Powered by Deep Web Technologies
Note: This page contains sample records for the topic "tight oil formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Analysis of stress sensitivity and its influence on oil production from tight reservoirs  

E-Print Network [OSTI]

low-permeability tight oil reservoirs are inadvisable to beconditions, to study tight oil reservoir stress sensitivity.oil production from tight oil reservoirs, in addition to

Lei, Qun; Xiong, Wei; Yuan, Cui; Wu, Yu-Shu

2008-01-01T23:59:59.000Z

2

Analysis of stress sensitivity and its influence on oil production from tight reservoirs  

E-Print Network [OSTI]

indicate that low-permeability tight oil reservoirs arepermeability cores Effect of Stress Sensitivity on Oil Production During oil production from tight

Lei, Qun; Xiong, Wei; Yuan, Cui; Wu, Yu-Shu

2008-01-01T23:59:59.000Z

3

Crude oil prices: Are our oil markets too tight?  

SciTech Connect (OSTI)

The answer to the question posed in the title is that tightness in the market will surely prevail through 1997. And as discussed herein, with worldwide demand expected to continue to grow, there will be a strong call on extra oil supply. Meeting those demands, however, will not be straightforward--as many observers wrongly believe--considering the industry`s practice of maintaining crude stocks at ``Just in time`` inventory levels. Further, impact will be felt from the growing rig shortage, particularly for deepwater units, and down-stream capacity limits. While these factors indicate 1997 should be another good year for the service industry, it is difficult to get any kind of consensus view from the oil price market. With most observers` information dominated by the rarely optimistic futures price of crude, as reflected by the NYMEX, the important fact is that oil prices have remained stable for three years and increased steadily through 1996.

Simmons, M.R. [Simmons and Co. International, Houston, TX (United States)

1997-02-01T23:59:59.000Z

4

Analysis of stress sensitivity and its influence on oil production from tight reservoirs  

E-Print Network [OSTI]

and Its Influence on Oil Production from Tight Reservoirscan affect well oil production. Specifically, pressure-Stress Sensitivity on Oil Production During oil production

Lei, Qun; Xiong, Wei; Yuan, Cui; Wu, Yu-Shu

2008-01-01T23:59:59.000Z

5

Pressure-transient test design in tight gas formations  

SciTech Connect (OSTI)

This paper outlines a procedure for pre- and postfracture pressure-transient test design in low-permeability (tight) gas formations. The procedures proposed are based on many years' experience in evaluating low-permeability formations, and particularly on recent experience with Gas Research Inst. (GRI) programs in eastern Devonian gas shales and in western tight-gas formations.

Lee, W.J.

1987-10-01T23:59:59.000Z

6

Analysis of stress sensitivity and its influence on oil productionfrom tight reservoirs  

SciTech Connect (OSTI)

This paper presents a study of the relationship betweenpermeability and effective stress in tight petroleum reservoirformations. Specifically, a quantitative method is developed to describethe correlation between permeability and effective stress, a method basedon the original in situ reservoir effective stress rather than ondecreased effective stress during development. The experimental resultsshow that the relationship between intrinsic permeability and effectivestress in reservoirs in general follows a quadratic polynomial functionalform, found to best capture how effective stress influences formationpermeability. In addition, this experimental study reveals that changesin formation permeability, caused by both elastic and plasticdeformation, are permanent and irreversible. Related pore-deformationtests using electronic microscope scanning and constant-rate mercuryinjection techniques show that while stress variation generally has smallimpact onrock porosity, the size and shape of pore throats have asignificant impact on permeability-stress sensitivity. Based on the testresults and theoretical analyses, we believe that there exists a cone ofpressure depression in the area near production within suchstress-sensitive tight reservoirs, leading to a low-permeability zone,and that well production will decrease under the influence of stresssensitivity.

Lei, Qun; Xiong, Wei; Yuan, Cui; Wu, Yu-Shu

2007-08-28T23:59:59.000Z

7

The Formation of Systems with Tightly-packed Inner Planets (STIPs) via Aerodynamic Drift  

E-Print Network [OSTI]

The NASA Kepler mission has revealed an abundant class of Systems with Tightly-packed Inner Planets (STIPs). The current paradigm for planet formation suggests that small planetesimals will quickly spiral into the host star due to aerodynamic drag, preventing rocky planet formation. In contrast, we find that aerodynamic drift, when acting on an ensemble of solids, can concentrate mass at short orbital periods in gaseous disks. Sublimation fronts may further aid this process. Kepler data suggest that the innermost known planets are found near the silicate sublimation zone. STIP planets should have a wide range of volatile fractions due to aerodynamic drift and H2 dissociation-driven gas accretion. We further propose that the low mass of Mars is evidence that the Solar System was once a proto-STIP.

Boley, Aaron C

2013-01-01T23:59:59.000Z

8

Options for U.S. Petroleum Refineries to Process Additional Light Tight Oil  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0,InformationU.S. Crude Oil3113315,0,482272Oil and9:-

9

Organic Aerosol Formation Downwind from the Deepwater Horizon Oil Spill  

E-Print Network [OSTI]

Organic Aerosol Formation Downwind from the Deepwater Horizon Oil Spill Nicole ONeill - ATOC 3500 and aerosol composition of air over the Deepwater Horizon oil spill in the Gulf of Mexico. · The lightest chemicals in the oil evaporated within hours, as scientists expected them to do. What they didn't expect

Toohey, Darin W.

10

Method for maximizing shale oil recovery from an underground formation  

DOE Patents [OSTI]

A method for maximizing shale oil recovery from an underground oil shale formation which has previously been processed by in situ retorting such that there is provided in the formation a column of substantially intact oil shale intervening between adjacent spent retorts, which method includes the steps of back filling the spent retorts with an aqueous slurry of spent shale. The slurry is permitted to harden into a cement-like substance which stabilizes the spent retorts. Shale oil is then recovered from the intervening column of intact oil shale by retorting the column in situ, the stabilized spent retorts providing support for the newly developed retorts.

Sisemore, Clyde J. (Livermore, CA)

1980-01-01T23:59:59.000Z

11

An evaluation of acid frac/matrix stimulation of a tight limestone formation in exploratory wells in Kuwait  

SciTech Connect (OSTI)

With the advent of Kuwait's intensive exploratory activities to locate and test deeper geologic structures, tighter and very low porosity limestone formations were progressively encountered. Most of these hydrocarbon bearing formations initially appeared to be very stubborn and hardly indicated any fluid influx into the well-bore. In certain cases the hydrostatic head was nearly completely removed by unloading the well practically down to perforations, thereby creating optimum draw-down but it either resulted in poor inflow or none at all. In the absence of currently available chemicals, equipment, job design engineering and better understanding of tight carbonate formations and their responses to various acid formulations, some of these could have slipped into unattractive categories. With the implementation of specially designed matrix and acid-frac treatments, these formation have, however, been unmasked and turned out to be highly potential finds now. This paper basically outlines the salient features of theoretical and operational aspects of stimulating and testing some of the very low porosity hard limestone formations in Kuwait recently.

Singh, J.R.

1985-03-01T23:59:59.000Z

12

Recovery of heavy crude oil or tar sand oil or bitumen from underground formations  

SciTech Connect (OSTI)

This patent describes a method of producing heavy crude oil or tar sand oil or bitumen from an underground formation. The method consists of utilizing or establishing an aqueous fluid communication path within and through the formation between an injection well or conduit and a production well or conduit by introducing into the formation from the injection well or conduit hot water and/or low quality steam at a temperature in the range about 60{sup 0}-130{sup 0}C and at a substantially neutral or alkaline pH to establish or enlarge the aqueous fluid communication path within the formation from the injection well or conduit to the production well or conduit by movement of the introduced hot water or low quality steam through the formation, increasing the temperature of the injected hot water of low quality steam to a temperature in the range about 110{sup 0}-180{sup 0}C while increasing the pH of the injected hot water or low quality steam to a pH of about 10-13 so as to bring about the movement or migration or stripping of the heavy crude oil or tar sand oil or bitumen from the formation substantially into the hot aqueous fluid communication path with the formation and recovering the resulting produced heavy crude oil or tar sand oil or bitumen from the formation as an emulsion containing less than about 30% oil or bitumen from the production well or conduit.

McKay, A.S.

1989-07-11T23:59:59.000Z

13

Geomechanical Study of Bakken Formation for Improved Oil Recovery  

SciTech Connect (OSTI)

On October 1, 2008 US DOE-sponsored research project entitled “Geomechanical Study of Bakken Formation for Improved Oil Recovery” under agreement DE-FC26-08NT0005643 officially started at The University of North Dakota (UND). This is the final report of the project; it covers the work performed during the project period of October 1, 2008 to December 31, 2013. The objectives of this project are to outline the methodology proposed to determine the in-situ stress field and geomechanical properties of the Bakken Formation in Williston Basin, North Dakota, USA to increase the success rate of horizontal drilling and hydraulic fracturing so as to improve the recovery factor of this unconventional crude oil resource from the current 3% to a higher level. The success of horizontal drilling and hydraulic fracturing depends on knowing local in-situ stress and geomechanical properties of the rocks. We propose a proactive approach to determine the in-situ stress and related geomechanical properties of the Bakken Formation in representative areas through integrated analysis of field and well data, core sample and lab experiments. Geomechanical properties are measured by AutoLab 1500 geomechanics testing system. By integrating lab testing, core observation, numerical simulation, well log and seismic image, drilling, completion, stimulation, and production data, in-situ stresses of Bakken formation are generated. These in-situ stress maps can be used as a guideline for future horizontal drilling and multi-stage fracturing design to improve the recovery of Bakken unconventional oil.

Ling, Kegang; Zeng, Zhengwen; He, Jun; Pei, Peng; Zhou, Xuejun; Liu, Hong; Huang, Luke; Ostadhassan, Mehdi; Jabbari, Hadi; Blanksma, Derrick; Feilen, Harry; Ahmed, Salowah; Benson, Steve; Mann, Michael; LeFever, Richard; Gosnold, Will

2013-12-31T23:59:59.000Z

14

Can adding oil control domain formation in binary amphiphile bilayers?  

E-Print Network [OSTI]

Bilayers formed of two species of amphiphile of different chain lengths may segregate into thinner and thicker domains composed predominantly of the respective species. Using a coarse-grained mean-field model, we investigate how mixing oil with the amphiphiles affects the structure and thickness of the bilayer at and on either side of the boundary between two neighbouring domains. In particular, we find that oil molecules whose chain length is close to that of the shorter amphiphiles segregate to the thicker domain. This smooths the surface of the hydrophobic bilayer core on this side of the boundary, reducing its area and curvature and their associated free-energy penalties. The smoothing effect is weaker for oil molecules that are shorter or longer than this optimum value: short molecules spread evenly through the bilayer, while long molecules swell the thicker domain, increasing the surface area and curvature of the bilayer core in the interfacial region. Our results show that adding an appropriate oil could make the formation of domain boundaries more or less favourable, raising the possibility of controlling the domain size distribution.

M. J. Greenall; C. M. Marques

2014-06-12T23:59:59.000Z

15

Acoustic and Thermal Characterization of Oil Migration, Gas Hydrates Formation and Silica Diagenesis  

E-Print Network [OSTI]

Acoustic and Thermal Characterization of Oil Migration, Gas Hydrates Formation and Silica Rights Reserved #12;ABSTRACT Acoustic and Thermal Characterization of Oil Migration, Gas Hydrates-A to Opal-CT, the formation of gas hydrates, fluid substitution in hydrocarbon reservoirs, and fluid

Guerin, Gilles

16

Going Global: Tight Oil Production  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment >7,99 DiagramLearnOutlook Mary

17

Oil Recovery Increases by Low-Salinity Flooding: Minnelusa and Green River Formations  

SciTech Connect (OSTI)

Waterflooding is by far the most widely used method in the world to increase oil recovery. Historically, little consideration has been given in reservoir engineering practice to the effect of injection brine composition on waterflood displacement efficiency or to the possibility of increased oil recovery through manipulation of the composition of the injected water. However, recent work has shown that oil recovery can be significantly increased by modifying the injection brine chemistry or by injecting diluted or low salinity brine. This paper reports on laboratory work done to increase the understanding of improved oil recovery by waterflooding with low salinity injection water. Porous media used in the studies included outcrop Berea sandstone (Ohio, U.S.A.) and reservoir cores from the Green River formation of the Uinta basin (Utah, U.S.A.). Crude oils used in the experimental protocols were taken from the Minnelusa formation of the Powder River basin (Wyoming, U.S.A.) and from the Green River formation, Monument Butte field in the Uinta basin. Laboratory corefloods using Berea sandstone, Minnelusa crude oil, and simulated Minnelusa formation water found a significant relationship between the temperature at which the oil- and water-saturated cores were aged and the oil recovery resulting from low salinity waterflooding. Lower aging temperatures resulted in very little to no additional oil recovery, while cores aged at higher temperatures resulted in significantly higher recoveries from dilute-water floods. Waterflood studies using reservoir cores and fluids from the Green River formation of the Monument Butte field also showed significantly higher oil recoveries from low salinity waterfloods with cores flooded with fresher water recovering 12.4% more oil on average than those flooded with undiluted formation brine.

Eric P. Robertson

2010-09-01T23:59:59.000Z

18

Effects of petroleum resins on asphaltene aggregation and water-in-oil emulsion formation  

E-Print Network [OSTI]

Effects of petroleum resins on asphaltene aggregation and water-in-oil emulsion formation P; accepted 30 December 2002 Abstract Asphaltenes from four crude oils were fractionated by precipitation) indicated the onset of asphaltene precipitation occurred at lower toluene volume fractions (0.1Á/0.2) than

Kilpatrick, Peter K.

19

Primary oil-shale resources of the Green River Formation in the eastern Uinta Basin, Utah  

SciTech Connect (OSTI)

Resources of potential oil in place in the Green River Formation are measured and estimated for the primary oil-shale resource area east of the Green River in Utah's Uinta Basin. The area evaluated (Ts 7-14 S, Rs 19-25 E) includes most of, and certainly the best of Utah's oil-shale resource. For resource evaluation the principal oil-shale section is divided into ten stratigraphic units which are equivalent to units previously evaluated in the Piceance Creek Basin of Colorado. Detailed evaluation of individual oil-shale units sampled by cores, plus estimates by extrapolation into uncored areas indicate a total resource of 214 billion barrels of shale oil in place in the eastern Uinta Basin.

Trudell, L.G.; Smith, J.W.; Beard, T.N.; Mason, G.M.

1983-04-01T23:59:59.000Z

20

Formation resistivity measurements from within a cased well used to quantitatively determine the amount of oil and gas present  

DOE Patents [OSTI]

Methods to quantitatively determine the separate amounts of oil and gas in a geological formation adjacent to a cased well using measurements of formation resistivity are disclosed. The steps include obtaining resistivity measurements from within a cased well of a given formation, obtaining the porosity, obtaining the resistivity of formation water present, computing the combined amounts of oil and gas present using Archie`s Equations, determining the relative amounts of oil and gas present from measurements within a cased well, and then quantitatively determining the separate amounts of oil and gas present in the formation. 7 figs.

Vail, W.B. III

1997-05-27T23:59:59.000Z

Note: This page contains sample records for the topic "tight oil formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Formation resistivity measurements from within a cased well used to quantitatively determine the amount of oil and gas present  

DOE Patents [OSTI]

Methods to quantitatively determine the separate amounts of oil and gas in a geological formation adjacent to a cased well using measurements of formation resistivity are disclosed. The steps include obtaining resistivity measurements from within a cased well of a given formation, obtaining the porosity, obtaining the resistivity of formation water present, computing the combined amounts of oil and gas present using Archie's Equations, determining the relative amounts of oil and gas present from measurements within a cased well, and then quantitatively determining the separate amounts of oil and gas present in the formation.

Vail, III, William B. (Bothell, WA)

1997-01-01T23:59:59.000Z

22

Using simple models to describe oil production from unconventional reservoirs.  

E-Print Network [OSTI]

??Shale oil (tight oil) is oil trapped in low permeability shale or sandstone. Shale oil is a resource with great potential as it is heavily… (more)

Song, Dong Hee

2014-01-01T23:59:59.000Z

23

Influence of inorganic compounds on char formation and quality of fast pyrolysis oils  

SciTech Connect (OSTI)

Inorganic compounds, especially potassium, calcium, sodium, silicon, phosphorus, and chlorine, are the main constituents of ash in biomass feedstocks. The concentrations of ash in biomass feedstocks range from less than 1% in softwoods to 15% in herbaceous biomass and agricultural residues. During biomass pyrolysis, these inorganics, especially potassium and calcium, catalyze both decomposition and char formation reactions. Decomposition reactions may either result in levoglucosan-rich or hydroxyacetaldehyde-rich pyrolysis products depending on the concentration of the ash in the feedstocks. The catalytic effect of the ash levels off at high organic ion concentrations. Chars formed during these reactions invariably end up in the pyrolysis oils (biofuel oils). A high proportion of the alkali metals in the ash are sequestered in the chars. The presence of high concentrations of alkali metals in the biofuel oils make them unsuitable for combustion in boilers, diesel engines, and in turbine operations. The highest concentration of alkali metals are found in herbaceous feedstocks and agricultural residue biofuel oils. Leaching studies conducted on the chars suspended in the oils showed no leaching of the alkali metals from the chars into the oils. Our data suggest that hot gas filtration of the oils can effectively reduce the alkali metals contents of the biofuel oils to acceptable levels to be used as turbine, diesel engine, and boiler fuels.

Agbleyor, F.A.; Besler, S.; Montane, D. [National Renewable Energy Lab., Golden, CO (United States)

1995-12-01T23:59:59.000Z

24

The Performance of Fractured Horizontal Well in Tight Gas Reservoir  

E-Print Network [OSTI]

?, including tight gas, gas/oil shale, oil sands, and coal-bed methane. North America has a substantial growth in its unconventional oil and gas market over the last two decades. The primary reason for that growth is because North America, being a mature...

Lin, Jiajing

2012-02-14T23:59:59.000Z

25

Prediction of oil gravity prior to drill-stem testing in Monterey Formation Reservoirs, offshore California  

SciTech Connect (OSTI)

This paper discusses empirical geochemical correlations used to predict API oil gravities prior to drill-stem testing in Monterey Formation reservoirs, offshore southern California. The primary objective was to eliminate expensive well testing by identifying intervals that contain low-gravity, nonproducible oil (usually <14[degrees] API). However, the correlations proved very successful in accurately predicting (within 4[degrees]API) oil gravities that range from 5 to 35[degrees] API throughout the offshore Santa Barbara and Santa Maria areas. The primary data are weight-percent sulfur and Rock-Eval pyrolysis of bitumen chemically extracted from reservoir rock samples. In general, reservoirs that contain higher gravity, producible oil have bitumen organic sulfur contents of less than 5 wt. %, Rock-Eval bitumen, and Rock-Eval bitumen S[sub 1]/S[sub 2] ratios greater than 1.0. These data are usually supplemented with Rock-Eval pyrolysis of the reservoir rock, where whole-rock S[sub 1]/S[sub 2] ratios greater than 0.30 usually indicate associated oil gravities greater than 14[degrees] API. This analytical mix gives a multiple approach for estimating reservoir oil gravities within proposed drill-stem test (DST) intervals. Using this approach, oil gravities of more than 50 DSTs have been accurately predicted in the offshore southern California area. The technique is also useful for reevaluating API gravities in older wells where Monterey reservoirs were not the primary target. Moreover, the technique should have application elsewhere, provided the range of oil gravities are not the result of obvious biodegradation and sufficient rock and oil samples are available to establish pertinent correlations. 34 refs., 14 figs., 4 tabs.

Baskin, D.K. (Chevron Petroleum Technology Company, La Habra, CA (United States)); Jones, R.W. (Chevron Oil Field Research Company, Encinitas, CA (United States))

1993-09-01T23:59:59.000Z

26

Stress-dependent permeability on tight gas reservoirs  

E-Print Network [OSTI]

test analysis of tight gas reservoirs. Estimation of these parameters depends on draw down in the reservoir. The great impact of permeability, skin factor and OGIP calculations are useful in business decisions and profitability for the oil company...

Rodriguez, Cesar Alexander

2005-02-17T23:59:59.000Z

27

Formation resistivity measurements from within a cased well used to quantitatively determine the amount of oil and gas present  

DOE Patents [OSTI]

Methods to quantitatively determine the separate amounts of oil and gas in a geological formation adjacent to a cased well using measurements of formation resistivity. The steps include obtaining resistivity measurements from within a cased well of a given formation, obtaining the porosity, obtaining the resistivity of formation water present, computing the combined amounts of oil and gas present using Archie's Equations, determining the relative amounts of oil and gas present from measurements within a cased well, and then quantitatively determining the separate amounts of oil and gas present in the formation. Resistivity measurements are obtained from within the cased well by conducting A.C. current from within the cased well to a remote electrode at a frequency that is within the frequency range of 0.1 Hz to 20 Hz.

Vail, III, William Banning (Bothell, WA)

2000-01-01T23:59:59.000Z

28

Characterization of DOE reference oil shales: Mahogany Zone, Parachute Creek Member, Green River Formation Oil Shale, and Clegg Creek Member, New Albany Shale  

SciTech Connect (OSTI)

Measurements have been made on the chemical and physical properties of two oil shales designated as reference oil shales by the Department of Energy. One oil shale is a Green River Formation, Parachute Creek Member, Mahogany Zone Colorado oil shale from the Exxon Colony mine and the other is a Clegg Creek Member, New Albany shale from Kentucky. Material balance Fischer assays, carbon aromaticities, thermal properties, and bulk mineralogic properties have been determined for the oil shales. Kerogen concentrates were prepared from both shales. The measured properties of the reference shales are comparable to results obtained from previous studies on similar shales. The western reference shale has a low carbon aromaticity, high Fischer assay conversion to oil, and a dominant carbonate mineralogy. The eastern reference shale has a high carbon aromaticity, low Fischer assay conversion to oil, and a dominant silicate mineralogy. Chemical and physical properties, including ASTM distillations, have been determined for shale oils produced from the reference shales. The distillation data were used in conjunction with API correlations to calculate a large number of shale oil properties that are required for computer models such as ASPEN. There was poor agreement between measured and calculated molecular weights for the total shale oil produced from each shale. However, measured and calculated molecular weights agreed reasonably well for true boiling point distillate fractions in the temperature range of 204 to 399/sup 0/C (400 to 750/sup 0/F). Similarly, measured and calculated viscosities of the total shale oils were in disagreement, whereas good agreement was obtained on distillate fractions for a boiling range up to 315/sup 0/C (600/sup 0/F). Thermal and dielectric properties were determined for the shales and shale oils. The dielectric properties of the reference shales and shale oils decreased with increasing frequency of the applied frequency. 42 refs., 34 figs., 24 tabs.

Miknis, F. P.; Robertson, R. E.

1987-09-01T23:59:59.000Z

29

Geochemical and carbon isotopic studies of crude oil destruction, bitumen precipitation, and sulfate reduction in the deep Smackover Formation  

SciTech Connect (OSTI)

Crude oil generated by the Lower Smackover source facies migrated to Upper Smackover reservoirs where slow thermal cracking of crude oil resulted in the formation of gas-condensate and late solid bitumen. Ultimately, only pyrobitumen, methane, and nonhydrocarbon gases including hydrogen sulfide persist in the deepest Smackover reservoirs. The carbon isotopic compositions of crude oils became heavier during crude oil destruction. The carbon isotopic compositions of asphaltenes, NSO-compounds, and saturated hydrocarbons in late solid bitumen and the Lower Smackover source facies became isotopically lighter during crude oil destruction. It is suggested that some isotopically-light components from crude oils were incorporated in late solid bitumen by reactions involving thermochemical sulfate reduction. Thermochemical sulfate reduction and crude oil destruction occurred over a long span of geologic time at temperatures in the 120-150C range.

Sassen, R. (Louisiana State Univ., Baton Rouge (USA))

1988-01-01T23:59:59.000Z

30

Evaluation of water production in tight gas sands in the Cotton Valley formation in the Caspiana, Elm Grove and Frierson fields  

E-Print Network [OSTI]

not this model is not used. However, sophisticated logging solutions such as the nuclear magnetic resonance logs and the bore-hole image logs can be used to improve the formation evaluation. The Cotton Valley sands are generally characterized...

Ozobeme, Charles Chinedu

2007-04-25T23:59:59.000Z

31

Oil  

E-Print Network [OSTI]

Waste oils offer a tremendous recycling potential. An important, dwindling natural resource of great economic and industrial value, oil products are a cornerstone of our modern industrial society. Petroleum is processed into a wide variety of products: gasoline, fuel oil, diesel oil, synthetic rubber, solvents, pesticides, synthetic fibres, lubricating oil, drugs and many more ' (see Figure 1 1. The boilers of Amercian industries presently consume about 40 % of the used lubricating oils collected. In Ontario, the percentage varies from 20 to 30%. Road oiling is the other major use of collected waste oils. Five to seven million gallons (50-70 % of the waste oil col1ected)is spread on dusty Ontario roads each summer. The practice is both a wasteful use of a dwindling resource and an environmental hazard. The waste oil, with its load of heavy metals, particularly lead, additives including dangerous polynuclear aromatics and PCBs, is carried into the natural environment by runoff and dust to contaminate soils and water courses.2 The largest portion of used oils is never collected, but disappears into sewers, landfill sites and backyards. In Ontario alone, approximately 22 million gallons of potentially recyclable lube oil simply vanish each year. While oil recycling has ad-114 Oil

unknown authors

32

Completion methods in thick, multilayered tight gas sands  

E-Print Network [OSTI]

Tight gas sands, coal-bed methane, and gas shales are commonly called unconventional reservoirs. Tight gas sands (TGS) are often described as formations with an expected average permeability of 0.1mD or less. Gas production rates from TGS reservoirs...

Ogueri, Obinna Stavely

2008-10-10T23:59:59.000Z

33

Evaluation of EOR Potential by Gas and Water Flooding in Shale Oil Reservoirs.  

E-Print Network [OSTI]

??The demand for oil and natural gas will continue to increase for the foreseeable future; unconventional resources such as tight oil, shale gas, shale oil… (more)

Chen, Ke

2013-01-01T23:59:59.000Z

34

US production of natural gas from tight reservoirs  

SciTech Connect (OSTI)

For the purposes of this report, tight gas reservoirs are defined as those that meet the Federal Energy Regulatory Commission`s (FERC) definition of tight. They are generally characterized by an average reservoir rock permeability to gas of 0.1 millidarcy or less and, absent artificial stimulation of production, by production rates that do not exceed 5 barrels of oil per day and certain specified daily volumes of gas which increase with the depth of the reservoir. All of the statistics presented in this report pertain to wells that have been classified, from 1978 through 1991, as tight according to the FERC; i.e., they are ``legally tight`` reservoirs. Additional production from ``geologically tight`` reservoirs that have not been classified tight according to the FERC rules has been excluded. This category includes all producing wells drilled into legally designated tight gas reservoirs prior to 1978 and all producing wells drilled into physically tight gas reservoirs that have not been designated legally tight. Therefore, all gas production referenced herein is eligible for the Section 29 tax credit. Although the qualification period for the credit expired at the end of 1992, wells that were spudded (began to be drilled) between 1978 and May 1988, and from November 5, 1990, through year end 1992, are eligible for the tax credit for a subsequent period of 10 years. This report updates the EIA`s tight gas production information through 1991 and considers further the history and effect on tight gas production of the Federal Government`s regulatory and tax policy actions. It also provides some high points of the geologic background needed to understand the nature and location of low-permeability reservoirs.

Not Available

1993-10-18T23:59:59.000Z

35

Gas seal for an in situ oil shale retort and method of forming thermal barrier  

DOE Patents [OSTI]

A gas seal is provided in an access drift excavated in a subterranean formation containing oil shale. The access drift is adjacent an in situ oil shale retort and is in gas communication with the fragmented permeable mass of formation particles containing oil shale formed in the in situ oil shale retort. The mass of formation particles extends into the access drift, forming a rubble pile of formation particles having a face approximately at the angle of repose of fragmented formation. The gas seal includes a temperature barrier which includes a layer of heat insulating material disposed on the face of the rubble pile of formation particles and additionally includes a gas barrier. The gas barrier is a gas-tight bulkhead installed across the access drift at a location in the access drift spaced apart from the temperature barrier.

Burton, III, Robert S. (Mesa, CO)

1982-01-01T23:59:59.000Z

36

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title  

E-Print Network [OSTI]

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Well Test Interpretation in Unconventional (Tight and Shale) Gas Reservoirs Host institution: Heriot-watt University) are carried out in such low permeability formations the results are often inconclusive and/or the estimates

Henderson, Gideon

37

SUBTASK 1.7 EVALUATION OF KEY FACTORS AFFECTING SUCCESSFUL OIL PRODUCTION IN THE BAKKEN FORMATION, NORTH DAKOTA PHASE II  

SciTech Connect (OSTI)

Production from the Bakken and Three Forks Formations continues to trend upward as forecasts predict significant production of oil from unconventional resources nationwide. As the U.S. Geological Survey reevaluates the 3.65 billion bbl technically recoverable estimate of 2008, technological advancements continue to unlock greater unconventional oil resources, and new discoveries continue within North Dakota. It is expected that the play will continue to expand to the southwest, newly develop in the northeastern and northwestern corners of the basin in North Dakota, and fully develop in between. Although not all wells are economical, the economic success rate has been near 75% with more than 90% of wells finding oil. Currently, only about 15% of the play has been drilled, and recovery rates are less than 5%, providing a significant future of wells to be drilled and untouched hydrocarbons to be pursued through improved stimulation practices or enhanced oil recovery. This study provides the technical characterizations that are necessary to improve knowledge, provide characterization, validate generalizations, and provide insight relative to hydrocarbon recovery in the Bakken and Three Forks Formations. Oil-saturated rock charged from the Bakken shales and prospective Three Forks can be produced given appropriate stimulation treatments. Highly concentrated fracture stimulations with ceramic- and sand-based proppants appear to be providing the best success for areas outside the Parshall and Sanish Fields. Targeting of specific lithologies can influence production from both natural and induced fracture conductivity. Porosity and permeability are low, but various lithofacies units within the formation are highly saturated and, when targeted with appropriate technology, release highly economical quantities of hydrocarbons.

Darren D. Schmidt; Steven A. Smith; James A. Sorensen; Damion J. Knudsen; John A. Harju; Edward N. Steadman

2011-10-31T23:59:59.000Z

38

A resource evaluation of the Bakken Formation (Upper Devonian and Lower Mississippian) continuous oil accumulation, Williston Basin, North Dakota and Montana  

SciTech Connect (OSTI)

The Upper Devonian and Lower Mississippian Bakken Formation in the United States portion of the Williston Basin is both the source and the reservoir for a continuous oil accumulation -- in effect a single very large field -- underlying approximately 17,800 mi{sup 2} (46,100 km{sup 2}) of North Dakota and Montana. Within this area, the Bakken Formation continuous oil accumulation is not significantly influenced by the water column and cannot be analyzed in terms of conventional, discrete fields. Rather, the continuous accumulation can be envisioned as a collection of oil-charged cells, virtually all of which are capable of producing some oil, but which vary significantly in their production characteristics. Better well-performance statistics are linked regionally to higher levels of thermal maturity and to lower levels of reservoir heterogeneity. Although portions of the Bakken Formation continuous oil accumulation have reached a mature stage of development, the accumulation as a whole is far from depleted.

Schmoker, J.W. [Geological Survey, Denver, CO (United States)

1996-01-01T23:59:59.000Z

39

Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity. [Jurassic Smackover Formation  

SciTech Connect (OSTI)

This volume contains maps, well logging correlated to porosity and permeability, structural cross section, graph of production history, porosity vs. natural log permeability plot, detailed core log, paragenetic sequence and reservoir characterization sheet of the following fields in southwest Alabama: Appleton oil field; Barnett oil field; Barrytown oil field; Big Escambia Creek gas and condensate field; Blacksher oil field; Broken Leg Creed oil field; Bucatunna Creed oil field; Chappell Hill oil field; Chatom gas and condensate field; Choctaw Ridge oil field; Chunchula gas and condensate field; Cold Creek oil field; Copeland gas and condensate field; Crosbys Creed gas and condensate field; and East Barnett oil field. (AT)

Kopaska-Merkel, D.C.; Moore, H.E. Jr.; Mann, S.D.; Hall, D.R.

1992-06-01T23:59:59.000Z

40

Application of horizontal drilling to tight gas reservoirs  

SciTech Connect (OSTI)

Vertical fractures and lithologic heterogeneity are extremely important factors controlling gas flow rates and total gas recovery from tight (very low permeability) reservoirs. These reservoirs generally have in situ matrix permeabilities to gas of less than 0.1 md. Enhanced gas recovery methods have usually involved hydraulic fracturing; however, the induced vertical hydraulic fractures almost always parallel the natural fracture and may not be an efficient method to establish a good conduit to the wellbore. Horizontal drilling appears to be an optimum method to cut across many open vertical fractures. Horizontal holes will provide an efficient method to drain heterogeneous tight reservoirs even in unfractured rocks. Although many horizontal wells have now been completed in coalbed methane and oil reservoirs, very few have been drilled to exclusively evaluate tight gas reservoirs. The U.S. Department of Energy (DOE) has funded some horizontal and slanthole drilling in order to demonstrate the applicability of these techniques for gas development. Four DOE holes have been drilled in Devonian gas shales in the Appalachian basin, and one hole has been drilled in Upper Cretaceous tight sandstones in the Piceance basin of Colorado. The Colorado field experiment has provided valuable information on the abundance and openness of deeply buried vertical fractures in tight sandstones. These studies, plus higher gas prices, should help encourage industry to begin to further utilize horizontal drilling as a new exploitation method for tight gas reservoirs.

Spencer, C.W. (U.S. Geological Survey, Lakewood, CO (United States)); Lorenz, J.C. (Sandia National Labs., Albuquerque, NM (United States)); Brown, C.A. (Synder Oil Co., Denver, CO (United States))

1991-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "tight oil formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Geologic characterization of tight gas reservoirs  

SciTech Connect (OSTI)

The objectives of US Geological Survey (USGS) work during FY 89 were to conduct geologic research characterizing tight gas-bearing sandstone reservoirs and their resources in the western United States. Our research has been regional in scope but, in some basins, our investigations have focused on single wells or small areas containing several wells where a large amount of data is available. The investigations, include structure, stratigraphy, petrography, x-ray mineralogy, source-rock evaluation, formation pressure and temperature, borehole geophysics, thermal maturity mapping, fission-track age dating, fluid-inclusion thermometry, and isotopic geochemistry. The objectives of these investigations are to provide geologic models that can be compared and utilized in tight gas-bearing sequences elsewhere. Nearly all of our work during FY 89 was devoted to developing a computer-based system for the Uinta basin and collecting, analyzing, and storage of data. The data base, when completed will contain various types of stratigraphic, organic chemistry, petrographic, production, engineering, and other information that relate to the petroleum geology of the Uinta basin, and in particular, to the tight gas-bearing strata. 16 refs., 3 figs.

Law, B.E.

1990-12-01T23:59:59.000Z

42

Tight gas sands study breaks down drilling and completion costs  

SciTech Connect (OSTI)

Given the high cost to drill and complete tight gas sand wells, advances in drilling and completion technology that result in even modest cost savings to the producer have the potential to generate tremendous savings for the natural gas industry. The Gas Research Institute sponsored a study to evaluate drilling and completion costs in selected tight gas sands. The objective of the study was to identify major expenditures associated with tight gas sand development and determine their relative significance. A substantial sample of well cost data was collected for the study. Individual well cost data were collected from nearly 300 wells in three major tight gas sand formations: the Cotton Valley sand in East Texas, the Frontier sand in Wyoming, and the Wilcox sand in South Texas. The data were collected and organized by cost category for each formation. After the information was input into a data base, a simple statistical analysis was performed. The statistical analysis identified data discrepancies that were then resolved, and it helped allow conclusions to be drawn regarding drilling and completion costs in these tight sand formations. Results are presented.

Brunsman, B. (Gas Research Inst., Chicago, IL (United States)); Saunders, B. (S.A. Holditch Associates Inc., College Station, TX (United States))

1994-06-06T23:59:59.000Z

43

Recovery of bypassed oil in the Dundee Formation using horizontal drains. Annual report, March 1996--March 1997  

SciTech Connect (OSTI)

This Class II field project has demonstrated that economic quantities of hydrocarbons can be produced from abandoned or nearly abandoned fields in the Dundee Formation of Central Michigan using horizontal drilling technology. The site selected for the demonstration horizontal well was Crystal Field, a nearly abandoned Dundee oil field in Montcalm County, Michigan. This field had produced over 8 million barrels of oil, mostly in the 1930`s and 1940`s. At the height of development, Crystal Field produced from 193 wells, but by 1995, only seven producing wells remained, each producing less than 10 bbls/day. A horizontal well, the TOW 1-3, drilled as a field demonstration pilot was successful, producing at rate of 100 bbls of oil per day with a zero water cut. Although the well is capable of producing at a of 500+ bbls/day, the production rate is being kept low deliberately to try to prevent premature water coning. Cumulative production exceeded 50,000 bbls of oil by the end of April, 1997 and lead to the permitting and licensing of several dozen Dundee wells by project end. Twelve of these permits were for continued development of Crystal Field. Two long horizontal wells were drilled successfully in Crystal after the TOW 1-3, but were disappointing economically. Core and logs from the Dundee interval were recovered from a vertical borehole at the same surface location. The addition of several horizontal wells will likely add another 2 million bbls (or more) to the cumulative production of the field over the next few years. If other abandoned Dundee fields are re-developed in a similar manner, the additional oil produced could exceed 80 million barrels.

NONE

1998-04-01T23:59:59.000Z

44

Sedimentological, mineralogical and geochemical definition of oil-shale facies in the lower Parachute Creek Member of Green River Formation, Colorado  

SciTech Connect (OSTI)

Sedimentological, mineralogical and geochemical studies of two drill cores penetrating the lower Saline zone of the Parachute Creek Member (middle L-4 oil-shale zone through upper R-2 zone) of the Green River Formation in north-central Piceance Creek basin, Colorado, indicate the presence of two distinct oil-shale facies. The most abundant facies has laminated stratification and frequently occurs in the L-4, L-3 and L-2 oil-shale zones. The second, and subordinate facies, has ''streaked and blebby'' stratification and is most abundant in the R-4, R-3 and R-2 zones. Laminated oil shale originated by slow, regular sedimentation during meromictic phases of ancient Lake Uinta, whereas streaked and blebby oil shale was deposited by episodic, non-channelized turbidity currents. Laminated oil shale has higher contents of nahcolite, dawsonite, quartz, K-feldspar and calcite, but less dolomite/ankerite and albite than streaked and blebby oil shale. Ca-Mg-Fe carbonate minerals in laminated oil shale have more variable compositions than those in streaked and blebby shales. Streaked and blebby oil shale has more kerogen and a greater diversity of kerogen particles than laminated oil shale. Such variations may produce different pyrolysis reactions when each shale type is retorted.

Cole, R.D.

1984-04-01T23:59:59.000Z

45

tight environment high radiation area  

E-Print Network [OSTI]

#12;Irradiation Studies of Optical Components - II CERN, week of Oct. 24, 2005 1.4 GeV proton beam 4 x· tight environment · high radiation area · non-serviceable area · passive components · optics only, no active electronics · transmit image through flexible fiber bundle Optical Diagnostics 01-13-2006 1 #12

McDonald, Kirk

46

Recovery of bypassed oil in the Dundee Formation using horizontal drains. Annual report, May 1, 1995--April 30, 1996  

SciTech Connect (OSTI)

The principal objective of this project is to demonstrate the feasibility and economics success of producing oil from abandoned or nearly abandoned fields in the Dundee Formation of Central Michigan using horizontal drilling technology. The project is a cooperative venture between Michigan Technological University (MTU), Western Michigan University (WMU), and Terra Energy (now Cronus Development Co.). During the fall of 1995, the demonstration well for this project, the TOW No. 1-3 well in Crystal Field, Montcalm County, Michigan, was completed in the Dundee Formation and for the first three months of operation produced 50 bbl/day oil with no water cut. Because surface facilities were inadequate to handle full production, the well was produced for 12 hrs/day and shut in for 12 hrs/day. In January, 1996, new surface Facilities were completed and production was raised to 100 bbl/day. Daily production has varied from about 75 to 100 BOPD since that time. To date, the well has produced over 10, 000 bbls. The water cut remains at 0% and pressure has been maintained at 1445 psi by an active water drive. If expectations are met, the well will pay out in less than 1 year and continue on production for at least 5 years. Cronus Development Co. is tentatively planning to drill three more horizontal wells in the Dundee in Crystal Field. Thus, the play concept we chose to test, that bypassed attic oil remained in the Dundee reservoir between wells that had been produced at excessively high flow rates and had coned water during primary production, appears to be correct, and the TOW No. 1-3 HD-1 well is now a scientific, and appears soon to become an economic, success.

Wood, J.R.

1996-04-30T23:59:59.000Z

47

CORE-BASED INTEGRATED SEDIMENTOLOGIC, STRATIGRAPHIC, AND GEOCHEMICAL ANALYSIS OF THE OIL SHALE BEARING GREEN RIVER FORMATION, UINTA BASIN, UTAH  

SciTech Connect (OSTI)

An integrated detailed sedimentologic, stratigraphic, and geochemical study of Utah's Green River Formation has found that Lake Uinta evolved in three phases (1) a freshwater rising lake phase below the Mahogany zone, (2) an anoxic deep lake phase above the base of the Mahogany zone and (3) a hypersaline lake phase within the middle and upper R-8. This long term lake evolution was driven by tectonic basin development and the balance of sediment and water fill with the neighboring basins, as postulated by models developed from the Greater Green River Basin by Carroll and Bohacs (1999). Early Eocene abrupt global-warming events may have had significant control on deposition through the amount of sediment production and deposition rates, such that lean zones below the Mahogany zone record hyperthermal events and rich zones record periods between hyperthermals. This type of climatic control on short-term and long-term lake evolution and deposition has been previously overlooked. This geologic history contains key points relevant to oil shale development and engineering design including: (1) Stratigraphic changes in oil shale quality and composition are systematic and can be related to spatial and temporal changes in the depositional environment and basin dynamics. (2) The inorganic mineral matrix of oil shale units changes significantly from clay mineral/dolomite dominated to calcite above the base of the Mahogany zone. This variation may result in significant differences in pyrolysis products and geomechanical properties relevant to development and should be incorporated into engineering experiments. (3) This study includes a region in the Uinta Basin that would be highly prospective for application of in-situ production techniques. Stratigraphic targets for in-situ recovery techniques should extend above and below the Mahogany zone and include the upper R-6 and lower R-8.

Lauren P. Birgenheier; Michael D. Vanden Berg,

2011-04-11T23:59:59.000Z

48

Evaluation of a zirconium additive for the mitigation of molten ash formation during combustion of residual fuel oil  

SciTech Connect (OSTI)

Florida Power & Light Company (FP&L) currently fires a residual fuel oil (RFO) containing catalyst fines, which results in a troublesome black aluminosilicate liquid phase that forms on heat-transfer surfaces, remains molten, and flows to the bottom of the boiler. When the unit is shut down for a scheduled outage, this liquid phase freezes to a hard black glass that damages the contracting waterwalls of the boiler. Cleaning the boiler bottom and repairing damaged surfaces increase the boiler downtime, at a significant cost to FP&L. The Energy & Environmental Research Center (EERC) proposed to perform a series of tests for FP&L to evaluate the effectiveness of a zirconium additive to modify the mechanism that forms this liquid phase, resulting in the formation of a dry refractory phase that may be easily handled during cleanup of the boiler.

NONE

1996-12-01T23:59:59.000Z

49

Method for closing a drift between adjacent in-situ oil shale retorts  

SciTech Connect (OSTI)

A row of horizontally spaced-apart in situ oil shale retorts is formed in a subterranean formation containing oil shale. Each row of retorts is formed by excavating development drifts at different elevations through opposite side boundaries of a plurality of retorts in the row of retorts. Each retort is formed by explosively expanding formation toward one or more voids within the boundaries of the retort site to form a fragmented permeable mass of formation particles containing oil shale in each retort. Following formation of each retort, the retort development drifts on the advancing side of the retort are closed off by covering formation particles within the development drift with a layer of crushed oil shale particles having a particle size smaller than the average particle size of oil shale particles in the adjacent retort. In one embodiment, the crushed oil shale particles are pneumatically loaded into the development drift to pack the particles tightly all the way to the top of the drift and throughout the entire cross section of the drift. The closure between adjacent retorts provided by the finely divided oil shale provides sufficient resistance to gas flow through the development drift to effectively inhibit gas flow through the drift during subsequent retorting operations.

Hines, A.E.

1984-04-10T23:59:59.000Z

50

Method for closing a drift between adjacent in situ oil shale retorts  

DOE Patents [OSTI]

A row of horizontally spaced-apart in situ oil shale retorts is formed in a subterranean formation containing oil shale. Each row of retorts is formed by excavating development drifts at different elevations through opposite side boundaries of a plurality of retorts in the row of retorts. Each retort is formed by explosively expanding formation toward one or more voids within the boundaries of the retort site to form a fragmented permeable mass of formation particles containing oil shale in each retort. Following formation of each retort, the retort development drifts on the advancing side of the retort are closed off by covering formation particles within the development drift with a layer of crushed oil shale particles having a particle size smaller than the average particle size of oil shale particles in the adjacent retort. In one embodiment, the crushed oil shale particles are pneumatically loaded into the development drift to pack the particles tightly all the way to the top of the drift and throughout the entire cross section of the drift. The closure between adjacent retorts provided by the finely divided oil shale provides sufficient resistance to gas flow through the development drift to effectively inhibit gas flow through the drift during subsequent retorting operations.

Hines, Alex E. (Grand Junction, CO)

1984-01-01T23:59:59.000Z

51

Outlook for U.S. shale oil and gas  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

2035 2040 Associated with oil Coalbed methane Tight gas Shale gas Alaska Non-associated offshore Non-associated onshore Projections History 2012 Adam Sieminski, IAEEAEA January...

52

Recovery of bypassed oil in the Dundee Formation (Devonian) of the Michigan Basin using horizontal drains. Final report, April 28, 1994--December 31, 1997  

SciTech Connect (OSTI)

Total hydrocarbon production in the Michigan Basin has surpassed 1 billion barrels (Bbbls) and total unrecovered reserves are estimated at 1--2 BBbls. However, hydrocarbon production in Michigan has fallen from 35 MMbbls/yr in 1979 to about 10 MMbbls/yr in 1996. In an effort to slow this decline, a field demonstration project designed around using a horizontal well to recover bypassed oil was designed and carried out at Crystal Field in Montcalm County, MI. The project had two goals: to test the viability of using horizontal wells to recover bypassed oil from the Dundee Formation, and to characterize additional Dundee reservoirs (29) that are look alikes to the Crystal Field. As much as 85 percent of the oil known to exist in the Dundee Formation in the Michigan Basin remains in the ground as bypassed oil. Early production techniques in the 137 fields were poor, and the Dundee was at risk of being abandoned, leaving millions of barrels of oil behind. Crystal Field in Montcalm County, Michigan is a good example of a worn out field. Crystal Field was once a prolific producer which had been reduced to a handful of wells, the best of which produced only 5 barrels per day. The demonstration well drilled as a result of this project, however, has brought new life to the Crystal Field. Horizontal drilling is one of the most promising technologies available for oil production. The new well was completed successfully in October of 1995 and has been producing 100 barrels of oil per day, 20 times better than the best conventional well in the field.

Wood, J.R.; Pennington, W.D.

1998-09-01T23:59:59.000Z

53

Developing a tight gas sand advisor for completion and stimulation in tight gas reservoirs worldwide  

E-Print Network [OSTI]

DEVELOPING A TIGHT GAS SAND ADVISOR FOR COMPLETION AND STIMULATION IN TIGHT GAS RESERVOIRS WORLDWIDE A Thesis by KIRILL BOGATCHEV Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE December 2007 Major Subject: Petroleum Engineering DEVELOPING A TIGHT GAS SAND ADVISOR FOR COMPLETION AND STIMULATION IN TIGHT GAS RESERVOIRS WORLDWIDE A Thesis by KIRILL...

Bogatchev, Kirill Y

2008-10-10T23:59:59.000Z

54

The Utilization of the Microflora Indigenous to and Present in Oil-Bearing Formations to Selectively Plug the More Porous Zones Thereby Increasing Oil Recovery During Waterflooding  

SciTech Connect (OSTI)

This project was designed to demonstrate that a microbially enhanced oil recovery process (MEOR), developed in part under DOE Contract No. DE-AC22-90BC14665, will increase oil recovery from fluvial dominated deltaic oil reservoirs. The process involves stimulating the in-situ indigenous microbial population in the reservoir to grow in the more permeable zones, thus diverting flow to other areas of the reservoir, thereby increasing the effectiveness of the waterflood. This five and a half year project is divided into three phases, Phase I, Planning and Analysis (9 months), Phase II, Implementation (45 months), and Phase III, Technology Transfer (12 months). Phase I was completed and reported in the first annual report. This fifth annual report covers the completion of Phase II and the first six months of Phase III.

Brown, Lewis R.; Byrnes, Martin J.; Stephens, James O.; Vadie, Alex A.

1999-07-01T23:59:59.000Z

55

Facies, stratigraphic architecture, and lake evolution of the oil shale bearing Green River Formation, Eastern Uinta Basin, Utah.  

E-Print Network [OSTI]

??Lacustrine basin systems have historically been valued for their abundant conventional oil and gas reserves, but they also contain a vast potential for unconventional petroleum… (more)

Rosenberg, Morgan Joshua

2013-01-01T23:59:59.000Z

56

Play analysis and stratigraphic position of Uinta Basin tertiary - age oil and gas fields  

SciTech Connect (OSTI)

Tertiary-age sediments in the Uinta basin produce hydrocarbons from five types of plays. These play types were determined by hydrocarbon type, formation, depositional environment, rock type, porosity, permeability, source, and per-well recovery. Each well was reviewed to determine the stratigraphic position and producing characteristics of each producing interval. The five types of plays are as follows: (1) naturally fractured oil reservoirs, (2) low-permeability oil reservoirs, (3) high-permeability of oil reservoirs, (4) low-permeability gas reservoirs, and (5) tight gas sands. Several fields produce from multiple plays, which made it necessary to segregate the hydrocarbon production into several plays. The stratigraphic position of the main producing intervals is shown on a basin-wide cross section, which is color-coded by play type. This 61-well cross section has several wells from each significant Tertiary oil and gas field in the Uinta basin.

Williams, R.A. (Pennzoil Exploration and Production Co., Houston, TX (United States))

1993-08-01T23:59:59.000Z

57

Documentation of the Oil and Gas Supply Module (OGSM)  

SciTech Connect (OSTI)

The purpose of this report is to define the objectives of the Oil and Gas Supply Model (OGSM), to describe the model`s basic approach, and to provide detail on how the model works. This report is intended as a reference document for model analysts, users, and the public. Projected production estimates of US crude oil and natural gas are based on supply functions generated endogenously within National Energy Modeling System (NEMS) by the OGSM. OGSM encompasses domestic crude oil and natural gas supply by both conventional and nonconventional recovery techniques. Nonconventional recovery includes enhanced oil recovery (EOR), and unconventional gas recovery (UGR) from tight gas formations, Devonian/Antrim shale and coalbeds. Crude oil and natural gas projections are further disaggregated by geographic region. OGSM projects US domestic oil and gas supply for six Lower 48 onshore regions, three offshore regions, and Alaska. The general methodology relies on forecasted profitability to determine exploratory and developmental drilling levels for each region and fuel type. These projected drilling levels translate into reserve additions, as well as a modification of the production capacity for each region. OGSM also represents foreign trade in natural gas, imports and exports by entry region. Foreign gas trade may occur via either pipeline (Canada or Mexico), or via transport ships as liquefied natural gas (LNG). These import supply functions are critical elements of any market modeling effort.

NONE

1998-01-01T23:59:59.000Z

58

tight_nuts_thehub closed_boot  

E-Print Network [OSTI]

tight_nuts_the­hub closed_boot in_jack_boot in_pump_boot in_wheel1_boot in_wrench_boot inflated_nuts_the­hub closed_boot in_jack_boot in_pump_boot in_wheel1_boot in_wrench_boot inflated_wheel2 on_wheel2_the­hub tight_nuts_the­hub closed_boot in_jack_boot in_pump_boot in_wheel1_boot in_wrench_boot inflated_wheel2

Murphy, Robert F.

59

Measuring resistivity changes from within a first cased well to monitor fluids injected into oil bearing geological formations from a second cased well while passing electrical current between the two cased wells  

DOE Patents [OSTI]

A.C. current is conducted through geological formations separating two cased wells in an oil field undergoing enhanced oil recovery operations such as water flooding operations. Methods and apparatus are disclosed to measure the current leakage conducted into a geological formation from within a first cased well that is responsive to fluids injected into formation from a second cased well during the enhanced oil production activities. The current leakage and apparent resistivity measured within the first cased well are responsive to fluids injected into formation from the second cased well provided the distance of separation between the two cased wells is less than, or on the order of, a Characteristic Length appropriate for the problem.

Vail, III, William B. (Bothell, WA)

1993-01-01T23:59:59.000Z

60

Measuring resistivity changes from within a first cased well to monitor fluids injected into oil bearing geological formations from a second cased well while passing electrical current between the two cased wells  

DOE Patents [OSTI]

A.C. current is conducted through geological formations separating two cased wells in an oil field undergoing enhanced oil recovery operations such as water flooding operations. Methods and apparatus are disclosed to measure the current leakage conducted into a geological formation from within a first cased well that is responsive to fluids injected into formation from a second cased well during the enhanced oil production activities. The current leakage and apparent resistivity measured within the first cased well are responsive to fluids injected into formation from the second cased well provided the distance of separation between the two cased wells is less than, or on the order of, a Characteristic Length appropriate for the problem.

Vail, W.B. III.

1993-02-16T23:59:59.000Z

Note: This page contains sample records for the topic "tight oil formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Coarse scale simulation of tight gas reservoirs  

E-Print Network [OSTI]

It is common for field models of tight gas reservoirs to include several wells with hydraulic fractures. These hydraulic fractures can be very long, extending for more than a thousand feet. A hydraulic fracture width is usually no more than about 0...

El-Ahmady, Mohamed Hamed

2004-09-30T23:59:59.000Z

62

Sulfate formation in oil-fired power plant plumes. Volume 1. Parameters affecting primary sulfate emissions and a model for predicting emissions and plume opacity. Final report  

SciTech Connect (OSTI)

High sulfuric acid emissions with concomitant acid smuts and plume opacity concerns at oil fired utility boilers has been associated with combustion of high sulfur-, high vanadium-containing fuel. The purpose of this program was to elucidate the mechanisms responsible for the formation of flue gas H/sub 2/SO/sub 4/ and metal sulfates (MSO/sub 4/) and to determine the extent by which operating and controls parameters as well as the composition of the fuel affected those emissions. More than 200 flue gas measurements were made at a number of oil fired units and one coal fired unit, providing emissions levels of SO/sub 2/, H/sub 2/SO/sub 4/, MSO/sub 4/, total suspended particulate, and NO/sub x/. Parameters shown to significantly affect H/sub 2/SO/sub 4/ and MSO/sub 4/ emissions were furnace O/sub 2/ level, sulfur and vanadium content of the fuel, the amount of corrosion inhibitor added to the oil, power level, and the composition of the fly ash. Correlations were developed which related the H/sub 2/SO/sub 4/ and MSO/sub 4/ emissions at oil fired units with the parameters above; predictions of emissions appear to be accurate to within +-25%. Based on limited data from the literature, the correlations were extended to include a means for predicting plume opacity and in-stack opacity. Recommendations for controlling the levels of H/sub 2/SO/sub 4/ and MSO/sub 4/ emissions as well as maintaining utility units in compliance with opacity regulations were made. Future research needs were indicated, including more studies relating H/sub 2/SO/sub 4/ levels in flue gas with plume opacity and emissions studies at coal fired units. 85 references, 27 figures, 23 tables.

Dietz, R.N.; Wieser, R.F.

1983-11-01T23:59:59.000Z

63

No Oil: The coming Utopia/Dystopia and Communal Possibilities  

E-Print Network [OSTI]

supplies of conventional oil, and exploitable supplies of alternative forms of oil and related hydrocarbons, including tar sands and oil shale. Because new supplies of conventional oil are declining steadily, there is quite a lot of activity in the oil... to exploit the huge deposits of oil sands in Canada. Oil sands and oil shale look good because they contain vast amounts of oil. The problem is that of turning the reserves, locked into other geological formations, into useful oil. According to current...

Miller, Timothy

2006-03-01T23:59:59.000Z

64

www.myresources.com.au OIL & GAS BULLETIN VOL. 15, NO. 11 PAGE 9 Safety first: Oil rigs off the north west shelf will be studied for  

E-Print Network [OSTI]

www.myresources.com.au OIL & GAS BULLETIN VOL. 15, NO. 11 PAGE 9 NEWS Safety first: Oil rigs off that as times and trends change, tight gas and shale gas is being more and more considered as a potentially prices rise, and a shift from coal to gas energy sources is experienced, tight gas and shale gas is now

65

Developing a tight gas sand advisor for completion and stimulation in tight gas reservoirs worldwide  

E-Print Network [OSTI]

and experience about completion and stimulation technologies used in TGS reservoirs. We developed the principal design and two modules of a computer program called Tight Gas Sand Advisor (TGS Advisor), which can be used to assist engineers in making decisions...

Bogatchev, Kirill Y.

2009-05-15T23:59:59.000Z

66

Unconventional Oil and Gas Resources  

SciTech Connect (OSTI)

World oil use is projected to grow to 98 million b/d in 2015 and 118 million b/d in 2030. Total world natural gas consumption is projected to rise to 134 Tcf in 2015 and 182 Tcf in 2030. In an era of declining production and increasing demand, economically producing oil and gas from unconventional sources is a key challenge to maintaining global economic growth. Some unconventional hydrocarbon sources are already being developed, including gas shales, tight gas sands, heavy oil, oil sands, and coal bed methane. Roughly 20 years ago, gas production from tight sands, shales, and coals was considered uneconomic. Today, these resources provide 25% of the U.S. gas supply and that number is likely to increase. Venezuela has over 300 billion barrels of unproven extra-heavy oil reserves which would give it the largest reserves of any country in the world. It is currently producing over 550,000 b/d of heavy oil. Unconventional oil is also being produced in Canada from the Athabasca oil sands. 1.6 trillion barrels of oil are locked in the sands of which 175 billion barrels are proven reserves that can be recovered using current technology. Production from 29 companies now operating there exceeds 1 million barrels per day. The report provides an overview of continuous petroleum sources and gives a concise overview of the current status of varying types of unconventional oil and gas resources. Topics covered in the report include: an overview of the history of Oil and Natural Gas; an analysis of the Oil and Natural Gas industries, including current and future production, consumption, and reserves; a detailed description of the different types of unconventional oil and gas resources; an analysis of the key business factors that are driving the increased interest in unconventional resources; an analysis of the barriers that are hindering the development of unconventional resources; profiles of key producing regions; and, profiles of key unconventional oil and gas producers.

none

2006-09-15T23:59:59.000Z

67

Naturally fractured tight gas reservoir detection optimization  

SciTech Connect (OSTI)

The goal of the work this quarter has been to partition and high-grade the Greater Green River basin for exploration efforts in the Upper Cretaceous tight gas play and to initiate resource assessment of the basin. The work plan for the quarter of July 1-September 30, 1998 comprised three tasks: (1) Refining the exploration process for deep, naturally fractured gas reservoirs; (2) Partitioning of the basin based on structure and areas of overpressure; (3) Examination of the Kinney and Canyon Creek fields with respect to the Cretaceous tight gas play and initiation of the resource assessment of the Vermilion sub-basin partition (which contains these two fields); and (4) Initiation analysis of the Deep Green River Partition with respect to the Stratos well and assessment of the resource in the partition.

NONE

1998-11-30T23:59:59.000Z

68

Naturally fractured tight gas reservoir detection optimization  

SciTech Connect (OSTI)

During this quarter, work began on the regional structural and geologic analysis of the greater Green River basin (GGRB) in southwestern Wyoming, northwestern Colorado and northeastern Utah. The ultimate objective of the regional analysis is to apply the techniques developed and demonstrated during earlier phases of the project to sweet-spot delineation in a relatively new and underexplored play: tight gas from continuous-type Upper Cretaceous reservoirs of the GGRB. The primary goal of this work is to partition and high-grade the greater Green River basin for exploration efforts in the Cretaceous tight gas play. The work plan for the quarter of January 1, 1998--March 31, 1998 consisted of three tasks: (1) Acquire necessary data and develop base map of study area; (2) Process data for analysis; and (3) Initiate structural study. The first task and second tasks were completed during this reporting period. The third task was initiated and work continues.

NONE

1998-09-30T23:59:59.000Z

69

Hydraulic fracturing in tight, fissured media  

SciTech Connect (OSTI)

Large volumes of natural gas are found in tight, fissured reservoirs. Hydraulic fracturing can enhance recovery, but many complications, such as pressure-sensitive or accelerated leakoff, damage, and complex fracturing, arise during treatment of such reservoirs. This paper reports that special procedures generally should be considered during breakdown and fracturing of these reservoirs. In addition, the use of alternative stimulation strategies may be beneficial.

Warpinski, N.R. (Sandia National Lab., Albuquerque, NM (US))

1991-02-01T23:59:59.000Z

70

Tight Binding Hamiltonians and Quantum Turing Machines  

E-Print Network [OSTI]

This paper extends work done to date on quantum computation by associating potentials with different types of computation steps. Quantum Turing machine Hamiltonians, generalized to include potentials, correspond to sums over tight binding Hamiltonians each with a different potential distribution. Which distribution applies is determined by the initial state. An example, which enumerates the integers in succession as binary strings, is analyzed. It is seen that for some initial states the potential distributions have quasicrystalline properties and are similar to a substitution sequence.

Paul Benioff

1996-10-17T23:59:59.000Z

71

Recovery of bypassed oil in the Dundee Formation using horizontal drains. Annual report, April 1994--June 1995  

SciTech Connect (OSTI)

Crystal Field in Montcalm County, MI, was selected as a field trial site for this project. Analysis of production data for Crystal Field suggests that an additional 200,000 bbls of oil can be produced using one strategically located horizontal well. Total addition production from the Crystal Field could be as much as 6--8 MMBO. Application of the technology developed in this project to other Dundee fields in the area has the potential to increase Dundee production in Michigan by 35%, adding 80--100 MMBO to ultimate recovery. This project will demonstrate through a field trial that horizontal wells can be substantially increase oil production in older reservoirs that are at or near their economic limit. To maximize the potential of the horizontal well and to ensure that a comprehensive evaluation can be made, extensive reservoir characterization will be performed. In addition to the proposed field trial at Crystal Field, 29 additional Dundee fields in a seven-county area have been selected for study in the reservoir characterization portion of this project.

Wood, J.

1995-08-01T23:59:59.000Z

72

Packing tight Hamilton cycles in 3-uniform hypergraphs Alan Frieze  

E-Print Network [OSTI]

Packing tight Hamilton cycles in 3-uniform hypergraphs Alan Frieze Michael Krivelevich Po-Shen Loh Abstract Let H be a 3-uniform hypergraph with n vertices. A tight Hamilton cycle C H of H can be covered by edge-disjoint tight Hamilton cycles, for n divisible by 4. Consequently, we

Frieze, Alan

73

Packing tight Hamilton cycles in 3-uniform hypergraphs Alan Frieze  

E-Print Network [OSTI]

Packing tight Hamilton cycles in 3-uniform hypergraphs Alan Frieze Carnegie Mellon University alan ploh@cmu.edu Abstract Consider a 3-uniform hypergraph H with n vertices. A tight Hamilton cycle C H by edge- disjoint tight Hamilton cycles, for n divisible by 4. Consequently, random 3-uniform hypergraphs

Krivelevich, Michael

74

Tight Binding Hamiltonians and Quantum Turing Machines  

SciTech Connect (OSTI)

This paper extends work done to date on quantum computation by association of potentials with different types of steps. Quantum Turing machine Hamiltonians, generalized to include potentials, correspond to sums over tight binding Hamiltonians each with a different potential distribution. Which distribution applies is determined by the initial state. An example, which enumerates the integers in succession as binary strings, is analyzed. It is seen that for some initial states, the potential distributions have quasicrystalline properties and are similar to a substitution sequence. {copyright} {ital 1997} {ital The American Physical Society}

Benioff, P. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)] [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

1997-01-01T23:59:59.000Z

75

EIA model documentation: Documentation of the Oil and Gas Supply Module (OGSM)  

SciTech Connect (OSTI)

The purpose of this report is to define the objectives of the Oil and Gas Supply Model (OGSM), to describe the model`s basic approach, and to provide detail on how the model works. This report is intended as a reference document for model analysts, users, and the public. Projected production estimates of US crude oil and natural gas are based on supply functions generated endogenously within National Energy Modeling System (NEMS) by the OGSM. OGSM encompasses domestic crude oil and natural gas supply by both conventional and nonconventional recovery techniques. Nonconventional recovery includes enhanced oil recovery (EOR), and unconventional gas recovery (UGR) from tight gas formations, Devonian shale and coalbeds. Crude oil and natural gas projects are further disaggregated by geographic region. OGSM projects US domestic oil and gas supply for six Lower 48 onshore regions, three offshore regions, and Alaska. The general methodology relies on forecasted drilling expenditures and average drilling costs to determine exploratory and developmental drilling levels for each region and fuel type. These projected drilling levels translate into reserve additions, as well as a modification of the production capacity for each region. OGSM also represents foreign trade in natural gas, imports and exports by entry region.

NONE

1997-01-01T23:59:59.000Z

76

Recovery of bypassed oil in the Dundee Formation using horizontal drains, Quarterly technical report, 1/1/97--3/31/97  

SciTech Connect (OSTI)

This Class 11 field project has demonstrated that economic quantities of hydrocarbons can be produced from abandoned or nearly abandoned fields in the Dundee Formation of Central Michigan using horizontal drilling technology. The site selected for the demonstration horizontal well was Crystal Field, a nearly abandoned Dundee oil field in Montcalm County, Michigan. This field had produced over 8 million barrels of oil, mostly in the 1930`s and 1940`s. At the height of development, Crystal Field produced from 193 wells, but by 1995, only seven producing wells remained, each producing less than 10 bbls/day. A horizontal well, the TOW 1-3, drilled as a field demonstration pilot was successful, producing at rate of 100 bbls of oil per day with a zero water cut. Although the well is capable of producing at a rate of 500+ bbls/day, the production rate is being kept low deliberately to try to prevent premature water coning. Cumulative production exceeded 50,000 bbls of oil by the end of April, 1997 and lead to the permitting and licensing of several dozen Dundee wells by project end. Twelve of these permits were for continued development of Crystal Field. Two subsequent wells, the Frost 5-3 and the Happy Holidays 6-3, have not been as successful. Both are currently producing 10 BOPD with 90% water cut. Efforts are underway to determine why these wells are performing so poorly and to see if the situation can be remedied. The reasons for these poor performances of the new wells are not clear at this time. It is possible that the wells entered the Dundee too low and missed pay higher in the section. When the TOW 1-3 was drilled, a vertical probe well was also drilled and cored. That probe well penetrated the pay zone and helped guide the horizontal well. The important lesson may be that vertical probe wells are a crucial step in producing these old fields and should not be eliminated simply to save what amounts to a small incremental cost. Core and logs from the Dundee interval were recovered from a vertical borehole at the same surface location. The addition of several horizontal wells will likely add another 2 million bbls (or more) to the cumulative production of the field over the next few years. If other abandoned Dundee fields are re-developed in a similar manner, the additional oil produced could exceed 80 million barrels. Additional project work involved the characterization of 28 other Dundee fields in Michigan to aid in determining appropriate additional candidates for development through horizontal drilling. Further quantification of reservoir parameters such as importance of fracturing, fracture density, and irregularity of the dolomitized surface at the top of the reservoir will help in designing the optimal strategy for horizontal drilling. The project was a cooperative venture involving the US Department of Energy, Michigan Technological University (MTU), Western Michigan University (WMU), and Terra Energy (now Cronus Development Co.) in Traverse City, MI.

NONE

1997-03-30T23:59:59.000Z

77

Naturally fractured tight gas reservoir detection optimization  

SciTech Connect (OSTI)

The work plan for October 1, 1997 to September 30, 1998 consisted of investigation of a number of topical areas. These topical areas were reported in four quarterly status reports, which were submitted to DOE earlier. These topical areas are reviewed in this volume. The topical areas covered during the year were: (1) Development of preliminary tests of a production method for determining areas of natural fracturing. Advanced Resources has demonstrated that such a relationship exists in the southern Piceance basin tight gas play. Natural fracture clusters are genetically related to stress concentrations (also called stress perturbations) associated with local deformation such a faulting. The mechanical explanation of this phenomenon is that deformation generally initiates at regions where the local stress field is elevated beyond the regional. (2) Regional structural and geologic analysis of the Greater Green River Basin (GGRB). Application of techniques developed and demonstrated during earlier phases of the project for sweet-spot delineation were demonstrated in a relatively new and underexplored play: tight gas from continuous-typeUpper Cretaceous reservoirs of the Greater Green River Basin (GGRB). The effort included data acquisition/processing, base map generation, geophysical and remote sensing analysis and the integration of these data and analyses. (3) Examination of the Table Rock field area in the northern Washakie Basin of the Greater Green River Basin. This effort was performed in support of Union Pacific Resources- and DOE-planned horizontal drilling efforts. The effort comprised acquisition of necessary seismic data and depth-conversion, mapping of major fault geometry, and analysis of displacement vectors, and the development of the natural fracture prediction. (4) Greater Green River Basin Partitioning. Building on fundamental fracture characterization work and prior work performed under this contract, namely structural analysis using satellite and potential field data, the GGRB was divided into partitions that will be used to analyze the resource potential of the Frontier and Mesaverde Upper Cretaceous tight gas play. A total of 20 partitions were developed, which will be instrumental for examining the Upper Cretaceous play potential. (5) Partition Analysis. Resource assessment associated with individual partitions was initiated starting with the Vermilion Sub-basin and the Green River Deep (which include the Stratos well) partitions (see Chapter 5). (6) Technology Transfer. Tech transfer was achieved by documenting our research and presenting it at various conferences.

NONE

1998-11-30T23:59:59.000Z

78

Combustion Assisted Gravity Drainage (CAGD): An In-Situ Combustion Method to Recover Heavy Oil and Bitumen from Geologic Formations using a Horizontal Injector/Producer Pair  

E-Print Network [OSTI]

Combustion assisted gravity drainage (CAGD) is an integrated horizontal well air injection process for recovery and upgrading of heavy oil and bitumen from tar sands. Short-distance air injection and direct mobilized oil production are the main...

Rahnema, Hamid

2012-11-21T23:59:59.000Z

79

Constraining corotation from shocks in tightly-wound spiral galaxies  

E-Print Network [OSTI]

We present a new method for estimating the corotation radius in tightly wound spiral galaxies, through analysis of the radial variation of the offset between arms traced by the potential (P-arms) and those traced by dust (D-arms). We have verified the predictions of semi-analytical theory through hydrodynamical simulations and have examined the uniqueness of the galactic parameters that can be deduced by this method. We find that if the range of angular offsets measured at different radii in a galaxy is greater than around pi/4, it is possible to locate the radius of corotation to within ~ 25%. We argue that the relative location of the P- and D-arms provides more robust constraints on the galactic parameters than can be inferred from regions of enhanced star formation (SF-arms), since interpretation of the latter involves uncertainties due to reddening and the assumed star formation law. We thus stress the importance of K-band studies of spiral galaxies.

D. Gittins; C. Clarke

2003-12-20T23:59:59.000Z

80

Air Tightness of US Homes: Model Development  

SciTech Connect (OSTI)

Air tightness is an important property of building envelopes. It is a key factor in determining infiltration and related wall-performance properties such as indoor air quality, maintainability and moisture balance. Air leakage in U.S. houses consumes roughly 1/3 of the HVAC energy but provides most of the ventilation used to control IAQ. The Lawrence Berkeley National Laboratory has been gathering residential air leakage data from many sources and now has a database of more than 100,000 raw measurements. This paper uses that database to develop a model for estimating air leakage as a function of climate, building age, floor area, building height, floor type, energy-efficiency and low-income designations. The model developed can be used to estimate the leakage distribution of populations of houses.

Sherman, Max H.

2006-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "tight oil formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Naturally fractured tight gas reservoir detection optimization  

SciTech Connect (OSTI)

Building upon the partitioning of the Greater Green River Basin (GGRB) that was conducted last quarter, the goal of the work this quarter has been to conclude evaluation of the Stratos well and the prototypical Green River Deep partition, and perform the fill resource evaluation of the Upper Cretaceous tight gas play, with the goal of defining target areas of enhanced natural fracturing. The work plan for the quarter of November 1-December 31, 1998 comprised four tasks: (1) Evaluation of the Green River Deep partition and the Stratos well and examination of potential opportunity for expanding the use of E and P technology to low permeability, naturally fractured gas reservoirs, (2) Gas field studies, and (3) Resource analysis of the balance of the partitions.

NONE

1999-06-01T23:59:59.000Z

82

Documentation of the Oil and Gas Supply Module (OGSM)  

SciTech Connect (OSTI)

The purpose of this report is to define the objectives of the Oil and Gas Supply Model (OGSM), to describe the model`s basic approach, and to provide detail on how the model works. This report is intended as a reference document for model analysts, users, and the public. It is prepared in accordance with the Energy Information Administration`s (EIA) legal obligation to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, Section 57(b)(2)). Projected production estimates of U.S. crude oil and natural gas are based on supply functions generated endogenously within National Energy Modeling System (NEMS) by the OGSM. OGSM encompasses domestic crude oil and natural gas supply by both conventional and nonconventional recovery techniques. Nonconventional recovery includes enhanced oil recovery (EOR), and unconventional gas recovery (UGR) from tight gas formations, Devonian shale and coalbeds. Crude oil and natural gas projections are further disaggregated by geographic region. OGSM projects U.S. domestic oil and gas supply for six Lower 48 onshore regions, three offshore regions, and Alaska. The general methodology relies on forecasted drilling expenditures and average drilling costs to determine exploratory and developmental drilling levels for each region and fuel type. These projected drilling levels translate into reserve additions, as well as a modification of the production capacity for each region. OGSM also represents foreign trade in natural gas, imports and exports by entry region. Foreign gas trade may occur via either pipeline (Canada or Mexico), or via transport ships as liquefied natural gas (LNG). These import supply functions are critical elements of any market modeling effort.

NONE

1995-10-24T23:59:59.000Z

83

Fraced horizontal well shows potential of deep tight gas  

SciTech Connect (OSTI)

Successful completion of a multiple fraced, deep horizontal well demonstrated new techniques for producing tight gas sands. In Northwest Germany, Mobil Erdgas-Erdoel GmbH drilled, cased, and fraced the world`s deepest horizontal well in the ultra-tight Rotliegendes ``Main`` sand at 15,687 ft (4,783 m) true vertical depth. The multiple frac concept provides a cost-efficient method to economically produce significant gas resources in the ultra-tight Rotliegendes ``Main`` sand. Besides the satisfactory initial gas production rate, the well established several world records, including deepest horizontal well with multiple fracs, and proved this new technique to develop ultra-tight sands.

Schueler, S. [Mobil Erdgas-Erdoel GmbH, Celle (Germany); Santos, R. [Mobil Erdgas-Erdoel GmbH, Hamburg (Germany)

1996-01-08T23:59:59.000Z

84

OIL SHALE  

E-Print Network [OSTI]

Seyitömer, Himmeto?lu and Hat?lda? oil shale deposits. The results demonstrate that these oil shales are

Fields (in-situ Combustion Approach; M. V. Kök; G. Guner; S. Bagci?

85

Numerical Modeling of CO2 Sequestration in Geologic Formations - Recent Results and Open Challenges  

E-Print Network [OSTI]

developed for oil and gas reservoirs, and for vadose zoneor depleting oil and gas reservoirs, unmineable coal seams,formations. While oil and gas reservoirs may provide some

Pruess, Karsten

2006-01-01T23:59:59.000Z

86

Naturally fractured tight gas reservoir detection optimization  

SciTech Connect (OSTI)

In March, work continued on characterizing probabilities for determining natural fracturing associated with the GGRB for the Upper Cretaceous tight gas plays. Structural complexity, based on potential field data and remote sensing data was completed. A resource estimate for the Frontier and Mesa Verde play was also completed. Further, work was also conducted to determine threshold economics for the play based on limited current production in the plays in the Wamsutter Ridge area. These analyses culminated in a presentation at FETC on 24 March 1999 where quantified natural fracture domains, mapped on a partition basis, which establish ''sweet spot'' probability for natural fracturing, were reviewed. That presentation is reproduced here as Appendix 1. The work plan for the quarter of January 1, 1999--March 31, 1999 comprised five tasks: (1) Evaluation of the GGRB partitions for structural complexity that can be associated with natural fractures, (2) Continued resource analysis of the balance of the partitions to determine areas with higher relative gas richness, (3) Gas field studies, (4) Threshold resource economics to determine which partitions would be the most prospective, and (5) Examination of the area around the Table Rock 4H well.

NONE

1999-04-30T23:59:59.000Z

87

Bureau of Land Management Oil Shale Development  

E-Print Network [OSTI]

Bureau of Land Management Oil Shale Development Unconventional Fuels Conference University of Utah May 17, 2011 #12;#12;Domestic Oil Shale Resources Primary oil shale resources in the U.S. are in the Green River Formation in Wyoming, Utah, and Colorado. 72 % of this oil shale resource is on Federal

Utah, University of

88

Naturally fractured tight gas reservoir detection optimization  

SciTech Connect (OSTI)

The work plan for the quarter of October 1, 1997--December 31, 1997 consisted of two tasks: (1) Present results of Rulison field test at various conferences, seminars, and to Barrett Resources and Snyder Oil Co. and (2) Continue work into developing a predictive quantitative method for locating fault-related natural fractures. The first task was completed during this reporting period. The second task continues the beginning of quantitative fracture mechanics analysis of the geologic processes that are involved for the development of fault-related natural fractures. The goal of this work is to develop a predictive capability of locating natural fractures prior to drilling.

NONE

1998-09-30T23:59:59.000Z

89

Tight Hamilton Cycles in Random Uniform Hypergraphs Andrzej Dudek  

E-Print Network [OSTI]

Tight Hamilton Cycles in Random Uniform Hypergraphs Andrzej Dudek Alan Frieze June 28, 2011 Abstract In this paper we show that e/n is the sharp threshold for the existence of tight Hamilton cycles also determine thresholds for the existence of other types of Hamilton cycles. 1 Introduction

Frieze, Alan

90

Crude Oil Analysis Database  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The composition and physical properties of crude oil vary widely from one reservoir to another within an oil field, as well as from one field or region to another. Although all oils consist of hydrocarbons and their derivatives, the proportions of various types of compounds differ greatly. This makes some oils more suitable than others for specific refining processes and uses. To take advantage of this diversity, one needs access to information in a large database of crude oil analyses. The Crude Oil Analysis Database (COADB) currently satisfies this need by offering 9,056 crude oil analyses. Of these, 8,500 are United States domestic oils. The database contains results of analysis of the general properties and chemical composition, as well as the field, formation, and geographic location of the crude oil sample. [Taken from the Introduction to COAMDATA_DESC.pdf, part of the zipped software and database file at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the zipped file to your PC. When opened, it will contain PDF documents and a large Excel spreadsheet. It will also contain the database in Microsoft Access 2002.

Shay, Johanna Y.

91

Tight sands gain as U.S. gas source  

SciTech Connect (OSTI)

This report, the last of a four part series assessing unconventional gas development in the US, examines the state of the tight gas sands industry following the 1992 expiration of the qualification period for the Sec. 29 Nonconventional Fuels Tax Credit. Because tight gas sands were the most mature of the unconventional gas sources and received only a modest tax credit, one would not expect much change when the tax credit qualification period ended, and post-1992 drilling and production data confirm this. What the overall statistics do not show, and thus the main substance of this article, is how rediscovered tight gas plays and the evolution in tight gas exploration and extraction technology have shifted the outlook for tight gas drilling and its economics from a low productivity, marginally economic resource to a low cost source of gas supply.

Kuuskraa, V.A.; Hoak, T.E.; Kuuskraa, J.A. [Advanced Resources International Inc., Arlington, VA (United States); Hansen, J. [Gas Research Inst., Chicago, IL (United States)

1996-03-18T23:59:59.000Z

92

Earth'sFuture Remote sensing of fugitive methane emissions from oil and  

E-Print Network [OSTI]

Earth'sFuture Remote sensing of fugitive methane emissions from oil and gas production in North and tight oil reservoirs to exploit formerly inaccessible or unprofitable energy resources in rock and oil provide an opportunity to achieve energy self-sufficiency and to reduce greenhouse gas emissions

Dickerson, Russell R.

93

Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, April--June 1993  

SciTech Connect (OSTI)

Progress made in five areas of research is described briefly. The subtask in oil shale research is on oil shale process studies. For tar sand the subtask reported is on process development. Coal research includes the following subtasks: Coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes the following: Advanced process concepts; advanced mitigation concepts; oil and gas technology. Jointly sponsored research includes: Organic and inorganic hazardous waste stabilization; CROW{sup TM} field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sup 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid-state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; characterization of petroleum residua; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process;NMR analysis of samples from the ocean drilling program; oil field waste cleanup using tank bottom recovery process; remote chemical sensor development; in situ treatment of manufactured gas plant contaminated soils demonstration program; solid-state NMR analysis of Mowry formation shale from different sedimentary basins; solid-state NMR analysis of naturally and artificially matured kerogens; and development of effective method for the clean-up of natural gas.

Not Available

1993-09-01T23:59:59.000Z

94

DOE Showcases Websites for Tight Gas Resource Development  

Broader source: Energy.gov [DOE]

Two U.S. Department of Energy projects funded by the Office of Fossil Energy's National Energy Technology Laboratory provide quick and easy web-based access to sought after information on tight-gas sandstone plays.

95

TIGHT CLOSURE IN GRADED RINGS Karen E. Smith \\Lambda  

E-Print Network [OSTI]

TIGHT CLOSURE IN GRADED RINGS Karen E. Smith \\Lambda Abstract. This paper facilitates is supported by the U.S. National Science Foundation. Typeset by A M S­T E X 1 #12; 2 KAREN E. SMITH \\Lambda

Smith, Karen E.

96

Naturally fractured tight gas reservoir detection optimization. Final report  

SciTech Connect (OSTI)

This DOE-funded research into seismic detection of natural fractures is one of six projects within the DOE`s Detection and Analysis of Naturally Fractured Gas Reservoirs Program, a multidisciplinary research initiative to develop technology for prediction, detection, and mapping of naturally fractured gas reservoirs. The demonstration of successful seismic techniques to locate subsurface zones of high fracture density and to guide drilling orientation for enhanced fracture permeability will enable better returns on investments in the development of the vast gas reserves held in tight formations beneath the Rocky Mountains. The seismic techniques used in this project were designed to capture the azimuthal anisotropy within the seismic response. This seismic anisotropy is the result of the symmetry in the rock fabric created by aligned fractures and/or unequal horizontal stresses. These results may be compared and related to other lines of evidence to provide cross-validation. The authors undertook investigations along the following lines: Characterization of the seismic anisotropy in three-dimensional, P-wave seismic data; Characterization of the seismic anisotropy in a nine-component (P- and S-sources, three-component receivers) vertical seismic profile; Characterization of the seismic anisotropy in three-dimensional, P-to-S converted wave seismic data (P-wave source, three-component receivers); and Description of geological and reservoir-engineering data that corroborate the anisotropy: natural fractures observed at the target level and at the surface, estimation of the maximum horizontal stress in situ, and examination of the flow characteristics of the reservoir.

NONE

1997-11-19T23:59:59.000Z

97

A 4D synchrotron X-ray tomography study of the formation of hydrocarbon migration pathways in heated organic-rich shale  

E-Print Network [OSTI]

Recovery of oil from oil shales and the natural primary migration of hydrocarbons are closely related processes that have received renewed interests in recent years because of the ever tightening supply of conventional hydrocarbons and the growing production of hydrocarbons from low permeability tight rocks. Quantitative models for conversion of kerogen into oil and gas and the timing of hydrocarbon generation have been well documented. However, lack of consensus about the kinetics of hydrocarbon formation in source rocks, expulsion timing and how the resulting hydrocarbons escape from or are retained in the source rocks motivates further investigation. In particular, many mechanisms for the transport of hydrocarbons from the source rocks in which they are generated into adjacent rocks with higher permeabilities and smaller capillary entry pressures have been proposed, and a better understanding of this complex process (primary migration) is needed. To characterize these processes it is imperative to use the ...

Panahi, Hamed; Renard, Francois; Mazzini, Adriano; Scheibert, Julien; Dysthe, Dag Kristian; Jamtveit, Bjorn; Malthe-Sørenssen, Anders; Meakin, Paul

2014-01-01T23:59:59.000Z

98

OPTIMIZATION OF INFILL DRILLING IN NATURALLY-FRACTURED TIGHT-GAS RESERVOIRS  

SciTech Connect (OSTI)

A major goal of industry and the U.S. Department of Energy (DOE) fossil energy program is to increase gas reserves in tight-gas reservoirs. Infill drilling and hydraulic fracture stimulation in these reservoirs are important reservoir management strategies to increase production and reserves. Phase II of this DOE/cooperative industry project focused on optimization of infill drilling and evaluation of hydraulic fracturing in naturally-fractured tight-gas reservoirs. The cooperative project involved multidisciplinary reservoir characterization and simulation studies to determine infill well potential in the Mesaverde and Dakota sandstone formations at selected areas in the San Juan Basin of northwestern New Mexico. This work used the methodology and approach developed in Phase I. Integrated reservoir description and hydraulic fracture treatment analyses were also conducted in the Pecos Slope Abo tight-gas reservoir in southeastern New Mexico and the Lewis Shale in the San Juan Basin. This study has demonstrated a methodology to (1) describe reservoir heterogeneities and natural fracture systems, (2) determine reservoir permeability and permeability anisotropy, (3) define the elliptical drainage area and recoverable gas for existing wells, (4) determine the optimal location and number of new in-fill wells to maximize economic recovery, (5) forecast the increase in total cumulative gas production from infill drilling, and (6) evaluate hydraulic fracture simulation treatments and their impact on well drainage area and infill well potential. Industry partners during the course of this five-year project included BP, Burlington Resources, ConocoPhillips, and Williams.

Lawrence W. Teufel; Her-Yuan Chen; Thomas W. Engler; Bruce Hart

2004-05-01T23:59:59.000Z

99

Petrophysical rock classification in the Cotton Valley tight-gas sandstone reservoir with a clustering  

E-Print Network [OSTI]

Petrophysical rock classification in the Cotton Valley tight-gas sandstone reservoir classification method with field data acquired in the Cotton Valley tight-gas sandstone reservoir located

Torres-Verdín, Carlos

100

Two-level, horizontal free face mining system for in situ oil shale retorts  

SciTech Connect (OSTI)

A method is described for forming an in-situ oil shale retort within a retort site in a subterranean formation containing oil shale, such an in-situ oil shale retort containing a fragmented permeable mass of formation particles containing oil shale formed within upper, lower and side boundaries of an in-situ oil shale retort site.

Cha, C.Y.; Ricketts, T.E.

1986-09-16T23:59:59.000Z

Note: This page contains sample records for the topic "tight oil formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Design and Implementation of Energized Fracture Treatment in Tight Gas Sands  

SciTech Connect (OSTI)

Hydraulic fracturing is essential for producing gas and oil at an economic rate from low permeability sands. Most fracturing treatments use water and polymers with a gelling agent as a fracturing fluid. The water is held in the small pore spaces by capillary pressure and is not recovered when drawdown pressures are low. The un-recovered water leaves a water saturated zone around the fracture face that stops the flow of gas into the fracture. This is a particularly acute problem in low permeability formations where capillary pressures are high. Depletion (lower reservoir pressures) causes a limitation on the drawdown pressure that can be applied. A hydraulic fracturing process can be energized by the addition of a compressible, sometimes soluble, gas phase into the treatment fluid. When the well is produced, the energized fluid expands and gas comes out of solution. Energizing the fluid creates high gas saturation in the invaded zone, thereby facilitating gas flowback. A new compositional hydraulic fracturing model has been created (EFRAC). This is the first model to include changes in composition, temperature, and phase behavior of the fluid inside the fracture. An equation of state is used to evaluate the phase behavior of the fluid. These compositional effects are coupled with the fluid rheology, proppant transport, and mechanics of fracture growth to create a general model for fracture creation when energized fluids are used. In addition to the fracture propagation model, we have also introduced another new model for hydraulically fractured well productivity. This is the first and only model that takes into account both finite fracture conductivity and damage in the invaded zone in a simple analytical way. EFRAC was successfully used to simulate several fracture treatments in a gas field in South Texas. Based on production estimates, energized fluids may be required when drawdown pressures are smaller than the capillary forces in the formation. For this field, the minimum CO{sub 2} gas quality (volume % of gas) recommended is 30% for moderate differences between fracture and reservoir pressures (2900 psi reservoir, 5300 psi fracture). The minimum quality is reduced to 20% when the difference between pressures is larger, resulting in additional gas expansion in the invaded zone. Inlet fluid temperature, flow rate, and base viscosity did not have a large impact on fracture production. Finally, every stage of the fracturing treatment should be energized with a gas component to ensure high gas saturation in the invaded zone. A second, more general, sensitivity study was conducted. Simulations show that CO{sub 2} outperforms N{sub 2} as a fluid component because it has higher solubility in water at fracturing temperatures and pressures. In fact, all gas components with higher solubility in water will increase the fluid's ability to reduce damage in the invaded zone. Adding methanol to the fracturing solution can increase the solubility of CO{sub 2}. N{sub 2} should only be used if the gas leaks-off either during the creation of the fracture or during closure, resulting in gas going into the invaded zone. Experimental data is needed to determine if the gas phase leaks-off during the creation of the fracture. Simulations show that the bubbles in a fluid traveling across the face of a porous medium are not likely to attach to the surface of the rock, the filter cake, or penetrate far into the porous medium. In summary, this research has created the first compositional fracturing simulator, a useful tool to aid in energized fracture design. We have made several important and original conclusions about the best practices when using energized fluids in tight gas sands. The models and tools presented here may be used in the future to predict behavior of any multi-phase or multi-component fracturing fluid system.

Mukul Sharma; Kyle Friehauf

2009-12-31T23:59:59.000Z

102

The geomechanics of CO2 storage in deep sedimentary formations  

E-Print Network [OSTI]

formations, including oil and gas reservoirs and deep salineGCS consist mainly of oil and gas reservoirs and deep salinebelow the caprock in oil and gas reservoirs and deep saline

Rutqvist, J.

2013-01-01T23:59:59.000Z

103

The utilization of the microflora indigenous to and present in oil-bearing formations to selectively plug the more porous zones thereby increasing oil recovery during waterflooding, Class 1  

SciTech Connect (OSTI)

The objectives of this project were (1) to demonstrate the in situ microbial population in a fluvial dominated deltaic reservoir could be induced to proliferate to such an extent that they will selectively restrict flow in the more porous zones in the reservoir thereby forcing injection water to flow through previously unswept areas thus improving the sweep efficiency of the waterflood and (2) to obtain scientific validation that microorganisms are indeed responsible for the increased oil recovery. One expected outcome of this new technology was the prolongation of economical life of the reservoir, i.e. economical oil recovery should continue for much longer periods in areas of the reservoir subjected to the MPPM technology than it would if it followed its historic trend.

Stephens, James O.; Brown, Lewis R.; Vadie, A. Alex

2000-02-02T23:59:59.000Z

104

IMPROVING SANDSTONE MATRIX STIMULATION OF OIL  

E-Print Network [OSTI]

IMPROVING SANDSTONE MATRIX STIMULATION OF OIL WELLS BY GAS PRECONDITIONING M. A. Aggour, M. Al, Dhahran, Saudi Arabia ABSTRACT Experience has shown that for sandstone formations, oil wells respond to matrix acidizing in a different manner as compared to gas wells. For oil wells, the improvement

Abu-Khamsin, Sidqi

105

Tight Oklahoma gas sands remain an attractive play  

SciTech Connect (OSTI)

The Cherokee tight gas sands of Oklahoma remain an attractive play because of improvements in drilling and completion practices and actions by the Oklahoma Corporation Commission (OCC) that allow separate allowables for new wells. The expired federal tax credits for tight gas wells have not been the only reason for increased activity. Since decontrol of most regulated gas pricing and since 1986, the number of wells drilled and gas production per well have been increasing in the cherokee area while overall drilling in Oklahoma has decreased. These conclusions are based on wells as categorized by permit date and not by the spud, completion, or first production date. A few wells outside but adjacent to the Cherokee area may have been included, although, their impact on the conclusions is considered nominal. The paper discusses the tight gas credit, proration units, the concept of separate allowables, costs, completion efficiency, and the economic outlook for this area.

Cartwright, G.L. [Marathon Oil Co., Oklahoma City, OK (United States)

1995-04-24T23:59:59.000Z

106

Autonomous Helicopter Formation using Model Predictive Control  

E-Print Network [OSTI]

Autonomous Helicopter Formation using Model Predictive Control Hoam Chung and S. Shankar Sastry are required to fly in tight formations and under harsh conditions. The starting point for safe autonomous into a formation, so that each vehicle can safely maintain sufficient space between it and all other vehicles

Sastry, S. Shankar

107

Asphaltenes as indicators of the geochemical history of oil  

SciTech Connect (OSTI)

A method of decomposition of native asphaltenes from naphthenic oils is proposed as a source of information on the geochemical history of the oils. It is demonstrated that formation of naphthenic oils occurs in nature through biodegradation of primary paraffinic oils. The relative abundances of structural groups and individual saturated hydrocarbons obtained from the asphaltenes in naphthenic oils is similar to the relative abundance of hydrocarbons in paraffinic oils, which are their genetic precursors. (JMT)

Aref'yev, O.A.; Makushina, V.M.; Petrov, A.A.

1982-06-01T23:59:59.000Z

108

Completion methods in thick, multilayered tight gas sands  

E-Print Network [OSTI]

sands have been proposed in the petroleum literature. Kuuskraa, V.A. and Haas, M.R. proposed that ?tight gas is merely an arbitrary delineation of a natural geologic continuity in the permeability of a reservoir rock. The dominant characteristic...-situ permeability as low as 0.001 mD?6. 10 Misra, R. proposed that ?tight gas sands are reservoirs that have low permeability (< 0.1 mD) and which cannot be produced at economic flow rates or do not produce economic volumes without the assistance from...

Ogueri, Obinna Stavely

2009-05-15T23:59:59.000Z

109

Qubits from tight knots and bent nano-bars  

E-Print Network [OSTI]

We propose a novel mechanism for creating a qubit based on a tight knot, that is a nano-quantum wire system so small and so cold as to be quantum coherent with respect to curvature-induced effects. To establish tight knots as legitimate candidates for qubits, we propose an effective curvature-induced potential that produces the two-level system and identify the tunnel coupling between the two local states. We propose also a different design of nano-mechanical qubit based on twisted nano-rods. We describe how both devices can be manipulated. Also we outline possible decoherence channels, detection schemes and experimental setups.

Victor Atanasov; Rossen Dandoloff

2008-03-21T23:59:59.000Z

110

Water issues associated with heavy oil production.  

SciTech Connect (OSTI)

Crude oil occurs in many different forms throughout the world. An important characteristic of crude oil that affects the ease with which it can be produced is its density and viscosity. Lighter crude oil typically can be produced more easily and at lower cost than heavier crude oil. Historically, much of the nation's oil supply came from domestic or international light or medium crude oil sources. California's extensive heavy oil production for more than a century is a notable exception. Oil and gas companies are actively looking toward heavier crude oil sources to help meet demands and to take advantage of large heavy oil reserves located in North and South America. Heavy oil includes very viscous oil resources like those found in some fields in California and Venezuela, oil shale, and tar sands (called oil sands in Canada). These are described in more detail in the next chapter. Water is integrally associated with conventional oil production. Produced water is the largest byproduct associated with oil production. The cost of managing large volumes of produced water is an important component of the overall cost of producing oil. Most mature oil fields rely on injected water to maintain formation pressure during production. The processes involved with heavy oil production often require external water supplies for steam generation, washing, and other steps. While some heavy oil processes generate produced water, others generate different types of industrial wastewater. Management and disposition of the wastewater presents challenges and costs for the operators. This report describes water requirements relating to heavy oil production and potential sources for that water. The report also describes how water is used and the resulting water quality impacts associated with heavy oil production.

Veil, J. A.; Quinn, J. J.; Environmental Science Division

2008-11-28T23:59:59.000Z

111

Optimized production strategies for improved oil recovery in a caronate oil field.  

E-Print Network [OSTI]

??LCC field is a conventional oil field producing from the Smackover carbonate formation at a depth around 12,000 ft and was discovered in the state… (more)

Gan, Quan

2012-01-01T23:59:59.000Z

112

Stress-dependent permeability on tight gas reservoirs.  

E-Print Network [OSTI]

??People in the oil and gas industry sometimes do not consider pressure-dependent permeability in reservoir performance calculations. It basically happens due to lack of lab… (more)

Rodriguez, Cesar Alexander

2005-01-01T23:59:59.000Z

113

Oil shale retorting method and apparatus  

SciTech Connect (OSTI)

Disclosed is an improved method and apparatus for the retorting of oil shale and the formation of spent oil shale having improved cementation properties. The improved method comprises passing feed comprising oil shale to a contacting zone wherein the feed oil shale is contacted with heat transfer medium to heat said shale to retorting temperature. The feed oil shale is substantially retorted to form fluid material having heating value and forming partially spent oil shale containing carbonaceous material. At least a portion of the partially spent oil shale is passed to a combustion zone wherein the partially spent oil shale is contacted with oxidizing gas comprising oxygen and steam to substantially combust carbonaceous material forming spent oil shale having improved cementation properties.

York, E.D.

1983-03-22T23:59:59.000Z

114

Integrated Core-based Sequence Stratigraphy, Chemostratigraphy and Diagenesis of the Lower Cretaceous (Barremian–Aptian), Biyadh and Shu'aiba Formations, a Giant Oil Field, Saudi Arabia  

E-Print Network [OSTI]

This study provides the most updated stratigraphic, depositional and diagenetic histories of the Early Cretaceous Biyadh and Shu'aiba formations. Carbon isotope data were integrated with core descriptions and well logs to define the age model beyond...

Alghamdi, Nasser Mohammad S.

2013-07-29T23:59:59.000Z

115

Waterflood and Enhanced Oil Recovery Studies using Saline Water and Dilute Surfactants in Carbonate Reservoirs  

E-Print Network [OSTI]

to decrease the residual oil saturation. In calcareous rocks, water from various resources (deep formation, seawater, shallow beds, lakes and rivers) is generally injected in different oil fields. The ions interactions between water molecules, salts ions, oil...

Alotaibi, Mohammed

2012-02-14T23:59:59.000Z

116

MERCURY EMISSIONS FROM A SIMULATED IN-SITU OIL SHALE RETORT  

E-Print Network [OSTI]

from a Simulated In-Situ Oil Shale J. P. Fox, J. J. Duvall,of elements in rich oil shales of the Green River Formation,E . • 1977; Mercury in Oil Shale from the Mahogany Zone the

Fox, J. P.

2012-01-01T23:59:59.000Z

117

MERCURY EMISSIONS FROM A SIMULATED IN-SITU OIL SHALE RETORT  

E-Print Network [OSTI]

from a Simulated In-Situ Oil Shale J. P. Fox, J. J. Duvall,of elements in rich oil shales of the Green River Formation,V. E . • 1977; Mercury in Oil Shale from the Mahogany Zone

Fox, J. P.

2012-01-01T23:59:59.000Z

118

Advanced Hydraulic Fracturing Technology for Unconventional Tight Gas Reservoirs  

SciTech Connect (OSTI)

The objectives of this project are to develop and test new techniques for creating extensive, conductive hydraulic fractures in unconventional tight gas reservoirs by statistically assessing the productivity achieved in hundreds of field treatments with a variety of current fracturing practices ranging from 'water fracs' to conventional gel fracture treatments; by laboratory measurements of the conductivity created with high rate proppant fracturing using an entirely new conductivity test - the 'dynamic fracture conductivity test'; and by developing design models to implement the optimal fracture treatments determined from the field assessment and the laboratory measurements. One of the tasks of this project is to create an 'advisor' or expert system for completion, production and stimulation of tight gas reservoirs. A central part of this study is an extensive survey of the productivity of hundreds of tight gas wells that have been hydraulically fractured. We have been doing an extensive literature search of the SPE eLibrary, DOE, Gas Technology Institute (GTI), Bureau of Economic Geology and IHS Energy, for publicly available technical reports about procedures of drilling, completion and production of the tight gas wells. We have downloaded numerous papers and read and summarized the information to build a database that will contain field treatment data, organized by geographic location, and hydraulic fracture treatment design data, organized by the treatment type. We have conducted experimental study on 'dynamic fracture conductivity' created when proppant slurries are pumped into hydraulic fractures in tight gas sands. Unlike conventional fracture conductivity tests in which proppant is loaded into the fracture artificially; we pump proppant/frac fluid slurries into a fracture cell, dynamically placing the proppant just as it occurs in the field. From such tests, we expect to gain new insights into some of the critical issues in tight gas fracturing, in particular the roles of gel damage, polymer loading (water-frac versus gel frac), and proppant concentration on the created fracture conductivity. To achieve this objective, we have designed the experimental apparatus to conduct the dynamic fracture conductivity tests. The experimental apparatus has been built and some preliminary tests have been conducted to test the apparatus.

Stephen Holditch; A. Daniel Hill; D. Zhu

2007-06-19T23:59:59.000Z

119

Analysis of stress sensitivity and its influence on oil production from tight reservoirs  

E-Print Network [OSTI]

Corp. ; Yuquan Cui, Liaohe Oilfield Co. , PetroChina Corp. ;Wang. “Low-permeability oilfield development and pressure-

Lei, Qun; Xiong, Wei; Yuan, Cui; Wu, Yu-Shu

2008-01-01T23:59:59.000Z

120

Table 2. U.S. tight oil plays: production and proved reserves, 2012-13  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1. Summary: Reported provedReal

Note: This page contains sample records for the topic "tight oil formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Technical Options for Processing Additional Light Tight Oil Volumes within the United States  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYear Jan FebThousand CubicinResidualU.S. RefinerEntity-Level

122

Implications of Increasing Light Tight Oil Production for U.S. Refining  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment >7,992000Implications of Increasing

123

Table 2. U.S. tight oil plays: production and proved reserves, 2012-13  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data9c : U.S.Welcome to the1,033Estimated:RealU.S.

124

Implications of Increasing Light Tight Oil Production for U.S. Refining -  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative JumpWilliamsonWoodsonCounty iscomfortNewsAffiliateA-ZGlossary A B C

125

Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of C02 Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales  

SciTech Connect (OSTI)

The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO2 enhanced oil recovery project in the Antelope Shale in Buena Vista Hills Field. The Buena Vista Hills pilot CO2 project will demonstrate the economic viability and widespread applicability of CO2 flooding in fractured siliceous shale reservoirs of the San Joaquin Valley. The research consists of four primary work processes: Reservoir Matrix and Fluid Characterization; Fracture Characterization; Reservoir Modeling and Simulation; and CO2 Pilot Flood and Evaluation. Work done in these areas is subdivided into two phases or budget periods. The first phase of the project will focus on the application of a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work will be used to evaluate how the reservoir will respond to secondary recovery and EOR processes. The second phase of the project will include the implementation and evaluation of an advanced enhanced oil recovery (EOR) pilot in the United Anticline (West Dome) of the Buena Vista Hills Field.

Michael F. Morea

1997-10-24T23:59:59.000Z

126

Estimation of initial reservoir pressure in tight gas sands  

E-Print Network [OSTI]

Major Subject: Petroleum Engineering ESTIMATION OF INITIAL RESERVOIR PRESSURE IN TIGHT GAS SANDS A Thesis by SUSAN ANN LEACH Approved as to style and content by: R. A. Norse (Chairman of Comaittee) A. Wattenbarger (Nember) R. R. Berg (Membe... of the Department of Petroleum Engineering, for his interest and faith during the author's graduate studies. Dr. R. A. Wattenbarger and Dr. R. R. Berg for serving as members of the author's Advisory Committee. TABLE OF CONTENTS ABSTRACT ACKNOWLEDGEMENTS...

Leach, Susan Ann

1984-01-01T23:59:59.000Z

127

The entrainment of oil droplets in flow beneath an oil slick  

E-Print Network [OSTI]

velocity, wind velocity and oil specific gravity, an equilibrium oil thickness will be reached if there is no loss of oil past the barrier. As the velocity is increased, the oil up- stream of the barrier increases in thickness and decreases in for- ward... for any given oil at which droplets are first formed and entrained. Below this speed there is no droplet formation and above this speed the number of droplets formed and the volume of oil entrained increases rapidly. The critical speed for droplet for...

Chao, Chien-Hwa

1973-01-01T23:59:59.000Z

128

Annual Energy Outlook 2014 projects reduced need for U.S. oil imports due to tight oil production growth  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World liquids consumption by region,Purchases211AlabamaAnnual14,

129

Combined Total Amount of Oil and Gas Recovered Daily from the...  

Broader source: Energy.gov (indexed) [DOE]

ODS format Combined Total Amount of Oil and Gas Recovered Daily from the Top Hat and Choke Line oil recovery systems - ODS format Updated through 12:00 AM on July 16, 2010....

130

Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of CO2 Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales, Class III  

SciTech Connect (OSTI)

The primary objective of this project was to conduct advanced reservoir characterization and modeling studies in the Antelope Shale of the Bureau Vista Hills Field. Work was subdivided into two phases or budget periods. The first phase of the project focused on a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work would then be used to evaluate how the reservoir would respond to enhanced oil recovery (EOR) processes such as of CO2 flooding. The second phase of the project would be to implement and evaluate a CO2 in the Buena Vista Hills Field. A successful project would demonstrate the economic viability and widespread applicability of CO2 flooding in siliceous shale reservoirs of the San Joaquin Valley.

Perri, Pasquale R.; Cooney, John; Fong, Bill; Julander, Dale; Marasigan, Aleks; Morea, Mike; Piceno, Deborah; Stone, Bill; Emanuele, Mark; Sheffield, Jon; Wells, Jeff; Westbrook, Bill; Karnes, Karl; Pearson, Matt; Heisler, Stuart

2000-04-24T23:59:59.000Z

131

Research on Oil Recovery Mechanisms in Heavy Oil Reservoirs  

SciTech Connect (OSTI)

The goal of this project is to increase recovery of heavy oils. Towards that goal studies are being conducted in how to assess the influence of temperature and pressure on the absolute and relative permeability to oil and water and on capillary pressure; to evaluate the effect of different reservoir parameters on the in site combustion process; to develop and understand mechanisms of surfactants on for the reduction of gravity override and channeling of steam; and to improve techniques of formation evaluation.

Louis M. Castanier; William E. Brigham

1998-03-31T23:59:59.000Z

132

Oil production response to in situ electrical resistance heating  

E-Print Network [OSTI]

of the electric power through electrical resistance heating with a very small electromagnetic power absorption component. The oil viscosity decreases as the temperature increases thus stimulating oil production. DEDICATION I would like to dedicate this thesis... PROFILE FOR CASE S-2 INTRODUCTION Oil production can be stimulated by applying electrical power to the formation. The electrical power causes a temperature increase that reduces oil viscosity, resulting in increased oil production rates. Electrical...

McDougal, Fred William

1987-01-01T23:59:59.000Z

133

Minimizing casing corrosion in Kuwait oil fields  

SciTech Connect (OSTI)

Corrosion in production strings is a well known problem in Kuwait oil fields. Failure to remedy the affected wells results mainly in undesirable dump flooding of the oil reservoirs, or in oil seepage and hydrocarbon contamination in shallow water bearing strata. Any of these situations (unless properly handled) leads to a disastrous waste of oil resources. This study discusses casing leaks in Kuwait oil fields, the nature of the formations opposite the leaks and their contained fluids, and the field measures that can be adopted in order to avoid casing leak problems.

Agiza, M.N.; Awar, S.A.

1983-03-01T23:59:59.000Z

134

Method for forming an in-situ oil shale retort in differing grades of oil shale  

SciTech Connect (OSTI)

An in-situ oil shale retort is formed in a subterranean formation containing oil shale. The formation comprises at least one region of relatively richer oil shale and another region of relatively leaner oil shale. According to one embodiment, formation is excavated from within a retort site for forming at least one void extending horizontally across the retort site, leaving a portion of unfragmented formation including the regions of richer and leaner oil shale adjacent such a void space. A first array of vertical blast holes are drilled in the regions of richer and leaner oil shale, and a second array of blast holes are drilled at least in the region of richer oil shale. Explosive charges are placed in portions of the blast holes in the first and second arrays which extend into the richer oil shale, and separate explosive charges are placed in portions of the blast holes in the first array which extend into the leaner oil shale. This provides an array with a smaller scaled depth of burial (sdob) and closer spacing distance between explosive charges in the richer oil shale than the sdob and spacing distance of the array of explosive charges in the leaner oil shale. The explosive charges are detonated for explosively expanding the regions of richer and leaner oil shale toward the horizontal void for forming a fragmented mass of particles. Upon detonation of the explosive, greater explosive energy is provided collectively by the explosive charges in the richer oil shale, compared with the explosive energy produced by the explosive charges in the leaner oil shale, resulting in comparable fragmentation in both grades of oil shale.

Ricketts, T.E.

1984-04-24T23:59:59.000Z

135

ADVANCED FRACTURING TECHNOLOGY FOR TIGHT GAS: AN EAST TEXAS FIELD DEMONSTRATION  

SciTech Connect (OSTI)

The primary objective of this research was to improve completion and fracturing practices in gas reservoirs in marginal plays in the continental United States. The Bossier Play in East Texas, a very active tight gas play, was chosen as the site to develop and test the new strategies for completion and fracturing. Figure 1 provides a general location map for the Dowdy Ranch Field, where the wells involved in this study are located. The Bossier and other tight gas formations in the continental Unites States are marginal plays in that they become uneconomical at gas prices below $2.00 MCF. It was, therefore, imperative that completion and fracturing practices be optimized so that these gas wells remain economically attractive. The economic viability of this play is strongly dependent on the cost and effectiveness of the hydraulic fracturing used in its well completions. Water-fracs consisting of proppant pumped with un-gelled fluid is the type of stimulation used in many low permeability reservoirs in East Texas and throughout the United States. The use of low viscosity Newtonian fluids allows the creation of long narrow fractures in the reservoir, without the excessive height growth that is often seen with cross-linked fluids. These low viscosity fluids have poor proppant transport properties. Pressure transient tests run on several wells that have been water-fractured indicate a long effective fracture length with very low fracture conductivity even when large amounts of proppant are placed in the formation. A modification to the water-frac stimulation design was needed to transport proppant farther out into the fracture. This requires suspending the proppant until the fracture closes without generating excessive fracture height. A review of fracture diagnostic data collected from various wells in different areas (for conventional gel and water-fracs) suggests that effective propped lengths for the fracture treatments are sometimes significantly shorter than those predicted by fracture models. There was no accepted optimal method for conducting hydraulic fracturing in the Bossier. Each operator used a different approach. Anadarko, the most active operator in the play, had tested at least four different kinds of fracture treatments. The ability to arrive at an optimal fracturing program was constrained by the lack of adequate fracture models to simulate the fracturing treatment, and an inability to completely understand the results obtained in previous fracturing programs. This research aimed at a combined theoretical, experimental and field-testing program to improve fracturing practices in the Bossier and other tight gas plays.

Mukul M. Sharma

2005-03-01T23:59:59.000Z

136

Entangled webs: Tight bound for symmetric sharing of entanglement  

E-Print Network [OSTI]

Quantum entanglement cannot be unlimitedly shared among arbitrary number of qubits. Larger the number of entangled pairs in an N-qubit system, smaller the degree of bi-partite entanglement is. We analyze a system of N qubits in which an arbitrary pair of particles is entangled. We show that the maximum degree of entanglement (measured in the concurrence) between any pair of qubits is 2/N. This tight bound can be achieved when the qubits are prepared in a pure symmetric (with respect to permutations) state with just one qubit in the basis state |0> and the others in the basis state |1>.

Masato Koashi; Vladimir Buzek; Nobuyuki Imoto

2000-07-24T23:59:59.000Z

137

Effects of flow paths on tight gas well performance  

E-Print Network [OSTI]

, r? (3-10) Derivative is then defined as, ~PwD d(inr. ) (3-1 I) The late radial flow regime will develop when the pressure transient reaches the top and bottom boundaries. At that time the pressure transient will stop moving in vertical... 2001 Major Subject: Petroleum Engineering EFFECTS OF FLOW PATHS ON TIGHT GAS WELL PERFORMANCE A Thesis by SAMEER VASANT GANPULE Submitted to Texas ARM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE...

Ganpule, Sameer Vasant

2001-01-01T23:59:59.000Z

138

Experimental study of mechanisms of improving oil recovery in Shale.  

E-Print Network [OSTI]

??ABSTRACT Extensive laboratory work was done to investigate some of the important mechanisms of improving oil recovery in Shale formations. The objective of this research… (more)

Onyenwere, Emmanuel

2012-01-01T23:59:59.000Z

139

Essays on Macroeconomics and Oil  

E-Print Network [OSTI]

the Oil Industry . . . . . . . . . . . . . . . . . . . . . .in the Venezuelan Oil Industry . . . . . . . . . . . . .and Productivity: Evidence from the Oil Industry . .

CAKIR, NIDA

2013-01-01T23:59:59.000Z

140

Essays on Macroeconomics and Oil  

E-Print Network [OSTI]

Oil Production . . . . . . . . . . . . . . . . . . . . . . . . . . .Oil Production in Venezuela and Mexico . . . . . . . . . .Oil Production and Productivity in Venezuela and

CAKIR, NIDA

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "tight oil formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Oil & Natural Gas Technology DOE Award No.: FWP 49462  

E-Print Network [OSTI]

increasingly looked to other unconventional sources of natural gas, such as coal bed methane, tight gas sands wells drilled into porous hydrocarbon-containing formations. During the past decade, operators have produce enough natural gas from shale formations to make the wells economically viable. Because

Boyer, Elizabeth W.

142

In situ bioremediation of petroleum in tight soils using hydraulic fracturing  

SciTech Connect (OSTI)

This case study evaluated the effectiveness of in situ bioremediation of petroleum hydrocarbons in tight soils. The study area was contaminated with cutting oil from historic releases from underground piping, probably dating back to the 1940`s. Previous site assessment work indicated that the only chemicals of concern were total petroleum hydrocarbons (TPH). Two fracture sets (stacks) were installed at different locations to evaluate this in situ bioremediation technique under passive and active conditions. Several injection wells were drilled at both locations to provide entry for hydraulic fracturing equipment. A series of circular, horizontal fractures 40 to 50 feet in diameter were created at different depths, based on the vertical extent of contamination at the site. The injection wells were screened across the contaminated interval which effectively created underground bioreactors. Soils were sampled and analyzed for total petroleum hydrocarbons on five separate occasions over the nine-month study. Initial average soil concentrations of total petroleum hydrocarbons of 5,700 mg/kg were reduced to 475 mg/kg within nine months of hydraulic fracturing. The analytical results indicate an average reduction in TPH at the sample locations of 92 percent over the nine-month study period. This project demonstrates that in situ bioremediation using hydraulic fracturing has significant potential as a treatment technology for petroleum contaminated soils.

Stavnes, S. [Environmental Protection Agency, Denver, CO (United States); Yorke, C.A. [Foremost Solutions, Inc., Golden, CO (United States); Thompson, L. [Pintail Systems, Inc., Aurora, CO (United States)

1996-12-31T23:59:59.000Z

143

A 4D Synchrotron X-Ray-Tomography Study of the Formation of Hydrocarbon-  

E-Print Network [OSTI]

hydrocarbons and the growing production of hydrocarbons from low-permeability tight rocks. Quantitative models, University of Oslo, Idaho National Laboratory, and Institute for Energy Technology Summary Recovery of oil from oil shales and the natural primary migration of hydrocarbons are closely related processes

Mazzini, Adriano

144

MANAGING TIGHT BINDING RECEPTORS FOR NEW SPEARATIONS TECHNOLOGIES  

SciTech Connect (OSTI)

Much of the earth's pollution involves compounds of the metallic elements, including actinides, strontium, cesium, technetium, and RCRA metals. Metal ions bind to molecules called ligands, which are the molecular tools that can manipulate the metal ions under most conditions. This DOE-EMSP sponsored program strives (1) to provide the foundations for using the most powerful ligands in transformational separations technologies and (2) to produce seminal examples of their applications to separations appropriate to the DOE EM mission. These ultra tight-binding ligands can capture metal ions in the most competitive of circumstances (from mineralized sites, lesser ligands, and even extremely dilute solutions), but they react so slowly that they are useless in traditional separations methodologies. Two attacks on this problem are underway. The first accommodates to the challenging molecular lethargy by developing a seminal slow separations methodology termed the soil poultice. The second designs ligands that are only tight-binding while wrapped around the targeted metal ion, but can be put in place by switch-binding and removed by switch-release. We envision a kind of molecular switching process to accelerate the union between metal ion and tight-binding ligand. Molecular switching processes are suggested for overcoming the slow natural equilibration rate with which ultra tight-binding ligands combine with metal ions. Ligands that bind relatively weakly combine with metal ions rapidly, so the trick is to convert a ligand from a weak, rapidly binding species to a powerful, slow releasing ligand--during the binding of the ligand to the metal ion. Such switch-binding ligands must react with themselves, and the reaction must take place under the influence of the metal ion. For example, our generation 1 ligands showed that a well-designed linear ligand with ends that readily combine, forms a cyclic molecule when it wraps around a metal ion. Our generation 2 ligands are even more interesting. They convert from rings to structures that wrap around a metal ion to form a cage. These ligands are called cryptands. Switch release is accomplished by photolytic cleavage of a bond to convert a cyclic ligand into a linear ligand or to break similar bonds in a cryptate. Our studies have demonstrated switch binding and switch release with cryptates of calcium. These remarkable cyclic ligands and cage-like ligands are indeed tight-binding and may, in principle, be incorporated in various separations methodologies, including the soil poultice. The soil poultice mimics the way in which microbes secrete extremely powerful ligands into the soil in order to harvest iron. The cellular membrane of the microbe recognizes the iron/ligand complex and admits it into the cell. The soil poultice uses molecularly imprinted polymers (MIPs) to play the role of the cellular membrane. Imprinting involves creation of the polymer in the presence of the metal/ligand complex. In principle, a well design ligand/MIP combination can be highly selective toward almost any targeted metal ion. The principles for that design are the focus of these investigations. An imprinting molecule can interact with the polymer through any, some, or all of the so-called supramolecular modes; e.g., hydrogen bonding, electrostatic charge, minor ligand bonding, Pi-Pi stacking, and hydrophobic and van der Waals interactions. Historically these modes of binding have given MIPs only small re-binding capacities and very limited selectivities. This program has shown that each mode of interaction can be made more powerful than previously suspected and that combinations of different supramolecular interaction modes can produce remarkable synergisms. The results of this systematic study provide a firm foundation for tailoring molecular imprinted polymers for reclamation of specific metal ion, including those important to the DOE EM mission.

DARYLE H BUSCH RICHARD S GIVENS

2004-12-10T23:59:59.000Z

145

ADVANCED RESERVOIR CHARACTERIZATION IN THE ANTELOPE SHALE TO ESTABLISH THE VIABILITY OF CO2 ENHANCED OIL RECOVERY IN CALIFORNIA'S MONTEREY FORMATION SILICEOUS SHALES  

SciTech Connect (OSTI)

This report describes the evaluation, design, and implementation of a DOE funded CO{sub 2} pilot project in the Lost Hills Field, Kern County, California. The pilot consists of four inverted (injector-centered) 5-spot patterns covering approximately 10 acres, and is located in a portion of the field, which has been under waterflood since early 1992. The target reservoir for the CO{sub 2} pilot is the Belridge Diatomite. The pilot location was selected based on geologic considerations, reservoir quality and reservoir performance during the waterflood. A CO{sub 2} pilot was chosen, rather than full-field implementation, to investigate uncertainties associated with CO{sub 2} utilization rate and premature CO{sub 2} breakthrough, and overall uncertainty in the unproven CO{sub 2} flood process in the San Joaquin Valley. A summary of the design and objectives of the CO{sub 2} pilot are included along with an overview of the Lost Hills geology, discussion of pilot injection and production facilities, and discussion of new wells drilled and remedial work completed prior to commencing injection. Actual CO{sub 2} injection began on August 31, 2000 and a comprehensive pilot monitoring and surveillance program has been implemented. Since the initiation of CO{sub 2} injection, the pilot has been hampered by excessive sand production in the pilot producers due to casing damage related to subsidence and exacerbated by the injected CO{sub 2}. Therefore CO{sub 2} injection was very sporadic in 2001 and 2002 and we experienced long periods of time with no CO{sub 2} injection. As a result of the continued mechanical problems, the pilot project was terminated on January 30, 2003. This report summarizes the injection and production performance and the monitoring results through December 31, 2002 including oil geochemistry, CO{sub 2} injection tracers, crosswell electromagnetic surveys, crosswell seismic, CO{sub 2} injection profiling, cased hole resistivity, tiltmetering results, and corrosion monitoring results. Although the Lost Hills CO{sub 2} pilot was not successful, the results and lessons learned presented in this report may be applicable to evaluate and design other potential San Joaquin Valley CO{sub 2} floods.

Pasquale R. Perri

2003-05-15T23:59:59.000Z

146

William L. Ellsworth January 25, 2013  

E-Print Network [OSTI]

of the process to stimulate the production of natural gas and oil from tight shale formations, or by disposal

Heaton, Thomas H.

147

Ischemic preconditioning enhances integrity of coronary endothelial tight junctions  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Cardiac tight junctions are present between coronary endothelial cells. Black-Right-Pointing-Pointer Ischemic preconditioning preserves the structural and functional integrity of tight junctions. Black-Right-Pointing-Pointer Myocardial edema is prevented in hearts subjected to ischemic preconditioning. Black-Right-Pointing-Pointer Ischemic preconditioning enhances translocation of ZO-2 from cytosol to cytoskeleton. -- Abstract: Ischemic preconditioning (IPC) is one of the most effective procedures known to protect hearts against ischemia/reperfusion (IR) injury. Tight junction (TJ) barriers occur between coronary endothelial cells. TJs provide barrier function to maintain the homeostasis of the inner environment of tissues. However, the effect of IPC on the structure and function of cardiac TJs remains unknown. We tested the hypothesis that myocardial IR injury ruptures the structure of TJs and impairs endothelial permeability whereas IPC preserves the structural and functional integrity of TJs in the blood-heart barrier. Langendorff hearts from C57BL/6J mice were prepared and perfused with Krebs-Henseleit buffer. Cardiac function, creatine kinase release, and myocardial edema were measured. Cardiac TJ function was evaluated by measuring Evans blue-conjugated albumin (EBA) content in the extravascular compartment of hearts. Expression and translocation of zonula occludens (ZO)-2 in IR and IPC hearts were detected with Western blot. A subset of hearts was processed for the observation of ultra-structure of cardiac TJs with transmission electron microscopy. There were clear TJs between coronary endothelial cells of mouse hearts. IR caused the collapse of TJs whereas IPC sustained the structure of TJs. IR increased extravascular EBA content in the heart and myocardial edema but decreased the expression of ZO-2 in the cytoskeleton. IPC maintained the structure of TJs. Cardiac EBA content and edema were reduced in IPC hearts. IPC enhanced the translocation of ZO-2 from cytosol to cytoskeleton. In conclusion, TJs occur in normal mouse heart. IPC preserves the integrity of TJ structure and function that are vulnerable to IR injury.

Li, Zhao [Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007 (United States)] [Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007 (United States); Jin, Zhu-Qiu, E-mail: zhu-qiu.jin@sdstate.edu [Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007 (United States)] [Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007 (United States)

2012-08-31T23:59:59.000Z

148

Possible energy effects of a US ban on Libyan oil imports  

SciTech Connect (OSTI)

Under current slack market conditions, a ban on trade with Libya is not likely to have a major impact on US oil supplies or prices. Current US oil imports from Libya are small, and oil is readily available from other sources. Libya could experience a temporary loss of oil revenues until it found new customers. Tight market conditions - unlikely in 1982 - would maximize the potential adverse effects on the United States and minimize those on Libya. US oil companies - both those producing and refining Libyan oil - are more likely to feel the adverse effects of a trade ban than the United States as a whole. Although a ban would probably prevent direct imports of Libyan oil from entering the United States, some Libyan oil could still enter the country as products refined elsewhere.

Peach, J.D.

1982-02-24T23:59:59.000Z

149

Bioconversion of Heavy oil.  

E-Print Network [OSTI]

??70 % of world?s oil reservoirs consist of heavy oil, and as the supply of conventional oil decreases, researchers are searching for new technologies to… (more)

Steinbakk, Sandra

2011-01-01T23:59:59.000Z

150

5 World Oil Trends WORLD OIL TRENDS  

E-Print Network [OSTI]

5 World Oil Trends Chapter 1 WORLD OIL TRENDS INTRODUCTION In considering the outlook for California's petroleum supplies, it is important to give attention to expecta- tions of what the world oil market. Will world oil demand increase and, if so, by how much? How will world oil prices be affected

151

Effect of confining pressure on pore volume in tight sandstones  

SciTech Connect (OSTI)

The effect of confining pressure on the pore volume of some tight sandstones from the Uinta Basin, Utah, was investigated. A new method based on the pressure-volume relationships of a gas was developed and used to measure pore volume reduction. The results were compared with the results obtained using the more common method that involves the measurement of liquid expelled from a saturated core and were found to be in good agreement. Pore volume compressibility of the samples studies is in the range of values reported by other investigators and ranges from 2.0 x 10/sup -6/ to 1.3 x 10/sup -5/ pv/pv/psi at a confining pressure of 5,000 psi.

Sampath, K.

1982-05-01T23:59:59.000Z

152

Impact of Tight Energy Markets on Industrial Energy Planning  

E-Print Network [OSTI]

t in Oi l Prod u c t i o n ( b p d ) - 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000 Sh ut in G a s Pro d u ct io n (M M c f / d ) Ivan Rit Wilma Katrina Source: ACEEE from MMS (2006) data. EIA 2006). These disruptions came while...IMPACT OF TIGHT ENERGY MARKETS ON INDUSTRIAL ENERGY PLANNING R. NEAL ELLIOTT, PH.D., P.E., INDUSTRIAL PROGRAM DIRECTOR, AMERICAN COUNCIL FOR AN ENERGY-EFFICIENT ECONOMY, WASHINGTON, D.C. ABSTRACT The past five years have seen growing...

Elliott, R. N.

2006-01-01T23:59:59.000Z

153

Methods and apparatus for measuring the tightness of enclosures  

DOE Patents [OSTI]

Disclosed are methods and apparatus for measuring tightness of an enclosure such as a building by utilizing alternating pressurization techniques. One method comprises providing apparatus capable of causing an internal volume change for the enclosure, the apparatus including a means for determining the instantaneous volume change, and a means for determining the instantaneous pressure within the enclosure. The apparatus is operated within the enclosure to change the volume thereof, and at least one of the frequency and the displacement is adjusted to achieve a root mean square pressure in the enclosure approximately equal to a reference pressure. At that pressure, the leakage of the enclosure is determined from the instantaneous displacement and instantaneous pressure values.

Modera, Mark P. (3815 Brighton Ave., Oakland, CA 94602); Sherman, Max H. (461 Hudson St., Oakland, CA 94618)

1987-01-13T23:59:59.000Z

154

Methods and apparatus for measuring the tightness of enclosures  

DOE Patents [OSTI]

Disclosed are methods and apparatus for measuring tightness of an enclosure such as a building by utilizing alternating pressurization techniques. One method comprises providing apparatus capable of causing an internal volume change for the enclosure, the apparatus including a means for determining the instantaneous volume change, and a means for determining the instantaneous pressure within the enclosure. The apparatus is operated within the enclosure to change the volume thereof, and at least one of the frequency and the displacement is adjusted to achieve a root mean square pressure in the enclosure approximately equal to a reference pressure. At that pressure, the leakage of the enclosure is determined from the instantaneous displacement and instantaneous pressure values. 3 figs.

Modera, M.P.; Sherman, M.H.

1987-01-13T23:59:59.000Z

155

Biosurfactant and enhanced oil recovery  

DOE Patents [OSTI]

A pure culture of Bacillus licheniformis strain JF-2 (ATCC No. 39307) and a process for using said culture and the surfactant lichenysin produced thereby for the enhancement of oil recovery from subterranean formations. Lichenysin is an effective surfactant over a wide range of temperatures, pH's, salt and calcium concentrations.

McInerney, Michael J. (Norman, OK); Jenneman, Gary E. (Norman, OK); Knapp, Roy M. (Norman, OK); Menzie, Donald E. (Norman, OK)

1985-06-11T23:59:59.000Z

156

Aqueous flooding methods for tertiary oil recovery  

DOE Patents [OSTI]

A method of aqueous flooding of subterranean oil bearing formation for tertiary oil recovery involves injecting through a well into the formation a low alkaline pH aqueous sodium bicarbonate flooding solution. The flooding solution's pH ranges from about 8.25 to 9.25 and comprises from 0.25 to 5 weight percent and preferably about 0.75 to 3.0 weight percent of sodium bicarbonate and includes a petroleum recovery surfactant of 0.05 to 1.0 weight percent and between 1 and 20 weight percent of sodium chloride. After flooding, an oil and water mixture is withdrawn from the well and the oil is separated from the oil and water mixture.

Peru, Deborah A. (Bartlesville, OK)

1989-01-01T23:59:59.000Z

157

Soda-anthraquinone lignin sacrificial agents in oil recovery  

SciTech Connect (OSTI)

A supplemental oil recovery method comprising injecting into a subterranean formation a fluid containing soda-anthraquinone lignin which is adsorbed by adsorptive sites therein and functions as a sacrificial agent and thereafter injecting a micellar dispersion containing a surfactant into the subterranean formation to displace the oil contained therein.

Dardis, R. E.

1985-04-09T23:59:59.000Z

158

Hydrotreating of oil from eastern oil shale  

SciTech Connect (OSTI)

Oil shale provides one of the major fossil energy reserves for the United States. The quantity of reserves in oil shale is less than the quantity in coal, but is much greater (by at least an order of magnitude) than the quantity of crude oil reserves. With so much oil potentially available from oil shale, efforts have been made to develop techniques for its utilization. In these efforts, hydrotreating has proved to be an acceptable technique for upgrading raw shale oil to make usuable products. The present work demonstrated the use of the hydrotreating technique for upgrading an oil from Indiana New Albany oil shale.

Scinta, J.; Garner, J.W.

1984-01-01T23:59:59.000Z

159

Pressure analysis of the hydromechanical fracture behaviour in stimulated tight sedimentary geothermal reservoirs  

E-Print Network [OSTI]

The future of Geothermal Energy. Massachusetts Institute ofthe exploitation of geothermal energy from such rocks. Wemethod to extract geothermal energy from tight sedimentary

Wessling, S.

2009-01-01T23:59:59.000Z

160

Naturally fractured tight gas reservoir detection optimization. Quarterly report, July 1--September 30, 1994  

SciTech Connect (OSTI)

Research continued in the detection of naturally fractured tight gas reservoirs. Tasks include modeling, data analysis, geologic assessment of the Piceance Basin, and remote sensing.

NONE

1997-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "tight oil formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Improving the Availability and Delivery of Critical Information for Tight Gas Resource Development in the Appalachian Basin  

SciTech Connect (OSTI)

To encourage, facilitate and accelerate the development of tight gas reservoirs in the Appalachian basin, the geological surveys in Pennsylvania and West Virginia collected widely dispersed data on five gas plays and formatted these data into a large database that can be accessed by individual well or by play. The database and delivery system that were developed can be applied to any of the 30 gas plays that have been defined in the basin, but for this project, data compilation was restricted to the following: the Mississippian-Devonian Berea/Murrysville sandstone play and the Upper Devonian Venango, Bradford and Elk sandstone plays in Pennsylvania and West Virginia; and the 'Clinton'/Medina sandstone play in northwestern Pennsylvania. In addition, some data were collected on the Tuscarora Sandstone play in West Virginia, which is the lateral equivalent of the Medina Sandstone in Pennsylvania. Modern geophysical logs are the most common and cost-effective tools for evaluating reservoirs. Therefore, all of the well logs in the libraries of the two surveys from wells that had penetrated the key plays were scanned, generating nearly 75,000 scanned e-log files from more than 40,000 wells. A standard file-naming convention for scanned logs was developed, which includes the well API number, log curve type(s) scanned, and the availability of log analyses or half-scale logs. In addition to well logs, other types of documents were scanned, including core data (descriptions, analyses, porosity-permeability cross-plots), figures from relevant chapters of the Atlas of Major Appalachian Gas Plays, selected figures from survey publications, and information from unpublished reports and student theses and dissertations. Monthly and annual production data from 1979 to 2007 for West Virginia wells in these plays are available as well. The final database also includes digitized logs from more than 800 wells, sample descriptions from more than 550 wells, more than 600 digital photos in 1-foot intervals from 11 cores, and approximately 260 references for these plays. A primary objective of the research was to make data and information available free to producers through an on-line data delivery model designed for public access on the Internet. The web-based application that was developed utilizes ESRI's ArcIMS GIS software to deliver both well-based and play-based data that are searchable through user-originated queries, and allows interactive regional geographic and geologic mapping that is play-based. System tools help users develop their customized spatial queries. A link also has been provided to the West Virginia Geological Survey's 'pipeline' system for accessing all available well-specific data for more than 140,000 wells in West Virginia. However, only well-specific queries by API number are permitted at this time. The comprehensive project web site (http://www.wvgs.wvnet.edu/atg) resides on West Virginia Geological Survey's servers and links are provided from the Pennsylvania Geological Survey and Appalachian Oil and Natural Gas Research Consortium web sites.

Mary Behling; Susan Pool; Douglas Patchen; John Harper

2008-12-31T23:59:59.000Z

162

US Geological Survey publications on western tight gas reservoirs  

SciTech Connect (OSTI)

This bibliography includes reports published from 1977 through August 1988. In 1977 the US Geological Survey (USGS), in cooperation with the US Department of Energy's, (DOE), Western Gas Sands Research program, initiated a geological program to identify and characterize natural gas resources in low-permeability (tight) reservoirs in the Rocky Mountain region. These reservoirs are present at depths of less than 2,000 ft (610 m) to greater than 20,000 ft (6,100 m). Only published reports readily available to the public are included in this report. Where appropriate, USGS researchers have incorporated administrative report information into later published studies. These studies cover a broad range of research from basic research on gas origin and migration to applied studies of production potential of reservoirs in individual wells. The early research included construction of regional well-log cross sections. These sections provide a basic stratigraphic framework for individual areas and basins. Most of these sections include drill-stem test and other well-test data so that the gas-bearing reservoirs can be seen in vertical and areal dimensions. For the convenience of the reader, the publications listed in this report have been indexed by general categories of (1) authors, (2) states, (3) geologic basins, (4) cross sections, (5) maps (6) studies of gas origin and migration, (7) reservoir or mineralogic studies, and (8) other reports of a regional or specific topical nature.

Krupa, M.P.; Spencer, C.W.

1989-02-01T23:59:59.000Z

163

Invisible surface defects in a tight-binding lattice  

E-Print Network [OSTI]

Surface Tamm states arise in one-dimensional lattices from some defects at the lattice edge and their energy generally falls in a gap of the crystal. The defects at the surface change rather generally the phase of propagative Bloch waves scattered off at the lattice edge, so that an observer, far from the surface, can detect the existence of edge defects from e.g. time-of-flight measurements as a delay or an advancement of a Bloch wave packet. Here we show that a special class of defects can sustain surface Tamm states which are invisible, in a sense that reflected waves acquire the same phase as in a fully homogeneous lattice with no surface state. Surface states have an energy embedded into the tight-binding lattice band and show a lower than exponential (algebraic) localization. Like most of bound states in the continuum of von Neumann - Wigner type, such states are fragile and decay into resonance surface states in presence of perturbations or lattice disorder. The impact of structural lattice imperfections and disorder on the invisibility of the defects is investigated by numerical simulations.

Stefano Longhi

2014-06-24T23:59:59.000Z

164

Near Shore Submerged Oil Assessment  

E-Print Network [OSTI]

) oil spill in the Gulf of Mexico, submerged oil refers to near shore oil which has picked up sediments You Should Know About Submerged Oil 1. Submerged oil is relatively uncommon: DWH oil is a light crude

165

SEISMIC ANISOTROPY IN TIGHT GAS SANDSTONES, RULISON FIELD, PICEANCE BASIN, COLORADO  

E-Print Network [OSTI]

a quarter of the proven natural gas reserves in the United States. Rulison Field, located in the PiceanceSEISMIC ANISOTROPY IN TIGHT GAS SANDSTONES, RULISON FIELD, PICEANCE BASIN, COLORADO by Gerardo J-based rock physics to estimate the seismic anisotropy of the tight gas reservoir at Rulison Field. Seismic

166

Oil spill response resources  

E-Print Network [OSTI]

. ACKNOWLEDGMENTS. TABLE OF CONTENTS . . Vn INTRODUCTION. . Oil Pollution Act. Oil Spill Response Equipment . . OB JECTIVES . 12 LITERATURE REVIEW. United States Contingency Plan. . Response Resources Definition of Clean in Context to an Oil Spill. Oil... this fitle. Title IV expands federal authority in managing oil spill clean up operations and amends the provisions for oil spill clean up under the Federal Water Pollution Control Act. It also called for Oil spill plans for vessels and facilities starting...

Muthukrishnan, Shankar

1996-01-01T23:59:59.000Z

167

Multiple oil families in the west Siberian basin  

SciTech Connect (OSTI)

Two major oil families are identified in the West Siberian basin. Twenty-six of 32 analyzed oils occur in Jurassic and cretaceous reservoirs and are derived from anoxic marine Upper Jurassic Bazhenov source rock. These oils are widely distributed both north and immediately south of the Ob River, and their biomarker ratios indicate a wide range of source rock thermal maturity from early to middle oil window (Van-Egan, Russkoye, Samotlor, Sovninsko-Sovyet, Olyenye, Ozynornoye, and Kogolym), to peak oil window (Srednekhulym, Yem-Yegov, Vostochno-Surgut, Khokhryakov, Fedorov, and Urengoi), to late oil window (Salym). Some of these oils have been mildly (e.g., Fedorov 75) to heavily (e.g., Russkoye) biodegraded in the reservoir. The Bazhenov-sourced oils show different compositions that support regional variations of organic facies in the source rock. Six nonbiodegraded, highly mature oils show geochemical characteristics that suggest they were derived from clastic-rich lacustrine or nearshore marine source rocks dominated by terrigenous higher plant input like those in the Lower to Middle Jurassic Tyumen Formation, although no correlation was observed between the oils and single rock sample (Yem-Yegov 15) from the formation. The six oils occur in the Tyumen (Taitym, Geologiche, and Cheremshan) and fractured basement/Paleozoic (Gerasimov, Yagyl Yakh, and Verchnekombar) reservoirs in positions readily accessible to any oil migrating from the Tyumen source rock. For example, at the Gerasimov locations, the Tyumen Formation lies unconformably on weathered basement-Paleozoic reservoir rocks. Most of the probable Tyumen-sourced oils are from south of the Ob River, but the occurrence of Geologiche oil to the north suggests that related oils may be widespread in the basin.

Peters, K.E.; Huizinga, B.J.; Lee, C.Y. [Chevron Overseas Petroleum Inc., San Ramon, CA (United States); Kontorovich, A.Eh. [Siberian Scientific Research Institute for Geology, Novosibirsk (Russian Federation); Moldowan, J.M. [Chevron Petroleum Technology Company, Richmond, CA (United States)

1994-06-01T23:59:59.000Z

168

Nitrogen chemistry during oil shale pyrolysis  

SciTech Connect (OSTI)

Real time evolution of ammonia (NH{sub 3}) and hydrogen cyanide (HCN), two major nitrogen-containing volatiles evolved during oil shale pyrolysis, was measured by means of a mass spectrometer using chemical ionization and by infrared spectroscopy. While the on-line monitoring of NH{sub 3} in oil shale pyrolysis games was possible by both techniques, HCN measurements were only possible by IR. We studied one Green River Formation oil shale and one New Albany oil shale. The ammonia from the Green River oil shale showed one broad NH{sub 3} peak maximizing at a high temperature. For both oil shales, most NH{sub 3} evolves at temperatures above oil-evolving temperature. The important factors governing ammonia salts such as Buddingtonite in Green River oil shales, the distribution of nitrogen functional groups in kerogen, and the retorting conditions. The gas phase reactions, such as NH{sub 3} decomposition and HCN conversion reactions, also play an important role in the distribution of nitrogen volatiles, especially at high temperatures. Although pyrolysis studies of model compounds suggests the primary nitrogen product from kerogen pyrolysis to be HCN at high temperatures, we found only a trace amount of HCN at oil-evolving temperatures and none at high temperatures (T {gt} 600{degree}C). 24 refs., 6 figs., 2 tabs.

Oh, Myongsook S.; Crawford, R.W.; Foster, K.G.; Alcaraz, A.

1990-01-10T23:59:59.000Z

169

Crude Oil  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOilCompanyexcluding taxes)Countries0 0 0 0 0

170

Understanding Crude Oil Prices  

E-Print Network [OSTI]

business of having some oil in inventory, which is referredKnowledge of all the oil going into inventory today for salebe empty, because inventories of oil are essential for the

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

171

China's Global Oil Strategy  

E-Print Network [OSTI]

nations began to seek out oil reserves around the world. 3on the limited global oil reserves and spiking prices. Manyto the largest proven oil reserves, making up 61 percent of

Thomas, Bryan G

2009-01-01T23:59:59.000Z

172

China's Global Oil Strategy  

E-Print Network [OSTI]

Michael T. Klare, Blood and Oil: The Dangers of America’sDowns and Jeffrey A. Bader, “Oil-Hungry China Belongs at BigChina, Africa, and Oil,” (Council on Foreign Relations,

Thomas, Bryan G

2009-01-01T23:59:59.000Z

173

Understanding Crude Oil Prices  

E-Print Network [OSTI]

Figure 5. Monthly oil production for Iran, Iraq, and Kuwait,day. Monthly crude oil production Iran Iraq Kuwait Figure 6.and the peak in U.S. oil production account for the broad

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

174

Understanding Crude Oil Prices  

E-Print Network [OSTI]

2004. “OPEC’s Optimal Crude Oil Price,” Energy Policy 32(2),023 Understanding Crude Oil Prices James D. Hamilton Junedirectly. Understanding Crude Oil Prices* James D. Hamilton

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

175

Understanding Crude Oil Prices  

E-Print Network [OSTI]

2004. “OPEC’s Optimal Crude Oil Price,” Energy Policy 32(2),percent change in real oil price. Figure 3. Price of crudein predicting quarterly real oil price change. variable real

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

176

Understanding Crude Oil Prices  

E-Print Network [OSTI]

per day. Monthly crude oil production Iran Iraq KuwaitEIA Table 1.2, “OPEC Crude Oil Production (Excluding Lease2008, from EIA, “Crude Oil Production. ” Figure 16. U.S.

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

177

Understanding Crude Oil Prices  

E-Print Network [OSTI]

2004. “OPEC’s Optimal Crude Oil Price,” Energy Policy 32(2),percent change in real oil price. Figure 3. Price of crude023 Understanding Crude Oil Prices James D. Hamilton June

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

178

Understanding Crude Oil Prices  

E-Print Network [OSTI]

Natural Gas, Heating Oil and Gasoline,” NBER Working Paper.2006. “China’s Growing Demand for Oil and Its Impact on U.S.and Income on Energy and Oil Demand,” Energy Journal 23(1),

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

179

China's Global Oil Strategy  

E-Print Network [OSTI]

capability to secure oil transport security. Additionally,international oil agreements: 1) ensuring energy security;security, and many argue that as the second-largest consumer of oil

Thomas, Bryan G

2009-01-01T23:59:59.000Z

180

China's Global Oil Strategy  

E-Print Network [OSTI]

China made an Iranian oil investment valued at $70 billion.across Iran, China’s oil investment may exceed $100 billionthese involving investment in oil and gas, really undermine

Thomas, Bryan G

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "tight oil formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Understanding Crude Oil Prices  

E-Print Network [OSTI]

2007”. comparison, Mexico used 6.6— Chinese oil consumption17. Oil production from the North Sea, Mexico’s Cantarell,Mexico, Italy, France, Canada, US, and UK. Figure 10. Historical Chinese oil

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

182

China's Global Oil Strategy  

E-Print Network [OSTI]

by this point, China’s demand Oil Demand vs. Domestic Supplycurrent pace of growth in oil demand as staying consistentand predictions of oil supply and demand affected foreign

Thomas, Bryan G

2009-01-01T23:59:59.000Z

183

Understanding Crude Oil Prices  

E-Print Network [OSTI]

and Income on Energy and Oil Demand,” Energy Journal 23(1),2006. “China’s Growing Demand for Oil and Its Impact on U.S.in the supply or demand for oil itself could be regarded as

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

184

Understanding Crude Oil Prices  

E-Print Network [OSTI]

2007”. comparison, Mexico used 6.6— Chinese oil consumption17. Oil production from the North Sea, Mexico’s Cantarell,

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

185

Exploitation and Optimization of Reservoir Performance in Hunton Formation, Oklahoma  

SciTech Connect (OSTI)

This report presents the work done so far on Hunton Formation in West Carney Field in Lincoln County, Oklahoma. West Carney Field produces oil and gas from the Hunton Formation. The field was developed starting in 1995. Some of the unique characteristics of the field include decreasing water oil and ratio over time, decreasing gas-oil ratio at the beginning of production, inability to calculate oil reserves in the field based on long data, and sustained oil rates over long periods of time.

Kelkar, Mohan

2001-05-08T23:59:59.000Z

186

Biochemically enhanced oil recovery and oil treatment  

SciTech Connect (OSTI)

This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil.

Premuzic, Eugene T. (East Moriches, NY); Lin, Mow (Rocky Point, NY)

1994-01-01T23:59:59.000Z

187

Biochemically enhanced oil recovery and oil treatment  

DOE Patents [OSTI]

This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. 62 figures.

Premuzic, E.T.; Lin, M.

1994-03-29T23:59:59.000Z

188

ORTHONORMAL DILATIONS OF NON-TIGHT FRAMES MARCIN BOWNIK, JOHN JASPER, AND DARRIN SPEEGLE  

E-Print Network [OSTI]

ORTHONORMAL DILATIONS OF NON-TIGHT FRAMES MARCIN BOWNIK, JOHN JASPER, AND DARRIN SPEEGLE Abstract and Riesz bounds are the same. Recently, Bownik and Jasper [3, Proposition 2.3] proved a dilation result

Scannell, Kevin Patrick

189

Improved Upscaling & Well Placement Strategies for Tight Gas Reservoir Simulation and Management  

E-Print Network [OSTI]

, with opportunities for improved reservoir simulation & management, such as simulation model design, well placement. Our work develops robust and efficient strategies for improved tight gas reservoir simulation and management. Reservoir simulation models are usually...

Zhou, Yijie

2013-07-29T23:59:59.000Z

190

Experimental Investigation of Propped Fracture Conductivity in Tight Gas Reservoirs Using The Dynamic Conductivity Test  

E-Print Network [OSTI]

in unconventional reservoirs such as coalbed methane, shale gas and tight gas reservoirs. Developing these types of unconventional gas reservoirs improves our energy security, and benefits the overall economy. Also, natural gas is one of the cleanest and most...

Romero Lugo, Jose 1985-

2012-10-24T23:59:59.000Z

191

Numerical Modeling of Fractured Shale-Gas and Tight-Gas Reservoirs Using Unstructured Grids  

E-Print Network [OSTI]

Various models featuring horizontal wells with multiple induced fractures have been proposed to characterize flow behavior over time in tight gas and shale gas systems. Currently, there is little consensus regarding the effects of non...

Olorode, Olufemi Morounfopefoluwa

2012-02-14T23:59:59.000Z

192

MERCURY EMISSIONS FROM A SIMULATED IN-SITU OIL SHALE RETORT  

E-Print Network [OSTI]

oil shales of the Green River Formation, Piceance Creek Basin, Colorado, and the Uinta Basin, Utah- a preliminary report, Chemical Geology,

Fox, J. P.

2012-01-01T23:59:59.000Z

193

OIL SHALE RESEARCH. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1979  

E-Print Network [OSTI]

Oil Shales of the Green River Formation, Piceance Creek Basin, Colorado, and the Uinta Basin, Utah--A Preliminary Report," Chemical Geology,

,

2012-01-01T23:59:59.000Z

194

Reservoir Characterization and Enhanced Oil Recovery Potential in Middle Devonian Dundee Limestone Reservoirs, Michigan Basin, USA.  

E-Print Network [OSTI]

?? Middle Devonian Rogers City and subjacent Dundee Limestone formations have combined oil production in excess of 375 MMBO. In general, hydrocarbon production occurs in… (more)

Abduslam, Abrahim

2012-01-01T23:59:59.000Z

195

Water quality for secondary and tertiary oil recovery  

SciTech Connect (OSTI)

A key element in many secondary and tertiary oil recovery processes is the injection of water into an oil-bearing formation. Water is the fluid which displaces the oil in the pore space of the rock. A successful waterflood requires more than the availability of water and the pumps and piping to inject the water into the formation. It requires an understanding of how water enters the oil bearing formation and what happens once the injected water comes into contact with the rock or sand, the oil, and the water already in the reservoir. Problems in injectivity will arise unless care and constant monitoring are exercised in the water system for a flood operation. This study examines water availability and quality in relation to waterflooding.

Michnick, M.J.

1983-01-01T23:59:59.000Z

196

Method of fracturing a geological formation  

DOE Patents [OSTI]

An improved method of fracturing a geological formation surrounding a well bore is disclosed. A relatively small explosive charge is emplaced in a well bore and the bore is subsequently hydraulically pressurized to a pressure less than the formation breakdown pressure and preferably greater than the fracture propagation pressure of the formation. The charge is denoted while the bore is so pressurized, resulting in the formation of multiple fractures in the surrounding formation with little or no accompanying formation damage. Subsequent hydraulic pressurization can be used to propagate and extend the fractures in a conventional manner. The method is useful for stimulating production of oil, gas and possibly water from suitable geologic formations.

Johnson, James O. (2679-B Walnut, Los Alamos, NM 87544)

1990-01-01T23:59:59.000Z

197

OIL & GAS INSTITUTE Introduction  

E-Print Network [OSTI]

OIL & GAS INSTITUTE CONTENTS Introduction Asset Integrity Underpinning Capabilities 2 4 4 6 8 9 10 COMPETITIVENESS UNIVERSITY of STRATHCLYDE OIL & GAS INSTITUTE OIL & GAS EXPERTISE AND PARTNERSHIPS #12;1 The launch of the Strathclyde Oil & Gas Institute represents an important step forward for the University

Mottram, Nigel

198

Eco Oil 4  

SciTech Connect (OSTI)

This article describes the processes, challenges, and achievements of researching and developing a biobased motor oil.

Brett Earl; Brenda Clark

2009-10-26T23:59:59.000Z

199

Understanding Crude Oil Prices  

E-Print Network [OSTI]

consumption would be reduced and incentives for production increased whenever the price of crude oil

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

200

Heavy oil production from Alaska  

SciTech Connect (OSTI)

North Slope of Alaska has an estimated 40 billion barrels of heavy oil and bitumen in the shallow formations of West Sak and Ugnu. Recovering this resource economically is a technical challenge for two reasons: (1) the geophysical environment is unique, and (2) the expected recovery is a low percentage of the oil in place. The optimum advanced recovery process is still undetermined. Thermal methods would be applicable if the risks of thawing the permafrost can be minimized and the enormous heat losses reduced. Use of enriched natural gas is a probable recovery process for West Sak. Nearby Prudhoe Bay field is using its huge natural gas resources for pressure maintenance and enriched gas improved oil recovery (IOR). Use of carbon dioxide is unlikely because of dynamic miscibility problems. Major concerns for any IOR include close well spacing and its impact on the environment, asphaltene precipitation, sand production, and fines migration, in addition to other more common production problems. Studies have indicated that recovering West Sak and Lower Ugnu heavy oil is technically feasible, but its development has not been economically viable so far. Remoteness from markets and harsh Arctic climate increase production costs relative to California heavy oil or Central/South American heavy crude delivered to the U.S. Gulf Coast. A positive change in any of the key economic factors could provide the impetus for future development. Cooperation between the federal government, state of Alaska, and industry on taxation, leasing, and permitting, and an aggressive support for development of technology to improve economics is needed for these heavy oil resources to be developed.

Mahmood, S.M.; Olsen, D.K. [NIPER/BDM-Oklahoma, Inc., Bartlesville, OK (United States); Thomas, C.P. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "tight oil formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Geotechnical properties of oil-contaminated Kuwaiti sand  

SciTech Connect (OSTI)

Large quantities of oil-contaminated sands resulted from exploded oil wells, burning oil fires, the destruction of oil storage tanks, and the formation of oil lakes in Kuwait at the end of the Gulf War. An extensive laboratory testing program was carried out to determine the geotechnical characteristics of this material. Testing included basic properties, compaction and permeability tests, and triaxial and consolidation tests on clean and contaminated sand at the same relative density. Contaminated specimens were prepared by mixing the sand with oil in the amount of 6% by weight or less to match field conditions. The influence of the type of oil, and relative density was also investigated by direct shear tests. The results indicated a small reduction in strength and permeability and an increase in compressibility due to contamination. The preferred method of disposal of this material is to use it as a stabilizing material for other projects such as road construction.

Al-Sanad, H.A.; Eid, W.K.; Ismael, N.F. [Kuwait Univ., Safat (Kuwait). Dept. of Civil Engineering] [Kuwait Univ., Safat (Kuwait). Dept. of Civil Engineering

1995-05-01T23:59:59.000Z

202

Unconventional Oil and Gas Projects Help Reduce Environmental...  

Broader source: Energy.gov (indexed) [DOE]

As these "conventional" reservoirs become harder to find, however, we are turning to oil and natural gas in shale or other less-permeable geologic formations, which do not...

203

Petrophysical Analysis and Geographic Information System for San Juan Basin Tight Gas Reservoirs  

SciTech Connect (OSTI)

The primary goal of this project is to increase the availability and ease of access to critical data on the Mesaverde and Dakota tight gas reservoirs of the San Juan Basin. Secondary goals include tuning well log interpretations through integration of core, water chemistry and production analysis data to help identify bypassed pay zones; increased knowledge of permeability ratios and how they affect well drainage and thus infill drilling plans; improved time-depth correlations through regional mapping of sonic logs; and improved understanding of the variability of formation waters within the basin through spatial analysis of water chemistry data. The project will collect, integrate, and analyze a variety of petrophysical and well data concerning the Mesaverde and Dakota reservoirs of the San Juan Basin, with particular emphasis on data available in the areas defined as tight gas areas for purpose of FERC. A relational, geo-referenced database (a geographic information system, or GIS) will be created to archive this data. The information will be analyzed using neural networks, kriging, and other statistical interpolation/extrapolation techniques to fine-tune regional well log interpretations, improve pay zone recognition from old logs or cased-hole logs, determine permeability ratios, and also to analyze water chemistries and compatibilities within the study area. This single-phase project will be accomplished through four major tasks: Data Collection, Data Integration, Data Analysis, and User Interface Design. Data will be extracted from existing databases as well as paper records, then cleaned and integrated into a single GIS database. Once the data warehouse is built, several methods of data analysis will be used both to improve pay zone recognition in single wells, and to extrapolate a variety of petrophysical properties on a regional basis. A user interface will provide tools to make the data and results of the study accessible and useful. The final deliverable for this project will be a web-based GIS providing data, interpretations, and user tools that will be accessible to anyone with Internet access. During this project, the following work has been performed: (1) Assimilation of most special core analysis data into a GIS database; (2) Inventorying of additional data, such as log images or LAS files that may exist for this area; (3) Analysis of geographic distribution of that data to pinpoint regional gaps in coverage; (4) Assessment of the data within both public and proprietary data sets to begin tuning of regional well logging analyses and improve payzone recognition; (5) Development of an integrated web and GIS interface for all the information collected in this effort, including data from northwest New Mexico; (6) Acquisition and digitization of logs to create LAS files for a subset of the wells in the special core analysis data set; and (7) Petrophysical analysis of the final set of well logs.

Martha Cather; Robert Lee; Robert Balch; Tom Engler; Roger Ruan; Shaojie Ma

2008-10-01T23:59:59.000Z

204

AN ENGINE OIL LIFE ALGORITHM.  

E-Print Network [OSTI]

??An oil-life algorithm to calculate the remaining percentage of oil life is presented as a means to determine the right time to change the oil… (more)

Bommareddi, Anveshan

2009-01-01T23:59:59.000Z

205

Essays on Macroeconomics and Oil  

E-Print Network [OSTI]

is described below. Data Crude oil production data is fromproductivity measure is crude oil production per worker, andwhich is measured as crude oil production per worker, is

CAKIR, NIDA

2013-01-01T23:59:59.000Z

206

Essays on Macroeconomics and Oil  

E-Print Network [OSTI]

Venezuelan Oil Industry Total Wells Drilled and InvestmentWells Drilled and Investment in the Venezuelan Oil Industryopenness of the oil sector to foreign investment contributes

CAKIR, NIDA

2013-01-01T23:59:59.000Z

207

Essays on Macroeconomics and Oil  

E-Print Network [OSTI]

Oil Production in Venezuela and Mexico . . . . . . . . . .Venezuela with Mexico, another major oil pro- ducing countryOil Production and Productivity in Venezuela and Mexico . . . . . . . .

CAKIR, NIDA

2013-01-01T23:59:59.000Z

208

Essays on Macroeconomics and Oil  

E-Print Network [OSTI]

Oil Production in Venezuela and Mexico . . . . . . . . . .Oil Production and Productivity in Venezuela and Mexico . . . . . . . .2.6: Oil Production in Venezuela and Mexico 350 Productivity

CAKIR, NIDA

2013-01-01T23:59:59.000Z

209

Lake Level Controlled Sedimentological I Heterogenity of Oil Shale, Upper Green River  

E-Print Network [OSTI]

Chapter 3 Lake Level Controlled Sedimentological 1:'_i 'I I Heterogenity of Oil Shale, Upper Green email: mgani@uno.edu t",. The Green River Formation comprises the world's largest deposit of oil-shale characterization of these lacustrine oil-shale deposits in the subsurface is lacking. This study analyzed ~300 m

Gani, M. Royhan

210

Autonomic Optimization of an Oil Reservoir using Decentralized Services Vincent Matossian and Manish Parashar  

E-Print Network [OSTI]

Autonomic Optimization of an Oil Reservoir using Decentralized Services Vincent Matossian the autonomic optimization of an oil reservoir. 1 Introduction The Grid[1] is rapidly emerging as the dominant, formations of galaxies, subsurface flows in oil reservoirs and aquifers, and dynamic response of materials

Parashar, Manish

211

Production of Natural Gas and Fluid Flow in Tight Sand Reservoirs  

SciTech Connect (OSTI)

This document reports progress of this research effort in identifying relationships and defining dependencies between macroscopic reservoir parameters strongly affected by microscopic flow dynamics and production well performance in tight gas sand reservoirs. These dependencies are investigated by identifying the main transport mechanisms at the pore scale that should affect fluids flow at the reservoir scale. A critical review of commercial reservoir simulators, used to predict tight sand gas reservoir, revealed that many are poor when used to model fluid flow through tight reservoirs. Conventional simulators ignore altogether or model incorrectly certain phenomena such as, Knudsen diffusion, electro-kinetic effects, ordinary diffusion mechanisms and water vaporization. We studied the effect of Knudsen's number in Klinkenberg's equation and evaluated the effect of different flow regimes on Klinkenberg's parameter b. We developed a model capable of explaining the pressure dependence of this parameter that has been experimentally observed, but not explained in the conventional formalisms. We demonstrated the relevance of this, so far ignored effect, in tight sands reservoir modeling. A 2-D numerical simulator based on equations that capture the above mentioned phenomena was developed. Dynamic implications of new equations are comprehensively discussed in our work and their relative contribution to the flow rate is evaluated. We performed several simulation sensitivity studies that evidenced that, in general terms, our formalism should be implemented in order to get more reliable tight sands gas reservoirs' predictions.

Maria Cecilia Bravo

2006-06-30T23:59:59.000Z

212

Preparation of stable crude oil transport emulsions  

SciTech Connect (OSTI)

A process for preparing an oil-in-water emulsion for pipeline transmission is described comprising: (a) shearing and mixing statically, without any dynamic shearing and mixing preceding or following the shearing and mixing statically, a hydrocarbon with an emulsifying composition comprising water and a minor amount of an emulsifying agent at a temperature of from about 100/sup 0/F. to about 200/sup 0/F. to form an oil-in-water emulsion having a viscosity sufficiently low for pipeline transmission, wherein the amount of water in the oil-in-water emulsion is from about 15% to about 60% by weight, and wherein the emulsifying agent is used in an amount sufficient to assist in the formation of the oil-in-water emulsion that is sufficiently stable for pipeline transmission; and wherein the emulsifying agent comprises about 50 percent by weight of an ethoxylated nonyl phenol compound.

Gregoli, A.A.; Hamshar, J.A.; Olah, A.M.; Riley, C.J.; Rimmer, D.P.

1988-02-16T23:59:59.000Z

213

Horizontal oil well applications and oil recovery assessment. Volume 2: Applications overview, Final report  

SciTech Connect (OSTI)

Horizontal technology has been applied in over 110 formations in the USA. Volume 1 of this study addresses the overall success of horizontal technology, especially in less-publicized formations, i.e., other than the Austin Chalk, Bakken, and Niobrara. Operators in the USA and Canada were surveyed on a formation-by-formation basis by means of a questionnaire. Response data were received describing horizontal well projects in 58 formations in the USA and 88 in Canada. Operators` responses were analyzed for trends in technical and economic success based on lithology (clastics and carbonates) and resource type (light oil, heavy oil, and gas). The potential impact of horizontal technology on reserves was also estimated. A forecast of horizontal drilling activity over the next decade was developed.

Deskins, W.G.; McDonald, W.J.; Knoll, R.G.; Springer, S.J.

1995-03-01T23:59:59.000Z

214

Characterization of Rodessa Formation Reservoir (Lower Cretaceous) in Van Field, Van Zandt County, Texas  

E-Print Network [OSTI]

(Wescott and Hood, 1994). Those authors also stated that the hydrocarbons in the Rodessa Formation and other Lower Cretaceous formations are typical of oil identified to have originated in Jurassic source rocks owing to their carbon isotopic and sulfur...?to-nitrogen ratio analysis. Oil to source rock correlation suggests that much of Smackover oil was sourced by Jurassic rocks. The most reasonable way to bring Jurassic oil into a Cretaceous reservoir is by vertical migration along the faults (Burgess, 1990...

Triyana, Yanyan

2004-09-30T23:59:59.000Z

215

Apparatus for distilling shale oil from oil shale  

SciTech Connect (OSTI)

An apparatus for distilling shale oil from oil shale comprises: a vertical type distilling furnace which is divided by two vertical partitions each provided with a plurality of vent apertures into an oil shale treating chamber and two gas chambers, said oil shale treating chamber being located between said two gas chambers in said vertical type distilling furnace, said vertical type distilling furnace being further divided by at least one horizontal partition into an oil shale distilling chamber in the lower part thereof and at least one oil shale preheating chamber in the upper part thereof, said oil shale distilling chamber and said oil shale preheating chamber communication with each other through a gap provided at an end of said horizontal partition, an oil shale supplied continuously from an oil shale supply port provided in said oil shale treating chamber at the top thereof into said oil shale treating chamber continuously moving from the oil shale preheating chamber to the oil shale distilling chamber, a high-temperature gas blown into an oil shale distilling chamber passing horizontally through said oil shale in said oil shale treating chamber, thereby said oil shale is preheated in said oil shale preheating chamber, and a gaseous shale oil is distilled from said preheated oil shale in said oil shale distilling chamber; and a separator for separating by liquefaction a gaseous shale oil from a gas containing the gaseous shale oil discharged from the oil shale preheating chamber.

Shishido, T.; Sato, Y.

1984-02-14T23:59:59.000Z

216

Libyan oil industry  

SciTech Connect (OSTI)

Three aspects of the growth and progress of Libya's oil industry since the first crude oil discovery in 1961 are: (1) relations between the Libyan government and the concessionary oil companies; (2) the impact of Libyan oil and events in Libya on the petroleum markets of Europe and the world; and (3) the response of the Libyan economy to the development of its oil industry. The historical review begins with Libya's becoming a sovereign nation in 1951 and traces its subsequent development into a position as a leading world oil producer. 54 references, 10 figures, 55 tables.

Waddams, F.C.

1980-01-01T23:59:59.000Z

217

Dynamical Constraints on Disk Galaxy Formation  

E-Print Network [OSTI]

The rotation curves of disk galaxies exhibit a number of striking regularities. The amplitude of the rotation is correlated with luminosity (Tully-Fisher), the shape of the rotation curve is well predicted by the luminous mass distribution, and the magnitude of the mass discrepancy increases systematically with decreasing centripetal acceleration. These properties indicate a tight connection between light and mass, and impose strong constraints on theories of galaxy formation.

Stacy McGaugh

1999-09-27T23:59:59.000Z

218

Evaluation of electromagnetic stimulation of Texas heavy oil reservoirs  

E-Print Network [OSTI]

- Iil Z LLI ) I- O LI III ) D- Z 00 + 0 CI z 0 I- U CI 0 K 0. CI D VERTICAL HEAT LOSS tt44 OVERBURDEN FLUID FLOW CONVECTION CONDUCTION P= Pe T=Te VERTICAL HEAT LOSS ~ ELECTROMAGNETIC WAVE Fig. 2 ? Schematic View of EMH Process 12... The ProPerties that affected the heated oil production rate the most were initial oil viscosity, formation ~ility, drainage radius, p~e drop, and ~ture. The heated oil prcduction rate estimation equation was applied to 80 Texas heavy oil ~irs to de...

Doublet, Louis Edward

1988-01-01T23:59:59.000Z

219

Conductivity heating a subterranean oil shale to create permeability and subsequently produce oil  

SciTech Connect (OSTI)

This patent describes an improvement in a process in which oil is produced from a subterranean oil shale deposit by extending at least one each of heat-injecting and fluid-producing wells into the deposit, establishing a heat-conductive fluid-impermeable barrier between the interior of each heat-injecting well and the adjacent deposit, and then heating the interior of each heat-injecting well at a temperature sufficient to conductively heat oil shale kerogen and cause pyrolysis products to form fractures within the oil shale deposit through which the pyrolysis products are displaced into at least one production well. The improvement is for enhancing the uniformity of the heat fronts moving through the oil shale deposit. Also described is a process for exploiting a target oil shale interval, by progressively expanding a heated treatment zone band from about a geometric center of the target oil shale interval outward, such that the formation or extension of vertical fractures from the heated treatment zone band to the periphery of the target oil shale interval is minimized.

Van Meurs, P.; DeRouffignac, E.P.; Vinegar, H.J.; Lucid, M.F.

1989-12-12T23:59:59.000Z

220

Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply Submodule1, and Alaska Oil and Gas Supply Submodule. A detailed description...

Note: This page contains sample records for the topic "tight oil formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply Submodule, and Alaska Oil and Gas Supply Submodule. A detailed description of...

222

REVIEW PAPER Biodeterioration of crude oil and oil derived  

E-Print Network [OSTI]

, the majority of applied microbiologi- cal methods of enhanced oil recovery also dete- riorates oil and appearsREVIEW PAPER Biodeterioration of crude oil and oil derived products: a review Natalia A. Yemashova January 2007 Ó Springer Science+Business Media B.V. 2007 Abstract Biodeterioration of crude oil and oil

Appanna, Vasu

223

SURFACTANT BASED ENHANCED OIL RECOVERY AND FOAM MOBILITY CONTROL  

SciTech Connect (OSTI)

Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. Also, the addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacial tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured, oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine.

George J. Hirasaki; Clarence A. Miller; Gary A. Pope; Richard E. Jackson

2004-02-01T23:59:59.000Z

224

Using Oils As Pesticides  

E-Print Network [OSTI]

Petroleum and plant-derived spray oils show increasing potential for use as part of Integrated Pest Management systems for control of soft-bodied pests on fruit trees, shade trees, woody ornamentals and household plants. Sources of oils, preparing...

Bogran, Carlos E.; Ludwig, Scott; Metz, Bradley

2006-10-30T23:59:59.000Z

225

Oil and Gas Exploration  

E-Print Network [OSTI]

Metals Industrial Minerals Oil and Gas Geothermal Exploration Development Mining Processing Nevada, oil and gas, and geothermal activities and accomplishments in Nevada: production statistics, exploration and development including drilling for petroleum and geothermal resources, discoveries of ore

Tingley, Joseph V.

226

Understanding Crude Oil Prices  

E-Print Network [OSTI]

an alternative investment strategy to buying oil today andinvestments necessary to catch up. This was the view o?ered by oilinvestment strategy. date t) in order to purchase a quantity Q barrels of oil

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

227

Gas and Oil (Maryland)  

Broader source: Energy.gov [DOE]

The Department of the Environment has the authority to enact regulations pertaining to oil and gas production, but it cannot prorate or limit the output of any gas or oil well. A permit from the...

228

China's Global Oil Strategy  

E-Print Network [OSTI]

21, 2008. Ying, Wang. “ China, Venezuela firms to co-developApril 21, “China and Venezuela sign oil agreements. ” Chinaaccessed April 21, “Venezuela and China sign oil deal. ” BBC

Thomas, Bryan G

2009-01-01T23:59:59.000Z

229

Oil Sands Feedstocks  

Broader source: Energy.gov (indexed) [DOE]

NCUT National Centre for Upgrading Technology 'a Canada-Alberta alliance for bitumen and heavy oil research' Oil Sands Feedstocks C Fairbridge, Z Ring, Y Briker, D Hager National...

230

SRC Residual fuel oils  

DOE Patents [OSTI]

Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

Tewari, Krishna C. (Whitehall, PA); Foster, Edward P. (Macungie, PA)

1985-01-01T23:59:59.000Z

231

Expansion of the NRL Tight-Binding Method to Include f-orbitals and Application in Thorium and Actinium .  

E-Print Network [OSTI]

??The current NRL Tight-Binding suite of programs was designed to only include s, p, and d orbitals in the basis. Because of this limitation, materials… (more)

Durgavich, Joel

2012-01-01T23:59:59.000Z

232

Biochemical upgrading of oils  

DOE Patents [OSTI]

A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed. 121 figs.

Premuzic, E.T.; Lin, M.S.

1999-01-12T23:59:59.000Z

233

Aging effects on oil-contaminated Kuwaiti sand  

SciTech Connect (OSTI)

Large quantities of oil-contaminated sands resulted from the destruction of oil wells and the formation of oil lakes in Kuwait at the end of the Gulf Wa/r. A laboratory testing program was carried out to determine the geotechnical properties of this material and the effect of aging on their properties. Tests included direct shear, triaxial, and consolidation tests on clean and contaminated sand at the same relative density. The influence of aging was examined by testing uncontaminated sand after aging for one, three, and six months in natural environmental conditions. The results indicated increased strength and stiffness due to aging and a reduction of the oil content due to evaporation of volatile compounds. The factors that influence the depth of oil penetration in compacted sand columns were also examined including the type of oil, relative density, and the amount of fines.

Al-Sanad, H.A.; Ismael, N.F. [Kuwait Univ., Safat (Kuwait). Dept. of Civil Engineering

1997-03-01T23:59:59.000Z

234

Kerogen extraction from subterranean oil shale resources  

DOE Patents [OSTI]

The present invention is directed to methods for extracting a kerogen-based product from subsurface (oil) shale formations, wherein such methods rely on fracturing and/or rubblizing portions of said formations so as to enhance their fluid permeability, and wherein such methods further rely on chemically modifying the shale-bound kerogen so as to render it mobile. The present invention is also directed at systems for implementing at least some of the foregoing methods. Additionally, the present invention is also directed to methods of fracturing and/or rubblizing subsurface shale formations and to methods of chemically modifying kerogen in situ so as to render it mobile.

Looney, Mark Dean (Houston, TX); Lestz, Robert Steven (Missouri City, TX); Hollis, Kirk (Los Alamos, NM); Taylor, Craig (Los Alamos, NM); Kinkead, Scott (Los Alamos, NM); Wigand, Marcus (Los Alamos, NM)

2010-09-07T23:59:59.000Z

235

Tight coupling between soil moisture and the surface radiation budget in semiarid environments: Implications for  

E-Print Network [OSTI]

. Therefore the available energy, Qa, is higher by 80 W mÃ?2 when the soil is wet. This change is 22 moist static energy. However, the intervals during which soil moisture is high and therefore Rn and QaTight coupling between soil moisture and the surface radiation budget in semiarid environments

Small, Eric

236

Production of Natural Gas and Fluid Flow in Tight Sand Reservoirs  

SciTech Connect (OSTI)

This document reports progress of this research effort in identifying possible relationships and defining dependencies between macroscopic reservoir parameters strongly affected by microscopic flow dynamics and production well performance in tight gas sand reservoirs. Based on a critical review of the available literature, a better understanding of the main weaknesses of the current state of the art of modeling and simulation for tight sand reservoirs has been reached. Progress has been made in the development and implementation of a simple reservoir simulator that is still able to overcome some of the deficiencies detected. The simulator will be used to quantify the impact of microscopic phenomena in the macroscopic behavior of tight sand gas reservoirs. Phenomena such as, Knudsen diffusion, electro-kinetic effects, ordinary diffusion mechanisms and water vaporization are being considered as part of this study. To date, the adequate modeling of gas slippage in porous media has been determined to be of great relevance in order to explain unexpected fluid flow behavior in tight sand reservoirs.

Maria Cecilia Bravo; Mariano Gurfinkel

2005-06-30T23:59:59.000Z

237

Disordered graphene and boron nitride in a microwave tight-binding analogue S. Barkhofen,1  

E-Print Network [OSTI]

Disordered graphene and boron nitride in a microwave tight-binding analogue S. Barkhofen,1 M Sophia-Antipolis, 06108 Nice, France (Dated: December 20, 2012) Experiments on hexagonal graphene of the high flexibility of the discs positions, consequences of the disorder introduced in the graphene

Paris-Sud XI, Université de

238

Quantum confined Stark effect in Gaussian quantum wells: A tight-binding study  

SciTech Connect (OSTI)

The main characteristics of the quantum confined Stark effect (QCSE) are studied theoretically in quantum wells of Gaussian profile. The semi-empirical tight-binding model and the Green function formalism are applied in the numerical calculations. A comparison of the QCSE in quantum wells with different kinds of confining potential is presented.

Ramírez-Morales, A.; Martínez-Orozco, J. C.; Rodríguez-Vargas, I. [Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad Esquina Con Paseo La Bufa S/N, 98060 Zacatecas, Zac. (Mexico)

2014-05-15T23:59:59.000Z

239

Combustion System Development for Medium-Sized Industrial Gas Turbines: Meeting Tight Emission Regulations while Using  

E-Print Network [OSTI]

Combustion System Development for Medium-Sized Industrial Gas Turbines: Meeting Tight Emission Regulations while Using a Broad Range of Alternative Fuels Luke Cowell. Solar Turbines Abstract: Solar Turbines Incorporated is a leading manufacturer of industrial gas turbine packages for the power generation

Ponce, V. Miguel

240

Utah Heavy Oil Program  

SciTech Connect (OSTI)

The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

2009-10-20T23:59:59.000Z

Note: This page contains sample records for the topic "tight oil formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Sensitivity of seismic reflections to variations in anisotropy in the Bakken Formation, Williston Basin, North Dakota.  

E-Print Network [OSTI]

??The Upper Devonian–Lower Mississippian Bakken Formation in the Williston Basin is estimated to have significant amount of technically recoverable oil and gas. The objective of… (more)

Ye, Fang, geophysicist.

2010-01-01T23:59:59.000Z

242

Manufacture of refrigeration oils  

SciTech Connect (OSTI)

Lubricating oils suitable for use in refrigeration equipment in admixture with fluorinated hydrocarbon refrigerants are produced by solvent extraction of naphthenic lubricating oil base stocks, cooling the resulting extract mixture, optionally with the addition of a solvent modifier, to form a secondary raffinate and a secondary extract, and recovering a dewaxed oil fraction of lowered pour point from the secondary raffinate as a refrigeration oil product. The process of the invention obviates the need for a separate dewaxing operation, such as dewaxing with urea, as conventionally employed for the production of refrigeration oils.

Chesluk, R.P.; Platte, H.J.; Sequeira, A.J.

1981-12-08T23:59:59.000Z

243

In situ generation of steam and alkaline surfactant for enhanced oil recovery using an exothermic water reactant (EWR)  

DOE Patents [OSTI]

A method for oil recovery whereby an exothermic water reactant (EWR) encapsulated in a water soluble coating is placed in water and pumped into one or more oil wells in contact with an oil bearing formation. After the water carries the EWR to the bottom of the injection well, the water soluble coating dissolves and the EWR reacts with the water to produce heat, an alkali solution, and hydrogen. The heat from the EWR reaction generates steam, which is forced into the oil bearing formation where it condenses and transfers heat to the oil, elevating its temperature and decreasing the viscosity of the oil. The aqueous alkali solution mixes with the oil in the oil bearing formation and forms a surfactant that reduces the interfacial tension between the oil and water. The hydrogen may be used to react with the oil at these elevated temperatures to form lighter molecules, thus upgrading to a certain extent the oil in situ. As a result, the oil can flow more efficiently and easily through the oil bearing formation towards and into one or more production wells.

Robertson, Eric P

2011-05-24T23:59:59.000Z

244

Experimental Investigation of Propped Fracture Conductivity in Tight Gas Reservoirs Using The Dynamic Conductivity Test.  

E-Print Network [OSTI]

??Hydraulic Fracturing stimulation technology is used to increase the amount of oil and gas produced from low permeability reservoirs. The primary objective of the process… (more)

Romero Lugo, Jose 1985-

2012-01-01T23:59:59.000Z

245

Varying heating in dawsonite zones in hydrocarbon containing formations  

SciTech Connect (OSTI)

A method for treating an oil shale formation comprising dawsonite includes assessing a dawsonite composition of one or more zones in the formation. Heat from one or more heaters is provided to the formation such that different amounts of heat are provided to zones with different dawsonite compositions. The provided heat is allowed to transfer from the heaters to the formation. Fluids are produced from the formation.

Vinegar, Harold J. (Bellaire, TX); Xie, Xueying (Houston, TX); Miller, David Scott (Katy, TX)

2009-07-07T23:59:59.000Z

246

Shallow oil production using horizontal wells with enhanced oil recovery techniques  

SciTech Connect (OSTI)

Millions of barrels of oil exist in the Bartlesville formation throughout Oklahoma, Kansas, and Missouri. In an attempt to demonstrate that these shallow heavy oil deposits can be recovered, a field project was undertaken to determine the effectiveness of enhanced oil recovery techniques (EOR) employing horizontal wells. Process screening results suggested that thermal EOR processes were best suited for the recovery of this heavy oil. Screening criteria suggested that in situ combustion was a viable technique for the production of these reserves. Laboratory combustion tube tests confirmed that sufficient amounts of fuel could be deposited. The results of the in situ combustion field pilot were disappointing. A total overall recovery efficiency of only 16.0 percent was achieved. Results suggest that the combustion front might have moved past the horizontal well, however elevated temperatures or crude upgrading were not observed. Factors contributing to the lack of production are also discussed.

Satchwell, R.M.; Johnson, L.A. Jr. [Western Research Institute, Laramie, WY (United States); Trent, R. [Univ. of Alaska, Fairbanks, AK (United States)

1995-02-01T23:59:59.000Z

247

Feasibility study of heavy oil recovery in the Midcontinent region (Kansas, Missouri, Oklahoma)  

SciTech Connect (OSTI)

This report is one of a series of publications assessing the feasibility/constraints of increasing domestic heavy oil production. Each report covers a select area of the United States. The Midcontinent (Kansas, Nssouri, Oklahoma) has produced significant oil, but contrary to early reports, the area does not contain the huge volumes of heavy oil that, along with the development of steam and in situ combustion as oil production technologies, sparked the area`s oil boom of the 1960s. Recovery of this heavy oil has proven economically unfeasible for most operators due to the geology of the formations rather than the technology applied to recover the oil. The geology of the southern Midcontinent, as well as results of field projects using thermal enhanced oil recovery (TEOR) methods to produce the heavy oil, was examined based on analysis of data from secondary sources. Analysis of the performance of these projects showed that the technology recovered additional heavy oil above what was produced from primary production from the consolidated, compartmentalized, fluvial dominated deltaic sandstone formations in the Cherokee and Forest City basins. The only projects producing significant economic and environmentally acceptable heavy oil in the Midcontinent are in higher permeability, unconsolidated or friable, thick sands such as those found in south-central Oklahoma. There are domestic heavy oil reservoirs in other sedimentary basins that are in younger formations, are less consolidated, have higher permeability and can be economically produced with current TEOR technology. Heavy oil production from the carbonates of central and wester Kansas has not been adequately tested, but oil production is anticipated to remain low. Significant expansion of Midcontinent heavy oil production is not anticipated because the economics of oil production and processing are not favorable.

Olsen, D.K.; Johnson, W.I.

1993-08-01T23:59:59.000Z

248

Carcinogenicity Studies of Estonian Oil Shale Soots  

E-Print Network [OSTI]

determine the carcinogenicity of Estonian oil shale soot as well as the soot from oil shale fuel oil. All

A. Vosamae

249

Bubble formation in Rangely Field, Colorado  

E-Print Network [OSTI]

tc Determine the Effect of Times Of. Standing on Time &equired for Bubble Formation at 67 psi Supersaturaticns. Page 20 Tests to Determine Bubble Frequency. Average Bubble Frequency Data. 23 27 The data reported in this thesis deal... if present, or would tend to form one. However, as the pressure on the saturated oil declines, the oil becomes supersatur- ated, except as bubbles may form and diffusion take place tc eliminate the supersaturation. This research is devoted to a study...

Wood, J. W

1953-01-01T23:59:59.000Z

250

Analysis of Critical Permeabilty, Capillary Pressure and Electrical Properties for Mesaverde Tight Gas Sandstones from Western U.S. Basins  

SciTech Connect (OSTI)

Although prediction of future natural gas supply is complicated by uncertainty in such variables as demand, liquefied natural gas supply price and availability, coalbed methane and gas shale development rate, and pipeline availability, all U.S. Energy Information Administration gas supply estimates to date have predicted that Unconventional gas sources will be the dominant source of U.S. natural gas supply for at least the next two decades (Fig. 1.1; the period of estimation). Among the Unconventional gas supply sources, Tight Gas Sandstones (TGS) will represent 50-70% of the Unconventional gas supply in this time period (Fig. 1.2). Rocky Mountain TGS are estimated to be approximately 70% of the total TGS resource base (USEIA, 2005) and the Mesaverde Group (Mesaverde) sandstones represent the principal gas productive sandstone unit in the largest Western U.S. TGS basins including the basins that are the focus of this study (Washakie, Uinta, Piceance, northern Greater Green River, Wind River, Powder River). Industry assessment of the regional gas resource, projection of future gas supply, and exploration programs require an understanding of reservoir properties and accurate tools for formation evaluation. The goal of this study is to provide petrophysical formation evaluation tools related to relative permeability, capillary pressure, electrical properties and algorithms for wireline log analysis. Detailed and accurate moveable gas-in-place resource assessment is most critical in marginal gas plays and there is need for quantitative tools for definition of limits on gas producibility due to technology and rock physics and for defining water saturation. The results of this study address fundamental questions concerning: (1) gas storage; (2) gas flow; (3) capillary pressure; (4) electrical properties; (5) facies and upscaling issues; (6) wireline log interpretation algorithms; and (7) providing a web-accessible database of advanced rock properties. The following text briefly discusses the nature of these questions. Section I.2 briefly discusses the objective of the study with respect to the problems reviewed.

Alan Byrnes; Robert Cluff; John Webb; John Victorine; Ken Stalder; Daniel Osburn; Andrew Knoderer; Owen Metheny; Troy Hommertzheim; Joshua Byrnes; Daniel Krygowski; Stefani Whittaker

2008-06-30T23:59:59.000Z

251

Chemical Methods for Ugnu Viscous Oils  

SciTech Connect (OSTI)

The North Slope of Alaska has large (about 20 billion barrels) deposits of viscous oil in Ugnu, West Sak and Shraeder Bluff reservoirs. These shallow reservoirs overlie existing productive reservoirs such as Kuparuk and Milne Point. The viscosity of the Ugnu reservoir on top of Milne Point varies from 200 cp to 10,000 cp and the depth is about 3300 ft. The same reservoir extends to the west on the top of the Kuparuk River Unit and onto the Beaufort Sea. The depth of the reservoir decreases and the viscosity increases towards the west. Currently, the operators are testing cold heavy oil production with sand (CHOPS) in Ugnu, but oil recovery is expected to be low (< 10%). Improved oil recovery techniques must be developed for these reservoirs. The proximity to the permafrost is an issue for thermal methods; thus nonthermal methods must be considered. The objective of this project is to develop chemical methods for the Ugnu reservoir on the top of Milne Point. An alkaline-surfactant-polymer (ASP) formulation was developed for a viscous oil (330 cp) where as an alkaline-surfactant formulation was developed for a heavy oil (10,000 cp). These formulations were tested in one-dimensional and quarter five-spot Ugnu sand packs. Micromodel studies were conducted to determine the mechanisms of high viscosity ratio displacements. Laboratory displacements were modeled and transport parameters (such as relative permeability) were determined that can be used in reservoir simulations. Ugnu oil is suitable for chemical flooding because it is biodegraded and contains some organic acids. The acids react with injected alkali to produce soap. This soap helps in lowering interfacial tension between water and oil which in turn helps in the formation of macro and micro emulsions. A lower amount of synthetic surfactant is needed because of the presence of organic acids in the oil. Tertiary ASP flooding is very effective for the 330 cp viscous oil in 1D sand pack. This chemical formulation includes 1.5% of an alkali, 0.4% of a nonionic surfactant, and 0.48% of a polymer. The secondary waterflood in a 1D sand pack had a cumulative recovery of 0.61 PV in about 3 PV injection. The residual oil saturation to waterflood was 0.26. Injection of tertiary alkaline-surfactant-polymer slug followed by tapered polymer slugs could recover almost 100% of the remaining oil. The tertiary alkali-surfactant-polymer flood of the 330 cp oil is stable in three-dimensions; it was verified by a flood in a transparent 5-spot model. A secondary polymer flood is also effective for the 330 cp viscous oil in 1D sand pack. The secondary polymer flood recovered about 0.78 PV of oil in about 1 PV injection. The remaining oil saturation was 0.09. The pressure drops were reasonable (<2 psi/ft) and depended mainly on the viscosity of the polymer slug injected. For the heavy crude oil (of viscosity 10,000 cp), low viscosity (10-100 cp) oil-in-water emulsions can be obtained at salinity up to 20,000 ppm by using a hydrophilic surfactant along with an alkali at a high water-to-oil ratio of 9:1. Very dilute surfactant concentrations (~0.1 wt%) of the synthetic surfactant are required to generate the emulsions. It is much easier to flow the low viscosity emulsion than the original oil of viscosity 10,000 cp. Decreasing the WOR reverses the type of emulsion to water-in-oil type. For a low salinity of 0 ppm NaCl, the emulsion remained O/W even when the WOR was decreased. Hence a low salinity injection water is preferred if an oil-in-water emulsion is to be formed. Secondary waterflood of the 10,000 cp heavy oil followed by tertiary injection of alkaline-surfactants is very effective. Waterflood has early water breakthrough, but recovers a substantial amount of oil beyond breakthrough. Waterflood recovers 20-37% PV of the oil in 1D sand pack in about 3 PV injection. Tertiary alkali-surfactant injection increases the heavy oil recovery to 50-70% PV in 1D sand packs. As the salinity increased, the oil recovery due to alkaline surfactant flood increased, but water-in-oil emulsion was p

Kishore Mohanty

2012-03-31T23:59:59.000Z

252

Predicting PVT data for CO2brine mixtures for black-oil simulation of CO2 geological storage  

E-Print Network [OSTI]

Predicting PVT data for CO2­brine mixtures for black-oil simulation of CO2 geological storage efficiency of the black-oil approach promote application of black-oil simulation for large-scale geological into geological formations has been considered as a potential method to mitigate climate change. Accurate

Santos, Juan

253

World Oil: Market or Mayhem?  

E-Print Network [OSTI]

The world oil market is regarded by many as a puzzle. Why are oil prices so volatile? What is OPEC and what does OPEC do? Where are oil prices headed in the long run? Is “peak oil” a genuine concern? Why did oil prices ...

Smith, James L.

2008-01-01T23:59:59.000Z

254

Concise and Tight Security Analysis of the Bennett-Brassard 1984 Protocol with Finite Key Lengths  

E-Print Network [OSTI]

We present a tight security analysis of the Bennett-Brassard 1984 protocol taking into account the finite size effect of key distillation, and achieving unconditional security. We begin by presenting a concise analysis utilizing the normal approximation of the hypergeometric function. Then next we show that a similarly tight bound can also be obtained by a rigorous argument without relying on any approximation. In particular, for the convenience of experimentalists who wish to evaluate the security of their QKD systems, we also give explicit procedures of our key distillation, and also show how to calculate the secret key rate and the security parameter from a given set of experimental parameters. Besides the exact values of key rates and security parameters, we also present how to obtain their rough estimates using the normal approximation.

Masahito Hayashi; Toyohiro Tsurumaru

2012-05-17T23:59:59.000Z

255

EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA  

SciTech Connect (OSTI)

West Carney Field produces from Hunton Formation. All the wells produce oil, water and gas. The main objective of this study is to understand the unique behavior observed in the field. This behavior includes: (1) Decrease in WOR over time; (2) Decrease in GOR at initial stages; (3) High decline rates of oil and gas; and (4) strong hydrodynamic connectivity between wells. This report specifically addresses two issues relevant to our understanding of the West Carney reservoir. By using core and log data as well as fluorescence information, we demonstrate that our hypothesis of how the reservoir is formed is consistent with these observations. Namely, oil migrated in water wet reservoir, over time, oil changed the wettability of some part of the reservoir, oil eventually leaked to upper formations prompting re-introduction of water into reservoir. Because of change in wettability, different pore size distributions responded differently to water influx. This hypothesis is consistent with fluorescence and porosity data, as we explain it in this quarterly report. The second issue deals with how to best calculate connected oil volume in the reservoir. The log data does not necessarily provide us with relevant information regarding oil in place. However, we have developed a new material balance technique to calculate the connected oil volume based on observed pressure and production data. By using the technique to four different fields producing from Hunton formation, we demonstrate that the technique can be successfully applied to calculate the connected oil in place.

Mohan Kelkar

2003-04-01T23:59:59.000Z

256

Naturally fractured tight gas reservoir detection optimization. Quarterly report, January 1, 1997--March 31, 1997  

SciTech Connect (OSTI)

This document contains the quarterly report dated January 1-March 31, 1997 for the Naturally Fractured Tight Gas Reservoir Detection Optimization project. Topics covered in this report include AVOA modeling using paraxial ray tracing, AVOA modeling for gas- and water-filled fractures, 3-D and 3-C processing, and technology transfer material. Several presentations from a Geophysical Applications Workshop workbook, workshop schedule, and list of workshop attendees are also included.

NONE

1998-04-01T23:59:59.000Z

257

(Nearly-)Tight Bounds on the Linearity and Contiguity of Christophe Crespelle  

E-Print Network [OSTI]

Workshop France (2012)" #12;Lemma 1 For a rooted complete binary tree T, rank(T) = ph(T) = h(T). Theorem 2 For any rooted tree T, we have rank(T) = ph(T). Upper bounds for contiguity and linearity of cographs. We by their cotree, a rooted tree with two kinds of nodes labeled by P and S, giving a tight upper bound

Paris-Sud XI, Université de

258

Creating Ground State Molecules with Optical Feshbach Resonances in Tight Traps  

SciTech Connect (OSTI)

We propose to create ultracold ground state molecules in an atomic Bose-Einstein condensate by adiabatic crossing of an optical Feshbach resonance. We envision a scheme where the laser intensity and possibly also frequency are linearly ramped over the resonance. Our calculations for {sup 87}Rb show that for sufficiently tight traps it is possible to avoid spontaneous emission while retaining adiabaticity, and conversion efficiencies of up to 50% can be expected.

Koch, Christiane P. [Laboratoire Aime Cotton, CNRS, Ba circumflex t. 505, Campus d'Orsay, 91405 Orsay Cedex (France); Department of Physical Chemistry and Fritz Haber Research Center, Hebrew University, Jerusalem 91904 (Israel); Masnou-Seeuws, Francoise [Laboratoire Aime Cotton, CNRS, Bat. 505, Campus d'Orsay, 91405 Orsay Cedex (France); Kosloff, Ronnie [Department of Physical Chemistry and Fritz Haber Research Center, Hebrew University, Jerusalem 91904 (Israel)

2005-05-20T23:59:59.000Z

259

Physical properties of soils contaminated by oil lakes, Kuwait  

SciTech Connect (OSTI)

In preparation for a marine assault by the coalition forces, the Iraqi Army heavily mined Kuwait`s coastal zone and the oil fields. Over a million mines were placed on the Kuwait soil. Burning of 732 oil wells in the State of Kuwait due to the Iraqi invasion caused damages which had direct and indirect effect on environment. A total of 20-22 million barrels of spilled crude oil were collected in natural desert depressions and drainage network which formed more than 300 oil lakes. The total area covered with oil reached 49 km{sup 2}. More than 375 trenches revealed the existence of hard, massive caliche (CaCO{sub 3}) subsoil which prevent leached oil from reaching deeper horizons, and limited the maximum depth of penetration to 1.75 m. Total volume of soil contaminated reached 22,652,500 m{sup 3} is still causing environmental problems and needs an urgent cleaning and rehabilitation. Kuwait Oil Company has recovered approximately 21 million barrels from the oil lakes since the liberation of Kuwait. In our examined representative soil profiles the oil penetration was not deeper than 45 cm. Infiltration rate, soil permeability, grain size distribution, aggregates formation and water holding capacity were assessed. 15 refs., 5 figs., 5 tabs.

Mohammad, A.S. [Kuwait Univ., Safat (Kuwait); Wahba, S.A.; Al-Khatieb, S.O. [Arabian Gulf Univ. (Bahrain)

1996-08-01T23:59:59.000Z

260

Oil and Gas (Indiana)  

Broader source: Energy.gov [DOE]

This division of the Indiana Department of Natural Resources provides information on the regulation of oil and gas exploration, wells and well spacings, drilling, plugging and abandonment, and...

Note: This page contains sample records for the topic "tight oil formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Volume 22, Part 1-September 1975 P"$P".hdpk of the Sunailand Formation, an ~-pm&chg  

E-Print Network [OSTI]

of the Sunniland Formation, an Oil-producing 17ormat1on in South Florida ................................. Helen C to the geology of Utah for beginn~ngstudents and laymen. Distributed September 30, 1975 Price $5.00 (Subject to change without notice) #12;Petrographic Analysis of the Sunniland Formation, an Oil-producing Formation

Seamons, Kent E.

262

Essays on Macroeconomics and Oil  

E-Print Network [OSTI]

reserves. In the data, crude oil reserve addi- tions consistForce and Proven Reserves in the Venezuelan Oil Industry .such as crude oil production, proved reserves, new reserves,

CAKIR, NIDA

2013-01-01T23:59:59.000Z

263

Oil and Gas Production (Missouri)  

Broader source: Energy.gov [DOE]

A State Oil and Gas Council regulates and oversees oil and gas production in Missouri, and conducts a biennial review of relevant rules and regulations. The waste of oil and gas is prohibited. This...

264

Solution mining dawsonite from hydrocarbon containing formations with a chelating agent  

DOE Patents [OSTI]

A method for treating an oil shale formation comprising dawsonite includes providing heat from one or more heaters to the formation to heat the formation. Hydrocarbon fluids are produced from the formation. At least some dawsonite in the formation is decomposed with the provided heat. A chelating agent is provided to the formation to dissolve at least some dawsonite decomposition products. The dissolved dawsonite decomposition products are produced from the formation.

Vinegar, Harold J. (Bellaire, TX)

2009-07-07T23:59:59.000Z

265

Uncertainty quantification for CO2 sequestration and enhanced oil recovery  

E-Print Network [OSTI]

This study develops a statistical method to perform uncertainty quantification for understanding CO2 storage potential within an enhanced oil recovery (EOR) environment at the Farnsworth Unit of the Anadarko Basin in northern Texas. A set of geostatistical-based Monte Carlo simulations of CO2-oil-water flow and reactive transport in the Morrow formation are conducted for global sensitivity and statistical analysis of the major uncertainty metrics: net CO2 injection, cumulative oil production, cumulative gas (CH4) production, and net water injection. A global sensitivity and response surface analysis indicates that reservoir permeability, porosity, and thickness are the major intrinsic reservoir parameters that control net CO2 injection/storage and oil/gas recovery rates. The well spacing and the initial water saturation also have large impact on the oil/gas recovery rates. Further, this study has revealed key insights into the potential behavior and the operational parameters of CO2 sequestration at CO2-EOR s...

Dai, Zhenxue; Fessenden-Rahn, Julianna; Middleton, Richard; Pan, Feng; Jia, Wei; Lee, Si-Yong; McPherson, Brian; Ampomah, William; Grigg, Reid

2014-01-01T23:59:59.000Z

266

Oil shale technology  

SciTech Connect (OSTI)

Oil shale is undoubtedly an excellent energy source that has great abundance and world-wide distribution. Oil shale industries have seen ups and downs over more than 100 years, depending on the availability and price of conventional petroleum crudes. Market forces as well as environmental factors will greatly affect the interest in development of oil shale. Besides competing with conventional crude oil and natural gas, shale oil will have to compete favorably with coal-derived fuels for similar markets. Crude shale oil is obtained from oil shale by a relatively simple process called retorting. However, the process economics are greatly affected by the thermal efficiencies, the richness of shale, the mass transfer effectiveness, the conversion efficiency, the design of retort, the environmental post-treatment, etc. A great many process ideas and patents related to the oil shale pyrolysis have been developed; however, relatively few field and engineering data have been published. Due to the vast heterogeneity of oil shale and to the complexities of physicochemical process mechanisms, scientific or technological generalization of oil shale retorting is difficult to achieve. Dwindling supplied of worldwide petroleum reserves, as well as the unprecedented appetite of mankind for clean liquid fuel, has made the public concern for future energy market grow rapidly. the clean coal technology and the alternate fuel technology are currently of great significance not only to policy makers, but also to process and chemical researchers. In this book, efforts have been made to make a comprehensive text for the science and technology of oil shale utilization. Therefore, subjects dealing with the terminological definitions, geology and petrology, chemistry, characterization, process engineering, mathematical modeling, chemical reaction engineering, experimental methods, and statistical experimental design, etc. are covered in detail.

Lee, S. (Akron Univ., OH (United States). Dept. of Chemical Engineering)

1991-01-01T23:59:59.000Z

267

Adsorption of pyridine by combusted oil shale  

SciTech Connect (OSTI)

Large volumes of solid waste material will be produced during the commercial production of shale oil. An alternative to the disposal of the solid waste product is utilization. One potential use of spent oil shale is for the stabilization of hazardous organic compounds. The objective of this study was to examine the adsorption of pyridine, commonly found in oil shale process water, by spent oil shale. The adsorption of pyridine by fresh and weathered samples of combusted New Albany Shale and Green River Formation oil shale was examined. In general, pyridine adsorption can be classified as L-type and the isotherms modeled with the Langmuir and Freundlich equations. For the combusted New Albany Shale, weathering reduced the predicted pyridine adsorption maximum and increased the amount of pyridine adsorption maximum. The pyridine adsorption isotherms were similar to those mathematically described by empirical models, the reduction in solution concentrations of pyridine was generally less than 10 mg L{sup {minus}1} at an initial concentration of 100 mg L{sup {minus}1}. 31 refs., 3 figs., 3 tabs.

Essington, M.E.; Hart, B.K.

1990-03-01T23:59:59.000Z

268

Relationships among oil density, gross composition, and thermal maturity indicators in northeastern Williston basin oils and their significance for expulsion thresholds and migration pathways  

SciTech Connect (OSTI)

Oil density ({degree}API), gross composition, and biological market thermal maturity variations in northeastern Williston basin have stratigraphic and geographic significance controlled by migration pathways and source rock composition as it affects hydrocarbon generation and expulsion characteristics. When the depth and density of oil pools is compared to relationships predicted using the correlation between source rock thermal maturity and oil density, several different migration pathways can be inferred. Winnipegosis source oils indicate four paths. Most small pinnacle reef pools are sourced locally, but larger coalesced reefs contain oils migrated long distances through the Lower Member Winnipegosis Formation. Among oils that have migrated past Prairie salts, both locally sourced oils, like those on the flank of the Hummingbird Trough, and more mature, longer migrated oils in Saskatchewan Group reservoirs can be identified. Bakken oils have the longest migration pathways, controlled primarily by a lowstand shoreline sandstone on the eastern side of the basin. Lodgepole-sourced oils dominate Madison Group plays. Northwest of Steelman field, oil density increases primarily due to thermal maturity differences but also because of increasing biodegradation and water-washing that affect the western edge of the play trend. Along the margin of the Hummingbird Trough are a number of deep, medium-gravity pools whose oil compositions are entirely attributable to low thermal maturity and local migration pathways.

Osadetz, K.G.; Snowdon, L.R.; Brooks, P.W. (Geological Survey of Canada, Calgary, Alberta (Canada))

1991-06-01T23:59:59.000Z

269

Oils and source rocks from the Anadarko Basin: Final report, March 1, 1985-March 15, 1995  

SciTech Connect (OSTI)

The research project investigated various geochemical aspects of oils, suspected source rocks, and tar sands collected from the Anadarko Basin, Oklahoma. The information has been used, in general, to investigate possible sources for the oils in the basin, to study mechanisms of oil generation and migration, and characterization of depositional environments. The major thrust of the recent work involved characterization of potential source formations in the Basin in addition to the Woodford shale. The formations evaluated included the Morrow, Springer, Viola, Arbuckle, Oil Creek, and Sylvan shales. A good distribution of these samples was obtained from throughout the basin and were evaluated in terms of source potential and thermal maturity based on geochemical characteristics. The data were incorporated into a basin modelling program aimed at predicting the quantities of oil that could, potentially, have been generated from each formation. The study of crude oils was extended from our earlier work to cover a much wider area of the basin to determine the distribution of genetically-related oils, and whether or not they were derived from single or multiple sources, as well as attempting to correlate them with their suspected source formations. Recent studies in our laboratory also demonstrated the presence of high molecular weight components(C{sub 4}-C{sub 80}) in oils and waxes from drill pipes of various wells in the region. Results from such a study will have possible ramifications for enhanced oil recovery and reservoir engineering studies.

Philp, R. P. [School of Geology and Geophysics, Univ. of Oklahoma, Norman, OK (United States)

1996-11-01T23:59:59.000Z

270

Marathon Oil Company  

E-Print Network [OSTI]

Marine oil shale from the Shenglihe oil shale section in the Qiangtang basin, northern Tibet, China, was dated by the Re-Os technique using Carius Tube digestion, Os distillation, Re extraction by acetone and ICP-MS measure-ment. An isochron was obtained giving an age of 101±24 Ma with an initial

unknown authors

271

Synthetic aircraft turbine oil  

SciTech Connect (OSTI)

Synthetic lubricating oil composition having improved oxidation stability comprising a major portion of an aliphatic ester base oil having lubricating properties, formed by the reaction of pentaerythritol and an organic monocarboxylic acid and containing a phenylnaphthylamine, a dialkyldiphenylamine, a polyhydroxy anthraquinone, a hydrocarbyl phosphate ester and a dialkyldisulfide.

Yaffe, R.

1982-03-16T23:59:59.000Z

272

Chinaâs Oil Diplomacy with Russia.  

E-Print Network [OSTI]

??In Chinaâs view, it is necessary to get crude oil and oil pipeline. Under Russia and China strategic partnership, China tries to obtain âlong term… (more)

Chao, Jiun-chuan

2011-01-01T23:59:59.000Z

273

OIL SHALE DEVELOPMENT IN CHINA  

E-Print Network [OSTI]

In this paper history, current status and forecast of Chinese oil shale indus-try, as well as the characteristics of some typical Chinese oil shales are given.

J. Qian; J. Wang; S. Li

274

Peak oil: diverging discursive pipelines.  

E-Print Network [OSTI]

??Peak oil is the claimed moment in time when global oil production reaches its maximum rate and henceforth forever declines. It is highly controversial as… (more)

Doctor, Jeff

2012-01-01T23:59:59.000Z

275

Petroleum Oil | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Petroleum Oil Petroleum Oil The production of energy feedstock and fuels requires substantial water input. Not only do biofuel feedstocks like corn, switchgrass and agricultural...

276

Balancing oil and environment... responsibly.  

SciTech Connect (OSTI)

Balancing Oil and Environment…Responsibly As the price of oil continues to skyrocket and global oil production nears the brink, pursuing unconventional oil supplies, such as oil shale, oil sands, heavy oils, and oils from biomass and coal has become increasingly attractive. Of particular significance to the American way is that our continent has significant quantities of these resources. Tapping into these new resources, however, requires cutting-edge technologies for identification, production, processing and environmental management. This job needs a super hero or two for a job of this size and proportion…

Weimer, Walter C.; Teske, Lisa

2007-01-25T23:59:59.000Z

277

Essays on Macroeconomics and Oil  

E-Print Network [OSTI]

Oil Production in Venezuela and Mexico . . . . . . . . . .and Productivity in Venezuela and Mexico . . . . . . . . OilEllner, ”Organized Labor in Venezuela 1958-1991: Behavior

CAKIR, NIDA

2013-01-01T23:59:59.000Z

278

1. RESERVOIR CHARACTERIZATION 1.1 NATURAL FRACTURES IN THE SPRABERRY FORMATION, MIDLAND  

E-Print Network [OSTI]

and vertically within the formation. 1.1.2 INTRODUCTION 1.1.2.1 Background Large reserves of oil were discovered production of 740 million barrels of oil to date, but oil recovery percentages and the daily production rates of oil (and 25,000 cubic feet of gas), which is an average of only 7 BO/D from each of the 8

Schechter, David S.

279

Horizontal oil well applications and oil recovery assessment. Volume 1: Success of horizontal well technology, Final report  

SciTech Connect (OSTI)

Horizontal technology has been applied in over 110 formations in the USA. Volume I of this study addresses the overall success of horizontal technology, especially in less-publicized formations, i.e., other than the Austin Chalk, Bakken, and Niobrara. Operators in the USA. and Canada were surveyed on a formation-by-formation basis by means of a questionnaire. Response data were received describing horizontal well projects in 58 formations in the USA. and 88 in Canada. Operators responses were analyzed for trends in technical and economic success based on lithology (clastics and carbonates) and resource type (light oil, heavy oil, and gas). The potential impact of horizontal technology on reserves was also estimated. A forecast of horizontal drilling activity over the next decade was developed.

Deskins, W.G.; McDonald, W.J.; Knoll, R.G.; Springer, S.J.

1995-03-01T23:59:59.000Z

280

Study of Flow Regimes in Multiply-Fractured Horizontal Wells in Tight Gas and Shale Gas Reservoir Systems  

E-Print Network [OSTI]

Various analytical, semi-analytical, and empirical models have been proposed to characterize rate and pressure behavior as a function of time in tight/shale gas systems featuring a horizontal well with multiple hydraulic fractures. Despite a small...

Freeman, Craig M.

2010-07-14T23:59:59.000Z

Note: This page contains sample records for the topic "tight oil formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Oil and gas basins in the former Soviet Union  

SciTech Connect (OSTI)

The Pripyat basin is a Late Devonian rift characterized by a typical fault-block structure. Two synrift salt formations separate the Devonian stratigraphic succession into the subsalt, intersalt, and postsalt sections. Oil is produced from carbonate reservoirs of the subsalt and intersalt sections. Traps are controlled by crests of tilted fault blocks. We analyzed 276 shale and carbonate-rock samples and 21 oils to determine oil-source bed relationships in the basin. Maturities of the oils are from very immature, heavy (9[degrees] API), to very mature, light (42[degrees] API). All fields are in a narrow band on the north side of the basin, and only shows of immature, heavy oil have been obtained from the rest of the basin. Three genetic oil types are identified. Oil type A has high pristane/phytane ratios (>1.0), high amounts of C[sub 29] 18[alpha] (H) trisnorneohopane, and [delta]13C of hydrocarbons in the range of -31 to -27%. Oil types B and C contain very high amounts of gammacerane, which suggests that the oils were derived from carbonate-evaporite source facies. Type B oils are isotopically similar to type A, whereas type C oils are isotopically light (about -33%). Organic carbon content is as much as 5%, and kerogen types range from I to IV. Our data indicate that rocks within the intersalt carbonate formation are the source of the type B oils of low maturity. Thermally mature rocks that might be the source for the mature oils have not been found. Such rocks may occur in depressions adjacent to tilted fault blocks. Higher levels of thermal maturity on the north part of the basin in the vicinity of the most mature oils may be related to higher heat flow during and soon after rifting or to a suspected recently formed magmatic body in the crust below the northern zone. Present-day high temperatures in parts of the northern zone may support the latter alternative.

Clayton, J. (Geological Survey, Denver, CO (United States))

1993-09-01T23:59:59.000Z

282

Selected Abstracts & Bibliography of International Oil Spill Research, through 1998  

E-Print Network [OSTI]

Kuwait, Middle East, oil and gas fields, oil refinery, oil waste, oil well,Equipment Kuwait Oil Co. 1991. Mideast well fire, oil spillKuwait, Persian Gulf, Saudia Arabia, Oil spill, cleanup, oil spills, crude, oil spill incidents, oil spills-pipeline, warfare, oil skimmers, oil wells,

Louisiana Applied Oil Spill Research & Development Program Electronic Bibliography

1998-01-01T23:59:59.000Z

283

Laboratory weathering and solubility relationships of fluorine and molybdenum in combusted oil shale  

SciTech Connect (OSTI)

Proper management of large volumes of spent oil shale requires an understanding of the mineralogy and the disposal environment chemistry. Simulated laboratory weathering is one method to rapidly and inexpensively assess the long-term potential for spent oil shales to degrade the environment. The objectives of this study were to assess the solubility relationships of fluorine (F) and molybdenum (Mo) in Green River Formation spent oil shale, to examine the mineralogy and leachate chemistry of three combusted oil shales in a laboratory weathering environment using the humidity cell technique, and to examine the data from spent oil shale literature. Combusted oil shales from the Green River Formation and New Albany Shale were used in the examination of the leachate chemistry and mineralogy.

Essington, M.E.; Wills, R.A.; Brown, M.A.

1991-01-01T23:59:59.000Z

284

Probabilistic Risk Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems  

SciTech Connect (OSTI)

This report describes work performed during the initial period of the project 'Probabilistic Risk Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems.' The specific region that is within the scope of this study is the Fayetteville Shale Play. This is an unconventional, tight formation, natural gas play that currently has approximately 1.5 million acres under lease, primarily to Southwestern Energy Incorporated and Chesapeake Energy Incorporated. The currently active play encompasses a region from approximately Fort Smith, AR east to Little Rock, AR approximately 50 miles wide (from North to South). The initial estimates for this field put it almost on par with the Barnett Shale play in Texas. It is anticipated that thousands of wells will be drilled during the next several years; this will entail installation of massive support infrastructure of roads and pipelines, as well as drilling fluid disposal pits and infrastructure to handle millions of gallons of fracturing fluids. This project focuses on gas production in Arkansas as the test bed for application of proactive risk management decision support system for natural gas exploration and production. The activities covered in this report include meetings with representative stakeholders, development of initial content and design for an educational web site, and development and preliminary testing of an interactive mapping utility designed to provide users with information that will allow avoidance of sensitive areas during the development of the Fayetteville Shale Play. These tools have been presented to both regulatory and industrial stakeholder groups, and their feedback has been incorporated into the project.

Greg Thoma; John Veil; Fred Limp; Jackson Cothren; Bruce Gorham; Malcolm Williamson; Peter Smith; Bob Sullivan

2009-05-31T23:59:59.000Z

285

Naturally fractured tight gas - gas reservoir detection optimization. Quarterly report, June 1, 1996--September 30, 1996  

SciTech Connect (OSTI)

This document contains the status report for the Naturally Fractured Tight Gas-Gas Reservoir Detection Optimization project for the contract period 9/30/93 to 3/31/97. Data from seismic surveys are analyzed for structural imaging of reflector units. The data were stacked using the new, improved statics and normal moveout velocities. The 3-D basin modeling effort is continuing with code development. The main activities of this quarter were analysis of fluid pressure data, improved sedimentary history, lithologic unit geometry reconstruction algorithm and computer module, and further improvement, verification, and debugging of the basin stress and multi-phase reaction transport module.

Maxwell, J.M.; Ortoleva, P.; Payne, D.; Sibo, W.

1996-11-15T23:59:59.000Z

286

Tight bounds on the size of neural networks for classification problems  

SciTech Connect (OSTI)

This paper relies on the entropy of a data-set (i.e., number-of-bits) to prove tight bounds on the size of neural networks solving a classification problem. First, based on a sequence of geometrical steps, the authors constructively compute an upper bound of O(mn) on the number-of-bits for a given data-set - here m is the number of examples and n is the number of dimensions (i.e., R{sup n}). This result is used further in a nonconstructive way to bound the size of neural networks which correctly classify that data-set.

Beiu, V. [Los Alamos National Lab., NM (United States); Pauw, T. de [Universite Catholique de Louvain, Louvain-la-Neuve (Belgium). Dept. de Mathematique

1997-06-01T23:59:59.000Z

287

Geochemistry of selected oils and rocks from the central portion of the West Siberian basin, Russia  

SciTech Connect (OSTI)

Six analyzed oils, produced from Middle jurassic to Upper Cretaceous strata in the Middle Ob region of the West Siberian basin, show biomarker and stable carbon isotope compositions indicating an origin from the Upper Jurassic Bazhenov Formation. The chemical compositions of these oils are representative of more than 85% of the reserves in West Siberia (Kontorovich et al., 1975). Bazhenov-sourced oil in Cenomanian strata in the Van-Egan field underwent biodegradation in the reservoir, resulting in a low API gravity, an altered homohopane distribution, and the appearance of 25-norhopanes without alteration of the steranes. High API gravity oil from the Salym field has surpassed the peak of the oil window, consistent with abnormally high temperatures and pressures in the Bazhenov source rock from which it is produced. The remaining oils are very similar, including samples from Valanginian and Bathonian-Callovian intervals in a sequence of stacked reservoirs in the Fedorov field. Bazhenov rock samples from the study area contain abundant oil-prone, marine organic matter preserved under anoxic conditions. While the Upper Jurassic Vasyugan Formation shows lower oil-regenerative potential than the Bazhenov Formation, it cannot be excluded as a source rock because insufficient sample was available for biomarker analysis. Core from the Lower to Middle Jurassic Tyumen Formation in the YemYegov 15 well was compared with the oils because it is thermally mature and shows TOC and HI values, indicating slightly more favorable oil-generative characteristics than the average for the formation (2.75 wt. % for 270 samples; 95 mg HC/g TOC for 25 samples). The core contains terrigenous, gas-prone organic matter that shows no relationship with the analyzed oils. 59 refs., 15 figs., 8 tabs.

Peters, K.E.; Huizinga, B.J. (Chevron Overseas Petroleum Inc., San Ramon, CA (United States)); Kontorovich, A.Eh.; Andrusevich, V.E. (Inst. of Geology, Novosibirsk (Russian Federation)); Moldowan, J.M. (Chevron Petroleum Technology Co., Richmond, CA (United States)); Demaison, G.J. (Petroscience Inc., Walnut Creek, CA (United States)); Stasova, O.F. (NPO SIBGEO, Novosibirsk (Russian Federation))

1993-05-01T23:59:59.000Z

288

Microbial Enhanced Oil Recovery in Fractional-Wet Systems: A Pore-Scale Investigation  

SciTech Connect (OSTI)

Microbial enhanced oil recovery (MEOR) is a technology that could potentially increase the tertiary recovery of oil from mature oil formations. However, the efficacy of this technology in fractional-wet systems is unknown, and the mechanisms involved in oil mobilization therefore need further investigation. Our MEOR strategy consists of the injection of ex situ produced metabolic byproducts produced by Bacillus mojavensis JF-2 (which lower interfacial tension (IFT) via biosurfactant production) into fractional-wet cores containing residual oil. Two different MEOR flooding solutions were tested; one solution contained both microbes and metabolic byproducts while the other contained only the metabolic byproducts. The columns were imaged with X-ray computed microtomography (CMT) after water flooding, and after MEOR, which allowed for the evaluation of the pore-scale processes taking place during MEOR. Results indicate that the larger residual oil blobs and residual oil held under relatively low capillary pressures were the main fractions recovered during MEOR. Residual oil saturation, interfacial curvatures, and oil blob sizes were measured from the CMT images and used to develop a conceptual model for MEOR in fractional-wet systems. Overall, results indicate that MEOR was effective at recovering oil from fractional-wet systems with reported additional oil recovered (AOR) values between 44 and 80%; the highest AOR values were observed in the most oil-wet system.

Armstrong, Ryan T.; Wildenschild, Dorthe (Oregon State U.)

2012-10-24T23:59:59.000Z

289

Geochemical evaluation of oils and source rocks from the Western Siberian basin, U. S. S. R  

SciTech Connect (OSTI)

Although the Western Siberian basin is among the most prolific in the world, there has been disagreement among Soviet geoscientists on the origin of the petroleum within this basin. Screening geochemical analyses were used to select several oils and potential source rocks for a preliminary study using detailed biomarker and supporting geochemistry. Possible sources for this petroleum include rocks of Middle Jurassic, Upper Jurassic, and Lower Cretaceous age. Results indicate that most of the analyzed Western Siberian oils, occurring in reservoirs from Middle Jurassic to Late Cretaceous in age, are derived from the Upper Jurassic Bazhenov Formation. The locations of the samples in the study generally correspond to the distribution of the most effective oil-generative parts of the Bazhenov Formation. Analyses show that the Bazhenov rock samples contain abundant marine algal and bacterial organic matter, preserved under anoxic depositional conditions. Biomarkers show that thermal maturities of the samples range from the early to late oil-generative window and that some are biodegraded. For example, the Salym No. 114 oil, which flowed directly from the Bazhenov Formation, shows a maturity equivalent to the late oil window. The Van-Egan no. 110 oil shows maturity equivalent to the early oil window and is biodegraded. This oil shows preferential microbial conversion of lower homologs of the 17{alpha}, 21{beta}(H)-hopanes to 25-nor-17{alpha}(H)-hopanes.

Peters, K.E.; Huizinga, B.J. (Chevron Overseas Petroleum, Inc., San Ramon, CA (United States)); Moldowan, J.M. (Chevron Oil Field Research Co., Richmond, CA (United States)); Kontorovich, A.E.; Stasova, O. (Siberian Scientific Research Institute for Geology, Geophysics and Mineral Resources, Novobsibirsk (Russian Federation)); Demaison, G.J.

1991-03-01T23:59:59.000Z

290

Method for forming an in situ oil shale retort with horizontal free faces  

DOE Patents [OSTI]

A method for forming a fragmented permeable mass of formation particles in an in situ oil shale retort is provided. A horizontally extending void is excavated in unfragmented formation containing oil shale and a zone of unfragmented formation is left adjacent the void. An array of explosive charges is formed in the zone of unfragmented formation. The array of explosive charges comprises rows of central explosive charges surrounded by a band of outer explosive charges which are adjacent side boundaries of the retort being formed. The powder factor of each outer explosive charge is made about equal to the powder factor of each central explosive charge. The explosive charges are detonated for explosively expanding the zone of unfragmented formation toward the void for forming the fragmented permeable mass of formation particles having a reasonably uniformly distributed void fraction in the in situ oil shale retort.

Ricketts, Thomas E. (Grand Junction, CO); Fernandes, Robert J. (Bakersfield, CA)

1983-01-01T23:59:59.000Z

291

Imbibition assisted oil recovery  

E-Print Network [OSTI]

analyzed in detail to investigate oil recovery during spontaneous imbibition with different types of boundary conditions. The results of these studies have been upscaled to the field dimensions. The validity of the new definition of characteristic length...

Pashayev, Orkhan H.

2004-11-15T23:59:59.000Z

292

Oil Market Assessment  

Reports and Publications (EIA)

Based on Energy Information Administration (EIA) contacts and trade press reports, overall U.S. and global oil supplies appear to have been minimally impacted by yesterday's terrorist attacks on the World Trade Center and the Pentagon.

2001-01-01T23:59:59.000Z

293

Production of Shale Oil  

E-Print Network [OSTI]

Intensive pre-project feasibility and engineering studies begun in 1979 have produced an outline plan for development of a major project for production of shale oil from private lands in the Piceance Basin in western Colorado. This outline plan...

Loper, R. D.

1982-01-01T23:59:59.000Z

294

Oil shale research in China  

SciTech Connect (OSTI)

There have been continued efforts and new emergence in oil shale research in Chine since 1980. In this paper, the studies carried out in universities, academic, research and industrial laboratories in recent years are summarized. The research areas cover the chemical structure of kerogen; thermal behavior of oil shale; drying, pyrolysis and combustion of oil shale; shale oil upgrading; chemical utilization of oil shale; retorting waste water treatment and economic assessment.

Jianqiu, W.; Jialin, Q. (Beijing Graduate School, Petroleum Univ., Beijing (CN))

1989-01-01T23:59:59.000Z

295

Leak-Tight Welding Experience from the Industrial Assembly of the LHC Cryostats at CERN  

E-Print Network [OSTI]

The assembly of the approximately 1700 LHC main ring cryostats at CERN involved extensive welding of cryogenic lines and vacuum vessels. More than 6 km of welding requiring leak tightness to a rate better than 1.10-9 mbar.l.s-1 on stainless steel and aluminium piping and envelopes was made, essentially by manual welding but also making use of orbital welding machines. In order to fulfil the safety regulations related to pressure vessels and to comply with the leak-tightness requirements of the vacuum systems of the machine, welds were executed according to high qualification standards and following a severe quality assurance plan. Leak detection by He mass spectrometry was extensively used. Neon leak detection was used successfully to locate leaks in the presence of helium backgrounds. This paper presents the quality assurance strategy adopted for welds and leak detection. It presents the statistics of non-conformities on welds and leaks detected throughout the entire production and the advances in the use...

Bourcey, N; Chiggiato, P; Limon, P; Mongelluzzo, A; Musso, G; Poncet, A; Parma, V

2008-01-01T23:59:59.000Z

296

Biocatalysis in Oil Refining  

SciTech Connect (OSTI)

Biocatalysis in Oil Refining focuses on petroleum refining bioprocesses, establishing a connection between science and technology. The micro organisms and biomolecules examined for biocatalytic purposes for oil refining processes are thoroughly detailed. Terminology used by biologists, chemists and engineers is brought into a common language, aiding the understanding of complex biological-chemical-engineering issues. Problems to be addressed by the future R&D activities and by new technologies are described and summarized in the last chapter.

Borole, Abhijeet P [ORNL; Ramirez-Corredores, M. M. [BP Global Fuels Technology

2007-01-01T23:59:59.000Z

297

Electric Power Generation from Co-Produced Fluids from Oil and...  

Open Energy Info (EERE)

at an oil field operated by Encore Acquisition in western North Dakota where geothermal fluids occur in sedimentary formations at depths of 10,000 feet. The power plant will be...

298

Dilute Surfactant Methods for Carbonate Formations  

SciTech Connect (OSTI)

There are many fractured carbonate reservoirs in US (and the world) with light oil. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). The process of using dilute anionic surfactants in alkaline solutions has been investigated in this work for oil recovery from fractured oil-wet carbonate reservoirs both experimentally and numerically. This process is a surfactant-aided gravity drainage where surfactant diffuses into the matrix, lowers IFT and contact angle, which decrease capillary pressure and increase oil relative permeability enabling gravity to drain the oil up. Anionic surfactants have been identified which at dilute concentration of 0.05 wt% and optimal salinity can lower the interfacial tension and change the wettability of the calcite surface to intermediate/water-wet condition as well or better than the cationic surfactant DTAB with a West Texas crude oil. The force of adhesion in AFM of oil-wet regions changes after anionic surfactant treatment to values similar to those of water-wet regions. The AFM topography images showed that the oil-wetting material was removed from the surface by the anionic surfactant treatment. Adsorption studies indicate that the extent of adsorption for anionic surfactants on calcite minerals decreases with increase in pH and with decrease in salinity. Surfactant adsorption can be minimized in the presence of Na{sub 2}CO{sub 3}. Laboratory-scale surfactant brine imbibition experiments give high oil recovery (20-42% OOIP in 50 days; up to 60% in 200 days) for initially oil-wet cores through wettability alteration and IFT reduction. Small (<10%) initial gas saturation does not affect significantly the rate of oil recovery in the imbibition process, but larger gas saturation decreases the oil recovery rate. As the core permeability decreases, the rate of oil recovery reduces, and this reduction can be scaled by the gravitational dimensionless time. Mechanistic simulation of core-scale surfactant brine imbibition matches the experimentally observed imbibition data. In-situ distributions observed through simulation indicate that surfactant diffusion (which depends on temperature and molecular weight) is the rate limiting step. Most of the oil is recovered through gravitational forces. Oil left behind at the end of this process is at its residual oil saturation. The capillary and Bond numbers are not large enough to affect the residual oil saturation. At the field-scale, 50% of the recoverable oil is produced in about 3 years if the fracture spacing is 1 m and 25% if 10 m, in the example simulated. Decreasing fracture spacing and height, increasing permeability, and increasing the extent of wettability alteration increase the rate of oil recovery from surfactant-aided gravity drainage. This dilute surfactant aided gravity-drainage process is relatively cheap. The chemical cost for a barrel of oil produced is expected to be less than $1.

Kishore K. Mohanty

2006-02-01T23:59:59.000Z

299

Oil/gas collector/separator for underwater oil leaks  

DOE Patents [OSTI]

An oil/gas collector/separator for recovery of oil leaking, for example, from an offshore or underwater oil well. The separator is floated over the point of the leak and tethered in place so as to receive oil/gas floating, or forced under pressure, toward the water surface from either a broken or leaking oil well casing, line, or sunken ship. The separator is provided with a downwardly extending skirt to contain the oil/gas which floats or is forced upward into a dome wherein the gas is separated from the oil/water, with the gas being flared (burned) at the top of the dome, and the oil is separated from water and pumped to a point of use. Since the density of oil is less than that of water it can be easily separated from any water entering the dome.

Henning, Carl D. (Livermore, CA)

1993-01-01T23:59:59.000Z

300

HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS  

SciTech Connect (OSTI)

The Stanford University Petroleum Research Institute (SUPRI-A) conducts a broad spectrum of research intended to help improve the recovery efficiency from difficult to produce reservoirs including heavy oil and fractured low permeability systems. Our scope of work is relevant across near-, mid-, and long-term time frames. The primary functions of the group are to conduct direction-setting research, transfer research results to industry, and educate and train students for careers in industry. Presently, research in SUPRI-A is divided into 5 main project areas. These projects and their goals include: (1) Multiphase flow and rock properties--to develop better understanding of the physics of displacement in porous media through experiment and theory. This category includes work on imbibition, flow in fractured media, and the effect of temperature on relative permeability and capillary pressure. (2) Hot fluid injection--to improve the application of nonconventional wells for enhanced oil recovery and elucidate the mechanisms of steamdrive in low permeability, fractured porous media. (3) Mechanisms of primary heavy oil recovery--to develop a mechanistic understanding of so-called ''foamy oil'' and its associated physical chemistry. (4) In-situ combustion--to evaluate the effect of different reservoir parameters on the insitu combustion process. (5) Reservoir definition--to develop and improve techniques for evaluating formation properties from production information. What follows is a report on activities for the past year. Significant progress was made in all areas.

Anthony R. Kovscek; Louis M. Castanier

2002-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "tight oil formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Thermal decomposition of Colorado and Kentucky reference oil shales  

SciTech Connect (OSTI)

Isothermal pyrolysis studies have been conducted on a Green River Formation oil shale from Colorado and a New Albany oil shale from Kentucky. The conversion of kerogen to bitumen, oil, gas, and residue products was obtained for different isothermal reaction times in the temperature range of 375/degree/C to 440/degree/C (707/degree/ to 824/degree/F) using a heated sand bath reactor system. Particular attention was paid to the formation of the bitumen intermediate during decomposition of the two shales. The maximum amount of extractable bitumen in the New Albany shale was 14% or less of the original kerogen at any given temperature, indicating that direct conversion of kerogen to oil, gas, and residue products is a major pathway of conversion of this shale during pyrolysis. In contrast, a significant fraction of the Colorado oil shale kerogen was converted to the intermediate bitumen during pyrolysis. The bitumen data imply that the formation of soluble intermediates may depend on original kerogen structure and may be necessary for producing high yields by pyrolysis. 24 refs., 14 figs., 8 tabs.

Miknis, F.P.; Turner, T.F.; Ennen, L.W.; Chong, S.L.; Glaser, R.

1988-06-01T23:59:59.000Z

302

Optimising the Use of Spent Oil Shale.  

E-Print Network [OSTI]

??Worldwide deposits of oil shales are thought to represent ~3 trillion barrels of oil. Jordanian oil shale deposits are extensive and high quality, and could… (more)

FOSTER, HELEN,JANE

2014-01-01T23:59:59.000Z

303

Oil Prices and Long-Run Risk.  

E-Print Network [OSTI]

??I show that relative levels of aggregate consumption and personal oil consumption provide anexcellent proxy for oil prices, and that high oil prices predict low… (more)

READY, ROBERT

2011-01-01T23:59:59.000Z

304

Seismic stimulation for enhanced oil recovery  

E-Print Network [OSTI]

aims to enhance oil production by sending seismic wavesbe expected to enhance oil production. INTRODUCTION The hopethe reservoir can cause oil production to increase. Quite

Pride, S.R.

2008-01-01T23:59:59.000Z

305

Seismic stimulation for enhanced oil recovery  

E-Print Network [OSTI]

that in a declining oil reservoir, seismic waves sent acrosswells. Because oil reservoirs are often at kilometers orproximity to the oil reservoir. Our analysis suggests there

Pride, S.R.

2008-01-01T23:59:59.000Z

306

Oil and Gas Science and Technology, 2009, 64(5), 629-636, doi: 10.2516/ogst/2009042 DDDiiissscccuuussssssiiiooonnn ooofff aaagggggglllooommmeeerrraaatttiiiooonnn mmmeeeccchhhaaannniiisssmmmsss bbbeeetttwwweeeeeennn hhhyyydddrrraaattteee  

E-Print Network [OSTI]

Oil and Gas Science and Technology, 2009, 64(5), 629-636, doi: 10.2516/ogst/2009042 1. KKeeyywwoorrddss:: gas hydrate formation ; water/oil emulsions ; hydrate slurry ; agglomeration ; Population@emse.fr hal-00480033,version1-3May2010 Author manuscript, published in "Oil & Gas Science and Technology 64, 5

Paris-Sud XI, Université de

307

MAJOR OIL PLAYS IN UTAH AND VICINITY  

SciTech Connect (OSTI)

Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play; locations of major oil pipelines; descriptions of reservoir outcrop analogs; and identification and discussion of land use constraints. All play maps, reports, databases, and so forth, produced for the project will be published in interactive, menu-driven digital (web-based and compact disc) and hard-copy formats. This report covers research activities for the third quarter of the first project year (January 1 through March 31, 2003). This work included gathering field data and analyzing best practices in the eastern Uinta Basin, Utah, and the Colorado portion of the Paradox Basin. Best practices used in oil fields of the eastern Uinta Basin consist of conversion of all geophysical well logs into digital form, running small fracture treatments, fingerprinting oil samples from each producing zone, running spinner surveys biannually, mapping each producing zone, and drilling on 80-acre (32 ha) spacing. These practices ensure that induced fractures do not extend vertically out of the intended zone, determine the percentage each zone contributes to the overall production of the well, identify areas that may be by-passed by a waterflood, and prevent rapid water breakthrough. In the eastern Paradox Basin, Colorado, optimal drilling, development, and production practices consist of increasing the mud weight during drilling operations before penetrating the overpressured Desert Creek zone; centralizing treatment facilities; and mixing produced water from pumping oil wells with non-reservoir water and injecting the mixture into the reservoir downdip to reduce salt precipitation, dispose of produced water, and maintain reservoir pressure to create a low-cost waterflood. During this quarter, technology transfer activities consisted of technical presentations to members of the Technical Advisory Board in Colorado and the Colorado Geological Survey. The project home page was updated on the Utah Geological Survey Internet web site.

Thomas C. Chidsey Jr; Craig D. Morgan; Roger L. Bon

2003-07-01T23:59:59.000Z

308

Pore-scale mechanisms of gas flow in tight sand reservoirs  

SciTech Connect (OSTI)

Tight gas sands are unconventional hydrocarbon energy resource storing large volume of natural gas. Microscopy and 3D imaging of reservoir samples at different scales and resolutions provide insights into the coaredo not significantly smaller in size than conventional sandstones, the extremely dense grain packing makes the pore space tortuous, and the porosity is small. In some cases the inter-granular void space is presented by micron-scale slits, whose geometry requires imaging at submicron resolutions. Maximal Inscribed Spheres computations simulate different scenarios of capillary-equilibrium two-phase fluid displacement. For tight sands, the simulations predict an unusually low wetting fluid saturation threshold, at which the non-wetting phase becomes disconnected. Flow simulations in combination with Maximal Inscribed Spheres computations evaluate relative permeability curves. The computations show that at the threshold saturation, when the nonwetting fluid becomes disconnected, the flow of both fluids is practically blocked. The nonwetting phase is immobile due to the disconnectedness, while the permeability to the wetting phase remains essentially equal to zero due to the pore space geometry. This observation explains the Permeability Jail, which was defined earlier by others. The gas is trapped by capillarity, and the brine is immobile due to the dynamic effects. At the same time, in drainage, simulations predict that the mobility of at least one of the fluids is greater than zero at all saturations. A pore-scale model of gas condensate dropout predicts the rate to be proportional to the scalar product of the fluid velocity and pressure gradient. The narrowest constriction in the flow path is subject to the highest rate of condensation. The pore-scale model naturally upscales to the Panfilov's Darcy-scale model, which implies that the condensate dropout rate is proportional to the pressure gradient squared. Pressure gradient is the greatest near the matrix-fracture interface. The distinctive two-phase flow properties of tight sand imply that a small amount of gas condensate can seriously affect the recovery rate by blocking gas flow. Dry gas injection, pressure maintenance, or heating can help to preserve the mobility of gas phase. A small amount of water can increase the mobility of gas condensate.

Silin, D.; Kneafsey, T.J.; Ajo-Franklin, J.B.; Nico, P.

2010-11-30T23:59:59.000Z

309

Characterization of Tight Gas Reservoir Pore Structure Using USANS/SANS and Gas Adsorption Analysis  

SciTech Connect (OSTI)

Small-angle and ultra-small-angle neutron scattering (SANS and USANS) measurements were performed on samples from the Triassic Montney tight gas reservoir in Western Canada in order to determine the applicability of these techniques for characterizing the full pore size spectrum and to gain insight into the nature of the pore structure and its control on permeability. The subject tight gas reservoir consists of a finely laminated siltstone sequence; extensive cementation and moderate clay content are the primary causes of low permeability. SANS/USANS experiments run at ambient pressure and temperature conditions on lithologically-diverse sub-samples of three core plugs demonstrated that a broad pore size distribution could be interpreted from the data. Two interpretation methods were used to evaluate total porosity, pore size distribution and surface area and the results were compared to independent estimates derived from helium porosimetry (connected porosity) and low-pressure N{sub 2} and CO{sub 2} adsorption (accessible surface area and pore size distribution). The pore structure of the three samples as interpreted from SANS/USANS is fairly uniform, with small differences in the small-pore range (< 2000 {angstrom}), possibly related to differences in degree of cementation, and mineralogy, in particular clay content. Total porosity interpreted from USANS/SANS is similar to (but systematically higher than) helium porosities measured on the whole core plug. Both methods were used to estimate the percentage of open porosity expressed here as a ratio of connected porosity, as established from helium adsorption, to the total porosity, as estimated from SANS/USANS techniques. Open porosity appears to control permeability (determined using pressure and pulse-decay techniques), with the highest permeability sample also having the highest percentage of open porosity. Surface area, as calculated from low-pressure N{sub 2} and CO{sub 2} adsorption, is significantly less than surface area estimates from SANS/USANS, which is due in part to limited accessibility of the gases to all pores. The similarity between N{sub 2} and CO{sub 2}-accessible surface area suggests an absence of microporosity in these samples, which is in agreement with SANS analysis. A core gamma ray profile run on the same core from which the core plug samples were taken correlates to profile permeability measurements run on the slabbed core. This correlation is related to clay content, which possibly controls the percentage of open porosity. Continued study of these effects will prove useful in log-core calibration efforts for tight gas.

Clarkson, Christopher R [ORNL; He, Lilin [ORNL; Agamalian, Michael [ORNL; Melnichenko, Yuri B [ORNL; Mastalerz, Maria [Indiana Geological Survey; Bustin, Mark [University of British Columbia, Vancouver; Radlinski, Andrzej Pawell [ORNL; Blach, Tomasz P [ORNL

2012-01-01T23:59:59.000Z

310

Heat of combustion of retorted and burnt Colorado oil shale  

SciTech Connect (OSTI)

Heats of combustion were measured for 12 samples of retorted and 21 samples of burnt Colorado oil shale originating from raw shales with grades that ranged from 13 to 255 cm/sup 3/ of shale oil/kg of oil shale. For the retorted shales, the authors resolve the heat of combustion into exothermic contributions from combustion of carbon residue and iron sulfides and endothermic contributions from carbonate decomposition and glass formation. Eight samples reported in the literature were included in this analysis. Variations in the first three constituents account for over 99% of the variation in the heats of combustion. For the burnt shales, account must also be taken of the partial conversion of iron sulfides to sulfates. Equations are developed for calculating the heat of combustion of retorted and burnt oil shale with a standard error of about 60 J/g. 13 refs.

Burnham, A.K.; Crawford, P.C.; Carley, J.F.

1982-07-01T23:59:59.000Z

311

Heat of combustion of retorted and burnt Colorado oil shale  

SciTech Connect (OSTI)

Heats of combustion were measured for 12 samples of retorted and 21 samples of burnt Colorado oil shale originating from raw shales with grades that ranged from 13 to 255 cm/sup 3/ of shale oil/kg of oil shale. For the retorted shales, the heat of combustion was resolved into exothermic contributions from combustion of carbon residue and iron sulfides and endothermic contributions from carbonate decomposition and glass formation. Eight samples reported in the literature were included in this analysis. Variations in the first three constituents account for over 99% of the variation in the heats of combustion. For the burnt shales, account must also be taken of the partial conversion of iron sulfides to sulfates. Equations are developed for calculating the heat of combustion of retorted and burnt oil shale with a standard error of about 60 J/g.

Burnham, A.K.; Carley, J.F.; Crawford, P.C.

1982-07-01T23:59:59.000Z

312

Economic appraisal of oil potential of Williston basin  

SciTech Connect (OSTI)

An economic appraisal was made of the potential of more than 80 producing fields in the Williston basin of Montana, North Dakota, and South Dakota. The major oil producing formations investigated were in the Mississippian, Devonian, Silurian and Ordovician. Data for the study came from field production and drilling statistics. An extrapolated oil production decline curve for a theoretical average producing well first was made for each field. The value of the total extrapolated amount of producible oil for the average well was then calculated, discounted for royalty, taxes, etc., and divided by the estimated cost for a completed producing well. This gave an estimate of the return per dollar invested. No considerations were given for exploration and land acquisition costs. The estimated return per dollar values, after posting on Williston basin geologic maps, show relative economic comparisons of producing formations and where within the basin the best economic returns can be expected.

Jennings, A.H.

1983-08-01T23:59:59.000Z

313

Oil shale, tar sand, coal research, advanced exploratory process technology jointly sponsored research  

SciTech Connect (OSTI)

Accomplishments for the quarter are presented for the following areas of research: oil shale, tar sand, coal, advanced exploratory process technology, and jointly sponsored research. Oil shale research includes; oil shale process studies, environmental base studies for oil shale, and miscellaneous basic concept studies. Tar sand research covers process development. Coal research includes; underground coal gasification, coal combustion, integrated coal processing concepts, and solid waste management. Advanced exploratory process technology includes; advanced process concepts, advanced mitigation concepts, and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO[sub 2] HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesa Verde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced recovery techniques; and menu driven access to the WDEQ Hydrologic Data Management Systems.

Not Available

1992-01-01T23:59:59.000Z

314

Demonstration of a memory for tightly guided light in an optical nanofiber  

E-Print Network [OSTI]

We report the experimental observation of slow-light and coherent storage in a setting where light is tightly confined in the transverse directions. By interfacing a tapered optical nanofiber with a cold atomic ensemble, electromagnetically induced transparency is observed and light pulses at the single-photon level are stored in and retrieved from the atomic medium with an overall efficiency of (10 +/- 0.5) %. Collapses and revivals can be additionally controlled by an applied magnetic field. Our results based on subdiffraction-limited optical mode interacting with atoms via the strong evanescent field demonstrate an alternative to free-space focusing and a novel capability for information storage in an all-fibered quantum network.

Gouraud, B; Nicolas, A; Morin, O; Laurat, J

2015-01-01T23:59:59.000Z

315

The VENUS/NWChem Software Package. Tight Coupling Between Chemical Dynamics Simulations and Electronic Structure Theory  

SciTech Connect (OSTI)

The interface for VENUS and NWChem, and the resulting software package for direct dynamics simulations are described. The coupling of the two codes is considered to be a tight coupling. The two codes are compiled and linked together and act as one executable with data being passed between the two codes through routine calls. The advantages of this type of coupling are discussed. The interface has been designed to have as little interference as possible with the core codes of both VENUS and NWChem. VENUS is the code that propagates the direct dynamics trajectories and, therefore, is the program that drives the overall execution of VENUS/NWChem. VENUS has remained an essentially sequential code, which uses the highly parallel structure of NWChem. Subroutines of the interface which accomplish the data transmission and communication between the two computer programs are described. Recent examples of the use of VENUS/NWChem for direct dynamics simulations are summarized.

Lourderaj, Upakarasamy; Sun, Rui; De Jong, Wibe A.; Windus, Theresa L.; Hase, William L.

2014-03-01T23:59:59.000Z

316

Tight Bounds for Influence in Diffusion Networks and Application to Bond Percolation and Epidemiology  

E-Print Network [OSTI]

In this paper, we derive theoretical bounds for the long-term influence of a node in an Independent Cascade Model (ICM). We relate these bounds to the spectral radius of a particular matrix and show that the behavior is sub-critical when this spectral radius is lower than $1$. More specifically, we point out that, in general networks, the sub-critical regime behaves in $O(\\sqrt{n})$ where $n$ is the size of the network, and that this upper bound is met for star-shaped networks. We apply our results to epidemiology and percolation on arbitrary networks, and derive a bound for the critical value beyond which a giant connected component arises. Finally, we show empirically the tightness of our bounds for a large family of networks.

Lemonnier, Remi; Vayatis, Nicolas

2014-01-01T23:59:59.000Z

317

Geologic and production characteristics of the Tight Mesaverde Group: Piceance Basin, Colorado  

SciTech Connect (OSTI)

The Mesaverde Group of the Piceance Basin in western Colorado has been a pilot study area for government-sponsored tight gas sand research for over 20 years. This study provides a critical comparison of the geologic, production and reservoir characteristics of existing Mesaverde gas producing areas within the basin to those same characteristics at the MWX site near Rifle, Colorado. As will be discussed, the basin has been partitioned into three areas having similar geologic and production characteristics. Stimulation techniques have been reviewed for each partitioned area to determine the most effective stimulation technique currently used in the Mesaverde. This study emphasizes predominantly the southern Piceance Basin because of the much greater production and geologic data there. There may be Mesaverde gas production in northern areas but because of the lack of production and relatively few penetrations, the northern Piceance Basin was not included in the detailed parts of this study. 54 refs., 31 figs., 7 tabs.

Myal, F.R.; Price, E.H.; Hill, R.E.; Kukal, G.C.; Abadie, P.A.; Riecken, C.C.

1989-07-01T23:59:59.000Z

318

Analytical tools for investigating strong-field QED processes in tightly focused laser fields  

E-Print Network [OSTI]

The present paper is the natural continuation of the letter [Phys. Rev. Lett. \\textbf{113}, 040402 (2014)], where the electron wave functions in the presence of a background electromagnetic field of general space-time structure have been constructed analytically, assuming that the initial energy of the electron is the largest dynamical energy scale in the problem and having in mind the case of a background tightly focused laser beam. Here, we determine the scalar and the spinor propagators under the same approximations, which are useful tools for calculating, e.g., total probabilities of processes occurring in such complex electromagnetic fields. In addition, we also present a simpler and more general expression of the electron wave functions found in [Phys. Rev. Lett. \\textbf{113}, 040402 (2014)] and we indicate a substitution rule to obtain them starting from the well-known Volkov wave functions in a plane-wave field.

Di Piazza, A

2015-01-01T23:59:59.000Z

319

Carbon Dioxide-Water Emulsions for Enhanced Oil Recovery and Permanent Sequestration of Carbon Dioxide  

SciTech Connect (OSTI)

This project involves the use of an innovative new invention ? Particle Stabilized Emulsions (PSEs) of Carbon Dioxide-in-Water and Water-in-Carbon Dioxide for Enhanced Oil Recovery (EOR) and Permanent Sequestration of Carbon Dioxide. The EOR emulsion would be injected into a semi-depleted oil reservoir such as Dover 33 in Otsego County, Michigan. It is expected that the emulsion would dislocate the stranded heavy crude oil from the rock granule surfaces, reduce its viscosity, and increase its mobility. The advancing emulsion front should provide viscosity control which drives the reduced-viscosity oil toward the production wells. The make-up of the emulsion would be subsequently changed so it interacts with the surrounding rock minerals in order to enhance mineralization, thereby providing permanent sequestration of the injected CO{sub 2}. In Phase 1 of the project, the following tasks were accomplished: 1. Perform laboratory scale (mL/min) refinements on existing procedures for producing liquid carbon dioxide-in-water (C/W) and water-in-liquid carbon dioxide (W/C) emulsion stabilized by hydrophilic and hydrophobic fine particles, respectively, using a Kenics-type static mixer. 2. Design and cost evaluate scaled up (gal/min) C/W and W/C emulsification systems to be deployed in Phase 2 at the Otsego County semi-depleted oil field. 3. Design the modifications necessary to the present CO{sub 2} flooding system at Otsego County for emulsion injection. 4. Design monitoring and verification systems to be deployed in Phase 2 for measuring potential leakage of CO{sub 2} after emulsion injection. 5. Design production protocol to assess enhanced oil recovery with emulsion injection compared to present recovery with neat CO{sub 2} flooding. 6. Obtain Federal and State permits for emulsion injection. Initial research focused on creating particle stabilized emulsions with the smallest possible globule size so that the emulsion can penetrate even low-permeability crude oilcontaining formations or saline aquifers. The term ?globule? refers to the water or liquid carbon dioxide droplets sheathed with ultrafine particles dispersed in the continuous external medium, liquid CO{sub 2} or H{sub 2}O, respectively. The key to obtaining very small globules is the shear force acting on the two intermixing fluids, and the use of ultrafine stabilizing particles or nanoparticles. We found that using Kenics-type static mixers with a shear rate in the range of 2700 to 9800 s{sup -1} and nanoparticles between 100-300 nm produced globule sizes in the 10 to 20 ?m range. Particle stabilized emulsions with that kind of globule size should easily penetrate oil-bearing formations or saline aquifers where the pore and throat size can be on the order of 50 ?m or larger. Subsequent research focused on creating particle stabilized emulsions that are deemed particularly suitable for Permanent Sequestration of Carbon Dioxide. Based on a survey of the literature an emulsion consisting of 70% by volume of water, 30% by volume of liquid or supercritical carbon dioxide, and 2% by weight of finely pulverized limestone (CaCO{sub 3}) was selected as the most promising agent for permanent sequestration of CO{sub 2}. In order to assure penetration of the emulsion into tight formations of sandstone or other silicate rocks and carbonate or dolomite rock, it is necessary to use an emulsion consisting of the smallest possible globule size. In previous reports we described a high shear static mixer that can create such small globules. In addition to the high shear mixer, it is also necessary that the emulsion stabilizing particles be in the submicron size, preferably in the range of 0.1 to 0.2 ?m (100 to 200 nm) size. We found a commercial source of such pulverized limestone particles, in addition we purchased under this DOE Project a particle grinding apparatus that can provide particles in the desired size range. Additional work focused on attempts to generate particle stabilized emulsions with a flow through, static mixer based apparatus under a variety

Ryan, David; Golomb, Dan; Shi, Guang; Shih, Cherry; Lewczuk, Rob; Miksch, Joshua; Manmode, Rahul; Mulagapati, Srihariraju; Malepati, Chetankurmar

2011-09-30T23:59:59.000Z

320

Major Oil Plays in Utah and Vicinity  

SciTech Connect (OSTI)

Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; locations of major oil pipelines; identification and discussion of land-use constraints; descriptions of reservoir outcrop analogs; and summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play. This report covers research activities for the sixth quarter of the project (October 1 through December 31, 2003). This work included describing outcrop analogs for the Jurassic Twin Creek Limestone and Mississippian Leadville Limestone, major oil producers in the thrust belt and Paradox Basin, respectively, and analyzing best practices used in the southern Green River Formation play of the Uinta Basin. Production-scale outcrop analogs provide an excellent view of reservoir petrophysics, facies characteristics, and boundaries contributing to the overall heterogeneity of reservoir rocks. They can be used as a ''template'' for evaluation of data from conventional core, geophysical and petrophysical logs, and seismic surveys. In the Utah/Wyoming thrust belt province, the Jurassic Twin Creek Limestone produces from subsidiary closures along major ramp anticlines where the low-porosity limestone beds are extensively fractured and sealed by overlying argillaceous and non-fractured units. The best outcrop analogs for Twin Creek reservoirs are found at Devils Slide and near the town of Peoa, Utah, where fractures in dense, homogeneous non-porous limestone beds are in contact with the basal siltstone units (containing sealed fractures) of the overlying units. The shallow marine, Mississippian Leadville Limestone is a major oil and gas reservoir in the Paradox Basin of Utah and Colorado. Hydrocarbons are produced from basement-involved, northwest-trending structural traps with closure on both anticlines and faults. Excellent outcrops of Leadville-equivalent rocks are found along the south flank of the Uinta Mountains, Utah. For example, like the Leadville, the Mississippian Madison Limestone contains zones of solution breccia, fractures, and facies variations. When combined with subsurface geological and production data, these outcrop analogs can improve (1) development drilling and production strategies such as horizontal drilling, (2) reservoir-simulation models, (3) reserve calculations, and (4) design and implementation of secondary/tertiary oil recovery programs and other best practices used in the oil fields of Utah and vicinity. In the southern Green River Formation play of the Uinta Basin, optimal drilling, development, and production practices consist of: (1) owning drilling rigs and frac holding tanks; (2) perforating sandstone beds with more than 8 percent neutron porosity and stimulate with separate fracture treatments; (3) placing completed wells on primary production using artificial lift; (4) converting wells relatively soon to secondary waterflooding maintaining reservoir pressure above the bubble point to maximize oil recovery; (5) developing waterflood units using an alternating injector--producer pattern on 40-acre (16-ha) spacing; and (6) recompleting producing wells by perforating all beds that are productive in the waterflood unit. As part of technology transfer activities during this quarter, an abstract describing outcrop reservoir analogs was accepted by the American Assoc

Thomas C. Chidsey; Craig D. Morgan; Kevin McClure; Douglas A. Sprinkel; Roger L. Bon; Hellmut H. Doelling

2003-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "tight oil formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Characterization of oil and gas reservoir heterogeneity  

SciTech Connect (OSTI)

Research described In this report addresses the internal architecture of two specific reservoir types: restricted-platform carbonates and fluvial-deltaic sandstones. Together, these two reservoir types contain more than two-thirds of the unrecovered mobile oil remaining ill Texas. The approach followed in this study was to develop a strong understanding of the styles of heterogeneity of these reservoir types based on a detailed outcrop description and a translation of these findings into optimized recovery strategies in select subsurface analogs. Research targeted Grayburg Formation restricted-platform carbonate outcrops along the Algerita Escarpment and In Stone Canyon In southeastern New Mexico and Ferron deltaic sandstones in central Utah as analogs for the North Foster (Grayburg) and Lake Creek (Wilcox) units, respectively. In both settings, sequence-stratigraphic style profoundly influenced between-well architectural fabric and permeability structure. It is concluded that reservoirs of different depositional origins can therefore be categorized Into a heterogeneity matrix'' based on varying intensity of vertical and lateral heterogeneity. The utility of the matrix is that it allows prediction of the nature and location of remaining mobile oil. Highly stratified reservoirs such as the Grayburg, for example, will contain a large proportion of vertically bypassed oil; thus, an appropriate recovery strategy will be waterflood optimization and profile modification. Laterally heterogeneous reservoirs such as deltaic distributary systems would benefit from targeted infill drilling (possibly with horizontal wells) and improved areal sweep efficiency. Potential for advanced recovery of remaining mobile oil through heterogeneity-based advanced secondary recovery strategies In Texas is projected to be an Incremental 16 Bbbl. In the Lower 48 States this target may be as much as 45 Bbbl at low to moderate oil prices over the near- to mid-term.

Tyler, N.; Barton, M.D.; Bebout, D.G.; Fisher, R.S.; Grigsby, J.D.; Guevara, E.; Holtz, M.; Kerans, C.; Nance, H.S.; Levey, R.A.

1992-10-01T23:59:59.000Z

322

Dobson Butte field, Williston basin, Stark County, North Dakota: nontypical oil production  

SciTech Connect (OSTI)

The Dobson Butte field (T139N, R96W), Stark County, North Dakota, was discovered in 1982 following a detailed seismic program. Production is primarily from a structural trap in the Interlake Formation of Silurian age. Three oil wells are presently producing from a dolomite reservoir at about 11,000 ft in depth. Primary recoverable reserves of these three producing wells is calculated to be about 2 million bbl of oil. Additional reserves will come from further development of the Interlake reservoir as well as from the deeper Red River (Ordovician) Formation. The Dobson Butte field is a nontypical oil field within the Williston basin as to its high pour point oil (90/sup 0/F), high production water cuts (85-95%), lack of good oil shows in samples, unpredictable noncontinuous oil-producing reservoirs throughout the entire 600-ft Interlake Formation, difficulty in log interpretations, and difficulty in determining the source bed. The interpretation of these nontypical characteristics of Interlake oil production in the Dobson Butte field compared to other Interlake oil production within the Williston basin will have a profound effect upon future Interlake exploration.

Guy, W.J.

1987-05-01T23:59:59.000Z

323

Used Oil and Filter Disposal Used Oil: Create a segregated storage area or container. Label the container "Waste Oil Only".  

E-Print Network [OSTI]

Used Oil and Filter Disposal Used Oil: Create a segregated storage area or container. Label the container "Waste Oil Only". Maintain a written log to document all amounts and types of oil added to the container. No solvents, oil contaminated with solvents, PCBs, non-petroleum based oils, or any other

Maroncelli, Mark

324

Spot-Oiling Johnsongrass.  

E-Print Network [OSTI]

I TEXAS AGRICULTURAL EXTENSIO-N SERVICE G. G. Gibson, Director, College Station, Texas [Blank Page in Original Bulletin] I the bast I ir used the low I . .. 1 the fol or mort , needed SPOT-OILING JOHNSONGRASS H. E. Rea, M. J. Norris..., and Fred C. Elliott* Texas A. & M. College System ~HNSONGRASS CAN BE killed to the i ground by the application of 1 / 3 teaspoonful of a herbicidal oil to the crown of each stem. Eradication of established Johnsongrass can be obtained in a single...

Elliott, Fred C.; Norris, M. J.; Rea, H. E.

1955-01-01T23:59:59.000Z

325

Oil | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »Exchange VisitorsforDepartment ofNo FearOfficeOil Oil For the

326

Virent is Replacing Crude Oil  

Broader source: Energy.gov [DOE]

Breakout Session 2A—Conversion Technologies II: Bio-Oils, Sugar Intermediates, Precursors, Distributed Models, and Refinery Co-Processing Virent is Replacing Crude Oil Randy Cortright, Founder & Chief Technology Officer, Virent

327

Enhanced Oil Recovery of Viscous Oil by Injection of Water-in-Oil Emulsion Made with Used Engine Oil  

E-Print Network [OSTI]

was proposed for emulsion generation because of several key advantages: more favorable viscosity that results in better emulsion injectivity, soot particles within the oil that readily promote stable emulsions, almost no cost of the oil itself and relatively...

Fu, Xuebing

2012-08-20T23:59:59.000Z

328

Oil and Gas Program (Tennessee)  

Broader source: Energy.gov [DOE]

The Oil and Gas section of the Tennessee Code, found in Title 60, covers all regulations, licenses, permits, and laws related to the production of natural gas. The laws create the Oil and Gas...

329

Oil and Gas Conservation (Montana)  

Broader source: Energy.gov [DOE]

Parts 1 and 2 of this chapter contain a broad range of regulations pertaining to oil and gas conservation, including requirements for the regulation of oil and gas exploration and extraction by the...

330

Process for the production of refrigerator oil  

SciTech Connect (OSTI)

A process for producing a high quality refrigerator oil from an oil fraction boiling at a temperature within boiling point of lubricating oil by contacting said oil fraction with a solvent to extract undesirable components thereby lowering % C..cap alpha.. of said oil fraction, hydrogenating said solvent extracted fraction under the specific conditions, and then contacting said hydrogenated oil with a solid absorbant to remove impurities; said oil fraction being obtained from a low grade naphthenic crude oil.

Kunihiro, T.; Tsuchiya, K.

1985-06-04T23:59:59.000Z

331

Nineteenth oil shale symposium proceedings  

SciTech Connect (OSTI)

This book contains 23 selections. Some of the titles are: Effects of maturation on hydrocarbon recoveries from Canadian oil shale deposits; Dust and pressure generated during commercial oil shale mine blasting: Part II; The petrosix project in Brazil - An update; Pathway of some trace elements during fluidized-bed combustion of Israeli Oil Shale; and Decommissioning of the U.S. Department of Energy Anvil Points Oil Shale Research Facility.

Gary, J.H.

1986-01-01T23:59:59.000Z

332

Analysis Patterns for Oil Refineries  

E-Print Network [OSTI]

We present analysis patterns to describe the structure of oil refineries. The Refinery Produc tion Unit Pattern describes the structure of units and unit groups. The Oil Storage Pattern describes the structure of tanks and tank groups. The Oil Delivery Pattern describes the structure of stations for import and export of oil. The Production Process Pattern describes the productionprocess. The audience for this paper includes analysts, designers, and programmers who are involved in developing Refinery Information Systems.

Lei Zhen; Guangzhen Shao

333

Oil and Gas Air Heaters  

E-Print Network [OSTI]

, the relation of hot-air temperature, oil or gas consumption and fresh airflow is determined based on energy equilibrium....

Kou, G.; Wang, H.; Zhou, J.

2006-01-01T23:59:59.000Z

334

Apparatus for use in rejuvenating oil wells  

SciTech Connect (OSTI)

A sub incorporating a check valve is connected into the lower end of a well pipestring. This valve will pass hot steam injected down the pipestring to the formations to loosen up the thick crude oil. The check valve prevents back flow and thus will hold the high pressure steam. To resume production, the production pump can then be lowered through the pipestring. The pump itself is provided with an extended probe member which will unseat the check valve when the pump is in proper position so that production pumping can resume.

Warnock, C.E. Sr.

1983-07-19T23:59:59.000Z

335

OIL ANALYSIS LAB TRIVECTOR ANALYSIS  

E-Print Network [OSTI]

OIL ANALYSIS LAB TRIVECTOR ANALYSIS This test method is a good routine test for the overall condition of the oil, the cleanliness, and can indicate the presence of wear metals that could be coming of magnetic metal particles within the oil. This may represent metals being worn from components (i

336

Oil shale: Technology status report  

SciTech Connect (OSTI)

This report documents the status of the US Department of Energy's (DOE) Oil Shale Program as of the end of FY 86. The report consists of (1) a status of oil shale development, (2) a description of the DOE Oil Shale Program, (3) an FY 86 oil shale research summary, and (4) a summary of FY 86 accomplishments. Discoveries were made in FY 86 about the physical and chemical properties and behavior of oil shales, process chemistry and kinetics, in situ retorting, advanced processes, and the environmental behavior and fate of wastes. The DOE Oil Shale Program shows an increasing emphasis on eastern US oil shales and in the development of advanced oil shale processing concepts. With the award to Foster Wheeler for the design of oil shale conceptual plants, the first step in the development of a systems analysis capability for the complete oil shale process has been taken. Unocal's Parachute Creek project, the only commercial oil shale plant operating in the United States, is operating at about 4000 bbl/day. The shale oil is upgraded at Parachute Creek for input to a conventional refinery. 67 refs., 21 figs., 3 tabs.

Not Available

1986-10-01T23:59:59.000Z

337

Brine-in-crude-oil emulsions at the Strategic Petroleum Reserve.  

SciTech Connect (OSTI)

Metastable water-in-crude-oil emulsion formation could occur in a Strategic Petroleum Reserve (SPR) cavern if water were to flow into the crude-oil layer at a sufficient rate. Such a situation could arise during a drawdown from a cavern with a broken-hanging brine string. A high asphaltene content (> 1.5 wt %) of the crude oil provides the strongest predictor of whether a metastable water-in-crude-oil emulsion will form. However there are many crude oils with an asphaltene content > 1.5 wt % that don't form stable emulsions, but few with a low asphaltene content that do form stable emulsions. Most of the oils that form stable emulsions are %E2%80%9Csour%E2%80%9D by SPR standards indicating they contain total sulfur > 0.50 wt %.

Nemer, Martin B.; Lord, David L.; MacDonald, Terry L.

2013-10-01T23:59:59.000Z

338

In situ method for recovering hydrocarbon from subterranean oil shale deposits  

SciTech Connect (OSTI)

This patent describes in situ method for recovering hydrocarbons from subterranean oil shale deposits, the deposits comprising mineral rock and kerogen, comprising (a) penetrating the oil shale deposit with at least one well; (b) forming a zone of fractured and/or rubbilized oil shale material adjacent the well by hydraulic or explosive fracturing; (c) introducing a hydrogen donor solvent including tetralin into the portion of the oil shale formation treated in step (b) in a volume sufficient to fill substantially all of the void space created by the fracturing and rubbilizing treatment; (d) applying hydrogen to the tetralin and maintaining a predetermined pressure for a predetermined period of time sufficient to cause disintegration of the oil shale material; (e) thereafter introducing an oxidative environment into the portion of the oil shale deposit (f) producing the solvent in organic fragments to the surface of the earth, and (g) separating the organic fragments from the solvent.

Friedman, R.H.

1987-11-03T23:59:59.000Z

339

Investigation of oil injection into brine for the Strategic Petroleum Reserve : hydrodynamics and mixing experiments with SPR liquids.  

SciTech Connect (OSTI)

An experimental program was conducted to study a proposed approach for oil reintroduction in the Strategic Petroleum Reserve (SPR). The goal was to assess whether useful oil is rendered unusable through formation of a stable oil-brine emulsion during reintroduction of degassed oil into the brine layer in storage caverns. An earlier report (O'Hern et al., 2003) documented the first stage of the program, in which simulant liquids were used to characterize the buoyant plume that is produced when a jet of crude oil is injected downward into brine. This report documents the final two test series. In the first, the plume hydrodynamics experiments were completed using SPR oil, brine, and sludge. In the second, oil reinjection into brine was run for approximately 6 hours, and sampling of oil, sludge, and brine was performed over the next 3 months so that the long-term effects of oil-sludge mixing could be assessed. For both series, the experiment consisted of a large transparent vessel that is a scale model of the proposed oil-injection process at the SPR. For the plume hydrodynamics experiments, an oil layer was floated on top of a brine layer in the first test series and on top of a sludge layer residing above the brine in the second test series. The oil was injected downward through a tube into the brine at a prescribed depth below the oil-brine or sludge-brine interface. Flow rates were determined by scaling to match the ratio of buoyancy to momentum between the experiment and the SPR. Initially, the momentum of the flow produces a downward jet of oil below the tube end. Subsequently, the oil breaks up into droplets due to shear forces, buoyancy dominates the flow, and a plume of oil droplets rises to the interface. The interface was deflected upward by the impinging oil-brine plume. Videos of this flow were recorded for scaled flow rates that bracket the equivalent pumping rates in an SPR cavern during injection of degassed oil. Image-processing analyses were performed to quantify the penetration depth and width of the oil jet. The measured penetration depths were shallow, as predicted by penetration-depth models, in agreement with the assumption that the flow is buoyancy-dominated, rather than momentum-dominated. The turbulent penetration depth model overpredicted the measured values. Both the oil-brine and oil-sludge-brine systems produced plumes with hydrodynamic characteristics similar to the simulant liquids previously examined, except that the penetration depth was 5-10% longer for the crude oil. An unexpected observation was that centimeter-size oil 'bubbles' (thin oil shells completely filled with brine) were produced in large quantities during oil injection. The mixing experiments also used layers of oil, sludge, and brine from the SPR. Oil was injected at a scaled flow rate corresponding to the nominal SPR oil injection rates. Injection was performed for about 6 hours and was stopped when it was evident that brine was being ingested by the oil withdrawal pump. Sampling probes located throughout the oil, sludge, and brine layers were used to withdraw samples before, during, and after the run. The data show that strong mixing caused the water content in the oil layer to increase sharply during oil injection but that the water content in the oil dropped back to less than 0.5% within 16 hours after injection was terminated. On the other hand, the sediment content in the oil indicated that the sludge and oil appeared to be well mixed. The sediment settled slowly but the oil had not returned to the baseline, as-received, sediment values after approximately 2200 hours (3 months). Ash content analysis indicated that the sediment measured during oil analysis was primarily organic.

Castaneda, Jaime N.; Cote, Raymond O.; Torczynski, John Robert; O'Hern, Timothy John

2004-05-01T23:59:59.000Z

340

Exploiting heavy oil reserves  

E-Print Network [OSTI]

North Sea investment potential Exploiting heavy oil reserves Beneath the waves in 3D Aberdeen.hamptonassociates.com pRINTED BY nB GroUP Paper sourced from sustainable forests CONTENTS 3/5 does the north Sea still industry partnership drives research into sensor systems 11 Beneath the waves in 3d 12/13 does

Levi, Ran

Note: This page contains sample records for the topic "tight oil formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

African oil plays  

SciTech Connect (OSTI)

The vast continent of Africa hosts over eight sedimentary basins, covering approximately half its total area. Of these basins, only 82% have entered a mature exploration phase, 9% have had little or no exploration at all. Since oil was first discovered in Africa during the mid-1950s, old play concepts continue to bear fruit, for example in Egypt and Nigeria, while new play concepts promise to become more important, such as in Algeria, Angola, Chad, Egypt, Gabon, and Sudan. The most exciting developments of recent years in African oil exploration are: (1) the Gamba/Dentale play, onshore Gabon; (2) the Pinda play, offshore Angola; (3) the Lucula/Toca play, offshore Cabinda; (4) the Metlaoui play, offshore Libya/Tunisia; (5) the mid-Cretaceous sand play, Chad/Sudan; and (6) the TAG-I/F6 play, onshore Algeria. Examples of these plays are illustrated along with some of the more traditional oil plays. Where are the future oil plays likely to develop No doubt, the Saharan basins of Algeria and Libya will feature strongly, also the presalt of Equatorial West Africa, the Central African Rift System and, more speculatively, offshore Ethiopia and Namibia, and onshore Madagascar, Mozambique, and Tanzania.

Clifford, A.J. (BHP Petroleum, Melbourne, Victoria (Australia))

1989-09-01T23:59:59.000Z

342

World Oil Transit Chokepoints  

Reports and Publications (EIA)

Chokepoints are narrow channels along widely used global sea routes, some so narrow that restrictions are placed on the size of vessel that can navigate through them. They are a critical part of global energy security due to the high volume of oil traded through their narrow straits.

2012-01-01T23:59:59.000Z

343

Naphthenic lube oils  

SciTech Connect (OSTI)

A process is disclosed for increasing the volume of lubricating oil base stocks recovered from a crude oil. A fraction having an atmospheric boiling range of about 675/sup 0/ to 1100/sup 0/ F. is recovered by vacuum distillation. This fraction is treated with furfural to extract a hydrocarbon mixture containing at least 50 volume % aromatic hydrocarbons. The raffinate is a lubricating oil base stock very high in paraffinic hydrocarbons and low in naphthenic hydrocarbons. The fraction extracted by the furfural contains at least about 50 volume % aromatic hydrocarbons and less than about 10 volume % paraffinic hydrocarbons. The mixture is hydrotreated to hydrogenate a substantial portion of the aromatic hydrocarbons. The hydrotreated product then is catalytically dewaxed. After removal of low boiling components, the finished lubricating oil base stock has a viscosity of at least about 200 SUS at 100/sup 0/ F., a pour point of less than 20/sup 0/ F. and contains at least 50 volume % of naphthenic hydrocarbons, a maximum of about 40 volume % aromatic hydrocarbons, and a maximum of about 10 volume % paraffinic hydrocarbons.

Hettinger Jr., W. P.; Beck, H. W.; Rozman, G. J.; Turrill, F. H.

1985-05-07T23:59:59.000Z

344

Oil and Global Adjustment  

E-Print Network [OSTI]

The current account surplus of the world’s major oil exporting economies – defined as the IMF’s fuel-exporting emerging economies plus Norway – increased from $110b to about $500b between 2002 and 2006. 2 In 2006, the current account surplus of the Gulf

Brad Setser

2007-01-01T23:59:59.000Z

345

SURFACTANT BASED ENHANCED OIL RECOVERY AND FOAM MOBILITY CONTROL  

SciTech Connect (OSTI)

Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactants makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. Also, the addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacial tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured, oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine. Mobility control is essential for surfactant EOR. Foam is evaluted to improve the sweep efficiency of surfactant injected into fractured reservoirs. UTCHEM is a reservoir simulator specially designed for surfactant EOR. A dual-porosity version is demonstrated as a potential scale-up tool for fractured reservoirs.

George J. Hirasaki; Clarence A. Miller; Gary A. Pope; Richard E. Jackson

2004-07-01T23:59:59.000Z

346

Structural Oil Pan With Integrated Oil Filtration And Cooling System  

DOE Patents [OSTI]

An oil pan for an internal combustion engine includes a body defining a reservoir for collecting engine coolant. The reservoir has a bottom and side walls extending upwardly from the bottom to present a flanged lip through which the oil pan may be mounted to the engine. An oil cooler assembly is housed within the body of the oil pan for cooling lubricant received from the engine. The body includes an oil inlet passage formed integrally therewith for receiving lubricant from the engine and delivering lubricant to the oil cooler. In addition, the body also includes an oil pick up passage formed integrally therewith for providing fluid communication between the reservoir and the engine through the flanged lip.

Freese, V, Charles Edwin (Westland, MI)

2000-05-09T23:59:59.000Z

347

Utility Formation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500II Field EmissionFunctional MaterialsRobertUtility-Formation

348

Wettability and Oil Recovery by Imbibition and Viscous Displacement from Fractured and Heterogeneous Carbonates  

SciTech Connect (OSTI)

About one-half of U.S. oil reserves are held in carbonate formations. The remaining oil in carbonate reservoirs is regarded as the major domestic target for improved oil recovery. Carbonate reservoirs are often fractured and have great complexity even at the core scale. Formation evaluation and prediction is often subject to great uncertainty. This study addresses quantification of crude oil/brine/rock interactions and the impact of reservoir heterogeneity on oil recovery by spontaneous imbibition and viscous displacement from pore to field scale. Wettability-alteration characteristics of crude oils were measured at calcite and dolomite surfaces and related to the properties of the crude oils through asphaltene content, acid and base numbers, and refractive index. Oil recovery was investigated for a selection of limestones and dolomites that cover over three orders of magnitude in permeability and a factor of four variation in porosity. Wettability control was achieved by adsorption from crude oils obtained from producing carbonate reservoirs. The induced wettability states were compared with those measured for reservoir cores. The prepared cores were used to investigate oil recovery by spontaneous imbibition and viscous displacement. The results of imbibition tests were used in wettability characterization and to develop mass transfer functions for application in reservoir simulation of fractured carbonates. Studies of viscous displacement in carbonates focused on the unexpected but repeatedly observed sensitivity of oil recovery to injection rate. The main variables were pore structure, mobility ratio, and wettability. The potential for improved oil recovery from rate-sensitive carbonate reservoirs by increased injection pressure, increased injectivity, decreased well spacing or reduction of interfacial tension was evaluated.

Norman R. Morrow; Jill Buckley

2006-04-01T23:59:59.000Z

349

Surfactant Based Enhanced Oil Recovery and Foam Mobility Control  

SciTech Connect (OSTI)

Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. A combination of two surfactants was found to be particularly effective for application in carbonate formations at low temperature. A formulation has been designed for a particular field application. The addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacial tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. The design of the process to maximize the region of ultra-low IFT is more challenging since the ratio of soap to synthetic surfactant is a parameter in the conditions for optimal salinity. Compositional simulation of the displacement process demonstrates the interdependence of the various components for oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured, oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine. Mobility control is essential for surfactant EOR. Foam is evaluated to improve the sweep efficiency of surfactant injected into fractured reservoirs. UTCHEM is a reservoir simulator specially designed for surfactant EOR. It has been modified to represent the effects of a change in wettability. Simulated case studies demonstrate the effects of wettability.

George J. Hirasaki; Clarence A. Miller; Gary A. Pope

2005-07-01T23:59:59.000Z

350

Dirac Point and Edge States in a Microwave Realization of Tight-Binding Graphene-like Structures  

E-Print Network [OSTI]

Dirac Point and Edge States in a Microwave Realization of Tight-Binding Graphene-like Structures U-binding graphene-like structures. The structures are realized using disks with a high index of refraction properties, mechan- ically as electronically. Another realization is graphene, a one-atom-thick allotrope

Boyer, Edmond

351

Simulation of fracture fluid cleanup and its effect on long-term recovery in tight gas reservoirs  

E-Print Network [OSTI]

technologies, such as large volume fracture treatments, are required before a reasonable profit can be made. Hydraulic fracturing is one of the best methods to stimulate a tight gas well. Most fracture treatments result in 3-6 fold increases in the productivity...

Wang, Yilin

2009-05-15T23:59:59.000Z

352

Horizontal oil well applications and oil recovery assessment. Technical progress report, April--June 1994  

SciTech Connect (OSTI)

Thousands of horizontal wells are being drilled each year in the U.S.A. and around the world. Horizontal wells have increased oil and gas production rates 3 to 8 times those of vertical wells in many areas and have converted non-economic oil reserves to economic reserves. However, the use of horizontal technology in various formation types and applications has not always yielded anticipated success. The primary objective of this project is to examine factors affecting technical and economic success of horizontal well applications. The project`s goals will be accomplished through six tasks designed to evaluate the technical and economic success of horizontal drilling, highlight current limitations, and outline technical needs to overcome these limitations. Data describing operators` experiences throughout the domestic oil and gas industry will be gathered and organized. Canadian horizontal technology will also be documented with an emphasis on lessons the US industry can learn from Canada`s experience. MEI databases containing detailed horizontal case histories will also be used. All these data will be categorized and analyzed to assess the status of horizontal well technology and estimate the impact of horizontal wells on present and future domestic oil recovery and reserves.

McDonald, W.J.

1993-06-03T23:59:59.000Z

353

Energy and Financial Markets Overview: Crude Oil Price Formation  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment >7,99 Diagram 4. Coal Flow,65

354

Energy and Financial Markets Overview: Crude Oil Price Formation  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment >7,99 Diagram 4. Coal Flow,65Richard

355

MAJOR OIL PLAYS IN UTAH AND VICINITY  

SciTech Connect (OSTI)

Utah oil fields have produced a total of 1.2 billion barrels (191 million m{sup 3}). However, the 15 million barrels (2.4 million m{sup 3}) of production in 2000 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play; locations of major oil pipelines; descriptions of reservoir outcrop analogs; and identification and discussion of land use constraints. All play maps, reports, databases, and so forth, produced for the project will be published in interactive, menu-driven digital (web-based and compact disc) and hard-copy formats. This report covers research activities for the first quarter of the first project year (July 1 through September 30, 2002). This work included producing general descriptions of Utah's major petroleum provinces, gathering field data, and analyzing best practices in the Utah Wyoming thrust belt. Major Utah oil reservoirs and/or source rocks are found in Devonian through Permian, Jurassic, Cretaceous, and Tertiary rocks. Stratigraphic traps include carbonate buildups and fluvial-deltaic pinchouts, and structural traps include basement-involved and detached faulted anticlines. Best practices used in Utah's oil fields consist of waterflood, carbon-dioxide flood, gas-injection, and horizontal drilling programs. Nitrogen injection and horizontal drilling programs have been successfully employed to enhance oil production from the Jurassic Nugget Sandstone (the major thrust belt oil-producing reservoir) in Wyoming's Painter Reservoir and Ryckman Creek fields. At Painter Reservoir field a tertiary, miscible nitrogen-injection program is being conducted to raise the reservoir pressure to miscible conditions. Supplemented with water injection, the ultimate recovery will be 113 million bbls (18 million m{sup 3}) of oil (a 68 percent recovery factor over a 60-year period). The Nugget reservoir has significant heterogeneity due to both depositional facies and structural effects. These characteristics create ideal targets for horizontal wells and horizontal laterals drilled from existing vertical wells. Horizontal drilling programs were conducted in both Painter Reservoir and Ryckman Creek fields to encounter potential undrained compartments and increase the overall field recovery by 0.5 to 1.5 percent per horizontal wellbore. Technology transfer activities consisted of exhibiting a booth display of project materials at the Rocky Mountain Section meeting of the American Association of Petroleum Geologists, a technical presentation to the Wyoming State Geological Survey, and two publications. A project home page was set up on the Utah Geological Survey Internet web site.

Thomas C. Chidsey, Jr.

2003-01-01T23:59:59.000Z

356

DEVELOPMENT OF SHALLOW VISCOUS OIL RESERVES IN NORTH SLOPE  

SciTech Connect (OSTI)

North Slope of Alaska has huge oil deposits in heavy oil reservoirs such as Ugnu, West Sak and Shrader Bluff etc. The viscosity of the last two reservoir oils vary from {approx}30 cp to {approx}3000 cp and the amount in the range of 10-20 billion barrels. High oil viscosity and low formation strength impose problems to high recovery and well productivity. Water-alternate-gas injection processes can be effective for the lower viscosity end of these deposits in West Sak and Shrader Bluff. Several gas streams are available in the North Slope containing NGL and CO{sub 2} (a greenhouse gas). The goal of this research is to develop tools to find optimum solvent, injection schedule and well-architecture for a WAG process in North Slope shallow sand viscous oil reservoirs. In the last quarter, we added numerical solution along streamline subroutines to our streamline compositional simulator. The WAG injection algorithms are being developed. We studied the wettability of the reservoir oil and formulated a four-phase relative permeability model based on two-phase relative permeabilities. The effect of new relative permeability formulations on a five-spot pattern WAG recovery was evaluated. Effect of horizontal wells on pattern sweep has been initiated. A model quarter five-spot experiment is being designed. Plans for the next quarter includes modeling of WAG injection in streamline based simulation, evaluation of complex well-architecture and design of model quarter five-spot experiment.

Kishore K. Mohanty

2003-07-01T23:59:59.000Z

357

Low-rank coal oil agglomeration product and process  

DOE Patents [OSTI]

A selectively-sized, raw, low-rank coal is processed to produce a low ash and relative water-free agglomerate with an enhanced heating value and a hardness sufficient to produce a non-decrepitating, shippable fuel. The low-rank coal is treated, under high shear conditions, in the first stage to cause ash reduction and subsequent surface modification which is necessary to facilitate agglomerate formation. In the second stage the treated low-rank coal is contacted with bridging and binding oils under low shear conditions to produce agglomerates of selected size. The bridging and binding oils may be coal or petroleum derived. The process incorporates a thermal deoiling step whereby the bridging oil may be completely or partially recovered from the agglomerate; whereas, partial recovery of the bridging oil functions to leave as an agglomerate binder, the heavy constituents of the bridging oil. The recovered oil is suitable for recycling to the agglomeration step or can serve as a value-added product.

Knudson, Curtis L. (Grand Forks, ND); Timpe, Ronald C. (Grand Forks, ND); Potas, Todd A. (Plymouth, MN); DeWall, Raymond A. (Grand Forks, ND); Musich, Mark A. (Grand Forks, ND)

1992-01-01T23:59:59.000Z

358

Low-rank coal oil agglomeration product and process  

DOE Patents [OSTI]

A selectively-sized, raw, low-rank coal is processed to produce a low ash and relative water-free agglomerate with an enhanced heating value and a hardness sufficient to produce a non-degradable, shippable fuel. The low-rank coal is treated, under high shear conditions, in the first stage to cause ash reduction and subsequent surface modification which is necessary to facilitate agglomerate formation. In the second stage the treated low-rank coal is contacted with bridging and binding oils under low shear conditions to produce agglomerates of selected size. The bridging and binding oils may be coal or petroleum derived. The process incorporates a thermal deoiling step whereby the bridging oil may be completely or partially recovered from the agglomerate; whereas, partial recovery of the bridging oil functions to leave as an agglomerate binder, the heavy constituents of the bridging oil. The recovered oil is suitable for recycling to the agglomeration step or can serve as a value-added product.

Knudson, C.L.; Timpe, R.C.; Potas, T.A.; DeWall, R.A.; Musich, M.A.

1992-11-10T23:59:59.000Z

359

Oil consumption, pollutant emission, oil proce volatility and economic activities in selected Asian Developing Economies.  

E-Print Network [OSTI]

??It is now well established in the literature that oil consumption, oil price shocks, and oil price volatility may impact the economic activities negatively. Studies… (more)

Rafiq, Shuddhasattwa

2009-01-01T23:59:59.000Z

360

Just oil? The distribution of environmental and social impacts of oil production and consumption  

E-Print Network [OSTI]

bution of the impacts of oil production and consumption. Theof harmful effects from oil production and use. A criticaland procedural impacts of oil production and consumption

O'Rourke, D; Connolly, S

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "tight oil formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

The Exact Form of the Green's Function of the Hückel (Tight Binding) Model  

E-Print Network [OSTI]

The applications of the H\\"uckel (tight binding) model are ubiquitous in quantum chemistry and solid state physics. The matrix representation is isomorphic to an unoriented vertex adjacency matrix of a bipartite graph, which is also the Laplacian matrix plus twice the identity. In this paper, we analytically calculate the determinant and, when it exists, the inverse of this matrix in connection with the Green's function, $\\mathbf{G}$, of the $N\\times N$ H\\"uckel matrix for linear chains and cyclic systems. For an open linear chain we prove that $\\mathbf{G}$ is a real symmetric matrix whose entries are $G\\left(r,s\\right)=\\left(-1\\right)^{\\frac{r+s-1}{2}}$ when $ $$r$ is even and $s

Ramis Movassagh; Yuta Tsuji; Roald Hoffmann

2014-08-13T23:59:59.000Z

362

Surface studies of coal, oil, and coal-oil-mixture ash using auger electron spectroscopy and solvent leaching techniques  

SciTech Connect (OSTI)

Fly ash produced by the combustion of coal, oil, and a coal-oil mixture have been studied by Auger electron spectroscopy and solvent leaching techniques. The Auger data indicate that the surface concentration of the metal ions Na, Fe, Mg, Ni, V, and Al as well as S and C increases on going from coal to coal-oil mixture and oil ash. The relative surface enrichments of oil and coal-oil-mixture ash are consistent with a simple model of the ash-formation process, and the results confirm that several toxic metals are significantly enriched on the surface of the ash particles. The Auger data are compared to HCl and tris buffer leachate composition analyses, and in neither case does the leachate give an accurate representation of the surface composition. HCl apparently dissolves large oxide deposits and thus overestimates the surface concentrations of Fe, Al, and V. Conversely, several metallic ions are essentially insoluble in neutral aqueous solutions, so their surface concentration is underestimated by the tris leachate.

Stinespring, C.D.; Harris, W.R.; Cook, J.M.; Casleton, K.H.

1985-09-01T23:59:59.000Z

363

Process for recovering uranium from waste hydrocarbon oils containing the same. [Uranium contaminated lubricating oils from gaseous diffusion compressors  

DOE Patents [OSTI]

The invention is a process for the recovery of uranium from uranium-bearing hydrocarbon oils containing carboxylic acid as a degradation product. In one aspect, the invention comprises providing an emulsion of water and the oil, heating the same to a temperature effecting conversion of the emulsion to an organic phase and to an acidic aqueous phase containing uranium carboxylate, and recovering the uranium from the aqueous phase. The process is effective, simple and comparatively inexpensive. It avoids the use of toxic reagents and the formation of undesirable intermediates.

Conrad, M.C.; Getz, P.A.; Hickman, J.E.; Payne, L.D.

1982-06-29T23:59:59.000Z

364

DOE-Sponsored Field Test Demonstrates Viability of Simultaneous CO2 Storage and Enhanced Oil Recovery in Carbonate Reservoirs  

Broader source: Energy.gov [DOE]

A field test conducted by a U.S. Department of Energy team of regional partners has demonstrated that using carbon dioxide in an enhanced oil recovery method dubbed "huff-and-puff" can help assess the carbon sequestration potential of geologic formations while tapping America's valuable oil resources.

365

Shale oil recovery process  

DOE Patents [OSTI]

A process of producing within a subterranean oil shale deposit a retort chamber containing permeable fragmented material wherein a series of explosive charges are emplaced in the deposit in a particular configuration comprising an initiating round which functions to produce an upward flexure of the overburden and to initiate fragmentation of the oil shale within the area of the retort chamber to be formed, the initiating round being followed in a predetermined time sequence by retreating lines of emplaced charges developing further fragmentation within the retort zone and continued lateral upward flexure of the overburden. The initiating round is characterized by a plurality of 5-spot patterns and the retreating lines of charges are positioned and fired along zigzag lines generally forming retreating rows of W's. Particular time delays in the firing of successive charges are disclosed.

Zerga, Daniel P. (Concord, CA)

1980-01-01T23:59:59.000Z

366

Oil shale retort apparatus  

DOE Patents [OSTI]

A retorting apparatus including a vertical kiln and a plurality of tubes for delivering rock to the top of the kiln and removal of processed rock from the bottom of the kiln so that the rock descends through the kiln as a moving bed. Distributors are provided for delivering gas to the kiln to effect heating of the rock and to disturb the rock particles during their descent. The distributors are constructed and disposed to deliver gas uniformly to the kiln and to withstand and overcome adverse conditions resulting from heat and from the descending rock. The rock delivery tubes are geometrically sized, spaced and positioned so as to deliver the shale uniformly into the kiln and form symmetrically disposed generally vertical paths, or "rock chimneys", through the descending shale which offer least resistance to upward flow of gas. When retorting oil shale, a delineated collection chamber near the top of the kiln collects gas and entrained oil mist rising through the kiln.

Reeves, Adam A. (Grand Junction, CO); Mast, Earl L. (Norman, OK); Greaves, Melvin J. (Littleton, CO)

1990-01-01T23:59:59.000Z

367

Correlation and Stratigraphic Analysis of the Bakken and Sappington Formations in Montana  

E-Print Network [OSTI]

The Upper Devonian-Lower Mississippian (Late Fammenian-Tournaisian) Bakken Formation in the Williston Basin is one of the largest continuous oil fields in the U.S. The upper and the lower shale members are organic rich source rocks that supplied oil...

Adiguzel, Zeynep 1986-

2012-09-24T23:59:59.000Z

368

Evaluation of western and eastern shale oil residua as asphalt pavement recycling agents  

SciTech Connect (OSTI)

The objective of this investigation was to perform a preliminary evaluation of the utility of residual materials prepared from Green River Formation (western) and New Albany Shale (eastern) shale oils as recycling agents for aged asphalt pavement. Four petroleum asphalts were first aged by a thin-film accelerated-aging test, which simulates long service life of asphalt in pavement. The aged asphalts were mixed (recycled) with Green River Formation shale oil distillation residua to restore the original viscosities. Separately, for comparison, a commercial recycling agent was used to recycle the aged asphalts under the same circumstances. The recycled asphalts were reaged and the properties of both binder and asphalt-aggregate mixtures studied. Originally, the same study was intended for an eastern shale residua. However, the eastern shale oil distillation residua with the required flash point specification also had the properties of a viscosity builder; therefore, it was studied as such with asphalts that do not achieve sufficient viscosity during processing to serve as usable binders. Results show that Green River Formation shale oil residuum can be used to restore the original asphalt properties with favorable rheological properties, the shale oil residuum has a beneficial effect on resistance to moisture damage, the low-temperature properties of the shale oil residuum recycled asphalts are not adversely affected, and the low-temperature properties of the shale oil residuum recycled asphalts are dependent upon the chemistry of the mixture. The eastern shale oil residua was blended with soft petroleum asphalts. Results show the products have higher viscosities than the starting materials, the rheological properties of the soft asphalt-eastern shale oil residue blends are acceptable, and the eastern shale oil residue has dispersant properties despite its high viscosity. 11 refs., 3 figs., 9 tabs.

Harnsberger, P.M.; Robertson, R.E.

1990-03-01T23:59:59.000Z

369

Oil Price Volatility  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month WeekReservesYear Jan Feb0

370

Crude Oil Prices  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (MillionExpectedChangesAdministration Cost and

371

Emulsified industrial oils recycling  

SciTech Connect (OSTI)

The industrial lubricant market has been analyzed with emphasis on current and/or developing recycling and re-refining technologies. This task has been performed for the United States and other industrialized countries, specifically France, West Germany, Italy and Japan. Attention has been focused at emulsion-type fluids regardless of the industrial application involved. It was found that emulsion-type fluids in the United States represent a much higher percentage of the total fluids used than in other industrialized countries. While recycling is an active matter explored by the industry, re-refining is rather a result of other issues than the mere fact that oil can be regenerated from a used industrial emulsion. To extend the longevity of an emulsion is a logical step to keep expenses down by using the emulsion as long as possible. There is, however, another important factor influencing this issue: regulations governing the disposal of such fluids. The ecological question, the respect for nature and the natural balances, is often seen now as everybody's task. Regulations forbid dumping used emulsions in the environment without prior treatment of the water phase and separation of the oil phase. This is a costly procedure, so recycling is attractive since it postpones the problem. It is questionable whether re-refining of these emulsions - as a business - could stand on its own if these emulsions did not have to be taken apart for disposal purposes. Once the emulsion is separated into a water and an oil phase, however, re-refining of the oil does become economical.

Gabris, T.

1982-04-01T23:59:59.000Z

372

warming ocean and changes in currents and mixing? The global carbon cycle is also tightly coupled to the cycles of nutrients and  

E-Print Network [OSTI]

1 warming ocean and changes in currents and mixing? The global carbon cycle is also tightly is a fundamental constituent of life and its global cycle is tightly connected to the habitability of our planet an important forcing factor of the global climate, which, on the other hand, controls the sources and sinks

373

A tight-binding potential for atomistic simulations of carbon interacting with transition metals: Application to the Ni-C system  

E-Print Network [OSTI]

for transition metals, carbon, and transition metal carbides, which has been optimized through a systematicA tight-binding potential for atomistic simulations of carbon interacting with transition metals of the transition metal, is used to obtain a transferable tight-binding model of the carbon-carbon, metal-metal

Paris-Sud XI, Université de

374

A diminutive pelecinid wasp from the Eocene Kishenehn Formation of northwestern Montana (Hymenoptera: Pelecinidae)  

E-Print Network [OSTI]

A new genus and species of pelecinid wasp (Proctotrupoidea: Pelecinidae) is described and figured from a single male preserved in oil shale from the middle Eocene Kishenehn Formation of northwestern Montana. Phasmatopelecinus leonae Greenwalt...

Greenwalt, Dale; Engel, Michael S.

2014-07-01T23:59:59.000Z

375

EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA  

SciTech Connect (OSTI)

This report presents the work done so far on Hunton Formation in West Carney Field in Lincoln County, Oklahoma. West Carney Field produces oil and gas from the Hunton Formation. The field was developed starting in 1995. Some of the unique characteristics of the field include decreasing water oil ratio over time, decreasing gas-oil ratio at the beginning of production, inability to calculate oil reserves in the field based on log data, and sustained oil rates over long periods of time. To understand the unique characteristics of the field, an integrated evaluation was undertaken. Production data from the field were meticulously collected, and over forty wells were cored and logged to better understand the petrophysical and engineering characteristics. Based on the work done in this budget period so far, some of the preliminary conclusions can be listed as follows: (1) Based on PVT analysis, the field most likely contains volatile oil with bubble point close to initial reservoir pressure of 1,900 psia. (2) The initial oil in place, which is contact with existing wells, can be determined by newly developed material balance technique. The oil in place, which is in communication, is significantly less than determined by volumetric analysis, indicating heterogeneous nature of the reservoir. The oil in place, determined by material balance, is greater than determined by decline curve analysis. This difference may lead to additional locations for in fill wells. (3) The core and log evaluation indicates that the intermediate pores (porosity between 2 and 6 %) are very important in determining production potential of the reservoir. These intermediate size pores contain high oil saturation. (4) The limestone part of the reservoir, although low in porosity (mostly less than 6 %) is much more prolific in terms of oil production than the dolomite portion of the reservoir. The reason for this difference is the higher oil saturation in low porosity region. As the average porosity increases, the remaining oil saturation decreases. This is evident from log and core analysis. (5) Using a compositional simulator, we are able to reproduce the important reservoir characteristics by assuming a two layer model. One layer is high permeability region containing water and the other layer is low permeability region containing mostly oil. The results are further verified by using a dual porosity model. Assuming that most of the volatile oil is contained in the matrix and the water is contained in the fractures, we are able to reproduce important reservoir performance characteristics. (6) Evaluation of secondary mechanisms indicates that CO{sub 2} flooding is potentially a viable option if CO{sub 2} is available at reasonable price. We have conducted detailed simulation studies to verify the effectiveness of CO{sub 2} huff-n-puff process. We are in the process of conducting additional lab tests to verify the efficacy of the same displacement. (7) Another possibility of improving the oil recovery is to inject surfactants to change the near well bore wettability of the rock from oil wet to water wet. By changing the wettability, we may be able to retard the water flow and hence improve the oil recovery as a percentage of total fluid produced. If surfactant is reasonably priced, other possibility is also to use huff-n-puff process using surfactants. Laboratory experiments are promising, and additional investigation continues. (8) Preliminary economic evaluation indicates that vertical wells outperform horizontal wells. Future work in the project would include: (1) Build multi-well numerical model to reproduce overall reservoir performance rather than individual well performance. Special emphasis will be placed on hydrodynamic connectivity between wells. (2) Collect data from adjacent Hunton reservoirs to validate our understanding of what makes it a productive reservoir. (3) Develop statistical methods to rank various reservoirs in Hunton formation. This will allow us to evaluate other Hunton formations based on old well logs, and determine, apriori, if

Mohan Kelkar

2003-10-01T23:59:59.000Z

376

Unconventional oil market assessment: ex situ oil shale.  

E-Print Network [OSTI]

??This thesis focused on exploring the economic limitations for the development of western oil shale. The analysis was developed by scaling a known process and… (more)

Castro-Dominguez, Bernardo

2010-01-01T23:59:59.000Z

377

Fast Pyrolysis Oil Stabilization: An Integrated Catalytic and Membrane Approach for Improved Bio-oils  

SciTech Connect (OSTI)

This University of Massachusetts, Amherst project, "Fast Pyrolysis Oil Stabilization: An Integrated Catalytic and Membrane Approach for Improved Bio-oils" started on 1st February 2009 and finished on August 31st 2011. The project consisted following tasks: Task 1.0: Char Removal by Membrane Separation Technology The presence of char particles in the bio-oil causes problems in storage and end-use. Currently there is no well-established technology to remove char particles less than 10 micron in size. This study focused on the application of a liquid-phase microfiltration process to remove char particles from bio-oil down to slightly sub-micron levels. Tubular ceramic membranes of nominal pore sizes 0.5 and 0.8 ���µm were employed to carry out the microfiltration, which was conducted in the cross-flow mode at temperatures ranging from 38 to 45 C and at three different trans-membrane pressures varying from 1 to 3 bars. The results demonstrated the removal of the major quantity of char particles with a significant reduction in overall ash content of the bio-oil. The results clearly showed that the cake formation mechanism of fouling is predominant in this process. Task 2.0 Acid Removal by Membrane Separation Technology The feasibility of removing small organic acids from the aqueous fraction of fast pyrolysis bio-oils using nanofiltration (NF) and reverse osmosis (RO) membranes was studied. Experiments were carried out with a single solute solutions of acetic acid and glucose, binary solute solutions containing both acetic acid and glucose, and a model aqueous fraction of bio-oil (AFBO). Retention factors above 90% for glucose and below 0% for acetic acid were observed at feed pressures near 40 bar for single and binary solutions, so that their separation in the model AFBO was expected to be feasible. However, all of the membranes were irreversibly damaged when experiments were conducted with the model AFBO due to the presence of guaiacol in the feed solution. Experiments with model AFBO excluding guaiacol were also conducted. NF membranes showed retention factors of glucose greater than 80% and of acetic acid less than 15% when operated at transmembrane pressures near 60 bar. Task 3.0 Acid Removal by Catalytic Processing It was found that the TAN reduction in bio-oil was very difficult using low temperature hydrogenation in flow and batch reactors. Acetic acid is very resilient to hydrogenation and we could only achieve about 16% conversion for acetic acid. Although it was observed that acetic acid was not responsible for instability of aqueous fraction of bio-oil during ageing studies (described in task 5). The bimetallic catalyst PtRe/ceria-zirconia was found to be best catalyst because its ability to convert the acid functionality with low conversion to gas phase carbon. Hydrogenation of the whole bio-oil was carried out at 125���°C, 1450 psi over Ru/C catalyst in a flow reactor. Again, negligible acetic acid conversion was obtained in low temperature hydrogenation. Hydrogenation experiments with whole bio-oil were difficult to perform because of difficulty to pumping the high viscosity oil and reactor clogging. Task 4.0 Acid Removal using Ion Exchange Resins DOWEX M43 resin was used to carry out the neutralization of bio-oil using a packed bed column. The pH of the bio-oil increased from 2.43 to 3.7. The GC analysis of the samples showed that acetic acid was removed from the bio-oil during the neutralization and recovered in the methanol washing. But it was concluded that process would not be economical at large scale as it is extremely difficult to regenerate the resin once the bio-oil is passed over it. Task 5.0 Characterization of Upgraded Bio-oils We investigated the viscosity, microstructure, and chemical composition of bio-oils prepared by a fast pyrolysis approach, upon aging these fuels at 90���ºC for periods of several days. Our results suggest that the viscosity increase is not correlated with the acids or char present in the bio-oils. The

George W. Huber, Aniruddha A Upadhye, David M. Ford, Surita R. Bhatia, Phillip C. Badger

2012-10-19T23:59:59.000Z

378

International Oil Supplies and Demands  

SciTech Connect (OSTI)

The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--90 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

Not Available

1991-09-01T23:59:59.000Z

379

International Oil Supplies and Demands  

SciTech Connect (OSTI)

The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

Not Available

1992-04-01T23:59:59.000Z

380

BP Oil Spill November 10, 2011  

E-Print Network [OSTI]

BP Oil Spill Qiyam Tung November 10, 2011 1 Introduction Figure 1: BP Oil spill (source: http://thefoxisblack.com/2010/05/02/the-bp-oil-spill-in-the-gulf-of-mexico/) Last year, there was a major oil spill caused major techniques to minimize the threat once it happened. What kind of damage would an oil spill like this cause

Lega, Joceline

Note: This page contains sample records for the topic "tight oil formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

The twentieth oil shale symposium proceedings  

SciTech Connect (OSTI)

This book contains 20 selections. Some of the titles are: The technical contributions of John Ward Smith in oil shale research; Oil shale rubble fires: ignition and extinguishment; Fragmentation of eastern oil shale for in situ recovery; A study of thermal properties of Chinese oil shale; and Natural invasion of native plants on retorted oil shale.

Gary, J.H.

1987-01-01T23:59:59.000Z

382

Reactivation of an Idle Lease to Increase Heavy Oil Recovery Through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect (OSTI)

A previously idle portion of the Midway-Sunset field, the ARCO Western Energy Pru Fee property, is being brought back into commercial production through tight integration of geologic characterization, geostatistical modeling, reservoir simulation, and petroleum engineering. This property, shut-in over a decade ago as economically marginal using conventional cyclic steaming methods, has a 200-300 foot thick oil column in the Monarch Sand. However, the sand lacks effective steam barriers and has a thick water-saturation zone above the oil-water contact. These factors require an innovative approach to steam flood production design that will balance optimal total oil production against economically viable steam-oil ratios and production rates. The methods used in the Class III demonstration are accessible to most operators in the Midway-Sunset field and could be used to revitalize properties with declining production of heavy oils throughout the region.

Steven Schamel

1998-03-20T23:59:59.000Z

383

Increasing heavy oil reserves in the Wilmington Oil Field through advanced reservoir characterization and thermal production technologies. Annual report, March 30, 1995--March 31, 1996  

SciTech Connect (OSTI)

The objective of this project is to increase heavy oil reserves in a portion of the Wilmington Oil Field, near Long Beach, California, by implementing advanced reservoir characterization and thermal production technologies. Based on the knowledge and experience gained with this project, these technologies are intended to be extended to other sections of the Wilmington Oil Field, and, through technology transfer, will be available to increase heavy oil reserves in other slope and basin clastic (SBC) reservoirs. The project involves implementing thermal recovery in the southern half of the Fault Block II-A Tar zone. The existing steamflood in Fault Block II-A has been relatively inefficient due to several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery efficiency and reduce operating costs.

NONE

1997-09-01T23:59:59.000Z

384

Carbo-metallic oil conversion  

SciTech Connect (OSTI)

This patent describes a method for catalytically cracking reduced crude oil feeds comprising Conradson carbon in the presence of a premised catalyst temperature of about 760/sup 0/C (1400/sup 0/F). The cracking is carried out to form hydrocarbon products comprising gasoline, which method comprises maintaining the functions of oil feed, Conradson carbon, hydrogen in deposited carbonaceous material, and water addition to the oil feed to be converted in accordance with the relationship of operating parameters for a catalyst to oil ratio in the range of about 4.5 to 7.5.

Myers, G.D.

1987-11-24T23:59:59.000Z

385

Maps of crude oil futures  

SciTech Connect (OSTI)

The Crude Oil Futures presentation shows their concept of the quantity of oil possibly present (the combination of conventional demonstrated reserves plus undiscovered recoverable resources) within the areas outlined. The Crude Oil Futures is not as an exploration map but as a perspective on the distribution of world oil. The occurrence of oil is, after all, a function of particular geologic factors that are not everywhere present. Furthermore, large amounts of oil can occur only where the several necessary independent variables (geologic factors) combine optimally. In the Western Hemisphere, similar minimal crude oil futures are shown for North America and South America. This similarity is a reflection not of similar geology but rather of the fact that most of the oil has already been produced from North America, whereas South America as a whole (except for Venezuela) possesses a geology less likely to produce oil. In Europe, Africa, and Asia, four regions are dominant: the Middle East, Libya, North Sea, and west Siberia. Paleogeography and source rock distribution were keys to this distribution - the Middle East and Libya reflecting the Tethyan association, and the North Sea and west Siberia benefitting from the Late Jurassic marine transgression into geographic environments where ocean circulation was restricted by tectonic events.

Masters, C.D.

1986-05-01T23:59:59.000Z

386

Oil and macroeconomy in China.  

E-Print Network [OSTI]

??This paper uses two different approaches to investigate the relationship between the oil price shock and the macroeconomy in China. The first approach is the… (more)

Hu, Lin

2008-01-01T23:59:59.000Z

387

Oil and Gas Exploration (Connecticut)  

Broader source: Energy.gov [DOE]

These regulations apply to activities conducted for the purpose of obtaining geological, geophysical, or geochemical information about oil or gas including seismic activities but excluding...

388

Solar retorting of oil shale  

DOE Patents [OSTI]

An apparatus and method for retorting oil shale using solar radiation. Oil shale is introduced into a first retorting chamber having a solar focus zone. There the oil shale is exposed to solar radiation and rapidly brought to a predetermined retorting temperature. Once the shale has reached this temperature, it is removed from the solar focus zone and transferred to a second retorting chamber where it is heated. In a second chamber, the oil shale is maintained at the retorting temperature, without direct exposure to solar radiation, until the retorting is complete.

Gregg, David W. (Morago, CA)

1983-01-01T23:59:59.000Z

389

Oil cooled, hermetic refrigerant compressor  

DOE Patents [OSTI]

A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler 18 and is then delivered through the shell to the top of the motor rotor 24 where most of it is flung radially outwardly within the confined space provided by the cap 50 which channels the flow of most of the oil around the top of the stator 26 and then out to a multiplicity of holes 52 to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber 58 to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole 62 also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator 68 from which the suction gas passes by a confined path in pipe 66 to the suction plenum 64 and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum 64.

English, William A. (Murrysville, PA); Young, Robert R. (Murrysville, PA)

1985-01-01T23:59:59.000Z

390

Oil cooled, hermetic refrigerant compressor  

DOE Patents [OSTI]

A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler and is then delivered through the shell to the top of the motor rotor where most of it is flung radially outwardly within the confined space provided by the cap which channels the flow of most of the oil around the top of the stator and then out to a multiplicity of holes to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator from which the suction gas passes by a confined path in pipe to the suction plenum and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum. 3 figs.

English, W.A.; Young, R.R.

1985-05-14T23:59:59.000Z

391

Energy dependence of the optical potential of weakly and tightly bound nuclei as projectiles on a medium-mass target  

SciTech Connect (OSTI)

Angular distributions for the elastic scattering of the weakly bound {sup 6,7}Li+{sup 144}Sm systems were measured with high accuracy at bombarding energies from 85% up to 170% of the Coulomb barrier. An optical model analysis was performed, and the relevant parameters of the real and imaginary parts of the optical potential were extracted. The results are compared with those previously published for the tightly bound {sup 12}C+{sup 144}Sm and {sup 16}O+{sup 144}Sm systems. The usual threshold anomaly observed in the behavior of the potential of tightly bound systems was not observed for either weakly bound system. This absence is attributed to the repulsion due to breakup coupling which cancels the attraction arising from couplings with bound channels.

Figueira, J. M.; Arazi, A.; Carnelli, P.; Heimann, D. Martinez; Negri, A. E.; Pacheco, A. J. [Laboratorio Tandar, Comision Nacional de Energia Atomica, B1650KNA San Martin, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas, C1033AAJ Ciudad de Buenos Aires (Argentina); Niello, J. O. Fernandez [Laboratorio Tandar, Comision Nacional de Energia Atomica, B1650KNA San Martin, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas, C1033AAJ Ciudad de Buenos Aires (Argentina); Escuela de Ciencia y Tecnologia, Universidad de San Martin, B1650BWA San Martin, Buenos Aires (Argentina); Capurro, O. A.; Fimiani, L.; Marti, G. V. [Laboratorio Tandar, Comision Nacional de Energia Atomica, B1650KNA San Martin, Buenos Aires (Argentina); Lubian, J.; Monteiro, D. S.; Gomes, P. R. S. [Instituto de Fisica, Universidade Federal Fluminense, Gragoata, Niteroi, R. J., 24210-340 (Brazil)

2010-02-15T23:59:59.000Z

392

Detection of terahertz radiation by tightly concatenated InGaAs field-effect transistors integrated on a single chip  

SciTech Connect (OSTI)

A tightly concatenated chain of InGaAs field-effect transistors with an asymmetric T-gate in each transistor demonstrates strong terahertz photovoltaic response without using supplementary antenna elements. We obtain the responsivity above 1000?V/W and up to 2000?V/W for unbiased and drain-biased transistors in the chain, respectively, with the noise equivalent power below 10{sup ?11} W/Hz{sup 0.5} in the unbiased mode of the detector operation.

Popov, V. V., E-mail: popov-slava@yahoo.co.uk [Kotelnikov Institute of Radio Engineering and Electronics (Saratov Branch), Russian Academy of Sciences, Saratov 410019 (Russian Federation); Yermolaev, D. M.; Shapoval, S. Yu. [Institute of Microelectronic Technology and High-Purity Materials, Russian Academy of Sciences, Chernogolovka, Moscow Region 142432 (Russian Federation); Maremyanin, K. V.; Gavrilenko, V. I. [Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod 603950 (Russian Federation); Zemlyakov, V. E.; Bespalov, V. A.; Yegorkin, V. I. [National Research University of Electronic Technology, Zelenograd, Moscow 124498 (Russian Federation); Maleev, N. A.; Ustinov, V. M. [Ioffe Physical Technical Institute, Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation)

2014-04-21T23:59:59.000Z

393

In situ oil shale retort with a generally T-shaped vertical cross section  

DOE Patents [OSTI]

An in situ oil shale retort is formed in a subterranean formation containing oil shale. The retort contains a fragmented permeable mass of formation particles containing oil shale and has a production level drift in communication with a lower portion of the fragmented mass for withdrawing liquid and gaseous products of retorting during retorting of oil shale in the fragmented mass. The principal portion of the fragmented mass is spaced vertically above a lower production level portion having a generally T-shaped vertical cross section. The lower portion of the fragmented mass has a horizontal cross sectional area smaller than the horizontal cross sectional area of the upper principal portion of the fragmented mass above the production level.

Ricketts, Thomas E. (Grand Junction, CO)

1981-01-01T23:59:59.000Z

394

Preliminary design study of small long life boiling water reactor (BWR) with tight lattice thorium nitride fuel  

SciTech Connect (OSTI)

Neutronic performance of small long-life boiling water reactors (BWR) with thorium nitride based fuel has been performed. A recent study conducted on BWR in tight lattice environments (with a lower moderator percentage) produces small power reactor which has some specifications, i.e. 10 years operation time, power density of 19.1 watt/cc and maximum excess reactivity of about 4%. This excess reactivity value is smaller than standard reactivity of conventional BWR. The use of hexagonal geometry on the fuel cell of BWR provides a substantial effect on the criticality of the reactor to obtain a longer operating time. Supported by a tight concept lattice where the volume fraction of the fuel is greater than the moderator and fuel, Thorium Nitride give good results for fuel cell design on small long life BWR. The excess reactivity of the reactor can be reduced with the addition of gadolinium as burnable poisons. Therefore the hexagonal tight lattice fuel cell design of small long life BWR that has a criticality more than 20 years of operating time has been obtained.

Trianti, Nuri, E-mail: nuri.trianti@gmail.com, E-mail: szaki@fi.itba.c.id; Su'ud, Zaki, E-mail: nuri.trianti@gmail.com, E-mail: szaki@fi.itba.c.id; Arif, Idam, E-mail: nuri.trianti@gmail.com, E-mail: szaki@fi.itba.c.id [Nuclear Physics and Biophysics Research Group, Faculty of Mathematics and Natural Science, Bandung Institute of Technology (Ganesha 10 Bandung, Indonesia) (Indonesia); Riyana, EkaSapta [Nuclear Energy Regulatory Agency (BAPETEN) (Indonesia)

2014-09-30T23:59:59.000Z

395

Use of high-temperature gas-tight electrochemical cells to measure electronic transport and thermodynamics in metal oxides  

SciTech Connect (OSTI)

By using a gas-tight electrochemical cell, the authors can perform high-temperature coulometric titration and measure electronic transport properties to determine the electronic defect structure of metal oxides. This technique reduces the time and expense required for conventional thermogravimetric measurements. The components of the gas-tight coulometric titration cell are an oxygen sensor, Pt/yttria stabilized zirconia (YSZ)/Pt, and an encapsulated metal oxide sample. Based on cell design, both transport and thermodynamic measurements can be performed over a wide range of oxygen partial pressures (pO{sub 2} = 10{sup {minus}35} to 1 atm). This paper describes the high-temperature gas-tight electrochemical cells used to determine electronic defect structures and transport properties for pure and doped-oxide systems, such as YSZ, doped and pure ceria (Ca-CeO{sub 2} and CeO{sub 2}), copper oxides, and copper-oxide-based ceramic superconductors, transition metal oxides, SrFeCo{sub 0.5}O{sub x}, and BaTiO{sub 3}.

Park, J.H.; Ma, B.; Park, E.T. [Argonne National Lab., IL (United States). Energy Technology Div.

1997-10-01T23:59:59.000Z

396

European Market Study for BioOil (Pyrolysis Oil)  

E-Print Network [OSTI]

European Market Study for BioOil (Pyrolysis Oil) Dec 15, 2006 Doug Bradley President Climate Change Solutions National Team Leader- IEA Bioenergy Task 40- Bio-trade 402 Third Avenue ·Ottawa, Ontario ·Canada K. Market Determining Factors 5. EU Country Perspectives 6. Potential European Markets 6.1. Pulp Mill Lime

397

Effect of some isothiocyanates on the hydrogenation of canola oil  

SciTech Connect (OSTI)

Sulfur compounds were added to refined and bleached canola oil before hydrogenation in the form of allyl, heptyl and 2-phenethyl isothiocyanates, and the effects on hydrogenation rate, solid fat content and percentage trans fatty acids were determined. The poisoning effect was most pronounced with allyl isothiocyanate and least phenethyl isothiocyanate. As the amount of added sulfur increased, the hydrogenation rate decreased. Of the three isothiocyanates used, allyl isothiocyanate caused formation of larger amounts of trans isomers. An increased sulfur level in the oil resulted in increased solid fat content and trans isomer level. Allyl isothiocyanate also caused formation of larger amounts of solid fat than other isothiocyanates at all levels of sulfur addition. (Refs. 24).

Abraham, V.; de Man, J.M.

1987-06-01T23:59:59.000Z

398

Oil burner nozzle  

DOE Patents [OSTI]

An oil burner nozzle for use with liquid fuels and solid-containing liquid fuels. The nozzle comprises a fuel-carrying pipe, a barrel concentrically disposed about the pipe, and an outer sleeve retaining member for the barrel. An atomizing vapor passes along an axial passageway in the barrel, through a bore in the barrel and then along the outer surface of the front portion of the barrel. The atomizing vapor is directed by the outer sleeve across the path of the fuel as it emerges from the barrel. The fuel is atomized and may then be ignited.

Wright, Donald G. (Rockville Center, NY)

1982-01-01T23:59:59.000Z

399

Residential heating oil price  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A B CAdministrationheating oil price

400

Residential heating oil price  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A B CAdministrationheating oil

Note: This page contains sample records for the topic "tight oil formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

fuel_oil.pdf  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:short version)ec 1827 TableB (11-19-10)Fuel Oil

402

Crude Oil Domestic Production  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOilCompanyexcluding taxes)Countries0 0 0 0

403

Crude Oil Production  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOilCompanyexcluding taxes)Countries08,909

404

Residual Fuel Oil  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2. ForJanuary 2013 (Thousand

405

Oil resources: the key to prosperity or to poverty? : Influence of oil price shocks on spending of oil revenues.  

E-Print Network [OSTI]

??Abundant natural resources, in particular oil, play an important role in the economics of many countries. The oil price shocks that have been happening continuously… (more)

Selivanova, Olga

2008-01-01T23:59:59.000Z

406

WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY  

E-Print Network [OSTI]

III, "Method of Breaking Shale Oil-Water Emulsion," U. S.and Biological Treatment of Shale Oil Retort Water, DraftPA (1979). H. H. Peters, Shale Oil Waste Water Recovery by

Fox, J.P.

2010-01-01T23:59:59.000Z

407

CORROSION OF METALS IN OIL SHALE ENVIRONMENTS  

E-Print Network [OSTI]

temperature, type of shale and oil content of shale iscontent of the shale, and shale oil content of the rock cantemperatures. Lean and Rich Shale Oil shales vary in their

Bellman Jr., R.

2012-01-01T23:59:59.000Z

408

Membrane degumming of crude vegetable oil  

E-Print Network [OSTI]

Crude vegetable oils contain various minor substances like phospholipids, coloring pigments, and free fatty acids (FFA) that may affect quality of the oil. Reduction of energy costs and waste disposal are major concerns for many oil refiners who...

Lin, Lan

1997-01-01T23:59:59.000Z

409

CORROSION OF METALS IN OIL SHALE ENVIRONMENTS  

E-Print Network [OSTI]

CORROSION OF METALS IN OIL SHALE ENVIRONMENTS A. Levy and R.of Metals in In-Situ Oil Shale Retorts," NACE Corrosion 80,Corrosion of Oil Shale Retort Component Materials," LBL-

Bellman Jr., R.

2012-01-01T23:59:59.000Z

410

WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY  

E-Print Network [OSTI]

III, "Method of Breaking Shale Oil-Water Emulsion," U. S.Waters from Green River Oil Shale," Chem. and Ind. , 1. ,Effluents from In-Situ oil Shale Processing," in Proceedings

Fox, J.P.

2010-01-01T23:59:59.000Z

411

CORROSION OF METALS IN OIL SHALE ENVIRONMENTS  

E-Print Network [OSTI]

Elevated Temperature Corrosion of Oil Shale Retort Componentin In-Situ Oil Shale Retorts," NACE Corrosion 80, Paper No.6-10, 1981 CORROSION OF METALS IN OIL SHALE ENVIRONMENTS A.

Bellman Jr., R.

2012-01-01T23:59:59.000Z

412

WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY  

E-Print Network [OSTI]

is in intimate contact with oil and shale during In in-situin contact with the oil and shale. These methods and othersWaters from Green River Oil Shale," Chem. and Ind. , 1. ,

Fox, J.P.

2010-01-01T23:59:59.000Z

413

WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY  

E-Print Network [OSTI]

Waters from Green River Oil Shale," Chem. and Ind. , 1. ,Effluents from In-Situ oil Shale Processing," in Proceedingsin the Treatment of Oil Shale Retort Waters," in Proceedings

Fox, J.P.

2010-01-01T23:59:59.000Z

414

CORROSION OF METALS IN OIL SHALE ENVIRONMENTS  

E-Print Network [OSTI]

CORROSION OF METALS IN OIL SHALE ENVIRONMENTS A. Levy and R.of Metals in In-Situ Oil Shale Retorts," NACE Corrosion 80,Elevated Temperature Corrosion of Oil Shale Retort Component

Bellman Jr., R.

2012-01-01T23:59:59.000Z

415

Hydrodynamic effects on Mission Canyon (Mississippian) oil accumulations, Billings Nose area, North Dakota  

SciTech Connect (OSTI)

Mission Canyon oil production on the south flank of the Williston basin provides an example of an area in the mature stage of exploration that shows significant hydrodynamic effects on oil accumulations related to stratigraphic traps. The effects are illustrated by the Billings Nose fields and the Elkhorn Ranch field. The reservoirs have low hydraulic gradients of about 2 m/km (10 ft/mi), tilted oil-water contacts with gradients of 5 m/km (25 ft/mi), and variable formation-water salinities that range from brackish to highly saline. Oil accumulations in some zones are displayed off structure and downdip to the northeast, parallel to porosity pinch-outs. Other zones are pure hydrodynamic closure. Future success in exploration and development in the play will depend on recognizing the hydrodynamic effects and predicting oil displacement. 34 refs., 15 figs., 1 tab.

Berg, R.R. (Texas A M Univ., College Station, TX (United States)); DeMis, W.D. (Marathon Oil Co., Houston, TX (United States)); Mitsdarffer, A.R. (Dupont Environmental Remediation Services, Houston, TX (United States))

1994-04-01T23:59:59.000Z

416

EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA  

SciTech Connect (OSTI)

Hunton formation in Oklahoma has displayed some unique production characteristics. These include high initial water-oil and gas-oil ratios, decline in those ratios over time and temporary increase in gas-oil ratio during pressure build up. The formation also displays highly complex geology, but surprising hydrodynamic continuity. This report addresses three key issues related specifically to West Carney Hunton field and, in general, to any other Hunton formation exhibiting similar behavior: (1) What is the primary mechanism by which oil and gas is produced from the field? (2) How can the knowledge gained from studying the existing fields can be extended to other fields which have the potential to produce? (3) What can be done to improve the performance of this reservoir? We have developed a comprehensive model to explain the behavior of the reservoir. By using available production, geological, core and log data, we are able to develop a reservoir model which explains the production behavior in the reservoir. Using easily available information, such as log data, we have established the parameters needed for a field to be economically successful. We provide guidelines in terms of what to look for in a new field and how to develop it. Finally, through laboratory experiments, we show that surfactants can be used to improve the hydrocarbons recovery from the field. In addition, injection of CO{sub 2} or natural gas also will help us recover additional oil from the field.

Mohan Kelkar

2005-02-01T23:59:59.000Z

417

Crude oil and crude oil derivatives transactions by oil and gas producers.  

E-Print Network [OSTI]

??This study attempts to resolve two important issues. First, it investigates the diversification benefit of crude oil for equities. Second, it examines whether or not… (more)

Xu, He

2007-01-01T23:59:59.000Z

418

Heavy Oil Program. Quarterly progress report No. 1, April 1-June 30, 1980  

SciTech Connect (OSTI)

Research and development efforts in support of the DOE Heavy Oil RD and D Program in reservoir access were initiated. Preliminary activities in the survey of sand control, drilling, and fracturing techniques in heavy oil formations are described. The continued development of a high temperature packer for use in steam injection applications is presented. A new application of controlled source audio magnetotelluric survey to developing thermal fronts from in situ combustion and steam drive is described.

Wayland, J. R.; Bartel, L. C.; Johnson, D. R.; Fox, R. L.

1980-12-01T23:59:59.000Z

419

DEVELOPMENT OF SHALLOW VISCOUS OIL RESERVES IN NORTH SLOPE  

SciTech Connect (OSTI)

North Slope of Alaska has huge oil deposits in heavy oil reservoirs such as Ugnu, West Sak and Shrader Bluff etc. The viscosity of the last two reservoir oils vary from {approx}30 cp to {approx}3000 cp and the amount in the range of 10-20 billion barrels. High oil viscosity and low formation strength impose problems to high recovery and well productivity. Water-alternate-gas injection processes can be effective for the lower viscosity end of these deposits in West Sak and Shrader Bluff. Several gas streams are available in the North Slope containing NGL and CO{sub 2} (a greenhouse gas). The goal of this research is to develop tools to find optimum solvent, injection schedule and well-architecture for a WAG process in North Slope shallow sand viscous oil reservoirs. In the last quarter, we have developed streamline generation and convection subroutines for miscible gas injection. The WAG injection algorithms are being developed. We formulated a four-phase relative permeability model based on two-phase relative permeabilities. The new relative permeability formulations are being incorporated into the simulator. Wettabilities and relative permeabilities are being measured. Plans for the next quarter includes modeling of WAG injection in streamline based simulation, relative permeability studies with cores, incorporation of complex well-architecture.

Kishore K. Mohanty

2003-07-01T23:59:59.000Z

420

www.fightbac.o anola oil is  

E-Print Network [OSTI]

Ca co Th Ca "Canola" c which is Addition Ca he Ca in Th ca Ca m C know? anola oil is ooking oils. he average anola oil is comes fro s another nal Inform anola oil is eart healthy anola oil is n the world. he part of th anola meal anola oil ca many crop va ano the lowest . canola see a good sou m

Note: This page contains sample records for the topic "tight oil formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Ignition technique for an in situ oil shale retort  

DOE Patents [OSTI]

A generally flat combustion zone is formed across the entire horizontal cross-section of a fragmented permeable mass of formation particles formed in an in situ oil shale retort. The flat combustion zone is formed by either sequentially igniting regions of the surface of the fragmented permeable mass at successively lower elevations or by igniting the entire surface of the fragmented permeable mass and controlling the rate of advance of various portions of the combustion zone.

Cha, Chang Y. (Golden, CO)

1983-01-01T23:59:59.000Z

422

Process oil manufacturing process  

SciTech Connect (OSTI)

A method is described for producing a naphthenic process oil having reduced sulfur, nitrogen and polynuclear aromatics contents from a naphthenic feed containing same and having an atmospheric boiling range of about 650/sup 0/ to about 1200/sup 0/F. comprising: A. passing the feed into a first hydrotreating stage having a hydrotreating catalyst therein, the stage maintained at a temperature of about 600/sup 0/ to about 750/sup 0/F. and at a hydrogen partial pressure of about 400 to about 1500 psig, to convert at least a portion of the sulfur to hydrogen sulfide and the nitrogen to ammonia; B. passing the hydrotreated feed from the first hydrotreating stage in an intermediate stripping stage wherein hydrogen sulfide, ammonia, or both is removed; C. passing the hydrotreated feed from the intermediate stage into a second hydrotreating stage having therein a hydrotreating catalyst selected from the group consisting of nickel-molybdenum, cobalt-molybdenum, nickel-tungsten and mixtures thereof, the second hydrotreating stage maintained at a temperature lower than that of the first hydrotreating stage and at a hydrogen partial pressure ranging between about 400 and about 1,500 psig; D. monitoring the polynuclear aromatics content, the degree of saturation, or both of the product exiting the second hydrotreating stage; and, E. adjusting the temperature in the second hydrotreating stage to keep the polynuclear aromatics content, the degree of saturation, or both below a limit suitable for process oil.

Corman, B.G.; Korbach, P.F.; Webber, K.M.

1989-01-31T23:59:59.000Z

423

Oil market in international and Norwegian perspectives.  

E-Print Network [OSTI]

??Crude oil is the most important energy source in global perspective. About 35 percent of the world’s primary energy consumption is supplied by oil, followed… (more)

Singsaas, Julia Nazyrova

2009-01-01T23:59:59.000Z

424

Optimize carbon dioxide sequestration, enhance oil recovery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate...

425

Optimize carbon dioxide sequestration, enhance oil recovery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate the potential of storing carbon dioxide in depleted oil fields...

426

Exploitation and Optimization of Reservoir Performance in Hunton Formation, Oklahoma  

SciTech Connect (OSTI)

Hunton formation in Oklahoma has been the subject of attention for the last ten years. The new interest started with the drilling of the West Carney field in 1995 in Lincoln County. Subsequently, many other operators have expanded the search for oil and gas in Hunton formation in other parts of Oklahoma. These fields exhibit many unique production characteristics, including: (1) decreasing water-oil or water-gas ratio over time; (2) decreasing gas-oil ratio followed by an increase; (3) poor prediction capability of the reserves based on the log data; and (4) low geological connectivity but high hydrodynamic connectivity. The purpose of this investigation is to understand the principal mechanisms affecting the production, and propose methods by which we can optimize the production from fields with similar characteristics.

Mohan Kelkar

2007-06-30T23:59:59.000Z

427

Process for oil shale retorting  

DOE Patents [OSTI]

Particulate oil shale is subjected to a pyrolysis with a hot, non-oxygenous gas in a pyrolysis vessel, with the products of the pyrolysis of the shale contained kerogen being withdrawn as an entrained mist of shale oil droplets in a gas for a separation of the liquid from the gas. Hot retorted shale withdrawn from the pyrolysis vessel is treated in a separate container with an oxygenous gas so as to provide combustion of residual carbon retained on the shale, producing a high temperature gas for the production of some steam and for heating the non-oxygenous gas used in the oil shale retorting process in the first vessel. The net energy recovery includes essentially complete recovery of the organic hydrocarbon material in the oil shale as a liquid shale oil, a high BTU gas, and high temperature steam.

Jones, John B. (300 Enterprise Bldg., Grand Junction, CO 80501); Kunchal, S. Kumar (300 Enterprise Bldg., Grand Junction, CO 80501)

1981-10-27T23:59:59.000Z

428

e n e r g y Unconventional Oil Production  

E-Print Network [OSTI]

Highly variable oil prices and increasing world demand for oil have led producers to look for alternative sources of transportation fuel. Two popular alternatives are oil sands (aka tar sands) and oil shale. However, obtaining usable oil from oil sands or oil shale is more capital-intensive and more expensive than obtaining oil from conventional reserves. At what price of oil do these alternatives become cost-effective? Oil Sands Oil sands are a mixture of sand, water, clay and heavy, viscous oil called bitumen. The largest known deposits of oil sands are in Alberta, Canada, and the Orinoco Oil

Stuck In A Rock; A Hard Place; M. Engemann; Michael T. Owyang

429

Treating-pressure analysis in the Bakken formation  

SciTech Connect (OSTI)

The Bakken formation is an oil-producing interval in the Williston basin. Usually, commercial Bakken wells are linked to an anisotropic natural fracture network. Hydraulic fracturing treatments have been used extensively in vertical wells and to a limited extent in horizontal wells. In this paper, bottom hole treating pressure (BHTP's) are analyzed to improve understanding of hydraulic fracture propagation in the Bakken.

Cramer, D.D. (BJ Services (US))

1992-01-01T23:59:59.000Z

430

SPE-139032-PP Field Development Strategies for Bakken Shale Formation  

E-Print Network [OSTI]

SPE-139032-PP Field Development Strategies for Bakken Shale Formation S.Zargari, SPE, S s a ckno wle dgm ent of S PE co p yrig ht. Abstract Bakken shale has been subjected to more attention coupled with advancements in horizontal drilling, increased the interest of oil companies for investment

Mohaghegh, Shahab

431

The Politics of Mexico’s Oil Monopoly  

E-Print Network [OSTI]

2005), p. 59. Table 5: Oil production in barrels per daynot have much impact in oil production. In fact, oil exportscurrent oil reserves and oil production? 2) For how long can

Huizar, Richard

2008-01-01T23:59:59.000Z

432

TOP-DOWN MODELING; PRACTICAL, FAST TRACK, RESERVOIR SIMULATION & MODELING FOR SHALE FORMATIONS Shahab D. Mohaghegh1 & Grant Bromhal2  

E-Print Network [OSTI]

development in the oil and gas industry and is being used on some shale formations. BAKKEN SHALE MuchTOP-DOWN MODELING; PRACTICAL, FAST TRACK, RESERVOIR SIMULATION & MODELING FOR SHALE FORMATIONS based on measure data, called Top-Down, Intelligent Reservoir Modeling for the shale formations

Mohaghegh, Shahab

433

Separation of oil-soluble sulfonates from sulfonated oils  

SciTech Connect (OSTI)

The authors aimed at developing a method for the complete recovery, from oil solutions, of oil-water-soluble sulfonates meeting the specifications, along with oils at least 99% pure, suitable for further processing. As the starting material the authors used an experimental batch of sulfonated and neutralized distillate lube stocks produced by selective solvent treatment. In determining the optimal extraction parameters, the authors investigated the influence of the solvent to original feed (S:F) weight ratio and the influence of the isopropyl alcohol (IPA) concentration on the composition of the sulfonates and oils recovered at 60/sup 0/C with a settling time of 2 h. The optimal conditions for two-stage extraction were found through a study of the influence of temperature and settling time on the compositions of the sulfonates and oils with S:F = 1.2:1 and with an IPA concentration of 40%. The process technology for two-stage recovery of oils and sulfonates from oil solutions was worked out in a pilot unit.

Ul'yanenko, V.I.; Yur'eva, N.P.; Sergeev, V.P.

1987-01-01T23:59:59.000Z

434

RESEARCH OIL RECOVERY MECHANISMS IN HEAVY OIL RESERVOIRS  

SciTech Connect (OSTI)

The United States continues to rely heavily on petroleum fossil fuels as a primary energy source, while domestic reserves dwindle. However, so-called heavy oil (10 to 20{sup o}API) remains an underutilized resource of tremendous potential. Heavy oils are much more viscous than conventional oils. As a result, they are difficult to produce with conventional recovery methods such as pressure depletion and water injection. Thermal recovery is especially important for this class of reservoirs because adding heat, usually via steam injection, generally reduces oil viscosity dramatically. This improves displacement efficiency. The research described here was directed toward improved understanding of thermal and heavy-oil production mechanisms and is categorized into: (1) flow and rock properties; (2) in-situ combustion; (3) additives to improve mobility control; (4) reservoir definition; and (5) support services. The scope of activities extended over a three-year period. Significant work was accomplished in the area of flow properties of steam, water, and oil in consolidated and unconsolidated porous media, transport in fractured porous media, foam generation and flow in homogeneous and heterogeneous porous media, the effects of displacement pattern geometry and mobility ratio on oil recovery, and analytical representation of water influx. Significant results are described.

Anthony R. Kovscek; William E. Brigham

1999-06-01T23:59:59.000Z

435

Additional Reserve Recovery Using New Polymer Treatment on High Water Oil Ratio Wells in Alameda Field, Kingman County, Kansas  

SciTech Connect (OSTI)

The Chemical Flooding process, like a polymer treatment, as a tertiary (enhanced) oil recovery process can be a very good solution based on the condition of this field and its low cost compared to the drilling of new wells. It is an improved water flooding method in which high molecular-weight (macro-size molecules) and water-soluble polymers are added to the injection water to improve the mobility ratio by enhancing the viscosity of the water and by reducing permeability in invaded zones during the process. In other words, it can improve the sweep efficiency by reducing the water mobility. This polymer treatment can be performed on the same active oil producer well rather than on an injector well in the existence of strong water drive in the formation. Some parameters must be considered before any polymer job is performed such as: formation temperature, permeability, oil gravity and viscosity, location and formation thickness of the well, amount of remaining recoverable oil, fluid levels, well productivity, water oil ratio (WOR) and existence of water drive. This improved oil recovery technique has been used widely and has significant potential to extend reservoir life by increasing the oil production and decreasing the water cut. This new technology has the greatest potential in reservoirs that are moderately heterogeneous, contain moderately viscous oils, and have adverse water-oil mobility ratios. For example, many wells in Kansas's Arbuckle formation had similar treatments and we have seen very effective results. In addition, there were previous polymer treatments conducted by Texaco in Alameda Field on a number of wells throughout the Viola-Simpson formation in the early 70's. Most of the treatments proved to be very successful.

James Spillane

2005-10-01T23:59:59.000Z

436

Research on oil recovery mechanisms in heavy oil reservoirs  

SciTech Connect (OSTI)

The research described here was directed toward improved understanding of thermal and heavy-oil production mechanisms and is categorized into: (1) flow and rock properties, (2) in-situ combustion, (3) additives to improve mobility control, (4) reservoir definition, and (5) support services. The scope of activities extended over a three-year period. Significant work was accomplished in the area of flow properties of steam, water, and oil in consolidated and unconsolidated porous media, transport in fractured porous media, foam generation and flow in homogeneous and heterogeneous porous media, the effects of displacement pattern geometry and mobility ratio on oil recovery, and analytical representation of water influx.

Kovscek, Anthony R.; Brigham, William E., Castanier, Louis M.

2000-03-16T23:59:59.000Z

437

Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, January--March 1993  

SciTech Connect (OSTI)

Accomplishments for the past quarter are briefly described for the following areas of research: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale and tar sand researches cover processing studies. Coal research includes: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology covers: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW{sup TM} field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid-state NMR analysis of Mesaverde Group, Greater Green River Basin tight gas sands; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; oil field waste cleanup using tank bottom recovery process; remote chemical sensor development; in situ treatment of manufactured gas plant contaminated soils demonstration program; solid-state NMR analysis of naturally and artificially matured kerogens; and development of an effective method for the clean-up of natural gas.

Not Available

1993-09-01T23:59:59.000Z

438

Feasibility evaluation of downhole oil/water separator (DOWS) technology.  

SciTech Connect (OSTI)

The largest volume waste stream associated with oil and gas production is produced water. A survey conducted by the American Petroleum Institute estimated that 20.9 billion barrels of produced water were disposed of in 1985 (Wakim 1987). Of this total, 91% was disposed of through disposal wells or was injected for enhanced oil recovery projects. Treatment and disposal of produced water represents a significant cost for operators. A relatively new technology, downhole oil/water separators (DOWS), has been developed to reduce the cost of handling produced water. DOWS separate oil and gas from produced water at the bottom of the well and reinject some of the produced water into another formation or another horizon within the same formation, while the oil and gas are pumped to the surface. Since much of the produced water is not pumped to the surface, treated, and pumped from the surface back into a deep formation, the cost of handling produced water is greatly reduced. When DOWS are used, additional oil may be recovered as well. In cases where surface processing or disposal capacity is a limiting factor for further production within a field, the use of DOWS to dispose of some of the produced water can allow additional production within that field. Simultaneous injection using DOWS minimizes the opportunity for contamination of underground sources of drinking water (USDWs) through leaks in tubing and casing during the injection process. This report uses the acronym 'DOWS' although the technology may also be referred to as DHOWS or as dual injection and lifting systems (DIALS). Simultaneous injection using DOWS has the potential to profoundly influence the domestic oil industry. The technology has been shown to work in limited oil field applications in the United States and Canada. Several technical papers describing DOWS have been presented at oil and gas industry conferences, but for the most part, the information on the DOWS technology has not been widely transferred to operators, particularly to small or medium-sized independent U.S. companies. One of the missions of the U.S. Department of Energy's (DOE's) National Petroleum Technology Office (NPTO) is to assess the feasibility of promising oil and gas technologies that offer improved operating performance, reduced operating costs, or greater environmental protection. To further this mission, the NPTO provided funding to a partnership of three organizations a DOE national laboratory (Argonne National Laboratory), a private-sector consulting firm (CH2M-Hill), and a state government agency (Nebraska Oil and Gas Conservation Commission) to assess the feasibility of DOWS. The purpose of this report is to provide general information to the industry on DOWS by describing the existing uses of simultaneous injection, summarizing the regulatory implications of simultaneous injection, and assessing the potential future uses of the technology. Chapter 2 provides a more detailed description of the two major types of DOWS. Chapter 3 summarizes the existing U.S. and Canadian installations of DOWS equipment, to the extent that operators have been willing to share their data. Data are provided on the location and geology of existing installations, production information before and after installation of the DOWS, and costs. Chapter 4 provides an overview of DOWS-specific regulatory requirements imposed by some state agencies and discusses the regulatory implications of handling produced water downhole, rather than pumping it to the surface and reinjecting it. Findings and conclusions are presented in Chapter 5 and a list of the references cited in the report is provided in Chapter 6. Appendix A presents detailed data on DOWS installations. This report presents the findings of Phase 1 of the simultaneous injection project, the feasibility assessment. Another activity of the Phase 1 investigation is to design a study plan for Phase 2 of the project, field pilot studies. The Phase 2 study plan is being developed separately and is not included in this report.

Veil, J. A.; Langhus, B. G.; Belieu, S.; Environmental Assessment; CH2M Hill; Nebraska Oil and Gas Conservation Commission

1999-01-31T23:59:59.000Z

439

Enhanced oil recovery system  

DOE Patents [OSTI]

All energy resources available from a geopressured geothermal reservoir are used for the production of pipeline quality gas using a high pressure separator/heat exchanger and a membrane separator, and recovering waste gas from both the membrane separator and a low pressure separator in tandem with the high pressure separator for use in enhanced oil recovery, or in powering a gas engine and turbine set. Liquid hydrocarbons are skimmed off the top of geothermal brine in the low pressure separator. High pressure brine from the geothermal well is used to drive a turbine/generator set before recovering waste gas in the first separator. Another turbine/generator set is provided in a supercritical binary power plant that uses propane as a working fluid in a closed cycle, and uses exhaust heat from the combustion engine and geothermal energy of the brine in the separator/heat exchanger to heat the propane.

Goldsberry, Fred L. (Spring, TX)

1989-01-01T23:59:59.000Z

440

Oil field management system  

DOE Patents [OSTI]

Oil field management systems and methods for managing operation of one or more wells producing a high void fraction multiphase flow. The system includes a differential pressure flow meter which samples pressure readings at various points of interest throughout the system and uses pressure differentials derived from the pressure readings to determine gas and liquid phase mass flow rates of the high void fraction multiphase flow. One or both of the gas and liquid phase mass flow rates are then compared with predetermined criteria. In the event such mass flow rates satisfy the predetermined criteria, a well control system implements a correlating adjustment action respecting the multiphase flow. In this way, various parameters regarding the high void fraction multiphase flow are used as control inputs to the well control system and thus facilitate management of well operations.

Fincke, James R.

2003-09-23T23:59:59.000Z

Note: This page contains sample records for the topic "tight oil formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect (OSTI)

The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs, including: (1) Development of three-dimensional (3-D) deterministic and stochastic reservoir simulation models--thermal or otherwise--to aid in reservoir management of the steamflood and post-steamflood phases and subsequent development work. (2) Development of computerized 3-D visualizations of the geologic and reservoir simulation models to aid reservoir surveillance and operations. (3) Perform detailed studies of the geochemical interactions between the steam and the formation rock and fluids. (4) Testing and proposed application of a novel alkaline-steam well completion technique for the containment of the unconsolidated formation sands and control of fluid entry and injection profiles. (5) Installation of a 2100 ft, 14 inch insulated, steam line beneath a harbor channel to supply steam to an island location. (6) Testing and proposed application of thermal recovery technologies to increase oil production and reserves: (a) Performing pilot tests of cyclic steam injection and production on new horizontal wells. (b) Performing pilot tests of hot water-alternating-steam (WAS) drive in the existing steam drive area to improve thermal efficiency. (7) Perform a pilot steamflood with the four horizontal injectors and producers using a pseudo steam-assisted gravity-drainage (SAGD) process. (8) Advanced reservoir management, through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring and evaluation.

Unknown

2001-08-08T23:59:59.000Z

442

Salt caverns for oil field waste disposal.  

SciTech Connect (OSTI)

Salt caverns used for oil field waste disposal are created in salt formations by solution mining. When created, caverns are filled with brine. Wastes are introduced into the cavern by pumping them under low pressure. Each barrel of waste injected to the cavern displaces a barrel of brine to the surface. The brine is either used for drilling mud or is disposed of in an injection well. Figure 8 shows an injection pump used at disposal cavern facilities in west Texas. Several types of oil field waste may be pumped into caverns for disposal. These include drilling muds, drill cuttings, produced sands, tank bottoms, contaminated soil, and completion and stimulation wastes. Waste blending facilities are constructed at the site of cavern disposal to mix the waste into a brine solution prior to injection. Overall advantages of salt cavern disposal include a medium price range for disposal cost, large capacity and availability of salt caverns, limited surface land requirement, increased safety, and ease of establishment of individual state regulations.

Veil, J.; Ford, J.; Rawn-Schatzinger, V.; Environmental Assessment; RMC, Consultants, Inc.

2000-07-01T23:59:59.000Z

443

Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance  

E-Print Network [OSTI]

Calculated time integrated energy balance term in the 5 thCalculated time integrated energy balance term in the 5 thof air tightness and energy balance Hyung-Mok Kim 1 , Jonny

Kim, H.-M.

2012-01-01T23:59:59.000Z

444

A proliferation resistant hexagonal tight lattice BWR fueled core for increased burnup and reduced fuel storage requirements. Annual progress report: August, 1999 to July, 2000 [DOE NERI  

SciTech Connect (OSTI)

(OAK/B204) A proliferation resistant hexagonal tight lattice BWR fueled core for increased burnup and reduced fuel storage requirements. Annual progress report: August, 1999 to July, 2000 [DOE NERI

Hiroshi Takahashi; Upendra Rohatgi; T.J. Downar

2000-08-04T23:59:59.000Z

445

Oil source rocks in the Romanian area of the Moesian platform  

SciTech Connect (OSTI)

The Romanian area of the Moesian Platform (north of the Danube-Black Sea and east and South Carpathians Foredeep to north) represents a very important intra-plate with some new real oil prospects. With a thick sedimentary cover, especially in its northern, deepest area, the Moesian Platform offers favorable geological conditions of oil systems in the whole stratigraphic column, from Paleozoic to Upper Cenozoic (Pliocene). Having a few rich oil source rocks both in carbonatic facies (Devonian-Carboniferous, Middle Triassic, Neocomian) and argillitic ones (Silurian, early Carboniferous, Lias-Dogger, Mid-Upper Miocene), the Moesian Platform also contains very good oil reservoirs: Mid-Upper Paleozoic, Triassic, Lower Cretaceous, Upper Miocene and Pliocene. Geochemical studies on kerogen and bitumen have pointed out the most important oil source rocks, as well as the quality and quantity of expelled hydrocarbons and their relationships with oil reservoirs. Geochemical correlations between oils and source rocks have led to a better understanding of the oil pool formation with some interesting goals in the Romanian exploration strategy.

Baltes, N.; Matracaru, C.; Petrom, R.A. [Institute for Research and Technology, Prahova (Romania)

1995-08-01T23:59:59.000Z

446

Can Oil Float Completely Submerged in Water?  

E-Print Network [OSTI]

Droplet formation in a system of two or more immiscible fluids is a celebrated topic of research in the fluid mechanics community. In this work, we propose an innovative phenomenon where oil when injected drop-wise into a pool of water moves towards the air-water interface where it floats in a fully submerged condition. The configuration, however, is not stable and a slight perturbation to the system causes the droplet to burst and float in partially submerged condition. The droplet contour is analyzed using edge detection. Temporal variation of a characteristic length of the droplet is analyzed using MATLAB image processing. The constraint of small Bond Number established the assumption of lubrication regime in the thin gap. A brief theoretical formulation also showed the temporal variation of the gap thickness

Nath, Saurabh; Chatterjee, Souvick

2013-01-01T23:59:59.000Z

447

Advancing New 3D Seismic Interpretation Methods for Exploration and Development of Fractured Tight Gas Reservoirs  

SciTech Connect (OSTI)

In a study funded by the U.S. Department of Energy and GeoSpectrum, Inc., new P-wave 3D seismic interpretation methods to characterize fractured gas reservoirs are developed. A data driven exploratory approach is used to determine empirical relationships for reservoir properties. Fractures are predicted using seismic lineament mapping through a series of horizon and time slices in the reservoir zone. A seismic lineament is a linear feature seen in a slice through the seismic volume that has negligible vertical offset. We interpret that in regions of high seismic lineament density there is a greater likelihood of fractured reservoir. Seismic AVO attributes are developed to map brittle reservoir rock (low clay) and gas content. Brittle rocks are interpreted to be more fractured when seismic lineaments are present. The most important attribute developed in this study is the gas sensitive phase gradient (a new AVO attribute), as reservoir fractures may provide a plumbing system for both water and gas. Success is obtained when economic gas and oil discoveries are found. In a gas field previously plagued with poor drilling results, four new wells were spotted using the new methodology and recently drilled. The wells have estimated best of 12-months production indicators of 2106, 1652, 941, and 227 MCFGPD. The latter well was drilled in a region of swarming seismic lineaments but has poor gas sensitive phase gradient (AVO) and clay volume attributes. GeoSpectrum advised the unit operators that this location did not appear to have significant Lower Dakota gas before the well was drilled. The other three wells are considered good wells in this part of the basin and among the best wells in the area. These new drilling results have nearly doubled the gas production and the value of the field. The interpretation method is ready for commercialization and gas exploration and development. The new technology is adaptable to conventional lower cost 3D seismic surveys.

James Reeves

2005-01-31T23:59:59.000Z

448

International Oil and Gas Board International Oil and Gas Board...  

Open Energy Info (EERE)

Oil and Gas Board Address Place Zip Website Abu Dhabi Supreme Petroleum Council Abu Dhabi Supreme Petroleum Council Abu Dhabi http www abudhabi ae egovPoolPortal WAR appmanager...

449

Combustion heater for oil shale  

DOE Patents [OSTI]

A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650 to 700/sup 0/C for use as a process heat source.

Mallon, R.; Walton, O.; Lewis, A.E.; Braun, R.

1983-09-21T23:59:59.000Z

450

Combustion heater for oil shale  

DOE Patents [OSTI]

A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650.degree.-700.degree. C. for use as a process heat source.

Mallon, Richard G. (Livermore, CA); Walton, Otis R. (Livermore, CA); Lewis, Arthur E. (Los Altos, CA); Braun, Robert L. (Livermore, CA)

1985-01-01T23:59:59.000Z

451

OIL & GAS HISTORY 1 History in California  

E-Print Network [OSTI]

OIL & GAS HISTORY 1 History in California 4 Superior figures refer to references at the end of the essay. OIL AND GAS PRODUCTION California oil was always a valued commodity. When the Spanish explorers landed in California in the 1500s, they found Indians gathering asphaltum (very thick oil) from natural

452

THE RIMINI PROTOCOL Oil Depletion Protocol  

E-Print Network [OSTI]

Soaring oil prices have drawn attention to the issue of the relative supply and demand for crude oil1 THE RIMINI PROTOCOL an Oil Depletion Protocol ~ Heading Off Economic Chaos and Political Conflict During the Second Half of the Age of Oil As proposed at the 2003 Pio Manzu Conference

Keeling, Stephen L.

453

EMPLOYEE BENEFIT SERVICE Signature Service Oil Change  

E-Print Network [OSTI]

UNM Staff EMPLOYEE BENEFIT SERVICE Jiffy Lube Signature Service Oil Change Fast - No Appointment We change your oil with up to 5 quarts of major brand motor oil We install a new oil fi We visually inspect. ASE training programs · Jiffy Lube uses top quality products that meet or exceed vehicle warranty

New Mexico, University of

454

Canadian Oil Sands: Canada's Energy Advantage  

E-Print Network [OSTI]

crude oil production, global energy demand, the estimated reserves and resources at Syncrude, views that the world will need oil for decades to come, the expectations regarding oil sands productive capacityCanadian Oil Sands: Canada's Energy Advantage 0 #12;Forward looking information 1 In the interest

Boisvert, Jeff

455

Estimates of Oil Reserves Jean Laherrere  

E-Print Network [OSTI]

Estimates of Oil Reserves Jean Laherrere e-mail: jean.laherrere@wanadoo.fr sites: http will solve the present problems on welfare, retirement and they would dearly love to see the reserves of oil or oil reserves is a political act. The SEC, to satisfy bankers and shareholders, obliges the oil

O'Donnell, Tom

456

Cheaper oil extraction Taking a closer look  

E-Print Network [OSTI]

solvent for commercial-scale enhanced oil recovery to increase the amount of crude oil that canCONTENTS Cheaper oil extraction Taking a closer look at the eye Computational Science takes inside for more details #12;Greener, cheaper oil extraction Geographical and geological concerns

457

Liens for Oil and Gas Operations (Nebraska)  

Broader source: Energy.gov [DOE]

This section contains regulations concerning lien allowances made to operators of oil and gas operations.

458

Favorable conditions noted for Australia shale oil  

SciTech Connect (OSTI)

After brief descriptions of the Rundle, Condor, and Stuart/Kerosene Creek oil shale projects in Queensland, the competitive advantages of oil shale development and the state and federal governments' attitudes towards an oil shale industry in Australia are discussed. It is concluded that Australia is the ideal country in which to start an oil shale industry.

Not Available

1986-09-01T23:59:59.000Z

459

Fire and explosion hazards of oil shale  

SciTech Connect (OSTI)

The US Bureau of Mines publication presents the results of investigations into the fire and explosion hazards of oil shale rocks and dust. Three areas have been examined: the explosibility and ignitability of oil shale dust clouds, the fire hazards of oil shale dust layers on hot surfaces, and the ignitability and extinguishment of oil shale rubble piles. 10 refs., 54 figs., 29 tabs.

Not Available

1989-01-01T23:59:59.000Z

460

1 What is Oil ? General information  

E-Print Network [OSTI]

such as shale oil or synthetic crude oil from tar sands (see Table 4.1). A whole range of petroleum products69 1 What is Oil ? General information Petroleum is a complex mixture of liquid hydrocarbons in sedimentary rock. Coming from the Latin petra, meaning rock, and oleum, meaning oil, the word "petroleum

Kammen, Daniel M.

Note: This page contains sample records for the topic "tight oil formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Plant-wide Control for Better De-oiling of Produced Water in Offshore Oil & Gas  

E-Print Network [OSTI]

Plant-wide Control for Better De-oiling of Produced Water in Offshore Oil & Gas Production Zhenyu (PWT) in offshore oil & gas production processes. Different from most existing facility- or material offshore and the oil industry expects this share to grow continuously in the future. In last decade, oil

Yang, Zhenyu

462

Oil and Gas CDT Development of a SUNTANS Baroclinic Model for 3D Oil  

E-Print Network [OSTI]

Oil and Gas CDT Development of a SUNTANS Baroclinic Model for 3D Oil Pollution Tracking Heriot) Key Words Oil Spill, HF Radar, Trajectory Forecasting, Hydrodynamic Modelling, Oil Chemistry Overview In an oil spill emergency, an operational system must forecast ocean and weather conditions in addition

Henderson, Gideon

463

2 SPRAY OILS--BEYOND 2000 Modern use of petroleum-derived oils as agricultural crop  

E-Print Network [OSTI]

2 SPRAY OILS--BEYOND 2000 Abstract Modern use of petroleum-derived oils as agricultural crop among oils of common origin and manufacture. The importance of the emulsifier used with the oil of these products. Introduction Petroleum oils have been in use as crop protectants for over a hundred years

Agnello, Arthur M.

464

OilEd: a Reason-able Ontology Editor for the Semantic Web  

E-Print Network [OSTI]

the full power of an expressive web ontology language (OIL). OilEd uses reasoning to support ontology been merged under the name DAML+OIL, although there are some differences between the approaches usedOilEd: a Reason-able Ontology Editor for the Semantic Web Sean Bechhofer, Ian Horrocks, Carole

Stevens, Robert

465

OIL IN THE OPEN WATER Oil in the open water may a ect the health of  

E-Print Network [OSTI]

OIL IN THE OPEN WATER Oil in the open water may a ect the health of microscopic plants and animals. Far beneath the surface, corals and other deepwater communities might also be a ected. OIL AND HUMAN AND SEDIMENTS · Water quality surveys · Transect surveys to detect submerged oil · Oil plume modeling · Sediment

466

Energy Policy 34 (2006) 515531 Have we run out of oil yet? Oil peaking analysis from  

E-Print Network [OSTI]

price shocks and economic downturns. Over the next 30 years oil demand is expected to grow by 60Energy Policy 34 (2006) 515­531 Have we run out of oil yet? Oil peaking analysis from an optimist of conventional oil production from an optimist's perspective. Is the oil peak imminent? What is the range

467

Oil shale: The environmental challenges III  

SciTech Connect (OSTI)

This book presents the papers of a symposium whose purpose was to discuss the environmental and socio-economic aspects of oil shale development. Topics considered include oil shale solid waste disposal, modeling spent shale disposal, water management, assessing the effects of oil shale facilities on water quality, wastewater treatment and use at oil shale facilities, potential air emissions from oil shale retorting, the control of air pollutant emissions from oil shale facilities, oil shale air emission control, socioeconomic research, a framework for mitigation agreements, the Garfield County approach to impact mitigation, the relationship of applied industrial hygiene programs and experimental toxicology programs, and industrial hygiene programs.

Petersen, K.K.

1983-01-01T23:59:59.000Z

468

Estimation of in-situ petrophysical properties from wireline formation tester and induction logging measurements: A joint inversion approach  

E-Print Network [OSTI]

-filtrate invasion and formation test. A fully implicit finite- difference black-oil reservoir simulator with brine noise-free and noise-contaminated synthetic data. Joint inversion results provide a quantitative proof

Torres-Verdín, Carlos

469

Figure 4. World Oil Prices  

U.S. Energy Information Administration (EIA) Indexed Site

4. World Oil Prices" " (2007 dollars per barrel)" ,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022,2023,2024,2025,2026,2027,2028,2029,2030...

470

Method for enhanced oil recovery  

DOE Patents [OSTI]

The present invention is directed to an improved method for enhanced recovery of oil from relatively "cold" reservoirs by carbon dioxide flooding. In oil reservoirs at a temperature less than the critical temperature of 87.7.degree. F. and at a pore pressure greater than the saturation pressure of carbon dioxide at the temperature of the reservoir, the carbon dioxide remains in the liquid state which does not satisfactorily mix with the oil. However, applicants have found that carbon dioxide can be vaporized in situ in the reservoir by selectively reducing the pore pressure in the reservoir to a value less than the particular saturated vapor pressure so as to greatly enhance the mixing of the carbon dioxide with the oil.

Comberiati, Joseph R. (Morgantown, WV); Locke, Charles D. (Morgantown, WV); Kamath, Krishna I. (Chicago, IL)

1980-01-01T23:59:59.000Z

471

Oil and Gas Conservation (Nebraska)  

Broader source: Energy.gov [DOE]

This section establishes the state's interest in encouraging the development, production, and utilization of natural gas and oil resources in a manner which will prevent waste and lead to the...

472

Method for retorting oil shale  

DOE Patents [OSTI]

The recovery of oil from oil shale is provided in a fluidized bed by using a fluidizing medium of a binary mixture of carbon dioxide and 5 steam. The mixture with a steam concentration in the range of about 20 to 75 volume percent steam provides an increase in oil yield over that achievable by using a fluidizing gas of carbon dioxide or steam alone when the mixture contains higher steam concentrations. The operating parameters for the fluidized bed retorted are essentially the same as those utilized with other gaseous fluidizing mediums with the significant gain being in the oil yield recovered which is attributable solely to the use of the binary mixture of carbon dioxide and steam. 2 figs.

Shang, Jer-Yu; Lui, A.P.

1985-08-16T23:59:59.000Z

473

Oil shale, tar sands, and related materials  

SciTech Connect (OSTI)

This sixteen-chapter book focuses on the many problems and the new methodology associated with the commercialization of the oil shale and tar sand industry. Topics discussed include: an overview of the Department of Energy's oil shale R, D, and D program; computer simulation of explosive fracture of oil shale; fracturing of oil shale by treatment with liquid sulfur dioxide; chemistry of shale oil cracking; hydrogen sulfide evolution from Colorado oil shale; a possible mechanism of alkene/alkane production in oil shale retorting; oil shale retorting kinetics; kinetics of oil shale char gasification; a comparison of asphaltenes from naturally occurring shale bitumen and retorted shale oils: the influence of temperature on asphaltene structure; beneficiation of Green River oil shale by density methods; beneficiation of Green River oil shale pelletization; shell pellet heat exchange retorting: the SPHER energy-efficient process for retorting oil shale; retorted oil shale disposal research; an investigation into the potential economics of large-scale shale oil production; commercial scale refining of Paraho crude shale oil into military specification fuels; relation between fuel properties and chemical composition; chemical characterization/physical properties of US Navy shale-II fuels; relation between fuel properties and chemical composition: stability of oil shale-derived jet fuel; pyrolysis of shale oil residual fractions; synfuel stability: degradation mechanisms and actual findings; the chemistry of shale oil and its refined products; the reactivity of Cold Lake asphaltenes; influence of thermal processing on the properties of Cold Lake asphaltenes: the effect of distillation; thermal recovery of oil from tar sands by an energy-efficient process; and hydropyrolysis: the potential for primary upgrading of tar sand bitumen.

Stauffer, H.C.

1981-01-01T23:59:59.000Z

474

Enhanced oil recovery in Rumania  

SciTech Connect (OSTI)

The paper describes the application of the fire-floods to a broad range of Romanian oil reservoirs and crude properties and reviews the field tests of polymer flooding, surfactant flooding and alkaline flooding. A commercial scale project with cyclic steam injection is presented and also the use of the domestic CO/sub 2/ sources to enhanced oil recovery. The results and the difficulties encountered are briefly discussed and also the potential of EOR methods in Romania are presented. 17 refs.

Carcoana, A.N.

1982-01-01T23:59:59.000Z

475

USE OF POLYMERS TO RECOVER VISCOUS OIL FROM UNCONVENTIONAL RESERVOIRS  

SciTech Connect (OSTI)

This final technical progress report summarizes work performed the project, 'Use of Polymers to Recover Viscous Oil from Unconventional Reservoirs.' The objective of this three-year research project was to develop methods using water soluble polymers to recover viscous oil from unconventional reservoirs (i.e., on Alaska's North Slope). The project had three technical tasks. First, limits were re-examined and redefined for where polymer flooding technology can be applied with respect to unfavorable displacements. Second, we tested existing and new polymers for effective polymer flooding of viscous oil, and we tested newly proposed mechanisms for oil displacement by polymer solutions. Third, we examined novel methods of using polymer gels to improve sweep efficiency during recovery of unconventional viscous oil. This report details work performed during the project. First, using fractional flow calculations, we examined the potential of polymer flooding for recovering viscous oils when the polymer is able to reduce the residual oil saturation to a value less than that of a waterflood. Second, we extensively investigated the rheology in porous media for a new hydrophobic associative polymer. Third, using simulation and analytical studies, we compared oil recovery efficienc