National Library of Energy BETA

Sample records for tilt wheel front

  1. Generation of short gamma-ray pulses on electron bunches formed in intense interfering laser beams with tilted fronts

    SciTech Connect (OSTI)

    Korobkin, V V; Romanovskiy, M Yu; Trofimov, V A; Shiryaev, O B

    2014-05-30

    It is shown that in the interference of multiple laser pulses with a relativistic intensity, phase and amplitude fronts of which are tilted at an angle with respect to their wave vector, effective traps of charged particles, which are moving at the velocity of light, are formed. Such traps are capable of capturing and accelerating the electrons produced in the ionisation of low-density gas by means of laser radiation. The accelerated electrons in the traps form a bunch, whose dimensions in all directions are much smaller than the laser radiation wavelength. Calculations show that the energy of accelerated electrons may amount to several hundred GeV at experimentally accessible relativistic laser intensities. As a result of the inverse Compton scattering, gamma-quanta with a high energy and narrow radiation pattern are emitted when these electrons interact with a laser pulse propagating from the opposite direction. The duration of emitted gamma-ray pulses constitutes a few attoseconds. The simulation is performed by solving the relativistic equation of motion for an electron with a relevant Lorentz force. (interaction of radiation with matter)

  2. Tilted fuel cell apparatus

    DOE Patents [OSTI]

    Cooper, John F.; Cherepy, Nerine; Krueger, Roger L.

    2005-04-12

    Bipolar, tilted embodiments of high temperature, molten electrolyte electrochemical cells capable of directly converting carbon fuel to electrical energy are disclosed herein. The bipolar, tilted configurations minimize the electrical resistance between one cell and others connected in electrical series. The tilted configuration also allows continuous refueling of carbon fuel.

  3. Ultrasonic search wheel probe

    DOE Patents [OSTI]

    Mikesell, Charles R.

    1978-01-01

    A device is provided for reducing internal reflections from the tire of an ultrasonic search wheel probe or from within the material being examined. The device includes a liner with an anechoic chamber within which is an ultrasonic transducer. The liner is positioned within the wheel and includes an aperture through which the ultrasonic sound from the transducer is directed.

  4. Grinding Wheel System

    DOE Patents [OSTI]

    Malkin, Stephen; Gao, Robert; Guo, Changsheng; Varghese, Biju; Pathare, Sumukh

    2003-08-05

    A grinding wheel system includes a grinding wheel with at least one embedded sensor. The system also includes an adapter disk containing electronics that process signals produced by each embedded sensor and that transmits sensor information to a data processing platform for further processing of the transmitted information.

  5. Grinding Wheel System

    DOE Patents [OSTI]

    Malkin, Stephen; Gao, Robert; Guo, Changsheng; Varghese, Biju; Pathare, Sumukh

    2006-01-10

    A grinding wheel system includes a grinding wheel with at least one embedded sensor. The system also includes an adapter disk containing electronics that process signals produced by each embedded sensor and that transmits sensor information to a data processing platform for further processing of the transmitted information.

  6. Wheeled hopping robot

    DOE Patents [OSTI]

    Fischer, Gary J.

    2010-08-17

    The present invention provides robotic vehicles having wheeled and hopping mobilities that are capable of traversing (e.g. by hopping over) obstacles that are large in size relative to the robot and, are capable of operation in unpredictable terrain over long range. The present invention further provides combustion powered linear actuators, which can include latching mechanisms to facilitate pressurized fueling of the actuators, as can be used to provide wheeled vehicles with a hopping mobility.

  7. Drive Diagnostic Filter Wheel Control

    Energy Science and Technology Software Center (OSTI)

    2007-07-17

    DrD Filter Wheel Control is National Instrument's Labview software that drives a Drive Diagnostic filter wheel. The software can drive the filter wheel between each end limit, detect the positive and negative limit and each home position and post the stepper motot values to an Excel spreadsheet. The software can also be used to cycle the assembly between the end limits.

  8. Automatic Mechetronic Wheel Light Device

    DOE Patents [OSTI]

    Khan, Mohammed John Fitzgerald

    2004-09-14

    A wheel lighting device for illuminating a wheel of a vehicle to increase safety and enhance aesthetics. The device produces the appearance of a "ring of light" on a vehicle's wheels as the vehicle moves. The "ring of light" can automatically change in color and/or brightness according to a vehicle's speed, acceleration, jerk, selection of transmission gears, and/or engine speed. The device provides auxiliary indicator lights by producing light in conjunction with a vehicle's turn signals, hazard lights, alarm systems, and etc. The device comprises a combination of mechanical and electronic components and can be placed on the outer or inner surface of a wheel or made integral to a wheel or wheel cover. The device can be configured for all vehicle types, and is electrically powered by a vehicle's electrical system and/or battery.

  9. Submerged water wheel

    SciTech Connect (OSTI)

    Frisz, J. O.

    1985-11-05

    A water wheel for operating fully submerged in an ocean current has a rotating frame member supported on the ocean floor for rotation about a vertical axis. The frame member supports a plurality of vertically extending vanes, each vane being rotatably supported on the frame for limited rotation about a vertical axis. It has a hydrofoil shape in cross-section with the axis of rotation parallel to the leading and trailing edges. Rotation of the vanes is limited relative to the frame by a hydraulic piston control system and shock absorbers.

  10. Wheel-type magnetic refrigerator

    DOE Patents [OSTI]

    Barclay, J.A.

    1983-10-11

    The disclosure is directed to a wheel-type magnetic refrigerator capable of cooling over a large temperature range. Ferromagnetic or paramagnetic porous materials are layered circumferentially according to their Curie temperature. The innermost layer has the lowest Curie temperature and the outermost layer has the highest Curie temperature. The wheel is rotated through a magnetic field perpendicular to the axis of the wheel and parallel to its direction of rotation. A fluid is pumped through portions of the layers using inner and outer manifolds to achieve refrigeration of a thermal load. 7 figs.

  11. Wheel-type magnetic refrigerator

    DOE Patents [OSTI]

    Barclay, J.A.

    1982-01-20

    The disclosure is directed to a wheel-type magnetic refrigerator capable of cooling over a large temperature range. Ferromagnetic or paramagnetic porous materials are layered circumferentially according to their Curie temperature. The innermost layer has the lowest Curie temperature and the outermost layer has the highest Curie temperature. The wheel is rotated through a magnetic field perpendicular to the axis of the wheel and parallel to its direction of rotation. A fluid is pumped through portions of the layers using inner and outer manifolds to achieve refrigeration of a thermal load.

  12. Wheel-type magnetic refrigerator

    DOE Patents [OSTI]

    Barclay, John A.

    1983-01-01

    The disclosure is directed to a wheel-type magnetic refrigerator capable of cooling over a large temperature range. Ferromagnetic or paramagnetic porous materials are layered circumferentially according to their Curie temperature. The innermost layer has the lowest Curie temperature and the outermost layer has the highest Curie temperature. The wheel is rotated through a magnetic field perpendicular to the axis of the wheel and parallel to its direction of rotation. A fluid is pumped through portions of the layers using inner and outer manifolds to achieve refrigeration of a thermal load.

  13. Rim seal for turbine wheel

    DOE Patents [OSTI]

    Glezer, Boris; Boyd, Gary L.; Norton, Paul F.

    1996-01-01

    A turbine wheel assembly includes a disk having a plurality of blades therearound. A ceramic ring is mounted to the housing of the turbine wheel assembly. A labyrinth rim seal mounted on the disk cooperates with the ceramic ring to seal the hot gases acting on the blades from the disk. The ceramic ring permits a tighter clearance between the labyrinth rim seal and the ceramic ring.

  14. Aerodynamic Drag Reduction Apparatus For Wheeled Vehicles In Ground Effect

    DOE Patents [OSTI]

    Ortega, Jason M.; Salari, Kambiz

    2005-12-13

    An apparatus for reducing the aerodynamic drag of a wheeled vehicle in a flowstream, the vehicle having a vehicle body and a wheel assembly supporting the vehicle body. The apparatus includes a baffle assembly adapted to be positioned upstream of the wheel assembly for deflecting airflow away from the wheel assembly so as to reduce the incident pressure on the wheel assembly.

  15. Front Burner- Issue 15

    Broader source: Energy.gov [DOE]

    The Cybersecurity Front Burner Issue No. 15 addresses the DOE eSCRM Program and Secure Online Shopping.

  16. Front Burner- Issue 14

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Cybersecurity Front Burner Issue No. 14 highlights the 2013 National Cybersecurity Awareness Month (NCSAM) Campaign and Phishing Scams.

  17. Energy Upgrade California Drives Demand From Behind the Wheel...

    Energy Savers [EERE]

    Upgrade California Drives Demand From Behind the Wheel Energy Upgrade California Drives Demand From Behind the Wheel Photo of a trailer with the Energy Upgrade California logo and ...

  18. Other: Nanoscale Machines: These Squeaky Wheels Will Get No Grease...

    Office of Scientific and Technical Information (OSTI)

    Nanoscale Machines: These Squeaky Wheels Will Get No Grease Citation Details Title: Nanoscale Machines: These Squeaky Wheels Will Get No Grease

  19. Retail wheeling: Is this revolution necessary?

    SciTech Connect (OSTI)

    Cudahy, R.D.

    1994-12-31

    As of a former state regulator and a once enthusiastic practitioner of public utility law, I find it fascinating to see the latest nostrum to burst on the electric utility scene: retail wheeling. Wheeling became a personal interest in the Texas interconnection fight of the late seventies and may have led to the interconnection and wheeling provision of the Public Utilities Regulatory Policies Act (PURPA). Retail wheeling contemplates that every electric power customer should be given an opportunity to seek out the lowest cost source of power wherever it can be found. As a practical matter, the drums for retail wheeling are presently being beaten by large industrial users, who believe that they have the capability to find low cost sources and to make advantageous commercial arrangements to acquire electricity. Large industrials have long been fighting the utilities for cheaper electricity, frequently using the threat of self-generation and cogeneration.

  20. Large optics inspection, tilting, and washing stand

    DOE Patents [OSTI]

    Ayers, Marion Jay; Ayers, Shannon Lee

    2010-08-24

    A large optics stand provides a risk free means of safely tilting large optics with ease and a method of safely tilting large optics with ease. The optics are supported in the horizontal position by pads. In the vertical plane the optics are supported by saddles that evenly distribute the optics weight over a large area.

  1. Large optics inspection, tilting, and washing stand

    DOE Patents [OSTI]

    Ayers, Marion Jay; Ayers, Shannon Lee

    2012-10-09

    A large optics stand provides a risk free means of safely tilting large optics with ease and a method of safely tilting large optics with ease. The optics are supported in the horizontal position by pads. In the vertical plane the optics are supported by saddles that evenly distribute the optics weight over a large area.

  2. FRONT BURNER- ISSUE 19

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Cybersecurity Front Burner Issue No. 19 examines Securing the Internet of Things, Facebook Messenger Application, and implementation of the Contractor Training Site.

  3. ARM - Front Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Page Front Page World's premier ground-based observations facility advancing climate change research A U.S. Department of Energy Office of Science user facility, providing data...

  4. Front Burner- Issue 13

    Broader source: Energy.gov [DOE]

    The Cybersecurity Front Burner Issue No. 13 contained a message from the Associate Chief Information Officer (ACIO) for Cybersecurity as well as a listing of recommended cybersecurity practices.

  5. Front Burner- Issue 16

    Broader source: Energy.gov [DOE]

    The Cybersecurity Front Burner Issue No. 16 addresses Malware, the Worst Passwords of 2013, and the Flat Stanley and Stop.Think.Connect. Campaign.

  6. Front Burner- Issue 18

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Cybersecurity Front Burner Issue No. 18 addresses keeping kids safe on the Internet, cyber crime, and DOE Cyber awareness and training initiatives.

  7. The calm before the storm. [Retail wheeling

    SciTech Connect (OSTI)

    Studness, C.M.

    1993-05-15

    The right to refuse retail wheeling requests is one of the cornerstones of a utility's monopoly power. Utilities have fought staunchly to preserve it, most recently in preventing retail wheeling from becoming an important issue in the congressional debate over deregulation; the Energy Policy Act of 1992 steered clear of it. For the present, the prohibition of retail wheeling gives utilities enormous power over the retail electric power market. The ability to refuse retail wheeling requests, of course, prevents retail customers from buying power from third parties. This enables a utility to sell retail customers all the power it can generate, at a price that covers its cost plus an allowed return-even if its price exceeds that of power available in the wholesale market. The denial of retail wheeling thus protects a utility's inefficiencies, whose price is ultimately shouldered onto customers through cost-plus electric rates. Allowing retail wheeling would remove the foundation for much of the current monopoly power that utilities enjoy. Third parties could sell power to a utility's retail customers, since the utility would be required to wheel it. Retail customers would be able to bypass the local distribution utility to buy power from the cheapest source available. Market forces would drive pricing rather than the cost-plus ratemaking process. A utility whose electric rates were above market would have to meet the competitive price or lose sales.

  8. An Acoustic Wave Equation for Tilted Transversely Isotropic Media...

    Office of Scientific and Technical Information (OSTI)

    An Acoustic Wave Equation for Tilted Transversely Isotropic Media Citation Details In-Document Search Title: An Acoustic Wave Equation for Tilted Transversely Isotropic Media ...

  9. Spin transport in tilted electron vortex beams

    SciTech Connect (OSTI)

    Basu, Banasri; Chowdhury, Debashree

    2014-12-10

    In this paper we have enlightened the spin related issues of tilted Electron vortex beams. We have shown that in the skyrmionic model of electron we can have the spin Hall current considering the tilted type of electron vortex beam. We have considered the monopole charge of the tilted vortex as time dependent and through the time variation of the monopole charge we can explain the spin Hall effect of electron vortex beams. Besides, with an external magnetic field we can have a spin filter configuration.

  10. OCILOW-Wheeled Platform Controls Executable Set

    Energy Science and Technology Software Center (OSTI)

    2005-11-30

    The OCILOW Controls Executable Set is the complete set of machine executable instructions to control the motion of wheeled platforms that incorporate Off-Centered In-Line Omni-directional Wheels (OCILOW). The controls utilize command signals for the desired motion of the platform (X, Y and Theta) and calculate and control the steering and rolling motion required of each OCILOW wheels to achieve the desired translational and rotational platform motion. The controls utilize signals from the wheel steering andmore » rolling resolvers, and from three load cells located at each wheels, to coordinate the motion of all wheels, while respecting their non-holonomic constraints (i.e., keeping internal stresses and slippage due to possible errors, uneven floors, bumps, misalignment, etc. bounded). The OCILOW Controls Executable Set, which is copyrighted here, is an embodiment of the generic OCILOW algorithms (patented separately) developed specifically for controls of the Proof-of-Principle-Transporter (POP-T) system that has been developed to demonstrate the overall OCILOW controls feasibility and capabilities.« less

  11. OCILOW-Wheeled Platform Controls Executable Set

    SciTech Connect (OSTI)

    2005-11-30

    The OCILOW Controls Executable Set is the complete set of machine executable instructions to control the motion of wheeled platforms that incorporate Off-Centered In-Line Omni-directional Wheels (OCILOW). The controls utilize command signals for the desired motion of the platform (X, Y and Theta) and calculate and control the steering and rolling motion required of each OCILOW wheels to achieve the desired translational and rotational platform motion. The controls utilize signals from the wheel steering and rolling resolvers, and from three load cells located at each wheels, to coordinate the motion of all wheels, while respecting their non-holonomic constraints (i.e., keeping internal stresses and slippage due to possible errors, uneven floors, bumps, misalignment, etc. bounded). The OCILOW Controls Executable Set, which is copyrighted here, is an embodiment of the generic OCILOW algorithms (patented separately) developed specifically for controls of the Proof-of-Principle-Transporter (POP-T) system that has been developed to demonstrate the overall OCILOW controls feasibility and capabilities.

  12. In-line drivetrain and four wheel drive work machine using same

    DOE Patents [OSTI]

    Hoff, Brian

    2008-08-05

    A four wheel drive articulated mine loader is powered by a fuel cell and propelled by a single electric motor. The drivetrain has the first axle, second axle, and motor arranged in series on the work machine chassis. Torque is carried from the electric motor to the back differential via a pinion meshed with the ring gear of the back differential. A second pinion oriented in an opposite direction away from the ring gear is coupled to a drive shaft to transfer torque from the ring gear to the differential of the front axle. Thus, the ring gear of the back differential acts both to receive torque from the motor and to transfer torque to the forward axle. The in-line drive configuration includes a single electric motor and a single reduction gear to power the four wheel drive mine loader.

  13. Tilt assembly for tracking solar collector assembly

    DOE Patents [OSTI]

    Almy, Charles; Peurach, John; Sandler, Reuben

    2012-01-24

    A tilt assembly is used with a solar collector assembly of the type comprising a frame, supporting a solar collector, for movement about a tilt axis by pivoting a drive element between first and second orientations. The tilt assembly comprises a drive element coupler connected to the drive element and a driver, the driver comprising a drive frame, a drive arm and a drive arm driver. The drive arm is mounted to the drive frame for pivotal movement about a drive arm axis. Movement on the drive arm mimics movement of the drive element. Drive element couplers can extend in opposite directions from the outer portion of the drive arm, whereby the assembly can be used between adjacent solar collector assemblies in a row of solar collector assemblies.

  14. Combined Scanning Transmission Electron Microscopy Tilt- and Focal Series

    SciTech Connect (OSTI)

    Dahmen, Tim; Baudoin, Jean-Pierre G; Lupini, Andrew R; Kubel, Christian; Slusallek, Phillip; De Jonge, Niels

    2014-01-01

    In this study, a combined tilt- and focal series is proposed as a new recording scheme for high-angle annular dark-field scanning transmission electron microscopy (STEM) tomography. Three-dimensional (3D) data were acquired by mechanically tilting the specimen, and recording a through-focal series at each tilt direction. The sample was a whole-mount macrophage cell with embedded gold nanoparticles. The tilt focal algebraic reconstruction technique (TF-ART) is introduced as a new algorithm to reconstruct tomograms from such combined tilt- and focal series. The feasibility of TF-ART was demonstrated by 3D reconstruction of the experimental 3D data. The results were compared with a conventional STEM tilt series of a similar sample. The combined tilt- and focal series led to smaller missing wedge artifacts, and a higher axial resolution than obtained for the STEM tilt series, thus improving on one of the main issues of tilt series-based electron tomography.

  15. Evaluation of the 30 Ton CHA Crane Wheel Axle Modification

    SciTech Connect (OSTI)

    RICH, J.W.

    2002-06-04

    An existing design for eccentric bushings was utilized and updated as necessary to accommodate minor adjustment as required to correct wheel alignment on the North West Idler wheel. The design is revised to install eccentric bushings on only one end.

  16. FRONT BURNER- Issue 20

    Broader source: Energy.gov [DOE]

    The Cybersecurity Front Burner Issue No. 20 examines Phishing to include defining Phishing and related terms and how to protect yourself from this very common and clever security threat. The newsletter also addresses wireless networks, supply chains, training events, and readily available cybersecurity resources. Stay cyber informed and check it out!

  17. File:NREL-africa-tilt.pdf | Open Energy Information

    Open Energy Info (EERE)

    tilt.pdf Jump to: navigation, search File File history File usage Africa - Annual Flat Plate Tilted at Latitude (PDF) Size of this preview: 776 600 pixels. Full resolution...

  18. Prediction of tilted capillary barrier performance

    SciTech Connect (OSTI)

    Webb, S.W.; McCord, J.T.; Dwyer, S.F.

    1997-04-01

    Capillary barriers, consisting of tilted fine-over-coarse layers under unsaturated conditions, have been suggested as landfill covers to divert water infiltration away from sensitive underground regions, especially for arid and semi-arid regions. The Hydrological Evaluation of Landfill Performance (HELP) computer code is an evaluation tool for landfill covers used by designers and regulators. HELP is a quasi-two-dimensional model that predicts moisture movement into and through the underground soil and waste layers. Processes modeled within HELP include precipitation, runoff, evapotranspiration, unsaturated vertical drainage, saturated lateral drainage, and leakage through liners. Unfortunately, multidimensional unsaturated flow phenomena that are necessary for evaluating tilted capillary barriers are not included in HELP. Differences between the predictions of the HELP and those from a multidimensional unsaturated flow code are presented to assess the two different approaches. Comparisons are presented for the landfill covers including capillary barrier configurations at the Alternative Landfill Cover Demonstration (ALCD) being conducted at Sandia.

  19. Stabilizing windings for tilting and shifting modes

    DOE Patents [OSTI]

    Jardin, Stephen C.; Christensen, Uffe R.

    1984-01-01

    This invention relates to passive conducting loops for stabilizing a plasma ring against unstable tilting and/or shifting modes. To this end, for example, plasma ring in a spheromak is stabilized by a set of four figure-8 shaped loops having one pair on one side of the plasma and one pair on the other side with each pair comprising two loops whose axes are transverse to each other.

  20. TILT, WARP, AND SIMULTANEOUS PRECESSIONS IN DISKS

    SciTech Connect (OSTI)

    Montgomery, M. M.

    2012-07-10

    Warps are suspected in disks around massive compact objects. However, the proposed warping source-non-axisymmetric radiation pressure-does not apply to white dwarfs. In this Letter, we report the first smoothed particle hydrodynamic simulations of accretion disks in SU UMa-type systems that naturally tilt, warp, and simultaneously precess in the prograde and retrograde directions using white dwarf V344 Lyrae in the Kepler field as our model. After {approx}79 days in V344 Lyrae, the disk angular momentum L{sub d} becomes misaligned to the orbital angular momentum L{sub o} . As the gas stream remains normal to L{sub o} , hydrodynamics (e.g., the lift force) is a likely source to disk tilt. In addition to tilt, the outer disk annuli cyclically change shape from circular to highly eccentric due to tidal torques by the secondary star. The effect of simultaneous prograde and retrograde precession is a warp of the colder, denser midplane as seen along the disk rim. The simulated rate of apsidal advance to nodal regression per orbit nearly matches the observed ratio in V344 Lyrae.

  1. Targets and target wheel mechanism for APEX

    SciTech Connect (OSTI)

    Roa, D.E.

    1995-10-01

    A rotating target wheel system built for the ATLAS Positron Experiment (APEX) will be described. It is designed so that targets can withstand the heating caused by the energy loss of intense heavy ion beams. A unique feature is the use of a digital encoder to provide logic trigger signals for beam sweeping and event-by-event target location information. Techniques for fabricating targets of tantalum, lead, thorium and uranium and the behavior of the targets during beam exposure will be discussed.

  2. An Acoustic Wave Equation for Tilted Transversely Isotropic Media...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: An Acoustic Wave Equation for Tilted Transversely Isotropic Media A finite-difference method for computing the first arrival traveltimes ...

  3. Wheeling for cogeneration and small power-production facilities

    SciTech Connect (OSTI)

    Tiano, J.R.; Zimmer, M.J.

    1982-01-01

    New problems have arisen over the ability to wheel power from decentralized cogeneration and small generation sources between electric utilities or between industrial facilities within a common geographical area. This article explores the historical and current positions of the Federal Power Commission, now the Federal Energy Regulatory Commission (FERC) as it has interpreted its authority under Part II of the Federal Power Act to order the wheeling of electric power. The authors also outline and discuss related antitrust issues which often arise within the context of wheeling and the possibilities of recognizing potential antitrust violations as a factor in promoting wheeling arrangements. Concluding that Congress will not address the issue, they recommend the negotiation of wheeling rates by project sponsors to introduce flexibility and avoid more regulation and costly antitrust litigation. 21 references.

  4. The Wheeling and Transmission Manual, Second Edition

    SciTech Connect (OSTI)

    Weiss, L.; Spiewak, S.

    1991-01-01

    The Wheeling and Transmission Manual addresses the key issues involved in the debate: the need for coordination, the extent to which access should be permitted, various pricing methodologies which might be employed, obstacles to the addition of new transmission capacity, and contractual matters which should be considered in negotiations between the parties. As one shall see, these matters are all interrelated and the resolution of any of them may affect the outcome of the others. The Manual is designed to give an overview of the issues involved. It is not intended exclusively for the expert engineer or attorney, although both might benefit from it. Rather, the Manual was written with the objective of providing decisionmakers and policymakers with detailed, timely and understandable materials to evaluate the specific circumstances affecting their companies. Each chapter of the book is indexed separately.

  5. Front Range Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    search Logo: Front Range Energy LLC Name: Front Range Energy LLC Address: 31375 Great Western Dr Place: Windsor, Colorado Zip: 80550 Region: Rockies Area Sector: Biofuels...

  6. File:NREL-afg-10km-tilt.pdf | Open Energy Information

    Open Energy Info (EERE)

    tilt.pdf Jump to: navigation, search File File history File usage Afghanistan - Annual Flat Plate Tilted at Latitude Size of this preview: 776 600 pixels. Full resolution...

  7. ILC TARGET WHEEL RIM FRAGMENT/GUARD PLATE IMPACT ANALYSIS

    SciTech Connect (OSTI)

    Hagler, L

    2008-07-17

    A positron source component is needed for the International Linear Collider Project. The leading design concept for this source is a rotating titanium alloy wheel whose spokes rotate through an intense localized magnetic field. The system is composed of an electric motor, flexible motor/drive-shaft coupling, stainless steel drive-shaft, two Plumber's Block tapered roller bearings, a titanium alloy target wheel, and electromagnet. Surrounding the target wheel and magnet is a steel frame with steel guarding plates intended to contain shrapnel in case of catastrophic wheel failure. Figure 1 is a layout of this system (guard plates not shown for clarity). This report documents the FEA analyses that were performed at LLNL to help determine, on a preliminary basis, the required guard plate thickness for three potential plate steels.

  8. Characterization of grinding wheels: An annotated Bibliography. Final report

    SciTech Connect (OSTI)

    McClung, R.W.

    1995-12-01

    The characteristics of grinding wheels, after both fabrication and periods of operation, have a significant effect on the processed surface and the mechanical properties of advanced ceramics. An extensive literature survey and review has been conducted to determine and catalogue the various characterization methods that have been investigated and reported. Although many of the references have addressed the grinding of metals, the historical and technical merit justify their inclusion in this bibliography. For convenience, the references have been subdivided into nine subheadings: Nondestructive examination; elasticity and stiffness; wheel hardness; topography and profilometry; observation of texture of wheel surfaces wheel wear; in process monitoring of grinding, acoustic emission, other; characteristics of ground surfaces; and miscellaneous.

  9. Retooling Michigan: 'Wheels' to Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    'Wheels' to Wind Retooling Michigan: 'Wheels' to Wind July 21, 2010 - 10:12am Addthis This part from the inside of a wind turbine might someday generate clean, renewable energy. | Photo courtesy Merrill Technologies Group This part from the inside of a wind turbine might someday generate clean, renewable energy. | Photo courtesy Merrill Technologies Group Joshua DeLung "Traditionally, we made automotive products," says Scott McKay, General Manager for Merrill Technologies Group in

  10. Energy Upgrade California Drives Demand From Behind the Wheel | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Upgrade California Drives Demand From Behind the Wheel Energy Upgrade California Drives Demand From Behind the Wheel Photo of a trailer with the Energy Upgrade California logo and graphics painted on the side. With a goal of "energy efficiency or bust," the California Center for Sustainable Energy (CCSE) recently completed a statewide tour of its ongoing Energy Upgrade California Roadshow. The mobile exhibit made 11 stops in nine cities across California during November

  11. Reconciliation of local and long range tilt correlations in underdoped...

    Office of Scientific and Technical Information (OSTI)

    powder diffraction and inelastic neutron scattering (INS) approaches. Long-range and static CuO tilt order with orthogonally inequivalent Cu-O bonds in the CuO planes in...

  12. The great ``retail wheeling`` illusion, and more productive energy futures

    SciTech Connect (OSTI)

    Cavanagh, R.

    1994-12-31

    This paper sets out the reasons why many environmental and public interest organizations oppose retail wheeling. Cavanagh argues that retail wheeling would destroy incentives for energy efficiency improvements and renewable energy generation--benefits that reduce long-term energy service costs to society as a whole. The current debate over the competitive restructuring of the electric power industry is critical from both economic and environmental perspectives. All attempts to introduce broad-scale retail wheeling in the United States have failed; instead, state regulators are choosing a path that emphasizes competition and choice, but acknowledges fundamental differences between wholesale and retail markets. Given the physical laws governing the movement of power over centrally controlled grids, the choice offered to customers through retail wheeling of electricity is a fiction -- a re-allocation of costs is all that is really possible. Everyone wants to be able to claim the cheapest electricity on the system; unfortunately, there is not enough to go around. By endorsing the fiction of retail wheeling for certain types of customers, regulators would be recasting the retail electricity business as a kind of commodity exchange. That would reward suppliers who could minimize near-term unit costs of electricity while simultaneously destroying incentives for many investments, including cost-effective energy efficiency improvements and renewable energy generation, that reduce long-term energy service costs to society as a whole. This result, which has been analogized unpersuasively to trends in telecommunications and natural gas regulation, is neither desirable nor inevitable. States should go on saying no to retail wheeling in order to be able to create something better: regulatory reforms that align utility and societal interests in pursuing a least-cost energy future. An appendix contains notes on some recent Retail Wheeling Campaigns.

  13. Energy options: Cogen V and retail wheeling alternatives technical conference

    SciTech Connect (OSTI)

    1996-12-31

    The Energy Options technical conference proceedings contains 265 papers, of which 17 were selected for the database. The conference was split into two primary topics: cogeneration and retail wheeling. Subtopics under cogeneration included: the state of cogeneration in the United States, case studies in facility ownership, fuels considerations for tomorrow, and plant design considerations for cogeneration systems. Retail wheeling alternatives subtopics included U.S. Federal Energy Regulatory Commission rulings, end-user options for retail wheeling, deregulation issues, and forecasting of electricity generating costs. Papers not selected for the database, while clearly pertinent topics of interest, consisted of viewgraphs which were judged not to have sufficient technical information and coherence without the corresponding presentation. However, some papers which did consist of viewgraphs were included.

  14. Cybersecurity Front Burner | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services » Training » Cybersecurity Training Warehouse » DOE Cybersecurity Awareness Program » Cybersecurity Front Burner Cybersecurity Front Burner Documents Available for Download January 15, 2015 FRONT BURNER - Issue 20 The Cybersecurity Front Burner Issue No. 20 examines Phishing to include defining Phishing and related terms and how to protect yourself from this very common and clever security threat. The newsletter also addresses wireless networks, supply chains, training events, and

  15. Operations & Maintenance Best Practices Guide: Front Matter

    Broader source: Energy.gov [DOE]

    Guide describes the front matter of the Operations and Maintenance Best Practices: a Guide to Achieving Operational Efficiency.

  16. Method to fabricate a tilted logpile photonic crystal

    DOE Patents [OSTI]

    Williams, John D.; Sweatt, William C.

    2010-10-26

    A method to fabricate a tilted logpile photonic crystal requires only two lithographic exposures and does not require mask repositioning between exposures. The mask and photoresist-coated substrate are spaced a fixed and constant distance apart using a spacer and the stack is clamped together. The stack is then tilted at a crystallographic symmetry angle (e.g., 45 degrees) relative to the X-ray beam and rotated about the surface normal until the mask is aligned with the X-ray beam. The stack is then rotated in plane by a small stitching angle and exposed to the X-ray beam to pattern the first half of the structure. The stack is then rotated by 180.degree. about the normal and a second exposure patterns the remaining half of the structure. The method can use commercially available DXRL scanner technology and LIGA processes to fabricate large-area, high-quality tilted logpile photonic crystals.

  17. Tilted dipole model for bias-dependent photoluminescence pattern

    SciTech Connect (OSTI)

    Fujieda, Ichiro Suzuki, Daisuke; Masuda, Taishi

    2014-12-14

    In a guest-host system containing elongated dyes and a nematic liquid crystal, both molecules are aligned to each other. An external bias tilts these molecules and the radiation pattern of the system is altered. A model is proposed to describe this bias-dependent photoluminescence patterns. It divides the liquid crystal/dye layer into sub-layers that contain electric dipoles with specific tilt angles. Each sub-layer emits linearly polarized light. Its radiation pattern is toroidal and is determined by the tilt angle. Its intensity is assumed to be proportional to the power of excitation light absorbed by the sub-layer. This is calculated by the Lambert-Beer's Law. The absorption coefficient is assumed to be proportional to the cross-section of the tilted dipole moment, in analogy to the ellipsoid of refractive index, to evaluate the cross-section for each polarized component of the excitation light. Contributions from all the sub-layers are added to give a final expression for the radiation pattern. Self-absorption is neglected. The model is simplified by reducing the number of sub-layers. Analytical expressions are derived for a simple case that consists of a single layer with tilted dipoles sandwiched by two layers with horizontally-aligned dipoles. All the parameters except for the tilt angle can be determined by measuring transmittance of the excitation light. The model roughly reproduces the bias-dependent photoluminescence patterns of a cell containing 0.5?wt.?% coumarin 6. It breaks down at large emission angles. Measured spectral changes suggest that the discrepancy is due to self-absorption and re-emission.

  18. Preliminary observations on Quaternary reverse faulting along the southern front of the Northern Range of Trinidad

    SciTech Connect (OSTI)

    Beltran, C. , Caracus )

    1993-02-01

    Several geomorphological evidences of Quaternary reverse faulting are observed along the southern front of the Northern Range in Trinidad between Port-of-Spain and Matura Point. Such a mountain front is associated to a reverse fault system showing an imbricated pattern southward. In the north, the system is limited by a structural feature showing an important vertical component. Southward this system progressively changes to low angle faults. This geometry is corroborated by seismic profiling in the continent shelf. The active faulting evidences consist in lateral drainage offsets, fault trenches, sag-ponds, triangular facets, and saddles. Some quaternary terraces show fault scarps and tilting. We postulate that these reverse fault systems as Arima Fault instead of El Pilar fault as it is not actually connected to the San Sebestian-El Pilar right-lateral slip system, due to the southward prolongation of the southern limit of the Caribbean Plate through the fault system of Los Bajos-El Soldado.

  19. BLM Sierra Front Field Office | Open Energy Information

    Open Energy Info (EERE)

    Front Field Office Jump to: navigation, search Name: BLM Sierra Front Field Office Abbreviation: Sierra Front Address: 5665 Morgan Mill Road Place: Carson City, NV Zip: 89701 Phone...

  20. Fluctuating pulled fronts and Pomerons

    SciTech Connect (OSTI)

    Iancu, Edmond

    2005-06-14

    I present a pedagogical discussion of the influence of particle number fluctuations on the high energy evolution in QCD. I emphasize the event-by-event description, and the correspondence with the problem of 'fluctuating pulled fronts' in statistical physics. I explain that the correlations generated by fluctuations reduce the phase-space for BFKL evolution up to saturation. Because of that, the evolution 'slows down', and the rate for the energy increase of the saturation momentum is considerably decreased. I also discuss the diagrammatic interpretation of the particle number fluctuations in terms of Pomeron loops.

  1. Design of wheel motor using Maxwell 2D simulation

    SciTech Connect (OSTI)

    Chen, G.H.; Tseng, K.J.

    1995-12-31

    This paper presents a high efficiency direct wheel motor drive for electric vehicles (EVs). The proposed motor is a permanent magnet square-wave motor whose rotor with rare earth magnets forms the outside of the motor to be set within each rear wheel tire to realize the direct drive. The inner stator with its windings is rigidly linked to the suspension and frame structure of the vehicle. In order to achieve the direct drive without any mechanical transmission for EVs, the wheel motor has been designed as a low-speed high-torque motor. The design and optimization of the motor was done with the aid of finite element electromagnetic field analysis using the Maxwell 2D Simulator software. The motor parameters and characteristics can be accurately calculated and predicted in terms of field computation and analysis results. The design procedure of the 6.6 kW, 1,000 rpm wheel motor and its technical data are given in this paper.

  2. Innovative grinding wheel design for cost-effective machining of advanced ceramics

    SciTech Connect (OSTI)

    Licht, R.H.; Kuo, P.; Liu, S.; Murphy, D.; Picone, J.W.; Ramanath, S.

    2000-05-01

    This Final Report covers the Phase II Innovative Grinding Wheel (IGW) program in which Norton Company successfully developed a novel grinding wheel for cost-effective cylindrical grinding of advanced ceramics. In 1995, Norton Company successfully completed the 16-month Phase I technical effort to define requirements, design, develop, and evaluate a next-generation grinding wheel for cost-effective cylindrical grinding of advanced ceramics using small prototype wheels. The Phase II program was initiated to scale-up the new superabrasive wheel specification to larger diameters, 305-mm to 406-mm, required for most production grinding of cylindrical ceramic parts, and to perform in-house and independent validation grinding tests.

  3. Effects of a tilted magnetic field in a Dirac double layer (Journal...

    Office of Scientific and Technical Information (OSTI)

    Effects of a tilted magnetic field in a Dirac double layer Citation Details In-Document Search Title: Effects of a tilted magnetic field in a Dirac double layer Authors: ...

  4. Innovative grinding wheel design for cost-effective machining of advanced ceramics. Phase I, final report

    SciTech Connect (OSTI)

    Licht, R.H.; Ramanath, S.; Simpson, M.; Lilley, E.

    1996-02-01

    Norton Company successfully completed the 16-month Phase I technical effort to define requirements, design, develop, and evaluate a next-generation grinding wheel for cost-effective cylindrical grinding of advanced ceramics. This program was a cooperative effort involving three Norton groups representing a superabrasive grinding wheel manufacturer, a diamond film manufacturing division and a ceramic research center. The program was divided into two technical tasks, Task 1, Analysis of Required Grinding Wheel Characteristics, and Task 2, Design and Prototype Development. In Task 1 we performed a parallel path approach with Superabrasive metal-bond development and the higher technical risk, CVD diamond wheel development. For the Superabrasive approach, Task 1 included bond wear and strength tests to engineer bond-wear characteristics. This task culminated in a small-wheel screening test plunge grinding sialon disks. In Task 2, an improved Superabrasive metal-bond specification for low-cost machining of ceramics in external cylindrical grinding mode was identified. The experimental wheel successfully ground three types of advanced ceramics without the need for wheel dressing. The spindle power consumed by this wheel during test grinding of NC-520 sialon is as much as to 30% lower compared to a standard resin bonded wheel with 100 diamond concentration. The wheel wear with this improved metal bond was an order of magnitude lower than the resin-bonded wheel, which would significantly reduce ceramic grinding costs through fewer wheel changes for retruing and replacements. Evaluation of ceramic specimens from both Tasks 1 and 2 tests for all three ceramic materials did not show evidence of unusual grinding damage. The novel CVD-diamond-wheel approach was incorporated in this program as part of Task 1. The important factors affecting the grinding performance of diamond wheels made by CVD coating preforms were determined.

  5. Bay Front Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    NEEDS 2006 Database Retrieved from "http:en.openei.orgwindex.php?titleBayFrontBiomassFacility&oldid397174" Feedback Contact needs updating Image needs updating...

  6. EIS-0039: Motor Gasoline Deregulation and the Gasoline Tilt

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Economic Regulatory Administration developed this EIS to evaluate the environmental impacts, including social and economic impacts, that may result from either of two proposed regulatory changes: (1) the exemption of motor gasoline from the Department of Energy's Mandatory Petroleum Price and Allocation Regulations, and (2) the adoption of the gasoline tilt, a proposed regulation that would allow refiners to recover an additional amount of their total increased costs on gasoline.

  7. Method for controlling a vehicle with two or more independently steered wheels

    DOE Patents [OSTI]

    Reister, D.B.; Unseren, M.A.

    1995-03-28

    A method is described for independently controlling each steerable drive wheel of a vehicle with two or more such wheels. An instantaneous center of rotation target and a tangential velocity target are inputs to a wheel target system which sends the velocity target and a steering angle target for each drive wheel to a pseudo-velocity target system. The pseudo-velocity target system determines a pseudo-velocity target which is compared to a current pseudo-velocity to determine a pseudo-velocity error. The steering angle targets and the steering angles are inputs to a steering angle control system which outputs to the steering angle encoders, which measure the steering angles. The pseudo-velocity error, the rate of change of the pseudo-velocity error, and the wheel slip between each pair of drive wheels are used to calculate intermediate control variables which, along with the steering angle targets are used to calculate the torque to be applied at each wheel. The current distance traveled for each wheel is then calculated. The current wheel velocities and steering angle targets are used to calculate the cumulative and instantaneous wheel slip and the current pseudo-velocity. 6 figures.

  8. FGD markets & business in an age of retail wheeling

    SciTech Connect (OSTI)

    Smith, J.C.; Dalton, S.M.

    1995-06-01

    This paper discusses (1) the market and technology outlook for flue gas desulfurization ({open_quotes}FGD{close_quotes}) systems, with particular emphasis on wet systems in North America and the implications of retail wheeling of electricity and emission allowances for the utility industry, and (2) implications for the utility industry of architect/engineering ({open_quotes}A/E{close_quotes}) firm tendencies to reduce greatly the FGD vendor`s scope of award. The paper concludes that (1) the FGD market will be modest domestically and robust offshore over the forecast period (5-10 years), although the utility industry`s response to federal and state air toxics rules and retail wheeling may eventually grow the FGD market domestically beyond that created by compliance with Phase II of the Clean Air Act`s Title IV acid rain program alone, (2) new designs are likely to follow trends established in the past few years, but will likely include advanced processes that use higher velocity and smaller space, and possibly multi-pollutant control to remain competitive, and (3) shrinking of the FGD vendor`s scope may have adverse implications for the utility end-user, while retail wheeling may increase third-party ownership of FGD technology

  9. Statistical physics on the light-front

    SciTech Connect (OSTI)

    Raufeisen, J.

    2005-06-14

    The formulation of statistical physics using light-front quantization, instead of conventional equal-time boundary conditions, has important advantages for describing relativistic statistical systems, such as heavy ion collisions. We develop light-front field theory at finite temperature and density with special attention to Quantum Chromodynamics. We construct the most general form of the statistical operator allowed by the Poincare algebra and introduce the chemical potential in a covariant way. In light-front quantization, the Green's functions of a quark in a medium can be defined in terms of just 2-component spinors and does not lead to doublers in the transverse directions. A seminal property of light-front Green's functions is that they are related to parton densities in coordinate space. Namely, the diagonal and off-diagonal parton distributions measured in hard scattering experiments can be interpreted as light-front density matrices.

  10. Renewable energy is focus of New Science on Wheels programs offered by

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bradbury Science Museum Science On Wheels Renewable energy is focus of New Science on Wheels programs offered by Bradbury Science Museum The classes are designed to generate interest in science and renewable energy by students at schools throughout Northern New Mexico. September 21, 2010 Bradbury Science Museum Bradbury Science Museum Contact Steve Sandoval Communications Office (505) 665-9206 Email The main goals of Science on Wheels are to interest children in science, help develop the

  11. Well-to-Wheels Analysis of Advanced Fuel/Vehicle Systems - A North American

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Study of Energy Use, Greenhouse Gas Emissions, and Criteria Pollutant Emissions | Department of Energy Well-to-Wheels Analysis of Advanced Fuel/Vehicle Systems - A North American Study of Energy Use, Greenhouse Gas Emissions, and Criteria Pollutant Emissions Well-to-Wheels Analysis of Advanced Fuel/Vehicle Systems - A North American Study of Energy Use, Greenhouse Gas Emissions, and Criteria Pollutant Emissions A complete vehicle fuel-cycle analysis, commonly called a well-to-wheels (WTW)

  12. Hydrogen Pathways: Cost, Well-to-Wheels Energy Use, and Emissions...

    Broader source: Energy.gov (indexed) [DOE]

    emission benefits of the seven hydrogen production, delivery, and distribution pathways. ... Hydrogen Pathways: Cost, Well-to-Wheels Energy Use, and Emissions for the Current ...

  13. Well-to-Wheels Analysis of Advanced Fuel/Vehicle Systems - A...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - A North American Study of Energy Use, Greenhouse Gas Emissions, and Criteria Pollutant Emissions Well-to-Wheels Analysis of Advanced FuelVehicle Systems - A North American ...

  14. Light-Front Holography, Color Confinement, and Supersymmetric...

    Office of Scientific and Technical Information (OSTI)

    Conference: Light-Front Holography, Color Confinement, and Supersymmetric Features of QCD Citation Details In-Document Search Title: Light-Front Holography, Color Confinement, and ...

  15. Geothermal Geodatabase for Wagon Wheel Hot Springs, Mineral County, Colorado

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Zehner, Richard

    2012-11-01

    Geothermal Geodatabase for Wagon Wheel Hot Springs, Mineral County, Colorado By Richard “Rick” Zehner Geothermal Development Associates Reno Nevada USA 775.737.7806 rzehner@gdareno.com For Flint Geothermal LLC, Denver Colorado Part of DOE Grant EE0002828 2013 This is an ESRI geodatabase version 10, together with an ESRI MXD file version 10.2 Data is in UTM Zone 13 NAD27 projection North boundary: approximately 4,189,000 South boundary: approximately 4,170,000 West boundary: approximately 330,000 East boundary: approximately 351,000 This geodatabase was built to cover several geothermal targets developed by Flint Geothermal in 2012 during a search for high-temperature systems that could be exploited for electric power development. Several of the thermal springs at Wagon Wheel Gap have geochemistry and geothermometry values indicative of high-temperature systems. The datasets in the geodatabase are a mixture of public domain data as well as data collected by Flint Geothermal, now being made public. It is assumed that the user has internet access, for the mxd file accesses ESRI’s GIS servers. Datasets include: 1. Results of reconnaissance shallow (2 meter) temperature surveys 2. Air photo lineaments 3. Groundwater geochemistry 4. Power lines 5. Georeferenced geologic map of Routt County 6. Various 1:24,000 scale topographic maps

  16. Automatic recovery of missing amplitudes and phases in tilt-limited...

    Office of Scientific and Technical Information (OSTI)

    Automatic recovery of missing amplitudes and phases in tilt-limited electron crystallography of two-dimensional crystals Citation Details In-Document Search Title: Automatic...

  17. Rotor bore and turbine rotor wheel/spacer heat exchange flow circuit

    DOE Patents [OSTI]

    Caruso, Philip M.; Eldrid, Sacheverel Quentin; Ladhani, Azad A.; DeMania, Alan Richard; Palmer, Gene David; Wilson, Ian David; Rathbun, Lisa Shirley; Akin, Robert Craig

    2002-01-01

    In a turbine having closed-circuit steam-cooling passages about the rim of the rotor during steady-state operation, compressor discharge air is supplied to the rotor bore for passage radially outwardly into the wheel space cavities between the wheels and spacers. Communicating slots and channels in the spacers and wheels at circumferentially spaced positions enable egress of the compressor discharge air into the hot gas flow path. At turbine startup, cooling air flows through the closed-circuit steam passages to cool the outer rim of the rotor while compressor discharge air pre-warms the wheels and spacers. At steady-state, cooling steam is supplied in the closed-circuit steam-cooling passages and compressor discharge air is supplied through the bore and into the wheel space cavities to cool the rotor.

  18. Method for controlling a vehicle with two or more independently steered wheels

    DOE Patents [OSTI]

    Reister, David B.; Unseren, Michael A.

    1995-01-01

    A method (10) for independently controlling each steerable drive wheel (W.sub.i) of a vehicle with two or more such wheels (W.sub.i). An instantaneous center of rotation target (ICR) and a tangential velocity target (v.sup.G) are inputs to a wheel target system (30) which sends the velocity target (v.sub.i.sup.G) and a steering angle target (.theta..sub.i.sup.G) for each drive wheel (W.sub.i) to a pseudovelocity target system (32). The pseudovelocity target system (32) determines a pseudovelocity target (v.sub.P.sup.G) which is compared to a current pseudovelocity (v.sub.P.sup.m) to determine a pseudovelocity error (.epsilon.). The steering angle targets (.theta..sup.G) and the steering angles (.theta..sup.m) are inputs to a steering angle control system (34) which outputs to the steering angle encoders (36), which measure the steering angles (.theta..sup.m). The pseudovelocity error (.epsilon.), the rate of change of the pseudovelocity error ( ), and the wheel slip between each pair of drive wheels (W.sub.i) are used to calculate intermediate control variables which, along with the steering angle targets (.theta..sup.G) are used to calculate the torque to be applied at each wheel (W.sub.i). The current distance traveled for each wheel (W.sub.i) is then calculated. The current wheel velocities (v.sup.m) and steering angle targets (.theta..sup.G) are used to calculate the cumulative and instantaneous wheel slip (e, ) and the current pseudovelocity (v.sub.P.sup.m).

  19. The effects of gantry tilt on breast dose and image noise in cardiac CT

    SciTech Connect (OSTI)

    Hoppe, Michael E.; Gandhi, Diksha; Schmidt, Taly Gilat; Stevens, Grant M.; Foley, W. Dennis

    2013-12-15

    Purpose: This study investigated the effects of tilted-gantry acquisition on image noise and glandular breast dose in females during cardiac computed tomography (CT) scans. Reducing the dose to glandular breast tissue is important due to its high radiosensitivity and limited diagnostic significance in cardiac CT scans.Methods: Tilted-gantry acquisition was investigated through computer simulations and experimental measurements. Upon IRB approval, eight voxelized phantoms were constructed from previously acquired cardiac CT datasets. Monte Carlo simulations quantified the dose deposited in glandular breast tissue over a range of tilt angles. The effects of tilted-gantry acquisition on breast dose were measured on a clinical CT scanner (CT750HD, GE Healthcare) using an anthropomorphic phantom with MOSFET dosimeters in the breast regions. In both simulations and experiments, scans were performed at gantry tilt angles of 0°–30°, in 5° increments. The percent change in breast dose was calculated relative to the nontilted scan for all tilt angles. The percent change in noise standard deviation due to gantry tilt was calculated in all reconstructed simulated and experimental images.Results: Tilting the gantry reduced the breast dose in all simulated and experimental phantoms, with generally greater dose reduction at increased gantry tilts. For example, at 30° gantry tilt, the dosimeters located in the superior, middle, and inferior breast regions measured dose reductions of 74%, 61%, and 9%, respectively. The simulations estimated 0%–30% total breast dose reduction across the eight phantoms and range of tilt angles. However, tilted-gantry acquisition also increased the noise standard deviation in the simulated phantoms by 2%–50% due to increased pathlength through the iodine-filled heart. The experimental phantom, which did not contain iodine in the blood, demonstrated decreased breast dose and decreased noise at all gantry tilt angles.Conclusions: Tilting the

  20. Apparatus for raising or tilting a micromechanical structure

    DOE Patents [OSTI]

    Allen, James J.

    2008-09-09

    An active hinge apparatus is disclosed which can be used to raise a micromechanical structure (e.g. a plate or micromirror) on a substrate. The active hinge apparatus utilizes one or more of teeth protruding outward from an axle which also supports the micromechanical structure on one end thereof. A rack is used to engage the teeth and rotate the axle to raise the micromechanical structure and tilt the structure at an angle to the substrate. Motion of the rack is provided by an actuator which can be a mechanically-powered actuator, or alternately an electrostatic comb actuator or a thermal actuator. A latch can be optionally provided in the active hinge apparatus to lock the micromechanical structure in an "erected" position.

  1. Microelectromechanical apparatus for elevating and tilting a platform

    DOE Patents [OSTI]

    Miller, Samuel Lee; McWhorter, Paul Jackson; Rodgers, Murray Steven; Sniegowski, Jeffry J.; Barnes, Stephen M.

    2003-04-08

    A microelectromechanical (MEM) apparatus is disclosed which has a platform that can be elevated above a substrate and tilted at an arbitrary angle using a plurality of flexible members which support the platform and control its movement. Each flexible member is further controlled by one or more MEM actuators which act to bend the flexible member. The MEM actuators can be electrostatic comb actuators or vertical zip actuators, or a combination thereof. The MEM apparatus can include a mirror coating to form a programmable mirror for redirecting or switching one or more light beams for use in a projection display. The MEM apparatus with the mirror coating also has applications for switching light beams between optical fibers for use in a local area fiber optic network, or for use in fiber optic telecommunications or data communications systems.

  2. Microelectromechanical apparatus for elevating and tilting a platform

    DOE Patents [OSTI]

    Miller, Samuel Lee; McWhorter, Paul Jackson; Rodgers, Murray Steven; Sniegowski, Jeffry J.; Barnes, Stephen M.

    2004-07-06

    A microelectromechanical (MEM) apparatus is disclosed which has a platform that can be elevated above a substrate and tilted at an arbitrary angle using a plurality of flexible members which support the platform and control its movement. Each flexible member is further controlled by one or more MEM actuators which act to bend the flexible member. The MEM actuators can be electrostatic comb actuators or vertical zip actuators, or a combination thereof. The MEM apparatus can include a mirror coating to form a programmable mirror for redirecting or switching one or more light beams for use in a projection display. The MEM apparatus with-the mirror coating also has applications for switching light beams between optical fibers for use in a local area fiber optic network, or for use in fiber optic telecommunications or data communications systems.

  3. Wheeling coal: an antitrust alternative to ICC rate making

    SciTech Connect (OSTI)

    Brand, W.E.; Leckie, D.A.

    1984-08-30

    Parallels are drawn between the position of an electric utility requested to transmit electric power for the benefit of third-party buyers and sellers with whom the utility may be connected but who lack a direct connection themselves, and the position of a railroad which forms the sole land-transportation link between a producer-seller of coal and its electric-utility customer purchasing coal for use as a primary fuel in power generation. The authors suggest that the federal courts can remedy any unreasonable refusal to grant trackage rights for the transport of coal by the seller or purchaser in much the same way that they have remedied refusals to wheel electric power between a third-party seller and third-party purchaser. 56 references.

  4. Interferometric adaptive optics for high power laser pointing, wave-front control and phasing

    SciTech Connect (OSTI)

    Baker, K L; Stappaerts, E A; Homoelle, D C; Henesian, M A; Bliss, E S; Siders, C W; Barty, C J

    2009-01-21

    Implementing the capability to perform fast ignition experiments, as well as, radiography experiments on the National Ignition Facility (NIF) places stringent requirements on the control of each of the beam's pointing and overall wavefront quality. One quad of the NIF beams, 4 beam pairs, will be utilized for these experiments and hydrodynamic and particle-in-cell simulations indicate that for the fast ignition experiments, these beams will be required to deliver 50% (4.0 kJ) of their total energy (7.96 kJ) within a 40 {micro}m diameter spot at the end of a fast ignition cone target. This requirement implies a stringent pointing and overall phase conjugation error budget on the adaptive optics system used to correct these beam lines. The overall encircled energy requirement is more readily met by phasing of the beams in pairs but still requires high Strehl ratios, Sr, and rms tip/tilt errors of approximately one {micro}rad. To accomplish this task we have designed an interferometric adaptive optics system capable of beam pointing, high Strehl ratio and beam phasing with a single pixilated MEMS deformable mirror and interferometric wave-front sensor. We present the design of a testbed used to evaluate the performance of this wave-front sensor below along with simulations of its expected performance level.

  5. Apparatus and methods for aligning holes through wheels and spacers and stacking the wheels and spacers to form a turbine rotor

    SciTech Connect (OSTI)

    Berry, Robert Randolph; Palmer, Gene David; Wilson, Ian David

    2000-01-01

    A gas turbine rotor stacking fixture includes upstanding bolts for reception in aligned bolt holes in superposed aft disk, wheels and spacers and upstanding alignment rods received in openings of the disk, wheels and spacers during the rotor stacking assembly. The axially registering openings enable insertion of thin-walled tubes circumferentially about the rim of the rotor, with tight tolerances to the openings to provide supply and return steam for cooling buckets. The alignment rods have radial dimensions substantially less than their dimensions in a circumferential direction to allow for radial opening misalignment due to thermal expansion, tolerance stack-up and wheel-to-spacer mismatch due to rabbet mechanical growth. The circumferential dimension of the alignment rods affords tightly toleranced alignment of the openings through which the cooling tubes are installed.

  6. The political economy of retail wheeling, or how to not re-fight the last war

    SciTech Connect (OSTI)

    Cohen, A.; Kihm, S.

    1994-04-01

    Disparities in utility rates - observably the result of poor supply-side resource planning - have been small before and will be small once again. Retail wheeling`s promise of short-run gains for a few would, ironically, destroy integrated resource processes in place today that guard against a repeat of yesterday`s planning mistakes. The authors argue that retail wheeling is a troubling answer to a mis-diagnosis of yesterday`s problem. They believe that a variety of other policies offer most of the benefits and few of the risks that retail wheeling poses. These include aggressive wholesale competition, judicious pruning of uneconomic capacity, and serious incorporation of environmental risks into utility planning and regulation.

  7. Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Presented at ...

  8. RE-EXAMINING SUNSPOT TILT ANGLE TO INCLUDE ANTI-HALE STATISTICS

    SciTech Connect (OSTI)

    McClintock, B. H.; Norton, A. A.; Li, J. E-mail: aanorton@stanford.edu

    2014-12-20

    Sunspot groups and bipolar magnetic regions (BMRs) serve as an observational diagnostic of the solar cycle. We use Debrecen Photohelographic Data (DPD) from 1974-2014 that determined sunspot tilt angles from daily white light observations, and data provided by Li and Ulrich that determined sunspot magnetic tilt angle using Mount Wilson magnetograms from 1974-2012. The magnetograms allowed for BMR tilt angles that were anti-Hale in configuration, so tilt values ranged from 0 to 360° rather than the more common ±90°. We explore the visual representation of magnetic tilt angles on a traditional butterfly diagram by plotting the mean area-weighted latitude of umbral activity in each bipolar sunspot group, including tilt information. The large scatter of tilt angles over the course of a single cycle and hemisphere prevents Joy's law from being visually identified in the tilt-butterfly diagram without further binning. The average latitude of anti-Hale regions does not differ from the average latitude of all regions in both hemispheres. The distribution of anti-Hale sunspot tilt angles are broadly distributed between 0 and 360° with a weak preference for east-west alignment 180° from their expected Joy's law angle. The anti-Hale sunspots display a log-normal size distribution similar to that of all sunspots, indicating no preferred size for anti-Hale sunspots. We report that 8.4% ± 0.8% of all bipolar sunspot regions are misclassified as Hale in traditional catalogs. This percentage is slightly higher for groups within 5° of the equator due to the misalignment of the magnetic and heliographic equators.

  9. Method for removing tilt control in adaptive optics systems

    DOE Patents [OSTI]

    Salmon, Joseph Thaddeus

    1998-01-01

    A new adaptive optics system and method of operation, whereby the method removes tilt control, and includes the steps of using a steering mirror to steer a wavefront in the desired direction, for aiming an impinging aberrated light beam in the direction of a deformable mirror. The deformable mirror has its surface deformed selectively by means of a plurality of actuators, and compensates, at least partially, for existing aberrations in the light beam. The light beam is split into an output beam and a sample beam, and the sample beam is sampled using a wavefront sensor. The sampled signals are converted into corresponding electrical signals for driving a controller, which, in turn, drives the deformable mirror in a feedback loop in response to the sampled signals, for compensating for aberrations in the wavefront. To this purpose, a displacement error (gradient) of the wavefront is measured, and adjusted by a modified gain matrix, which satisfies the following equation: G'=(I-X(X.sup.T X).sup.-1 X.sup.T)G(I-A)

  10. Method for removing tilt control in adaptive optics systems

    DOE Patents [OSTI]

    Salmon, J.T.

    1998-04-28

    A new adaptive optics system and method of operation are disclosed, whereby the method removes tilt control, and includes the steps of using a steering mirror to steer a wavefront in the desired direction, for aiming an impinging aberrated light beam in the direction of a deformable mirror. The deformable mirror has its surface deformed selectively by means of a plurality of actuators, and compensates, at least partially, for existing aberrations in the light beam. The light beam is split into an output beam and a sample beam, and the sample beam is sampled using a wavefront sensor. The sampled signals are converted into corresponding electrical signals for driving a controller, which, in turn, drives the deformable mirror in a feedback loop in response to the sampled signals, for compensating for aberrations in the wavefront. To this purpose, a displacement error (gradient) of the wavefront is measured, and adjusted by a modified gain matrix, which satisfies the following equation: G{prime} = (I{minus}X(X{sup T} X){sup {minus}1}X{sup T})G(I{minus}A). 3 figs.

  11. Precision tip-tilt-piston actuator that provides exact constraint

    DOE Patents [OSTI]

    Hale, Layton C.

    1999-01-01

    A precision device which can precisely actuate three degrees of freedom of an optic mount, commonly referred to as tip, tilt, and piston. The device consists of three identical flexure mechanisms, an optic mount to be supported and positioned, a structure that supports the flexure mechanisms, and three commercially available linear actuators. The advantages of the precision device is in the arrangement of the constraints offered by the flexure mechanism and not in the particular design of the flexure mechanisms, as other types of mechanisms could be substituted. Each flexure mechanism constrains two degrees of freedom in the plane of the mechanisms and one direction is actuated. All other degrees of freedom are free to move within the range of flexure mechanisms. Typically, three flexure mechanisms are equally spaced in angle about to optic mount and arranged so that each actuated degree of freedom is perpendicular to the plane formed by the optic mount. This arrangement exactly constrains the optic mount and allows arbitrary actuated movement of the plane within the range of the flexure mechanisms. Each flexure mechanism provides a mechanical advantage, typically on the order of 5:1, between the commercially available actuator and the functional point on the optic mount. This improves resolution by the same ratio and stiffness by the square of the ratio.

  12. Comparison between a propane-air combustion front and a helium-air simulated combustion front

    SciTech Connect (OSTI)

    Barraclough, S.

    1983-12-01

    Turbulent combustion experiments were performed in a right cylindrical combustion bomb using a premixed propane-air gaseous fuel. The initial conditions inside the combustion chamber were three psig and room temperature. Prior to spark firing, the turbulence intensity inside the combustion chamber was measured and could be varied over a ten fold range. The effect of initial turbulence intensity on turbulent flame propagation was investigated. Two regimes of turbulent combustion were identified, which is in agreement with a previous investigator's results. One of them, a ''transition regime'' occurs when the turbulence intensity is approximately twice the laminar flame speed. Within the transition regime, the turbulent burning speed is linearly proportional to initial turbulence intensity and independent of laminar flame speed and turbulence length scale. A high pressure helium front was injected into the combustion chamber to simulate the combustion front. Since the helium front is isothermal, hot-wire anemometry can be used to quantify the change in turbulence intensity ahead of the propagating front. The helium front was found to have different characteristics than the combustion front.

  13. Pentan isomers compound flame front structure

    SciTech Connect (OSTI)

    Mansurov, Z.A.; Mironenko, A.W.; Bodikov, D.U.; Rachmetkaliev, K.N.

    1995-08-13

    The fuels (hexane, pentane, diethyl ether) and conditions investigated in this study are relevant to engine knock in spark- ignition engines. A review is provided of the field of low temperature hydrocarbon oxidation. Studies were made of radical and stable intermediate distribution in the front of cool flames: Maximum concentrations of H atoms and peroxy radicals were observed in the luminous zone of the cool flame front. Peroxy radicals appear before the luminous zone at 430 K due to diffusion. H atoms were found in cool flames of butane and hexane. H atoms diffuses from the luminous zone to the side of the fresh mixture, and they penetrate into the fresh mixture to a small depth. Extension of action sphear of peroxy radicals in the fresh mixture is much greater than that of H atoms due to their small activity and high concentrations.

  14. Front contact solar cell with formed emitter

    DOE Patents [OSTI]

    Cousins, Peter John

    2014-11-04

    A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.

  15. Front contact solar cell with formed emitter

    DOE Patents [OSTI]

    Cousins, Peter John

    2012-07-17

    A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.

  16. Front lighted shadowgraphic method and apparatus

    DOE Patents [OSTI]

    Stone, William J.

    1985-02-26

    High contrast silhouette images of a substantially opaque object are obtained using front illumination techniques. The object is frontally illuminated by light of a first polarization. A frontal surface of the object reflects the incident light to an observation station. The polarization of incident light bypassing the object and incident on a background is changed. The background light is reflected to the observation station, and the intensity of one of the two, differently polarized, reflected images is substantially reduced with respect to the other. Apparatus for carrying out the method includes a first polarizer for polarizing frontally incident illuminating light, a second polarizer behind the object and a reflective surface behind the second polarizer. A polarization analyzer, located in front of the object, is used to extinguish one of the two reflected images. Apparatus for carrying out the invention in instruments having a polarized light source and a polarization analyzer includes a combination of a polarizing material, for contacting a rear surface of the object, and a reflective surface provided adjacent the rear surface of the polarizing material. The combination is applied to the rear surface of the object. Back-surface mirrors of pleochroic substrates applied to thin film physical vapor deposited electronic circuit elements enable front lighted shadowgraphic imaging of the elements.

  17. Kinetic information from detonation front curvature

    SciTech Connect (OSTI)

    Souers, P. C., LLNL

    1998-06-15

    The time constants for time-dependent modeling may be estimated from reaction zone lengths, which are obtained from two sources One is detonation front curvature, where the edge lag is close to being a direct measure The other is the Size Effect, where the detonation velocity decreases with decreasing radius as energy is lost to the cylinder edge A simple theory that interlocks the two effects is given A differential equation for energy flow in the front is used, the front is described by quadratic and sixth-power radius terms The quadratic curvature comes from a constant power source of energy moving sideways to the walls Near the walls, the this energy rises to the total energy of detonation and produces the sixth-power term The presence of defects acting on a short reaction zone can eliminate the quadratic part while leaving the wall portion of the cuvature A collection of TNT data shows that the reaction zone increases with both the radius and the void fraction

  18. File:NREL-bhutan-10kmsolar-tilt.pdf | Open Energy Information

    Open Energy Info (EERE)

    File File history File usage Bhutan - Annual - Flat PlateTilted at Latitude Solar Radiation Size of this preview: 776 600 pixels. Full resolution (1,650 1,275 pixels,...

  19. PROBING THE UNIVERSE'S TILT WITH THE COSMIC INFRARED BACKGROUND DIPOLE

    SciTech Connect (OSTI)

    Fixsen, D. J.; Kashlinsky, A. E-mail: alexander.kashlinsky@nasa.gov

    2011-06-10

    Conventional interpretation of the observed cosmic microwave background (CMB) dipole is that all of it is produced by local peculiar motions. Alternative explanations requiring part of the dipole to be primordial have received support from measurements of large-scale bulk flows. A test of the two hypotheses is whether other cosmic dipoles produced by collapsed structures later than the last scattering coincide with the CMB dipole. One background is the cosmic infrared background (CIB) whose absolute spectrum was measured to {approx}30% by the COBE satellite. Over the 100-500 {mu}m wavelength range its spectral energy distribution can provide a probe of its alignment with the CMB. This is tested with the COBE FIRAS data set which is available for such a measurement because of its low noise and frequency resolution which are important for Galaxy subtraction. Although the FIRAS instrument noise is in principle low enough to determine the CIB dipole, the Galactic foreground is sufficiently close spectrally to keep the CIB dipole hidden. A similar analysis is performed with DIRBE, which-because of the limited frequency coverage-provides a poorer data set. We discuss strategies for measuring the CIB dipole with future instruments to probe the tilt and apply it to the Planck, Herschel, and the proposed Pixie missions. We demonstrate that a future FIRAS-like instrument with instrument noise a factor of {approx}10 lower than FIRAS would make a statistically significant measurement of the CIB dipole. We find that the Planck and Herschel data sets will not allow a robust CIB dipole measurement. The Pixie instrument promises a determination of the CIB dipole and its alignment with either the CMB dipole or the dipole galaxy acceleration vector.

  20. Front-end Nuclear Facilities (2008) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Front-end Nuclear Facilities (2008) Front-end Nuclear Facilities (2008) Front-end Nuclear Facilities (2008) (399.4 KB) More Documents & Publications Nuclear Power Facilities (2008) Financial Institution Partnership Program - Commercial Technology Renewable Energy Generation Projects Issued: October 7, 2009 Transmission Infrastructure Investment Projects (2009)

  1. Novel Perspectives from Light-Front QCD, Super-Conformal Algebra, and Light-Front Holography

    SciTech Connect (OSTI)

    Brodsky, Stanley J.

    2015-12-01

    Light-Front Quantization – Dirac’s “Front Form” – provides a physical, frame-independent formalism for hadron dynamics and structure. Observables such as structure functions, transverse momentum distributions, and distribution amplitudes are defined from the hadronic LFWFs. One obtains new insights into the hadronic mass scale, the hadronic spectrum, and the functional form of the QCD running coupling in the nonperturbative domain using light-front holography. In addition, superconformal algebra leads to remarkable supersymmetric relations between mesons and baryons. I also discuss evidence that the antishadowing of nuclear structure functions is nonuniversal; i.e., flavor dependent, and why shadowing and antishadowing phenomena may be incompatible with the momentum and other sum rules for the nuclear parton distribution functions.

  2. Light front NJL model at finite temperature

    SciTech Connect (OSTI)

    Strauss, S.; Beyer, M.; Mattiello, S.

    2005-06-14

    We investigate the properties of qq and qq-bar states in hot and dense quark matter in the framework of light-front finite temperature field theory. Presently we consider the Nambu Jona-Lasinio (NJL) model and derive the gap equation at finite temperature and density. We study pionic and scalar diquark dynamics in quark matter and compute the two-body masses and the Mott dissociation using a t-matrix approach. For the scalar diquark we determine the critical temperature of color superconductivity.

  3. Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Vehicles | Department of Energy Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Presented at the U.S. Department of EnergyLight Duty Vehicle Workshop in Washington, D.C. on July 26, 2010. wtw_analysis_phevs.pdf (272.71 KB) More Documents & Publications Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles System

  4. Light-Front Holography, Light-Front Wavefunctions, and Novel QCD Phenomena

    SciTech Connect (OSTI)

    Brodsky, Stanley J.; de Teramond, Guy F.; /Costa Rica U.

    2012-02-16

    Light-Front Holography is one of the most remarkable features of the AdS/CFT correspondence. In spite of its present limitations it provides important physical insights into the nonperturbative regime of QCD and its transition to the perturbative domain. This novel framework allows hadronic amplitudes in a higher dimensional anti-de Sitter (AdS) space to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time. The model leads to an effective confining light-front QCD Hamiltonian and a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z in AdS space is uniquely identified with a Lorentz-invariant coordinate {zeta} which measures the separation of the constituents within a hadron at equal light-front time and determines the off-shell dynamics of the bound-state wavefunctions, and thus the fall-off as a function of the invariant mass of the constituents. The soft-wall holographic model modified by a positive-sign dilaton metric, leads to a remarkable one-parameter description of nonperturbative hadron dynamics - a semi-classical frame-independent first approximation to the spectra and light-front wavefunctions of meson and baryons. The model predicts a Regge spectrum of linear trajectories with the same slope in the leading orbital angular momentum L of hadrons and the radial quantum number n. The hadron eigensolutions projected on the free Fock basis provides the complete set of valence and non-valence light-front Fock state wavefunctions {Psi}{sub n/H} (x{sub i}, k{sub {perpendicular}i}, {lambda}{sub i}) which describe the hadron's momentum and spin distributions needed to compute the direct measures of hadron structure at the quark and gluon level, such as elastic and transition form factors, distribution amplitudes, structure functions, generalized parton distributions and transverse

  5. Front lighted optical tooling method and apparatus

    DOE Patents [OSTI]

    Stone, W.J.

    1983-06-30

    An optical tooling method and apparatus uses a front lighted shadowgraphic technique to enhance visual contrast of reflected light. The apparatus includes an optical assembly including a fiducial mark, such as cross hairs, reflecting polarized light with a first polarization, a polarizing element backing the fiducial mark and a reflective surface backing the polarizing element for reflecting polarized light bypassing the fiducial mark and traveling through the polarizing element. The light reflected by the reflecting surface is directed through a second pass of the polarizing element toward the frontal direction with a polarization differing from the polarization of the light reflected by the fiducial mark. When used as a tooling target, the optical assembly may be mounted directly to a reference surface or may be secured in a mounting, such as a magnetic mounting. The optical assembly may also be mounted in a plane defining structure and used as a spherometer in conjunction with an optical depth measuring instrument.

  6. Blue-tilted tensor spectrum and thermal history of the Universe

    SciTech Connect (OSTI)

    Kuroyanagi, Sachiko; Takahashi, Tomo; Yokoyama, Shuichiro E-mail: tomot@cc.saga-u.ac.jp

    2015-02-01

    We investigate constraints on the spectral index of primordial gravitational waves (GWs), paying particular attention to a blue-tilted spectrum. Such constraints can be used to test a certain class of models of the early Universe. We investigate observational bounds from LIGO+Virgo, pulsar timing and big bang nucleosynthesis, taking into account the suppression of the amplitude at high frequencies due to reheating after inflation and also late-time entropy production. Constraints on the spectral index are presented by changing values of parameters such as reheating temperatures and the amount of entropy produced at late time. We also consider constraints under the general modeling approach which can approximately describe various scenarios of the early Universe. We show that the constraints on the blue spectral tilt strongly depend on the underlying assumption and, in some cases, a highly blue-tilted spectrum can still be allowed.

  7. Design and initial characterization of a compact, ultra high vacuum compatible, low frequency, tilt accelerometer

    SciTech Connect (OSTI)

    OToole, A. E-mail: riccardo.desalvo@gmail.com; Pea Arellano, F. E.; Rodionov, A. V.; Kim, C.; Shaner, M.; Asadoor, M.; Sobacchi, E.; Dergachev, V.; DeSalvo, R. E-mail: riccardo.desalvo@gmail.com; Bhawal, A.; Gong, P.; Lottarini, A.; Minenkov, Y.; Murphy, C.

    2014-07-15

    A compact tilt accelerometer with high sensitivity at low frequency was designed to provide low frequency corrections for the feedback signal of the Advanced Laser Interferometer Gravitational Wave Observatory active seismic attenuation system. It has been developed using a Tungsten Carbide ceramic knife-edge hinge designed to avoid the mechanical 1/f noise believed to be intrinsic in polycrystalline metallic flexures. Design and construction details are presented; prototype data acquisition and control limitations are discussed. The instrument's characterization reported here shows that the hinge is compatible with being metal-hysteresis-free, and therefore also free of the 1/f noise generated by the dislocation Self-Organized Criticality in the metal. A tiltmeter of this kind will be effective to separate the ground tilt component from the signal of horizontal low frequency seismometers, and to correct the ill effects of microseismic tilt in advanced seismic attenuation systems.

  8. Strengthening the Front Lines: Sales Training and Continuing Education for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contractors | Department of Energy the Front Lines: Sales Training and Continuing Education for Contractors Strengthening the Front Lines: Sales Training and Continuing Education for Contractors Better Buildings Residential Network Peer Exchange Call Series: Strengthening the Front Lines: Sales Training and Continuing Education for Contractors, call slides and discussion summary. Call Slides and Discussion Summary (2.11 MB) More Documents & Publications Staged Upgrades -

  9. A Method of Correcting for Tilt From Horizontal in Downwelling Shortwave Irradiance Measurements on Moving Platforms

    SciTech Connect (OSTI)

    Long, Charles N.; Bucholtz, Anthony; Jonsson, Haf; Schmid, Beat; Vogelmann, A. M.; Wood, John

    2010-04-14

    Significant errors occur in downwelling shortwave irradiance measurements made on moving platforms due to tilt from horizontal because, when the sun is not completely blocked by overhead cloud, the downwelling shortwave irradiance has a prominent directional component from the direct sun. A-priori knowledge of the partitioning between the direct and diffuse components of the total shortwave irradiance is needed to properly apply a correction for tilt. This partitioning information can be adequately provided using a newly available commercial radiometer that produces reasonable measurements of the total and diffuse shortwave irradiance, and by subtraction the direct shortwave irradiance, with no moving parts and regardless of azimuthal orientation. We have developed methodologies for determining the constant pitch and roll offsets of the radiometers for aircraft applications, and for applying a tilt correction to the total shortwave irradiance data. Results suggest that the methodology is for tilt up to +/-10°, with 90% of the data corrected to within 10 Wm-2 at least for clear-sky data. Without a proper tilt correction, even data limited to 5° of tilt as is typical current practice still exhibits large errors, greater than 100 Wm-2 in some cases. Given the low cost, low weight, and low power consumption of the SPN1 total and diffuse radiometer, opportunities previously excluded for moving platform measurements such as small Unmanned Aerial Vehicles and solar powered buoys now become feasible using our methodology. The increase in measurement accuracy is important, given current concerns over long-term climate variability and change especially over the 70% of the Earth’s surface covered by ocean where long-term records of these measurements are sorely needed and must be made on ships and buoys.

  10. Strengthening the Front Lines: Sales Training and Continuing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lines: Sales Training and Continuing Education for Contractors Strengthening the Front Lines: Sales Training and Continuing Education for Contractors Better Buildings ...

  11. Suppression of n=1 Tilt Instability by Magnetic Shaping Coils in Rotamak Plasmas

    SciTech Connect (OSTI)

    Yang, X.; Petrov, Y.; Huang, T. S.

    2009-06-26

    Measurements from the array of Mirnov magnetic coils provide the first evidence for n=1 tilt and radial shift instabilities in a 40 ms field-reversed configuration (FRC) driven by rotating magnetic field. External plasma-shaping magnetic coils are utilized to suppress the n=1 instability modes. It is demonstrated that by energizing the middle shaping coil with 250-500 A current, the tilt mode is completely suppressed when a doublet FRC with an internal figure-of-eight separatrix is formed.

  12. Front contact solar cell with formed electrically conducting layers on the front side and backside

    DOE Patents [OSTI]

    Cousins, Peter John

    2012-06-26

    A bipolar solar cell includes a backside junction formed by a silicon substrate and a first doped layer of a first dopant type on the backside of the solar cell. A second doped layer of a second dopant type makes an electrical connection to the substrate from the front side of the solar cell. A first metal contact of a first electrical polarity electrically connects to the first doped layer on the backside of the solar cell, and a second metal contact of a second electrical polarity electrically connects to the second doped layer on the front side of the solar cell. An external electrical circuit may be electrically connected to the first and second metal contacts to be powered by the solar cell.

  13. Modeling the effect of executive device of a bucket-wheel excavator on the coal face

    SciTech Connect (OSTI)

    A.A. Zaitseva; V.I. Cheskidov; G.D. Zaitsev

    2005-11-15

    An algorithm is proposed and substantiated to calculate the optimum trajectory of scooping for the dynamic bucket-wheel and stationary bucket excavators. The applicability of the developed program in determining mineral losses and impoverishment during selective and bulk-selective mining in bedded deposits is demonstrated.

  14. Front lighted optical tooling method and apparatus

    DOE Patents [OSTI]

    Stone, William J.

    1985-06-18

    An optical tooling method and apparatus uses a front lighted shadowgraphic technique to enhance visual contrast of reflected light. The apparatus includes an optical assembly including a fiducial mark, such as cross hairs, reflecting polarized light with a first polarization, a polarizing element backing the fiducial mark and a reflective surface backing the polarizing element for reflecting polarized light bypassing the fiducial mark and traveling through the polarizing element. The light reflected by the reflecting surface is directed through a second pass of the polarizing element toward the frontal direction with a polarization differing from the polarization of the light reflected by the fiducial mark. When used as a tooling target, the optical assembly may be mounted directly to a reference surface or may be secured in a mounting, such as a magnetic mounting. The optical assembly may also be mounted in a plane defining structure and used as a spherometer in conjunction with an optical depth measuring instrument. A method of measuring a radius of curvature of an unknown surface includes positioning the spherometer on a surface between the surface and a depth measuring optical instrument. As the spherometer is frontally illuminated, the distance from the depth measuring instrument to the fiducial mark and the underlying surface are alternately measured and the difference in these measurements is used as the sagittal height to calculate a radius of curvature.

  15. Influences of photosynthetically active radiation on cladode orientation, stem tilting, and height of cacti

    SciTech Connect (OSTI)

    Nobel, P.S.

    1981-08-01

    Stem orientation and morphology were investigated for 14 species of cacti in Chile, Ecuador, Mexico, and the United States. The interception of photosynthetically active radiation (PAR) was specifically considered for cladodes (flattened stems) of platyopuntias, for tilted cylindrical stems, and in the presence of surrounding vegetation.

  16. First results of a polychromatic artificial sodium star for the correction of tilt

    SciTech Connect (OSTI)

    Friedman, H.; Foy, R..; Tallon, M.; Migus, A.

    1996-03-06

    This paper presents the first results of a joint experiment carried out at Lawrence Livermore National Laboratory during January, 1996. Laser and optical systems were tested to provide a polychromatic artificial sodium star for the correction of tilt. This paper presents the results of that experiment.

  17. Exploring a possible origin of a 14 deg y-normal spin tilt at RHIC polarimeter

    SciTech Connect (OSTI)

    Meot, F.; Huang, H.

    2015-06-15

    A possible origin of a 14 deg y-normal spin n0 tilt at the polarimeter is in snake angle defects. This possible cause is investigated by scanning the snake axis angle µ, and the spin rotation angle at the snake, φ, in the vicinity of their nominal values.

  18. Selection of a numerical unsaturated flow code for tilted capillary barrier performance evaluation

    SciTech Connect (OSTI)

    Webb, S.W. [Sandia National Labs., Albuquerque, NM (United States). Geohydrology Dept.

    1996-09-01

    Capillary barriers consisting of tilted fine-over-coarse layers have been suggested as landfill covers as a means to divert water infiltration away from sensitive underground regions under unsaturated flow conditions, especially for arid and semi-arid regions. Typically, the HELP code is used to evaluate landfill cover performance and design. Unfortunately, due to its simplified treatment of unsaturated flow and its essentially one-dimensional nature, HELP is not adequate to treat the complex multidimensional unsaturated flow processes occurring in a tilted capillary barrier. In order to develop the necessary mechanistic code for the performance evaluation of tilted capillary barriers, an efficient and comprehensive unsaturated flow code needs to be selected for further use and modification. The present study evaluates a number of candidate mechanistic unsaturated flow codes for application to tilted capillary barriers. Factors considered included unsaturated flow modeling, inclusion of evapotranspiration, nodalization flexibility, ease of modification, and numerical efficiency. A number of unsaturated flow codes are available for use with different features and assumptions. The codes chosen for this evaluation are TOUGH2, FEHM, and SWMS{_}2D. All three codes chosen for this evaluation successfully simulated the capillary barrier problem chosen for the code comparison, although FEHM used a reduced grid. The numerical results are a strong function of the numerical weighting scheme. For the same weighting scheme, similar results were obtained from the various codes. Based on the CPU time of the various codes and the code capabilities, the TOUGH2 code has been selected as the appropriate code for tilted capillary barrier performance evaluation, possibly in conjunction with the infiltration, runoff, and evapotranspiration models of HELP. 44 refs.

  19. Computer Calculations of Eddy-Current Power Loss in Rotating Titanium Wheels and Rims in Localized Axial Magnetic Fields

    SciTech Connect (OSTI)

    Mayhall, D J; Stein, W; Gronberg, J B

    2006-05-15

    We have performed preliminary computer-based, transient, magnetostatic calculations of the eddy-current power loss in rotating titanium-alloy and aluminum wheels and wheel rims in the predominantly axially-directed, steady magnetic fields of two small, solenoidal coils. These calculations have been undertaken to assess the eddy-current power loss in various possible International Linear Collider (ILC) positron target wheels. They have also been done to validate the simulation code module against known results published in the literature. The commercially available software package used in these calculations is the Maxwell 3D, Version 10, Transient Module from the Ansoft Corporation.

  20. Electron g-2 in Light-front Quantization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhao, Xingbo; Honkanen, Heli; Maris, Pieter; Vary, James P.; Brodsky, Stanley J.

    2014-10-01

    Basis Light-front Quantization has been proposed as a nonperturbative framework for solving quantum field theory. We apply this approach to Quantum Electrodynamics and explicitly solve for the light-front wave function of a physical electron. Based on the resulting light-front wave function, we evaluate the electron anomalous magnetic moment. Nonperturbative mass renormalization is performed. Upon extrapolation to the infinite basis limit our numerical results agree with the Schwinger result obtained in perturbation theory to an accuracy of 0.06%.

  1. Study on the ultrasonic inspection method using the full matrix capture for the in service railway wheel

    SciTech Connect (OSTI)

    Peng, Jianping; Wang, Li; Zhang, Yu; Gao, Xiaorong; Wang, Zeyong; Peng, Chaoyong

    2014-02-18

    The quality of wheel is especially important for the safety of high speed railway. In this paper, a new ultrasonic array inspection method, the Full Matrix Capture (FMC) has been studied and applied to the high speed railway wheel inspection, especially in the wheel web from the tread. Firstly, the principle of FMC and TFM algorithm is discussed, and then the new optimization is applied to the standard FMC; Secondly the fundamentals of optimization is described in detail and the performance is analyzed. Finally, the experiment has been built with a standard phased array block and railway wheel, and then the testing results are discussed and analyzed. It is demonstrated that this change for the ultrasonic data acquisition and image reconstruction has higher efficiency and lower cost comparing to the FMC's procedure.

  2. Pulse width modulated push-pull driven parallel resonant converter with active free-wheel

    DOE Patents [OSTI]

    Reass, William A.; Schrank, Louis

    2004-06-22

    An apparatus and method for high frequency alternating power generation to control kilowatts of supplied power in microseconds. The present invention includes a means for energy storage, push-pull switching means, control electronics, transformer means, resonant circuitry and means for excess energy recovery, all in electrical communication. A push-pull circuit works synchronously with a force commutated free-wheel transistor to provide current pulses to a transformer. A change in the conduction angle of the push-pull circuit changes the amount of energy coupled into the transformer's secondary oscillating circuit, thereby altering the induced secondary resonating voltage. At the end of each pulse, the force commutated free-wheel transistor causes residual excess energy in the primary circuit to be transmitted back to the storage capacitor for later use.

  3. Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plug-In Hybrid Electric Vehicles | Department of Energy Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles This report examines energy use and emissions from primary energy source through vehicle operation to help researchers understand the impact of the upstream mix of electricity generation technologies for recharging plug-in hybrid electric vehicles

  4. Light-Front Holography, Color Confinement, and Supersymmetric...

    Office of Scientific and Technical Information (OSTI)

    Resource Relation: Journal Name: arXiv:1601.06328; Conference: Invited paper Theory and Experiment for Hadrons on the Light-Front (Light Cone 2015), 21-25 Sep 2015. Frascati, Italy ...

  5. Front-end utility rate updates | OpenEI Community

    Open Energy Info (EERE)

    Front-end utility rate updates Home > Groups > Utility Rate Rmckeel's picture Submitted by Rmckeel(297) Contributor 13 February, 2013 - 14:28 Utility Rates A few utility rate...

  6. Advanced integrated safeguards using front-end-triggering devices

    SciTech Connect (OSTI)

    Howell, J.A.; Whitty, W.J.

    1995-12-01

    This report addresses potential uses of front-end-triggering devices for enhanced safeguards. Such systems incorporate video surveillance as well as radiation and other sensors. Also covered in the report are integration issues and analysis techniques.

  7. Dissolving the mineral calcite: Reaction front instability | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory calcite: Reaction front instability Share Topic Programs Chemical sciences & engineering Synchrotron radiation X-ray imaging & holography Using the X-ray Reflection Interfacial Microscope powered by the Advanced Photon Source, researchers can both watch and drive the nanoscale changes of the surface of a calcite mineral as it dissolves in real-time. In this image, researchers observe distortions in the reaction front (the boundary between the blue and red regions)

  8. Microsoft Word - Tilted-Rig-TP-Definition-Version1-Aug-14-2012A.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Test Problem: Tilted Rayleigh-Taylor for 2-D Mixing Studies Authors: Malcolm J. Andrews (XCP-4, LANL), 505-606-1430, mandrews@lanl.gov David L. Youngs (AWE) , david.youngs@awe.co.uk Daniel Livescu (CCS-2, LANL), 505-665-1758, livescu@lanl.gov Date: August 10, 2012 Version: 1.0 LA-UR: 12-24091 Contents 1. Introduction................................................................................................................................. 2 2. Problem definition

  9. Cosmological signatures of tilted isocurvature perturbations: reionization and 21cm fluctuations

    SciTech Connect (OSTI)

    Sekiguchi, Toyokazu; Sugiyama, Naoshi; Tashiro, Hiroyuki; Silk, Joseph E-mail: hiroyuki.tashiro@asu.edu E-mail: naoshi@nagoya-u.jp

    2014-03-01

    We investigate cosmological signatures of uncorrelated isocurvature perturbations whose power spectrum is blue-tilted with spectral index 2?tilted isocurvature primordial power spectrum. We also study the consequences for 21cm line fluctuations due to neutral hydrogens in minihalos. Combination of measurements of the reionization optical depth and 21cm line fluctuations will provide complementary probes of a highly blue-tilted isocurvature power spectrum.

  10. Effects of the scatter in sunspot group tilt angles on the large-scale magnetic field at the solar surface

    SciTech Connect (OSTI)

    Jiang, J.; Cameron, R. H.; Schüssler, M.

    2014-08-10

    The tilt angles of sunspot groups represent the poloidal field source in Babcock-Leighton-type models of the solar dynamo and are crucial for the build-up and reversals of the polar fields in surface flux transport (SFT) simulations. The evolution of the polar field is a consequence of Hale's polarity rules, together with the tilt angle distribution which has a systematic component (Joy's law) and a random component (tilt-angle scatter). We determine the scatter using the observed tilt angle data and study the effects of this scatter on the evolution of the solar surface field using SFT simulations with flux input based upon the recorded sunspot groups. The tilt angle scatter is described in our simulations by a random component according to the observed distributions for different ranges of sunspot group size (total umbral area). By performing simulations with a number of different realizations of the scatter we study the effect of the tilt angle scatter on the global magnetic field, especially on the evolution of the axial dipole moment. The average axial dipole moment at the end of cycle 17 (a medium-amplitude cycle) from our simulations was 2.73 G. The tilt angle scatter leads to an uncertainty of 0.78 G (standard deviation). We also considered cycle 14 (a weak cycle) and cycle 19 (a strong cycle) and show that the standard deviation of the axial dipole moment is similar for all three cycles. The uncertainty mainly results from the big sunspot groups which emerge near the equator. In the framework of Babcock-Leighton dynamo models, the tilt angle scatter therefore constitutes a significant random factor in the cycle-to-cycle amplitude variability, which strongly limits the predictability of solar activity.

  11. Independent wheel suspension system using constant velocity universal joints in combination with a single prop shaft joint and mounted differentials

    SciTech Connect (OSTI)

    Krude, W.

    1986-06-24

    An independent wheel suspension system is described for a vehicle having a chassis, vehicle support means for resiliently supporting the chassis for displacement with respect to a driving surface, a wheel assembly with a wheel rotatable about a wheel axis, and an engine adapted to provide driving torque about an engine output axis at an engine output, the independent wheel suspension system consists of: control arm means having a wheel end pivotably connected to the wheel assembly and a pair of frame ends pivotably connected to a respective pair of pivot bearings carried by the vehicle support means to define a swing axis therethrough; differential means comprising a differential housing, differential input means and differential output means within the differential housing establishing a respective differential input axis and a differential output axis substantially perpendicular thereto; transverse pivot means coupling the differential means and the vehicle support means for allowing the differential means to pivot relative to the vehicle support means about a transverse pivot axis substantially parallel to the differential output axis; and prop shaft means having a prop shaft axis and first and second prop shaft coupling means coupling, respectively, to the engine output and the differential input, the first prop shaft coupling means being a constant velocity universal joint, the second prop shaft coupling means being one of an axially splined joint or a fixed joint; whereby, as the first prop shaft coupling means undergoes articulation with respect to the prop shaft means as the chassis undergoes the displacement, the transverse pivot means allows the differential means to pivot relative to the vehicle support means about the transverse pivot axis to accommodate the articulation without articulation between the differential means and the prop shaft means.

  12. Methods for enhancing mapping of thermal fronts in oil recovery

    DOE Patents [OSTI]

    Lee, D.O.; Montoya, P.C.; Wayland, J.R. Jr.

    1984-03-30

    A method for enhancing the resistivity contrasts of a thermal front in an oil recovery production field as measured by the controlled source audio frequency magnetotelluric (CSAMT) technique is disclosed. This method includes the steps of: (1) preparing a CSAMT-determined topological resistivity map of the production field; (2) introducing a solution of a dopant material into the production field at a concentration effective to alter the resistivity associated with the thermal front; said dopant material having a high cation exchange capacity which might be selected from the group consisting of montmorillonite, illite, and chlorite clays; said material being soluble in the conate water of the production field; (3) preparing a CSAMT-determined topological resistivity map of the production field while said dopant material is moving therethrough; and (4) mathematically comparing the maps from step (1) and step (3) to determine the location of the thermal front. This method is effective with the steam flood, fire flood and water flood techniques.

  13. Methods for enhancing mapping of thermal fronts in oil recovery

    DOE Patents [OSTI]

    Lee, David O.; Montoya, Paul C.; Wayland, Jr., James R.

    1987-01-01

    A method for enhancing the resistivity contrasts of a thermal front in an oil recovery production field as measured by the CSAMT technique is disclosed. This method includes the steps of: (a) preparing a CSAMT-determined topological resistivity map of the production field; (b) introducing a solution of a dopant material into the production field at a concentration effective to alter the resistivity associated with the thermal front; said dopant material having a high cation exchange capacity which might be selected from the group consisting of montmorillonite, illite, and chlorite clays; said material being soluble in the connate water of the production field; (c) preparing a CSAMT-determined topological resistivity map of the production field while said dopant material is moving therethrough; and (d) mathematically comparing the maps from step (a) and step (c) to determine the location of the thermal front. This method is effective with the steam flood, fire flood and water flood techniques.

  14. Octahedral tilt transitions in the relaxor ferroelectric Na{sub 1/2}Bi{sub 1/2}TiO{sub 3}

    SciTech Connect (OSTI)

    Meyer, Kai-Christian Gröting, Melanie; Albe, Karsten

    2015-07-15

    The kinetics of octahedral tilt transitions in the lead-free relaxor material sodium bismuth titanate Na{sub 1/2}Bi{sub 1/2}TiO{sub 3} (NBT) is investigated by electronic structure calculations within density functional theory. Energy barriers for transitions between tetragonal, rhombohedral and orthorhombic tilts in cation configurations with [001]- and [111]-order on the A-sites are determined by nudged elastic band calculations. By tilting entire layers of octahedra simultaneously we find that the activation energy is lower for structures with 001-order compared to such with 111-order. The energetic coupling between differently tilted layers is, however, negligibly small. By introducing a single octahedral defect we create local tilt disorder and find that the deformation energy of the neighboring octahedra is less in a rhombohedral than in a tetragonal structure. By successively increasing the size of clusters of orthorhombic defects in a rhombohedral matrix with 001-order, we determine a critical cluster size of about 40 Å . Thus groups of about ten octahedra can be considered as nuclei for polar nanoregions, which are the cause of the experimentally observed relaxor behavior of NBT. - Graphical abstract: Nine orthorhombic oxygen octahedral tilt defects in a rhombohedral tilt configuration. - Highlights: • Chemical order influences energy barriers of octahedral tilt transitions. • The octahedral deformation energy is lower in rhombohedral phases. • Tilt defect clusters are more likely in rhombohedral structures. • Tilt defect clusters can act as nuclei for polar nanoregions.

  15. Light-front holographic QCD and emerging confinement

    SciTech Connect (OSTI)

    Brodsky, Stanley J.; de Téramond, Guy F.; Dosch, Hans Günter; Erlich, Joshua

    2015-05-21

    In this study we explore the remarkable connections between light-front dynamics, its holographic mapping to gravity in a higher-dimensional anti-de Sitter (AdS) space, and conformal quantum mechanics. This approach provides new insights into the origin of a fundamental mass scale and the physics underlying confinement dynamics in QCD in the limit of massless quarks. The result is a relativistic light-front wave equation for arbitrary spin with an effective confinement potential derived from a conformal action and its embedding in AdS space. This equation allows for the computation of essential features of hadron spectra in terms of a single scale. The light-front holographic methods described here give a precise interpretation of holographic variables and quantities in AdS space in terms of light-front variables and quantum numbers. This leads to a relation between the AdS wave functions and the boost-invariant light-front wave functions describing the internal structure of hadronic bound-states in physical spacetime. The pion is massless in the chiral limit and the excitation spectra of relativistic light-quark meson and baryon bound states lie on linear Regge trajectories with identical slopes in the radial and orbital quantum numbers. In the light-front holographic approach described here currents are expressed as an infinite sum of poles, and form factors as a product of poles. At large q2 the form factor incorporates the correct power-law fall-off for hard scattering independent of the specific dynamics and is dictated by the twist. At low q2 the form factor leads to vector dominance. The approach is also extended to include small quark masses. We briefly review in this report other holographic approaches to QCD, in particular top-down and bottom-up models based on chiral symmetry breaking. We also include a discussion of open problems and future applications.

  16. Improved wastewater treatment at Wheeling-Pittsburgh Steel Corporations`s Steubenville East Coke Plant

    SciTech Connect (OSTI)

    Goshe, A.J.; Nodianos, M.J.

    1995-12-01

    Wheeling-Pittsburgh Steel Corporation recently improved its wastewater treatment at it`s by-products coke plant. This has led to greatly improved effluent quality. Excess ammonia liquor, along with wastewater from the light oil recovery plant, desulfurization facility, and coal pile runoff, must be treated prior to being discharged into the Ohio River. This is accomplished using a biological wastewater treatment plant to remove 99.99% of the organic contaminants and ammonia. Biologically treated, clarified wastewater is now polished in the newly constructed tertiary treatment plant.

  17. Entanglement, avoided crossings, and quantum chaos in an Ising model with a tilted magnetic field

    SciTech Connect (OSTI)

    Karthik, J.; Sharma, Auditya; Lakshminarayan, Arul [Department of Physics, Indian Institute of Technology Madras, Chennai 600036 (India)

    2007-02-15

    We study a one-dimensional Ising model with a magnetic field and show that tilting the field induces a transition to quantum chaos. We explore the stationary states of this Hamiltonian to show the intimate connection between entanglement and avoided crossings. In general, entanglement gets exchanged between the states undergoing an avoided crossing with an overall enhancement of multipartite entanglement at the closest point of approach, simultaneously accompanied by diminishing two-body entanglement as measured by concurrence. We find that both for stationary as well as nonstationary states, nonintegrability leads to a destruction of two-body correlations and distributes entanglement more globally.

  18. Dual-frequency terahertz emission from splitting filaments induced by lens tilting in air

    SciTech Connect (OSTI)

    Zhang, Zhelin; Chen, Yanping Yang, Liu; Yuan, Xiaohui; Liu, Feng; Chen, Min; Xu, Jianqiu; Zhang, Jie; Sheng, Zhengming

    2014-09-08

    Dual-frequency terahertz radiation from air-plasma filaments produced with two-color lasers in air has been demonstrated experimentally. When a focusing lens is tilted for a few degrees, it is shown that the laser filament evolves from a single one to two sub-filaments. Two independent terahertz sources emitted from the sub-filaments with different frequencies and polarizations are identified, where the frequency of terahertz waves from the trailing sub-filament is higher than that from the leading sub-filament.

  19. Front and backside processed thin film electronic devices

    DOE Patents [OSTI]

    Evans, Paul G.; Lagally, Max G.; Ma, Zhenqiang; Yuan, Hao-Chih; Wang, Guogong; Eriksson, Mark A.

    2012-01-03

    This invention provides thin film devices that have been processed on their front- and backside. The devices include an active layer that is sufficiently thin to be mechanically flexible. Examples of the devices include back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.

  20. Front and backside processed thin film electronic devices

    DOE Patents [OSTI]

    Yuan, Hao-Chih; Wang, Guogong; Eriksson, Mark A.; Evans, Paul G.; Lagally, Max G.; Ma, Zhenqiang

    2010-10-12

    This invention provides methods for fabricating thin film electronic devices with both front- and backside processing capabilities. Using these methods, high temperature processing steps may be carried out during both frontside and backside processing. The methods are well-suited for fabricating back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.

  1. On the propagation of a coupled saturation and pressure front

    SciTech Connect (OSTI)

    Vasco, D. W.

    2010-12-01

    Using an asymptotic technique, valid for a medium with smoothly varying heterogeneity, I derive an expression for the velocity of a propagating, coupled saturation and pressure front. Due to the nonlinearity of the governing equations, the velocity of the propagating front depends upon the magnitude of the saturation and pressure changes across the front in addition to the properties of the medium. Thus, the expression must be evaluated in conjunction with numerical reservoir simulation. The propagation of the two-phase front is governed by the background saturation distribution, the saturation-dependent component of the fluid mobility, the porosity, the permeability, the capillary pressure function, the medium compressibility, and the ratio of the slopes of the relative permeability curves. Numerical simulation of water injection into a porous layer saturated with a nonaqueous phase liquid indicates that two modes of propagation are important. The fastest mode of propagation is a pressure-dominated disturbance that travels through the saturated layer. This is followed, much later, by a coupled mode with a large saturation change. These two modes are also observed in a simulation using a heterogeneous porous layer. A comparison between the propagation times estimated from the results of the numerical simulation and predictions from the asymptotic expression indicates overall agreement.

  2. Thermal conductivity of Bi{sub 2}Te{sub 3} tilted nanowires, a molecular dynamics study

    SciTech Connect (OSTI)

    Li, Shen Lacroix, David; Termentzidis, Konstantinos; Chaput, Laurent; Stein, Nicolas; Frantz, Cedric

    2015-06-08

    Evidence for an excellent compromise between structural stability and low thermal conductivity has been achieved with tilted Bi{sub 2}Te{sub 3} nanowires. The latter ones were recently fabricated and there is a need in modeling and characterization. The structural stability and the thermal conductivity of Bi{sub 2}Te{sub 3} nanowires along the tilted [015]* direction and along the [010] direction have been explored. For the two configurations of nanowires, the effect of the length and the cross section on the thermal conductivity is discussed. The thermal conductivity of infinite size tilted nanowire is 0.34?W/m K, significantly reduced compared to nanowire along the [010] direction (0.59?W/m K). This reveals that in Bi{sub 2}Te{sub 3} nanowires the structural anisotropy can be as important as size effects to reduce the thermal conductivity. The main reason is the reduction of the phonon mean free path which is found to be 1.7?nm in the tilted nanowires, compared to 5.3?nm for the nanowires along the [010] direction. The fact that tilted Bi{sub 2}Te{sub 3} nanowire is mechanically stable and it has extremely low thermal conductivity suggests these nanowires as a promising material for future thermoelectric generation application.

  3. Well-to-wheels analysis of fuel-cell vehicle/fuel systems.

    SciTech Connect (OSTI)

    Wang, M.

    2002-01-22

    Major automobile companies worldwide are undertaking vigorous research and development efforts aimed at developing fuel-cell vehicles (FCVs). Proton membrane exchange (PEM)-based FCVs require hydrogen (H{sub 2}) as the fuel-cell (FC) fuel. Because production and distribution infrastructure for H{sub 2} off board FCVs as a transportation fuel does not exist yet, researchers are developing FCVs that can use hydrocarbon fuels, such as methanol (MeOH) and gasoline, for onboard production of H{sub 2} via fuel processors. Direct H{sub 2} FCVs have no vehicular emissions, while FCVs powered by hydrocarbon fuels have near-zero emissions of criteria pollutants and some carbon dioxide (CO{sub 2}) emissions. However, production of H{sub 2} can generate a large amount of emissions and suffer significant energy losses. A complete evaluation of the energy and emission impacts of FCVs requires an analysis of energy use and emissions during all stages, from energy feedstock wells to vehicle wheels--a so-called ''well-to-wheels'' (WTW) analysis. This paper focuses on FCVs powered by several transportation fuels. Gasoline vehicles (GVs) equipped with internal combustion engines (ICEs) are the baseline technology to which FCVs are compared. Table 1 lists the 13 fuel pathways included in this study. Petroleum-to-gasoline (with 30-ppm sulfur [S] content) is the baseline fuel pathway for GVs.

  4. Fiber optic sensor system for detecting movement or position of a rotating wheel bearing

    DOE Patents [OSTI]

    Veeser, Lynn R.; Rodriguez, Patrick J.; Forman, Peter R.; Monahan, Russell E.; Adler, Jonathan M.

    1997-01-01

    An improved fiber optic sensor system and integrated sensor bearing assembly for detecting movement or position of a rotating wheel bearing having a multi-pole tone ring which produces an alternating magnetic field indicative of movement and position of the rotating member. A magneto-optical material, such as a bismuth garnet iron (B.I.G.) crystal, having discrete magnetic domains is positioned in the vicinity of the tone ring so that the domains align themselves to the magnetic field generated by the tone ring. A single fiber optic cable, preferably single mode fiber, carries light generated by a source of light to the B.I.G. crystal. The light passes through the B.I.G. crystal and is refracted at domain boundaries in the crystal. The intensity of the refracted light is indicative of the amount of alignment of the domains and therefore the strength of the magnetic field. The refracted light is carried by the fiber optic cable to an optic receiver where the intensity is measured and an electrical signal is generated and sent to a controller indicating the frequency of the changes in light intensity and therefore the rotational speed of the rotating wheel bearing.

  5. Measurement and modeling of solar irradiance components on horizontal and tilted planes

    SciTech Connect (OSTI)

    Padovan, Andrea; Col, Davide del

    2010-12-15

    In this work new measurements of global and diffuse solar irradiance on the horizontal plane and global irradiance on planes tilted at 20 and 30 oriented due South and at 45 and 65 oriented due East are used to discuss the modeling of solar radiation. Irradiance data are collected in Padova (45.4 N, 11.9 E, 12 m above sea level), Italy. Some diffuse fraction correlations have been selected to model the hourly diffuse radiation on the horizontal plane. The comparison with the present experimental data shows that their prediction accuracy strongly depends on the sky characteristics. The hourly irradiance measurements taken on the tilted planes are compared with the estimations given by one isotropic and three anisotropic transposition models. The use of an anisotropic model, based on a physical description of the diffuse radiation, provides a much better accuracy, especially when measurements of the diffuse irradiance on the horizontal plane are not available and thus transposition models have to be applied in combination with a diffuse fraction correlation. This is particularly significant for the planes oriented away from South. (author)

  6. THE TRANSIT INGRESS AND THE TILTED ORBIT OF THE EXTRAORDINARILY ECCENTRIC EXOPLANET HD 80606b

    SciTech Connect (OSTI)

    Winn, Joshua N.; Howard, Andrew W.; Marcy, Geoffrey W.; Johnson, John Asher; Gazak, J. Zachary; Starkey, Donn; Ford, Eric B.; Colon, Knicole D.; Reyes, Francisco; Nortmann, Lisa; Dreizler, Stefan; Odewahn, Stephen; Welsh, William F.; Kadakia, Shimonee; Vanderbei, Robert J.; Adams, Elisabeth R.; Lockhart, Matthew; Crossfield, Ian J.; Valenti, Jeff A.; Dantowitz, Ronald

    2009-10-01

    We present the results of a transcontinental campaign to observe the 2009 June 5 transit of the exoplanet HD 80606b. We report the first detection of the transit ingress, revealing the transit duration to be 11.64 +- 0.25 hr and allowing more robust determinations of the system parameters. Keck spectra obtained at midtransit exhibit an anomalous blueshift, giving definitive evidence that the stellar spin axis and planetary orbital axis are misaligned. The Keck data show that the projected spin-orbit angle lambda is between 32 deg. and 87 deg. with 68.3% confidence and between 14 deg. and 142 deg. with 99.73% confidence. Thus, the orbit of this planet is not only highly eccentric (e = 0.93) but is also tilted away from the equatorial plane of its parent star. A large tilt had been predicted, based on the idea that the planet's eccentric orbit was caused by the Kozai mechanism. Independently of the theory, it is worth noting that all three exoplanetary systems with known spin-orbit misalignments have massive planets on eccentric orbits, suggesting that those systems migrate through a different channel than lower mass planets on circular orbits.

  7. Well-to-Wheels Analysis of Advanced Fuel/Vehicle Systems: A North American Study of Energy Use, Greenhouse Gas Emissions, and Criteria Pollutant Emissions

    SciTech Connect (OSTI)

    Brinkman, Norman; Wang, Michael; Weber, Trudy; Darlington, Thomas

    2005-05-01

    An accurate assessment of future fuel/propulsion system options requires a complete vehicle fuel-cycle analysis, commonly called a well-to-wheels (WTW) analysis. This WTW study analyzes energy use and emissions associated with fuel production (or well-to-tank [WTT]) activities and energy use and emissions associated with vehicle operation (or tank-to-wheels [TTW]) activities.

  8. Observation of tilting activities in translated field reversed configuration plasma using computer tomography at two different cross sections

    SciTech Connect (OSTI)

    Yoshimura, Satoru; Sugimoto, Satoshi; Okada, Shigefumi

    2007-11-15

    Tilting activities of field reversed configuration (FRC) plasma were observed in translation experiments using computer tomography (CT) at two different cross sections in the FRC injection experiment (FIX) machine [S. Okada et al., Nucl. Fusion 47, 677 (2007)]. In these experiments, two sets of CT devices were installed at the upstream and downstream sides of the confinement chamber of the FIX. Each CT device was composed of three arrays of detectors sensitive to the near-infrared radiation. The peak of the reconstructed emission profile at one side was displaced from the center of the cross section of the chamber. On the other hand, the reconstructed profile at the other side was located around the center. This result suggests that the FRC plasma was tilting in the axial direction. The occurrence of the observed tilting activities had almost no effect on the lifetime of the FRC plasma.

  9. Light-front holographic QCD and emerging confinement

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brodsky, Stanley J.; de Téramond, Guy F.; Dosch, Hans Günter; Erlich, Joshua

    2015-05-21

    In this study we explore the remarkable connections between light-front dynamics, its holographic mapping to gravity in a higher-dimensional anti-de Sitter (AdS) space, and conformal quantum mechanics. This approach provides new insights into the origin of a fundamental mass scale and the physics underlying confinement dynamics in QCD in the limit of massless quarks. The result is a relativistic light-front wave equation for arbitrary spin with an effective confinement potential derived from a conformal action and its embedding in AdS space. This equation allows for the computation of essential features of hadron spectra in terms of a single scale. Themore » light-front holographic methods described here give a precise interpretation of holographic variables and quantities in AdS space in terms of light-front variables and quantum numbers. This leads to a relation between the AdS wave functions and the boost-invariant light-front wave functions describing the internal structure of hadronic bound-states in physical spacetime. The pion is massless in the chiral limit and the excitation spectra of relativistic light-quark meson and baryon bound states lie on linear Regge trajectories with identical slopes in the radial and orbital quantum numbers. In the light-front holographic approach described here currents are expressed as an infinite sum of poles, and form factors as a product of poles. At large q2 the form factor incorporates the correct power-law fall-off for hard scattering independent of the specific dynamics and is dictated by the twist. At low q2 the form factor leads to vector dominance. The approach is also extended to include small quark masses. We briefly review in this report other holographic approaches to QCD, in particular top-down and bottom-up models based on chiral symmetry breaking. We also include a discussion of open problems and future applications.« less

  10. Physics design of front ends for superconducting ion linacs

    SciTech Connect (OSTI)

    Ostroumov, P.N.; Carneiro, J.-P.; /Fermilab

    2008-09-01

    Superconducting (SC) technology is the only option for CW linacs and is also an attractive option for pulsed linacs. SC cavities are routinely used for proton and H{sup -} beam acceleration above 185 MeV. Successful development of SC cavities covering the lower velocity range (down to 0.03c) is a very strong basis for the application of SC structures in the front ends of high energy linacs. Lattice design and related high-intensity beam physics issues in a {approx}400 MeV linac that uses SC cavities will be presented in this talk. In particular, axially-symmetric focusing by SC solenoids provides strong control of beam space charge and a compact focusing lattice. As an example, we discuss the SC front end of the H{sup -} linac for the FNAL Proton Driver.

  11. At Plasma Camp, teachers experience research front and center | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Lab At Plasma Camp, teachers experience research front and center By Constance Kaita August 12, 2013 Tweet Widget Google Plus One Share on Facebook Wendy Dlakic, a physics and earth science teacher from Livingston, Mont., examines a plasma with Nick Guilbert, a master teacher and collaborator from The Peddie School, at this year's Plasma Camp for physics teachers at PPPL from July 15 to 19. (Photo by Photo by Elle Starkman/ PPPL Office of Communications) Wendy Dlakic, a

  12. Three-dimensional microelectromechanical tilting platform operated by gear-driven racks

    DOE Patents [OSTI]

    Klody, Kelly A.; Habbit, Jr., Robert D.

    2005-11-01

    A microelectromechanical (MEM) tiltable-platform apparatus is disclosed which utilizes a light-reflective platform (i.e. a micromirror) which is supported above a substrate by flexures which can be bent upwards to tilt the platform in any direction over an angle of generally .+-.10 degrees using a gear-driven rack attached to each flexure. Each rack is driven by a rotary microengine (i.e. a micromotor); and an optional thermal actuator can be used in combination with each microengine for initially an initial uplifting of the platform away from the substrate. The MEM apparatus has applications for optical switching (e.g. between a pair of optical fibers) or for optical beam scanning.

  13. Bose-Einstein condensates on tilted lattices: Coherent, chaotic, and subdiffusive dynamics

    SciTech Connect (OSTI)

    Kolovsky, Andrey R.; Gomez, Edgar A.; Korsch, Hans Juergen

    2010-02-15

    The dynamics of a (quasi-) one-dimensional interacting atomic Bose-Einstein condensate in a tilted optical lattice is studied in a discrete mean-field approximation, i.e., in terms of the discrete nonlinear Schroedinger equation. If the static field is varied, the system shows a plethora of dynamical phenomena. In the strong field limit, we demonstrate the existence of (almost) nonspreading states which remain localized on the lattice region populated initially and show coherent Bloch oscillations with fractional revivals in the momentum space (so-called quantum carpets). With decreasing field, the dynamics becomes irregular, however, still confined in configuration space. For even weaker fields, we find subdiffusive dynamics with a wave-packet width growing as t{sup 1/4}.

  14. Formation mechanism of steep wave front in magnetized plasmas

    SciTech Connect (OSTI)

    Sasaki, M. Kasuya, N.; Itoh, S.-I.; Kobayashi, T.; Arakawa, H.; Itoh, K.; Fukunaga, K.; Yamada, T.; Yagi, M.

    2015-03-15

    Bifurcation from a streamer to a solitary drift wave is obtained in three dimensional simulation of resistive drift waves in cylindrical plasmas. The solitary drift wave is observed in the regime where the collisional transport is important as well as fluctuation induced transport. The solitary drift wave forms a steep wave front in the azimuthal direction. The phase of higher harmonic modes are locked to that of the fundamental mode, so that the steep wave front is sustained for a long time compared to the typical time scale of the drift wave oscillation. The phase entrainment between the fundamental and second harmonic modes is studied, and the azimuthal structure of the stationary solution is found to be characterized by a parameter which is determined by the deviation of the fluctuations from the Boltzmann relation. There are two solutions of the azimuthal structures, which have steep wave front facing forward and backward in the wave propagation direction, respectively. The selection criterion of these solutions is derived theoretically from the stability of the phase entrainment. The simulation result and experimental observations are found to be consistent with the theoretical prediction.

  15. Modified Anti-de-Sitter Metric, Light-Front Quantized QCD, and...

    Office of Scientific and Technical Information (OSTI)

    Modified Anti-de-Sitter Metric, Light-Front Quantized QCD, and Conformal Quantum Mechanics Citation Details In-Document Search Title: Modified Anti-de-Sitter Metric, Light-Front...

  16. STIP 2.0 Static Content for Front Page Body | OSTI, US Dept of...

    Office of Scientific and Technical Information (OSTI)

    Static Content for Front Page Body STIP 2.0 Static Content for Front Page Body My Profile Create Review OSTI.Gov Newsletter - April-May 2016 Issue 15 OSTIblog: Thorium - An ...

  17. Test Problem: Tilted Rayleigh-Taylor for 2-D Mixing Studies

    SciTech Connect (OSTI)

    Andrews, Malcolm J.; Livescu, Daniel; Youngs, David L.

    2012-08-14

    The 'tilted-rig' test problem originates from a series of experiments (Smeeton & Youngs, 1987, Youngs, 1989) performed at AWE in the late 1980's, that followed from the 'rocket-rig' experiments (Burrows et al., 1984; Read & Youngs, 1983), and exploratory experiments performed at Imperial College (Andrews, 1986; Andrews and Spalding, 1990). A schematic of the experiment is shown in Figure 1, and comprises a tank filled with light fluid above heavy, and then 'tilted' on one side of the apparatus, thus causing an 'angled interface' to the acceleration history due to rockets. Details of the configuration given in the next chapter include: fluids, dimensions, and other necessary details to simulate the experiment. Figure 2 shows results from two experiments, Case 110 (which is the source for this test problem) that has an Atwood number of 0.5, and Case 115 (a secondary source described in Appendix B), with Atwood of 0.9 Inspection of the photograph in Figure 2 (the main experimental diagnostic) for Case 110. reveals two main areas for mix development; 1) a large-scale overturning motion that produces a rising plume (spike) on the left, and falling plume (bubble) on the right, that are almost symmetric; and 2) a Rayleigh-Taylor driven mixing central mixing region that has a large-scale rotation associated with the rising and falling plumes, and also experiences lateral strain due to stretching of the interface by the plumes, and shear across the interface due to upper fluid moving downward and to the right, and lower fluid moving upward and to the left. Case 115 is similar but differs by a much larger Atwood of 0.9 that drives a strong asymmetry between a left side heavy spike penetration and a right side light bubble penetration. Case 110 is chosen as the source for the present test problem as the fluids have low surface tension (unlike Case 115) due the addition of a surfactant, the asymmetry small (no need to have fine grids for the spike), and there is extensive

  18. Uranium vacancy mobility at the Σ5 symmetric tilt and Σ5 twist grain boundaries in UO₂

    SciTech Connect (OSTI)

    Uberuaga, Blas Pedro; Andersson, David A.

    2015-10-01

    Ionic transport at grain boundaries in oxides dictates a number of important phenomena, from ionic conductivity to sintering to creep. For nuclear fuels, it also influences fission gas bubble nucleation and growth. Here, using a combination of atomistic calculations and object kinetic Monte Carlo (okMC) simulations, we examine the kinetic pathways associated with uranium vacancies at two model grain boundaries in UO2. The barriers for vacancy motion were calculated using the nudged elastic band method at all uranium sites at each grain boundary and were used as the basis of the okMC simulations. For both boundaries considered – a simple tilt and a simple twist boundary – the mobility of uranium vacancies is significantly higher than in the bulk. For the tilt boundary, there is clearly preferred migration along the tilt axis as opposed to in the perpendicular direction while, for the twist boundary, migration is essentially isotropic within the boundary plane. These results show that cation defect mobility in fluorite-structured materials is enhanced at certain types of grain boundaries and is dependent on the boundary structure with the tilt boundary exhibiting higher rates of migration than the twist boundary.

  19. Uranium vacancy mobility at the Σ5 symmetric tilt and Σ5 twist grain boundaries in UO₂

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Uberuaga, Blas Pedro; Andersson, David A.

    2015-10-01

    Ionic transport at grain boundaries in oxides dictates a number of important phenomena, from ionic conductivity to sintering to creep. For nuclear fuels, it also influences fission gas bubble nucleation and growth. Here, using a combination of atomistic calculations and object kinetic Monte Carlo (okMC) simulations, we examine the kinetic pathways associated with uranium vacancies at two model grain boundaries in UO2. The barriers for vacancy motion were calculated using the nudged elastic band method at all uranium sites at each grain boundary and were used as the basis of the okMC simulations. For both boundaries considered – a simplemore » tilt and a simple twist boundary – the mobility of uranium vacancies is significantly higher than in the bulk. For the tilt boundary, there is clearly preferred migration along the tilt axis as opposed to in the perpendicular direction while, for the twist boundary, migration is essentially isotropic within the boundary plane. These results show that cation defect mobility in fluorite-structured materials is enhanced at certain types of grain boundaries and is dependent on the boundary structure with the tilt boundary exhibiting higher rates of migration than the twist boundary.« less

  20. Meson Transition Form Factors in Light-Front Holographic QCD

    SciTech Connect (OSTI)

    Brodsky, Stanley J.; Cao, Fu-Guang; de Teramond, Guy F.; /Costa Rica U.

    2011-06-22

    We study the photon-to-meson transition form factors (TFFs) F{sub M{gamma}}(Q{sup 2}) for {gamma}{gamma}* {yields} M using light-front holographic methods. The Chern-Simons action, which is a natural form in 5-dimensional anti-de Sitter (AdS) space, leads directly to an expression for the photon-to-pion TFF for a class of confining models. Remarkably, the predicted pion TFF is identical to the leading order QCD result where the distribution amplitude has asymptotic form. The Chern-Simons form is local in AdS space and is thus somewhat limited in its predictability. It only retains the q{bar q} component of the pion wavefunction, and further, it projects out only the asymptotic form of the meson distribution amplitude. It is found that in order to describe simultaneously the decay process {pi}{sup 0} {yields} {gamma}{gamma} and the pion TFF at the asymptotic limit, a probability for the q{bar q} component of the pion wavefunction P{sub q{bar q}} = 0.5 is required; thus giving indication that the contributions from higher Fock states in the pion light-front wavefunction need to be included in the analysis. The probability for the Fock state containing four quarks (anti-quarks) which follows from analyzing the hadron matrix elements, P{sub q{bar q}q{bar q}} {approx} 10%, agrees with the analysis of the pion elastic form factor using light-front holography including higher Fock components in the pion wavefunction. The results for the TFFs for the {eta} and {eta}{prime} mesons are also presented. The rapid growth of the pion TFF exhibited by the BABAR data at high Q{sup 2} is not compatible with the models discussed in this article, whereas the theoretical calculations are in agreement with the experimental data for the {eta} and {eta}{prime} TFFs.

  1. Instrument Front-Ends at Fermilab During Run II

    SciTech Connect (OSTI)

    Meyer, Thomas; Slimmer, David; Voy, Duane; /Fermilab

    2011-07-13

    The optimization of an accelerator relies on the ability to monitor the behavior of the beam in an intelligent and timely fashion. The use of processor-driven front-ends allowed for the deployment of smart systems in the field for improved data collection and analysis during Run II. This paper describes the implementation of the two main systems used: National Instruments LabVIEW running on PCs, and WindRiver's VxWorks real-time operating system running in a VME crate processor.

  2. Hydrogen Pathways: Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Seven Hydrogen Production, Delivery, and Distribution Scenarios

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Pathways: Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Seven Hydrogen Production, Delivery, and Distribution Scenarios Mark Ruth National Renewable Energy Laboratory Melissa Laffen and Thomas A. Timbario Alliance Technical Services, Inc. Technical Report NREL/TP-6A1-46612 September 2009 Technical Report Hydrogen Pathways: Cost, NREL/TP-6A1-46612 Well-to-Wheels Energy Use, September 2009 and Emissions for the Current Technology Status of Seven

  3. Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Amgad Elgowainy and Michael Wang Center for Transportation Research Argonne National Laboratory LDV Workshop July26, 2010 2 2 2 Team Members 2  ANL's Energy Systems (ES) Division  Michael Wang (team leader)  Dan Santini  Anant Vyas  Amgad Elgowainy  Jeongwoo Han  Aymeric Rousseau  ANL's Decision and Information Sciences (DIS) Division:  Guenter Conzelmann  Leslie Poch 

  4. Comprehensive kinetic analysis of the plasma-wall transition layer in a strongly tilted magnetic field

    SciTech Connect (OSTI)

    Tskhakaya, D. D.; Kos, L.

    2014-10-15

    The magnetized plasma-wall transition (MPWT) layer at the presence of the obliquity of the magnetic field to the wall consists of three sub-layers: the Debye sheath (DS), the magnetic pre-sheath (MPS), and the collisional pre-sheath (CPS) with characteristic lengths ?{sub D} (electron Debye length), ?{sub i} (ion gyro-radius), and ? (the smallest relevant collision length), respectively. Tokamak plasmas are usually assumed to have the ordering ?{sub D}??{sub i}??, when the above-mentioned sub-layers can be distinctly distinguished. In the limits of ?{sub Dm}(?{sub D}/?{sub i})?0 and ?{sub mc}(?{sub i}/?)?0 (asymptotic three-scale (A3S) limits), these sub-layers are precisely defined. Using the smallness of the tilting angle of the magnetic field to the wall, the ion distribution functions are found for three sub-regions in the analytic form. The equations and characteristic length-scales governing the transition (intermediate) regions between the neighboring sub-layers (CPS MPS and MPS DS) are derived, allowing to avoid the singularities arising from the ?{sub Dm}?0 and ?{sub mc}?0 approximations. The MPS entrance and the related kinetic form of the BohmChodura condition are successfully defined for the first time. At the DS entrance, the Bohm condition maintains its usual form. The results encourage further study and understanding of physics of the MPWT layers in the modern plasma facilities.

  5. Segregation and Migration of the Oxygen Vacancies in the 3 (111) Tilt Grain Boundaries of Ceria

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yuan, Fenglin; Liu, Bin; Zhang, Yanwen; Weber, William J.

    2016-03-01

    In nanocrystalline materials, defect-grain boundary (GB) interaction plays a key role in determining the structure stability, as well as size-dependent ionic, electronic, magnetic and chemical properties. In this study, we systematically investigated using density functional theory segregation and migration of oxygen vacancies at the Σ3 [110] / (111) grain boundary of ceria. Three oxygen layers near the GB are predicted to be segregation sites for oxygen vacancies. Moreover, the presence of oxygen vacancies stabilizes this tilt GB at a low Fermi level and/or oxygen poor conditions. An atomic strain model was proposed to rationalize layer dependency of the relaxation energymore » for +2 charged oxygen vacancy. The structural origin of large relaxation energies at layers 1 and 2 was determined to be free-volume space that induces ion relaxation towards the GB. Our results not only pave the way for improving the oxygen transport near GBs of ceria, but also provide important insights into engineering the GB structure for better ionic, magnetic and chemical properties of nanocrystalline ceria.« less

  6. Noncircular skyrmion and its anisotropic response in thin films of chiral magnets under a tilted magnetic field

    SciTech Connect (OSTI)

    Lin, Shi-Zeng; Saxena, Avadh

    2015-11-03

    Here we study the equilibrium and dynamical properties of skyrmions in thin films of chiral magnets with oblique magnetic field. The shape of an individual skyrmion is non-circular and the skyrmion density decreases with the tilt angle from the normal of films. As a result, the interaction between two skyrmions depends on the relative angle between them in addition to their separation. The triangular lattice of skyrmions under a perpendicular magnetic field is distorted into a centered rectangular lattice for a tilted magnetic field. For a low skyrmion density, skyrmions form a chain like structure. Lastly, the dynamical response of the non-circular skyrmions depends on the direction of external currents.

  7. Noncircular skyrmion and its anisotropic response in thin films of chiral magnets under a tilted magnetic field

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lin, Shi-Zeng; Saxena, Avadh

    2015-11-03

    Here we study the equilibrium and dynamical properties of skyrmions in thin films of chiral magnets with oblique magnetic field. The shape of an individual skyrmion is non-circular and the skyrmion density decreases with the tilt angle from the normal of films. As a result, the interaction between two skyrmions depends on the relative angle between them in addition to their separation. The triangular lattice of skyrmions under a perpendicular magnetic field is distorted into a centered rectangular lattice for a tilted magnetic field. For a low skyrmion density, skyrmions form a chain like structure. Lastly, the dynamical response ofmore » the non-circular skyrmions depends on the direction of external currents.« less

  8. Micromagnetic study of spin transfer switching with a spin polarization tilted out of the free layer plane

    SciTech Connect (OSTI)

    Chaves-O'Flynn, Gabriel D. Wolf, Georg; Pinna, Daniele; Kent, Andrew D.

    2015-05-07

    We present the results of zero temperature macrospin and micromagnetic simulations of spin transfer switching of thin film nanomagnets in the shape of an ellipse with a spin-polarization tilted out of the layer plane. The perpendicular component of the spin-polarization is shown to increase the reversal speed, leading to a lower current for switching in a given time. However, for tilt angles larger than a critical angle, the layer magnetization starts to precess about an out-of-plane axis, which leads to a final magnetization state that is very sensitive to simulation conditions. As the ellipse lateral size increases, this out-of-plane precession is suppressed, due to the excitation of spatially non-uniform magnetization modes.

  9. Meson transition form factors in light-front holographic QCD

    SciTech Connect (OSTI)

    Brodsky, Stanley J.; Cao Fuguang; de Teramond, Guy F.

    2011-10-01

    We study the photon-to-meson transition form factors (TFFs) F{sub M}{gamma}(Q{sup 2}) for {gamma}{gamma}{sup *}{yields}M using light-front holographic methods. The Chern-Simons action, which is a natural form in five-dimensional anti-de Sitter (AdS) space, is required to describe the anomalous coupling of mesons to photons using holographic methods and leads directly to an expression for the photon-to-pion TFF for a class of confining models. Remarkably, the predicted pion TFF is identical to the leading order QCD result where the distribution amplitude has asymptotic form. The Chern-Simons form is local in AdS space and is thus somewhat limited in its predictability. It only retains the qq component of the pion wave function, and further, it projects out only the asymptotic form of the meson distribution amplitude. It is found that in order to describe simultaneously the decay process {pi}{sup 0}{yields}{gamma}{gamma} and the pion TFF at the asymptotic limit, a probability for the qq component of the pion wave function P{sub qq}=0.5 is required, thus giving indication that the contributions from higher Fock states in the pion light-front wave function need to be included in the analysis. The probability for the Fock state containing four quarks P{sub qqqq}{approx}10%, which follows from analyzing the hadron matrix elements for a dressed current model, agrees with the analysis of the pion elastic form factor using light-front holography including higher Fock components in the pion wave function. The results for the TFFs for the {eta} and {eta}{sup '} mesons are also presented. The rapid growth of the pion TFF exhibited by the BABAR data at high Q{sup 2} is not compatible with the models discussed in this article, whereas the theoretical calculations are in agreement with the experimental data for the {eta} and {eta}{sup '} TFFs.

  10. Bound state calculations in QED and QCD using basis light-front

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    quantization | Argonne Leadership Computing Facility Bound state calculations in QED and QCD using basis light-front quantization Authors: Pieter Maris, Paul Wiecki, Yang Li, Xingbo Zhao, James P. Vary In order to describe self-bound systems, one needs a nonperturbative approach. We discuss the relativistic bound state equations of QED and QCD formulated in Basis Light-Front Quantization. In this approach, the light-front direction is discretized, and two-dimensional harmonic oscillator

  11. Development of a Front Tracking Method for Two-Phase Micromixing...

    Office of Scientific and Technical Information (OSTI)

    Development of a Front Tracking Method for Two-Phase Micromixing of Incompressible Viscous Fluids with Interfacial Tension in Solvent Extraction Citation Details In-Document Search...

  12. Uranium vacancy mobility at the sigma 5 symmetric tilt grain boundary in UO2

    SciTech Connect (OSTI)

    Uberuaga, Blas P.

    2012-05-02

    An important consequence of the fissioning process occurring during burnup is the formation of fission products. These fission products alter the thermo-mechanical properties of the fuel. They also lead to macroscopic changes in the fuel structure, including the formation of bubbles that are connected to swelling of the fuel. Subsequent release of fission gases increase the pressure in the plenum and can cause changes in the properties of the fuel pin itself. It is thus imperative to understand how fission products, and fission gases in particular, behave within the fuel in order to predict the performance of the fuel under operating conditions. Fission gas redistribution within the fuel is governed by mass transport and the presence of sinks such as impurities, dislocations, and grain boundaries. Thus, to understand how the distribution of fission gases evolves in the fuel, we must understand the underlying transport mechanisms, tied to the concentrations and mobilities of defects within the material, and how these gases interact with microstructural features that might act as sinks. Both of these issues have been addressed in previous work under NEAMS. However, once a fission product has reached a sink, such as a grain boundary, its mobility may be different there than in the grain interior and predicting how, for example, bubbles nucleate within grain boundaries necessitates an understanding of how fission gases diffuse within boundaries. That is the goal of the present work. In this report, we describe atomic level simulations of uranium vacancy diffusion in the pressence of a {Sigma}5 symmetric tilt boundary in urania (UO{sub 2}). This boundary was chosen as it is the simplest of the boundaries we considered in previous work on segregation and serves as a starting point for understanding defect mobility at boundaries. We use a combination of molecular statics calculations and kinetic Monte Carlo (kMC) to determine how the mobility of uranium vacancies is

  13. Silicon Solar Cells with Front Hetero-contact and Aluminum Alloy Back Junction (Poster)

    SciTech Connect (OSTI)

    Yuan, H.-C.; Page, M. R.; Iwaniczko, E.; Xu, Y.; Roybal, L.; Wang, Q.; Branz, H. M.; Meier, D. L.

    2008-05-01

    The objectives of this report are: (1) to apply industrial back Al process in efficient n-wafer cells with a-Si:H front surface passivation; and (2) to evaluate the surface recombination velocity (SRV) of the a-Si:H passivated front surface with different surface preparation procedures.

  14. Front-end electronics and trigger systems - status and challenges

    SciTech Connect (OSTI)

    Spieler, Helmuth G; Spieler, Helmuth G

    2007-08-21

    The past quarter century has brought about a revolution in front-end electronics for large-scale detector systems. Custom integrated circuits specifically tailored to the requirements of large detector systems have provided unprecedented performance and enabled systems that once were deemed impossible. The evolution of integrated circuit readouts in strip detectors is summarized, the present status described, and challenges posed by the sLHC and ILC are discussed. Performance requirements increase, but key considerations remain as in the past: power dissipation, material, and services. Smaller CMOS feature sizes will not provide the required electronic noise at lower power, but will improve digital power efficiency. Significant improvements appear to be practical in more efficient power distribution. Enhanced digital electronics have provided powerful trigger processors that greatly improve the trigger efficiency. In data readout systems they also improve data throughput, while reducing power requirements. Concurrently with new developments in high energy physics, detector systems for cosmology and astrophysics have made great strides. As an example, a large-scale readout for superconducting bolometer arrays is described.

  15. Inhibition of slug front corrosion in multiphase flow conditions

    SciTech Connect (OSTI)

    Chen, H.J.; Jepson, W.P.

    1998-12-31

    Corrosion at the slug front at the bottom of a pipeline is identified as one of the worst cases of corrosion occurring in the pipeline which carries unprocessed multiphase production with a high level of CO{sub 2} gas. One objective of the study in recommending a subsea completion to shore was to determine if commercial corrosion inhibitors can control this type of corrosion using carbon steel pipeline. Thus, inhibitors which showed excellent performance in the lab using the Rotating Cylinder Electrode system (RCE) were further evaluated to confirm their performance in a flow loop simulating the test conditions predicted from the flow modeling for the proposed pipeline. The performance profile of two commercial inhibitors were determined in a 4 in. flow loop at 7O C, 100 psig CO{sub 2} partial pressure in corrosive brines with or without ethylene glycol and/or light hydrocarbon. Results showed that the carbon steel pipeline could be adequately protected at low temperature using a commercial corrosion inhibitor to meet the designed life of the pipeline. Ethylene glycol, which is used in the pipeline to prevent hydrate formation, reduces the corrosivity of the brine and gives no effect on inhibitor performance under the slug flow conditions. A good agreement in inhibitor performance was observed between the flow loop and the RCE testing. The uninhibited corrosion rate of the test brine in this study is in good agreement with the predicted value using deWaard and Williams correlation for CO{sub 2} corrosion.

  16. Sedimentation and reservoir distribution related to a tilted block system in the Sardinia Oligocene-Miocene rift (Italy)

    SciTech Connect (OSTI)

    Tremolieres, P.; Cherchi, A.; Eschard, R.; De Graciansky, P.C.; Montadert, L.

    1988-08-01

    In the western Mediterranean basin lies a rift system about 250 km long and 50 km wide and its infilling outcrop (central Sardinia). Seismic reflection surveys show its offshore extension. Block tilting started during the late Oligocene and lasted during Aquitanian-early Burdigalian time. Two main fault trends, with synthetic and antithetic throws, define the more-or-less collapsed blocks. This morphology guided the transit and trapping of sediments. The sedimentation started in a continental environment then, since the Chattian, in marine conditions. In the central part, the series can reach a thickness of 2,000 m. The basement composition and the volcanics products related to the main fault motion controlled the nature of the synrift deposits. According to their location in the rift context, the tilted blocks trap either continental deposits or marine siliciclastic or carbonate deposits. In the deeper part of the graben, sands were redeposited by gravity flows into the basinal marls. The younger prerift deposits are from Eocene to early Oligocene age and locally comprise thick coal layers. Postrift deposits, mainly marls, sealed the blocks and synrift sedimentary bodies. In middle and late Miocene time some faults were reactivated during compressional events. Then, a quaternary extensional phase created the Campidano graben, filled with about 1,000 m of sediments superimposed on the Oligocene-Miocene rift.

  17. THE PROPERTIES OF X-RAY COLD FRONTS IN A STATISTICAL SAMPLE OF SIMULATED GALAXY CLUSTERS

    SciTech Connect (OSTI)

    Hallman, Eric J.; Skillman, Samuel W.; Smith, Britton D.; Burns, Jack O.; Jeltema, Tesla E.; Norman, Michael L.

    2010-12-10

    We examine the incidence of cold fronts in a large sample of galaxy clusters extracted from a (512 h {sup -1} Mpc) hydrodynamic/N-body cosmological simulation with adiabatic gas physics computed with the Enzo adaptive mesh refinement code. This simulation contains a sample of roughly 4000 galaxy clusters with M {>=}10{sup 14} M{sub sun} at z = 0. For each simulated galaxy cluster, we have created mock 0.3-8.0 keV X-ray observations and spectroscopic-like temperature maps. We have searched these maps with a new automated algorithm to identify the presence of cold fronts in projection. Using a threshold of a minimum of 10 cold front pixels in our images, corresponding to a total comoving length L{sub cf}>156 h {sup -1} kpc, we find that roughly 10%-12% of all projections in a mass-limited sample would be classified as cold front clusters. Interestingly, the fraction of clusters with extended cold front features in our synthetic maps of a mass-limited sample trends only weakly with redshift out to z = 1.0. However, when using different selection functions, including a simulated flux limit, the trending with redshift changes significantly. The likelihood of finding cold fronts in the simulated clusters in our sample is a strong function of cluster mass. In clusters with M>7.5 x 10{sup 14} M{sub sun} the cold front fraction is 40%-50%. We also show that the presence of cold fronts is strongly correlated with disturbed morphology as measured by quantitative structure measures. Finally, we find that the incidence of cold fronts in the simulated cluster images is strongly dependent on baryonic physics.

  18. Travelling fronts of the CO oxidation on Pd(111) with coverage-dependent diffusion

    SciTech Connect (OSTI)

    Cisternas, Jaime, E-mail: jecisternas@miuandes.cl [Facultad de Ingeniera y Ciencias Aplicadas, Universidad de los Andes, Monseor Alvaro del Portillo 12455, Las Condes, Santiago (Chile); Karpitschka, Stefan [Physics of Fluids, University of Twente, Drienerlolaan 5, 7522 NB Enschede (Netherlands); Wehner, Stefan [Institut fr Integrierte Naturwissenschaften - Physik, Universitt Koblenz-Landau, 56070 Koblenz (Germany)

    2014-10-28

    In this work, we study a surface reaction on Pd(111) crystals under ultra-high-vacuum conditions that can be modeled by two coupled reaction-diffusion equations. In the bistable regime, the reaction exhibits travelling fronts that can be observed experimentally using photo electron emission microscopy. The spatial profile of the fronts reveals a coverage-dependent diffusivity for one of the species. We propose a method to solve the nonlinear eigenvalue problem and compute the direction and the speed of the fronts based on a geometrical construction in phase-space. This method successfully captures the dependence of the speed on control parameters and diffusivities.

  19. Electron Anomalous Magnetic Moment in Basis Light-Front Quantization Approach

    SciTech Connect (OSTI)

    Zhao, Xingbo; Honkanen, Heli; Maris, Pieter; Vary, James P.; Brodsky, Stanley J.; /SLAC

    2012-02-17

    We apply the Basis Light-Front Quantization (BLFQ) approach to the Hamiltonian field theory of Quantum Electrodynamics (QED) in free space. We solve for the mass eigenstates corresponding to an electron interacting with a single photon in light-front gauge. Based on the resulting non-perturbative ground state light-front amplitude we evaluate the electron anomalous magnetic moment. The numerical results from extrapolating to the infinite basis limit reproduce the perturbative Schwinger result with relative deviation less than 1.2%. We report significant improvements over previous works including the development of analytic methods for evaluating the vertex matrix elements of QED.

  20. DOE Offers Conditional Loan Guarantee for Front End Nuclear Facility in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Idaho | Department of Energy Loan Guarantee for Front End Nuclear Facility in Idaho DOE Offers Conditional Loan Guarantee for Front End Nuclear Facility in Idaho May 20, 2010 - 12:00am Addthis Washington, DC - As part of a broad effort to expand the use of nuclear power in the United States and reduce carbon pollution, U.S. Secretary of Energy Steven Chu announced today the Department's first conditional commitment for a front-end nuclear facility. The $2 billion loan guarantee will support

  1. Well-to-wheels analysis of fast pyrolysis pathways with the GREET model.

    SciTech Connect (OSTI)

    Han, J.; Elgowainy, A.; Palou-Rivera, I.; Dunn, J.B.; Wang, M.Q.

    2011-12-01

    The pyrolysis of biomass can help produce liquid transportation fuels with properties similar to those of petroleum gasoline and diesel fuel. Argonne National Laboratory conducted a life-cycle (i.e., well-to-wheels [WTW]) analysis of various pyrolysis pathways by expanding and employing the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The WTW energy use and greenhouse gas (GHG) emissions from the pyrolysis pathways were compared with those from the baseline petroleum gasoline and diesel pathways. Various pyrolysis pathway scenarios with a wide variety of possible hydrogen sources, liquid fuel yields, and co-product application and treatment methods were considered. At one extreme, when hydrogen is produced from natural gas and when bio-char is used for process energy needs, the pyrolysis-based liquid fuel yield is high (32% of the dry mass of biomass input). The reductions in WTW fossil energy use and GHG emissions relative to those that occur when baseline petroleum fuels are used, however, is modest, at 50% and 51%, respectively, on a per unit of fuel energy basis. At the other extreme, when hydrogen is produced internally via reforming of pyrolysis oil and when bio-char is sequestered in soil applications, the pyrolysis-based liquid fuel yield is low (15% of the dry mass of biomass input), but the reductions in WTW fossil energy use and GHG emissions are large, at 79% and 96%, respectively, relative to those that occur when baseline petroleum fuels are used. The petroleum energy use in all scenarios was restricted to biomass collection and transportation activities, which resulted in a reduction in WTW petroleum energy use of 92-95% relative to that found when baseline petroleum fuels are used. Internal hydrogen production (i.e., via reforming of pyrolysis oil) significantly reduces fossil fuel use and GHG emissions because the hydrogen from fuel gas or pyrolysis oil (renewable sources) displaces that from fossil fuel

  2. Reconciliation of local and long range tilt correlations in underdoped La??xBaxCuO? (0 ? x ? 0.155)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bozin, Emil S.; Zhong, Ruidan; Knox, Kevin R.; Gu, Genda; Hill, John P.; Tranquada, John M.; Billinge, Simon J. L.

    2015-02-26

    A long standing puzzle regarding the disparity of local and long range CuO? octahedral tilt correlations in the underdoped regime of La??xBaxCuO? is addressed by utilizing complementary neutron powder diffraction and inelastic neutron scattering (INS) approaches. Long-range and static CuO? tilt order with orthogonally inequivalent Cu-O bonds in the CuO? planes in the low temperature tetragonal (LTT) phase is succeeded on warming through the low-temperature transition by one with orthogonally equivalent bonds in the low temperature orthorhombic (LTO) phase. In contrast, the signatures of LTT-type tilts in the instantaneous local atomic structure persist on heating throughout the LTO crystallographic phasemoreon the nanoscale, although becoming weaker as temperature increases. Analysis of the INS spectra for the x = 1/8 composition reveals the dynamic nature of the LTT-like tilt fluctuations within the LTO phase and their 3D character. The doping dependence of relevant structural parameters indicates that the magnitude of the Cu-O bond anisotropy has a maximum at x = 1/8 doping where bulk superconductivity is most strongly suppressed, suggesting that the structural anisotropy might be influenced by electron-phonon coupling and the particular stability of the stripe-ordered phase at this composition. The bond-length modulation that pins stripe order is found to be remarkably subtle, with no anomalous bond length disorder at low temperature, placing an upper limit on any in-plane Cu-O bondlength anisotropy. The results further reveal that although appreciable octahedral tilts persist through the high-temperature transition and into the high temperature tetragonal (HTT) phase, there is no significant preference between different tilt directions in the HTT regime. This study also exemplifies the importance of a systematic approach using complementary techniques when investigating systems exhibiting a large degree of complexity and subtle structural responses.less

  3. Reconciliation of local and long-range tilt correlations in underdoped La2-xBaxCuO4(0 ≤ x ≤ 0.155)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bozin, Emil S.; Zhong, Ruidan; Knox, Kevin R.; Gu, Genda; Hill, John P.; Tranquada, John M.; Billinge, Simon J. L.

    2015-02-26

    A long standing puzzle regarding the disparity of local and long range CuO₆ octahedral tilt correlations in the underdoped regime of La₂₋xBaxCuO₄ is addressed by utilizing complementary neutron powder diffraction and inelastic neutron scattering (INS) approaches. Long-range and static CuO₆ tilt order with orthogonally inequivalent Cu-O bonds in the CuO₂ planes in the low temperature tetragonal (LTT) phase is succeeded on warming through the low-temperature transition by one with orthogonally equivalent bonds in the low temperature orthorhombic (LTO) phase. In contrast, the signatures of LTT-type tilts in the instantaneous local atomic structure persist on heating throughout the LTO crystallographic phasemore » on the nanoscale, although becoming weaker as temperature increases. Analysis of the INS spectra for the x = 1/8 composition reveals the dynamic nature of the LTT-like tilt fluctuations within the LTO phase and their 3D character. The doping dependence of relevant structural parameters indicates that the magnitude of the Cu-O bond anisotropy has a maximum at x = 1/8 doping where bulk superconductivity is most strongly suppressed, suggesting that the structural anisotropy might be influenced by electron-phonon coupling and the particular stability of the stripe-ordered phase at this composition. The bond-length modulation that pins stripe order is found to be remarkably subtle, with no anomalous bond length disorder at low temperature, placing an upper limit on any in-plane Cu-O bondlength anisotropy. The results further reveal that although appreciable octahedral tilts persist through the high-temperature transition and into the high temperature tetragonal (HTT) phase, there is no significant preference between different tilt directions in the HTT regime. As a result, this study also exemplifies the importance of a systematic approach using complementary techniques when investigating systems exhibiting a large degree of complexity and subtle

  4. Symmetries of migration related segments of all [001] coincidence site lattice tilt boundaries in (001) projections for all holohedral cubic materials

    SciTech Connect (OSTI)

    Moeck, Peter; York, Bryant W.; Browning, Nigel D.

    2014-09-11

    Utilizing bicrystallography in two dimensions (2D), the symmetries of migration related segments of Coincidence Site Lattice (CSL) boundaries are derived for projections along their [001] tilt axis in grain boundaries of crystalline materials that possess the holohedral point symmetry of the cubic system (i.e. m3m). These kinds of “edge-on” projections are typical for atomic resolution imaging of such tilt boundaries with Transmission Electron Microscopes (TEM). This fact facilitates the visual confirmation of our predictions by recently published Zcontrast scanning TEM investigations [H. Yang et al., Phil. Mag. 93 (2013) 1219] and many other TEM studies.

  5. Unit-cell thick BaTiO{sub 3} blocks octahedral tilt propagation across oxide heterointerface

    SciTech Connect (OSTI)

    Kan, Daisuke Aso, Ryotaro; Kurata, Hiroki; Shimakawa, Yuichi

    2014-05-14

    We fabricated SrRuO{sub 3}/BaTiO{sub 3}/GdScO{sub 3} heterostructures in which the BaTiO{sub 3} layer is one unit cell thick by pulsed laser deposition and elucidated how the BaTiO{sub 3} layer influences structural and magneto-transport properties of the SrRuO{sub 3} layer through octahedral connections across the heterointerface. Our X-ray-diffraction-based structural characterizations show that while an epitaxial SrRuO{sub 3} layer grown directly on a GdScO{sub 3} substrate is in the monoclinic phase with RuO{sub 6} octahedral tilts, a one-unit-cell-thick BaTiO{sub 3} layer inserted between SrRuO{sub 3} and GdScO{sub 3} stabilizes the tetragonal SrRuO{sub 3} layer with largely reduced RuO{sub 6} tilts. Our high-angle annular dark-field and annular bright-field scanning transmission electron microscopy observations provide an atomic-level view of the octahedral connections across the heterostructure and reveal that the BaTiO{sub 3} layer only one unit cell thick is thick enough to stabilize the RuO{sub 6}-TiO{sub 6} octahedral connections with negligible in-plane oxygen atomic displacements. This results in no octahedral tilts propagating into the SrRuO{sub 3} layer and leads to the formation of a tetragonal SrRuO{sub 3} layer. The magneto-transport property characterizations also reveal a strong impact of the octahedral connections modified by the inserted BaTiO{sub 3} layer on the spin-orbit interaction of the SrRuO{sub 3} layer. The SrRuO{sub 3} layer on BaTiO{sub 3}/ GdScO{sub 3} has in-plane magnetic anisotropy. This is in contrast to the magnetic anisotropy of the monoclinic SrRuO{sub 3} films on the GdScO{sub 3} substrate, in which the easy axis is ?45 to the film surface normal. Our results demonstrate that the one-unit-cell-thick layer of BaTiO{sub 3} can control and manipulate the interfacial octahedral connection closely linked to the structure-property relationship of heterostructures.

  6. Modified Anti-de-Sitter Metric, Light-Front Quantized QCD, and...

    Office of Scientific and Technical Information (OSTI)

    Modified Anti-de-Sitter Metric, Light-Front Quantized QCD, and Conformal Quantum Mechanics Dosch, Hans Gunter; U. Heidelberg, ITP; Brodsky, Stanley J.; SLAC; de Teramond, Guy F.;...

  7. STIP 2.0 Static Content for Front Page Body | OSTI, US Dept of...

    Office of Scientific and Technical Information (OSTI)

    Static Content for Front Page Body What is STIP? The U.S. Department of Energy (DOE) Scientific and Technical Information Program (STIP) is a collaboration from across the DOE ...

  8. Vehicle Technologies Office Merit Review 2015: Magnesium-Intensive Front End Sub-Structure Development

    Broader source: Energy.gov [DOE]

    Presentation given by USAMP at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about magnesium-intensive front end sub...

  9. 1980s Forging Partnerships on the Information Front | OSTI, US Dept of

    Office of Scientific and Technical Information (OSTI)

    Energy Office of Scientific and Technical Information 80s Forging Partnerships on the Information Front 1980s Forging Partnerships on the Information Front Back to history 1980 Memorandum of Understanding (MOU) with the Nuclear Energy Agency (NEA) Databank signed for the exchange of computer codes 1981 Bilateral MOUs began with other countries to exchange non-nuclear information 1981 Department of Energy Panel on International Scientific and Technical Information (STI) concluded that foreign

  10. AdS/QCD and Applications of Light-Front Holography

    SciTech Connect (OSTI)

    Brodsky, Stanley J.; Cao, Fu-Guang; de Teramond, Guy F.; /Costa Rica U.

    2012-02-16

    Light-Front Holography leads to a rigorous connection between hadronic amplitudes in a higher dimensional anti-de Sitter (AdS) space and frame-independent light-front wavefunctions of hadrons in 3 + 1 physical space-time, thus providing a compelling physical interpretation of the AdS/CFT correspondence principle and AdS/QCD, a useful framework which describes the correspondence between theories in a modified AdS5 background and confining field theories in physical space-time. To a first semiclassical approximation, where quantum loops and quark masses are not included, this approach leads to a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z in AdS space is uniquely identified with a Lorentz-invariant coordinate {zeta} which measures the separation of the constituents within a hadron at equal light-front time. The internal structure of hadrons is explicitly introduced and the angular momentum of the constituents plays a key role. We give an overview of the light-front holographic approach to strongly coupled QCD. In particular, we study the photon-to-meson transition form factors (TFFs) F{sub M{gamma}}(Q{sup 2}) for {gamma}{gamma}* {yields} M using light-front holographic methods. The results for the TFFs for the {eta} and {eta}' mesons are also presented. Some novel features of QCD are discussed, including the consequences of confinement for quark and gluon condensates. A method for computing the hadronization of quark and gluon jets at the amplitude level is outlined.

  11. Design of the NSLS-II Linac Front End Test Stand

    SciTech Connect (OSTI)

    Fliller III, R.; Johanson, M.; Lucas, M.; Rose, J.; Shaftan, T.

    2011-03-28

    The NSLS-II operational parameters place very stringent requirements on the injection system. Among these are the charge per bunch train at low emittance that is required from the linac along with the uniformity of the charge per bunch along the train. The NSLS-II linac is a 200 MeV linac produced by Research Instruments Gmbh. Part of the strategy for understanding to operation of the injectors is to test the front end of the linac prior to its installation in the facility. The linac front end consists of a 100 kV electron gun, 500 MHz subharmonic prebuncher, focusing solenoids and a suite of diagnostics. The diagnostics in the front end need to be supplemented with an additional suite of diagnostics to fully characterize the beam. In this paper we discuss the design of a test stand to measure the various properties of the beam generated from this section. In particular, the test stand will measure the charge, transverse emittance, energy, energy spread, and bunching performance of the linac front end under all operating conditions of the front end.

  12. Apparatus for characterizing the temporo-spatial properties of a dynamic fluid front and method thereof

    DOE Patents [OSTI]

    Battiste, Richard L

    2013-12-31

    Methods and apparatus are described for characterizing the temporal-spatial properties of a dynamic fluid front within a mold space while the mold space is being filled with fluid. A method includes providing a mold defining a mold space and having one or more openings into the mold space; heating a plurality of temperature sensors that extend into the mold space; injecting a fluid into th emold space through the openings, the fluid experiencing a dynamic fluid front while filling the mold space with a fluid; and characterizing temporal-spatial properties of the dynamic fluid front by monitoring a termperature of each of the plurality of heated temperature sensors while the mold space is being filled with the fluid. An apparatus includes a mold defining a mold space; one or more openings for introducing a fluid into th emold space and filling the mold space with the fluid, the fluid experiencing a dynamic fluid front while filling the mold space; a plurality of heated temperature sensors extending into the mold space; and a computer coupled to the plurality of heated temperature sensors for characterizing the temporal-spatial properties of the dynamic fluid front.

  13. Apparatus for characterizing the temporo-spatial properties of a dynamic fluid front and method thereof

    DOE Patents [OSTI]

    Battiste, Richard L.

    2007-12-25

    Methods and apparatus are described for characterizing the temporal-spatial properties of a dynamic fluid front within a mold space while the mold space is being filled with fluid. A method includes providing a mold defining a mold space and having one or more openings into the mold space; heating a plurality of temperature sensors that extend into the mold space; injecting a fluid into the mold space through the openings, the fluid experiencing a dynamic fluid front while filling the mold space with the fluid; and characterizing temporal-spatial properties of the dynamic fluid front by monitoring a temperature of each of the plurality of heated temperature sensors while the mold space is being filled with the fluid. An apparatus includes a mold defining a mold space; one or more openings for introducing a fluid into the mold space and filling the mold space with the fluid, the fluid experiencing a dynamic fluid front while filling the mold space; a plurality of heated temperature sensors extending into the mold space; and a computer coupled to the plurality of heated temperature sensors for characterizing the temporal-spatial properties of the dynamic fluid front.

  14. Measures of the Environmental Footprint of the Front End of the Nuclear Fuel Cycle

    SciTech Connect (OSTI)

    Brett Carlsen; Emily Tavrides; Erich Schneider

    2010-08-01

    Previous estimates of environmental impacts associated with the front end of the nuclear fuel cycle have focused primarily on energy consumption and CO2 emissions. Results have varied widely. Section 2 of this report provides a summary of historical estimates. This study revises existing empirical correlations and their underlying assumptions to fit to a more complete set of existing data. This study also addresses land transformation, water withdrawals, and occupational and public health impacts associated with the processes of the front end of the once-through nuclear fuel cycle. These processes include uranium mining, milling, refining, conversion, enrichment, and fuel fabrication. Metrics are developed to allow environmental impacts to be summed across the full set of front end processes, including transportation and disposition of the resulting depleted uranium.

  15. Report on the value engineering workshop on APS beamline front ends

    SciTech Connect (OSTI)

    Kuzay, T.

    1993-01-01

    A formal value engineering evaluation process was developed to address the front end components of the beamlines for the Advanced Photon Source (APS). This process (described in Section 2) involved an information phase, a creative phase, a judgment phase, a development phase, and a recommendation phase. Technical experts from other national laboratories and industry were invited to a two-day Value Engineering Workshop on November 5-6, 1992. The results of this Workshop are described in Section 4. Following the Workshop, various actions by the APS staff led to the redesign of the front end components, which are presented in Sections 5 and 6. The cost benefit analysis is presented in Section 7. It is important of realize that an added benefit of the Workshop was to obtain numerous design evaluations and enhancements of the front end components by experts in the field. As the design work proceeds to Title II completion, the APS staff is including many of these suggestions.

  16. Hamiltonian Light-front Field Theory Within an AdS/QCD Basis

    SciTech Connect (OSTI)

    Vary, J.P.; Honkanen, H.; Li, Jun; Maris, P.; Brodsky, S.J.; Harindranath, A.; de Teramond, G.F.; Sternberg, P.; Ng, E.G.; Yang, C.; /LBL, Berkeley

    2009-12-16

    Non-perturbative Hamiltonian light-front quantum field theory presents opportunities and challenges that bridge particle physics and nuclear physics. Fundamental theories, such as Quantum Chromodynamics (QCD) and Quantum Electrodynamics (QED) offer the promise of great predictive power spanning phenomena on all scales from the microscopic to cosmic scales, but new tools that do not rely exclusively on perturbation theory are required to make connection from one scale to the next. We outline recent theoretical and computational progress to build these bridges and provide illustrative results for nuclear structure and quantum field theory. As our framework we choose light-front gauge and a basis function representation with two-dimensional harmonic oscillator basis for transverse modes that corresponds with eigensolutions of the soft-wall AdS/QCD model obtained from light-front holography.

  17. Hamiltonian Light-Front Ffield Theory in a Basis Function Approach

    SciTech Connect (OSTI)

    Vary, J.P.; Honkanen, H.; Li, Jun; Maris, P.; Brodsky, S.J.; Harindranath, A.; de Teramond, G.F.; Sternberg, P.; Ng, E.G.; Yang, C.

    2009-05-15

    Hamiltonian light-front quantum field theory constitutes a framework for the non-perturbative solution of invariant masses and correlated parton amplitudes of self-bound systems. By choosing the light-front gauge and adopting a basis function representation, we obtain a large, sparse, Hamiltonian matrix for mass eigenstates of gauge theories that is solvable by adapting the ab initio no-core methods of nuclear many-body theory. Full covariance is recovered in the continuum limit, the infinite matrix limit. There is considerable freedom in the choice of the orthonormal and complete set of basis functions with convenience and convergence rates providing key considerations. Here, we use a two-dimensional harmonic oscillator basis for transverse modes that corresponds with eigensolutions of the soft-wall AdS/QCD model obtained from light-front holography. We outline our approach, present illustrative features of some non-interacting systems in a cavity and discuss the computational challenges.

  18. Parameters of a supersonic combustion chamber with organization of combustion at the flame front

    SciTech Connect (OSTI)

    Solokhin, E.L.; Mironenko, V.A.; Ivanov, V.I.

    1985-10-25

    In some engineering problems, it is necessary to burn fuel in the combustion chamber with supersonic flow. As a rule, the scheme of organization of the process in such a chamber presupposes a separate accompanying feed of fuel and oxidant in which combustion of fuel takes place in a diffusion flame front. In this article we give theoretical results of investigation of a supersonic combustion chamber in which combustion of the fuel mixture takes place in a oblique flame front stabilized by an external source (analogous to the subsonic combustion chambers of ramjets). The possibility of the existence of such an oblique flame front in a supersonic flow of fuel mixture was previously proved experimentally.

  19. Apparatus and method for phase fronts based on superluminal polarization current

    DOE Patents [OSTI]

    Singleton, John; Ardavan, Houshang; Ardavan, Arzhang

    2012-02-28

    An apparatus and method for a radiation source involving phase fronts emanating from an accelerated, oscillating polarization current whose distribution pattern moves superluminally (that is, faster than light in vacuo). Theoretical predictions and experimental measurements using an existing prototype superluminal source show that the phase fronts from such a source can be made to be very complex. Consequently, it will be very difficult for an aircraft imaged by such a radiation to detect where this radiation has come from. Moreover, the complexity of the phase fronts makes it almost impossible for electronics on an aircraft to synthesize a rogue reflection. A simple directional antenna and timing system should, on the other hand, be sufficient for the radar operators to locate the aircraft, given knowledge of their own source's speed and modulation pattern.

  20. Well-to-Wheels analysis of landfill gas-based pathways and their addition to the GREET model.

    SciTech Connect (OSTI)

    Mintz, M.; Han, J.; Wang, M.; Saricks, C.; Energy Systems

    2010-06-30

    Today, approximately 300 million standard cubic ft/day (mmscfd) of natural gas and 1600 MW of electricity are produced from the decomposition of organic waste at 519 U.S. landfills (EPA 2010a). Since landfill gas (LFG) is a renewable resource, this energy is considered renewable. When used as a vehicle fuel, compressed natural gas (CNG) produced from LFG consumes up to 185,000 Btu of fossil fuel and generates from 1.5 to 18.4 kg of carbon dioxide-equivalent (CO{sub 2}e) emissions per million Btu of fuel on a 'well-to-wheel' (WTW) basis. This compares with approximately 1.1 million Btu and 78.2 kg of CO{sub 2}e per million Btu for CNG from fossil natural gas and 1.2 million Btu and 97.5 kg of CO{sub 2}e per million Btu for petroleum gasoline. Because of the additional energy required for liquefaction, LFG-based liquefied natural gas (LNG) requires more fossil fuel (222,000-227,000 Btu/million Btu WTW) and generates more GHG emissions (approximately 22 kg CO{sub 2}e /MM Btu WTW) if grid electricity is used for the liquefaction process. However, if some of the LFG is used to generate electricity for gas cleanup and liquefaction (or compression, in the case of CNG), vehicle fuel produced from LFG can have no fossil fuel input and only minimal GHG emissions (1.5-7.7 kg CO{sub 2}e /MM Btu) on a WTW basis. Thus, LFG-based natural gas can be one of the lowest GHG-emitting fuels for light- or heavy-duty vehicles. This report discusses the size and scope of biomethane resources from landfills and the pathways by which those resources can be turned into and utilized as vehicle fuel. It includes characterizations of the LFG stream and the processes used to convert low-Btu LFG into high-Btu renewable natural gas (RNG); documents the conversion efficiencies and losses of those processes, the choice of processes modeled in GREET, and other assumptions used to construct GREET pathways; and presents GREET results by pathway stage. GREET estimates of well-to-pump (WTP), pump-to-wheel

  1. On the movement of a liquid front in an unsaturated, fractured porous medium, Part 1

    SciTech Connect (OSTI)

    Nitao, J.J.; Buscheck, T.A.

    1989-06-01

    The primary aim of this paper is to present approximate analytical solutions of the fracture flow which gives the position of the liquid fracture front as a function of time. These solutions demonstrate that the liquid movement in the fracture can be classified into distinctive time periods, or flow regimes. It is also shown that when plotted versus time using a log-log scale, the liquid fracture front position asymptotically approaches a series of line segments. Two-dimensional numerical simulations were run utilizing input data applicable to the densely welded, fractured tuff found at Yucca Mountain in order to confirm these observations. 19 refs., 15 figs., 8 tabs.

  2. Improved Reliability of PV Modules with Lexan PC Sheet-Front Sheet, Noryl

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PPE Sheet-Back Sheet | Department of Energy Improved Reliability of PV Modules with Lexan PC Sheet-Front Sheet, Noryl PPE Sheet-Back Sheet Improved Reliability of PV Modules with Lexan PC Sheet-Front Sheet, Noryl PPE Sheet-Back Sheet Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado pvmrw13_ps5_sabic_zhou.pdf (925.35 KB) More Documents & Publications Weathering Performance of PV Backsheets Hail Impact Testing on Crystalline Si Modules with Flexible

  3. Assessment of well-to-wheel energy use and greenhouse gas emissions of Fischer-Tropsch diesel.

    SciTech Connect (OSTI)

    Wang, M.

    2001-12-13

    The middle distillate fuel produced from natural gas (NG) via the Fischer-Tropsch (FT) process has been proposed as a motor fuel for compression-ignition (CI) engine vehicles. FT diesel could help reduce U.S. dependence on imported oil. The U.S. Department of Energy (DOE) is evaluating the designation of FT diesel as an alternative motor fuel under the 1992 Energy Policy Act (EPACT). As part of this evaluation, DOE has asked the Center for Transportation Research at Argonne National Laboratory to conduct an assessment of well-to-wheels (WTW) energy use and greenhouse gas (GHG) emissions of FT diesel compared with conventional motor fuels (i.e., petroleum diesel). For this assessment, we applied Argonne's Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model to conduct WTW analysis of FT diesel and petroleum diesel. This report documents Argonne's assessment. The results are presented in Section 2. Appendix A describes the methodologies and assumptions used in the assessment.

  4. In-plane ultrasonic velocity measurement of longitudinal and shear waves in the machine direction with transducers in rotating wheels

    DOE Patents [OSTI]

    Hall, M.S.; Jackson, T.G.; Knerr, C.

    1998-02-17

    An improved system for measuring the velocity of ultrasonic signals within the plane of moving web-like materials, such as paper, paperboard and the like. In addition to velocity measurements of ultrasonic signals in the plane of the web in the MD and CD, one embodiment of the system in accordance with the present invention is also adapted to provide on-line indication of the polar specific stiffness of the moving web. In another embodiment of the invention, the velocity of ultrasonic signals in the plane of the web are measured by way of a plurality of ultrasonic transducers carried by synchronously driven wheels or cylinders, thus eliminating undue transducer wear due to any speed differences between the transducers and the web. In order to provide relatively constant contact force between the transducers and the webs, the transducers are mounted in a sensor housings which include a spring for biasing the transducer radially outwardly. The sensor housings are adapted to be easily and conveniently mounted to the carrier to provide a relatively constant contact force between the transducers and the moving web. 37 figs.

  5. In-plane ultrasonic velocity measurement of longitudinal and shear waves in the machine direction with transducers in rotating wheels

    DOE Patents [OSTI]

    Hall, Maclin S.; Jackson, Theodore G.; Knerr, Christopher

    1998-02-17

    An improved system for measuring the velocity of ultrasonic signals within the plane of moving web-like materials, such as paper, paperboard and the like. In addition to velocity measurements of ultrasonic signals in the plane of the web in the MD and CD, one embodiment of the system in accordance with the present invention is also adapted to provide on-line indication of the polar specific stiffness of the moving web. In another embodiment of the invention, the velocity of ultrasonic signals in the plane of the web are measured by way of a plurality of ultrasonic transducers carried by synchronously driven wheels or cylinders, thus eliminating undue transducer wear due to any speed differences between the transducers and the web. In order to provide relatively constant contact force between the transducers and the webs, the transducers are mounted in a sensor housings which include a spring for biasing the transducer radially outwardly. The sensor housings are adapted to be easily and conveniently mounted to the carrier to provide a relatively constant contact force between the transducers and the moving web.

  6. Magnetic rotation (MR) band crossing in N=78 odd-Z nuclei: Tilted axis cranking (TAC) calculations to explore the role of nucleons

    SciTech Connect (OSTI)

    Kumar, Suresh

    2014-08-14

    Magnetic Rotation (MR) band crossing is studied systematically in N=78 isotones (La, Pr, Pm and Eu) using Tilted Axis Cranking (TAC) model. The observables such as I(h) vs h?, excitation energy E(MeV) vs spin I(h), and the B(M1)/B(E2) vs I(h) were considered to pinpoint MR crossing in these nuclei. The results of tilted axis cranking were compared with these experimental observables. The B(M1) and B(E2) values were also reported and used to understand the crossing behaviour of these MR bands. The systematic evolution of this phenomenon in N=78 odd-Z istotones leads to understand the role of nucleons in MR band crossing.

  7. Strain Accommodation By Facile WO6 Octahedral Distortion and Tilting During WO3 Heteroepitaxy on SrTiO3(001)

    SciTech Connect (OSTI)

    Du, Yingge; Gu, Meng; Varga, Tamas; Wang, Chong M.; Bowden, Mark E.; Chambers, Scott A.

    2014-08-27

    In this paper, we show that compared to other BO6 octahedra in ABO3 structured perovskite oxides, the WO6 octahedra in tungsten trioxide (WO3) can withstand a much larger degree of distortion and tilting to accommodate interfacial strain, which in turn strongly impact the nucleation, structure, and defect formation during the epitaxial growth of WO3 on SrTiO3(001). A meta-stable tetragonal phase can be stabilized by epitaxy and a thickness dependent phase transition (tetragonal to monoclinic) is observed. In contrast to misfit dislocations to accommodate the interfacial stain, the facial WO6 octahedral distortion and tilting give rise to three types of planar defects that affect more than 15 monolayers from the interface. These atomically resolved, unusual interfacial defects may significantly alter the electronic, electrochromic, and mechanical properties of the epitaxial films.

  8. Front-end Electronics for Unattended Measurement (FEUM). Prototype Test Plan

    SciTech Connect (OSTI)

    Conrad, Ryan C.; Morris, Scott J.; Smith, Leon E.; Keller, Daniel T.

    2015-09-16

    The IAEA has requested that PNNL perform an initial set of tests on front-end electronics for unattended measurement (FEUM) prototypes. The FEUM prototype test plan details the tests to be performed, the criteria for evaluation, and the procedures used to execute the tests.

  9. Coherent States and Spontaneous Symmetry Breaking in Light Front Scalar Field Theory

    SciTech Connect (OSTI)

    Vary, J.P.; Chakrabarti, D.; Harindranath, A.; Lloyd, R.; Martinovic, L.; Spence, J.R.; /Iowa State U.

    2005-12-14

    Recently developed nuclear many-body techniques provide novel results when applied to constituent quark models and to light-front scalar field theory. We show how spontaneous symmetry breaking arises and is consistent with a coherent state ansatz in a variational treatment. The kink and the kink-antikink topological features are identified and the onset of symmetry restoration is demonstrated.

  10. Commissioning and Operation of the FNAL Front end Injection Line and Ion Sources.

    SciTech Connect (OSTI)

    Karns, Patrick R.

    2015-09-01

    This thesis documents the efforts made in commissioning and operating the RFQ Injection Line (RIL) as a replacement for the Cockcroft Walton front end. The Low Energy Beam Transport (LEBT) was assembled and tested with multiwire position and emittance monitor measurements. The Radio Frequency Quadrupole (RFQ) commissioning was completed with the same measurements as well as output beam energy measurements that showed it initially accelerated beam only to 700 keV, which was 50 keV lower than the design energy. Working with the manufacturer solutions were found and instituted to continue testing. The Medium Energy Beam Transport (MEBT) was then connected as the RIL was installed as the new front end of Linac. Testing gave way to operation when the new front end was used as the source of all High Energy Physics (HEP) beam for Fermi National Accelerator Laboratory (FNAL). The magnetron ion source that provides the H- beam for the front end required several changes and eventual upgrades to operate well; such as new source operating points for vacuum pressure and cesium admixture, and new materials for critical source components. Further research was conducted on the cathode geometry and nitrogen doping of the hydrogen gas as well as using solid state switches for the extractor system high voltage.

  11. Silicon Solar Cells with Front Hetero-Contact and Aluminum Alloy Back Junction: Preprint

    SciTech Connect (OSTI)

    Yuan, H.-C.; Page, M. R.; Iwaniczko, E.; Xu, Y.; Roybal, L.; Wang, Q.; Branz, H. M.; Meier, D. L.

    2008-05-01

    We prototype an alternative n-type monocrystalline silicon (c-Si) solar cell structure that utilizes an n/i-type hydrogenated amorphous silicon (a-Si:H) front hetero-contact and a back p-n junction formed by alloying aluminum (Al) with the n-type Si wafer.

  12. Observations of a cold front with strong vertical undulations during the ARM RCS-IOP

    SciTech Connect (OSTI)

    Starr, D.O`C.; Whiteman, D.N.; Melfi, S.H.

    1996-04-01

    Passage of a cold front was observed on the night of April 14-15, 1994, during the Atmospheric Radiation Measurement (ARM) Remote Cloud Sensing (RCS) Intensive Observatios Period (IOP) at the Southern Great Plains Cloud and Radiation Testbed (CART) site near Lamont, Oklahoma. The observations are described.

  13. Development of Novel Front Contract Pastes for Crystalline Silicon Solar Cells

    SciTech Connect (OSTI)

    Duty, C.; Jellison, D. G.E. P.; Joshi, P.

    2012-04-05

    In order to improve the efficiencies of silicon solar cells, paste to silicon contact formation mechanisms must be more thoroughly understood as a function of paste chemistry, wafer properties and firing conditions. Ferro Corporation has been involved in paste development for over 30 years and has extensive expertise in glass and paste formulations. This project has focused on the characterization of the interface between the top contact material (silver paste) and the underlying silicon wafer. It is believed that the interface between the front contact silver and the silicon wafer plays a dominant role in the electrical performance of the solar cell. Development of an improved front contact microstructure depends on the paste chemistry, paste interaction with the SiNx, and silicon (“Si”) substrate, silicon sheet resistivity, and the firing profile. Typical front contact ink contains silver metal powders and flakes, glass powder and other inorganic additives suspended in an organic medium of resin and solvent. During fast firing cycles glass melts, wets, corrodes the SiNx layer, and then interacts with underlying Si. Glass chemistry is also a critical factor in the development of an optimum front contact microstructure. Over the course of this project, several fundamental characteristics of the Ag/Si interface were documented, including a higher-than-expected distribution of voids along the interface, which could significantly impact electrical conductivity. Several techniques were also investigated for the interfacial analysis, including STEM, EDS, FIB, EBSD, and ellipsometry.

  14. Reconciliation of local and long-range tilt correlations in underdoped La 2 x Ba x CuO 4 ( 0 ? x ? 0.155 )

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bozin, Emil S.; Zhong, Ruidan; Knox, Kevin R.; Gu, Genda; Hill, John P.; Tranquada, John M.; Billinge, Simon J. L.

    2015-02-26

    A long-standing puzzle regarding the disparity of local and long-range CuO? octahedral tilt correlations in the underdoped regime of La2xBaxCuO? is addressed by utilizing complementary neutron powder diffraction and inelastic neutron scattering (INS) approaches. This system is of interest because of the strong depression of the bulk superconducting transition at x=1/8 in association with charge and spin stripe order. The latter unidirectional order is tied to Cu-O bond-length anisotropy present in the so-called low-temperature tetragonal (LTT) phase. On warming, the lattice exhibits two sequential structural transitions, involving changes in the CuO? tilt pattern, first to the low-temperature orthorhombic (LTO) andmorethen the high-temperature tetragonal (HTT) phase. Despite the changes in static order, inspection of the instantaneous local atomic structure suggests that the LTT-type tilts persist through the transitions. Analysis of the INS spectra for the x=1/8 composition reveals the dynamic nature of the LTT-like tilt fluctuations within the LTO and HTT phases. Within the low-temperature phase, the Cu-O bond-length splitting inferred from lattice symmetry and fitted atomic position parameters reaches a maximum of 0.3% at x=1/8, suggesting that electron-phonon coupling may contribute to optimizing the structure to stabilize stripe order. This splitting is much too small to be resolved in the pair distribution function, and in fact we do not resolve any enhancement of the instantaneous bond-length distribution in association with stripe order. This study exemplifies the importance of a systematic approach using complementary techniques when investigating systems exhibiting a large degree of complexity and subtle structural responses.less

  15. Measurement of wave-front aberration in a small telescope remote imaging system using scene-based wave-front sensing

    SciTech Connect (OSTI)

    Poyneer, Lisa A; Bauman, Brian J

    2015-03-31

    Reference-free compensated imaging makes an estimation of the Fourier phase of a series of images of a target. The Fourier magnitude of the series of images is obtained by dividing the power spectral density of the series of images by an estimate of the power spectral density of atmospheric turbulence from a series of scene based wave front sensor (SBWFS) measurements of the target. A high-resolution image of the target is recovered from the Fourier phase and the Fourier magnitude.

  16. front cover

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    care. Also, this Medical Program does not cover services received outside the United States, unless there is an emergency. Most preauthorizations may be requested over...

  17. front cover

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exclusive Provider Option (EPO) Medical Program For Medicare Retirees and Their Covered Family Members Administered by: N113794 01/15 CUSTOMER ASSISTANCE Customer Service: Medical/Surgical Claims and Prescription Drugs-The 24/7 Nurseline can help when you have a health problem or concern. The 24/7 Nurseline is staffed by registered nurses who are available 24 hours a day, 7 days a week. 24/7 Nurseline toll-free telephone number: 1-800-973-6329 When you have a non- medical benefit question or

  18. front cover

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Preferred Provider Option (PPO) Medical Program For Medicare Retirees and Their Covered Family Members Administered by: N113794 01/15 CUSTOMER ASSISTANCE Customer Service: Medical/Surgical Claims and Prescription Drugs-The 24/7 Nurseline can help when you have a health problem or concern. The 24/7 Nurseline is staffed by registered nurses who are available 24 hours a day, 7 days a week. 24/7 Nurseline toll-free telephone number: 1-800-973-6329 When you have a non- medical benefit question or

  19. front cover

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Preferred Provider Option (PPO) Medical Program For Active Employees and Their Covered Family Members and Non- Medicare Eligible Retirees and Their Covered Family Members Administered by: N113794 01/15 CUSTOMER ASSISTANCE Customer Service: Medical/Surgical Claims and Prescription Drugs-The 24/7 Nurseline can help when you have a health problem or concern. The 24/7 Nurseline is staffed by registered nurses who are available 24 hours a day, 7 days a week. 24/7 Nurseline toll-free telephone number:

  20. Section: Front

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program March 1996 P. Lunn and P. Crowley U.S. Department of Energy Washington, D.C. T. Cress and G. Stokes Pacific Northwest National Laboratory Richland, Washington Introduction This document contains the summaries of papers presented at the 1996 Atmospheric Radiation Measurement (ARM) Science Team meeting held at San Antonio, Texas. The history and status of the ARM Program at the time of the meeting helps to put these papers in context. The basic themes have not changed. First, from its

  1. Front cover

    Gasoline and Diesel Fuel Update (EIA)

    Jacob Werksman, Principal Adviser, DG CLIMA European Commission EIA Conference, Washington, DC 11 July 2016 The Run Up to Paris: Intended Nationally Determined Contributions (INDCs) From climate action by few to action by all: 186 countries, representing 95% of global emissions, submitted an INDC Map: WRI-CAIT Impact of INDCs World GHG emissions (total excl. sinks); percent change in emission intensity per unit of GDP; gap to stay below 2°C, POLES-JRC model The Paris Agreement 4 Signatures:

  2. Tilting at windmills

    SciTech Connect (OSTI)

    Gipe, P.

    1995-05-01

    In the spring of 1994 an angry mob confronted a group touring proposed sites for a new wind power plant near Mojave, Calif. The armed vigilantes were responding to rumors that the U.S. Bureau of Land Management was planning to build a wind farm near their remote homesteads. Though there was no truth to the rumors and the incident was settled peacefully, the event illustrates the sometimes highly charged atmosphere around proposals for new wind plants, or for power plants of any kind, in the United States. Analysis of surveys by the British Broadcasting Corp (BBC) and the Department of Trade & Industry in the UNited Kingdom; MRL Research Group in New Zealand; and th Center for Design Research in California gives potential developers and investors useful insights into publi attitudes toward wind power. In genral, the surveys on both sides of the Atlantic reveal that those who favor renewable energy are more likely to find wind`s effect on the community acceptable, and those who are neutral will accept wind turbines in the landscape if they know they are beneficial.

  3. Tilting at windmills

    SciTech Connect (OSTI)

    Garvin, C.C. Jr.

    1981-01-01

    Mr. Garvin feels that mutual understanding between environmentalists and oil companies will solve energy problems faster than the confrontational approach. Exxon's hope that nuclear energy, coal, and synthetic fuels can bridge the transition to clean, renewable energy sources is in conflict with those of the Environmental Defense Fund. Even with a slower future economic growth and improved efficiency, Exxon anticipates a greater demand for energy and sees its responsibility to produce energy along with a reasonable return to its shareholders. Most of the conservation can be achieved with realistic policies that price energy at its replacement cost and allow economic growth to continue. The major uncertainty in meeting future energy demand is the depletion of conventionally-produced oil and the need for another source to pick up the difference. Although health and safety concerns are the major uncertainties for nuclear and coal, the alternatives to not following this route may present even greater risks if renewable sources are inadequate in this century. Economic criteria should be applied to energy development, but both sides need to be aware of the consequences should they be wrong. (DCK)

  4. Tilting toward windmills

    SciTech Connect (OSTI)

    McGowan, J.G. . Renewable Energy Research Lab.)

    1993-07-01

    Emerging from the shadow of an energy crisis in the 1970s, a wind-power industry flourished briefly in the US. Part of an ambitious US government program to support research and development on renewable energy sources, the Department of Energy and the National Aeronautic and Space Agency sponsored the construction of a wide variety of large wind turbines-most accompanied by exaggerated claims by the promoters. But by the 1980s, US interest in wind power almost disappeared due to a drop in world oil prices, the Reagan administrations curtailment of funding, and the disappointing results of the initial wind turbines. The problems with the initial wind turbines was overly optimistic economic projections, siting snags, difficulties connecting wind-generated electricity to utility power grids. Today, however the wind farms in California are a highly productive, inexpensive source of energy. The author presents arguments dispelling the following four widely-believed myths about wind energy: (1) Wind power is not a significant energy source; (2) Wind-generated electricity is expensive and unreliable; (3) New and improved machine designs are needed to make wind power feasible; and (4) The technology is impractical for use by utilities because of problems connecting wind machines to the electricity grid, and because wind itself is intermittent. A study at Battelle Pacific Northwest Lab estimates that turbine technology could supply 20% of the country's electrical needs. Investor-owned wind-power plants in California generate electricity at a rate ranging from 4.7 to 7.2 cents per kilowatt-hour. The reality is that wind-produced electricity is now less expensive that electricity produced by conventional fossil- or nuclear-powered generating plants in many parts of the world. And unlike some of the proposed renewable electric-power sources like photovoltaics, wind power's future is not dependent on further breakthroughs in engineering or materials technology.

  5. Tilting at windmills

    SciTech Connect (OSTI)

    Selde, V.

    1982-04-01

    The three MOD-2, 300 ft. blade windmills, situated in the Goodnoe Hills in Washington state are described. Built by Boeing Engineering and Construction and financed by the DOE ($35 million) and the Bonneville Power Administration ($2 million), the wind turbines are rated at 2.5 megawatts of capacity per turbine. The need for the large size of the blades (world's largest) is explained as well as the factors influencing the site selection. It is pointed out that efficiency increases as the square of the rotor diameter and a wind velocity of at least 14 m.p.h. is required. The various factors and people involved in the financial aspects of commercialization of large windmills are discussed. Current cost of power generated is about $0.10/kWh. This can be reduced to $0.04-0.05/kwh by developing a facility with 100 windmills. Control of the facility by computers, safety features, rotor and tower design and the test program are described as well as environmental effects. (MJJ)

  6. X-ray Driven Reaction Front Dynamics at Mineral-Aqueous Interfaces

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Laanait, Nouamane; Callagon, Erika Blanca R; Zhang, Zhan; Sturchio, N. C.; Lee, Sang Soo; Fenter, Paul

    2015-01-01

    The interface of minerals with aqueous solutions is central to geochemical reactivity, hosting processes that span multiple spatiotemporal scales. Understanding such processes requires spatially and temporally resolved observations, and experimental controls that precisely manipulate the interfacial thermodynamic state. Using the intense radiation fields of a focused synchrotron X-ray beam, we drove dissolution at the calcite-aqueous interface and simultaneously probed the dynamics of the propagating reaction fronts using surface X-ray microscopy. Evolving surface structures are controlled by the time-dependent solution composition as characterized by a kinetic reaction model. At extreme disequilibria, the onset of reaction front instabilities was observed with velocitiesmore » of >30 nanometers per second. These instabilities are identified as a signature of transport-limited dissolution of calcite under extreme disequilibrium.« less

  7. Baryon spectrum from superconformal quantum mechanics and its light-front holographic embedding

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    de Teramond, Guy F.; Dosch, Hans Gunter; Brodsky, Stanley J.

    2015-02-27

    We describe the observed light-baryon spectrum by extending superconformal quantum mechanics to the light front and its embedding in AdS space. This procedure uniquely determines the confinement potential for arbitrary half-integer spin. To this end, we show that fermionic wave equations in AdS space are dual to light-front supersymmetric quantum-mechanical bound-state equations in physical space-time. The specific breaking of conformal invariance explains hadronic properties common to light mesons and baryons, such as the observed mass pattern in the radial and orbital excitations, from the spectrum generating algebra. Lastly, the holographic embedding in AdS also explains distinctive and systematic features, suchmore » as the spin-J degeneracy for states with the same orbital angular momentum, observed in the light-baryon spectrum.« less

  8. Unconstrained plastering : all-hexahedral mesh generation via advancing front geometry decomposition (2004-2008).

    SciTech Connect (OSTI)

    Blacker, Teddy Dean; Staten, Matthew L.; Kerr, Robert A.; Owen, Steven James

    2010-03-01

    The generation of all-hexahedral finite element meshes has been an area of ongoing research for the past two decades and remains an open problem. Unconstrained plastering is a new method for generating all-hexahedral finite element meshes on arbitrary volumetric geometries. Starting from an unmeshed volume boundary, unconstrained plastering generates the interior mesh topology without the constraints of a pre-defined boundary mesh. Using advancing fronts, unconstrained plastering forms partially defined hexahedral dual sheets by decomposing the geometry into simple shapes, each of which can be meshed with simple meshing primitives. By breaking from the tradition of previous advancing-front algorithms, which start from pre-meshed boundary surfaces, unconstrained plastering demonstrates that for the tested geometries, high quality, boundary aligned, orientation insensitive, all-hexahedral meshes can be generated automatically without pre-meshing the boundary. Examples are given for meshes from both solid mechanics and geotechnical applications.

  9. Method of fabricating conductive electrodes on the front and backside of a thin film structure

    DOE Patents [OSTI]

    Tabada, Phillipe J.; Tabada, legal representative, Melody; Pannu, Satinderpall S.

    2011-05-22

    A method of fabricating a thin film device having conductive front and backside electrodes or contacts. Top-side cavities are first formed on a first dielectric layer, followed by the deposition of a metal layer on the first dielectric layer to fill the cavities. Defined metal structures are etched from the metal layer to include the cavity-filled metal, followed by depositing a second dielectric layer over the metal structures. Additional levels of defined metal structures may be formed in a similar manner with vias connecting metal structures between levels. After a final dielectric layer is deposited, a top surface of a metal structure of an uppermost metal layer is exposed through the final dielectric layer to form a front-side electrode, and a bottom surface of a cavity-filled portion of a metal structure of a lowermost metal layer is also exposed through the first dielectric layer to form a back-side electrode.

  10. Superconformal Baryon-Meson Symmetry and Light-Front Holographic QCD

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dosch, Hans Guenter; de Teramond, Guy F.; Brodsky, Stanley J.

    2015-04-10

    We construct an effective QCD light-front Hamiltonian for both mesons and baryons in the chiral limit based on the generalized supercharges of a superconformal graded algebra. The superconformal construction is shown to be equivalent to a semi-classical approximation to light-front QCD and its embedding in AdS space. The specific breaking of conformal invariance inside the graded algebra uniquely determines the effective confinement potential. The generalized supercharges connect the baryon and meson spectra to each other in a remarkable manner. In particular, the π/b1 Regge trajectory is identified as the superpartner of the nucleon trajectory. However, the lowest-lying state on thismore » trajectory, the π-meson is massless in the chiral limit and has no supersymmetric partner.« less

  11. X-ray driven reaction front dynamics at calcite-water interfaces

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Laanait, Nouamane; Callagon, Erika Blanca R.; Zhang, Zhan; Sturchio, Neil C.; Lee, Sang Soo; Fenter, Paul

    2015-09-18

    The interface of minerals with aqueous solutions is central to geochemical reactivity, hosting processes that span multiple spatiotemporal scales. Understanding such processes requires spatially and temporally resolved observations, and experimental controls that precisely manipulate the interfacial thermodynamic state. Using the intense radiation fields of a focused synchrotron X-ray beam, we drove dissolution at the calcite-aqueous interface and simultaneously probed the dynamics of the propagating reaction fronts using surface X-ray microscopy. Evolving surface structures are controlled by the time-dependent solution composition as characterized by a kinetic reaction model. At extreme disequilibria, the onset of reaction front instabilities was observed with velocitiesmore » of >30 nanometers per second. As a result, these instabilities are identified as a signature of transport-limited dissolution of calcite under extreme disequilibrium.« less

  12. Laws of convective vortex formation behind a flame front during its propagation in a tube

    SciTech Connect (OSTI)

    Abrukov, S.A.; Samsonov, V.P.

    1986-05-01

    This paper examines laws and conditions of convective vortex formation in combustion products during the propagation of a slow, stable flame in a vertical, half-open tube. The main element of the experimental unit was the reaction tube and weightless conditions were created in a freely falling container holding the reaction tube. Propane-air and CO-air mixtures were used. The structure of the flow behind the flame front was studied by the interferometric method. Frames are show from an interference film illustrating the typical pattern of vortex formation behind the flame front when the flame propagates upward at a velocity of 7 cm/sec. Analyses of the interferograms shows that the flame is stable before the vortices appear and that the flow of combustion products is laminar.

  13. Method and apparatus for generating radiation utilizing DC to AC conversion with a conductive front

    DOE Patents [OSTI]

    Dawson, J.M.; Mori, W.B.; Lai, C.H.; Katsouleas, T.C.

    1998-07-14

    Method and apparatus ar disclosed for generating radiation of high power, variable duration and broad tunability over several orders of magnitude from a laser-ionized gas-filled capacitor array. The method and apparatus convert a DC electric field pattern into a coherent electromagnetic wave train when a relativistic ionization front passes between the capacitor plates. The frequency and duration of the radiation is controlled by the gas pressure and capacitor spacing. 4 figs.

  14. Method and apparatus for generating radiation utilizing DC to AC conversion with a conductive front

    DOE Patents [OSTI]

    Dawson, John M.; Mori, Warren B.; Lai, Chih-Hsiang; Katsouleas, Thomas C.

    1998-01-01

    Method and apparatus for generating radiation of high power, variable duration and broad tunability over several orders of magnitude from a laser-ionized gas-filled capacitor array. The method and apparatus convert a DC electric field pattern into a coherent electromagnetic wave train when a relativistic ionization front passes between the capacitor plates. The frequency and duration of the radiation is controlled by the gas pressure and capacitor spacing.

  15. Ab Initio Hamiltonian Approach to Light-front Quantum Field Theory |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Leadership Computing Facility Hamiltonian Approach to Light-front Quantum Field Theory Authors: Vary, J.P. Quantum Field Theory is now well recognized as a powerful tool not only in Particle Physics but also in Nuclear Physics, Condensed Matter Physics, Solid State Physics and even in Mathematics. In this book some current applications of Quantum Field Theory to those areas of modern physics and mathematics are collected, in order to offer a deeper understanding of known facts and

  16. DISPERSION ANALYSIS OF RADIATION/THERMAL FRONTS WITH FULL RESOLVED SPECTRAL OPACITY VARIATION.

    SciTech Connect (OSTI)

    L. AUER; R. LOWRIE

    2000-12-01

    The radiation transport and linearized thermal energy equations have been analyzed to find the temporal dependence of the component modes in a radiation/thermal front. The fully resolved spectral variation of the opacity as a function of energy, as well as the exact time and angular dependence, is treated in this work. As we are able to study arbitrarily complicated opacity spectra, we stress the importance of the new results as a check on the effect of using opacity averages.

  17. Multiple reaction fronts in the oxidation-reduction of iron-rich uranium ores

    SciTech Connect (OSTI)

    Dewynne, J.N. . Faculty of Mathematical Studies); Fowler, A.C. . Mathematical Inst.); Hagan, P.S. )

    1993-08-01

    When a container of radioactive waste is buried underground, it eventually corrodes, and leakage of radioactive material to the surrounding rock occurs. Depending on the chemistry of the rock, many different reactions may occur. A particular case concerns the oxidation and reduction of uranium ores by infiltrating groundwater, since UO[sub 3] is relatively soluble (and hence potentially transportable to the water supply), whereas UO[sub 2] is essentially insoluble. It is therefore of concern to those involved with radioactive waste disposal to understand the mechanics of uranium transport through reduction and oxidation reactions. This paper describes the oxidation of iron-rich uranium-bearing rocks by infiltration of groundwater. A reaction-diffusion model is set up to describe the sequence of reactions involving iron oxidation, uranium oxidation and reduction, sulfuric acid production, and dissolution of the host rock that occur. On a geological timescale of millions of years, the reactions occur very fast in very thin reaction fronts. It is shown that the redox front that separates oxidized (orange) rock from reduced (black) rock must actually consist of two separate fronts that move together, at which the two separate processes of uranium oxidation and iron reduction occur, respectively. Between these fronts, a high concentration of uranium is predicted. The mechanics of this process are not specific to uranium-mediated redox reactions, but apply generally and may be used to explain the formation of concentrated ore deposits in extended veins. On the long timescales of relevance, a quasi-static response results, and the problem can be solved explicitly in one dimension. This provides a framework for studying more realistic two-dimensional problems in fissured rocks and also for the future study of uraninite nodule formation.

  18. Strengthening the Front Lines: Sales Training and Continuing Education for Contractors

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exchange: Strengthening the Front Lines: Sales Training and Continuing Education for Contractors Call Slides and Discussion Summary June 25, 2015 Agenda  Call Logistics and Introductions  Residential Network and Peer Exchange Call Overview  Participant Poll  Featured Presenters  Amy Beley, Senior Program Manager, Build it Green  Sam Flanery, Founder, Building Science Academy  Discussion  What kind of sales/business training is most useful for contractors?  How can

  19. FBI Fingerprint Image Capture System High-Speed-Front-End throughput modeling

    SciTech Connect (OSTI)

    Rathke, P.M.

    1993-09-01

    The Federal Bureau of Investigation (FBI) has undertaken a major modernization effort called the Integrated Automated Fingerprint Identification System (IAFISS). This system will provide centralized identification services using automated fingerprint, subject descriptor, mugshot, and document processing. A high-speed Fingerprint Image Capture System (FICS) is under development as part of the IAFIS program. The FICS will capture digital and microfilm images of FBI fingerprint cards for input into a central database. One FICS design supports two front-end scanning subsystems, known as the High-Speed-Front-End (HSFE) and Low-Speed-Front-End, to supply image data to a common data processing subsystem. The production rate of the HSFE is critical to meeting the FBI`s fingerprint card processing schedule. A model of the HSFE has been developed to help identify the issues driving the production rate, assist in the development of component specifications, and guide the evolution of an operations plan. A description of the model development is given, the assumptions are presented, and some HSFE throughput analysis is performed.

  20. Delayed muons in extensive air showers and double-front showers

    SciTech Connect (OSTI)

    Beisembaev, R. U.; Vavilov, Yu. N. Vildanov, N. G.; Kruglov, A. V.; Stepanov, A. V.; Takibaev, J. S.

    2009-11-15

    The results of a long-term experiment performed in the period between 1995 and 2006 with the aid of the MUON-T underground (20 mwe) scintillation facility arranged at the Tien Shan mountain research station at an altitude of 3340 m above sea level are presented. The time distribution of delayed muons with an energy in excess of 5 GeV in extensive air showers of energy not lower than 106 GeV with respect to the shower front was obtained with a high statistical significance in the delay interval between 30 and 150 ns. An effect of the geomagnetic field in detecting delayed muons in extensive air showers was discovered. This effect leads to the asymmetry of their appearance with respect to the north-south direction. The connection between delayed muons and extensive air showers featuring two fronts separated by a time interval of several tens of to two hundred nanoseconds is discussed. This connection gives sufficient grounds to assume that delayed muons originate from the decays of pions and kaons produced in the second, delayed, front of extensive air showers.

  1. Light-front representation of chiral dynamics in peripheral transverse densities

    SciTech Connect (OSTI)

    Granados, Carlos G.; Weiss, Christian

    2015-07-31

    The nucleon's electromagnetic form factors are expressed in terms of the transverse densities of charge and magnetization at fixed light-front time. At peripheral transverse distances b = O(M_pi^{-1}) the densities are governed by chiral dynamics and can be calculated model-independently using chiral effective field theory (EFT). We represent the leading-order chiral EFT results for the peripheral transverse densities as overlap integrals of chiral light-front wave functions, describing the transition of the initial nucleon to soft pion-nucleon intermediate states and back. The new representation (a) explains the parametric order of the peripheral transverse densities; (b) establishes an inequality between the spin-independent and -dependent densities; (c) exposes the role of pion orbital angular momentum in chiral dynamics; (d) reveals a large left-right asymmetry of the current in a transversely polarized nucleon and suggests a simple interpretation. The light-front representation enables a first-quantized, quantum-mechanical view of chiral dynamics that is fully relativistic and exactly equivalent to the second-quantized, field-theoretical formulation. It relates the charge and magnetization densities measured in low-energy elastic scattering to the generalized parton distributions probed in peripheral high-energy scattering processes. The method can be applied to nucleon form factors of other operators, e.g. the energy-momentum tensor.

  2. Resource intensities of the front end of the nuclear fuel cycle

    SciTech Connect (OSTI)

    Schneider, E.; Phathanapirom, U.; Eggert, R.; Collins, J.

    2013-07-01

    This paper presents resource intensities, including direct and embodied energy consumption, land and water use, associated with the processes comprising the front end of the nuclear fuel cycle. These processes include uranium extraction, conversion, enrichment, fuel fabrication and depleted uranium de-conversion. To the extent feasible, these impacts are calculated based on data reported by operating facilities, with preference given to more recent data based on current technologies and regulations. All impacts are normalized per GWh of electricity produced. Uranium extraction is seen to be the most resource intensive front end process. Combined, the energy consumed by all front end processes is equal to less than 1% of the electricity produced by the uranium in a nuclear reactor. Land transformation and water withdrawals are calculated at 8.07 m{sup 2} /GWh(e) and 1.37x10{sup 5} l/GWh(e), respectively. Both are dominated by the requirements of uranium extraction, which accounts for over 70% of land use and nearly 90% of water use.

  3. Light-front representation of chiral dynamics in peripheral transverse densities

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Granados, Carlos G.; Weiss, Christian

    2015-07-31

    The nucleon's electromagnetic form factors are expressed in terms of the transverse densities of charge and magnetization at fixed light-front time. At peripheral transverse distances b = O(M_pi^{-1}) the densities are governed by chiral dynamics and can be calculated model-independently using chiral effective field theory (EFT). We represent the leading-order chiral EFT results for the peripheral transverse densities as overlap integrals of chiral light-front wave functions, describing the transition of the initial nucleon to soft pion-nucleon intermediate states and back. The new representation (a) explains the parametric order of the peripheral transverse densities; (b) establishes an inequality between the spin-independentmore » and -dependent densities; (c) exposes the role of pion orbital angular momentum in chiral dynamics; (d) reveals a large left-right asymmetry of the current in a transversely polarized nucleon and suggests a simple interpretation. The light-front representation enables a first-quantized, quantum-mechanical view of chiral dynamics that is fully relativistic and exactly equivalent to the second-quantized, field-theoretical formulation. It relates the charge and magnetization densities measured in low-energy elastic scattering to the generalized parton distributions probed in peripheral high-energy scattering processes. The method can be applied to nucleon form factors of other operators, e.g. the energy-momentum tensor.« less

  4. Hydrogen Pathways: Updated Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Ten Hydrogen Production, Delivery, and Distribution Scenarios

    SciTech Connect (OSTI)

    Ramsden, T.; Ruth, M.; Diakov, V.; Laffen, M.; Timbario, T. A.

    2013-03-01

    This report describes a life-cycle assessment conducted by the National Renewable Energy Laboratory (NREL) of 10 hydrogen production, delivery, dispensing, and use pathways that were evaluated for cost, energy use, and greenhouse gas (GHG) emissions. This evaluation updates and expands on a previous assessment of seven pathways conducted in 2009. This study summarizes key results, parameters, and sensitivities to those parameters for the 10 hydrogen pathways, reporting on the levelized cost of hydrogen in 2007 U.S. dollars as well as life-cycle well-to-wheels energy use and GHG emissions associated with the pathways.

  5. Well-to-wheels Analysis of Energy Use and Greenhouse Gas Emissions of Hydrogen Produced with Nuclear Energy

    SciTech Connect (OSTI)

    Wu, Ye; Wang, Michael Q.; Vyas, Anant D.; Wade, David C.; Taiwo, Temitope A.

    2004-07-01

    A fuel-cycle model-called the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model-has been developed at Argonne National Laboratory to evaluate well-to-wheels (WTW) energy and emission impacts of motor vehicle technologies fueled with various transportation fuels. The GREET model contains various hydrogen (H{sub 2}) production pathways for fuel-cell vehicles (FCVs) applications. In this effort, the GREET model was expanded to include four nuclear H{sub 2} production pathways: (1) H{sub 2} production at refueling stations via electrolysis using Light Water Reactor (LWR)-generated electricity; (2) H{sub 2} production in central plants via thermo-chemical water cracking using steam from High Temperature Gas cooled Reactor (HTGR); (3) H{sub 2} production in central plants via high-temperature electrolysis using HTGR-generated electricity and steam; and (4) H{sub 2} production at refueling stations via electrolysis using HTGR-generated electricity The WTW analysis of these four options include these stages: uranium ore mining and milling; uranium ore transportation; uranium conversion; uranium enrichment; uranium fuel fabrication; uranium fuel transportation; electricity or H{sub 2} production in nuclear power plants; H{sub 2} transportation; H{sub 2} compression; and H{sub 2} FCVs operation. Due to large differences in electricity requirements for uranium fuel enrichment between gas diffusion and centrifuge technologies, two scenarios were designed for uranium enrichment: (1) 55% of fuel enriched through gaseous diffusion technology and 45% through centrifuge technology (the current technology split for U.S. civilian nuclear power plants); and (2) 100% fuel enrichment using the centrifuge technology (a future trend). Our well-to-pump (WTP) results show that significant reductions in fossil energy use and greenhouse gas (GHG) emissions are achieved by nuclear-based H{sub 2} compared to natural gas-based H{sub 2} production via steam

  6. Well-to-wheels analysis of energy use and greenhouse gas emissions of plug-in hybrid electric vehicles.

    SciTech Connect (OSTI)

    Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

    2010-06-14

    Plug-in hybrid electric vehicles (PHEVs) are being developed for mass production by the automotive industry. PHEVs have been touted for their potential to reduce the US transportation sector's dependence on petroleum and cut greenhouse gas (GHG) emissions by (1) using off-peak excess electric generation capacity and (2) increasing vehicles energy efficiency. A well-to-wheels (WTW) analysis - which examines energy use and emissions from primary energy source through vehicle operation - can help researchers better understand the impact of the upstream mix of electricity generation technologies for PHEV recharging, as well as the powertrain technology and fuel sources for PHEVs. For the WTW analysis, Argonne National Laboratory researchers used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed by Argonne to compare the WTW energy use and GHG emissions associated with various transportation technologies to those associated with PHEVs. Argonne researchers estimated the fuel economy and electricity use of PHEVs and alternative fuel/vehicle systems by using the Powertrain System Analysis Toolkit (PSAT) model. They examined two PHEV designs: the power-split configuration and the series configuration. The first is a parallel hybrid configuration in which the engine and the electric motor are connected to a single mechanical transmission that incorporates a power-split device that allows for parallel power paths - mechanical and electrical - from the engine to the wheels, allowing the engine and the electric motor to share the power during acceleration. In the second configuration, the engine powers a generator, which charges a battery that is used by the electric motor to propel the vehicle; thus, the engine never directly powers the vehicle's transmission. The power-split configuration was adopted for PHEVs with a 10- and 20-mile electric range because they require frequent use of the engine for acceleration and to provide

  7. Flame front imaging in an internal-combustion engine simulator by laser-induced fluorescence of acetaldehyde

    SciTech Connect (OSTI)

    Arnold, A.; Becker, H.; Suntz, R.; Monkhouse, P.; Wolfrum, J. ); Maly, R.; Pfister, W. )

    1990-08-01

    Acetaldehyde has been used as a fluorescent dopant for two-dimensional imaging of the flame front in an internal-combustion-engine simulator. The molecule was excited with a XeCl-laser-light sheet at 308 nm, and broadband fluorescence centered at 400 nm was detected. In this way, the flame front could be marked by mapping regions of unburned gas. Also, the intake process into the engine could be followed.

  8. Method for characterization of the rate of movement of an oxidation front in cementitious materials

    DOE Patents [OSTI]

    Almond, Philip M.; Langton, Christine A.; Stefanko, David B.

    2016-03-01

    Disclosed are methods for determining the redox condition of cementitious materials. The methods are leaching methods that utilize a redox active transition metal indicator that is present in the cementitious material and exhibits variable solubility depending upon the oxidation state of the indicator. When the leaching process is carried out under anaerobic conditions, the presence or absence of the indicator in the leachate can be utilized to determine the redox condition of and location of the oxidation front in the material that has been subjected to the leaching process.

  9. MERGING COLD FRONTS IN THE GALAXY PAIR NGC 7619 AND NGC 7626

    SciTech Connect (OSTI)

    Randall, S. W.; Jones, C.; Kraft, R.; Forman, W. R.; O'Sullivan, E.

    2009-05-10

    We present results from Chandra observations of the galaxy pair NGC 7619 and NGC 7626, the two dominant members of the Pegasus group. The X-ray images show a brightness edge associated with each galaxy, which we identify as merger cold fronts. The edges are sharp, and the axes of symmetry of the edges are roughly antiparallel, suggesting that these galaxies are falling toward one another in the plane of the sky. The detection of merger cold fronts in each of the two dominant member galaxies implies a merging subgroup scenario, since the alternative is that the galaxies are falling into a preexisting {approx}1 keV halo without a dominant galaxy of its own, and such objects are not observed. We estimate the three-dimensional velocities from the cold fronts and, using the observed radial velocities of the galaxies, show that the velocity vectors are indeed most likely close to the plane of the sky, with a relative velocity of {approx}1190 km s{sup -1}. The relative velocity is consistent with what is expected from the infall of two roughly equal mass subgroups whose total viral mass equals that of the Pegasus group. We conclude that the Pegasus cluster is most likely currently forming from a major merger of two subgroups, dominated by NGC 7619 and NGC 7626. NGC 7626 contains a strong radio source, consisting of a core with two symmetric jets, and radio lobes. Although we find no associated structure in the X-ray surface brightness map, the temperature map reveals a clump of cool gas just outside the southern lobe, presumably entrained by the lobe, and possibly an extension of cooler gas into the lobe itself. The jet axis is parallel with the projected direction of motion of NGC 7626 (inferred from the symmetry axis of the merger cold front), and the southern leading jet is foreshortened as compared to the northern trailing one, possibly due to the additional ram pressure encountered by the forward jet.

  10. Resonant Coherent Excitation of Fast Hydrogen Atoms in Front of a LiF(001) Surface

    SciTech Connect (OSTI)

    Auth, C.; Mertens, A.; Winter, H.; Borisov, A.G.; Garcia de Abajo, F.J.

    1997-12-01

    We have scattered protons and hydrogen atoms with energies of some keV from a LiF(001) surface under a grazing angle of incidence. From the intensity of Lyman-{alpha} radiation (transition from n=2 to n=1, {lambda}=121.6 nm ) as a function of projectile energy for different azimuthal orientations of the crystal surface, we find clear evidence for a resonant coherent excitation of n=2 states of hydrogen atoms in the oscillating electric field in front of the insulator surface. {copyright} {ital 1997} {ital The American Physical Society}