National Library of Energy BETA

Sample records for tight gas formations

  1. Completion methods in thick, multilayered tight gas sands 

    E-Print Network [OSTI]

    Ogueri, Obinna Stavely

    2009-05-15

    Tight gas sands, coal-bed methane, and gas shales are commonly called unconventional reservoirs. Tight gas sands (TGS) are often described as formations with an expected average permeability of 0.1mD or less. Gas production rates from TGS reservoirs...

  2. Evaluation of water production in tight gas sands in the Cotton Valley formation in the Caspiana, Elm Grove and Frierson fields 

    E-Print Network [OSTI]

    Ozobeme, Charles Chinedu

    2007-04-25

    in the Elm Grove and Caspiana fields. 3 Fig. 1.2: Distribution of Cotton Valley Reservoirs across East Texas and North Louisiana. (Source - Collins 2 ) CV Lime Producing Trend. CV Blanket Sands . Good porosity and permeability..., no fracturing required. CV Massive Sands . Low permeability and porosity, require fracturing. CV Sand Fields. CV Lime Fields. 4 1.2 The Cotton Valley Formation in Northwest Louisiana The Cotton Valley formation is a tight gas sand play...

  3. Developing a tight gas sand advisor for completion and stimulation in tight gas reservoirs worldwide 

    E-Print Network [OSTI]

    Bogatchev, Kirill Y.

    2009-05-15

    and experience about completion and stimulation technologies used in TGS reservoirs. We developed the principal design and two modules of a computer program called Tight Gas Sand Advisor (TGS Advisor), which can be used to assist engineers in making decisions...

  4. Northwestern University Technological Institute Tight Shale Gas-Hydraulic Fracturing

    E-Print Network [OSTI]

    Guo, Dongning

    Northwestern University Technological Institute Tight Shale Gas-Hydraulic Fracturing Seminar Series Where are we Today: Reservoir and Completion Quality Is Tight Shale Gas and Oil the Answer ? Sidney and with different economic and environmental impacts · Tight Shale Gas and Oil is at least part of the answer

  5. Northwestern University Technological Institute Tight Shale Gas-Hydraulic Fracturing

    E-Print Network [OSTI]

    Guo, Dongning

    Northwestern University Technological Institute Tight Shale Gas-Hydraulic Fracturing Seminar Series fracturing of horizontal wells is priceless Sidney Green, London Shale Gas Summit, 2010 #12;Vertical Well

  6. US production of natural gas from tight reservoirs

    SciTech Connect (OSTI)

    Not Available

    1993-10-18

    For the purposes of this report, tight gas reservoirs are defined as those that meet the Federal Energy Regulatory Commission`s (FERC) definition of tight. They are generally characterized by an average reservoir rock permeability to gas of 0.1 millidarcy or less and, absent artificial stimulation of production, by production rates that do not exceed 5 barrels of oil per day and certain specified daily volumes of gas which increase with the depth of the reservoir. All of the statistics presented in this report pertain to wells that have been classified, from 1978 through 1991, as tight according to the FERC; i.e., they are ``legally tight`` reservoirs. Additional production from ``geologically tight`` reservoirs that have not been classified tight according to the FERC rules has been excluded. This category includes all producing wells drilled into legally designated tight gas reservoirs prior to 1978 and all producing wells drilled into physically tight gas reservoirs that have not been designated legally tight. Therefore, all gas production referenced herein is eligible for the Section 29 tax credit. Although the qualification period for the credit expired at the end of 1992, wells that were spudded (began to be drilled) between 1978 and May 1988, and from November 5, 1990, through year end 1992, are eligible for the tax credit for a subsequent period of 10 years. This report updates the EIA`s tight gas production information through 1991 and considers further the history and effect on tight gas production of the Federal Government`s regulatory and tax policy actions. It also provides some high points of the geologic background needed to understand the nature and location of low-permeability reservoirs.

  7. Effect of pressure-dependent permeability on tight gas wells 

    E-Print Network [OSTI]

    Franquet Barbara, Mariela

    2005-08-29

    Tight gas reservoirs are those reservoirs where the matrix has a low permeability range (k < 0.1 md). The literature documents laboratory experiments under restressed conditions that show stress dependent rock properties are more significant...

  8. DOE Showcases Websites for Tight Gas Resource Development

    Broader source: Energy.gov [DOE]

    Two U.S. Department of Energy projects funded by the Office of Fossil Energy's National Energy Technology Laboratory provide quick and easy web-based access to sought after information on tight-gas sandstone plays.

  9. Selection of fracture fluid for stimulating tight gas reservoirs 

    E-Print Network [OSTI]

    Malpani, Rajgopal Vijaykumar

    2007-04-25

    Essentially all producing wells drilled in tight gas sands and shales are stimulated using hydraulic fracture treatments. The development of optimal fracturing procedures, therefore, has a large impact on the long-term economic viability...

  10. Shale Gas & Tight Oil Economic and Policy

    E-Print Network [OSTI]

    Guo, Dongning

    Dependence on Fossil Fuels Fracking concerns Potential impact on water resources Will LNG exports drive more Information Michael Ratner Specialist in Energy Policy Congressional Research Service 101 Independence Avenue · Hydraulic fracturing New Technology: Shale gas deposit Source: U.S. Department of Energy Northwestern -6 #12

  11. Advanced Hydraulic Fracturing Technology for Unconventional Tight Gas Reservoirs

    SciTech Connect (OSTI)

    Stephen Holditch; A. Daniel Hill; D. Zhu

    2007-06-19

    The objectives of this project are to develop and test new techniques for creating extensive, conductive hydraulic fractures in unconventional tight gas reservoirs by statistically assessing the productivity achieved in hundreds of field treatments with a variety of current fracturing practices ranging from 'water fracs' to conventional gel fracture treatments; by laboratory measurements of the conductivity created with high rate proppant fracturing using an entirely new conductivity test - the 'dynamic fracture conductivity test'; and by developing design models to implement the optimal fracture treatments determined from the field assessment and the laboratory measurements. One of the tasks of this project is to create an 'advisor' or expert system for completion, production and stimulation of tight gas reservoirs. A central part of this study is an extensive survey of the productivity of hundreds of tight gas wells that have been hydraulically fractured. We have been doing an extensive literature search of the SPE eLibrary, DOE, Gas Technology Institute (GTI), Bureau of Economic Geology and IHS Energy, for publicly available technical reports about procedures of drilling, completion and production of the tight gas wells. We have downloaded numerous papers and read and summarized the information to build a database that will contain field treatment data, organized by geographic location, and hydraulic fracture treatment design data, organized by the treatment type. We have conducted experimental study on 'dynamic fracture conductivity' created when proppant slurries are pumped into hydraulic fractures in tight gas sands. Unlike conventional fracture conductivity tests in which proppant is loaded into the fracture artificially; we pump proppant/frac fluid slurries into a fracture cell, dynamically placing the proppant just as it occurs in the field. From such tests, we expect to gain new insights into some of the critical issues in tight gas fracturing, in particular the roles of gel damage, polymer loading (water-frac versus gel frac), and proppant concentration on the created fracture conductivity. To achieve this objective, we have designed the experimental apparatus to conduct the dynamic fracture conductivity tests. The experimental apparatus has been built and some preliminary tests have been conducted to test the apparatus.

  12. Numerical Modeling of Fractured Shale-Gas and Tight-Gas Reservoirs Using Unstructured Grids 

    E-Print Network [OSTI]

    Olorode, Olufemi Morounfopefoluwa

    2012-02-14

    Various models featuring horizontal wells with multiple induced fractures have been proposed to characterize flow behavior over time in tight gas and shale gas systems. Currently, there is little consensus regarding the effects of non...

  13. Pore-scale mechanisms of gas flow in tight sand reservoirs

    E-Print Network [OSTI]

    Silin, D.

    2011-01-01

    include tight gas sands, gas shales, and coal-bed methane.Figure 3. Although the gas-shale production grows at a

  14. Using multi-layer models to forecast gas flow rates in tight gas reservoirs 

    E-Print Network [OSTI]

    Jerez Vera, Sergio Armando

    2007-04-25

    USING MULTI-LAYER MODELS TO FORECAST GAS FLOW RATES IN TIGHT GAS RESERVOIRS A Thesis by SERGIO ARMANDO JEREZ VERA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE December 2006 Major Subject: Petroleum Engineering USING MULTI-LAYER MODELS TO FORECAST GAS FLOW RATES IN TIGHT GAS RESERVOIRS A Thesis by SERGIO ARMANDO JEREZ VERA Submitted...

  15. Gas Flow Tightly Coupled to Elastoplastic Geomechanics for Tight- and Shale-Gas Reservoirs: Material Failure and Enhanced Permeability

    SciTech Connect (OSTI)

    Kim, Jihoon; Moridis, George

    2014-12-01

    We investigate coupled flow and geomechanics in gas production from extremely low permeability reservoirs such as tight and shale gas reservoirs, using dynamic porosity and permeability during numerical simulation. In particular, we take the intrinsic permeability as a step function of the status of material failure, and the permeability is updated every time step. We consider gas reservoirs with the vertical and horizontal primary fractures, employing the single and dynamic double porosity (dual continuum) models. We modify the multiple porosity constitutive relations for modeling the double porous continua for flow and geomechanics. The numerical results indicate that production of gas causes redistribution of the effective stress fields, increasing the effective shear stress and resulting in plasticity. Shear failure occurs not only near the fracture tips but also away from the primary fractures, which indicates generation of secondary fractures. These secondary fractures increase the permeability significantly, and change the flow pattern, which in turn causes a change in distribution of geomechanical variables. From various numerical tests, we find that shear failure is enhanced by a large pressure drop at the production well, high Biot's coefficient, low frictional and dilation angles. Smaller spacing between the horizontal wells also contributes to faster secondary fracturing. When the dynamic double porosity model is used, we observe a faster evolution of the enhanced permeability areas than that obtained from the single porosity model, mainly due to a higher permeability of the fractures in the double porosity model. These complicated physics for stress sensitive reservoirs cannot properly be captured by the uncoupled or flow-only simulation, and thus tightly coupled flow and geomechanical models are highly recommended to accurately describe the reservoir behavior during gas production in tight and shale gas reservoirs and to smartly design production scenarios.

  16. Simulation of fracture fluid cleanup and its effect on long-term recovery in tight gas reservoirs 

    E-Print Network [OSTI]

    Wang, Yilin

    2009-05-15

    In the coming decades, the world will require additional supplies of natural gas to meet the demand for energy. Tight gas reservoirs can be defined as reservoirs where the formation permeability is so low (< 0.1 md) that advanced stimulation...

  17. Pore-scale mechanisms of gas flow in tight sand reservoirs

    E-Print Network [OSTI]

    Silin, D.

    2011-01-01

    a homoge- neous reservoir the condensate saturation will bewater saturation distribution in a tight gas sand reservoirreservoir, the accumulating condensate can become mobile after reaching a certain saturation

  18. SHEAR WAVE TIME-LAPSE SEISMIC MONITORING OF A TIGHT GAS SANDSTONE RESERVOIR, RULISON FIELD, COLORADO

    E-Print Network [OSTI]

    SHEAR WAVE TIME-LAPSE SEISMIC MONITORING OF A TIGHT GAS SANDSTONE RESERVOIR, RULISON FIELD focused specifically on the use of time-lapse (4D) poststack migrated shear-wave seismic data of shear wave data as a tool for monitoring 4D changes. The basin centered tight gas sandstone reservoir

  19. ADVANCED FRACTURING TECHNOLOGY FOR TIGHT GAS: AN EAST TEXAS FIELD DEMONSTRATION

    SciTech Connect (OSTI)

    Mukul M. Sharma

    2005-03-01

    The primary objective of this research was to improve completion and fracturing practices in gas reservoirs in marginal plays in the continental United States. The Bossier Play in East Texas, a very active tight gas play, was chosen as the site to develop and test the new strategies for completion and fracturing. Figure 1 provides a general location map for the Dowdy Ranch Field, where the wells involved in this study are located. The Bossier and other tight gas formations in the continental Unites States are marginal plays in that they become uneconomical at gas prices below $2.00 MCF. It was, therefore, imperative that completion and fracturing practices be optimized so that these gas wells remain economically attractive. The economic viability of this play is strongly dependent on the cost and effectiveness of the hydraulic fracturing used in its well completions. Water-fracs consisting of proppant pumped with un-gelled fluid is the type of stimulation used in many low permeability reservoirs in East Texas and throughout the United States. The use of low viscosity Newtonian fluids allows the creation of long narrow fractures in the reservoir, without the excessive height growth that is often seen with cross-linked fluids. These low viscosity fluids have poor proppant transport properties. Pressure transient tests run on several wells that have been water-fractured indicate a long effective fracture length with very low fracture conductivity even when large amounts of proppant are placed in the formation. A modification to the water-frac stimulation design was needed to transport proppant farther out into the fracture. This requires suspending the proppant until the fracture closes without generating excessive fracture height. A review of fracture diagnostic data collected from various wells in different areas (for conventional gel and water-fracs) suggests that effective propped lengths for the fracture treatments are sometimes significantly shorter than those predicted by fracture models. There was no accepted optimal method for conducting hydraulic fracturing in the Bossier. Each operator used a different approach. Anadarko, the most active operator in the play, had tested at least four different kinds of fracture treatments. The ability to arrive at an optimal fracturing program was constrained by the lack of adequate fracture models to simulate the fracturing treatment, and an inability to completely understand the results obtained in previous fracturing programs. This research aimed at a combined theoretical, experimental and field-testing program to improve fracturing practices in the Bossier and other tight gas plays.

  20. An Advisory System For Selecting Drilling Technologies and Methods in Tight Gas Reservoirs 

    E-Print Network [OSTI]

    Pilisi, Nicolas

    2010-01-16

    ranging between 177 Tcf and 379 Tcf. During the past few decades, gas production from tight sands field developments have taken place all around the world from South America (Argentina), Australia, Asia (China, Indonesia), the Russian Federation, Northern...

  1. Improved Upscaling & Well Placement Strategies for Tight Gas Reservoir Simulation and Management 

    E-Print Network [OSTI]

    Zhou, Yijie

    2013-07-29

    , with opportunities for improved reservoir simulation & management, such as simulation model design, well placement. Our work develops robust and efficient strategies for improved tight gas reservoir simulation and management. Reservoir simulation models are usually...

  2. Characterizing shale gas and tight oil drilling and production performance variability

    E-Print Network [OSTI]

    Montgomery, Justin B. (Justin Bruce)

    2015-01-01

    Shale gas and tight oil are energy resources of growing importance to the U.S. and the world. The combination of horizontal drilling and hydraulic fracturing has enabled economically feasible production from these resources, ...

  3. Combustion System Development for Medium-Sized Industrial Gas Turbines: Meeting Tight Emission Regulations while Using

    E-Print Network [OSTI]

    Ponce, V. Miguel

    Combustion System Development for Medium-Sized Industrial Gas Turbines: Meeting Tight Emission Turbines Incorporated is a leading manufacturer of industrial gas turbine packages for the power generation- bility for the introduction of new combustion systems for gas turbine products to enhance fuel

  4. Study of Flow Regimes in Multiply-Fractured Horizontal Wells in Tight Gas and Shale Gas Reservoir Systems 

    E-Print Network [OSTI]

    Freeman, Craig M.

    2010-07-14

    Various analytical, semi-analytical, and empirical models have been proposed to characterize rate and pressure behavior as a function of time in tight/shale gas systems featuring a horizontal well with multiple hydraulic fractures. Despite a small...

  5. Stress-dependent permeability on tight gas reservoirs 

    E-Print Network [OSTI]

    Rodriguez, Cesar Alexander

    2005-02-17

    People in the oil and gas industry sometimes do not consider pressure-dependent permeability in reservoir performance calculations. It basically happens due to lack of lab data to determine level of dependency. This thesis attempts to evaluate...

  6. Design and Implementation of Energized Fracture Treatment in Tight Gas Sands

    SciTech Connect (OSTI)

    Mukul Sharma; Kyle Friehauf

    2009-12-31

    Hydraulic fracturing is essential for producing gas and oil at an economic rate from low permeability sands. Most fracturing treatments use water and polymers with a gelling agent as a fracturing fluid. The water is held in the small pore spaces by capillary pressure and is not recovered when drawdown pressures are low. The un-recovered water leaves a water saturated zone around the fracture face that stops the flow of gas into the fracture. This is a particularly acute problem in low permeability formations where capillary pressures are high. Depletion (lower reservoir pressures) causes a limitation on the drawdown pressure that can be applied. A hydraulic fracturing process can be energized by the addition of a compressible, sometimes soluble, gas phase into the treatment fluid. When the well is produced, the energized fluid expands and gas comes out of solution. Energizing the fluid creates high gas saturation in the invaded zone, thereby facilitating gas flowback. A new compositional hydraulic fracturing model has been created (EFRAC). This is the first model to include changes in composition, temperature, and phase behavior of the fluid inside the fracture. An equation of state is used to evaluate the phase behavior of the fluid. These compositional effects are coupled with the fluid rheology, proppant transport, and mechanics of fracture growth to create a general model for fracture creation when energized fluids are used. In addition to the fracture propagation model, we have also introduced another new model for hydraulically fractured well productivity. This is the first and only model that takes into account both finite fracture conductivity and damage in the invaded zone in a simple analytical way. EFRAC was successfully used to simulate several fracture treatments in a gas field in South Texas. Based on production estimates, energized fluids may be required when drawdown pressures are smaller than the capillary forces in the formation. For this field, the minimum CO{sub 2} gas quality (volume % of gas) recommended is 30% for moderate differences between fracture and reservoir pressures (2900 psi reservoir, 5300 psi fracture). The minimum quality is reduced to 20% when the difference between pressures is larger, resulting in additional gas expansion in the invaded zone. Inlet fluid temperature, flow rate, and base viscosity did not have a large impact on fracture production. Finally, every stage of the fracturing treatment should be energized with a gas component to ensure high gas saturation in the invaded zone. A second, more general, sensitivity study was conducted. Simulations show that CO{sub 2} outperforms N{sub 2} as a fluid component because it has higher solubility in water at fracturing temperatures and pressures. In fact, all gas components with higher solubility in water will increase the fluid's ability to reduce damage in the invaded zone. Adding methanol to the fracturing solution can increase the solubility of CO{sub 2}. N{sub 2} should only be used if the gas leaks-off either during the creation of the fracture or during closure, resulting in gas going into the invaded zone. Experimental data is needed to determine if the gas phase leaks-off during the creation of the fracture. Simulations show that the bubbles in a fluid traveling across the face of a porous medium are not likely to attach to the surface of the rock, the filter cake, or penetrate far into the porous medium. In summary, this research has created the first compositional fracturing simulator, a useful tool to aid in energized fracture design. We have made several important and original conclusions about the best practices when using energized fluids in tight gas sands. The models and tools presented here may be used in the future to predict behavior of any multi-phase or multi-component fracturing fluid system.

  7. Characterization of Tight Gas Reservoir Pore Structure Using USANS/SANS and Gas Adsorption Analysis

    SciTech Connect (OSTI)

    Clarkson, Christopher R [ORNL; He, Lilin [ORNL; Agamalian, Michael [ORNL; Melnichenko, Yuri B [ORNL; Mastalerz, Maria [Indiana Geological Survey; Bustin, Mark [University of British Columbia, Vancouver; Radlinski, Andrzej Pawell [ORNL; Blach, Tomasz P [ORNL

    2012-01-01

    Small-angle and ultra-small-angle neutron scattering (SANS and USANS) measurements were performed on samples from the Triassic Montney tight gas reservoir in Western Canada in order to determine the applicability of these techniques for characterizing the full pore size spectrum and to gain insight into the nature of the pore structure and its control on permeability. The subject tight gas reservoir consists of a finely laminated siltstone sequence; extensive cementation and moderate clay content are the primary causes of low permeability. SANS/USANS experiments run at ambient pressure and temperature conditions on lithologically-diverse sub-samples of three core plugs demonstrated that a broad pore size distribution could be interpreted from the data. Two interpretation methods were used to evaluate total porosity, pore size distribution and surface area and the results were compared to independent estimates derived from helium porosimetry (connected porosity) and low-pressure N{sub 2} and CO{sub 2} adsorption (accessible surface area and pore size distribution). The pore structure of the three samples as interpreted from SANS/USANS is fairly uniform, with small differences in the small-pore range (< 2000 {angstrom}), possibly related to differences in degree of cementation, and mineralogy, in particular clay content. Total porosity interpreted from USANS/SANS is similar to (but systematically higher than) helium porosities measured on the whole core plug. Both methods were used to estimate the percentage of open porosity expressed here as a ratio of connected porosity, as established from helium adsorption, to the total porosity, as estimated from SANS/USANS techniques. Open porosity appears to control permeability (determined using pressure and pulse-decay techniques), with the highest permeability sample also having the highest percentage of open porosity. Surface area, as calculated from low-pressure N{sub 2} and CO{sub 2} adsorption, is significantly less than surface area estimates from SANS/USANS, which is due in part to limited accessibility of the gases to all pores. The similarity between N{sub 2} and CO{sub 2}-accessible surface area suggests an absence of microporosity in these samples, which is in agreement with SANS analysis. A core gamma ray profile run on the same core from which the core plug samples were taken correlates to profile permeability measurements run on the slabbed core. This correlation is related to clay content, which possibly controls the percentage of open porosity. Continued study of these effects will prove useful in log-core calibration efforts for tight gas.

  8. Analysis of Critical Permeabilty, Capillary Pressure and Electrical Properties for Mesaverde Tight Gas Sandstones from Western U.S. Basins

    SciTech Connect (OSTI)

    Alan Byrnes; Robert Cluff; John Webb; John Victorine; Ken Stalder; Daniel Osburn; Andrew Knoderer; Owen Metheny; Troy Hommertzheim; Joshua Byrnes; Daniel Krygowski; Stefani Whittaker

    2008-06-30

    Although prediction of future natural gas supply is complicated by uncertainty in such variables as demand, liquefied natural gas supply price and availability, coalbed methane and gas shale development rate, and pipeline availability, all U.S. Energy Information Administration gas supply estimates to date have predicted that Unconventional gas sources will be the dominant source of U.S. natural gas supply for at least the next two decades (Fig. 1.1; the period of estimation). Among the Unconventional gas supply sources, Tight Gas Sandstones (TGS) will represent 50-70% of the Unconventional gas supply in this time period (Fig. 1.2). Rocky Mountain TGS are estimated to be approximately 70% of the total TGS resource base (USEIA, 2005) and the Mesaverde Group (Mesaverde) sandstones represent the principal gas productive sandstone unit in the largest Western U.S. TGS basins including the basins that are the focus of this study (Washakie, Uinta, Piceance, northern Greater Green River, Wind River, Powder River). Industry assessment of the regional gas resource, projection of future gas supply, and exploration programs require an understanding of reservoir properties and accurate tools for formation evaluation. The goal of this study is to provide petrophysical formation evaluation tools related to relative permeability, capillary pressure, electrical properties and algorithms for wireline log analysis. Detailed and accurate moveable gas-in-place resource assessment is most critical in marginal gas plays and there is need for quantitative tools for definition of limits on gas producibility due to technology and rock physics and for defining water saturation. The results of this study address fundamental questions concerning: (1) gas storage; (2) gas flow; (3) capillary pressure; (4) electrical properties; (5) facies and upscaling issues; (6) wireline log interpretation algorithms; and (7) providing a web-accessible database of advanced rock properties. The following text briefly discusses the nature of these questions. Section I.2 briefly discusses the objective of the study with respect to the problems reviewed.

  9. 3-DIMENSIONAL GEOMECHANICAL MODELING OF A TIGHT GAS RESERVOIR, RULISON FIELD, PICEANCE BASIN, COLORADO

    E-Print Network [OSTI]

    3-DIMENSIONAL GEOMECHANICAL MODELING OF A TIGHT GAS RESERVOIR, RULISON FIELD, PICEANCE BASIN, COLORADO by Kurtis R. Wikel #12;ii #12;iii ABSTRACT An integrated 3-dimensional geomechanical model have used the predictive geomechanical model to compare production and effective stress change

  10. OVERCOMING THE METER BARRIER AND THE FORMATION OF SYSTEMS WITH TIGHTLY PACKED INNER PLANETS (STIPs)

    SciTech Connect (OSTI)

    Boley, A. C.; Morris, M. A.; Ford, E. B.

    2014-09-10

    We present a solution to the long outstanding meter barrier problem in planet formation theory. As solids spiral inward due to aerodynamic drag, they will enter disk regions that are characterized by high temperatures, densities, and pressures. High partial pressures of rock vapor can suppress solid evaporation, and promote collisions between partially molten solids, allowing rapid growth. This process should be ubiquitous in planet-forming disks, which may be evidenced by the abundant class of Systems with Tightly packed Inner Planets discovered by the NASA Kepler Mission.

  11. Petrophysical Analysis and Geographic Information System for San Juan Basin Tight Gas Reservoirs

    SciTech Connect (OSTI)

    Martha Cather; Robert Lee; Robert Balch; Tom Engler; Roger Ruan; Shaojie Ma

    2008-10-01

    The primary goal of this project is to increase the availability and ease of access to critical data on the Mesaverde and Dakota tight gas reservoirs of the San Juan Basin. Secondary goals include tuning well log interpretations through integration of core, water chemistry and production analysis data to help identify bypassed pay zones; increased knowledge of permeability ratios and how they affect well drainage and thus infill drilling plans; improved time-depth correlations through regional mapping of sonic logs; and improved understanding of the variability of formation waters within the basin through spatial analysis of water chemistry data. The project will collect, integrate, and analyze a variety of petrophysical and well data concerning the Mesaverde and Dakota reservoirs of the San Juan Basin, with particular emphasis on data available in the areas defined as tight gas areas for purpose of FERC. A relational, geo-referenced database (a geographic information system, or GIS) will be created to archive this data. The information will be analyzed using neural networks, kriging, and other statistical interpolation/extrapolation techniques to fine-tune regional well log interpretations, improve pay zone recognition from old logs or cased-hole logs, determine permeability ratios, and also to analyze water chemistries and compatibilities within the study area. This single-phase project will be accomplished through four major tasks: Data Collection, Data Integration, Data Analysis, and User Interface Design. Data will be extracted from existing databases as well as paper records, then cleaned and integrated into a single GIS database. Once the data warehouse is built, several methods of data analysis will be used both to improve pay zone recognition in single wells, and to extrapolate a variety of petrophysical properties on a regional basis. A user interface will provide tools to make the data and results of the study accessible and useful. The final deliverable for this project will be a web-based GIS providing data, interpretations, and user tools that will be accessible to anyone with Internet access. During this project, the following work has been performed: (1) Assimilation of most special core analysis data into a GIS database; (2) Inventorying of additional data, such as log images or LAS files that may exist for this area; (3) Analysis of geographic distribution of that data to pinpoint regional gaps in coverage; (4) Assessment of the data within both public and proprietary data sets to begin tuning of regional well logging analyses and improve payzone recognition; (5) Development of an integrated web and GIS interface for all the information collected in this effort, including data from northwest New Mexico; (6) Acquisition and digitization of logs to create LAS files for a subset of the wells in the special core analysis data set; and (7) Petrophysical analysis of the final set of well logs.

  12. Pore-scale mechanisms of gas flow in tight sand reservoirs

    SciTech Connect (OSTI)

    Silin, D.; Kneafsey, T.J.; Ajo-Franklin, J.B.; Nico, P.

    2010-11-30

    Tight gas sands are unconventional hydrocarbon energy resource storing large volume of natural gas. Microscopy and 3D imaging of reservoir samples at different scales and resolutions provide insights into the coaredo not significantly smaller in size than conventional sandstones, the extremely dense grain packing makes the pore space tortuous, and the porosity is small. In some cases the inter-granular void space is presented by micron-scale slits, whose geometry requires imaging at submicron resolutions. Maximal Inscribed Spheres computations simulate different scenarios of capillary-equilibrium two-phase fluid displacement. For tight sands, the simulations predict an unusually low wetting fluid saturation threshold, at which the non-wetting phase becomes disconnected. Flow simulations in combination with Maximal Inscribed Spheres computations evaluate relative permeability curves. The computations show that at the threshold saturation, when the nonwetting fluid becomes disconnected, the flow of both fluids is practically blocked. The nonwetting phase is immobile due to the disconnectedness, while the permeability to the wetting phase remains essentially equal to zero due to the pore space geometry. This observation explains the Permeability Jail, which was defined earlier by others. The gas is trapped by capillarity, and the brine is immobile due to the dynamic effects. At the same time, in drainage, simulations predict that the mobility of at least one of the fluids is greater than zero at all saturations. A pore-scale model of gas condensate dropout predicts the rate to be proportional to the scalar product of the fluid velocity and pressure gradient. The narrowest constriction in the flow path is subject to the highest rate of condensation. The pore-scale model naturally upscales to the Panfilov's Darcy-scale model, which implies that the condensate dropout rate is proportional to the pressure gradient squared. Pressure gradient is the greatest near the matrix-fracture interface. The distinctive two-phase flow properties of tight sand imply that a small amount of gas condensate can seriously affect the recovery rate by blocking gas flow. Dry gas injection, pressure maintenance, or heating can help to preserve the mobility of gas phase. A small amount of water can increase the mobility of gas condensate.

  13. Assessment of environmental health and safety issues associated with the commercialization of unconventional gas recovery: Tight Western Sands

    SciTech Connect (OSTI)

    Riedel, E.F.; Cowan, C.E.; McLaughlin, T.J.

    1980-02-01

    Results of a study to identify and evaluate potential public health and safety problems and the potential environmental impacts from recovery of natural gas from Tight Western Sands are reported. A brief discussion of economic and technical constraints to development of this resource is also presented to place the environmental and safety issues in perspective. A description of the resource base, recovery techniques, and possible environmental effects associated with tight gas sands is presented.

  14. The effects of fracture fluid cleanup upon the analysis of pressure buildup tests in tight gas reservoirs 

    E-Print Network [OSTI]

    Johansen, Atle Thomas

    1988-01-01

    THE EFFECTS OF FRACTURE FLUID CLEANUP UPON THE ANALYSIS OF PRESSURE BUILDUP TESTS IN TIGHT GAS RESERVOIRS A Thesis by ATLE THOMAS JOHANSEN Submitted to the Office of Graduate Studies of Texas ASM University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE December 1988 Major Subject: Petroleum Engineering THE EFFECTS OF FRACTURE FLUID CLEANUP UPON THE ANALYSIS OF PRESSURE BUILDUP TESTS IN TIGHT GAS RESERVOIRS A Thesis by ATLE THOMAS JOHANSEN Approved...

  15. Integrated seismic study of naturally fractured tight gas reservoirs. Technical progress report, January 1, 1994--March 31, 1994

    SciTech Connect (OSTI)

    Mavko, G.; Nur, A.

    1994-04-29

    The study area is located at the southern end of the Powder River Basin in Converse County in east-central Wyoming. It is a low permeability fractured site, with both gas and oil present. Reservoirs are highly compartmentalized due to the low permeabilities, and fractures provide the only practical drainage paths for production. The two formations of interest are: The Niobrara, a fractured shale and limey shale to chalk, which is a reservoir rock, but also its own source rock; and the Frontier, a tight sandstone lying directly below the Niobrara, brought into contact with it by an unconformity. This was the tenth quarter of the contract. During this quarter the investigators (1) continued processing the seismic data, and (2) continued modeling some of the P-wave amplitude anomalies that we see in the data.

  16. Rapid gas hydrate formation process

    DOE Patents [OSTI]

    Brown, Thomas D.; Taylor, Charles E.; Unione, Alfred J.

    2013-01-15

    The disclosure provides a method and apparatus for forming gas hydrates from a two-phase mixture of water and a hydrate forming gas. The two-phase mixture is created in a mixing zone which may be wholly included within the body of a spray nozzle. The two-phase mixture is subsequently sprayed into a reaction zone, where the reaction zone is under pressure and temperature conditions suitable for formation of the gas hydrate. The reaction zone pressure is less than the mixing zone pressure so that expansion of the hydrate-forming gas in the mixture provides a degree of cooling by the Joule-Thompson effect and provides more intimate mixing between the water and the hydrate-forming gas. The result of the process is the formation of gas hydrates continuously and with a greatly reduced induction time. An apparatus for conduct of the method is further provided.

  17. Formation of porous gas hydrates

    E-Print Network [OSTI]

    Salamatin, Andrey N

    2015-01-01

    Gas hydrates grown at gas-ice interfaces are examined by electron microscopy and found to have a submicron porous texture. Permeability of the intervening hydrate layers provides the connection between the two counterparts (gas and water molecules) of the clathration reaction and makes further hydrate formation possible. The study is focused on phenomenological description of principal stages and rate-limiting processes that control the kinetics of the porous gas hydrate crystal growth from ice powders. Although the detailed physical mechanisms involved in the porous hydrate formation still are not fully understood, the initial stage of hydrate film spreading over the ice surface should be distinguished from the subsequent stage which is presumably limited by the clathration reaction at the ice-hydrate interface and develops after the ice grain coating is finished. The model reveals a time dependence of the reaction degree essentially different from that when the rate-limiting step of the hydrate formation at...

  18. Study of Multi-scale Transport Phenomena in Tight Gas and Shale Gas Reservoir Systems 

    E-Print Network [OSTI]

    Freeman, Craig Matthew

    2013-11-25

    . These challenges have impeded efficient economic development of shale resources. New fundamental insights and tools are needed to improve the state of shale gas development. Few attempts have been made to model the compositional behavior of fluids in shale gas...

  19. SHEAR-WAVE SOURCED 3-D VSP IMAGING OF TIGHT-GAS SANDSTONES IN RULISON FIELD, COLORADO

    E-Print Network [OSTI]

    1 #12;SHEAR-WAVE SOURCED 3-D VSP IMAGING OF TIGHT-GAS SANDSTONES IN RULISON FIELD, COLORADO heavily on understanding the distribution of sandstone bodies in the subsurface. Shear-wave sourced 3-D was applied to the shear- wave reflection data. A geologically-constrained migration-velocity model

  20. Integrated seismic study of naturally fractured tight gas reservoirs. Technical progress report, October 1, 1992--December 31, 1992

    SciTech Connect (OSTI)

    Nur, A.

    1993-01-21

    This was the fifth quarter of the contract. During this quarter we (1) got approval for the NEPA requirements related to the field work, (2) placed the subcontract for the field data acquisition, (3) completed the field work, and (4) began processing the seismic data. As already reported, the field data acquisition was at Acomo`s Powder River Basin site in southeast Wyoming. This is a low permeability fractured site, with both gas and oil present. The reservoir is highly compartmentalized, due to the low permeability, with the fractures providing the only practical drainage paths for production. The two formations of interest are: The Niobrara: a fractured shale and limey shale to chalk, which is a reservoir rock, but also its own source rock. The Frontier: a tight sandstone lying directly below the Niobrara, brought into contact with it by an unconformity. The fractures are thought to lie in a roughly northwest-southeast trend, along the strike of a flexure, which forms one of the boundaries of the basin.

  1. Integrated seismic study of naturally fractured tight gas reservoirs. Technical progress report, January 1, 1993--March 31, 1993

    SciTech Connect (OSTI)

    Mavko, G.; Nur, A.

    1993-04-26

    During this quarter we (1) received the last of the field tapes and survey information for the seismic field data acquisition which was finished at the very end of the previous quarter, (2) began the large task of processing the seismic data, (3) collected well logs and other informination to aid in the interpretation, and (4) initiated some seismic modeling studies. As already reported, the field data acquisition was at Amoco`s Powder River Basin site in southeast Wyoming. This is a low permeability fractured site, with both gas and oil present. The reservoir is highly compartmentalized, due to the low permeability, with the fractures providing the only practical drainage paths for production. The two formations of interest are: The Niobrara: a fractured shale and limey shale to chalk, which is a reservoir rock, but also its own source rock. The Frontier: a tight sandstone lying directly below the Niobrara, brought into contact with it by an unconformity. The fractures are thought to lie in a roughly northwest-southeast trend, along the strike of a flexure, which forms one of the boundaries of the basin.

  2. Integrated seismic study of naturally fractured tight gas reservoirs. Technical progress report, April 1, 1993--June 31, 1993

    SciTech Connect (OSTI)

    Mavko, G.; Nur, A.

    1993-07-26

    This was the seventh quarter of the contract. During this quarter we (1) continued the large task of processing the seismic data, (2) collected additional geological information to aid in the interpretation, (3) tied the well log data to the seismic via generation of synthetic seismograms, (4) began integrating regional structural information and fracture trends with our observations of structure in the study area, (5) began constructing a velocity model for time-to-depth conversion and subsequent AVO and raytrace modeling experiments, and (6) completed formulation of some theoretical tools for relating fracture density to observed elastic anisotropy. The study area is located at the southern end of the Powder River Basin in Converse County in east-central Wyoming. It is a low permeability fractured site, with both gas and oil present. Reservoirs are highly compartmentalized due to the low permeabilities, and fractures provide the only practical drainage paths for production. The two formations of interest are: The Niobrara: a fractured shale and limey shale to chalk, which is a reservoir rock, but also its own source rock. The Frontier: a tight sandstone lying directly below the Niobrara, brought into contact with it by an unconformity. A basemap is presented with the seismic lines being analyzed for this project plus locations of 13 wells that we are using to supplement the analysis. The arrows point to two wells for which we have constructed synthetic seismograms.

  3. Pore-scale mechanisms of gas flow in tight sand reservoirs

    E-Print Network [OSTI]

    Silin, D.

    2011-01-01

    production increased. Unconventional gas resources accountedwellbores. ” Unconventional gas resources traditionallysand is an unconventional natural gas resource. According to

  4. Pore-scale mechanisms of gas flow in tight sand reservoirs

    E-Print Network [OSTI]

    Silin, D.

    2011-01-01

    adjacent fractures. Natural gas composition consists mostlyNatural gas is called wet or dry depending on how large is the lique?able portion of gas composition.

  5. Expansion of decline curve parameters for tight gas sands with massive hydraulic fractures

    SciTech Connect (OSTI)

    Schaefer, T.

    1995-12-31

    With the advances in modern hydrocarbon technology and expansion of geologic settings for development, it is necessary to make changes to the conventional wisdoms that accompany production technology. This paper discusses some possible changes that necessitate implementation as observed both empirically and analytically. Specifically it discusses the time at which a decline curve can be implemented for production forecasting, the need for a dual decline model, and the severity of the decline variable that may be used for this model. It is the point of this paper to prove that for fight gas sands with massive hydraulic fractures that it is not only feasible to use decline variables that are greater than the traditional limit of harmonic or 1.0, but that the decline curve may also be implemented in the transient flow period of the well and decline both hyperbolically and exponentially. These ideas were not only proven through field study, but were additionally modeled with a fracture flow simulator. In order to prove these points this paper first introduces the Red Fork Formation and the development of an initial field model curve for this formation. After the initial model was developed, questions arose as to its feasibility. These questions were first addressed with a literature survey and further comparisons were made to test the models accuracy using pressure decline analysis and a fracture flow simulator. All of these methods were used to justify the implementation of a decline exponent as high as 2.1 for a hyperbolic curve during the early transient flow period, and regressing this hyperbolic into an exponential decline in the pseudo-steady state period.

  6. Improving the Availability and Delivery of Critical Information for Tight Gas Resource Development in the Appalachian Basin

    SciTech Connect (OSTI)

    Mary Behling; Susan Pool; Douglas Patchen; John Harper

    2008-12-31

    To encourage, facilitate and accelerate the development of tight gas reservoirs in the Appalachian basin, the geological surveys in Pennsylvania and West Virginia collected widely dispersed data on five gas plays and formatted these data into a large database that can be accessed by individual well or by play. The database and delivery system that were developed can be applied to any of the 30 gas plays that have been defined in the basin, but for this project, data compilation was restricted to the following: the Mississippian-Devonian Berea/Murrysville sandstone play and the Upper Devonian Venango, Bradford and Elk sandstone plays in Pennsylvania and West Virginia; and the 'Clinton'/Medina sandstone play in northwestern Pennsylvania. In addition, some data were collected on the Tuscarora Sandstone play in West Virginia, which is the lateral equivalent of the Medina Sandstone in Pennsylvania. Modern geophysical logs are the most common and cost-effective tools for evaluating reservoirs. Therefore, all of the well logs in the libraries of the two surveys from wells that had penetrated the key plays were scanned, generating nearly 75,000 scanned e-log files from more than 40,000 wells. A standard file-naming convention for scanned logs was developed, which includes the well API number, log curve type(s) scanned, and the availability of log analyses or half-scale logs. In addition to well logs, other types of documents were scanned, including core data (descriptions, analyses, porosity-permeability cross-plots), figures from relevant chapters of the Atlas of Major Appalachian Gas Plays, selected figures from survey publications, and information from unpublished reports and student theses and dissertations. Monthly and annual production data from 1979 to 2007 for West Virginia wells in these plays are available as well. The final database also includes digitized logs from more than 800 wells, sample descriptions from more than 550 wells, more than 600 digital photos in 1-foot intervals from 11 cores, and approximately 260 references for these plays. A primary objective of the research was to make data and information available free to producers through an on-line data delivery model designed for public access on the Internet. The web-based application that was developed utilizes ESRI's ArcIMS GIS software to deliver both well-based and play-based data that are searchable through user-originated queries, and allows interactive regional geographic and geologic mapping that is play-based. System tools help users develop their customized spatial queries. A link also has been provided to the West Virginia Geological Survey's 'pipeline' system for accessing all available well-specific data for more than 140,000 wells in West Virginia. However, only well-specific queries by API number are permitted at this time. The comprehensive project web site (http://www.wvgs.wvnet.edu/atg) resides on West Virginia Geological Survey's servers and links are provided from the Pennsylvania Geological Survey and Appalachian Oil and Natural Gas Research Consortium web sites.

  7. Factors that affect fracture fluid clean-up and pressure buildup test results in tight gas reservoirs 

    E-Print Network [OSTI]

    Montgomery, Kevin Todd

    1990-01-01

    FACTORS THAT AFFECT FRACTURE FLUID CLEAN-UP AND PRESSURE BUILDUP TEST RESULTS IN TIGHT GAS RESERVOIRS A Thesis KEVIN TODD MONTGOMERY Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... of Clean-up of the Invaded Zone Simulation of the Buildup Tests FACTORS AFFECTING FRACTURE FLUID CLEAN-UP Page v 1v 15 17 47 Effect of Dimensionless Fracture Conductivity on Clean-up . . 47 Effect of Fracture Length on Clean-up Effect...

  8. Advancing New 3D Seismic Interpretation Methods for Exploration and Development of Fractured Tight Gas Reservoirs

    SciTech Connect (OSTI)

    James Reeves

    2005-01-31

    In a study funded by the U.S. Department of Energy and GeoSpectrum, Inc., new P-wave 3D seismic interpretation methods to characterize fractured gas reservoirs are developed. A data driven exploratory approach is used to determine empirical relationships for reservoir properties. Fractures are predicted using seismic lineament mapping through a series of horizon and time slices in the reservoir zone. A seismic lineament is a linear feature seen in a slice through the seismic volume that has negligible vertical offset. We interpret that in regions of high seismic lineament density there is a greater likelihood of fractured reservoir. Seismic AVO attributes are developed to map brittle reservoir rock (low clay) and gas content. Brittle rocks are interpreted to be more fractured when seismic lineaments are present. The most important attribute developed in this study is the gas sensitive phase gradient (a new AVO attribute), as reservoir fractures may provide a plumbing system for both water and gas. Success is obtained when economic gas and oil discoveries are found. In a gas field previously plagued with poor drilling results, four new wells were spotted using the new methodology and recently drilled. The wells have estimated best of 12-months production indicators of 2106, 1652, 941, and 227 MCFGPD. The latter well was drilled in a region of swarming seismic lineaments but has poor gas sensitive phase gradient (AVO) and clay volume attributes. GeoSpectrum advised the unit operators that this location did not appear to have significant Lower Dakota gas before the well was drilled. The other three wells are considered good wells in this part of the basin and among the best wells in the area. These new drilling results have nearly doubled the gas production and the value of the field. The interpretation method is ready for commercialization and gas exploration and development. The new technology is adaptable to conventional lower cost 3D seismic surveys.

  9. Experimental Investigation of Propped Fracture Conductivity in Tight Gas Reservoirs Using The Dynamic Conductivity Test 

    E-Print Network [OSTI]

    Romero Lugo, Jose 1985-

    2012-10-24

    Hydraulic Fracturing stimulation technology is used to increase the amount of oil and gas produced from low permeability reservoirs. The primary objective of the process is to increase the conductivity of the reservoir by the creation of fractures...

  10. Integrated seismic study of naturally fractured tight gas reservoirs. Technical progress report, October 1, 1993--December 31, 1993

    SciTech Connect (OSTI)

    Mavko, G.; Nur, A.

    1994-01-29

    This was the ninth quarter of the contract. During this quarter we (1) continued processing the seismic data, (2) collected additional logs to aid in the interpretation, and (3)began modeling some of the P-wave amplitude anomalies that we see in the data. The study area is located at the southern end of the powder river Basin in Converse county in east-central Wyoming. It is a low permeability fractured site, with both has and oil present. Reservoirs are highly compartmentalized due tot he low permeabilities, and fractures provide the only practical drainage paths for production. The two formations of interest are: The Niobrara; a fractured shale and limey shale to chalk, which is a reservoir rock, but also its own source rock. The Frontier, a tight sandstone lying directly below the Niobrara, brought into contract with it by an unconformity.

  11. The Effect of Well Trajectory on Production Performance of Tight Gas Wells 

    E-Print Network [OSTI]

    Aldousari, Mohammad

    2012-02-14

    are for incompressible or slightly compressible single-phase liquid; however, they can be extended to other fluid types. 3 Beggs-Brill correlation is one of the most commonly used models to calculate pressure drop in horizontal pipe. It was developed from... (Beggs and Brill, 1973). Xiao model is a comprehensive mechanistic model developed for gas-liquid two phase flow in horizontal and near horizontal pipelines. It has been evaluated against a data bank that includes field data, and laboratory data...

  12. Vp-Vs ratio sensitivity to pressure, fluid, and lithology changes in tight gas sandstones Eugenia Rojas*, Thomas L. Davis, Michael Batzle, Manika Prasad, Colorado School of Mines, Golden, CO,

    E-Print Network [OSTI]

    in prospect identification in tight gas sandstone reservoirs, because they are related to good quality rocks and permeability, possible presence of natural fractures, uncertainty in gas/water contact and high possibilityVp-Vs ratio sensitivity to pressure, fluid, and lithology changes in tight gas sandstones Eugenia

  13. Gas-Tight Sealing Method for Solid Oxide Fuel Cells - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journal Article)ForthcomingGENERALProblems I n QEstimates -GasPortal

  14. The RealGas and RealGasH2O Options of the TOUGH+ Code for the Simulation of Coupled Fluid and Heat Flow in Tight/Shale Gas Systems

    SciTech Connect (OSTI)

    Moridis, George; Freeman, Craig

    2013-09-30

    We developed two new EOS additions to the TOUGH+ family of codes, the RealGasH2O and RealGas . The RealGasH2O EOS option describes the non-isothermal two-phase flow of water and a real gas mixture in gas reservoirs, with a particular focus in ultra-tight (such as tight-sand and shale gas) reservoirs. The gas mixture is treated as either a single-pseudo-component having a fixed composition, or as a multicomponent system composed of up to 9 individual real gases. The RealGas option has the same general capabilities, but does not include water, thus describing a single-phase, dry-gas system. In addition to the standard capabilities of all members of the TOUGH+ family of codes (fully-implicit, compositional simulators using both structured and unstructured grids), the capabilities of the two codes include: coupled flow and thermal effects in porous and/or fractured media, real gas behavior, inertial (Klinkenberg) effects, full micro-flow treatment, Darcy and non-Darcy flow through the matrix and fractures of fractured media, single- and multi-component gas sorption onto the grains of the porous media following several isotherm options, discrete and fracture representation, complex matrix-fracture relationships, and porosity-permeability dependence on pressure changes. The two options allow the study of flow and transport of fluids and heat over a wide range of time frames and spatial scales not only in gas reservoirs, but also in problems of geologic storage of greenhouse gas mixtures, and of geothermal reservoirs with multi-component condensable (H2O and CH4) and non-condensable gas mixtures. The codes are verified against available analytical and semi-analytical solutions. Their capabilities are demonstrated in a series of problems of increasing complexity, ranging from isothermal flow in simpler 1D and 2D conventional gas reservoirs, to non-isothermal gas flow in 3D fractured shale gas reservoirs involving 4 types of fractures, micro-flow, non-Darcy flow and gas composition changes during production.

  15. Gas flows, star formation and galaxy evolution

    E-Print Network [OSTI]

    John E. Beckman; Emilio Casuso; Almudena Zurita; Monica Relaño

    2004-05-31

    In the first part of this article we show how observations of the chemical evolution of the Galaxy: G- and K-dwarf numbers as functions of metallicity, and abundances of the light elements, D, Li, Be and B, in both stars and the interstellar medium (ISM), lead to the conclusion that metal poor HI gas has been accreting to the Galactic disc during the whole of its lifetime, and is accreting today at a measurable rate, ~2 Msun per year across the full disc. Estimates of the local star formation rate (SFR) using methods based on stellar activity, support this picture. The best fits to all these data are for models where the accretion rate is constant, or slowly rising with epoch. We explain here how this conclusion, for a galaxy in a small bound group, is not in conflict with graphs such as the Madau plot, which show that the universal SFR has declined steadily from z=1 to the present day. We also show that a model in which disc galaxies in general evolve by accreting major clouds of low metallicity gas from their surroundings can explain many observations, notably that the SFR for whole galaxies tends to show obvious variability, and fractionally more for early than for late types, and yields lower dark to baryonic matter ratios for large disc galaxies than for dwarfs. In the second part of the article we use NGC 1530 as a template object, showing from Fabry-Perot observations of its Halpha emission how strong shear in this strongly barred galaxy acts to inhibit star formation, while compression acts to stimulate it.

  16. Creating and maintaining a gas cap in tar sands formations

    DOE Patents [OSTI]

    Vinegar, Harold J. (Bellaire, TX); Karanikas, John Michael (Houston, TX); Dinkoruk, Deniz Sumnu (Houston, TX); Wellington, Scott Lee (Bellaire, TX)

    2010-03-16

    Methods for treating a tar sands formation are disclosed herein. Methods for treating a tar sands formation may include providing heat to at least part of a hydrocarbon layer in the formation from one or more heaters located in the formation. Pressure may be allowed to increase in an upper portion of the formation to provide a gas cap in the upper portion. At least some hydrocarbons are produced from a lower portion of the formation.

  17. Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface groundwater: Background, base cases, shallow reservoirs, short-term gas, and water transport

    SciTech Connect (OSTI)

    Reagan, Matthew T.; Moridis, George J.; Keen, Noel D.; Johnson, Jeffrey N.

    2015-04-18

    Hydrocarbon production from unconventional resources and the use of reservoir stimulation techniques, such as hydraulic fracturing, has grown explosively over the last decade. However, concerns have arisen that reservoir stimulation creates significant environmental threats through the creation of permeable pathways connecting the stimulated reservoir with shallower freshwater aquifers, thus resulting in the contamination of potable groundwater by escaping hydrocarbons or other reservoir fluids. This study investigates, by numerical simulation, gas and water transport between a shallow tight-gas reservoir and a shallower overlying freshwater aquifer following hydraulic fracturing operations, if such a connecting pathway has been created. We focus on two general failure scenarios: (1) communication between the reservoir and aquifer via a connecting fracture or fault and (2) communication via a deteriorated, preexisting nearby well. We conclude that the key factors driving short-term transport of gas include high permeability for the connecting pathway and the overall volume of the connecting feature. Production from the reservoir is likely to mitigate release through reduction of available free gas and lowering of reservoir pressure, and not producing may increase the potential for release. We also find that hydrostatic tight-gas reservoirs are unlikely to act as a continuing source of migrating gas, as gas contained within the newly formed hydraulic fracture is the primary source for potential contamination. Such incidents of gas escape are likely to be limited in duration and scope for hydrostatic reservoirs. Reliable field and laboratory data must be acquired to constrain the factors and determine the likelihood of these outcomes.

  18. Can there be additional rocky planets in the Habitable Zone of tight binary stars with a known gas giant?

    E-Print Network [OSTI]

    Funk, Barbara; Eggl, Siegfried

    2015-01-01

    Locating planets in HabitableZones (HZs) around other stars is a growing field in contemporary astronomy. Since a large percentage of all G-M stars in the solar neighbourhood are expected to be part of binary or multiple stellar systems, investigations of whether habitable planets are likely to be discovered in such environments are of prime interest to the scientific community. As current exoplanet statistics predicts that the chances are higher to find new worlds in systems that are already known to have planets, we examine four known extrasolar planetary systems in tight binaries in order to determine their capacity to host additional habitable terrestrial planets. Those systems are Gliese 86, gamma Cephei, HD 41004 and HD 196885. In the case of gamma Cephei, our results suggest that only the M dwarf companion could host additional potentially habitable worlds. Neither could we identify stable, potentially habitable regions around HD 196885 A. HD 196885 B can be considered a slightly more promising target ...

  19. A combined saline formation and gas reservoir CO2 injection pilot in Northern California

    E-Print Network [OSTI]

    Trautz, Robert; Myer, Larry; Benson, Sally; Oldenburg, Curt; Daley, Thomas; Seeman, Ed

    2006-01-01

    cushion gas for natural gas storage. Energy & Fuels, 2003; [demonstrate CO 2 Storage with Enhanced Gas Recovery (CSEGR).formations and storage/enhanced recovery projects in gas

  20. Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface groundwater: Background, base cases, shallow reservoirs, short-term gas, and water transport: Simulation of Impact of Hydraulic Fracturing on Groundwater

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Reagan, Matthew T.; Moridis, George J.; Keen, Noel D.; Johnson, Jeffrey N.

    2015-04-18

    Hydrocarbon production from unconventional resources and the use of reservoir stimulation techniques, such as hydraulic fracturing, has grown explosively over the last decade. However, concerns have arisen that reservoir stimulation creates significant environmental threats through the creation of permeable pathways connecting the stimulated reservoir with shallower freshwater aquifers, thus resulting in the contamination of potable groundwater by escaping hydrocarbons or other reservoir fluids. This study investigates, by numerical simulation, gas and water transport between a shallow tight-gas reservoir and a shallower overlying freshwater aquifer following hydraulic fracturing operations, if such a connecting pathway has been created. We focus on twomore »general failure scenarios: (1) communication between the reservoir and aquifer via a connecting fracture or fault and (2) communication via a deteriorated, preexisting nearby well. We conclude that the key factors driving short-term transport of gas include high permeability for the connecting pathway and the overall volume of the connecting feature. Production from the reservoir is likely to mitigate release through reduction of available free gas and lowering of reservoir pressure, and not producing may increase the potential for release. We also find that hydrostatic tight-gas reservoirs are unlikely to act as a continuing source of migrating gas, as gas contained within the newly formed hydraulic fracture is the primary source for potential contamination. Such incidents of gas escape are likely to be limited in duration and scope for hydrostatic reservoirs. Reliable field and laboratory data must be acquired to constrain the factors and determine the likelihood of these outcomes.« less

  1. Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface groundwater: Background, base cases, shallow reservoirs, short-term gas, and water transport

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Reagan, Matthew T.; Moridis, George J.; Keen, Noel D.; Johnson, Jeffrey N.

    2015-04-18

    Hydrocarbon production from unconventional resources and the use of reservoir stimulation techniques, such as hydraulic fracturing, has grown explosively over the last decade. However, concerns have arisen that reservoir stimulation creates significant environmental threats through the creation of permeable pathways connecting the stimulated reservoir with shallower freshwater aquifers, thus resulting in the contamination of potable groundwater by escaping hydrocarbons or other reservoir fluids. This study investigates, by numerical simulation, gas and water transport between a shallow tight-gas reservoir and a shallower overlying freshwater aquifer following hydraulic fracturing operations, if such a connecting pathway has been created. We focus on twomore »general failure scenarios: (1) communication between the reservoir and aquifer via a connecting fracture or fault and (2) communication via a deteriorated, preexisting nearby well. We conclude that the key factors driving short-term transport of gas include high permeability for the connecting pathway and the overall volume of the connecting feature. Production from the reservoir is likely to mitigate release through reduction of available free gas and lowering of reservoir pressure, and not producing may increase the potential for release. We also find that hydrostatic tight-gas reservoirs are unlikely to act as a continuing source of migrating gas, as gas contained within the newly formed hydraulic fracture is the primary source for potential contamination. Such incidents of gas escape are likely to be limited in duration and scope for hydrostatic reservoirs. Reliable field and laboratory data must be acquired to constrain the factors and determine the likelihood of these outcomes.« less

  2. Cryogenic target formation using cold gas jets

    DOE Patents [OSTI]

    Hendricks, Charles D. [Livermore, CA

    1980-02-26

    A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member.

  3. Cryogenic target formation using cold gas jets

    DOE Patents [OSTI]

    Hendricks, C.D.

    1980-02-26

    A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets are disclosed. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member. 4 figs.

  4. Cryogenic target formation using cold gas jets

    DOE Patents [OSTI]

    Hendricks, Charles D. (Livermore, CA)

    1981-01-01

    A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member.

  5. Estimation of original gas in place from short-term shut-in pressure data for commingled tight gas reservoirs with no crossflow 

    E-Print Network [OSTI]

    Khuong, Chan Hung

    1995-01-01

    -in pressure data; namely one-point (secant), two-point (tangent), curve fitting, and type curve methods. A two dimensional dry gas simulator (GASSIM simulator) was used in this study. The wellbore storage, non-darcy flow, and backflow phenomenon during shut...

  6. Rapid gas hydrate formation processes: Will they work?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brown, Thomas D.; Taylor, Charles E.; Bernardo, Mark P.

    2010-06-07

    Researchers at DOE’s National Energy Technology Laboratory (NETL) have been investigating the formation of synthetic gas hydrates, with an emphasis on rapid and continuous hydrate formation techniques. The investigations focused on unconventional methods to reduce dissolution, induction, nucleation and crystallization times associated with natural and synthetic hydrates studies conducted in the laboratory. Numerous experiments were conducted with various high-pressure cells equipped with instrumentation to study rapid and continuous hydrate formation. The cells ranged in size from 100 mL for screening studies to proof-of-concept studies with NETL’s 15-Liter Hydrate Cell. The results from this work demonstrate that the rapid and continuousmore »formation of methane hydrate is possible at predetermined temperatures and pressures within the stability zone of a Methane Hydrate Stability Curve.« less

  7. Rapid Gas Hydrate Formation Processes: Will They Work?

    SciTech Connect (OSTI)

    Brown, Thomas D.; Taylor, Charles E.; Bernardo, Mark P.

    2010-06-01

    Researchers at DOE’s National Energy Technology Laboratory (NETL) have been investigating the formation of synthetic gas hydrates, with an emphasis on rapid and continuous hydrate formation techniques. The investigations focused on unconventional methods to reduce dissolution, induction, nucleation and crystallization times associated with natural and synthetic hydrates studies conducted in the laboratory. Numerous experiments were conducted with various high-pressure cells equipped with instrumentation to study rapid and continuous hydrate formation. The cells ranged in size from 100 mL for screening studies to proof-of-concept studies with NETL’s 15-Liter Hydrate Cell. Results from this work demonstrate that the rapid and continuous formation of methane hydrate is possible at predetermined temperatures and pressures within the stability zone of a Methane Hydrate Stability Curve.

  8. Rapid Formation of Gas Giant Planets around M Dwarf Stars

    E-Print Network [OSTI]

    Alan P. Boss

    2006-01-20

    Extrasolar planet surveys have begun to detect gas giant planets in orbit around M dwarf stars. While the frequency of gas giant planets around M dwarfs so far appears to be lower than that around G dwarfs, it is clearly not zero. Previous work has shown that the core accretion mechanism does not seem to be able to form gas giant planets around M dwarfs, because the time required for core formation scales with the orbital period, which lengthens for lower mass stars, resulting in failed (gas-poor) cores unless the gaseous protoplanetary disk survives for > 10 Myr. Disk instability, on the other hand, is rapid enough (~ 1000 yrs) that it should be able to form gas giant protoplanets around even low mass stars well before the gaseous disk disappears. A new suite of three dimensional radiative, gravitational hydrodynamical models is presented that calculates the evolution of initially marginally gravitationally unstable disks with masses of 0.021 to 0.065 solar masses orbiting around stars with masses of 0.1 and 0.5 solar masses, respectively. The models show that gas giant planets are indeed likely to form by the disk instability mechanism in orbit around M dwarf stars, the opposite of the prediction for formation by the core accretion mechanism. This difference offers another observational test for discriminating between these two theoretical end members for giant planet formation. Ongoing and future extrasolar planet searches around M dwarfs by spectroscopy, microlensing, photometry, and astrometry offer the opportunity to help decide between the dominance of the two mechanisms.

  9. Ionized gas kinematics and massive star formation in NGC 1530

    E-Print Network [OSTI]

    A. Zurita; M. Relano; J. E. Beckman; J. H. Knapen

    2003-07-11

    We present emission line mapping of the strongly barred galaxy NGC 1530 obtained from Fabry-Perot interferometry in Halpha, at significantly enhanced angular resolution compared with published studies. The main point of the work is to examine in detail the non-circular components of the velocity field of the gas, presumably induced by the strongly non-axisymmetric gravitational potential of the bar. These reveal quasi-elliptical motions with speeds of order 100 km/s aligned with the bar. It also shows how these flows swing in towards and around the nucleus as they cross a circumnuclear resonance, from the dominant "x1 orbits" outside the resonance to "x2 orbits" within it. Comparing cross-sections of the residual velocity map along and across the bar with the Halpha intensity map indicates a systematic offset between regions of high non-circular velocity and massive star formation. To investigate further we produce velocity gradient maps along and across the bar. These illustrate very nicely the shear compression of the gas, revealed by the location of the dust lanes along loci of maximum velocity gradient perpendicular to the bar. They also show clearly how shear acts to inhibit massive star formation, whereas shocks act to enhance it. Although the inhibiting effect of gas shear flow on star formation has long been predicted, this is the clearest observational illustration so far of the effect. It is also the clearest evidence that dust picks out shock-induced inflow along bars. These observations should be of considerable interest to those modelling massive star formation in general.

  10. Surfactant process for promoting gas hydrate formation and application of the same

    DOE Patents [OSTI]

    Rogers, Rudy E. (Starkville, MS); Zhong, Yu (Brandon, MS)

    2002-01-01

    This invention relates to a method of storing gas using gas hydrates comprising forming gas hydrates in the presence of a water-surfactant solution that comprises water and surfactant. The addition of minor amounts of surfactant increases the gas hydrate formation rate, increases packing density of the solid hydrate mass and simplifies the formation-storage-decomposition process of gas hydrates. The minor amounts of surfactant also enhance the potential of gas hydrates for industrial storage applications.

  11. Gas and Star Formation in the Circinus Galaxy

    E-Print Network [OSTI]

    For, Bi-Qing; Jarrett, Tom

    2012-01-01

    We present a detailed study of the Circinus Galaxy, investigating its star formation, dust and gas properties both in the inner and outer disk. To achieve this, we obtained high-resolution Spitzer mid-infrared images with the IRAC (3.6, 5.8, 4.5, 8.0 micron) and MIPS (24 and 70 micron) instruments and sensitive HI data from the Australia Telescope Compact Array (ATCA) and the 64-m Parkes telescope. These were supplemented by CO maps from the Swedish-ESO Submillimetre Telescope (SEST). Because Circinus is hidden behind the Galactic Plane, we demonstrate the careful removal of foreground stars as well as large- and small-scale Galactic emission from the Spitzer images. We derive a visual extinction of Av = 2.1 mag from the Spectral Energy Distribution of the Circinus Galaxy and total stellar and gas masses of 9.5 x 10^{10} Msun and 9 x 10^9 Msun, respectively. Using various wavelength calibrations, we find obscured global star formation rates between 3 and 8 Msun yr^{-1}. Star forming regions in the inner spira...

  12. The effect of reformate gas enrichment on extinction limits and NOX formation

    E-Print Network [OSTI]

    Gülder, Ömer L.

    , known as reformate gas, contains not only hydrogen, but also carbon monoxide and some other components premixed combustion. When the reformate gas is added, the formation of NO is reduced in a near advantage of the reformate gas enriched lean premixed combustion is that it greatly reduces the formation

  13. Acoustic and Thermal Characterization of Oil Migration, Gas Hydrates Formation and Silica Diagenesis

    E-Print Network [OSTI]

    Guerin, Gilles

    Acoustic and Thermal Characterization of Oil Migration, Gas Hydrates Formation and Silica Rights Reserved #12;ABSTRACT Acoustic and Thermal Characterization of Oil Migration, Gas Hydrates-A to Opal-CT, the formation of gas hydrates, fluid substitution in hydrocarbon reservoirs, and fluid

  14. Investigation of the Effect of Non-Darcy Flow and Multi-Phase Flow on the Productivity of Hydraulically Fractured Gas Wells 

    E-Print Network [OSTI]

    Alarbi, Nasraldin Abdulslam A.

    2011-10-21

    Hydraulic fracturing has recently been the completion of choice for most tight gas bearing formations. It has proven successful to produce these formations in a commercial manner. However, some considerations have to be taken into account to design...

  15. Solubility trapping in formation water as dominant CO2 sink in natural gas fields

    E-Print Network [OSTI]

    Haszeldine, Stuart

    LETTERS Solubility trapping in formation water as dominant CO2 sink in natural gas fields Stuart M, dissolu- tion in formation water at a pH of 5­5.8 is the sole major sink for CO2. In two fields dissolved in water. Noble gas and CO2 carbon isotopes are powerful tracers of crustal fluid processes

  16. The Implications and Flow Behavior of the Hydraulically Fractured Wells in Shale Gas Formation 

    E-Print Network [OSTI]

    Almarzooq, Anas Mohammadali S.

    2012-02-14

    Shale gas formations are known to have low permeability. This low permeability can be as low as 100 nano darcies. Without stimulating wells drilled in the shale gas formations, it is hard to produce them at an economic rate. One of the stimulating...

  17. Integrated seismic study of naturally fractured tight gas reservoirs. Technical progress report for the period: 7/1/93--9/31/93

    SciTech Connect (OSTI)

    Mavko, G.; Nur, A.

    1993-10-23

    The study area is located at the southern end of the Powder River Basin in Converse County in east-central Wyoming. It is a low permeability fractured site, with both gas and oil present. Reservoirs are highly compartmentalized due to the low permeabilities, and fractures provide the only practical paths of production. During this eighth quarter of the seismic study of this area, work continued in processing seismic data, collecting additional geological information to aid in the interpretation, and integrating regional structural information and fracture trends with observations of structure in the study area.

  18. A Study of Formation and Dissociation of Gas Hydrate 

    E-Print Network [OSTI]

    Badakhshan Raz, Sadegh

    2012-07-16

    The estimation of gas hydrate volume in closed systems such as pipelines during shut-in time has a great industrial importance. A method is presented to estimate the volume of formed or decomposed gas hydrate in closed systems. The method was used...

  19. A density functional tight binding/force field approach to the interaction of molecules with rare gas clusters: Application to (C{sub 6}H{sub 6}){sup +/0}Ar{sub n} clusters

    SciTech Connect (OSTI)

    Iftner, Christophe; Simon, Aude; Korchagina, Kseniia; Rapacioli, Mathias; Spiegelman, Fernand

    2014-01-21

    We propose in the present paper a SCC-DFTB/FF (Self-Consistent-Charge Density Functional based Tight Binding/Force-Field) scheme adapted to the investigation of molecules trapped in rare gas environments. With respect to usual FF descriptions, the model involves the interaction of quantum electrons in a molecule with rare gas atoms in an anisotropic scheme. It includes polarization and dispersion contributions and can be used for both neutral and charged species. Parameters for this model are determined for hydrocarbon-argon complexes and the model is validated for small hydrocarbons. With the future aim of studying polycyclic aromatic hydrocarbons in Ar matrices, extensive benchmark calculations are performed on (C{sub 6}H{sub 6}){sup +/0}Ar{sub n} clusters against DFT and CCSD(T) calculations for the smaller sizes, and more generally against other experimental and theoretical data. Results on the structures and energetics (isomer ordering and energy separation, cohesion energy per Ar atom) are presented in detail for n = 1–8, 13, 20, 27, and 30, for both neutrals and cations. We confirm that the clustering of Ar atoms leads to a monotonous decrease of the ionization potential of benzene for n ? 20, in line with previous experimental and FF data.

  20. The Detection Rate of Molecular Gas in Elliptical Galaxies: Constraints on Galaxy Formation Theories

    E-Print Network [OSTI]

    Yutaka Fujita; Masahiro Nagashima; Naoteru Gouda

    2000-05-15

    In order to constrain parameters in galaxy formation theories, especially those for a star formation process, we investigate cold gas in elliptical galaxies. We calculate the detection rate of cold gas in them using a semi-analytic model of galaxy formation and compare it with observations. We show that the model with a long star formation time-scale (~20 Gyr) is inconsistent with observations. Thus, some mechanisms of reducing the mass of interstellar medium, such as the consumption of molecular gas by star formation and/or reheating from supernovae, are certainly effective in galaxies. Our model predicts that star formation induced when galaxies in a halo collide each other reduces the cold gas left until the present. However, we find that the reduction through random collisions of satellite (non-central) galaxies in mean free time-scale in a halo is not required to explain the observations. This may imply that the collisions and mergers between satellite galaxies do not occur so often in clusters or that they do not stimulate the star formation activity as much as the simple collision model we adopted. For cD galaxies, the predicted detection rate of cold gas is consistent with observations as long as the transformation of hot gas into cold gas is prevented in halos whose circular velocities are larger than 500 km s^-1. Moreover, we find that the cold gas brought into cDs through captures of gas-rich galaxies is little. We also show that the fraction of galaxies with observable cold gas should be small for cluster ellipticals in comparison with that for field ellipticals.

  1. Precise inversion of logged slownesses for elastic parameters in a gas shale formation

    E-Print Network [OSTI]

    Miller, Douglas E.

    Dipole sonic log data recorded in a vertical pilot well and the associated production well are analyzed over a 200×1100-ft section of a North American gas shale formation. The combination of these two wells enables angular ...

  2. Development of the T+M coupled flow-geomechanical simulator to describe fracture propagation and coupled flow-thermal-geomechanical processes in tight/shale gas systems

    SciTech Connect (OSTI)

    Kim, Jihoon; Moridis, George

    2013-05-22

    We developed a hydraulic fracturing simulator by coupling a flow simulator to a geomechanics code, namely T+M simulator. Modeling of the vertical fracture development involves continuous updating of the boundary conditions and of the data connectivity, based on the finite element method for geomechanics. The T+M simulator can model the initial fracture development during the hydraulic fracturing operations, after which the domain description changes from single continuum to double or multiple continua in order to rigorously model both flow and geomechanics for fracture-rock matrix systems. The T+H simulator provides two-way coupling between fluid-heat flow and geomechanics, accounting for thermoporomechanics, treats nonlinear permeability and geomechanical moduli explicitly, and dynamically tracks changes in the fracture(s) and in the pore volume. We also fully accounts for leak-off in all directions during hydraulic fracturing. We first validate the T+M simulator, matching numerical solutions with the analytical solutions for poromechanical effects, static fractures, and fracture propagations. Then, from numerical simulation of various cases of the planar fracture propagation, shear failure can limit the vertical fracture propagation of tensile failure, because of leak-off into the reservoirs. Slow injection causes more leak-off, compared with fast injection, when the same amount of fluid is injected. Changes in initial total stress and contributions of shear effective stress to tensile failure can also affect formation of the fractured areas, and the geomechanical responses are still well-posed.

  3. Drilling Through Gas Hydrates Formations: Managing Wellbore Stability Risks 

    E-Print Network [OSTI]

    Khabibullin, Tagir R.

    2010-10-12

    As hydrocarbon exploration and development moves into deeper water and onshore arctic environments, it becomes increasingly important to quantify the drilling hazards posed by gas hydrates. To address these concerns, a 1D semi-analytical model...

  4. Drilling through gas hydrates formations: possible problems and suggested solution 

    E-Print Network [OSTI]

    Amodu, Afolabi Ayoola

    2009-05-15

    Gas hydrate research in the last two decades has taken various directions ranging from ways to understand the safe and economical production of this enormous resource to drilling problems. as more rigs and production platforms move into deeper...

  5. Water management technologies used by Marcellus Shale Gas Producers.

    SciTech Connect (OSTI)

    Veil, J. A.; Environmental Science Division

    2010-07-30

    Natural gas represents an important energy source for the United States. According to the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), about 22% of the country's energy needs are provided by natural gas. Historically, natural gas was produced from conventional vertical wells drilled into porous hydrocarbon-containing formations. During the past decade, operators have increasingly looked to other unconventional sources of natural gas, such as coal bed methane, tight gas sands, and gas shales.

  6. Mechanistic Studies on the Formation of Trifluoromethyl Sulfur Pentafluoride, SF5CF3sa Greenhouse Gas

    E-Print Network [OSTI]

    Kaiser, Ralf I.

    Mechanistic Studies on the Formation of Trifluoromethyl Sulfur Pentafluoride, SF5CF3sa Greenhouse that a source for this potentially dangerous greenhouse gas might be the recombination of SF5(X2A1) and CF3(X2A1 the strongest greenhouse gas trifluoromethyl sulfur pentafluoride (SF5CF3) with a radiative force of 0.59 W m-2

  7. Formation of tungsten coatings by gas tunnel type plasma spraying Akira Kobayashia,*, Shahram Sharafatb

    E-Print Network [OSTI]

    Ghoniem, Nasr M.

    Formation of tungsten coatings by gas tunnel type plasma spraying Akira Kobayashia,*, Shahram deposited as a coating, it can protect the substrate surface from high heat flux. In this study, tungsten (W) sprayed coatings were formed on stainless steel substrates by gas tunnel type plasma spraying at a short

  8. Prediction of gas-hydrate formation conditions in production and surface facilities 

    E-Print Network [OSTI]

    Ameripour, Sharareh

    2006-10-30

    .2 Phase diagram for natural gas hydrocarbons which form hydrates .............9 Fig. 2.3 Formation of gas hydrate plugs a subsea hydrocarbon pipeline................11 Fig. 2.4 Experimental hydrate equilibrium conditions for the ternary... exploration and production operations. Hydrate clathrates can plug gas gathering systems and transmission pipelines subsea and on the surface. In offshore explorations, the main concern is the multiphase transfer lines from the wellhead...

  9. Formation resistivity measurements from within a cased well used to quantitatively determine the amount of oil and gas present

    DOE Patents [OSTI]

    Vail, III, William B. (Bothell, WA)

    1997-01-01

    Methods to quantitatively determine the separate amounts of oil and gas in a geological formation adjacent to a cased well using measurements of formation resistivity are disclosed. The steps include obtaining resistivity measurements from within a cased well of a given formation, obtaining the porosity, obtaining the resistivity of formation water present, computing the combined amounts of oil and gas present using Archie's Equations, determining the relative amounts of oil and gas present from measurements within a cased well, and then quantitatively determining the separate amounts of oil and gas present in the formation.

  10. Formation resistivity measurements from within a cased well used to quantitatively determine the amount of oil and gas present

    DOE Patents [OSTI]

    Vail, W.B. III

    1997-05-27

    Methods to quantitatively determine the separate amounts of oil and gas in a geological formation adjacent to a cased well using measurements of formation resistivity are disclosed. The steps include obtaining resistivity measurements from within a cased well of a given formation, obtaining the porosity, obtaining the resistivity of formation water present, computing the combined amounts of oil and gas present using Archie`s Equations, determining the relative amounts of oil and gas present from measurements within a cased well, and then quantitatively determining the separate amounts of oil and gas present in the formation. 7 figs.

  11. Coarse scale simulation of tight gas reservoirs 

    E-Print Network [OSTI]

    El-Ahmady, Mohamed Hamed

    2004-09-30

    and in a square drainage area. The case of horizontally fractured well was also discussed. They considered the case of constant rate production. Applicability of the solutions for analyzing pressure- transient test data was illustrated. 7 Cinco-Ley et... infinite fracture conductivity (Gringarten et al.19) approximately. 8 Cinco-Ley et al.24 discussed thoroughly the limitations and advantages of several methods for analyzing pressure-transient data in fractured wells. Their discussion covered all...

  12. Molecular Gas and Star Formation in the Cartwheel

    E-Print Network [OSTI]

    Higdon, James L; Ruiz, Sergio Martin; Rand, Richard J

    2015-01-01

    Atacama Large Millimeter/submillimeter Array (ALMA) 12CO(J=1-0) observations are used to study the cold molecular ISM of the Cartwheel ring galaxy and its relation to HI and massive star formation (SF). CO moment maps find $(2.69\\pm0.05)\\times10^{9}$ M$_{\\odot}$ of H$_2$ associated with the inner ring (72%) and nucleus (28%) for a Galactic I(CO)-to-N(H2) conversion factor ($\\alpha_{\\rm CO}$). The spokes and disk are not detected. Analysis of the inner ring's CO kinematics show it to be expanding ($V_{\\rm exp}=68.9\\pm4.9$ km s$^{-1}$) implying an $\\approx70$ Myr age. Stack averaging reveals CO emission in the starburst outer ring for the first time, but only where HI surface density ($\\Sigma_{\\rm HI}$) is high, representing $M_{\\rm H_2}=(7.5\\pm0.8)\\times10^{8}$ M$_{\\odot}$ for a metallicity appropriate $\\alpha_{\\rm CO}$, giving small $\\Sigma_{\\rm H_2}$ ($3.7$ M$_{\\odot}$ pc$^{-2}$), molecular fraction ($f_{\\rm mol}=0.10$), and H$_2$ depletion timescales ($\\tau_{\\rm mol} \\approx50-600$ Myr). Elsewhere in the ou...

  13. Interdisciplinary Investigation of CO2 Sequestration in Depleted Shale Gas Formations

    SciTech Connect (OSTI)

    Zoback, Mark; Kovscek, Anthony; Wilcox, Jennifer

    2013-09-30

    This project investigates the feasibility of geologic sequestration of CO2 in depleted shale gas reservoirs from an interdisciplinary viewpoint. It is anticipated that over the next two decades, tens of thousands of wells will be drilled in the 23 states in which organic-rich shale gas deposits are found. This research investigates the feasibility of using these formations for sequestration. If feasible, the number of sites where CO2 can be sequestered increases dramatically. The research embraces a broad array of length scales ranging from the ~10 nanometer scale of the pores in the shale formations to reservoir scale through a series of integrated laboratory and theoretical studies.

  14. Shale Gas Application in Hydraulic Fracturing Market is likely...

    Open Energy Info (EERE)

    on unconventional reservoirs such as coal bed methane, tight gas, tight oil, shale gas, and shale oil. Over the period of time, hydraulic fracturing technique has found...

  15. Formation of laser plasma channels in a stationary gas A. Dunaevsky

    E-Print Network [OSTI]

    a high-current arc discharge leads to overdense plasma near the front pinhole and further refractionFormation of laser plasma channels in a stationary gas A. Dunaevsky Department of Astrophysical Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 Received 18 November 2005; accepted

  16. Hierarchical Formation of Galaxies with Dynamical Response to Supernova-Induced Gas removal

    E-Print Network [OSTI]

    Masahiro Nagashima; Yuzuru Yoshii

    2004-04-25

    We reanalyze the formation and evolution of galaxies in the hierarchical clustering scenario. Using a semi-analytic model (SAM) of galaxy formation described in this paper, which we hereafter call the Mitaka model, we extensively investigate the observed scaling relations of galaxies among photometric, kinematic, structural and chemical characteristics. In such a scenario, spheroidal galaxies are assumed to be formed by major merger and subsequent starburst, in contrast to the traditional scenario of monolithic cloud collapse. As a new ingredient of SAMs, we introduce the effects of dynamical response to supernova-induced gas removal on size and velocity dispersion, which play an important role on dwarf galaxy formation. In previous theoretical studies of dwarf galaxies based on the monolithic cloud collapse given by Yoshii & Arimoto and Dekel & Silk, the dynamical response was treated in the extremes of a purely baryonic cloud and a baryonic cloud fully supported by surrounding dark matter. To improve this simple treatment, in our previous paper, we formulated the dynamical response in more realistic, intermediate situations between the above extremes. While the effects of dynamical response depend on the mass fraction of removed gas from a galaxy, how much amount of the gas remains just after major merger depends on the star formation history. A variety of star formation histories are generated through the Monte Carlo realization of merging histories of dark halos, and it is found that our SAM naturally makes a wide variety of dwarf galaxies and their dispersed characteristics as observed. (Abridged)

  17. New Natural Gas Storage and Transportation Capabilities Utilizing Rapid Methane Hydrate Formation Techniques

    SciTech Connect (OSTI)

    Brown, T.D.; Taylor, C.E.; Bernardo, M.

    2010-01-01

    Natural gas (methane as the major component) is a vital fossil fuel for the United States and around the world. One of the problems with some of this natural gas is that it is in remote areas where there is little or no local use for the gas. Nearly 50 percent worldwide natural gas reserves of ~6,254.4 trillion ft3 (tcf) is considered as stranded gas, with 36 percent or ~86 tcf of the U.S natural gas reserves totaling ~239 tcf, as stranded gas [1] [2]. The worldwide total does not include the new estimates by U.S. Geological Survey of 1,669 tcf of natural gas north of the Arctic Circle, [3] and the U.S. ~200,000 tcf of natural gas or methane hydrates, most of which are stranded gas reserves. Domestically and globally there is a need for newer and more economic storage, transportation and processing capabilities to deliver the natural gas to markets. In order to bring this resource to market, one of several expensive methods must be used: 1. Construction and operation of a natural gas pipeline 2. Construction of a storage and compression facility to compress the natural gas (CNG) at 3,000 to 3,600 psi, increasing its energy density to a point where it is more economical to ship, or 3. Construction of a cryogenic liquefaction facility to produce LNG, (requiring cryogenic temperatures at <-161 °C) and construction of a cryogenic receiving port. Each of these options for the transport requires large capital investment along with elaborate safety systems. The Department of Energy's Office of Research and Development Laboratories at the National Energy Technology Laboratory (NETL) is investigating new and novel approaches for rapid and continuous formation and production of synthetic NGHs. These synthetic hydrates can store up to 164 times their volume in gas while being maintained at 1 atmosphere and between -10 to -20°C for several weeks. Owing to these properties, new process for the economic storage and transportation of these synthetic hydrates could be envisioned for stranded gas reserves. The recent experiments and their results from the testing within NETL's 15-Liter Hydrate Cell Facility exhibit promising results. Introduction of water at the desired temperature and pressure through an NETL designed nozzle into a temperature controlled methane environment within the 15-Liter Hydrate Cell allowed for instantaneous formation of methane hydrates. The instantaneous and continuous hydrate formation process was repeated over several days while varying the flow rate of water, its' temperature, and the overall temperature of the methane environment. These results clearly indicated that hydrates formed immediately after the methane and water left the nozzle at temperatures above the freezing point of water throughout the range of operating conditions. [1] Oil and Gas Journal Vol. 160.48, Dec 22, 2008. [2] http://www.eia.doe.gov/oiaf/servicerpt/natgas/chapter3.html and http://www.eia.doe.gov/oiaf/servicerpt/natgas/pdf/tbl7.pdf [3] U.S. Geological Survey, “Circum-Arctic Resource Appraisal: Estimates of Undiscovered Oil and Gas North of the Arctic Circle,” May 2008.

  18. GAS SURFACE DENSITY, STAR FORMATION RATE SURFACE DENSITY, AND THE MAXIMUM MASS OF YOUNG STAR CLUSTERS IN A DISK GALAXY. II. THE GRAND-DESIGN GALAXY M51

    SciTech Connect (OSTI)

    Gonzalez-Lopezlira, Rosa A. [On sabbatical leave from the Centro de Radioastronomia y Astrofisica, UNAM, Campus Morelia, Michoacan, C.P. 58089, Mexico. (Mexico); Pflamm-Altenburg, Jan; Kroupa, Pavel, E-mail: r.gonzalez@crya.unam.mx [Argelander Institut fuer Astronomie, Universitaet Bonn, Auf dem Huegel 71, D-53121 Bonn (Germany)

    2013-06-20

    We analyze the relationship between maximum cluster mass and surface densities of total gas ({Sigma}{sub gas}), molecular gas ({Sigma}{sub H{sub 2}}), neutral gas ({Sigma}{sub H{sub I}}), and star formation rate ({Sigma}{sub SFR}) in the grand-design galaxy M51, using published gas data and a catalog of masses, ages, and reddenings of more than 1800 star clusters in its disk, of which 223 are above the cluster mass distribution function completeness limit. By comparing the two-dimensional distribution of cluster masses and gas surface densities, we find for clusters older than 25 Myr that M{sub 3rd}{proportional_to}{Sigma}{sub H{sub I}{sup 0.4{+-}0.2}}, whereM{sub 3rd} is the median of the five most massive clusters. There is no correlation with{Sigma}{sub gas},{Sigma}{sub H2}, or{Sigma}{sub SFR}. For clusters younger than 10 Myr, M{sub 3rd}{proportional_to}{Sigma}{sub H{sub I}{sup 0.6{+-}0.1}} and M{sub 3rd}{proportional_to}{Sigma}{sub gas}{sup 0.5{+-}0.2}; there is no correlation with either {Sigma}{sub H{sub 2}} or{Sigma}{sub SFR}. The results could hardly be more different from those found for clusters younger than 25 Myr in M33. For the flocculent galaxy M33, there is no correlation between maximum cluster mass and neutral gas, but we have determined M{sub 3rd}{proportional_to}{Sigma}{sub gas}{sup 3.8{+-}0.3}, M{sub 3rd}{proportional_to}{Sigma}{sub H{sub 2}{sup 1.2{+-}0.1}}, and M{sub 3rd}{proportional_to}{Sigma}{sub SFR}{sup 0.9{+-}0.1}. For the older sample in M51, the lack of tight correlations is probably due to the combination of strong azimuthal variations in the surface densities of gas and star formation rate, and the cluster ages. These two facts mean that neither the azimuthal average of the surface densities at a given radius nor the surface densities at the present-day location of a stellar cluster represent the true surface densities at the place and time of cluster formation. In the case of the younger sample, even if the clusters have not yet traveled too far from their birth sites, the poor resolution of the radio data compared to the physical sizes of the clusters results in measured{Sigma} that are likely quite diluted compared to the actual densities relevant for the formation of the clusters.

  19. Increasing gas hydrate formation temperature for desalination of high salinity produced water with secondary guests

    SciTech Connect (OSTI)

    Cha, Jong-Ho [ORISE; Seol, Yongkoo [U.S. DOE

    2013-01-01

    We suggest a new gas hydrate-based desalination process using water-immiscible hydrate formers; cyclopentane (CP) and cyclohexane (CH) as secondary hydrate guests to alleviate temperature requirements for hydrate formation. The hydrate formation reactions were carried out in an isobaric condition of 3.1 MPa to find the upper temperature limit of CO2 hydrate formation. Simulated produced water (8.95 wt % salinity) mixed with the hydrate formers shows an increased upper temperature limit from ?2 °C for simple CO2 hydrate to 16 and 7 °C for double (CO2 + CP) and (CO2 + CH) hydrates, respectively. The resulting conversion rate to double hydrate turned out to be similar to that with simple CO2 hydrate at the upper temperature limit. Hydrate formation rates (Rf) for the double hydrates with CP and CH are shown to be 22 and 16 times higher, respectively, than that of the simple CO2 hydrate at the upper temperature limit. Such mild hydrate formation temperature and fast formation kinetics indicate increased energy efficiency of the double hydrate system for the desalination process. Dissociated water from the hydrates shows greater than 90% salt removal efficiency for the hydrates with the secondary guests, which is also improved from about 70% salt removal efficiency for the simple hydrates.

  20. Method for reducing sulfate formation during regeneration of hot-gas desulfurization sorbents

    DOE Patents [OSTI]

    Bissett, Larry A. (Morgantown, WV); Strickland, Larry D. (Morgantown, WV); Rockey, John M. (Westover, WV)

    1994-01-01

    The regeneration of sulfur sorbents having sulfate forming tendencies and used for desulfurizing hot product gas streams such as provided by coal gasification is provided by employing a two-stage regeneration method. Air containing a sub-stoichiometric quantity of oxygen is used in the first stage for substantially fully regenerating the sorbent without sulfate formation and then regeneration of the resulting partially regenerated sorbent is completed in the second stage with air containing a quantity of oxygen slightly greater than the stoichiometric amount adequate to essentially fully regenerate the sorbent. Sulfate formation occurs in only the second stage with the extent of sulfate formation being limited only to the portion of the sulfur species contained by the sorbent after substantially all of the sulfur species have been removed therefrom in the first stage.

  1. Formation resistivity measurements from within a cased well used to quantitatively determine the amount of oil and gas present

    DOE Patents [OSTI]

    Vail, III, William Banning (Bothell, WA)

    2000-01-01

    Methods to quantitatively determine the separate amounts of oil and gas in a geological formation adjacent to a cased well using measurements of formation resistivity. The steps include obtaining resistivity measurements from within a cased well of a given formation, obtaining the porosity, obtaining the resistivity of formation water present, computing the combined amounts of oil and gas present using Archie's Equations, determining the relative amounts of oil and gas present from measurements within a cased well, and then quantitatively determining the separate amounts of oil and gas present in the formation. Resistivity measurements are obtained from within the cased well by conducting A.C. current from within the cased well to a remote electrode at a frequency that is within the frequency range of 0.1 Hz to 20 Hz.

  2. The Formation of Submillimetre-Bright Galaxies from Gas Infall over a Billion Years

    E-Print Network [OSTI]

    Narayanan, Desika; Feldmann, Robert; Robitaille, Thomas; Hopkins, Philip; Thompson, Robert; Hayward, Christopher; Ball, David; Faucher-Giguere, Claude-Andre; Keres, Dusan

    2015-01-01

    Submillimetre-luminous galaxies at high-redshift are the most luminous, heavily star-forming galaxies in the Universe, and are characterised by prodigious emission in the far-infrared at 850 microns (S850 > 5 mJy). They reside in halos ~ 10^13Msun, have low gas fractions compared to main sequence disks at a comparable redshift, trace complex environments, and are not easily observable at optical wavelengths. Their physical origin remains unclear. Simulations have been able to form galaxies with the requisite luminosities, but have otherwise been unable to simultaneously match the stellar masses, star formation rates, gas fractions and environments. Here we report a cosmological hydrodynamic galaxy formation simulation that is able to form a submillimetre galaxy which simultaneously satisfies the broad range of observed physical constraints. We find that groups of galaxies residing in massive dark matter halos have rising star formation histories that peak at collective rates ~ 500-1000 Msun/yr at z=2-3, by wh...

  3. Spatially-Resolved Dense Molecular Gas and Star Formation Rate in M51

    E-Print Network [OSTI]

    Chen, Hao; Braine, Jonathan; Gu, Qiusheng

    2015-01-01

    We present the spatially-resolved observations of HCN J = 1 -- 0 emission in the nearby spiral galaxy M51 using the IRAM 30 m telescope. The HCN map covers an extent of $4\\arcmin\\times5\\arcmin$ with spatial resolution of $28\\arcsec$, which is, so far, the largest in M51. There is a correlation between infrared emission (star formation rate indicator) and HCN (1--0) emission (dense gas tracer) at kpc scale in M51, a natural extension of the proportionality between the star formation rate (SFR) and the dense gas mass established globally in galaxies. Within M51, the relation appears to be sub-linear (with a slope of 0.74$\\pm$0.16) as $L_{\\rm IR}$ rises less quickly than $L_{\\rm HCN}$. We attribute this to a difference between center and outer disk such that the central regions have stronger HCN (1--0) emission per unit star formation. The IR-HCN correlation in M51 is further compared with global one from Milky Way to high-z galaxies and bridges the gap between giant molecular clouds (GMCs) and galaxies. Like th...

  4. The gas metallicity gradient and the star formation activity of disc galaxies

    E-Print Network [OSTI]

    Tissera, Patricia B; Sillero, Emanuel; Vilchez, Jose M

    2015-01-01

    We study oxygen abundance profiles of the gaseous disc components in simulated galaxies in a hierarchical universe. We analyse the disc metallicity gradients in relation to the stellar masses and star formation rates of the simulated galaxies. We find a trend for galaxies with low stellar masses to have steeper metallicity gradients than galaxies with high stellar masses at z ~0. We also detect that the gas-phase metallicity slopes and the specific star formation rate (sSFR) of our simulated disc galaxies are consistent with recently reported observations at z ~0. Simulated galaxies with high stellar masses reproduce the observed relationship at all analysed redshifts and have an increasing contribution of discs with positive metallicity slopes with increasing redshift. Simulated galaxies with low stellar masses a have larger fraction of negative metallicity gradients with increasing redshift. Simulated galaxies with positive or very negative metallicity slopes exhibit disturbed morphologies and/or have a clo...

  5. Molecular Gas and Star Formation in the SAURON Early-type Galaxies

    E-Print Network [OSTI]

    F. Combes; L. M. Young; M. Bureau

    2007-03-21

    We present the results of a survey of CO emission in 43 of the 48 representative E/S0 galaxies observed in the optical with the SAURON integral-field spectrograph. The CO detection rate is 12/43 or 28%. This is lower than previous studies of early-types but can probably be attributed to different sample selection criteria. As expected, earlier type, more luminous and massive galaxies have a relatively lower molecular gas content. We find that CO-rich galaxies tend to have higher H\\beta but lower Fe5015 and Mgb absorption indices than CO-poor galaxies. Those trends appear primarily driven by the age of the stars, an hypothesis supported by the fact that the galaxies with the strongest evidence of star formation are also the most CO-rich. In fact, the early-type galaxies from the current sample appear to extend the well-known correlations between FIR luminosity, dust mass and molecular mass of other galaxy types. The star formation interpretation is also consistent with the SAURON galaxies' radio continuum and FIR flux ratios, and their inferred star formation efficiencies are similar to those in spiral galaxies. It thus appears that we have identified the material fueling (residual) star formation in early-type galaxies, and have demonstrated that it is actively being transformed. Nevertheless, the lack of strong correlations between the CO content and most stellar parameters is compatible with the idea that, in a significant number of sample galaxies, the molecular gas has been accreted from the outside and has properties rather independent from the old, pre-existing stellar component.

  6. Analysis of NOx Formation in a Hydrogen-Fueled Gas Turbine Engine

    E-Print Network [OSTI]

    Samuelsen, GS; Therkelsen, P; Werts, T; McDonell, V

    2009-01-01

    A HYDROGEN FUELED GAS TURBINE ENGINE Peter Therkelsen, Tavisnatural gas fueled gas turbine engine was operated ongas. INTRODUCTION Gas turbine engines designed to operate on

  7. Star Formation Suppression Due to Jet Feedback in Radio Galaxies with Shocked Warm Molecular Gas

    E-Print Network [OSTI]

    Lanz, Lauranne; Alatalo, Katherine; Appleton, Philip N

    2015-01-01

    We present Herschel observations of 22 radio galaxies, selected for the presence of shocked, warm molecular hydrogen emission. We measured and modeled spectral energy distributions (SEDs) in 33 bands from the ultraviolet to the far-infrared to investigate the impact of jet feedback on star formation activity. These galaxies are massive, early-type galaxies with normal gas-to-dust ratios, covering a range of optical and IR colors. We find that the star formation rate (SFR) is suppressed by a factor of ~3-6, depending on how molecular gas mass is estimated. We suggest this suppression is due to the shocks driven by the radio jets injecting turbulence into the interstellar medium (ISM), which also powers the luminous warm H2 line emission. Approximately 25% of the sample shows suppression by more than a factor of 10. However, the degree of SFR suppression does not correlate with indicators of jet feedback including jet power, diffuse X-ray emission, or intensity of warm molecular H2 emission, suggesting that whi...

  8. TIGHT BOUNDS ON EXPECTED ORDER STATISTICS

    E-Print Network [OSTI]

    Bertsimas, Dimitris

    TIGHT BOUNDS ON EXPECTED ORDER STATISTICS DIIIMMMIIITTTRRRIIISSS BEEERRRTTTSSSIIIMMMAAASSS Sloan@nus.edu.sg In this article, we study the problem of finding tight bounds on the expected value of the kth-order statistic E of the highest-order statistic E @Xn:n# can be computed with a bisection search algo- rithm+ An extremal discrete

  9. SIMULATIONS OF EARLY BARYONIC STRUCTURE FORMATION WITH STREAM VELOCITY. II. THE GAS FRACTION

    SciTech Connect (OSTI)

    Naoz, Smadar [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)] [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Yoshida, Naoki [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan)] [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan); Gnedin, Nickolay Y., E-mail: snaoz@cfa.harvard.edu [Particle Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States)

    2013-01-20

    Understanding the gas content of high-redshift halos is crucial for studying the formation of the first generation of galaxies and reionization. Recently, Tseliakhovich and Hirata showed that the relative 'stream' velocity between the dark matter and baryons at the time of recombination-formally a second-order effect, but an unusually large one-can influence the later structure formation history of the universe. We quantify the effect of the stream velocity on the so-called characteristic mass-the minimum mass of a dark matter halo capable of retaining most of its baryons throughout its formation epoch-using three different high-resolution sets of cosmological simulations (with separate transfer functions for baryons and dark matter) that vary in box size, particle number, and the value of the relative velocity between the dark matter and baryons. In order to understand this effect theoretically, we generalize the linear theory filtering mass to properly account for the difference between the dark matter and baryonic density fluctuation evolution induced by the stream velocity. We show that the new filtering mass provides an accurate estimate for the characteristic mass, while other theoretical ansatzes for the characteristic mass are substantially less precise.

  10. Molecular gas observations and enhanced massive star formation efficiencies in M100

    E-Print Network [OSTI]

    J. H. Knapen; J. E. Beckman; J. Cepa; N. Nakai

    1995-09-14

    We present new J=1-0 12-CO observations along the northern spiral arm of the grand-design spiral galaxy M100 (NGC 4321), and study the distribution of molecular hydrogen as derived from these observations, comparing the new data with a set of data points on the southern arm published previously. We compare these measurements on both spiral arms and on the interarm regions with observations of the atomic and ionized hydrogen components. We determine massive star formation efficiency parameters, defined as the ratio of H alpha luminosity to total gas mass, along the arms and compare the values to those in the interarm regions adjacent to the arms. We find that these parameters in the spiral arms are on average a factor of 3 higher than outside the arms, a clear indication of triggering of the star formation in the spiral arms. We discuss possible mechanisms for this triggering, and conclude that a density wave system is probably responsible for it. We discuss several possible systematical effects in some detail, and infer that the conclusions on triggering are sound. We specifically discuss the possible effects of extinction in H alpha, or a non-standard CO to H_2 conversion factor (X), and find that our conclusions on the enhancement of the efficiencies in the arms are reinforced rather than weakened by these considerations. A simple star forming scheme involving threshold densities for gravitational collapse is discussed for NGC 4321, and comparison is made with M51. We find that the gas between the arms is generally stable against gravitational collapse whereas the gas in the arms is not, possibly leading to the observed arm-interarm differences in efficiency, but also note that these results, unlike the others obtained in this paper, do depend critically on the assumed value for the conversion factor.

  11. Coalbed Methane Procduced Water Treatment Using Gas Hydrate Formation at the Wellhead

    SciTech Connect (OSTI)

    BC Technologies

    2009-12-30

    Water associated with coalbed methane (CBM) production is a significant and costly process waste stream, and economic treatment and/or disposal of this water is often the key to successful and profitable CBM development. In the past decade, advances have been made in the treatment of CBM produced water. However, produced water generally must be transported in some fashion to a centralized treatment and/or disposal facility. The cost of transporting this water, whether through the development of a water distribution system or by truck, is often greater than the cost of treatment or disposal. To address this economic issue, BC Technologies (BCT), in collaboration with Oak Ridge National Laboratory (ORNL) and International Petroleum Environmental Consortium (IPEC), proposed developing a mechanical unit that could be used to treat CBM produced water by forming gas hydrates at the wellhead. This process involves creating a gas hydrate, washing it and then disassociating hydrate into water and gas molecules. The application of this technology results in three process streams: purified water, brine, and gas. The purified water can be discharged or reused for a variety of beneficial purposes and the smaller brine can be disposed of using conventional strategies. The overall objectives of this research are to develop a new treatment method for produced water where it could be purified directly at the wellhead, to determine the effectiveness of hydrate formation for the treatment of produced water with proof of concept laboratory experiments, to design a prototype-scale injector and test it in the laboratory under realistic wellhead conditions, and to demonstrate the technology under field conditions. By treating the water on-site, producers could substantially reduce their surface handling costs and economically remove impurities to a quality that would support beneficial use. Batch bench-scale experiments of the hydrate formation process and research conducted at ORNL confirmed the feasibility of the process. However, researchers at BCT were unable to develop equipment suitable for continuous operation and demonstration of the process in the field was not attempted. The significant achievements of the research area: Bench-scale batch results using carbon dioxide indicate >40% of the feed water to the hydrate formation reactor was converted to hydrate in a single pass; The batch results also indicate >23% of the feed water to the hydrate formation reactor (>50% of the hydrate formed) was converted to purified water of a quality suitable for discharge; Continuous discharge and collection of hydrates was achieved at atmospheric pressure. Continuous hydrate formation and collection at atmospheric conditions was the most significant achievement and preliminary economics indicate that if the unit could be made operable, it is potentially economic. However, the inability to continuously separate the hydrate melt fraction left the concept not ready for field demonstration and the project was terminated after Phase Two research.

  12. The Gas Phase Mass Metallicity Relation for Dwarf Galaxies: Dependence on Star Formation Rate and HI Gas Mass

    E-Print Network [OSTI]

    Jimmy,; Saintonge, Amélie; Accurso, Gioacchino; Brough, Sarah; Oliva-Altamirano, Paola

    2015-01-01

    Using a sample of dwarf galaxies observed using the VIMOS IFU on the VLT, we investigate the mass-metallicity relation (MZR) as a function of star formation rate (FMR$_{\\text{SFR}}$) as well as HI-gas mass (FMR$_{\\text{HI}}$). We combine our IFU data with a subsample of galaxies from the ALFALFA HI survey crossmatched to the Sloan Digital Sky Survey to study the FMR$_{\\text{SFR}}$ and FMR$_{\\text{HI}}$ across the stellar mass range 10$^{6.6}$ to 10$^{8.8}$ M$_\\odot$, with metallicities as low as 12+log(O/H) = 7.67. We find the 1$\\sigma$ mean scatter in the MZR to be 0.05 dex. The 1$\\sigma$ mean scatter in the FMR$_{\\text{SFR}}$ (0.02 dex) is significantly lower than that of the MZR. The FMR$_{\\text{SFR}}$ is not consistent between the IFU observed galaxies and the ALFALFA/SDSS galaxies for SFRs lower than 10$^{-2.4}$ M$_\\odot$ yr$^{-1}$, however this could be the result of limitations of our measurements in that regime. The lowest mean scatter (0.01 dex) is found in the FMR$_{\\text{HI}}$. We also find that th...

  13. An alternative method of gas boriding applied to the formation of borocarburized layer

    SciTech Connect (OSTI)

    Kulka, M. Makuch, N.; Pertek, A.; Piasecki, A.

    2012-10-15

    The borocarburized layers were produced by tandem diffusion processes: carburizing followed by boriding. An alternative method of gas boriding was proposed. Two-stage gas boronizing in N{sub 2}-H{sub 2}-BCl{sub 3} atmosphere was applied to the formation of iron borides on a carburized substrate. This process consisted in two stages, which were alternately repeated: saturation by boron and diffusion annealing. The microstructure and microhardness of produced layer were compared to those-obtained in case of continuous gas boriding in H{sub 2}-BCl{sub 3} atmosphere, earlier used. The first objective of two-stage boronizing, consisting in acceleration of boron diffusion, has been efficiently implemented. Despite the lower temperature and shorter duration of boronizing, about 1.5 times larger iron borides' zone has been formed on carburized steel. Second objective, the absolute elimination of brittle FeB phase, has failed. However, the amount of FeB phase has been considerably limited. Longer diffusion annealing should provide the boride layer with single-phase microstructure, without FeB phase. - Highlights: Black-Right-Pointing-Pointer Alternative method of gas boriding in H{sub 2}-N{sub 2}-BCl{sub 3} atmosphere was proposed. Black-Right-Pointing-Pointer The process consisted in two stages: saturation by boron and diffusion annealing. Black-Right-Pointing-Pointer These stages of short duration were alternately repeated. Black-Right-Pointing-Pointer The acceleration of boron diffusion was efficiently implemented. Black-Right-Pointing-Pointer The amount of FeB phase in the boride zone was limited.

  14. The Relationship Between Molecular Gas, HI, and Star Formation in the Low-Mass, Low-Metallicity Magellanic Clouds

    E-Print Network [OSTI]

    Jameson, Katherine E; Leroy, Adam K; Meixner, Margaret; Roman-Duval, Julia; Gordon, Karl; Hughes, Annie; Israel, Frank P; Rubio, Monica; Indebetouw, Remy; Madden, Suzanne C; Bot, Caroline; Hony, Sacha; Cormier, Diane; Pellegrini, Eric W; Galametz, Maud; Sonneborn, George

    2015-01-01

    The Magellanic Clouds provide the only laboratory to study the effect of metallicity and galaxy mass on molecular gas and star formation at high (~20 pc) resolution. We use the dust emission from HERITAGE Herschel data to map the molecular gas in the Magellanic Clouds, avoiding the known biases of CO emission as a tracer of H2. Using our dust-based molecular gas estimates, we find molecular gas depletion times of ~0.4 Gyr in the LMC and ~0.6 SMC at 1 kpc scales. These depletion times fall within the range found for normal disk galaxies, but are shorter than the average value, which could be due to recent bursts in star formation. We find no evidence for a strong intrinsic dependence of the molecular gas depletion time on metallicity. We study the relationship between gas and star formation rate across a range in size scales from 20 pc to ~1 kpc, including how the scatter in molecular gas depletion time changes with size scale, and discuss the physical mechanisms driving the relationships. We compare the metal...

  15. Thermal Effects of Circumplanetary Disk Formation around Proto-Gas Giant Planets

    E-Print Network [OSTI]

    Masahiro N. Machida

    2008-10-15

    The formation of a circumplanetary disk and accretion of angular momentum onto a protoplanetary system are investigated using 3D hydrodynamical simulations. The local region around a protoplanet in a protoplanetary disk is considered with sufficient spatial resolution: the region from outside the Hill sphere to the Jovian radius is covered by the nested-grid method. To investigate the thermal effects of the circumplanetary disk, various equations of state are adopted. Large thermal energy around the protoplanet slightly changes the structure of the circumplanetary disk. Compared with a model adopting an isothermal equation of state, in a model with an adiabatic equation of state, the protoplanet's gas envelope extends farther, and a slightly thick disk appears near the protoplanet. However, different equations of state do not affect the acquisition process of angular momentum for the protoplanetary system. Thus, the specific angular momentum acquired by the system is fitted as a function only of the protoplanet's mass. A large fraction of the total angular momentum contributes to the formation of the circumplanetary disk. The disk forms only in a compact region in very close proximity to the protoplanet. Adapting the results to the solar system, the proto-Jupiter and Saturn have compact disks in the region of r < 21 r_J (r < 0.028 r_HJ) and r < 66 r_S (r < 0.061 r_HS), respectively, where r_J (r_HJ) and r_S (r_HS) are the Jovian and Saturnian (Hill) radius, respectively. The surface density has a peak in these regions due to the balance between centrifugal force and gravity of the protoplanet. The size of these disks corresponds well to the outermost orbit of regular satellites around Jupiter and Saturn. Regular satellites may form in such compact disks around proto-gas giant planets.

  16. Gas seal for an in situ oil shale retort and method of forming thermal barrier

    DOE Patents [OSTI]

    Burton, III, Robert S. (Mesa, CO)

    1982-01-01

    A gas seal is provided in an access drift excavated in a subterranean formation containing oil shale. The access drift is adjacent an in situ oil shale retort and is in gas communication with the fragmented permeable mass of formation particles containing oil shale formed in the in situ oil shale retort. The mass of formation particles extends into the access drift, forming a rubble pile of formation particles having a face approximately at the angle of repose of fragmented formation. The gas seal includes a temperature barrier which includes a layer of heat insulating material disposed on the face of the rubble pile of formation particles and additionally includes a gas barrier. The gas barrier is a gas-tight bulkhead installed across the access drift at a location in the access drift spaced apart from the temperature barrier.

  17. Analysis of NOx Formation in a Hydrogen-Fueled Gas Turbine Engine

    E-Print Network [OSTI]

    Samuelsen, GS; Therkelsen, P; Werts, T; McDonell, V

    2009-01-01

    Test in a Small Gas Turbine,” International Journal ofof Hydrogen in a Small Gas Turbine Combustor,” InternationalL. , 2005, “Using Hydrogen as Gas Turbine Fuel” J. Engr. Gas

  18. CARMA LARGE AREA STAR FORMATION SURVEY: STRUCTURE AND KINEMATICS OF DENSE GAS IN SERPENS MAIN

    SciTech Connect (OSTI)

    Lee, Katherine I.; Storm, Shaye; Mundy, Lee G.; Teuben, Peter; Pound, Marc W.; Salter, Demerese M.; Chen, Che-Yu; Fernández-López, Manuel; Looney, Leslie W.; Segura-Cox, Dominique; Rosolowsky, Erik; Arce, Héctor G.; Plunkett, Adele L.; Ostriker, Eve C.; Shirley, Yancy L.; Kwon, Woojin; Kauffmann, Jens; Tobin, John J.; Volgenau, N. H.; Tassis, Konstantinos; and others

    2014-12-20

    We present observations of N{sub 2}H{sup +} (J = 1 ? 0), HCO{sup +} (J = 1 ? 0), and HCN (J = 1 ? 0) toward the Serpens Main molecular cloud from the CARMA Large Area Star Formation Survey (CLASSy). We mapped 150 arcmin{sup 2} of Serpens Main with an angular resolution of ?7''. The gas emission is concentrated in two subclusters (the NW and SE subclusters). The SE subcluster has more prominent filamentary structures and more complicated kinematics compared to the NW subcluster. The majority of gas in the two subclusters has subsonic to sonic velocity dispersions. We applied a dendrogram technique with N{sub 2}H{sup +}(1-0) to study the gas structures; the SE subcluster has a higher degree of hierarchy than the NW subcluster. Combining the dendrogram and line fitting analyses reveals two distinct relations: a flat relation between nonthermal velocity dispersion and size, and a positive correlation between variation in velocity centroids and size. The two relations imply a characteristic depth of 0.15 pc for the cloud. Furthermore, we have identified six filaments in the SE subcluster. These filaments have lengths of ?0.2 pc and widths of ?0.03 pc, which is smaller than a characteristic width of 0.1 pc suggested by Herschel observations. The filaments can be classified into two types based on their properties. The first type, located in the northeast of the SE subcluster, has larger velocity gradients, smaller masses, and nearly critical mass-per-unit-length ratios. The other type, located in the southwest of the SE subcluster, has the opposite properties. Several YSOs are formed along two filaments which have supercritical mass per unit length ratios, while filaments with nearly critical mass-per-unit-length ratios are not associated with YSOs, suggesting that stars are formed on gravitationally unstable filaments.

  19. Going Global: Tight Oil Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets See full Genealogy of Major

  20. Challenges, uncertainties and issues facing gas production from gas hydrate deposits

    E-Print Network [OSTI]

    Moridis, G.J.

    2011-01-01

    gas such as tight gas, shale gas, or coal bed methane gas tolocation. Development of shale oil and gas, tar sands, coalGas hydrates will undoubtedly also be present in shales,

  1. Analysis of NOx Formation in a Hydrogen-Fueled Gas Turbine Engine

    E-Print Network [OSTI]

    Samuelsen, GS; Therkelsen, P; Werts, T; McDonell, V

    2009-01-01

    Lefebvre, A.H. , 1999, Gas Turbine Combustion (2 nd Ed. ),1981, “Hydrogen Combustion Test in a Small Gas Turbine,”Combustion Performance of Hydrogen in a Small Gas Turbine

  2. A combined saline formation and gas reservoir CO2 injection pilot in Northern California

    E-Print Network [OSTI]

    Trautz, Robert; Myer, Larry; Benson, Sally; Oldenburg, Curt; Daley, Thomas; Seeman, Ed

    2006-01-01

    the middle Capay Shale (depleted gas) and McCormick Sand (depleted gas reservoir located within the Middle Capay shaleCO 2 gas will occur in the 2-3 m thick Capay Shale interval

  3. Analysis of NOx Formation in a Hydrogen-Fueled Gas Turbine Engine

    E-Print Network [OSTI]

    Samuelsen, GS; Therkelsen, P; Werts, T; McDonell, V

    2009-01-01

    Turbine Fuel” J. Engr. Gas Turbines and Power, Vol. 127, pp,Test in a Small Gas Turbine,” International Journal ofof Hydrogen in a Small Gas Turbine Combustor,” International

  4. Apparatus and methods for determining gas saturation and porosity of a formation penetrated by a gas filled or liquid filled borehole

    DOE Patents [OSTI]

    Wilson, Robert D. (477 W. Scenic Dr., Grand Junction, CO 81503)

    2001-03-27

    Methods and apparatus are disclosed for determining gas saturation, liquid saturation, porosity and density of earth formations penetrated by a well borehole. Determinations are made from measures of fast neutron and inelastic scatter gamma radiation induced by a pulsed, fast neutron source. The system preferably uses two detectors axially spaced from the neutron source. One detector is preferably a scintillation detector responsive to gamma radiation, and a second detector is preferably an organic scintillator responsive to both neutron and gamma radiation. The system can be operated in cased boreholes which are filled with either gas or liquid. Techniques for correcting all measurements for borehole conditions are disclosed.

  5. Unconventional Gas Market Study 2018 | OpenEI Community

    Open Energy Info (EERE)

    technical recoverable shale gas reserves, but currently does not hold any shale gas production. However, the growth is expected to commence by 2015. Growth of Shale Gas, Tight...

  6. N-BODY SIMULATION OF PLANETESIMAL FORMATION THROUGH GRAVITATIONAL INSTABILITY OF A DUST LAYER IN LAMINAR GAS DISK

    SciTech Connect (OSTI)

    Michikoshi, Shugo; Kokubo, Eiichiro [Center for Computational Astrophysics, National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan); Inutsuka, Shu-ichiro, E-mail: michikoshi@cfca.j, E-mail: kokubo@th.nao.ac.j, E-mail: inutsuka@nagoya-u.j [Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602 (Japan)

    2010-08-20

    We investigate the formation process of planetesimals from the dust layer by the gravitational instability in the gas disk using local N-body simulations. The gas is modeled as a background laminar flow. We study the formation process of planetesimals and its dependence on the strength of the gas drag. Our simulation results show that the formation process is divided into three stages qualitatively: the formation of wake-like density structures, the creation of planetesimal seeds, and their collisional growth. The linear analysis of the dissipative gravitational instability shows that the dust layer is secularly unstable although Toomre's Q value is larger than unity. However, in the initial stage, the growth time of the gravitational instability is longer than that of the dust sedimentation and the decrease in the velocity dispersion. Thus, the velocity dispersion decreases and the disk shrinks vertically. As the velocity dispersion becomes sufficiently small, the gravitational instability finally becomes dominant. Then wake-like density structures are formed by the gravitational instability. These structures fragment into planetesimal seeds. The seeds grow rapidly owing to mutual collisions.

  7. MOLECULAR GAS, CO, AND STAR FORMATION IN GALAXIES: EMERGENT EMPIRICAL RELATIONS, FEEDBACK, AND THE EVOLUTION OF VERY GAS-RICH SYSTEMS

    SciTech Connect (OSTI)

    Pelupessy, Federico I. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Papadopoulos, Padelis P. [Argelander Institut fuer Astronomie, Auf dem Huegel 71, D-53121 Bonn (Germany)

    2009-12-20

    We use time-varying models of the coupled evolution of the H I, H{sub 2} gas phases and stars in galaxy-sized numerical simulations to (1) test for the emergence of the Kennicutt-Schmidt (K-S) and the H{sub 2}-pressure relation, (2) explore a realistic H{sub 2}-regulated star formation recipe which brings forth a neglected and potentially significant SF-regulating factor, and (3) go beyond typical galactic environments (for which these galactic empirical relations are deduced) to explore the early evolution of very gas-rich galaxies. In this work, we model low-mass galaxies (M{sub baryon} <= 10{sup 9} M{sub sun}), while incorporating an independent treatment of CO formation and destruction, the most important tracer molecule of H{sub 2} in galaxies, along with that for the H{sub 2} gas itself. We find that both the K-S and the H{sub 2}-pressure empirical relations can robustly emerge in galaxies after a dynamic equilibrium sets in between the various interstellar medium (ISM) states, the stellar component and its feedback (T approx> 1 Gyr). The only significant dependence of these relations seems to be for the CO-derived (and thus directly observable) ones, which show a strong dependence on the ISM metallicity. The H{sub 2}-regulated star formation recipe successfully reproduces the morphological and quantitative aspects of previous numerical models while doing away with the star formation efficiency parameter. Most of the H I -> H{sub 2} mass exchange is found taking place under highly non-equilibrium conditions necessitating a time-dependent treatment even in typical ISM environments. Our dynamic models indicate that the CO molecule can be a poor, nonlinear, H{sub 2} gas tracer. Finally, for early evolutionary stages (T approx< 0.4 Gyr), we find significant and systematic deviations of the true star formation from that expected from the K-S relation, which are especially pronounced and prolonged for metal-poor systems. The largest such deviations occur for the very gas-rich galaxies, where deviations of a factor approx3-4 in global star formation rate (SFR) can take place with respect to those expected from the CO-derived K-S relation. This is particularly important since gas-rich systems at high redshifts could appear as having unusually high SFRs with respect to their CO-bright H{sub 2} gas reservoirs. This points to a possibly serious deficiency of K-S relations as elements of the sub-grid physics of star formation in simulations of structure formation in the early universe.

  8. Importance of Low Permeability Natural Gas Reservoirs (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01

    Production from low-permeability reservoirs, including shale gas and tight gas, has become a major source of domestic natural gas supply. In 2008, low-permeability reservoirs accounted for about 40% of natural gas production and about 35% of natural gas consumption in the United States. Permeability is a measure of the rate at which liquids and gases can move through rock. Low-permeability natural gas reservoirs encompass the shale, sandstone, and carbonate formations whose natural permeability is roughly 0.1 millidarcies or below. (Permeability is measured in darcies.)

  9. Geological evolution and analysis of confirmed or suspected gas hydrate localities: Volume 9, Formation and stability of gas hydrates of the Middle America Trench

    SciTech Connect (OSTI)

    Finley, P.; Krason, J.

    1986-12-01

    This report presents a geological description of the Pacific margin of Mexico and Central America, including regional and local structural settings, geomorphology, geological history, stratigraphy, and physical properties. It provides the necessary regional and geological background for more in-depth research of the area. Detailed discussion of bottom simulating acoustic reflectors, sediment acoustic properties, and distribution of hydrates within the sediments are also included in this report. The formation and stabilization of gas hydrates in sediments are considered in terms of phase relations, nucleation, and crystallization constraints, gas solubility, pore fluid chemistry, inorganic diagenesis, and sediment organic content. Together with a depositional analysis of the area, this report is a better understanding of the thermal evolution of the locality. It should lead to an assessment of the potential for both biogenic and thermogenic hydrocarbon generation. 150 refs., 84 figs., 17 tabs.

  10. INTERGALACTIC GAS IN GROUPS OF GALAXIES: IMPLICATIONS FOR DWARF SPHEROIDAL FORMATION AND THE MISSING BARYONS PROBLEM

    SciTech Connect (OSTI)

    Freeland, E.; Wilcots, E. E-mail: ewilcots@astro.wisc.edu

    2011-09-10

    Radio galaxies with bent jets are predominantly located in groups and clusters of galaxies. We use bent-double radio sources, under the assumption that their jets are bent by ram pressure, to probe intragroup medium (IGM) gas densities in galaxy groups. This method provides a direct measurement of the intergalactic gas density and allows us to probe intergalactic gas at large radii and in systems whose IGM is too cool to be detected by the current generation of X-ray telescopes. We find gas with densities of 10{sup -3} to 10{sup -4} cm{sup -3} at group radii from 15 to 700 kpc. A rough estimate of the total baryonic mass in intergalactic gas is consistent with the missing baryons being located in the IGM of galaxy groups. The neutral gas will be easily stripped from dwarf galaxies with total masses of 10{sup 6}-10{sup 7} M{sub sun} in the groups studied here. Indications are that intragroup gas densities in less-massive systems like the Local Group should be high enough to strip gas from dwarfs like Leo T and, in combination with tides, produce dwarf spheroidals.

  11. Accretion of Chaplygin gas upon black holes: Formation of faster outflowing winds

    E-Print Network [OSTI]

    Ritabrata Biswas; Subenoy Chakraborty; Tarun Deep Saini; Banibrata Mukhopadhyay

    2011-01-24

    We study the accretion of modified Chaplygin gas upon different types of black hole. Modified Chaplygin gas is one of the best candidates for a combined model of dark matter and dark energy. In addition, from a field theoretical point of view the modified Chaplygin gas model is equivalent to that of a scalar field having a self-interacting potential. We formulate the equations related to both spherical accretion and disc accretion, and respective winds. The corresponding numerical solutions of the flow, particularly of velocity, are presented and are analyzed. We show that the accretion-wind system of modified Chaplygin gas dramatically alters the wind solutions, producing faster winds, upon changes in physical parameters, while accretion solutions qualitatively remain unaffected. This implies that modified Chaplygin gas is more prone to produce outflow which is the natural consequence of the dark energy into the system.

  12. Influence of mechanical-biological waste pre-treatment methods on the gas formation in landfills

    SciTech Connect (OSTI)

    Bockreis, A. [Technische Universitaet Darmstadt, Darmstadt University of Technology, Institute for Water Supply and Groundwater Protection, Wastewater Technology, Waste Management, Industrial Material Flows and Environmental Planning (Institute WAR), Chair of Waste Management and Waste Technology, Darmstadt (Germany)]. E-mail: a.bockreis@iwar.tu-darmstadt.de; Steinberg, I. [Technische Universitaet Darmstadt, Darmstadt University of Technology, Institute for Water Supply and Groundwater Protection, Wastewater Technology, Waste Management, Industrial Material Flows and Environmental Planning (Institute WAR), Chair of Waste Management and Waste Technology, Darmstadt (Germany)

    2005-07-01

    In order to minimise emissions and environmental impacts, only pre-treated waste should be disposed of. For the last six years, a series of continuous experiments has been conducted at the Institute WAR, TU Darmstadt, in order to determine the emissions from pre-treated waste. Different kinds of pre-treated waste were incubated in several reactors and various data, including production and composition of the gas and the leachate, were collected. In this paper, the interim results of gas production and the gas composition from different types of waste after a running time of six years are presented and discussed.

  13. A Subject-Delegated Decryption Scheme with "Tightly" Limited Authority

    E-Print Network [OSTI]

    International Association for Cryptologic Research (IACR)

    A Subject-Delegated Decryption Scheme with "Tightly" Limited Authority Lihua Wang1 , Takeshi@cs.tsukuba.ac.jp Abstract. In this paper, we present a new proxy cryptosystem named subject-delegated decryption scheme subjects. The advantage of our scheme is that the proxy authorities are tightly limited ("Tightly" Limited

  14. Integrated seismic study of naturally fractured tight gas reservoirs

    SciTech Connect (OSTI)

    Mavko, G.M.; Nur, A.

    1993-12-31

    Reflection seismic methods are, and will continue to be, the key geophysical tool for imaging these heterogeneities in the subsurface of the earth. However, in spite of great advances in field acquisition techniques and computer processing power, the primary product of conventional seismic work is still only the spatial pattern of reflectivity, which is a measure of velocity variations. Most of the amplitude information goes unused. Although fracture zones may have a reflectivity signature, more often they will not, because of steeply dipping angles, limited offset range in the acquisition, a subtle impedance mismatch, or too thin a fractured zone relative to the wavelength. In fact, there is probably no single seismic attribute that will always tell us what we need to know about fracture zones. Our objective, in the project, is to integrate the principles of rock physics into a quantitative interpretation scheme that exploits the broader spectrum of fracture zone signatures: anomalous compressional and shear wave velocities; Q and velocity dispersion; increased velocity anisotropy amplitude variation with offset (AVO) response. Our goal is to incorporate four key elements: Acquisition and processing of seismic reflection field data. Theoretical studies of the anisotropic signatures of fractured rocks. Laboratory measurements of seismic velocity, velocity anisotropy, and attenuation in reservoir and cap rocks. Integration and interpretation of seismic, well log, and laboratory data, incorporating forward modeling.

  15. Assessment of API Thread Connections Under Tight Gas Well Conditions 

    E-Print Network [OSTI]

    Bourne, Dwayne

    2010-01-14

    fracture maping, fracture and reservoir enginering), Geomechanics International (geomechanics studies), and Branagan and Asociates (microseismic fracture maping) to develop this field by combining their specialties. From seismic and production data...

  16. The Performance of Fractured Horizontal Well in Tight Gas Reservoir 

    E-Print Network [OSTI]

    Lin, Jiajing

    2012-02-14

    Horizontal wells have been used to increase reservoir recovery, especially in unconventional reservoirs, and hydraulic fracturing has been applied to further extend the contact with the reservoir to increase the efficiency of development...

  17. File:EIA-tight-gas.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New Pages Recent Changes AllApschem.pdf JumpLIQ.pdfshaleusa8.pdf Jump to:

  18. Evaluation of fracture treatment type on the recovery of gas from the cotton valley formation 

    E-Print Network [OSTI]

    Yalavarthi, Ramakrishna

    2009-05-15

    is mixed and pumped in the field. These optimum values also depend on drilling costs, fracturing costs and other economic parameters; such as gas prices, operating costs and taxes. Using information from the petroleum literature, numerical and analytical...

  19. Peptide bond formation through gas-phase reactions in the interstellar medium: formamide and acetamide as prototypes

    SciTech Connect (OSTI)

    Redondo, Pilar; Barrientos, Carmen; Largo, Antonio, E-mail: predondo@qf.uva.es [Computational Chemistry Group, Departamento de Química Física, Facultad de Ciencias, Universidad de Valladolid, E-47011 Valladolid (Spain)

    2014-09-20

    A theoretical study of the reactions of NH{sub 4}{sup +} with formaldehyde and CH{sub 5}{sup +} with formamide is carried out. The viability of these gas-phase ion-molecule reactions as possible sources of formamide and acetamide under the conditions of interstellar medium is evaluated. We report a theoretical estimation of the reaction enthalpies and an analysis of their potential energy surfaces. Formation of protonated formamide from the reaction between ammonium cation and formaldehyde is an exothermic process, but all the channels located on the potential energy surface leading to this product present net activation energies. For the reaction between methanium and formamide, different products are possible from a thermodynamic point of view. An analysis of its potential energy surface showed that formation of protonated acetamide and amino acetaldehyde takes place through barrier-free paths. Therefore, this reaction could be a feasible source of acetamide and amino acetaldehyde in space.

  20. Gas Giants in Hot Water: Inhibiting Giant Planet Formation and Planet Habitability in Dense Star Clusters Through Cosmic Time

    E-Print Network [OSTI]

    Thompson, Todd A

    2012-01-01

    I show that the temperature of nuclear star clusters, starburst clusters in M82, compact high-z galaxies, and some globular clusters of the Galaxy likely exceeded the ice line temperature (T_Ice ~ 150-170 K) during formation for a time comparable to the planet formation timescale. The protoplanetary disks within these systems will thus not have an ice line, decreasing the total material available for building protoplanetary embryos, inhibiting the formation of gas- and ice-giants if they form by core accretion, and prohibiting habitability. Planet formation by gravitational instability is similarly suppressed because Toomre's Q > 1 in all but the most massive disks. I discuss these results in the context of the observed lack of planets in 47 Tuc. I predict that a similar search for planets in the globular cluster NGC 6366 ([Fe/H] = -0.82) should yield detections, whereas (counterintuitively) the relatively metal-rich globular clusters NGC 6440, 6441, and 6388 should be devoid of giant planets. The characteris...

  1. Cold Neutral Gas in a z=4.2 Damped Lyman-alpha System: The Fuel for Star Formation

    E-Print Network [OSTI]

    J. Christopher Howk; Arthur M. Wolfe; Jason X. Prochaska

    2005-02-21

    We discuss interstellar temperature determinations using the excitation equilibrium of the ^2P levels of Si II and C II. We show how observations of the ^2P_3/2 fine structure levels of Si II and C II (which have significantly different excitation energies, corresponding to ~413 and 92 K, respectively) can be used to limit gas kinetic temperatures. We apply this method to the z=4.224 damped Lyman-alpha system toward the quasar PSS1443+27. The lack of significant absorption out of the SiII ^2P_3/2 level and the presence of very strong C II ^2P_3/2 provides an upper limit to the temperature of the C II*-bearing gas in this system. Assuming a solar Si/C ratio, the observations imply a 2-sigma limit Tfuel for star formation in this young galaxy.

  2. Formation of gas-phase peroxides in a rural atmosphere: An interpretation of the recent SOS/SERON field results

    SciTech Connect (OSTI)

    Lee, J.H.; Tang, I.N. [Brookhaven National Lab., Upton, NY (United States); Weinstein-Lloyd, J.B. [State Univ. of New York, Old Westbury, NY (United States). Chemistry/Physics Dept.

    1993-09-01

    Hydrogen perioxide (H{sub 2}O{sub 2}) and certain organic peroxides such as hydroxymethyl-hydroperoxide (HMHP), are gas-phase oxidants present in the atmosphere at ppbv concentration levels. These oxidants play an important role in atmospheric chemistry. In addition, precipitation containing H{sub 2}O{sub 2} is toxic to trees, and it has also been suggested that organic peroxides formed presumably by ozone reactions with biogenic alkenes are responsible for leaf disorders. Recently, we have developed a nonenzymatic method or aqueous-phase H{sub 2}O{sub 2} measurement, using Fenton reagent and fluorescent hydroxy- benzoic acid. The new method, in conjunction with the well-known method of p-hydroxyphenylacetic acid and horseradish peroxidase for total peroxides, and together with an improved gas scrubber to mitigate sampling line problems, has been successfully deployed in recent SOS/SERON field measurements in rural Georgia. For the first time, continuously measured and speciated gas-phase peroxide data have become available, making it possible to examine some aspects of the ozone chemistry leading to the formation of these oxidants. It is observed that daily H{sub 2}O{sub 2} maximum frequently occurs at a different time than does HMHP, and that H{sub 2}O{sub 2} concentration, but not HMHP, tends to correlate with solar fluxes measured at the same location. These findings seem to indicate that the formation mechanisms for H{sub 2}O{sub 2} and organic peroxides are basically different. It is likely that H{sub 2}O{sub 2} is formed from radical-radical recombination, while HMHP is formed by ozone-alkene reactions. Since the gas-phase ozone-alkene reactions are usually too slow to account for the diurnal concentration variations observed for HMHP, heterogeneous processes involving ozone and alkenes are also a possibility.

  3. Dynamics of plasma expansion and shockwave formation in femtosecond laser-ablated aluminum plumes in argon gas at atmospheric pressures

    SciTech Connect (OSTI)

    Miloshevsky, Alexander; Harilal, Sivanandan S.; Miloshevsky, Gennady Hassanein, Ahmed

    2014-04-15

    Plasma expansion with shockwave formation during laser ablation of materials in a background gasses is a complex process. The spatial and temporal evolution of pressure, temperature, density, and velocity fields is needed for its complete understanding. We have studied the expansion of femtosecond (fs) laser-ablated aluminum (Al) plumes in Argon (Ar) gas at 0.5 and 1 atmosphere (atm). The expansion of the plume is investigated experimentally using shadowgraphy and fast-gated imaging. The computational fluid dynamics (CFD) modeling is also carried out. The position of the shock front measured by shadowgraphy and fast-gated imaging is then compared to that obtained from the CFD modeling. The results from the three methods are found to be in good agreement, especially during the initial stage of plasma expansion. The computed time- and space-resolved fields of gas-dynamic parameters have provided valuable insights into the dynamics of plasma expansion and shockwave formation in fs-pulse ablated Al plumes in Ar gas at 0.5 and 1?atm. These results are compared to our previous data on nanosecond (ns) laser ablation of Al [S. S. Harilal et al., Phys. Plasmas 19, 083504 (2012)]. It is observed that both fs and ns plumes acquire a nearly spherical shape at the end of expansion in Ar gas at 1?atm. However, due to significantly lower pulse energy of the fs laser (5 mJ) compared to pulse energy of the ns laser (100 mJ) used in our studies, the values of pressure, temperature, mass density, and velocity are found to be smaller in the fs laser plume, and their time evolution occurs much faster on the same time scale. The oscillatory shock waves clearly visible in the ns plume are not observed in the internal region of the fs plume. These experimental and computational results provide a quantitative understanding of plasma expansion and shockwave formation in fs-pulse and ns-pulse laser ablated Al plumes in an ambient gas at atmospheric pressures.

  4. Contribution of oceanic gas hydrate dissociation to the formation of Arctic Ocean methane plumes

    SciTech Connect (OSTI)

    Reagan, M.; Moridis, G.; Elliott, S.; Maltrud, M.

    2011-06-01

    Vast quantities of methane are trapped in oceanic hydrate deposits, and there is concern that a rise in the ocean temperature will induce dissociation of these hydrate accumulations, potentially releasing large amounts of carbon into the atmosphere. Because methane is a powerful greenhouse gas, such a release could have dramatic climatic consequences. The recent discovery of active methane gas venting along the landward limit of the gas hydrate stability zone (GHSZ) on the shallow continental slope (150 m - 400 m) west of Svalbard suggests that this process may already have begun, but the source of the methane has not yet been determined. This study performs 2-D simulations of hydrate dissociation in conditions representative of the Arctic Ocean margin to assess whether such hydrates could contribute to the observed gas release. The results show that shallow, low-saturation hydrate deposits, if subjected to recently observed or future predicted temperature changes at the seafloor, can release quantities of methane at the magnitudes similar to what has been observed, and that the releases will be localized near the landward limit of the GHSZ. Both gradual and rapid warming is simulated, along with a parametric sensitivity analysis, and localized gas release is observed for most of the cases. These results resemble the recently published observations and strongly suggest that hydrate dissociation and methane release as a result of climate change may be a real phenomenon, that it could occur on decadal timescales, and that it already may be occurring.

  5. Dynamics and control of electromagnetic satellite formations

    E-Print Network [OSTI]

    Ahsun, Umair, 1972-

    2007-01-01

    Satellite formation flying is an enabling technology for many space missions, especially for space-based telescopes. Usually there is a tight formation-keeping requirement that may need constant expenditure of fuel or at ...

  6. The supergiant shell with triggered star formation in Irr galaxy IC 2574: neutral and ionized gas kinematics

    E-Print Network [OSTI]

    Egorov, O V; Moiseev, A V; Smirnov-Pinchukov, G V

    2014-01-01

    We analyse the ionized gas kinematics in the star formation regions of the supergiant shell (SGS) of the IC 2574 galaxy using observations with the Fabry-Perot interferometer at the 6-m telescope of SAO RAS; the data of the THINGS survey are used to analyze the neutral gas kinematics in the area. We perform the 'derotation' of the H-alpha and HI data cubes and show its efficiency in kinematics analysis. We confirm the SGS expansion velocity 25 km/s obtained by Walter & Brinks (1999) and conclude that the SGS is located at the far side of the galactic disc plane. We determine the expansion velocities, kinematic ages, and the required mechanical energy input rates for four star formation complexes in the walls of the SGS; for the remaining ones we give the limiting values of the above parameters. A comparison with the age and energy input of the complexes' stellar population shows that sufficient energy is fed to all HII regions except one. We discuss in detail the possible nature of this region and that of...

  7. Preliminary formation analysis for compressed air energy storage in depleted natural gas reservoirs : a study for the DOE Energy Storage Systems Program.

    SciTech Connect (OSTI)

    Gardner, William Payton

    2013-06-01

    The purpose of this study is to develop an engineering and operational understanding of CAES performance for a depleted natural gas reservoir by evaluation of relative permeability effects of air, water and natural gas in depleted natural gas reservoirs as a reservoir is initially depleted, an air bubble is created, and as air is initially cycled. The composition of produced gases will be evaluated as the three phase flow of methane, nitrogen and brine are modeled. The effects of a methane gas phase on the relative permeability of air in a formation are investigated and the composition of the produced fluid, which consists primarily of the amount of natural gas in the produced air are determined. Simulations of compressed air energy storage (CAES) in depleted natural gas reservoirs were carried out to assess the effect of formation permeability on the design of a simple CAES system. The injection of N2 (as a proxy to air), and the extraction of the resulting gas mixture in a depleted natural gas reservoir were modeled using the TOUGH2 reservoir simulator with the EOS7c equation of state. The optimal borehole spacing was determined as a function of the formation scale intrinsic permeability. Natural gas reservoir results are similar to those for an aquifer. Borehole spacing is dependent upon the intrinsic permeability of the formation. Higher permeability allows increased injection and extraction rates which is equivalent to more power per borehole for a given screen length. The number of boreholes per 100 MW for a given intrinsic permeability in a depleted natural gas reservoir is essentially identical to that determined for a simple aquifer of identical properties. During bubble formation methane is displaced and a sharp N2methane boundary is formed with an almost pure N2 gas phase in the bubble near the borehole. During cycling mixing of methane and air occurs along the boundary as the air bubble boundary moves. The extracted gas mixture changes as a function of time and proximity of the bubble boundary to the well. For all simulations reported here, with a formation radius above 50 m the maximum methane composition in the produced gas phase was less than 0.5%. This report provides an initial investigation of CAES in a depleted natural gas reservoir, and the results will provide useful guidance in CAES system investigation and design in the future.

  8. Neutral hydrogen gas, past and future star-formation in galaxies in and around the 'Sausage' merging galaxy cluster

    E-Print Network [OSTI]

    Stroe, Andra; Rottgering, Huub J A; Sobral, David; van Weeren, Reinout; Dawson, William

    2015-01-01

    CIZA J2242.8+5301 ($z = 0.188$, nicknamed 'Sausage') is an extremely massive ($M_{200}\\sim 2.0 \\times 10^{15}M_\\odot$ ), merging cluster with shock waves towards its outskirts, which was found to host numerous emission-line galaxies. We performed extremely deep Westerbork Synthesis Radio Telescope HI observations of the 'Sausage' cluster to investigate the effect of the merger and the shocks on the gas reservoirs fuelling present and future star formation (SF) in cluster members. By using spectral stacking, we find that the emission-line galaxies in the 'Sausage' cluster have, on average, as much HI gas as field galaxies (when accounting for the fact cluster galaxies are more massive than the field galaxies), contrary to previous studies. Since the cluster galaxies are more massive than the field spirals, they may have been able to retain their gas during the cluster merger. The large HI reservoirs are expected to be consumed within $\\sim0.75-1.0$ Gyr by the vigorous SF and AGN activity and/or driven out by t...

  9. Gas infall into atomic cooling haloes: on the formation of protogalactic disks and supermassive black holes at z > 10

    E-Print Network [OSTI]

    Prieto, Joaquin; Haiman, Zoltan

    2013-01-01

    We have performed cosmo-hydro simulations using the RAMSES code to study atomic cooling (ACHs) haloes at z=10 with masses 5E7Msun10 to date. We examine the morphology, angular momentum (AM), thermodynamic, and turbulence of these haloes, in order to assess the prevalence of disks and supermassive black holes (SMBHs). We find no correlation between either the magnitude or the direction of the AM of the gas and its parent DM halo. Only 3 haloes form rotationally supported cores. Two of the most massive haloes form massive, compact overdense blobs. These blobs have an accretion rate ~0.5 Msun/yr (at a distance of 100 pc), and are possible sites of SMBH formation. Our results suggest that the degree of rotational support and the fate of the gas in a halo is determined by its large-scale environment and merger history. In particular, the two haloes forming blobs are located at knots of the cosmic web, cooled early on, and experienced many mergers. The gas in these haloes is lumpy and highly turbulent, with Mach N....

  10. Air Tightness of US Homes: Model Development

    SciTech Connect (OSTI)

    Sherman, Max H.

    2006-05-01

    Air tightness is an important property of building envelopes. It is a key factor in determining infiltration and related wall-performance properties such as indoor air quality, maintainability and moisture balance. Air leakage in U.S. houses consumes roughly 1/3 of the HVAC energy but provides most of the ventilation used to control IAQ. The Lawrence Berkeley National Laboratory has been gathering residential air leakage data from many sources and now has a database of more than 100,000 raw measurements. This paper uses that database to develop a model for estimating air leakage as a function of climate, building age, floor area, building height, floor type, energy-efficiency and low-income designations. The model developed can be used to estimate the leakage distribution of populations of houses.

  11. Molecular gas and star formation towards the IR dust bubble S24 and its environs

    E-Print Network [OSTI]

    Cappa, C E; Firpo, V; Vasquez, J; López-Caraballo, C H; Rubio, M; Vazzano, M M

    2015-01-01

    We present a multi-wavelength analysis of the infrared dust bubble S24, and its environs, with the aim of investigating the characteristics of the molecular gas and the interstellar dust linked to them, and analyzing the evolutionary status of the young stellar objects (YSOs) identified there. Using APEX data, we mapped the molecular emission in the CO(2-1), $^{13}$CO(2-1), C$^{18}$O(2-1), and $^{13}$CO(3-2) lines in a region of about 5'x 5' in size around the bubble. The cold dust distribution was analyzed using ATLASGAL and Herschel images. Complementary IR and radio data were also used.The molecular gas linked to the S24 bubble, G341.220-0.213, and G341.217-0.237 has velocities between -48.0 km sec$^{-1}$ and -40.0 km sec$^{-1}$. The gas distribution reveals a shell-like molecular structure of $\\sim$0.8 pc in radius bordering the bubble. A cold dust counterpart of the shell is detected in the LABOCA and Herschel images.The presence of extended emission at 24 $\\mu$m and radio continuum emission inside the b...

  12. HST-COS SPECTROSCOPY OF THE COOLING FLOW IN A1795—EVIDENCE FOR INEFFICIENT STAR FORMATION IN CONDENSING INTRACLUSTER GAS

    SciTech Connect (OSTI)

    McDonald, Michael; Ehlert, Steven; Roediger, Joel; Veilleux, Sylvain

    2014-08-20

    We present far-UV spectroscopy from the Cosmic Origins Spectrograph on the Hubble Space Telescope of a cool, star-forming filament in the core of A1795. These data, which span 1025 Å < ?{sub rest} < 1700 Å, allow for the simultaneous modeling of the young stellar populations and the intermediate-temperature (10{sup 5.5} K) gas in this filament, which is far removed (?30 kpc) from the direct influence of the central active galactic nucleus. Using a combination of UV absorption line indices and stellar population synthesis modeling, we find evidence for ongoing star formation, with the youngest stars having ages of 7.5{sub ?2.0}{sup +2.5} Myr and metallicities of 0.4{sub ?0.1}{sup +0.2} Z {sub ?}. The latter is consistent with the local metallicity of the intracluster medium. We detect the O VI ?1038 line, measuring a flux of f {sub O} {sub VI,} {sub 1038} = 4.0 ± 0.9 × 10{sup –17} erg s{sup –1} cm{sup –2}. The O VI ?1032 line is redshifted such that it is coincident with a strong Galactic H{sub 2} absorption feature, and is not detected. The measured O VI ?1038 flux corresponds to a cooling rate of 0.85 ± 0.2 (stat) ± 0.15 (sys) M {sub ?} yr{sup –1} at ?10{sup 5.5} K, assuming that the cooling proceeds isochorically, which is consistent with the classical X-ray luminosity-derived cooling rate in the same region. We measure a star formation rate of 0.11 ± 0.02 M {sub ?} yr{sup –1} from the UV continuum, suggesting that star formation is proceeding at 13{sub ?2}{sup +3}% efficiency in this filament. We propose that this inefficient star formation represents a significant contribution to the larger-scale cooling flow problem.

  13. Efficient boron-carbon-nitrogen nanotube formation via combined laser-gas flow levitation

    DOE Patents [OSTI]

    Whitney, R Roy; Jordan, Kevin; Smith, Michael W

    2015-03-24

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z.

  14. Efficient boron nitride nanotube formation via combined laser-gas flow levitation

    DOE Patents [OSTI]

    Whitney, R. Roy; Jordan, Kevin; Smith, Michael

    2014-03-18

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z.

  15. Studies Related to Chemical Mechanisms of Gas Formation in Hanford High-Level Nuclear Wastes

    SciTech Connect (OSTI)

    E. Kent Barefield; Charles L. Liotta; Henry M. Neumann

    2002-04-08

    The objective of this work is to develop a more detailed mechanistic understanding of the thermal reactions that lead to gas production in certain high-level waste storage tanks at the Hanford, Washington site. Prediction of the combustion hazard for these wastes and engineering parameters for waste processing depend upon both a knowledge of the composition of stored wastes and the changes that they undergo as a result of thermal and radiolytic decomposition. Since 1980 when Delagard first demonstrated that gas production (H2and N2O initially, later N2 and NH3)in the affected tanks was related to oxidative degradation of metal complexants present in the waste, periodic attempts have been made to develop detailed mechanisms by which the gases were formed. These studies have resulted in the postulation of a series of reactions that account for many of the observed products, but which involve several reactions for which there is limited, or no, precedent. For example, Al(OH)4 has been postulated to function as a Lewis acid to catalyze the reaction of nitrite ion with the metal complexants, NO is proposed as an intermediate, and the ratios of gaseous products may be a result of the partitioning of NO between two or more reactions. These reactions and intermediates have been the focus of this project since its inception in 1996.

  16. Formation of Spiral-Arm Spurs and Bound Clouds in Vertically Stratified Galactic Gas Disks

    E-Print Network [OSTI]

    Woong-Tae Kim; Eve C. Ostriker

    2006-03-28

    (Abridged) We investigate the growth of spiral-arm substructure in vertically stratified, self-gravitating, galactic gas disks, using local numerical MHD simulations. Our new models extend our previous 2D studies (Kim & Ostriker 2002), which showed that a magnetized spiral shock in a thin disk can undergo magneto-Jeans instability (MJI), resulting in interarm spur structures and massive fragments. Similar spur features have recently been seen in high-resolution observations of several galaxies. Here, we consider two sets of numerical models: 2D models that use a thick-disk gravitational kernel, and 3D runs with explicit vertical stratification. When disks are sufficiently magnetized and self-gravitating, the result in both sorts of models is the growth of spiral-arm substructure similar to that in our previous razor-thin models. Reduced self-gravity in thick disks increases the spur spacing to ~10 times the Jeans length at the arm peak. Bound clouds that form from spur fragmentation have masses ~(1-3)x10^7 Msun each, a factor ~3-8 times larger than in razor-thin models with the same gas surface density and stellar spiral arm strength. We find that unmagnetized or weakly magnetized 2D models are unstable to the wiggle instability (WI) previously identified by Wada & Koda (2004), and proposed as a potential spur- and clump-forming mechanism. However,our fully 3D models do not show this effect. Non-steady motions and strong vertical shear prevent coherent vortical structures from forming, evidently suppressing the WI that appears in 2D (isothermal) runs. We also find no clear traces of Parker instability in the nonlinear spiral arm substructures that emerge (in self-gravitating models), although conceivably Parker modes may help seed the MJI at early stages since azimuthal wavelengths are similar.

  17. CARMA Large Area Star Formation Survey: project overview with analysis of dense gas structure and kinematics in Barnard 1

    SciTech Connect (OSTI)

    Storm, Shaye; Mundy, Lee G.; Lee, Katherine I.; Teuben, Peter; Pound, Marc W.; Salter, Demerese M.; Chen, Che-Yu; Gong, Hao; Fernández-López, Manuel; Looney, Leslie W.; Segura-Cox, Dominique M.; Rosolowsky, Erik; Arce, Héctor G.; Plunkett, Adele L.; Ostriker, Eve C.; Volgenau, Nikolaus H.; Shirley, Yancy L.; Tobin, John J.; Kwon, Woojin; Isella, Andrea; and others

    2014-10-20

    We present details of the CARMA Large Area Star Formation Survey (CLASSy), while focusing on observations of Barnard 1. CLASSy is a CARMA Key Project that spectrally imaged N{sub 2}H{sup +}, HCO{sup +}, and HCN (J = 1 ? 0 transitions) across over 800 square arcminutes of the Perseus and Serpens Molecular Clouds. The observations have angular resolution near 7'' and spectral resolution near 0.16 km s{sup –1}. We imaged ?150 square arcminutes of Barnard 1, focusing on the main core, and the B1 Ridge and clumps to its southwest. N{sub 2}H{sup +} shows the strongest emission, with morphology similar to cool dust in the region, while HCO{sup +} and HCN trace several molecular outflows from a collection of protostars in the main core. We identify a range of kinematic complexity, with N{sub 2}H{sup +} velocity dispersions ranging from ?0.05 to 0.50 km s{sup –1} across the field. Simultaneous continuum mapping at 3 mm reveals six compact object detections, three of which are new detections. A new, non-binary dendrogram algorithm is used to analyze dense gas structures in the N{sub 2}H{sup +} position-position-velocity (PPV) cube. The projected sizes of dendrogram-identified structures range from about 0.01 to 0.34 pc. Size-linewidth relations using those structures show that non-thermal line-of-sight velocity dispersion varies weakly with projected size, while rms variation in the centroid velocity rises steeply with projected size. Comparing these relations, we propose that all dense gas structures in Barnard 1 have comparable depths into the sky, around 0.1-0.2 pc; this suggests that overdense, parsec-scale regions within molecular clouds are better described as flattened structures rather than spherical collections of gas. Science-ready PPV cubes for Barnard 1 molecular emission are available for download.

  18. Electrochemical formation of hydroxide for enhancing carbon dioxide and acid gas uptake by a solution

    DOE Patents [OSTI]

    Rau, Gregory Hudson (Castro Valley, CA)

    2012-05-15

    A system is described for forming metal hydroxide from a metal carbonate utilizing a water electrolysis cell having an acid-producing anode and a hydroxyl-producing cathode immersed in a water solution of sufficient ionic content to allow an electric current to pass between the hydroxyl-producing cathode and the acid-producing anode. A metal carbonate, in particular water-insoluble calcium carbonate or magnesium carbonate, is placed in close proximity to the acid-producing anode. A direct current electrical voltage is provided across the acid-producing anode and the hydroxyl-producing cathode sufficient to generate acid at the acid-producing anode and hydroxyl ions at the hydroxyl-producing cathode. The acid dissolves at least part of the metal carbonate into metal and carbonate ions allowing the metal ions to travel toward the hydroxyl-producing cathode and to combine with the hydroxyl ions to form the metal hydroxide. The carbonate ions travel toward the acid-producing anode and form carbonic acid and/or water and carbon dioxide. Among other uses, the metal hydroxide formed can be employed to absorb acid gases such as carbon dioxide from a gas mixture. The invention can also generate hydrogen and oxidative gases such as oxygen or chlorine.

  19. Kinematics of Arp 270: gas flows, nuclear activity, and two regimes of star formation

    E-Print Network [OSTI]

    Zaragoza-Cardiel, J; Beckman, J E; Blasco-Herrera, J; García-Lorenzo, B; Camps, A; Gonzalez-Martin, O; Almeida, C Ramos; Loiseau, N; Gutiérrez, L

    2013-01-01

    We have observed the Arp 270 system (NGC 3395 & NGC 3396) in H{\\alpha} emission using the GH{\\alpha}FaS Fabry-Perot spectrometer on the 4.2m William Herschel Telescope (La Palma). In NGC 3396, which is edge-on to us, we detect gas inflow towards the centre, and also axially confined opposed outflows, characteristic of galactic superwinds, and we go on to examine the possibility that there is a shrouded AGN in the nucleus. The combination of surface brightness, velocity and velocity dispersion information enabled us to measure the radii, FWHM, and the masses of 108 HII regions in both galaxies. We find two distinct modes of physical behaviour, for high and lower luminosity regions. We note that the most luminous regions show especially high values for their velocity dispersions and hypothesize that these occur because the higher luminosity regions form from higher mass, gravitationally bound clouds while those at lower luminosity HII regions form within molecular clouds of lower mass, which are pressure co...

  20. Gas dynamics in tidal dwarf galaxies: disc formation at z=0

    E-Print Network [OSTI]

    Lelli, F; Brinks, E; Bournaud, F; McGaugh, S S; Lisenfeld, U; Weilbacher, P M; Boquien, M; Revaz, Y; Braine, J; Koribalski, B S; Belles, P -E

    2015-01-01

    Tidal dwarf galaxies (TDGs) are recycled objects that form within the collisional debris of interacting/merging galaxies. They are expected to be devoid of non-baryonic dark matter, since they can form only from dissipative material ejected from the discs of the progenitor galaxies. We investigate the gas dynamics in a sample of six bona-fide TDGs around three interacting and post-interacting systems: NGC 4694, NGC 5291, and NGC 7252 ("Atoms for Peace"). For NGC 4694 and NGC 5291 we analyse existing HI data from the Very Large Array (VLA), while for NGC 7252 we present new HI observations from the Jansky VLA together with long-slit and integral-field optical spectroscopy. For all six TDGs, the HI emission can be described by rotating disc models. These HI discs, however, have undergone less than a full rotation since the time of the interaction/merger event, raising the question of whether they are in dynamical equilibrium. Assuming that these discs are in equilibrium, the inferred dynamical masses are consis...

  1. Beyond the Tonks-Girardeau Gas: Strongly Correlated Regime in Quasi-One-Dimensional Bose Gases

    SciTech Connect (OSTI)

    Astrakharchik, G.E.; Boronat, J.; Casulleras, J.; Giorgini, S.

    2005-11-04

    We consider a homogeneous 1D Bose gas with contact interactions and a large attractive coupling constant. This system can be realized in tight waveguides by exploiting a confinement induced resonance of the effective 1D scattering amplitude. By using the diffusion Monte Carlo method we show that, for small densities, the gaslike state is well described by a gas of hard rods. The critical density for cluster formation is estimated using the variational Monte Carlo method. The behavior of the correlation functions and of the frequency of the lowest breathing mode for harmonically trapped systems shows that the gas is more strongly correlated than in the Tonks-Girardeau regime.

  2. Influence of Gas Flow Rate for Formation of Aligned Nanorods in ZnO Thin Films for Solar-Driven Hydrogen Production

    SciTech Connect (OSTI)

    Shet, S.; Chen, L.; Tang, H.; Nuggehalli, R.; Wang, H.; Yan, Y.; Turner, J.; Al-Jassim, M.

    2012-04-01

    ZnO thin films have been deposited in mixed Ar/N{sub 2} gas ambient at substrate temperature of 500 C by radiofrequency sputtering of ZnO targets. We find that an optimum N{sub 2}-to-Ar ratio in the deposition ambient promotes the formation of well-aligned nanorods. ZnO thin films grown in ambient with 25% N{sub 2} gas flow rate promoted nanorods aligned along c-axis and exhibit significantly enhanced photoelectrochemical (PEC) response, compared with ZnO thin films grown in an ambient with different N{sub 2}-to-Ar gas flow ratios. Our results suggest that chamber ambient is critical for the formation of aligned nanostructures, which offer potential advantages for improving the efficiency of PEC water splitting for H{sub 2} production.

  3. Second-order susceptibility from a tight-binding Hamiltonian 

    E-Print Network [OSTI]

    Dumitrica, T.; Graves, JS; Allen, Roland E.

    1998-01-01

    Using a new formalism that modifies a tight-binding Hamiltonian to include interaction with a time-dependent electromagnetic field, we have obtained an analytical expression for the second-order susceptibility. This expression has been used...

  4. The star formation main sequence and stellar mass assembly of galaxies in the Illustris simulation

    E-Print Network [OSTI]

    Sparre, Martin

    Understanding the physical processes that drive star formation is a key challenge for galaxy formation models. In this paper, we study the tight correlation between the star formation rate (SFR) and stellar mass of galaxies ...

  5. www.myresources.com.au OIL & GAS BULLETIN VOL. 15, NO. 11 PAGE 9 Safety first: Oil rigs off the north west shelf will be studied for

    E-Print Network [OSTI]

    , petrophysics, geomechanics and drilling issues and map the tight gas sweet spots of the Whicher Range field

  6. DOE's Early Investment in Shale Gas Technology Producing Results...

    Broader source: Energy.gov (indexed) [DOE]

    sources of natural gas such as Devonian shales, coals, and low permeability or "tight" sands. Recognizing the need for research and development to quantify these unconventional...

  7. Project Title Economic Modeling & Unconventional Gas Resource Appraisal Program Line Tough Gas

    E-Print Network [OSTI]

    Santos, Juan

    support to assess the economic viability of new tough gas plays (tight gas, shale gas, CBM). Project are illustrated using the US shale gas plays as case templates. Discounted cash flow models are applied1 Project Title Economic Modeling & Unconventional Gas Resource Appraisal Program Line Tough Gas

  8. REGULATORY COOPERATION COUNCIL - WORK PLANNING FORMAT: Natural...

    Energy Savers [EERE]

    FORMAT: Natural Gas Use in Transportation REGULATORY COOPERATION COUNCIL - WORK PLANNING FORMAT: Natural Gas Use in Transportation RCC Workplan NGV.PDF More Documents &...

  9. XML Index Recommendation with Tight Optimizer Iman Elghandour 1

    E-Print Network [OSTI]

    Aboulnaga, Ashraf

    workload while taking into account the cost of updating the index on data modification. RecommendingXML Index Recommendation with Tight Optimizer Coupling Iman Elghandour 1 , Ashraf Aboulnaga 1 the best set of indexes for a given workload. In this paper, we present an XML Index Advisor that solves

  10. Documentation of the Oil and Gas Supply Module (OGSM)

    SciTech Connect (OSTI)

    1998-01-01

    The purpose of this report is to define the objectives of the Oil and Gas Supply Model (OGSM), to describe the model`s basic approach, and to provide detail on how the model works. This report is intended as a reference document for model analysts, users, and the public. Projected production estimates of US crude oil and natural gas are based on supply functions generated endogenously within National Energy Modeling System (NEMS) by the OGSM. OGSM encompasses domestic crude oil and natural gas supply by both conventional and nonconventional recovery techniques. Nonconventional recovery includes enhanced oil recovery (EOR), and unconventional gas recovery (UGR) from tight gas formations, Devonian/Antrim shale and coalbeds. Crude oil and natural gas projections are further disaggregated by geographic region. OGSM projects US domestic oil and gas supply for six Lower 48 onshore regions, three offshore regions, and Alaska. The general methodology relies on forecasted profitability to determine exploratory and developmental drilling levels for each region and fuel type. These projected drilling levels translate into reserve additions, as well as a modification of the production capacity for each region. OGSM also represents foreign trade in natural gas, imports and exports by entry region. Foreign gas trade may occur via either pipeline (Canada or Mexico), or via transport ships as liquefied natural gas (LNG). These import supply functions are critical elements of any market modeling effort.

  11. Investigation of Vortex Structures in Gas-Discharge Nonneutral Electron Plasma: III. Pulse Ejection of Electrons at the Formation and Radial Oscillations of Vortex Structure

    E-Print Network [OSTI]

    Kervalishvili, N A

    2015-01-01

    The results of experimental investigations of electron ejection from gas-discharge nonneutral electron plasma at the formation and radial oscillations of vortex structure have been presented. The electrons are injected from the vortex structure and the adjacent region of electron sheath in the form of pulses the duration and periodicity of which are determined by the processes of evolution and dynamics of this structure. The possible mechanisms of pulse ejection of electrons are considered. The influence of electron ejection on other processes in discharge electron sheath is analyzed.

  12. Gas separation membrane module assembly

    DOE Patents [OSTI]

    Wynn, Nicholas P (Palo Alto, CA); Fulton, Donald A. (Fairfield, CA)

    2009-03-31

    A gas-separation membrane module assembly and a gas-separation process using the assembly. The assembly includes a set of tubes, each containing gas-separation membranes, arranged within a housing. The housing contains a tube sheet that divides the space within the housing into two gas-tight spaces. A permeate collection system within the housing gathers permeate gas from the tubes for discharge from the housing.

  13. Potential for Natural Gas Storage in Deep Basalt Formations at Canoe Ridge, Washington State: A Hydrogeologic Assessment

    SciTech Connect (OSTI)

    Reidel, Steve P.; Spane, Frank A.; Johnson, Vernon G.

    2005-09-24

    Between 1999 and 2002, Pacific Gas Transmission Company (PGT) (now TransCanada Pipeline Company) and AVISTA Corporation, together with technical support provided by the Pacific Northwest National Laboratory and the U.S. Department of Energy (DOE) examined the feasibility of developing a subsurface, natural gas-storage facility in deep, underlying Columbia River basalt in south-central Washington state. As part of this project, the 100 Circles #1 well was drilled and characterized in addition to surface studies. This report provides data and interpretations of the geology and hydrology collected specific to the Canoe Ridge site as part of the U.S. DOE funding to the Pacific Northwest National Laboratory in support of this project.

  14. Analysis of stress sensitivity and its influence on oil production from tight reservoirs

    E-Print Network [OSTI]

    Lei, Qun; Xiong, Wei; Yuan, Cui; Wu, Yu-Shu

    2008-01-01

    low-permeability tight oil reservoirs are inadvisable to be developed under large pressurelow permeability cores Effect of Stress Sensitivity on Oil Production During oil production from tight oil reservoirs, in addition to pressure

  15. I No cough, wheeze, chest tightness, or shortness of breath during the day or night

    E-Print Network [OSTI]

    Shen, Jun

    Doing Well I No cough, wheeze, chest tightness, or shortness of breath during the day or night I hours after taking the oral steroid. Asthma Is Getting Worse I Cough, wheeze, chest tightness

  16. Large-scale shock-ionized and photo-ionized gas in M83: the impact of star formation

    E-Print Network [OSTI]

    Hong, Sungryong; Dopita, Michael A; Blair, William P; Whitmore, Bradley C; Balick, Bruce; Bond, Howard E; Carollo, Marcella; Disney, Michael J; Frogel, Jay A; Hall, Donald; Holtzman, Jon A; Kimble, Randy A; McCarthy, Patrick J; O'Connell, Robert W; Paresce, Francesco; Saha, Abhijit; Silk, Joseph I; Trauger, John T; Walker, Alistair R; Windhorst, Rogier A; Young, Erick T; Mutchler, Max

    2011-01-01

    We investigate the ionization structure of the nebular gas in M83 using the line diagnostic diagram, [O III](5007 \\degA)/H{\\beta} vs. [S II](6716 \\deg A+6731 \\deg A)/H{\\alpha} with the newly available narrowband images from the Wide Field Camera 3 (WFC3) of the Hubble Space Telescope (HST). We produce the diagnostic diagram on a pixel-by-pixel (0.2" x 0.2") basis and compare it with several photo- and shock-ionization models. For the photo-ionized gas, we observe a gradual increase of the log([O III]/H{\\beta}) ratios from the center to the spiral arm, consistent with the metallicity gradient, as the H II regions go from super solar abundance to roughly solar abundance from the center out. Using the diagnostic diagram, we separate the photo-ionized from the shock-ionized component of the gas. We find that the shock-ionized H{\\alpha} emission ranges from ~2% to about 15-33% of the total, depending on the separation criteria used. An interesting feature in the diagnostic diagram is an horizontal distribution aro...

  17. Shock-Wave Heating Model for Chondrule Formation: Hydrodynamic Simulation of Molten Droplets exposed to Gas Flows

    E-Print Network [OSTI]

    Hitoshi Miura; Taishi Nakamoto

    2006-11-09

    Millimeter-sized, spherical silicate grains abundant in chondritic meteorites, which are called as chondrules, are considered to be a strong evidence of the melting event of the dust particles in the protoplanetary disk. One of the most plausible scenarios is that the chondrule precursor dust particles are heated and melt in the high-velocity gas flow (shock-wave heating model). We developed the non-linear, time-dependent, and three-dimensional hydrodynamic simulation code for analyzing the dynamics of molten droplets exposed to the gas flow. We confirmed that our simulation results showed a good agreement in a linear regime with the linear solution analytically derived by Sekiya et al. (2003). We found that the non-linear terms in the hydrodynamical equations neglected by Sekiya et al. (2003) can cause the cavitation by producing negative pressure in the droplets. We discussed that the fragmentation through the cavitation is a new mechanism to determine the upper limit of chondrule sizes. We also succeeded to reproduce the fragmentation of droplets when the gas ram pressure is stronger than the effect of the surface tension. Finally, we compared the deformation of droplets in the shock-wave heating with the measured data of chondrules and suggested the importance of other effects to deform droplets, for example, the rotation of droplets. We believe that our new code is a very powerful tool to investigate the hydrodynamics of molten droplets in the framework of the shock-wave heating model and has many potentials to be applied to various problems.

  18. Shock-Wave Heating Model for Chondrule Formation: Hydrodynamic Simulation of Molten Droplets exposed to Gas Flows

    E-Print Network [OSTI]

    Miura, H; Miura, Hitoshi; Nakamoto, Taishi

    2006-01-01

    Millimeter-sized, spherical silicate grains abundant in chondritic meteorites, which are called as chondrules, are considered to be a strong evidence of the melting event of the dust particles in the protoplanetary disk. One of the most plausible scenarios is that the chondrule precursor dust particles are heated and melt in the high-velocity gas flow (shock-wave heating model). We developed the non-linear, time-dependent, and three-dimensional hydrodynamic simulation code for analyzing the dynamics of molten droplets exposed to the gas flow. We confirmed that our simulation results showed a good agreement in a linear regime with the linear solution analytically derived by Sekiya et al. (2003). We found that the non-linear terms in the hydrodynamical equations neglected by Sekiya et al. (2003) can cause the cavitation by producing negative pressure in the droplets. We discussed that the fragmentation through the cavitation is a new mechanism to determine the upper limit of chondrule sizes. We also succeeded t...

  19. Fields of an ultrashort tightly-focused laser pulse

    E-Print Network [OSTI]

    Li, Jian-Xing; Hatsagortsyan, Karen Z; Keitel, Christoph H

    2015-01-01

    Analytic expressions for the electromagnetic fields of an ultrashort, tightly focused, laser pulse in vacuum are derived from scalar and vector potentials, using on equal footing two small parameters connected with the waist size of the laser beam and its duration. Compared with fields derived from a complex-source-point approach and a Lax series expansion approach, the derived fields are shown to be well-behaved and accurate even in the subcycle pulse regime. Terms stemming from the scalar potential are shown to be non-negligible and could significantly influence laser-matter interactions, in particular, direct electron acceleration in vacuum by an ultrashort laser pulse.

  20. Gas Kick Mechanistic Model 

    E-Print Network [OSTI]

    Zubairy, Raheel

    2014-04-18

    Gas kicks occur during drilling when the formation pressure is greater than the wellbore pressure causing influx of gas into the wellbore. Uncontrolled gas kicks could result in blowout of the rig causing major financial ...

  1. MANAGING TIGHT BINDING RECEPTORS FOR NEW SPEARATIONS TECHNOLOGIES

    SciTech Connect (OSTI)

    DARYLE H BUSCH RICHARD S GIVENS

    2004-12-10

    Much of the earth's pollution involves compounds of the metallic elements, including actinides, strontium, cesium, technetium, and RCRA metals. Metal ions bind to molecules called ligands, which are the molecular tools that can manipulate the metal ions under most conditions. This DOE-EMSP sponsored program strives (1) to provide the foundations for using the most powerful ligands in transformational separations technologies and (2) to produce seminal examples of their applications to separations appropriate to the DOE EM mission. These ultra tight-binding ligands can capture metal ions in the most competitive of circumstances (from mineralized sites, lesser ligands, and even extremely dilute solutions), but they react so slowly that they are useless in traditional separations methodologies. Two attacks on this problem are underway. The first accommodates to the challenging molecular lethargy by developing a seminal slow separations methodology termed the soil poultice. The second designs ligands that are only tight-binding while wrapped around the targeted metal ion, but can be put in place by switch-binding and removed by switch-release. We envision a kind of molecular switching process to accelerate the union between metal ion and tight-binding ligand. Molecular switching processes are suggested for overcoming the slow natural equilibration rate with which ultra tight-binding ligands combine with metal ions. Ligands that bind relatively weakly combine with metal ions rapidly, so the trick is to convert a ligand from a weak, rapidly binding species to a powerful, slow releasing ligand--during the binding of the ligand to the metal ion. Such switch-binding ligands must react with themselves, and the reaction must take place under the influence of the metal ion. For example, our generation 1 ligands showed that a well-designed linear ligand with ends that readily combine, forms a cyclic molecule when it wraps around a metal ion. Our generation 2 ligands are even more interesting. They convert from rings to structures that wrap around a metal ion to form a cage. These ligands are called cryptands. Switch release is accomplished by photolytic cleavage of a bond to convert a cyclic ligand into a linear ligand or to break similar bonds in a cryptate. Our studies have demonstrated switch binding and switch release with cryptates of calcium. These remarkable cyclic ligands and cage-like ligands are indeed tight-binding and may, in principle, be incorporated in various separations methodologies, including the soil poultice. The soil poultice mimics the way in which microbes secrete extremely powerful ligands into the soil in order to harvest iron. The cellular membrane of the microbe recognizes the iron/ligand complex and admits it into the cell. The soil poultice uses molecularly imprinted polymers (MIPs) to play the role of the cellular membrane. Imprinting involves creation of the polymer in the presence of the metal/ligand complex. In principle, a well design ligand/MIP combination can be highly selective toward almost any targeted metal ion. The principles for that design are the focus of these investigations. An imprinting molecule can interact with the polymer through any, some, or all of the so-called supramolecular modes; e.g., hydrogen bonding, electrostatic charge, minor ligand bonding, Pi-Pi stacking, and hydrophobic and van der Waals interactions. Historically these modes of binding have given MIPs only small re-binding capacities and very limited selectivities. This program has shown that each mode of interaction can be made more powerful than previously suspected and that combinations of different supramolecular interaction modes can produce remarkable synergisms. The results of this systematic study provide a firm foundation for tailoring molecular imprinted polymers for reclamation of specific metal ion, including those important to the DOE EM mission.

  2. Sgr A* and its Environment: Low Mass Star Formation, the Origin of X-ray Gas and Collimated Outflow

    E-Print Network [OSTI]

    Yusef-Zadeh, F; Schödel, R; Roberts, D A; Cotton, W; Bushouse, H; Arendt, R; Royster, M

    2016-01-01

    We present high-resolution multiwavelength radio continuum images of the region within 150$"$ of Sgr A*, revealing a number of new extended features and stellar sources in this region. First, we detect a continuous 2" east-west ridge of radio emission, linking Sgr A* and a cluster of stars associated with IRS 13N and IRS 13E. The ridge suggests that an outflow of east-west blob-like structures is emerging from Sgr A*. We also find arc-like features within the ridge with morphologies suggestive of photoevaporative protoplanetary disks. We use near-IR fluxes to show that the emission has similar characteristics to those of a protoplanetary disk irradiated by the intense radiation field at the Galactic center. This suggests that star formation has taken place within the S cluster 2$"$ from Sgr A*. We suggest that the diffuse X-ray emission associated with Sgr A* is due to an expanding hot wind produced by the mass loss from B-type main sequence stars, and/or the disks of photoevaporation of low mass YSOs at a ra...

  3. Impact of Tight Energy Markets on Industrial Energy Planning 

    E-Print Network [OSTI]

    Elliott, R. N.

    2006-01-01

    the economy of the resilience to handle surges in demand resulting from disruptions, extreme weather or increased economic activity. We see demand for all major energy sources – natural gas, refined oil products, coal and electricity – exceeding market... exist including coal and opportunity fuels such as landfill and digester gas. All of these fuels can be much more cost competitive with grid-produced electricity than natural gas. 2) Natural gas prices have risen more quickly than have...

  4. Methods and apparatus for measuring the tightness of enclosures

    DOE Patents [OSTI]

    Modera, M.P.; Sherman, M.H.

    1987-01-13

    Disclosed are methods and apparatus for measuring tightness of an enclosure such as a building by utilizing alternating pressurization techniques. One method comprises providing apparatus capable of causing an internal volume change for the enclosure, the apparatus including a means for determining the instantaneous volume change, and a means for determining the instantaneous pressure within the enclosure. The apparatus is operated within the enclosure to change the volume thereof, and at least one of the frequency and the displacement is adjusted to achieve a root mean square pressure in the enclosure approximately equal to a reference pressure. At that pressure, the leakage of the enclosure is determined from the instantaneous displacement and instantaneous pressure values. 3 figs.

  5. Methods and apparatus for measuring the tightness of enclosures

    DOE Patents [OSTI]

    Modera, Mark P. (3815 Brighton Ave., Oakland, CA 94602); Sherman, Max H. (461 Hudson St., Oakland, CA 94618)

    1987-01-13

    Disclosed are methods and apparatus for measuring tightness of an enclosure such as a building by utilizing alternating pressurization techniques. One method comprises providing apparatus capable of causing an internal volume change for the enclosure, the apparatus including a means for determining the instantaneous volume change, and a means for determining the instantaneous pressure within the enclosure. The apparatus is operated within the enclosure to change the volume thereof, and at least one of the frequency and the displacement is adjusted to achieve a root mean square pressure in the enclosure approximately equal to a reference pressure. At that pressure, the leakage of the enclosure is determined from the instantaneous displacement and instantaneous pressure values.

  6. Crude oil prices: Are our oil markets too tight?

    SciTech Connect (OSTI)

    Simmons, M.R. [Simmons and Co. International, Houston, TX (United States)

    1997-02-01

    The answer to the question posed in the title is that tightness in the market will surely prevail through 1997. And as discussed herein, with worldwide demand expected to continue to grow, there will be a strong call on extra oil supply. Meeting those demands, however, will not be straightforward--as many observers wrongly believe--considering the industry`s practice of maintaining crude stocks at ``Just in time`` inventory levels. Further, impact will be felt from the growing rig shortage, particularly for deepwater units, and down-stream capacity limits. While these factors indicate 1997 should be another good year for the service industry, it is difficult to get any kind of consensus view from the oil price market. With most observers` information dominated by the rarely optimistic futures price of crude, as reflected by the NYMEX, the important fact is that oil prices have remained stable for three years and increased steadily through 1996.

  7. Identifying and Remediating High Water Production Problems in Basin-Centered Formations

    SciTech Connect (OSTI)

    R.L. Billingsley

    2005-12-01

    Through geochemical analyses of produced waters, petrophysics, and reservoir simulation we developed concepts and approaches for mitigating unwanted water production in tight gas reservoirs and for increasing recovery of gas resources presently considered noncommercial. Only new completion research (outside the scope of this study) will validate our hypothesis. The first task was assembling and interpreting a robust regional database of historical produced-water analyses to address the production of excessive water in basin-centered tight gas fields in the Greater Green (GGRB ) and Wind River basins (WRB), Wyoming. The database is supplemented with a sampling program in currently active areas. Interpretation of the regional water chemistry data indicates most produced waters reflect their original depositional environments and helps identify local anomalies related to basement faulting. After the assembly and evaluation phases of this project, we generated a working model of tight formation reservoir development, based on the regional nature and occurrence of the formation waters. Through an integrative approach to numerous existing reservoir concepts, we synthesized a generalized development scheme organized around reservoir confining stress cycles. This single overarching scheme accommodates a spectrum of outcomes from the GGRB and Wind River basins. Burial and tectonic processes destroy much of the depositional intergranular fabric of the reservoir, generate gas, and create a rock volume marked by extremely low permeabilities to gas and fluids. Stress release associated with uplift regenerates reservoir permeability through the development of a penetrative grain bounding natural fracture fabric. Reservoir mineral composition, magnitude of the stress cycle and local tectonics govern the degree, scale and exact mechanism of permeability development. We applied the reservoir working model to an area of perceived anomalous water production. Detailed water analyses, seismic mapping, petrophysics, and reservoir simulation indicate a lithologic and structural component to excessive in situ water permeability. Higher formation water salinity was found to be a good pay indicator. Thus spontaneous potential (SP) and resistivity ratio approaches combined with accurate formation water resistivity (Rw) information may be underutilized tools. Reservoir simulation indicates significant infill potential in the demonstration area. Macro natural fracture permeability was determined to be a key element affecting both gas and water production. Using the reservoir characterization results, we generated strategies for avoidance and mitigation of unwanted water production in the field. These strategies include (1) more selective perforation by improved pay determination, (2) using seismic attributes to avoid small-scale fault zones, and (3) utilizing detailed subsurface information to deliberately target optimally located small scale fault zones high in the reservoir gas column. Tapping into the existing natural fracture network represents opportunity for generating dynamic value. Recognizing the crucial role of stress release in the natural generation of permeability within tight reservoirs raises the possibility of manmade generation of permeability through local confining stress release. To the extent that relative permeabilities prevent gas and water movement in the deep subsurface a reduction in stress around a wellbore has the potential to increase the relative permeability conditions, allowing gas to flow. For this reason, future research into cavitation completion methods for deep geopressured reservoirs is recommended.

  8. Analysis of stress sensitivity and its influence on oil production from tight reservoirs

    E-Print Network [OSTI]

    Lei, Qun; Xiong, Wei; Yuan, Cui; Wu, Yu-Shu

    2008-01-01

    can affect well oil production. Specifically, pressure-and Its Influence on Oil Production from Tight ReservoirsAt a distance closer to oil production wells, permeability

  9. Pressure analysis of the hydromechanical fracture behaviour in stimulated tight sedimentary geothermal reservoirs

    E-Print Network [OSTI]

    Wessling, S.

    2009-01-01

    The future of Geothermal Energy. Massachusetts Institute ofthe exploitation of geothermal energy from such rocks. Wemethod to extract geothermal energy from tight sedimentary

  10. Pressure analysis of the hydromechanical fracture behaviour in stimulated tight sedimentary geothermal reservoirs

    E-Print Network [OSTI]

    Wessling, S.

    2009-01-01

    geothermal energy production because it uses a single borehole,geothermal energy from tight sedimentary reservoirs. It uses a single borehole,

  11. Formation dry-out from CO2 injection into saline aquifers: Part 1, Effects of solids precipitation and their mitigation

    E-Print Network [OSTI]

    Pruess, Karsten

    2009-01-01

    Formation in Natural Gas Storage Aquifers, Proceedings,documented for aquifer gas storage systems, where halite (

  12. Natural Gas Monthly, October 1993

    SciTech Connect (OSTI)

    Not Available

    1993-11-10

    The (NGM) Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. This month`s feature articles are: US Production of Natural Gas from Tight Reservoirs: and Expanding Rule of Underground Storage.

  13. VESSEL SEGMENTATION IN MEDICAL IMAGING USING A TIGHT-FRAME BASED ALGORITHM

    E-Print Network [OSTI]

    Chan, Raymond

    VESSEL SEGMENTATION IN MEDICAL IMAGING USING A TIGHT-FRAME BASED ALGORITHM XIAOHAO CAI, RAYMOND vessels in magnetic resonance angiography images. Our method iteratively refines a region that encloses the potential boundary of the vessels. At each iteration, we apply the tight-frame algorithm to denoise

  14. Relative energetics and structural properties of zirconia using a self-consistent tight-binding model

    E-Print Network [OSTI]

    Paxton, Anthony T.

    Relative energetics and structural properties of zirconia using a self-consistent tight We describe an empirical, self-consistent, orthogonal tight-binding model for zirconia, which allows orders the zero temperature energies of all zirconia polymorphs. The Zr-O matrix elements

  15. Seismic data restoration via data-driven tight frame Jingwei Liang1

    E-Print Network [OSTI]

    Zhang, Xiaoqun

    Seismic data restoration via data-driven tight frame Jingwei Liang1 , Jianwei Ma2 , and Xiaoqun Zhang3 ABSTRACT Restoration/interpolation of missing traces plays a crucial role in the seismic data regularization method for seismic data restoration. The main idea of the data-driven tight frame (TF

  16. Optimizing Development Strategies to Increase Reserves in Unconventional Gas Reservoirs 

    E-Print Network [OSTI]

    Turkarslan, Gulcan

    2011-10-21

    The ever increasing energy demand brings about widespread interest to rapidly, profitably and efficiently develop unconventional resources, among which tight gas sands hold a significant portion. However, optimization of development strategies...

  17. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    at Yuzovska in the eastern Dniepr-Donets Basin covers an area of 7,886 km 2 and assigns oil and gas rights to all strata to a depth of 10 km, including tight and basin-centered...

  18. Geomechanical Development of Fractured Reservoirs During Gas Production 

    E-Print Network [OSTI]

    Huang, Jian

    2013-04-05

    Within fractured reservoirs, such as tight gas reservoir, coupled processes between matrix deformation and fluid flow are very important for predicting reservoir behavior, pore pressure evolution and fracture closure. To study the coupling between...

  19. Petrophysical rock classification in the Cotton Valley tight-gas sandstone reservoir with a clustering

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    to complex pore topology resulting from diagenesis. Conventional methods that rely dominantly on hydraulic

  20. Permeability Estimation from Fracture Calibration Test Analysis in Shale and Tight Gas 

    E-Print Network [OSTI]

    Xue, Han 1988-

    2012-12-13

    .27 Log-log diagnostic plot of buildup data with model well GM ..............?.100 xiii LIST OF TABLES Page Table 2.1 Equations for before-closure pressure transient analyisis -- Mayerhofer Method (Craig and Blasingame 2006... for before-closure pressure transient analyisis -- Mayerhofer Method(Craig and Blasingame 2006) 16 After creating the graph, permeability is calculated from the slope, mM, of the resulting straight line using the following equation: 2 1 615...

  1. Naturally fractured tight gas reservoir detection optimization. Quarterly report, July 1 - September 30, 1995

    SciTech Connect (OSTI)

    NONE

    1995-12-31

    This report describes progress in the following tasks: high-resolution aeromagnetic survey of the southern Piceance Basin of western Colorado; field performance site selection of Rulison Field for seismic acquisition which covers technical work to be performed; seismic acquisition processing and associated costs;theoretical background concerning P-wave multi-azimuth 3D seismic; field data examples of P-wave multi-azimuth data; and 3D basin modeling.

  2. Integrated seismic study of naturally fractured tight gas reservoirs. Final report, September 1991--January 1995

    SciTech Connect (OSTI)

    Mavko, G.; Nur, A.

    1995-01-01

    The approach in this project has been to integrate the principles of rock physics into a quantitative processing and interpretation scheme that exploits, where possible, the broader spectrum of fracture zone signatures: (1) anomalous compressional and shear wave velocity; (2) Q and velocity dispersion; (3) increased velocity anisotropy; (4) amplitude vs. offset (AVO) response, and (5) variations in frequency content. As part of this the authors have attempted to refine some of the theoretical rock physics tools that should be applied in any field study to link the observed seismic signatures to the physical/geologic description of the fractured rock. The project had 3 key elements: (1) rock physics studies of the anisotropic viscoelastic signatures of fractured rocks, (2) acquisition and processing of seismic reflection field data, and (3) interpretation of seismic and well log data. The study site is in a producing field operated by Amoco and Arco at the southern boundary of the Powder River basin in Wyoming. During the winter of 1992--1993 the authors collected about 50 km of 9-component reflection seismic data and obtained existing log data from several wells in the vicinity. The paper gives background information on laboratory studies, seismic field studies of fracture anisotropy, and the problem of upscaling from the laboratory to the field. It discusses fluid effects on seismic anisotropy and a method for predicting stress-induced seismic anisotropy. Then results from the field experiment are presented and discussed: regional geologic framework and site description; seismic data acquisition; shear wave data and validation; and P-wave data analysis. 106 refs., 52 figs.

  3. Layered Pseudo-Steady-State Models for tight commingled gas reservoirs 

    E-Print Network [OSTI]

    El-Banbi, Ahmed

    1995-01-01

    Analysis of commingled reservoirs from limited data can be a challenge to most conventional reservoir engineering tools. The purpose of this research is to find an effective and easy technique that can be used to estimate ...

  4. Reuse of Flowback Fluids as Hydraulic Fracturing Fluids in Tight Gas Sand Reservoirs 

    E-Print Network [OSTI]

    Haghshenas, Ashkan

    2015-05-22

    . CO2/N2/foam assisted hybrid fluid was the best predicted by our model with an error of approximately 20%. The main objectives of this paper are to: (a) to investigate the feasibility of using produced water in hydraulic fracturing in sandstone...

  5. Modeling Performance of Horizontal Wells with Multiple Fractures in Tight Gas Reservoirs 

    E-Print Network [OSTI]

    Dong, Guangwei

    2011-02-22

    Multiple transverse fracturing along a horizontal well is a relatively new technology that is designed to increase well productivity by increasing the contact between the reservoir and the wellbore. For multiple transverse fractures, the performance...

  6. EIA model documentation: Documentation of the Oil and Gas Supply Module (OGSM)

    SciTech Connect (OSTI)

    1997-01-01

    The purpose of this report is to define the objectives of the Oil and Gas Supply Model (OGSM), to describe the model`s basic approach, and to provide detail on how the model works. This report is intended as a reference document for model analysts, users, and the public. Projected production estimates of US crude oil and natural gas are based on supply functions generated endogenously within National Energy Modeling System (NEMS) by the OGSM. OGSM encompasses domestic crude oil and natural gas supply by both conventional and nonconventional recovery techniques. Nonconventional recovery includes enhanced oil recovery (EOR), and unconventional gas recovery (UGR) from tight gas formations, Devonian shale and coalbeds. Crude oil and natural gas projects are further disaggregated by geographic region. OGSM projects US domestic oil and gas supply for six Lower 48 onshore regions, three offshore regions, and Alaska. The general methodology relies on forecasted drilling expenditures and average drilling costs to determine exploratory and developmental drilling levels for each region and fuel type. These projected drilling levels translate into reserve additions, as well as a modification of the production capacity for each region. OGSM also represents foreign trade in natural gas, imports and exports by entry region.

  7. How unconventional gas prospers without tax incentives

    SciTech Connect (OSTI)

    Kuuskraa, V.A.; Stevens, S.H.

    1995-12-11

    It was widely believed that the development of unconventional natural gas (coalbed methane, gas shales, and tight gas) would die once US Sec. 29 credits stopped. Quieter voices countered, and hoped, that technology advances would keep these large but difficult to produce gas resources alive and maybe even healthy. Sec. 29 tax credits for new unconventional gas development stopped at the end of 1992. Now, nearly three years later, who was right and what has happened? There is no doubt that Sec. 29 tax credits stimulated the development of coalbed methane, gas shales, and tight gas. What is less known is that the tax credits helped spawn and push into use an entire new set of exploration, completion, and production technologies founded on improved understanding of unconventional gas reservoirs. As set forth below, while the incentives inherent in Sec. 29 provided the spark, it has been the base of science and technology that has maintained the vitality of these gas sources. The paper discusses the current status; resource development; technology; unusual production, proven reserves, and well completions if coalbed methane, gas shales, and tight gas; and international aspects.

  8. A Technical and Economic Study of Completion Techniques In Five Emerging U.S. Gas Shale Plays 

    E-Print Network [OSTI]

    Agrawal, Archna

    2010-07-14

    , energy companies, both majors and independents, are turning to unconventional resources to produce the hydrocarbons required to meet market demand. From coalbed methane to low permeability (tight) gas reservoirs and gas shales, energy companies are making...

  9. Simulating the escaping atmospheres of hot gas planets in the solar neighborhood

    E-Print Network [OSTI]

    Salz, M; Schneider, P C; Schmitt, J H M M

    2015-01-01

    Absorption of high-energy radiation in planetary thermospheres is believed to lead to the formation of planetary winds. The resulting mass-loss rates can affect the evolution, particularly of small gas planets. We present 1D, spherically symmetric hydrodynamic simulations of the escaping atmospheres of 18 hot gas planets in the solar neighborhood. Our sample only includes strongly irradiated planets, whose expanded atmospheres may be detectable via transit spectroscopy. The simulations were performed with the PLUTO-CLOUDY interface, which couples a detailed photoionization and plasma simulation code with a general MHD code. We study the thermospheric escape and derive improved estimates for the planetary mass-loss rates. Our simulations reproduce the temperature-pressure profile measured via sodium D absorption in HD 189733 b, but show unexplained differences in the case of HD 209458 b. In contrast to general assumptions, we find that the gravitationally more tightly bound thermospheres of massive and compact...

  10. HIERARCHICAL STRUCTURE FORMATION AND MODES OF STAR FORMATION IN HICKSON COMPACT GROUP 31

    SciTech Connect (OSTI)

    Gallagher, S. C. [Department of Physics and Astronomy, University of Western Ontario, London, ON N6A 3K7 (Canada); Durrell, P. R. [Department of Physics and Astronomy, Youngstown State University, Youngstown, OH 44555 (United States); Elmegreen, D. M. [Department of Physics and Astronomy, Vassar College, Poughkeepsie, NY 12604 (United States); Chandar, R. [Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606-3390 (United States); English, J. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, MN R3T 2N2 (Canada); Charlton, J. C.; Gronwall, C.; Young, J. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Tzanavaris, P.; Hornschemeier, A. E. [Laboratory for X-ray Astrophysics, NASA's Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Johnson, K. E. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States); Mendes de Oliveira, C. [Instituto de Astronomia, Geofisica, e Ciencias Atmosfericas da Universidade de Sao Paulo, Sao Paulo (Brazil); Whitmore, B.; Maybhate, Aparna [Space Telescope Science Institute, Baltimore, MD 21218-2463 (United States); Zabludoff, Ann [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States)], E-mail: sgalla4@uwo.ca

    2010-02-15

    The handful of low-mass, late-type galaxies that comprise Hickson Compact Group 31 (HCG 31) is in the midst of complex, ongoing gravitational interactions, evocative of the process of hierarchical structure formation at higher redshifts. With sensitive, multicolor Hubble Space Telescope imaging, we characterize the large population of < 10 Myr old star clusters (SCs) that suffuse the system. From the colors and luminosities of the young SCs, we find that the galaxies in HCG 31 follow the same universal scaling relations as actively star-forming galaxies in the local universe despite the unusual compact group environment. Furthermore, the specific frequency of the globular cluster system is consistent with the low end of galaxies of comparable masses locally. This, combined with the large mass of neutral hydrogen and tight constraints on the amount of intragroup light, indicate that the group is undergoing its first epoch of interaction-induced star formation. In both the main galaxies and the tidal-dwarf candidate, F, stellar complexes, which are sensitive to the magnitude of disk turbulence, have both sizes and masses more characteristic of z = 1-2 galaxies. After subtracting the light from compact sources, we find no evidence for an underlying old stellar population in F-it appears to be a truly new structure. The low-velocity dispersion of the system components, available reservoir of H I, and current star formation rate of {approx}10 M {sub sun} yr{sup -1} indicate that HCG 31 is likely to both exhaust its cold gas supply and merge within {approx}1 Gyr. We conclude that the end product will be an isolated, X-ray-faint, low-mass elliptical.

  11. Towards bio-silicon interfaces: Formation of an ultra-thin self-hydrated artificial membrane composed of dipalmitoylphosphatidylcholine (DPPC) and chitosan deposited in high vacuum from the gas-phase

    SciTech Connect (OSTI)

    Retamal, María J. Cisternas, Marcelo A.; Seifert, Birger; Volkmann, Ulrich G.; Gutierrez-Maldonado, Sebastian E.; Perez-Acle, Tomas; Busch, Mark; Huber, Patrick

    2014-09-14

    The recent combination of nanoscale developments with biological molecules for biotechnological research has opened a wide field related to the area of biosensors. In the last years, device manufacturing for medical applications adapted the so-called bottom-up approach, from nanostructures to larger devices. Preparation and characterization of artificial biological membranes is a necessary step for the formation of nano-devices or sensors. In this paper, we describe the formation and characterization of a phospholipid bilayer (dipalmitoylphosphatidylcholine, DPPC) on a mattress of a polysaccharide (Chitosan) that keeps the membrane hydrated. The deposition of Chitosan (?25 Å) and DPPC (?60 Å) was performed from the gas phase in high vacuum onto a substrate of Si(100) covered with its native oxide layer. The layer thickness was controlled in situ using Very High Resolution Ellipsometry (VHRE). Raman spectroscopy studies show that neither Chitosan nor DPPC molecules decompose during evaporation. With VHRE and Atomic Force Microscopy we have been able to detect phase transitions in the membrane. The presence of the Chitosan interlayer as a water reservoir is essential for both DPPC bilayer formation and stability, favoring the appearance of phase transitions. Our experiments show that the proposed sample preparation from the gas phase is reproducible and provides a natural environment for the DPPC bilayer. In future work, different Chitosan thicknesses should be studied to achieve a complete and homogeneous interlayer.

  12. Unconventional gas outlook: resources, economics, and technologies

    SciTech Connect (OSTI)

    Drazga, B.

    2006-08-15

    The report explains the current and potential of the unconventional gas market including country profiles, major project case studies, and new technology research. It identifies the major players in the market and reports their current and forecasted projects, as well as current volume and anticipated output for specific projects. Contents are: Overview of unconventional gas; Global natural gas market; Drivers of unconventional gas sources; Forecast; Types of unconventional gas; Major producing regions Overall market trends; Production technology research; Economics of unconventional gas production; Barriers and challenges; Key regions: Australia, Canada, China, Russia, Ukraine, United Kingdom, United States; Major Projects; Industry Initiatives; Major players. Uneconomic or marginally economic resources such as tight (low permeability) sandstones, shale gas, and coalbed methane are considered unconventional. However, due to continued research and favorable gas prices, many previously uneconomic or marginally economic gas resources are now economically viable, and may not be considered unconventional by some companies. Unconventional gas resources are geologically distinct in that conventional gas resources are buoyancy-driven deposits, occurring as discrete accumulations in structural or stratigraphic traps, whereas unconventional gas resources are generally not buoyancy-driven deposits. The unconventional natural gas category (CAM, gas shales, tight sands, and landfill) is expected to continue at double-digit growth levels in the near term. Until 2008, demand for unconventional natural gas is likely to increase at an AAR corresponding to 10.7% from 2003, aided by prioritized research and development efforts. 1 app.

  13. Proceedings of the natural gas research and development contractors review meeting

    SciTech Connect (OSTI)

    Malone, R.D.; Shoemaker, H.D.; Byrer, C.W.

    1990-11-01

    The purpose of this meeting was to present results of the research in the DOE-sponsored Natural Gas Program, and simultaneously to provide a forum for real-time technology transfer, to the active research community, to the interested public, and to the natural gas industry, who are the primary users of this technology. The current research focus is to expand the base of near-term and mid-term economic gas resources through research activities in Eastern Tight Gas, Western Tight Gas, Secondary Gas Recovery (increased recovery of gas from mature fields); to enhance utilization, particularly of remote gas resources through research in Natural Gas to Liquids Conversion; and to develop additional, long term, potential gas resources through research in Gas Hydrates and Deep Gas. With the increased national emphasis on the use of natural gas, this forum has been expanded to include summaries of DOE-sponsored research in energy-related programs and perspectives on the importance of gas to future world energy. Thirty-two papers and fourteen poster presentations were given in seven formal, and one informal, sessions: Three general sessions (4 papers); Western Tight Gas (6 papers); Eastern Tight Gas (8 papers); Conventional/Speculative Resources (8 papers); and Gas to Liquids (6 papers). Individual reports are processed separately on the data bases.

  14. Air Impacts of Increased Natural Gas Acquisition, Processing, and Use: A Critical Review

    E-Print Network [OSTI]

    Jackson, Robert B.

    Air Impacts of Increased Natural Gas Acquisition, Processing, and Use: A Critical Review to rapid and intensive development of many unconventional natural gas plays (e.g., shale gas, tight sand understanding of local and regional air quality impacts of natural gas extraction, production, and use. Air

  15. The lattice Boltzmann method for isothermal micro-gaseous flow and its application in shale gas flow: a review

    E-Print Network [OSTI]

    Wang, Junjian; Kang, Qinjun; Rahman, Sheik S

    2015-01-01

    The lattice Boltzmann method (LBM) has experienced tremendous advances and been well accepted as a popular method of simulation of various fluid flow mechanisms on pore scale in tight formations. With the introduction of an effective relaxation time and slip boundary conditions, the LBM has been successfully extended to solve micro-gaseous related transport and phenomena. As gas flow in shale matrix is mostly in the slip flow and transition flow regimes, given the difficulties of experimental techniques to determine extremely low permeability, it appears that the computational methods especially the LBM can be an attractive choice for simulation of these micro-gaseous flows. In this paper an extensive overview on a number of relaxation time and boundary conditions used in LBM-like models for micro-gaseous flow are carried out and their advantages and disadvantages are discussed. Furthermore, potential application of the LBM in flow simulation in shale gas reservoirs on pore scale and representative elementary...

  16. EIA - Analysis of Natural Gas Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    storage inventories. Categories: Prices, Production, Consumption, ImportsExports & Pipelines, Storage (Released, 792010, Html format) Natural Gas Data Collection and...

  17. Tightly Correlated X-ray/H$?$ Emitting Filaments in the Superbubble and Large-Scale Superwind of NGC 3079

    E-Print Network [OSTI]

    G. Cecil; J. Bland-Hawthorn; S. Veilleux

    2002-05-29

    Using Chandra and HST we show that X-ray and H$\\alpha$ filaments that form the 1.3-kpc diameter superbubble of NGC 3079 have strikingly similar patterns at 0."8 resolution. This tight match seems to arise from cool disk gas that has been driven by the wind, with X-rays being emitted from upstream, stand-off bowshocks or by conductive cooling at the cloud/wind interfaces. We find that the soft X-ray plasma has thermal and kinetic energies of $2\\times10^{56}\\sqrt{\\eta_x}$ and $5\\times10^{54}\\sqrt{\\eta_X}$ erg respectively, where $\\eta_X$ is the filling factor of the X-ray gas and may be small; these are comparable to the energies of the optical line-emitting gas. X-rays are also seen from the base of the radio counterbubble that is obscured optically by the galaxy disk, and from the nucleus (whose spectrum shows the Fe K$\\alpha$ line). Hydrodynamical simulations reproduce the obbservations well using large filling factors within both filament systems; assuming otherwise seriously underestimates the mass loss in the superwind. The superbubble is surrounded by a fainter conical halo of X-rays that fill the area delineated by high angle, H$\\alpha$-emitting filaments, supporting our previous assertion that these filaments form the contact discontinuity/shock between galaxy gas and shocked wind. About 40\\arcsec (3 kpc) above the disk, an X-ray arc may partially close beyond the bubble, but the north-east quadrant remains open, consistent with the superwind having broken out into at least the galaxy halo.

  18. Development of an improved methodology to assess potential unconventional gas resources in North America 

    E-Print Network [OSTI]

    Salazar Vanegas, Jesus

    2007-09-17

    Since the 1970s, various private and governmental agencies have conducted studies to assess potential unconventional gas resources, particularly those resources contained in tight sands, fractured shales, and coal beds. The US Geological Survey...

  19. Integrated Hydraulic Fracture Placement and Design Optimization in Unconventional Gas Reservoirs 

    E-Print Network [OSTI]

    Ma, Xiaodan

    2013-12-10

    Unconventional reservoir such as tight and shale gas reservoirs has the potential of becoming the main source of cleaner energy in the 21th century. Production from these reservoirs is mainly accomplished through engineered hydraulic fracturing...

  20. Shortest Path Set Induced Vertex Ordering and its Application to Distributed Distance Optimal Formation Path Planning and Control on Graphs

    E-Print Network [OSTI]

    LaValle, Steven M.

    Formation Path Planning and Control on Graphs Jingjin Yu Steven M. LaValle Abstract-- For the task of moving formation, it was shown that distance optimal paths can be computed to complete with a tight convergence formation. The ordering leads to a simple distributed scheduling algorithm that assures the same convergence

  1. Nearly Tight Bounds on the Encoding Length of the Burrows-Wheeler Transform (Extended Abstract)

    E-Print Network [OSTI]

    Gupta, Ankur; Grossi, Roberto; Vitter, Jeffrey Scott

    2008-01-01

    stream_size 58925 stream_content_type text/plain stream_name anl08_018guptaa.pdf.txt stream_source_info anl08_018guptaa.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset=UTF-8 Nearly Tight Bounds...

  2. Results from Tight and Loose Coupled Multiphysics in Nuclear Fuels Performance Simulations using BISON

    SciTech Connect (OSTI)

    S. R. Novascone; B. W. Spencer; D. Andrs; R. L. Williamson; J. D. Hales; D. M. Perez

    2013-05-01

    The behavior of nuclear fuel in the reactor environment is affected by multiple physics, most notably heat conduction and solid mechanics, which can have a strong influence on each other. To provide credible solutions, a fuel performance simulation code must have the ability to obtain solutions for each of the physics, including coupling between them. Solution strategies for solving systems of coupled equations can be categorized as loosely-coupled, where the individual physics are solved separately, keeping the solutions for the other physics fixed at each iteration, or tightly coupled, where the nonlinear solver simultaneously drives down the residual for each physics, taking into account the coupling between the physics in each nonlinear iteration. In this paper, we compare the performance of loosely and tightly coupled solution algorithms for thermomechanical problems involving coupled thermal and mechanical contact, which is a primary source of interdependence between thermal and mechanical solutions in fuel performance models. The results indicate that loosely-coupled simulations require significantly more nonlinear iterations, and may lead to convergence trouble when the thermal conductivity of the gap is too small. We also apply the tightly coupled solution strategy to a nuclear fuel simulation of an experiment in a test reactor. Studying the results from these simulations indicates that perhaps convergence for either approach may be problem dependent, i.e., there may be problems for which a loose coupled approach converges, where tightly coupled won’t converge and vice versa.

  3. OCTOBER1997 THE LEADING EDGE 1429 Tight, low-porosity reservoirs can produce significant

    E-Print Network [OSTI]

    Tsvankin, Ilya

    reservoirs using surface seismic data is an important exploration problem that has attracted much attention impor- tant to obtain more information about fractured reser- voirs from 3-D P-wave data. AmpliOCTOBER1997 THE LEADING EDGE 1429 Tight, low-porosity reservoirs can produce significant amounts

  4. Pricing the American Put Using A New Class of Tight Lower Bounds Malik Magdon-Ismail

    E-Print Network [OSTI]

    Magdon-Ismail, Malik

    , and an important issue is the trade off between the pricing accuracy and the computational cost. Our approachPricing the American Put Using A New Class of Tight Lower Bounds Malik Magdon-Ismail Department of lower bounds for the price of the American put option on a dividend paying stock when the stock follows

  5. Analysis of Thermoelectric Properties of Scaled Silicon Nanowires Using an Atomistic Tight-Binding Model

    E-Print Network [OSTI]

    1 Analysis of Thermoelectric Properties of Scaled Silicon Nanowires Using an Atomistic Tight Abstract Low dimensional materials provide the possibility of improved thermoelectric performance due. As a result of suppressed phonon conduction, large improvements on the thermoelectric figure of merit, ZT

  6. Unconventional Oil and Gas Resources

    SciTech Connect (OSTI)

    2006-09-15

    World oil use is projected to grow to 98 million b/d in 2015 and 118 million b/d in 2030. Total world natural gas consumption is projected to rise to 134 Tcf in 2015 and 182 Tcf in 2030. In an era of declining production and increasing demand, economically producing oil and gas from unconventional sources is a key challenge to maintaining global economic growth. Some unconventional hydrocarbon sources are already being developed, including gas shales, tight gas sands, heavy oil, oil sands, and coal bed methane. Roughly 20 years ago, gas production from tight sands, shales, and coals was considered uneconomic. Today, these resources provide 25% of the U.S. gas supply and that number is likely to increase. Venezuela has over 300 billion barrels of unproven extra-heavy oil reserves which would give it the largest reserves of any country in the world. It is currently producing over 550,000 b/d of heavy oil. Unconventional oil is also being produced in Canada from the Athabasca oil sands. 1.6 trillion barrels of oil are locked in the sands of which 175 billion barrels are proven reserves that can be recovered using current technology. Production from 29 companies now operating there exceeds 1 million barrels per day. The report provides an overview of continuous petroleum sources and gives a concise overview of the current status of varying types of unconventional oil and gas resources. Topics covered in the report include: an overview of the history of Oil and Natural Gas; an analysis of the Oil and Natural Gas industries, including current and future production, consumption, and reserves; a detailed description of the different types of unconventional oil and gas resources; an analysis of the key business factors that are driving the increased interest in unconventional resources; an analysis of the barriers that are hindering the development of unconventional resources; profiles of key producing regions; and, profiles of key unconventional oil and gas producers.

  7. FreezeFrac Improves the Productivity of Gas Shales S. Enayatpour, E. Van Oort, T. Patzek, University of Texas At Austin

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    SPE 166482 FreezeFrac Improves the Productivity of Gas Shales S. Enayatpour, E. Van Oort, T. Patzek to unconventional hydrocarbon reservers such as oil shales, gas shales, tight gas sands, coalbed methane, and gas; Keaney et al., 2004). Successful production of oil and gas from shales with nano-Darcy range permeability

  8. UK Oil and Gas Collaborative Doctoral Training Centre (2015 start) PhD Projects at the University of Aberdeen

    E-Print Network [OSTI]

    Neri, Peter

    UK Oil and Gas Collaborative Doctoral Training Centre (2015 start) PhD Projectsst January 2015 Interviews to be held on Wednesday 4th March 2015. #12;UK Oil and Gas Collaborative of deformation in multi-layers for unconventionals (tight gas /shale gas) 2. Mature Basins 30%. Improved

  9. Steam Line Break and Station Blackout Transients for Proliferation Resistant Hexagonal Tight Lattice BWR

    SciTech Connect (OSTI)

    Upendra Rohatgi; Jae Jo; Bub Dong Chung; Hiroshi Takahashi [Brookhaven National Laboratory, Energy Sciences and Technology Department, Upton, New York 11973 (United States); Downar, T.J. [Purdue University, School of Nuclear Engineering, West Lafayette, IN 47906-1290 (United States)

    2002-07-01

    Safety analyses of a proliferation resistant, economically competitive, high conversion, boiling water reactor (HCBWR) fueled with fissile plutonium and fertile thorium oxide fuel elements, and with passive safety systems are presented here. The HCBWR developed here is characterized by a very tight lattice with a relatively small water volume fraction in the core which therefore operates with a fast reactor neutron spectrum, and a considerably improved neutron economy compared to the current generation of Light Water Reactors. A tight lattice BWR core has very narrow flow channels with a hydraulic diameter less than half of the regular BWR core. The tight lattice core presented a special challenge to core cooling, because of reduced water inventory and high friction in the core. The primary safety concern when reducing the moderator to fuel ratio and when using a tightly packed lattice arrangement is to maintain adequate cooling of the core during both normal operation and accident scenarios. In the preliminary HCBWR design, the core has been placed in a vessel with a large chimney section, and the vessel is connected with an Isolation Cooling System (ICS). The vessel is placed in a containment with a Gravity Driven Cooling System (GDCS) and a Passive Containment Cooling System (PCCS) in a configuration similar to General Electric's (GE) Simplified Boiling Water Reactor (SBWR). The safety systems are similar to the SBWR; the ICS and PCCS are scaled with power. An internal recirculation pump was placed in the downcomer to augment the buoyancy head provided by the chimney. The buoyancy provided by the chimney alone could not generate sufficient recirculation in the vessel since the tight lattice configuration resulted in much larger friction in the core than the SBWR. A modified RELAP5 Code was used to simulate and analyze two of the most limiting events for a tight pitch lattice core: the Station Blackout and the Main Steam Line Break events. The constitutive relationships for RELAP5 were compared with the correlations and the data available for narrow channels, and the heat transfer package was modified for narrow channel application. The results of the analyses indicate that the HCBWR system will be safely shutdown for these transients. (authors)

  10. FRACKING AND FEDERALISM: A COMPARATIVE APPROACH TO RECONCILING NATIONAL AND SUBNATIONAL INTERESTS IN THE UNITED STATES AND SPAIN

    E-Print Network [OSTI]

    Lin, Albert

    2014-01-01

    Spain for the existence of shale gas, and noting Cantabria’sto Opposition Against Shale Gas Development Using Hydraulicinto tight oil and shale gas formations, followed by

  11. Hydrolyzed Polyacrylamide- Polyethylenimine- Dextran Sulfate Polymer Gel System as a Water Shut-Off Agent in Unconventional Gas Reservoirs 

    E-Print Network [OSTI]

    Jayakumar, Swathika 1986-

    2012-07-09

    Technologies such as horizontal wells and multi-stage hydraulic fracturing have made ultra-low permeability shale and tight gas reservoirs productive but the industry is still on the learning curve when it comes to addressing ...

  12. Entropic uncertainty relations and locking: Tight bounds for mutually unbiased bases

    SciTech Connect (OSTI)

    Ballester, Manuel A.; Wehner, Stephanie

    2007-02-15

    We prove tight entropic uncertainty relations for a large number of mutually unbiased measurements. In particular, we show that a bound derived from the result by Maassen and Uffink [Phys. Rev. Lett. 60, 1103 (1988)] for two such measurements can in fact be tight for up to {radical}(d) measurements in mutually unbiased bases. We then show that using more mutually unbiased bases does not always lead to a better locking effect. We prove that the optimal bound for the accessible information using up to {radical}(d) specific mutually unbiased bases is log d/2, which is the same as can be achieved by using only two bases. Our result indicates that merely using mutually unbiased bases is not sufficient to achieve a strong locking effect and we need to look for additional properties.

  13. Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aradi, Bálint; Niklasson, Anders M. N.; Frauenheim, Thomas

    2015-06-26

    A computationally fast quantum mechanical molecular dynamics scheme using an extended Lagrangian density functional tight-binding formulation has been developed and implemented in the DFTB+ electronic structure program package for simulations of solids and molecular systems. The scheme combines the computational speed of self-consistent density functional tight-binding theory with the efficiency and long-term accuracy of extended Lagrangian Born–Oppenheimer molecular dynamics. Furthermore, for systems without self-consistent charge instabilities, only a single diagonalization or construction of the single-particle density matrix is required in each time step. The molecular dynamics simulation scheme can also be applied to a broad range of problems in materialsmore »science, chemistry, and biology.« less

  14. Method of fracturing a geological formation

    DOE Patents [OSTI]

    Johnson, James O. (2679-B Walnut, Los Alamos, NM 87544)

    1990-01-01

    An improved method of fracturing a geological formation surrounding a well bore is disclosed. A relatively small explosive charge is emplaced in a well bore and the bore is subsequently hydraulically pressurized to a pressure less than the formation breakdown pressure and preferably greater than the fracture propagation pressure of the formation. The charge is denoted while the bore is so pressurized, resulting in the formation of multiple fractures in the surrounding formation with little or no accompanying formation damage. Subsequent hydraulic pressurization can be used to propagate and extend the fractures in a conventional manner. The method is useful for stimulating production of oil, gas and possibly water from suitable geologic formations.

  15. STEAM LINE BREAK AND STATION BLACKOUT TRANSIENTS FOR PROLIFERATION RESISTANT HEXAGONAL TIGHT LATTICE BWR.

    SciTech Connect (OSTI)

    ROHATGI,U.S.; JO,J.; CHUNG,B.D.; TAKAHASHI,H.

    2002-06-09

    Safety analyses of a proliferation resistant, economically competitive, high conversion, boiling water reactor (HCBWR) fueled with fissile plutonium and fertile thorium oxide fuel elements, and with passive safety systems are presented here. The HCBWR developed here is characterized by a very tight lattice with a relatively small water volume fraction in the core which therefore operates with a fast reactor neutron spectrum, and a considerably improved neutron economy compared to the current generation of Light Water Reactors. The tight lattice core has a very narrow flow channels with a hydraulic diameter less than half of the regular BWR core and, thus, presents a special challenge to core cooling, because of reduced water inventory and high friction in the core. The primary safety concern when reducing the moderator to fuel ratio and when using a tightly packed lattice arrangement is to maintain adequate cooling of the core during both normal operation and accident scenarios. In the preliminary HCBWR design, the core has been placed in a vessel with a large chimney section, and the vessel is connected with Isolation Condenser System (ICs). The vessel is placed in containment with Gravity Driven Cooling System (GDCS) and Passive Containment Cooling System (PCCS) in a configuration similar to General Electric's Simplified Boiling Water Reactor (SBWR). The safety systems are similar to SBWR; ICs and PCCS are scaled with power. An internal recirculation pump was placed in the downcomer to augment the buoyancy head provided by the chimney, since the buoyancy provided by the chimney alone could not generate sufficient recirculation in the vessel as the tight lattice configuration resulted in much larger friction in the core than the SBWR. The constitutive relationships for RELAP5 were assessed for narrow channels, and as a result the heat transfer package was modified. The modified RELAP5 was used to simulate and analyze two of the most limiting events for a tight pitch lattice core: the Station Blackout and the Main Steam Line Break events. The results of the analyses indicate that the HCBWR system will be safely brought to the shutdown condition for these transients.

  16. Water in Alberta With Special Focus on the Oil and Gas Industry

    E-Print Network [OSTI]

    Gieg, Lisa

    ................................................................................................................................18 Shale Gas ................................................................................................................................................19 How much water is used in deep shale gas development?..................................................................20 Problems Associated with Hydraulic-Fracturing in Shale Gas Formations

  17. Optimal gas storage valuation and futures trading under a high ...

    E-Print Network [OSTI]

    2015-05-19

    In contrast to storage space for consumer goods, natural gas storage is a ... resource as it requires natural geological formations like depleted gas fields, salt

  18. The aim of this work is to apply a probabilistic method to quantify the likelihood to observe the Banking Case contrary to a deterministic approach. The Banking Case is the forecast of oil or gas volumes that could be recovered from a formation in the upc

    E-Print Network [OSTI]

    Psaltis, Demetri

    to observe the Banking Case contrary to a deterministic approach. The Banking Case is the forecast of oil or gas volumes that could be recovered from a formation in the upcoming years. It iis estimated to ensure positive NPV. Certainty of Oil Production Forecasts Methodology A hyperbolic curve fit

  19. A 4D synchrotron X-ray tomography study of the formation of hydrocarbon migration pathways in heated organic-rich shale

    E-Print Network [OSTI]

    Panahi, Hamed; Renard, Francois; Mazzini, Adriano; Scheibert, Julien; Dysthe, Dag Kristian; Jamtveit, Bjorn; Malthe-Sørenssen, Anders; Meakin, Paul

    2014-01-01

    Recovery of oil from oil shales and the natural primary migration of hydrocarbons are closely related processes that have received renewed interests in recent years because of the ever tightening supply of conventional hydrocarbons and the growing production of hydrocarbons from low permeability tight rocks. Quantitative models for conversion of kerogen into oil and gas and the timing of hydrocarbon generation have been well documented. However, lack of consensus about the kinetics of hydrocarbon formation in source rocks, expulsion timing and how the resulting hydrocarbons escape from or are retained in the source rocks motivates further investigation. In particular, many mechanisms for the transport of hydrocarbons from the source rocks in which they are generated into adjacent rocks with higher permeabilities and smaller capillary entry pressures have been proposed, and a better understanding of this complex process (primary migration) is needed. To characterize these processes it is imperative to use the ...

  20. Natural gas leak mapper

    DOE Patents [OSTI]

    Reichardt, Thomas A. (Livermore, CA); Luong, Amy Khai (Dublin, CA); Kulp, Thomas J. (Livermore, CA); Devdas, Sanjay (Albany, CA)

    2008-05-20

    A system is described that is suitable for use in determining the location of leaks of gases having a background concentration. The system is a point-wise backscatter absorption gas measurement system that measures absorption and distance to each point of an image. The absorption measurement provides an indication of the total amount of a gas of interest, and the distance provides an estimate of the background concentration of gas. The distance is measured from the time-of-flight of laser pulse that is generated along with the absorption measurement light. The measurements are formated into an image of the presence of gas in excess of the background. Alternatively, an image of the scene is superimosed on the image of the gas to aid in locating leaks. By further modeling excess gas as a plume having a known concentration profile, the present system provides an estimate of the maximum concentration of the gas of interest.

  1. Table 2. U.S. tight oil plays: production and proved reserves, 2013-14

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price toStocks 2009CubicAnalysisYear Jana.Alabama"U.S. tight oil

  2. Evaluation and Effect of Fracturing Fluids on Fracture Conductivity in Tight Gas Reservoirs Using Dynamic Fracture Conductivity Test 

    E-Print Network [OSTI]

    Correa Castro, Juan

    2011-08-08

    concentrations under reservoirs conditions. The result of this study provides the basis to optimize the fracturing fluids and the polymer loading at different reservoir conditions, which may result in a clean and conductive fracture. Success in improving...

  3. Leak-Tight Welding Experience from the Industrial Assembly of the LHC Cryostats at CERN

    E-Print Network [OSTI]

    Bourcey, N; Chiggiato, P; Limon, P; Mongelluzzo, A; Musso, G; Poncet, A; Parma, V

    2008-01-01

    The assembly of the approximately 1700 LHC main ring cryostats at CERN involved extensive welding of cryogenic lines and vacuum vessels. More than 6 km of welding requiring leak tightness to a rate better than 1.10-9 mbar.l.s-1 on stainless steel and aluminium piping and envelopes was made, essentially by manual welding but also making use of orbital welding machines. In order to fulfil the safety regulations related to pressure vessels and to comply with the leak-tightness requirements of the vacuum systems of the machine, welds were executed according to high qualification standards and following a severe quality assurance plan. Leak detection by He mass spectrometry was extensively used. Neon leak detection was used successfully to locate leaks in the presence of helium backgrounds. This paper presents the quality assurance strategy adopted for welds and leak detection. It presents the statistics of non-conformities on welds and leaks detected throughout the entire production and the advances in the use...

  4. Extended necessary condition for local operations and classical communication: Tight bound for all measurements

    E-Print Network [OSTI]

    Scott M. Cohen

    2014-12-02

    We give a necessary condition that a separable measurement can be implemented by local quantum operations and classical communication (LOCC) in any finite number of rounds of communication, generalizing and strengthening a result obtained previously. That earlier result involved a bound that is tight when the number of measurement operators defining the measurement is relatively small. The present results generalize that bound to one that is tight for any finite number of measurement operators, and we also provide an extension which holds when that number is infinite. We apply these results to the famous example on a $3\\times3$ system known as "domino states", which were the first demonstration of nonlocality without entanglement. Our new necessary condition provides an additional way of showing that these states cannot be perfectly distinguished by (finite-round) LOCC. It directly shows that this conclusion also holds for their cousins, the rotated domino states. This illustrates the usefulness of the present results, since our earlier necessary condition, which these results generalize, is not strong enough to reach a conclusion about the domino states.

  5. Tight binding prediction of the {alpha}-Gd{sub 2}S{sub 3} magnetic structure

    SciTech Connect (OSTI)

    Roy, Lindsay E.; Hughbanks, Timothy

    2007-03-15

    Spin-dependent extended Hueckel tight binding (EHTB) calculations were carried out for the magnetic solid Gd{sub 2}S{sub 3} by considering 20 different variations in the ordering of the 4f {sup 7} moments. The tight-binding calculations are used to interpolate the band structure of a nonmagnetic congener (Y{sub 2}S{sub 3}) and the 4f/5d,6s exchange interactions are introduced as perturbations via the introduction of spin-dependent H{sub dd} and H{sub ss} parameters. The calculations predict that Gd{sub 2}S{sub 3} adopts an antiferromagnetic ordering of the 4f {sup 7} moments that is consistent with published neutron diffraction results. Our attempt to account for the calculated energies of the spin patterns using an Ising model was unsuccessful. - Graphical abstract: The spin-dependent EHTB method correctly predicts the magnetic structure of {alpha}-Gd{sub 2}S{sub 3} determined from neutron diffraction experiments.

  6. Ice Formation in Gas-Diffusion Layers

    E-Print Network [OSTI]

    Dursch, Thomas

    2013-01-01

    Renewable Energy, Office of Fuel Cell Technologies, of theand Operation. ” UTC Fuel Cells, DOE Freeze Workshop,exchange membrane fuel cell (PEMFC) drastically reducing

  7. Ice Formation in Gas-Diffusion Layers

    E-Print Network [OSTI]

    Dursch, Thomas

    2013-01-01

    amounts of Teflon ® (PTFE) and levels of water saturation.for GDLs with varying PTFE content and level of saturation.investigated, each with varying PTFE loadings, as shown in

  8. Ice Formation in Gas-Diffusion Layers

    E-Print Network [OSTI]

    Dursch, Thomas

    2013-01-01

    Fundamental Issues in Subzero PEMFC Startup and Operation. ”exchange membrane fuel cell (PEMFC) drastically reducingmechanisms of freezing within PEMFC components. Differential

  9. Ice Formation in Gas-Diffusion Layers

    E-Print Network [OSTI]

    Dursch, Thomas

    2013-01-01

    contact angle and water saturation, Equations 2 and 3 give a maximum in the rate as a function of sub-cooling temperature (

  10. LOW-VELOCITY SHOCKS TRACED BY EXTENDED SiO EMISSION ALONG THE W43 RIDGES: WITNESSING THE FORMATION OF YOUNG MASSIVE CLUSTERS

    SciTech Connect (OSTI)

    Nguyen-Luong, Q.; Martin, P. G.; Motte, F.; Louvet, F.; Hill, T.; Hennemann, M.; Didelon, P.; Lesaffre, P.; Gusdorf, A.; Menten, K. M.; Wyrowski, F.; Bendo, G.; Roussel, H.; Bernard, J.-P.; Bronfman, L.; and others

    2013-10-01

    The formation of high-mass stars is tightly linked to that of their parental clouds. Here, we focus on the high-density parts of W43, a molecular cloud undergoing an efficient event of star formation. Using a column density image derived from Herschel continuum maps, we identify two high-density filamentary clouds, called the W43-MM1 and W43-MM2 ridges. Both have gas masses of 2.1 × 10{sup 4} M{sub ?} and 3.5 × 10{sup 4} M{sub ?} above >10{sup 23} cm{sup -2} and within areas of ?6 and ?14 pc{sup 2}, respectively. The W43-MM1 and W43-MM2 ridges are structures that are coherent in velocity and gravitationally bound, despite their large velocity dispersion measured by the N{sub 2}H{sup +} (1-0) lines of the W43-HERO IRAM large program. Another intriguing result is that these ridges harbor widespread (?10 pc{sup 2}) bright SiO (2-1) emission, which we interpret to be the result of low-velocity shocks (?10 km s{sup –1}). We measure a significant relationship between the SiO (2-1) luminosity and velocity extent and show that it distinguishes our observations from the high-velocity shocks associated with outflows. We use state-of-the-art shock models to demonstrate that a small percentage (10%) of Si atoms in low-velocity shocks, observed initially in gas phase or in grain mantles, can explain the observed SiO column density in the W43 ridges. The spatial and velocity overlaps between the ridges of high-density gas and the shocked SiO gas suggest that ridges could be forming via colliding flows driven by gravity and accompanied by low-velocity shocks. This mechanism may be the initial conditions for the formation of young massive clusters.

  11. Analysis of stress sensitivity and its influence on oil production from tight reservoirs

    E-Print Network [OSTI]

    Lei, Qun; Xiong, Wei; Yuan, Cui; Wu, Yu-Shu

    2008-01-01

    pump. The experiments are conducted according to the Reference Standard of China petroleum and natural gas industry,

  12. Hybrid Monte-Carlo simulation of interacting tight-binding model of graphene

    E-Print Network [OSTI]

    Dominik Smith; Lorenz von Smekal

    2013-11-05

    In this work, results are presented of Hybrid-Monte-Carlo simulations of the tight-binding Hamiltonian of graphene, coupled to an instantaneous long-range two-body potential which is modeled by a Hubbard-Stratonovich auxiliary field. We present an investigation of the spontaneous breaking of the sublattice symmetry, which corresponds to a phase transition from a conducting to an insulating phase and which occurs when the effective fine-structure constant $\\alpha$ of the system crosses above a certain threshold $\\alpha_C$. Qualitative comparisons to earlier works on the subject (which used larger system sizes and higher statistics) are made and it is established that $\\alpha_C$ is of a plausible magnitude in our simulations. Also, we discuss differences between simulations using compact and non-compact variants of the Hubbard field and present a quantitative comparison of distinct discretization schemes of the Euclidean time-like dimension in the Fermion operator.

  13. Effective tight-binding model for MX2 under electric and magnetic fields

    SciTech Connect (OSTI)

    Kavungal Veedu, Shanavas [ORNL; Satpathy, S [University of Missouri, Columbia

    2015-01-01

    We present a systematic method for developing a five band Hamiltonian for the metal d orbitals that can be used to study the effect of electric and magnetic fields on multilayer MX2 (M=Mo,W and X=S,Se) systems. On a hexagonal lattice of d orbitals, the broken inversion symmetry of the monolayers is incorporated via fictitious s orbitals at the chalcogenide sites. A tight-binding Hamiltonian is constructed and then downfolded to get effective d orbital overlap parameters using quasidegenerate perturbation theory. The steps to incorporate the effects of multiple layers, external electric and magnetic fields are also detailed. We find that an electric field produces a linear-k Rashba splitting around the point, while a magnetic field removes the valley pseudospin degeneracy at the K points. Our model provides a simple tool to understand the recent experiments on electric and magnetic control of valley pseudospin in monolayer dichalcogendies.

  14. Vacuum electron acceleration by tightly focused laser pulses with nanoscale targets

    SciTech Connect (OSTI)

    Popov, K. I.; Rozmus, W.; Sydora, R. D. [Theoretical Physics Institute, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada); Bychenkov, V. Yu. [Theoretical Physics Institute, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada); P. N. Lebedev Physics Institute, Russian Academy of Sciences, Moscow 119991 (Russian Federation); Bulanov, S. S. [FOCUS Center and Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2009-05-15

    Electron acceleration using a tightly focused relativistic short laser pulse interacting with a spherical nanocluster, ultrathin foil or preformed mid-dense plasmas is studied by using three-dimensional particle-in-cell simulations with the Stratton-Chu integrals as the boundary conditions for the incident laser fields. The investigation is performed in the regime where the focal spot size is comparable with the laser wavelength. Generation of high-energy electron multibunch jets with quasimonoenergetic or waterbaglike spectra has been demonstrated. The physical process of acceleration and bunching of the electrons is discussed in detail, as well as particles energy and angular distributions for different laser intensities, focusing optics, target parameters, and laser incidence angles.

  15. Of Bulk and Boundaries: Generalized Transfer Matrices for Tight-Binding Models

    E-Print Network [OSTI]

    Vatsal Dwivedi; Victor Chua

    2015-10-14

    We construct a generalized transfer matrix corresponding to noninteracting tight-binding lattice models, which can subsequently be used to compute the bulk bands as well as the edge states. Crucially, our formalism works even in cases where the hopping matrix is non-invertible. Following Hatsugai [PRL 71, 3697 (1993)], we explicitly construct the energy Riemann surfaces associated with the band structure for a specific class of systems which includes systems like Chern insulator, Dirac semimetal and graphene. The edge states can then be interpreted as non-contractible loops, with the winding number equal to the bulk Chern number. For these systems, the transfer matrix is symplectic, and hence we also describe the windings associated with the edge states on $Sp(2, \\mathbb{R})$ and interpret the corresponding winding number as a Maslov index.

  16. Of Bulk and Boundaries: Generalized Transfer Matrices for Tight-Binding Models

    E-Print Network [OSTI]

    Vatsal Dwivedi; Victor Chua

    2015-10-26

    We construct a generalized transfer matrix corresponding to noninteracting tight-binding lattice models, which can subsequently be used to compute the bulk bands as well as the edge states. Crucially, our formalism works even in cases where the hopping matrix is non-invertible. Following Hatsugai [PRL 71, 3697 (1993)], we explicitly construct the energy Riemann surfaces associated with the band structure for a specific class of systems which includes systems like Chern insulator, Dirac semimetal and graphene. The edge states can then be interpreted as non-contractible loops, with the winding number equal to the bulk Chern number. For these systems, the transfer matrix is symplectic, and hence we also describe the windings associated with the edge states on $Sp(2, \\mathbb{R})$ and interpret the corresponding winding number as a Maslov index.

  17. Demonstration of a memory for tightly guided light in an optical nanofiber

    E-Print Network [OSTI]

    B. Gouraud; D. Maxein; A. Nicolas; O. Morin; J. Laurat

    2015-05-11

    We report the experimental observation of slow-light and coherent storage in a setting where light is tightly confined in the transverse directions. By interfacing a tapered optical nanofiber with a cold atomic ensemble, electromagnetically induced transparency is observed and light pulses at the single-photon level are stored in and retrieved from the atomic medium with an overall efficiency of (10 +/- 0.5) %. Collapses and revivals can be additionally controlled by an applied magnetic field. Our results based on subdiffraction-limited optical mode interacting with atoms via the strong evanescent field demonstrate an alternative to free-space focusing and a novel capability for information storage in an all-fibered quantum network.

  18. What is shale gas and why is it important?

    Reports and Publications (EIA)

    2012-01-01

    Shale gas refers to natural gas that is trapped within shale formations. Shales are fine-grained sedimentary rocks that can be rich sources of petroleum and natural gas. Over the past decade, the combination of horizontal drilling and hydraulic fracturing has allowed access to large volumes of shale gas that were previously uneconomical to produce. The production of natural gas from shale formations has rejuvenated the natural gas industry in the United States.

  19. Stresses and fractures in the Frontier Formation, Green River Basin, predicted from basin-margin tectonic element interactions

    SciTech Connect (OSTI)

    Lorenz, J.C.

    1996-01-01

    Natural fractures and in situ stresses commonly dictate subsurface reservoir permeability and permeability anisotropy, as well as the effectiveness of stimulation techniques in low-permeability, natural gas reservoirs. This paper offers an initial prediction for the orientations of the fracture and stress systems in the tight gas reservoirs of the Frontier Formation, in the Green River basin of southwestern Wyoming. It builds on a previous report that addressed fractures and stresses in the western part of the basin and on ideas developed for the rest of the basin, using the principle that thrust faults are capable of affecting the stress magnitudes and orientations in little-deformed strata several hundreds of kilometers in front of a thrust. The prediction of subsurface stresses and natural fracture orientations is an undertaking that requires the willingness to revise models as definitive data are acquired during drilling. The predictions made in this paper are offered with the caveat that geology in the subsurface is always full of surprises.

  20. Molecular Gas in Elliptical Galaxies

    E-Print Network [OSTI]

    L. M. Young

    2000-09-05

    The distribution and kinematics of the molecular gas in elliptical galaxies give information on the origin and history of the gas and the rate of star formation activity in ellipticals. I describe some preliminary results of a survey which will more than double the number of elliptical galaxies with resolved molecular distributions.

  1. Natural gas hydrates - issues for gas production and geomechanical stability 

    E-Print Network [OSTI]

    Grover, Tarun

    2008-10-10

    gases, some liquids like tetrahydrofuran (THF) can also react with water to form hydrates. The formation of natural gas hydrates depends on pressure, temperature, gas composition, and presence of inhibitors such as salts. NGHs are found... deposits constitute the bulk of natural hydrates (Sloan and Koh, 2008). In offshore environments, hydrates are stable in water depths greater than 200 to 600 meters depending on the gas composition and seafloor temperatures (Milkov and Sassen, 2002). Fig...

  2. Single- and Two-Phase Diversion Cross-Flows Between Triangle Tight Lattice Rod Bundle Subchannels - Data on Flow Resistance and Interfacial Friction Coefficients for the Cross-Flow

    SciTech Connect (OSTI)

    Tatsuya Higuchi; Akimaro Kawahara; Michio Sadatomi; Hiroyuki Kudo [Kumamoto University, 39-1, Kurokami 2-chome, Kumamoto 860-8555 (Japan)

    2006-07-01

    Single- and two-phase diversion cross-flows arising from the pressure difference between tight lattice subchannels are our concern in this study. In order to obtain a correlation of the diversion cross-flow, we conducted adiabatic experiments using a vertical multiple-channel with two subchannels simplifying the triangle tight lattice rod bundle for air-water flows at room temperature and atmospheric pressure. In the experiments, data were obtained on the axial variations in the pressure difference between the subchannels, the ratio of flow rate in one subchannel to the whole channel, the void fraction in each subchannel for slug-churn and annular flows in two-phase flow case. These data were analyzed by use of a lateral momentum equation based on a two-fluid model to determine both the cross-flow resistance coefficient between liquid phase and channel wall and the gas-liquid interfacial friction coefficient. The resulting coefficients have been correlated in a way similar to that developed for square lattice subchannel case by Kano et al. (2002); the cross-flow resistance coefficient data can be well correlated with a ratio of the lateral velocity due to the cross-flow to the axial one irrespective of single- and two-phase flows; the interfacial friction coefficient data were well correlated with a Reynolds number, which is based on the relative velocity between gas and liquid cross-flows as the characteristic velocity. (authors)

  3. Monte Carlo data-driven tight frame for seismic data Shiwei Yu1, Jianwei Ma2 and Stanley Osher3

    E-Print Network [OSTI]

    Ferguson, Thomas S.

    -DDTF), and tested the trained filter bank derived from this process by conducting seismic data denoising preprocessing steps in the seismic data processing chain. Methods to attenuate random noise can generallyMonte Carlo data-driven tight frame for seismic data recovery Shiwei Yu1, Jianwei Ma2 and Stanley

  4. Thermoelectric Properties of Scaled Silicon Nanowires Using the s*-SO Atomistic Tight-Binding Model and Boltzmann

    E-Print Network [OSTI]

    1 Thermoelectric Properties of Scaled Silicon Nanowires Using the sp3 d5 s*-SO Atomistic Tight|kosina}@iue.tuwien.ac.at Abstract As a result of suppressed phonon conduction, large improvements of the thermoelectric figure, the Seebeck coefficient, and the thermoelectric power factor. We examine n-type nanowires of diameters of 3nm

  5. Gas hydrate cool storage system

    DOE Patents [OSTI]

    Ternes, M.P.; Kedl, R.J.

    1984-09-12

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  6. Bounds and phase diagram of efficiency at maximum power for tight-coupling molecular motors

    E-Print Network [OSTI]

    Z. C. Tu

    2013-02-08

    The efficiency at maximum power (EMP) for tight-coupling molecular motors is investigated within the framework of irreversible thermodynamics. It is found that the EMP depends merely on the constitutive relation between the thermodynamic current and force. The motors are classified into four generic types (linear, superlinear, sublinear, and mixed types) according to the characteristics of the constitutive relation, and then the corresponding ranges of the EMP for these four types of molecular motors are obtained. The exact bounds of the EMP are derived and expressed as the explicit functions of the free energy released by the fuel in each motor step. A phase diagram is constructed which clearly shows how the region where the parameters (the load distribution factor and the free energy released by the fuel in each motor step) are located can determine whether the value of the EMP is larger or smaller than 1/2. This phase diagram reveals that motors using ATP as fuel under physiological conditions can work at maximum power with higher efficiency ($>1/2$) for a small load distribution factor ($<0.1$).

  7. The tight junction protein Z O-2 has several functional nuclear export signals

    SciTech Connect (OSTI)

    Gonzalez-Mariscal, Lorenza [Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (CINVESTAV), Ave. Instituto Politecnico Nacional 2508, Mexico, D.F., 07360 (Mexico)]. E-mail: lorenza@fisio.cinvestav.mx; Ponce, Arturo [Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (CINVESTAV), Ave. Instituto Politecnico Nacional 2508, Mexico, D.F., 07360 (Mexico); Alarcon, Lourdes [Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (CINVESTAV), Ave. Instituto Politecnico Nacional 2508, Mexico, D.F., 07360 (Mexico); Jaramillo, Blanca Estela [Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (CINVESTAV), Ave. Instituto Politecnico Nacional 2508, Mexico, D.F., 07360 (Mexico)

    2006-10-15

    The tight junction (TJ) protein ZO-2 changes its subcellular distribution according to the state of confluency of the culture. Thus in confluent monolayers, it localizes at the TJ region whereas in sparse cultures it concentrates at the nucleus. The canine sequence of ZO-2 displays four putative nuclear export signals (NES), two at the second PDZ domain (NES-0 and NES-1) and the rest at the GK region (NES-2 and NES-3). The functionality of NES-0 and NES-3 was unknown, hence here we have explored it with a nuclear export assay, injecting into the nucleus of MDCK cells peptides corresponding to the ZO-2 NES sequences chemically coupled to ovalbumin. We show that both NES-0 and NES-3 are functional and sensitive to leptomycin B. We also demonstrate that NES-1, previously characterized as a non functional NES, is rendered capable of nuclear export upon the acquisition of a negative charge at its Ser369 residue. Experiments performed injecting at the nucleus WT and mutated ZO-2-GST fusion proteins revealed the need of both NES-0 and NES-1, and NES-2 and NES-3 for attaining an efficient nuclear exit of the respective amino and middle segments of ZO-2. Moreover, the transfection of MDCK cells with full-length ZO-2 revealed that the mutation of any of the NES present in the molecule was sufficient to induce nuclear accumulation of the protein.

  8. Microsoft Word - NETL-TRS-4-2014_CO2 Storage and Enhanced Gas...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigation of CO 2 Storage and Enhanced Gas Recovery in Depleted Shale Gas Formations Using a Dual- PorosityDual-Permeability, Multiphase Reservoir Simulator 25 September 2014...

  9. Probabilistic Risk Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems

    SciTech Connect (OSTI)

    Greg Thoma; John Veil; Fred Limp; Jackson Cothren; Bruce Gorham; Malcolm Williamson; Peter Smith; Bob Sullivan

    2009-05-31

    This report describes work performed during the initial period of the project 'Probabilistic Risk Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems.' The specific region that is within the scope of this study is the Fayetteville Shale Play. This is an unconventional, tight formation, natural gas play that currently has approximately 1.5 million acres under lease, primarily to Southwestern Energy Incorporated and Chesapeake Energy Incorporated. The currently active play encompasses a region from approximately Fort Smith, AR east to Little Rock, AR approximately 50 miles wide (from North to South). The initial estimates for this field put it almost on par with the Barnett Shale play in Texas. It is anticipated that thousands of wells will be drilled during the next several years; this will entail installation of massive support infrastructure of roads and pipelines, as well as drilling fluid disposal pits and infrastructure to handle millions of gallons of fracturing fluids. This project focuses on gas production in Arkansas as the test bed for application of proactive risk management decision support system for natural gas exploration and production. The activities covered in this report include meetings with representative stakeholders, development of initial content and design for an educational web site, and development and preliminary testing of an interactive mapping utility designed to provide users with information that will allow avoidance of sensitive areas during the development of the Fayetteville Shale Play. These tools have been presented to both regulatory and industrial stakeholder groups, and their feedback has been incorporated into the project.

  10. Western Gas Sands Project: stratigrapy of the Piceance Basin

    SciTech Connect (OSTI)

    Anderson, S. (comp.)

    1980-08-01

    The Western Gas Sands Project Core Program was initiated by US DOE to investigate various low permeability, gas bearing sandstones. Research to gain a better geological understanding of these sandstones and improve evaluation and stimulation techniques is being conducted. Tight gas sands are located in several mid-continent and western basins. This report deals with the Piceance Basin in northwestern Colorado. This discussion is an attempt to provide a general overview of the Piceance Basin stratigraphy and to be a useful reference of stratigraphic units and accompanying descriptions.

  11. A Tight Runtime Bound for Synchronous Gathering of Autonomous Robots with Limited Visibility

    E-Print Network [OSTI]

    , USA. Copyright 2011 ACM 978-1-4503-0743-7/11/06 ...$10.00. Categories and Subject Descriptors F.1.2 [Theory of Computation]: Modes of Computation; F.2.2 [Analysis of Algorithms and Problem Complex- ity by such robotic teams. For mobile robots, it is especially interesting whether they can build a given formation

  12. Energy dependence of the optical potential of weakly and tightly bound nuclei as projectiles on a medium-mass target

    SciTech Connect (OSTI)

    Figueira, J. M.; Arazi, A.; Carnelli, P.; Heimann, D. Martinez; Negri, A. E.; Pacheco, A. J.; Niello, J. O. Fernandez; Capurro, O. A.; Fimiani, L.; Marti, G. V.; Lubian, J.; Monteiro, D. S.; Gomes, P. R. S.

    2010-02-15

    Angular distributions for the elastic scattering of the weakly bound {sup 6,7}Li+{sup 144}Sm systems were measured with high accuracy at bombarding energies from 85% up to 170% of the Coulomb barrier. An optical model analysis was performed, and the relevant parameters of the real and imaginary parts of the optical potential were extracted. The results are compared with those previously published for the tightly bound {sup 12}C+{sup 144}Sm and {sup 16}O+{sup 144}Sm systems. The usual threshold anomaly observed in the behavior of the potential of tightly bound systems was not observed for either weakly bound system. This absence is attributed to the repulsion due to breakup coupling which cancels the attraction arising from couplings with bound channels.

  13. Star formation relations in nearby molecular clouds

    SciTech Connect (OSTI)

    Evans, Neal J. II; Heiderman, Amanda; Vutisalchavakul, Nalin

    2014-02-20

    We test some ideas for star formation relations against data on local molecular clouds. On a cloud by cloud basis, the relation between the surface density of star formation rate and surface density of gas divided by a free-fall time, calculated from the mean cloud density, shows no significant correlation. If a crossing time is substituted for the free-fall time, there is even less correlation. Within a cloud, the star formation rate volume and surface densities increase rapidly with the corresponding gas densities, faster than predicted by models using the free-fall time defined from the local density. A model in which the star formation rate depends linearly on the mass of gas above a visual extinction of 8 mag describes the data on these clouds, with very low dispersion. The data on regions of very massive star formation, with improved star formation rates based on free-free emission from ionized gas, also agree with this linear relation.

  14. Implications of Increasing Light Tight Oil Production for U.S. Refining

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets See full Hydrocarbon Gas2 IIImplications

  15. Implications of Increasing Light Tight Oil Production for U.S. Refining -

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets See full Hydrocarbon Gas2

  16. Detection of terahertz radiation by tightly concatenated InGaAs field-effect transistors integrated on a single chip

    SciTech Connect (OSTI)

    Popov, V. V., E-mail: popov-slava@yahoo.co.uk [Kotelnikov Institute of Radio Engineering and Electronics (Saratov Branch), Russian Academy of Sciences, Saratov 410019 (Russian Federation); Yermolaev, D. M.; Shapoval, S. Yu. [Institute of Microelectronic Technology and High-Purity Materials, Russian Academy of Sciences, Chernogolovka, Moscow Region 142432 (Russian Federation); Maremyanin, K. V.; Gavrilenko, V. I. [Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod 603950 (Russian Federation); Zemlyakov, V. E.; Bespalov, V. A.; Yegorkin, V. I. [National Research University of Electronic Technology, Zelenograd, Moscow 124498 (Russian Federation); Maleev, N. A.; Ustinov, V. M. [Ioffe Physical Technical Institute, Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation)

    2014-04-21

    A tightly concatenated chain of InGaAs field-effect transistors with an asymmetric T-gate in each transistor demonstrates strong terahertz photovoltaic response without using supplementary antenna elements. We obtain the responsivity above 1000?V/W and up to 2000?V/W for unbiased and drain-biased transistors in the chain, respectively, with the noise equivalent power below 10{sup ?11} W/Hz{sup 0.5} in the unbiased mode of the detector operation.

  17. Sour gas injection for use with in situ heat treatment

    DOE Patents [OSTI]

    Fowler, Thomas David (Houston, TX)

    2009-11-03

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for providing acidic gas to a subsurface formation is described herein. The method may include providing heat from one or more heaters to a portion of a subsurface formation; producing fluids that include one or more acidic gases from the formation using a heat treatment process. At least a portion of one of the acidic gases may be introduced into the formation, or into another formation, through one or more wellbores at a pressure below a lithostatic pressure of the formation in which the acidic gas is introduced.

  18. Overview: Gas hydrate geology and geography

    SciTech Connect (OSTI)

    Malone, R.D.

    1993-01-01

    Several geological factors which are directly responsible for the presence or absence of gas hydrates have been reviewed and are: tectonic position of the region; sedimentary environments; structural deformation; shale diapirism; hydrocarbon generation and migration; thermal regime in the hydrate formation zone (HFZ); pressure conditions; and hydrocarbon gas supply to the HFZ. Work on gas hydrate formation in the geological environment has made significant advances, but there is still much to be learned. Work is continuing in the deeper offshore areas through the Ocean Drilling Program, Government Agencies, and Industry. The pressure/temperature conditions necessary for formation has been identified for various compositions of natural gas through laboratory investigations and conditions for formation are being advanced through drilling in areas where gas hydrates exist.

  19. Overview: Gas hydrate geology and geography

    SciTech Connect (OSTI)

    Malone, R.D.

    1993-06-01

    Several geological factors which are directly responsible for the presence or absence of gas hydrates have been reviewed and are: tectonic position of the region; sedimentary environments; structural deformation; shale diapirism; hydrocarbon generation and migration; thermal regime in the hydrate formation zone (HFZ); pressure conditions; and hydrocarbon gas supply to the HFZ. Work on gas hydrate formation in the geological environment has made significant advances, but there is still much to be learned. Work is continuing in the deeper offshore areas through the Ocean Drilling Program, Government Agencies, and Industry. The pressure/temperature conditions necessary for formation has been identified for various compositions of natural gas through laboratory investigations and conditions for formation are being advanced through drilling in areas where gas hydrates exist.

  20. K-AR DATING OF AUTHIGENIC ILLITES: INTEGRATING THE DIAGENETIC HISTORY OF THE FLUVIAL WILLIAMS FORK FORMATION, MESAVERDE

    E-Print Network [OSTI]

    The ability to date diagenetic reactions in tight gas reservoirs that significantly influence reservoir quality will enhance our ability to characterize and produce these fields. Although diagenetic clays form only a small percent of the sandstone, they have a disproportionately large impact on reservoir

  1. Radon (Rn-222) and thoron (Rn-220) emanation fractions from three separate formations of oil field pipe scale 

    E-Print Network [OSTI]

    Fruchtnicht, Erich Harold

    2004-11-15

    because of the external radiation exposure but also because of the radon gas emissions, both of which are due to the radioactive minerals contained in the scale. It was believed that the structure of the scale is formed tightly enough to prevent much...

  2. Preliminary design study of small long life boiling water reactor (BWR) with tight lattice thorium nitride fuel

    SciTech Connect (OSTI)

    Trianti, Nuri E-mail: szaki@fi.itba.c.id; Su'ud, Zaki E-mail: szaki@fi.itba.c.id; Arif, Idam E-mail: szaki@fi.itba.c.id; Riyana, EkaSapta

    2014-09-30

    Neutronic performance of small long-life boiling water reactors (BWR) with thorium nitride based fuel has been performed. A recent study conducted on BWR in tight lattice environments (with a lower moderator percentage) produces small power reactor which has some specifications, i.e. 10 years operation time, power density of 19.1 watt/cc and maximum excess reactivity of about 4%. This excess reactivity value is smaller than standard reactivity of conventional BWR. The use of hexagonal geometry on the fuel cell of BWR provides a substantial effect on the criticality of the reactor to obtain a longer operating time. Supported by a tight concept lattice where the volume fraction of the fuel is greater than the moderator and fuel, Thorium Nitride give good results for fuel cell design on small long life BWR. The excess reactivity of the reactor can be reduced with the addition of gadolinium as burnable poisons. Therefore the hexagonal tight lattice fuel cell design of small long life BWR that has a criticality more than 20 years of operating time has been obtained.

  3. Electrochemical fuel cell generator having an internal and leak tight hydrocarbon fuel reformer

    DOE Patents [OSTI]

    Dederer, J.T.; Hager, C.A.

    1998-03-31

    An electrochemical fuel cell generator configuration is made having a generator section which contains a plurality of axially elongated fuel cells, each cell containing a fuel electrode, air electrode, and solid oxide electrolyte between the electrodes, in which axially elongated dividers separate portions of the fuel cells from each other, and where at least one divider also reforms a reformable fuel gas mixture prior to electricity generation reactions, the at least one reformer-divider is hollow having a closed end and an open end entrance for a reformable fuel mixture to pass to the closed end of the divider and then reverse flow and pass back along the hollowed walls to be reformed, and then finally to pass as reformed fuel out of the open end of the divider to contact the fuel cells, and further where the reformer-divider is a composite structure having a gas diffusion barrier of metallic foil surrounding the external walls of the reformer-divider except at the entrance to prevent diffusion of the reformable gas mixture through the divider, and further housed in an outer insulating jacket except at the entrance to prevent short-circuiting of the fuel cells by the gas diffusion barrier. 10 figs.

  4. Electrochemical fuel cell generator having an internal and leak tight hydrocarbon fuel reformer

    DOE Patents [OSTI]

    Dederer, Jeffrey T. (Valencia, PA); Hager, Charles A. (Mars, PA)

    1998-01-01

    An electrochemical fuel cell generator configuration is made having a generator section which contains a plurality of axially elongated fuel cells, each cell containing a fuel electrode, air electrode, and solid oxide electrolyte between the electrodes, in which axially elongated dividers separate portions of the fuel cells from each other, and where at least one divider also reforms a reformable fuel gas mixture prior to electricity generation reactions, the at least one reformer-divider is hollow having a closed end and an open end entrance for a reformable fuel mixture to pass to the closed end of the divider and then reverse flow and pass back along the hollowed walls to be reformed, and then finally to pass as reformed fuel out of the open end of the divider to contact the fuel cells, and further where the reformer-divider is a composite structure having a gas diffusion barrier of metallic foil surrounding the external walls of the reformer-divider except at the entrance to prevent diffusion of the reformable gas mixture through the divider, and further housed in an outer insulating jacket except at the entrance to prevent short-circuiting of the fuel cells by the gas diffusion barrier.

  5. Steam Line Break and Station Blackout Transients for Proliferation-Resistant Hexagonal Tight Lattice Boiling Water Reactor

    SciTech Connect (OSTI)

    Rohatgi, Upendra S. [Brookhaven National Laboratory (United States); Jo, Jae H. [Brookhaven National Laboratory (United States); Chung, Bub Dong [Brookhaven National Laboratory (United States); Takahashi, Hiroshi [Brookhaven National Laboratory (United States); Downar, Thomas J. [Purdue University (United States)

    2004-01-15

    Safety analyses of a proliferation-resistant, economically competitive, high-conversion boiling water reactor (HCBWR) fueled with fissile plutonium and fertile thorium oxide fuel elements, and with passive safety systems, are presented here. The HCBWR developed here is characterized by a very tight lattice with a relatively small water volume fraction in the core that therefore operates with a fast reactor neutron spectrum and a considerably improved neutron economy compared to the current generation of light water reactors. The tight lattice core has a very narrow flow channel with a hydraulic diameter less than half of the regular boiling water reactor (BWR) core and, thus, presents a special challenge to core cooling because of reduced water inventory and high friction in the core. The primary safety concern when reducing the moderator-to-fuel ratio and when using a tightly packed lattice arrangement is to maintain adequate cooling of the core during both normal operation and accident scenarios.In the preliminary HCBWR design, the core is placed in a vessel with a large chimney section, and the vessel is connected to the isolation condenser system (ICS). The vessel is placed in containment with the gravity driven cooling system (GDCS) and passive containment cooling system (PCCS) in a configuration similar to General Electric's simplified BWR (SBWR). The safety systems are similar to those of the SBWR; the ICS and PCCS are scaled with power. An internal recirculation pump is placed in the downcomer to augment the buoyancy head provided by the chimney since the buoyancy provided by the chimney alone could not generate sufficient recirculation in the vessel as the tight lattice configuration results in much larger friction in the core than with the SBWR.The constitutive relationships for RELAP5 are assessed for narrow channels, and as a result the heat transfer package is modified. The modified RELAP5 is used to simulate and analyze two of the most limiting events for a tight pitch lattice core: the station blackout and the main-steam-line-break events. The results of the analyses indicate that the HCBWR system will be safely brought to the shutdown condition for these transients.

  6. Treatment of gas from an in situ conversion process

    DOE Patents [OSTI]

    Diaz, Zaida (Katy, TX); Del Paggio, Alan Anthony (Spring, TX); Nair, Vijay (Katy, TX); Roes, Augustinus Wilhelmus Maria (Houston, TX)

    2011-12-06

    A method of producing methane is described. The method includes providing formation fluid from a subsurface in situ conversion process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. At least the olefins in the first gas stream are contacted with a hydrogen source in the presence of one or more catalysts and steam to produce a second gas stream. The second gas stream is contacted with a hydrogen source in the presence of one or more additional catalysts to produce a third gas stream. The third gas stream includes methane.

  7. Gas Mask 

    E-Print Network [OSTI]

    Unknown

    2011-09-05

    The gas industry fostered more efficient energy utilization long before the idea of energy conservation became fashionable. It became apparent in the late '60's that misguided Federal Legislation was discouraging necessary search for new gas...

  8. NETL Gas Migration Study to Advance Understanding of Responsible...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    drinking water sources. Hydraulic fracturing is a process for producing oil and natural gas from shale formations. It uses water, sand and chemical additives pumped under high...

  9. Gas separating

    DOE Patents [OSTI]

    Gollan, Arye Z.

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  10. Gas separating

    DOE Patents [OSTI]

    Gollan, Arye (Newton, MA)

    1988-01-01

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  11. Forecasting long-term gas production from shale

    E-Print Network [OSTI]

    Cueto-Felgueroso, Luis

    Oil and natural gas from deep shale formations are transforming the United States economy and its energy outlook. Back in 2005, the US Energy Information Administration published projections of United States natural gas ...

  12. Economic analysis of shale gas wells in the United States

    E-Print Network [OSTI]

    Hammond, Christopher D. (Christopher Daniel)

    2013-01-01

    Natural gas produced from shale formations has increased dramatically in the past decade and has altered the oil and gas industry greatly. The use of horizontal drilling and hydraulic fracturing has enabled the production ...

  13. Associated Shale Gas- From Flares to Rig Power 

    E-Print Network [OSTI]

    Wallace, Elizabeth Michelle

    2014-10-16

    From September 2011 to July 2013 the percentage of flared associated gas produced in the Bakken shale formation decreased from 36% to 29%. Although the percentage decreased, the volume of associated gas produced has almost tripled to 900 MMcf...

  14. On the possibility of controlling laser ablation by tightly focused femtosecond radiation

    SciTech Connect (OSTI)

    Alferov, S V; Karpeev, S V; Khonina, S N; Tukmakov, K N; Moiseev, O Yu [Image Processing Systems Institute, Russian Academy of Sciences, Samara (Russian Federation); Shulyapov, S A; Ivanov, K A; Savel'ev-Trofimov, A B [International Laser Center, M. V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2014-11-30

    We report the results of studies on the possibilities of controlling laser ablation by changing the polarisation state and the intensity distribution in the focal plane of the beams of high-power femtosecond radiation by means of beam diaphragming and controllable phase modulation using binary-phase plates. The latter provides the adjustment of correlation between the electric field components in the focus area. Based on the results of numerical modelling of the distribution of the electric field components in the focus area, an explanation of the mechanism of formation of the unusually shaped craters is given. (interaction of laser radiation with matter. laser plasma)

  15. Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance

    E-Print Network [OSTI]

    Kim, H.-M.

    2012-01-01

    Calculated time integrated energy balance term in the 5 thCalculated time integrated energy balance term in the 5 thcurve. Figure 18. Energy balance terms for the tight lining

  16. Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance

    E-Print Network [OSTI]

    Kim, H.-M.

    2012-01-01

    time integrated energy balance term in the 5 th cycle oftime integrated energy balance term in the 5 th cycle ofof air tightness and energy balance Hyung-Mok Kim 1 , Jonny

  17. Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance

    E-Print Network [OSTI]

    Kim, H.-M.

    2012-01-01

    Calculated time integrated energy balance term in the 5 thCalculated time integrated energy balance term in the 5 thof air tightness and energy balance Hyung-Mok Kim 1 , Jonny

  18. Forecasting Gas Production in Organic Shale with the Combined Numerical Simulation of Gas Diffusion in Kerogen, Langmuir Desorption from

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    SPE 159250 Forecasting Gas Production in Organic Shale with the Combined Numerical Simulation algorithm to forecast gas production in organic shale that simultaneously takes into account gas diffusion-than-expected permeability in shale-gas formations, while Langmuir desorption maintains pore pressure. Simulations confirm

  19. Technical Options for Processing Additional Light Tight Oil Volumes within the United States

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices, Sales Volumes &15.14.298 WaterTechnical

  20. Options for U.S. Petroleum Refineries to Process Additional Light Tight Oil

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets16 (next20, 20082008707 1OAK9:

  1. Star Formation in the Local Milky Way

    E-Print Network [OSTI]

    Lada, Charles J

    2015-01-01

    Studies of molecular clouds and young stars near the sun have provided invaluable insights into the process of star formation. Indeed, much of our physical understanding of this topic has been derived from such studies. Perhaps the two most fundamental problems confronting star formation research today are: 1) determining the origin of stellar mass and 2) deciphering the nature of the physical processes that control the star formation rate in molecular gas. As I will briefly outline here, observations and studies of local star forming regions are making particularly significant contributions toward the solution of both these important problems.

  2. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    published a paper in Applied Energy examining opportunities and challenges to produce gas from tight shale formations using supercritical carbon dioxide (CO 2 ) as a fracturing...

  3. New Particle Formation Study Final Campaign Report

    SciTech Connect (OSTI)

    Smith, JN; McMurry, PH

    2015-01-01

    The scientific foci of the New Particle Formation Study were the formation and evolution of atmospheric aerosols and the impacts of newly formed particles on cloud processes. Specifically, we planned to: (1) to identify the species and mechanisms responsible for the initial steps of new particle formation, i.e., the formation of thermodynamically stable clusters; (2) investigate the role of acid-base chemistry in new particle growth through measurements of ammonia and amines as well as organic and inorganic acids in both atmospheric nanoparticles and the gas phase; (3) investigate the contribution of other surface area or volume-controlled processes to nanoparticle formation and growth; (4) create a comprehensive dataset related to new particle formation and growth that can be used as input for our own thermodynamic models as well as the modeling efforts by our Department of Energy (DOE) Aerosol Life Cycle working group collaborators; (5) characterize the increase of the number and activity of cloud condensation nuclei (CCN) due to particle formation and growth; (6) determine the regional extent of new particle formation to address the role that atmospheric transport plays in determining the impacts, if any, of new particle formation on cloud number and properties.

  4. Gas separating

    DOE Patents [OSTI]

    Gollan, A.Z.

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  5. Gas separating

    DOE Patents [OSTI]

    Gollan, A.

    1988-03-29

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  6. Earth and Terrestrial Planet Formation

    E-Print Network [OSTI]

    Jacobson, Seth A

    2015-01-01

    The growth and composition of Earth is a direct consequence of planet formation throughout the Solar System. We discuss the known history of the Solar System, the proposed stages of growth and how the early stages of planet formation may be dominated by pebble growth processes. Pebbles are small bodies whose strong interactions with the nebula gas lead to remarkable new accretion mechanisms for the formation of planetesimals and the growth of planetary embryos. Many of the popular models for the later stages of planet formation are presented. The classical models with the giant planets on fixed orbits are not consistent with the known history of the Solar System, fail to create a high Earth/Mars mass ratio, and, in many cases, are also internally inconsistent. The successful Grand Tack model creates a small Mars, a wet Earth, a realistic asteroid belt and the mass-orbit structure of the terrestrial planets. In the Grand Tack scenario, growth curves for Earth most closely match a Weibull model. The feeding zon...

  7. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect (OSTI)

    Unknown

    2002-04-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

  8. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect (OSTI)

    Unknown

    2000-01-01

    The activities of the Advanced Gas Turbine Systems Research (AGRSR) program are described in the quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education) and Research. Items worthy of note are presented in extended bullet format following the appropriate heading.

  9. A PKN Hydraulic Fracture Model Study and Formation Permeability Determination 

    E-Print Network [OSTI]

    Xiang, Jing

    2012-02-14

    Hydraulic fracturing is an important method used to enhance the recovery of oil and gas from reservoirs, especially for low permeability formations. The distribution of pressure in fractures and fracture geometry are needed to design conventional...

  10. Formation Damage due to CO2 Sequestration in Saline Aquifers 

    E-Print Network [OSTI]

    Mohamed, Ibrahim Mohamed 1984-

    2012-10-25

    Carbon dioxide (CO2) sequestration is defined as the removal of gas that would be emitted into the atmosphere and its subsequent storage in a safe, sound place. CO2 sequestration in underground formations is currently being considered to reduce...

  11. New basins invigorate U.S. gas shales play

    SciTech Connect (OSTI)

    Reeves, S.R.; Kuuskraa, V.A.; Hill, D.G.

    1996-01-22

    While actually the first and oldest of unconventional gas plays, gas shales have lagged the other main unconventional gas resources--tight gas and coalbed methane--in production and proved reserves. Recently, however, with active drilling of the Antrim shales in Michigan and promising results from the Barnett shales of North Texas, this gas play is growing in importance. While once thought of as only an Appalachian basin Devonian-age Ohio shales play and the exclusive domain of regional independents, development of gas shales has expanded to new basins and has began to attract larger E and P firms. Companies such as Amoco, Chevron, and Shell in the Michigan basin and Mitchell Energy and Development and Anadarko Petroleum Corporation in the Fort Worth basin are aggressively pursuing this gas resource. This report, the third of a four part series assessing unconventional gas development in the US, examines the state of the gas shales industry following the 1992 expiration of the Sec. 29 Nonconventional Fuels Tax Credit. The main questions being addressed are first, to what extent are these gas sources viable without the tax credit, and second, what advances in understanding of these reservoirs and what progress in extraction technologies have changed the outlook for this large but complex gas resource?

  12. Water Formatics Engineered formation of nanobubbles networks

    E-Print Network [OSTI]

    Jacob, Eshel Ben

    Water Formatics Engineered formation of nanobubbles networks in water and aqueous solutions We present the idea that the anomalous effects of rf-treatments of water and aqueous solution resulted from-bubble exchange interactions. These exchange interactions are mediated by the ordering of the water molecules

  13. Soot blower using fuel gas as blowing medium

    DOE Patents [OSTI]

    Tanca, Michael C. (Tariffville, CT)

    1982-01-01

    A soot blower assembly (10) for use in combination with a coal gasifier (14). The soot blower assembly is adapted for use in the hot combustible product gas generated in the gasifier as the blowing medium. The soot blower lance (20) and the drive means (30) by which it is moved into and out of the gasifier is housed in a gas tight enclosure (40) which completely surrounds the combination. The interior of the enclosure (40) is pressurized by an inert gas to a pressure level higher than that present in the gasifier so that any combustible product gas leaking from the soot blower lance (20) is forced into the gasifier rather than accumulating within the enclosure.

  14. Formation of self-organized quantum dot structures and quasi-perfect CuPt-type ordering by gas-source MBE growth of (GaP){sub n}(InP){sub n} superlattices

    SciTech Connect (OSTI)

    Kim, S.J.; Asahi, H.; Takemoto, M.; Asami, K.; Takeuchi, M.; Gonda, S.

    1996-12-31

    (GaP){sub n}(InP){sub n} short period superlattices (SLs) are grown on GaAs(N11) substrates by gas-source MBE. Transmission electron microscopy observations show that the SLs grown on GaAs(311)A and (411)A have dot structures with a size of about 10--20nm. Photoluminescence (PL) peak energies are greatly dependent on substrate orientation and monolayer number n. On the other hand, the (GaP){sub 1}(InP){sub 1} SLs grown on (111) have no composition modulation and have quasi-perfect CuPt-type ordering along the [111] growth direction. The PL peak energy is 321 meV lower than that of disordered InGaP alloy. Self-organized (GaP){sub n}(InP){sub m} SL(dot/barrier)/In{sub 0.49}Ga{sub 0.51}P(barrier) quantum dot structures exhibit strong 77K PL with a full width at half maximum of about 70 meV.

  15. Approved Module Information for ME1F20, 2014/5 Module Title/Name: Gas Engineering Principles Module Code: ME1F20

    E-Print Network [OSTI]

    Rebollo-Neira, Laura

    , Flow measurement, Coal Bed Methane, Natural Gas Phase Behaviour, Natural Gas Properties, Chemical and calculate the solutions of problems associated with Natural Gas flow and transmission Learn properties and Physical Properties, Gas Specific Gravity, Ideal and Real Gas Laws, Gas Formation Volume Factor, Gas

  16. Gas hydrates

    SciTech Connect (OSTI)

    Not Available

    1985-04-01

    There is a definite need for the US government to provide leadership for research in gas hydrates and to coordinate its activities with academia, industry, private groups, federal agencies, and their foreign counterparts. In response to this need, the DOE Morgantown Energy Technology Center implemented a gas hydrates R and D program. Understanding the resource will be achieved through: assessment of current technology; characterization of gas hydrate geology and reservoir engineering; and development of diagnostic tools and methods. Research to date has focused on geology. As work progressed, areas where gas hydrates are likely to occur were identified, and specific high potential areas were targeted for future detailed investigation. Initial research activities involved the development of the Geologic Analysis System (GAS); which will provide, through approximately 30 software packages, the capability to manipulate and correlate several types of geologic and petroleum data into maps, graphics, and reports. Preliminary mapping of hydrate prospects for the Alaskan North Slope is underway. Geological research includes physical system characterization which focuses on creating synthetic methane hydrates and developing synthetic hydrate cores using tetrahydrofuran, consolidated rock cores, frost base mixtures, water/ice base mixtures, and water base mixtures. Laboratory work produced measurements of the sonic velocity and electrical resistivity of these synthetic hydrates. During 1983, a sample from a natural hydrate core recovered from the Pacific coast of Guatemala was tested for these properties by METC. More recently, a natural hydrate sample from the Gulf of Mexico was also acquired and testing of this sample is currently underway. In addition to the development of GAS, modeling and systems analysis work focused on the development of conceptual gas hydrate production models. 16 figs., 6 tabs.

  17. STAR FORMATION IN TWO LUMINOUS SPIRAL GALAXIES

    SciTech Connect (OSTI)

    Hunter, Deidre A.; Ashburn, Allison; Wright, Teresa; Elmegreen, Bruce G.; Rubin, Vera C.; Józsa, Gyula I. G.; Struve, Christian

    2013-10-01

    We examined star formation in two very luminous (M{sub V} = –22 to –23) Sc-type spiral galaxies, NGC 801 and UGC 2885, using ultra-deep H? images. We combine these H? images with UBV and Two-Micron All-Sky Survey JHK images and H I maps to explore the star formation characteristics of disk galaxies at high luminosity. H? traces star formation in these galaxies to 4-6 disk scale lengths, but the lack of detection of H? further out is likely due to the loss of Lyman continuum photons. Considering gravitational instabilities alone, we find that the gas and stars in the outer regions are marginally stable in an average sense, but considering dissipative gas and radial and azimuthal forcing, the outer regions are marginally unstable to forming spiral arms. Star formation is taking place in spiral arms, which are regions of locally higher gas densities. Furthermore, we have traced smooth exponential stellar disks over four magnitudes in V-band surface brightness and 4-6 disk scale lengths, in spite of a highly variable gravitational instability parameter. Thus, gravitational instability thresholds do not seem relevant to the stellar disk. One possibility for creating an exponential disk is that the molecular cloud densities and star formation rates have exponential profiles and this fact forces the stellar disk to build up such a profile. Another possibility is that the stellar disk is continuously adjusted to an exponential shape regardless of the star formation profile, for example, through global dynamical processes that scatter stars. However, such scattering processes are only known to operate in spiral systems, in which case they cannot explain the same dilemma of smooth exponential disks observed in dwarf irregular galaxies.

  18. Method for mapping a natural gas leak

    DOE Patents [OSTI]

    Reichardt, Thomas A. (Livermore, CA); Luong, Amy Khai (Dublin, CA); Kulp, Thomas J. (Livermore, CA); Devdas, Sanjay (Albany, CA)

    2009-02-03

    A system is described that is suitable for use in determining the location of leaks of gases having a background concentration. The system is a point-wise backscatter absorption gas measurement system that measures absorption and distance to each point of an image. The absorption measurement provides an indication of the total amount of a gas of interest, and the distance provides an estimate of the background concentration of gas. The distance is measured from the time-of-flight of laser pulse that is generated along with the absorption measurement light. The measurements are formatted into an image of the presence of gas in excess of the background. Alternatively, an image of the scene is superimposed on the image of the gas to aid in locating leaks. By further modeling excess gas as a plume having a known concentration profile, the present system provides an estimate of the maximum concentration of the gas of interest.

  19. Gas Drill 

    E-Print Network [OSTI]

    Unknown

    2011-09-05

    .C. Wang, B.T. Lovell, Program, Summary Report TE4258-5-84, J. McCrank, "Topping of a Combined Gas DOE/ET/11292, Oct. 1984. and Steam Turbine Powerplant using a TAM Combustor," Thermo Electron [4J Final Report: "Thermionic Energy Report No. 4258... for each Btu fired in the burners has been cal culated with the process gas temperature as a variable. It was shown [2 ] that the maximum thermionic power produced is 18 kW per million Btu fired per hour. All com bustors are similar but progressively...

  20. Solid fuel volatilization to produce synthesis gas

    DOE Patents [OSTI]

    Schmidt, Lanny D.; Dauenhauer, Paul J.; Degenstein, Nick J.; Dreyer, Brandon J.; Colby, Joshua L.

    2014-07-29

    A method comprising contacting a carbon and hydrogen-containing solid fuel and a metal-based catalyst in the presence of oxygen to produce hydrogen gas and carbon monoxide gas, wherein the contacting occurs at a temperature sufficiently high to prevent char formation in an amount capable of stopping production of the hydrogen gas and the carbon monoxide gas is provided. In one embodiment, the metal-based catalyst comprises a rhodium-cerium catalyst. Embodiments further include a system for producing syngas. The systems and methods described herein provide shorter residence time and high selectivity for hydrogen and carbon monoxide.

  1. Gas sensor

    DOE Patents [OSTI]

    Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

    2014-09-09

    A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

  2. Methane hydrate distribution from prolonged and repeated formation in natural and compacted sand samples: X-ray CT observations

    E-Print Network [OSTI]

    Rees, E.V.L.

    2012-01-01

    Deep Ocean Field Test of Methane Hydrate Formation from aW.J. , and Mason, D.H. , Methane Hydrate Formation inNatural and Laboratory--Formed Methane Gas Hydrate. American

  3. Planet formation and migration

    E-Print Network [OSTI]

    John C B Papaloizou; Caroline Terquem

    2005-11-28

    We review the observations of extrasolar planets, ongoing developments in theories of planet formation, orbital migration, and the evolution of multiplanet systems.

  4. Low voltage arc formation in railguns

    DOE Patents [OSTI]

    Hawke, Ronald S. (Livermore, CA)

    1987-01-01

    A low voltage plasma arc is first established across the rails behind the projectile by switching a low voltage high current source across the rails to establish a plasma arc by vaporizing a fuse mounted on the back of the projectile, maintaining the voltage across the rails below the railgun breakdown voltage to prevent arc formation ahead of the projectile. After the plasma arc has been formed behind the projectile a discriminator switches the full energy bank across the rails to accelerate the projectile. A gas gun injector may be utilized to inject a projectile into the breech of a railgun. The invention permits the use of a gas gun or gun powder injector and an evacuated barrel without the risk of spurious arc formation in front of the projectile.

  5. Low voltage arc formation in railguns

    DOE Patents [OSTI]

    Hawke, R.S.

    1985-08-05

    A low voltage plasma arc is first established across the rails behind the projectile by switching a low voltage high current source across the rails to establish a plasma arc by vaporizing a fuse mounted on the back of the projectile, maintaining the voltage across the rails below the railgun breakdown voltage to prevent arc formation ahead of the projectile. After the plasma arc has been formed behind the projectile a discriminator switches the full energy bank across the rails to accelerate the projectile. A gas gun injector may be utilized to inject a projectile into the breech of a railgun. The invention permits the use of a gas gun or gun powder injector and an evacuated barrel without the risk of spurious arc formation in front of the projectile.

  6. Low voltage arc formation in railguns

    DOE Patents [OSTI]

    Hawke, R.S.

    1987-11-17

    A low voltage plasma arc is first established across the rails behind the projectile by switching a low voltage high current source across the rails to establish a plasma arc by vaporizing a fuse mounted on the back of the projectile, maintaining the voltage across the rails below the railgun breakdown voltage to prevent arc formation ahead of the projectile. After the plasma arc has been formed behind the projectile a discriminator switches the full energy bank across the rails to accelerate the projectile. A gas gun injector may be utilized to inject a projectile into the breech of a railgun. The invention permits the use of a gas gun or gun powder injector and an evacuated barrel without the risk of spurious arc formation in front of the projectile. 2 figs.

  7. Gas leak characteristics of inner packaging components used in the D0T-Spec 6M container

    SciTech Connect (OSTI)

    Taylor, J.M.

    1985-09-01

    A test program was conducted by Pacific Northwest Laboratory to determine the gas leak characteristics of metal food pack cans and 2R vessels used to package radioactive material in a D0T 6M specification container. It can be concluded from the tests performed that the inner packaging components (2R vessel, metal product cans) used with a 6M container can be sealed so that they will be gas tight (<10/sup -5/ cc/sec) under elevated temperature and pressure and impact conditions. To maintain gas tight seals under accident conditions, the metal cans must be sealed with a properly adjusted can-sealing machine; the threads of the 2R vessel must be luted with a sealing compound such as a silicone rubber compound; and the metal cans must be protected inside the 2R vessel with spacer plates and impact absorbers. 4 refs., 37 figs.

  8. Gas hydrate cool storage system

    DOE Patents [OSTI]

    Ternes, Mark P. (Knoxville, TN); Kedl, Robert J. (Oak Ridge, TN)

    1985-01-01

    This invention is a process for formation of a gas hydrate to be used as a cool storage medium using a refrigerant in water. Mixing of the immiscible refrigerant and water is effected by addition of a surfactant and agitation. The difficult problem of subcooling during the process is overcome by using the surfactant and agitation and performance of the process significantly improves and approaches ideal.

  9. Monte-Carlo simulation of the tight-binding model of graphene with partially screened Coulomb interactions

    E-Print Network [OSTI]

    Dominik Smith; Lorenz von Smekal

    2014-03-14

    We report on Hybrid-Monte-Carlo simulations of the tight-binding model with long-range Coulomb interactions for the electronic properties of graphene. We investigate the spontaneous breaking of sublattice symmetry corresponding to a transition from the semimetal to an antiferromagnetic insulating phase. Our short-range interactions thereby include the partial screening due to electrons in higher energy states from ab initio calculations based on the constrained random phase approximation [T.O.Wehling {\\it et al.}, Phys.Rev.Lett.{\\bf 106}, 236805 (2011)]. In contrast to a similar previous Monte-Carlo study [M.V.Ulybyshev {\\it et al.}, Phys.Rev.Lett.{\\bf 111}, 056801 (2013)] we also include a phenomenological model which describes the transition to the unscreened bare Coulomb interactions of graphene at half filling in the long-wavelength limit. Our results show, however, that the critical coupling for the antiferromagnetic Mott transition is largely insensitive to the strength of these long-range Coulomb tails. They hence confirm the prediction that suspended graphene remains in the semimetal phase when a realistic static screening of the Coulomb interactions is included.

  10. Measurement and Analysis of Void Fraction in a Multiple-Channel Simplifying Triangle Tight Lattice Rod Bundle

    SciTech Connect (OSTI)

    Michio Sadatomi; Akimaro Kawahara; Hiroyuki Kudo; Hiroshi Shirai [Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan)

    2006-07-01

    In order to know the effects of reduced surface tension on void fraction, adiabatic experiments were conducted for both air-water and air-water with surfactant systems at room temperature and pressure. Void fraction data were obtained for bubbly, slug, churn and annular flows in a vertical channel with two subchannels simplifying a triangle tight lattice rod bundle. The void fraction was found to be lower in air-water system than air-water with surfactant one. In addition, the void fractions for both systems were found to be lower than those calculated by various correlations in literatures for circular pipe flow. In order to study the cause of the above data trend, for annular flows as a first step, the void fraction has been calculated by a subchannel analysis using wall and interfacial friction correlations in literatures as constitutive equations, and by assuming the liquid film to be uniform over the wall perimeter. The best agreement between the calculation and the experiment has been obtained when NASCA correlation for wall friction force and modified RELAP5/MOD2 correlation incorporating reduced surface tension effects for interfacial friction force were used. (authors)

  11. New methods for tightly regulated gene expression and highly efficient chromosomal integration of cloned genes for Methanosarcina species

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Guss, Adam M.; Rother, Michael; Zhang, Jun Kai; Kulkkarni, Gargi; Metcalf, William W.

    2008-01-01

    A highly efficient method for chromosomal integration of cloned DNA into Methanosarcina spp. was developed utilizing the site-specific recombination system from the Streptomyces phage ?C31. Host strains expressing the ?C31 integrase gene and carrying an appropriate recombination site can be transformed with non-replicating plasmids carrying the complementary recombination site at efficiencies similar to those obtained with self-replicating vectors. We have also constructed a series of hybrid promoters that combine the highly expressed M. barkeri P mcrB promoter with binding sites for the tetracycline-responsive, bacterial TetR protein. These promoters are tightly regulated by the presence or absence of tetracycline inmore »strains that express the tetR gene. The hybrid promoters can be used in genetic experiments to test gene essentiality by placing a gene of interest under their control. Thus, growth of strains with tetR -regulated essential genes becomes tetracycline-dependent. A series of plasmid vectors that utilize the site-specific recombination system for construction of reporter gene fusions and for tetracycline regulated expression of cloned genes are reported. These vectors were used to test the efficiency of translation at a variety of start codons. Fusions using an ATG start site were the most active, whereas those using GTG and TTG were approximately one half or one fourth as active, respectively. The CTG fusion was 95% less active than the ATG fusion. « less

  12. New methods for tightly regulated gene expression and highly efficient chromosomal integration of cloned genes forMethanosarcinaspecies

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Guss, Adam M.; Rother, Michael; Zhang, Jun Kai; Kulkkarni, Gargi; Metcalf, William W.

    2008-01-01

    A highly efficient method for chromosomal integration of cloned DNA intoMethanosarcina spp.was developed utilizing the site-specific recombination system from theStreptomycesphage ?C31. Host strains expressing the ?C31 integrase gene and carrying an appropriate recombination site can be transformed with non-replicating plasmids carrying the complementary recombination site at efficiencies similar to those obtained with self-replicating vectors. We have also constructed a series of hybrid promoters that combine the highly expressedM. barkeriPmcrBpromoter with binding sites for the tetracycline-responsive, bacterial TetR protein. These promoters are tightly regulated by the presence or absence of tetracycline in strains that express thetetRgene. The hybrid promoters can bemore »used in genetic experiments to test gene essentiality by placing a gene of interest under their control. Thus, growth of strains withtetR-regulated essential genes becomes tetracycline-dependent. A series of plasmid vectors that utilize the site-specific recombination system for construction of reporter gene fusions and for tetracycline regulated expression of cloned genes are reported. These vectors were used to test the efficiency of translation at a variety of start codons. Fusions using an ATG start site were the most active, whereas those using GTG and TTG were approximately one half or one fourth as active, respectively. The CTG fusion was 95% less active than the ATG fusion.« less

  13. SUPPRESSION OF STAR FORMATION IN NGC 1266

    SciTech Connect (OSTI)

    Alatalo, Katherine; Lanz, Lauranne; Bitsakis, Theodoros; Appleton, Philip N.; Ogle, Patrick M.; Lacy, Mark; Lonsdale, Carol J.; Nyland, Kristina; Meier, David S.; Cales, Sabrina L.; Chang, Philip; Davis, Timothy A.; De Zeeuw, P. T.; Martín, Sergio

    2015-01-01

    NGC 1266 is a nearby lenticular galaxy that harbors a massive outflow of molecular gas powered by the mechanical energy of an active galactic nucleus (AGN). It has been speculated that such outflows hinder star formation (SF) in their host galaxies, providing a form of feedback to the process of galaxy formation. Previous studies, however, indicated that only jets from extremely rare, high-power quasars or radio galaxies could impart significant feedback on their hosts. Here we present detailed observations of the gas and dust continuum of NGC 1266 at millimeter wavelengths. Our observations show that molecular gas is being driven out of the nuclear region at M-dot {sub out}?110 M{sub ?} yr{sup –1}, of which the vast majority cannot escape the nucleus. Only 2 M {sub ?} yr{sup –1} is actually capable of escaping the galaxy. Most of the molecular gas that remains is very inefficient at forming stars. The far-infrared emission is dominated by an ultra-compact (? 50 pc) source that could either be powered by an AGN or by an ultra-compact starburst. The ratio of the SF surface density (?{sub SFR}) to the gas surface density (?{sub H{sub 2}}) indicates that SF is suppressed by a factor of ?50 compared to normal star-forming galaxies if all gas is forming stars, and ?150 for the outskirt (98%) dense molecular gas if the central region is powered by an ultra-compact starburst. The AGN-driven bulk outflow could account for this extreme suppression by hindering the fragmentation and gravitational collapse necessary to form stars through a process of turbulent injection. This result suggests that even relatively common, low-power AGNs are able to alter the evolution of their host galaxies as their black holes grow onto the M-? relation.

  14. Masha Udensiva-Brenner: Can you tell us about Russia's role in the Eurasian gas market before and after the Central Asia-

    E-Print Network [OSTI]

    Qian, Ning

    become competitors harriman magazine | 11 iNtervieWS The CenTral asia-China PiPeline and russia's energy and after the Central Asia- China Pipeline? Holly Decker: When the Soviet Union collapsed, all gas pipelines transit fees for political and economic gains. Russia had tight control and tried to disrupt pipelines

  15. A Recipe for Galaxy Formation Shaun Cole

    E-Print Network [OSTI]

    Alfonso Aragon-Salamanca; Carlos S. Frenk; Julio F. Navarro; Stephen E. Zepf

    1994-02-01

    We present a detailed prescription for how galaxy formation can be modelled in hierarchical theories of structure formation. Our model incorporates the formation and merging of dark matter halos, the shock heating and radiative cooling of baryonic gas gravitationally confined in these halos, the formation of stars regulated by the energy released by evolving stars and supernovae, the merging of galaxies within dark matter halos, and the spectral evolution of the stellar populations that are formed. The procedure that we describe is very flexible and can be applied to any hierarchical clustering theory. We explore the effects of varying the stellar initial mass function, star formation rates and galaxy merging. The results we compare with an extensive range of observational data, including the B and K galaxy luminosity functions, galaxy colours, the Tully-Fisher relation and galaxy number counts.These data strongly constrain the models and enable the relative importance of each of the physical process to be assessed. We present a broadly successful model defined by a plausible choice of parameters. This fiducial model produces a much more acceptable luminosity function than most previous studies. This is achieved through a modest rate of galaxy mergers and strong suppression of star formation in halos of low circular velocity. However, it fails to produce galaxies as red as many observed ellipticals and, compared with the observed Tully-Fisher relation, the model galaxies have circular velocities which are too large. ** uuencoded compressed postscript file containing all text and figures.**

  16. Gas Feedback on Stellar Bar Evolution

    E-Print Network [OSTI]

    Ingo Berentzen; Isaac Shlosman; Inma Martinez-Valpuesta; Clayton Heller

    2007-05-27

    We analyze evolution of live disk-halo systems in the presence of various gas fractions, f_gas less than 8% in the disk. We addressed the issue of angular momentum (J) transfer from the gas to the bar and its effect on the bar evolution. We find that the weakening of the bar, reported in the literature, is not related to the J-exchange with the gas, but is caused by the vertical buckling instability in the gas-poor disks and by a steep heating of a stellar velocity dispersion by the central mass concentration (CMC) in the gas-rich disks. The gas has a profound effect on the onset of the buckling -- larger f_gas brings it forth due to the more massive CMCs. The former process leads to the well-known formation of the peanut-shaped bulges, while the latter results in the formation of progressively more elliptical bulges, for larger f_gas. The subsequent (secular) evolution of the bar differs -- the gas-poor models exhibit a growing bar while gas-rich models show a declining bar whose vertical swelling is driven by a secular resonance heating. The border line between the gas-poor and -rich models lies at f_gas ~ 3% in our models, but is model-dependent and will be affected by additional processes, like star formation and feedback from stellar evolution. The overall effect of the gas on the evolution of the bar is not in a direct J transfer to the stars, but in the loss of J by the gas and its influx to the center that increases the CMC. The more massive CMC damps the vertical buckling instability and depopulates orbits responsible for the appearance of peanut-shaped bulges. The action of resonant and non-resonant processes in gas-poor and gas-rich disks leads to a converging evolution in the vertical extent of the bar and its stellar dispersion velocities, and to a diverging evolution in the bulge properties.

  17. Formation of Cyanoformaldehyde in the interstellar space

    E-Print Network [OSTI]

    Das, Ankan; Chakrabarti, Sandip K; Saha, Rajdeep; Chakrabarti, Sonali

    2013-01-01

    Cyanoformaldehyde (HCOCN) molecule has recently been suspected towards the Sagittarius B2(N) by the Green Bank telescope, though a confirmation of this observation has not yet been made. In and around a star forming region, this molecule could be formed by the exothermic reaction between two abundant interstellar species, H$_2$CO and CN. Till date, the reaction rate coefficient for the formation of this molecule is unknown. Educated guesses were used to explain the abundance of this molecule by chemical modeling. In this paper, we carried out quantum chemical calculations to find out empirical rate coefficients for the formation of HCOCN and different chemical properties during the formation of HCOCN molecules. Though HCOCN is stable against unimolecular decomposition, this gas phase molecule could be destroyed by many other means, like: ion-molecular reactions or by the effect of cosmic rays. Ion-molecular reaction rates are computed by using the capture theories. We have also included the obtained rate coef...

  18. The Formation of Primordial Luminous Objects

    E-Print Network [OSTI]

    Emanuele Ripamonti; Tom Abel

    2005-07-06

    In these lecture notes we review the current knowledge about the formation of the first luminous objects. We start from the cosmological context of hierarchical models of structure formation, and discuss the main physical processes which are believed to lead to primordial star formation, i.e. the cooling processes and the chemistry of molecules (especially H2) in a metal-free gas. We then describe the techniques and results of numerical simulations, which indicate that the masses of the first luminous objects are likely to be much larger than that of present-day stars. Finally, we discuss the scenario presented above, exposing some of the most interesting problems which are currently being investigated, such as that of the feedback effects of these objects.

  19. Corrosion-induced gas generation in a nuclear waste repository: Reactive geochemistry and multiphase flow effect

    E-Print Network [OSTI]

    Xu, T.

    2009-01-01

    Lying Repositories for Nuclear Waste, NAGRA Technical Reporthost rock formation for nuclear waste storage. EngineeringGas Generation in a Nuclear Waste Repository: Reactive

  20. Coiled tubing helps gas production

    SciTech Connect (OSTI)

    Matheny, S.L. Jr.

    1980-08-11

    To boost production from its gas fields in Lake Erie, Consumers' Gas Co., Toronto, used a giant reel holding a 33,000-ft coil of 1-in. polypropylene-coated steel tubing to lay about 44 miles of control lines that now service 20 wells 17 miles offshore. As the forward motion of the boat unwound the tubing, the reel rig's hydraulic motor served as a brake to maintain the proper tension. This innovative method of laying the lines eliminated more than 80% of the pipe joints, correspondingly reduced the installation labor time, and improved the system's reliability. The two hydraulic-control lines that were laid actuate the gas-gathering line valves, while a hydrate-control line injects each well with methyl alcohol to inhibit hydrate formation.

  1. REVISITING JOVIAN-RESONANCE INDUCED CHONDRULE FORMATION

    SciTech Connect (OSTI)

    Nagasawa, M. [Interactive Research Center of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Tanaka, K. K.; Tanaka, H. [Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819 (Japan); Nakamoto, T. [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Miura, H. [Graduate School of Natural Sciences, Nagoya City University, 1 Yamanohata, Mizuho-cho, Mizuho-ku, Nagoya 467-8501 (Japan); Yamamoto, T., E-mail: nagasawa.m.ad@m.titech.ac.jp [Center for Planetary Science, Kobe University, 7-1-48 Minamimachi, Minatojima, Chuo-ku, Kobe 650-0047 (Japan)

    2014-10-10

    It is proposed that planetesimals perturbed by Jovian mean-motion resonances are the source of shock waves that form chondrules. It is considered that this shock-induced chondrule formation requires the velocity of the planetesimal relative to the gas disk to be on the order of ? 7 km s{sup –1} at 1 AU. In previous studies on planetesimal excitation, the effects of Jovian mean-motion resonance together with the gas drag were investigated, but the velocities obtained were at most 8 km s{sup –1} in the asteroid belt, which is insufficient to account for the ubiquitous existence of chondrules. In this paper, we reexamine the effect of Jovian resonances and take into account the secular resonance in the asteroid belt caused by the gravity of the gas disk. We find that the velocities relative to the gas disk of planetesimals a few hundred kilometers in size exceed 12 km s{sup –1}, and that this is achieved around the 3:1 mean-motion resonance. The heating region is restricted to a relatively narrowband between 1.5 AU and 3.5 AU. Our results suggest that chondrules were produced effectively in the asteroid region after Jovian formation. We also find that many planetesimals are scattered far beyond Neptune. Our findings can explain the presence of crystalline silicate in comets if the scattered planetesimals include silicate dust processed by shock heating.

  2. NATURAL GAS MARKET ASSESSMENT

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION NATURAL GAS MARKET ASSESSMENT PRELIMINARY RESULTS In Support.................................................................................... 6 Chapter 2: Natural Gas Demand.................................................................................................. 10 Chapter 3: Natural Gas Supply

  3. Natural Gas Applications

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas Applications. If you need assistance viewing this page, please call (202) 586-8800. Energy Information Administration Home Page Home > Natural Gas > Natural Gas Applications...

  4. On conduction, cooling flows and galaxy formation

    E-Print Network [OSTI]

    Fabian, A C; Morris, R G

    2002-01-01

    On the basis of the universal gas fraction in clusters of galaxies, we estimate that the effective thermal conductivity required to balance radiative cooling in the cores, where the gas temperature is 3-10keV, is about one tenth of the Spitzer rate. This confirms that thermal conduction can be important for the energy balance provided that it is not highly suppressed by magnetic fields in the gas. We determine the global effective conductivity in a sample of 29 clusters using published X-ray data on the inferred cooling rates and show that most lie between one and one tenth of the Spitzer rate. More work on the profiles in cooling flow clusters is required to test the conduction hypothesis further. We examine the possibility that conduction operates during galaxy formation, and show that it provides a simple explanation for the upper-mass cutoff in galaxy masses.

  5. On conduction, cooling flows and galaxy formation

    E-Print Network [OSTI]

    A. C. Fabian; L. M. Voigt; R. G. Morris

    2002-06-25

    On the basis of the universal gas fraction in clusters of galaxies, we estimate that the effective thermal conductivity required to balance radiative cooling in the cores, where the gas temperature is 3-10keV, is about one tenth of the Spitzer rate. This confirms that thermal conduction can be important for the energy balance provided that it is not highly suppressed by magnetic fields in the gas. We determine the global effective conductivity in a sample of 29 clusters using published X-ray data on the inferred cooling rates and show that most lie between one and one tenth of the Spitzer rate. More work on the profiles in cooling flow clusters is required to test the conduction hypothesis further. We examine the possibility that conduction operates during galaxy formation, and show that it provides a simple explanation for the upper-mass cutoff in galaxy masses.

  6. Oxygenates from synthesis gas

    SciTech Connect (OSTI)

    Falter, W.; Keim, W.

    1994-12-31

    The direct synthesis of oxygenates starting from synthesis gas is feasible by homogeneous and heterogeneous catalysis. Homogeneous Rh and Ru based catalysts yielding methyl formate and alcohols will be presented. Interestingly, modified heterogeneous catalysts based on {open_quotes}Isobutyl Oel{close_quotes} catalysis, practized in Germany (BRD) up to 1952 and in the former DDR until recently, yield isobutanol in addition to methanol. These {open_quotes}Isobutyl Oel{close_quotes} catalysts are obtained by adding a base such as Li < Na < K < Cs to a Zn-Cr{sub 2}O{sub 3} methanol catalyst. Isobutanol is obtained in up to 15% yield. Our best catalyst a Zr-Zn-Mn-Li-Pd catalyst produced isobotanol up to 60% at a rate of 740g isobutanol per liter catalyst and hour.

  7. STAR FORMATION AROUND SUPERGIANT SHELLS IN THE LARGE MAGELLANIC CLOUD

    SciTech Connect (OSTI)

    Book, Laura G.; Chu Youhua; Gruendl, Robert A.; Fukui, Yasuo

    2009-03-15

    We examine the recent star formation associated with four supergiant shells in the Large Magellanic Cloud (LMC): LMC 1, 4, 5, and 6, which have been shown to have simple expanding-shell structures. H II regions and OB associations are used to infer star formation in the last few Myr, while massive young stellar objects reveal the current ongoing star formation. Distributions of ionized H I and molecular components of the interstellar gas are compared with the sites of recent and current star formation to determine whether triggering has taken place. We find that a great majority of the current star formation has occurred in gravitationally unstable regions, and that evidence of triggered star formation is prevalent at both large and local scales.

  8. Methane contamination of drinking water accompanying gas-well drilling and

    E-Print Network [OSTI]

    of drinking water associated with shale- gas extraction. In active gas-extraction areas (one or more gas wells. groundwater organic-rich shale isotopes formation waters water chemistry Increases in natural-gas extraction of such extraction (6, 7) are public concerns about drinking-water contamination from drilling and hydraulic

  9. The Chemistry of Flammable Gas Generation

    SciTech Connect (OSTI)

    ZACH, J.J.

    2000-10-30

    The document collects information from field instrumentation, laboratory tests, and analytical models to provide a single source of information on the chemistry of flammable gas generation at the Hanford Site. It considers the 3 mechanisms of formation: radiolysis, chemical reactions, and thermal generation. An assessment of the current models for gas generation is then performed. The results are that the various phenomena are reasonably understood and modeled compared to field data.

  10. ARPA-E: Creating Practical, Affordable Natural Gas Storage Solutions

    ScienceCinema (OSTI)

    Boysen, Dane; Loukus, Josh; Hansen, Rita

    2014-03-13

    Allowing people to refuel natural gas vehicles at home could revolutionize the way we power our cars and trucks. Currently, our nation faces two challenges in enabling natural gas for transportation. The first is improving the way gas tanks are built for natural gas vehicles; they need to be conformable, allowing them to fit tightly into the vehicle. The second challenge is improving the way those tanks are refueled while maintaining cost-effectiveness, safety, and reliability. This video highlights two ARPA-E project teams with innovative solutions to these challenges. REL is addressing the first challenge by developing a low-cost, conformable natural gas tank with an interconnected core structure. Oregon State University and OnBoard Dynamics are addressing the second challenge by developing a self-refueling natural gas vehicle that integrates a compressor into its engine-using one of the engine's cylinders to compress gas eliminates the need for an expensive at-home refueling system. These two distinct technologies from ARPA-E's MOVE program illustrate how the Agency takes a multi-pronged approach to problem solving and innovation.

  11. ARPA-E: Creating Practical, Affordable Natural Gas Storage Solutions

    SciTech Connect (OSTI)

    Boysen, Dane; Loukus, Josh; Hansen, Rita

    2014-02-24

    Allowing people to refuel natural gas vehicles at home could revolutionize the way we power our cars and trucks. Currently, our nation faces two challenges in enabling natural gas for transportation. The first is improving the way gas tanks are built for natural gas vehicles; they need to be conformable, allowing them to fit tightly into the vehicle. The second challenge is improving the way those tanks are refueled while maintaining cost-effectiveness, safety, and reliability. This video highlights two ARPA-E project teams with innovative solutions to these challenges. REL is addressing the first challenge by developing a low-cost, conformable natural gas tank with an interconnected core structure. Oregon State University and OnBoard Dynamics are addressing the second challenge by developing a self-refueling natural gas vehicle that integrates a compressor into its engine-using one of the engine's cylinders to compress gas eliminates the need for an expensive at-home refueling system. These two distinct technologies from ARPA-E's MOVE program illustrate how the Agency takes a multi-pronged approach to problem solving and innovation.

  12. ,"Natural Gas Consumption",,,"Natural Gas Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    Census Division, 1999" ,"Natural Gas Consumption",,,"Natural Gas Expenditures" ,"per Building (thousand cubic feet)","per Square Foot (cubic feet)","per Worker (thousand cubic...

  13. CARMA SURVEY TOWARD INFRARED-BRIGHT NEARBY GALAXIES (STING). III. THE DEPENDENCE OF ATOMIC AND MOLECULAR GAS SURFACE DENSITIES ON GALAXY PROPERTIES

    SciTech Connect (OSTI)

    Wong, Tony; Xue, Rui; Bolatto, Alberto D.; Fisher, David B.; Vogel, Stuart N.; Leroy, Adam K.; Blitz, Leo; Rosolowsky, Erik; Bigiel, Frank; Ott, Jürgen; Rahman, Nurur; Walter, Fabian

    2013-11-01

    We investigate the correlation between CO and H I emission in 18 nearby galaxies from the CARMA Survey Toward IR-Bright Nearby Galaxies (STING) at sub-kpc and kpc scales. Our sample, spanning a wide range in stellar mass and metallicity, reveals evidence for a metallicity dependence of the H I column density measured in regions exhibiting CO emission. Such a dependence is predicted by the equilibrium model of McKee and Krumholz, which balances H{sub 2} formation and dissociation. The observed H I column density is often smaller than predicted by the model, an effect we attribute to unresolved clumping, although values close to the model prediction are also seen. We do not observe H I column densities much larger than predicted, as might be expected were there a diffuse H I component that did not contribute to H{sub 2} shielding. We also find that the H{sub 2} column density inferred from CO correlates strongly with the stellar surface density, suggesting that the local supply of molecular gas is tightly regulated by the stellar disk.

  14. Natural Gas

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014ProvedYear Jan Feb MarNGPL Production,Energy Office

  15. Improving Fluid Recovery and Permeability to Gas in Shale Formations 

    E-Print Network [OSTI]

    Rostami, Ameneh

    2015-05-04

    Despite all advantages of slickwater fracturing such as low cost, high possibility of creating complex fracture networks, and ease of clean-up, large quantities of water are still left within the reservoir after flowback. Invasion of aqueous...

  16. Sample Format Natural Gas Imports by Pipeline Monthly Sales and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Country of Origin Point of ENTRY into U.S. Volume (Mcf at U.S. Border) Avg. Price at U.S. Border (U.S.MMBtu) Supplier(s) Foreign Transporter U.S. Transporter Markets Served -...

  17. REGULATORY COOPERATION COUNCIL - WORK PLANNING FORMAT: Natural Gas Use in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7, 2011 |1Administration~I.OJ)REFF

  18. Rapid Gas Hydrate Formation Process - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners * Impacts on GlobalRachel2 RadiometerRafaelAnalysis (Conference)

  19. Notes on Star Formation

    E-Print Network [OSTI]

    Krumholz, Mark R

    2015-01-01

    This book provides an introduction to the field of star formation at a level suitable for graduate students or advanced undergraduates in astronomy or physics. The structure of the book is as follows. The first two chapters begin with a discussion of observational techniques, and the basic phenomenology they reveal. The goal is to familiarize students with the basic techniques that will be used throughout, and to provide a common vocabulary for the rest of the book. The next five chapters provide a similar review of the basic physical processes that are important for star formation. Again, the goal is to provide a basis for what follows. The remaining chapters discuss star formation over a variety of scales, starting with the galactic scale and working down to the scales of individual stars and their disks. The book concludes with a brief discussion of the clearing of disks and the transition to planet formation. The book includes five problem sets, complete with solutions.

  20. Word formation in Thadou

    E-Print Network [OSTI]

    Haokip, Pauthang

    2014-01-01

    As stated above, compound words of Thadou are mostlyNote that the resulting new words are always nouns. a. b. c.bad’ (negative) Haokip: Word formation in Thadou a. â-sâa ?

  1. Notice of Weekly Natural Gas Storage Report Changes

    Weekly Natural Gas Storage Report (EIA)

    Released: September 23, 2013 EIA to Modify Format of the Weekly Natural Gas Storage Report to Better Serve Customers The U.S. Energy Information Administration (EIA) is announcing...

  2. Computational Modeling for Dense Gas Dispersion for Variable Stability Classes 

    E-Print Network [OSTI]

    Chakroun, Mohamed Amine

    2015-05-21

    The spill of many chemicals such as Liquefied Natural Gas (LNG) on land or water results in its rapid vaporization and the formation of a dense cloud. The performance of a risk assessment for the spill of flammable chemicals requires...

  3. Process Design and Integration of Shale Gas to Methanol 

    E-Print Network [OSTI]

    Ehlinger, Victoria M.

    2013-02-04

    Recent breakthroughs in horizontal drilling and hydraulic fracturing technology have made huge reservoirs of previously untapped shale gas and shale oil formations available for use. These new resources have already made a significant impact...

  4. Star Formation in Mergers and Interacting Galaxies: Gathering the Fuel

    E-Print Network [OSTI]

    Curtis Struck

    2006-10-06

    Selected results from recent studies of star formation in galaxies at different stages of interaction are reviewed. Recent results from the Spitzer Space Telescope are highlighted. Ideas on how large-scale driving of star formation in interacting galaxies might mesh with our understanding of star formation in isolated galaxies and small scale mechanisms within galaxies are considered. In particular, there is evidence that on small scales star formation is determined by the same thermal and turbulent processes in cool compressed clouds as in isolated galaxies. If so, this affirms the notion that the primary role of large-scale dynamics is to gather and compress the gas fuel. In gas-rich interactions this is generally done with increasing efficiency through the merger process.

  5. Georgia Tech Dangerous Gas

    E-Print Network [OSTI]

    Li, Mo

    1 Georgia Tech Dangerous Gas Safety Program March 2011 #12;Georgia Tech Dangerous Gas Safety.......................................................................................................... 5 6. DANGEROUS GAS USAGE REQUIREMENTS................................................. 7 6.1. RESTRICTED PURCHASE/ACQUISITION RULES: ................................................ 7 7. FLAMMABLE GAS

  6. Annual Energy Outlook 2014 projects reduced need for U.S. oil imports due to tight oil production growth

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas ReservesAlabamaAbout EIA.govDistribution:

  7. Oxygen-permeable ceramic membranes for gas separation

    SciTech Connect (OSTI)

    Balachandran, U.; Ma, B.; Maiya, P.S.; Dusek, J.T.; Mieville, R.L.; Picciolo, J.J.

    1998-02-01

    Mixed-conducting oxides have a wide range of applications, including fuel cells, gas separation systems, sensors, and electrocatalytic equipment. Dense ceramic membranes made of mixed-conducting oxides are particularly attractive for gas separation and methane conversion processes. Membranes made of Sr-Fe-Co oxide, which exhibits high combined electronic and oxygen ionic conductivities, can be used to selectively transport oxygen during the partial oxidation of methane to synthesis gas (syngas, i.e., CO + H{sub 2}). The authors have fabricated tubular Sr{sub 2}Fe{sub 2}CoO{sub 6+{delta}} membranes and tested them (some for more than 1,000 h) in a methane conversion reactor that was operating at 850--950 C. An oxygen permeation flux of {approx} 10 scc/cm{sup 2} {center_dot} min was obtained at 900 C in a tubular membrane with a wall thickness of 0.75 mm. Using a gas-tight electrochemical cell, the authors have also measured the steady-state oxygen permeability of flat Sr{sub 2}Fe{sub 2}CoO{sub 6+{delta}} membranes as a function of temperature and oxygen partial pressure(pO{sub 2}). Steady-state oxygen permeability increases with increasing temperature and with the difference in pO{sub 2} on the two sides of the membrane. At 900 C, an oxygen permeability of {approx} 2.5 scc/cm{sup 2} {center_dot} min was obtained in a 2.9-mm-thick membrane. This value agrees with that obtained in methane conversion reactor experiments. Current-voltage (I-V) characteristics determined in the gas-tight cell indicate that bulk effect, rather than surface exchange effect, is the main limiting factor for oxygen permeation of {approx} 1-mm-thick Sr{sub 2}Fe{sub 2}CoO{sub 6+{delta}} membranes at elevated temperatures (> 650 C).

  8. Natural Gas Basics

    SciTech Connect (OSTI)

    NREL Clean Cities

    2010-04-01

    Fact sheet answers questions about natural gas production and use in transportation. Natural gas vehicles are also described.

  9. New Model to Predict Formation Damage due to Sulfur Deposition in Sour M.A. Mahmoud and A.A. Al-Majed, KFUPM, all SPE

    E-Print Network [OSTI]

    Al-Majed, Abdulaziz Abdullah

    SPE 149535 New Model to Predict Formation Damage due to Sulfur Deposition in Sour Gas Wells M of SPE copyright. Abstract Elemental sulfur (S8) is often present in considerable amounts in sour gas to deposit in the formation. Sulfur deposition can cause severe loss in the pore space available for gas

  10. Formation of carbon deposits from coal in an arc plasma

    SciTech Connect (OSTI)

    Wang, B.; Tian, Y.; Zhang, Y.; Zhu, S.; Lu, Y.; Zhang, Y.; Xie, K.

    2007-07-01

    The issue of deposited carbon (DC) on a reactor wall during the production of acetylene by the coal/arc plasma process is a potential obstacle for the industrialization process. The formation mechanism of DC is very difficult to reveal because the high complexity of coal and the volatile matter. Combining with quenching technique, the methane, liquid petroleum gas and benzene were employed as the model materials to roughly act as the light gas, chain and aromatic subcomponents of volatile matter, and then the reasonable formation mechanism of DC was subtly speculated accordingly.

  11. Metal oxide membranes for gas separation

    DOE Patents [OSTI]

    Anderson, M.A.; Webster, E.T.; Xu, Q.

    1994-08-30

    A method for formation of a microporous ceramic membrane onto a porous support includes placing a colloidal suspension of metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane having mean pore sizes less than 30 Angstroms and useful for ultrafiltration, reverse osmosis, or gas separation. 4 figs.

  12. Natural Gas Supply SBIR Program

    SciTech Connect (OSTI)

    Shoemaker, H.D.; Gwilliam, W.J.

    1995-07-01

    The Small Business Innovation Research (SBIR) program was created in 1982 by Public Law 97-219 and reauthorized in 1992 until the year 2000 by Public Law 102-564. The purposes of the new law are to (1) expand and improve the SBIR program, 2) emphasize the program`s goal of increasing private sector commercialization of technology developed through Federal R&D, (3) increase small business participation in Federal R&D, and (4) improve the Federal Government`s dissemination of information concerning the SBIR program. DOE`s SBIR pro-ram has two features that are unique. In the 1995 DOE SBIR solicitation, the DOE Fossil Energy topics were: environmental technology for natural gas, oil, and coal; advanced recovery of oil; natural gas supply; natural gas utilization; advanced coal-based power systems; and advanced fossil fuels research. The subtopics for this solicitation`s Natural Gas Supply topic are (1) drilling, completion, and stimulation; (2) low-permeability Formations; (3) delivery and storage; and (4) natural gas upgrading.

  13. Carbon sequestration in natural gas reservoirs: Enhanced gas recovery and natural gas storage

    E-Print Network [OSTI]

    Oldenburg, Curtis M.

    2003-01-01

    cushion gas for natural gas storage, Energy and Fuels, 17(RECOVERY AND NATURAL GAS STORAGE Curtis M. Oldenburg Eartheffective cushion gas for gas storage reservoirs. Thus at

  14. Microsoft Word - S07285_LTHMP

    Office of Legacy Management (LM)

    to fracture the tight, gas-bearing formations in the Piceance Basin for enhanced natural gas production. A 43-kiloton device was detonated on September 10, 1969, at a...

  15. Microsoft Word - S06010_Ltr.doc

    Office of Legacy Management (LM)

    to fracture the tight, gas-bearing formations in the Piceance Basin for enhanced natural gas production. A 43 kiloton device was detonated on September 10, 1969, at a...

  16. Microsoft Word - S04902_LetterReport Cover Letter.doc

    Office of Legacy Management (LM)

    to fracture the tight gas-bearing sandstone formations in the Piceance Basin for enhanced natural gas production. A 43 kiloton device was detonated on September 10, 1969, at a...

  17. Microsoft Word - S08407_LTHMP

    Office of Legacy Management (LM)

    to fracture the tight, gas-bearing formations in the Piceance Basin for enhanced natural gas production. A 43-kiloton device was detonated on September 10, 1969, at a...

  18. Gas condensate damage in hydraulically fractured wells 

    E-Print Network [OSTI]

    Adeyeye, Adedeji Ayoola

    2004-09-30

    This project is a research into the effect of gas condensate damage in hydraulically fractured wells. It is the result of a problem encountered in producing a low permeability formation from a well in South Texas owned by the El Paso Production...

  19. Testing Disk Instability Models for Giant Planet Formation

    E-Print Network [OSTI]

    Alan P. Boss

    2007-04-09

    Disk instability is an attractive yet controversial means for the rapid formation of giant planets in our solar system and elsewhere. Recent concerns regarding the first adiabatic exponent of molecular hydrogen gas are addressed and shown not to lead to spurious clump formation in the author's disk instability models. A number of disk instability models have been calculated in order to further test the robustness of the mechanism, exploring the effects of changing the pressure equation of state, the vertical temperature profile, and other parameters affecting the temperature distribution. Possible reasons for differences in results obtained by other workers are discussed. Disk instability remains as a plausible formation mechanism for giant planets.

  20. Fuel gas conditioning process

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid A. (Union City, CA)

    2000-01-01

    A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

  1. The density profiles of hot galactic halo gas

    E-Print Network [OSTI]

    Steen H. Hansen; Jesper Sommer-Larsen

    2006-06-13

    Extended gas haloes around galaxies are a ubiquitous prediction of galaxy formation scenarios. However, the density profiles of this hot halo gas is virtually unknown, although various profiles have been suggested on theoretical grounds. In order to quantitatively address the gas profile, we compare galaxies from direct cosmological simulations with analytical solutions of the underlying gas equations. We find remarkable agreement between simulations and theoretical predictions. We present an expression for this gas profile with a non-trivial dependence on the total mass profile. This expression is useful when setting up equilibrium galaxy models for numerical experiments.

  2. (Non) formation of methanol by direct hydrogenation of formate on copper catalysts

    SciTech Connect (OSTI)

    Yang, Yong; Mims, Charles A.; Disselkamp, Robert S.; Kwak, Ja Hun; Peden, Charles HF; Campbell, C. T.

    2010-10-14

    We have attempted to hydrogenate adsorbed formate species on copper catalysts to probe the importance of this postulated mechanistic step in methanol synthesis. Surface formate coverages up to 0.25 were produced at temperatures between 413K and 453K on supported (Cu/SiO2) copper and unsupported copper catalysts. The adlayers were produced by various methods including (1) steady state catalytic conditions in CO2-H2 (3:1, 6 bar) atmospheres, and (2) by exposure of the catalysts to formic acid. As reported in earlier work, the catalytic surface at steady state contains bidentate formate species with coverages up to saturation levels of ~ 0.25 at the low temperatures of this study. The reactivity of these formate adlayers was investigated at relevant reaction temperatures in atmospheres containing up to 6 bar H2 partial pressure by simultaneous mass spectrometry (MS) and infrared (IR) spectroscopy measurements. The yield of methanol during the attempted hydrogenation (“titration”) of these adlayers was insignificant (<0.2 mol % of the formate adlayer) even in dry hydrogen partial pressures up to 6 bar. Hydrogen titration of formate species produced from formic acid also failed to produce significant quantities of methanol, and attempted titration in gases consisting of CO-hydrogen mixtures or dry CO2 were also unproductive. The formate decomposition kinetics, measured by IR, were also unaffected by these changes in the gas composition. Similar experiments on unsupported copper also failed to show any methanol. From these results, we conclude that methanol synthesis on copper cannot result from the direct hydrogenation of (bidentate) formate species in simple steps involving adsorbed H species alone. Furthermore, experiments performed on both supported (Cu/SiO2) and unsupported copper catalysts gave similar results implying that the methanol synthesis reaction mechanism only involves metal surface chemistry. Pre-exposure of the bidentate formate adlayer to oxidation by O2 or N2O produces a change to a monodentate configuration. Attempted titration of this monodentate formate/O coadsorbed layer in dry hydrogen produces significant quantities of methanol, although decomposition of formate to carbon dioxide and hydrogen remains the dominant reaction pathway. Simultaneous production of water is also observed during this titration as the copper surface is re-reduced. These results indicate that co-adsorbates related to surface oxygen or water-derived species may be critical to methanol production on copper, perhaps assisting in the hydrogenation of adsorbed formate to adsorbed methoxyl.

  3. UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Coupled flow of water and gas during hydraulic fracture in shale (EARTH-15-CM1)

    E-Print Network [OSTI]

    Henderson, Gideon

    UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Coupled flow of water and gas during hydraulic fracture in shale (EARTH-15-CM1) Host institution: University of Oxford Cartwright Project description: Recovery of natural gas from mudstone (shale) formations has triggered

  4. NEWS & VIEWS PATTERN FORMATION

    E-Print Network [OSTI]

    Loss, Daniel

    no apologies for investing energy into problems of specific application to a particular process in nature, and having the curiosity to want to find out how they work. The general public, and especially children flow/surface growth system in a rarely explored region of parameter space for such pattern formation

  5. Isolating Triggered Star Formation

    E-Print Network [OSTI]

    Elizabeth J. Barton; Jacob A. Arnold; Andrew R. Zentner; James S. Bullock; Risa H. Wechsler

    2007-08-21

    Galaxy pairs provide a potentially powerful means of studying triggered star formation from galaxy interactions. We use a large cosmological N-body simulation coupled with a well-tested semi-analytic substructure model to demonstrate that the majority of galaxies in close pairs reside within cluster or group-size halos and therefore represent a biased population, poorly suited for direct comparison to ``field'' galaxies. Thus, the frequent observation that some types of galaxies in pairs have redder colors than ``field'' galaxies is primarily a selection effect. We select galaxy pairs that are isolated in their dark matter halos with respect to other massive subhalos (N=2 halos) and a control sample of isolated galaxies (N=1 halos) for comparison. We then apply these selection criteria to a volume-limited subset of the 2dF Galaxy Redshift Survey with M_Bj ~ 5 above their average past value, while only 10% of isolated galaxies in the control sample show this level of enhancement. Thus, 14% (20 %) of the galaxies in these close pairs show clear triggered star formation. The isolation criteria we develop provide a means to constrain star formation and feedback prescriptions in hydrodynamic simulations and a very general method of understanding the importance of triggered star formation in a cosmological context. (Abridged.)

  6. NOx Formation in a Premixed Syngas Flame

    SciTech Connect (OSTI)

    Yilmaz, S.L. (University of Pittsburgh, Pittsburgh, PA); Givi, P. (University of Pittsburgh, Pittsburgh, PA); Strakey, P.; Casleton, K.

    2006-11-01

    Reduction of NOx is a subject of significant current interest in stationary gas turbines. The objective of this study is to examine the effects of turbulence on non-thermal NOx formation in a syngas flame. This is archived by a detailed parametric study via PDF simulations of a partially stirred reactor and a dumped axisymmetric premixed flame. Several different detailed and reduced kinetics schemes are considered. The simulated results demonstrate the strong dependence of combustion process on turbulence. It is shown that the amount of NOx formation is significantly influenced by the inlet conditions. That is, the turbulence intensity can be tweaked to attain optimal ultra-low NOx emissions at a given temperature.

  7. Pennsylvania's Natural Gas Future

    E-Print Network [OSTI]

    Lee, Dongwon

    1 Pennsylvania's Natural Gas Future Penn State Natural Gas Utilization Workshop Bradley Hall sales to commercial and industrial customers ­ Natural gas, power, oil · Power generation ­ FossilMMBtuEquivalent Wellhead Gas Price, $/MMBtu Monthly US Spot Oil Price, $/MMBtu* U.S. Crude Oil vs. Natural Gas Prices, 2005

  8. Method for hot gas conditioning

    DOE Patents [OSTI]

    Paisley, Mark A. (Upper Arlington, OH)

    1996-02-27

    A method for cracking and shifting a synthesis gas by the steps of providing a catalyst consisting essentially of alumina in a reaction zone; contacting the catalyst with a substantially oxygen free mixture of gases comprising water vapor and hydrocarbons having one or more carbon atoms, at a temperature between about 530.degree. C. (1000.degree. F.) to about 980.degree. C. (1800.degree. F.); and whereby the hydrocarbons are cracked to form hydrogen, carbon monoxide and/or carbon dioxide and the hydrogen content of the mixture increases with a corresponding decrease in carbon monoxide, and carbon formation is substantially eliminated.

  9. Method for hot gas conditioning

    SciTech Connect (OSTI)

    Paisley, M.A.

    1996-02-27

    A method is described for cracking and shifting a synthesis gas by the steps of providing a catalyst consisting essentially of alumina in a reaction zone; contacting the catalyst with a substantially oxygen free mixture of gases comprising water vapor and hydrocarbons having one or more carbon atoms, at a temperature between about 530 C (1000 F) to about 980 C (1800 F); and whereby the hydrocarbons are cracked to form hydrogen, carbon monoxide and/or carbon dioxide and the hydrogen content of the mixture increases with a corresponding decrease in carbon monoxide, and carbon formation is substantially eliminated. 3 figs.

  10. TOP-DOWN MODELING; PRACTICAL, FAST TRACK, RESERVOIR SIMULATION & MODELING FOR SHALE FORMATIONS Shahab D. Mohaghegh1 & Grant Bromhal2

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    development in the oil and gas industry and is being used on some shale formations. BAKKEN SHALE MuchTOP-DOWN MODELING; PRACTICAL, FAST TRACK, RESERVOIR SIMULATION & MODELING FOR SHALE FORMATIONS based on measure data, called Top-Down, Intelligent Reservoir Modeling for the shale formations

  11. Chaos in Terrestrial Planet Formation

    E-Print Network [OSTI]

    Volker Hoffmann; Simon L. Grimm; Ben Moore; Joachim Stadel

    2015-08-04

    Terrestrial planets are thought to be the result of a vast number of gravitational interactions and collisions between smaller bodies. We use numerical simulations to show that practically identical initial conditions result in a wide array of final planetary configurations. This highly chaotic behaviour questions the predictability of different scenarios for the formation and evolution of our solar system and planetary systems in general. However, multiple realisations of the same initial conditions can be used to predict certain global statistics. We present two sets of numerical experiments that quantify this behaviour. Firstly, we demonstrate that simulations with slightly displaced particles are completely divergent after ~500 years, irrespective of initial displacement, particle number, and code accuracy. If a single planetesimal is moved by less than one millimetre, then a different set of planets results -- this timescale for chaotic divergence decreases with increasing particle number. Secondly, we show final planetary configurations of initially similar simulations with and without giant planets after evolving them for ~148 Myr. We find that the same simulations including giant planets tend to generate higher mass planets at lower semi-major axes than simulations without gas giants. This prediction can be tested with forthcoming observational programs. By extracting outliers in the observations, we cautiously predict that Kepler-10, Kepler-9, 61 Vir, HD 134060, and HD 51608 may host as yet undetected giant planets.

  12. The Development of Warm Gas Cleanup Technologies for the Removal of Sulfur Containing Species from Steam Hydrogasification

    E-Print Network [OSTI]

    Luo, Qian

    2012-01-01

    species, such as carbonyl sulfide (COS), carbon disulfide (the formation of carbonyl sulfide (COS); carbon dioxide (COsmall amounts of gas phase carbonyl sulfide (COS) and carbon

  13. The growth rate of gas hydrate from refrigerant R12

    SciTech Connect (OSTI)

    Kendoush, Abdullah Abbas; Jassim, Najim Abid [Centre of Engineering Physics, Ministry of Sciences and Technology, P.O. Box 765, Baghdad (Iraq); Joudi, Khalid A. [Al-Nahrain University, Baghdad (Iraq)

    2006-07-15

    Experimental and theoretical investigations were presented dealing with three phase direct-contact heat transfer by evaporation of refrigerant drops in an immiscible liquid. Refrigerant R12 was used as the dispersed phase, while water and brine were the immiscible continuous phase. A numerical solution is presented to predict the formation rate of gas hydrates in test column. The solution provided an acceptable agreement when compared with experimental results. The gas hydrate growth rate increased with time. It increased with increasing dispersed phase flow rate. The presence of surface-active sodium chloride in water had a strong inhibiting effect on the gas hydrate formation rate. (author)

  14. Investigation of the formation and energy density of high-current pulsed electron beams

    E-Print Network [OSTI]

    Daichi, Yoshiaki; WANG, ZHIGANG; Yamazaki, Kazuo; Sano, Sadao

    2007-01-01

    of the formation and energy density of high-current pulsednot clear about the energy density of HCPEB under differentof HCPEB and its energy density. Then, effects of argon gas

  15. Natural gas monthly, January 1997

    SciTech Connect (OSTI)

    NONE

    1997-01-01

    This publication, the Natural Gas Monthly, presents the most recent data on natural gas supply, consumption, and prices from the Energy Information Administration (EIA). Of special interest in this issue are two articles summarizing reports recently published by EIA. The articles are {open_quotes}Natural Gas Productive Capacity{close_quotes} and {open_quotes}Outlook for Natural Gas Through 2015,{close_quotes} both of which precede the {open_quotes}Highlights{close_quotes} section. With this issue, January 1997, changes have been made to the format of the Highlights section and to several of the tabular and graphical presentations throughout the publication. The changes to the Highlights affect the discussion of developments in the industry and the presentation of weekly storage data. An overview of the developments in the industry is now presented in a brief summary followed by specific discussions of supply, end-use consumption, and prices. Spot and futures prices are discussed as appropriate in the Price section, together with wellhead and consumer prices.

  16. Star formation and molecular hydrogen in dwarf galaxies: a non-equilibrium view

    E-Print Network [OSTI]

    Hu, Chia-Yu; Walch, Stefanie; Glover, Simon C O; Clark, Paul C

    2015-01-01

    We study the connection of star formation to atomic (HI) and molecular hydrogen (H$_2$) in isolated, low metallicity dwarf galaxies with high-resolution ($m_{\\rm gas}$ = 4 M$_\\odot$, $N_{\\rm ngb}$ = 100) SPH simulations. The model includes self-gravity, non-equilibrium cooling, shielding from an interstellar radiation field, the chemistry of H$_2$ formation, H$_2$-independent star formation, supernova feedback and metal enrichment. We find that the H$_2$ mass fraction is sensitive to the adopted dust-to-gas ratio and the strength of the interstellar radiation field, while the star formation rate is not. Star formation is regulated by stellar feedback, keeping the gas out of thermal equilibrium for densities $n HI, not H$_2...

  17. Supervisory Natural Gas Analyst

    Broader source: Energy.gov [DOE]

    The Department of Energys Office of Fossil Energy, Office of Oil and Natural Gas, Office of Oil and Gas Global Security and Supply (FE) is responsible for regulating natural gas imports and exports...

  18. Industrial Gas Turbines

    Broader source: Energy.gov [DOE]

    A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature,...

  19. Future of Natural Gas

    Energy Savers [EERE]

    of Natural Gas Bill Eisele, CEM SC Electric & Gas Co Hosted by: FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR November 5-6, 2014 Cape Canaveral. Florida Agenda * Gas Facts *...

  20. The Formation of a Bubble from a Submerged Orifice

    E-Print Network [OSTI]

    Simmons, Jonathan A; Shikhmurzaev, Yulii D

    2015-01-01

    The formation of a single bubble from an orifice in a solid surface, submerged in an in- compressible, viscous Newtonian liquid, is simulated. The finite element method is used to capture the multiscale physics associated with the problem and to track the evolution of the free surface explicitly. The results are compared to a recent experimental analysis and then used to obtain the global characteristics of the process, the formation time and volume of the bubble, for a range of orifice radii; Ohnesorge numbers, which combine the material parameters of the liquid; and volumetric gas flow rates. These benchmark calculations, for the parameter space of interest, are then utilised to validate a selection of scaling laws found in the literature for two regimes of bubble formation, the regimes of low and high gas flow rates.

  1. Off-gas recycle for long-term low temperature gas phase uranium decontamination

    SciTech Connect (OSTI)

    Bundy, R.D.; Bunch, D.H.; Munday, E.B.; Simmons, D.W.

    1994-07-01

    In situ long-term low-temperature (LTLT) gas phase decontamination is being developed and demonstrated at the K-25 site as a technology that has the potential to substantially lower these costs while reducing criticality and safeguards concerns and worker exposure to hazardous and radioactive materials. The objective of gas phase decontamination is to employ a gaseous reagent to fluorinate nonvolatile uranium deposits to form volatile UF{sub 6}, which can be recovered by chemical trapping or freezing. The LTLT process permits the decontamination of the inside of gas-tight GDP process equipment at room temperature by substituting a long exposure to subatmospheric ClF{sub 3} for higher reaction rates at higher temperatures. Laboratory-scale experiments have demonstrated the feasibility of using LTLT gas phase decontamination with ClF{sub 3} to remove uranium deposits from this equipment. A mobile gas phase system is being designed to demonstrate the decontamination process on a full scale. If used to decontaminate the GDPs, the LTLT process would use large amounts of ClF{sub 3} and exhaust large volumes of by-product gases (ClF, C1O{sub 2}F, etc.). Initially, the excess ClF{sub 3} and reaction byproducts will be destroyed in a KOH scrubber. This paper describes a proposed system that could recover the excess ClF{sub 3}and regenerate the reaction by-products into ClF{sub 3} for use in decontamination of additional equipment. Use of this regeneration and recovery system would reduce raw material costs and also reduce the waste scrubber sludge disposal costs by reducing the amount of corrosive gases fed to the scrubber.

  2. Galaxy Formation and Evolution. II. Energy Balance, Star Formation and Feed-back

    E-Print Network [OSTI]

    Fulvio Buonomo; Giovanni Carraro; Cesare Chiosi; Cesario Lia

    1999-09-13

    In this paper we present a critical discussion of the algorithms commonly used in N-body simulations of Galaxy Formation to deal with the energy equation governing heating and cooling, to model star formation and the star formation rate, and to account for energy feed-back from stars. First, we propose our technique for solving the energy equation in presence of heating and cooling, which includes some difference with respect to the standard semi-implicit technique. Second, we examine the current criteria for the onset of the star formation activity. We suggest a new approach, in which star formaiton is let depend on the total mass density - baryonic (gas and stars) and dark matter - of the system and on the metal-dependent cooling efficiency. Third, we check and discuss the separate effects of energy (and mass) feed-back from several sources - namely supernovae, stellar winds from massive stars, and UV flux from the same objects. All the simulations are performed in the framework of the formation and evolution of a disk galaxy. We show that the inclusion of these physical phenomena has a signigicant impact on the evolution of the galaxy model.

  3. RAPID DUST FORMATION IN NOVAE: THE SPEED CLASS—FORMATION TIMESCALE CORRELATION EXPLAINED

    SciTech Connect (OSTI)

    Williams, S. C.; Bode, M. F.; Darnley, M. J.; Evans, A.; Zubko, V.; Shafter, A. W.

    2013-11-10

    Observations show that the time of onset of dust formation in classical novae depends strongly on their speed class, with dust typically taking longer to form in slower novae. Using empirical relationships between speed class, luminosity and ejection velocity, it can be shown that dust formation timescale is expected to be essentially independent of speed class. However, following a nova outburst the spectrum of the central hot source evolves, with an increasing proportion of the radiation being emitted short-ward of the Lyman limit. The rate at which the spectrum evolves also depends on the speed class. We have therefore refined the simple model by assuming photons at energies higher than the Lyman limit are absorbed by neutral hydrogen gas internal to the dust formation sites, therefore preventing these photons reaching the nucleation sites. With this refinement the dust formation timescale is theoretically dependent on speed class and the results of our theoretical modification agree well with the observational data. We consider two types of carbon-based dust, graphite and amorphous carbon, with both types producing similar relationships. Our results can be used to predict when dust will form in a nova of a given speed class and hence when observations should optimally be taken to detect the onset of dust formation.

  4. Emptiness Formation Probability

    E-Print Network [OSTI]

    Nicholas Crawford; Stephen Ng; Shannon Starr

    2014-12-30

    We present rigorous upper and lower bounds on the emptiness formation probability for the ground state of a spin-$1/2$ Heisenberg XXZ quantum spin system. For a $d$-dimensional system we find a rate of decay of the order $\\exp(-c L^{d+1})$ where $L$ is the sidelength of the box in which we ask for the emptiness formation event to occur. In the $d=1$ case this confirms previous predictions made in the integrable systems community, though our bounds do not achieve the precision predicted by Bethe ansatz calculations. On the other hand, our bounds in the case $d \\geq 2$ are new. The main tools we use are reflection positivity and a rigorous path integral expansion which is a variation on those previously introduced by Toth, Aizenman-Nachtergaele and Ueltschi.

  5. ,"Total Natural Gas Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption (billion cubic feet)",,,,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  6. Natural gas dehydration apparatus

    DOE Patents [OSTI]

    Wijmans, Johannes G; Ng, Alvin; Mairal, Anurag P

    2006-11-07

    A process and corresponding apparatus for dehydrating gas, especially natural gas. The process includes an absorption step and a membrane pervaporation step to regenerate the liquid sorbent.

  7. Exploitation and Optimization of Reservoir Performance in Hunton Formation, Oklahoma

    SciTech Connect (OSTI)

    Mohan Kelkar

    2007-06-30

    Hunton formation in Oklahoma has been the subject of attention for the last ten years. The new interest started with the drilling of the West Carney field in 1995 in Lincoln County. Subsequently, many other operators have expanded the search for oil and gas in Hunton formation in other parts of Oklahoma. These fields exhibit many unique production characteristics, including: (1) decreasing water-oil or water-gas ratio over time; (2) decreasing gas-oil ratio followed by an increase; (3) poor prediction capability of the reserves based on the log data; and (4) low geological connectivity but high hydrodynamic connectivity. The purpose of this investigation is to understand the principal mechanisms affecting the production, and propose methods by which we can optimize the production from fields with similar characteristics.

  8. PROTOSTELLAR DISK FORMATION ENABLED BY WEAK, MISALIGNED MAGNETIC FIELDS

    SciTech Connect (OSTI)

    Krumholz, Mark R.; Crutcher, Richard M.; Hull, Charles L. H.

    2013-04-10

    The gas from which stars form is magnetized, and strong magnetic fields can efficiently transport angular momentum. Most theoretical models of this phenomenon find that it should prevent formation of large (>100 AU), rotationally supported disks around most protostars, even when non-ideal magnetohydrodynamic (MHD) effects that allow the field and gas to decouple are taken into account. Using recent observations of magnetic field strengths and orientations in protostellar cores, we show that this conclusion is incorrect. The distribution of magnetic field strengths is very broad, and alignments between fields and angular momentum vectors within protostellar cores are essentially random. By combining the field strength and misalignment data with MHD simulations showing that disk formation is expected for both weak and misaligned fields, we show that these observations imply that we should expect disk fractions of {approx}10%-50% even when protostars are still deeply embedded in their parent cores, and even if the gas is governed by ideal MHD.

  9. Formate-assisted pyrolysis

    DOE Patents [OSTI]

    DeSisto, William Joseph; Wheeler, Marshall Clayton; van Heiningen, Adriaan R. P.

    2015-03-17

    The present invention provides, among other thing, methods for creating significantly deoxygenated bio-oils form biomass including the steps of providing a feedstock, associating the feedstock with an alkali formate to form a treated feedstock, dewatering the treated feedstock, heating the dewatered treated feedstock to form a vapor product, and condensing the vapor product to form a pyrolysis oil, wherein the pyrolysis oil contains less than 30% oxygen by weight.

  10. The effect of cluster formation on mass separation in binary molecular beams

    E-Print Network [OSTI]

    Sibener, Steven

    The effect of cluster formation on mass separation in binary molecular beams Wei Li,a) M. J of Chicago, Chicago, Illinois 60637 Received 15 July 1999; accepted 17 November 1999 The downstream in these studies. Strong evidence is herein reported which implicates cluster formation in the heavier carrier gas

  11. Effects of shielding gas compositions on arc plasma and metal transfer in gas metal arc welding

    SciTech Connect (OSTI)

    Rao, Z. H.; Liao, S. M.; Tsai, H. L.

    2010-02-15

    This article presents the effects of shielding gas compositions on the transient transport phenomena, including the distributions of temperature, flow velocity, current density, and electromagnetic force in the arc and the metal, and arc pressure in gas metal arc welding of mild steel at a constant current input. The shielding gas considered includes pure argon, 75% Ar, 50% Ar, and 25% Ar with the balance of helium. It is found that the shielding gas composition has significant influences on the arc characteristics; droplet formation, detachment, transfer, and impingement onto the workpiece; and weld pool dynamics and weld bead profile. As helium increases in the shielding gas, the droplet size increases but the droplet detachment frequency decreases. For helium-rich gases, the current converges at the workpiece with a 'ring' shape which produces non-Gaussian-like distributions of arc pressure and temperature along the workpiece surface. Detailed explanations to the physics of the very complex but interesting transport phenomena are given.

  12. Carbon sequestration in natural gas reservoirs: Enhanced gas recovery and natural gas storage

    E-Print Network [OSTI]

    Oldenburg, Curtis M.

    2003-01-01

    Hydrogen production from natural gas, sequestration ofunderground storage of natural gas, Jour. Petrol. Tech. 943,dioxide as cushion gas for natural gas storage, Energy and

  13. World Shale Gas Resources: An Initial Assessment of 14 Regions Outside the United States

    Reports and Publications (EIA)

    2011-01-01

    The Energy Information Administration sponsored Advanced Resources International, Inc., to assess 48 gas shale basins in 32 countries, containing almost 70 shale gas formations. This effort has culminated in the report: World Shale Gas Resources: An Initial Assessment of 14 Regions Outside the United States.

  14. Petroleum Engineering 321 Formation Evaluation

    E-Print Network [OSTI]

    measurements to estimate hydrocarbon reserves and petrophysical properties of the formation such as porosity Description: Introduction to well-log interpretation for formation evaluation of hydrocarbon, net pay thickness, water/hydrocarbon saturation, permeability, and saturation-dependent capillary

  15. Noble gas magnetic resonator

    DOE Patents [OSTI]

    Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

    2014-04-15

    Precise measurements of a precessional rate of noble gas in a magnetic field is obtained by constraining the time averaged direction of the spins of a stimulating alkali gas to lie in a plane transverse to the magnetic field. In this way, the magnetic field of the alkali gas does not provide a net contribution to the precessional rate of the noble gas.

  16. Compressed gas manifold

    DOE Patents [OSTI]

    Hildebrand, Richard J. (Edgemere, MD); Wozniak, John J. (Columbia, MD)

    2001-01-01

    A compressed gas storage cell interconnecting manifold including a thermally activated pressure relief device, a manual safety shut-off valve, and a port for connecting the compressed gas storage cells to a motor vehicle power source and to a refueling adapter. The manifold is mechanically and pneumatically connected to a compressed gas storage cell by a bolt including a gas passage therein.

  17. OIL & GAS INSTITUTE Introduction

    E-Print Network [OSTI]

    Strathclyde, University of

    OIL & GAS INSTITUTE CONTENTS Introduction Asset Integrity Underpinning Capabilities 2 4 4 6 8 9 10 COMPETITIVENESS UNIVERSITY of STRATHCLYDE OIL & GAS INSTITUTE OIL & GAS EXPERTISE AND PARTNERSHIPS #12;1 The launch of the Strathclyde Oil & Gas Institute represents an important step forward for the University

  18. NIHAO III: The constant disc gas mass conspiracy

    E-Print Network [OSTI]

    Stinson, G S; Wang, L; Macciò, A V; Herpich, J; Bradford, J D; Quinn, T R; Wadsley, J; Keller, B

    2015-01-01

    We show that the cool gas masses of galactic discs reach a steady state that lasts many Gyr after their last major merger in cosmological hydrodynamic simulations. The mass of disc gas, M$_{\\rm gas}$, depends upon a galaxy halo's spin and virial mass, but not upon stellar feedback. Halos with low spin have high star formation efficiency and lower disc gas mass. Similarly, lower stellar feedback leads to more star formation so the gas mass ends up nearly the same irregardless of stellar feedback strength. Even considering spin, the M$_{\\rm gas}$ relation with halo mass, M$_{200}$ only shows a factor of 3 scatter. The M$_{\\rm gas}$--M$_{200}$ relation show a break at M$_{200}$=$2\\times10^{11}$ M$_\\odot$ that corresponds to an observed break in the M$_{\\rm gas}$--M$_\\star$ relation. The constant disc mass stems from a shared halo gas density profile in all the simulated galaxies. In their outer regions, the profiles are isothermal. Where the profile rises above $n=10^{-3}$ cm$^{-3}$, the gas readily cools and th...

  19. Method for removing metal vapor from gas streams

    DOE Patents [OSTI]

    Ahluwalia, R.K.; Im, K.H.

    1996-04-02

    A process for cleaning an inert gas contaminated with a metallic vapor, such as cadmium, involves withdrawing gas containing the metallic contaminant from a gas atmosphere of high purity argon; passing the gas containing the metallic contaminant to a mass transfer unit having a plurality of hot gas channels separated by a plurality of coolant gas channels; cooling the contaminated gas as it flows upward through the mass transfer unit to cause contaminated gas vapor to condense on the gas channel walls; regenerating the gas channels of the mass transfer unit; and, returning the cleaned gas to the gas atmosphere of high purity argon. The condensing of the contaminant-containing vapor occurs while suppressing contaminant particulate formation, and is promoted by providing a sufficient amount of surface area in the mass transfer unit to cause the vapor to condense and relieve supersaturation buildup such that contaminant particulates are not formed. Condensation of the contaminant is prevented on supply and return lines in which the contaminant containing gas is withdrawn and returned from and to the electrorefiner and mass transfer unit by heating and insulating the supply and return lines. 13 figs.

  20. Geochemical evidence for possible natural migration of Marcellus Formation brine to

    E-Print Network [OSTI]

    Jackson, Robert B.

    of stray gas, metal-rich formation brines, and hydrau- lic fracturing and/or flowback fluids to drinking- ical evidence from northeastern Pennsylvania showing that path- ways, unrelated to recent drilling rapid shale-gas development in the re- gion; however, the presence of these fluids suggests conductive

  1. On star formation in primordial protoglobular clouds

    E-Print Network [OSTI]

    Paolo Padoan; Raul Jimenez; Bernard Jones

    1996-04-11

    Using a new physical model for star formation (Padoan 1995) we have tested the possibility that globular clusters (GCs) are formed from primordial mass fluctuations, whose mass scale ($10^8$ - $10^9$ M$_{\\odot}$) is selected out of a CDM spectrum by the mechanism of non-equilibrium formation of $H_2$. We show that such clouds are able to convert about 0.003 of their total mass into a bound system (GC) and about 0.02 into halo stars. The metal enriched gas is dispersed away from the GC by supernova explosions and forms the galactic disk. These mass ratios between GCs, halo and disk depend on the predicted IMF which is a consequence of the universal statistics of fluid turbulence. They also depend on the ratio of baryonic over non-baryonic mass ,$X_b$, and are comparable with the values observed in typical spiral galaxies for $X_b \\approx 0.1-0.2$. The computed mass and radius for a GC ( $5\\times 10^5$ M$_{\\odot}$ and 30 pc) are in good agreement with the average values in the Galaxy. The model predicts an exponential cut off in the stellar IMF below 0.1 M$_{\\odot}$ in GCs and 0.6 M$_{\\odot}$ in the halo. The quite massive star formation in primordial clouds leads to a large number of supernovae and to a high blue luminosity during the first two Gyr of the life of every galaxy.

  2. Tribal Utility Formation

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowing YouNeed forUnruhDepartment ofM I C H A E LSOLAR ENERGYI L L

  3. Preparation of environmental analyses for synfuel and unconventional gas technologies

    SciTech Connect (OSTI)

    Reed, R.M. (ed.)

    1982-09-01

    Government agencies that offer financial incentives to stimulate the commercialization of synfuel and unconventional gas technologies usually require an analysis of environmental impacts resulting from proposed projects. This report reviews potentially significant environmental issues associated with a selection of these technologies and presents guidance for developing information and preparing analyses to address these issues. The technologies considered are western oil shale, tar sand, coal liquefaction and gasification, peat, unconventional gas (western tight gas sands, eastern Devonian gas shales, methane from coal seams, and methane from geopressured aquifers), and fuel ethanol. Potentially significant issues are discussed under the general categories of land use, air quality, water use, water quality, biota, solid waste disposal, socioeconomics, and health and safety. The guidance provided in this report can be applied to preparation and/or review of proposals, environmental reports, environmental assessments, environmental impact statements, and other types of environmental analyses. The amount of detail required for any issue discussed must, by necessity, be determined on a case-by-case basis.

  4. Gas phase decontamination of gaseous diffusion process equipment

    SciTech Connect (OSTI)

    Bundy, R.D.; Munday, E.B.; Simmons, D.W.; Neiswander, D.W.

    1994-03-01

    D&D of the process facilities at the gaseous diffusion plants (GDPs) will be an enormous task. The EBASCO estimate places the cost of D&D of the GDP at the K-25 Site at approximately $7.5 billion. Of this sum, nearly $4 billion is associated with the construction and operation of decontamination facilities and the dismantlement and transport of contaminated process equipment to these facilities. In situ long-term low-temperature (LTLT) gas phase decontamination is being developed and demonstrated at the K-25 site as a technology that has the potential to substantially lower these costs while reducing criticality and safeguards concerns and worker exposure to hazardous and radioactive materials. The objective of gas phase decontamination is to employ a gaseous reagent to fluorinate nonvolatile uranium deposits to form volatile LJF6, which can be recovered by chemical trapping or freezing. The LTLT process permits the decontamination of the inside of gas-tight GDP process equipment at room temperature by substituting a long exposure to subatmospheric C1F for higher reaction rates at higher temperatures. This paper outlines the concept for applying LTLT gas phase decontamination, reports encouraging laboratory experiments, and presents the status of the design of a prototype mobile system. Plans for demonstrating the LTLT process on full-size gaseous diffusion equipment are also outlined briefly.

  5. COAL CLEANING BY GAS AGGLOMERATION

    SciTech Connect (OSTI)

    T.D. Wheelock

    1999-03-01

    The technical feasibility of a gas agglomeration method for cleaning coal was demonstrated by means of bench-scale tests conducted with a mixing system which enabled the treatment of ultra-fine coal particles with a colloidal suspension of microscopic gas bubbles in water. A suitable suspension of microbubbles was prepared by first saturating water with air or carbon dioxide under pressure then reducing the pressure to release the dissolved gas. The formation of microbubbles was facilitated by agitation and a small amount of i-octane. When the suspension of microbubbles and coal particles was mixed, agglomeration was rapid and small spherical agglomerates were produced. Since the agglomerates floated, they were separated from the nonfloating tailings in a settling chamber. By employing this process in numerous agglomeration tests of moderately hydrophobic coals with 26 wt.% ash, it was shown that the ash content would be reduced to 6--7 wt.% while achieving a coal recovery of 75 to 85% on a dry, ash-free basis. This was accomplished by employing a solids concentration of 3 to 5 w/w%, an air saturation pressure of 136 to 205 kPa (5 to 15 psig), and an i-octane concentration of 1.0 v/w% based on the weight of coal.

  6. EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA

    SciTech Connect (OSTI)

    Mohan Kelkar

    2005-02-01

    Hunton formation in Oklahoma has displayed some unique production characteristics. These include high initial water-oil and gas-oil ratios, decline in those ratios over time and temporary increase in gas-oil ratio during pressure build up. The formation also displays highly complex geology, but surprising hydrodynamic continuity. This report addresses three key issues related specifically to West Carney Hunton field and, in general, to any other Hunton formation exhibiting similar behavior: (1) What is the primary mechanism by which oil and gas is produced from the field? (2) How can the knowledge gained from studying the existing fields can be extended to other fields which have the potential to produce? (3) What can be done to improve the performance of this reservoir? We have developed a comprehensive model to explain the behavior of the reservoir. By using available production, geological, core and log data, we are able to develop a reservoir model which explains the production behavior in the reservoir. Using easily available information, such as log data, we have established the parameters needed for a field to be economically successful. We provide guidelines in terms of what to look for in a new field and how to develop it. Finally, through laboratory experiments, we show that surfactants can be used to improve the hydrocarbons recovery from the field. In addition, injection of CO{sub 2} or natural gas also will help us recover additional oil from the field.

  7. Planet Formation with Migration

    E-Print Network [OSTI]

    J. E. Chambers

    2006-10-30

    In the core-accretion model, gas-giant planets form solid cores which then accrete gaseous envelopes. Tidal interactions with disk gas cause a core to undergo inward type-I migration in 10^4 to 10^5 years. Cores must form faster than this to survive. Giant planets clear a gap in the disk and undergo inward type-II migration in migration times exceed typical disk lifetimes if viscous accretion occurs mainly in the surface layers of disks. Low turbulent viscosities near the midplane may allow planetesimals to form by coagulation of dust grains. The radius r of such planetesimals is unknown. If rmigration timescale and cores will survive. Migration is substantial in most cases, leading to a wide range of planetary orbits, consistent with the observed variety of extrasolar systems. When r is of order 100m and midplane alpha is of order 3 times 10^-5, giant planets similar to those in the Solar System can form.

  8. Galactosynthesis: Halo Histories, Star Formation, and Disks

    E-Print Network [OSTI]

    Ari Buchalter; Raul Jimenez; Marc Kamionkowski

    2000-06-01

    We investigate the effects of a variety of ingredients that must enter into a realistic model for disk-galaxy formation, focusing primarily on the Tully-Fisher (TF) relation and its scatter in several wavebands. Our main findings are: (a) the slope, normalization, and scatter of the TF relation across various wavebands is determined {\\em both} by halo properties and star formation in the disk; (b) TF scatter owes primarily to the spread in formation redshifts. The scatter can be measurably reduced by chemical evolution, and also in some cases by the weak anti-correlation between peak height and spin; (c) multi-wavelength constraints can be important in distinguishing between models which appear to fit the TF relation in I or K; (d) successful models seem to require that the bulk of disk formation cannot occur too early (z>2) or too late (z<0.5), and are inconsistent with high values of $\\Omega_0$; (e) a realistic model with the above ingredients can reasonably reproduce the observed z=0 TF relation in {\\em all} bands (B, R, I, and K). It can also account for the z=1 B-band TF relation and yield rough agreement with the local B and K luminosity functions and B-band surface-brightness--magnitude relation. The remarkable agreement with observations suggests that the amount of gas that is expelled or poured into a disk galaxy must be small, and that the specific angular momentum of the baryons must roughly equal that of the halo; there is little room for angular momentum transfer. In an appendix we present analytic fits to stellar-population synthesis models.

  9. DUST FORMATION IN MACRONOVAE

    SciTech Connect (OSTI)

    Takami, Hajime; Ioka, Kunihito [Institute of Particle and Nuclear Studies, KEK, 1-1, Oho, Tsukuba 305-0801 (Japan); Nozawa, Takaya, E-mail: takami@post.kek.jp, E-mail: kunihito.ioka@kek.jp, E-mail: takaya.nozawa@nao.ac.jp [National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2014-07-01

    We examine dust formation in macronovae (as known as kilonovae), which are the bright ejecta of neutron star binary mergers and one of the leading sites of r-process nucleosynthesis. In light of information about the first macronova candidate associated with GRB 130603B, we find that dust grains of r-process elements have difficulty forming because of the low number density of the r-process atoms, while carbon or elements lighter than iron can condense into dust if they are abundant. Dust grains absorb emission from ejecta with an opacity even greater than that of the r-process elements, and re-emit photons at infrared wavelengths. Such dust emission can potentially account for macronovae without r-process nucleosynthesis as an alternative model. This dust scenario predicts a spectrum with fewer features than the r-process model and day-scale optical-to-ultraviolet emission.

  10. High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations

    SciTech Connect (OSTI)

    Hnatovsky, C.; Taylor, R.S.; Simova, E.; Bhardwaj, V.R.; Rayner, D.M.; Corkum, P.B.

    2005-07-01

    An ultrahigh-resolution (20 nm) technique of selective chemical etching and atomic force microscopy has been used to study the photoinduced modification in fused silica produced at various depths by tightly focused femtosecond laser radiation affected by spherical aberration. We demonstrate that shapes of the irradiated zones near the threshold for modification can be predicted by taking proper account of spherical aberration caused by the refractive index mismatched air-silica interface. We establish a depth dependence of the pulse energy required to initiate modification and characterize the relationship between numerical aperture of the writing lens and practically achievable writing depth. We also show that spatial characteristics of the laser-modified zones can be controlled by a specially designed focusing system which allows correction for a variable amount of spherical aberration.

  11. Generation of Low Absolute Energy Spread Electron Beams in Laser Wakefield Acceleration Using Tightly Focused Laser through Near-Ionization-Threshold Injection

    E-Print Network [OSTI]

    Li, F; Wan, Y; Wu, Y P; Hua, J F; Pai, C H; Lu, W; Mori, W B; Joshi, C

    2015-01-01

    An enhanced ionization injection scheme using a tightly focused laser pulse with intensity near the ionization potential to trigger the injection process in a mismatched pre-plasma channel has been proposed and examined via multi-dimensional particle-in-cell simulations. The core idea of the proposed scheme is to lower the energy spread of trapped beams by shortening the injection distance. We have established theory to precisely predict the injection distance, as well as the ionization degree of injection atoms/ions, electron yield and ionized charge. We have found relation between injection distance and laser and plasma parameters, giving a strategy to control injection distance hence optimizing beam's energy spread. In the presented simulation example, we have investigated the whole injection and acceleration in detail and found some unique features of the injection scheme, like multi-bunch injection, unique longitudinal phase-space distribution, etc. Ultimate electron beam has a relative energy spread (rm...

  12. Reservoir Engineering for Unconventional Gas Reservoirs: What Do We Have to Consider?

    SciTech Connect (OSTI)

    Clarkson, Christopher R

    2011-01-01

    The reservoir engineer involved in the development of unconventional gas reservoirs (UGRs) is required to integrate a vast amount of data from disparate sources, and to be familiar with the data collection and assessment. There has been a rapid evolution of technology used to characterize UGR reservoir and hydraulic fracture properties, and there currently are few standardized procedures to be used as guidance. Therefore, more than ever, the reservoir engineer is required to question data sources and have an intimate knowledge of evaluation procedures. We propose a workflow for the optimization of UGR field development to guide discussion of the reservoir engineer's role in the process. Critical issues related to reservoir sample and log analysis, rate-transient and production data analysis, hydraulic and reservoir modeling and economic analysis are raised. Further, we have provided illustrations of each step of the workflow using tight gas examples. Our intent is to provide some guidance for best practices. In addition to reviewing existing methods for reservoir characterization, we introduce new methods for measuring pore size distribution (small-angle neutron scattering), evaluating core-scale heterogeneity, log-core calibration, evaluating core/log data trends to assist with scale-up of core data, and modeling flow-back of reservoir fluids immediately after well stimulation. Our focus in this manuscript is on tight and shale gas reservoirs; reservoir characterization methods for coalbed methane reservoirs have recently been discussed.

  13. Method and apparatus for production of subsea hydrocarbon formations

    DOE Patents [OSTI]

    Blandford, Joseph W. (15 Mott La., Houston, TX 77024)

    1995-01-01

    A system for controlling, separating, processing and exporting well fluids produced from subsea hydrocarbon formations is disclosed. The subsea well tender system includes a surface buoy supporting one or more decks above the water surface for accommodating equipment to process oil, gas and water recovered from the subsea hydrocarbon formation. The surface buoy includes a surface-piercing central flotation column connected to one or more external floatation tanks located below the water surface. The surface buoy is secured to the seabed by one or more tendons which are anchored to a foundation with piles imbedded in the seabed. The system accommodates multiple versions on the surface buoy configuration.

  14. Method and apparatus for production of subsea hydrocarbon formations

    DOE Patents [OSTI]

    Blandford, J.W.

    1995-01-17

    A system for controlling, separating, processing and exporting well fluids produced from subsea hydrocarbon formations is disclosed. The subsea well tender system includes a surface buoy supporting one or more decks above the water surface for accommodating equipment to process oil, gas and water recovered from the subsea hydrocarbon formation. The surface buoy includes a surface-piercing central flotation column connected to one or more external flotation tanks located below the water surface. The surface buoy is secured to the sea bed by one or more tendons which are anchored to a foundation with piles imbedded in the sea bed. The system accommodates multiple versions on the surface buoy configuration. 20 figures.

  15. Recovery and regeneration of spent MHD seed material by the formate process

    DOE Patents [OSTI]

    Sheth, Atul C. (Tullahoma, TN); Holt, Jeffrey K. (Manchester, TN); Rasnake, Darryll G. (Manchester, TN); Solomon, Robert L. (Seattle, WA); Wilson, Gregory L. (Redmond, WA); Herrigel, Howard R. (Seattle, WA)

    1991-01-01

    The specification discloses a spent seed recovery and regeneration process for an MHM power plant employing an alkali metal salt seed material such as potassium salt wherein the spent potassium seed in the form of potassium sulfate is collected from the flue gas and reacted with calcium hydroxide and carbon monoxide in an aqueous solution to cause the formation of calcium sulfate and potassium formate. The pH of the solution is adjusted to supress formation of formic acid and to promote precipitation of any dissolved calcium salts. The solution containing potassium formate is then employed to provide the potassium salt in the form of potassium formate or, optionally, by heating the potassium formate under oxidizing conditions to convert the potassium formate to potassium carbonate.

  16. Recovery and regeneration of spent MHD seed material by the formate process

    DOE Patents [OSTI]

    Sheth, A.C.; Holt, J.K.; Rasnake, D.G.; Solomon, R.L.; Wilson, G.L.; Herrigel, H.R.

    1991-10-15

    The specification discloses a spent seed recovery and regeneration process for an MHD power plant employing an alkali metal salt seed material such as potassium salt wherein the spent potassium seed in the form of potassium sulfate is collected from the flue gas and reacted with calcium hydroxide and carbon monoxide in an aqueous solution to cause the formation of calcium sulfate and potassium formate. The pH of the solution is adjusted to suppress formation of formic acid and to promote precipitation of any dissolved calcium salts. The solution containing potassium formate is then employed to provide the potassium salt in the form of potassium formate or, optionally, by heating the potassium formate under oxidizing conditions to convert the potassium formate to potassium carbonate. 5 figures.

  17. A 4D Synchrotron X-Ray-Tomography Study of the Formation of Hydrocarbon- Migration Pathways in Heated Organic-Rich Shale

    SciTech Connect (OSTI)

    Hamed Panahi; Paul Meakin; Francois Renard; Maya Kobchenko; Julien Scheibert; Adriano Mazzini; Bjorn Jamtveit; Anders Malthe-Sorenssen; Dag Kristian Dysthe

    2013-04-01

    Recovery of oil from oil shales and the natural primary migration of hydrocarbons are closely related processes that have received renewed interest in recent years because of the ever tightening supply of conventional hydrocarbons and the growing production of hydrocarbons from low-permeability tight rocks. Quantitative models for conversion of kerogen into oil and gas and the timing of hydrocarbon generation have been well documented. However, lack of consensus about the kinetics of hydrocarbon formation in source rocks, expulsion timing, and how the resulting hydrocarbons escape from or are retained in the source rocks motivates further investigation. In particular, many mechanisms have been proposed for the transport of hydrocarbons from the rocks in which they are generated into adjacent rocks with higher permeabilities and smaller capillary entry pressures, and a better understanding of this complex process (primary migration) is needed. To characterize these processes, it is imperative to use the latest technological advances. In this study, it is shown how insights into hydrocarbon migration in source rocks can be obtained by using sequential high-resolution synchrotron X-ray tomography. Three-dimensional images of several immature "shale" samples were constructed at resolutions close to 5 um. This is sufficient to resolve the source-rock structure down to the grain level, but very-fine-grained silt particles, clay particles, and colloids cannot be resolved. Samples used in this investigation came from the R-8 unit in the upper part of the Green River shale, which is organic rich, varved, lacustrine marl formed in Eocene Lake Uinta, USA. One Green River shale sample was heated in situ up to 400 degrees C as X-ray-tomography images were recorded. The other samples were scanned before and after heating at 400 degrees C. During the heating phase, the organic matter was decomposed, and gas was released. Gas expulsion from the low-permeability shales was coupled with formation of microcracks. The main technical difficulty was numerical extraction of microcracks that have apertures in the 5- to 30-um range (with 5 um being the resolution limit) from a large 3D volume of X-ray attenuation data. The main goal of the work presented here is to develop a methodology to process these 3D data and image the cracks. This methodology is based on several levels of spatial filtering and automatic recognition of connected domains. Supportive petrographic and thermogravimetric data were an important complement to this study. An investigation of the strain field using 2D image correlation analyses was also performed. As one application of the 4D (space + time) microtomography and the developed workflow, we show that fluid generation was accompanied by crack formation. Under different conditions, in the subsurface, this might provide paths for primary migration.

  18. Enhanced Prognosis for Abiotic Natural Gas and Petroleum Resources

    E-Print Network [OSTI]

    Herndon, J M

    2006-01-01

    The prognosis for potential resources of abiotic natural gas and petroleum depends critically upon the nature and circumstances of Earth formation. Until recently, that prognosis has been considered solely within the framework of the so-called "standard model of solar system formation", which is incorrect and leads to the contradiction of terrestrial planets having insufficiently massive cores. By contrast, that prognosis is considerably enhanced (i) by the new vision I have disclosed of Earth formation as a Jupiter-like gas giant; (ii) by core formation contemporaneous with raining out from within a giant gaseous protoplanet rather than through subsequent whole-Earth re-melting after loss of gases; (iii) by the consequences of whole-Earth decompression dynamics, which obviates the unfounded assumption of mantle convection, and; (iv) by the process of mantle decompression thermal-tsunami. The latter, in addition to accounting for much of the heat leaving the Earth's surface, for the geothermal gradient observ...

  19. Combination gas producing and waste-water disposal well

    DOE Patents [OSTI]

    Malinchak, Raymond M. (McKeesport, PA)

    1984-01-01

    The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

  20. THE GREEN BANK TELESCOPE MAPS THE DENSE, STAR-FORMING GAS IN THE NEARBY STARBURST GALAXY M82

    SciTech Connect (OSTI)

    Kepley, Amanda A.; Frayer, David [National Radio Astronomy Observatory, P.O. Box 2, Green Bank, WV 24944-0002 (United States); Leroy, Adam K. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475 (United States); Usero, Antonio [Observatorio Astronómico Nacional, C/Alfonso XII, 3, E-28014 Madrid (Spain); Marvil, Josh [Department of Physics, New Mexico Tech., 801 Leroy Place, Socorro, NM 87801 (United States); Walter, Fabian, E-mail: akepley@nrao.edu [Max Planck Institute fur Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany)

    2014-01-01

    Observations of the Milky Way and nearby galaxies show that dense molecular gas correlates with recent star formation, suggesting that the formation of this gas phase may help regulate star formation. A key test of this idea requires wide-area, high-resolution maps of dense molecular gas in galaxies to explore how local physical conditions drive dense gas formation, but these observations have been limited because of the faintness of dense gas tracers like HCN and HCO{sup +}. Here we demonstrate the power of the Robert C. Byrd Green Bank Telescope (GBT)—the largest single-dish millimeter radio telescope—for mapping dense gas in galaxies by presenting the most sensitive maps yet of HCN and HCO{sup +} in the starburst galaxy M82. The HCN and HCO{sup +} in the disk of this galaxy correlates with both recent star formation and more diffuse molecular gas and shows kinematics consistent with a rotating torus. The HCO{sup +} emission extending to the north and south of the disk is coincident with the outflow previously identified in CO and traces the eastern edge of the hot outflowing gas. The central starburst region has a higher ratio of star formation to dense gas than the outer regions, pointing to the starburst as a key driver of this relationship. These results establish that the GBT can efficiently map the dense molecular gas at 90 GHz in nearby galaxies, a capability that will increase further with the 16 element feed array under construction.

  1. Historical Natural Gas Annual

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    State, 1980-1998 PDF 12 Supplemental Gas Supplies by State, 1980-1998 PDF 13 Natural Gas Production, Transmission, and Consumption by State, 1967-1998 PDF 14 Consumption of...

  2. Historical Natural Gas Annual

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    State, 1980-1997 PDF 12 Supplemental Gas Supplies by State, 1980-1997 PDF 13 Natural Gas Production, Transmission, and Consumption by State, 1967-1997 PDF 14 Consumption of...

  3. Historical Natural Gas Annual

    Gasoline and Diesel Fuel Update (EIA)

    State, 1980-1996 PDF 12 Supplemental Gas Supplies by State, 1980-1996 PDF 13 Natural Gas Production, Transmission, and Consumption by State, 1967-1996 PDF 14 Consumption of...

  4. Microminiature gas chromatograph

    DOE Patents [OSTI]

    Yu, C.M.

    1996-12-10

    A microminiature gas chromatograph ({mu}GC) comprising a least one silicon wafer, a gas injector, a column, and a detector. The gas injector has a normally closed valve for introducing a mobile phase including a sample gas in a carrier gas. The valve is fully disposed in the silicon wafer(s). The column is a microcapillary in silicon crystal with a stationary phase and is mechanically connected to receive the mobile phase from the gas injector for the molecular separation of compounds in the sample gas. The detector is mechanically connected to the column for the analysis of the separated compounds of sample gas with electronic means, e.g., ion cell, field emitter and PIN diode. 7 figs.

  5. EIA - Natural Gas Publications

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    these data from 2005 to 2009 are presented for each State. (12282010) U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves: 2009 National and State...

  6. Recirculating rotary gas compressor

    DOE Patents [OSTI]

    Weinbrecht, John F. (601 Oakwood Loop, NE., Albuquerque, NM 87123)

    1992-01-01

    A positive displacement, recirculating Roots-type rotary gas compressor which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits (24 and 26) which return compressed discharge gas to the compressor housing (14), where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers (10 and 12) and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor.

  7. Recirculating rotary gas compressor

    DOE Patents [OSTI]

    Weinbrecht, J.F.

    1992-02-25

    A positive displacement, recirculating Roots-type rotary gas compressor is described which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits which return compressed discharge gas to the compressor housing, where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor. 12 figs.

  8. Natural gas annual 1996

    SciTech Connect (OSTI)

    1997-09-01

    This document provides information on the supply and disposition of natural gas to a wide audience. The 1996 data are presented in a sequence that follows natural gas from it`s production to it`s end use.

  9. Natural gas annual 1995

    SciTech Connect (OSTI)

    1996-11-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1995 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1991 to 1995 for each Census Division and each State. Annual historical data are shown at the national level.

  10. Residual gas analysis device

    DOE Patents [OSTI]

    Thornberg, Steven M. (Peralta, NM)

    2012-07-31

    A system is provided for testing the hermeticity of a package, such as a microelectromechanical systems package containing a sealed gas volume, with a sampling device that has the capability to isolate the package and breach the gas seal connected to a pulse valve that can controllably transmit small volumes down to 2 nanoliters to a gas chamber for analysis using gas chromatography/mass spectroscopy diagnostics.

  11. Natural gas annual 1994

    SciTech Connect (OSTI)

    NONE

    1995-11-17

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1994 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1990 to 1994 for each Census Division and each State. Annual historical data are shown at the national level.

  12. Gas chromatography/matrix-isolation apparatus

    DOE Patents [OSTI]

    Reedy, Gerald T. (411 Francis St., Bourbonnais, IL 60914)

    1986-01-01

    A gas-sample collection device provides matrix isolation of individual gas bands from a gas chromatographic separation and for the spectroscopic analysis of the individual sample bands. The device includes a vacuum chamber containing a rotatably supported, specular carousel having at least one reflecting surface for holding a sample deposited thereon. A gas inlet is provided for depositing a mixture of sample and matrix material on the reflecting surface which is maintained at a sufficiently low temperature to cause solidification. A first parabolic mirror directs an incident beam of electromagnetic radiation, such as in the infrared (IR) spectrum, from a source onto the sample/matrix mixture while a second parabolic mirror directs a second beam of electromagnetic radiation reflected by the specular surface to an IR spectrometer for determining the absorption spectra of the sample material deposited on the reflecting surface. The pair of off-axis parabolic mirrors having a common focal point are positioned outside of the vacuum chamber and may be displaced in combination for improved beam positioning and alignment. The carousel is provided with an aperture for each reflecting surface to facilitate accurate positioning of the incident beam relative to the gas-samples under analysis. Improved gas-sample deposition is insured by the use of a long focal length stereomicroscope positioned outside of the vacuum chamber for monitoring sample formation through a window, while the sample collector is positioned outside of the zone bounded by the incident and reflected electromagnetic beams for improved sample access and monitoring.

  13. Natural gas industry directory

    SciTech Connect (OSTI)

    1999-11-01

    This directory has information on the following: associations and organizations; exploration and production; gas compression; gas processors; gathering and transmission companies; liquefied natural gas; local distribution companies; marketing firms; regulatory agencies; service companies; suppliers and manufacturers; and regional buyer`s guide.

  14. Gas Chromatography -Mass Spectrometry

    E-Print Network [OSTI]

    Nizkorodov, Sergey

    GCMS - 1 Gas Chromatography - Mass Spectrometry GC-MS ANALYSIS OF ETHANOL AND BENZENE IN GASOLINE Last updated: June 17, 2014 #12;GCMS - 2 Gas Chromatography - Mass Spectrometry GC-MS ANALYSIS). The goal of this experiment is to separate the components in a sample of gasoline using Gas Chromatography

  15. Valve for gas centrifuges

    DOE Patents [OSTI]

    Hahs, C.A.; Rurbage, C.H.

    1982-03-17

    The invention is pneumatically operated valve assembly for simulatenously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two on the lines so closed. The value assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

  16. Static gas expansion cooler

    DOE Patents [OSTI]

    Guzek, J.C.; Lujan, R.A.

    1984-01-01

    Disclosed is a cooler for television cameras and other temperature sensitive equipment. The cooler uses compressed gas ehich is accelerated to a high velocity by passing it through flow passageways having nozzle portions which expand the gas. This acceleration and expansion causes the gas to undergo a decrease in temperature thereby cooling the cooler body and adjacent temperature sensitive equipment.

  17. Renewable Natural Gas (Biomethane)

    E-Print Network [OSTI]

    California at Davis, University of

    to Landfill Owner $6.18 Total Cost Per MMBtu #12;Index Price of Natural Gas NYMEX Natural Gas Futures PricesRenewable Natural Gas (Biomethane) #12;Critical Barriers Impeding RNG as a Transportation Fuel-developer of largest RNG production project in U.S. at McCommas Bluff Landfill in Dallas, Texas · Chairman and co

  18. Discussion of measurements of supersaturation and critical gas saturation

    SciTech Connect (OSTI)

    Saidi, A.M.

    1994-06-01

    In Measurements of Supersaturation and Critical Gas Saturation'' (SPE Formation Evaluation, Dec. 1992, Page 337) Firoozabadi et al. reported that several expansion solution-gas-drive experiments at pressure-decline rates much higher than usually occur in actual reservoirs terminated at the onset of gas production.'' For this reason, they neither envisaged a gas/oil separator for measuring the GOR evolution, which is an important parameter for establishing critical gas saturation, S[sub gc], nor allowed sufficient pressure decline to measure the evolution of upward gas migration to confirm their low measured S[sub gc]. This confirmation was needed because their results contradict those of Dumore, Madaoui, and Moulu and Longeron.

  19. Ni/YSZ Anode Interactions with Impurities in Coal Gas

    SciTech Connect (OSTI)

    Marina, Olga A.; Pederson, Larry R.; Coyle, Christopher A.; Thomsen, Edwin C.; Coffey, Greg W.

    2009-10-16

    Performance of solid oxide fuel cell (SOFC) with nickel/zirconia anodes on synthetic coal gas in the presence of low levels of phosphorus, arsenic, selenium, sulfur, hydrogen chloride, and antimony impurities were evaluated. The presence of phosphorus and arsenic led to the slow and irreversible SOFC degradation due to the formation of secondary phases with nickel, particularly close to the gas inlet. Phosphorus and antimony surface adsorption layers were identified as well. Hydrogen chloride and sulfur interactions with the nickel were limited to the surface adsorption only, whereas selenium exposure also led to the formation of nickel selenide for highly polarized cells.

  20. Application of Phase-field Method in Predicting Gas Bubble Microstructure Evolution in Nuclear Fuels

    SciTech Connect (OSTI)

    Hu, Shenyang Y.; Li, Yulan; Sun, Xin; Gao, Fei; Devanathan, Ramaswami; Henager, Charles H.; Khaleel, Mohammad A.

    2010-04-30

    Fission product accumulation and gas bubble microstructure evolution in nuclear fuels strongly affect thermo-mechanical properties such as thermal conductivity, gas release, volumetric swelling and cracking, and hence the fuel performance. In this paper, a general phase-field model is developed to predict gas bubble formation and evolution. Important materials processes and thermodynamic properties including the generation of gas atoms and vacancies, sinks for vacancies and gas atoms, the elastic interaction among defects, gas re-solution, and inhomogeneity of elasticity and diffusivity are accounted for in the model. The simulations demonstrate the potential application of the phase-field method in investigating 1) heterogeneous nucleation of gas bubbles at defects; 2) effect of elastic interaction, inhomogeneity of material properties, and gas re-solution on gas bubble microstructures; and 3) effective properties from the output of phase-field simulations such as distribution of defects, gas bubbles, and stress fields.

  1. THE FORMATION OF COSMIC FULLERENES FROM AROPHATIC CLUSTERS

    SciTech Connect (OSTI)

    Micelotta, Elisabetta R.; Cami, Jan; Peeters, Els; Fanchini, Giovanni; Jones, Anthony P.; Bernard-Salas, Jeronimo

    2012-12-10

    Fullerenes have recently been identified in space and they may play a significant role in the gas and dust budget of various astrophysical objects including planetary nebulae (PNe), reflection nebulae, and H II regions. The tenuous nature of the gas in these environments precludes the formation of fullerene materials following known vaporization or combustion synthesis routes even on astronomical timescales. We have studied the processing of hydrogenated amorphous carbon (a-C:H or HAC) nanoparticles and their specific derivative structures, which we name ''arophatics'', in the circumstellar environments of young, carbon-rich PNe. We find that UV-irradiation of such particles can result in the formation of fullerenes, consistent with the known physical conditions in PNe and with available timescales.

  2. Transportation and Greenhouse Gas Mitigation

    E-Print Network [OSTI]

    Lutsey, Nicholas P.; Sperling, Dan

    2008-01-01

    Summary of transportation greenhouse gas mitigation optionsof alternative fuels. Low greenhouse gas fuels Mixing ofMAC) refrigerant replacement. Greenhouse gas budgets for

  3. Transportation and Greenhouse Gas Mitigation

    E-Print Network [OSTI]

    Lutsey, Nicholas P.; Sperling, Dan

    2008-01-01

    natural gas and liquefied petroleum gas have continued to make small contributions to transportation,transportation actions include electric power sector actions, eg coal to natural gas

  4. Diagenesis within the deep Tuscaloosa formation, Profit Island field, Louisiana 

    E-Print Network [OSTI]

    Hudder, Karen Ann Gilchrist

    1982-01-01

    The lower Tuscaloosa Formation of south-central Louisiana is a prolific and highly potential deep gas reservoir. Of particular interest are the unusually high porosity and permeability values for the age, depth, and temperature of the rocks. In the Profit... hydrocarbon accumulation and production in reservoirs, particularly from such unusually porous and permeable rocks. THE TUSCALOOSA TREND Regional Setting The deep Tuscaloosa trend encompasses an area of south-central Louisiana measuring approximately 200...

  5. Downhole burner systems and methods for heating subsurface formations

    DOE Patents [OSTI]

    Farmayan, Walter Farman (Houston, TX); Giles, Steven Paul (Damon, TX); Brignac, Jr., Joseph Phillip (Katy, TX); Munshi, Abdul Wahid (Houston, TX); Abbasi, Faraz (Sugarland, TX); Clomburg, Lloyd Anthony (Houston, TX); Anderson, Karl Gregory (Missouri City, TX); Tsai, Kuochen (Katy, TX); Siddoway, Mark Alan (Katy, TX)

    2011-05-31

    A gas burner assembly for heating a subsurface formation includes an oxidant conduit, a fuel conduit, and a plurality of oxidizers coupled to the oxidant conduit. At least one of the oxidizers includes a mix chamber for mixing fuel from the fuel conduit with oxidant from the oxidant conduit, an igniter, and a shield. The shield includes a plurality of openings in communication with the oxidant conduit. At least one flame stabilizer is coupled to the shield.

  6. Numerical studies of galaxy formation using special purpose hardware

    E-Print Network [OSTI]

    Matthias Steinmetz

    2002-01-25

    I review recent progress in numerically simulating the formation and evolution of galaxies in hierarchically clustering universes. Special emphasis is given to results based on high-resolution gas dynamical simulations using the N-body hardware integrator GRAPE. Applications address the origin of the spin of disk galaxies, the structure and kinematics of damped Lyman-alpha systems, and the origin of galaxy morphology and of galaxy scaling laws.

  7. ARTIFACT FORMATION DURING NEUTRALIZATION OF TANK 50 SAMPLES

    SciTech Connect (OSTI)

    Crump, S.; Young, J.

    2014-08-01

    Degradation products have been identified in the extracts of Tank 50 samples analyzed by semivolatile organic compound analysis (SVOA) using gas chromatography/mass spectrometry (GC/MS). These materials, identified as short chain alkyl alcohols, were formed by acidification during sample preparation. A number of questions were raised about the formation of these and other materials reported in Tank 50 surface samples, and this report serves to address these questions.

  8. Gas rich and gas poor structures through the stream velocity effect

    E-Print Network [OSTI]

    Popa, Cristina; Marinacci, Federico; Vogelsberger, Mark

    2015-01-01

    Using adiabatic high-resolution numerical simulations we quantify the effect of the streaming motion of baryons with respect to dark matter at the time of recombination on structure formation and evolution. Formally a second order effect, the baryonic stream velocity has proven to have significant impact on dark matter halo abundance, as well as on the gas content and morphology of small galaxy clusters. In this work, we study the impact of stream velocity on the formation and gas content of haloes with masses up to $10^9 M_{\\odot}$, an order of magnitude larger than previous studies. We find that the non-zero stream velocity has a sizable impact on the number density of haloes with masses $\\lesssim$ few $\\times 10^7 M_{\\odot}$ up to $z=10$, the final redshift of our simulations. Furthermore, the gas stream velocity induces a suppression of the gas fraction in haloes, which at z=10 is $\\sim 10 \\%$ for objects with $M\\sim10^7M_{\\odot}$, as well as a flattening of the gas density profiles in the inner regions o...

  9. Observations of solute effects on bubble formation

    SciTech Connect (OSTI)

    Hofmeier, U.; Yaminsky, V.V.; Christenson, H.K.

    1995-09-01

    The authors have studied the effects of solute, in particular aqueous electrolyte, on bubble formation at capillary orifices and frits at varying gas flow rates. Using a stroboscope, video microscope, and rotating mirror, they have obtained pictures which show how bubble formation involves the interaction of bubbles at the orifice. These interactions depend on the value of the surface elasticity E due to positively (ethanol) or negatively (NaCl) adsorbed solute. At low flow rates consecutive bubbles do not interact. Each bubble detaches and leaves the orifice region before the next one starts forming. A intermediate flow rates the more closely spaced, consecutive bubbles begin to interact. In pure liquids there is no barrier to bubble coalescence and the detached bubble is fed by the subsequent bubble as this starts to grow. The process may be repeated several times before the original bubble has risen out of range. In solutions where E is large enough bubble coalescence is inhibited. Instead of feeding into the detached bubble the following bubble pushes it aside, and the bubbles appear to bounce off each other. Bouncing may give rise to a characteristic sequence of larger and smaller bubbles if the emerging bubbles break off prematurely from the orifice due to the inertia of the original bubble. The transition from feeding to bouncing depends critically on E of the solution and leads to a smaller average bubble size for large E values. At high flow rates detached bubbles are invariably fed by several subsequent ones. At very high flow rates the bubbling becomes chaotic, but the interaction of bubbles after leaving the orifice area produces smaller bubbles in solutions. Bouncing is more likely to occur with narrow and irregular capillaries. The dramatically different appearance of gas-sparged columns in salt water and freshwater has its origin in the difference between assemblies of pores showing mainly feeding (freshwater) or bouncing (salt water).

  10. Star Formation History of Omega Centauri Imprinted in Elemental Abundance Patterns

    E-Print Network [OSTI]

    Takuji Tsujimoto; Toshikazu Shigeyama

    2003-02-15

    The star formation history of the globular cluster Omega Centauri is investigated in the context of an inhomogeneous chemical evolution model in which supernovae induce star formation. The proposed model explains recent observations for Omega Cen stars, and divides star formation into three epochs. At the end of the first epoch, ~ 70% of the gas was expelled by supernovae. AGB stars then supplied s-process elements to the remaining gas during the first interval of ~300 Myr. This explains the observed sudden increase in Ba/Fe ratios in Omega Cen stars at [Fe/H] ~ -1.6. Supernovae at the end of the second epoch were unable to expel the gas. Eventually, Type Ia supernovae initiated supernova-induced star formation, and remaining gas was stripped when the cluster passed through the newly formed disk of the Milky Way. The formation of Omega Cen is also discussed in the framework of globular cluster formation triggered by cloud-cloud collisions. In this scenario, the relative velocity of clouds in the collision determines the later chemical evolution in the clusters. A head-on collision of proto-cluster clouds with a low relative velocity would have converted less than 1% of gas into stars and promoted the subsequent chemical evolution by supernova-driven star formation. This is consistent with present observed form of Omega Cen. In contrast, the other Galactic globular clusters are expected to have formed from more intense head-on collisions, and the resultant clouds would have been too thin for supernovae to accumulate enough gas to form the next generation of stars. This explains the absence of chemical evolution in these other globular clusters.

  11. Analysis of Star Formation in Galaxy-like Objects

    E-Print Network [OSTI]

    Patricia B. Tissera

    1999-12-20

    Using cosmological hydrodynamical simulations, we investigate the effects of hierarchical aggregation on the triggering of star formation in galactic-like objects. We include a simple star formation model to transform the cold gas in dense regions into stars. Simulations with different parameters have been performed in order to quantify the dependence of the results on the parameters. We then resort to stellar population synthesis models to trace the color evolution of each object with red-shift and in relation to their merger histories. We find that, in a hierarchical clustering scenario, the process of assembling of the structure is one natural mechanism that may trigger star formation. The resulting star formation rate history for each individual galactic object is composed of a continuous one ($\\leq 3 \\rm{M_{\\odot}/yr}$) and a series of star bursts. We find that even the accretion of a small satellite can be correlated with a stellar burst. Massive mergers are found to be more efficient at transforming gas into stars

  12. Evidence of Reopened Microfractures in Production Data of Hydraulically Fractured Shale Gas Wells 

    E-Print Network [OSTI]

    Apiwathanasorn, Sippakorn

    2012-10-19

    the presence of reopened natural fracture network can be observed in pressure and production data of shale gas wells producing from two shale formations with different well and reservoir properties. Homogeneous, dual porosity and triple porosity models...

  13. Flue gas desulfurization

    DOE Patents [OSTI]

    Im, K.H.; Ahluwalia, R.K.

    1984-05-01

    The invention involves a combustion process in which combustion gas containing sulfur oxide is directed past a series of heat exchangers to a stack and in which a sodium compound is added to the combustion gas in a temparature zone of above about 1400 K to form Na/sub 2/SO/sub 4/. Preferably, the temperature is above about 1800 K and the sodium compound is present as a vapor to provide a gas-gas reaction to form Na/sub 2/SO/sub 4/ as a liquid. Since liquid Na/sub 2/SO/sub 4/ may cause fouling of heat exchanger surfaces downstream from the combustion zone, the process advantageously includes the step of injecting a cooling gas downstream of the injection of the sodium compound yet upstream of one or more heat exchangers to cool the combustion gas to below about 1150 K and form solid Na/sub 2/SO/sub 4/. The cooling gas is preferably a portion of the combustion gas downstream which may be recycled for cooling. It is further advantageous to utilize an electrostatic precipitator downstream of the heat exchangers to recover the Na/sub 2/SO/sub 4/. It is also advantageous in the process to remove a portion of the combustion gas cleaned in the electrostatic precipitator and recycle that portion upstream to use as the cooling gas. 3 figures.

  14. The small and the beautiful: How the star formation law affects galactic disk structure

    E-Print Network [OSTI]

    Braun, Harald

    2015-01-01

    We investigate the influence of different analytical parameterizations and fit functions for the local star formation rate in AMR simulations of an isolated disk galaxy with the Nyx code. Such parameterizations express the star formation efficiency as function of the local turbulent Mach number and viral parameter. By employing the method of adaptively refined large eddy simulations, we are able to evaluate these physical parameters from the numerically unresolved turbulent energy associated with the grid scale. We consider both single and multi free-fall variants of star formation laws proposed by Padoan & Nordlund, Hennebelle & Chabrier, and Krumholz & McKee. We find that the global star formation rate and the relation between the local star formation rate and the gas column density is reproduced in agreement with observational constraints by all multi free-fall models of star formation. Some models with obsolete calibration or a single free-fall time scale, however, result in an overly clumpy d...

  15. Filaments in simulations of molecular cloud formation

    SciTech Connect (OSTI)

    Gómez, Gilberto C.; Vázquez-Semadeni, Enrique

    2014-08-20

    We report on the filaments that develop self-consistently in a new numerical simulation of cloud formation by colliding flows. As in previous studies, the forming cloud begins to undergo gravitational collapse because it rapidly acquires a mass much larger than the average Jeans mass. Thus, the collapse soon becomes nearly pressureless, proceeding along its shortest dimension first. This naturally produces filaments in the cloud and clumps within the filaments. The filaments are not in equilibrium at any time, but instead are long-lived flow features through which the gas flows from the cloud to the clumps. The filaments are long-lived because they accrete from their environment while simultaneously accreting onto the clumps within them; they are essentially the locus where the flow changes from accreting in two dimensions to accreting in one dimension. Moreover, the clumps also exhibit a hierarchical nature: the gas in a filament flows onto a main, central clump but other, smaller-scale clumps form along the infalling gas. Correspondingly, the velocity along the filament exhibits a hierarchy of jumps at the locations of the clumps. Two prominent filaments in the simulation have lengths ?15 pc and masses ?600 M {sub ?} above density n ? 10{sup 3} cm{sup –3} (?2 × 10{sup 3} M {sub ?} at n > 50 cm{sup –3}). The density profile exhibits a central flattened core of size ?0.3 pc and an envelope that decays as r {sup –2.5} in reasonable agreement with observations. Accretion onto the filament reaches a maximum linear density rate of ?30 M {sub ?} Myr{sup –1} pc{sup –1}.

  16. Gas shielding apparatus

    DOE Patents [OSTI]

    Brandt, D.

    1984-06-05

    An apparatus for preventing oxidation by uniformly distributing inert shielding gas over the weld area of workpieces such as pipes being welded together. The apparatus comprises a chamber and a gas introduction element. The chamber has an annular top wall, an annular bottom wall, an inner side wall and an outer side wall connecting the top and bottom walls. One side wall is a screen and the other has a portion defining an orifice. The gas introduction element has a portion which encloses the orifice and can be one or more pipes. The gas introduction element is in fluid communication with the chamber and introduces inert shielding gas into the chamber. The inert gas leaves the chamber through the screen side wall and is dispersed evenly over the weld area.

  17. Gas shielding apparatus

    DOE Patents [OSTI]

    Brandt, D.

    1985-12-31

    An apparatus is disclosed for preventing oxidation by uniformly distributing inert shielding gas over the weld area of workpieces such as pipes being welded together. The apparatus comprises a chamber and a gas introduction element. The chamber has an annular top wall, an annular bottom wall, an inner side wall and an outer side wall connecting the top and bottom walls. One side wall is a screen and the other has a portion defining an orifice. The gas introduction element has a portion which encloses the orifice and can be one or more pipes. The gas introduction element is in fluid communication with the chamber and introduces inert shielding gas into the chamber. The inert gas leaves the chamber through the screen side wall and is dispersed evenly over the weld area. 3 figs.

  18. Gas shielding apparatus

    DOE Patents [OSTI]

    Brandt, Daniel (Los Alamos, NM)

    1985-01-01

    An apparatus for preventing oxidation by uniformly distributing inert shielding gas over the weld area of workpieces such as pipes being welded together. The apparatus comprises a chamber and a gas introduction element. The chamber has an annular top wall, an annular bottom wall, an inner side wall and an outer side wall connecting the top and bottom walls. One side wall is a screen and the other has a portion defining an orifice. The gas introduction element has a portion which encloses the orifice and can be one or more pipes. The gas introduction element is in fluid communication with the chamber and introduces inert shielding gas into the chamber. The inert gas leaves the chamber through the screen side wall and is dispersed evenly over the weld area.

  19. ON THE FORMATION OF MULTIPLE STELLAR POPULATIONS IN GLOBULAR CLUSTERS

    SciTech Connect (OSTI)

    Charlie, Conroy; Spergel, David N. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2011-01-01

    Nearly all globular clusters (GCs) studied to date show evidence for multiple stellar populations, in stark contrast to the conventional view that GCs are a mono-metallic, coeval population of stars. This generic feature must therefore emerge naturally within massive star cluster formation. Building on earlier work, we propose a simple physical model for the early evolution (several 10{sup 8} yr) of GCs. We consider the effects of stellar mass loss, Type II supernovae (SNe II) and prompt Type Ia supernovae (SNe Ia), ram pressure, and accretion from the ambient interstellar medium (ISM) on the development of a young GC's own gas reservoir. In our model, SNe II from a first generation of star formation clears the GC of its initial gas reservoir. Over the next several 10{sup 8} yr, mass lost from asymptotic giant branch stars and matter accreted from the ambient ISM collect at the center of the GC. This material must remain quite cool (T {approx} 10{sup 2} K), but does not catastrophically cool on a crossing time because of the high Lyman-Werner flux density in young GCs. The collection of gas within the GC must compete with ram pressure from the ambient ISM. After several 10{sup 8} yr, the Lyman-Werner photon flux density drops by more than three orders of magnitude, allowing molecular hydrogen and then stars to form. After this second generation of star formation, SNe II from the second generation and then prompt SNe Ia associated with the first generation maintain a gas-free GC, thereby ending the cycle of star formation events. Our model makes clear predictions for the presence or absence of multiple stellar populations within GCs as a function of GC mass and formation environment. While providing a natural explanation for the approximately equal number of first- and second-generation stars in GCs, substantial accretion from the ambient ISM may produce fewer chemically peculiar second-generation stars than are observed. Analyzing intermediate-age LMC clusters, we find for the first time evidence for a mass threshold of {approx}10{sup 4} M{sub sun} below which LMC clusters appear to be truly coeval. This threshold mass is consistent with our predictions for the mass at which ram pressure is capable of clearing gas from clusters in the LMC at the present epoch. Recently, claims have been made that multiple populations within GCs require that GCs form at the center of their own dark matter halos. We argue that such a scenario is implausible. Observations of the young and intermediate-age clusters in the LMC and M31 will provide strong constraints on our proposed scenario.

  20. Improved Detection of Bed Boundaries for Petrophysical Evaluation with Well Logs: Applications to Carbonate and Organic-Shale Formations

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    : Applications to Carbonate and Organic-Shale Formations Zoya Heidari, SPE, Texas A&M University and Carlos of well logs acquired in organic shales and carbonates is challenging because of the presence of thin beds acquired in thinly bedded carbonates and in the Haynesville shale-gas formation. Estimates of petrophysical

  1. Formation of Stabilized Ketene Intermediates in the Reaction of P) with Oligo(phenylene ethynylene) Thiolate Self-Assembled

    E-Print Network [OSTI]

    Sibener, Steven

    Formation of Stabilized Ketene Intermediates in the Reaction of O(3 P) with Oligo, 929 E 57th Street, Chicago, Illinois 60637, United States ABSTRACT: We have taken steps to develop in formation of a ketene intermediate via phenyl migration. Under single-collision conditions in the gas phase

  2. Thermodynamics of Chaplygin gas

    E-Print Network [OSTI]

    Yun Soo Myung

    2011-05-11

    We clarify thermodynamics of the Chaplygin gas by introducing the integrability condition. All thermal quantities are derived as functions of either volume or temperature. Importantly, we find a new general equation of state, describing the Chaplygin gas completely. We confirm that the Chaplygin gas could show a unified picture of dark matter and energy which cools down through the universe expansion without any critical point (phase transition).

  3. Pulsed gas laser

    DOE Patents [OSTI]

    Anderson, Louis W. (Madison, WI); Fitzsimmons, William A. (Madison, WI)

    1978-01-01

    A pulsed gas laser is constituted by Blumlein circuits wherein space metal plates function both as capacitors and transmission lines coupling high frequency oscillations to a gas filled laser tube. The tube itself is formed by spaced metal side walls which function as connections to the electrodes to provide for a high frequency, high voltage discharge in the tube to cause the gas to lase. Also shown is a spark gap switch having structural features permitting a long life.

  4. Valve for gas centrifuges

    DOE Patents [OSTI]

    Hahs, Charles A. (Oak Ridge, TN); Burbage, Charles H. (Oak Ridge, TN)

    1984-01-01

    The invention is a pneumatically operated valve assembly for simultaneously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two of the lines so closed. The valve assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

  5. Carbon sequestration in natural gas reservoirs: Enhanced gas recovery and natural gas storage

    E-Print Network [OSTI]

    Oldenburg, Curtis M.

    2003-01-01

    gas reservoirs for carbon sequestration and enhanced gasproduction and carbon sequestration, Society of Petroleumfeasibiilty of carbon sequestration with enhanced gas

  6. Tightly integrated single- and multi-crystal data collection strategy calculation and parallelized data processing in JBluIce beamline control system

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pothineni, Sudhir Babu; Venugopalan, Nagarajan; Ogata, Craig M.; Hilgart, Mark C.; Stepanov, Sergey; Sanishvili, Ruslan; Becker, Michael; Winter, Graeme; Sauter, Nicholas K.; Smith, Janet L.; et al

    2014-11-18

    The calculation of single- and multi-crystal data collection strategies and a data processing pipeline have been tightly integrated into the macromolecular crystallographic data acquisition and beamline control software JBluIce. Both tasks employ wrapper scripts around existing crystallographic software. JBluIce executes scripts through a distributed resource management system to make efficient use of all available computing resources through parallel processing. The JBluIce single-crystal data collection strategy feature uses a choice of strategy programs to help users rank sample crystals and collect data. The strategy results can be conveniently exported to a data collection run. The JBluIce multi-crystal strategy feature calculates amore »collection strategy to optimize coverage of reciprocal space in cases where incomplete data are available from previous samples. The JBluIce data processing runs simultaneously with data collection using a choice of data reduction wrappers for integration and scaling of newly collected data, with an option for merging with pre-existing data. Data are processed separately if collected from multiple sites on a crystal or from multiple crystals, then scaled and merged. Results from all strategy and processing calculations are displayed in relevant tabs of JBluIce.« less

  7. Tightly integrated single- and multi-crystal data collection strategy calculation and parallelized data processing in JBluIce beamline control system

    SciTech Connect (OSTI)

    Pothineni, Sudhir Babu; Venugopalan, Nagarajan; Ogata, Craig M.; Hilgart, Mark C.; Stepanov, Sergey; Sanishvili, Ruslan; Becker, Michael; Winter, Graeme; Sauter, Nicholas K.; Smith, Janet L.; Fischetti, Robert F.

    2014-11-18

    The calculation of single- and multi-crystal data collection strategies and a data processing pipeline have been tightly integrated into the macromolecular crystallographic data acquisition and beamline control software JBluIce. Both tasks employ wrapper scripts around existing crystallographic software. JBluIce executes scripts through a distributed resource management system to make efficient use of all available computing resources through parallel processing. The JBluIce single-crystal data collection strategy feature uses a choice of strategy programs to help users rank sample crystals and collect data. The strategy results can be conveniently exported to a data collection run. The JBluIce multi-crystal strategy feature calculates a collection strategy to optimize coverage of reciprocal space in cases where incomplete data are available from previous samples. The JBluIce data processing runs simultaneously with data collection using a choice of data reduction wrappers for integration and scaling of newly collected data, with an option for merging with pre-existing data. Data are processed separately if collected from multiple sites on a crystal or from multiple crystals, then scaled and merged. Results from all strategy and processing calculations are displayed in relevant tabs of JBluIce.

  8. Tight asteroseismic constraints on core overshooting and diffusive mixing in the slowly rotating pulsating B8.3V star KIC 10526294

    E-Print Network [OSTI]

    Moravveji, Ehsan; Papics, Peter I; Triana, Santiago Andres; Vandoren, Bram

    2015-01-01

    KIC 10526294 is a very slowly rotating and slowly pulsating late B-type star. Its 19 consecutive dipole gravity modes constitute a series with almost constant period spacing. This unique collection of identified modes probes the near-core environment of this star and holds the potential to reveal the size and structure of the overshooting zone on top of the convective core, as well as the mixing properties of the star. We pursue forward seismic modelling based on adiabatic eigenfrequencies of equilibrium models for eight extensive evolutionary grids tuned to KIC 10526294, by varying the initial mass, metallicity, chemical mixture, and the extent of the overshooting layer on top of the convective core. We examine models for both OP and OPAL opacities and test the occurrence of extra diffusive mixing. We find a tight mass, metallicity relation within the ranges $M$ ~ 3.13 to 3.25 Msun and $Z$ ~ 0.014 to 0.028. We deduce that an exponentially decaying diffusive core overshooting prescription describes the seismi...

  9. Compressed Gas Cylinder Policy

    E-Print Network [OSTI]

    of pressure from a compressed gas cylinder and pose a serious threat to life and property. To minimize risk cylinders to and from a designated work are

  10. Gas venting system

    DOE Patents [OSTI]

    Khan, Amjad; Dreier, Ken Wayne; Moulthrop, Lawrence Clinton; White, Erik James

    2010-06-29

    A system to vent a moist gas stream is disclosed. The system includes an enclosure and an electrochemical cell disposed within the enclosure, the electrochemical cell productive of the moist gas stream. A first vent is in fluid communication with the electrochemical cell for venting the moist gas stream to an exterior of the enclosure, and a second vent is in fluid communication with an interior of the enclosure and in thermal communication with the first vent for discharging heated air to the exterior of the enclosure. At least a portion of the discharging heated air is for preventing freezing of the moist gas stream within the first vent.

  11. String Gas Baryogenesis

    E-Print Network [OSTI]

    G. L. Alberghi

    2010-02-19

    We describe a possible realization of the spontaneous baryogenesis mechanism in the context of extra-dimensional string cosmology and specifically in the string gas scenario.

  12. Natural gas annual 1997

    SciTech Connect (OSTI)

    1998-10-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1997 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1993 to 1997 for each Census Division and each State. Annual historical data are shown at the national level. 27 figs., 109 tabs.

  13. Reversible Acid Gas Capture

    ScienceCinema (OSTI)

    Dave Heldebrant

    2012-12-31

    Pacific Northwest National Laboratory scientist David Heldebrant demonstrates how a new process called reversible acid gas capture works to pull carbon dioxide out of power plant emissions.

  14. Home Safety: Radon Gas 

    E-Print Network [OSTI]

    Shaw, Bryan W.; Denny, Monica L.

    1999-11-12

    Every home should be tested for radon, an invisible, odorless, radioactive gas that occurs naturally. This publication explains the health risks, testing methods, and mitigation and reduction techniques....

  15. Shale Gas Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Production (Billion Cubic Feet) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2009 2010 2011 2012...

  16. Treating tar sands formations with karsted zones

    DOE Patents [OSTI]

    Vinegar, Harold J. (Bellaire, TX); Karanikas, John Michael (Houston, TX)

    2010-03-09

    Methods for treating a tar sands formation are described herein. The tar sands formation may have one or more karsted zones. Methods may include providing heat from one or more heaters to one or more karsted zones of the tar sands formation to mobilize fluids in the formation. At least some of the mobilized fluids may be produced from the formation.

  17. Use-driven concept formation

    E-Print Network [OSTI]

    Roberts, Jennifer M. (Jennifer Marie)

    2010-01-01

    When faced with a complex task, humans often identify domain-specific concepts that make the task more tractable. In this thesis, I investigate the formation of domain-specific concepts of this sort. I propose a set of ...

  18. Brown dwarf formation Gilles Chabrier

    E-Print Network [OSTI]

    Joergens, Viki

    : not observed ! Constraints on BD formation/ejection by disk instability: magnetic field No B (pure hydro accretion - Collapse of a cloud -> starts forming small N-body clusters of small (~10-3 Msol

  19. Cross Domain Mathematical Concept Formation 

    E-Print Network [OSTI]

    Steel, Graham; Colton, Simon; Bundy, Alan; Walsh, Toby

    2000-01-01

    Many interesting concepts in mathematics are essentially "cross-domain" in nature, relating objects from more than one area of mathematics, e.g. prime order groups. These concepts are often vital to the formation of a ...

  20. Testing of Gas Reactor Fuel and Materials in the Advanced Test Reactor

    SciTech Connect (OSTI)

    S. Blaine Grover

    2006-10-01

    The recent growth in interest for high temperature gas reactors has resulted in an increased need for materials and fuel testing for this type of reactor. The Advanced Test Reactor (ATR), located at the US Department of Energy’s Idaho National Laboratory, has long been involved in testing gas reactor fuel and materials, and has facilities and capabilities to provide the right environment for gas reactor irradiation experiments. These capabilities include both passive sealed capsule experiments, and instrumented/actively controlled experiments. The instrumented/actively controlled experiments typically contain thermocouples and control the irradiation temperature, but on-line measurements and controls for pressure and gas environment have also been performed in past irradiations. The ATR has an existing automated gas temperature control system that can maintain temperature in an irradiation experiment within very tight bounds, and has developed an on-line fission product monitoring system that is especially well suited for testing gas reactor particle fuel. The ATR’s control system, which consists primarily of vertical cylinders used to rotate neutron poisons/reflectors toward or away from the reactor core, provides a constant vertical flux profile over the duration of each operating cycle. This constant chopped cosine shaped axial flux profile, with a relatively flat peak at the vertical centre of the core, is more desirable for experiments than a constantly moving axial flux peak resulting from a control system of axially positioned control components which are vertically withdrawn from the core.