Powered by Deep Web Technologies
Note: This page contains sample records for the topic "time m-f electronic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

M F  

Gasoline and Diesel Fuel Update (EIA)

M M F 3 S N O i i 0 3 r o y d ' , , , , * g . ; & . ' y ; ' ; ' . ^ ' i r , , » , , , » - ^ j M O O l i n O A O U 3 N 3 ( D I . / 9 6 ) 2 0 2 0 - V I 3 / 3 O C This publication and other Energy Information Administration (EIA) publications may be purchased from the Superintendent of Documents, U.S. Government Printing Office. Telephone orders may be directed to: Superintendent of Documents U.S. Government Printing Office Main Order Desk (202) 512-1800 FAX: (202)512-2250 8 a.m. to 4:30 p.m., eastern time, M-F All mail orders should be directed to: U.S. Government Printing Office P.O. Box 371954 Pittsburgh, PA 15250-7954 Complimentary subscriptions and single issues are available to certain groups of subscribers, such as public and academic libraries, Federal, State, local and foreign governments, EIA survey respondents, and the

2

Short rise time intense electron beam generator  

DOE Patents (OSTI)

A generator for producing an intense relativistic electron beam having a subnanosecond current rise time includes a conventional generator of intense relativistic electrons feeding into a short electrically conductive drift tube including a cavity containing a working gas at a low enough pressure to prevent the input beam from significantly ionizing the working gas. Ionizing means such as a laser simultaneously ionize the entire volume of working gas in the cavity to generate an output beam having a rise time less than one nanosecond.

Olson, Craig L. (Albuquerque, NM)

1987-01-01T23:59:59.000Z

3

OPERATIONAL TEST OF SONIC WIND SENSORS AT KNMI Wiel M.F. Wauben  

E-Print Network (OSTI)

1 OPERATIONAL TEST OF SONIC WIND SENSORS AT KNMI Wiel M.F. Wauben 1 and Rob van Krimpen 2 1 R a laboratory en field test of three commercial 2D sonic wind sensors in 2003. Based on the results of these tests and recent instrument developments, KNMI decided to replace its cup anemometers and wind vanes

Wauben, Wiel

4

Transcript: OSTI Highlights First-Time Electronic Availability of  

Office of Scientific and Technical Information (OSTI)

Transcript: OSTI Highlights First-Time Electronic Availability of Transcript: OSTI Highlights First-Time Electronic Availability of Geothermal Documents at San Diego Geothermal Conference, Office of Scientific and Technical Information, U.S. Department of Energy, www.osti.gov September 2006 Geothermal Subject Portal Listen Now Now, more than 7,000 searchable, downloadable historical reports are available electronically on the newly enhanced Geothermal Technologies Subject Portal. Dating from the 1970s to present day, these legacy reports are among the most valuable sources of Department of Energy-sponsored information in the geothermal field. The portal's Web address is www.osti.gov/geothermal. Included in the collection are other citations and reports from the Energy Department, other government agencies, international sources and

5

External Time-Varying Fields and Electron Coherence  

E-Print Network (OSTI)

The effect of time-varying electromagnetic fields on electron coherence is investigated. A sinusoidal electromagnetic field produces a time varying Aharonov-Bohm phase. In a measurement of the interference pattern which averages over this phase, the effect is a loss of contrast. This is effectively a form of decoherence. We calculate the magnitude of this effect for various electromagnetic field configurations. The result seems to be sufficiently large to be observable.

Jen-Tsung Hsiang; L. H. Ford

2004-02-03T23:59:59.000Z

6

Radial electron-beam-breakup transit-time oscillator  

DOE Patents (OSTI)

A radial electron-beam-breakup transit-time oscillator (RBTO) provides a compact high power microwave generator. The RBTO includes a coaxial vacuum transmission line having an outer conductor and an inner conductor. The inner conductor defines an annular cavity with dimensions effective to support an electromagnetic field in a TEM.sub.00m mode. A radial field emission cathode is formed on the outer conductor for providing an electron beam directed toward the annular cavity electrode. Microwave energy is then extracted from the annular cavity electrode.

Kwan, Thomas J. T. (Los Alamos, NM); Mostrom, Michael A. (Albuquerque, NM)

1998-01-01T23:59:59.000Z

7

Linear electronic field time-of-flight ion mass spectrometers  

DOE Patents (OSTI)

Time-of-flight mass spectrometer comprising a first drift region and a second drift region enclosed within an evacuation chamber; a means of introducing an analyte of interest into the first drift region; a pulsed ionization source which produces molecular ions from said analyte of interest; a first foil positioned between the first drift region and the second drift region, which dissociates said molecular ions into constituent atomic ions and emits secondary electrons; an electrode which produces secondary electrons upon contact with a constituent atomic ion in second drift region; a stop detector comprising a first ion detection region and a second ion detection region; and a timing means connected to the pulsed ionization source, to the first ion detection region, and to the second ion detection region.

Funsten, Herbert O. (Los Alamos, NM)

2010-08-24T23:59:59.000Z

8

Electron Spin Transport Demonstrated for First Time in an ...  

Science Conference Proceedings (OSTI)

... Project have demonstrated the first documented case of electron spin transport in ... quantum-mechanical spin of particles such as electrons and holes ...

2012-12-14T23:59:59.000Z

9

Vertical Motions in the Upper Middle Atmosphere from the Saskatoon (52N, 107W) M.F. Radar  

Science Conference Proceedings (OSTI)

The Saskatoon M.F. radar (52N, 107W) was operated in a Doppler mode to measure the vertical motions in the middle atmosphere (60110 km). The 5-min and 1-h mean velocities were accumulated for a full calendar year.

C. E. Meek; A. H. Manson

1989-03-01T23:59:59.000Z

10

A picosecond time-resolved electron energy spectrometer based on Cerenkov radiation  

Science Conference Proceedings (OSTI)

The energy spectrum of relativistic electrons is an important characterization of high intensity laser-matter interactions. We present a technique that utilizes Cerenkov radiation to measure the time-resolved energy distribution of electrons. Electrons escaping from targets irradiated by high-intensity laser pulses were measured, demonstrating the feasibility of such a novel diagnostic. Limitations on the time resolution of this diagnostic are also discussed.

Elberson, Lee N.; Hill, Wendell T. III [Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742 (United States); Ping, Yuan; Shepherd, Ronnie L.; Patel, Pravesh K.; Mackinnon, Andrew J. [Lawrence Livermore National Laboratory, Livermore, California 94550-9234 (United States)

2009-02-15T23:59:59.000Z

11

Tests of time independence of the electron and nuclear masses with ultracold molecules S. Schiller  

E-Print Network (OSTI)

Tests of time independence of the electron and nuclear masses with ultracold molecules S. Schiller. Korobov Joint Institute for Nuclear Research, 141980, Dubna, Russia Received 18 June 2004; published 17 on the time independence of electron-to-nuclear and nuclear-nuclear mass ratios by comparing, via an optical

Schiller, Stephan

12

New measurement technique for the product of the electron mobility and mean free drift time for pixelated semiconductor detectors  

E-Print Network (OSTI)

New measurement technique for the product of the electron mobility and mean free drift time t A new method for measuring the electron mobility, the electron mean free drift time, and their product quantities to characterize the charge trans- port are the electron mobility (me) and the mean free drift time

He, Zhong

13

How well do time-integrated K{sub {alpha}} images represent hot electron spatial distributions?  

SciTech Connect

A computational study is described, which addresses how well spatially resolved time-integrated K{sub {alpha}} images recorded in intense laser-plasma experiments correlate with the distribution of ''hot'' (>1 MeV) electrons as they propagate through the target. The hot electron angular distribution leaving the laser-plasma region is critically important for many applications such as Fast Ignition or laser based x-ray sources; and K{sub {alpha}} images are commonly used as a diagnostic. It is found that K{sub {alpha}} images can easily mislead due to refluxing and other effects. Using the particle-in-cell code LSP, it is shown that a K{sub {alpha}} image is not solely determined by the initial population of forward directed hot electrons, but rather also depends upon ''delayed'' hot electrons, and in fact continues to evolve long after the end of the laser interaction. Of particular note, there is a population of hot electrons created during the laser-plasma interaction that acquire a velocity direction opposite that of the laser and subsequently reflux off the front surface of the target, deflect when they encounter magnetic fields in the laser-plasma region, and then traverse the target in a wide spatial distribution. These delayed fast electrons create significant features in the K{sub {alpha}} time-integrated images. Electrons refluxing from the sides and the back of the target are also found to play a significant role in forming the final K{alpha} image. The relative contribution of these processes is found to vary depending on depth within target. These effects make efforts to find simple correlations between K{alpha} images and, for example, Fast Ignition relevant parameters prone to error. Suggestions for future target design are provided.

Ovchinnikov, V. M.; Kemp, G. E.; Schumacher, D. W.; Freeman, R. R.; Van Woerkom, L. D. [Physics Department, Ohio State University, Columbus, Ohio 43210 (United States)

2011-07-15T23:59:59.000Z

14

QUIET-TIME INTERPLANETARY {approx}2-20 keV SUPERHALO ELECTRONS AT SOLAR MINIMUM  

Science Conference Proceedings (OSTI)

We present a statistical survey of {approx}2-20 keV superhalo electrons in the solar wind measured by the SupraThermal Electron instrument on board the two STEREO spacecraft during quiet-time periods from 2007 March through 2009 March at solar minimum. The observed superhalo electrons have a nearly isotropic angular distribution and a power-law spectrum, f{proportional_to}v{sup -{gamma}}, with {gamma} ranging from 5 to 8.7, with nearly half between 6.5 and 7.5, and an average index of 6.69 {+-} 0.90. The observed power-law spectrum varies significantly on a spatial scale of {approx}>0.1 AU and a temporal scale of {approx}>several days. The integrated density of quiet-time superhalo electrons at 2-20 keV ranges from {approx}10{sup -8} cm{sup -3} to 10{sup -6} cm{sup -3}, about 10{sup -9}-10{sup -6} of the solar wind density, and, as well as the power-law spectrum, shows no correlation with solar wind proton density, velocity, or temperature. The density of superhalo electrons appears to show a solar-cycle variation at solar minimum, while the power-law spectral index {gamma} has no solar-cycle variation. These quiet-time superhalo electrons are present even in the absence of any solar activity-e.g., active regions, flares or microflares, type III radio bursts, etc.-suggesting that they may be accelerated by processes such as resonant wave-particle interactions in the interplanetary medium, or possibly by nonthermal processes related to the acceleration of the solar wind such as nanoflares, or by acceleration at the CIR forward shocks.

Wang, Linghua [Department of Geophysics, Peking University, 100871 Beijing (China); Lin, Robert P.; Salem, Chadi; Pulupa, Marc; Larson, Davin E.; Luhmann, Janet G. [Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450 (United States); Yoon, Peter H., E-mail: wanglhwang@gmail.com [School of Space Research, Kyung Hee University, Yongin, Gyeonggi (Korea, Republic of)

2012-07-01T23:59:59.000Z

15

Synchronization in hyperchaotic time-delayed electronic oscillators coupled indirectly via a common environment  

E-Print Network (OSTI)

The present paper explores the synchronization scenario of hyperchaotic time-delayed electronic oscillators coupled indirectly via a common environment. We show that depending upon the coupling parameters a hyperchaotic time-delayed system can show in-phase or complete synchronization, and also inverse-phase or anti-synchronization. This paper reports the first experimental confirmation of synchronization of hyperchaos in time-delayed electronic oscillators coupled indirectly through a common environment. We confirm the occurrence of in-phase and inverse-phase synchronization phenomena in the coupled system through the dynamical measures like generalized autocorrelation function, correlation of probability of recurrence, and the concept of localized sets computed directly from the experimental time-series data. We also present a linear stability analysis of the coupled system. The experimental and analytical results are further supported by the detailed numerical analysis of the coupled system. Apart from the above mentioned measures, we numerically compute another quantitative measure, namely, Lyapunov exponent spectrum of the coupled system that confirms the transition from the in-phase (inverse-phase) synchronized state to the complete (anti-) synchronized state with the increasing coupling strength.

Tanmoy Banerjee; Debabrata Biswas

2013-03-21T23:59:59.000Z

16

Ultrafast time dynamics studies of periodic lattices with free electron laser radiation  

Science Conference Proceedings (OSTI)

It has been proposed that radiation from free electron laser (FEL) at Hamburg (FLASH) can be used for ultrafast time-resolved x-ray diffraction experiments based on the near-infrared (NIR) pump/FEL probe scheme. Here, investigation probing the ultrafast structural dynamics of periodic nano-crystalline organic matter (silver behenate) with such a scheme is reported. Excitation with a femtosecond NIR laser leads to an ultrafast lattice modification which time evolution has been studied through the scattering of vacuum ultraviolet FEL pulses. The found effect last for 6 ps and underpins the possibility for studying nanoperiodic dynamics down to the FEL source time resolution. Furthermore, the possibility of extending the use of silver behenate (AgBh) as a wavelength and temporal calibration tool for experiments with soft x-ray/FEL sources is suggested.

Quevedo, W.; Busse, G.; Hallmann, J.; More, R.; Petri, M.; Rajkovic, I. [Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen (Germany); Krasniqi, F.; Rudenko, A. [Max Planck Advanced Study Group at CFEL, Notkestrasse 85, 22607 Hamburg (Germany); Tschentscher, T. [European XFEL GmbH, Albert-Einstein-Ring 19, 22671 Hamburg (Germany); Stojanovic, N.; Duesterer, S.; Treusch, R.; Tolkiehn, M. [HASYLAB at DESY, Notkestrasse 85, 22607 Hamburg (Germany); Techert, S. [Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen (Germany); Max Planck Advanced Study Group at CFEL, Notkestrasse 85, 22607 Hamburg (Germany)

2012-11-01T23:59:59.000Z

17

Modeling an Electronic Throttle Controller using the Timed Abstract State Machine Language and Toolset  

E-Print Network (OSTI)

A key challenge in the design and analysis of real-time systems is the integration of functional and non-functional properties into a single specification. In this paper, we present an integrated toolset based on the TASM language. The toolset is used to specify and analyze reactive embedded real-time systems. The toolset implements the features of the Timed Abstract State Machine (TASM) language, a novel specification language. The non-functional properties that can be expressed in the language include timing behavior and resource consumption. The toolset enables the creation of executable specifications with well-defined execution semantics, abstraction mechanisms, and composition semantics. The toolset includes facilities for editing, analyzing, and simulating TASM specifications. The features of the toolset are demonstrated using an Electronic Throttle Controller (ETC) from a major automotive vendor. The TASM toolset is used to analyze the mode switching logic of the ETC. The ETC is used to calculate fuel injection and air intake to optimize fuel consumption. The TASM toolset is used to analyze the resource consumption resulting from the mode switching logic, and to verify the completeness and consistency of the specification.

Martin Ouimet; Guillaume Berteau; Kristina Lundqvist

2006-01-01T23:59:59.000Z

18

542 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 31, NO. 4, AUGUST 2003 Time-Dependence of the Electron Energy Distribution  

E-Print Network (OSTI)

-Dependence of the Electron Energy Distribution Function in the Nitrogen Afterglow Vasco Guerra, Francisco M. Dias, Jorge, we present an investigation of the time- relaxation of the electron energy distribution function that an equilibrium between the vibrational distribution function of ground-state molecules N2( 16+ ) and low-energy

Guerra, Vasco

19

All-optical Time-resolved Measurement of Laser Energy Modulation in a Relativistic Electron Beam  

Science Conference Proceedings (OSTI)

Hamiltonian light-front theory has been proposed as a promising method for solving bound states problems in quantum field theory a long time ago, see, e.g., the review article[1] for its various advantages compared to the traditional instant-form theories. Recently the Basis Light-Front Quantization (BLFQ) approach [2, 3] has been developed as a nonperturbative approach to solve Hamiltonian light-front quantum field theory. Numerical efficiency is a key advantage of this approach. The basic idea of BLFQ is to represent the theory in an optimal basis which respects many symmetries of the theory and thus minimizes the dimensionality of the Hamiltonian for a fixed precision. Specifically, the BLFQ approach employs a plane wave basis in the light-front longitudinal direction and a 2D harmonic oscillator basis in the transverse directions. In previous work [3] this approach has been applied to evaluate the anomalous magnetic moment of electrons which are confined in an external trap with an extrapolation to the zero trap limit. In this work we extend and improve this approach in several aspects including the direct evaluation of a free electron system. This article is organized as follows: In Sec. 2 we discuss the key extensions and improvements made in this work over Ref [3]; in Sec. 3 we present the numerical results for the electron anomalous magnetic moment evaluated in different harmonic oscillator bases and compare to the perturbation theory result. Finally we conclude and give an outline for future works in Sec. 4.

Xiang, D.; Colby, E.; Dunning, M.; Gilevich, S.; Hast, C.; Jobe, K.; McCormick, D.; Nelson, J.; Raubenheimer, T.O.; Soong, K.; Stupakov, G.; Szalata, Z.; Walz, D.; Weathersby, S.; Woodley, M.; /SLAC

2012-02-15T23:59:59.000Z

20

Dynamic environment coupling induce synchronized states in coupled time-delayed electronic circuits  

E-Print Network (OSTI)

We experimentally demonstrate the occurrence of various synchronized states in coupled piece-wise linear time-delayed electronic circuits using dynamic environment coupling where the environment has its own intrinsic dynamics via feedback from the circuits. We carry out these experiments in two different coupling configurations, namely mutual and subsystem coupling configurations. Depending upon the coupling strength and the nature of feedback, we observe a transition from nonsynchronization to complete synchronization via phase synchronization and from nonsynchronization to inverse synchronization via inverse-phase synchronization between the circuits in hyperchaotic regime. Snapshots of the time evolution, phase projection plots and localized sets of the circuits as observed experimentally from the oscilloscope, along with supporting numerical simulations confirm the existence of different synchronized states. Further, the transition to different synchronized states can be verified from the changes in the largest Lyapunov exponents, Correlation of Probability of Recurrence and Correlation Coefficient as a function of the coupling strength. We present a detailed linear stability analysis and obtain conditions for different synchronized states.

R. Suresh; K. Srinivasan; D. V. Senthilkumar; K. Murali; M. Lakshmanan; J. Kurths

2013-04-04T23:59:59.000Z

Note: This page contains sample records for the topic "time m-f electronic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Coherent femtosecond low-energy single-electron pulses for time-resolved diffraction and imaging: A numerical study  

Science Conference Proceedings (OSTI)

We numerically investigate the properties of coherent femtosecond single electron wave packets photoemitted from nanotips in view of their application in ultrafast electron diffraction and non-destructive imaging with low-energy electrons. For two different geometries, we analyze the temporal and spatial broadening during propagation from the needle emitter to an anode, identifying the experimental parameters and challenges for realizing femtosecond time resolution. The simple tip-anode geometry is most versatile and allows for electron pulses of several ten of femtosecond duration using a very compact experimental design, however, providing very limited control over the electron beam collimation. A more sophisticated geometry comprising a suppressor-extractor electrostatic unit and a lens, similar to typical field emission electron microscope optics, is also investigated, allowing full control over the beam parameters. Using such a design, we find {approx}230 fs pulses feasible in a focused electron beam. The main limitation to achieve sub-hundred femtosecond time resolution is the typical size of such a device, and we suggest the implementation of more compact electron optics for optimal performance.

Paarmann, A.; Mueller, M.; Ernstorfer, R. [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin (Germany); Gulde, M.; Schaefer, S.; Schweda, S.; Maiti, M.; Ropers, C. [Courant Research Center Physics and Material Physics Institute, University of Goettingen, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany); Xu, C. [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin (Germany); Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Science, 390, Qinghe Road, Jiading, Shanghai 201800 (China); Hohage, T. [Institute of Numerical and Applied Mathematics, University of Goettingen, Lotzestr. 16-18, 37083 Goettingen (Germany); Schenk, F. [Courant Research Center Physics and Material Physics Institute, University of Goettingen, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany); Institute of Numerical and Applied Mathematics, University of Goettingen, Lotzestr. 16-18, 37083 Goettingen (Germany)

2012-12-01T23:59:59.000Z

22

Real-time studies of battery electrochemical reactions inside a transmission electron microscope.  

DOE Green Energy (OSTI)

We report the development of new experimental capabilities and ab initio modeling for real-time studies of Li-ion battery electrochemical reactions. We developed three capabilities for in-situ transmission electron microscopy (TEM) studies: a capability that uses a nanomanipulator inside the TEM to assemble electrochemical cells with ionic liquid or solid state electrolytes, a capability that uses on-chip assembly of battery components on to TEM-compatible multi-electrode arrays, and a capability that uses a TEM-compatible sealed electrochemical cell that we developed for performing in-situ TEM using volatile battery electrolytes. These capabilities were used to understand lithiation mechanisms in nanoscale battery materials, including SnO{sub 2}, Si, Ge, Al, ZnO, and MnO{sub 2}. The modeling approaches used ab initio molecular dynamics to understand early stages of ethylene carbonate reduction on lithiated-graphite and lithium surfaces and constrained density functional theory to understand ethylene carbonate reduction on passivated electrode surfaces.

Leung, Kevin; Hudak, Nicholas S.; Liu, Yang; Liu, Xiaohua H.; Fan, Hongyou; Subramanian, Arunkumar; Shaw, Michael J.; Sullivan, John Patrick; Huang, Jian Yu

2012-01-01T23:59:59.000Z

23

Time-dependent restricted-active-space self-consistent field theory for laser-driven many-electron dynamics  

E-Print Network (OSTI)

We present the time-dependent restricted-active-space self-consistent field (TD-RASSCF) theory as a new framework for the time-dependent many-electron problem. The theory generalizes the multiconfigurational time-dependent Hartree-Fock (MCTDHF) theory by incorporating the restricted-active-space scheme well known in time-independent quantum chemistry. Optimization of the orbitals as well as the expansion coefficients at each time step makes it possible to construct the wave function accurately while using only a relatively small number of electronic configurations. In numerical calculations of high-order harmonic generation spectra of a one-dimensional model of atomic beryllium interacting with a strong laser pulse, the TD-RASSCF method is reasonably accurate while largely reducing the computational complexity. The TD-RASSCF method has the potential to treat large atoms and molecules beyond the capability of the MCTDHF method.

Miyagi, Haruhide

2013-01-01T23:59:59.000Z

24

Time efficient fabrication of ultra large scale nano dot arrays using electron beam lithography  

Science Conference Proceedings (OSTI)

An astonishingly simple yet versatile alternative method for the creation of ultra large scale nano dot arrays [1-3] utilising the fact that exposure in electron beam lithography (EBL) is performed by addressing single pixels with defined distances is ... Keywords: Electron beam lithography, Nano dot, Patterning, Photonic crystal, Plasmonics

Jochen Grebing; JRgen FaBender; Artur Erbe

2012-09-01T23:59:59.000Z

25

Deflection gating for time-resolved x-ray magnetic circular dichroism-photoemission electron microscopy using synchrotron radiation  

SciTech Connect

In this paper, we present a newly developed gating technique for a time-resolving photoemission microscope. The technique makes use of an electrostatic deflector within the microscope's electron optical system for fast switching between two electron-optical paths, one of which is used for imaging, while the other is blocked by an aperture stop. The system can be operated with a switching time of 20 ns and shows superior dark current rejection. We report on the application of this new gating technique to exploit the time structure in the injection bunch pattern of the synchrotron radiation source BESSY II at Helmholtz-Zentrum Berlin for time-resolved measurements in the picosecond regime.

Wiemann, C.; Kaiser, A. M.; Cramm, S. [Peter Gruenberg Institut PGI-6 'Electronic Properties', Research Centre Juelich, D-52425 Juelich (Germany); Schneider, C. M. [Peter Gruenberg Institut PGI-6 'Electronic Properties', Research Centre Juelich, D-52425 Juelich (Germany); Fakultaet fuer Physik and Center for Nanointegration Duisburg-Essen (CeNIDE), Universitaet Duisburg-Essen, D-47048 Duisburg (Germany)

2012-06-15T23:59:59.000Z

26

Real-time spatial-phase-locked electron-beam lithography  

E-Print Network (OSTI)

The ability of electron-beam lithography (EBL) to create sub-10-nm features with arbitrary geometry makes it a critical tool in many important applications in nanoscale science and technology. The conventional EBL system ...

Zhang, Feng, 1973-

2005-01-01T23:59:59.000Z

27

Use of a fast Fourier transform (FFT) 3D time-dependent Schroedinger equation solver in molecular electronic structure  

Science Conference Proceedings (OSTI)

An implicit split-operator FFT algorithm for the numerical solution of the time-dependent Schroedinger equation is implemented for the electronic structure of H{sub 2}{sup +} and H{sub 2}. The covalent versus separated-atoms behavior is described by two distinct steady states to which the imaginary-time Schroedinger solution evolves for small or large internuclear distances, respectively.

Ritchie, B. [Lawrence Livermore National Lab., CA (United States); Weatherford, C.A. [Florida A and M Univ., Tallahassee, FL (United States). Physics Dept.

1998-11-01T23:59:59.000Z

28

Two-electron time-delay interference in atomic double ionization by attosecond pulses  

SciTech Connect

A two-color two-photon atomic double ionization experiment using subfemtosecond UV pulses can be designed such that the sequential two-color process dominates and one electron is ejected by each pulse. Nonetheless, ab initio calculations show that, for sufficiently short pulses, a prominent interference pattern in the joint energy distribution of the sequentially ejected electrons can be observed that is due to their indistinguishability and the exchange symmetry of the wave function.

Rescigno, Thomas N

2009-10-04T23:59:59.000Z

29

Time response of the high-field electron distribution function in GaAs  

Science Conference Proceedings (OSTI)

Numerical calculations have been made of the high-field electron distribution function for GaAs, its small-signal frequency response and its behavior in large sinusoidal electric fields-The response speed is limited by the low scattering rate within ...

H. D. Rees

1969-09-01T23:59:59.000Z

30

Long-time electron spin storage via dynamical suppression of hyperfine-induced decoherence in a quantum dot  

SciTech Connect

The coherence time of an electron spin decohered by the nuclear spin environment in a quantum dot can be substantially increased by subjecting the electron to suitable dynamical decoupling sequences. We analyze the performance of high-level decoupling protocols by using a combination of analytical and exact numerical methods, and by paying special attention to the regimes of large interpulse delays and long-time dynamics, which are outside the reach of standard average Hamiltonian theory descriptions. We demonstrate that dynamical decoupling can remain efficient far beyond its formal domain of applicability, and find that a protocol exploiting concatenated design provides best performance for this system in the relevant parameter range. In situations where the initial electron state is known, protocols able to completely freeze decoherence at long times are constructed and characterized. The impact of system and control nonidealities is also assessed, including the effect of intrabath dipolar interaction, magnetic field bias and bath polarization, as well as systematic pulse imperfections. While small bias field and small bath polarization degrade the decoupling fidelity, enhanced performance and temporal modulation result from strong applied fields and high polarizations. Overall, we find that if the relative errors of the control pulse flip angles do not exceed 3%, decoupling protocols can still prolong the coherence time by up to 2 orders of magnitude.

Zhang, W.; Konstantinidis, N.; Dobrovitski, V.; Harmon, B.; Santos, L.; Viola, L.

2008-03-27T23:59:59.000Z

31

Electron-Positron Pair Production in Space- or Time-Dependent Electric Fields  

E-Print Network (OSTI)

Treating the production of electron and positron pairs by a strong electric field from the vacuum as a quantum tunneling process we derive, in semiclassical approximation, a general expression for the pair production rate in a $z$-dependent electric field $E(z)$ pointing in the $z$-direction. We also allow for a smoothly varying magnetic field parallel to $E(z)$. The result is applied to a confined field $E(z)\

Kleinert, Hagen; Xue, She-Sheng

2008-01-01T23:59:59.000Z

32

Electron-Positron Pair Production in Space- or Time-Dependent Electric Fields  

E-Print Network (OSTI)

Treating the production of electron and positron pairs by a strong electric field from the vacuum as a quantum tunneling process we derive, in semiclassical approximation, a general expression for the pair production rate in a $z$-dependent electric field $E(z)$ pointing in the $z$-direction. We also allow for a smoothly varying magnetic field parallel to $E(z)$. The result is applied to a confined field $E(z)\

Hagen Kleinert; Remo Ruffini; She-Sheng Xue

2008-07-06T23:59:59.000Z

33

Electronic  

NLE Websites -- All DOE Office Websites (Extended Search)

contribution contribution to friction on GaAs: An atomic force microscope study Yabing Qi, 1,2 J. Y. Park, 2 B. L. M. Hendriksen, 2 D. F. Ogletree, 2 and M. Salmeron 2,3 1 Applied Science and Technology Graduate Group, University of California, Berkeley, California 94720, USA 2 Materials Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, USA 3 Department of Materials Sciences and Engineering, University of California, Berkeley, California 94720, USA ͑Received 23 January 2008; revised manuscript received 11 April 2008; published 7 May 2008͒ The electronic contribution to friction at semiconductor surfaces was investigated by using a Pt-coated tip with 50 nm radius in an atomic force microscope sliding against an n-type GaAs͑100͒ substrate. The GaAs surface was covered by an approximately 1 nm thick oxide layer. Charge accumulation

34

Time-resolved THz studies of carrier dynamics in semiconductors, superconductors, and strongly-correlated electron materials  

Science Conference Proceedings (OSTI)

Perhaps the most important aspect of contemporary condensed matter physics involves understanding strong Coulomb interactions between the large number of electrons in a solid. Electronic correlations lead to the emergence of new system properties, such as metal-insulator transitions, superconductivity, magneto-resistance, Bose-Einstein condensation, the formation of excitonic gases, or the integer and fractional Quantum Hall effects. The discovery of high-Tc superconductivity in particular was a watershed event, leading to dramatic experimental and theoretical advances in the field of correlated-electron systems. Such materials often exhibit competition between the charge, lattice, spin, and orbital degrees of freedom, whose cause-effect relationships are difficult to ascertain. Experimental insight into the properties of solids is traditionally obtained by time-averaged probes, which measure e.g., linear optical spectra, electrical conduction properties, or the occupied band structure in thermal equilibrium. Many novel physical properties arise from excitations out of the ground state into energetically higher states by thermal, optical, or electrical means. This leads to fundamental interactions between the system's constituents, such as electron-phonon and electron-electron interactions, which occur on ultrafast timescales. While these interactions underlie the physical properties of solids, they are often only indirectly inferred from time-averaged measurements. Time-resolved spectroscopy, consequently, is playing an ever increasing role to provide insight into light-matter interaction, microscopic processes, or cause-effect relationships that determine the physics of complex materials. In the past, experiments using visible and near-infrared femtosecond pulses have been extensively employed, e.g. to follow relaxation and dephasing processes in metals and semiconductors. However, many basic excitations in strongly-correlated electron systems and nanoscale materials occur at lower energies. The terahertz (THz) regime is particularly rich in such fundamental resonances. This includes ubiquitous lattice vibrations and low-energy collective oscillations of conduction charges. In nanoscale materials, band structure quantization also yields novel infrared and THz transitions, including intersubband absorption in quantum wells. The formation of excitons in turn leads to low-energy excitations analogous to inter-level transitions in atoms. In transition-metal oxides, fundamental excitation gaps arise from charge pairing into superconducting condensates and other correlated states. This motivates the use of ultrafast THz spectroscopy as a powerful tool to study light-matter interactions and microscopic processes in nanoscale and correlated-electron materials.A distinct advantage of coherent THz pulses is that the amplitude and phase of the electric field can be measured directly, as the THz fields are coherent with the fs pulses from which they are generated. Using THz time-domain spectroscopy (THz-TDS), both the real and imaginary parts of the response functions (such as the dielectric function) are obtained directly without the need for Kramers?Kronig transforms. The THz response can also be expressed in terms of absorption and refractive index, or as the optical conductivity. The optical conductivity describes the current response of a many-body system to an electric field, an ideal tool to study conducting systems. A second important advantage is the ultrafast time resolution that results from the short temporal duration of the THz time-domain sources. In particular, optical-pump THz-probe spectroscopy enables a delicate probe of the transient THz conductivity after optical photoexcitation. These experiments can provide insight into quasiparticle interactions, phase transitions, or nonequilibrium dynamics. In this chapter we will provide many such examples. Since THz spectroscopy of solids is a quickly expanding field

Kaindl, Robert A.; Averitt, Richard D.

2006-11-14T23:59:59.000Z

35

GAMMA-RAY DETECTION WITH PbO GLASS CONVERTERS IN MWPC: ELECTRON CONVERSION EFFICIENCY AND TIME RESOLUTION  

E-Print Network (OSTI)

Converters in MWPC: Electron Conversion Efficiency and Timeimprove on the electron conversion efficiency and electronconverter the electron conversion efficiency E was measured

Lum, G.K.

2013-01-01T23:59:59.000Z

36

Time evolution of endpoint energy of Bremsstrahlung spectra and ion production from an electron cyclotron resonance ion source  

SciTech Connect

Electron cyclotron resonance ion sources (ECRIS) are used to produce high charge state heavy ion beams for the use of nuclear and materials science, for instance. The most powerful ECR ion sources today are superconducting. One of the problems with superconducting ECR ion sources is the use of high radio frequency (RF) power which results in bremsstrahlung radiation adding an extra heat load to the cryostat. In order to understand the electron heating process and timescales in the ECR plasma, time evolution measurement of ECR bremsstrahlung was carried out. In the measurements JYFL 14 GHz ECRIS was operated in a pulsed mode and bremsstrahlung data from several hundred RF pulses was recorded. Time evolution of ion production was also studied and compared to one of the electron heating theories. To analyze the measurement data at C++ program was developed. Endpoint energies of the bremsstrahlung spectra as a function of axial magnetic field strength, pressure and RF power are presented and ion production timescales obtained from the measurements are compared to bremsstrahlung emission timescales and one of the stochastic heating theories.

Tarvainen, Ollie [Los Alamos National Laboratory; Ropponen, Tommi [JYFL; Jones, Peter [JYFL; Kalvas, Taneli [JYFL

2008-01-01T23:59:59.000Z

37

Direct measurement of product of the electron mobility and mean free drift time of CdZnTe semiconductors using position sensitive single  

E-Print Network (OSTI)

Direct measurement of product of the electron mobility and mean free drift time of Cd Institute of Physics. Related Articles A new detector for mass spectrometry: Direct detection of low energy://jap.aip.org/about/rights_and_permissions #12;Direct measurement of product of the electron mobility and mean free drift time of Cd

He, Zhong

38

Relation of exact Gaussian basis methods to the dephasing representation: Theory and application to time-resolved electronic spectra  

E-Print Network (OSTI)

We recently showed that the Dephasing Representation (DR) provides an efficient tool for computing ultrafast electronic spectra and that further acceleration is possible with cellularization [M. \\v{S}ulc and J. Van\\'i\\v{c}ek, Mol. Phys. 110, 945 (2012)]. Here we focus on increasing the accuracy of this approximation by first implementing an exact Gaussian basis method, which benefits from the accuracy of quantum dynamics and efficiency of classical dynamics. Starting from this exact method, the DR is derived together with ten other methods for computing time-resolved spectra with intermediate accuracy and efficiency. These methods include the Gaussian DR, an exact generalization of the DR, in which trajectories are replaced by communicating frozen Gaussian basis functions evolving classically with an average Hamiltonian. The newly obtained methods are tested numerically on time correlation functions and time-resolved stimulated emission spectra in the harmonic potential, pyrazine S0/S1 model, and quartic osci...

ulc, Miroslav; Martnez, Todd J; Van?ek, Ji?

2013-01-01T23:59:59.000Z

39

REAL-TIME TRACER MONITORING OF RESERVOIR STIMULATION PROCEDURES VIA ELECTRONIC WIRELINE AND TELEMETRY DATA TRANSMISSION  

Science Conference Proceedings (OSTI)

Finalized Phase 2-3 project work has field-proven two separate real-time reservoir processes that were co-developed via funding by the National Energy Technology Laboratory (NETL). Both technologies are presently patented in the United States and select foreign markets; a downhole-commingled reservoir stimulation procedure and a real-time tracer-logged fracturing diagnostic system. Phase 2 and early Phase 3 project work included the research, development and well testing of a U.S. patented gamma tracer fracturing diagnostic system. This stimulation logging process was successfully field-demonstrated; real-time tracer measurement of fracture height while fracturing was accomplished and proven technically possible. However, after the initial well tests, there were several licensing issues that developed between service providers that restricted and minimized Realtimezone's (RTZ) ability to field-test the real-time gamma diagnostic system as was originally outlined for this project. Said restrictions were encountered after when one major provider agreed to license their gamma logging tools to another. Both of these companies previously promised contributory support toward Realtimezone's DE-FC26-99FT40129 project work, however, actual support was less than desired when newly-licensed wireline gamma logging tools from one company were converted by the other from electric wireline into slickline, batter-powered ''memory'' tools for post-stimulation logging purposes. Unfortunately, the converted post-fracture measurement memory tools have no applications in experimentally monitoring real-time movement of tracers in the reservoir concurrent with the fracturing treatment. RTZ subsequently worked with other tracer gamma-logging tool companies for basic gamma logging services, but with lessened results due to lack of multiple-isotope detection capability. In addition to real-time logging system development and well testing, final Phase 2 and Phase 3 project work included the development of a real-time reservoir stimulation procedure, which was successfully field-demonstrated and is presently patented in the U.S. and select foreign countries, including Venezuela, Brazil and Canada. Said patents are co-owned by RTZ and the National Energy Technology Lab (NETL). In 2002, Realtimezone and the NETL licensed said patents to Halliburton Energy Services (HES). Additional licensing agreements (LA) are anticipated with other service industry companies in 2005. Final Phase 3 work has led to commercial applications of the real-time reservoir stimulation procedure. Four successfully downhole-mixed well tests were conducted with commercially expected production results. The most recent, fourth field test was a downhole-mixed stimulated well completed in June, 2004, which currently produces 11 BOPD with 90 barrels of water per day. Conducted Phase 2 and Phase 3 field-test work to date has resulted in the fine-tuning of a real-time enhanced stimulation system that will significantly increase future petroleum well recoveries in the United States and foreign petroleum fields, both onshore and offshore, and in vertical and horizontal wells.

George L. Scott III

2005-01-01T23:59:59.000Z

40

u.s. department of commerce national institute of standards and technology manufacturing extension partnership W W W . n i s t . g o v / m e p 1 -8 0 0 -m e p -4 m F g  

E-Print Network (OSTI)

the following services through on-site training/analysis projects and workshops: Energy Efficiency, Innovation extension partnership W W W . n i s t . g o v / m e p · 1 - 8 0 0 - m e p - 4 m F g For more information Selling principles, Small Parts has built on its traditional market dominance with just one automotive

Perkins, Richard A.

Note: This page contains sample records for the topic "time m-f electronic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Real-time control of electron density in a capacitively coupled plasma  

SciTech Connect

Reactive ion etching (RIE) is sensitive to changes in chamber conditions, such as wall seasoning, which have a deleterious effect on process reproducibility. The application of real time, closed loop control to RIE may reduce this sensitivity and facilitate production with tighter tolerances. The real-time, closed loop control of plasma density with RF power in a capacitively coupled argon plasma using a hairpin resonance probe as a sensor is described. Elementary control analysis shows that an integral controller provides stable and effective set point tracking and disturbance attenuation. The trade off between performance and robustness may be quantified in terms of one parameter, namely the position of the closed loop pole. Experimental results are presented, which are consistent with the theoretical analysis.

Keville, Bernard; Gaman, Cezar; Turner, Miles M. [National Centre for Plasma Science and Technology (NCPST), Research and Engineering Building, Dublin City University, Glasnevin, Dublin 9 (Ireland) and School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9 (Ireland); Zhang Yang; Daniels, Stephen [National Centre for Plasma Science and Technology (NCPST), Research and Engineering Building, Dublin City University, Glasnevin, Dublin 9 (Ireland) and School of Electronic Engineering, Dublin City University, Glasnevin, Dublin 9 (Ireland); Holohan, Anthony M. [School of Electronic Engineering, Dublin City University, Glasnevin, Dublin 9 (Ireland)

2013-05-15T23:59:59.000Z

42

REAL-TIME TRACER MONITORING OF RESERVOIR STIMULATION PROCEDURES VIA ELECTRONIC WIRELINE AND TELEMETRY DATA TRANSMISSION  

SciTech Connect

Ongoing Phase 2-3 work comprises the final development and field-testing of two complementary real-time reservoir technologies; a stimulation process and a tracer fracturing diagnostic system. Initial DE-FC26-99FT40129 project work included research, development, and testing of the patented gamma tracer fracturing diagnostic system. This process was field-proven to be technically useful in providing tracer measurement of fracture height while fracturing; however, technical licensing restrictions blocked Realtimezone from fully field-testing this real-time gamma diagnostic system, as originally planned. Said restrictions were encountered during Phase 2 field test work as result of licensing limitations and potential conflicts between service companies participating in project work, as related to their gamma tracer logging tool technology. Phase 3 work principally demonstrated field-testing of Realtimezone (RTZ) and NETL's Downhole-mixed Reservoir Stimulation process. Early on, the simplicity of and success of downhole-mixing was evident from well tests, which were made commercially productive. A downhole-mixed acid stimulation process was tested successfully and is currently commercially used in Canada. The fourth well test was aborted due to well bore conditions, and an alternate test project is scheduled April, 2004. Realtimezone continues to effectuate ongoing patent protection in the United States and foreign markets. In 2002, Realtimezone and the NETL licensed their United States patent to Halliburton Energy Services (HES). Additional licensing arrangements with other industry companies are anticipated in 2004-2005. Ongoing Phase 2 and Phase 3 field-testing continues to confirm applications of both real-time technologies. Technical data transfer to industry is ongoing via Internet tech-transfer and various industry presentations and publications including Society of Petroleum Engineers. These real-time enhanced stimulation procedures should significantly increase future petroleum well recoveries in the United States, onshore and offshore, and in vertical and horizontal wells.

George Scott III

2003-08-01T23:59:59.000Z

43

High resolution low dose transmission electron microscopy real-time imaging and manipulation of nano-scale objects in the electron beam  

DOE Patents (OSTI)

The present invention includes a method, apparatus and system for nanofabrication in which one or more target molecules are identified for manipulation with an electron beam and the one or more target molecules are manipulated with the electron beam to produce new useful materials.

Brown, Jr., R. Malcolm (Austin, TX); Barnes, Zack (Austin, TX); Sawatari, Chie (Shizuoka, JP); Kondo, Tetsuo (Kukuoka, JP)

2008-02-26T23:59:59.000Z

44

Development of a variable-temperature ion mobility/ time-of-flight mass spectrometer for separation of electronic isomers  

E-Print Network (OSTI)

The construction of a liquid nitrogen-cooled ion mobility spectrometer coupled with time-of-flight mass spectrometry was implemented to demonstrate the ability to discriminate between electronic isomers. Ion mobility allows for the separation of ions based on differing cross-sections-to-charge ratio. This allows for the possible discrimination of species with same mass if the ions differ by cross-section. Time-offlight mass spectrometry was added to mass identify the separated peak for proper identification. A liquid nitrogen-cooled mobility cell was employed for a two-fold purpose. First, the low temperatures increase the peak resolution to aid in resolving the separated ions. This is necessary when isomers may have similar cross-sections. Second, low temperature shortens the mean free path and decreases the neutral buffer gas speeds allowing for more interactions between the ions and the drift gas. Kr2+ study was performed to verify instrument performance. The variable-temperature ion mobility spectrometer was utilized to separate the distonic and conventional ion forms of CH3OH, CH3F, and CH3NH2 and to discriminate between the keto and enol forms of the acetone radical cation. Density functional theory and ab initio calculations were employed to aid in proper identification of separating isomers. Monte Carlo integration tools were also developed to predict ion cross-section and resolution within a buffer gas.

Verbeck, Guido Fridolin

2006-05-01T23:59:59.000Z

45

EEE 352, Properties of Electronic Materials Time and Place of Lectures: 10:40-11:55 MWF, PS A118  

E-Print Network (OSTI)

. Basic knowledge of atomic structure, chem- ical bonding, and kinetic theory; Knowledge of classical · Introduction to the electronic properties of materials, applications of the basic principles of quantum quantum mechanics of electron 4. Chemical bonding and the periodic table 5. The free-electron theory

Lai, Ying-Cheng

46

Magnetically insulated baffled probe for real-time monitoring of equilibrium and fluctuating values of space potentials, electron and ion temperatures, and densities  

Science Conference Proceedings (OSTI)

By restricting the electron-collection area of a cold Langmuir probe compared to the ion-collection area, the probe floating potential can become equal to the space potential, and thus conveniently monitored, rather than to a value shifted from the space potential by an electron-temperature-dependent offset, i.e., the case with an equal-collection-area probe. This design goal is achieved by combining an ambient magnetic field in the plasma with baffles, or shields, on the probe, resulting in species-selective magnetic insulation of the probe collection area. This permits the elimination of electron current to the probe by further adjustment of magnetic insulation which results in an ion-temperature-dependent offset when the probe is electrically floating. Subtracting the floating potential of two magnetically insulated baffled probes, each with a different degree of magnetic insulation, enables the electron or ion temperature to be measured in real time.

Demidov, V. I.; Koepke, M. E. [Department of Physics, West Virginia University, Morgantown, West Virginia 26506 (United States); Raitses, Y. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

2010-10-15T23:59:59.000Z

47

Demonstration of a real-time interferometer as a bunch-length monitor in a high-current electron beam accelerator  

SciTech Connect

A real-time interferometer (RTI) has been developed to monitor the bunch length of an electron beam in an accelerator. The RTI employs spatial autocorrelation, reflective optics, and a fast response pyro-detector array to obtain a real-time autocorrelation trace of the coherent radiation from an electron beam thus providing the possibility of online bunch-length diagnostics. A complete RTI system has been commissioned at the A0 photoinjector facility to measure sub-mm bunches at 13 MeV. Bunch length variation (FWHM) between 0.8 ps ({approx}0.24 mm) and 1.5 ps ({approx}0.45 mm) has been measured and compared with a Martin-Puplett interferometer and a streak camera. The comparisons show that RTI is a viable, complementary bunch length diagnostic for sub-mm electron bunches.

Thangaraj, J.; Thurman-Keup, R.; Ruan, J.; Johnson, A. S.; Lumpkin, A.; Santucci, J.; Maxwell, T. [Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (United States); Andonian, G. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095 (United States); RadiaBeam Technologies, Santa Monica, California 90404 (United States); Murokh, A.; Ruelas, M.; Ovodenko, A. [RadiaBeam Technologies, Santa Monica, California 90404 (United States)

2012-04-15T23:59:59.000Z

48

Demonstration of a real-time interferometer as a bunch-lenght monitor in a high-current electron beam accelerator  

Science Conference Proceedings (OSTI)

A real-time interferometer (RTI) has been developed to monitor the bunch length of an electron beam in an accelerator. The RTI employs spatial autocorrelation, reflective optics, and a fast response pyro-detector array to obtain a real-time autocorrelation trace of the coherent radiation from an electron beam thus providing the possibility of online bunch-length diagnostics. A complete RTI system has been commissioned at the A0 photoinjector facility to measure sub-mm bunches at 13 MeV. Bunch length variation (FWHM) between 0.8 ps (-0.24 mm) and 1.5 ps (-0.45 mm) has been measured and compared with a Martin-Puplett interferometer and a streak camera. The comparisons show that RTI is a viable, complementary bunch length diagnostic for sub-mm electron bunches.

Thangaraj, J.; Thurman-Keup, R.; Ruan, J.; Johnson, A.S.; Lumpkin, A; Santucci, J.; Maxwell, T.; /Fermilab; Andonian, G.; /UCLA /RadiaBeam Tech.; Murokh, A.; Ruelas, M.; Ovodenko, A.; /RadiaBeam Tech.

2012-03-01T23:59:59.000Z

49

Observation of Time-domain Rabi Oscillations in the Landau-Zener Regime with a Single Electronic Spin  

E-Print Network (OSTI)

Under resonant conditions, a long sequence of landau-zener transitions can lead to Rabi oscillations. Using a nitrogen-vacancy (NV) center spin in diamond, we investigated the interference between more than 100 Landau-Zener processes. We observed the new type of Rabi oscillations of the electron spin resulting from the interference between successive Landau-Zener processes in various regimes, including both slow and fast passages. The combination of the control techniques and the favorable coherent properties of NV centers provides an excellent experimental platform to study a variety of quantum dynamical phenomena.

Jingwei Zhou; Pu Huang; Qi Zhang; Zixiang Wang; Tian Tan; Xiangkun Xu; Fazhan Shi; Xing Rong; S. Ashhab; Jiangfeng Du

2013-05-01T23:59:59.000Z

50

Real-time x-ray response of biocompatible solution gate AlGaN/GaN high electron mobility transistor devices  

Science Conference Proceedings (OSTI)

We present the real-time x-ray irradiation response of charge and pH sensitive solution gate AlGaN/GaN high electron mobility transistors. The devices show stable and reproducible behavior under and following x-ray radiation, including a linear integrated response with dose into the muGy range. Titration measurements of devices in solution reveal that the linear pH response and sensitivity are not only retained under x-ray irradiation, but an irradiation response could also be measured. Since the devices are biocompatible, and can be simultaneously operated in aggressive fluids and under hard radiation, they are well-suited for both medical radiation dosimetry and biosensing applications.

Hofstetter, Markus; Funk, Maren; Paretzke, Herwig G.; Thalhammer, Stefan [Helmholtz Zentrum Muenchen, Ingolstaedter Landstrasse 1, 85764 Neuherberg (Germany); Howgate, John; Sharp, Ian D.; Stutzmann, Martin [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall 3, 85748 Garching (Germany)

2010-03-01T23:59:59.000Z

51

Three distinct stages of apoptotic nuclear condensation revealed by time-lapse imaging, biochemical and electron microscopy analysis of cell-free apoptosis  

SciTech Connect

During apoptotic execution, chromatin undergoes a phase change from a heterogeneous, genetically active network to an inert highly condensed form that is fragmented and packaged into apoptotic bodies. We have previously used a cell-free system to examine the roles of caspases or other proteases in apoptotic chromatin condensation and nuclear disassembly. But so far, the role of DNase activity or ATP hydrolysis in this system has not yet been elucidated. Here, in order to better define the stages of nuclear disassembly in apoptosis, we have characterized the apoptotic condensation using a cell-free system and time-lapse imaging. We demonstrated that the population of nuclei undergoing apoptosis in vitro appears to follow a reproducible program of nuclear condensation, suggesting the existence of an ordered biochemical pathway. This enabled us to define three stages of apoptotic chromatin condensation: stage 1 ring condensation; stage 2 necklace condensation; and stage 3 nuclear collapse/disassembly. Electron microscopy revealed that neither chromatin nor detectable subnuclear structures were present inside the stage 1 ring-condensed structures. DNase activity was not essential for stage 1 ring condensation, which could occur in apoptotic extracts depleted of all detectable DNase activity. However, DNase(s) were required for stage 2 necklace condensation. Finally, we demonstrated that hydrolyzable ATP is required for stage 3 nuclear collapse/disassembly. This requirement for ATP hydrolysis further distinguished stage 2 from stage 3. Together, these experiments provide the first steps towards a systematic biochemical characterization of chromatin condensation during apoptosis.

Tone, Shigenobu [Department of Biochemistry, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192 (Japan)], E-mail: tone@med.kawasaki-m.ac.jp; Sugimoto, Kenji [Laboratory of Applied Molecular Biology, Division of Bioscience and Informatics, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531 (Japan); Tanda, Kazue [Department of Biochemistry, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192 (Japan); Suda, Taiji; Uehira, Kenzo [Electron Microscope Center, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192 (Japan); Kanouchi, Hiroaki [Department of Biochemistry, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192 (Japan); Samejima, Kumiko [Wellcome Trust Centre for Cell Biology, ICMB, King's Buildings, The University of Edinburgh, Edinburgh, EH93JR, Scotland (United Kingdom); Minatogawa, Yohsuke [Department of Biochemistry, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192 (Japan); Earnshaw, William C. [Wellcome Trust Centre for Cell Biology, ICMB, King's Buildings, The University of Edinburgh, Edinburgh, EH93JR, Scotland (United Kingdom)], E-mail: Bill.Earnshaw@ed.ac.uk

2007-10-01T23:59:59.000Z

52

Ultrafast supercontinuum fiber-laser based pump-probe scanning MOKE microscope for the investigation of electron spin dynamics in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution  

E-Print Network (OSTI)

We describe a two-color pump-probe scanning magneto-optical Kerr effect (MOKE) microscope which we have developed to investigate electron spin phenomena in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution. The key innovation of our microscope is the usage of an ultrafast `white light' supercontinuum fiber-laser source which provides access to the whole visible and near-infrared spectral range. Our Kerr microscope allows for the independent selection of the excitation and detection energy while avoiding the necessity to synchronize the pulse trains of two separate picosecond laser systems. The ability to independently tune the pump and probe wavelength enables the investigation of the influence of excitation energy on the optically induced electron spin dynamics in semiconductors. We demonstrate picosecond real-space imaging of the diffusive expansion of optically excited electron spin packets in a (110) GaAs quantum well sample to illustrate the capabilities of t...

Henn, T; Ossau, W; Molenkamp, L W; Biermann, K; Santos, P V

2013-01-01T23:59:59.000Z

53

ELECTRONIC MULTIPLIER  

DOE Patents (OSTI)

S>An electronic multiplier is described for use in analog computers. Two electrical input signals are received; one controls the slope of a saw-tooth voltage wave while the other controls the time duration of the wave. A condenser and diode clamps are provided to sustain the crest voltage reached by the wave, and for storing that voltage to provide an output signal which is a steady d-c voltage.

Collier, D.M.; Meeks, L.A.; Palmer, J.P.

1961-01-31T23:59:59.000Z

54

Time growth rate and field profiles of hybrid modes excited by a relativistic elliptical electron beam in an elliptical metallic waveguide with dielectric rod  

Science Conference Proceedings (OSTI)

The dispersion relation of guided electromagnetic waves propagating in an elliptical metallic waveguide with a dielectric rod driven by relativistic elliptical electron beam (REEB) is investigated. The electric field profiles and the growth rates of the waves are numerically calculated by using Mathieu functions. The effects of relative permittivity constant of dielectric rod, accelerating voltage, and current density of REEB on the growth rate are presented.

Jazi, B.; Rahmani, Z.; Abdoli-Arani, A. [Faculty of Physics, Department of Laser and Photonics, University of Kashan, Kashan (Iran, Islamic Republic of); Heidari-Semiromi, E. [Faculty of Physics, Department of Condense Matter, University of Kashan, Kashan (Iran, Islamic Republic of)

2012-10-15T23:59:59.000Z

55

Electron holography  

Science Conference Proceedings (OSTI)

... An electron hologram is a fringe modulated image containing the amplitude and phase information of an electron transparent object. ...

2013-01-08T23:59:59.000Z

56

Phase Transformation and Lithiation Effect on Electronic Structure of  

NLE Websites -- All DOE Office Websites (Extended Search)

Phase Transformation and Lithiation Effect on Electronic Structure of Phase Transformation and Lithiation Effect on Electronic Structure of LixFePO4: An In-Depth Study by Soft X-ray and Simulations Title Phase Transformation and Lithiation Effect on Electronic Structure of LixFePO4: An In-Depth Study by Soft X-ray and Simulations Publication Type Journal Article Year of Publication 2012 Authors Liu, Xiaosong, Jun Liu, Ruimin Qiao, Yan Yu, Hong Li, Liumin Suo, Yong-sheng Hu, Yi-De Chuang, Guojiun Shu, Fangcheng Chou, Tsu-Chien Weng, Dennis Nordlund, Dimosthenis Sokaras, Yung Jui Wang, Hsin Lin, Bernardo Barbiellini, Arun Bansil, Xiangyun Song, Zhi Liu, Shishen Yan, Gao Liu, Shan Qiao, Thomas J. Richardson, David Prendergast, Zahid Hussain, Frank M. F. de Groot, and Wanli Yang Journal Journal of the American Chemical Society

57

MEDICAL FORM & IMMUNIZATION RECORD Name ________________________________________________________________ Date of Birth ____/___/____ M ___ F ___  

E-Print Network (OSTI)

MEDICAL FORM & IMMUNIZATION RECORD Name you can register for classes. MAIL TO: Student Health Services, Medical Records, Furman University student to have a medical, physical and immunization record on file in the Health Services Office

58

Electron Microprobe  

Science Conference Proceedings (OSTI)

Electron Microprobe. ... The JEOL JXA-8600 is a conventional hairpin filament thermal emission electron microprobe that is more than 20 years old. ...

2012-10-01T23:59:59.000Z

59

Scanning Electron Microscopy (SEM)  

Science Conference Proceedings (OSTI)

...The scanning electron microscope provides a valuable combination of high resolution imaging, elemental analysis, and recently, crystallographic analysis: Imaging of features as small as sim 10 nm or less, roughly 100 times smaller than can be seen with...

60

Electron Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Pierre Kennepohl1,2 and Edward Solomon1* 1Department of Chemistry, Stanford University, Stanford, CA 94305 Electron transfer, or the act of moving an electron from one place to another, is amongst the simplest of chemical processes, yet certainly one of the most critical. The process of efficiently and controllably moving electrons around is one of the primary regulation mechanisms in biology. Without stringent control of electrons in living organisms, life could simply not exist. For example, photosynthesis and nitrogen fixation (to name but two of the most well-known biochemical activities) are driven by electron transfer processes. It is unsurprising, therefore, that much effort has been placed on understanding the fundamental principles that control and define the simple act of adding and/or removing electrons from chemical species.

Note: This page contains sample records for the topic "time m-f electronic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Application: Electronics  

Science Conference Proceedings (OSTI)

Application: Electronics. ... Suppression of Electrical Cable Fires: Development of a Standard PVC Cable Fire Test for ISO 14520-1.. Robin, ML ...

2011-12-22T23:59:59.000Z

62

Vanishing electronics  

Science Conference Proceedings (OSTI)

Engineers are reinventing electronics by building safe devices that dissolve in the body or within the environment. The technology could redefine everything from medicine to computing.

Samuel Greengard

2013-05-01T23:59:59.000Z

63

Power Electronics  

Energy.gov (U.S. Department of Energy (DOE))

Power electronics (PE) play a critical role in transforming the current electric grid into the next-generation grid. PE enable utilities to deliver power to their customers effectively while...

64

Towards demonstration of electron cooling with bunched electron beam  

SciTech Connect

All electron cooling systems which were in operation so far employed electron beam generated with an electrostatic electron gun in DC operating mode, immersed in a longitudinal magnetic field. At low energies magnetic field is also being used to transport electron beam through the cooling section from the gun to the collector. At higher energies (few MeV), it was shown that one can have simpler electron beam transport without continuous magnetic field. Because of a rather weak magnetic field on the cathode and in the cooling section the latter approach was referred to as 'non-magnetized cooling', since there was no suppression of the transverse angular spread of the electron beam with the magnetic field in the cooling section. Such a cooler successfully operated at FNAL (2005-11) at electron beam energy of 4.3 MeV. Providing cooling at even higher energies would be easier with RF acceleration of electron beam, and thus using bunched electron beam for cooling. Significant efforts were devoted to explore various aspects of such bunched electron beam cooling as part of R and D of high-energy electron cooling for RHIC. However, experimental studies of such cooling are still lacking. Establishing this technique experimentally would be extremely useful for future high-energy applications. Presently there is an ongoing effort to build Proof-of-Principle (PoP) experiment of Coherent Electron Cooling (CEC) at RHIC, which promises to be superior to conventional electron cooling for high energies. Since the CEC experiment is based on bunched electron beam and it has sections where electron beam co-propagates with the ion beam at the same velocity, it also provides a unique opportunity to explore experimentally conventional electron cooling but for the first time with a bunched electron beam. As a result, it allows us to explore techniques needed for the high-energy electron cooling such as 'painting' with a short electron beam and control of ion beam distribution under cooling which is essential if cooling is provided in a collider. The software needed for comparison with the experiments is already developed as part of the previous high-energy electron cooling studies for RHIC. Since electron beam will be non-magnetized and there will be no magnetic field in the cooling section it will be also a first demonstration of fully non-magnetized cooling. The purpose of these studies was to explore whether we would be able to observe conventional electron cooling with parameters expected in the CEC PoP experiment. Below we summarize requirements on electron beam and cooling section needed for such demonstration.

Fedotov, A.

2012-01-11T23:59:59.000Z

65

Electron tube  

DOE Patents (OSTI)

An electron tube of the present invention includes: a vacuum vessel including a face plate portion made of synthetic silica and having a surface on which a photoelectric surface is provided, a stem portion arranged facing the photoelectric surface and made of synthetic silica, and a side tube portion having one end connected to the face plate portion and the other end connected to the stem portion and made of synthetic silica; a projection portion arranged in the vacuum vessel, extending from the stem portion toward the photoelectric surface, and made of synthetic silica; and an electron detector arranged on the projection portion, for detecting electrons from the photoelectric surface, and made of silicon.

Suyama, Motohiro (Hamamatsu, JP); Fukasawa, Atsuhito (Hamamatsu, JP); Arisaka, Katsushi (Los Angeles, CA); Wang, Hanguo (North Hills, CA)

2011-12-20T23:59:59.000Z

66

Glossary Item - Electron  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron An Electron Electrons are negatively charged particles that surround the atom's nucleus. Electrons were discovered by J. J. Thomson in 1897. Particle Data Symbol Mass...

67

Generation of attosecond electron bunches  

DOE Green Energy (OSTI)

Ultra-fast science is an important new research frontier that is driving the development of novel sources for generation of extremely short x-ray and electron pulses. Recent advances in femtosecond lasers have stimulated development of femtosecond x-ray sources that allow the study of matter at the time scale shorter than period of oscillations of atoms in molecules, {approx} 100 fs. The next breakthrough would be a source of electron pulses comparable with atomic periods {omega}{sup -1} {approx} 100 attosecond (10{sup -16} s), where {omega} is a transition frequency between atomic levels. This will open qualitatively new class of phenomena based on the interaction of atomic electrons in the medium with a collective electric field of electron pulses and not with their individual electrons. For example, one can expect coherent ionization losses that are proportional to a square number of electrons in the microbunch, phase synchronized excitation of medium followed by its relaxation with a radiation of a single-cycled optical pulse, excitation of entanglement states in the medium of atoms with few valence electrons, and possibly other new phenomena, yet to be identified. Simple estimation of coherent ionization losses shows that a 100 MeV, 100 attosecond electron pulse containing 10{sup 5} electrons will lose its total energy after propagating only {approx} 200{micro}m through liquid hydrogen. This is approximately 104 times shorter stopping range than it is for a long (on atomic scale) electron bunch.

Zholents, Alexander A.; Zolotorev, Max S.; Wan, Weishi

2001-06-18T23:59:59.000Z

68

The ALS Gun Electronics system  

SciTech Connect

The ALS Gun Electronics system has been designed to accommodate gun with a custom made socket and high speed electronics circuit which is capable of producing single and multiple electron bunches with time jitters measured at better than 50 PS. The system generates the gated RF signal at ground level before sending it up to the 120 KV-biased gun deck via a fiber optic cable. The current pulse width as a function of grid bias, using an Eimac 8847A planar triode simulating an electron gun, was measured to show the relationship between the two parameters.

Lo, C.C.

1993-05-01T23:59:59.000Z

69

Managing time  

Science Conference Proceedings (OSTI)

Professionals overwhelmed with information glut can find hope from new insights about time management.

Peter J. Denning

2011-03-01T23:59:59.000Z

70

ELECTRON GUN  

DOE Patents (OSTI)

A pulsed electron gun capable of delivering pulses at voltages of the order of 1 mv and currents of the order of 100 amperes is described. The principal novelty resides in a transformer construction which is disposed in the same vacuum housing as the electron source and accelerating electrode structure of the gun to supply the accelerating potential thereto. The transformer is provided by a plurality of magnetic cores disposed in circumferentially spaced relation and having a plurality of primary windings each inductively coupled to a different one of the cores, and a helical secondary winding which is disposed coaxially of the cores and passes therethrough in circumferential succession. Additional novelty resides in the disposition of the electron source cathode filament input leads interiorly of the transformer secondary winding which is hollow, as well as in the employment of a half-wave filament supply which is synchronously operated with the transformer supply such that the transformer is pulsed during the zero current portions of the half-wave cycle.

Christofilos, N.C.; Ehlers, K.W.

1960-04-01T23:59:59.000Z

71

Entropic Time  

Science Conference Proceedings (OSTI)

The formulation of quantum mechanics within the framework of entropic dynamics includes several new elements. In this paper we concentrate on one of them: the implications for the theory of time. Entropic time is introduced as a book-keeping device to keep track of the accumulation of changes. One new feature is that, unlike other concepts of time appearing in the so-called fundamental laws of physics, entropic time incorporates a natural distinction between past and future.

Caticha, Ariel [Department of Physics, University at Albany-SUNY, Albany, NY 12222 (United States)

2011-03-14T23:59:59.000Z

72

Sponsors : Daylighting The New York Times Building  

NLE Websites -- All DOE Office Websites (Extended Search)

researchindex.html In-kind cost-share The New York Times Company Advance Transformer Co. Lutron Electronics, Inc. MechoShade Systems, Inc. Siemens Building...

73

Physics Out Loud - Electrons  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron Scattering Previous Video (Electron Scattering) Physics Out Loud Main Index Next Video (Elementary Particles) Elementary Particles Electrons David Lawrence, a physicist,...

74

Electronic Technology Support of Programmatic Divisions  

NLE Websites -- All DOE Office Websites (Extended Search)

Electronic Technology Support of Programmatic Divisions Electronic Technology Support of Programmatic Divisions Speaker(s): Brad Bingham Date: March 13, 2003 - 12:00pm Location: 90-3148 The Electronics Technology Group within the Engineering Division possesses a number capabilities and skilled staff that can provide support to projects within the programmatic Divisions. Different areas of expertise include electronic fabrication, prototyping, repair and maintenance of existing equipment and instrument calibration. Electronic fabrication capabilities are from the printed circuit board level to electronic packaging and equipment chassis builds to the large multi-rack control system level. The Electronics Technology Group also has a personnel matrix program to support projects with full time, part time or limited time

75

Electronic Structure and Excited-State Dynamics at Donor ...  

Science Conference Proceedings (OSTI)

... greatly reduced manufacturing cost compared to ... electronic structure and energy level alignment ... heterojunctions by employing time-resolved pump ...

2012-10-02T23:59:59.000Z

76

TIMING CIRCUIT  

DOE Patents (OSTI)

An electronic circuit is described for precisely controlling the power delivered to a load from an a-c source, and is particularly useful as a welder timer. The power is delivered in uniform pulses, produced by a thyratron, the number of pulses being controlled by a one-shot multivibrator. The starting pulse is synchronized with the a-c line frequency so that each multivlbrator cycle begins at about the same point in the a-c cycle.

Heyd, J.W.

1959-07-14T23:59:59.000Z

77

TIMING APPARATUS  

DOE Patents (OSTI)

The timing device comprises an escapement wheel and pallet, a spring drive to rotate the escapement wheel to a zero position, means to wind the pretensioned spring proportional to the desired signal time, and a cam mechanism to control an electrical signal switch by energizing the switch when the spring has been wound to the desired position, and deenergizing it when it reaches the zero position. This device produces an accurately timed signal variably witain the control of the operator.

Bennett, A.E.; Geisow, J.C.H.

1956-04-17T23:59:59.000Z

78

Transmission Electron Microscope and Scanning Electron Microscopes -  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities > Transmission Electron Facilities > Transmission Electron Microscope and Scanning Electron Microscopes FACILITIES Transmission Electron Microscope and Scanning Electron Microscopes Overview Other Facilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Transmission Electron Microscope and Scanning Electron Microscopes The research activities of the Corrosion and Mechanics of Materials Section are supported by complete metallography/sample preparation rooms equipped with several optical and electron microscopes: a Transmission Electron Microscope and two Scanning Electron Microscopes. Bookmark and Share Transmission electron microscope (TEM) Detail of JEOL 100CXII TEM Figure 1: Detail of JEOL 100CXII TEM. Click on image to view larger image.

79

ELECTRON PARAMAGNETIC RESONANCE ...  

Science Conference Proceedings (OSTI)

ELECTRON PARAMAGNETIC RESONANCE SPECTROELECTROCHEMISTRY OF TRANSITION METAL SOLAR FUELS CATALYSTS. ...

80

ELECTRON IRRADIATION OF SOLIDS  

DOE Patents (OSTI)

A method is presented for altering physical properties of certain solids, such as enhancing the usefulness of solids, in which atomic interchange occurs through a vacancy mechanism, electron irradiation, and temperature control. In a centain class of metals, alloys, and semiconductors, diffusion or displacement of atoms occurs through a vacancy mechanism, i.e., an atom can only move when there exists a vacant atomic or lattice site in an adjacent position. In the process of the invention highenergy electron irradiation produces additional vacancies in a solid over those normally occurring at a given temperature and allows diffusion of the component atoms of the solid to proceed at temperatures at which it would not occur under thermal means alone in any reasonable length of time. The invention offers a precise way to increase the number of vacancies and thereby, to a controlled degree, change the physical properties of some materials, such as resistivity or hardness.

Damask, A.C.

1959-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "time m-f electronic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Power electronics reliability.  

Science Conference Proceedings (OSTI)

The project's goals are: (1) use experiments and modeling to investigate and characterize stress-related failure modes of post-silicon power electronic (PE) devices such as silicon carbide (SiC) and gallium nitride (GaN) switches; and (2) seek opportunities for condition monitoring (CM) and prognostics and health management (PHM) to further enhance the reliability of power electronics devices and equipment. CM - detect anomalies and diagnose problems that require maintenance. PHM - track damage growth, predict time to failure, and manage subsequent maintenance and operations in such a way to optimize overall system utility against cost. The benefits of CM/PHM are: (1) operate power conversion systems in ways that will preclude predicted failures; (2) reduce unscheduled downtime and thereby reduce costs; and (3) pioneering reliability in SiC and GaN.

Kaplar, Robert James; Brock, Reinhard C.; Marinella, Matthew; King, Michael Patrick; Stanley, James K.; Smith, Mark A.; Atcitty, Stanley

2010-10-01T23:59:59.000Z

82

High Speed Electronics  

Science Conference Proceedings (OSTI)

High Speed Electronics. ... optic sampling system provides traceability for our electrical waveform measurements ... Metrology for Electronic Packaging. ...

2013-03-25T23:59:59.000Z

83

Future Electronics in CNST  

Science Conference Proceedings (OSTI)

... Electronic Transport in Nanoscale Organic/Inorganic Devices. ... for graphene, nanophotonic, nanoplasmonic, spintronic, and other future electronics. ...

2013-05-02T23:59:59.000Z

84

Magnetodynamics and Spin Electronics  

Science Conference Proceedings (OSTI)

... Spintronics exploits the interaction between electrons' spin angular momentum ... stochastic processes in the form of electron microscope images of ...

2013-05-13T23:59:59.000Z

85

Coulomb-tail effect of electron-electron interaction on nonsequential double ionization  

Science Conference Proceedings (OSTI)

With the classical ensemble model, we investigate the manifestations of the Coulomb tail of electron-electron interaction in nonsequential double ionization by comparing the results from the short-range electron-electron interaction with those from the Coulombic electron-electron interaction. At the intensity below the recollision threshold, the two-electron momentum distributions in the direction parallel to the laser polarization show an anticorrelated behavior for the Coulombic electron-electron interaction while a correlated behavior for the short-range interaction, which indicates the responsibility of the Coulomb tail of the electron-electron interaction for the experimentally observed anticorrelated emission [Y. Liu, S. Tschuch, A. Rudenko, M. Durr, M. Siegel, U. Morgner, R. Moshammer, and J. Ullrich, Phys. Rev. Lett. 101, 053001 (2008)]. In the transverse direction, for the Coulombic electron-electron interaction, the two electrons exhibit no effect of repulsion at an intensity below the recollision threshold while a strong repulsion effect at an intensity above the threshold, which becomes weaker as the laser intensity further increases. Back analysis shows that the role of the Coulomb tail of electron-electron interaction leads asymmetric energy sharing (AES) to be prevalent at recollision. This AES results in the two electrons leaving the ion at different times or with different initial momenta, which is responsible for the anticorrelated behavior in the parallel direction and the intensity-dependent repulsion effect in the transverse direction.

Zhou Yueming; Huang Cheng [Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, 430074 Wuhan (China); Lu Peixiang [Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, 430074 Wuhan (China); Wuhan Institute of Technology, 430074 Wuhan (China)

2011-08-15T23:59:59.000Z

86

Comment on "A statistical comparison of solar wind sources of moderate and intense geomagnetic storms at solar minimum and maximum" by Zhang, J.-C., M. W. Liemohn, J. U. Kozyra, M. F. Thomsen, H. A. Elliott, and J. M. Weygand, JGR, 2006  

E-Print Network (OSTI)

Conditions in the solar wind resulting in magnetic storms on the Earth are a subject of long and intensive investigations. Recently Zhang et al. (2006), published a paper, where they used superposed epoch analyses method to study solar wind features during 549 geomagnetic storms. Unfortunately, the used methodical approach has not allowed to improve essentially understanding of relation of magnetic storms with conditions in the solar wind, and first of all for the following reasons: (1) they did not take into account of existance of storms generated by different types of solar wind, and (2) they took minimum Dst index time as epoch zero time rather than storm onset.

Yermolaev, Y I; Lodkina, I G; Yermolaev, Yu. I.

2006-01-01T23:59:59.000Z

87

Optically pulsed electron accelerator  

DOE Patents (OSTI)

An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

Fraser, J.S.; Sheffield, R.L.

1985-05-20T23:59:59.000Z

88

Optically pulsed electron accelerator  

DOE Patents (OSTI)

An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radio frequency powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

Fraser, John S. (Los Alamos, NM); Sheffield, Richard L. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

89

Time-dependent quantum wave packet study of the Ar+H{sub 2}{sup +}{yields}ArH{sup +}+H reaction on a new ab initio potential energy surface for the ground electronic state (1{sup 2}A Prime )  

SciTech Connect

A new global potential energy surface for the ground electronic state (1{sup 2}A Prime ) of the Ar+H{sub 2}{sup +}{yields}ArH{sup +}+H reaction has been constructed by multi-reference configuration interaction method with Davidson correction and a basis set of aug-cc-pVQZ. Using 6080 ab initio single-point energies of all the regions for the dynamics, a many-body expansion function form has been used to fit these points. The quantum reactive scattering dynamics calculations taking into account the Coriolis coupling (CC) were carried out on the new potential energy surface over a range of collision energies (0.03-1.0 eV). The reaction probabilities and integral cross sections for the title reaction were calculated. The significance of including the CC quantum scattering calculation has been revealed by the comparison between the CC and the centrifugal sudden approximation calculation. The calculated cross section is in agreement with the experimental result at collision energy 1.0 eV.

Hu Mei; Liu Xinguo; Tan Ruishan; Li Hongzheng [College of Physics and Electronics, Shandong Normal University, Jinan 250014 (China); Xu Wenwu [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

2013-05-07T23:59:59.000Z

90

Dispersion compensation for attosecond electron pulses  

Science Conference Proceedings (OSTI)

We propose a device to compensate for the dispersion of attosecond electron pulses. The device uses only static electric and magnetic fields and therefore does not require synchronization to the pulsed electron source. Analogous to the well-known optical dispersion compensator, an electron dispersion compensator separates paths by energy in space. Magnetic fields are used as the dispersing element, while a Wien filter is used for compensation of the electron arrival times. We analyze a device with a size of centimeters, which can be applied to ultrafast electron diffraction and microscopy, and fundamental studies.

Hansen, Peter; Baumgarten, Cory; Batelaan, Herman; Centurion, Martin [Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 (United States)

2012-08-20T23:59:59.000Z

91

Digestion time  

NLE Websites -- All DOE Office Websites (Extended Search)

Digestion time Digestion time Name: Don Mancosh Location: N/A Country: N/A Date: N/A Question: I have always given the rule of thumb in class that material we eat is with us for about 24 hours before exiting the body. The question arises about the time value of liquids. Getting a big coke prior to a 3 hour drive generally means that there will be a stop along the way. Is there a generalization made about liquids in the body similar to the one for solid food? Replies: A physician would give a better answer, but I hazard this: the only liquids which people consume (deliberately) in significant quantities are water, ethyl alcohol and various oils. Water and alcohol are absorbed on a time scale of seconds to minutes through the mouth, stomach and digestive tract. The oils are huge molecules, so I'd guess like any other greasy food they get absorbed in the upper digestive tract. Some of them, perhaps the longest and most nonpolar, are not absorbed at all --- cf. the old-time remedy of mineral oil for constipation --- so there should be some average time-before-what's-left-is-excreted such as you're looking for, and my (wild) guess is that it would not differ substantially from that for food. You can define an average lifetime in the body for alcohol, since the natural level is zero. Rough guidelines are widespread in the context of drunk driving laws. But this is not really possible for water. One's body is normally full up to the brim with water, and there's no way for the body to distinguish between water molecules recently absorbed and molecules that've been moping around since the Beatles split up. Thus the water entering the toilet bowl after the pit stop is not in general the same water as was in the big coke. If you were to consider for water just the average time between drinking and peeing, it would seem to depend strongly on how well hydrated the body was before the drink, and how much was drunk. During sustained heavy exertion in the sun and dry air one can easily drink a pint of water an hour without peeing at all. On the other hand, if one is willing to drink enough water fast enough, so as to establish a high excess of body water one can pee 8 ounces 15 minutes or less after drinking 8 ounces.

92

Electron thermal conduction in LASNEX  

SciTech Connect

This report is a transcription of hand-written notes by DM dated 29 January 1986, transcribed by SW, with some clarifying comments added and details specific to running the LASNEX code deleted. Reference to the esoteric measurement units employed in LASNEX has also been deleted by SW (hopefully, without introducing errors in the numerical constants). The report describes the physics equations only, and only of electron conduction. That is, it does not describe the numerical method, which may be finite difference or finite element treatment in space, and (usually) implicit treatment in time. It does not touch on other electron transport packages which are available, and which include suprathermal electrons, nonlocal conduction, Krook model conduction, and modifications to electron conduction by magnetic fields. Nevertheless, this model is employed for the preponderance of LASNEX simulations.

Munro, D.; Weber, S.

1994-12-16T23:59:59.000Z

93

Chirping the LCLS Electron Beam  

E-Print Network (OSTI)

We explore scenarios for generating a linear time-correlated energy spread in the LCLS electron bunch, prior to the undulator, that is needed for optical (x-ray) pulse compression. The correlated energy spread (`chirp') is formed by generating an energy gradient along the length of the electron bunch using RF phasing and/or longitudinal wakefields of the accelerating structures. The sign of the correlation is an important limitation. Excluding a complete re-design of the compression systems, the best possibility is to use `over-compression' to effect the required energy chirp. This is easily done with only a slight strength increase (~10 %) in the chicane bends of the second compressor. In this case, the bend-plane emittance dilution associated with the increased coherent synchrotron radiation (CSR) in the bunch compressor may, however, significantly compromise the electron beam density. The CSR calculations for the momentary extremely short (~1 m) electron bunch during over-compressio...

P. Emma

2000-01-01T23:59:59.000Z

94

Electronic security device  

DOE Patents (OSTI)

The present invention relates to a security device having a control box containing an electronic system and a communications loop over which the system transmits a signal. The device is constructed so that the communications loop can extend from the control box across the boundary of a portal such as a door into a sealed enclosure into which access is restricted whereby the loop must be damaged or moved in order for an entry to be made into the enclosure. The device is adapted for detecting unauthorized entries into such enclosures such as rooms or containers and for recording the time at which such entries occur for later reference. Additionally, the device detects attempts to tamper or interfere with the operation of the device itself and records the time at which such events take place. In the preferred embodiment, the security device includes a microprocessor-based electronic system and a detection module capable of registering changes in the voltage and phase of the signal transmitted over the loop. 11 figs.

Eschbach, E.A.; LeBlanc, E.J.; Griffin, J.W.

1992-03-17T23:59:59.000Z

95

Electronic security device  

DOE Patents (OSTI)

The present invention relates to a security device having a control box (12) containing an electronic system (50) and a communications loop (14) over which the system transmits a signal. The device is constructed so that the communications loop can extend from the control box across the boundary of a portal such as a door into a sealed enclosure into which access is restricted whereby the loop must be damaged or moved in order for an entry to be made into the enclosure. The device is adapted for detecting unauthorized entries into such enclosures such as rooms or containers and for recording the time at which such entries occur for later reference. Additionally, the device detects attempts to tamper or interfere with the operation of the device itself and records the time at which such events take place. In the preferred embodiment, the security device includes a microprocessor-based electronic system (50) and a detection module (72) capable of registering changes in the voltage and phase of the signal transmitted over the loop.

Eschbach, Eugene A. (Richland, WA); LeBlanc, Edward J. (Kennewick, WA); Griffin, Jeffrey W. (Kennewick, WA)

1992-01-01T23:59:59.000Z

96

Glossary Term - Electron Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron Electron Previous Term (Electron) Glossary Main Index Next Term (Electron Volt (eV)) Electron Volt (eV) Electron Capture After electron capture, an atom contains one less proton and one more neutron. Electron capture is one process that unstable atoms can use to become more stable. During electron capture, an electron in an atom's inner shell is drawn into the nucleus where it combines with a proton, forming a neutron and a neutrino. The neutrino is ejected from the atom's nucleus. Since an atom loses a proton during electron capture, it changes from one element to another. For example, after undergoing electron capture, an atom of carbon (with 6 protons) becomes an atom of boron (with 5 protons). Although the numbers of protons and neutrons in an atom's nucleus change

97

FREE ELECTRON LASERS  

E-Print Network (OSTI)

1984). Colson, W. B. , "Free electron laser theory," Ph.D.M. 0. , Spitzer, R. , editors, Free Electron Generators ofM.D. , Spitzer, R. , editors, Free Electron Generators of

Colson, W.B.

2008-01-01T23:59:59.000Z

98

ELECTRON WELDING OF METALS  

SciTech Connect

The advantages and disadvantages of the electron welding of metals are briefly reviewed. Typical apparatuses used for electron welding are described. (J.S.R)

Stohr, J.-A.

1958-03-01T23:59:59.000Z

99

Electron-Ion Collisions  

Science Conference Proceedings (OSTI)

... Since the ions are created and excited with the same beam of electrons, by changing the electron beam energy one can selectively exclude certain ...

2010-12-07T23:59:59.000Z

100

Free Electron Laser  

NLE Websites -- All DOE Office Websites (Extended Search)

Free Electron Laser Building Exterior Top Floor Control Room RF Gallery User Lab Beam Enclosure Injector Linear Accelerator Wiggler Magnet Return Line Free Electron Laser Most...

Note: This page contains sample records for the topic "time m-f electronic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Electron Affinity Search  

Science Conference Proceedings (OSTI)

... Electron Affinity Search Help. Search options (step 1) (Back to search). You may search for species based on electron affinity values in two ways: ...

2013-07-15T23:59:59.000Z

102

Analytical Electron Microscope  

Science Conference Proceedings (OSTI)

... a conventional parallel electron energy-loss spectrometer (EELS) to record spectra of the energy losses experienced by the beam electrons as they ...

2012-10-01T23:59:59.000Z

103

Diamondoids Improve Electron Emitters  

NLE Websites -- All DOE Office Websites (Extended Search)

Diamondoids Improve Electron Emitters Diamondoids Improve Electron Emitters Print Monday, 17 September 2012 12:02 Diamondoids are nanoparticles made of only a handful of carbon...

104

Single Electron Coherence  

Science Conference Proceedings (OSTI)

... Single electron tunneling (SET) devices have the amazing property that we can measure and control the motion of electrons one-by-one. ...

2012-07-25T23:59:59.000Z

105

Foil Electron Multiplier  

NLE Websites -- All DOE Office Websites (Extended Search)

Multiplier Foil Electron Multiplier An apparatus for electron multiplication by transmission that is designed with at least one foil having a front side for receiving incident...

106

Controlling Graphene's Electronic Structure  

NLE Websites -- All DOE Office Websites (Extended Search)

Controlling Graphene's Electronic Structure Print Graphene, because of its unusual electron properties, reduced dimensionality, and scale, has enormous potential for use in...

107

Controlling Graphene's Electronic Structure  

NLE Websites -- All DOE Office Websites (Extended Search)

Controlling Graphene's Electronic Structure Print Wednesday, 25 April 2007 00:00 Graphene, because of its unusual electron properties, reduced dimensionality, and scale, has...

108

Energy Storage & Power Electronics 2008 Peer Review - Power Electronic...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

& Power Electronics 2008 Peer Review - Power Electronics (PE) Systems Presentations Energy Storage & Power Electronics 2008 Peer Review - Power Electronics (PE) Systems...

109

VORPAL Simulations Relevant to Coherent Electron Cooling  

SciTech Connect

Coherent electron cooling (CEC)* combines the best features of electron cooling and stochastic cooling, via free-electron laser technology**, to offer the possibility of cooling high-energy hadron beams with order-of-magnitude shorter cooling times. Many technical difficulties must be resolved via full-scale 3D simulations, before the CEC concept can be validated experimentally. VORPAL is the ideal code for simulating the modulator and kicker regions, where the electron and hadron beams will co-propagate as in a conventional electron cooling section. Unlike previous VORPAL simulations*** of electron cooling physics, where dynamical friction on the ions was the key metric, it is the details of the electron density wake driven by each ion in the modulator section that must be understood, followed by strong amplification in the FEL. We present some initial simulation results. In particular, we compare the semi-analytic binary collision model with electrostatic particle-in-cell (PIC).

Bell, G.I.; Bruhwiler, D.L.; Sobol, A.V.; Ben-Zvi, Ilan; Litvinenko, Vladimir; Derbenev, Yaroslav

2008-07-01T23:59:59.000Z

110

VORPAL simulations relevant to coherent electron cooling  

Science Conference Proceedings (OSTI)

Coherent electron cooling (CEC) [1] combines the best features of electron cooling and stochastic cooling, via free-electron laser technology [2], to offer the possibility of cooling high-energy hadron beams with order-of-magnitude shorter cooling times. Many technical difficulties must be resolved via full-scale 3D simulations, before the CEC concept can be validated experimentally. VORPAL is the ideal code for simulating the modulator and kicker regions, where the electron and hadron beams will co-propagate as in a conventional electron cooling section. Unlike previous VORPAL simulations [3] of electron cooling physics, where dynamical friction on the ions was the key metric, it is the details of the electron density wake driven by each ion in the modulator section that must be understood, followed by strong amplification in the FEL. We present some initial simulation results.

Bell,G.; Bruhwiler, D.; Sobol, A.; Ben-Zvi, I.; Litvinenko, V.; Derbenev, Y.

2008-06-23T23:59:59.000Z

111

Aberration Corrected Analytical Electron Microscope  

Science Conference Proceedings (OSTI)

... resolution scanning transmission electron microscope (STEM), where ... the beam electrons as they ... filtered transmission electron microscopy (EFTEM ...

2012-10-01T23:59:59.000Z

112

Electronics Stewardship and Data Center  

NLE Websites -- All DOE Office Websites (Extended Search)

of electronic stewardship: Procurement of environmentally preferable electronics Enable electronics power management capabilities Establish and implement policies to extend the...

113

Time Brightness  

NLE Websites -- All DOE Office Websites (Extended Search)

Perlmutter, et al., in Thermonuclear Supernovae, NATO ASI, v. 486 (1997) Perlmutter, et al., in Thermonuclear Supernovae, NATO ASI, v. 486 (1997) Cosmology from . . . Time Brightness ... . . . 50-100 Fields Lunar Calendar Scheduled Follow-Up Imaging at Hubble, Cerro Tololo, WIYN, Isaac Newton Scheduled Follow-Up Spectroscopy at Keck Almost 1000 Galaxies per Field RESULT: ~24 Type Ia supernovae discovered while still brightening, at new moon Berkeley Lab Keck WIYN Cerro Tololo Isaac Newton Hubble Strategy We developed a strategy to guarantee a group of supernova discoveries on a certain date. Just after a new moon, we observe some 50 to 100 high-galactic lattitute fields-each containing almost a thousand high-redshift galaxies-in two nights on the Cerro Tololo 4-meter telescope with Tyson & Bernstein's wide-field camera. We return three weeks later to observe the same

114

Shimmed electron beam welding process  

DOE Patents (OSTI)

A modified electron beam welding process effects welding of joints between superalloy materials by inserting a weldable shim in the joint and heating the superalloy materials with an electron beam. The process insures a full penetration of joints with a consistent percentage of filler material and thereby improves fatigue life of the joint by three to four times as compared with the prior art. The process also allows variable shim thickness and joint fit-up gaps to provide increased flexibility for manufacturing when joining complex airfoil structures and the like.

Feng, Ganjiang (Clifton Park, NY); Nowak, Daniel Anthony (Alplaus, NY); Murphy, John Thomas (Niskayuna, NY)

2002-01-01T23:59:59.000Z

115

Electronics and Telecommunications Portal  

Science Conference Proceedings (OSTI)

... Quantum Electrical Measurements; Quantum Information and ... The working of countless electronic devices involves electric and magnetic ...

2013-06-27T23:59:59.000Z

116

High frequency limit for single-electron pumping operations  

E-Print Network (OSTI)

In this Letter, we study the transient electron transfer phenomena of single-electron devices with alternating external gate voltages. We obtain a high frequency limit for pumping electrons one at a time in single-electron devices. Also, we find that in general the electrical current is not proportional to the frequency of the external signals in the single-electron devices, due to the strong quantum coherence tunneling effect.

Chuan-Yu Lin; Wei-Min Zhang

2010-12-04T23:59:59.000Z

117

The TESLA Time Projection Chamber  

E-Print Network (OSTI)

A large Time Projection Chamber is proposed as part of the tracking system for a detector at the TESLA electron positron linear collider. Different ongoing R&D studies are reviewed, stressing progress made on a new type readout technique based on Micro-Pattern Gas Detectors.

Nabil Ghodbane

2002-12-12T23:59:59.000Z

118

Personnel electronic neutron dosimeter  

DOE Patents (OSTI)

A personnel electronic dosimeter includes a neutron-proton and neutron-alpha converter for providing an electrical signal having a magnitude proportional to the energy of a detected proton or alpha particle produced from the converter, a pulse generator circuit for generating a pulse having a duration controlled by the weighed effect of the amplitude of the electrical signal, an oscillator enabled by the pulse for generating a train of clock pulses for a time dependent upon the pulse length, a counter for counting the clock pulses, and an indicator for providing a direct reading and aural alarm when the count indicates that the wearer has been exposed to a selected level of neutron dose equivalent.

Falk, R.B.; Tyree, W.H.

1982-03-03T23:59:59.000Z

119

IT-intensive value innovation in the electronic economy: insights from Marshall industries  

Science Conference Proceedings (OSTI)

Keywords: CIO, IT architecture, Internet, distribution industry, e-business, electronic commerce, electronic economy, electronic value chains, extranet, fast-response, intermediation, intranet, strategic information systems, supply chain management, systems approach, time-based competition, total quality management, value innovation

Omar A. El Sawy; Arvind Malhotra; Sanjay Gosain; Kerry M. Young

1999-09-01T23:59:59.000Z

120

NIST: Ultraviolet Photoemission Electron Microscopy  

Science Conference Proceedings (OSTI)

Ultraviolet Photoemission Electron Microscopy. Summary: Ultraviolet photoemission electron microscopy is used to study ...

2012-11-19T23:59:59.000Z

Note: This page contains sample records for the topic "time m-f electronic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Ion-induced electron emission microscopy  

DOE Patents (OSTI)

An ion beam analysis system that creates multidimensional maps of the effects of high energy ions from an unfocussed source upon a sample by correlating the exact entry point of an ion into a sample by projection imaging of the secondary electrons emitted at that point with a signal from a detector that measures the interaction of that ion within the sample. The emitted secondary electrons are collected in a strong electric field perpendicular to the sample surface and (optionally) projected and refocused by the electron lenses found in a photon emission electron microscope, amplified by microchannel plates and then their exact position is sensed by a very sensitive X Y position detector. Position signals from this secondary electron detector are then correlated in time with nuclear, atomic or electrical effects, including the malfunction of digital circuits, detected within the sample that were caused by the individual ion that created these secondary electrons in the fit place.

Doyle, Barney L. (Albuquerque, NM); Vizkelethy, Gyorgy (Albuquerque, NM); Weller, Robert A. (Brentwood, TN)

2001-01-01T23:59:59.000Z

122

In Situ Aberration-Corrected Scanning Transmission Electron ...  

Science Conference Proceedings (OSTI)

Using real-time transmission electron microscopy (TEM) at atomic resolutions should shed light into some of the fundamental questions in this field.

123

Electron Attachment to Pyrimidine and Styrene in SC Ethane  

NLE Websites -- All DOE Office Websites (Extended Search)

attachment to pyrimidine (ka) was time resolved using the short pulse of the Laser-Electron Accelerator Facility (LEAF). The rate constant, ka, is large and nearly...

124

Time-resolved visible and extreme ultraviolet spectroscopy of laser-produced tin plasma  

E-Print Network (OSTI)

to exceed electron thermal energy by more than 100 times,following components: thermal energy of the electrons andenergy and electron thermal energy shown in Figure 5.30. The

O'Shay, Joseph Fred

2007-01-01T23:59:59.000Z

125

Foil Electron Multiplier  

NLE Websites -- All DOE Office Websites (Extended Search)

Foil Electron Multiplier Foil Electron Multiplier Foil Electron Multiplier An apparatus for electron multiplication by transmission that is designed with at least one foil having a front side for receiving incident particles and a back side for transmitting secondary electrons that are produced from the incident particles transiting through the foil. Available for thumbnail of Feynman Center (505) 665-9090 Email Foil Electron Multiplier An apparatus for electron multiplication by transmission that is designed with at least one foil having a front side for receiving incident particles and a back side for transmitting secondary electrons that are produced from the incident particles transiting through the foil. The foil thickness enables the incident particles to travel through the foil and continue on

126

Chapter 9: Electronics  

SciTech Connect

Sophisticated front-end electronics are a key part of practically all modern radiation detector systems. This chapter introduces the basic principles and their implementation. Topics include signal acquisition, electronic noise, pulse shaping (analog and digital), and data readout techniques.

Grupen, Claus; Shwartz, Boris A.

2006-12-19T23:59:59.000Z

127

Electron Photon Absorbed Dose  

Science Conference Proceedings (OSTI)

... is in progress, with preliminary results obtained for both high-energy electrons (at the ... of Clinac 12 MeV, 16 MeV and 20 MeV electron beams at ...

2013-03-13T23:59:59.000Z

128

Catalac free electron laser  

DOE Patents (OSTI)

A catalac free electron laser using a rf linac (catalac) which acts as a catalyst to accelerate an electron beam in an initial pass through the catalac and decelerate the electron beam during a second pass through the catalac is described. During the second pass through the catalac, energy is extracted from the electron beam and transformed to energy of the accelerating fields of the catalac to increase efficiency of the device. Various embodiments disclose the use of post linacs to add electron beam energy extracted by the wiggler and the use of supplementary catalacs to extract energy at various energy peaks produced by the free electron laser wiggler to further enhance efficiency of the catalac free electron laser. The catalac free electron laser can be used in conjunction with a simple resonator, a ring resonator, or as an amplifier in conjunction with a master oscillator laser.

Brau, C.A.; Swenson, D.A.; Boyd, T.J. Jr.

1979-12-12T23:59:59.000Z

129

Relativistic electron beam generator  

DOE Patents (OSTI)

A relativistic electron beam generator for laser media excitation is described. The device employs a diode type relativistic electron beam source having a cathode shape which provides a rectangular output beam with uniform current density.

Mooney, L.J.; Hyatt, H.M.

1975-11-11T23:59:59.000Z

130

Catalac free electron laser  

DOE Patents (OSTI)

A catalac free electron laser using a rf linac (catalac) which acts as a catalyst to accelerate an electron beam in an initial pass through the catalac and decelerate the electron beam during a second pass through the catalac. During the second pass through the catalac, energy is extracted from the electron beam and transformed to energy of the accelerating fields of the catalac to increase efficiency of the device. Various embodiments disclose the use of post linacs to add electron beam energy extracted by the wiggler and the use of supplementary catalacs to extract energy at various energy peaks produced by the free electron laser wiggler to further enhance efficiency of the catalac free electron laser. The catalac free electron laser can be used in conjunction with a simple resonator, a ring resonator or as an amplifier in conjunction with a master oscillator laser.

Brau, Charles A. (Los Alamos, NM); Swenson, Donald A. (Los Alamos, NM); Boyd, Jr., Thomas J. (Los Alamos, NM)

1982-01-01T23:59:59.000Z

131

FREE-ELECTRON LASERS  

E-Print Network (OSTI)

1977. First Operation of a Free-Electron Laser. Phys . __Radiation from a High-Gain Free-Electeon Lasee Amplifier. ~1984. Variable-Wiggler Free-Electron-Laser Oscillat.ion.

Sessler, A.M.

2008-01-01T23:59:59.000Z

132

SHORT COMMUNICATION D. Nikezic B. M. F. Lau K. N. Yu  

E-Print Network (OSTI)

from Japanese atomic bomb survivors and uranium miners, gives a value of approximately 4 mSv WLM?1 dose per unit radon exposure. All other elements of the human respiratory tract from the reports

Yu, K.N.

133

Draft ES&H INL Lab M&F Complex.cdr  

NLE Websites -- All DOE Office Websites (Extended Search)

CH2M Washington Group, Idaho, LLC DOE U.S. Department of Energy EMS Environmental Management System ES&H Environment, Safety, and Health ESS Evaluation of Safety of the...

134

MODEL 9977 B(M)F-96 SAFETY ANALYSIS REPORT FOR PACKAGING  

Science Conference Proceedings (OSTI)

This Safety Analysis Report for Packaging (SARP) documents the analysis and testing performed on and for the 9977 Shipping Package, referred to as the General Purpose Fissile Package (GPFP). The performance evaluation presented in this SARP documents the compliance of the 9977 package with the regulatory safety requirements for Type B packages. Per 10 CFR 71.59, for the 9977 packages evaluated in this SARP, the value of ''N'' is 50, and the Transport Index based on nuclear criticality control is 1.0. The 9977 package is designed with a high degree of single containment. The 9977 complies with 10 CFR 71 (2002), Department of Energy (DOE) Order 460.1B, DOE Order 460.2, and 10 CFR 20 (2003) for As Low As Reasonably Achievable (ALARA) principles. The 9977 also satisfies the requirements of the Regulations for the Safe Transport of Radioactive Material--1996 Edition (Revised)--Requirements. IAEA Safety Standards, Safety Series No. TS-R-1 (ST-1, Rev.), International Atomic Energy Agency, Vienna, Austria (2000). The 9977 package is designed, analyzed and fabricated in accordance with Section III of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel (B&PV) Code, 1992 edition.

Abramczyk, G; Paul Blanton, P; Kurt Eberl, K

2006-05-18T23:59:59.000Z

135

Universit`a degli Studi di Torino Facolt`a di Scienze M. F. N.  

E-Print Network (OSTI)

), the American Society of Civil Engineers (ASCE), the International Tunnelling Associa- tion, the American Society, and other professional organizations. She is past president of the Geo-Institute of ASCE

California at Santa Cruz, University of

136

Draft ES&H INL Lab M&F Complex.cdr  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

associated with the work observed, including repetitive stress from using the manipulator arms and chemical and radiological hazards. The laboratory instructions also...

137

BNL | CFN: Electronic Nanomaterials  

NLE Websites -- All DOE Office Websites (Extended Search)

goals of our CFN research program in Electronic Nanomaterials involve implementing nanostructures for photovoltaic, photochemical, and electrochemical energy conversion. Our...

138

Auger electron spectroscopy  

SciTech Connect

A review of Auger electron spectroscopy is presented. Methods, resolution, sensitivity, and uses are discussed. 30 references, 10 figures. (GHT)

Somorjai, G.A.

1980-12-01T23:59:59.000Z

139

Electronic Materials: Web resources  

Science Conference Proceedings (OSTI)

Jan 11, 2008 ... WEB: NETWORKS MATEC, Maricopa Community Colleges. NSF resource center focused on semiconductor and electronics education, 0, 811...

140

Electron Based Techniques  

Science Conference Proceedings (OSTI)

Mar 5, 2013 ... Characterization of Materials through High Resolution Coherent Imaging: Electron Based Techniques Sponsored by: TMS Structural Materials...

Note: This page contains sample records for the topic "time m-f electronic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Electron Backscatter Diffraction  

Science Conference Proceedings (OSTI)

Oct 19, 2011 ... Recent Advances in Structural Characterization of Materials: Electron Backscatter Diffraction Sponsored by: MS&T Organization Program...

142

Genomics of Electronic Materials  

Science Conference Proceedings (OSTI)

... Metamaterials; Highly correlated electron materials, eg superconductors, such as ... A near-field scanning microwave microscope for characterization ...

2013-08-08T23:59:59.000Z

143

ELECTRONICS AND ELECTRICAL  

Science Conference Proceedings (OSTI)

... DSP-based signal generator and analyzer to ... background and provide direct measurement of ... temperature electronics to drive our superconducting ...

2012-10-27T23:59:59.000Z

144

Usage of Electronic Monograph  

Science Conference Proceedings (OSTI)

Usage of Electronic Monograph. The following table shows the approximate usage of the monograph since April 1998. ...

2013-08-02T23:59:59.000Z

145

Design of a proton-electron beam overlap monitor for the new RHIC electron lens, based on detecting energetic backscattered electrons  

SciTech Connect

The optimal performance of the two electron lenses that are being implemented for high intensity polarized proton operation of RHIC requires excellent collinearity of the {approx}0.3 mm RMS wide electron beams with the proton bunch trajectories over the {approx}2m interaction lengths. The main beam overlap diagnostic tool will make use of electrons backscattered in close encounters with the relativistic protons. These electrons will spiral along the electron guiding magnetic field and will be detected in a plastic scintillator located close to the electron gun. A fraction of these electrons will have energies high enough to emerge from the vacuum chamber through a thin window thus simplifying the design and operation of the detector. The intensity of the detected electrons provides a measure of the overlap between the e- and the opposing proton beams. Joint electron arrival time and energy discrimination may be used additionally to gain some longitudinal position information with a single detector per lens.

Thieberger T.; Beebe, E.; Fischer, W.; Gassner, D.; Gu, X.; Hamdi, K.; Hock, J.; Minty, M.; Miller, T.; Montag, C.; Pikin, A.

2012-04-15T23:59:59.000Z

146

ELECTRONS IN NONPOLAR LIQUIDS.  

Science Conference Proceedings (OSTI)

Excess electrons can be introduced into liquids by absorption of high energy radiation, by photoionization, or by photoinjection from metal surfaces. The electron's chemical and physical properties can then be measured, but this requires that the electrons remain free. That is, the liquid must be sufficiently free of electron attaching impurities for these studies. The drift mobility as well as other transport properties of the electron are discussed here as well as electron reactions, free-ion yields and energy levels, Ionization processes typically produce electrons with excess kinetic energy. In liquids during thermalization, where this excess energy is lost to bath molecules, the electrons travel some distance from their geminate positive ions. In general the electrons at this point are still within the coulombic field of their geminate ions and a large fraction of the electrons recombine. However, some electrons escape recombination and the yield that escapes to become free electrons and ions is termed G{sub fi}. Reported values of G{sub fi} for molecular liquids range from 0.05 to 1.1 per 100 eV of energy absorbed. The reasons for this 20-fold range of yields are discussed here.

HOLROYD,R.A.

2002-10-22T23:59:59.000Z

147

Electron beam device  

DOE Patents (OSTI)

This patent pertains to an electron beam device in which a hollow target is symmetrically irradiated by a high energy, pulsed electron beam about its periphery and wherein the outer portion of the target has a thickness slightly greater than required to absorb the electron beam pulse energy. (auth)

Beckner, E.H.; Clauser, M.J.

1975-08-12T23:59:59.000Z

148

Electronic collection management and electronic information services  

Science Conference Proceedings (OSTI)

As the life cycle of information products has become increasingly digital from cradle to grave, the nature of electronic information management has dramatically changed. These changes have brought new strategies and methods as well as new ...

Gladys Cotter; Bonnie Carroll; Gail Hodge; Andrea Japzon

2005-01-01T23:59:59.000Z

149

Sensors, Electronics & Instrumentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Sensors, Electronics & Instrumentation Sensors, Electronics & Instrumentation Sensors, Electronics & Instrumentation Express Licensing Acoustic Concentration Of Particles In Fluid Flow Express Licensing Apparatus And Method For Hydrogen And Oxygen Mass Spectrometry Of The Terrestrial Magnetosphere Express Licensing Apparatus And Method For Temperature Correction And Expanded Count Rate Of Inorganic Scintillation Detectors Express Licensing Composition and method for removing photoresist materials from electronic components Express Licensing Corrosion Test Cell For Bipolar Plates Express Licensing Cylindrical Acoustic Levitator/Concentrator Negotiable Licensing Electrochemical Apparatus with Disposable and Modifiable Parts Express Licensing Foil electron multiplier Express Licensing Hydrogen Sensor

150

JLAB Electron Driver Capabilities  

Science Conference Proceedings (OSTI)

Several schemes have been proposed for adding a positron beam option at the Continuous Electron Beam Facility (CEBAF) at Jefferson Laboratory (JLAB). They involve using a primary beam of electrons or gamma rays striking a target to produce a positron beam. At JLAB electron beams are produced and used in two different accelerators, CEBAF and the JLAB FEL (Free Electron Laser). Both have low emittance and energy spread. The CEBAF beam is polarized. The FEL beam is unpolarized but the injector can produce a higher current electron beam. In this paper we describe the characteristics of these beams and the parameters relevant for positron production.

Kazimi, Reza [Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606 (United States)

2009-09-02T23:59:59.000Z

151

Tellurium Inclusions and Carrier Trapping Times in Detector Grade ...  

Science Conference Proceedings (OSTI)

Spatial mapping of carrier trapping times and defect densities in CZT was performed to determine the relationship between defect density and electronic decay.

152

High brightness electron accelerator  

DOE Patents (OSTI)

A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of acclerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electrons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electrons as the electrons enter the first cavity.

Sheffield, R.L.; Carlsten, B.E.; Young, L.M.

1992-12-31T23:59:59.000Z

153

Vehicle Technologies Office: Power Electronics  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Electronics to Power Electronics to someone by E-mail Share Vehicle Technologies Office: Power Electronics on Facebook Tweet about Vehicle Technologies Office: Power Electronics on Twitter Bookmark Vehicle Technologies Office: Power Electronics on Google Bookmark Vehicle Technologies Office: Power Electronics on Delicious Rank Vehicle Technologies Office: Power Electronics on Digg Find More places to share Vehicle Technologies Office: Power Electronics on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Power Electronics Electrical Machines Thermal Control & System Integration Advanced Combustion Engines Fuels & Lubricants Materials Technologies Power Electronics The power electronics activity focuses on research and development (R&D)

154

Physics Out Loud - Electron Scattering  

NLE Websites -- All DOE Office Websites (Extended Search)

(Electromagnetic Force) Physics Out Loud Main Index Next Video (Electrons) Electrons Electron Scattering Jefferson Lab's Hall A Leader, Cynthia Keppel, explains how nuclear...

155

ELECTRON COUD DYNAMICS IN HIGH-INTENSITY RINGS.  

SciTech Connect

Electron cloud due to beam-induced multipacting is one of the main concerns for the high intensity. Electrons generated and accumulated inside the beam pipe form an ''electron cloud'' that interacts with the circulating charged particle beam. With sizeable amount of electrons, this interaction can cause beam instability, beam loss and emittance growth. At the same time, the vacuum pressure will rise due to electron desorption. This talk intends to provide an overview of the mechanism and dynamics of the typical electron multipacting in various magnetic fields and mitigation measures with different beams.

WANG, L.; WEI, J.

2005-05-16T23:59:59.000Z

156

Neutrino-electron scattering in a magnetic field with allowance for polarizations of electrons  

Science Conference Proceedings (OSTI)

We present an analytic formula for differential cross section (DCS) of neutrino-electron scattering (NES) in a magnetic field (MF) with allowance for longitudinal polarizations of initial and final electrons (IAFE). The DCS of NES in a MF is sensitive to the spin variable of the IAFE and to the direction of the incident and scattered neutrinos (IASN) momenta. Spin asymmetries and field effects in NES in a MF enable us to use initial electrons having a left-hand circular polarization (LHCP) as polarized electron targets in detectors for detection of low-energy neutrinos or relic neutrinos and for distinguishing neutrino flavor (NF). In general, gas consisting of only electrons having a LHCP and gas consisting of only electrons having a right-hand circular polarization (RHCP) are heated by neutrinos asymmetrically. The asymmetry of heating (AH) is sensitive to NF, MF strength, energies (Landau quantum numbers and third components of the momenta) of IAFE, final electron chemical potential, the final temperature of gas consisting of only electrons having a LHCP (RHCP), polar angles of IASN momenta, the difference between the azimuthal angles of IASN momenta, the angle {phi}, and IASN energies. In the heating process of electrons by neutrinos the dominant role belongs to electron neutrinos compared with the contribution of muon (tauon) neutrinos. Electrons having a LHCP in NES in a MF are heated by {nu}{sub e} and {nu}{sub {mu}}({nu}{sub {tau}}) unequally when both the IASN fly along or against the MF direction. For magnetars and neutrinos of 1 MeV energy, within the considered kinematics, the AH in an electron neutrino-electron scattering is 2.23 times that in a muon neutrino-electron scattering or in a tauon neutrino-electron scattering.

Guseinov, V. A. [Department of General and Theoretical Physics, Nakhchivan State University, AZ 7000, Nakhchivan (Azerbaijan); Laboratory of Physical Research, Nakhchivan Division of Azerbaijan National Academy of Sciences, AZ 7000, Nakhchivan (Azerbaijan); Jafarov, I. G. [Department of Theoretical Physics and Astrophysics, Azerbaijan State Pedagogical University, Baku (Azerbaijan); Gasimova, R. E. [Department of General and Theoretical Physics, Nakhchivan State University, AZ 7000, Nakhchivan (Azerbaijan)

2007-04-01T23:59:59.000Z

157

Single electron quantum tomography in quantum Hall edge channels  

E-Print Network (OSTI)

We propose a quantum tomography protocol to measure single electron coherence in quantum Hall edge channels and therefore access for the first time the wave function of single electron excitations propagating in ballistic quantum conductors. Its implementation would open the way to quantitative studies of single electron decoherence and would provide a quantitative tool for analyzing single to few electron sources. We show how this protocol could be implemented using ultrahigh sensitivity noise measurement schemes.

Grenier, Charles; Bocquillon, Erwann; Parmentier, Franois D; Plaais, Bernard; Berroir, Jean-Marc; Fve, Gwendal; Degiovanni, Pascal; 10.1088/1367-2630/13/9/093007

2011-01-01T23:59:59.000Z

158

Single electron quantum tomography in quantum Hall edge channels  

E-Print Network (OSTI)

We propose a quantum tomography protocol to measure single electron coherence in quantum Hall edge channels and therefore access for the first time the wave function of single electron excitations propagating in ballistic quantum conductors. Its implementation would open the way to quantitative studies of single electron decoherence and would provide a quantitative tool for analyzing single to few electron sources. We show how this protocol could be implemented using ultrahigh sensitivity noise measurement schemes.

Charles Grenier; Rmy Herv; Erwann Bocquillon; Franois D. Parmentier; Bernard Plaais; Jean-Marc Berroir; Gwendal Fve; Pascal Degiovanni

2010-10-11T23:59:59.000Z

159

Polyplanar optical display electronics  

SciTech Connect

The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. The prototype ten inch display is two inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. In order to achieve a long lifetime, the new display uses a 100 milliwatt green solid-state laser (10,000 hr. life) at 532 nm as its light source. To produce real-time video, the laser light is being modulated by a Digital Light Processing (DLP{trademark}) chip manufactured by Texas Instruments. In order to use the solid-state laser as the light source and also fit within the constraints of the B-52 display, the Digital Micromirror Device (DMD{trademark}) circuit board is removed from the Texas Instruments DLP light engine assembly. Due to the compact architecture of the projection system within the display chassis, the DMD{trademark} chip is operated remotely from the Texas Instruments circuit board. The authors discuss the operation of the DMD{trademark} divorced from the light engine and the interfacing of the DMD{trademark} board with various video formats (CVBS, Y/C or S-video and RGB) including the format specific to the B-52 aircraft. A brief discussion of the electronics required to drive the laser is also presented.

DeSanto, L.; Biscardi, C. [Brookhaven National Lab., Upton, NY (United States). Dept. of Advanced Technology

1997-07-01T23:59:59.000Z

160

FACTSHEET: Next Generation Power Electronics Manufacturing Innovation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FACTSHEET: Next Generation Power Electronics Manufacturing FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute January 15, 2014 - 9:20am Addthis The Obama Administration today announces the selection of North Carolina State University to lead a public-private manufacturing innovation institute for next generation power electronics. Supported by a $70 million Energy Department investment over five years as well as a matching $70 million in non-federal cost-share, the institute will bring together over 25 companies, universities and state and federal organizations to invent and manufacture wide bandgap (WBG) semiconductor-based power electronics that are cost-competitive and 10 times more powerful than current

Note: This page contains sample records for the topic "time m-f electronic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Improved operation of the nonambipolar electron source  

Science Conference Proceedings (OSTI)

Significant improvements have been made to the nonambipolar electron source (NES), a radio frequency (rf) plasma-based electron source that does not rely on electron emission at a cathode surface [B. Longmier, S. Baalrud, and N. Hershkowitz, Rev. Sci. Instrum. 77, 113504 (2006)]. A prototype NES has produced 30 A of continuous electron current, using 2 SCCM (SCCM denotes cubic centimeter per minute at STP) Xe, 1300 W rf power at 13.56 MHz, yielding a 180 times gas utilization factor. A helicon mode transition has also been identified during NES operation with an argon propellant, using 15 SCCM Ar, 1000 W rf, and 100 G magnetic field. This NES technology has the ability to replace hollow cathode electron sources and to enable high power electric propulsion missions, eliminating one of the lifetime restrictions that many ion thrusters have previously been faced with.

Longmier, Ben; Hershkowitz, Noah [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

2008-09-15T23:59:59.000Z

162

Electron beam depolarization in a damping ring  

SciTech Connect

Depolarization of a polarized electron beam injected into a damping ring is analyzed by extending calculations conventionally applied to proton synchrotrons. Synchrotron radiation in an electron ring gives rise to both polarizing and depolarizing effects. In a damping ring, the beam is stored for a time much less than the time for self polarization. Spin flip radiation may therefore be neglected. Synchrotron radiation without spin flips, however, must be considered as the resonance strength depends on the vertical betatron oscillation amplitude which changes as the electron beam is radiation damped. An expression for the beam polarization at extraction is derived which takes into account radiation damping. The results are applied to the electron ring at the Stanford Linear Collider and are compared with numerical matrix formalisms.

Minty, M.

1993-04-01T23:59:59.000Z

163

SUPPRESSION OF ENERGETIC ELECTRON TRANSPORT IN FLARES BY DOUBLE LAYERS  

SciTech Connect

During flares and coronal mass ejections, energetic electrons from coronal sources typically have very long lifetimes compared to the transit times across the systems, suggesting confinement in the source region. Particle-in-cell simulations are carried out to explore the mechanisms of energetic electron transport from the corona to the chromosphere and possible confinement. We set up an initial system of pre-accelerated hot electrons in contact with ambient cold electrons along the local magnetic field and let it evolve over time. Suppression of transport by a nonlinear, highly localized electrostatic electric field (in the form of a double layer) is observed after a short phase of free-streaming by hot electrons. The double layer (DL) emerges at the contact of the two electron populations. It is driven by an ion-electron streaming instability due to the drift of the back-streaming return current electrons interacting with the ions. The DL grows over time and supports a significant drop in temperature and hence reduces heat flux between the two regions that is sustained for the duration of the simulation. This study shows that transport suppression begins when the energetic electrons start to propagate away from a coronal acceleration site. It also implies confinement of energetic electrons with kinetic energies less than the electrostatic energy of the DL for the DL lifetime, which is much longer than the electron transit time through the source region.

Li, T. C.; Drake, J. F.; Swisdak, M. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742 (United States)

2012-09-20T23:59:59.000Z

164

A correlated-polaron electronic propagator: open electronic dynamics beyond the Born-Oppenheimer approximation  

E-Print Network (OSTI)

In this work we develop a theory of correlated many-electron dynamics dressed by the presence of a finite-temperature harmonic bath. The theory is based on the ab-initio Hamiltonian, and thus well-defined apart from any phenomenological choice of collective basis states or electronic coupling model. The equation-of-motion includes some bath effects non-perturbatively, and can be used to simulate line- shapes beyond the Markovian approximation and open electronic dynamics which are subjects of renewed recent interest. Energy conversion and transport depend critically on the ratio of electron-electron coupling to bath-electron coupling, which is a fitted parameter if a phenomenological basis of many-electron states is used to develop an electronic equation of motion. Since the present work doesn't appeal to any such basis, it avoids this ambiguity. The new theory produces a level of detail beyond the adiabatic Born-Oppenheimer states, but with cost scaling like the Born-Oppenheimer approach. While developing this model we have also applied the time-convolutionless perturbation theory to correlated molecular excitations for the first time. Resonant response properties are given by the formalism without phenomenological parameters. Example propagations with a developmental code are given demonstrating the treatment of electron-correlation in absorption spectra, vibronic structure, and decay in an open system.

John A. Parkhill; Thomas Markovich; David G. Tempel; Alan Aspuru-Guzik

2012-06-12T23:59:59.000Z

165

Field emission electron source  

DOE Patents (OSTI)

A novel field emitter material, field emission electron source, and commercially feasible fabrication method is described. The inventive field emission electron source produces reliable electron currents of up to 400 mA/cm.sup.2 at 200 volts. The emitter is robust and the current it produces is not sensitive to variability of vacuum or the distance between the emitter tip and the cathode. The novel emitter has a sharp turn-on near 100 volts.

Zettl, Alexander Karlwalter (Kensington, CA); Cohen, Marvin Lou (Berkeley, CA)

2000-01-01T23:59:59.000Z

166

Proton scattering on an electron gas  

E-Print Network (OSTI)

It is shown in the case of proton scattering on an electron gas target that the Closed Time Path formalism can handle final state interactions of the target in equilibrium in a simple and natural manner. The leading order cross section is proportional to the photon density of states. The scattering needs a partial resummation of the perturbation series when the electron gas forms long living quasi-particles with high density of state during the collision. A strong cancellation between real and virtual electron-hole pairs is found in this case.

Mansouri, F; Zazoua, K; Zekri, N

2013-01-01T23:59:59.000Z

167

Proton scattering on an electron gas  

E-Print Network (OSTI)

It is shown in the case of proton scattering on an electron gas target that the Closed Time Path formalism can handle final state interactions of the target in equilibrium in a simple and natural manner. The leading order cross section is proportional to the photon density of states. The scattering needs a partial resummation of the perturbation series when the electron gas forms long living quasi-particles with high density of state during the collision. A strong cancellation between real and virtual electron-hole pairs is found in this case.

F. Mansouri; J. Polonyi; K. Zazoua; N. Zekri

2013-02-20T23:59:59.000Z

168

MIPP Plastic Ball electronics upgrade  

SciTech Connect

An upgrade electronics design for Plastic Ball detector is described. The Plastic Ball detector was a part of several experiments in the past and its back portion (proposed to be used in MIPP) consists of 340 photomultipliers equipped with a sandwich scintillator. The scintillator sandwich has fast and slow signal component with decay times 10 ns and 1 {micro}s respectively. The upgraded MIPP experiment will collect up to 12,000 events during each 4 second spill and read them out in {approx}50 seconds between spills. The MIPP data acquisition system will employ deadtime-less concept successfully implemented in Muon Electronics of Dzero experiment at Fermilab. An 8-channel prototype design of the Plastic Ball Front End (PBFE) implementing these requirements is discussed. Details of the schematic design, simulation and prototype test results are discussed.

Baldin, Boris; /Fermilab

2009-01-01T23:59:59.000Z

169

Automated cleaning of electronic components  

SciTech Connect

Environmental and operator safety concerns are leading to the elimination of trichloroethylene and chlorofluorocarbon solvents in cleaning processes that remove rosin flux, organic and inorganic contamination, and particulates from electronic components. Present processes depend heavily on these solvents for manual spray cleaning of small components and subassemblies. Use of alternative solvent systems can lead to longer processing times and reduced quality. Automated spray cleaning can improve the quality of the cleaning process, thus enabling the productive use of environmentally conscious materials, while minimizing personnel exposure to hazardous materials. We describe the development of a prototype robotic system for cleaning electronic components in a spray cleaning workcell. An important feature of the prototype system is the capability to generate the robot paths and motions automatically from the CAD models of the part to be cleaned, and to embed cleaning process knowledge into the automatically programmed operations.

Drotning, W.; Meirans, L.; Wapman, W.; Hwang, Y.; Koenig, L.; Petterson, B.

1994-07-01T23:59:59.000Z

170

NIST Electron Paramagnetic Resonance Facility  

Science Conference Proceedings (OSTI)

... leading a national and international effort in electron paramagnetic resonance ... centers (molecules or atoms with unpaired electrons) are produced ...

171

Electronic Nanodevices Laboratory  

Science Conference Proceedings (OSTI)

... such as charge and energy transfer occur at ... screened for their potential integration into electronic ... of electrical transport processes in such systems. ...

2010-10-05T23:59:59.000Z

172

Scanning Electron Microscopy  

Science Conference Proceedings (OSTI)

... Bob Gordon of Hitachi explains that the electrons are produced by a tungsten filament, just like in an incandescent light bulb, but since the sample ...

2013-12-06T23:59:59.000Z

173

Electron Beam Melting (EBM)  

Science Conference Proceedings (OSTI)

Oct 18, 2011 ... Additive Manufacturing of Metals: Electron Beam Melting (EBM) I Sponsored by: MS&T Organization Program Organizers: Ian D. Harris, EWI;...

174

Metrology Electron Microscopy  

Science Conference Proceedings (OSTI)

Metrology Electron Microscopy. Technical Contact: Joseph (Joe) Fu. 301-975-3795. Figure 1. SRM 484f Sample and its Micrograph. ...

2011-10-28T23:59:59.000Z

175

Electron caustic lithography  

SciTech Connect

A maskless method of electron beam lithography is described which uses the reflection of an electron beam from an electrostatic mirror to produce caustics in the demagnified image projected onto a resist-coated wafer. By varying the electron optics, e.g. via objective lens defocus, both the morphology and dimensions of the caustic features may be controlled, producing a range of bright and tightly focused projected features. The method is illustrated for line and fold caustics and is complementary to other methods of reflective electron beam lithography.

Kennedy, S. M.; Zheng, C. X.; Tang, W. X.; Paganin, D. M.; Jesson, D. E. [School of Physics, Monash University, Victoria, 3800 (Australia); Fu, J. [Department of Mechanical and Aerospace Engineering, Monash University, Victoria, 3800 (Australia)

2012-06-15T23:59:59.000Z

176

Electron Beam Melting  

Science Conference Proceedings (OSTI)

Oct 9, 2012 ... Additive Manufacturing of Metals: Electron Beam Melting Program Organizers: Ian Harris, EWI; Ola Harrysson, North Carolina State University;...

177

Free electron lasers  

SciTech Connect

A review of experimental and theoretical concepts of a free electron laser is given. The possibilities of scaling these lasers to high powers are discussed. (MOW)

Brau, C.A.

1980-01-01T23:59:59.000Z

178

Carbon Fiber Electronic Interconnects.  

E-Print Network (OSTI)

??Carbon fiber is an emerging material in electrical and electronics industry. It has been used as contact in many applications, such as switch, potentiometer, and (more)

Deng, Yuliang

2007-01-01T23:59:59.000Z

179

BNL | CFN: Electron Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

and chemistry at the atomic scale is crucial to modern materials science and nanotechnology. Advanced electron microscopy can provide the fundamental knowledge that will...

180

Recycling Electronic Waste - Website  

Science Conference Proceedings (OSTI)

Jun 18, 2010 ... Joined: 2/13/2007. Below is a link to a website that has articles on recycling electronic waste. http://www.scientificamerican....ectronic-waste-...

Note: This page contains sample records for the topic "time m-f electronic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

GIS For Mapping of Lane-Level Data and Re-Creation in Real Time For Navigation  

E-Print Network (OSTI)

Zhang, Fengyuan Wang, GIS and GPS Based Vehicle GuidanceSpatial Data Standards and GIS Interoperability, ESRI, WhiteHill, 1998. M. F. Goodchild, GIS and transportation: Status

Sutarwala, Behlul Zoeb

2011-01-01T23:59:59.000Z

182

Compact time-of-flight mass spectrometer  

SciTech Connect

This paper describes a time-of-flight mass spectrometer developed for measuring the parameters of a pulsed hydrogen beam. The duration of an electron-beam current pulse in the ionizer of the mass spectrometer can be varied within 2-20 usec, the pulse electron current is 0.6 mA, and the electron energy is 250 eV. The time resolution of the mass spectrometer is determined by the repetition period of the electron-beam current pulses and is 40 usec. The mass spectrometer has 100% transmission in the direction of motion of molecular-beam particles. The dimension of the mass spectrometer is 7 cm in this direction. The mass resolution is sufficient for determination of the composition of the hydrogen beam.

Belov, A.S.; Kubalov, S.A.; Kuzik, V.F.; Yakushev, V.P.

1986-02-01T23:59:59.000Z

183

Controlling Graphene's Electronic Structure  

NLE Websites -- All DOE Office Websites (Extended Search)

Controlling Graphene's Electronic Structure Print Controlling Graphene's Electronic Structure Print Graphene, because of its unusual electron properties, reduced dimensionality, and scale, has enormous potential for use in ultrafast electronic transistors. It exhibits high conductivity and an anomalous quantum Hall effect (a phenomenon exhibited by certain semiconductor devices at low temperatures and high magnetic fields). Among its novel properties, graphene's electrical charge carriers (electrons and holes) move through a solid with effectively zero mass and constant velocity, like photons. Graphene's intrinsically low scattering rate from defects implies the possibility of a new kind of electronics based on the manipulation of electrons as waves rather than particles. The primary technical difficulty has been controlling the transport of electrical charge carriers through the sheet. This area of research is known as bandgap engineering. While bandgap engineering is the basis of semiconductor technology, it is only now being applied to graphene. Using angle-resolved photoemission spectroscopy (ARPES) at ALS Beamline 7.0.1, a team of scientists from the ALS and Germany characterized the electronic band structure and successfully controlled the gap between valence and conduction bands in a bilayer of graphene thin films deposited on a substrate of silicon carbide. This was done by doping one sheet with adsorbed potassium atoms, creating an asymmetry between the two layers.

184

Electronic Reading Room  

NLE Websites -- All DOE Office Websites (Extended Search)

Electronic Reading Room - making information about the Freedom of Information Act (FOIA) and Privacy Act process accessible to the public electronically. Electronic Reading Room - making information about the Freedom of Information Act (FOIA) and Privacy Act process accessible to the public electronically. Major Information Systems - Final Opinions - [5 USC 552 (a)(2)](A) final opinions, including concurring and dissenting opinions, as well as orders, made in the adjudication of cases within the Office of Hearings and Appeals Statements of Policy and Interpretation and Administrative Staff Manuals and Instructions - [5 USC 552 (a)(2)](B) those statements of policy and interpretation which have been adopted by the agency and are not published in the Federal Register - Directives, DOE Orders, Headquarters Orders, Secretarial Notices, Technical Standards, Forms, Delegations, Electronic Library Public Reading Facilities - making information available for public inspection and copying

185

Electron Microscopy Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities » Facilities » Electron Microscopy Lab Electron Microscopy Lab Focusing on the study of microstructures with electron and ion beam instruments, including crystallographic and chemical techniques. April 12, 2012 Transmission electron microscope Rob Dickerson examines a multiphase oxide scale using the FEI Titan 80-300 transmission electron microscope. Contact Rob Dickerson (505) 667-6337 Email Rod McCabe (505) 606-1649 Email Pat Dickerson (505) 665-3036 Email Tom Wynn (505) 665-6861 Email Dedicated to the characterization of materials through imaging, chemical, and crystallographic analyses of material microstructures in support of Basic Energy Science, Laboratory Directed Research and Development, DoD, DOE, Work for Others, nuclear energy, and weapons programs. Go to full website »

186

Electron: Cluster interactions  

SciTech Connect

Beam depletion spectroscopy has been used to measure absolute total inelastic electron-sodium cluster collision cross sections in the energy range from E {approximately} 0.1 to E {approximately} 6 eV. The investigation focused on the closed shell clusters Na{sub 8}, Na{sub 20}, Na{sub 40}. The measured cross sections show an increase for the lowest collision energies where electron attachment is the primary scattering channel. The electron attachment cross section can be understood in terms of Langevin scattering, connecting this measurement with the polarizability of the cluster. For energies above the dissociation energy the measured electron-cluster cross section is energy independent, thus defining an electron-cluster interaction range. This interaction range increases with the cluster size.

Scheidemann, A.A. [Washington Univ., Seattle, WA (United States). Dept. of Chemistry; Kresin, V.V. [Lawrence Livermore National Lab., CA (United States); Knight, W.D. [California Univ., Berkeley, CA (United States). Dept. of Physics

1994-02-01T23:59:59.000Z

187

Electrons and Mirror Symmetry  

SciTech Connect

The neutral weak force between an electron and a target particle, mediated by the Z boson, can be isolated by measuring the fractional change under a mirror reflection of the scattering probability of relativistic longitudinally polarized electrons off unpolarized targets. This technique yields neutral weak force measurements at a length scale of 1 femtometer, in contrast to high energy collider measurements that probe much smaller length scales. Study of the variation of the weak force over a range of length scales provides a stringent test of theory, complementing collider measurements. We describe a recent measurement of the neutral weak force between two electrons by the E158 experiment at the Stanford Linear Accelerator Center. While the weak force between an electron and positron has been extensively studied, that between two electrons had never directly been measured. We conclude by discussing prospects for even more precise measurements at future facilities.

Kumar, Krishna (University of Massachusetts, Amherst)

2007-04-04T23:59:59.000Z

188

Developing electronic textbooks  

SciTech Connect

This paper discusses a new approach to the development of engineering education materials. The ``Electronic Textbook`` represents the logical progression of the printed textbook in the Electronic Age. The concept behind this approach is simple; to place all of the information contained in a textbook in electronic form. Currently, paper texts exist on the market with electronic supplements, however, this Electronic Textbook would include supplements fully integrated in the whole text. The computer hardware and software needed to make this advance possible have existed for nearly ten years, and they have been readily available to engineering educators and students for over three years. Computer based ``tools`` in engineering textbooks as are prevalent today range from computer styled algorithms and code snippets, to fully developed software applications with graphical user interfaces on floppy disks attached to the back covers of books. The next logical step in publishing is to dispense with the paper book entirely, by distributing textbooks via electronic media such as CD-ROM. Electronic Textbooks use the full range of multi-media technologies in the learning and teaching process including video clips, computer animations and fully functional numerical engines as integral parts of the textbook material. This is very appealing since interactive media provide teaching tools that appeal to divergent learning styles. The advantages of Electronic Textbooks lead to several challenges. Special attention must be paid to the development of user interfaces; navigation is of particular importance when non- linear exploration is encouraged. These issues are being addressed at the Sandia National Laboratories by an electronic documentation development team. This team includes experts in engineering, in human factors, and in computer hardware and software development. Guidelines for the development of electronic textbooks based on the experiences of this team are provided.

Zadoks, R.I. [Texas Univ., El Paso, TX (United States). Mechanical and Industrial Engineering Dept.; Ratner, J.A. [Sandia National Labs., Albuquerque, NM (United States)

1996-03-01T23:59:59.000Z

189

Electronics and hydraulics control transmission  

SciTech Connect

Caterpillar engineers have combined electronics and hydraulics for improved transmission control and productivity. The control system had extensive field test experience during development. The system accumulated more than 100,000 hours on 17 vehicles, with individual vehicle times in the 2000-10,000-hour range. Job sites were chosen to test the system over a wide range of applications and locales. The EPTC components are CAT-designed and made by outside suppliers. The components must comply with CAT designs and specifications. All components are 100% functionally tested. The control box is computer-tested functionally at the supplier and at CAT before vehicle installation.

Morris, H.C.; Sorrells, G.K.

1986-04-01T23:59:59.000Z

190

Non-ambipolar radio-frequency plasma electron source and systems and methods for generating electron beams  

SciTech Connect

An electron generating device extracts electrons, through an electron sheath, from plasma produced using RF fields. The electron sheath is located near a grounded ring at one end of a negatively biased conducting surface, which is normally a cylinder. Extracted electrons pass through the grounded ring in the presence of a steady state axial magnetic field. Sufficiently large magnetic fields and/or RF power into the plasma allow for helicon plasma generation. The ion loss area is sufficiently large compared to the electron loss area to allow for total non-ambipolar extraction of all electrons leaving the plasma. Voids in the negatively-biased conducting surface allow the time-varying magnetic fields provided by the antenna to inductively couple to the plasma within the conducting surface. The conducting surface acts as a Faraday shield, which reduces any time-varying electric fields from entering the conductive surface, i.e. blocks capacitive coupling between the antenna and the plasma.

Hershkowitz, Noah (Madison, WI); Longmier, Benjamin (Madison, WI); Baalrud, Scott (Madison, WI)

2009-03-03T23:59:59.000Z

191

Aerogels for electronics  

SciTech Connect

In addition to their other exceptional properties, aerogels also exhibit unusual dielectric and electronic properties due to their nano-sized structures and high porosities. For example, aerogels have the lowest dielectric constants measured for a solid material (having values approaching 1.0); they have exceptionally high dielectric resistivities and strengths (i.e., ability to insulate very high voltages); they exhibit low dielectric loss at microwave frequencies; and some aerogels are electrically conductive and photoconductive. These properties are being exploited to provide the next generation of materials for energy storage, low power consumption, and ultra-fast electronics. We are working toward adapting these unusual materials for microelectronic applications, particularly, making thin aerogel films for dielectric substrates and for energy storage devices such as supercapacitors. Measurements are presented in this paper for the dielectric and electronic properties of aerogels, including the dielectric constant, loss factor, dielectric and electrical conductivity, volume resistivity, and dielectric strength. We also describe methods to form and characterize thin aerogel films which are being developed for numerous electronic applications. Finally, some of the electronic applications proposed for aerogels are presented. Commercialization of aerogels for electronics must await further feasibility, prototype development, and cost studies, but they are one of the key materials and are sure to have a major impact on future electronics.

Hrubesh, L.W.

1994-10-01T23:59:59.000Z

192

Electron Beam Polarization Measurement Using Touschek Lifetime Technique  

SciTech Connect

Electron beam loss due to intra-beam scattering, the Touschek effect, in a storage ring depends on the electron beam polarization. The polarization of an electron beam can be determined from the difference in the Touschek lifetime compared with an unpolarized beam. In this paper, we report on a systematic experimental procedure recently developed at Duke FEL laboratory to study the radiative polarization of a stored electron beam. Using this technique, we have successfully observed the radiative polarization build-up of an electron beam in the Duke storage ring, and determined the equilibrium degree of polarization and the time constant of the polarization build-up process.

Sun, Changchun; /Duke U., DFELL; Li, Jingyi; /Duke U., DFELL; Mikhailov, Stepan; /Duke U., DFELL; Popov, Victor; /Duke U., DFELL; Wu, Wenzhong; /Duke U., DFELL; Wu, Ying; /Duke U., DFELL; Chao, Alex; /SLAC; Xu, Hong-liang; /Hefei, NSRL; Zhang, Jian-feng; /Hefei, NSRL

2012-08-24T23:59:59.000Z

193

Electron Trapping in Shear Alfven Waves that Power the Aurora  

Science Conference Proceedings (OSTI)

Results from 1D Vlasov drift-kinetic plasma simulations reveal how and where auroral electrons are accelerated along Earth's geomagnetic field. In the warm plasma sheet, electrons become trapped in shear Alfven waves, preventing immediate wave damping. As waves move to regions with larger v{sub Te}/v{sub A}, their parallel electric field decreases, and the trapped electrons escape their influence. The resulting electron distribution functions compare favorably with in situ observations, demonstrating for the first time a self-consistent link between Alfven waves and electrons that form aurora.

Watt, Clare E. J.; Rankin, Robert [University of Alberta, Edmonton, Alberta (Canada)

2009-01-30T23:59:59.000Z

194

Nonsequential double ionization below laser-intensity threshold: Anticorrelation of electrons without excitation of parent ion  

SciTech Connect

Two-electron correlated spectra of nonsequential double ionization below laser-intensity threshold are known to exhibit back-to-back scattering of the electrons, i.e., the anticorrelation of the electrons. Currently, the widely accepted interpretation of the anticorrelation is recollision-induced excitation of the ion plus subsequent field ionization of the second electron. We argue that another mechanism, namely, simultaneous electron emission, when the time of return of the rescattered electron is equal to the time of liberation of the bounded electron (i.e., the ion has no time for excitation), can also explain the anticorrelation of the electrons in the deep, below laser-intensity threshold regime. Our conclusion is based on the results of the numerical solution of the time-dependent Schroedinger equation for a model system of two one-dimensional electrons, as well as on an adiabatic analytic model that allows for a closed-form solution.

Bondar, D. I. [University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); National Research Council of Canada, Ottawa, Ontario K1A 0R6 (Canada); Yudin, G. L. [National Research Council of Canada, Ottawa, Ontario K1A 0R6 (Canada); Universite de Sherbrooke, Sherbrooke, Quebec J1K 2R1 (Canada); Liu, W.-K. [University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Ivanov, M. Yu. [Imperial College, London SW7 2BW (United Kingdom); Bandrauk, A. D. [Universite de Sherbrooke, Sherbrooke, Quebec J1K 2R1 (Canada)

2011-01-15T23:59:59.000Z

195

Fermilab | Fermilab Time and Labor | Launch  

NLE Websites -- All DOE Office Websites (Extended Search)

Go to FTL timecard Click here to create and submit your timecard on the Fermilab Time and Labor system. Alternate System Login This link uses html only and may work on your mobile device. It is provided for ease of use only. If it doesn't work for you, please use the other link. Fermilab Time and Labor All employees use a single, standard system to report their time and effort electronically. Log in to the system here. This has modernized our time and labor reporting system and helps Fermilab comply with DOE requirements. Use this page to access tools that will help you use the Fermilab Time & Labor electronic timecard. You can login to your timecard, access training materials and documentation and ensure that your browser has the settings and software it needs to access the system.

196

Transmission Electron Microscopy (TEM)  

Science Conference Proceedings (OSTI)

...Transmission electron microcopy (TEM) has been used since the 1950s to obtain very high resolution images of microstructures. As TEMs were enhanced to include features such as digitally scanned point beams and energy dispersive x-ray detectors

197

What is flexible electronics?  

Science Conference Proceedings (OSTI)

Flexible electronics has recently attracted much attention because of their potential in providing cost-efficient solutions to large-area applications such as rollable displays and TVs, e-paper, smart sensors and transparent RFIDs. The key advantages ...

Kwang-Ting (Tim) Cheng; Tsung-Ching Huang

2009-04-01T23:59:59.000Z

198

Scanning transmission electron microscopy strain measurement from millisecond frames of a direct electron charge coupled device  

Science Conference Proceedings (OSTI)

A high-speed direct electron detection system is introduced to the field of transmission electron microscopy and applied to strain measurements in semiconductor nanostructures. In particular, a focused electron probe with a diameter of 0.5 nm was scanned over a fourfold quantum layer stack with alternating compressive and tensile strain and diffracted discs have been recorded on a scintillator-free direct electron detector with a frame time of 1 ms. We show that the applied algorithms can accurately detect Bragg beam positions despite a significant point spread each 300 kV electron causes during detection on the scintillator-free camera. For millisecond exposures, we find that strain can be measured with a precision of 1.3 Multiplication-Sign 10{sup -3}, enabling, e.g., strain mapping in a 100 Multiplication-Sign 100 nm{sup 2} region with 0.5 nm resolution in 40 s.

Mueller, Knut; Rosenauer, Andreas [Institut fuer Festkoerperphysik, Universitaet Bremen, Otto-Hahn-Allee 1, 28359 Bremen (Germany); Ryll, Henning; Ordavo, Ivan; Ihle, Sebastian; Soltau, Heike [PNSensor GmbH, Roemerstrasse 28, 80803 Muenchen (Germany); Strueder, Lothar [Max-Planck-Institut Halbleiterlabor, Otto-Hahn-Ring 6, 81739 Muenchen (Germany); Volz, Kerstin [Materials Science Center and Faculty of Physics, Philipps Universitaet Marburg, Hans-Meerwein-Strasse, 35032 Marburg (Germany); Zweck, Josef [Institut fuer Experimentelle und Angewandte Physik, Universitaet Regensburg, Universitaetsstrasse 31, 93040 Regensburg (Germany)

2012-11-19T23:59:59.000Z

199

Free electron laser  

DOE Patents (OSTI)

A high gain, single-pass free electron laser formed of a high brilliance electron injector source, a linear accelerator which imparts high energy to the electron beam, and an undulator capable of extremely high magnetic fields, yet with a very short period. The electron injector source is the first stage (gap) of the linear accelerator or a radial line transformer driven by fast circular switch. The linear accelerator is formed of a plurality of accelerating gaps arranged in series. These gaps are energized in sequence by releasing a single pulse of energy which propagates simultaneously along a plurality of transmission lines, each of which feeds the gaps. The transmission lines are graduated in length so that pulse power is present at each gap as the accelerated electrons pass therethrough. The transmission lines for each gap are open circuited at their ends. The undualtor has a structure similar to the accelerator, except that the transmission lines for each gap are substantially short circuited at their ends, thus converting the electric field into magnetic field. A small amount of resistance is retained in order to generate a small electric field for replenishing the electron bunch with the energy lost as it traverses through the undulator structure.

Villa, Francesco (Alameda, CA)

1990-01-01T23:59:59.000Z

200

Time and Frequency Portal  

Science Conference Proceedings (OSTI)

NIST Home > Time and Frequency Portal. Time and Frequency Portal. Programs and Projects. CODATA values of the fundamental constants ...

2013-06-27T23:59:59.000Z

Note: This page contains sample records for the topic "time m-f electronic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Time Series and Forecasting  

Science Conference Proceedings (OSTI)

Time Series and Forecasting. Leigh, Stefan and Perlman, S. (1991). "An Index for Comovement of Time Sequences With ...

202

VIA ELECTRONIC SUBMISSION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

rules for retrospective analysis, agencies should also be mindful of timing. "While regulation often stimulates technological development, technological change takes time."...

203

Low-cost nanosecond electronic coincidence detector  

E-Print Network (OSTI)

We present a simple and low-cost implementation of a fast electronic coincidence detector based on PECL logic with a TTL-compatible interface. The detector has negligible dead time and the coincidence window is adjustable with a minimum width of 1 ns. Coincidence measurements of two independent sources of Bose-Einstein distributed photocounts are presented using different coincidence window widths.

Kim, T; Gorelik, P V; Wong, F N C; Kim, Taehyun; Fiorentino, Marco; Gorelik, Pavel V.; Wong, Franco N. C.

2005-01-01T23:59:59.000Z

204

Electron-beam magnetic switch for a plurality of free-electron lasers  

DOE Patents (OSTI)

Apparatus for forming and utilizing a sequence of electron beam segments, each of the same temporal length (substantially 15 nsec), with consecutive beams being separated by a constant time interval of the order of 3 nsec is described. The beam sequence is used for simultaneous inputs to a plurality of wiggler magnet systems that also accept the laser beams to be amplified by interaction with the co-propagating electron beams. The electron beams are arranged substantially in a circle to allow proper distribution of and simultaneous switching out of the beam segments to their respective wiggler magnets.

Schlitt, L.G.

1982-01-26T23:59:59.000Z

205

Electron beam magnetic switch for a plurality of free electron lasers  

DOE Patents (OSTI)

Apparatus for forming and utilizing a sequence of electron beam segments, each of the same temporal length (substantially 15 nsec), with consecutive beams being separated by a constant time interval of the order of 3 nsec. The beam sequence is used for simultaneous inputs to a plurality of wiggler magnet systems that also accept the laser beams to be amplified by interaction with the co-propagating electron beams. The electron beams are arranged substantially in a circle to allow proper distribution of and simultaneous switching out of the beam segments to their respective wiggler magnets.

Schlitt, Leland G. (Livermore, CA)

1984-01-01T23:59:59.000Z

206

Electron and laser beam welding  

SciTech Connect

This book contains 22 selections. Some of the titles are: Laser welding of chandelles to the plates of the sommier employed in the nuclear power plant core; Electron beam welding of hobbing cutters; Sealing welds in electron beam welding of thick metals; Development and application of high power electron beam welding; Electron beam welding of dissimilar metals (niobium, molybdenum, porous tungsten-molybdenum); Status of electron beam welding in the United States of America; and Electron and laser beam welding in Japan.

1986-01-01T23:59:59.000Z

207

Pure electron plasmas confined for 90 ms in a stellarator without electron sources or internal objects  

SciTech Connect

We report on the creation and up to 90 ms sustainment of pure electron plasmas confined in a stellarator without internal objects. Injection of positrons into such plasmas is expected to lead to the creation of the first electron-positron plasma experiments. These newly created plasmas will also allow a study of pure electron plasmas without the perturbing presence of internal objects. The plasmas were created by thermionic emission of electrons from a heated, biased filament that was retracted in 20 ms. The confinement of these transient plasmas is different from that of steady state plasmas with internal objects and emissive filaments, and is generally shorter, limited by ion buildup. The decay time is increased by lowering the neutral pressure, lowering the electron plasma temperature, or operating with neutrals with high ionization energies (helium). These findings are all consistent with ion accumulation being the cause for the shorter than expected confinement times. The magnetic field strength also moderately increases the decay times. The deleterious effect of ions is not expected to imply a similar deleterious effect when introducing positrons, but it implies that ion accumulation must be avoided also in an electron-positron experiment.

Brenner, P. W.; Sunn Pedersen, T.

2012-05-15T23:59:59.000Z

208

Electronics Stewardship | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electronics Electronics Stewardship Electronics Stewardship Mission The team promotes sustainable management of LM's electronic equipment by integrating the relevant requirements of Executive Order (EO) 13423, Strengthening Federal Environmental, Energy, and Transportation Management, and (EO) 13514, Federal Leadership in Environmental, Energy, and Economic Performance, and DOE Order 436.1, Departmental Sustainability, with LM activities, as approved by LM. The team advocates environmentally sound electronic stewardship practices. Scope The team uses a life-cycle approach to reduce the negative environmental impacts posed by electronic equipment. Established processes evaluate beneficial acquisition, use, and disposition of electronic equipment. Key Expectations Propose electronic stewardship goals/targets.

209

Circular free-electron laser  

DOE Patents (OSTI)

A high efficiency, free electron laser is described utilizing a circular relativistic electron beam accelerator and a circular whispering mode optical waveguide for guiding optical energy in a circular path in the circular relativistic electron beam accelerator such that the circular relativistic electron beam and the optical energy are spatially contiguous in a resonant condition for free electron laser operation. Both a betatron and synchrotron are disclosed for use in the present invention. A free electron laser wiggler is disposed around the circular relativistic electron beam accelerator for generating a periodic magnetic field to transform energy from the circular relativistic electron beam to optical energy.

Brau, C.A.; Kurnit, N.A.; Cooper, R.K.

1982-01-26T23:59:59.000Z

210

Electron Physics Group Staff Page  

Science Conference Proceedings (OSTI)

... Electron Physics Group Staff. ... Jabez McClelland, Group Leader Jabez McClelland is the Group Leader of the CNST Electron Physics Group. ...

2013-07-26T23:59:59.000Z

211

Electron Trapping by Molecular Vibration  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron Trapping by Molecular Vibration Print In photoelectron spectroscopy experiments performed at the ALS, a group of researchers has found that electronic transitions normally...

212

Circular free-electron laser  

DOE Patents (OSTI)

A high efficiency, free electron laser utilizing a circular relativistic electron beam accelerator and a circular whispering mode optical waveguide for guiding optical energy in a circular path in the circular relativistic electron beam accelerator such that the circular relativistic electron beam and the optical energy are spatially contiguous in a resonant condition for free electron laser operation. Both a betatron and synchrotron are disclosed for use in the present invention. A free electron laser wiggler is disposed around the circular relativistic electron beam accelerator for generating a periodic magnetic field to transform energy from the circular relativistic electron beam to optical energy.

Brau, Charles A. (Los Alamos, NM); Kurnit, Norman A. (Santa Fe, NM); Cooper, Richard K. (Los Alamos, NM)

1984-01-01T23:59:59.000Z

213

Advance Electronics | Open Energy Information  

Open Energy Info (EERE)

Advance Electronics Jump to: navigation, search Name Advance Electronics Place United Kingdom Zip LL14 3YR Product Develop and deliver power conditioners, transient suppressors,...

214

28 00 00 ELECTRONIC SAFETY AND SECURITY ELECTRONIC SECURITY  

E-Print Network (OSTI)

28 00 00 ELECTRONIC SAFETY AND SECURITY ELECTRONIC SECURITY SYSTEM DESIGN, CONSTRUCTION Services #12;28 00 00 ELECTRONIC SAFETY AND SECURITY August 8, 2011 2 THE UNIVERSITY OF TEXAS AT AUSTIN ELECTRONIC SECURITY SYSTEM DESIGN, CONSTRUCTION AND COMMISSIONING GUIDE PART 1 - GENERAL 1.1 NOTICE

Texas at Austin, University of

215

28 00 00 ELECTRONIC SAFETY AND SECURITY ELECTRONIC SECURITY  

E-Print Network (OSTI)

28 00 00 ELECTRONIC SAFETY AND SECURITY ELECTRONIC SECURITY SYSTEM DESIGN, CONSTRUCTION Services #12;28 00 00 ELECTRONIC SAFETY AND SECURITY May 1, 2013 2 THE UNIVERSITY OF TEXAS AT AUSTIN ELECTRONIC SECURITY SYSTEM DESIGN, CONSTRUCTION AND COMMISSIONING GUIDE PART 1 - GENERAL 1.1 NOTICE

Texas at Austin, University of

216

Electron Recombination in a Dense Hydrogen Plasma  

DOE Green Energy (OSTI)

A high pressure hydrogen gas filled RF cavity was subjected to an intense proton beam to study the evolution of the beam induced plasma inside the cavity. Varying beam intensities, gas pressures and electric fields were tested. Beam induced ionized electrons load the cavity, thereby decreasing the accelerating gradient. The extent and duration of this degradation has been measured. A model of the recombination between ionized electrons and ions is presented, with the intent of producing a baseline for the physics inside such a cavity used in a muon accelerator. Analysis of the data taken during the summer of 2011 shows that self recombination takes place in pure hydrogen gas. The decay of the number of electrons in the cavity once the beam is turned off indicates self recombination rather than attachment to electronegative dopants or impurities. The cross section of electron recombination grows for larger clusters of hydrogen and so at the equilibrium of electron production and recombination in the cavity, processes involving H{sub 5}{sup +} or larger clusters must be taking place. The measured recombination rates during this time match or exceed the analytic predicted values. The accelerating gradient in the cavity recovers fully in time for the next beam pulse of a muon collider. Exactly what the recombination rate is and how much the gradient degrades during the 60 ns muon collider beam pulse will be extrapolated from data taken during the spring of 2012.

Jana, M.R.; Johnstone, C.; Kobilarcik, T.; Koizumi, G.M.; Moretti, A.; Popovic, M.; Tollestrup, A.V.; Yonehara, K.; /Fermilab; Leonova, M.A.; Schwarz, T.A.; /Fermilab; Chung, M.; /Unlisted /IIT, Chicago /Fermilab /MUONS Inc., Batavia /Turin Polytechnic

2012-05-01T23:59:59.000Z

217

ELECTRON EMISSION REGULATING MEANS  

DOE Patents (OSTI)

>An electronic regulating system is described for controlling the electron emission of a cathode, for example, the cathode in a mass spectrometer. The system incorporates a transformer having a first secondary winding for the above-mentioned cathode and a second secondary winding for the above-mentioned cathode and a second secondary winding load by grid controlled vacuum tubes. A portion of the electron current emitted by the cathode is passed through a network which develops a feedback signal. The system arrangement is completed by using the feedback signal to control the vacuum tubes in the second secondary winding through a regulator tube. When a change in cathode emission occurs, the feedback signal acts to correct this change by adjusting the load on the transformer.

Brenholdt, I.R.

1957-11-19T23:59:59.000Z

218

Electron Microscopy Center  

NLE Websites -- All DOE Office Websites (Extended Search)

iTEAM iTEAM The in situ Transmission Electron Aberration Corrected Microscope (iTEAM) is a proposed project to develop a microscope with powerful capabilities for in situ studies of materials in their native environment. iTEAM will build on the success of the TEAM project by utilizing both spherical and chromatic aberration correction in an electron microscope to provide unprecedented capabilities to study materials in controlled environments of temperature, pressure, or fluidic states with the high-resolution in imaging, diffraction, and spectroscopy typical of electron probes. The capabilities of iTEAM will lead to new ways to understand the behavior of materials in native environments, with particular relevance to major energy initiatives such as catalysis, solar conversion, fuel cells, and batteries. In addition, iTEAM will provide new capabilities to understand organic/inorganic interfaces, functionalized nanoparticles, and biomaterials under natural conditions.

219

Electron Microscopy Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Acknowledgment Acknowledgment EMC Home Overview Personnel Resources Highlights Publications Visit EMC Contact Info Information for Users Becoming a User Submit a Proposal End-of-Proposal Report Acknowledgment User Training User Safety User Status Instrument Access User Committee User Meetings Data Storage Policy Visiting the EMC Instrument Calendars Info for EMC Staff SÅMM Facility TEAM Project Microscopy Links Argonne Facilities DOE/BES Facilities DOE/BES BES Electron Beam Microcharacterization Centers Acknowledgment Please acknowledge your use of the EMC in your publications and presentations with the following acknowledgment statement: The electron microscopy was accomplished at the Electron Microscopy Center at Argonne National Laboratory, a U.S. Department of Energy Office of Science Laboratory operated under Contract No. DE-AC02-06CH11357 by UChicago Argonne, LLC.

220

Electron launching voltage monitor  

DOE Patents (OSTI)

An electron launching voltage monitor measures MITL voltage using a relationship between anode electric field and electron current launched from a cathode-mounted perturbation. An electron launching probe extends through and is spaced from the edge of an opening in a first MITL conductor, one end of the launching probe being in the gap between the MITL conductor, the other end being adjacent a first side of the first conductor away from the second conductor. A housing surrounds the launching probe and electrically connects the first side of the first conductor to the other end of the launching probe. A detector detects the current passing through the housing to the launching probe, the detected current being representative of the voltage between the conductors.

Mendel, Clifford W. (Albuquerque, NM); Savage, Mark E. (Albuquerque, NM)

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "time m-f electronic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Electronic ballast improves efficiency  

SciTech Connect

As part of a DOE program, the performance of various electronic ballasts for fluorescent lamps have been evaluated relative to high quality core-coil ballasts under similar ambient conditions. The results of this investigation are reported. Real energy savings can exceed 40% while comfort and quality of illumination are improved. A detailed comparison of two types of ballast is presented. Voltage effects and temperature effects as well as dimming features are discussed. Light levels, power energy consumption, and daylighting are also treated. It is concluded that, with the electronic ballast, an annual payback of $8.20/yr is possible as compared to the core-coil ballasted fluorescent lamp. Further, much greater flexibility in use is possible with the electronic ballast equipped lamp. (MJJ)

Verderber, R.R.

1980-11-01T23:59:59.000Z

222

Electron-electron interactions in fast neutral-neutral collisions  

DOE Green Energy (OSTI)

Differential electron emission is studied for 50--500 keV H{sup +} and H atom impact on helium. Using the first Born formulation, it is shown that projectile electron-target electron interactions are expected to dominate the differential cross sections for low energy target electron emission induced by fast neutral projectile impact on any target. Measurements of the 15{degrees} electron emission were made in order to investigate this prediction. For low impact energies, a constant ratio between the hydrogen atom and proton impact cross sections was found for emitted electron velocities less than half the projectile velocity, V{sub p} But as the collision energy increased, for electron velocities less than 0.25 V{sub p}, the cross section ratio increased as the emitted electron velocity decreased. This is interpreted as a signature of projectile electron-target electron interactions becoming dominant for distant collisions between neutral particles.

DuBois, R.D. [Pacific Northwest Lab., Richland, WA (United States); Manson, S.T. [Georgia State Univ., Atlanta, GA (United States). Dept. of Physics and Astronomy

1992-11-01T23:59:59.000Z

223

Electron-electron interactions in fast neutral-neutral collisions  

DOE Green Energy (OSTI)

Differential electron emission is studied for 50--500 keV H[sup +] and H atom impact on helium. Using the first Born formulation, it is shown that projectile electron-target electron interactions are expected to dominate the differential cross sections for low energy target electron emission induced by fast neutral projectile impact on any target. Measurements of the 15[degrees] electron emission were made in order to investigate this prediction. For low impact energies, a constant ratio between the hydrogen atom and proton impact cross sections was found for emitted electron velocities less than half the projectile velocity, V[sub p] But as the collision energy increased, for electron velocities less than 0.25 V[sub p], the cross section ratio increased as the emitted electron velocity decreased. This is interpreted as a signature of projectile electron-target electron interactions becoming dominant for distant collisions between neutral particles.

DuBois, R.D. (Pacific Northwest Lab., Richland, WA (United States)); Manson, S.T. (Georgia State Univ., Atlanta, GA (United States). Dept. of Physics and Astronomy)

1992-11-01T23:59:59.000Z

224

Coherent control of hyperfine-coupled electron and nuclear spins for quantum information processing  

E-Print Network (OSTI)

Coupled electron-nuclear spins are promising physical systems for quantum information processing: By combining the long coherence times of the nuclear spins with the ability to initialize, control, and measure the electron ...

Yang, Jamie Chiaming

2008-01-01T23:59:59.000Z

225

Precision electron polarimetry  

SciTech Connect

A new generation of precise Parity-Violating experiments will require a sub-percent accuracy of electron beam polarimetry. Compton polarimetry can provide such accuracy at high energies, but at a few hundred MeV the small analyzing power limits the sensitivity. M{\\o}ller polarimetry provides a high analyzing power independent on the beam energy, but is limited by the properties of the polarized targets commonly used. Options for precision polarimetry at ~300 MeV will be discussed, in particular a proposal to use ultra-cold atomic hydrogen traps to provide a 100\\%-polarized electron target for M{\\o}ller polarimetry.

Chudakov, Eugene A. [JLAB

2013-11-01T23:59:59.000Z

226

ElectronicFabrication  

NLE Websites -- All DOE Office Websites (Extended Search)

Fabrication Fabrication Manufacturing Technologies Electronic Fabrication provides our cus- tomers solutions for the packaging design, production acceptable prototype fabrica- tion, or deliverable production fabrication. Capabilities * Final electronic product packaging from sketches and verbal instructions * Provide CAD drawing package after project completion if no formal prints are available * Complete system development and fab- rication through concurrent engineering * Concurrent engineering in prototype and production fabrication * Integrate commercial equipment into prototype system design * Implementation and modification of commercial equipment * Packaging of prototype into finalized product assembly Resources * Customer assistance from fabrication, to testing, to complete system installation

227

ElectronicPackaging  

NLE Websites -- All DOE Office Websites (Extended Search)

Packaging Packaging Manufacturing Technologies The Electronic Packaging technologies in the Thin Film, Vacuum, and Packaging Department are a resource for all aspects of microelectronic packag- ing. From design and layout to fabrication of proto- type samples, the staff offers partners the opportu- nity for concurrent engineering and development of a variety of electronic packaging concepts. This includes assistance in selecting the most appropri- ate technology for manufacturing, analysis of per- formance characteristics and development of new and unique processes. Capabilities 1. Network Fabrication * Low Temperature Co-Fired Ceramic (LTCC) * Thick Film * Thin Film 2. Packaging and Assembly * Chip Level Packaging * MEMs Packaging * Hermetic Sealing * Surface Mount Technology

228

Electronically configured battery pack  

DOE Green Energy (OSTI)

Battery packs for portable equipment must sometimes accommodate conflicting requirements to meet application needs. An electronically configurable battery pack was developed to support two highly different operating modes, one requiring very low power consumption at a low voltage and the other requiring high power consumption at a higher voltage. The configurable battery pack optimizes the lifetime and performance of the system by making the best use of all available energy thus enabling the system to meet its goals of operation, volume, and lifetime. This paper describes the cell chemistry chosen, the battery pack electronics, and tradeoffs made during the evolution of its design.

Kemper, D.

1997-03-01T23:59:59.000Z

229

A graphene electron lens  

SciTech Connect

An epitaxial layer of graphene was grown on a pre patterned 6H-SiC(0001) crystal. The graphene smoothly covers the hexagonal nano-holes in the substrate without the introduction of small angle grain boundaries or dislocations. This is achieved by an elastic deformation of the graphene by {approx_equal}0.3% in accordance to its large elastic strain limit. This elastic stretching of the graphene leads to a modification of the band structure and to a local lowering of the electron group velocity of the graphene. We propose to use this effect to focus two-dimensional electrons in analogy to simple optical lenses.

Gerhard, L.; Balashov, T.; Wulfhekel, W. [Physikalisches Institut, Karlsruhe Institute of Technology, Wolfgang-Gaede-Str. 1, 76131 Karlsruhe (Germany); Moyen, E.; Ozerov, I.; Sahaf, H.; Masson, L.; Hanbuecken, M. [CINaM-CNRS, Aix-Marseille University, Campus Luminy - Case 913, 18288 Marseille (France); Portail, M. [CRHEA-CNRS, Parc de Sophia - Antipolis, rue B. Gregory, 06560 Valbonne (France)

2012-04-09T23:59:59.000Z

230

Thermalization of secondary electrons under AMSGEMP conditions  

SciTech Connect

A Monte Carlo algorithm is used to determine the time behavior of source secondary electrons for ranges of the electric field to pressure ratio E/p of interest in AMSGEMP. The algorithm contains a very detailed cross section set describing electron interactions with the background gas. The authors show that the delay in the attainment of the peak time independent ionization frequency (or ionization coefficient) may result in negligible ionization over times of interest. In any case the behavior is shown to behave much differently than in examples where limited cross section sets, common in currently employed predictive codes, are employed. In particular, the importance of momentum transfer is indicated. A critique of the scaling implications of the phenomena is made.

Bloomberg, H.W.; Pine, V.W.

1984-12-01T23:59:59.000Z

231

Spin flip probability of electron in a uniform magnetic field  

SciTech Connect

The probability that an electromagnetic wave can flip the spin of an electron is calculated. It is assumed that the electron resides in a uniform magnetic field and interacts with an incoming electromagnetic pulse. The scattering matrix is constructed and the time needed to flip the spin is calculated.

Hammond, Richard T. [Department of Physics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina and Army Research Office, Research Triangle Park, North Carolina 27703 (United States)

2012-03-19T23:59:59.000Z

232

Scientific production of electronic health record research, 1991-2005  

Science Conference Proceedings (OSTI)

Purpose: The increasing numbers of publications on electronic health record (EHR) indicate its increasing importance in the world. This study attempted to quantify the scientific production of EHR research articles, and how they have changed over time, ... Keywords: Bibliometrics, Electronic health records (EHRs), Science citation index (SCI)

Hsyien-Chia Wen; Yuh-Shan Ho; Wen-Shan Jian; Hsien-Chang Li; Yi-Hsin Elsa Hsu

2007-05-01T23:59:59.000Z

233

Interference between two indistinguishable electrons from independent sources  

E-Print Network (OSTI)

,12 . The proposal of ref. 3 is an electronic analogue to the historical Hanbury Brown and Twiss experiment coincidence rate is achieved without the need to synchronize the arrival times of the electrons. As each electrical current and to minute fluctuations, making the measurements extre- mely difficult to perform

Heiblum, Mordehai "Moty"

234

Ushering Buyers into Electronic Channels: An Empirical Analysis  

Science Conference Proceedings (OSTI)

Despite many success stories, B2B e-commerce penetration remains low. Many firms introduce electronic channels in addition to their traditional sales channels but find that buyer usage of the e-channel over time does not keep up with initial expectations. ... Keywords: buyer heterogeneity, channel choice, electronic markets

Nishtha Langer; Chris Forman; Sunder Kekre; Baohong Sun

2012-12-01T23:59:59.000Z

235

Electron Beam Powder Bed Processes  

Science Conference Proceedings (OSTI)

Advanced Materials, Processes and Applications for Additive Manufacturing : Electron Beam Powder Bed Processes Program Organizers: Andrzej...

236

Electron Microscopy Center  

NLE Websites -- All DOE Office Websites

Laboratory Laboratory Electron Microscopy Center Argonne Home > EMC > EMC Home Overview Personnel Resources Highlights Publications Visit EMC Contact Info Information for Users Instrument Calendars Info for EMC Staff SÅMM Facility TEAM Project Microscopy Links Argonne Facilities DOE/BES Facilities DOE/BES BES Electron Beam Microcharacterization Centers An Office of Science User Facility The Electron Microscopy Center (EMC) at Argonne National Laboratory develops and maintains unique capabilities for electron beam characterization and applies those capabilities to solve materials problems. The EMC staff carry out research with collaborators and users from Argonne, universities, and other laboratories. The expertise and facilities of the EMC additionally serve a group of national and international researchers. The EMC emphasizes three major areas: materials research, technique and instrumentation development, and operation as a national research facility. Research by EMC personnel includes microscopy based studies in high Tc superconducting materials, irradiation effects in metals and semiconductors, phase transformations, and processing related structure and chemistry of interfaces in thin films.

237

electronic reprint Crystallography  

E-Print Network (OSTI)

electronic reprint Journal of Applied Crystallography ISSN 0021-8898 Molsee: a Tcl/Tk-based program of Crystallography Printed in Great Britain ± all rights reserved Molsee: a Tcl/Tk-based program to control Rasmol molecules. In order to make it more user-friendly, Molsee, a Tcl/Tk-based graphical user interface front end

Luhua, Lai

238

Electron beam cutting  

DOE Patents (OSTI)

A method for the cutting of holes 20 Angstroms in diameter, or lines 20 Angstroms wide in a material having positive ionic conduction by the use of a focused electron probe is described. The holes and lines are stable under ambient conditions. 2 figs.

Mochel, M.E.; Humphreys, C.J.

1985-04-02T23:59:59.000Z

239

Electron beam cutting  

DOE Patents (OSTI)

A method for the cutting of holes 20 Angstroms in diameter, or lines 20 Angstroms wide in a material having positive ionic conduction by the use of a focused electron probe is described. The holes and lines are stable under ambient conditions.

Mochel, Margaret E. (Champaign, IL); Humphreys, Colin J. (Abingdon, GB2)

1985-04-02T23:59:59.000Z

240

ELECTRONIC DIGITAL COMPUTER  

DOE Patents (OSTI)

The electronic digital computer is designed to solve systems involving a plurality of simultaneous linear equations. The computer can solve a system which converges rather rapidly when using Von Seidel's method of approximation and performs the summations required for solving for the unknown terms by a method of successive approximations.

Stone, J.J. Jr.; Bettis, E.S.; Mann, E.R.

1957-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "time m-f electronic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Superconductivity and electron tunneling  

Science Conference Proceedings (OSTI)

Experiments on the tunneling of electrons through a thin dielectric layer separating two superconducting metals are reported. Data are presented for the pairs AI-Pb, Sn-Pb, and In-Sn. Particular attention is paid to the form of the tunneling current ...

S. Shapiro; P. H. Smith; J. Nicol; J. L. Miles; P. F. Strong

1962-01-01T23:59:59.000Z

242

Calorimeter Electronics Jim Pilcher  

E-Print Network (OSTI)

photons to electrical signal Photons from Cerenkov radiation or scintillation Amplify the number diverse device Many sizes and shapes Much experience from years of usage and development Wide range. Pilcher9 The Physics of PMTs Design principle Amplification by electron acceleration in electric field

243

Thermal imaging diagnostics of high-current electron beams  

SciTech Connect

The thermal imaging diagnostics of measuring pulsed electron beam energy density is presented. It provides control of the electron energy spectrum and a measure of the density distribution of the electron beam cross section, the spatial distribution of electrons with energies in the selected range, and the total energy of the electron beam. The diagnostics is based on the thermal imager registration of the imaging electron beam thermal print in a material with low bulk density and low thermal conductivity. Testing of the thermal imaging diagnostics has been conducted on a pulsed electron accelerator TEU-500. The energy of the electrons was 300-500 keV, the density of the electron current was 0.1-0.4 kA/cm{sup 2}, the duration of the pulse (at half-height) was 60 ns, and the energy in the pulse was up to 100 J. To register the thermal print, a thermal imager Fluke-Ti10 was used. Testing showed that the sensitivity of a typical thermal imager provides the registration of a pulsed electron beam heat pattern within one pulse with energy density over 0.1 J/cm{sup 2} (or with current density over 10 A/cm{sup 2}, pulse duration of 60 ns and electron energy of 400 keV) with the spatial resolution of 0.9-1 mm. In contrast to the method of using radiosensitive (dosimetric) materials, thermal imaging diagnostics does not require either expensive consumables, or plenty of processing time.

Pushkarev, A.; Kholodnaya, G.; Sazonov, R.; Ponomarev, D. [Tomsk Polytechnic University, 30 Lenin Ave., Tomsk, 634050 (Russian Federation)

2012-10-15T23:59:59.000Z

244

Trapped electron losses by interactions with coherent VLF waves  

SciTech Connect

VLF whistler waves from lightning enter the magnetosphere and cause the precipitation of energetic trapped electrons by pitch angle scattering. These events, known as Lightning-induced Electron Precipitation (LEP) have been detected by satellite and rocket instruments and by perturbations of VLF waves traveling in the earth-ionosphere waveguide. Detailed comparison of precipitating electron energy spectra and time dependence are in general agreement with calculations of trapped electron interactions with ducted whistler waves. In particular the temporal structure of the precipitation and the dynamic energy spectra of the electrons confirm this interpretation of the phenomena. There are discrepancies between observed and measured electron flux intensities and pitch angle distributions, but these quantities are sensitive to unknown wave intensities and trapped particle fluxes near the loss cone angle. The overall effect of lightning generated VLF waves on the lifetime of trapped electrons is still uncertain. The flux of electrons deflected into the bounce loss cone by a discrete whistler wave has been measured in a few cases. However, the area of the precipitation region is not known, and thus the total number of electrons lost in an LEP event can only be estimated. While the LEP events are dramatic, more important effects on trapped electrons may arise from the small but numerous deflections which increase the pitch angle diffusion rate of the electron population. {copyright} {ital 1996 American Institute of Physics.}

Walt, M.; Inan, U.S. [Space, Telecommunications and Radioscience Laboratory, Stanford University, Stanford, California (United States); Voss, H.D. [Lockheed Missiles and Space Co. (United States)

1996-07-01T23:59:59.000Z

245

Energy Storage & Power Electronics 2008 Peer Review - Power Electronics  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

& Power Electronics 2008 Peer Review - Power & Power Electronics 2008 Peer Review - Power Electronics (PE) Systems Presentations Energy Storage & Power Electronics 2008 Peer Review - Power Electronics (PE) Systems Presentations The 2008 Peer Review Meeting for the DOE Energy Storage and Power Electronics Program (ESPE) was held in Washington DC on Sept. 29-30, 2008. Current and completed program projects were presented and reviewed by a group of industry professionals. The 2008 agenda was composed of 28 projects that covered a broad range of new and ongoing, state-of-the-art, energy storage and power electronics technologies, including updates on the collaborations among DOE/ESPE, CEC in California, and NYSERDA in New York. Power Electronics (PE) Systems presentations are available below. ESPE 2008 Peer Review - High Power Density Silicon Carbide Power Electronic

246

Electron beam accelerator with magnetic pulse compression and accelerator switching  

DOE Patents (OSTI)

An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially 0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.

Birx, Daniel L. (Brentwood, CA); Reginato, Louis L. (Orinda, CA)

1987-01-01T23:59:59.000Z

247

Electron beam accelerator with magnetic pulse compression and accelerator switching  

DOE Patents (OSTI)

An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .gtoreq.0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.

Birx, Daniel L. (Brentwood, CA); Reginato, Louis L. (Orinda, CA)

1988-01-01T23:59:59.000Z

248

Electron beam accelerator with magnetic pulse compression and accelerator switching  

DOE Patents (OSTI)

An electron beam accelerator is described comprising an electron beam generator-injector to produce a focused beam of greater than or equal to .1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electron by about .1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .1-1 MeV maximum energy over a time duration of less than or equal to 1 ..mu..sec.

Birx, D.L.; Reginato, L.L.

1984-03-22T23:59:59.000Z

249

Synchronization of sub-picosecond electron and laser pulses  

SciTech Connect

Sub-picosecond laser-electron synchronization is required to take full advantage of the experimental possibilities arising from the marriage of modern high intensity lasers and high brightness electron beams in the same laboratory. Two particular scenarios stand out in this regard, injection of ultra-short electron pulses in short wavelength laser-driven plasma accelerators, and Compton scattering of laser photons from short electron pulses. Both of these applications demand synchronization, which is sub-picosecond, with tens of femtosecond synchronization implied for next generation experiments. The design of a microwave timing modulator system is now being investigated in more detail. (AIP) {copyright} {ital 1999 American Institute of Physics.}

Rosenzweig, J.B. [UCLA Department of Physics and Astronomy, 405 Hilgard Ave., Los Angeles, California 90095 (United States); Le Sage, G.P. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States)

1999-07-01T23:59:59.000Z

250

Synchronization of sub-picosecond electron and laser pulses  

SciTech Connect

Sub-picosecond laser-electron synchronization is required to take full advantage of the experimental possibilities arising from the marriage of modern high intensity lasers and high brightness electron beams in the same laboratory. Two particular scenarios stand out in this regard, injection of ultra-short electron pulses in short wavelength laser-driven plasma accelerators, and Compton scattering of laser photons from short electron pulses. Both of these applications demand synchronization, which is sub-picosecond, with tens of femtosecond synchronization implied for next generation experiments. The design of a microwave timing modulator system is now being investigated in more detail.

Rosenzweig, J. B.; Le Sage, G. P. [UCLA Department of Physics and Astronomy, 405 Hilgard Ave., Los Angeles, California 90095 (United States); Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States)

1999-07-12T23:59:59.000Z

251

Compiling for time predictability  

Science Conference Proceedings (OSTI)

Within the T-CREST project we work on hardware/software architectures and code-generation strategies for time-predictable embedded and cyber-physical systems. In this paper we present the single-path code generation approach that we plan to explore and ... Keywords: compilers, real-time systems, time predictability, worst-case execution-time analysis

Peter Puschner; Raimund Kirner; Benedikt Huber; Daniel Prokesch

2012-09-01T23:59:59.000Z

252

Certifying execution time  

Science Conference Proceedings (OSTI)

In this paper we present the framework Abstraction-Carrying CodE Platform for Timing validation (ACCEPT), designed for timing analysis of embedded real-time systems using the worst-case execution time (WCET) as the safety parameter. In the context ...

Vtor Rodrigues; Joo Pedro Pedroso; Mrio Florido; Simo Melo de Sousa

2011-05-01T23:59:59.000Z

253

Control vector optimal structure for minimal-time networks optimization  

Science Conference Proceedings (OSTI)

The methodology for the electronic networks optimization was elaborated by means of the optimal control theory approach. In this case the problem of the electronic system design is formulated as a classical problem of functional minimization of the optimal ... Keywords: Lyapunov function, circuit optimization, control theory application, minimal-time system design

Alexander Zemliak; Miguel Torres; Antonio Michua

2010-01-01T23:59:59.000Z

254

Tests of timing properties of silicon photomultipliers  

Science Conference Proceedings (OSTI)

Timing measurements of Silicon Photomultipliers (SiPM) [1] and [2] at the picosecond level were performed at Fermilab. The core timing resolution of the electronic measurement technique is approximately 2 ps. The single photoelectron time resolution (SPTR) was measured for the signals coming from the SiPM's. A SPTR of about one hundred picoseconds was obtained for SiPM's illuminated by laser pulses. The dependence of the SPTR on applied bias voltage and on the wavelength of the light was measured. A simple model is proposed to explain the difference in the SPTR for blue and red light. A time of flight system based on the SiPM's, with quartz Cherenkov radiators, was tested in a proton beam at Fermilab. The time resolution obtained is 35 ps per SiPM. Finally, requirements for the SiPM's temperature and bias voltage stability to maintain the time resolution are discussed.

Ronzhin, A.; Albrow, M.; /Fermilab; Byrum, K.; /Argonne; Demarteau, M.; Los, S.; /Fermilab; May, E.; /Argonne; Ramberg, A.; /Fermilab; Va'vra, J.; /SLAC; Zatserklyaniy, A.; /Puerto Rico U., Mayaguez

2010-03-01T23:59:59.000Z

255

Design of the AGS Booster Beam Position Monitor electronics  

SciTech Connect

The operational requirements of the AGS Booster Beam Position Monitor system necessitate the use of electronics with wide dynamic range and broad instantaneous bandwidth. Bunch synchronization is provided by a remote timing sequencer coupled to the local ring electronics via digital fiber-optic links. The Sequencer and local ring circuitry work together to provide single turn trajectory or average orbit and intensity information, integrated over 1 to 225 bunches. Test capabilities are built in for the purpose of enhancing BPM system accuracy. This paper describes the design of the Booster Beam Position Monitor electronics, and presents performance details of the front end processing, acquisition and timing circuitry.

Ciardullo, D.J.; Smith, G.A.; Beadle, E.R.

1991-01-01T23:59:59.000Z

256

Design of the AGS Booster Beam Position Monitor electronics  

SciTech Connect

The operational requirements of the AGS Booster Beam Position Monitor system necessitate the use of electronics with wide dynamic range and broad instantaneous bandwidth. Bunch synchronization is provided by a remote timing sequencer coupled to the local ring electronics via digital fiber-optic links. The Sequencer and local ring circuitry work together to provide single turn trajectory or average orbit and intensity information, integrated over 1 to 225 bunches. Test capabilities are built in for the purpose of enhancing BPM system accuracy. This paper describes the design of the Booster Beam Position Monitor electronics, and presents performance details of the front end processing, acquisition and timing circuitry.

Ciardullo, D.J.; Smith, G.A.; Beadle, E.R.

1991-12-31T23:59:59.000Z

257

Electronics & Telecommunications Programs/Projects in PML  

Science Conference Proceedings (OSTI)

Electronics & Telecommunications Programs/Projects in PML. ... Electric Power Metrology and the Smart Grid. Electronic Kilogram. ...

2010-10-05T23:59:59.000Z

258

Energy Sharing in the 2-Electron Attosecond Streak Camera  

E-Print Network (OSTI)

Using the recently developed concept of the 2-electron streak camera (see NJP 12, 103024 (2010)), we have studied the energy-sharing between the two ionizing electrons in single-photon double ionization of He(1s2s). We find that the most symmetric and asymmetric energy sharings correspond to different ionization dynamics with the ion's Coulomb potential significantly influencing the latter. This different dynamics for the two extreme energy sharings gives rise to different patterns in asymptotic observables and different time-delays between the emission of the two electrons. We show that the 2-electron streak camera resolves the time-delays between the emission of the two electrons for different energy sharings.

Price, H; Emmanouilidou, A

2011-01-01T23:59:59.000Z

259

New Real-Time Quantum Efficiency Measurement System: Preprint  

DOE Green Energy (OSTI)

This paper describes a newly developed technique for measuring the quantum eficiiency in solar cells in real-time using a unique, electronically controlled, full-spectrum light source.

Young, D. L.; Egaas, B.; Pinegar, S.; Stradins, P.

2008-05-01T23:59:59.000Z

260

The 8 requirements of real-time stream processing  

Science Conference Proceedings (OSTI)

Applications that require real-time processing of high-volume data steams are pushing the limits of traditional data processing infrastructures. These stream-based applications include market feed processing and electronic trading on Wall Street, network ...

Michael Stonebraker; U?ur etintemel; Stan Zdonik

2005-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "time m-f electronic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Electron Microscopy Center  

NLE Websites -- All DOE Office Websites (Extended Search)

SAMM SAMM EMC Home Overview Personnel Resources Highlights Publications Visit EMC Contact Info Information for Users Instrument Calendars Info for EMC Staff SÅMM Facility TEAM Project Microscopy Links Argonne Facilities DOE/BES Facilities DOE/BES BES Electron Beam Microcharacterization Centers Sub-Ångstrom Microscopy and Microanalysis Facility In order to meet the scientific challenges of the future, the EMC has built a new state-of-the-art laboratory space for advanced electron microscopy. The new building has been designed to provide next- generation science with an operating environment that cannot be attained by renovating existing facilities. The EMC staff learned as much as possible from similar efforts around the world, including the SuperSTEM building at Daresbury, the Triebenberg Special Laboratory, the AML at Oak Ridge National Laboratory, the new NIST building, and various facilities for nanoscience.

262

Electron-doping  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron-doping Electron-doping evolution of the low-energy spin excitations in the iron arsenide superconductor BaFe 2-x Ni x As 2 Miaoyin Wang, 1 Huiqian Luo, 2 Jun Zhao, 1 Chenglin Zhang, 1 Meng Wang, 2,1 Karol Marty, 3 Songxue Chi, 4 Jeffrey W. Lynn, 4 Astrid Schneidewind, 5,6 Shiliang Li, 2, * and Pengcheng Dai 1,2,3,† 1 Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996-1200, USA 2 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, China 3 Neutron Scattering Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6393, USA 4 NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA 5 Gemeinsame Forschergruppe HZB, Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109

263

Electron Microscopy Center  

NLE Websites -- All DOE Office Websites (Extended Search)

An Office of Science User Facility An Office of Science User Facility The Electron Microscopy Center (EMC) at Argonne National Laboratory develops and maintains unique capabilities for electron beam characterization and applies those capabilities to solve materials problems. The EMC staff carry out research with collaborators and users from Argonne, universities, and other laboratories. The expertise and facilities of the EMC additionally serve a group of national and international researchers. The EMC emphasizes three major areas: materials research, technique and instrumentation development, and operation as a national research facility. Research by EMC personnel includes microscopy based studies in high Tc superconducting materials, irradiation effects in metals and semiconductors, phase transformations, and processing related structure and chemistry of interfaces in thin films.

264

Electronics for Satellite Experiments  

SciTech Connect

The tracking detector for the LAT science instrument on the GLAST mission is an example of a large-scale particle detection system built primarily by particle physicists for space flight within the context of a NASA program. The design and fabrication model in most ways reflected practice and experience from particle physics, but the quality assurance aspects were guided by NASA. Similarly, most of the electronics in the LAT as a whole were designed and built by staff at a particle physics lab. This paper reports on many of the challenges and lessons learned in the experience of designing and building the tracking detector and general LAT electronics for use in the NASA GLAST mission.

Johnson, Robert P.; /UC, Santa Cruz

2006-05-16T23:59:59.000Z

265

Electronic Compact Fluorescent Lamps  

Science Conference Proceedings (OSTI)

This EPRI Technical Update addresses the fastest growing energy efficient light source the electronic compact fluorescent lamp (CFL). Business and technical market factors (Chapter 2) explain the past and future growth of the CFL market while emphasizing future technical improvements along with discussion of the importance of utility involvement in helping their customers make the switch from incandescent lamps to CFLs. The basic CFL technology is covered in Chapter 3 including test results for selected ...

2007-12-18T23:59:59.000Z

266

Relativistic electron beam device  

DOE Patents (OSTI)

A design is given for an electron beam device for irradiating spherical hydrogen isotope bearing targets. The accelerator, which includes hollow cathodes facing each other, injects an anode plasma between the cathodes and produces an approximately 10 nanosecond, megajoule pulse between the anode plasma and the cathodes. Targets may be repetitively positioned within the plasma between the cathodes, and accelerator diode arrangement permits materials to survive operation in a fusion power source. (auth)

Freeman, J.R.; Poukey, J.W.; Shope, S.L.; Yonas, G.

1975-07-01T23:59:59.000Z

267

Xyce parallel electronic simulator.  

Science Conference Proceedings (OSTI)

This document is a reference guide to the Xyce Parallel Electronic Simulator, and is a companion document to the Xyce Users' Guide. The focus of this document is (to the extent possible) exhaustively list device parameters, solver options, parser options, and other usage details of Xyce. This document is not intended to be a tutorial. Users who are new to circuit simulation are better served by the Xyce Users' Guide.

Keiter, Eric Richard; Mei, Ting; Russo, Thomas V.; Rankin, Eric Lamont; Schiek, Richard Louis; Thornquist, Heidi K.; Fixel, Deborah A.; Coffey, Todd Stirling; Pawlowski, Roger Patrick; Santarelli, Keith R.

2010-05-01T23:59:59.000Z

268

Electron Microscopy Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Training Training EMC Home Overview Personnel Resources Highlights Publications Visit EMC Contact Info Information for Users Becoming a User Submit a Proposal End-of-Proposal Report Acknowledgment User Training User Safety User Status Instrument Access User Committee User Meetings Data Storage Policy Visiting the EMC Instrument Calendars Info for EMC Staff SÅMM Facility TEAM Project Microscopy Links Argonne Facilities DOE/BES Facilities DOE/BES BES Electron Beam Microcharacterization Centers User Training Prior Training in Electron Microscopy: People who wish to operate TEMs must have at least one college-level course in TEM with a lab component or previous TEM experience. The college course can't be one in which TEM was just one of many topics. For researchers who lack academic training and/or practical experience in electron microscopy, we suggest the short courses in TEM at the Hooke College of Applied Sciences, and the hands-on TEM courses at Northwestern University or the University of Chicago or Northern Illinois University.

269

Electron Microscopy Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview Overview The mission of the Electron Microscopy Center (EMC) is to: Conduct materials research using advanced microstructural characterization methods; Maintain unique resources and facilities for scientific research for the both the Argonne National Laboratory and national scientific community. Develop and expand the frontiers of microanalysis by fostering the evolution of synergistic state-of-the-art resources in instrumentation, techniques and scientific expertise; The staff members of the EMC carry out their own research as well as participate in collaborative programs with other scientists at Argonne National Laboratory as well as researchers, educators and students worldwide. The Electron Microscopy Center (EMC) at Argonne National Laboratory develops and maintains unique capabilities for electron beam characterization and applies those capabilities to solve materials problems. The EMC staff perform collaborative research with members of other Divisions at Argonne National Laboratory and with collaborators from universities and other laboratories. The expertise and facilities of the EMC additionally serve a group of national and international researchers. The EMC emphasizes three major areas: materials research, technique and instrumentation development, and operation as a national research facility. Research by EMC personnel includes microscopy based studies in high Tc superconducting materials, irradiation effects in metals and semiconductors, phase transformations, and processing related structure and chemistry of interfaces in thin films.

270

Time-Resolved  

NLE Websites -- All DOE Office Websites (Extended Search)

Time-Resolved Time-Resolved Time-Resolved Print Of the four fundamental parameters that we use to perceive the physical world (energy, momentum, position, and time) three correspond to the three broad categories of synchrotron experimental measurement techniques: spectroscopy (energy), scattering (momentum), and imaging (position). The fourth parameter-time-can in principle be applied to all the techniques. At the ALS, many experiments can be carried out in real time, with data being recorded from the same sample as it changes over time. Some time-resolved experiments take advantage of the pulsed nature of the ALS's synchrotron radiation, which, like a strobe light, can capture a series of "snapshots" of a process that, when viewed sequentially, show us how a given process evolves over time. Other experiments simply require two pulses: one to "pump" energy into the sample system and a second to probe the system's excited state.

271

Sudden, "Step" Electron Capture by Conjugated Polymers  

NLE Websites -- All DOE Office Websites (Extended Search)

Sudden, "Step" Electron Capture by Conjugated Polymers Sudden, "Step" Electron Capture by Conjugated Polymers Andrew R. Cook, Paiboon Sreearunothai, Sadayuki Asaoka and John R. Miller J. Phys. Chem. A 115, 11615-11623 (2011). [Find paper at ACS Publications] Abstract: Data showing significant time-resolution-limited "step" capture of electrons following radiolysis by 7 - 10 ps electron pulses in a series of different length and different concentration conjugated polyfluorene polymers in tetrahydrofuran (THF) are presented. At the highest concentration, ~48 mM in repeat units for lengths from 20 to 133 fluorenes, ~30% of the electrons formed during pulse radiolysis were captured in the step, with a constant efficiency per repeat unit. Step capture per repeat unit (q = 6.9 M-1) is 60% of the presolvated electron capture efficiency

272

Organizational Assimilation of Electronic Procurement Innovations  

Science Conference Proceedings (OSTI)

We investigate the assimilation of electronic procurement innovations (EPIs) and its impact on procurement productivity in buyer organizations. We identify online reverse auctions, electronic catalog management, electronic order fulfillment, and electronic ... Keywords: Electronic Procurement Innovations, It Assimilation, Productivity, Structuration Theory

Arun Rai; Paul Brown; Xinlin Tang

2009-07-01T23:59:59.000Z

273

Single electron beam rf feedback free electron laser  

DOE Patents (OSTI)

A free electron laser system and electron beam system for a free electron laser which uses rf feedback to enhance efficiency are described. Rf energy is extracted from a single electron beam by decelerating cavities and energy is returned to accelerating cavities using rf returns, such as rf waveguides, rf feedthroughs, resonant feedthroughs, etc. This rf energy is added to rf klystron energy to reduce the required input energy and thereby enhance energy efficiency of the system.

Brau, C.A.; Stein, W.E.; Rockwood, S.D.

1981-02-11T23:59:59.000Z

274

Simulation study of electron response amplification in coherent electron cooling  

Science Conference Proceedings (OSTI)

In Coherent Electron Cooling (CEC), it is essential to study the amplification of electron response to a single ion in the FEL process, in order to proper align the electron beam and the ion beam in the kicker to maximize the cooling effect. In this paper, we use Genesis to simulate the amplified electron beam response of single ion in FEL amplification process, which acts as Green's function of the FEL amplifier.

Hao Y.; Litvinenko, V.N.

2012-05-20T23:59:59.000Z

275

Sawtooth oscillations in the flux of runaway electrons to the PLT limiter  

SciTech Connect

Increased fluxes of runaway electrons at the PLT limiter are observed in the few milliseconds following internal disruptions. These fluxes have an inverted (outside) sawtooth character. The time for the flux to reach a maximum after the disruption has been studied as a function of the plasma parameters for thousands of PLT discharges. One interpretation is that this delay represents the time for a perturbation to the runaway electron population to travel from the q = 1 region to the plasma boundary. These times are approx. 10/sup -1/ of the electron thermal confinement times and increase with the plasma electron density.

Barnes, C.W.; Strachan, J.D.

1982-03-01T23:59:59.000Z

276

RHIC | Electron-Ion Collider  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron-Ion Collider A breakthrough particle accelerator could collide electrons with heavy ions or protons at nearly the speed of light to create rapid-fire, high-resolution...

277

Managing time, part 2  

Science Conference Proceedings (OSTI)

Masterful time management means not just tracking of messages in your personal environment, but managing your coordination network with others.

Peter J. Denning; Ritu Raj

2011-09-01T23:59:59.000Z

278

FREQUENCY AND TIME  

Science Conference Proceedings (OSTI)

... STRATWARM observed and FLARES expected ... observed and PROTON FLARE expected (- - ) STRATWARM ... time of observed solar or geophysical ...

2003-01-30T23:59:59.000Z

279

QuickTime VR  

Science Conference Proceedings (OSTI)

QuickTime VR. Christine Piatko and Sandy Ressler. ... Sandy Ressler's Office. Plant Floor of Black & Decker in Fayetteville NC. ...

280

Timed Property Sequence Chart  

Science Conference Proceedings (OSTI)

Property Sequence Chart (PSC) is a novel scenario-based notation, which has been recently proposed to represent temporal properties of concurrent systems. This language balances expressive power and simplicity of use. However, the current version of ... Keywords: Property Sequence Chart, Real-time specification patterns, Timed Property Sequence Chart, Timing properties

Pengcheng Zhang; Bixin Li; Lars Grunske

2010-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "time m-f electronic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Noncommutative Two Time Physics  

E-Print Network (OSTI)

We present a classical formalism describing two-time physics with Abelian canonical gauge field backgrounds. The formalism can be used as a starting point for the construction of an interacting quantized two-time physics theory in a noncommutative soace-time.

W. Chagas-Filho

2006-04-03T23:59:59.000Z

282

Synchronization of Sub-Picosecond Electron and Laser Pulses  

SciTech Connect

Sub-picosecond laser-electron synchronization is required to take full advantage of the experimental possibilities arising from the marriage of modern high intensity lasers and high brightness electron beams in the same laboratory. Two particular scenarios stand out in this regard, injection of ultra-short electron pulses in short wavelength laser-driven plasma accelerators, and Compton scattering of laser photons from short electron pulses. Both of these applications demand synchronization, which is subpicosecond, with tens of femtosecond synchronization implied for next-generation experiments. Typically, an RF electron accelerator is synchronized to a short pulse laser system by detecting the repetition signal of a laser oscillator, adjusted to an exact subharmonic of the linac RF frequency, and multiplying or phase locking this signal to produce the master RF clock. Pulse-to-pulse jitter characteristic of self-mode-locked laser oscillators represents a direct contribution to the ultimate timing jitter between a high intensity laser focus and electron beam at the interaction point, or a photocathode drive laser in an RF photoinjector. This timing jitter problem has been addressed most seriously in the context of the RF photoinjector, where the electron beam properties are sensitive functions of relative timing jitter. The timing jitter achieved in synchronized photocathode drive laser systems is near, or slightly below one picosecond. The ultimate time of arrival jitter of the beam at the photoinjector exit is typically a bit smaller than the photocathode drive-laser jitter due to velocity compression effects in the first RF cell of the gun. This tendency of the timing of the electron beam arrival at a given spatial point to lock to the RF lock is strongly reinforced by use of magnetic compression.

Rosenzweig, J.B.; Le Sage G.P.

2000-08-15T23:59:59.000Z

283

Infrastructure for Integrated Electronics Design & ...  

Science Conference Proceedings (OSTI)

Infrastructure for Integrated Electronics Design & Manufacturing (IIEDM) Project. ... designed to support distributed supply chain integration and e ...

2010-11-05T23:59:59.000Z

284

Scanning Confocal Electron Microscope (SCEM)  

Transmission/Scanning Transmission Electron Microscope. The SCEM enables imaging of sub-surface structures of thick, optically opaque materials, ...

285

Rf Feedback free electron laser  

DOE Patents (OSTI)

A free electron laser system and electron beam system for a free electron laser which use rf feedback to enhance efficiency. Rf energy is extracted from an electron beam by decelerating cavities and returned to accelerating cavities using rf returns such as rf waveguides, rf feedthroughs, etc. This rf energy is added to rf klystron energy to lower the required input energy and thereby enhance energy efficiency of the system.

Brau, Charles A. (Los Alamos, NM); Swenson, Donald A. (Los Alamos, NM); Boyd, Jr., Thomas J. (Los Alamos, NM)

1981-01-01T23:59:59.000Z

286

Advanced Developments in Electron Microscopy  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, Materials Science & Technology 2011. Symposium, Advanced Developments in Electron Microscopy. Sponsorship, MS&T...

287

Rf feedback free electron laser  

DOE Patents (OSTI)

A free electron laser system and electron beam system for a free electron laser are provided which use rf feedback to enhance efficiency. Rf energy is extracted from an electron beam by decelerating cavities and returned to accelerating cavities using rf returns such as rf waveguides, rf feedthroughs, etc. This rf energy is added to rf klystron energy to lower the required input energy and thereby enhance energy efficiency of the system.

Brau, C.A.; Swenson, D.A.; Boyd, T.J. Jr.

1979-11-02T23:59:59.000Z

288

Electronics & Telecommunications Programs and Projects  

Science Conference Proceedings (OSTI)

... nanostructured materials. In the phenomenon more. Electronic Kilogram Last Updated Date: 06/25/2013 This project ...

2010-09-20T23:59:59.000Z

289

Opening Remarks: Electronic Book Conference  

Science Conference Proceedings (OSTI)

... no consensus standards for electronic publishing formats, security, and retrieval. ... The Information Technology Laboratory is willing to work with the ...

2010-10-05T23:59:59.000Z

290

Electronic Materials: Books/Articles  

Science Conference Proceedings (OSTI)

FORUMS > ELECTRONIC MATERIALS: BOOKS/ARTICLES, Replies, Views, Originator, Last Post. Search Category: [ advanced search ]. rss feed. Spacer

291

Transmission electron microscope CCD camera  

DOE Patents (OSTI)

In order to improve the performance of a CCD camera on a high voltage electron microscope, an electron decelerator is inserted between the microscope column and the CCD. This arrangement optimizes the interaction of the electron beam with the scintillator of the CCD camera while retaining optimization of the microscope optics and of the interaction of the beam with the specimen. Changing the electron beam energy between the specimen and camera allows both to be optimized.

Downing, Kenneth H. (Lafayette, CA)

1999-01-01T23:59:59.000Z

292

Automated Electron Microscopy Film Scanner  

Renewable Energy; Environmental Technologies. ... film meets high performance specifications at higher electron energies while digital cameras do not; ...

293

Security Aspects of Electronic Voting  

Science Conference Proceedings (OSTI)

Security Aspects of Electronic Voting. Summary: The Help America Vote Act (HAVA) of 2002 was passed by Congress to ...

2013-08-01T23:59:59.000Z

294

High accuracy electronic material level sensor  

DOE Patents (OSTI)

The High Accuracy Electronic Material Level Sensor (electronic dipstick) is a sensor based on time domain reflectometry (TDR) of very short electrical pulses. Pulses are propagated along a transmission line or guide wire that is partially immersed in the material being measured; a launcher plate is positioned at the beginning of the guide wire. Reflected pulses are produced at the material interface due to the change in dielectric constant. The time difference of the reflections at the launcher plate and at the material interface are used to determine the material level. Improved performance is obtained by the incorporation of: 1) a high accuracy time base that is referenced to a quartz crystal, 2) an ultrawideband directional sampler to allow operation without an interconnect cable between the electronics module and the guide wire, 3) constant fraction discriminators (CFDs) that allow accurate measurements regardless of material dielectric constants, and reduce or eliminate errors induced by triple-transit or "ghost" reflections on the interconnect cable. These improvements make the dipstick accurate to better than 0.1%.

McEwan, Thomas E. (Livermore, CA)

1997-01-01T23:59:59.000Z

295

Characterization of electron cyclotron resonance hydrogen plasmas  

DOE Green Energy (OSTI)

Electron cyclotron resonance (ECR) plasmas yield low energy and high ion density plasmas. The characteristics downstream of an ECR hydrogen plasma were investigated as a function of microwave power and magnetic field. A fast-injection Langmuir probe and a carbon resistance probe were used to determine plasma potential (V{sub p}), electron density (N{sub e}), electron temperature (T{sub e}), ion energy (T{sub i}), and ion fluence. Langmuir probe results showed that at 17 cm downstream from the ECR chamber the plasma characteristics are approximately constant across the center 7 cm of the plasma for 50 Watts of absorbed power. These results gave V{sub p} = 30 {plus minus} 5 eV, N{sub e} = 1 {times} 10{sup 8} cm{sup {minus}3}, and T{sub e} = 10--13 eV. In good agreement with the Langmuir probe results, carbon resistance probes have shown that T{sub i} {le} 50 eV. Also, based on hydrogen chemical sputtering of carbon, the hydrogen (ion and energetic neutrals) fluence rate was determined to be 1 {times} 10{sup 16}/cm{sup 2}-sec. at a pressure of 1 {times} 10{sup {minus}4} Torr and for 50 Watts of absorbed power. 19 refs.

Outten, C.A. (Michigan Univ., Ann Arbor, MI (USA). Dept. of Nuclear Engineering); Barbour, J.C.; Wampler, W.R. (Sandia National Labs., Albuquerque, NM (USA))

1990-01-01T23:59:59.000Z

296

Characterization of electron cyclotron resonance hydrogen plasmas  

DOE Green Energy (OSTI)

Electron cyclotron resonance (ECR) plasmas yield low energy and high ion density plasmas. The characteristics downstream of an ECR hydrogen plasma were investigated as a function of microwave power and magnetic field. A fast-injection Langmuir probe and a carbon resistance probe were used to determine plasma potential ({ital V}{sub {ital p}} ), electron density ({ital N}{sub {ital e}} ), electron temperature ({ital T}{sub {ital e}} ), ion energy ({ital T}{sub {ital i}}), and ion fluence. Langmuir probe results showed that, at 17 cm downstream from the ECR chamber, the plasma characteristics are approximately constant across the center 7 cm of the plasma, for 50 W of absorbed power. These results gave {ital V}{sub {ital p}} =30{plus minus}5 eV, {ital N}{sub {ital e}} =1{times}10{sup 8} cm{sup {minus}3}, and {ital T}{sub {ital e}} =10--13 eV. In good agreement with the Langmuir probe results, carbon resistance probes have shown that {ital T}{sub {ital i}}{le}50 eV. Also, based on hydrogen chemical sputtering of carbon, the hydrogen (ion and energetic neutrals) fluence rate was determined to be 1{times}10{sup 16} /cm{sup 2} s at a pressure of 1{times}10{sup {minus}4} Torr and for 50 W of absorbed power.

Outten, C.A. (Department of Nuclear Engineering, University of Michigan, Ann Arbor, Michigan 48109 (USA)); Barbour, J.C.; Wampler, W.R. (Sandia National Laboratories, Albuquerque, New Mexico 87185 (USA))

1991-05-01T23:59:59.000Z

297

Computing and Electronics Computer Technology  

E-Print Network (OSTI)

Computing and Electronics Technology Computer Technology NetworkManagementoption InformationSystemsManagementoption Computer System Technician Electronics Technology Energy Technology ace.cte.umt.edu www.cte.umt.edu Department of Applied Computing and Electronics Chair: Tom Gallagher Phone: 406.243.7814 Email: Thomas

Crone, Elizabeth

298

Quantum Operation Time Reversal  

E-Print Network (OSTI)

The dynamics of an open quantum system can be described by a quantum operation, a linear, complete positive map of operators. Here, I exhibit a compact expression for the time reversal of a quantum operation, which is closely analogous to the time reversal of a classical Markov transition matrix. Since open quantum dynamics are stochastic, and not, in general, deterministic, the time reversal is not, in general, an inversion of the dynamics. Rather, the system relaxes towards equilibrium in both the forward and reverse time directions. The probability of a quantum trajectory and the conjugate, time reversed trajectory are related by the heat exchanged with the environment.

Crooks, Gavin E

2007-01-01T23:59:59.000Z

299

Quantum Operation Time Reversal  

E-Print Network (OSTI)

The dynamics of an open quantum system can be described by a quantum operation, a linear, complete positive map of operators. Here, I exhibit a compact expression for the time reversal of a quantum operation, which is closely analogous to the time reversal of a classical Markov transition matrix. Since open quantum dynamics are stochastic, and not, in general, deterministic, the time reversal is not, in general, an inversion of the dynamics. Rather, the system relaxes towards equilibrium in both the forward and reverse time directions. The probability of a quantum trajectory and the conjugate, time reversed trajectory are related by the heat exchanged with the environment.

Gavin E. Crooks

2007-06-26T23:59:59.000Z

300

High Availability Electronics Standards  

Science Conference Proceedings (OSTI)

Availability modeling of the proposed International Linear Collider (ILC) predicts unacceptably low uptime with current electronics systems designs. High Availability (HA) analysis is being used as a guideline for all major machine systems including sources, utilities, cryogenics, magnets, power supplies, instrumentation and controls. R&D teams are seeking to achieve total machine high availability with nominal impact on system cost. The focus of this paper is the investigation of commercial standard HA architectures and packaging for Accelerator Controls and Instrumentation. Application of HA design principles to power systems and detector instrumentation are also discussed.

Larsen, R.S.; /SLAC

2006-12-13T23:59:59.000Z

Note: This page contains sample records for the topic "time m-f electronic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Getting the Point: Real-Time Monitoring of Atomic-Microscope ...  

Science Conference Proceedings (OSTI)

... done with atomic force microscopy (AFM). ... small scales, so researchers use atomic force microscopes. ... of the tip with an electron microscope, a time ...

2012-10-15T23:59:59.000Z

302

Vehicle Technologies Office: Power Electronics  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Electronics Power Electronics The power electronics activity focuses on research and development (R&D) for flexible, integrated, modular power electronics for power conditioning and control, including a power switch stage capable of running a variety of motors and loads. Efforts are underway to reduce overall system costs for these vehicles through the elimination of additional cooling loops to keep the power electronics within their safe operation ranges. These challenges are being met within the program through research in: Silicon carbide and Gallium Nitride semiconductors, which can be operated at much higher temperatures than current silicon semiconductors; Packaging innovations for higher temperature operation; Improved thermal control technologies; and

303

Split-illumination electron holography  

Science Conference Proceedings (OSTI)

We developed a split-illumination electron holography that uses an electron biprism in the illuminating system and two biprisms (applicable to one biprism) in the imaging system, enabling holographic interference micrographs of regions far from the sample edge to be obtained. Using a condenser biprism, we split an electron wave into two coherent electron waves: one wave is to illuminate an observation area far from the sample edge in the sample plane and the other wave to pass through a vacuum space outside the sample. The split-illumination holography has the potential to greatly expand the breadth of applications of electron holography.

Tanigaki, Toshiaki; Aizawa, Shinji; Suzuki, Takahiro; Park, Hyun Soon [Advanced Science Institute, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Inada, Yoshikatsu [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Sendai 980-8577 (Japan); Matsuda, Tsuyoshi [Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Taniyama, Akira [Corporate Research and Development Laboratories, Sumitomo Metal Industries, Ltd., Amagasaki, Hyogo 660-0891 (Japan); Shindo, Daisuke [Advanced Science Institute, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Sendai 980-8577 (Japan); Tonomura, Akira [Advanced Science Institute, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Okinawa Institute of Science and Technology, Graduate University, Onna-son, Okinawa 904-0495 (Japan); Central Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350-0395 (Japan)

2012-07-23T23:59:59.000Z

304

Sensors, Electronics & Instrumentation  

NLE Websites -- All DOE Office Websites (Extended Search)

System For Real-Time Elemental Analysis Negotiable Licensing MiniMAX: a compact, portable x-ray system for field inspection Express Licensing Radial-radial single rotor turbine...

305

Electron Microscopy Center  

NLE Websites -- All DOE Office Websites (Extended Search)

General Information for EMC Users General Information for EMC Users The Electron Microscopy Center (EMC) is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory. It is one of three scientific user facilities for electron beam microcharacterization and one of several National User Facilities located at Argonne National Laboratory. As a scientific user facility, the EMC supports user-accessible instruments (Resources) for high spatial resolution microanalysis, field imaging, nanoscale structural characterization, nanoscale fabrication and manipulation, and unique in situ studies of materials under the influence of ion-beam irradiation. These capabilities are used in a diverse variety of research areas to address grand challenge scientific questions encompassing, for example, energy-related studies, biology, astrophysics, archaeology, superconductivity, nanotechnology, environmental engineering, tribology, and ferroelectricity. The research is performed both by users and by EMC staff. While many users work independently, the most challenging research activities require extensive contributions from EMC staff.

306

On the Time Times Temperature Bound  

E-Print Network (OSTI)

Recently Hod proposes a lower bound on the relaxation time of a perturbed thermodynamic system. For gravitational systems this bound transforms into a condition on the fundamental quasinormal frequency. We test the bound in some spacetimes whose quasinormal frequencies are calculated exactly, as the three-dimensional BTZ black hole, the D-dimensional de Sitter spacetime, and the D-dimensional Nariai spacetime. We find that for some of these spacetimes their fundamental quasinormal frequencies do not satisfy the bound proposed by Hod.

A. Lopez-Ortega

2010-06-28T23:59:59.000Z

307

NIST Electron and Optical Physics Division - 2000  

Science Conference Proceedings (OSTI)

... Electron Standing Waves: The electron standing waves produced by scattering of the surface state electrons from step edges and defects on Cu ...

308

Kk electronic A S | Open Energy Information  

Open Energy Info (EERE)

Kk electronic A S Jump to: navigation, search Name kk-electronic AS Place Herning, Denmark Zip DK-7400 Sector Wind energy Product Provides electronic wind turbine controllers....

309

What Time is It?  

Science Conference Proceedings (OSTI)

... These are sometimes marketed as "atomic clocks", but ... problems include incorrectly setting your local time zone on the clock, batteries that need ...

2011-01-19T23:59:59.000Z

310

FREE-ELECTRON LASERS  

SciTech Connect

We can now produce intense, coherent light at wavelengths where no conventional lasers exist. The recent successes of devices known as free-electron lasers mark a striking confluence of two conceptual developments that themselves are only a few decades old. The first of these, the laser, is a product of the fifties and sixties whose essential characteristics have made it a staple resource in almost every field of science and technology. In a practical sense, what defines a laser is its emission of monochromatic, coherent light (that is, light of a single wavelength, with its waves locked in step) at a wavelength in the infrared, visible, or ultraviolet region of the electromagnetic spectrum. A second kind of light, called synchrotron radiation, is a by-product of the age of particle accelerators and was first observed in the laboratory in 1947. As the energies of accelerators grew in the 1960s and 70s, intense, incoherent beams of ultraviolet radiation and x--rays became available at machines built for high-energy physics research. Today, several facilities operate solely as sources of synchrotron light. Unlike the well-collimated monochromatic light emitted by lasers, however, this incoherent radiation is like a sweeping searchlight--more accurately, like the headlight of a train on a circular track--whose wavelengths encompass a wide spectral band. Now, in several laboratories around the world, researchers have exploited the physics of these two light sources and have combined the virtues of both in a single contrivance, the free-electron laser, or FEL (1). The emitted light is laserlike in its narrow, sharply peaked spectral distribution and in its phase coherence, yet it can be of a wavelength unavailable with ordinary lasers. Furthermore, like synchrotron radiation, but unlike the output of most conventional lasers, the radiation emitted by free-electron lasers can be tuned, that is, its wavelength can be easily varied across a wide range. The promise of this new technology extends from the fields of solid-state physics, gas- and liquid-phase photochemistry, and surface catalysis to futuristic schemes for ultrahigh-energy linear accelerators.

Sessler, A.M.; Vaughan, D.

1986-04-01T23:59:59.000Z

311

Positron source position sensing detector and electronics  

DOE Patents (OSTI)

A positron source, position sensing device, particularly with medical applications, in which positron induced gamma radiation is detected using a ring of stacked, individual scintillation crystals, a plurality of photodetectors, separated from the scintillation crystals by a light guide, and high resolution position interpolation electronics. Preferably the scintillation crystals are several times more numerous than the photodetectors with each crystal being responsible for a single scintillation event from a received gamma ray. The light guide will disperse the light emitted from gamma ray absorption over several photodetectors. Processing electronics for the output of the photodetectors resolves the location of the scintillation event to a fraction of the dimension of each photodetector. Because each positron absorption results in two 180.degree. oppositely traveling gamma rays, the detection of scintillation in pairs permits location of the positron source in a manner useful for diagnostic purposes. The processing electronics simultaneously responds to the outputs of the photodetectors to locate the scintillations to the source crystal. While it is preferable that the scintillation crystal include a plurality of stacked crystal elements, the resolving power of the processing electronics is also applicable to continuous crystal scintillators.

Burnham, Charles A. (South Essex, MA); Bradshaw, Jr., John F. (Winthrop, MA); Kaufman, David E. (Brockton, MA); Chesler, David A. (Newton Highlands, MA); Brownell, Gordon L. (Cambridge, MA)

1985-01-01T23:59:59.000Z

312

Electron Microscopy Center  

NLE Websites -- All DOE Office Websites (Extended Search)

CM30T TEM CM30T TEM Instrument capabilities: Instrument specifications: Accelerating voltages: 100-300 kV LaB6 emitter Resolution (at 300 kV): ~ 0.25 nm point; ~ 0.14 nm line Minimum probe size: ~ 9 nm Operating modes: CTEM, CBED, SAED, light element XEDS CCD camera: 1 Mp, 14 bits, AVI capture possible at 15 fps Specimen holders: Double Tilt (+/- 60 degrees alpha, +/- 30 degrees beta): with Be cup for XEDS liquid nitrogen cooled (96 K) with Be cup heating (1270 K) Tilt/rotate (+/- 60 degrees alpha, rotation 360 degrees) Single Tilt (+/- 60 degrees alpha) Typical experiments (examples): Quantitative XEDS Morphological and diffraction contrast studies of defects In situ heating & cooling studies Electron crystallography Weak beam studies of defects This page can be downloaded here as an Adobe PDF file.

313

Electron Microscopy Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Becoming a User Becoming a User EMC Home Overview Personnel Resources Highlights Publications Visit EMC Contact Info Information for Users Becoming a User Submit a Proposal End-of-Proposal Report Acknowledgment User Training User Safety User Status Instrument Access User Committee User Meetings Data Storage Policy Visiting the EMC Instrument Calendars Info for EMC Staff SÅMM Facility TEAM Project Microscopy Links Argonne Facilities DOE/BES Facilities DOE/BES BES Electron Beam Microcharacterization Centers Procedure to Become a User at the EMC 1. Summary All users have to fulfill certain requirements before access to the EMC can be granted. The following list provides short descriptions of the requirements. Details can be found on this page and via the relevant links at the left. Register for access to Argonne's scientific user facilities (or update your user registration information).

314

ELECTRONIC INTEGRATING CIRCUIT  

DOE Patents (OSTI)

An electronic integrating circuit using a transistor with a capacitor connected between the emitter and collector through which the capacitor discharges at a rate proportional to the input current at the base is described. Means are provided for biasing the base with an operating bias and for applying a voltage pulse to the capacitor for charging to an initial voltage. A current dividing diode is connected between the base and emitter of the transistor, and signal input terminal means are coupled to the juncture of the capacitor and emitter and to the base of the transistor. At the end of the integration period, the residual voltage on said capacitor is less by an amount proportional to the integral of the input signal. Either continuous or intermittent periods of integration are provided. (AEC)

Englemann, R.H.

1963-08-20T23:59:59.000Z

315

Power electronics reliability analysis.  

SciTech Connect

This report provides the DOE and industry with a general process for analyzing power electronics reliability. The analysis can help with understanding the main causes of failures, downtime, and cost and how to reduce them. One approach is to collect field maintenance data and use it directly to calculate reliability metrics related to each cause. Another approach is to model the functional structure of the equipment using a fault tree to derive system reliability from component reliability. Analysis of a fictitious device demonstrates the latter process. Optimization can use the resulting baseline model to decide how to improve reliability and/or lower costs. It is recommended that both electric utilities and equipment manufacturers make provisions to collect and share data in order to lay the groundwork for improving reliability into the future. Reliability analysis helps guide reliability improvements in hardware and software technology including condition monitoring and prognostics and health management.

Smith, Mark A.; Atcitty, Stanley

2009-12-01T23:59:59.000Z

316

Electron Microscopy Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Submit an EMC Proposal Submit an EMC Proposal EMC Home Overview Personnel Resources Highlights Publications Visit EMC Contact Info Information for Users Becoming a User Submit a Proposal End-of-Proposal Report Acknowledgment User Training User Safety User Status Instrument Access User Committee User Meetings Data Storage Policy Visiting the EMC Instrument Calendars Info for EMC Staff SÅMM Facility TEAM Project Microscopy Links Argonne Facilities DOE/BES Facilities DOE/BES BES Electron Beam Microcharacterization Centers Submit an EMC Proposal EMC Proposal Submission Deadline Dates for FY2014: November 1, 2013 March 7, 2014 July 11, 2014 Is your proposal a multi-facility proposal? In other words, do you intend to submit proposals to EMC and APS or CNM for your research project? If your answer is "yes," go now to the Proposal Gateway.

317

Electron Microscopy Center  

NLE Websites -- All DOE Office Websites (Extended Search)

EMC Users Committee EMC Users Committee EMC Home Overview Personnel Resources Highlights Publications Visit EMC Contact Info Information for Users Becoming a User Submit a Proposal End-of-Proposal Report Acknowledgment User Training User Safety User Status Instrument Access User Committee User Meetings Data Storage Policy Visiting the EMC Instrument Calendars Info for EMC Staff SÅMM Facility TEAM Project Microscopy Links Argonne Facilities DOE/BES Facilities DOE/BES BES Electron Beam Microcharacterization Centers EMC Users Committee An EMC Users Committee has been organized to enhance communication between the user community and the EMC. While the EMC relies on and encourages strong interaction among its users and between its staff and users, the Users Committee provides an additional formal mechanism for user input into EMC planning and operations to ensure that users' needs and concerns are addressed.

318

VIA ELECTRONIC SUBMISSION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

39 MacDougal Street, Third Floor * New York, New York 10012 * (212) 992-8932 * www.policyintegrity.org 39 MacDougal Street, Third Floor * New York, New York 10012 * (212) 992-8932 * www.policyintegrity.org March 21, 2011 VIA ELECTRONIC SUBMISSION Office of the General Counsel US Department of Energy Washington, DC Attention: Regulatory Burden RFI - Docket No. DOE-HQ-2011-0014-0001 Subject: Response to Request for Information on "Reducing Regulatory Burden," 76 Fed. Reg. 6123 (Feb. 3, 2011) The Institute for Policy Integrity at New York University School of Law submits the following comments to the Department of Energy ("DOE") in response to its request for comments on the formulation of a preliminary plan for retrospective analysis as required by Executive Order 13,563.

319

Electron Microscopy Center  

NLE Websites -- All DOE Office Websites (Extended Search)

End-of-Proposal Report End-of-Proposal Report EMC Home Overview Personnel Resources Highlights Publications Visit EMC Contact Info Information for Users Becoming a User Submit a Proposal End-of-Proposal Report Acknowledgment User Training User Safety User Status Instrument Access User Committee User Meetings Data Storage Policy Visiting the EMC Instrument Calendars Info for EMC Staff SÅMM Facility TEAM Project Microscopy Links Argonne Facilities DOE/BES Facilities DOE/BES BES Electron Beam Microcharacterization Centers End-of-Proposal Report In accordance with the User Agreement, please provide the EMC with the following information when your proposal expires (one year after its acceptance date or when the experiments end, whichever is sooner). A research summary/progress report using these two templates:

320

Electronic distribution backup apparatus  

SciTech Connect

An electric distribution backup apparatus is described comprising an electronic distributor for sequentially distributing an ignition signal to each of igniter disposed so as to correspond to respective cylinders of an engine on the basis of a reference position signal for each of the cylinders generated by a revolution sensor in accordance with the revolution of the engine and on the basis of a rotating angle signal generated by the revolution sensor. The improvement comprising: an auxiliary revolution sensor for detecting another reference position signal of each of the cylinders when the revolution sensor for generating the two signals is out of order; control means for outputting a failure judging signal in response to detection of the failure of the revolution sensor on the basis of the two signals from revolution sensor; and a pseudo reference position signal generator for generating a pseudo reference position signal in place of the reference position signal on the basis of the auxiliary reference cylinder signal.

Sasaki, S.

1988-07-19T23:59:59.000Z

Note: This page contains sample records for the topic "time m-f electronic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Protocols for electron dosimetry  

SciTech Connect

Brief comments are made on the standardezation of electron dose calibration procedures in relation to the recommeudations made by the American Association of Physicists in Medicine 1966, The Mordic Association of Clinical Physics 1971, The Hospital Physicists Association 1971, and the ICRU 1972. Errors arising from depth-dose curves are discussed, together with those arising from the specification of beam energy using the half-value depth in water. It is recommended that the depth-dose curves (especially in the region of dose maximum) be measured for each machine, the depth of calibration be chosen as close to the maximum as possible, and the energy be determined from the established rangeenergy relationships. (UK)

De Almeida, C.E.; Almond, P.R.

1973-09-01T23:59:59.000Z

322

ELECTRONIC TRIGGER CIRCUIT  

DOE Patents (OSTI)

An electronic trigger circuit is described of the type where an output pulse is obtained only after an input voltage has cqualed or exceeded a selected reference voltage. In general, the invention comprises a source of direct current reference voltage in series with an impedance and a diode rectifying element. An input pulse of preselected amplitude causes the diode to conduct and develop a signal across the impedance. The signal is delivered to an amplifier where an output pulse is produced and part of the output is fed back in a positive manner to the diode so that the amplifier produces a steep wave front trigger pulsc at the output. The trigger point of the described circuit is not subject to variation due to the aging, etc., of multi-electrode tabes, since the diode circuit essentially determines the trigger point.

Russell, J.A.G.

1958-01-01T23:59:59.000Z

323

Pulsed electron beam precharger  

Science Conference Proceedings (OSTI)

Florida State University is investigating the concept of pulsed electron beams for fly ash precipitation. This report describes the results and data on three of the subtasks of this project and preliminary work only on the remaining five subtasks. Described are the modification of precharger for pulsed and DC energization of anode; installation of the Q/A measurement system; and modification and installation of pulsed power supply to provide both pulsed and DC energization of the anode. The other tasks include: measurement of the removal efficiency for monodisperse simulated fly ash particles; measurement of particle charge; optimization of pulse energization schedule for maximum removal efficiency; practical assessment of results; and measurement of the removal efficiency for polydisperse test particles. 15 figs., 1 tab. (CK)

Finney, W.C. (ed.); Shelton, W.N.

1990-01-01T23:59:59.000Z

324

ELECTRONIC MULTIPLIER CIRCUIT  

DOE Patents (OSTI)

An electronic multiplier circuit is described in which an output voltage having an amplitude proportional to the product or quotient of the input signals is accomplished in a novel manner which facilitates simplicity of circuit construction and a high degree of accuracy in accomplishing the multiplying and dividing function. The circuit broadly comprises a multiplier tube in which the plate current is proportional to the voltage applied to a first control grid multiplied by the difference between voltage applied to a second control grid and the voltage applied to the first control grid. Means are provided to apply a first signal to be multiplied to the first control grid together with means for applying the sum of the first signal to be multiplied and a second signal to be multiplied to the second control grid whereby the plate current of the multiplier tube is proportional to the product of the first and second signals to be multiplied.

Thomas, R.E.

1959-08-25T23:59:59.000Z

325

Electron Microscopy Center  

NLE Websites -- All DOE Office Websites (Extended Search)

FEI Tecnai F20ST TEM/STEM FEI Tecnai F20ST TEM/STEM Instrument capabilities: Instrument specifications: Accelerating voltages: 80-200 kV Schottky FEG emitter Resolution (at 200 kV): ~0.24 nm point; ~0.1 nm line; probe size ~0.2-1 nm Operating modes: CTEM, STEM (BF/ADF, HAADF), CBED, SAED, light element XEDS, EELS, spectrum imaging, energy-filtered imaging (EFI), Lorentz magnetic imaging (LMI), electron holographic imaging (EHI), other computationally-mediated modes. On-axis CCD camera: 16 Mp, 16 bits, 61x61 mm chip size. EMC-owned specimen holders: Double Tilt (+/- 40 degrees alpha, +/- 30 degrees beta): with Be cup for XEDS liquid nitrogen cooled (96 K) with Be cup heating (1270 K) In-plane magnetic field (tilt +/- 40 degrees alpha) Liquid He cooled (tilt +/- 40 degrees alpha, rotate 360 degrees)

326

Electron Microscopy Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Proposal Access Guidelines Proposal Access Guidelines One part of the EMC mission is to provide unique instrumentation and expertise to the scientific community. Important to achieving this goal is the effective management of EMC instrumentation and staff for maximum scientific impact. Broad and fair access to these resources is achieved through a proposal review process and scheduling and access policies. The type of access granted is based on the nature of the proposed work, the qualifications of the user, and the instrumentation requested. Research projects may be allocated a specific amount of instrument time or may be granted continuous access. Allocated Access: Under allocated access, a user is allocated a specific amount of instrument time to complete the proposed project. Allocated access is utilized primarily to manage instrument time for those instruments that have very high demand and for projects that require exceptional staff assistance.

327

Superconducting phases of f-electron compounds  

E-Print Network (OSTI)

Superconductivity was discovered almost a century ago. Yet, unexpected and fascinating new variants of this same old theme are being found at an increasing pace. This is due to great technical advances in materials preparation and an increasingly more systematic screening of new compounds. Prior to the late 1970s all known superconductors could be accounted for in terms of a condensate of Cooper pairs, where the Cooper pairs form due to electron-phonon interactions. With the discovery of the superfluid phases of 3He this understanding began to change in two ways (Osheroff et al., 1972; Vollhardt and Wlfle, 1990). First, 3He provided an example of non-electron-phonon mediated pairing. Second, it provided an example of a superfluid condensate that breaks additional symmetries. The discovery of heavy-fermion superconductivity as a prime candidate for complex order parameter symmetries and non-electron-phonon mediated pairing in f-electron compounds nearly three decades ago was long recognized as an important turning point in the history of superconductivity. However, progress in heavy fermion superconductivity until not long ago seemed to have been slow. In recent years especially the superconductivity in the cuprates, ruthenates, cobaltates, pyrochlores and ironpnictides received great attention. However, a spectacular series of discoveries and developments in f-electron superconductors took place at the same time. While in the first twelve years following the discovery of heavyfermion superconductivity in CeCu2Si2 only five more heavy fermion superconductors could be identified, over twenty five additional systems have been found in the past fifteen years (see Fig. 1). By now over thirty systems are known, about half of which were discovered in the past five years alone. This illustrates the speed of development the field of f-electron superconductivity has picked up despite its long tradition. As a result there is growing appreciation that superconducting phases of f-electron compounds frequently exist at the border of competing and coexisting forms of electronic order. For the majority of systems, including the original heavy-fermion superconductors, an inarXiv:0905.2625v1

Christian Pfleiderer

2009-01-01T23:59:59.000Z

328

TIME CALIBRATED OSCILLOSCOPE SWEEP  

DOE Patents (OSTI)

The time calibrator of an electric signal displayed on an oscilloscope is described. In contrast to the conventional technique of using time-calibrated divisions on the face of the oscilloscope, this invention provides means for directly superimposing equal time spaced markers upon a signal displayed upon an oscilloscope. More explicitly, the present invention includes generally a generator for developing a linear saw-tooth voltage and a circuit for combining a high-frequency sinusoidal voltage of a suitable amplitude and frequency with the saw-tooth voltage to produce a resultant sweep deflection voltage having a wave shape which is substantially linear with respect to time between equal time spaced incremental plateau regions occurring once each cycle of the sinusoidal voltage. The foregoing sweep voltage when applied to the horizontal deflection plates in combination with a signal to be observed applied to the vertical deflection plates of a cathode ray oscilloscope produces an image on the viewing screen which is essentially a display of the signal to be observed with respect to time. Intensified spots, or certain other conspicuous indications corresponding to the equal time spaced plateau regions of said sweep voltage, appear superimposed upon said displayed signal, which indications are therefore suitable for direct time calibration purposes.

Owren, H.M.; Johnson, B.M.; Smith, V.L.

1958-04-22T23:59:59.000Z

329

Semantics, experience and time  

Science Conference Proceedings (OSTI)

The computational hypothesis, with its inherent representationalism, and the dynamical hypothesis, with its apparent absence of representations and its commitment to continuous time, stand at an impasse. It is unclear how the dynamical stance can handle ... Keywords: Computation, Experience, Invariance, Semantics, Situatedness, Time

Stephen E. Robbins

2002-09-01T23:59:59.000Z

330

Real-time shading  

Science Conference Proceedings (OSTI)

Real-time procedural shading was once seen as a distant dream. When the first version of this course was offered four years ago, real-time shading was possible, but only with one-of-a-kind hardware or by combining the effects of tens to hundreds of rendering ...

Marc Olano; Kurt Akeley; John C. Hart; Wolfgang Heidrich; Michael McCool; Jason L. Mitchell; Randi Rost

2004-08-01T23:59:59.000Z

331

Cooling an electron gas using quantum dot based electronic refrigeration  

E-Print Network (OSTI)

of the QDR experiment have been published in: J. R. Prance, C. G. Smith, J. P. Griffiths, S. J. Chorley, D. Anderson, G. A. C. Jones, I. Farrer, and D. A. Ritchie, Electronic refrigeration of a two- dimensional electron gas, Phys. Rev. Lett. 102(14), 146602... for the electrochemical potential of the dot: we define N :i,j = Ui(N)?Uj(N ? 1), where Ui(N) is the energy of the dot holding N electrons with the last electron in the ith excited state. For example, the previous definition of N is equivalent to N :0,0. (The...

Prance, Jonathan Robert

2009-10-13T23:59:59.000Z

332

Molecular-Frame Angular Distributions of Resonant Auger Electrons  

NLE Websites -- All DOE Office Websites (Extended Search)

Molecular-Frame Angular Distributions of Resonant Auger Electrons Print Molecular-Frame Angular Distributions of Resonant Auger Electrons Print Molecular-frame electron angular distribution (MFAD) measurements provide access to an unprecedented level of detailed information about phenomena involving quantum coherence, such as phases of photoelectron waves, symmetry breaking in molecular dissociation, core-hole localization in molecules, and molecular double-slit interference, all of which are hidden in conventional gas-phase electron spectroscopy, owing to the random orientation of the molecules. While most MFAD studies to date have focused on photoelectrons, an international team of scientists from Western Michigan University, the ALS, and Tohoku University in Japan has successfully used a novel approach to determine for the first time the molecular-frame angular distributions of resonantly excited Auger electrons in carbon monoxide.

333

EPA -- Electronic Submittal of Environmental Impact Statements to EPA |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electronic Submittal of Environmental Impact Statements to Electronic Submittal of Environmental Impact Statements to EPA EPA -- Electronic Submittal of Environmental Impact Statements to EPA e-NEPA is the Environmental Protection Agency's (EPA's) tool for submitting EIS documents electronically. The system meets EPA's requirements for EIS filing, and eliminates the need to mail hard copies of EISs to EPA. As before, to have your agency's EIS appear in EPA's Federal Register Notice of Availability, submit by 5:00 pm Eastern Standard Time on the prior Friday. Please note that using e-NEPA for filing does not affect agencies' responsibilities for public distribution of EISs. Additionally, e-NEPA registration is only open to government employees: contractors cannot submit EIS documents through e-NEPA. e-NEPA Electronic Submittal of Environmental Impact Statements to EPA

334

Molecular-Frame Angular Distributions of Resonant Auger Electrons  

NLE Websites -- All DOE Office Websites (Extended Search)

Molecular-Frame Angular Distributions of Resonant Auger Electrons Print Molecular-Frame Angular Distributions of Resonant Auger Electrons Print Molecular-frame electron angular distribution (MFAD) measurements provide access to an unprecedented level of detailed information about phenomena involving quantum coherence, such as phases of photoelectron waves, symmetry breaking in molecular dissociation, core-hole localization in molecules, and molecular double-slit interference, all of which are hidden in conventional gas-phase electron spectroscopy, owing to the random orientation of the molecules. While most MFAD studies to date have focused on photoelectrons, an international team of scientists from Western Michigan University, the ALS, and Tohoku University in Japan has successfully used a novel approach to determine for the first time the molecular-frame angular distributions of resonantly excited Auger electrons in carbon monoxide.

335

Molecular-Frame Angular Distributions of Resonant Auger Electrons  

NLE Websites -- All DOE Office Websites (Extended Search)

Molecular-Frame Angular Molecular-Frame Angular Distributions of Resonant Auger Electrons Molecular-Frame Angular Distributions of Resonant Auger Electrons Print Wednesday, 27 May 2009 00:00 Molecular-frame electron angular distribution (MFAD) measurements provide access to an unprecedented level of detailed information about phenomena involving quantum coherence, such as phases of photoelectron waves, symmetry breaking in molecular dissociation, core-hole localization in molecules, and molecular double-slit interference, all of which are hidden in conventional gas-phase electron spectroscopy, owing to the random orientation of the molecules. While most MFAD studies to date have focused on photoelectrons, an international team of scientists from Western Michigan University, the ALS, and Tohoku University in Japan has successfully used a novel approach to determine for the first time the molecular-frame angular distributions of resonantly excited Auger electrons in carbon monoxide.

336

TIMING OF SHOCK WAVES  

DOE Patents (OSTI)

This patent relates to means for ascertaining the instant of arrival of a shock wave in an exploslve charge and apparatus utilizing this means to coordinate the timing of two operations involving a short lnterval of time. A pair of spaced electrodes are inserted along the line of an explosive train with a voltage applied there-across which is insufficient to cause discharge. When it is desired to initiate operation of a device at the time the explosive shock wave reaches a particular point on the explosive line, the device having an inherent time delay, the electrodes are located ahead of the point such that the ionization of the area between the electrodes caused by the traveling explosive shock wave sends a signal to initiate operation of the device to cause it to operate at the proper time. The operated device may be photographic equipment consisting of an x-ray illuminating tube.

Tuck, J.L.

1955-03-01T23:59:59.000Z

337

Influence of Thermalisation on Electron Injection in Supernova Remnant Shocks  

E-Print Network (OSTI)

Within a test-particle description of the acceleration process in parallel nonrelativistic shocks, we present an analytic treatment of the electron injection. We estimate the velocity distribution of the injected electrons as the product of the post-shock thermal distribution of electrons times the probability for electrons with a given velocity to be accelerated; the injection efficiency is then evaluated as the integral of this velocity distribution. We estimate the probability of a particle to be injected as that of going back to the upstream region at least once. This is the product of the probability of returning to the shock from downstream times that of recrossing the shock from downstream to upstream. The latter probability is expected to be sensitive to details of the process of electron thermalisation within the (collisionless) shock, a process that is poorly known. In order to include this effect, for our treatment we use results of a numerical, fully kinetic study, by Bykov & Uvarov (1999). According to them, the probability of recrossing depends on physics of thermalisation through a single free parameter (Gamma), which can be expressed as a function of the Mach number of the shock, of the level of electron-ion equilibration, as well as of the spectrum of turbulence. It becomes apparent, from our analysis, that the injection efficiency is related to the post-shock electron temperature, and that it results from the balance between two competing effects: the higher the electron temperature, the higher the fraction of downstream electrons with enough velocity to return to the shock and thus to be ready to cross the shock from downstream to upstream; at the same time, however, the higher the turbulence, which would hinder the crossing.

O. Petruk; R. Bandiera

2006-06-05T23:59:59.000Z

338

Roberts: Reconfigurable Platform for Benchmarking Real-time Systems  

E-Print Network (OSTI)

Department of Electrical and Electronic Engineering Imperial College London, UK p-time properties and energy consumption. The benchmarking takes into account system workload and environmental-test, and with support for on-line monitoring of the response time, output values and energy consumption. The proposed

Luk, Wayne

339

electronic reprint Crystallography  

E-Print Network (OSTI)

software for the singular value decomposition of time-resolved crystallographic data Yi Zhao and Marius(s) of this paper may load this reprint on their own web site or institutional repository provided that this cover and interpretation, numerical analysis and other related sub- jects are also covered. The journal is the primary

Schmidt, Marius

340

Electron Microscopy (EM, TEM, SEM, STEM) Information at ...  

Science Conference Proceedings (OSTI)

... Electron holography. Electron Microscopy of Carbon Nanotube Composites. Environmental Scanning Electron Microscope. ...

2010-10-05T23:59:59.000Z

Note: This page contains sample records for the topic "time m-f electronic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Digital time delay  

DOE Patents (OSTI)

Method and apparatus are provided for generating an output pulse following a trigger pulse at a time delay interval preset with a resolution which is high relative to a low resolution available from supplied clock pulses. A first lumped constant delay provides a first output signal at predetermined interpolation intervals corresponding to the desired high resolution time interval. Latching circuits latch the high resolution data to form a first synchronizing data set. A selected time interval has been preset to internal counters and corrected for circuit propagation delay times having the same order of magnitude as the desired high resolution. Internal system clock pulses count down the counters to generate an internal pulse delayed by an internal which is functionally related to the preset time interval. A second LCD corrects the internal signal with the high resolution time delay. A second internal pulse is then applied to a third LCD to generate a second set of synchronizing data which is complementary with the first set of synchronizing data for presentation to logic circuits. The logic circuits further delay the internal output signal with the internal pulses. The final delayed output signal thereafter enables the output pulse generator to produce the desired output pulse at the preset time delay interval following input of the trigger pulse.

Martin, A.D.

1986-05-09T23:59:59.000Z

342

Ion plated electronic tube device  

DOE Patents (OSTI)

An electronic tube and associated circuitry which is produced by ion plating techniques. The process is carried out in an automated process whereby both active and passive devices are produced at very low cost. The circuitry is extremely reliable and is capable of functioning in both high radiation and high temperature environments. The size of the electronic tubes produced are more than an order of magnitude smaller than conventional electronic tubes.

Meek, T.T.

1983-10-18T23:59:59.000Z

343

Wisconsin SRF Electron Gun Commissioning  

SciTech Connect

The University of Wisconsin has completed fabrication and commissioning of a low frequency (199.6 MHz) superconducting electron gun based on a quarter wave resonator (QWR) cavity. Its concept was optimized to be the source for a CW free electron laser facility. The gun design includes active tuning and a high temperature superconducting solenoid. We will report on the status of the Wisconsin SRF electron gun program, including commissioning experience and first beam measurements.

Bisognano, Joseph J. [University of Wisconsin-Madison; Bissen, M. [University of Wisconsin-Madison; Bosch, R. [University of Wisconsin-Madison; Efremov, M. [University of Wisconsin-Madison; Eisert, D. [University of Wisconsin-Madison; Fisher, M. [University of Wisconsin-Madison; Green, M. [University of Wisconsin-Madison; Jacobs, K. [University of Wisconsin-Madison; Keil, R. [University of Wisconsin-Madison; Kleman, K. [University of Wisconsin-Madison; Rogers, G. [University of Wisconsin-Madison; Severson, M. [University of Wisconsin-Madison; Yavuz, D. D. [University of Wisconsin-Madison; Legg, Robert A. [JLAB; Bachimanchi, Ramakrishna [JLAB; Hovater, J. Curtis [JLAB; Plawski, Tomasz [JLAB; Powers, Thomas J. [JLAB

2013-12-01T23:59:59.000Z

344

Overview of Electron Microscope Interference  

Science Conference Proceedings (OSTI)

Power frequency magnetic fields can interfere with proper operation of electronic imaging systems. Electron microscopes are susceptible to deflection of their electron beam by an external magnetic field. This unwanted deflection can cause blurring of the image. MRI equipment is susceptible to induced voltage in the sensing coil caused by changing magnetic fields. In either case the result is degradation of the image. Magnetic field strengths that impact the images are on the same order of magnitude as th...

2010-05-28T23:59:59.000Z

345

Electrons Confined with an Axially Symmetric Magnetic Mirror Field  

Science Conference Proceedings (OSTI)

Low energy non-neutral electron plasmas were confined with an axially symmetric magnetic mirror field and an electrostatic potential to investigate the basic confinement properties of a simple magnetic mirror trap. As expected the confinement time became longer as a function of the mirror ratio. The axial electrostatic oscillations of a confined electron plasma were also observed. Obtained results suggested an improved scheme to accumulate low energy charged particles with the use of a magnetic mirror field, which would enable the investigation of electron-positron plasmas.

Higaki, H.; Ito, K.; Kira, K.; Okamoto, H. [Graduate School of Advanced Sciences of Matter, Hiroshima University 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530 (Japan)

2008-08-08T23:59:59.000Z

346

Kinetic description of electron plasma waves with orbital angular momentum  

SciTech Connect

We describe the kinetic theory of electron plasma waves with orbital angular momentum or twisted plasmons. The conditions for a twisted Landau resonance to exist are established, and this concept is introduced for the first time. Expressions for the kinetic dispersion relation and for the electron Landau damping are derived. The particular case of a Maxwellian plasma is examined in detail. The new contributions to wave dispersion and damping due the orbital angular momentum are discussed. It is shown that twisted plasmons can be excited by rotating electron beams.

Mendonca, J. T. [IPFN, Instituto Superior Tecnico, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal)

2012-11-15T23:59:59.000Z

347

ELECTRON CYCLOTRON CURRENT DRIVE EFFICIENCY IN GENERAL TOKAMAK GEOMETRY  

SciTech Connect

Green's-function techniques are used to calculate electron cyclotron current drive (ECCD) efficiency in general tokamak geometry in the low-collisionality regime. Fully relativistic electron dynamics is employed in the theoretical formulation. The high-velocity collision model is used to model Coulomb collisions and a simplified quasi-linear rf diffusion operator describes wave-particle interactions. The approximate analytic solutions which are benchmarked with a widely used ECCD model, facilitate time-dependent simulations of tokamak operational scenarios using the non-inductive current drive of electron cyclotron waves.

LIN-LUI,Y.R; CHAN,V.S; PRATER,R

2003-03-01T23:59:59.000Z

348

Kinetic effects on robustness of electron magnetohydrodynamic structures  

SciTech Connect

Following recent remarkable progress in the development of high-power short-pulse lasers, exploration is ongoing into hitherto unknown phenomena at fast time scales of electrons, the understanding of which is becoming crucial. For a simplified description of such phenomena, the Electron Magnetohydrodynamics (EMHDs) fluid description is often adopted. For the possibility of electron transport in high-density plasma, exact solutions of the EMHD model in the form of electron vortex currents, together with their associated magnetic fields, have been considered. However, the fluid EMHD model does not incorporate kinetic effects. Here, the finite Larmor radius effects owing to a finite electron temperature on the robustness of the exact EMHD structures are investigated using two-dimensional particle-in-cell simulations. It is found that larger EMHD vortex structures can sustain themselves for long periods, even in high temperature plasma; however, sustaining structures at higher temperatures tends to be difficult. With increasing temperature, electrons with finite Larmor radii become disengaged from the localized region. It is also shown that structures localized in smaller regions are more difficult to sustain. A quantitative criterion in terms of the structure size and Larmor radius has been established by simulations over a wide range of parameters. Finally, we conclude that a structure, larger than about eight times the typical Larmor radius at r=R, could form and exist even under the effects of finite electron temperature.

Hata, M. [Department of Physics, Nagoya University, Nagoya 464-8603 (Japan); Sakagami, H. [Fundamental Physics Simulation Research Division, National Institute for Fusion Science, Toki 509-5292 (Japan); Das, A. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

2013-04-15T23:59:59.000Z

349

Environment Induced Time Arrow  

E-Print Network (OSTI)

The spread of the time arrows from the environment to an observed subsystem is followed within a harmonic model. A similarity is pointed out between irreversibility and a phase with spontaneously broken symmetry. The causal structure of interaction might be lost in the irreversible case, as well. The Closed Time Path formalism is developed for classical systems and shown to handle the time arrow problem in a clear and flexible manner. The quantum case is considered, as well, and the common origin of irreversibility and decoherence is pointed out.

Janos Polonyi

2012-06-25T23:59:59.000Z

350

VARIABLE TIME DELAY MEANS  

DOE Patents (OSTI)

An electrically variable time delay line is described which may be readily controlled simuitaneously with variable impedance matching means coupied thereto such that reflections are prevented. Broadly, the delay line includes a signal winding about a magnetic core whose permeability is electrically variable. Inasmuch as the inductance of the line varies directly with the permeability, the time delay and characteristic impedance of the line both vary as the square root of the permeability. Consequently, impedance matching means may be varied similariy and simultaneously w:th the electrically variable permeability to match the line impedance over the entire range of time delay whereby reflections are prevented.

Clemensen, R.E.

1959-11-01T23:59:59.000Z

351

Electronics of LHCb calorimeter monitoring system  

E-Print Network (OSTI)

All calorimeter sub-detectors in LHCb, the Scintillator Pad Detector (SPD), the Preshower detector (PS), the Electromagnetic Calorimeter (ECAL) and the Hadron Calorimeter (HCAL) are equipped with the Hamamatsu photomultiplier tubes (PMT) as devices for light to electrical signal conversion [1]. The PMT gain behaviour is not stable in a time, due to changes in the load current and due to ageing. The calorimeter light emitting diode (LED) monitoring system has been developed to monitor the PMT gain over time during data taking. Furthermore the system will play an important role during the detector commissioning and during LHC machine stops, in order to perform tests of the PMTs, cables and FE boards and measurements of relative time alignment. The aim of the paper is to describe the LED monitoring system architecture, some technical details of the electronics implementation based on radiation tolerant components and to summarize the system performance.

Konoplyannikov, A

2008-01-01T23:59:59.000Z

352

Vibrational and Electronic Energy Level Searches  

Science Conference Proceedings (OSTI)

... options based on vibrational and electronic energies are available: ... the tabulated vibrational and electronic energy level data ... All rights reserved. ...

2013-07-15T23:59:59.000Z

353

Advances in Dielectric Materials and Electronic Devices  

Science Conference Proceedings (OSTI)

... Design, simulation and fabrication of electronic circuits* Emerging Electronic ... Synthesis, Spectroscopic and Thermochemical Studies of Some Novel...

354

Frontiers of In Situ Transmission Electron Microscopy  

Science Conference Proceedings (OSTI)

... Direct detection cameras form electron images by directly detecting high energy electrons incident on an active pixel CMOS (complementary metal ...

2013-05-29T23:59:59.000Z

355

Diamondoid monolayers as electron emitters - Energy Innovation ...  

Provided are electron emitters based upon diamondoid monolayers, preferably self-assembled higher diamondoid monolayers. High intensity electron ...

356

Electron-Beam Irradiation of Solar Cells  

Science Conference Proceedings (OSTI)

Electron-Beam Irradiation of Solar Cells. Summary: The Dosimetry Group operates a system capable of performing electron ...

2013-02-27T23:59:59.000Z

357

Epitaxial Graphene: Designing a New Electronic Material  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2010 Electronic Materials Conference. Symposium, TMS 2010 Electronic Materials Conference. Presentation Title, Epitaxial...

358

Cookson Electronics | Open Energy Information  

Open Energy Info (EERE)

Place Providence, Rhode Island Zip 2903 Product Rhode Island-based materials science company. The division produces PV junction boxes. References Cookson Electronics1...

359

Genesis Electronics | Open Energy Information  

Open Energy Info (EERE)

Solar Product Technology company, focusing on consumer applications for solar energy and alternative energy sources. References Genesis Electronics1 LinkedIn Connections...

360

Green IT 2012: Sustainable Electronics  

NLE Websites -- All DOE Office Websites (Extended Search)

1 DOE Sustainability Assistance Network July 19, 2012 Cate Berard Federal Electronics Challenge and EPA Jeff Eagan Office of Sustainability Support (HS-21) Green IT 2012:...

Note: This page contains sample records for the topic "time m-f electronic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Electron Metallography of Alloy 718  

Science Conference Proceedings (OSTI)

Electron Metallography of Alloy 718. John F. Radavich. Emeritus Professor. Purdue University. West Lafayette, IN 47907. Abstract. Alloy 718 is unique in that it...

362

A Networked Scanning Electron Microscope  

Science Conference Proceedings (OSTI)

Featured Overview. A New ParadigmMulti-User Scanning Electron Microscopy. L.S. Chumbley, M. Meyer, K. Fredrickson, and F.C. Laabs. Introduction; System...

363

Electron Beam Melting (EBM) II  

Science Conference Proceedings (OSTI)

Oct 19, 2011 ... Additive Manufacturing of Metals: Electron Beam Melting (EBM) II Sponsored by: MS&T Organization Program Organizers: Ian D. Harris, EWI;...

364

Electronics, Lighting and Networks Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Electronics, Lighting and Networks Group NOTICE Due to the current lapse of federal funding, Berkeley Lab websites are accessible, but may not be updated until Congress approves...

365

Power Electronics and Electric Machines  

NLE Websites -- All DOE Office Websites (Extended Search)

PEEM Activities Application Power Electronics Electric Machines Traction Drive System Inverter & Boost Converter (if needed) MotorGenerator Vehicle Power Management Bi-directional...

366

NREL: Advanced Power Electronics - Webmaster  

NLE Websites -- All DOE Office Websites (Extended Search)

Your name: Your email address: Your message: Send Message Printable Version Advanced Power Electronics Home About the Project Technology Basics Research & Development...

367

Thermal response of ceramic components during electron beam brazing  

DOE Green Energy (OSTI)

Ceramics are being used increasingly in applications where high temperatures are encountered such as automobile and gas turbine engines. However, the use of ceramics is limited by a lack of methods capable of producing strong, high temperature joints. This is because most ceramic-ceramic joining techniques, such as brazing, require that the entire assembly be exposed to high temperatures in order to assure that the braze material melts. Alternatively, localized heating using high energy electron beams may be used to selectively heat the braze material. In this work, high energy electron beam brazing of a ceramic part is modeled numerically. The part considered consists of a ceramic cylinder and disk between which is sandwiched an annular washer of braze material. An electron beam impinges on the disk, melting the braze metal. The resulting coupled electron and thermal transport equations are solved using Monte Carlo and finite element techniques. Results indicate that increased electron beam current decreases time to melt as well as required cooling time. Vacuum furnace brazing was also simulated and predicted results indicate increased processing times relative to electron beam brazing.

Voth, T.E.; Gianoulakis, S.E.; Halbleib, J.A.

1996-03-01T23:59:59.000Z

368

Time, energy & form  

E-Print Network (OSTI)

Physical manifestations of time occur in natural forms of all sizes. Architectural form serves as shelter while providing a built envelope of human life, simultaneously influencing and influenced by energetic activities ...

McInnis, Martha Jane

1982-01-01T23:59:59.000Z

369

Dogs and Time  

NLE Websites -- All DOE Office Websites (Extended Search)

Question: I travel often and worry how leaving for long periods of time (and boarding my dog) will affect her. I wouldn't think that dogs could understand the concept of...

370

Wood Use Across Time  

E-Print Network (OSTI)

?Forest products history and use ?Forest resource- the big picture ?Consumption- the big picture ?Trends forest products industry ? pulp & paper ? solid woodBack in Time ?1492 ? Columbus sailed the ocean blue! ? wood use- fuelwood American Indians ?1634: Jean Nicolet

Scott Bowe; United States Wood Use

2005-01-01T23:59:59.000Z

371

Technical Talks Timing  

NLE Websites -- All DOE Office Websites (Extended Search)

Talks Timing The technical talks should last a maximum of 15 minutes with 5 minutes for set-up and 5 minutes for Q&A. No teamgroup presentations are allowed. The objective of...

372

Ubiquitous Electronic Tagging  

E-Print Network (OSTI)

The automatic identification industry is growing rapidly. Tags occur in many forms and appear on everything from luggage at the airport, to dogs, trains and fresh fruit. As with many advancing technologies, there are a variety of standards that do not inter-operate and thus hinder widespread deployment. But the trend for the growth of this technology is inescapable: electronic machine-readable tags (e-tags) are becoming tiny, cheap and easy to deploy. An e-tag can now also serve as a data repository for the object that it is attached to. Imagine if every object ever processed had one or more machine-readable tags embedded into it. What applications would that enable? These tags would uniquely identify the object and be readable from a distance, not even requiring a battery. In addition to identification information, e-tags can record their history, or offer dynamic data from an embedded sensor indicating, for example, the tag's temperature. This paper examines the applications and co...

Roy Want; Daniel M. Russell

1999-01-01T23:59:59.000Z

373

Electronic field permeameter  

DOE Patents (OSTI)

For making rapid, non-destructive permeability measurements in the field, a portable minipermeameter of the kind having a manually-operated gas injection tip is provided with a microcomputer system which operates a flow controller to precisely regulate gas flow rate to a test sample, and reads a pressure sensor which senses the pressure across the test sample. The microcomputer system automatically turns on the gas supply at the start of each measurement, senses when a steady-state is reached, collects and records pressure and flow rate data, and shuts off the gas supply immediately after the measurement is completed. Preferably temperature is also sensed to correct for changes in gas viscosity. The microcomputer system may also provide automatic zero-point adjustment, sensor calibration, over-range sensing, and may select controllers, sensors, and set-points for obtaining the most precise measurements. Electronic sensors may provide increased accuracy and precision. Preferably one microcomputer is used for sensing instrument control and data collection, and a second microcomputer is used which is dedicated to recording and processing the data, selecting the sensors and set-points for obtaining the most precise measurements, and instructing the user how to set-up and operate the minipermeameter. To provide mass data collection and user-friendly operation, the second microcomputer is preferably a lap-type portable microcomputer having a non-volatile or battery-backed CMOS memory.

Chandler, Mark A. (Madison, WI); Goggin, David J. (Austin, TX); Horne, Patrick J. (Austin, TX); Kocurek, Gary G. (Roundrock, TX); Lake, Larry W. (Austin, TX)

1989-01-01T23:59:59.000Z

374

Influence of electron beam parameters on coherent electron cooling  

Science Conference Proceedings (OSTI)

Coherent electron cooling (CeC) promises to revolutionize the cooling of high energy hadron beams. The intricate dynamics of the CeC depends both on the local density and energy distribution of the beam. The variations of the local density (beam current) are inevitable in any realistic beam. Hence, in this paper we propose a novel method of beam conditioning. The conditioning provides compensation of effect from such variation by a correlated energy modulation. We use our analytical FEL model for an electron bunch with Gaussian line charge density and cosine-type energy variation along bunch. We analyze the phase variation between the electron density modulation at the exit of the FEL-amplifier and the ions inducing it in the modulator as a function of the peak current and the electron beam energy. Based on this analysis, electron bunch parameters for optimal CeC cooling are found numerically.

Wang G.; Hao, Y.; Litvinenko, V.N.; Webb, S.

2012-05-20T23:59:59.000Z

375

SECONDARY ELECTRON MULTIPLIERS  

DOE Patents (OSTI)

A secondary emission multiplier having exceptionally high output signal current is described. In previous multiplier tubes the output signal current was limited by the space charge surrounding the electrodes. The present multiplier tubes provides a source of ions within the tube adjacent the anode to neutralize the space charge effect, and the dynode voltage is switched on intermittently for periods of time so brief that the ions do not move towards the cathode.

Morton, G.A.; Green, M.W.

1959-01-01T23:59:59.000Z

376

Electronics Accomplishment Report  

SciTech Connect

Group 10 - The following items were shipped to Scioto Laboratory: 6 Thyratron Heater Controls (TR-1-A), 2 Switch Boxes (for P & E), 1 Log Amplifier (AM-1); 1 Pulse Generator (PG-1-B). The following are completed, tested, and awaiting transportation: 3 Two-Input B-wall Mixers (MX-2-A), 1 Pulse Generator (PG-1-B),1 Regulation Checker (RC-1) (for plating control power supplies), 1 Preamplifier (AM-2) (for Berkeley decimal scaler). The following are under construction: 6 Pulse Generators (PG-1-B) (for Health Division) (EO-508) 90%, 10 Switch Boxes (8 for P & E, Scioto, 2 for P& E, "T" Building) 85%, 6 Junction Boxes (for P&E, "T" Building, EO-486) 90%, 2 Four-Input G. M. Mixers. One on EO-17, one from Unit III. The mixers have been finished and tested for some time. The scalers (Nuclear Instrument Model 161-G) have just been received and are being modified for use with the mixers. A prototype preamplifier for the Berkeley decimal scaler was constructed and tested. Group 11 - A special pulse generator having output pulses fixed in time, and adjacent pulses variable in time with respect to the fixed pulse is under development. An initial mock-up of such a generator showed promise in that the variable pulses could be shifted in time, but there was considerable "jitter" of the pulses. A method of obtaining more positive triggering of the pulse generating circuits is being worked out. Group 12 - Three service calls were made during this period for defective G. E. induction heaters used by Group 31. Group 14- Routine counting this period included 5990 counts.

Heyd, J. W.; Ohmart, P. E.

1949-09-30T23:59:59.000Z

377

Structure of a Bacterial Cell Surface Decaheme Electron Conduit  

SciTech Connect

Some bacterial species are able to utilize extracellular mineral forms of iron and manganese as respiratory electron acceptors. In Shewanella oneidensis this involves deca-heme cytochromes that are located on the bacterial cell surface at the termini of trans-outermembrane (OM) electron transfer conduits. The cell surface cytochromes can potentially play multiple roles in mediating electron transfer directly to insoluble electron sinks, catalyzing electron exchange with flavin electron shuttles or participating in extracellular inter-cytochrome electron exchange along nanowire appendages. We present a 3.2 crystal structure of one of these deca-heme cytochromes, MtrF, that allows the spatial organization of the ten hemes to be visualized for the first time. The hemes are organized across four domains in a unique crossed conformation, in which a staggered 65 octa-heme chain transects the length of the protein and is bisected by a planar 45 tetra-heme chain that connects two extended Greek key split ?-barrel domains. The structure provides molecular insight into how reduction of insoluble substrate (e.g. minerals), soluble substrates (e.g. flavins) and cytochrome redox partners might be possible in tandem at different termini of a trifurcated electron transport chain on the cell surface.

Clarke, Thomas A.; Edwards, Marcus; Gates, Andrew J.; Hall, Andrea; White, Gaye; Bradley, Justin; Reardon, Catherine L.; Shi, Liang; Beliaev, Alex S.; Marshall, Matthew J.; Wang, Zheming; Watmough, Nicholas; Fredrickson, Jim K.; Zachara, John M.; Butt, Julea N.; Richardson, David J.

2011-05-23T23:59:59.000Z

378

Photocathode Optimization for a Dynamic Transmission Electron Microscope: Final Report  

SciTech Connect

The Dynamic Transmission Electron Microscope (DTEM) team at Harvey Mudd College has been sponsored by LLNL to design and build a test setup for optimizing the performance of the DTEM's electron source. Unlike a traditional TEM, the DTEM achieves much faster exposure times by using photoemission from a photocathode to produce electrons for imaging. The DTEM team's work is motivated by the need to improve the coherence and current density of the electron cloud produced by the electron gun in order to increase the image resolution and contrast achievable by DTEM. The photoemission test setup is nearly complete and the team will soon complete baseline tests of electron gun performance. The photoemission laser and high voltage power supply have been repaired; the optics path for relaying the laser to the photocathode has been finalized, assembled, and aligned; the internal setup of the vacuum chamber has been finalized and mostly implemented; and system control, synchronization, and data acquisition has been implemented in LabVIEW. Immediate future work includes determining a consistent alignment procedure to place the laser waist on the photocathode, and taking baseline performance measurements of the tantalum photocathode. Future research will examine the performance of the electron gun as a function of the photoemission laser profile, the photocathode material, and the geometry and voltages of the accelerating and focusing components in the electron gun. This report presents the team's progress and outlines the work that remains.

Ellis, P; Flom, Z; Heinselman, K; Nguyen, T; Tung, S; Haskell, R; Reed, B W; LaGrange, T

2011-08-04T23:59:59.000Z

379

Rough surface mitigates electron and gas emission  

SciTech Connect

Heavy-ion beams impinging on surfaces near grazing incidence (to simulate the loss of halo ions) generate copious amounts of electrons and gas that can degrade the beam. We measured emission coefficients of {eta}{sub e} {le} 130 and {eta}{sub 0} {approx} 10{sup 4} respectively, with 1 MeV K{sup +} incident on stainless steel. Electron emission scales as {eta}{sub e} {proportional_to} 1/cos({theta}), where {theta} is the ion angle of incidence relative to normal. If we were to roughen a surface by blasting it with glass beads, then ions that were near grazing incidence (90{sup o}) on smooth surface would strike the rims of the micro-craters at angles closer to normal incidence. This should reduce the electron emission: the factor of 10 reduction, Fig. 1(a), implies an average angle of incidence of 62{sup o}. Gas desorption varies more slowly with {theta} (Fig. 1(b)) decreasing a factor of {approx}2, and along with the electron emission is independent of the angle of incidence on a rough surface. In a quadrupole magnet, electrons emitted by lost primary ions are trapped near the wall by the magnetic field, but grazing incidence ions can backscatter and strike the wall a second time at an azimuth where magnetic field lines intercept the beam. Then, electrons can exist throughout the beam (see the simulations of Cohen, HIF News 1-2/04). The SRIM (TRIM) Monte Carlo code predicts that 60-70% of 1 MeV K{sup +} ions backscatter when incident at 88-89{sup o} from normal on a smooth surface. The scattered ions are mostly within {approx}10{sup o} of the initial direction but a few scatter by up to 90{sup o}. Ion scattering decreases rapidly away from grazing incidence, Fig. 1(c ). At 62 deg. the predicted ion backscattering (from a rough surface) is 3%, down a factor of 20 from the peak, which should significantly reduce electrons in the beam from lost halo ions. These results are published in Phys. Rev. ST - Accelerators and Beams.

Molvik, A

2004-09-03T23:59:59.000Z

380

Scintillation time dependence and pulse shape discrimination in liquid argon  

SciTech Connect

Using a single-phase liquid argon detector with a signal yield of 4.85 photoelectrons per keV of electronic-equivalent recoil energy (keVee), we measure the scintillation time dependence of both electronic and nuclear recoils in liquid argon down to 5 keVee. We develop two methods of pulse shape discrimination to distinguish between electronic and nuclear recoils. Using one of these methods, we measure a background- and statistics-limited level of electronic recoil contamination to be 7.6x10{sup -7} between 52 and 110 keV of nuclear recoil energy (keVr) for a nuclear recoil acceptance of 50% with no nuclear recoil-like events above 62 keVr. Finally, we develop a maximum likelihood method of pulse shape discrimination based on the measured scintillation time dependence.

Lippincott, W. H.; McKinsey, D. N.; Nikkel, J. A. [Department of Physics, Yale University, New Haven, Connecticut 06511 (United States); Coakley, K. J. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Gastler, D.; Kearns, E. [Department of Physics, Boston University, Boston, Massachusetts 02215 (United States); Hime, A.; Stonehill, L. C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2008-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "time m-f electronic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

ILC Electron Source Injector Simuations  

SciTech Connect

As part of the global project aimed at proposing an efficient design for the ILC (International Linear Collider), we simulated possible setups for the electron source injector, which will provide insight into how the electron injector for the ILC should be designed in order to efficiently accelerate the electron beams through the bunching system. This study uses three types of software: E-Gun to simulate electron beam emission, Superfish to calculate solenoidal magnetic fields, and GPT (General Particle Tracer) to trace charged particles after emission through magnetic fields and subharmonic bunchers. We performed simulations of the electron source injector using various electron gun bias voltages (140kV - 200kV), emitted beam lengths (500ps - 1ns) and radii (7mm - 10mm), and electromagnetic field strengths of the first subharmonic buncher (5 - 20 MV/m). The results of the simulations show that for the current setup of the ILC, a modest electron gun bias voltage ({approx}140kV) is sufficient to achieve the required bunching of the beam in the injector. Extensive simulations of parameters also involving the second subharmonic buncher should be performed in order to gain more insight into possible efficient designs for the ILC electron source injector.

Lakshmanan, Manu; /Cornell U., LNS /SLAC

2007-08-29T23:59:59.000Z

382

The electron geodesic acoustic mode  

Science Conference Proceedings (OSTI)

In this report, a novel new mode, named the electron geodesic acoustic mode, is presented. This mode can occur in toroidal plasmas like the conventional geodesic acoustic mode (GAM). The frequency of this new mode is much larger than that of the conventional GAM by a factor equal to the square root of the ion to electron mass ratio.

Chakrabarti, N. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta 700 064 (India); Guzdar, P. N. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States); Kaw, P. K. [Institute for Plasma Research Bhat, Gandhinagar 382428 (India)

2012-09-15T23:59:59.000Z

383

Nonlocal collisionless and collisional electron  

E-Print Network (OSTI)

Electron energy relaxation length is large; this allows remote plasma handling via nonlocal electron energy T T m = #12;8 Particle-in-cell simulations of Hall thruster plasma => Completely different discharge with hot cathode and plasma glow, He 1 Torr. Right: Axial profiles of the plasma potential

Kaganovich, Igor

384

Electronics and Design  

E-Print Network (OSTI)

this report. b. The key to effective disaster response plans is the acknowledgment of the importance of the issue and commitment by top management. Most lifelines have emergency response plans and they are occasionally put to the test by various conditions such as severe floods or storms. Earthquakes pose a special problem because they typically impact systems in unique ways such that there is little or no experience with them. In addition, earthquakes tend to impact many systems at the same time with no warning, unlike many other emergencies which can be anticipated

Hydroelectric Power; Hydroelectric Power; Plant Facilities; Plant Facilities

2000-01-01T23:59:59.000Z

385

Electronic test circuitry  

DOE Patents (OSTI)

Circuitry for testing the ability of an intermediate range nuclear instrument to detect and measure a constant current and a periodic current pulse. The invention simulates the resistance and capacitance of the signal connection of a nuclear instrument ion chamber detector and interconnecting cable. An LED flasher/oscillator illuminates an LED at a periodic rate established by a timing capacitor and circuitry internal to the flasher/oscillator. When the LED is on, a periodic current pulse is applied to the instrument. When the LED is off, a constant current is applied. An inductor opposes battery current flow when the LED is on.

Brown, R.A.

1992-12-31T23:59:59.000Z

386

Energy Spread Reduction of Electron Beams Produced via Laser Wake  

Science Conference Proceedings (OSTI)

Laser wakefield acceleration of electrons holds great promise for producing ultra-compact stages of GeV scale, high quality electron beams for applications such as x-ray free electron lasers and high energy colliders. Ultra-high intensity laser pulses can be self-guided by relativistic plasma waves over tens of vacuum diffraction lengths, to give >1 GeV energy in cm-scale low density plasma using ionization-induced injection to inject charge into the wake at low densities. This thesis describes a series of experiments which investigates the physics of LWFA in the self-guided blowout regime. Beginning with high density gas jet experiments the scaling of the LWFA-produced electron beam energy with plasma electron density is found to be in excellent agreement with both phenomenological theory and with 3-D PIC simulations. It is also determined that self-trapping of background electrons into the wake exhibits a threshold as a function of the electron density, and at the densities required to produce electron beams with energies exceeding 1 GeV a different mechanism is required to trap charge into low density wakes. By introducing small concentrations of high-Z gas to the nominal He background the ionization-induced injection mechanism is enabled. Electron trapping is observed at densities as low as 1.3 x 10{sup 18} cm{sup -3} in a gas cell target, and 1.45 GeV electrons are demonstrated for the first time from LWFA. This is currently the highest electron energy ever produced from LWFA. The ionization-induced trapping mechanism is also shown to generate quasi-continuous electron beam energies, which is undesirable for accelerator applications. By limiting the region over which ionization-induced trapping occurs, the energy spread of the electron beams can be controlled. The development of a novel two-stage gas cell target provides the capability to tailor the gas composition in the longitudinal direction, and confine the trapping process to occur only in a limited, defined region. Using this technique a 460 MeV electron beam was produced with an energy spread of 5%. This technique is directly scalable to multi-GeV electron beam generation with sub-percent energy spreads.

Pollock, B

2012-03-19T23:59:59.000Z

387

Quantum tunneling time  

E-Print Network (OSTI)

A simple model of a quantum clock is applied to the old and controversial problem of how long a particle takes to tunnel through a quantum barrier. The model I employ has the advantage of yielding sensible results for energy eigenstates, and does not require the use of time-dependant wave packets. Although the treatment does not forbid superluminal tunneling velocities, there is no implication of faster-than-light signaling because only the transit duration is measurable, not the absolute time of transit. A comparison is given with the weak-measurement post-selection calculations of Steinberg.

P. C. W. Davies

2004-03-01T23:59:59.000Z

388

Feasibility study for mega-electron-volt electron beam tomography  

SciTech Connect

Electron beam tomography is a promising imaging modality for the study of fast technical processes. But for many technical objects of interest x rays of several hundreds of keV energy are required to achieve sufficient material penetration. In this article we report on a feasibility study for fast electron beam computed tomography with a 1 MeV electron beam. The experimental setup comprises an electrostatic accelerator with beam optics, transmission target, and a single x-ray detector. We employed an inverse fan-beam tomography approach with radiographic projections being generated from the linearly moving x-ray source. Angular projections were obtained by rotating the object.

Hampel, U. [Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden (Germany); AREVA Endowed Chair of Imaging Techniques in Energy and Process Engineering, Technische Universitaet Dresden, 01062 Dresden (Germany); Baertling, Y.; Hoppe, D. [Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden (Germany); Kuksanov, N.; Fadeev, S.; Salimov, R. [Budker Institute of Nuclear Physics of Siberian Branch of Russian Academy of Science, Lavrentiev av. 11, Novosibirsk 630090 (Russian Federation)

2012-09-15T23:59:59.000Z

389

NSIT Computer Time Services: Internet Time Service (ITS) ...  

Science Conference Proceedings (OSTI)

Page 1. NIST Special Publication 250-59 NIST Computer Time Services: Internet Time Service (ITS), Automated Computer Time Service (ACTS), ...

2012-09-16T23:59:59.000Z

390

Time-resolved multiple probe spectroscopy  

SciTech Connect

Time-resolved multiple probe spectroscopy combines optical, electronic, and data acquisition capabilities to enable measurement of picosecond to millisecond time-resolved spectra within a single experiment, using a single activation pulse. This technology enables a wide range of dynamic processes to be studied on a single laser and sample system. The technique includes a 1 kHz pump, 10 kHz probe flash photolysis-like mode of acquisition (pump-probe-probe-probe, etc.), increasing the amount of information from each experiment. We demonstrate the capability of the instrument by measuring the photolysis of tungsten hexacarbonyl (W(CO){sub 6}) monitored by IR absorption spectroscopy, following picosecond vibrational cooling of product formation through to slower bimolecular diffusion reactions on the microsecond time scale.

Greetham, G. M.; Sole, D.; Clark, I. P.; Parker, A. W.; Pollard, M. R.; Towrie, M. [Central Laser Facility, Science and Technology Facilities Council, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, Oxfordshire, OX11 0QX (United Kingdom)

2012-10-15T23:59:59.000Z

391

Probabilistic timed behavior trees  

Science Conference Proceedings (OSTI)

The Behavior Tree notation has been developed as a method for systematically and traceably capturing user requirements. In this paper we extend the notation with probabilistic behaviour, so that reliability, performance, and other dependability properties ... Keywords: behavior trees, model checking, probabilities, timed automata

Robert Colvin; Lars Grunske; Kirsten Winter

2007-07-01T23:59:59.000Z

392

Building An Electronic Japanese-English Dictionary  

E-Print Network (OSTI)

This paper describes an on-going project to develop and maintain a comprehensive electronic Japanese-English dictionary capable of use within a variety of search-and-display, electronic-text reading support, and machine translation environments. The project consists of two parts: (a) the compilation of two major datafiles; a JapaneseEnglish lexicon (EDICT), and a kanji information database (KANJIDIC). At the time of writing, the former has over 100,000 entries, and (b) the development of software to index, search and display entries in the data files. This software, which has now been released on a variety of computing platforms, including Unix, PC (DOS and Windows) and MacIntosh, can operate as either a stand-alone dictionary, providing the functions of both normal word/phrase dictionaries and character dictionaries, or as a support package for reading electronic text, by automatically glossing selected words and phrases. 1 INTRODUCTION This paper describes a project to build an elec...

J.W. Breen

1995-01-01T23:59:59.000Z

393

Electron transfer at sensitized semiconductor electrodes  

DOE Green Energy (OSTI)

Electron transfer from the excited state of sensitizing dyes to the conduction band of semiconductors has been studied through photoelectrochemical techniques. Two systems were analyzed in detail: rhodamine B on ZnO and rose bengal on TiO/sub 2/. Prior to electrochemical experimentation, the adsorption characteristics of these dyes were investigated using ZnO, ZnS, and TiO/sub 2/ single crystals as substrates. Absorbance measurements of the adsorbed dye were taken as a function of the solution concentration of the dye. Adsorption isotherms heats of adsorption were also established; they were similar to literature data reported for adsorption of these dyes on powdered substrates. Using the absorbance data, the quantum efficiency for photoinjection of electrons from rhodamine B into a ZnO electrode was determined to be 2.7 x 10/sup -2/. This value was independent of the dye surface concentration down to 50% coverage of the electrode. With the assumption that not all of the rhodamine B adsorbed on the electrode has the same rate of electron injection, a kinetic model for the time decay of the photocurrent was developed; data were analyzed according to this theory. A rate constant for photoreduction of the adsorbed dye was determined for the reducing agents. 86 references.

Spitler, M.T.

1977-03-01T23:59:59.000Z

394

Hollow cathode life time modelling.  

E-Print Network (OSTI)

??Hollow Cathodes (HCs) are of primary importance in the field of electric space propulsion, being used as electron sources in ion and Hall-effect thrusters. Hence, (more)

Coletti, Michele

2008-01-01T23:59:59.000Z

395

Genepool Time Heatmaps  

NLE Websites -- All DOE Office Websites (Extended Search)

Genepool Time Heatmaps Genepool Time Heatmaps Heatmap of Time and Slots Requested vs Time Waited (in hours) | Queue: All | Last 7 Days Time Requested Slots 1wk Job Count Longest Wait 1 23.0 (233) 0.37 (1819) 27.54 (49888) 5.85 (124593) 1.23 (39835) 0.34 (732) 0 0.4 (224) 0.02 (1) 217325 538.96 2 0 0.01 (19) 2.54 (78) 0.2 (140) 0.99 (2683) 0 0 0 0 2920 9.1 4 0.08 (1) 0 2.82 (141) 0.36 (143) 1.07 (12) 0.06 (5) 0.01 (5) 0.06 (1) 1.3 (5) 313 20.48 6 0.01 (2) 0 0.09 (32) 0.07 (1) 0 0 0 0 0 35 1.22 8 0.04 (24) 4.32 (7423) 5.31 (1999) 0.53 (316) 13.14 (2486) 0.01 (2) 1.21 (88) 1.3 (34) 8.33 (68) 12440 46.16 10 0 0 0 0 0 0 0 8.56 (1) 0 1 8.56 16 0 0 0 0.03 (1) 0 0 0 0 0 1 0.03 24 0 0 0 0 0 0 0 0 0.01 (1) 1 0.01 32 0 0 0 0.04 (14) 0 0 0 0.01 (6) 0 20 0.26

396

Spectroscopic imaging in electron microscopy  

Science Conference Proceedings (OSTI)

In the scanning transmission electron microscope, multiple signals can be simultaneously collected, including the transmitted and scattered electron signals (bright field and annular dark field or Z-contrast images), along with spectroscopic signals such as inelastically scattered electrons and emitted photons. In the last few years, the successful development of aberration correctors for the electron microscope has transformed the field of electron microscopy, opening up new possibilities for correlating structure to functionality. Aberration correction not only allows for enhanced structural resolution with incident probes into the sub-angstrom range, but can also provide greater probe currents to facilitate mapping of intrinsically weak spectroscopic signals at the nanoscale or even the atomic level. In this issue of MRS Bulletin, we illustrate the power of the new generation of electron microscopes with a combination of imaging and spectroscopy. We show the mapping of elemental distributions at atomic resolution and also the mapping of electronic and optical properties at unprecedented spatial resolution, with applications ranging from graphene to plasmonic nanostructures, and oxide interfaces to biology.

Pennycook, Stephen J [ORNL; Colliex, C. [Universite Paris Sud, Orsay, France

2012-01-01T23:59:59.000Z

397

Electron Microscopy Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Publications The publications listed below are based on work carried out in the EMC. Publication time period: October 1, 2009, through September 30, 2010 Published journal articles (refereed): C. An, S. Peng, Y. Sun, “Facile Synthesis of Sunlight-Driven Plasmonic AgCl:Ag Nanophotocatalysts," Adv. Mater. 22, 2570 (2010). S. Avci, Z. L. Xiao, J. Hua, A. Imre, R. Divan, J. Pearson, U. Welp, W. K. Kwok, and G. W. Crabtree, “Matching effect and dynamic phases of vortex matter in Bi2Sr2CaCu2O8 nanoribbon with a periodic array of holes,” Appl. Phys. Lett. 97, 042511 (2010). A. Belkin, V. Novosad, M. Iavarone, R. Divan, J. Hiller, T. Prolier, J. E. Pearson, and G. Karapetrov “Giant conductance anisotropy in magnetically coupled F/S/F structures,” Appl. Phys. Lett. 96, 092513 (2010)

398

Electron Microscopy Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources Resources The EMC currently operates and administers seven full-time user instruments together with support facilities that include specimen preparation, image analysis and computational resources. The instruments are grouped below according to their function and capabilities. Detailed information about the capabilities of each user-accessible resource is available via the underlined links below. The major-capability instruments are generally available by allocated access while the core instruments are generally available by continuous access. Instrument Access Type User Status Separate Proposal? ACAT Allocated Assisted yes IVEM Allocated Assisted yes FEI Tecnai F20ST TEM/STEM Continuous or Allocated User or Assisted Any or all of these instruments may be requested in one proposal.

399

Electronic structure and quantum conductance of molecular and nano electronics  

E-Print Network (OSTI)

This thesis is dedicated to the application of a large-scale first-principles approach to study the electronic structure and quantum conductance of realistic nanomaterials. Three systems are studied using Landauer formalism, ...

Li, Elise Yu-Tzu

2011-01-01T23:59:59.000Z

400

ASYMMETRIC SOLAR WIND ELECTRON DISTRIBUTIONS  

Science Conference Proceedings (OSTI)

The present paper provides a possible explanation for the solar wind electron velocity distribution functions possessing asymmetric energetic tails. By numerically solving the electrostatic weak turbulence equations that involve nonlinear interactions among electrons, Langmuir waves, and ion-sound waves, it is shown that different ratios of ion-to-electron temperatures lead to the generation of varying degrees of asymmetric tails. The present finding may be applicable to observations in the solar wind near 1 AU and in other regions of the heliosphere and interplanetary space.

Yoon, Peter H.; Kim, Sunjung; Lee, Junggi; Lee, Junhyun; Park, Jongsun; Park, Kyungsun; Seough, Jungjoon [School of Space Research, Kyung Hee University, Yongin-Si, Gyeonggi-Do 446-701 (Korea, Republic of); Hong, Jinhy [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of)

2012-08-20T23:59:59.000Z

Note: This page contains sample records for the topic "time m-f electronic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Rate of decoherence for an electron weakly coupled to a phonon gas  

E-Print Network (OSTI)

We study the dynamics of an electron weakly coupled to a phonon gas. The initial state of the electron is the superposition of two spatially localized distant bumps moving towards each other, and the phonons are in a thermal state. We investigate the dynamics of the system in the kinetic regime and show that the time evolution makes the non-diagonal terms of the density matrix of the electron decay, destroying the interference between the two bumps. We show that such a damping effect is exponential in time, and the related decay rate is proportional to the total scattering cross section of the electron-phonon interaction.

Riccardo Adami; Laszlo Erdos

2008-02-08T23:59:59.000Z

402

Electronic multi-purpose material level sensor  

DOE Patents (OSTI)

The present electronic multi-purpose material level sensor is based on time domain reflectometry (TDR) of very short electrical pulses. Pulses are propagated along a transmission line that is partially immersed in a liquid, powder, or other substance such as grain in a silo. The time difference of the reflections at the start of the transmission line and the air/liquid interface are used to determine levels to better than 0.01 inch. The sensor is essentially independent of circuit element and temperature variations, and can be mass produced at an extremely low price. The transmission line may be a Goubau line, microstrip, coaxial cable, twin lead, CPS or CPW, and may typically be a strip placed along the inside wall of a tank. The reflected pulses also contain information about strata within the liquid such as sludge-build-up at the bottom of an oil tank.

McEwan, Thomas E. (Livermore, CA)

1997-01-01T23:59:59.000Z

403

Electronic multi-purpose material level sensor  

DOE Patents (OSTI)

The present electronic multi-purpose material level sensor is based on time domain reflectometry (TDR) of very short electrical pulses. Pulses are propagated along a transmission line that is partially immersed in a liquid, powder, or other substance such as grain in a silo. The time difference of the reflections at the start of the transmission line and the air/liquid interface are used to determine levels to better than 0.01 inch. The sensor is essentially independent of circuit element and temperature variations, and can be mass produced at an extremely low price. The transmission line may be a Goubau line, microstrip, coaxial cable, twin lead, CPS or CPW, and may typically be a strip placed along the inside wall of a tank. The reflected pulses also contain information about strata within the liquid such as sludge-build-up at the bottom of an oil tank. 9 figs.

McEwan, T.E.

1997-03-11T23:59:59.000Z

404

Free electron laser with masked chicane  

DOE Patents (OSTI)

A free electron laser (FEL) is provided with an accelerator for outputting electron beam pulses; a buncher for modulating each one of the electron beam pulses to form each pulse into longitudinally dispersed bunches of electrons; and a wiggler for generating coherent light from the longitudinally dispersed bunches of electrons. The electron beam buncher is a chicane having a mask for physically modulating the electron beam pulses to form a series of electron beam bunches for input to the wiggler. In a preferred embodiment, the mask is located in the chicane at a position where each electron beam pulse has a maximum dispersion.

Nguyen, Dinh C. (Los Alamos, NM); Carlsten, Bruce E. (Los Alamos, NM)

1999-01-01T23:59:59.000Z

405

Essays in economics of electronic commerce  

E-Print Network (OSTI)

The advent of the internet has revolutionized the way people buy and sell. The internet is characterized by increased access to information. This increased information should foster convergence to the law of one price, for homogenous goods. The surge of electronic markets has motivated a stream of research focusing on comparing the efficiency of the internet market to the traditional one. This dissertation contributes to the existing literature of consumer search behavior in electronic markets and its effects on the price level and dispersion in the market more generally. A part of this dissertation assesses the direct and indirect effect of increased internet usage on the prices of airline tickets, using a unique contemporaneous online and offline transaction data for airline tickets, covering the final quarter of 2004. The study also investigates the relationship between increased internet usage and price dispersion in the market for airline tickets. This study also includes an exhaustive set of controls for airline ticket characteristics, namely refundability, advance purchase requirements, travel and stay restrictions, class of travel, departure and return day of the week and time, flight level load factor along with other market structure data used in the standard airlines literature. The existing theoretical literature in consumer search extended to the electronic markets assumes, for simplicity, that all consumers in the internet markets are the searchers, looking for the lowest price. The internet, however, also plays the role of a convenient shopping medium for a group of consumers whose primary motivation is not to search for the lowest price. The contemporary literature incorrectly categorizes these consumers as the traditional searchers. The remaining part of this dissertation provides a modification to the existing theoretical models of consumer search to accommodate both searchers and non-searchers in each of the electronic and traditional markets and derive the implications of the increased internet usage on the average level of prices and price dispersion in a market selling a homogenous good.

Sengupta, Anirban

2007-08-01T23:59:59.000Z

406

Ultrafast electron beam imaging of femtosecond laser-induced plasma  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultrafast electron beam imaging of femtosecond laser-induced plasma Ultrafast electron beam imaging of femtosecond laser-induced plasma dynamics Title Ultrafast electron beam imaging of femtosecond laser-induced plasma dynamics Publication Type Journal Article Year of Publication 2010 Authors Li, Junjie, Xuan Wang, Zhaoyang Chen, Richard Clinite, Samuel S. Mao, Pengfei Zhu, Zhengming Sheng, Jie Zhang, and Jianming Cao Journal Journal of Applied Physics Volume 107 Issue 8 Date Published 03/2010 Keywords copper, electron beam applications, high-speed optical techniques, laser ablation, plasma diagnostics, plasma production by laser Abstract Plasma dynamics in the early stage of laser ablation of a copper target are investigated in real time by making ultrafast electron shadow images and electron deflectometry measurements. These complementary techniques provide both a global view and a local perspective of the associated transient electric field and charge expansion dynamics. The results reveal that the charge cloud above the target surface is composed predominantly of thermally ejected electrons and that it is self-expanding, with a fast front-layer speed exceeding 107 m/s. The average electric field strength of the charge cloud induced by a pump fluence of 2.2 J/cm2 is estimated to be ∼ 2.4×105 V/m.

407

Timed fast charger  

Science Conference Proceedings (OSTI)

In a charger for rechargeable electrochemical cells, a transformer charging circuit supplies a charging current to the battery at a fast charge rate for a predetermined time followed by a continuous slow charge rate. A normally closed automatic reset thermostat in series with the rectifier diodes in the charging circuit, and thermally coupled to them, opens after a period of time, dependent upon the heat generated by the rectifier diodes and upon the thermal mass of the thermostat and diodes, and terminates the fast charge current. A resistor, shunted across the thermostat and thermally coupled to it, establishes a slow charge rate current path when the thermostat opens. Heat generated in the resistor causes the thermostat to remain open as long as the battery is connected and ac power is supplied to the transformer primary winding.

Mullersman, F.H.

1981-10-27T23:59:59.000Z

408

Internet Topology over Time  

E-Print Network (OSTI)

There are few studies that look closely at how the topology of the Internet evolves over time; most focus on snapshots taken at a particular point in time. In this paper, we investigate the evolution of the topology of the Autonomous Systems graph of the Internet, examining how eight commonly-used topological measures change from January 2002 to January 2010. We find that the distributions of most of the measures remain unchanged, except for average path length and clustering coefficient. The average path length has slowly and steadily increased since 2005 and the average clustering coefficient has steadily declined. We hypothesize that these changes are due to changes in peering policies as the Internet evolves. We also investigate a surprising feature, namely that the maximum degree has changed little, an aspect that cannot be captured without modeling link deletion. Our results suggest that evaluating models of the Internet graph by comparing steady-state generated topologies to snapshots of the real data ...

Edwards, Benjamin; Stelle, George; Forrest, Stephanie

2012-01-01T23:59:59.000Z

409

Electro-optic techniques in electron beam diagnostics  

Science Conference Proceedings (OSTI)

Electron accelerators such as laser wakefield accelerators, linear accelerators driving free electron lasers, or femto-sliced synchrotrons, are capable of producing femtosecond-long electron bunches. Single-shot characterization of the temporal charge profile is crucial for operation, optimization, and application of such accelerators. A variety of electro-optic sampling (EOS) techniques exists for the temporal analysis. In EOS, the field profile from the electron bunch (or the field profile from its coherent radiation) will be transferred onto a laser pulse co-propagating through an electro-optic crystal. This paper will address the most common EOS schemes and will list their advantages and limitations. Strong points that all techniques share are the ultra-short time resolution (tens of femtoseconds) and the single-shot capabilities. Besides introducing the theory behind EOS, data from various research groups is presented for each technique.

van Tilborg, Jeroen; Toth, Csaba; Matlis, Nicholas; Plateau, Guillaume; Leemans, Wim

2011-06-17T23:59:59.000Z

410

Part 2: Coherent emission from Free Electron Lasers  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 Electron beam-based sources of ultrashort x-ray pulses Alexander Zholents Advanced Photon Source, Argonne National Laborator , Argonne, IL 60439 (September 7, 2010) To be published by World Scientific Publishing Co. in Reviews of Accelerator Science and Technology. y 2 Electron beam-based sources of ultrashort x-ray pulses * Alexander Zholents Argonne National Laboratory, Advanced Photon Source, 9700 South Cass Ave., Argonne, IL 60439 Abstract A review of various methods for generation of ultrashort x-ray pulses using relativistic electron beam from conventional accelerators is presented. Both spontaneous and coherent emission of electrons is considered. Introduction The importance of the time-resolved studies of matter at picosecond (ps),

411

Radiation of Electron in the Field of Plane Light Wave  

SciTech Connect

Results of integration of a Lorentz equation for a relativistic electron moving in the field of running, plane, linear polarized electromagnetic wave are presented in the paper. It is shown that electron velocities in the field of the wave are almost periodic functions of time. For calculations of angular spectrum of electron radiation intensity expansion of the electromagnetic field in a wave zone into generalized Fourier series was used. Expressions for the radiation intensity spectrum are presented in the paper. Derived results are illustrated for electron and laser beam parameters of NSC KIPT X-ray generator NESTOR. It is shown that for low intensity of the interacting electromagnetic wave the results of energy and angular spectrum calculations in the frame of classical electrodynamics completely coincide with calculation results produced using quantum electrodynamics. Simultaneously, derived expressions give possibilities to investigate dependence of energy and angular Compton radiation spectrum on phase of interaction and the interacting wave intensity.

Zelinsky, A.; Drebot, I.V.; Grigorev, Yu.N.; Zvonareva, O.D.; /Kharkov, KIPT; Tatchyn, R.; /SLAC

2006-02-24T23:59:59.000Z

412

Power Electronics in the Healthcare Industry  

Science Conference Proceedings (OSTI)

This report provides utility marketing and account executives and engineering staff with fundamental information about the use of power electronics systems in the healthcare industry. Besides describing the power electronics systems currently used in electronic medical equipment, the report outlines how power electronics may provide medical equipment designers with the power electronics topologies required to design and manufacture future medical equipment.

1999-03-10T23:59:59.000Z

413

Space Time Matter inflation  

E-Print Network (OSTI)

We study a model of power-law inflationary inflation using the Space-Time-Matter (STM) theory of gravity for a five dimensional (5D) canonical metric that describes an apparent vacuum. In this approach the expansion is governed by a single scalar (neutral) quantum field. In particular, we study the case where the power of expansion of the universe is $p \\gg 1$. This kind of model is more successful than others in accounting for galaxy formation.

Mariano Anabitarte; Mauricio Bellini

2005-08-31T23:59:59.000Z

414

Early universe constraints on time variation of fundamental constants  

SciTech Connect

We study the time variation of fundamental constants in the early Universe. Using data from primordial light nuclei abundances, cosmic microwave background, and the 2dFGRS power spectrum, we put constraints on the time variation of the fine structure constant {alpha} and the Higgs vacuum expectation value without assuming any theoretical framework. A variation in leads to a variation in the electron mass, among other effects. Along the same line, we study the variation of {alpha} and the electron mass m{sub e}. In a purely phenomenological fashion, we derive a relationship between both variations.

Landau, Susana J.; Mosquera, Mercedes E.; Scoccola, Claudia G.; Vucetich, Hector [Departamento de Fisica, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria-Pabellon 1, 1428 Buenos Aires (Argentina); Facultad de Ciencias Astronomicas y Geofisicas. Universidad Nacional de La Plata, Paseo del Bosque S/N 1900 La Plata (Argentina); Facultad de Ciencias Astronomicas y Geofisicas. Universidad Nacional de La Plata, Paseo del Bosque S/N 1900 La Plata (Argentina); and Instituto de Astrofisica, Paseo del Bosque S/N 1900 La Plata (Argentina); Facultad de Ciencias Astronomicas y Geofisicas. Universidad Nacional de La Plata, Paseo del Bosque S/N 1900 La Plata (Argentina)

2008-10-15T23:59:59.000Z

415

Time-dependent simulations of filament propagation in photoconducting switches  

SciTech Connect

The authors present a model for investigating filamentary structures observed in laser-triggered photoswitches. The model simulates electrons and holes in two-dimensional cylindrical (r-z) geometry, with realistic electron and hole mobilities and field dependent impact ionization. Because of the large range of spatial and temporal scales to be resolved, they are using an explicit approach with fast, direct solution of the field equation. A flux limiting scheme is employed to avoid the time-step constraint due to the short time for resistive relaxation in the high density filament. Self-consistent filament propagation with speeds greater than the carrier drift velocity are observed in agreement with experiments.

Rambo, P.W.; Lawson, W.S. [Lawrence Livermore National Lab., CA (United States); Capps, C.D.; Falk, R.A. [Boeing Defense & Space Group, Seattle, WA (United States)

1994-05-01T23:59:59.000Z

416

Software support tools for high-speed real-time simulations  

Science Conference Proceedings (OSTI)

Frame times as low as 1-2 microseconds are needed for high-speed real-time (HSRT) simulations of power-electronic systems. To achieve such short frame times it is necessary to use special processing platforms and both digital signal processors (DSPs) ... Keywords: electric circuits, real-time simulation, simulation software

J. J. Zenor; R. E. Crosbie; R. Bednar; D. Word; N. G. Hingorani

2009-07-01T23:59:59.000Z

417

Electron Trapping by Molecular Vibration  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron Trapping by Molecular Vibration Print Electron Trapping by Molecular Vibration Print In photoelectron spectroscopy experiments performed at the ALS, a group of researchers has found that electronic transitions normally thought to be forbidden can in fact be excited in conjunction with certain types of molecular vibrations. Specifically, they found that when the symmetry of a linear triatomic molecule is broken by asymmetric vibrational modes, photoelectrons can become temporarily trapped by the molecule before ultimately escaping, giving rise to a broad feature in the photoelectron spectrum known as a shape resonance. This process represents a novel type of symmetry-breaking phenomenon that has not been observed previously but appears to be widespread. Such coupling between electronic motion and nuclear motion becomes increasingly important as scientists learn more about the geometry and dynamics of novel chemical structures such as those found in nanodevices and transient chemical species, and the results have implications for studies that use photoelectron spectroscopy as a diagnostic tool.

418

Electronic structure of superconductivity refined  

NLE Websites -- All DOE Office Websites (Extended Search)

Electronic structure of superconductivity refined Electronic structure of superconductivity refined Electronic structure of superconductivity refined A team of physicists propose a new model that expands on a little understood aspect of the electronic structure in high-temperature superconductors. July 10, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

419

electronics | OpenEI Community  

Open Energy Info (EERE)

603 603 Varnish cache server Home Groups Community Central Green Button Applications Developer Utility Rate FRED: FRee Energy Database More Public Groups Private Groups Features Groups Blog posts Content Stream Documents Discussions Polls Q & A Events Notices My stuff Energy blogs 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142285603 Varnish cache server electronics Home Graham7781's picture Submitted by Graham7781(2002) Super contributor 23 January, 2013 - 13:57 The Consumer Electronics Show round-up CES electronics home automation Las Vegas OpenEI Smart Grid Every January, Las Vegas hosts the Consumer Electronics Show. The CES is the world's largest technology-related trade show. The highlights of this year's show were OLED TVs, ultra-thin laptops,

420

Electronics Industry: Markets & Issues  

NLE Websites -- All DOE Office Websites (Extended Search)

Electronics Industry: Markets & Issues Electronics Industry: Markets & Issues Speaker(s): William M. Smith Date: March 17, 1998 - 12:00pm Location: 90-3148 Seminar Host/Point of Contact: Richard Sextro Electronics represents a unique opportunity to get in on the beginning of an incredible growth spurt, for an already huge industry; $400 billion/year in the U.S. now, moving up by 10%-20% per year in several sectors. This is quite unlike many other U.S. industrial sectors, which often involve mature businesses requiring assistance to stay afloat. The potential for forming business partnerships with electronics firms to deal with issues in energy efficiency, water availability/quality, air quality, productivity/yield, HVAC, power quality, wastewater, air emissions, etc., is staggering. The industrys oligopic nature provides serious opportunities

Note: This page contains sample records for the topic "time m-f electronic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Electron Trapping by Molecular Vibration  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron Trapping by Molecular Vibration Print Electron Trapping by Molecular Vibration Print In photoelectron spectroscopy experiments performed at the ALS, a group of researchers has found that electronic transitions normally thought to be forbidden can in fact be excited in conjunction with certain types of molecular vibrations. Specifically, they found that when the symmetry of a linear triatomic molecule is broken by asymmetric vibrational modes, photoelectrons can become temporarily trapped by the molecule before ultimately escaping, giving rise to a broad feature in the photoelectron spectrum known as a shape resonance. This process represents a novel type of symmetry-breaking phenomenon that has not been observed previously but appears to be widespread. Such coupling between electronic motion and nuclear motion becomes increasingly important as scientists learn more about the geometry and dynamics of novel chemical structures such as those found in nanodevices and transient chemical species, and the results have implications for studies that use photoelectron spectroscopy as a diagnostic tool.

422

Brookhaven's Laser Electron Accelerator Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

system to study pulse radi- olysis in the country and one of the three fast- est in the world. LEAF is also the first such de- vice based on a new photocathode electron gun that...

423

Repetitively pumped electron beam device  

DOE Patents (OSTI)

Disclosed is an apparatus for producing fast, repetitive pulses of controllable length of an electron beam by phased energy storage in a transmission line of length matched to the number of pulses and specific pulse lengths desired. 12 figs.

Schlitt, L.G.

1979-07-24T23:59:59.000Z

424

Soy Protein Products - Electronic Version  

Science Conference Proceedings (OSTI)

Soybeans as Functional Foods and Ingredients is written to serve as a reference for food product developers, food technologists, nutritionists, plant breeders, academic and government professionals... Soy Protein Products - Electronic Version eChapters F

425

Scanning/Transmission Electron Microscopes  

NLE Websites -- All DOE Office Websites (Extended Search)

ScanningTransmission Electron Microscopes Nion UltraSTEM 60-100 dedicated aberration-corrected STEM for low- to mid-voltage operation and Enfina EELS Contact: Juan-Carlos Idrobo,...

426

Earth Day Electronics Recycling Collection  

NLE Websites -- All DOE Office Websites (Extended Search)

Earth Day Electronics Recycling Collection The U.S. Department of Energy, Washington, DC in collaboration with UNICOR Federal Prison Industries C E L E B R A T E E A R T H D A Y A...

427

Repetitively pumped electron beam device  

DOE Patents (OSTI)

Apparatus for producing fast, repetitive pulses of controllable length of an electron beam by phased energy storage in a transmission line of length matched to the number of pulses and specific pulse lengths desired.

Schlitt, Leland G. (Livermore, CA)

1979-01-01T23:59:59.000Z

428

Controlling the Inner Electron Dance  

NLE Websites -- All DOE Office Websites (Extended Search)

2004 | 2003 | 2002 | 2001 2000 Subscribe to APS News rss feed Controlling the Inner Electron Dance JANUARY 9, 2012 Bookmark and Share Linda Young Linda Young, Director of the...

429

Time reversal invariance in polarized neutron decay  

SciTech Connect

An experiment to measure the time reversal invariance violating (T-violating) triple correlation (D) in the decay of free polarized neutrons has been developed. The detector design incorporates a detector geometry that provides a significant improvement in the sensitivity over that used in the most sensitive of previous experiments. A prototype detector was tested in measurements with a cold neutron beam. Data resulting from the tests are presented. A detailed calculation of systematic effects has been performed and new diagnostic techniques that allow these effects to be measured have been developed. As the result of this work, a new experiment is under way that will improve the sensitivity to D to 3 {times} 10{sup {minus}4} or better. With higher neutron flux a statistical sensitivity of the order 3 {times} 10{sup {minus}5} is ultimately expected. The decay of free polarized neutrons (n {yields} p + e + {bar v}{sub e}) is used to search for T-violation by measuring the triple correlation of the neutron spin polarization, and the electron and proton momenta ({sigma}{sub n} {center_dot} p{sub p} {times} p{sub e}). This correlation changes sign under reversal of the motion. Since final state effects in neutron decay are small, a nonzero coefficient, D, of this correlation indicates the violation of time reversal invariance. D is measured by comparing the numbers of coincidences in electron and proton detectors arranged symmetrically about a longitudinally polarized neutron beam. Particular care must be taken to eliminate residual asymmetries in the detectors or beam as these can lead to significant false effects. The Standard Model predicts negligible T-violating effects in neutron decay. Extensions to the Standard Model include new interactions some of which include CP-violating components. Some of these make first order contributions to D.

Wasserman, E.G.

1994-03-01T23:59:59.000Z

430

Electron attachment to chlorofluoromethanes using the electron-swarm method  

Science Conference Proceedings (OSTI)

Electron attachment rate constants, as a function of pressure-reduced electric field, were measured in mixtures with nitrogen for CCl/sub 3/F, CCl/sub 2/F/sub 2/, and CClF/sub 3/ using the electron swarm method. From these data total electron attachment cross sections sigma/sub a/(epsilon) as a function of electron energy epsilon were determined for the chlorofluoromethanes using the electron-swarm unfolding technique and a new set of electron energy distribution functions for N/sub 2/. For CCl/sub 3/F and CCl/sub 2/F/sub 2/ three maxima in sigma/sub a/(epsilon) were found at thermal energy, 0.25 and 0.75 eV and at 0.07, 0.30, and 0.93 eV, respectively. Only one pronounced maximum in sigma/sub a/(epsilon) for CClF/sub 3/ was observed at 1.4 eV. The thermal values of the attachment rate constant for CCl/sub 3/F, CCl/sub 2/F/sub 2/, and CClF/sub 3/ are, respectively, 3.90 x 10/sup 8/, 4.00 x 10/sup 7/, and 6.05 x 10/sup 3/ sec/sup -1/ Torr/sup -1/. Additionally, comparisons are made between the sigma/sub a/(epsilon) calculated for these and other molecules using both the new electron energy distribution functions for N/sub 2/ and those determined earlier. Substituent effects on the number and position of negative ion states and on the magnitude of sigma/sub a/(epsilon) for the chlorofluoromethanes are discussed.

McCorkle, D.L.; Christodoulides, A.A.; Christophorou, L.G.; Szamrej, I.

1980-04-01T23:59:59.000Z

431

Scintillation of liquid neon from electronic and nuclear recoils  

E-Print Network (OSTI)

We have measured the time dependence of scintillation light from electronic and nuclear recoils in liquid neon, finding a slow time constant of 15.4+-0.2 us. Pulse shape discrimination is investigated as a means of identifying event type in liquid neon. Finally, the nuclear recoil scintillation efficiency is measured to be 0.26+-0.03 for 387 keV nuclear recoils.

J. A. Nikkel; R. Hasty; W. H. Lippincott; D. N. McKinsey

2006-12-04T23:59:59.000Z

432

The acceleration of electrons at perpendicular shocks and its implication for solar energetic particle events  

Science Conference Proceedings (OSTI)

We present a study of the acceleration of electrons at a perpendicular shock that propagates through a turbulent magnetic field. The energization process of electrons is investigated by utilizing a combination of hybrid (kinetic ions and fluid electron) simulations and test-particle electron simulations. In this method, the motions of the test-particle electrons are numerically integrated in the time-dependent electric and magnetic fields generated by two-dimensional hybrid simulations. We show that large-scale magnetic fluctuations effect electrons in a number of ways and lead to efficient and rapid energization at the shock front. Since the electrons mainly follow along magnetic lines of force, the large-scale braiding of field lines in space allows the fast-moving electrons to interact with the shock front and get accelerated multiple times. Ripples in the shock front occurring at various scales will also contribute to the acceleration by mirroring the electrons. Our calculation shows that this process favors electron acceleration at perpendicular shocks. The acceleration efficiency is critically dependent on the turbulence amplitude and coherence length. We also discuss the implication of this study for solar energetic particles (SEPs) by comparing the acceleration of electrons with that of protons. Their correlation indicates that perpendicular shocks play an important role in SEP events.

Guo Fan; Giacalone, Joe [Department of Planetary Sciences, University of Arizona, Tucson, AZ 85721 (United States)

2012-11-20T23:59:59.000Z

433

QUADRENNIAL MCNP TIMING STUDY  

Science Conference Proceedings (OSTI)

The Los Alamos National Laboratory Monte Carlo N-Particle radiation transport code, MCNP, is widely used around the world for many radiation protection and shielding applications. As a well-known standard it is also an excellent vehicle for assessing the relative performance of scientific computing platforms. Every three-to-four years a new version of MCNP is released internationally by the Radiation Safety Information Computational Center (RSICC) in Oak Ridge, Tennessee. For each of the past few releases, we have also done a timing study to assess the progress of scientific computing platforms and software. These quadrennial timing studies are valuable to the radiation protection and shielding community because (a) they are performed by a recognized scientific team, not a computer vendor, (b) they use an internationally recognized code for radiation protection and shielding calculations, (c) they are eminently reproducible since the code and the test problems are internationally distributed. Further, if one has a computer platform, operating system, or compiler not presented in our results, its performance is directly comparable to the ones we report because it can use the same code, data, and test problems as we used. Our results, using a single processor per platform, indicate that hardware advances during the past three years have improved performance by less than a factor of two and software improvements have had a marginal effect on performance. The most significant impacts on performance have resulted from developments in multiprocessing and multitasking. The other most significant advance in the last three years has been the accelerated improvements in personal computers. In the last timing study, the tested personal computer was approximately a factor of four slower that the fastest machine tested, a DEC Alphastation 500. In the present study, the fastest PC tested was less than a factor of two slower than the fastest platform, which is a Compaq (previously DEC) Alpha XP1000.

E. C. SELCOW; B. D. LANSRUD

2000-09-01T23:59:59.000Z

434

Two-dimensional materials for ubiquitous electronics  

E-Print Network (OSTI)

Ubiquitous electronics will be a very important component of future electronics. However, today's approaches to large area, low cost, potentially ubiquitous electronic devices are currently dominated by the low mobility ...

Yu, Lili, S.M. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

435

ECR ion source with electron gun  

DOE Patents (OSTI)

An Advanced Electron Cyclotron Resonance ion source having an electron gun for introducing electrons into the plasma chamber of the ion source is described. The ion source has a injection enclosure and a plasma chamber tank. The plasma chamber is defined by a plurality of longitudinal magnets. The electron gun injects electrons axially into the plasma chamber such that ionization within the plasma chamber occurs in the presence of the additional electrons produced by the electron gun. The electron gun has a cathode for emitting electrons therefrom which is heated by current supplied from an AC power supply while bias potential is provided by a bias power supply. A concentric inner conductor and outer conductor carry heating current to a carbon chuck and carbon pusher which hold the cathode in place and also heat the cathode. In the Advanced Electron Cyclotron Resonance ion source, the electron gun replaces the conventional first stage used in prior electron cyclotron resonance ion generators. 5 figures.

Xie, Z.Q.; Lyneis, C.M.

1993-10-26T23:59:59.000Z

436

Exploiting VERITAS Timing Information  

E-Print Network (OSTI)

The 499 pixel photomultiplier cameras of the VERITAS gamma ray telescopes are instrumented with 500MHz sampling Flash ADCs. This paper describes a preliminary investigation of the best methods by which to exploit this information so as to optimize the signal-to-noise ratio for the detection of Cherenkov light pulses. The FADCs also provide unprecedented resolution for the study of the timing characteristics of Cherenkov images of cosmic-ray and gamma-ray air showers. This capability is discussed, together with the implications for gamma-hadron separation.

J. Holder; for the VERITAS Collaboration

2005-07-19T23:59:59.000Z

437

Sandia National Laboratories: Pollution Prevention: Electronics...  

NLE Websites -- All DOE Office Websites (Extended Search)

Stewardship As a member of the Federal Electronics Challenge (FEC), Sandia is committed to purchasing computer systems designed with the environment in mind. "Green" electronics...

438

ABSTRACT: Electron Irradiation Induced Transformation of ... - TMS  

Science Conference Proceedings (OSTI)

Jun 27, 2007 ... Crystallochemical changes of (Pb5Ca5)(VO4)6F2 apatite under electron irradiation were examined by transmission electron microscopy.

439

2000 Electronic Materials Conference: Airline Information  

Science Conference Proceedings (OSTI)

Sponsored by the Electronic Materials Committee of The Minerals, Metals & Materials Society (TMS), the 42nd Electronic Materials Conference (EMC) will be

440

Fundamentals of Power Electronics, Second Edition  

E-Print Network (OSTI)

1.1. Introduction to power processing 1.2. Some applications of power electronics 1.3. Elements of power electronics

Robert W. Erickson; Dragan Maksimovic

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "time m-f electronic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Correlated Electrons in Photoactive and Superconducting Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

the interactions between electrons. The two methods proposed leverage high-performance computing and are directly based on the many-electron Schrdinger equation that...

442

NIST: Electron-Impact Cross Section Database  

Science Conference Proceedings (OSTI)

... of molecules by electron impact. The database also includes cross sections for some atoms and energy distributions of ejected electrons for H, He ...

2011-12-09T23:59:59.000Z

443

NIST SURF: Beamline 10: Electron beam imaging  

Science Conference Proceedings (OSTI)

Beamline 10: Electron beam imaging. Description: ... In its unperturbed state, the vertical electron beam size is quite small, in the order of a few 10 m. ...

2012-11-19T23:59:59.000Z

444

NIST Electron and Optical Physics Division - 2001  

Science Conference Proceedings (OSTI)

... of long standing within the Division is scanning electron microscopy with ... of magnetic structures via analysis of the spins of ejected electrons. ...

445

Are Electron Tweezers Possible? Apparently So.  

Science Conference Proceedings (OSTI)

... metallurgist Vladimir Oleshko, you might expect that a beam of focused electronssuch as that created by a transmission electron microscope (TEM ...

2012-10-02T23:59:59.000Z

446

Electron Beam Ion Trap (EBIT) Facility  

Science Conference Proceedings (OSTI)

... At these temperatures, even the heaviest atoms shed most of their electrons. ... The ions are probed with an intense electron beam, and the emitted ...

2013-06-06T23:59:59.000Z

447

Electronic circuit for measuring series connected ...  

An electronic circuit for measuring voltage signals in an energy storage device is disclosed. The electronic circuit includes a plurality of energy storage cells ...

448

Glimpse of heavy electrons reveals "hidden order"  

NLE Websites -- All DOE Office Websites (Extended Search)

Glimpse of heavy electrons reveals "hidden order" Glimpse of heavy electrons reveals "hidden order" The remarkable breakthrough helps validate theory behind the observed increase...

449

Journal of Electronic Materials Home Page  

Science Conference Proceedings (OSTI)

JEM Home Page. The Journal of Electronic Materials reports on the science and technology of electronic materials while examining new applications for...

450

Electron Correlation in Iron-Based Superconductors  

NLE Websites -- All DOE Office Websites (Extended Search)

large numbers of electrons that do not interact so strongly. Paradoxically, the high mobility and density of electrons give rise to a screening effect that reduces the...

451

Appliances, Lighting, Electronics, and Miscellaneous Equipment...  

NLE Websites -- All DOE Office Websites (Extended Search)

Appliances, Lighting, Electronics, and Miscellaneous Equipment Electricity Use in New Homes Title Appliances, Lighting, Electronics, and Miscellaneous Equipment Electricity Use in...

452

Free-Electron Laser-Powered Electron Paramagnetic Resonance Spectroscopy  

E-Print Network (OSTI)

Electron paramagnetic resonance (EPR) spectroscopy interrogates unpaired electron spins in solids and liquids to reveal local structure and dynamics; for example, EPR has elucidated parts of the structure of protein complexes that have resisted all other techniques in structural biology. EPR can also probe the interplay of light and electricity in organic solar cells and light-emitting diodes, and the origin of decoherence in condensed matter, which is of fundamental importance to the development of quantum information processors. Like nuclear magnetic resonance (NMR), EPR spectroscopy becomes more powerful at high magnetic fields and frequencies, and with excitation by coherent pulses rather than continuous waves. However, the difficulty of generating sequences of powerful pulses at frequencies above 100 GHz has, until now, confined high-power pulsed EPR to magnetic fields of 3.5 T and below. Here we demonstrate that ~1 kW pulses from a free-electron laser (FEL) can power a pulsed EPR spectrometer at 240 GHz...

Takahashi, S; Edwards, D T; van Tol, J; Ramian, G; Han, S; Sherwin, M S

2012-01-01T23:59:59.000Z

453

Electron geodesic acoustic modes in electron temperature gradient mode turbulence  

Science Conference Proceedings (OSTI)

In this work, the first demonstration of an electron branch of the geodesic acoustic mode (el-GAM) driven by electron temperature gradient (ETG) modes is presented. The work is based on a fluid description of the ETG mode retaining non-adiabatic ions and the dispersion relation for el-GAMs driven nonlinearly by ETG modes is derived. A new saturation mechanism for ETG turbulence through the interaction with el-GAMs is found, resulting in a significantly enhanced ETG turbulence saturation level compared to the mixing length estimate.

Anderson, Johan; Nordman, Hans [Department of Earth and Space Sciences, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden); Singh, Raghvendra; Kaw, Predhiman [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India)

2012-08-15T23:59:59.000Z

454

Fragment-based Time-dependent Density-functional Theory  

E-Print Network (OSTI)

Using the Runge-Gross theorem that establishes the foundation of Time-dependent Density Functional Theory (TDDFT) we prove that for a given electronic Hamiltonian, choice of initial state, and choice of fragmentation, there is a unique single-particle potential (dubbed time-dependent partition potential) which, when added to each of the pre-selected fragment potentials, forces the fragment densities to evolve in such a way that their sum equals the exact molecular density at all times. This uniqueness theorem suggests new ways of computing time-dependent properties of electronic systems via fragment-TDDFT calculations. We derive a formally exact relationship between the partition potential and the total density, and illustrate our approach on a simple model system for binary fragmentation in a laser field.

Mosquera, Martin A; Wasserman, Adam

2013-01-01T23:59:59.000Z

455

Electron Trapping by Molecular Vibration  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron Trapping by Molecular Electron Trapping by Molecular Vibration Electron Trapping by Molecular Vibration Print Wednesday, 27 April 2005 00:00 In photoelectron spectroscopy experiments performed at the ALS, a group of researchers has found that electronic transitions normally thought to be forbidden can in fact be excited in conjunction with certain types of molecular vibrations. Specifically, they found that when the symmetry of a linear triatomic molecule is broken by asymmetric vibrational modes, photoelectrons can become temporarily trapped by the molecule before ultimately escaping, giving rise to a broad feature in the photoelectron spectrum known as a shape resonance. This process represents a novel type of symmetry-breaking phenomenon that has not been observed previously but appears to be widespread. Such coupling between electronic motion and nuclear motion becomes increasingly important as scientists learn more about the geometry and dynamics of novel chemical structures such as those found in nanodevices and transient chemical species, and the results have implications for studies that use photoelectron spectroscopy as a diagnostic tool.

456

Laser-driven relativistic electron beam interaction with solid dielectric  

SciTech Connect

The multi-frames shadowgraphy, interferometry and polarimetry diagnostics with sub-ps time resolution were used for an investigation of ionization wave dynamics inside a glass target induced by laser-driven relativistic electron beam. Experiments were done using the 50 TW Leopard laser at the UNR. For a laser flux of {approx}2 Multiplication-Sign 10{sup 18}W/cm{sup 2} a hemispherical ionization wave propagates at c/3. The maximum of the electron density inside the glass target is {approx}2 Multiplication-Sign 10{sup 19}cm{sup -3}. Magnetic and electric fields are less than {approx}15 kG and {approx}1 MV/cm, respectively. The electron temperature has a maximum of {approx}0.5 eV. 2D interference phase shift shows the 'fountain effect' of electron beam. The very low ionization inside glass target {approx}0.1% suggests a fast recombination at the sub-ps time scale. 2D PIC-simulations demonstrate radial spreading of fast electrons by self-consistent electrostatic fields.

Sarkisov, G. S.; Ivanov, V. V.; Leblanc, P.; Sentoku, Y.; Yates, K.; Wiewior, P.; Chalyy, O.; Astanovitskiy, A.; Bychenkov, V. Yu.; Jobe, D.; Spielman, R. B. [Raytheon Ktech, 1300 Eubank Blvd, Albuquerque, NM, 87123 (United States); Department of Physics, University of Nevada Reno, 5625 Fox Ave, Reno, NV, 89506 (United States); P.N. Lebedev Physics Institute, RAS, 53 Leninski Prospect, Moscow, 119991 (Russian Federation); Raytheon Ktech, 1300 Eubank Blvd, Albuquerque, NM, 87123 (Russian Federation)

2012-07-30T23:59:59.000Z

457

Pulsed Power for a Dynamic Transmission Electron Microscope  

Science Conference Proceedings (OSTI)

Lawrence Livermore National Laboratory (LLNL) has converted a commercial 200kV transmission electron microscope (TEM) into an ultrafast, nanoscale diagnostic tool for material science studies. The resulting Dynamic Transmission Electron Microscope (DTEM) has provided a unique tool for the study of material phase transitions, reaction front analyses, and other studies in the fields of chemistry, materials science, and biology. The TEM's thermionic electron emission source was replaced with a fast photocathode and a laser beam path was provided for ultraviolet surface illumination. The resulting photoelectron beam gives downstream images of 2 and 20 ns exposure times at 100 and 10 nm spatial resolution. A separate laser, used as a pump pulse, is used to heat, ignite, or shock samples while the photocathode electron pulses, carefully time-synchronized with the pump, function as probe in fast transient studies. The device functions in both imaging and diffraction modes. A laser upgrade is underway to make arbitrary cathode pulse trains of variable pulse width of 10-1000 ns. Along with a fast e-beam deflection scheme, a 'movie mode' capability will be added to this unique diagnostic tool. This talk will review conventional electron microscopy and its limitations, discuss the development and capabilities of DTEM, in particularly addressing the prime and pulsed power considerations in the design and fabrication of the DTEM, and conclude with the presentation of a deflector and solid-state pulser design for Movie-Mode DTEM.

dehope, w j; browning, n; campbell, g; cook, e; king, w; lagrange, t; reed, b; stuart, b; Shuttlesworth, R; Pyke, B

2009-06-25T23:59:59.000Z

458

Novel Electron-Bubble Tracking Detectors  

DOE Green Energy (OSTI)

Our Columbia group, in collaboration with Brookhaven and SMU, has been carrying out R&D on tracking detectors in cryogenic liquids, including neon and helium. A cryostat purchased by this Grant capable of working temperatures down to 1 K and pressures above the critical point of neon and helium has been operated with a variety of noble fluids. Gaseous Electron Multipliers (GEM) with hydrogen additives have been operated with tracks of radioactive sources read out both by electrical charge detecting electronics, and an optical camera purchased by this Grant, measuring mobility, charge yield, transitions through phase boundaries, gain limitations, and other properties. The goal is very high resolution in large volumes. The scope of the project is the provision of a high performance camera and its installation in a cryogenic facility providing pressure up to 40 atmospheres and a temperature from ambient down to about 1 K. In this section we will address the goals and results having to do with this project and particularly the performance of the camera, and provide a summary of the status of the detector project. The technical development of digital cameras has been dominated for the last forty years by the Charge-Coupled Device technology (CCD). This allows photon recording on very small pixels on silicon planes that provide high quantum efficiency in the visible spectrum, recording the charge generated by a single photon stored on one pixel with an area of order ten microns square. The area can be up to several centimeters squared, containing a million pixels or more. The stores charge is usually read out by manipulating voltage biases to shift the charge in each pixel over to the next, and eventually out of the array and sent to an external processor and memory. Mass production has brought the cost per channel down to very small values and allowed cameras to be integrated to many consumer products. Thermal noise becomes larger than one photon on a single pixel at good temperature, and demand night vision and other demanding applications has led to intense R&D over the years, and small coolers that maintain the CCD at temperatures of more than 100K below ambient are integrated into the camera package. These systems are sold in quantity to amateur astronomers with the same silicon devices used in professional systems, provided long exposure times with less than one electron noise per pixel. In our particle readout, we are imaging a three-dimensional track drifting into the readout plane over time, and we need to read out one plane after another, and we need a high rate of pixel processing. For many years, the noise in the electronic amplifier matching the CCD to the external electronics led to noise levels of many electrons, much higher than in the CCD itself. A break-through was made by providing signal gain inside the CCD, connecting to the external line, by a Electron Multiplier CCD, using a number of electron avalanche stages, each with a small, stable gain. This device was brought out just before out application for the present Grant, provided the last link in the development chain, which allowed out optical readout concept to be implemented at reason fact. In fact, we profited from the falling cost by delaying our order for about a year, which, together with the university discount, allowed us to proceed within our budget. The camera we purchase from the firm ANDOR, which introduced the technique, comes with an extensive suite of software that allows the fast readout with different integration times, and makes a very convenient use in our application. We have been able to make images of the light signals coming from out GEM electron avalanche detectors under many conditions, with tracks of different particle types. We have reconfigured the system a number of times, using the results from the camera to learn how to change the TPC drift geometry and the GEM charge amplifier to improve performance, a process that is still going on. The camera purchase with this Grant has performed reliably and just as specified b

Willis, William J.

2008-08-08T23:59:59.000Z

459

Good Timing: NIST/CU Collaboration Adds Timing Capability ...  

Science Conference Proceedings (OSTI)

... With the added capability to track the timing of dynamic biochemical reactions, cell ... to measure sensor signals at two points in time at a rate of up to ...

2012-02-07T23:59:59.000Z

460

A Time Bucket Formulation for the TSP with Time Windows  

E-Print Network (OSTI)

Nov 10, 2009 ... The Traveling Salesman Problem with Time Windows (TSPTW) is the problem of finding a ... To obtain a good partition of the time windows, we.

Note: This page contains sample records for the topic "time m-f electronic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Evaluation of the Extent of Electron Scattering in a Low ...  

Science Conference Proceedings (OSTI)

... of low vacuum scanning electron microscopes has been ... by all scanning electron microscope vendors. ... can help dissipate electrons that accumulate ...

2012-10-02T23:59:59.000Z

462

Manasa Electronics | Open Energy Information  

Open Energy Info (EERE)

Manasa Electronics Manasa Electronics Jump to: navigation, search Name Manasa Electronics Place Ghaziabad, Uttar Pradesh, India Zip 201 005 Sector Solar Product Ghaziabad-based manufacturer of solar PV products. Coordinates 28.673°, 77.41619° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.673,"lon":77.41619,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

463

Digital Networks: Electronics and Beyond  

NLE Websites -- All DOE Office Websites (Extended Search)

Digital Networks: Electronics and Beyond Digital Networks: Electronics and Beyond Speaker(s): Bruce Nordman Date: January 9, 2009 - 12:00pm Location: 90-3122 For the last five years or so, I have made digital networks my prime research focus. For the most part, this has concentrated on IT networks as with PCs and servers, and the network interfaces and network devices that enable it. I will outline how to think about networks as they collide with energy use and efficiency, and report on the several projects we have underway in this area. Networks have a unique relationship to industry standards and I will outline some of the challenges and opportunities this brings. In addition, we have the looming prospect of the networking of many non-electronic loads in buildings (particularly lighting and climate

464

Polymer electronic devices and materials.  

Science Conference Proceedings (OSTI)

Polymer electronic devices and materials have vast potential for future microsystems and could have many advantages over conventional inorganic semiconductor based systems, including ease of manufacturing, cost, weight, flexibility, and the ability to integrate a wide variety of functions on a single platform. Starting materials and substrates are relatively inexpensive and amenable to mass manufacturing methods. This project attempted to plant the seeds for a new core competency in polymer electronics at Sandia National Laboratories. As part of this effort a wide variety of polymer components and devices, ranging from simple resistors to infrared sensitive devices, were fabricated and characterized. Ink jet printing capabilities were established. In addition to promising results on prototype devices the project highlighted the directions where future investments must be made to establish a viable polymer electronics competency.

Schubert, William Kent; Baca, Paul Martin; Dirk, Shawn M.; Anderson, G. Ronald; Wheeler, David Roger

2006-01-01T23:59:59.000Z

465

Intense synchrotron radiation from a magnetically compressed relativistic electron layer  

SciTech Connect

Using a simple model of a relativistic electron layer rotating in an axial magnetic field, energy gain by an increasing magnetic field and energy loss by synchrotron radiation were considered. For a typical example, initial conditions were approximately 8 MeV electron in approximately 14 kG magnetic field, at a layer radius of approximately 20 mm, and final conditions were approximately 4 MG magnetic field approximately 100 MeV electron layer energy at a layer radius of approximately 1.0 mm. In the final state, the intense 1-10 keV synchrotron radiation imposes an electron energy loss time constant of approximately 100 nanoseconds. In order to achieve these conditions in practice, the magnetic field must be compressed by an imploding conducting liner; preferably two flying rings in order to allow the synchrotron radiation to escape through the midplane. The synchrotron radiation loss rate imposes a lower limit to the liner implosion velocity required to achieve a given final electron energy (approximately 1 cm/$mu$sec in the above example). In addition, if the electron ring can be made sufficiently strong (field reversed), the synchrotron radiation would be a unique source of high intensity soft x-radiation. (auth)

Shearer, J.W.; Nowak, D.A.; Garelis, E.; Condit, W.C.

1975-10-01T23:59:59.000Z

466

Electron Interactions With c-C4F8  

Science Conference Proceedings (OSTI)

... N) Ratio of lateral electron diffusion coefficient to electron mobility ... of the slowed-down electrons by c ... via the near-zero electron attachment process ...

2012-07-02T23:59:59.000Z

467

Electronic imaging system and technique  

SciTech Connect

A method and system for viewing objects obscurred by intense plasmas or flames (such as a welding arc) includes a pulsed light source to illuminate the object, the peak brightness of the light reflected from the object being greater than the brightness of the intense plasma or flame; an electronic image sensor for detecting a pulsed image of the illuminated object, the sensor being operated as a high-speed shutter; and electronic means for synchronizing the shutter operation with the pulsed light source.

Bolstad, Jon O. (Idaho Falls, ID)

1987-01-01T23:59:59.000Z

468

Electronic imaging system and technique  

DOE Patents (OSTI)

A method and system for viewing objects obscurred by intense plasmas or flames (such as a welding arc) includes a pulsed light source to illuminate the object, the peak brightness of the light reflected from the object being greater than the brightness of the intense plasma or flame; an electronic image sensor for detecting a pulsed image of the illuminated object, the sensor being operated as a high-speed shutter; and electronic means for synchronizing the shutter operation with the pulsed light source.

Bolstad, J.O.

1984-06-12T23:59:59.000Z

469

Electron microscopy of ceramic superconductors  

SciTech Connect

The critical current Jc is at least as important as Tc (transition temperature) for applications in superconducting materials. Jc is strongly dependent on microstructure and, in consequence, electron microscopy will continue to be important in the development of practical ceramic superconductors. We will review the progress that has been made over the past year or so in studying the superconductors by electron microscopy techniques of all kinds--conventional, high resolution, analytical, etc. A thorough review is impossible but a bibliography is available, as well as two special issues of Journals. 25 refs., 9 figs.

Mitchell, T.E.; Roy, T.

1988-01-01T23:59:59.000Z

470

Direct cooled power electronics substrate  

DOE Patents (OSTI)

The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.

Wiles, Randy H. (Powell, TN), Wereszczak, Andrew A. (Oak Ridge, TN); Ayers, Curtis W. (Kingston, TN); Lowe, Kirk T. (Knoxville, TN)

2010-09-14T23:59:59.000Z

471

The Heliosphere in Time  

E-Print Network (OSTI)

Because of the dynamic nature of the interstellar medium, the Sun should have encountered a variety of different interstellar environments in its lifetime. As the solar wind interacts with the surrounding interstellar medium to form a heliosphere, different heliosphere shapes, sizes, and particle contents result from the different environments. Some of the large possible interstellar parameter space (density, velocity, temperature) is explored here with the help of global heliosphere models, and the features in the resulting heliospheres are compared and discussed. The heliospheric size, expressed as distance of the nose of the heliopause to the Sun, is set by the solar wind - interstellar pressure balance, even for extreme cases. Other heliospheric boundary locations and neutral particle results correlate with the interstellar parameters as well. If the H0 clouds identified in the Millennium Arecibo survey are typical of clouds encountered by the Sun, then the Sun spends ~99.4% of the time in warm low density ISM, where the typical upwind heliosphere radii are up to two orders of magnitude larger than at present.

H. -R. Mller; P. C. Frisch; B. D. Fields; G. P. Zank

2008-10-02T23:59:59.000Z

472

Methods for coupling radiation, ion, and electron energies in grey Implicit Monte Carlo  

Science Conference Proceedings (OSTI)

We present three methods for extending the Implicit Monte Carlo (IMC) method to treat the time-evolution of coupled radiation, electron, and ion energies. The first method splits the ion and electron coupling and conduction from the standard IMC radiation-transport ... Keywords: Implicit Monte Carlo, Thermal radiation transport, Three-temperature model

T. M. Evans; J. D. Densmore

2007-08-01T23:59:59.000Z

473

Short-term relationship of total electron content with geomagnetic activity in equatorial regions  

E-Print Network (OSTI)

Short-term relationship of total electron content with geomagnetic activity in equatorial regions X equatorial ionosphere and geomagnetic activity is examined. Hourly averages of the total electron content for equatorial geomagnetic activity, at three local times (0700­0800, 1200­1300, and 1600­1700 LT) from March

Qiyu, Sun

474

Electronically induced surface reactions: Evolution, concepts, and perspectives  

SciTech Connect

This is a personal account of the development of the title subject which is the broader field encompassing surface photochemistry. It describes the early times when the main interest centered on desorption induced by slow electrons, follows its evolution in experiment (use of synchrotron radiation and connections to electron spectroscopies; use of lasers) and mechanisms, and briefly mentions the many different subfields that have evolved. It discusses some practically important aspects and applications and ends with an account of an evolving new subfield, the application to photochemistry on nanoparticles.

Menzel, Dietrich [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Department of Chemical Physics, Berlin (Germany) and Physik-Department E20, Technical University Muenchen, Garching (Germany)

2012-09-07T23:59:59.000Z

475

About the 2004 Electronic Materials Conference: Exhibition ...  

Science Conference Proceedings (OSTI)

2004 Electronic Materials Conference: Exhibition & Exhibitor Information ... REGISTRATION & HOUSING INFORMATION PERSONAL CONFERENCE...

476

Publicly Submitted White Papers - Electronics and Photonics  

Science Conference Proceedings (OSTI)

... Components; A Transformative Approach to the Holy Grail of Chipscale Ultrafast Photonic-Electronic Integration; Accelerating ...

2011-08-02T23:59:59.000Z

477

Electronics as material: littleBits  

Science Conference Proceedings (OSTI)

As the democratization of electronics gains more momentum, we are interested in thinking of electronics as material that can be combined with other traditional ones such as paper, cardboard and screws. littleBits is an opensource library of discrete ... Keywords: electronics, electronics kit, industrial design, interaction design, prototyping, sketching in hardware

Ayah Bdeir

2009-02-01T23:59:59.000Z

478

Transmission Line Technology for Electron Cyclotron Heating  

Science Conference Proceedings (OSTI)

Technical Paper / Special Issue on Electron Cyclotron Wave Physics, Technology, and Applications - Part 2

J. L. Doane; R. A. Olstad

479

Planar Vacuum Diode With Monoenergetic Electrons  

E-Print Network (OSTI)

The paper analyses volt-ampere characteristics of a planar vacuum diode with mono-energetic electrons, emitted by the cathode (an electron beam). The movement of the electron beam in the volume of the diode is described. An analytic dependence of the volt-ampere characteristics in an unlimited and limited by the field mode of the electron beam is derived.

Dimitar G. Stoyanov

2007-06-06T23:59:59.000Z

480

NIST Electron and Optical Physics Division - 1998  

Science Conference Proceedings (OSTI)

TECHNICAL ACTIVITIES 1998 - NISTIR 6268 ELECTRON AND OPTICAL PHYSICS DIVISION. Vortex structures in a rotating ...

Note: This page contains sample records for the topic "time m-f electronic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

NIST Electron and Optical Physics Division - 1998  

Science Conference Proceedings (OSTI)

TECHNICAL ACTIVITIES 1999 - NISTIR 6438 Electron and Optical Physics Division. Soliton produced by phase-printing ...

482

Light modulated electron beam driven radiofrequency emitter  

DOE Patents (OSTI)

The disclosure relates to a light modulated electron beam-driven radiofrequency emitter. Pulses of light impinge on a photoemissive device which generates an electron beam having the pulse characteristics of the light. The electron beam is accelerated through a radiofrequency resonator which produces radiofrequency emission in accordance with the electron, hence, the light pulses.

Wilson, M.T.; Tallerico, P.J.

1979-10-10T23:59:59.000Z

483

Secondary electron ion source neutron generator  

DOE Patents (OSTI)

A neutron generator employing an electron emitter, an ion source bombarded by the electrons from the electron emitter, a plasma containment zone, and a target situated between the plasma containment zone and the electron emitter. The target contains occluded deuterium, tritium, or a mixture thereof

Brainard, John P. (Albuquerque, NM); McCollister, Daryl R. (Albuquerque, NM)

1998-01-01T23:59:59.000Z

484

Electron Microscopy of Carbon Nanotube Composites  

Science Conference Proceedings (OSTI)

Electron Microscopy of Carbon Nanotube Composites. Summary: Carbon nanomaterials such as carbon nanotubes (CNTs ...

2013-07-01T23:59:59.000Z

485

Defect Structures and Electronic Properties of Graphene  

Science Conference Proceedings (OSTI)

Defect Structures and Electronic Properties of Graphene. Summary: Graphene and related materials have remarkable physical ...

2013-07-15T23:59:59.000Z

486

Molecular image resolution in electron microscopy  

Science Conference Proceedings (OSTI)

In order to determine the ultimate molecular resolution attainable with a conventional electron microscope

Natsu Uyeda; Takashi Kobayashi; Eiji Suito; Yoshiyasu Harada

1972-01-01T23:59:59.000Z

487

NIST Time Scale Data Archive  

Science Conference Proceedings (OSTI)

NIST Time Scale Data Archive. ... The AT1 scale is run in real time using data from an ensemble of cesium standards and hydrogen masers. ...

2013-08-07T23:59:59.000Z

488

Time and Frequency Division Homepage  

Science Conference Proceedings (OSTI)

... Controlled ClocksTelephone TimeDivision HistoryFrequently Asked Questions (FAQ)Time and Frequency from A to Z: An illustrated glossaryA Walk ...

2013-12-27T23:59:59.000Z

489

Time dependent Directional Profit Model for Financial Time Series Forecasting  

E-Print Network (OSTI)

Time dependent Directional Profit Model for Financial Time Series Forecasting Jingtao YAO Chew Lim@comp.nus.edu.sg Abstract Goodness­of­fit is the most popular criterion for neural network time series forecasting. In the context of financial time series forecasting, we are not only concerned at how good the forecasts fit

Yao, JingTao

490

Electron-acoustic vortices in multicomponent magnetoplasma  

Science Conference Proceedings (OSTI)

Linear and nonlinear properties of electron-acoustic waves in a multicomponent magnetoplasma comprising of cold and beam electrons and two species of thermal unmagnetized ions are investigated here. It is found that the electron beam velocity, electron Debye length, electron Larmor radius, and concentration of the cold and beam electrons affect the linear dispersion characteristics of electron-acoustic wave. It is also found that such a multicomponent plasma admits dipolar and vortex street type structures for the normalized electrostatic potential PHIgeomagnetic tail, etc. is also pointed out.

Haque, Q. [Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad 45320 (Pakistan); Mirza, Arshad M. [Department of Physics, Theoretical Plasma Physics Group, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Nargis, Shahida [Department of Mathematics, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

2010-05-15T23:59:59.000Z

491

Airborne Tactical Free-Electron Laser  

Science Conference Proceedings (OSTI)

The goal of 100 kilowatts (kW) of directed energy from an airborne tactical platform has proved challenging due to the size and weight of most of the options that have been considered. However, recent advances in Free-Electron Lasers appear to offer a solution along with significant tactical advantages: a nearly unlimited magazine, time structures for periods from milliseconds to hours, radar like functionality, and the choice of the wavelength of light that best meets mission requirements. For an Airborne Tactical Free-Electron Laser (ATFEL) on a platforms such as a Lockheed C-130J-30 and airships, the two most challenging requirements, weight and size, can be met by generating the light at a higher harmonic, aggressively managing magnet weights, managing cryogenic heat loads using recent SRF R&D results, and using FEL super compact design concepts that greatly reduce the number of components. The initial R&D roadmap for achieving an ATFEL is provided in this paper. Performing this R&D is expected to further reduce the weight, size and power requirements for the FELs the Navy is currently developing for shipboard applications, as well as providing performance enhancements for the strategic airborne MW class FELs. The 100 kW ATFEL with its tactical advantages may prove sufficiently attractive for early advancement in the queue of deployed FELs.

Roy Whitney; George Neil

2007-02-01T23:59:59.000Z

492

Aqueous systems from first-principles : structure, dynamics and electron-transfer reactions  

E-Print Network (OSTI)

In this thesis, we show for the first time how it is possible to calculated fully from first-principles the diabatic free-energy surfaces of electron-transfer reactions. The excitation energy corresponding to the transfer ...

Sit, P