficiently. The optically thick interior in contrast is heated only weakly, by re-emission from the atmosphere. The interior is colder than a classical viscous model and isothermal. The magnetic fields support an extended atmosphere that absorbs the starlight 1.5 times higher than the hydrostatic viscous model. The disk thickness thus measures not the internal temperature, but the magnetic field strength. Fluctuations in the fields move the starlight-absorbing surface up and down. The height ranges between 13% and 24% of the radius over timescales of several orbits, with implications for infrared variability. The fields are buoyant, so the accretion heating occurs higher in the atmosphere than the stresses. The heating is localized around current sheets, caused by magnetorotational instability at lower elevations and by Parker instability at higher elevations. Gas in the sheets is heated above the stellar irradiation temperature, even though accretion is much less than irradiation power when volume averaged. The hot optically thin current sheets might be detectable through their line emission.

Hirose, S. [Institute for Research on Earth Evolution, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showamachi, Kanazawa-ku, Yokohama, Kanagawa 236-0001 (Japan); Turner, N. J., E-mail: shirose@jamstec.go.jp, E-mail: neal.turner@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

2011-05-10T23:59:59.000Z

256

Active microchannel heat exchanger  

DOE Patents (OSTI)

The present invention is an active microchannel heat exchanger with an active heat source and with microchannel architecture. The microchannel heat exchanger has (a) an exothermic reaction chamber; (b) an exhaust chamber; and (c) a heat exchanger chamber in thermal contact with the exhaust chamber, wherein (d) heat from the exothermic reaction chamber is convected by an exothermic reaction exhaust through the exhaust chamber and by conduction through a containment wall to the working fluid in the heat exchanger chamber thereby raising a temperature of the working fluid. The invention is particularly useful as a liquid fuel vaporizer and/or a steam generator for fuel cell power systems, and as a heat source for sustaining endothermic chemical reactions and initiating exothermic reactions.

Tonkovich, Anna Lee Y. (Pasco, WA) [Pasco, WA; Roberts, Gary L. (West Richland, WA) [West Richland, WA; Call, Charles J. (Pasco, WA) [Pasco, WA; Wegeng, Robert S. (Richland, WA) [Richland, WA; Wang, Yong (Richland, WA) [Richland, WA

2001-01-01T23:59:59.000Z

257

Nanofluid heat capacities  

Science Journals Connector (OSTI)

Significant increases in the heat capacity of heat transfer fluids are needed not only to reduce the costs of liquid heating and cooling processes but also to bring clean energy producing technologies like concentrating solar power (CSP) to price parity with conventional energy generation. It has been postulated that nanofluids could have higher heat capacities than conventional fluids. In this work nano- and micron-sized particles were added to five base fluids (poly-? olefin mineral oil ethylene glycol a mixture of water and ethylene glycol and calcium nitrate tetrahydrate) and the resulting heat capacities were measured and compared with those of the neat base fluids and the weighted average of the heat capacities of the components. The particles used were inert metals and metal oxides that did not undergo any phase transitions over the temperature range studied. In the nanofluids studied here we found no increase in heat capacity upon the addition of the particles larger than the experimental error.

Anne K. Starace; Judith C. Gomez; Jun Wang; Sulolit Pradhan; Greg C. Glatzmaier

2011-01-01T23:59:59.000Z

258

A model for improvement of water heating heat exchanger designs for residential heat pump water heaters.  

E-Print Network (OSTI)

??Heat pump water heaters are a promising technology to reduce energy use and greenhouse gas emissions. A key component is the water heating heat exchanger. (more)

Weerawoot, Arunwattana

2010-01-01T23:59:59.000Z

259

Control Strategy for Domestic Water Heaters during Peak Periods and its Impact on the Demand for Electricity  

Science Journals Connector (OSTI)

Because they store hot water, water heaters are easily-shifted loads that can be controlled to reduce peak demands. However, load shifting may have some detrimental consequences on the domestic hot water supply temperature if the heating element is deactivated for a long period of time. Furthermore, a new peak may be caused if a significant number of heaters are reactivated at the same time. This study presents a control strategy for water heaters that minimizes the pick-up demand when the heating elements are reactivated at the end of a load shifting period and that ensures, in all cases, the client's hot water supply. The study is based on a simulation model of a water heater that was experimentally validated and takes into account the diversity of the population's hot water withdrawal profile. More specifically, the data of 8,167 real water withdrawal profiles of several clients were input into the simulation model in order to evaluate the performance of water heaters under different operating conditions.

Alain Moreau

2011-01-01T23:59:59.000Z

260

Heating induced structural and chemical behavior of KD{sub 2}PO{sub 4} in the 25 C215 C temperature range  

SciTech Connect

We have used powder x-ray diffraction (XRD) to investigate the structural and chemical modifications undergone by KD{sub 2}PO{sub 4} (DKDP) upon heating from room temperature to 215 C. Full-profile (Le Bail) analysis of our temperature-resolved data shows no evidence of polymorphic structural transitions or deuteriumhydrogen isotope exchange occurring below T{sub s} = 185 C. The lattice parameters of DKDP vary smoothly upon heating to T{sub s} and are 0.2% to 0.6% greater than those of its isostructural hydrogenated counterpart KH{sub 2}PO{sub 4} (KDP). In addition, XRD isotherms collected at T{sub s} demonstrate the structural and chemical stability of the title compound at this temperature over a 10.5 h time period. Upon further heating, however, the tetragonal DKDP phase becomes unstable, as evidenced by its transition to a monoclinic DKDP modification and eventual chemical decomposition via dehydration. - Highlights: Structural and chemical behavior of KD{sub 2}PO{sub 4} is investigated upon heating to 215 C No polymorphic transitions or deuterium-hydrogen isotope exchange below T{sub s} = 185 C KD{sub 2}PO{sub 4} is structurally and chemically stable at T{sub s} over a 10.5 h time period KD{sub 2}PO{sub 4} chemically decomposes via dehydration upon heating above T{sub d} = 195 C.

Botez, Cristian E., E-mail: cbotez@utep.edu; Morris, Joshua L.; Encerrado Manriquez, Andres J.; Anchondo, Adan

2013-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "time period heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Development of a Computer Heating Monitoring System and Its Applications  

E-Print Network (OSTI)

monitoring system is put into effect in Beijing Institute of Civil Engineering and Architecture (substation heating system) and Beijing Yuxin Residential Area (boiler station heating system). The analysis on testing results is as follows. 3.1 Analysis... Outdoor temp. Time (h) Temp. (?) /Heating load (10 -1 kcal/h) Fig. 2 Changing trends of parameters for substation heating system (Mar. 8, 2000) From Fig. 2 and 3 we can see that the fluctuation of the supply and return water temperatures...

Chen, H.; Li, D.; Shen, L.

2006-01-01T23:59:59.000Z

262

PERFORMANCE OF A STIRLING ENGINE POWERED HEAT ACTIVATED HEAT PUMP  

E-Print Network (OSTI)

PERFORMANCE OF A STIRLING ENGINE POWERED HEAT ACTIVATED HEAT PUMP W. D. C. Richards and W. L. Auxer General Electric Company Space Division King of Prussia, Pa. ABSTRACT A heat activated heat pump (HAHP for space heating since it directly utilizes the engine waste heat in addition to the energy obtained

Oak Ridge National Laboratory

263

Estimation of changes in energy consumption for heat supply due to interannual temperature variability in the south of the Ukraine  

Science Journals Connector (OSTI)

The influence of low-frequency variability of average over the heating season air temperature on population demands in heat supply is considered. Based on monthly mean temperature values for the period from 18...

A. Kh. Degterev; L. N. Degtereva

2008-11-01T23:59:59.000Z

264

Nanofluid \\{PCMs\\} for thermal energy storage: Latent heat reduction mechanisms and a numerical study of effective thermal storage performance  

Science Journals Connector (OSTI)

Abstract The latent heat of fusion of paraffin-based nanofluids has been examined to investigate the use of enhanced phase change materials (PCMs) for thermal energy storage (TES) applications. The nanofluid approach has often been exploited to enhance thermal conductivity of PCMs, but the effects of particle addition on other thermal properties affecting TES are relatively ignored. An experimental study of paraffin-based nanofluids containing various particle sizes of multi-walled carbon nanotubes has been conducted to investigate the effect of nanoparticles on latent heat of fusion. Results demonstrated that the magnitude of nanofluid latent heat reduction increases for smaller diameter particles in suspension. Three possible mechanisms interfacial liquid layering, Brownian motion, and particle clustering were examined to explain further reduction in latent heat, through the weakening of molecular bond structures. Although additional research is required to explore detailed mechanisms, experimental evidence suggests that interfacial liquid layering and Brownian motion cannot explain the degree of latent heat reduction observed. A finite element model is also presented as a method of quantifying nanofluid PCM energy storage performance. Thermal properties based on modified effective medium theory and an empirical relation for latent heat of fusion were applied as model parameters to determine energy stored and extracted over a given period of time. The model results show that while micro-scale particle inclusions exhibit some performance enhancement, nanoparticles in \\{PCMs\\} provide no significant improvement in TES performance. With smaller particles, the enhancement in thermal conductivity is not significant enough to overcome the reduction in latent heat of fusion, and less energy is stored over the PCM charge period. Therefore, the nanofluid approach may not be justifiable for energy storage applications. However, since the model parameters are dependent on the material properties of the system observed, storage performance may vary for differing nanofluid materials.

Aitor Zabalegui; Dhananjay Lokapur; Hohyun Lee

2014-01-01T23:59:59.000Z

265

Performance Period Total Fee Paid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Period Period Total Fee Paid 4/29/2012 - 9/30/2012 $418,348 10/1/2012 - 9/30/2013 $0 10/1/2013 - 9/30/2014 $0 10/1/2014 - 9/30/2015 $0 10/1/2015 - 9/30/2016 $0 Cumulative Fee Paid $418,348 Contract Type: Cost Plus Award Fee Contract Period: $116,769,139 November 2011 - September 2016 $475,395 $0 Fee Information Total Estimated Contract Cost $1,141,623 $1,140,948 $1,140,948 $5,039,862 $1,140,948 Maximum Fee $5,039,862 Minimum Fee Fee Available Portage, Inc. DE-DT0002936 EM Contractor Fee Site: MOAB Uranium Mill Tailings - MOAB, UT Contract Name: MOAB Uranium Mill Tailings Remedial Action Contract September 2013 Contractor: Contract Number:

266

Coupled flow and heat transfer in viscoelastic fluid with CattaneoChristov heat flux model  

Science Journals Connector (OSTI)

Abstract This letter presents a research for coupled flow and heat transfer of an upper-convected Maxwell fluid above a stretching plate with velocity slip boundary. Unlike most classical works, the new heat flux model, which is recently proposed by Christov, is employed. Analytical solutions are obtained by using the homotopy analysis method (HAM). The effects of elasticity number, slip coefficient, the relaxation time of the heat flux and the Prandtl number on velocity and temperature fields are analyzed. A comparison of Fouriers Law and the CattaneoChristov heat flux model is also presented.

Shihao Han; Liancun Zheng; Chunrui Li; Xinxin Zhang

2014-01-01T23:59:59.000Z

267

Electron Cyclotron Heating in RFP plasmas  

SciTech Connect

Reversed field pinches (RFP) plasmas are typically overdense ({omega}{sub pe}>{omega}{sub ce}) and thus not suitable for conventional electron cyclotron (EC) heating and current drive. In recent high plasma current discharges (I{sub p}>1.5 MA), however, the RFX-mod device was operated in underdense conditions ({omega}{sub pe}<{omega}{sub ce}) for the first time in an RFP. Thus, it is now possible to envisage heating the RFP plasma core by conventional EC at the 2nd harmonic, in the ordinary or extraordinary mode. We present a preliminary study of EC-heating feasibility in RFX-mod with the use of beam-tracing and full-wave codes. Although not competitive - as a heating system - with multi-MW Ohmic heating in an RFP, EC might be useful for perturbative transport studies, even at moderate power (hundreds of kW), and, more generally, for applications requiring localized power deposition.

Bilato, R.; Poli, E. [MPI fuer Plasmaphysik-Euratom Association Boltzmannstr. 2, D-85748 Garching (Germany); Volpe, F. [Department of Engineering Physics, University of Wisconsin, Madison, WI (United States); Koehn, A. [Institut fuer Plasmaforschung, Universitaet Stuttgart-Stuttgart (Germany); Cavazzana, R.; Paccagnella, R. [Consorzio RFX-Associazione EURATOM-ENEA sulla fusione-Padova (Italy); Farina, D. [IFP-CNR, EURATOM-ENEA-CNR Association-Milano (Italy)

2009-11-26T23:59:59.000Z

268

Periodic ripples in suspended graphene  

Science Journals Connector (OSTI)

We study the mechanism of wrinkling of suspended graphene, by means of atomistic simulations. We argue that the structural instability under edge compression is the essential physical reason for the formation of periodic ripples in graphene. The ripple wavelength and out-of-plane amplitude are found to obey 1/4-power scaling laws with respect to edge compression. Our results also show that parallel displacement of the clamped boundaries can induce periodic ripples, with oscillation amplitude roughly proportional to the 1/4 power of edge displacement.

Zhao Wang and Michel Devel

2011-03-23T23:59:59.000Z

269

Heat pump system  

DOE Patents (OSTI)

An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

Swenson, Paul F. (Shaker Heights, OH); Moore, Paul B. (Fedhaven, FL)

1983-01-01T23:59:59.000Z

270

6th World Conference on Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics  

E-Print Network (OSTI)

6th World Conference on Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics April 17-21, 2005, Matsushima, Miyagi, Japan Modeling on convective boiling heat transfer in a microtube based visualization, Microchannel, Periodic flow pattern variation 1. INTRODUCTION Convective boiling heat transfer

Kasagi, Nobuhide

271

Policies supporting Heat Pump Technologies  

E-Print Network (OSTI)

Policies supporting Heat Pump Technologies in Canada IEA Heat Pump Workshop London, UK November 13 in the world, with an average of 16,995 kilowatt-hours per annum. #12;Canada's Context for Heat Pumps Impacts avenues: Ground source heat pumps for cold climates (heating and cooling) Reversible air source heat

Oak Ridge National Laboratory

272

Wastewater recycling and heat reclamation project: Red Lion Central Laundry, Portland, Oregon  

SciTech Connect

This report discusses water, energy, and cost savings that can be achieved in a commercial laundry through the use of a wastewater recycling and heat recovery system. Cost savings are achieved through reductions in water use, reduction in sewage charges (typically based on water use), reductions in water heating energy, and potential reductions in water treatment chemicals because the recycled water has already been treated with soaps and conditioners. A recovery system saves water by recycling wash water that would normally be dumped into the city sewage system. Recycling the wash water produces considerable energy savings because the recycled water has a higher temperature than fresh water. As a result, a hot water heater consumes less energy to heat the recycled water. The demonstration project discussed in this report was based in a large commercial laundry in Portland, Oregon. The laundry serves a large hotel/motel chain and processes an average of 25,000 pounds of laundry per day. A wastewater recovery system using a membrane microfiltration unit (MFU) was installed in the laundry in September 1995. Time series data of the water and energy consumption of the laundry were taken before and after installation of the MFU. Energy savings were measured by performing a thermal energy balance around the washing machines. Water savings were calculated by metering volumetric flow rates. After a period of approximately five months, the MFU has achieved final results of 52 percent savings in water consumption and 44 percent savings in energy to heat water. This five-month period represents a learning curve during which several small technical improvements were made to the MFU and laundry staff adjusted laundry operations to maximize the benefits of the MFU. An economic analysis discusses the impact of capital investment, daily consumption, and local utility rates on the payback period.

Garlick, T.F.; Halverson, M.A.; Ledbetter, M.R.

1997-06-01T23:59:59.000Z

273

Fluidized bed heat treating system  

DOE Patents (OSTI)

Systems for heat treating materials are presented. The systems typically involve a fluidized bed that contains granulated heat treating material. In some embodiments a fluid, such as an inert gas, is flowed through the granulated heat treating medium, which homogenizes the temperature of the heat treating medium. In some embodiments the fluid may be heated in a heating vessel and flowed into the process chamber where the fluid is then flowed through the granulated heat treating medium. In some embodiments the heat treating material may be liquid or granulated heat treating material and the heat treating material may be circulated through a heating vessel into a process chamber where the heat treating material contacts the material to be heat treated. Microwave energy may be used to provide the source of heat for heat treating systems.

Ripley, Edward B; Pfennigwerth, Glenn L

2014-05-06T23:59:59.000Z

274

Flameless heat generator  

SciTech Connect

A heating device generates heat by working a liquid in a closed container with a rotating stack of finely perforate square plates and recovering the heat from the thus heated liquid. In one embodiment a stack of a multiplicity of flat square plates radially offset one from another is rotated in an oil bath in a container under an inner perforate non-rotating cover over which is a similar non-rotating cover that is imperforate. The thermal energy developed through the mechanical working of the liquid is transferred to the main liquid bath and is then removed, as for example, by circulating air or a liquid around the outside of the container with the thus heated air or liquid being used to heat a house or the like.

Leary, C. L.; Leary, G. C.

1983-12-13T23:59:59.000Z

275

Estimating the Payback Period of Additional Insulation | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Payback Period of Additional Insulation the Payback Period of Additional Insulation Estimating the Payback Period of Additional Insulation June 24, 2012 - 1:17pm Addthis Adding insulation in the attic of an existing home often results in a favorable payback. | Photo courtesy of Lieko Earle, NREL PIX 19612. Adding insulation in the attic of an existing home often results in a favorable payback. | Photo courtesy of Lieko Earle, NREL PIX 19612. What does this mean for me? Even if you hire a contractor to do the work, adding insulation to your home will likely have an attractive payback. If you can gather the information and plug it into an equation, you can determine the payback of adding insulation to your home. Use the equation below to estimate the cost effectiveness of adding insulation in terms of the "years to payback" for savings in heating costs.

276

Estimating the Payback Period of Additional Insulation | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estimating the Payback Period of Additional Insulation Estimating the Payback Period of Additional Insulation Estimating the Payback Period of Additional Insulation June 24, 2012 - 1:17pm Addthis Adding insulation in the attic of an existing home often results in a favorable payback. | Photo courtesy of Lieko Earle, NREL PIX 19612. Adding insulation in the attic of an existing home often results in a favorable payback. | Photo courtesy of Lieko Earle, NREL PIX 19612. What does this mean for me? Even if you hire a contractor to do the work, adding insulation to your home will likely have an attractive payback. If you can gather the information and plug it into an equation, you can determine the payback of adding insulation to your home. Use the equation below to estimate the cost effectiveness of adding insulation in terms of the "years to payback" for savings in heating costs.

277

Waste Heat Management Options: Industrial Process Heating Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Management Options Heat Management Options Industrial Process Heating Systems By Dr. Arvind C. Thekdi E-mail: athekdi@e3minc.com E3M, Inc. August 20, 2009 2 Source of Waste Heat in Industries * Steam Generation * Fluid Heating * Calcining * Drying * Heat Treating * Metal Heating * Metal and Non-metal Melting * Smelting, agglomeration etc. * Curing and Forming * Other Heating Waste heat is everywhere! Arvind Thekdi, E3M Inc Arvind Thekdi, E3M Inc 3 Waste Heat Sources from Process Heating Equipment * Hot gases - combustion products - Temperature from 300 deg. F. to 3000 deg.F. * Radiation-Convection heat loss - From temperature source of 500 deg. F. to 2500 deg. F. * Sensible-latent heat in heated product - From temperature 400 deg. F. to 2200 deg. F. * Cooling water or other liquids - Temperature from 100 deg. F. to 180 deg. F.

278

Tidal Heating of Extra-Solar Planets  

E-Print Network (OSTI)

Extra-solar planets close to their host stars have likely undergone significant tidal evolution since the time of their formation. Tides probably dominated their orbital evolution once the dust and gas had cleared away, and as the orbits evolved there was substantial tidal heating within the planets. The tidal heating history of each planet may have contributed significantly to the thermal budget that governed the planet's physical properties, including its radius, which in many cases may be measured by observing transit events. Typically, tidal heating increases as a planet moves inward toward its star and then decreases as its orbit circularizes. Here we compute the plausible heating histories for several planets with measured radii, using the same tidal parameters for the star and planet that had been shown to reconcile the eccentricity distribution of close-in planets with other extra-solar planets. Several planets are discussed, including for example HD 209458 b, which may have undergone substantial tidal heating during the past billion years, perhaps enough to explain its large measured radius. Our models also show that GJ 876 d may have experienced tremendous heating and is probably not a solid, rocky planet. Theoretical models should include the role of tidal heating, which is large, but time-varying.

Brian Jackson; Richard Greenberg; Rory Barnes

2008-02-29T23:59:59.000Z

279

Mechanical Compression Heat Pumps  

E-Print Network (OSTI)

MECHANICAL COMPRESSION HEAT PUMPS Thomas-L. Apaloo and K. Kawamura Mycom Corporation, Los Angeles, California J. Matsuda, Mayekawa Mfg. Co., Tokyo, Japan ABSTRACT Mechanical compression heat pumping is not new in industrial applications.... In fact, industry history suggests that the theoretical concept was developed before 1825. Heat pump manufacturers gained the support of consultants and end-users when the energy crisis hit this country in 1973. That interest, today, has been...

Apaloo, T. L.; Kawamura, K.; Matsuda, J.

280

Sorption heat engines  

E-Print Network (OSTI)

For a simple free energy generating device - driven by thermal cycling and based on alternating adsorption and desorption - that has not been explicitly recognized as heat engine the name sorption heat engine is proposed. The mechanism is generally applicable to the fields of physics, chemistry, geology, and possibly, if relevant to the origin of life, biology. Four kinds of sorption heat engines are distinguished depending on the occurrence of changes in composition of the adsorbent or adsorbate during the thermal cycle.

Muller, A W J; Muller, Anthonie W. J.; Schulze-Makuch, Dirk

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "time period heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Combined Heat and Power  

Office of Environmental Management (EM)

energy costs and 31 emissions while also providing more resilient and reliable electric power and thermal energy 1 . CHP 32 systems combine the production of heat (for both...

282

Waste Heat Recovery  

Office of Environmental Management (EM)

DRAFT - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the TechnologySystem ......

283

Solar Heating in Uppsala.  

E-Print Network (OSTI)

?? The housing corporation Uppsalahem has installed asolar heating system in the neighbourhood Haubitsen,which was renovated in 2011. This report examineshow much energy the solar (more)

Blomqvist, Emelie; Hger, Klara

2012-01-01T23:59:59.000Z

284

HEATS: Thermal Energy Storage  

SciTech Connect

HEATS Project: The 15 projects that make up ARPA-Es HEATS program, short for High Energy Advanced Thermal Storage, seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

None

2012-01-01T23:59:59.000Z

285

Solar heating in Colombia.  

E-Print Network (OSTI)

?? This report describes the process of a thesis implemented in Colombia concerning solar energy. The project was to install a self-circulating solar heating system, (more)

Skytt, Johanna

2012-01-01T23:59:59.000Z

286

Photovoltaic roof heat flux  

E-Print Network (OSTI)

Effect of building integrated photovoltaics on microclimateof a building's integrated-photovoltaics on heating a n dgaps for building- integrated photovoltaics, Solar Energy

Samady, Mezhgan Frishta

2011-01-01T23:59:59.000Z

287

Passive solar space heating  

SciTech Connect

An overview of passive solar space heating is presented indicating trends in design, new developments, performance measures, analytical design aids, and monitored building results.

Balcomb, J.D.

1980-01-01T23:59:59.000Z

288

Combined Heat & Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

available today." -American Council for an Energy-Efficient Economy What is Combined Heat & Power (CHP)? Federal Utility Partnership Working Group May 7 - 8, 2014 Virginia...

289

Heat rejection system  

DOE Patents (OSTI)

A cooling system for rejecting waste heat consists of a cooling tower incorporating a plurality of coolant tubes provided with cooling fins and each having a plurality of cooling channels therein, means for directing a heat exchange fluid from the power plant through less than the total number of cooling channels to cool the heat exchange fluid under normal ambient temperature conditions, means for directing water through the remaining cooling channels whenever the ambient temperature rises above the temperature at which dry cooling of the heat exchange fluid is sufficient and means for cooling the water.

Smith, Gregory C. (Richland, WA); Tokarz, Richard D. (Richland, WA); Parry, Jr., Harvey L. (Richland, WA); Braun, Daniel J. (Richland, WA)

1980-01-01T23:59:59.000Z

290

Heat transfer dynamics  

SciTech Connect

As heat transfer technology increases in complexity, it becomes more difficult for those without thermal dynamics engineering training to choose between competitive heat transfer systems offered to meet their drying requirements. A step back to the basics of heat transfer can help professional managers and papermakers make informed decisions on alternative equipment and methods. The primary forms of heat and mass transfer are reviewed with emphasis on the basics, so a practical understanding of each is gained. Finally, the principles and benefits of generating infrared energy by combusting a gaseous hydrocarbon fuel are explained.

Smith, T.M. (Marsden, Inc., Pennsauken, NJ (United States))

1994-08-01T23:59:59.000Z

291

ARM - Atmospheric Heat Budget  

NLE Websites -- All DOE Office Websites (Extended Search)

ListAtmospheric Heat Budget Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About...

292

Multiple pollutant removal using the condensing heat exchanger: Phase 1 final report, November 1995--June 1997. Addendum 2: Task 3 topical report -- Long term wear test  

SciTech Connect

Long-term operation of a condensing heat exchanger under typical coal-fired flue gas conditions was investigated in Phase 1, Task 3 of the Multiple Pollutant Removal Using the Condensing Heat Exchanger test program. The specific goal of this task was to determine the amount of wear, if any, on the Teflon{reg_sign}-covered heat transfer tubes in a condensing heat exchanger. A pilot-scale single-stage condensing heat exchanger (CHX{reg_sign}) was operated under typical coal-fired flue gas conditions on a continuous basis for a period of approximately 10 months. Operating conditions and particulate loadings for the test unit were monitored, Teflon{reg_sign} film thickness measurements were conducted, and surface replications (which duplicate the surface finish at the microscopic level) were taken at various times during the test. Data from the test indicate that virtually no decrease in Teflon{reg_sign} thickness was observed for the coating on the first two rows of heat exchanger tubes, even at high inlet particulate loadings (400 mg/dscm [0.35 lb/10{sup 6} Btu]). Evidence of wear was present only at the microscopic level, and even then was very minor in severity. Operation at high inlet particulate loadings resulted in accumulated ash deposits within the heat exchanger. Installation of a modified (higher flow rate) wash nozzle manifold substantially reduced subsequent deposit formation.

Kudlac, G.A.

1998-06-01T23:59:59.000Z

293

Air-Source Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air-Source Heat Pumps Air-Source Heat Pumps Air-Source Heat Pumps June 24, 2012 - 3:35pm Addthis When properly installed, an air-source heat pump can deliver one-and-a-half to three times more heat energy to a home than the electrical energy it consumes. | Photo courtesy of iStockPhoto/YinYang. When properly installed, an air-source heat pump can deliver one-and-a-half to three times more heat energy to a home than the electrical energy it consumes. | Photo courtesy of iStockPhoto/YinYang. What does this mean for me? If you live in a cooling climate, an air-source heat pump is a good choice. If you live in a heating climate, watch for advanced air-source heat pumps coming on the market that operate well in sub-freezing temperatures. An air-source heat pump can provide efficient heating and cooling for your

294

HEAT RECOVERY FROM WASTE WATER BY MEANS OF A RECUPERATIVE HEAT EXCHANGER AND A HEAT PUMP  

Science Journals Connector (OSTI)

ABSTRACT The useful heat of warm waste water is generally transferred to cold water using a recuperative heat exchanger. Depending on its design, the heat exchanger is able to utilise up to 90% of the waste heat potential available. The electric energy needed to operate such a system is more than compensated for by an approximately 50-fold gain of useful heat. To increase substantially the waste heat potential available and the amount of heat recovered, the system for recuperative heat exchange can be complemented by a heat pump. Such a heat recovery system on the basis of waste water is being operated in a public indoor swimming pool. Here the recuperative heat exchanger accounts for about 60%, the heat pump for about 40% of the toal heat reclaimed. The system consumes only 1 kWh of electric energy to supply 8 kWh of useful heat. In this way the useful heat of 8 kWh is compensated for by the low consumption of primary energy of 2.8 kWh. Due to the installation of an automatic cleaning device, the heat transfer surfaces on the waste water side avoid deposits so that the troublesome maintenance work required in other cases on the heat exchangers is not required. KEYWORDS Shower drain water, recuperative heat recovery, heat recovery by means of a heat pump, combination of both types of heat recovery, automatic cleaning device for the heat exchangers, ratio of useful heat supply vs. electric energy consumption, economic consideration.

K. Biasin; F.D. Heidt

1988-01-01T23:59:59.000Z

295

City of Tallahassee Utilities - Solar Water Heating Rebate | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tallahassee Utilities - Solar Water Heating Rebate Tallahassee Utilities - Solar Water Heating Rebate City of Tallahassee Utilities - Solar Water Heating Rebate < Back Eligibility Installer/Contractor Residential Savings Category Heating & Cooling Solar Water Heating Program Info State Florida Program Type Utility Rebate Program Rebate Amount 450 Provider City of Tallahassee Utilities The City of Tallahassee Utilities offers a $450 rebate to homeowners* and homebuilders who install a solar water-heating system. This rebate may be applied to a first-time installation or to the replacement of an older solar water-heating system. Homebuilders may also apply for the rebate when installing a solar water heater on a new home. Pool heating systems are not eligible for the rebate. The homeowner must allow the City of Tallahassee to conduct an energy audit

296

Down hole periodic seismic generator  

DOE Patents (OSTI)

A down hole periodic seismic generator system for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

Hardee, Harry C. (Albuquerque, NM); Hills, Richard G. (Las Cruces, NM); Striker, Richard P. (Albuquerque, NM)

1989-01-01T23:59:59.000Z

297

Advanced downhole periodic seismic generator  

DOE Patents (OSTI)

An advanced downhole periodic seismic generator system for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

Hardee, Harry C. (Albuquerque, NM); Hills, Richard G. (Las Cruces, NM); Striker, Richard P. (Albuquerque, NM)

1991-07-16T23:59:59.000Z

298

Use of impure inert gases in the controlled heating and cooling of mixed conducting metal oxide materials  

DOE Patents (OSTI)

Method for processing an article comprising mixed conducting metal oxide material. The method comprises contacting the article with an oxygen-containing gas and either reducing the temperature of the oxygen-containing gas during a cooling period or increasing the temperature of the oxygen-containing gas during a heating period; during the cooling period, reducing the oxygen activity in the oxygen-containing gas during at least a portion of the cooling period and increasing the rate at which the temperature of the oxygen-containing gas is reduced during at least a portion of the cooling period; and during the heating period, increasing the oxygen activity in the oxygen-containing gas during at least a portion of the heating period and decreasing the rate at which the temperature of the oxygen-containing gas is increased during at least a portion of the heating period.

Carolan, Michael Francis (Allentown, PA); Bernhart, John Charles (Fleetwood, PA)

2012-08-21T23:59:59.000Z

299

Waste Heat Recovery from Industrial Process Heating Equipment -  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste Heat Recovery from Industrial Process Heating Equipment - Waste Heat Recovery from Industrial Process Heating Equipment - Cross-cutting Research and Development Priorities Speaker(s): Sachin Nimbalkar Date: January 17, 2013 - 11:00am Location: 90-2063 Seminar Host/Point of Contact: Aimee McKane Waste heat is generated from several industrial systems used in manufacturing. The waste heat sources are distributed throughout a plant. The largest source for most industries is exhaust / flue gases or heated air from heating systems. This includes the high temperature gases from burners in process heating, lower temperature gases from heat treat, dryers, and heaters, heat from heat exchangers, cooling liquids and gases etc. The previous studies and direct contact with the industry as well as equipment suppliers have shown that a large amount of waste heat is not

300

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ........................... 1,870 1,276 322 138 133 43.0 29.4 7.4 3.2 3.1 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 243 151 34 40 18 78.7 48.9 11.1 13.0 5.7 5,001 to 10,000 .......................... 202 139 31 29 Q 54.8 37.6 8.5 7.9 Q 10,001 to 25,000 ........................ 300 240 31 21 7 42.5 34.1 4.4 3.0 1.1 25,001 to 50,000 ........................ 250 182 40 11 Q 41.5 30.2 6.6 1.9 Q 50,001 to 100,000 ...................... 236 169 41 8 19 35.4 25.2 6.2 1.2 2.8 100,001 to 200,000 .................... 241 165 54 7 16 36.3 24.8 8.1 1.0 2.4 200,001 to 500,000 .................... 199 130 42 11 16 35.0 22.8 7.5 1.9 2.8 Over 500,000 ............................. 198

Note: This page contains sample records for the topic "time period heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ............................. 2,037 1,378 338 159 163 42.0 28.4 7.0 3.3 3.4 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 249 156 35 41 18 78.6 49.1 11.0 12.9 5.6 5,001 to 10,000 .......................... 218 147 32 31 7 54.8 37.1 8.1 7.9 1.7 10,001 to 25,000 ........................ 343 265 34 25 18 43.8 33.9 4.4 3.2 2.3 25,001 to 50,000 ........................ 270 196 41 13 Q 40.9 29.7 6.3 2.0 2.9 50,001 to 100,000 ...................... 269 186 45 13 24 35.8 24.8 6.0 1.8 3.2 100,001 to 200,000 .................... 267 182 56 10 19 35.4 24.1 7.4 1.3 2.6 200,001 to 500,000 .................... 204 134 43 11 17 34.7 22.7 7.3 1.8 2.9 Over 500,000 .............................

302

Steady response to heating: Gaussian heat source  

E-Print Network (OSTI)

+ prescribed latent heating => "Matsuno-Gill model" Moisture equation for precipitation term ¡ Can make. of Equatorial Waves Filter out "background spectrum": ¡ Can see all different wave types! Especially Kelvin #12;Equatorial Waves Alternative theory for wave speed: ¡ Higher vertical mode structure causes phase

Frierson, Dargan

303

Effects of the ship motion on gassolid flow and heat transfer in a circulating fluidized bed  

Science Journals Connector (OSTI)

A series of experiments on a circulating fluidized bed (CFB) was performed to investigate the effects of ship motion on gassolid flow and heat transfer in the CFB. Rolling period, rolling amplitude, inclination angle, superficial velocity, particle diameter range, and solid circulation flux were varied in the experiments. The following results were obtained: (1) When the CFB undergoes rolling motion, the downflow of particles changes periodically and the solid volume fraction increases at the riser bottom. As a result, the time-averaged total pressure drop of the CFB in rolling motion becomes larger than that at the upright attitude. Similarly, the total pressure drop of the CFB at an inclined attitude is larger than that at the upright attitude. (2) The total pressure drop of the CFB in rolling motion is hardly affected by rolling period. As rolling amplitude increases, on the other hand, the effects of rolling motion become more remarkable. From these results, it is concluded that gravity dominantly affects gassolid flow in the system. (3) At an inclined attitude, the symmetry of the flow field with respect to the riser center plane breaks, and heat transfer at the lower wall of the riser is promoted. As inclination angle increases, heat transfer augmentation becomes more remarkable. Similarly, the heat transfer coefficient in rolling motion is larger than that at the upright attitude. (4) Heat transfer augmentation by ship motion is concluded to be caused by the direct contact between solid particles and the heater surface owing to the vertical component of gravity to the surface.

Hiroyuki Murata; Hideyuki Oka; Masaki Adachi; Kazuyoshi Harumi

2012-01-01T23:59:59.000Z

304

Proceedings of Heat Transfer 2003: ASME Summer Heat Transfer Conference  

E-Print Network (OSTI)

Proceedings of Heat Transfer 2003: ASME Summer Heat Transfer Conference Las Vegas, Nevada, USA July 21-23, 2003 HT2003-47449 HEAT TRANSFER FROM A MOVING AND EVAPORATING MENISCUS ON A HEATED SURFACE meniscus with complete evaporation of water without any meniscus break-up. The experimental heat transfer

Kandlikar, Satish

305

Microchannel heat sink assembly  

DOE Patents (OSTI)

The present invention provides a microchannel heat sink with a thermal range from cryogenic temperatures to several hundred degrees centigrade. The heat sink can be used with a variety of fluids, such as cryogenic or corrosive fluids, and can be operated at a high pressure. The heat sink comprises a microchannel layer preferably formed of silicon, and a manifold layer preferably formed of glass. The manifold layer comprises an inlet groove and outlet groove which define an inlet manifold and an outlet manifold. The inlet manifold delivers coolant to the inlet section of the microchannels, and the outlet manifold receives coolant from the outlet section of the microchannels. In one embodiment, the manifold layer comprises an inlet hole extending through the manifold layer to the inlet manifold, and an outlet hole extending through the manifold layer to the outlet manifold. Coolant is supplied to the heat sink through a conduit assembly connected to the heat sink. A resilient seal, such as a gasket or an O-ring, is disposed between the conduit and the hole in the heat sink in order to provide a watertight seal. In other embodiments, the conduit assembly may comprise a metal tube which is connected to the heat sink by a soft solder. In still other embodiments, the heat sink may comprise inlet and outlet nipples. The present invention has application in supercomputers, integrated circuits and other electronic devices, and is suitable for cooling materials to superconducting temperatures. 13 figs.

Bonde, W.L.; Contolini, R.J.

1992-03-24T23:59:59.000Z

306

Heat Requirements of Buildings  

Science Journals Connector (OSTI)

... and Ventilating Engineers in a publication entitled Recommendations for the Computation of Heat Requirements for Buildings (Pp. iii+41. Is. 9d.) This comprises a section of the ... parts. That on temperature-rise and rates of change gives the recommended values applicable to buildings ranging alphabetically from aircraft sheds to warehouses. The design of heating and ventilating installations ...

1942-02-28T23:59:59.000Z

307

Geothermal direct-heat utilization assistance. Quarterly project progress report, July 1994--September 1994  

SciTech Connect

This paper is a third quarter 1994 report of activities of the Geo-Heat Center of Oregon Institute of Technology. It describes contacts with parties during this period related to assistance with geothermal direct heat applications. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, resources, and equipment. Research is also being conducted on failures of vertical lineshaft turbines in geothermal wells.

Not Available

1994-10-01T23:59:59.000Z

308

Solar heating system  

DOE Patents (OSTI)

An improved solar heating system in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75.degree. to 180.degree. F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing and releasing heat for distribution.

Schreyer, James M. (Oak Ridge, TN); Dorsey, George F. (Concord, TN)

1982-01-01T23:59:59.000Z

309

Thermal and economical analysis of an underground seasonal storage heating system in Thrace  

Science Journals Connector (OSTI)

Economical analysis of the solar heating system with seasonal storage, which was established in Edirne (4139?54?N) in order to provide the heat requirement of buildings, has been fulfilled. Optimum collector area for the heating system has been determined. Total heat requirement of 69% has been met by means of heating system concerning the space heating and domestic water heating. In the accordance with the results of the economical analysis, the payback time of the heating system has been determined as 1920 years.

Berrin Karacavus; Ahmet Can

2009-01-01T23:59:59.000Z

310

Mixed-convective, conjugate heat transfer during molten salt quenching of small parts  

SciTech Connect

It is common in free quenching immersion heat treatment calculations to locally apply constant or surface-averaged heat-transfer coefficients obtained from either free or forced steady convection over simple shapes with small temperature differences from the ambient fluid. This procedure avoids the solution of highly transient, non-Boussinesq conjugate heat transfer problems which often involve mixed convection, but it leaves great uncertainty about the general adequacy of the results. In this paper we demonstrate for small parts (dimensions of the order of inches rather than feet) quenched in molten salt, that it is feasible to calculate such nonuniform surface heat transfer from first principles without adjustable empirical parameters. We use literature physical property salt data from the separate publications of Kirst et al., Nissen, Carling, and Teja, et al. for T<1000 F, and then extrapolate it to the initial part temperature. The reported thermal/chemical breakdown of NaNO{sub 2} for T>800 F is not considered to be important due to the short time the surface temperature exceeds that value for small parts. Similarly, for small parts, the local Reynolds and Rayleigh numbers are below the corresponding critical values for most if not all of the quench, so that we see no evidence of the existence of significant turbulence effects, only some large scale unsteadiness for brief periods. The experimental data comparisons from the open literature include some probe cooling-rate results of Foreman, as well as some cylinder thermal histories of Howes.

Chenoweth, D.R.

1997-02-01T23:59:59.000Z

311

Geothermal direct-heat utilization assistance: Quarterly project progress report, January--March 1995  

SciTech Connect

The report summarizes geothermal activities of the Geo-Heat Center at Oregon Institute of Technology for the second quarter of FY-95. It describes 92 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, resources and equipment. Research activities are summarized on geothermal energy cost evaluation, low temperature resource assessment and ground-source heat pump case studies and utility programs. Outreach activities include the publication of a geothermal direct heat Bulletin, dissemination of information, geothermal library, and progress monitor reports on geothermal resources and utilization.

NONE

1995-05-01T23:59:59.000Z

312

Steady, three-dimensional, internally heated convection  

SciTech Connect

Numerical calculations have been carried out of steady, symmetric, three-dimensional modes of convection in internally heated, infinite Prandtl number, Boussinesq fluids at a Rayleigh number of 1.4[times]10[sup 4] in a spherical shell with inner/outer radius of 0.55 and in a 3[times]3[times]1 rectangular box. Multiple patterns of convection occur in both geometries. In the Cartesian geometry the patterns are dominated by cylindrical cold downflows and a broad hot upwelling. In the spherical geometry the patterns consist of cylindrical cold downwellings centered either at the vertices of a tetrahedron or the centers of the faces of a cube. The cold downflow cylinders are immersed in a background of upwelling within which there are cylindrical hot concentrations (plumes) and hot halos around the downflows. The forced hot upflow return plumes of internally heated spherical convection are fundamentally different from the buoyancy-driven plumes of heated from below convection.

Schubert, G. (Department of Earth and Space Sciences and Institute of Geophysics and Planetary Physics, University of California, Los Angeles, California 90024 (United States)); Glatzmaier, G.A.; Travis, B. (Earth and Environmental Sciences, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States))

1993-08-01T23:59:59.000Z

313

ASME Journal of Heat Transfer Vol.118, pp.592-598, 1996  

E-Print Network (OSTI)

. The coupled governing equations for time- dependent convective heat transfer in the fluid flow and conduction to pay increasing attention to the study of heat transfer and fluid flow characteristicsASME Journal of Heat Transfer Vol.118, pp.592-598, 1996 OSCILLATORY HEAT TRANSFER IN A PIPE

Zhao, Tianshou

314

Thermo-mechanical simulations in double-sided heat transfer power assemblies.  

E-Print Network (OSTI)

Thermo-mechanical simulations in double-sided heat transfer power assemblies. E. Woirgard; I. Favre In power assemblies, heat transfer due to the die self- heating is one of the most important point on time life assemblies. Heat has to be evacuated toward the base- plate not to weaken the solder joint under

Boyer, Edmond

315

Radiant Heating | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiant Heating Radiant Heating Radiant Heating June 24, 2012 - 5:52pm Addthis In-wall radiant heating in a house under construction near Denver. | Photo courtesy of Warren Gretz, NREL. In-wall radiant heating in a house under construction near Denver. | Photo courtesy of Warren Gretz, NREL. Radiant heating systems supply heat directly to the floor or to panels in the wall or ceiling of a house. The systems depend largely on radiant heat transfer -- the delivery of heat directly from the hot surface to the people and objects in the room via infrared radiation. Radiant heating is the effect you feel when you can feel the warmth of a hot stovetop element from across the room. When radiant heating is located in the floor, it is often called radiant floor heating or simply floor heating.

316

Radiant Heating | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiant Heating Radiant Heating Radiant Heating June 24, 2012 - 5:52pm Addthis In-wall radiant heating in a house under construction near Denver. | Photo courtesy of Warren Gretz, NREL. In-wall radiant heating in a house under construction near Denver. | Photo courtesy of Warren Gretz, NREL. Radiant heating systems supply heat directly to the floor or to panels in the wall or ceiling of a house. The systems depend largely on radiant heat transfer -- the delivery of heat directly from the hot surface to the people and objects in the room via infrared radiation. Radiant heating is the effect you feel when you can feel the warmth of a hot stovetop element from across the room. When radiant heating is located in the floor, it is often called radiant floor heating or simply floor heating.

317

RADIATIVE HEATING OF THE SOLAR CORONA  

SciTech Connect

We investigate the effect of solar visible and infrared radiation on electrons in the Sun's atmosphere using a Monte Carlo simulation of the wave-particle interaction and conclude that sunlight provides at least 40% and possibly all of the power required to heat the corona, with the exception of dense magnetic flux loops. The simulation uses a radiation waveform comprising 100 frequency components spanning the solar blackbody spectrum. Coronal electrons are heated in a stochastic manner by low coherence solar electromagnetic radiation. The wave 'coherence time' and 'coherence volume' for each component is determined from optical theory. The low coherence of solar radiation allows moving electrons to gain energy from the chaotic wave field which imparts multiple random velocity 'kicks' to these particles causing their velocity distribution to broaden or heat. Monte Carlo simulations of broadband solar radiative heating on ensembles of 1000 electrons show heating at per particle levels of 4.0 x 10{sup -21} to 4.0 x 10{sup -20} W, as compared with non-loop radiative loss rates of {approx}1 x 10{sup -20} W per electron. Since radiative losses comprise nearly all of the power losses in the corona, sunlight alone can explain the elevated temperatures in this region. The volume electron heating rate is proportional to density, and protons are assumed to be heated either by plasma waves or through collisions with electrons.

Moran, Thomas G., E-mail: moran@grace.nascom.nasa.gov [Physics Department, Catholic University of America, 200 Hannan Hall, Washington, DC 20064 (United States) and NASA/GSFC, Code 671, Greenbelt, MD 20771 (United States)

2011-10-20T23:59:59.000Z

318

Heating and cooling performance analysis of a ground source heat pump system in Southern Germany  

Science Journals Connector (OSTI)

Abstract This paper examines thermal performance of a ground source heat pump (GSHP) system. The GSHP system was installed in an office building in Nuremberg city of Germany. In order to evaluate system performance the GSHP system has been continuously monitored for 4 years. Heating and cooling performance of the GSHP system is analyzed based on the accumulated data. Major findings of this work include: (1) coefficient of performance (COP) is estimated to be 3.9 for a typical winter day and energy efficiency ratio (EER) is assessed to be 8.0 for a typical summer day. These results indicate that the GSHP system has a higher efficiency for building cooling than building heating. (2) For a long-term period, the seasonal energy efficiency ratio (SEER) of the GSHP system is observed to increase by 8.7% annually, whereas the seasonal COP is decreased by 4.0% over a 4-year period. The heating and cooling performance of the GSHP system migrates in opposite trend is caused by the unevenly distributed heating and cooling load of the building. This phenomenon deserves serious attention in the design of future GSHP systems in order to avoid the reducing of energy efficiency over long-term operation.

Jin Luo; Joachim Rohn; Manfred Bayer; Anna Priess; Lucas Wilkmann; Wei Xiang

2015-01-01T23:59:59.000Z

319

Heat-Of-Reaction Chemical Heat Pumps--Possible Configurations  

E-Print Network (OSTI)

-807. (5) K. Kesavan. The Use of Dissociating Gases As the Working Fluid in Thermodynamic Power Conversion Cycles, Ph.D. thesis. Carnegie-Mellon University, 1978, Ann Arbor, MI: University Microfilms International, 1978. 5. Heat amplifier with a gas...ABSTRACT Chemical heat pumps utilize working fluids which undergo reversible chemical changes. Mechanically driven reactive heat pump cycles or, alternatively, hl~a: driven heat pumps in which either heat engine or heat pump working fluid...

Kirol, L. D.

320

Chemical heat pump cools as well as heats  

Science Journals Connector (OSTI)

Chemical heat pump cools as well as heats ... Innovative heat pump uses methanol refrigerant, calcium chloride absorber to use and store solar energy for heating, air conditioning, hot water ... Though the EIC heat pump is similar in concept to other chemical heat pumps now being used or developed, it does offer a number of innovations, not the least of which are its novel refrigerant (methanol) and absorption medium (calcium chloride). ...

RON DAGANI

1980-10-20T23:59:59.000Z

Note: This page contains sample records for the topic "time period heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

An Autonomous Adaptive Scheduling Agent for Period Searching  

E-Print Network (OSTI)

We describe the design and implementation of an autonomous adaptive software agent that addresses the practical problem of observing undersampled, periodic, time-varying phenomena using a network of HTN-compliant robotic telescopes. The algorithm governing the behaviour of the agent uses an optimal geometric sampling technique to cover the period range of interest, but additionally implements proactive behaviour that maximises the optimality of the dataset in the face of an uncertain and changing operating environment.

Eric S. Saunders; Tim Naylor; Alasdair Allan

2008-01-24T23:59:59.000Z

322

Energy efficiency highlights in transformation period and updating of energy policy of Poland up to 2005  

Science Journals Connector (OSTI)

This paper presents some important macroeconomic components characterising the energy economy in Poland during the transition period 1995-2000. Evaluation of primary energy use in Poland has been made in two separate energy flows firstly, energy in the production sector and secondly, energy consumed by households. The comparison of energy productivity in Poland and the EU in 2000 shows 50% of the EU average when GDP is calculated according to the ''ppp'' methodology, and still around three times smaller when Poland's GDP is expressed applying the official exchange rate. Some issues of energy pricing policy during 1997-2000 are discussed, mainly analysis focused on changes of relative prices of energy used in the industrial sector and in households. The comparison shows that relative prices of natural gas and electricity increased by 30% and district heating by 17% during the analysed period. Some developmental challenges to Polish energy policy guidelines focusing on both the newest macroeconomic data and legal aspects of energy law are also discussed briefly. A short energy forecast overview is presented finally.

Zygmunt Parczewski

2003-01-01T23:59:59.000Z

323

City of Klamath Falls District Heating District Heating Low Temperatur...  

Open Energy Info (EERE)

Geothermal Facility Jump to: navigation, search Name City of Klamath Falls District Heating District Heating Low Temperature Geothermal Facility Facility City of Klamath...

324

PIA - Northeast Home Heating Oil Reserve System (Heating Oil...  

Office of Environmental Management (EM)

Home Heating Oil Reserve System (Heating Oil) More Documents & Publications PIA - WEB Physical Security Major Application PIA - GovTrip (DOE data) PIA - WEB Unclassified...

325

Heat treatment furnace  

DOE Patents (OSTI)

A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.

Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T

2014-10-21T23:59:59.000Z

326

Cooling and Clusters: When Is Heating Needed?  

E-Print Network (OSTI)

There are (at least) two unsolved problems concerning the current state of the thermal gas in clusters of galaxies. The first is identifying the source of the heating which offsets cooling in the centers of clusters with short cooling times (the ``cooling flow'' problem). The second is understanding the mechanism which boosts the entropy in cluster and group gas. Since both of these problems involve an unknown source of heating it is tempting to identify them with the same process, particular since AGN heating is observed to be operating at some level in a sample of well-observed ``cooling flow'' clusters. Here we show, using numerical simulations of cluster formation, that much of the gas ending up in clusters cools at high redshift and so the heating is also needed at high-redshift, well before the cluster forms. This indicates that the same process operating to solve the cooling flow problem may not also resolve the cluster entropy problem.

Greg L. Bryan; G. Mark Voit

2005-02-22T23:59:59.000Z

327

Solar pool heating | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Solar pool heating Jump to: navigation, search Pool Heating is a great use for solar energy. Solar pool heating systems can be very effective and inexpensive. The pool itself is the thermal storage unit and the existing pump that the pool uses will circulate the water through the solar collectors. Pool Covers Having a good pool cover is one of the best ways to conserve energy and use solar energy to heat the pool. If you don't have a pool cover the solar energy being used will be wasted and you will be using three times as much energy that is necessary. Solar Sun Rings- instead of using a full pool cover sun rings are

328

Energy savings in one-pipe steam heating systems fitted with high-capacity air vents. Final report  

SciTech Connect

Multifamily buildings heated by one-pipe steam systems experience significant temperature gradients from apartment to apartment, often reaching 15{degrees}F. As a result, many tenants are to cold, or if the heating system output is increased so as to heat the coldest apartment adequately, too hot. While both are undesirable, the second is particularly so because it wastes energy. It was thought that insufficient air venting of the steam pipes contributed to the gradient. Theoretically, if steam mains and risers are quickly vented, steam will reach each radiator at approximately the same time and balance apartment temperatures. The project`s objective was to determine if the installation of large-capacity air vents at the ends of steam mains and risers would economically reduce the temperature gradient between apartments and reduce the amount of space heating energy required. The test was conducted by enabling and disabling air vents biweekly in 10 multifamily buildings in New York City between December 1992 to May 1993. The temperatures of selected apartments and total space heating energy were compared during each venting regime. There was no difference in energy consumption between ``vents on`` and ``vents off`` periods (see Tables 2 and 5); however, there was a reduction in the maximum spread of apartment temperatures.

Not Available

1994-09-01T23:59:59.000Z

329

Heat pumps and under floor heating as a heating system for Finnish low-rise residential buildings.  

E-Print Network (OSTI)

??In bachelors thesis the study of under floor heating system with ground source heat pump for the heat transfers fluid heating is considered. The case (more)

Chuduk, Svetlana

2010-01-01T23:59:59.000Z

330

Domestic Heating and Thermal Insulation  

Science Journals Connector (OSTI)

... DIGEST 133 of the Building Research Station, entitled "Domestic Heating and Thermal Insulation" (Pp. 7. London : H.M. Stationery Office, 1960. 4insulation, the standard of heating, the ventilation-rate and the length of the heating season ...

1960-09-17T23:59:59.000Z

331

2659 heat insulation [n] (2)  

Science Journals Connector (OSTI)

constr....(Protection against heat provided by heat-shielding materials in the outer walls of a building to prevent heat build-up in hot regions or in temperate climates during the summer. In tempera...

2010-01-01T23:59:59.000Z

332

Heat Transfer and Convection Currents  

Science Journals Connector (OSTI)

...October 1965 research-article Heat Transfer and Convection Currents D. C...convection in a medium with internal heat generation is discussed semi-quantitatively...States English United Kingdom 1966 Heat transfer and convection currents Tozer D...

1965-01-01T23:59:59.000Z

333

Heat and Sound Insulation Materials  

Science Journals Connector (OSTI)

Of the three heat transfer processes: heat conduction, convection and radiation, convectional heat transfer is reduced by fiber and foam insulation materials1, 2). Air circulation is prevented by compartmentalizi...

Dr. Andre Knop; Dr. Louis A. Pilato

1985-01-01T23:59:59.000Z

334

Residential heating oil prices decline  

U.S. Energy Information Administration (EIA) Indexed Site

heating oil prices decline The average retail price for home heating oil is 3.48 per gallon. That's down 4.5 cents from a week ago, based on the residential heating fuel survey by...

335

Advances in induction heating  

SciTech Connect

Electric induction heating, in situ, can distill (underground) high-heat-value (HHV) gas, coal tar, bitumen, and shale oil. This technique permits potentially lower cost exploitation of the solid fossil fuels: coal, oil shale, tar sand, and heavy oil. The products, when brought to the surface in gaseous form and processed, yield chemical feedstocks, natural gas, and petroleum. Residual coke can be converted, in situ, to low-heat-value (LHV) gas by a conventional water-gas process. LHV can be burned at the surface to generate electricity at low cost. The major cost of the installation will have been paid for by the HHV gas and tar distilled from the coal. There are 2 mechanisms of heating by electric induction. One uses displacement currents induced from an electric field. The other uses eddy currents induced by a magnetic field.

Not Available

1980-06-16T23:59:59.000Z

336

Solar Heating Contractor Licensing  

Energy.gov (U.S. Department of Energy (DOE))

Michigan offers a solar heating contractor specialty license to individuals who have at least three years of experience installing solar equipment under the direction of a licensed solar contractor...

337

Heating and cooling system  

SciTech Connect

Heating and cooling of dwelling houses and other confined spaces is facilitated by a system in which thermal energy is transported between an air heating and cooling system in the dwelling and a water heat storage sink or source, preferably in the form of a swimming pool or swimming pool and spa combination. Special reversing valve circuitry and the use of solar collectors and liquid-to-liquid heat exchangers on the liquid side of the system , and special air valves and air modules on the air side of the system, enhance the system's efficiency and make it practical in the sense that systems employing the invention can utilize existing craft skills and building financing arrangements and building codes, and the like, without major modification.

Krumhansl, M.U.

1982-10-12T23:59:59.000Z

338

Solar heated swimming pool  

SciTech Connect

A swimming pool construction incorporating solar heating means to heat the pool water to a desired level. The pool includes a surrounding safety fence supported by a plurality of fence supports which are hollow and which include internal passageways. The pool water is passed through the pool support passageways whereupon it absorbs heat from the sidewalls of the fence supports, the surfaces of which have been heated by solar radiation. The fence supports can be made of plastic or other materials, but preferably are dark for improved absorptivity. The pool water can be passed serially through each of the fence supports and suitable thermostat control means can be provided to limit the water temperature increase.

Pettit, F.M.

1984-10-02T23:59:59.000Z

339

Electron Heat Transport Measured  

NLE Websites -- All DOE Office Websites (Extended Search)

Heat Transport Measured in a Stochastic Magnetic Field T. M. Biewer, * C. B. Forest, J. K. Anderson, G. Fiksel, B. Hudson, S. C. Prager, J. S. Sarff, and J. C. Wright...

340

Wood Heating Fuel Exemption  

Energy.gov (U.S. Department of Energy (DOE))

This statute exempts from the state sales tax all wood or "refuse-derived" fuel used for heating purposes. The law does not make any distinctions about whether the qualified fuels are used for...

Note: This page contains sample records for the topic "time period heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Absorption Heat Pump Developments  

Science Journals Connector (OSTI)

The implementation of both new thermodynamic cycles and new suitable fluids makes it possible to considerably widen the capacity to recover and upgrade low level heat contained particularly in industrial therm...

G. Cohen; A. Rojey

1983-01-01T23:59:59.000Z

342

Curling in the heat  

Science Journals Connector (OSTI)

... heat sensor, shown here, has been developed by Jim Gimzewski and colleagues at IBM Riis-chlikon specifically for studies of surface reactions . A spin-off of the scanning probe ...

David A. King

1994-04-21T23:59:59.000Z

343

Characteristics of Fluid flow and heat transfer in Shellside of Heat Exchangers with Longitudinal Flow of Shellside Fluid with Different Supporting structures  

Science Journals Connector (OSTI)

In the paper, a simplified numerical model-the periodic unit duct model was presented for the numerical simulation of shellside characteristics in heat exchanger with longitudinal flow of shellside fluid, and its...

Yongqing Wang; Qiwu Dong; Minshan Liu

2007-01-01T23:59:59.000Z

344

Water Heating | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to cut your water heating bill. Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters A water heater's energy efficiency is determined by the energy...

345

Heat flux limiting sleeves  

DOE Patents (OSTI)

A heat limiting tubular sleeve extending over only a portion of a tube having a generally uniform outside diameter, the sleeve being open on both ends, having one end thereof larger in diameter than the other end thereof and having a wall thickness which decreases in the same direction as the diameter of the sleeve decreases so that the heat transfer through the sleeve and tube is less adjacent the large diameter end of the sleeve than adjacent the other end thereof.

Harris, William G. (Tampa, FL)

1985-01-01T23:59:59.000Z

346

Heat Waves, Global Warming, and Mitigation  

E-Print Network (OSTI)

Heat Waves, Global Warming, and Mitigation Ann E. Carlson*II. HEAT WAVE DEFINITIONS .. A . HCHANGE AND HEAT WAVES .. CLIMATE III. IV. HEAT

Carlson, Ann E.

2008-01-01T23:59:59.000Z

347

Tsallis Distribution Decorated With Log-Periodic Oscillation  

E-Print Network (OSTI)

In many situations, in all branches of physics, one encounters power-like behavior of some variables which are best described by a Tsallis distribution characterized by a nonextensivity parameter $q$ and scale parameter $T$. However, there exist experimental results which can be described only by a Tsallis distributions which are additionally decorated by some log-periodic oscillating factor. We argue that such a factor can originate from allowing for a complex nonextensivity parameter $q$. The possible information conveyed by such an approach (like the occurrence of complex heat capacity, the notion of complex probability or complex multiplicative noise) will also be discussed.

Wilk, Grzegorz

2015-01-01T23:59:59.000Z

348

Tsallis Distribution Decorated With Log-Periodic Oscillation  

E-Print Network (OSTI)

In many situations, in all branches of physics, one encounters power-like behavior of some variables which are best described by a Tsallis distribution characterized by a nonextensivity parameter $q$ and scale parameter $T$. However, there exist experimental results which can be described only by a Tsallis distributions which are additionally decorated by some log-periodic oscillating factor. We argue that such a factor can originate from allowing for a complex nonextensivity parameter $q$. The possible information conveyed by such an approach (like the occurrence of complex heat capacity, the notion of complex probability or complex multiplicative noise) will also be discussed.

Grzegorz Wilk; Zbigniew Wlodarczyk

2015-01-12T23:59:59.000Z

349

Convective heat flow probe  

DOE Patents (OSTI)

A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packet-type seals are provided along the probe above and below the heater pads.

Dunn, J.C.; Hardee, H.C.; Striker, R.P.

1984-01-09T23:59:59.000Z

350

Union Power Cooperative - Residential Energy Efficient Heat Pump Loan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Union Power Cooperative - Residential Energy Efficient Heat Pump Union Power Cooperative - Residential Energy Efficient Heat Pump Loan Program Union Power Cooperative - Residential Energy Efficient Heat Pump Loan Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Maximum Rebate $7,500 Program Info State North Carolina Program Type Utility Loan Program Rebate Amount up to $7,500 Provider Union Power Cooperative Union Power Cooperative offers low interest loans to help its residential customers finance new, energy-efficient heat pumps. Interest rates, currently at 9%, will be fixed for the term of the loan. Loans can be up to $7,500 over five years. Customers pay back the loan with payments on monthly electric bills. There is a one time loan filing fee of $42. Contact

351

On a periodicity measure and superoscillations  

E-Print Network (OSTI)

The phenomenon of superoscillation, where band limited signals can oscillate over some time period with a frequency higher than the band limit, is not only very interesting but it also seems to offer many practical applications. The first reason is that the superoscillation frequency can be exploited to perform tasks beyond the limits imposed by the lower bandwidth of the signal. The second reason is that it is generic and applies to any wave form, be it optical, electrical, sonic, or quantum mechanical. For practical applications, it is important to overcome two problems. The first problem is that an overwhelming proportion of the energy goes into the non superoscillating part of the signal. The second problem is the control of the shape of the superoscillating part of the signal. The first problem has been recently addressed by optimization of the super oscillation yield, the ratio of the energy in the superoscillations to the total energy of the signal. The second problem may arise when the superoscillation, is to mimic a high frequency purely perodic signal. This may be required, for example, when a superoscillating force is to drive a harmonic oscillator at a high resonance frequency. In this paper the degree of periodicity of a signal is defined and applied to some yield optimized superoscillating signals.

Nehemia Schwartz; Moshe Schwartz

2014-02-13T23:59:59.000Z

352

The heating of the cooling flow (The feedback effervescent heating model)  

E-Print Network (OSTI)

The standard cooling flow model has predicted a large amount of cool gas in the clusters of galaxies. The failure of the Chandra and XXM-Newton telescopes to detect cooling gas (below 1-2 keV) in clusters of galaxies has suggested that some heating process must work to suppress the cooling. The most likely heating source is the heating by AGNs. There are many heating mechanisms, but we will adopt the effervescent heating model which is a result of the interaction of the bubbles inflated by AGN with the intra-cluster medium(ICM). Using the FLASH code, we have carried out time dependent simulations to investigate the effect of the heating on the suppression of the cooling in cooling flow clusters. We have found that the effervescent heating model can not balance the radiative cooling and it is an artificial model. Furthermore, the effervescent heating is a function of the ICM pressure gradient but the cooling is proportional to the gas density square and square root of the gas temperature.

Nasser Mohamed Ahmed

2007-10-10T23:59:59.000Z

353

Geothermal R and D Project report for period April 1, 1976 to June 30, 1976  

Open Energy Info (EERE)

report for period April 1, 1976 to June 30, 1976 report for period April 1, 1976 to June 30, 1976 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geothermal R and D Project report for period April 1, 1976 to June 30, 1976 Details Activities (1) Areas (1) Regions (0) Abstract: Progress during April to July 1976 in research on geothermal energy is reported. The experiments are performed in the Raft River Valley, Idaho, a hydrothermal resource site with water temperatures below 150/sup 0/C. During this period, a third well, RRGE-3 was drilled and well production was tested, testing of a direct contact heat exchanger continued, design and cost estimating continued on a 40 MW (th) organic-binary heat exchange facility, agricultural studies of irrigation with geothermal water progressed, and down-hole data was obtained from

354

Microfabricated fuel heating value monitoring device  

DOE Patents (OSTI)

A microfabricated fuel heating value monitoring device comprises a microfabricated gas chromatography column in combination with a catalytic microcalorimeter. The microcalorimeter can comprise a reference thermal conductivity sensor to provide diagnostics and surety. Using microfabrication techniques, the device can be manufactured in production quantities at a low per-unit cost. The microfabricated fuel heating value monitoring device enables continuous calorimetric determination of the heating value of natural gas with a 1 minute analysis time and 1.5 minute cycle time using air as a carrier gas. This device has applications in remote natural gas mining stations, pipeline switching and metering stations, turbine generators, and other industrial user sites. For gas pipelines, the device can improve gas quality during transfer and blending, and provide accurate financial accounting. For industrial end users, the device can provide continuous feedback of physical gas properties to improve combustion efficiency during use.

Robinson, Alex L. (Albuquerque, NM); Manginell, Ronald P. (Albuquerque, NM); Moorman, Matthew W. (Albuquerque, NM)

2010-05-04T23:59:59.000Z

355

Solar air heating system for combined DHW and space heating  

E-Print Network (OSTI)

Solar air heating system for combined DHW and space heating solar air collector PV-panel fannon-return valve DHW tank mantle cold waterhot water roof Solar Energy Centre Denmark Danish Technological Institute SEC-R-29 #12;Solar air heating system for combined DHW and space heating Søren ?stergaard Jensen

356

An Ultra Short -Period Seismograph  

Science Journals Connector (OSTI)

...the passage of a cold front. It hes been...the com- plete weather picture at the time...been in continuous operation at Palisades for...satisfactory unattended operation. It is possible...amplifier. If battery operation is not desired...furnish the plate and heater voltages. The heaters...

Frank Press

357

On the Heating of the Solar Corona and the Acceleration of the Low-Speed Solar Wind by Acoustic Waves Generated in Corona  

E-Print Network (OSTI)

We investigate possibilities of solar coronal heating by acoustic waves generated not at the photosphere but in the corona, aiming at heating in the mid- to low-latitude corona where the low-speed wind is expected to come from. Acoustic waves of period tau ~ 100s are triggered by chromospheric reconnection, one model of small scale magnetic reconnection events recently proposed by Sturrock. These waves having a finite amplitude eventually form shocks to shape sawtooth waves (N-waves), and directly heat the surrounding corona by dissipation of their wave energy. Outward propagation of the N-waves is treated based on the weak shock theory, so that the heating rate can be evaluated consistently with physical properties of the background coronal plasma without setting a dissipation length in an ad hoc manner. We construct coronal structures from the upper chromosphere to the outside of 1AU for various inputs of the acoustic waves having a range of energy flux of F_{w,0} = (1-20) times 10^5 erg cm^{-2} s^{-1} and a period of tau = 60-300s. The heating by the N-wave dissipation effectively works in the inner corona and we find that the waves of F_{w,0} >= 2 times 10^5 erg cm^{-2} s^{-1} and tau >= 60s could maintain peak coronal temperature, T_{max} > 10^6 K. The model could also reproduce the density profile observed in the streamer region. However, due to its short dissipation length, the location of T_{max} is closer to the surface than the observation, and the resultant flow velocity of the solar wind is lower than the observed profile of the low-speed wind. The cooperations with other heating and acceleration sources with the larger dissipation length are inevitable to reproduce the real solar corona.

Takeru Ken Suzuki

2002-06-14T23:59:59.000Z

358

Thermoelectric recovery of waste heat -- Case studies  

SciTech Connect

The use of waste heat as an energy source for thermoelectric generation largely removes the constraint for the wide scale application of this technology imposed by its relatively low conversion efficiency (typically about 5%). Paradoxically, in some parasitic applications, a low conversion efficiency can be viewed as a distinct advantage. However, commercially available thermoelectric modules are designed primarily for refrigerating applications and are less reliable when operated at elevated temperatures. Consequently, a major factor which determines the economic competitiveness of thermoelectric recovery of waste heat is the cost per watt divided by the mean-time between module failures. In this paper is reported the development of a waste, warm water powered thermoelectric generator, one target in a NEDO sponsored project to economically recover waste heat. As an application of this technology case studies are considered in which thermoelectric generators are operated in both active and parasitic modes to generate electrical power for a central heating system. It is concluded that, in applications when the supply of heat essentially is free as with waste heat, thermoelectrics can compete economically with conventional methods of electrical power generation. Also, in this situation, and when the generating system is operated in a parasitic mode, conversion efficiency is not an important consideration.

Rowe, M.D.; Min, G.; Williams, S.G.K.; Aoune, A. [Cardiff School of Engineering (United Kingdom). Div. of Electronic Engineering; Matsuura, Kenji [Osaka Univ., Suita, Osaka (Japan). Dept. of Electrical Engineering; Kuznetsov, V.L. [Ioffe Physical-Technical Inst., St. Petersburg (Russian Federation); Fu, L.W. [Tsinghua Univ., Beijing (China). Microelectronics Inst.

1997-12-31T23:59:59.000Z

359

Thermal performance of phase change material energy storage floor for active solar water-heating system  

Science Journals Connector (OSTI)

The conventional active solar water-heating floor system contains a big water tank to store energy in the day time for heating at night, which takes much building space and is very heavy. In order to reduce the w...

Ruolang Zeng; Xin Wang; Wei Xiao

2010-06-01T23:59:59.000Z

360

Planar resonant periodic orbits in Kuiper belt dynamics  

E-Print Network (OSTI)

In the framework of the planar restricted three body problem we study a considerable number of resonances associated to the Kuiper Belt dynamics and located between 30 and 48 a.u. Our study is based on the computation of resonant periodic orbits and their stability. Stable periodic orbits are surrounded by regular librations in phase space and in such domains the capture of trans-Neptunian object is possible. All the periodic orbits found are symmetric and there is evidence for the existence of asymmetric ones only in few cases. In the present work first, second and third order resonances are under consideration. In the planar circular case we found that most of the periodic orbits are stable. The families of periodic orbits are temporarily interrupted by collisions but they continue up to relatively large values of the Jacobi constant and highly eccentric regular motion exists for all cases. In the elliptic problem and for a particular eccentricity value of the primary bodies the periodic orbits are isolated. The corresponding families, where they belong to, bifurcate from specific periodic orbits of the circular problem and seem to continue up to the rectilinear problem. Both stable and unstable orbits are obtained for each case. In the elliptic problem the unstable orbits found are associated with narrow chaotic domains in phase space. The evolution of the orbits, which are located in such chaotic domains, seems to be practically regular and bounded for long time intervals.

George Voyatzis; Thomas Kotoulas

2005-02-28T23:59:59.000Z

Note: This page contains sample records for the topic "time period heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Heat exchanger-accumulator  

DOE Patents (OSTI)

What is disclosed is a heat exchanger-accumulator for vaporizing a refrigerant or the like, characterized by an upright pressure vessel having a top, bottom and side walls; an inlet conduit eccentrically and sealingly penetrating through the top; a tubular overflow chamber disposed within the vessel and sealingly connected with the bottom so as to define an annular outer volumetric chamber for receiving refrigerant; a heat transfer coil disposed in the outer volumetric chamber for vaporizing the liquid refrigerant that accumulates there; the heat transfer coil defining a passageway for circulating an externally supplied heat exchange fluid; transferring heat efficiently from the fluid; and freely allowing vaporized refrigerant to escape upwardly from the liquid refrigerant; and a refrigerant discharge conduit penetrating sealingly through the top and traversing substantially the length of the pressurized vessel downwardly and upwardly such that its inlet is near the top of the pressurized vessel so as to provide a means for transporting refrigerant vapor from the vessel. The refrigerant discharge conduit has metering orifices, or passageways, penetrating laterally through its walls near the bottom, communicating respectively interiorly and exteriorly of the overflow chamber for controllably carrying small amounts of liquid refrigerant and oil to the effluent stream of refrigerant gas.

Ecker, Amir L. (Dallas, TX)

1980-01-01T23:59:59.000Z

362

Enforcement Policy Statement: Compliance Period for Regional...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

energy conservation standards for residential furnaces, central air conditioners, and heat pumps, including regional standards for different product types in indicated States....

363

Heat Transfer Enhancement for Finned-tube Heat Exchangers with Winglets  

SciTech Connect

This paper presents the results of an experimental study of forced convection heat transfer in a narrow rectangular duct fitted with a circular tube and/or a delta-winglet pair. The duct was designed to simulate a single passage in a fin-tube heat exchanger. Heat transfer measurements were obtained using a transient technique in which a heated airflow is suddenly introduced to the test section. High-resolution local fin-surface temperature distributions were obtained at several times after initiation of the transient using an imaging infrared camera. Corresponding local fin-surface heat transfer coefficient distributions were then calculated from a locally applied one-dimensional semi-infinite inverse heat conduction model. Heat transfer results were obtained over an airflow rate ranging from 1.51 x 10-3 to 14.0 x 10-3 kg/s. These flow rates correspond to a duct-height Reynolds number range of 670 6300 with a duct height of 1.106 cm and a duct width-toheight ratio, W/H, of 11.25. The test cylinder was sized such that the diameter-to-duct height ratio, D/H is 5. Results presented in this paper reveal visual and quantitative details of local fin-surface heat transfer distributions in the vicinity of a circular tube, a delta-winglet pair, and a combination of a circular tube and a delta-winglet pair. Comparisons of local and average heat transfer distributions for the circular tube with and without winglets are provided. Overall mean finsurface Nusselt-number results indicate a significant level of heat transfer enhancement associated with the deployment of the winglets with the circular cylinder. At the lowest Reynolds numbers (which correspond to the laminar operating conditions of existing geothermal air-cooled condensers), the enhancement level is nearly a factor of two. At higher Reynolds numbers, the enhancement level is close to 50%.

O'Brien, James Edward; Sohal, Manohar Singh

2000-11-01T23:59:59.000Z

364

A Feasibility Study: Mining Daily Traces for Home Heating Control  

E-Print Network (OSTI)

savings as well as 14.9%­59.2% reduction in miss time. Keywords Energy, home heating, daily traces, prediction 1. INTRODUCTION Heating, ventilation and cooling (HVAC) contributes most to a home's energy bills, accounting for 48% of residential energy consumption in the U.S. and 61% in the U.K., 64% in Canada where

Whitehouse, Kamin

365

Survey of hybrid solar heat pump drying systems  

Science Journals Connector (OSTI)

Solar drying is in practice since the ancient time for preservation of food and agriculture crops. The objective of most drying processes is to reduce the moisture content of the product to a specified value. Solar dryers used in agriculture for food ... Keywords: coefficient of performance (COP), direct expansion SAHD, drying chamber, heat pump, solar assisted heat pumps dryer (SAHPD), solar fraction

R. Daghigh; K. Sopian; M. H. Ruslan; M. A. Alghoul; C. H. Lim; S. Mat; B. Ali; M. Yahya; A. Zaharim; M. Y. Sulaiman

2009-02-01T23:59:59.000Z

366

Optimal Scheduling of Industrial Combined Heat and Power Plants  

E-Print Network (OSTI)

Optimal Scheduling of Industrial Combined Heat and Power Plants under Time-sensitive Electricity Prices Sumit Mitra , Lige Sun , Ignacio E. Grossmann December 24, 2012 Abstract Combined heat and power companies. However, under-utilization can be a chance for tighter interaction with the power grid, which

Grossmann, Ignacio E.

367

Heat and Power Systems Design  

E-Print Network (OSTI)

HEAT AND POWER SYSTEMS DESIGN H. D. Spriggs and J. V. Shah, Leesburg. VA ABSTRACT The selection of heat and power systems usually does not include a thorough analysis of the process heating. cooling and power requirements. In most cases..., these process requirements are accepted as specifications before heat and power systems are selected and designed. In t~is article we describe how Process Integration using Pinch Technology can be used to understand and achieve the minimum process heating...

Spriggs, H. D.; Shah, J. V.

368

STAR Teaching Program Application Period | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

STAR Teaching Program Application Period STAR Teaching Program Application Period STAR Teaching Program Application Period December 28, 2012 2:30PM EST to January 31, 2013 5:30PM EST Cal Poly The Science Teacher and Researcher (STAR) Researcher program, a collaborative project of California State University, provides pre-service and early career science teachers with eight week long paid mentor and research opportunities at a national research center. Applicants must have the following: A demonstrated interest in becoming a science or mathematics teacher at the secondary level (grades 6-12) Either a California State University (CSU) student OR NSF Noyce Scholar in the United States OR a STAR Alum with two or fewer years of participation AND two or fewer years of teaching experience (first time participants must be pre-service teachers, i.e., not yet teaching full-time

369

Polariton dispersion of periodic quantum well structures  

Science Journals Connector (OSTI)

We studied the polariton dispersion relations of a periodic quantum-well structure with a period in the vicinity of half the exciton resonance wavelength, i.e., the Bragg structure. We classified polariton mod...

A. V. Mintsev; L. V. Butov; C. Ell; S. Mosor

2002-11-01T23:59:59.000Z

370

Acoustical heat pumping engine  

DOE Patents (OSTI)

The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium. 2 figs.

Wheatley, J.C.; Swift, G.W.; Migliori, A.

1983-08-16T23:59:59.000Z

371

Optical heat flux gauge  

DOE Patents (OSTI)

A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

Noel, Bruce W. (Espanola, NM); Borella, Henry M. (Santa Barbara, CA); Cates, Michael R. (Oak Ridge, TN); Turley, W. Dale (Santa Barbara, CA); MaCarthur, Charles D. (Clayton, OH); Cala, Gregory C. (Dayton, OH)

1991-01-01T23:59:59.000Z

372

Optical heat flux gauge  

DOE Patents (OSTI)

A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator wherein each thermographic layer comprises a plurality of respective thermographic phosphors. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

Noel, Bruce W. (Espanola, NM); Borella, Henry M. (Santa Barbara, CA); Cates, Michael R. (Oak Ridge, TN); Turley, W. Dale (Santa Barbara, CA); MacArthur, Charles D. (Clayton, OH); Cala, Gregory C. (Dayton, OH)

1991-01-01T23:59:59.000Z

373

Optical heat flux gauge  

DOE Patents (OSTI)

A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator, wherein each thermographic layer comprises a plurality of respective thermographic sensors in a juxtaposed relationship with respect to each other. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

Noel, Bruce W. (Espanola, NM); Borella, Henry M. (Santa Barbara, CA); Cates, Michael R. (Oak Ridge, TN); Turley, W. Dale (Santa Barbara, CA); MacArthur, Charles D. (Clayton, OH); Cala, Gregory C. (Dayton, OH)

1991-01-01T23:59:59.000Z

374

Air heating system  

DOE Patents (OSTI)

A self-starting, fuel-fired, air heating system including a vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with the provision of heat exchanger and circuitry for cooling the condensed fluid output from the pump prior to its return to the vapor generator.

Primeau, John J. (19800 Seminole Rd., Euclid, OH 44117)

1983-03-01T23:59:59.000Z

375

Potassium, Uranium, Thorium Radiogenic Heat Contribution To Heat Flow In  

Open Energy Info (EERE)

Potassium, Uranium, Thorium Radiogenic Heat Contribution To Heat Flow In Potassium, Uranium, Thorium Radiogenic Heat Contribution To Heat Flow In The Precambrian And Younger Silicic Rocks Of The Zuni And Florida Mountains, New Mexico (Usa) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Potassium, Uranium, Thorium Radiogenic Heat Contribution To Heat Flow In The Precambrian And Younger Silicic Rocks Of The Zuni And Florida Mountains, New Mexico (Usa) Details Activities (4) Areas (2) Regions (0) Abstract: High heat flow in the Zuni Mountains, New Mexico, U.S.A., has been explained by the possible presence of a buried felsic pluton. Alternately, high K, U, Th abundances have been proposed to account for part of the high heat flow. The mean radiogenic heat contribution for 60 samples of Precambrian core rocks is 7.23 μcal/gm-yr, which is slightly

376

Induction heaters used to heat subsurface formations  

DOE Patents (OSTI)

A heating system for a subsurface formation includes an elongated electrical conductor located in the subsurface formation. The electrical conductor extends between at least a first electrical contact and a second electrical contact. A ferromagnetic conductor at least partially surrounds and at least partially extends lengthwise around the electrical conductor. The electrical conductor, when energized with time-varying electrical current, induces sufficient electrical current flow in the ferromagnetic conductor such that the ferromagnetic conductor resistively heats to a temperature of at least about 300.degree. C.

Nguyen, Scott Vinh (Houston, TX); Bass, Ronald M. (Houston, TX)

2012-04-24T23:59:59.000Z

377

Comparative evaluation of three alternative power cycles for waste heat recovery from the exhaust of adiabatic diesel engines  

SciTech Connect

Three alternative power cycles were compared in application as an exhaust-gas heat-recovery system for use with advanced ''adiabatic'' diesel engines. The power cycle alternatives considered were steam Rankine, organic Rankine with RC-1 as the working fluid, and variations of an air Brayton cycle. The comparison was made in terms of fuel economy and economic payback potential for heavy-duty trucks operating in line-haul service. The results indicate that, in terms of engine rated specific fuel consumption, a diesel/alternative-power-cycle engine offers a significant improvement over the turbocompound diesel used as the baseline for comparison. The maximum improvement resulted from the use of a Rankine cycle heat-recovery system in series with turbocompounding. The air Brayton cycle alternatives studied, which included both simple-cycle and compression-intercooled configurations, were less effective and provided about half the fuel consumption improvement of the Rankine cycle alternatives under the same conditions. Capital and maintenance cost estimates were also developed for each of the heat-recovery power cycle systems. These costs were integrated with the fuel savings to identify the time required for net annual savings to pay back the initial capital investment. The sensitivity of capital payback time to arbitrary increases in fuel price, not accompanied by corresponding hardware cost inflation, was also examined. The results indicate that a fuel price increase is required for the alternative power cycles to pay back capital within an acceptable time period.

Bailey, M.M.

1985-07-01T23:59:59.000Z

378

Heat Balance Analysis of Baimas 300 MWe CFB Boiler in China  

Science Journals Connector (OSTI)

By analyzing the 336-hour performance testing period operation parameters and the actual measurement data at the scene, this paper took a study of the heat balance on Baimas 300MWe CFB boiler. Through calculatin...

J. Y. Lu; X. F. Lu; G. Yin; H. Z. Liu

2010-01-01T23:59:59.000Z

379

Residential GSHPs: Efficiency With Short Payback Periods  

SciTech Connect

This article discusses ground source heat pumps (GSHPs) for residential application as an alternative to conventional HVAC systems. A listing of current space heating energy sources are presented which are then followed by a technology overview as advances have made GSHPs more efficient. The article concludes with potential energy savings offered by GSHPs and a brief market overview.

Cooperman, Alissa; Dieckmann, John; Brodrick, James

2012-04-30T23:59:59.000Z

380

Heat driven heat pump using paired ammoniated salts  

SciTech Connect

A cycle for a heat driven heat pump using two salts CaCl/sup 2/.8NH/sup 3/, and ZnCl/sup 2/.4NH3 which may reversibly react with ammonia with the addition or evolution of heat. These salts were chosen so that both ammoniation processes occur at the same temperature so that the heat evolved may be used for comfort heating. The heat to drive the system need only be slightly hotter than 122 C. The low temperature source need only be slightly warmer than 0 C.

Dunlap, R.M.

1980-08-29T23:59:59.000Z

Note: This page contains sample records for the topic "time period heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Experimental Research on Solar Assisted Heat Pump Heating System with Latent Heat Storage  

E-Print Network (OSTI)

-reaching meaning of solving energy and environment problems if new type energy conservation and environment protection heating system ? solar assisted ground-source heat pump (SAGHP) heating system with a latent heat storage tank will be practical... was established at the laboratory of construction energy conservation in Harbin Institute of Technology (HIT) in 2004. It added a latent heat storage tank in original SAGHP system. The schematic diagram of the system is shown in Figure 1. The experimental...

Han, Z.; Zheng, M.; Liu, W.; Wang, F.

2006-01-01T23:59:59.000Z

382

Planetary heat flow measurements  

Science Journals Connector (OSTI)

...ESA's Rosetta mission towards comet Churyumov-Gerasimenko. It...Heat flow measurements on comets have a different motivation...penetrator is by no means limited to comets; it has also been tested in...measurement. Currently, a landing on Mercury within the framework...

2005-01-01T23:59:59.000Z

383

Solar Heating and Cooling  

Science Journals Connector (OSTI)

...radiation during good weather are not very high, and...Atmospheric Administration weather ser-vice measures total...largely to experi-mental operation of 3-ton LiBr-H2O...a million solar water heaters are in use in these countries...air House heating load Cold air return 'S T~rgeo...

John A. Duffie; William A. Beckman

1976-01-16T23:59:59.000Z

384

Water-Heating Dehumidifier  

A small appliance developed at ORNL dehumidifies air and then recycles heat to warm water in a water heater. The device circulates cool, dry air in summer and warm air in winter. In addition, the invention can cut the energy required to run a conventional water heater by an estimated 50 per cent....

2010-12-08T23:59:59.000Z

385

INSULATION OF HEATING SYSTEMS  

Science Journals Connector (OSTI)

... C. PALLOT gave a Cantor Lecture to the Royal Society of Arts on Thermal Insulation at Medium Temperature on November 23 ; the lecture, which included many topics of ... many topics of current interest, has now been published1. In a bulletin on heat insulation issued by the Ministry of Fuel and Power, it was pointed out that "In ...

1943-05-22T23:59:59.000Z

386

Exotic heat PDE's  

E-Print Network (OSTI)

Exotic heat equations that allow to prove the Poincar\\'e conjecture, some related problems and suitable generalizations too are considered. The methodology used is the PDE's algebraic topology, introduced by A. Pr\\'astaro in the geometry of PDE's, in order to characterize global solutions.

Agostino Prstaro

2010-06-23T23:59:59.000Z

387

Roberts's Heat and Thermodynamics  

Science Journals Connector (OSTI)

... the last edition of the late Dr. J. K. Roberts's "Heat and Thermodynamics" appeared. The new material incorporated in this, the fourth edition, by Dr. ... ', but simply because new problems have afforded such excellent examples of the application of thermodynamics that their study must surely help the reader to a better understanding of the subject ...

G. R. NOAKES

1952-01-12T23:59:59.000Z

388

Wastewater heat recovery apparatus  

DOE Patents (OSTI)

A heat recovery system is described with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature. 6 figs.

Kronberg, J.W.

1992-09-01T23:59:59.000Z

389

Wastewater heat recovery apparatus  

DOE Patents (OSTI)

A heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

1992-01-01T23:59:59.000Z

390

Gravitational wave heating of stars and accretion discs  

Science Journals Connector (OSTI)

......suppression of the heating rate if the forcing period...accretion discs. black hole physics|gravitational waves...the tidal disruption rate of stars due to the refilling...the medium that the GW passes through. The dissipation rate of the GW energy gives......

Gongjie Li; Bence Kocsis; Abraham Loeb

2012-10-01T23:59:59.000Z

391

Solar heating of swimming pools for the subtropical coastal belt  

SciTech Connect

Consideration is given to heating a swimming pool to obtain all-year-round use or alternatively to extend the use of the pool into the winter period. The report has been prepared for Durban and other parts of the subtropical Coastal Belt as a guide for advising those who may consider using solar energy for such an undertaking.

Forbes, J.; Dobson, D.E.

1980-01-01T23:59:59.000Z

392

Water Heating | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heating Water Heating Water Heating Infographic: Water Heaters 101 Everything you need to know about saving money on water heating costs Read more Selecting a New Water Heater Tankless? Storage? Solar? Save money on your water heating bill by choosing the right type of energy-efficient water heater for your needs. Read more Sizing a New Water Heater When buying a new water heater, bigger is not always better. Learn how to buy the right size of water heater. Read more You can reduce your monthly water heating bills by selecting the appropriate water heater for your home or pool and by using some energy-efficient water heating strategies. Some simple do-it-yourself projects, like insulating hot water pipes and lowering your water heating temperature, can also help you save money and energy on your water heating.

393

Solar Heating Rates: The Importance of Spherical Geometry  

Science Journals Connector (OSTI)

A crucial component of any GCM is a scheme for calculating atmospheric heating rates. Since a detailed treatment of all processes involved is time consuming, many approximations are usually made. An approximation used in virtually all GCM ...

D. J. Lary; M. Balluch

1993-12-01T23:59:59.000Z

394

Enhancement of Pool Boiling Heat Transfer in Confined Space  

E-Print Network (OSTI)

Pool boiling is an effective method used in many technical applications for a long time. Its highly efficient heat transfer performance results from not only the convection effect but also the phase change process in pool boiling. Pool boiling...

Hsu, Chia-Hsiang

2014-05-05T23:59:59.000Z

395

Integrated solar heating unit  

SciTech Connect

This patent describes an integral solar heating unit with an integral solar collector and hot water storage system, the unit comprising: (a) a housing; (b) a flat plate solar collector panel mounted in the housing and having a generally horizontal upper edge and an uninsulated, open back surface; (c) a cylindrical hot water tank operatively connected to the solar collector panel and mounted in the housing generally parallel to and adjacent to the upper edge; (d) the housing comprising a hood around the tank a pair of side skirts extending down at the sides of the panel. The hood and side skirts terminate at lower edges which together substantially define a plane such that upon placing the heating unit on a generally planar surface, the housing substantially encapsulates the collector panel and hot water tank in a substantially enclosed air space; (e) the collector including longitudinally extended U-shaped collector tubes and a glazed window to pass radiation through to the collector tubes, and a first cold water manifold connected to the tubes for delivering fresh water thereto and a second hot water manifold connected to the tubes to remove heated water therefrom. The manifolds are adjacent and at least somewhat above and in direct thermal contact with the tank; and, (f) the skirts and hood lapping around the collector panel, exposing only the glazed window, such that everything else in the heating unit is enclosed by the housing such that heat emanating from the uninsulated, open back face of the collector and tank is captured and retained by the housing to warm the manifolds.

Larkin, W.J.

1987-01-20T23:59:59.000Z

396

Heating and Cooling System Support Equipment Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating and Cooling System Support Equipment Basics Heating and Cooling System Support Equipment Basics Heating and Cooling System Support Equipment Basics July 30, 2013 - 3:28pm Addthis Thermostats and ducts provide opportunities for saving energy. Dehumidifying heat pipes provide a way to help central air conditioners and heat pumps dehumidify air. Electric and gas meters allow users to track energy use. Thermostats Programmable thermostats can store and repeat multiple daily settings. Users can adjust the times heating or air-conditioning is activated according to a pre-set schedule. Visit the Energy Saver website for more information about thermostats and control systems in homes. Ducts Efficient and well-designed duct systems distribute air properly throughout a building, without leaking, to keep all rooms at a comfortable

397

Siting Your Solar Water Heating System | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Siting Your Solar Water Heating System Siting Your Solar Water Heating System Siting Your Solar Water Heating System May 30, 2012 - 2:46pm Addthis Solar water heaters should be placed facing due south. Solar water heaters should be placed facing due south. Before you buy and install a solar water heating system, you need to first consider your site's solar resource, as well as the optimal orientation and tilt of your solar collector. The efficiency and design of a solar water heating system depends on how much of the sun's energy reaches your building site. Solar water heating systems use both direct and diffuse solar radiation. Even if you don't live in a climate that's warm and sunny most of the time -- like the southwestern United States -- your site still might have an adequate solar resource. If your building site has unshaded areas and

398

EA-0534: Radioisotope Heat Source Fuel Processing and Fabrication, Los  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: Radioisotope Heat Source Fuel Processing and Fabrication, 4: Radioisotope Heat Source Fuel Processing and Fabrication, Los Alamos, New Mexico EA-0534: Radioisotope Heat Source Fuel Processing and Fabrication, Los Alamos, New Mexico SUMMARY This EA evaluates the environmental impacts of a proposal to operate existing Pu-238 processing facilities at Savannah River Site, and fabricate a limited quantity of Pu-238 fueled heat sources at an existing facility at U.S. Department of Energy's Los Alamos National Laboratory. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 19, 1991 EA-0534: Finding of No Significant Impact Radioisotope Heat Source Fuel Processing and Fabrication July 19, 1991 EA-0534: Final Environmental Assessment Radioisotope Heat Source Fuel Processing and Fabrication

399

Siting Your Solar Water Heating System | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Siting Your Solar Water Heating System Siting Your Solar Water Heating System Siting Your Solar Water Heating System May 30, 2012 - 2:46pm Addthis Solar water heaters should be placed facing due south. Solar water heaters should be placed facing due south. Before you buy and install a solar water heating system, you need to first consider your site's solar resource, as well as the optimal orientation and tilt of your solar collector. The efficiency and design of a solar water heating system depends on how much of the sun's energy reaches your building site. Solar water heating systems use both direct and diffuse solar radiation. Even if you don't live in a climate that's warm and sunny most of the time -- like the southwestern United States -- your site still might have an adequate solar resource. If your building site has unshaded areas and

400

Design Method for the Heating/Cooling Coil in the AHU Based on Fuzzy Logic - Part Two: Design of the Minimum Heat-Exchanging Unit  

E-Print Network (OSTI)

Zhang Yongpan Chen Zhen Liang Ph.D. Professor Doctoral Candidate Instructor School of Municipal & Environmental Eng, Harbin Institute of Technology Harbin P. R. China, 150090 zhangjili@hit.edu.cn Abstract: Considering a heating/cooling coil... heat indoor, as is given by Equation (5) (noted in difference scheme), where Qr denotes sensible heat amount indoor (KW); ? denotes time variable (s); ? r denotes air density indoor (Kg/m3); CP denotes air specific heat at constant pressure (KJ...

Zhang, J.; Chen, Y.; Liang, Z.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "time period heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Quantum optomechanical piston engines powered by heat  

E-Print Network (OSTI)

We study two different models of optomechanical systems where a temperature gradient between two radiation baths is exploited for inducing self-sustained coherent oscillations of a mechanical resonator. Viewed from a thermodynamic perspective, such systems represent quantum instances of self-contained thermal machines converting heat into a periodic mechanical motion and thus they can be interpreted as nano-scale analogues of macroscopic piston engines. Our models are potentially suitable for testing fundamental aspects of quantum thermodynamics in the laboratory and for applications in energy efficient nanotechnology.

Andrea Mari; Alessandro Farace; Vittorio Giovannetti

2014-07-31T23:59:59.000Z

402

New York Home Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

5 of 15 5 of 15 Notes: The severity of this spot price increase is causing dramatic changes in residential home heating oil prices, although residential price movements are usually a little slower and spread out over time compared to spot prices. Wholesale prices increased over 50 cents from January 17 to January 24, while retail increased 44 cents in New York. Diesel prices are showing a similar pattern to residential home heating oil prices, and are indicating that home heating oil prices may not have peaked yet, although spot prices are dropping. Diesel prices in New England and the Mid-Atlantic increased 30-40 cents January 24 over the prior week, and another 13-15 cents January 31. Spot prices plummeted January 31, closing at 82 cents per gallon, indicating the worst part of the crisis may be over, but it is still a

403

On flow and supply temperature control in district heating systems  

Science Journals Connector (OSTI)

This paper discusses how the control of the flow and the supply temperature in district heating systems can be optimized, utilizing stochastic modelling, prediction and control methods. The main objective is to reduce heat production costs and heat losses in the transmission and distribution net by minimizing the supply temperature at the district heating plant. This control strategy is reasonable, in particular, if the heat production takes place at a combined heat and power (CHP) plant. The control strategy is subject to some restrictions, e.g. that the total heat requirement for all consumers is supplied at any time, and each individual consumer is guaranteed some minimum supply temperature at any time. Another important restriction is that the variation in time of the supply temperature is kept as small as possible. This concept has been incorporated in the program package, PRESS, developed at the Technical University of Denmark. PRESS has been applied and tested, e.g. at Vestkraft in Esbjerg, Denmark, and significant saving potentials have been documented. PRESS is now distributed by the Danish District Heating Association.

Henrik Madsen; Ken Sejling; Henning T. Sgaard; Olafur P. Palsson

1994-01-01T23:59:59.000Z

404

Cedarville School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumpsand Ground Source Water Loops  

Energy.gov (U.S. Department of Energy (DOE))

Project objectives: Improve the indoor air quality and lower the cost of cooling and heating the buildings that make up the campus of Cedarville High School and Middle School.; Provide jobs; and reduce requirements of funds for the capital budget of the School District; and thus give relief to taxpayers in this rural region during a period of economic recession.

405

Pagosa Springs District Heating District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

District Heating District Heating Low Temperature Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low Temperature Geothermal Facility Facility Pagosa Springs District Heating Sector Geothermal energy Type District Heating Location Pagosa Springs, Colorado Coordinates 37.26945°, -107.0097617° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

406

City of Klamath Falls District Heating District Heating Low Temperature  

Open Energy Info (EERE)

District Heating District Heating Low Temperature District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name City of Klamath Falls District Heating District Heating Low Temperature Geothermal Facility Facility City of Klamath Falls District Heating Sector Geothermal energy Type District Heating Location Klamath Falls, Oregon Coordinates 42.224867°, -121.7816704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

407

Kethcum District Heating District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Kethcum District Heating District Heating Low Temperature Geothermal Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal Facility Facility Kethcum District Heating Sector Geothermal energy Type District Heating Location Ketchum, Idaho Coordinates 43.6807402°, -114.3636619° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

408

San Bernardino District Heating District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Bernardino District Heating District Heating Low Temperature Geothermal Bernardino District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name San Bernardino District Heating District Heating Low Temperature Geothermal Facility Facility San Bernardino District Heating Sector Geothermal energy Type District Heating Location San Bernardino, California Coordinates 34.1083449°, -117.2897652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

409

Boise City Geothermal District Heating District Heating Low Temperature  

Open Energy Info (EERE)

Boise City Geothermal District Heating District Heating Low Temperature Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Facility Boise City Geothermal District Heating Sector Geothermal energy Type District Heating Location Boise, Idaho Coordinates 43.6135002°, -116.2034505° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

410

Elko District Heat District Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Heat District Heating Low Temperature Geothermal Facility Heat District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Elko District Heat District Heating Low Temperature Geothermal Facility Facility Elko District Heat Sector Geothermal energy Type District Heating Location Elko, Nevada Coordinates 40.8324211°, -115.7631232° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

411

Philip District Heating District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Philip District Heating District Heating Low Temperature Geothermal Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal Facility Facility Philip District Heating Sector Geothermal energy Type District Heating Location Philip, South Dakota Coordinates 44.0394329°, -101.6651441° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

412

Modeling of Heat Transfer in Geothermal Heat Exchangers  

E-Print Network (OSTI)

Ground-coupled heat pump (GCHP) systems have been gaining increasing popularity for space conditioning in residential and commercial buildings. The geothermal heat exchanger (GHE) is devised for extraction or injection of thermal energy from...

Cui, P.; Man, Y.; Fang, Z.

2006-01-01T23:59:59.000Z

413

Cryogenic Fluid Flow Heat Transfer in a Porous Heat Exchanger  

Science Journals Connector (OSTI)

The recent utilization of porous heat exchangers in various key industries has aroused considerable interest in the heat transfer and fluid dynamics processes in channel flows involving suction...1], suction with...

L. L. Vasiliev; G. I. Bobrova; S. K. Vinokurov

1978-01-01T23:59:59.000Z

414

Convective Heat Transfer and Fluid Dynamics in Heat Exchanger Applications  

Science Journals Connector (OSTI)

This article concerns the local structure of flow and temperature fields as well as overall heat transfer coefficients and pressure drops in flow passages of relevance for heat exchangers. Results from investi...

Bengt Sundn

1999-01-01T23:59:59.000Z

415

Solar Heating with Annual Heat Storage Modelling and Practice  

Science Journals Connector (OSTI)

Central solar heating systems with seasonal heat storage are recognized as one of the most potential forms of solar energy utilization at northern latitudes. Because of ... and energy flows of a full-scale distri...

P. D. Lund; S. S. Peltola

1984-01-01T23:59:59.000Z

416

Low Level Heat Recovery Through Heat Pumps and Vapor Recompression  

E-Print Network (OSTI)

The intent of this paper is to examine the methods and economics of recovering low level heat through heat pumps and vapor recompression. Actual commercially available equipment is considered to determine the near-term and future economic viability...

Gilbert, J.

1980-01-01T23:59:59.000Z

417

Waste Heat Management Options: Industrial Process Heating Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

itself * Waste heat recovery or auxiliary or adjoining systems within a plant * Waste heat to power conversion Recycle Copyrighted - E3M Inc. August 20, 2009 Arvind Thekdi, E3M...

418

Midland District Heating District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Midland District Heating District Heating Low Temperature Geothermal Midland District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Midland District Heating District Heating Low Temperature Geothermal Facility Facility Midland District Heating Sector Geothermal energy Type District Heating Location Midland, South Dakota Coordinates 44.0716539°, -101.1554178° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

419

Susanville District Heating District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Susanville District Heating District Heating Low Temperature Geothermal Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature Geothermal Facility Facility Susanville District Heating Sector Geothermal energy Type District Heating Location Susanville, California Coordinates 40.4162842°, -120.6530063° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

420

The Beckett System Recovery and Utilization of Low Grade Waste Heat From Flue Gas  

E-Print Network (OSTI)

. During low demand periods, the unit is gas-fired and produces 150 psi steam at high efficiency. In the fall, the heat exchanger is converted to accept flue gas from the large original water tube boilers. The flue gas heats water, which preheats make...

Henderson, W. R.; DeBiase, J. F.

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "time period heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

A modified unit decommitment algorithm in combined heat and power production planning  

Science Journals Connector (OSTI)

This paper addresses the unit commitment in multi-period combined heat and power (CHP) production planning, considering the possibility to trade power on the spot market. We present a modified unit decommitment algorithm (MUD) that starts with a good ... Keywords: combined heat and power production, deregulated power market, energy optimization, modelling, modified unit decommitment, unit commitment

Aiying Rong; Risto Lahdelma

2007-01-01T23:59:59.000Z

422

Potentials of Demand Side Management Using Heat Pumps with Building Mass as a Thermal Storage  

Science Journals Connector (OSTI)

Abstract Within this work, load-shifting possibilities of heat pumps in residential buildings as well as its influencing and limiting factors are displayed. The intermediate storage is achieved by using the thermal mass of the building so the heat supply can be postponed from the heat demand for a certain period, depending on the characteristics of the building. No additional water storage is considered.

Charlotte Ellerbrok

2014-01-01T23:59:59.000Z

423

Cogeneration from glass furnace waste heat recovery  

SciTech Connect

In glass manufacturing 70% of the total energy utilized is consumed in the melting process. Three basic furnaces are in use: regenerative, recuperative, and direct fired design. The present paper focuses on secondary heat recovery from regenerative furnaces. A diagram of a typical regenerative furnace is given. Three recovery bottoming cycles were evaluated as part of a comparative systems analysis: steam Rankine Cycle (SRC), Organic Rankine Cycle (ORC), and pressurized Brayton cycle. Each cycle is defined and schematicized. The net power capabilities of the three different systems are summarized. Cost comparisons and payback period comparisons are made. Organic Rankine cycle provides the best opportunity for cogeneration for all the flue gas mass flow rates considered. With high temperatures, the Brayton cycle has the shortest payback period potential, but site-specific economics need to be considered.

Hnat, J.G.; Cutting, J.C.; Patten, J.S.

1982-06-01T23:59:59.000Z

424

Geothermal direct-heat utilization assistance. Federal Assistance Program, Quarterly project progress report, October--December 1994  

SciTech Connect

The report summarizes activities of the Geo-Heat Center (GHC) at Oregon Institute of Technology for the first quarter of Fiscal Year 1995. It describes contacts with parties during this period related to assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, resources and equipment. Research is also being conducted on geothermal energy cost evaluation, low-temperature geothermal resource assessment, use of silica waste from the Cerro Prieto geothermal field as construction materials and geothermal heat pumps. Outreach activities include the publication of a quarterly Bulletin on direct heat applications and dissemination of information on low-temperature geothermal resources and utilization.

Not Available

1994-12-31T23:59:59.000Z

425

Hydraulic Characteristics of the Lower Snake River During Periods of Juvenile Fall Chinook Migration  

SciTech Connect

This report documents a four-year study to assess hydraulic conditions in the lower Snake River. The work was conducted for the Bonneville Power Administration, U.S. Department of Energy, by the Pacific Northwest National Laboratory. Cold water released from the Dworshak Reservoir hypolimnion during mid- to late-summer months cools the Clearwater River far below equilibrium temperature. The volume of released cold water augments the Clearwater River, and the combined total discharge is on the order of the Snake River discharge when the two rivers meet at their confluence near the upstream edge of Lower Granite Reservoir. With typical temperature differences between the Clearwater and Snake rivers of 10C or more during July and August, the density difference between the two rivers during summer flow augmentation periods is sufficient to stratify Lower Granite Reservoir as well as the other three reservoirs downstream. Because cooling of the river is desirable for migrating juvenile fall Chinook salmon (Oncorhynchus tshawytscha) during this same time period, the amount of mixing and cold water entrained into Lower Granite Reservoirs epilimnion at the Clearwater/Snake River confluence is of key biological importance to juvenile fall Chinook salmon. Data collected during this project indicates the three reservoirs downstream of Lower Granite also stratify as direct result of flow augmentation from Dworshak Reservoir. These four lower Snake reservoirs are also heavily influenced by wind forcing at the waters surface, and during periods of low river discharge, often behave like a two-layer lake. During these periods of stratification, lower river discharge, and wind forcing, the water in the upper layer of the reservoir is held in place or moves slightly upstream. This upper layer is also exposed to surface heating and may warm up to temperatures close to equilibrium temperature. The depth of this upper warm layer and its direction of travel may also be of key biological importance to juvenile fall Chinook salmon. This report describes field data collection, modeling, and analysis of hydrodynamic and temperature conditions in the Lower Granite Reservoir during the summer flow augmentation periods of 2002, 2003, and 2004 plus a brief one-week period in 2005 of Lower Monumental, Little Goose, and Lower Granite Reservoirs. Circulation patterns in all four lower Snake River reservoirs were numerically simulated for periods of 2002, 2003, 2004, and 2005 using CE-QUAL-W2. Simulation results show that these models are sufficiently capable of matching diurnal and long term temperature and velocity changes in the reservoirs. In addition, the confluence zone of the Clearwater and Snake rivers was modeled using the 3-D model Flow3-D. This model was used to better understand mixing processing and entrainment. Once calibrated and validated, the reservoir models were used to investigate downstream impacts of alternative reservoir operation schemes, such as increasing or decreasing the ratio of Clearwater to Snake discharge. Simulation results were also linked with the particle tracking model FINS to better understand alterations of integrated metrics due to alternative operation schemes. These findings indicate that significant alterations in water temperature throughout the lower Snake River are possible by altering hypolimnetic discharges from Dworshak Reservoir and may have a significant impact on the behavior of migrating juvenile fall Chinook salmon during periods of flow augmentation.

Cook, Chris B.; Dibrani, Berhon; Richmond, Marshall C.; Bleich, Matthew D.; Titzler, P. Scott; Fu, Tao

2006-01-30T23:59:59.000Z

426

Proton heating by parallel Alfven wave cascade  

SciTech Connect

In a recent series of papers, the present authors developed a kinetic theory for low-frequency turbulence propagating parallel to the ambient magnetic field. Making use of this theory, it was shown that low-frequency Alfvenic turbulence may cascade to ion-cyclotron frequency range and beyond by nonlinear three-wave decay processes. The significance of such a finding is that it may lead to the proton heating by cyclotron resonance. However, the actual proton heating process was not demonstrated. The present paper complements the previous works by including the proton heating in the discussion. It is found that the left-hand circularly polarized Alfven-cyclotron turbulence leads to a moderate heating of the protons in the perpendicular direction and cooling in the parallel direction. It is also found that ion-acoustic turbulence is generated by the decay instability process. Finally, the heating rate is shown to increase in inverse proportion to the time scale of the wave source.

Yoon, P. H.; Fang, T.-M. [Massachusetts Technological Laboratory, Inc., 330 Pleasant Street, Belmont, Massachusetts 02478 (United States)

2009-06-15T23:59:59.000Z

427

Unsteady flow and heat transfer in periodic complex geometries for the transitional flow regime .  

E-Print Network (OSTI)

??"Diesel engines are facing significant challenges with upcoming changes in emissions standards. In general, meeting the increased emission standards will require a larger fraction of (more)

Chen, Li-Kwen, 1970-

2008-01-01T23:59:59.000Z

428

An experimental investigation of a periodic impingement technique for heat transfer enhancement  

E-Print Network (OSTI)

diameter ]t viscosity of air [N s m '] p air density [kg m ] p air density [kg m'] p?air density at orifice fkg m ] TABLE OF CONTENTS Page 1 INTRODUCTION. . 2 EXPERIMENTAI. APPARATUS. . 3 EXPERIMENTALPROCEDURE 4 DATA REDUCTION. 19 5 RESULTS... AND DISCUSSION. . 30 5. 1 5. 2 5. 3 5. 4 5. 5 5. 6 Test Channel with No Deflectors. . Type 1 Pitch. . . Type 2 Pitch. . Average Relative Nusselt Number and Stanton Number. . . . . . Friction Factor. . Thermal Performance. 30 37 54 72 74 74 6...

Valant, Michael Eric

1995-01-01T23:59:59.000Z

429

Heat engine Device that transforms heat into work.  

E-Print Network (OSTI)

, and rocket engines are heat engines. So are steam engines and turbines #12;2 refrigerator Device that uses by steam turbines. Steam turbines, jet engines and rocket engines use a Brayton cycle #12;4 Steam turbines1 Heat engine Device that transforms heat into work. It requires two energy reservoirs at different

Winokur, Michael

430

Fast reactor power plant design having heat pipe heat exchanger  

DOE Patents (OSTI)

The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

Huebotter, P.R.; McLennan, G.A.

1984-08-30T23:59:59.000Z

431

Fast reactor power plant design having heat pipe heat exchanger  

DOE Patents (OSTI)

The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

Huebotter, Paul R. (Western Springs, IL); McLennan, George A. (Downers Grove, IL)

1985-01-01T23:59:59.000Z

432

Quantum Revivals in Periodically Driven Systems close to nonlinear resonance  

E-Print Network (OSTI)

We calculate the quantum revival time for a wave-packet initially well localized in a one-dimensional potential in the presence of an external periodic modulating field. The dependence of the revival time on various parameters of the driven system is shown analytically. As an example of application of our approach, we compare the analytically obtained values of the revival time for various modulation strengths with the numerically computed ones in the case of a driven gravitational cavity. We show that they are in very good agreement.

Farhan Saif; Mauro Fortunato

2006-02-28T23:59:59.000Z

433

Faculty Positions Heat Transfer and  

E-Print Network (OSTI)

Faculty Positions Heat Transfer and Thermal/Energy Sciences Naval Postgraduate School Monterey-track faculty position at the assistant professor level in the areas of Heat Transfer and Thermal/Fluid Sciences

434

Solar Industrial Process Heat Production  

Science Journals Connector (OSTI)

An overview of state of the art in producing industrial process heat via solar energy is presented. End-use matching methodology for assessing solar industrial process heat application potential is described f...

E. zil

1987-01-01T23:59:59.000Z

435

Complex Compound Chemical Heat Pumps  

E-Print Network (OSTI)

industrial heat pumps. The main emphasis was directed towards a conceptual temperature amplifier bench scale prototype design, which allows for the conversion to heat amplifier operation by the mere exchange of adsorbent working fluid component without...

Rockenfeller, U.; Langeliers, J.; Horn, G.

436

Residential heating oil prices decrease  

U.S. Energy Information Administration (EIA) Indexed Site

heating oil prices decrease The average retail price for home heating oil fell 1.7 cents from a week ago to 4.02 per gallon. That's up 1.7 cents from a year ago, based on the...

437

Residential heating oil price decreases  

Annual Energy Outlook 2012 (EIA)

heating oil price decreases The average retail price for home heating oil fell 7.8 cents from a week ago to 3.14 per gallon. That's down 81.1 cents from a year ago, based on the...

438

Residential heating oil price decreases  

Annual Energy Outlook 2012 (EIA)

heating oil price decreases The average retail price for home heating oil fell 10.5 cents from a week ago to 3.22 per gallon. That's down 73.6 cents from a year ago, based on the...

439

Residential heating oil price decreases  

Gasoline and Diesel Fuel Update (EIA)

heating oil price decreases The average retail price for home heating oil fell 1.8 cents from a week ago to 2.82 per gallon. That's down 1.36 from a year ago, based on the...

440

Residential heating oil prices decline  

Annual Energy Outlook 2012 (EIA)

heating oil price decreases The average retail price for home heating oil fell 2 cents from a week ago to 3.36 per gallon. That's down 52.5 cents from a year ago, based on the...

Note: This page contains sample records for the topic "time period heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Residential heating oil prices increase  

U.S. Energy Information Administration (EIA) Indexed Site

heating oil prices increase The average retail price for home heating oil rose 3.9 cents last week to 3.96 per gallon. That's down 2.6 cents from a year ago, based on the...

442

Residential heating oil price decreases  

NLE Websites -- All DOE Office Websites (Extended Search)

05, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 1.9 cents from a week ago to 3.43 per gallon. That's down 39 cents from a year...

443

Residential heating oil price decreases  

U.S. Energy Information Administration (EIA) Indexed Site

4 Residential heating oil price decreases The average retail price for home heating oil fell 1.6 cents from a week ago to 3.42 per gallon. That's down 39.5 cents from a year ago,...

444

Residential heating oil prices decrease  

Annual Energy Outlook 2012 (EIA)

heating oil price decreases The average retail price for home heating oil fell 2.9 cents from a week ago to 3.45 per gallon. That's down 36.6 cents from a year ago, based on the...

445

Residential heating oil prices decline  

U.S. Energy Information Administration (EIA) Indexed Site

heating oil price decreases The average retail price for home heating oil fell 3.3 cents from a week ago to 3.38 per gallon. That's down 43.9 cents from a year ago, based on the...

446

Residential heating oil prices increase  

U.S. Energy Information Administration (EIA) Indexed Site

5, 2014 Residential heating oil prices increase The average retail price for home heating oil rose 6.5 cents from a week ago to 4.24 per gallon. That's up 14.9 cents from a year...

447

Residential heating oil price decreases  

NLE Websites -- All DOE Office Websites (Extended Search)

6, 2014 Residential heating oil price decreases The average retail price for home heating oil rose 1.6 cents from a week ago to 4.24 per gallon. That's up 8.9 cents from a year...

448

Residential heating oil prices decline  

Annual Energy Outlook 2012 (EIA)

heating oil price decreases The average retail price for home heating oil fell 6.3 cents from a week ago to 3.08 per gallon. That's down 90.3 cents from a year ago, based on the...

449

Residential heating oil price decreases  

U.S. Energy Information Administration (EIA) Indexed Site

heating oil price decreases The average retail price for home heating oil fell 3.8 cents from a week ago to 3.33 per gallon. That's down 59.1 cents from a year ago, based on the...

450

Residential heating oil prices increase  

U.S. Energy Information Administration (EIA) Indexed Site

heating oil prices increase The average retail price for home heating oil rose 5.4 cents from a week ago to 4.04 per gallon. That's up 4.9 cents from a year ago, based on the...

451

Residential heating oil prices increase  

U.S. Energy Information Administration (EIA) Indexed Site

heating oil prices increase The average retail price for home heating oil rose 2.9 cents from a week ago to 3.98 per gallon. That's up 6-tenths of a penny from a year ago, based...

452

Residential heating oil prices increase  

U.S. Energy Information Administration (EIA) Indexed Site

3, 2014 Residential heating oil prices increase The average retail price for home heating oil rose 4.4 cents from a week ago to 4.06 per gallon. That's up 4.1 cents from a year...

453

Residential heating oil prices decrease  

U.S. Energy Information Administration (EIA) Indexed Site

5, 2014 Residential heating oil prices decrease The average retail price for home heating oil fell 1.8 cents from a week ago to 4.00 per gallon. That's down 2-tenths of a cent...

454

Residential heating oil prices increase  

U.S. Energy Information Administration (EIA) Indexed Site

heating oil prices increase The average retail price for home heating oil rose 12 cents from a week ago to 4.18 per gallon. That's up 13 cents from a year ago, based on the...

455

Residential heating oil prices available  

NLE Websites -- All DOE Office Websites (Extended Search)

ago, based on the U.S. Energy Information Administration's weekly residential heating fuel price survey. Heating oil prices in the New England region are at 3.48 per gallon,...

456

Heat Pipes: An Industrial Application  

E-Print Network (OSTI)

This paper reviews the basics of heat pipe exchangers. Included are how they are constructed, how they operate, where they have application, and various aspects of evaluating a potential application. After discussing the technical aspects of heat...

Murray, F.

1984-01-01T23:59:59.000Z

457

Can You Afford Heat Recovery?  

E-Print Network (OSTI)

many companies to venture into heat recovery projects without due consideration of the many factors involved. Many of these efforts have rendered less desirable results than expected. Heat recovery in the form of recuperation should be considered...

Foust, L. T.

1983-01-01T23:59:59.000Z

458

Low Level Heat Recovery Technology  

E-Print Network (OSTI)

level heat recovery technology. This paper discusses heat distribution systems, latest developments in absorption refrigeration and organic Rankine cycles, and pressure, minimization possibilities. The relative merits and economics of the various...

O'Brien, W. J.

1982-01-01T23:59:59.000Z

459

Heating Oil and Propane Update  

NLE Websites -- All DOE Office Websites (Extended Search)

data not collected over the summer? The residential pricing data collected on heating oil and propane prices are for the Winter Heating Fuels Survey. The purpose of this survey...

460

Photoionization Heating of Nova Ejecta by the Post-Outburst Supersoft Source  

E-Print Network (OSTI)

The expanding ejecta from a classical nova remains hot enough ($\\sim10^{4}\\, {\\rm K}$) to be detected in thermal radio emission for up to years after the cessation of mass loss triggered by a thermonuclear instability on the underlying white dwarf (WD). Nebular spectroscopy of nova remnants confirms the hot temperatures observed in radio observations. During this same period, the unstable thermonuclear burning transitions to a prolonged period of stable burning of the remnant hydrogen-rich envelope, causing the WD to become, temporarily, a super-soft X-ray source. We show that photoionization heating of the expanding ejecta by the hot WD maintains the observed nearly constant temperature of $(1-4)\\times10^4\\mathrm{~K}$ for up to a year before an eventual decline in temperature due to either the cessation of the supersoft phase or the onset of a predominantly adiabatic expansion. We simulate the expanding ejecta using a one-zone model as well as the Cloudy spectral synthesis code, both incorporating the time-d...

Cunningham, Timothy; Bildsten, Lars

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "time period heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Heat Source Lire,  

NLE Websites -- All DOE Office Websites (Extended Search)

Source Lire, Source Lire, (liayrICS-25 ) tooling Tulles (Ai 1,06:1) - 11 (31.118 Module Stack Thermoelectric Module:, (14) ltcal L/Mr r a it i lli tisli Block Mounting Interface MMRTG Design Housing (At 2219) Fin (At Go63) Thermal Insulation (Min-K & Microtherm) Space Radioisotope Power Systems Multi-Mission Radioisotope Thermoelectric Generator January 2008 What is a Multi-Mission Radioisotope Thermoelectric Generator? Space exploration missions require safe, reliable, long-lived power systems to provide electricity and heat to spacecraft and their science instruments. A uniquely capable source of power is the radioisotope thermoelectric generator (RTG) - essentially a nuclear battery that reliably converts heat into electricity. The Department of Energy and NASA are developing

462

Heat Flow At Standard Depth | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Heat Flow At Standard Depth Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Heat Flow At Standard Depth Details Activities (2) Areas (1) Regions (0) Abstract: Secular and long-term periodic changes in surface temperature cause perturbations to the geothermal gradient which may be significant to depths of at least 1000 m, and major corrections are required to determine absolute values of heat flow from the Earth's interior. However, detailed climatic models remain contentious and estimates of error in geothermal gradients differ widely. Consequently, regions of anomalous heat flow which

463

Guide to Combined Heat and Power Systems for Boiler Owners and Operators  

SciTech Connect

Combined heat and power (CHP) or cogeneration is the sequential production of two forms of useful energy from a single fuel source. In most CHP applications, chemical energy in fuel is converted to both mechanical and thermal energy. The mechanical energy is generally used to generate electricity, while the thermal energy or heat is used to produce steam, hot water, or hot air. Depending on the application, CHP is referred to by various names including Building Cooling, Heating, and Power (BCHP); Cooling, Heating, and Power for Buildings (CHPB); Combined Cooling, Heating, and Power (CCHP); Integrated Energy Systems (IES), or Distributed Energy Resources (DER). The principal technical advantage of a CHP system is its ability to extract more useful energy from fuel compared to traditional energy systems such as conventional power plants that only generate electricity and industrial boiler systems that only produce steam or hot water for process applications. By using fuel energy for both power and heat production, CHP systems can be very energy efficient and have the potential to produce electricity below the price charged by the local power provider. Another important incentive for applying cogeneration technology is to reduce or eliminate dependency on the electrical grid. For some industrial processes, the consequences of losing power for even a short period of time are unacceptable. The primary objective of the guide is to present information needed to evaluate the viability of cogeneration for new or existing industrial, commercial, and institutional (ICI) boiler installations and to make informed CHP equipment selection decisions. Information presented is meant to help boiler owners and operators understand the potential benefits derived from implementing a CHP project and recognize opportunities for successful application of cogeneration technology. Topics covered in the guide follow: (1) an overview of cogeneration technology with discussions about benefits of applying cogeneration technology and barriers to implementing cogeneration technology; (2) applicable federal regulations and permitting issues; (3) descriptions of prime movers commonly used in CHP applications, including discussions about design characteristics, heat-recovery options and equipment, fuels and emissions, efficiency, maintenance, availability, and capital cost; (4) electrical generators and electrical interconnection equipment; (5) cooling and dehumidification equipment; (6) thermodynamic cycle options and configurations; (7) steps for evaluating the technical and economic feasibility of applying cogeneration technology; and (8) information sources.

Oland, CB

2004-08-19T23:59:59.000Z

464

Solar Water Heating  

NLE Websites -- All DOE Office Websites (Extended Search)

publication provides basic informa- publication provides basic informa- tion on the components and types of solar water heaters currently available and the economic and environmental benefits of owning a system. Although the publica- tion does not provide information on building and installing your own system, it should help you discuss solar water heating systems intelligently with a solar equipment dealer. Solar water heaters, sometimes called

465

Heat flux dynamics in dissipative cascaded systems  

E-Print Network (OSTI)

We study the dynamics of heat flux in the thermalization process of a pair of identical quantum system that interact dissipatively with a reservoir in a {\\it cascaded} fashion. Despite the open dynamics of the bipartite system S is globally Lindbladian, one of the subsystems "sees" the reservoir in a state modified by the interaction with the other subsystem and hence it undergoes a non-Markovian dynamics. As a consequence, the heat flow exhibits a non-exponential time behaviour which can greatly deviate from the case where each party is independently coupled to the reservoir. We investigate both thermal and correlated initial states of $S$ and show that the presence of correlations at the beginning can considerably affect the heat flux rate. We carry out our study in two paradigmatic cases -- a pair of harmonic oscillators with a reservoir of bosonic modes and two qubits with a reservoir of fermionic modes -- and compare the corresponding behaviours. In the case of qubits and for initial thermal states, we find that the trace distance discord is at any time interpretable as the correlated contribution to the total heat flux.

Salvatore Lorenzo; Alessandro Farace; Francesco Ciccarello; G. Massimo Palma; Vittorio Giovannetti

2014-12-19T23:59:59.000Z

466

[Waste water heat recovery system  

SciTech Connect

The production capabilities for and field testing of the heat recovery system are described briefly. Drawings are included.

Not Available

1993-04-28T23:59:59.000Z

467

Heating Oil and Propane Update  

Gasoline and Diesel Fuel Update (EIA)

Maps of states participating in Winter Fuels Survey Residential propane PADD map Residential heating oil PADD map...

468

SES Probationary Period | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SES Probationary Period SES Probationary Period SES Probationary Period An individual's initial appointment as an SES career appointee becomes final only after the individual has served a 1-year probationary period as a career appointee. That employee's rating official must perform an assessment of the new SES's performance during the probationary period. After the one year the selecting official must certify that the appointee performed at the level of excellence expected of a senior executive during the probationary period. When a career appointee's executive qualification have been certified by a Qualifications Review Board on the basis of special or unique qualities, as described in Sec. 317.502(c), the probationary assessment must address any executive development activities the agency identified in support of the

469

Characterization of industrial process waste heat and input heat streams  

SciTech Connect

The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

1984-05-01T23:59:59.000Z

470

Periodic wave solutions of the Boussinesq equation  

Science Journals Connector (OSTI)

The Boussinesq equation usually arises in a physical problem as a long wave equation. The present work extends the search of periodic wave solutions for it. The Hirota bilinear method and Riemann theta function are employed in the process. We also analyse the asymptotic property of periodic waves in detail. Furthermore, it is of interest to note that well-known soliton solutions can be reduced from the periodic wave solutions.

Yi Zhang; Ling-ya Ye; Yi-neng Lv; Hai-qiong Zhao

2007-01-01T23:59:59.000Z

471

Experimental and Analytical Studies on Pyroelectric Waste Heat Energy Conversion  

E-Print Network (OSTI)

Waste heat Pyroelectric energy3 Pyroelectric Waste Heat Energy Harvesting Using Heat4 Pyroelectric Waste Heat Energy Harvesting Using Relaxor

Lee, Felix

2012-01-01T23:59:59.000Z

472

Spring 2014 Heat Transfer -1  

E-Print Network (OSTI)

Spring 2014 1 Heat Transfer - 1 Consider a cylindrical nuclear fuel rod of length L and diameter df and the tube at a rate m , and the outer surface of the tube is well insulated. Heat generation occurs within. The specific heat of water pc , and the thermal conductivity of the fuel rod fk are constants. The system

Virginia Tech

473

5. Heat transfer Ron Zevenhoven  

E-Print Network (OSTI)

1/120 5. Heat transfer Ron Zevenhoven ?bo Akademi University Thermal and Flow Engineering / Värme Three heat transfer mechanisms Conduction Convection Radiation 2/120 Pic: B?88 ?bo Akademi University | Thermal and Flow Engineering | 20500 Turku | Finland #12;3/120 5.1 Conductive heat transfer ?bo Akademi

Zevenhoven, Ron

474

Energy 101: Geothermal Heat Pumps  

SciTech Connect

An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together.

None

2011-01-01T23:59:59.000Z

475

Heat Pump Strategies and Payoffs  

E-Print Network (OSTI)

After evaluating numerous waste heat sources and heat pump designs for energy recovery, we have become aware that a great deal of confusion exists about the economics of heat pumps. The purpose of this article is to present some simple formulas...

Gilbert, J. S.

1982-01-01T23:59:59.000Z

476

Energy 101: Geothermal Heat Pumps  

ScienceCinema (OSTI)

An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together.

None

2013-05-29T23:59:59.000Z

477

Cedarville School District Retrofit of Heating and Cooling Systems with  

Open Energy Info (EERE)

School District Retrofit of Heating and Cooling Systems with School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumps and Ground Source Water Loops Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Cedarville School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumps and Ground Source Water Loops Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 1: Technology Demonstration Projects Project Description - Improve the indoor air quality and lower the cost of cooling and heating the buildings that make up the campus of Cedarville High School, Middle School and Elementary School. - Provide jobs, and reduce requirements of funds for the capital budget of the School District, and thus give relief to taxpayers in this rural region during a period of economic recession. - The new Heat Pumps will be targeted to perform at very high efficiency with EER (energy efficiency ratios) of 22+/-. System capacity is planned at 610 tons. - Remove unusable antiquated existing equipment and systems from the campus heating and cooling system, but utilize ductwork, piping, etc. where feasible. The campus is served by antiquated air conditioning units combined with natural gas, and with very poor EER estimated at 6+/-. - Monitor for 3 years the performance of the new systems compared to benchmarks from the existing system, and provide data to the public to promote adoption of Geothermal technology. - The Geothermal installation contractor is able to provide financing for a significant portion of project funding with payments that fall within the energy savings resulting from the new high efficiency heating and cooling systems.

478

Numerical simulation of the heat transfer in amorphous silicon nitride membrane-based microcalorimeters  

E-Print Network (OSTI)

Numerical simulation of the heat transfer in amorphous silicon nitride membrane July 2003 Numerical simulations of the two-dimensional 2D heat flow in a membrane-based microcalorimeter have been performed. The steady-state isotherms and time-dependent heat flow have been calculated

Hellman, Frances

479

A Cartesian grid embedded boundary method for the heat equation and Poissons equation in three dimensions  

E-Print Network (OSTI)

A Cartesian grid embedded boundary method for the heat equation and Poisson?s equation in three­85] and extends work of McCorquodale, Colella and Johansen [A Cartesian grid embedded boundary method for the heat and time for the heat equation. Cartesian grid methods for elliptic PDE have a long history beginning with the no

480

Research & Development Roadmap: Emerging Water Heating Technologies...  

Energy Savers (EERE)

Water Heating Technologies Research & Development Roadmap: Emerging Water Heating Technologies The Research and Development (R&D) Roadmap for Emerging Water Heating Technologies...

Note: This page contains sample records for the topic "time period heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Water Heating Standing Technical Committee Presentation | Department...  

Energy Savers (EERE)

Water Heating Standing Technical Committee Presentation Water Heating Standing Technical Committee Presentation This presentation outlines the goals of the Water Heating Standing...

482

Heat and moisture transfer through clothing  

E-Print Network (OSTI)

R. C. Eberhart (ed), Heat transfer in medicine and biology.Convective and radiative heat transfer coefficients forsimulation of heat and moisture transfer in a human-

Voelker, Conrad; Hoffmann, Sabine; Kornadt, Oliver; Arens, Edward; Zhang, Hui; Huizenga, Charlie

2009-01-01T23:59:59.000Z

483

Heat Waves, Global Warming, and Mitigation  

E-Print Network (OSTI)

Heat Waves, Global Warming, and Mitigation Ann E. Carlson*2008]HEAT WAVES, GLOBAL WARMING, AND MITIGATION 175 stroke2001). 2008]HEAT WAVES, GLOBAL WARMING, AND MITIGATION 177

Carlson, Ann E.

2008-01-01T23:59:59.000Z

484

Reduce Radiation Losses from Heating Equipment  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet describes how to save process heating energy and costs by reducing expensive heat losses from industrial heating equipment, such as furnaces.

485

Process Heating Systems | Department of Energy  

Office of Environmental Management (EM)

Efficiency in Process Heating Systems Roadmap for Process Heating Technology Reduce Natural Gas Use in Your Industrial Process Heating Systems Save Energy Now in Your Process...

486

Heat Waves, Global Warming, and Mitigation  

E-Print Network (OSTI)

Heat Waves, Global Warming, and Mitigation Ann E. Carlson*II. HEAT WAVE DEFINITIONS .. A . HW aves B. Heat-related

Carlson, Ann E.

2008-01-01T23:59:59.000Z

487

Biomass Derivatives Competitive with Heating Oil Costs.  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass Derivatives Competitive with Heating Oil Costs Transportation fuel Heat or electricity * Data are from literature, except heating oil is adjusted from 2011 winter average *...

488

GAM-HEAT: A computer code to compute heat transfer in complex enclosures  

SciTech Connect

This report discusses the GAM[underscore]HEAT code which was developed for heat transfer analyses associated with postulated Double Ended Guilliotine Break Loss Of Coolant Accidents (DEGB LOCA) resulting in a drained reactor vessel. In these analyses the gamma radiation resulting from fission product decay constitutes the primary source of energy as a function of time. This energy is deposited into the various reactor components and is re-radiated as thermal energy. The code accounts for all radiant heat exchanges within and leaving the reactor enclosure. The SRS reactors constitute complex radiant exchange enclosures since there are many assemblies of various types within the primary enclosure and most of the assemblies themselves constitute enclosures. GAM-HEAT accounts for this complexity by processing externally generated view factors and connectivity matrices as discussed below, and also accounts for convective, conductive, and advective heat exchanges. The code is structured such that it is applicable for many situations involving heat exchange between surfaces within a radiatively passive medium.

Cooper, R.E.; Taylor, J.R.

1992-12-01T23:59:59.000Z

489

GAM-HEAT: A computer code to compute heat transfer in complex enclosures. Revision 2  

SciTech Connect

This report discusses the GAM{underscore}HEAT code which was developed for heat transfer analyses associated with postulated Double Ended Guilliotine Break Loss Of Coolant Accidents (DEGB LOCA) resulting in a drained reactor vessel. In these analyses the gamma radiation resulting from fission product decay constitutes the primary source of energy as a function of time. This energy is deposited into the various reactor components and is re-radiated as thermal energy. The code accounts for all radiant heat exchanges within and leaving the reactor enclosure. The SRS reactors constitute complex radiant exchange enclosures since there are many assemblies of various types within the primary enclosure and most of the assemblies themselves constitute enclosures. GAM-HEAT accounts for this complexity by processing externally generated view factors and connectivity matrices as discussed below, and also accounts for convective, conductive, and advective heat exchanges. The code is structured such that it is applicable for many situations involving heat exchange between surfaces within a radiatively passive medium.

Cooper, R.E.; Taylor, J.R.

1992-12-01T23:59:59.000Z

490

Section 38 - HVAC (Heating, Ventilation, Air Conditioning)  

Science Journals Connector (OSTI)

The term HVAC is an acronym for Heating, Ventilation (and) Air Conditioning, the industry term for any of various efforts to control conditions in a building or other enclosed area to improve comfort and efficiency. A closely related section is Refrigeration, which follows this one. Some contemporary HVAC techniques have ancient roots. Early forms of central heating and solar home heating were in use in Rome in the first century A.D. The earliest use of glass in windows (as opposed to a covering of wood, cloth, or hide, or simply an opening) is also attributed to the Romans at this same time. The first known use of solar-oriented building design in North America dates back to about the year 1050; i.e., the cliff dwellings built by the Anasazi (Ancient Pueblo) people of the Colorado Plateau area. Geothermal district heating was employed as early as the 1300s, in the Auvergne region of southern France. The foundation for modern central heating was established in the 1700s, first in England and then in France. The 1800s saw significant advances in the use of water heaters, especially the first automatic storage water heater (Edwin Ruud, 1889) and the first commercial solar water heater (Clarence Kemp, 1891). In comparison with heating, cooling technology was late in developing. The first successful method of producing ice occurred in 1851, and it was not until 1902 that Willis Haviland Carrier designed the first industrial air-conditioning system. His Carrier Air Conditioning Corporation would go on to develop air-conditioning systems for stores and theaters (1924) and for residential buildings (1928). Carrier remains the global leader in air conditioner production. The first air-conditioned automobile was produced by Packard in 1939. Recent entries in this section emphasize the use of alternative energy sources in heating and cooling, such as solar, photovoltaic, geothermal, and fuel cells. These advances include the ground-source heat pump, the Trombe wall, the heat pipe, and the PV/thermal hybrid system.

Cutler J. Cleveland; Christopher Morris

2014-01-01T23:59:59.000Z

491

The Heat Budget of a Body of Water of Varying Volume  

Science Journals Connector (OSTI)

internal energy of the system is equal to the net flux of heat ... The internal energy is represented by the temperature .... unit time. The conversion factor is the.

1999-12-07T23:59:59.000Z

492

E-Print Network 3.0 - active heat moisture Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

mass: an adequate supply of soil moisture, sufficiently cold air temperatures to cause heat loss... . Freezing times given in Table 1 increased significantly with soil moisture...

493

Absorption Heat Pump Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Absorption Heat Pump Basics Absorption Heat Pump Basics Absorption Heat Pump Basics August 19, 2013 - 11:11am Addthis Absorption heat pumps are essentially air-source heat pumps driven not by electricity, but by a heat source such as natural gas, propane, solar-heated water, or geothermal-heated water. Because natural gas is the most common heat source for absorption heat pumps, they are also referred to as gas-fired heat pumps. There are also absorption coolers available that work on the same principal, but are not reversible and cannot serve as a heat source. These are also called gas-fired coolers. How Absorption Heat Pumps Work Residential absorption heat pumps use an ammonia-water absorption cycle to provide heating and cooling. As in a standard heat pump, the refrigerant (in this case, ammonia) is condensed in one coil to release its heat; its

494

Absorption Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Absorption Heat Pumps Absorption Heat Pumps Absorption Heat Pumps June 24, 2012 - 2:11pm Addthis Absorption heat pumps are essentially air-source heat pumps driven not by electricity, but by a heat source such as natural gas, propane, solar-heated water, or geothermal-heated water. Because natural gas is the most common heat source for absorption heat pumps, they are also referred to as gas-fired heat pumps. There are also absorption (or gas-fired) coolers available that work on the same principle. Unlike some absorption heat pumps, however, these are not reversible and cannot serve as a heat source. Residential absorption heat pumps use an ammonia-water absorption cycle to provide heating and cooling. As in a standard heat pump, the refrigerant (in this case, ammonia) is condensed in one coil to release its heat; its

495

Tips: Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pumps Heat Pumps Tips: Heat Pumps June 24, 2013 - 5:48pm Addthis Heat pumps can be a cost-effective choice in moderate climates, especially if you heat your home with electricity. Heat pumps can be a cost-effective choice in moderate climates, especially if you heat your home with electricity. Heat pumps are the most efficient form of electric heating in moderate climates. Because they move heat rather than generate heat, heat pumps can provide equivalent space conditioning at as little as one quarter of the cost of operating conventional heating or cooling appliances. A heat pump does double duty as a central air conditioner by collecting the heat inside your house and pumping it outside. There are three types of heat pumps: air-to-air, water source, and geothermal. They collect heat from the air, water, or ground outside your

496

Absorption Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Absorption Heat Pumps Absorption Heat Pumps Absorption Heat Pumps June 24, 2012 - 2:11pm Addthis Absorption heat pumps are essentially air-source heat pumps driven not by electricity, but by a heat source such as natural gas, propane, solar-heated water, or geothermal-heated water. Because natural gas is the most common heat source for absorption heat pumps, they are also referred to as gas-fired heat pumps. There are also absorption (or gas-fired) coolers available that work on the same principle. Unlike some absorption heat pumps, however, these are not reversible and cannot serve as a heat source. Residential absorption heat pumps use an ammonia-water absorption cycle to provide heating and cooling. As in a standard heat pump, the refrigerant (in this case, ammonia) is condensed in one coil to release its heat; its

497

Local Heat Transfer for Finned-Tube Heat Exchangers using Oval Tubes  

SciTech Connect

This paper presents the results of an experimental study of forced convection heat transfer in a narrow rectangular duct fitted with either a circular tube or an elliptical tube in crossflow. The duct was designed to simulate a single passage in a fin-tube heat exchanger. Heat transfer measurements were obtained using a transient technique in which a heated airflow is suddenly introduced to the test section. High-resolution local fin-surface temperature distributions were obtained at several times after initiation of the transient using an imaging infrared camera. Corresponding local fin-surface heat transfer coefficient distributions were then calculated from a locally applied one-dimensional semi-infinite inverse heat conduction model. Heat transfer results were obtained over an airflow rate ranging from 1.56 x 10-3 to 15.6 x 10-3 kg/s. These flow rates correspond to a duct-height Reynolds number range of 630 6300 with a duct height of 1.106 cm and a duct width-toheight ratio, W/H, of 11.25. The test cylinder was sized such that the diameter-to-duct height ratio, D/H is 5. The elliptical tube had an aspect ratio of 3:1 and a/H equal to 4.33. Results presented in this paper reveal visual and quantitative details of local fin-surface heat transfer distributions in the vicinity of circular and oval tubes and their relationship to the complex horseshoe vortex system that forms in the flow stagnation region. Fin surface stagnation-region Nusselt numbers are shown to be proportional to the square-root of Reynolds number.

O'Brien, James Edward; Sohal, Manohar Singh

2000-08-01T23:59:59.000Z

498

Chapter 17 - Nuclear heat energy  

Science Journals Connector (OSTI)

Abstract This chapter delves into the important heating processes within a nuclear power plant. Applying Fouriers law of heat conduction permits determining temperature distributions within the nuclear fuel rods. In contrast, convective cooling occurs on the rod surface. The coolant, cladding and fuel temperature distributions through a reactor are determined. Besides heat transfer in the reactor core, some power plants employ heat exchangers to generate steam that is fed to a turbine-generator to produce electricity. As a consequence of the second law of thermodynamics, thermal power plants reject condenser heat to the environment through mechanisms such as cooling towers.

Raymond L. Murray; Keith E. Holbert

2015-01-01T23:59:59.000Z

499

Environmentally Friendly Systems: Earth Heat Pump System with Vertical Pipes for Heat Extraction for Domestic Heating and Cooling  

Science Journals Connector (OSTI)

Geothermal heat pumps (GSHPs), or direct expansion (DX) ground source heat pumps, are highly efficient renewable energy technology, ... the earth, groundwater or surface water as heat sources when operating in heating

Saffa Riffat; Siddig Omer; Abdeen Omer

2014-01-01T23:59:59.000Z

500

EMPIRICAL DETERMINATION OF THE HEAT CAPACITY, TIME CONSTANT, AND  

E-Print Network (OSTI)

#12;AEROSOLS AS SEEN FROM SPACE Fire plumes from southern Mexico transported north into Gulf of Mexico to informed decision making. #12;AEROSOL IN MEXICO CITY BASIN #12;AEROSOL IN MEXICO CITY BASIN Mexico City. #12;CLOUD BRIGHTENING BY SHIP TRACKS Satellite photo off California coast Aerosols from ship emissions

Schwartz, Stephen E.