Powered by Deep Web Technologies
Note: This page contains sample records for the topic "tidal wave current" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

A Case Study of Wave–Current Interaction in a Strong Tidal Current  

Science Conference Proceedings (OSTI)

During August 1991, a field program was carried out in the vicinity of Cape St. James, off the British Columbia coast, where a strong tidally driven flow interacts with an active wave climate. Surface current maps were obtained from a CODAR-type ...

Diane Masson

1996-03-01T23:59:59.000Z

2

The Signature of Inertial and Tidal Currents in Offshore Wave Records  

Science Conference Proceedings (OSTI)

The roughness of the sea surface can be affected by strong currents. Here, long records of surface wave heights from buoy observations in the northeastern Pacific Ocean are examined. The data show the influence of tidal currents, but the first ...

Johannes Gemmrich; Chris Garrett

2012-06-01T23:59:59.000Z

3

Numerical simulation and analysis to tidal currents and wave field of pearl river  

Science Conference Proceedings (OSTI)

A hydrodynamic model (MOCOE) is used in tidal current and wave calculation in Yamen river, which is one of the eight estuaries of Pearl River. The method of combining curvilinear orthogonal coordinates in the horizontal direction with Sigma mapping coordinates ... Keywords: curvilinear orthogonal, numerical simulation, tidal currents

Wu Hongxu

2009-11-01T23:59:59.000Z

4

Ocean Tidal and Wave Energy  

Science Conference Proceedings (OSTI)

First published in 2000, the annual Renewable Energy Technical Assessment Guide (TAG-RE) provides a consistent basis for evaluating the economic feasibility of renewable generation technologies. This excerpt from the 2005 TAG-RE addresses ocean tidal and wave energy conversion technologies, which offer promise for converting the significant energy potential available in ocean tidal currents and waves to electricity in the future.

2005-12-19T23:59:59.000Z

5

Tidal Eulerian Residual Currents over a Slope: Analytical and Numerical Frictionless Models  

Science Conference Proceedings (OSTI)

The Eulerian residual tidal currents generated over a continental slope are examined. Using the assumption of a Poincaré wave, the linear frictionless solution of a semidiurnal tidal wave propagating from the deep ocean to a constant depth ...

Robert Mazé; Gilbert Langlois; François Grosjean

1998-07-01T23:59:59.000Z

6

Hydropower, Wave and Tidal Technologies Available for ...  

Site Map; Printable Version; Share this resource. Send a link to Hydropower, Wave and Tidal Technologies Available for Licensing - Energy Innovation Portalto someone ...

7

Tidal Current Predictions Using Rotary Empirical Orthogonal Functions  

Science Conference Proceedings (OSTI)

In the conventional point tidal analysis approach, a set of tidal harmonic constituents is derived from each time series of currents. These sets of tidal constituents are then used to predict the tidal currents. For a large database of current ...

Betty Ng

1993-12-01T23:59:59.000Z

8

Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030 Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030 Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030 January 27, 2012 - 11:30am Addthis A map generated by Georgia Tech's tidal energy resource database shows mean current speed of tidal streams. The East Coast, as shown above, has strong tides that could be tapped to produce energy. | Photo courtesy of Georgia Institute of Technology A map generated by Georgia Tech's tidal energy resource database shows mean current speed of tidal streams. The East Coast, as shown above, has strong tides that could be tapped to produce energy. | Photo courtesy of Georgia Institute of Technology Hoyt Battey Water Power Market Acceleration and Deployment Team Lead, Wind and Water Power Program

9

Energy Department Invests $16 Million to Harness Wave and Tidal Energy |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 Million to Harness Wave and Tidal 6 Million to Harness Wave and Tidal Energy Energy Department Invests $16 Million to Harness Wave and Tidal Energy August 29, 2013 - 2:35pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's all-of-the-above strategy to deploy every available source of American energy, the Energy Department today announced $16 million for seventeen projects to help sustainably and efficiently capture energy from waves, tides and currents. Together, these projects will increase the power production and reliability of wave and tidal devices and help gather valuable data on how deployed devices interact with the surrounding environment. "Wave and tidal energy represent a large, untapped resource for the United States and responsible development of this clean, renewable energy

10

Energy Department Invests $16 Million to Develop Wave and Tidal Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 Million to Develop Wave and Tidal 6 Million to Develop Wave and Tidal Energy Technologies Energy Department Invests $16 Million to Develop Wave and Tidal Energy Technologies August 29, 2013 - 12:00pm Addthis Image of machinery to generate energy using tides. As part of the Obama Administration's all-of-the-above strategy to deploy every available source of American energy, the Energy Department today announced $16 million for seventeen projects to help sustainably and efficiently capture energy from waves, tides, and currents. Together, these projects will increase the power production and reliability of wave and tidal devices and help gather valuable data on how deployed devices interact with the surrounding environment. "Wave and tidal energy represent a large, untapped resource for the United

11

Hydropower, Wave and Tidal Technologies - Energy Innovation Portal  

Biomass and Biofuels Hydropower, Wave and Tidal Industrial ... raw materials suggests the need for elimination of these materials from electric motors ...

12

Status of Wave and Tidal Power Technologies for the United States  

DOE Green Energy (OSTI)

This paper presents the status of marine applications for renewable energy as of 2008 from a U.S. perspective. Technologies examined include wave, tidal, and ocean current energy extraction devices.

Musial, W.

2008-08-01T23:59:59.000Z

13

A Case Study of Wave–Current–Bathymetry Interactions at the Columbia River Entrance  

Science Conference Proceedings (OSTI)

A unique set of field observations has documented intense wave–current–bathymetry interactions in a tidal inlet, providing a severe test of existing wave theory. Hourly wave spectral estimates were acquired over ten complete tidal cycles at ...

F. I. Gonazález

1984-06-01T23:59:59.000Z

14

Hawaii Ocean Current Resources and Tidal Turbine Assessment  

Science Conference Proceedings (OSTI)

Interest in converting the kinetic energy of ocean current and tidal flow into electrical power has increased in recent years. This report focuses on the ocean current resource in Hawaii, which includes tidal flows as well as uni-directional oceanic current flows around the main Hawaiian Islands, with the exception of Kauai, from the shoreline to approximately the 2000-m depth contour.

2008-09-02T23:59:59.000Z

15

Observations of Quasi-Two-Dimensional Turbulence in Tidal Currents  

Science Conference Proceedings (OSTI)

Observational evidence for the existence of quasi-two-dimensional turbulence in tidal currents is derived from the auto- and cross-correlation spectra of vertically separated current meters. The observed quasi- two-dimensional turbulence seems to ...

C. Veth; J. T. F. Zimmerman

1981-10-01T23:59:59.000Z

16

Spectral Estimates of Gravity Wave Energy and Momentum Fluxes. Part III: Gravity Wave-Tidal Interactions  

Science Conference Proceedings (OSTI)

An application of the gravity wave parameterization scheme developed in the companion papers by Fritts and VanZandt and Fritts and Lu to the mutual interaction of gravity waves and tidal motions is presented. The results suggest that interaction ...

Wentong Lu; David C. Fritts

1993-11-01T23:59:59.000Z

17

The environmental interactions of tidal and wave energy generation devices  

Science Conference Proceedings (OSTI)

Global energy demand continues to grow and tidal and wave energy generation devices can provide a significant source of renewable energy. Technological developments in offshore engineering and the rising cost of traditional energy means that offshore energy resources will be economic in the next few years. While there is now a growing body of data on the ecological impacts of offshore wind farms, the scientific basis on which to make informed decisions about the environmental effects of other offshore energy developments is lacking. Tidal barrages have the potential to cause significant ecological impacts particularly on bird feeding areas when they are constructed at coastal estuaries or bays. Offshore tidal stream energy and wave energy collectors offer the scope for developments at varying scales. They also have the potential to alter habitats. A diversity of designs exist, including floating, mid-water column and seabed mounted devices, with a variety of moving-part configurations resulting in a unique complex of potential environmental effects for each device type, which are discussed to the extent possible. - Highlights: Black-Right-Pointing-Pointer We review the environmental impacts of tidal barrages and fences, tidal stream farms and wave energy capture devices. Black-Right-Pointing-Pointer Impacts on habitats, species and the water column, and effects of noise and electromagnetic fields are considered. Black-Right-Pointing-Pointer Tidal barrages can cause significant impacts on bird feeding areas when constructed at coastal estuaries or bays. Black-Right-Pointing-Pointer Wave energy collectors can alter water column and sea bed habitats locally and over large distances.

Frid, Chris, E-mail: c.l.j.frid@liv.ac.uk [School of Environmental Sciences, University of Liverpool, Crown Street, Liverpool, L69 7ZB (United Kingdom); Andonegi, Eider, E-mail: eandonegi@azti.es [AZTI-Tecnalia, Txatxarramendi ugartea, z/g E-48395 Sukarrieta (Bizkaia) (Spain); Depestele, Jochen, E-mail: jochen.depestele@ilvo.vlaanderen.be [Institute for Agricultural and Fisheries Research, Ankerstraat 1, B-8400 Oostende (Belgium); Judd, Adrian, E-mail: Adrian.Judd@cefas.co.uk [Centre for Environment, Fisheries and Aquaculture Science , Lowestoft Laboratory, Pakefield Road, Lowestoft NR33 0HT United Kingdom (United Kingdom); Rihan, Dominic, E-mail: Dominic.RIHAN@ec.europa.eu [Irish Sea Fisheries Board, P.O. Box 12 Dun Laoghaire, Co. Dublin (Ireland); Rogers, Stuart I., E-mail: stuart.rogers@cefas.co.uk [Centre for Environment, Fisheries and Aquaculture Science , Lowestoft Laboratory, Pakefield Road, Lowestoft NR33 0HT United Kingdom (United Kingdom); Kenchington, Ellen, E-mail: Ellen.Kenchington@dfo-mpo.gc.ca [Fisheries and Oceans Canada, Bedford Institute of Oceanography, P.O. Box 1006, Dartmouth Canada, NS B2Y 4A2 (Canada)

2012-01-15T23:59:59.000Z

18

Depth-Dependent Studies of Tidally Induced Residual Currents on the Sides of Georges Bank  

Science Conference Proceedings (OSTI)

Using a depth-dependent tidal model, the tidally induced residual currents on the northern and southern sections of Georges Bank are computed and the effects of various physical parameters on the current are examined. Because of significant on-...

Kim-Tai Tee

1985-12-01T23:59:59.000Z

19

IEC 61400-25 protocol based monitoring and control protocol for tidal current power plant  

Science Conference Proceedings (OSTI)

Wind energy and tidal current power have a common operation principle. Tidal current power converts kinetic energy of fluid to electric power. The communication infrastructure is very important to control the system and to monitor the working conditions ... Keywords: IEC 61400-25, monitoring, remote control, tidal current power

Jung Woo Kim; Hong Hee Lee

2010-09-01T23:59:59.000Z

20

Water Mixing in a Tidal Current and the Effect of Turbulence on Tidal Exchange through a Strait  

Science Conference Proceedings (OSTI)

By means of numerical calculations of the Lagrangian movement of water particles released in a turbulent tidal current during three cycles of the M2 tide, the mechanism of tidal mixing of the inner and outer waters divided initially by a strait ...

Toshiyuki Awaji

1982-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "tidal wave current" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Residual Currents Induced by Asymmetric Tidal Mixing in Weakly Stratified Narrow Estuaries  

Science Conference Proceedings (OSTI)

Residual currents induced by asymmetric tidal mixing were examined for weakly stratified, narrow estuaries using analytical and numerical models. The analytical model is an extension of the work of R. K. McCarthy, with the addition of tidal ...

Peng Cheng; Arnoldo Valle-Levinson; Huib E. de Swart

2010-09-01T23:59:59.000Z

22

Tidal Transport in the Florida Current and Its Relationship to Tidal Heights and Cable Voltages  

Science Conference Proceedings (OSTI)

A linear relationship between tidal height (sea level of tidal frequencies) and tidal transport near 27°N in the Straits of Florida is confirmed. Transport estimates from this relationship for the O1 and M2 constituents are compared with those ...

Dennis A. Mayer; Jimmy C. Larsen

1986-12-01T23:59:59.000Z

23

MHK Technologies/Uldolmok Pilot Tidal Current Power Plant | Open Energy  

Open Energy Info (EERE)

Uldolmok Pilot Tidal Current Power Plant Uldolmok Pilot Tidal Current Power Plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Uldolmok Pilot Tidal Current Power Plant.jpg Technology Profile Primary Organization Korea East West Power Co LTD Technology Resource Click here Current Technology Type Click here Overtopping Technology Readiness Level Click here TRL 9 Commercial Scale Production Application Technology Description The tidal current power plant uses current energy that can be differentiated from a typical tidal power plant using marine energy The latter confines water in a dam and when released it gets processed in a turbine to produce electric power The tidal current power plant on the other hand does not need a dam thus concerns of social dislocations and degradation of ecosystems primarily endangering marine life can be avoided

24

Singular Spectrum Analysis of Nonstationary Tidal Currents Applied to ADCP Data from the Northeast Brazilian Shelf  

Science Conference Proceedings (OSTI)

The development of new tools for the analysis of nonstationary currents, including tidal currents, has been the subject of recent research. In this work a method for studies of nonstationary barotropic or baroclinic currents based on empirical ...

Marcio L. Vianna; Viviane V. Menezes

2006-01-01T23:59:59.000Z

25

Regulation of Tidal and Wave Energy Projects (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tidal and Wave Energy Projects (Maine) Tidal and Wave Energy Projects (Maine) Regulation of Tidal and Wave Energy Projects (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Water Buying & Making Electricity Program Info State Maine Program Type Siting and Permitting Provider Department of Environmental Protection State regulation of tidal and wave energy projects is covered under the Maine Waterway Development and Conservation Act (MWDCA), and complements

26

Observed and Computed M2 Tidal Currents in the North Sea  

Science Conference Proceedings (OSTI)

M2 tidal elevations and currents have been computed using a three-dimensional hydrodynamic numerical model of the northwest European shelf. These have been compared with observational data from tide gages and current meter rigs moored in ...

A. M. Davies; G. K. Furnes

1980-02-01T23:59:59.000Z

27

Tidal Energy  

Office of Scientific and Technical Information (OSTI)

into Wave and Tidal Ocean Power: 15% Water Power by 2030, Energy.gov News Assessment of Energy Production Potential from Tidal Streams in the United States, Energy Citations...

28

Optimal Control Theory Applied to an Objective Analysis of a Tidal Current Mapping by HF Radar  

Science Conference Proceedings (OSTI)

Optimal control can provide a tool to perform an optimization of a tidal model via a data assimilation operation. A pilot study is presented here to test the theoretical and numerical feasibility of an assimilation of HF radar current ...

Jean-Luc Devenon

1990-04-01T23:59:59.000Z

29

Fog and Tidal Current Connection at Cape Cod Canal—Early Recognition and Recent Measurements  

Science Conference Proceedings (OSTI)

Notes by Gardner Emmons about the initiation of low advective fogs on Cape Cod are presented. Subsequent measurements made in these fogs confirm his suggestion that mixing and temperature changes associated with tidal currents account for the ...

Alfred H. Woodcock

1982-02-01T23:59:59.000Z

30

Topographic Rectification of Tidal Currents on the Sides of Georges Bank  

Science Conference Proceedings (OSTI)

The rectification of M2 tidal currents on the sloping sides of Georges Bank is predicted to make an important year-round contribution to its observed mean clockwise circulation. A rectification mechanism involving continuity and Coriolis effects, ...

John W. Loder

1980-09-01T23:59:59.000Z

31

Tidally Forced Internal Wave Mixing in a k–? Model Framework Applied to Fjord Basins  

Science Conference Proceedings (OSTI)

A simple method for including tidally forced internal wave mixing in a two-equation turbulence closure framework, the k–? model, is presented. The purpose is to model the vertical mixing in the basin waters of stagnant sill fjords. An internal ...

Olof Liungman

2000-02-01T23:59:59.000Z

32

Vertical Variations of Tidal Currents in Shallow Land Fast Ice-Covered Regions  

Science Conference Proceedings (OSTI)

Arctic tidal currents with periods near the local inertial period are strongest and rotate clockwise at mid-depth, and decrease in amplitude towards the bottom and ice-cover, experiencing a change in direction of rotation of the current vector to ...

S. J. Prinsenberg; E. B. Bennett

1989-09-01T23:59:59.000Z

33

High volume tidal or current flow harnessing system  

Science Conference Proceedings (OSTI)

Apparatus permitting the utilization of large volumes of water in the harnessing and extracting of a portion of the power generated by the rise and fall of ocean tides, ocean currents, or flowing rivers includes the provision of a dam, and a specialized single cavity chamber of limited size as compared with the water head enclosed by the dam, and an extremely high volume gating system in which all or nearly all of the water between the high and low levels on either side of the dam is cyclically gated through the single chamber from one side of the dam to the other so as to alternately provide positive air pressure and a partial vacuum within the single chamber. In one embodiment, the specialized chamber has a barrier at the bottom which divides the bottom of the chamber in half, large ports at the bottom of the chamber to permit inflow and outflow of high volumes of water, and ganged structures having a higher total area than that of corresponding ports, in which the structures form sluice gates to selectively seal off and open different sets of ports. In another embodiment, a single chamber is used without a barrier. In this embodiment, vertical sluice gates are used which may be activated automatically by pressures acting on the sluice gates as a result of ingested and expelled water.

Gorlov, A.M.

1984-08-07T23:59:59.000Z

34

Shock Waves in Currents and Outflows  

Science Conference Proceedings (OSTI)

Shock waves are discontinuities (in the physical properties of a fluid) which behave in an organized manner. The possibility that such waves may occur in oceanic boundary currents is examined with a nonlinear two-layer analytical model. Attention ...

Doron Nof

1984-11-01T23:59:59.000Z

35

Structural Design of a Horizontal-Axis Tidal Current Turbine Composite Blade  

DOE Green Energy (OSTI)

This paper describes the structural design of a tidal composite blade. The structural design is preceded by two steps: hydrodynamic design and determination of extreme loads. The hydrodynamic design provides the chord and twist distributions along the blade length that result in optimal performance of the tidal turbine over its lifetime. The extreme loads, i.e. the extreme flap and edgewise loads that the blade would likely encounter over its lifetime, are associated with extreme tidal flow conditions and are obtained using a computational fluid dynamics (CFD) software. Given the blade external shape and the extreme loads, we use a laminate-theory-based structural design to determine the optimal layout of composite laminas such that the ultimate-strength and buckling-resistance criteria are satisfied at all points in the blade. The structural design approach allows for arbitrary specification of the chord, twist, and airfoil geometry along the blade and an arbitrary number of shear webs. In addition, certain fabrication criteria are imposed, for example, each composite laminate must be an integral multiple of its constituent ply thickness. In the present effort, the structural design uses only static extreme loads; dynamic-loads-based fatigue design will be addressed in the future. Following the blade design, we compute the distributed structural properties, i.e. flap stiffness, edgewise stiffness, torsion stiffness, mass, moments of inertia, elastic-axis offset, and center-of-mass offset along the blade. Such properties are required by hydro-elastic codes to model the tidal current turbine and to perform modal, stability, loads, and response analyses.

Bir, G. S.; Lawson, M. J.; Li, Y.

2011-10-01T23:59:59.000Z

36

A Large-Eddy Simulation Study of Wake Propagation and Power Production in an Array of Tidal-Current Turbines: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

Large-Eddy Simulation Study Large-Eddy Simulation Study of Wake Propagation and Power Production in an Array of Tidal- Current Turbines Preprint M.J. Churchfield, Y. Li, and P.J. Moriarty To be presented at the 9 th European Wave and Tidal Energy Conference 2011 Southhampton, England September 4 - 9, 2011 Conference Paper NREL/CP-5000-51765 July 2011 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government.

37

Energy Basics: Tidal Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

38

Field Measurements at River and Tidal Current Sites for Hydrokinetic Energy Development: Best Practices Manual  

SciTech Connect

In this report, existing data collection techniques and protocols for characterizing open channel flows are reviewed and refined to further address the needs of the MHK industry. The report provides an overview of the hydrodynamics of river and tidal channels, and the working principles of modern acoustic instrumentation, including best practices in remote sensing methods that can be applied to hydrokinetic energy site characterization. Emphasis is placed upon acoustic Doppler velocimeter (ADV) and acoustic-Doppler current profiler (ADCP) instruments, as these represent the most practical and economical tools for use in the MHK industry. Incorporating the best practices as found in the literature, including the parameters to be measured, the instruments to be deployed, the instrument deployment strategy, and data post-processing techniques. The data collected from this procedure aims to inform the hydro-mechanical design of MHK systems with respect to energy generation and structural loading, as well as provide reference hydrodynamics for environmental impact studies. The standard metrics and protocols defined herein can be utilized to guide field experiments with MHK systems.

Neary, Vincent S [ORNL; Gunawan, Budi [Oak Ridge National Laboratory (ORNL)

2011-09-01T23:59:59.000Z

39

Water gate array for current flow or tidal movement pneumatic harnessing system  

DOE Patents (OSTI)

The invention, which provides a system for harnessing power from current flow or tidal movement in a body of water, comprises first and second hydro-pneumatic chambers each having ingress and egress below the water surface near the river or ocean floor and water gates operative to open or seal the ports to the passage of water. In an exemplary embodiment, the gates are sychronized by shafts so that the ingress ports of each chamber are connected to the egress ports of each other chamber. Thus, one set of gates is closed, while the other is open, thereby allowing water to flow into one chamber and build air pressure therein and allowing water to flow out of the other chamber and create a partial vacuum therein. A pipe connects the chambers, and an air turbine harnesses the air movement within the pipe. When water levels are equilibrated, the open set of gates is closed by a counterweight, and the other set is allowed to open by natural force of the water differential. The water gates may be comprised of a plurality of louvers which are ganged for simultaneous opening and closing. The system is designed to operate with air turbines or other pneumatic devices. Its design minimizes construction cost and environmental impact, yet provides a clean renewable energy source.

Gorlov, Alexander M. (Brookline, MA)

1991-01-01T23:59:59.000Z

40

MHK Technologies/Deep Gen Tidal Turbines | Open Energy Information  

Open Energy Info (EERE)

Deep Gen Tidal Turbines Deep Gen Tidal Turbines < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Deep Gen Tidal Turbines.jpg Technology Profile Primary Organization Tidal Generation Ltd Project(s) where this technology is utilized *MHK Projects/Tidal Generation Ltd EMEC Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The DEEP Gen 1 MW fully submerged tidal turbine best exploits resources in depths 30m The horizontal axis turbine is inexpensive to construct and easy to install due to the lightweight 80 tons MW support structure allows rapid removal and replacement of powertrains enabling safe maintenance in a dry environment and is located out of the wave zone for improved survivability

Note: This page contains sample records for the topic "tidal wave current" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Tidally Forced Internal Waves and Overturns Observed on a Slope: Results from HOME  

Science Conference Proceedings (OSTI)

Tidal mixing over a slope was explored using moored time series observations on Kaena Ridge extending northwest from Oahu, Hawaii, during the Survey component of the Hawaii Ocean Mixing Experiment (HOME). A mooring was instrumented to sample the ...

Murray D. Levine; Timothy J. Boyd

2006-06-01T23:59:59.000Z

42

Energy Dissipation of Unsteady Wave Breaking on Currents  

Science Conference Proceedings (OSTI)

Energy dissipation for unsteady deep-water breaking in wave groups on following and opposing currents, including partial wave-blocking conditions, was investigated by detailed laboratory measurements. A range of focusing wave conditions, ...

Aifeng Yao; Chin H. Wu

2004-10-01T23:59:59.000Z

43

Tidal | OpenEI Community  

Open Energy Info (EERE)

Tidal Tidal Home Ocop's picture Submitted by Ocop(5) Member 18 April, 2013 - 13:41 MHK LCOE Reporting Guidance Draft Cost Current DOE LCOE numerical modeling Performance Tidal Wave To normalize competing claims of LCOE, DOE has developed-for its own use-a standardized cost and performance data reporting process to facilitate uniform calculation of LCOE from MHK device developers. This standardization framework is only the first version in what is anticipated to be an iterative process that involves industry and the broader DOE stakeholder community. Multiple files are attached here for review and comment.Upload Files: application/vnd.openxmlformats-officedocument.wordprocessingml.document icon device_performance_validation_data_request.docx application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon

44

Southern/Northern California Coastal Processes Annotated Bibliography: Coast of California Storm and Tidal Waves Study  

E-Print Network (OSTI)

and Location in the Aleutian Trench on Tsunami Amplitudeearthquakes along the Aleutian Trench on resulting tsunamiCalifornia waves from: Aleutian Island storms, west waves,

US Army Corps of Engineers, Los Angeles District, Planning Division, Coastal Resources Branch

1987-01-01T23:59:59.000Z

45

MHK Technologies/Tidal Sails | Open Energy Information  

Open Energy Info (EERE)

Sails Sails < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Sails.jpg Technology Profile Primary Organization Tidal Sails AS Technology Resource Click here Current Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Tidal Sails device is a series of underwater sails affixed to wires strung across the tidal stream at an angle The sails are driven back and forth by the tidal flow between two stations at one of which the generator is installed Technology Dimensions Device Testing Date Submitted 26:04.6 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Tidal_Sails&oldid=681675

46

The Effect of Current Shear on Topographic Rossby Waves  

Science Conference Proceedings (OSTI)

Topographic Rossby waves are long-period waves which occur on continental slopes. In this paper we examine the effect of a mean current on these waves, when the current is directed along the isobaths and has a linear shear in the transverse ...

I. L. Collings; R. Grimshaw

1980-03-01T23:59:59.000Z

47

Southern/Northern California Coastal Processes Annotated Bibliography: Coast of California Storm and Tidal Waves Study  

E-Print Network (OSTI)

April l978; tides, offshore winds, high storm waves, andand oceanography; offshore wind and fog climatology; onshoretransport, offshore/onshore transport, wind transport

US Army Corps of Engineers, Los Angeles District, Planning Division, Coastal Resources Branch

1987-01-01T23:59:59.000Z

48

A Comparison of Tidal Conversion Parameterizations for Tidal Models  

Science Conference Proceedings (OSTI)

The conversion of barotropic to baroclinic tidal energy in the global abyssal ocean is calculated using three different formulations. The calculations are done both “offline,” that is, using externally given tidal currents to estimate the energy ...

J. A. Mattias Green; Jonas Nycander

2013-01-01T23:59:59.000Z

49

The Hybrid Kelvin–Edge Wave and Its Role in Tidal Dynamics  

Science Conference Proceedings (OSTI)

A full set of long waves trapped in the coastal ocean over a variable topography includes a zero (fundamental) mode propagating with the coast on its right (left) in the Northern (Southern) Hemisphere. This zero mode resembles a Kelvin wave at ...

Ziming Ke; Alexander E. Yankovsky

2010-12-01T23:59:59.000Z

50

Development and Verification of a Computational Fluid Dynamics Model of a Horizontal-Axis Tidal Current Turbine  

NLE Websites -- All DOE Office Websites (Extended Search)

Development and Verification of Development and Verification of a Computational Fluid Dynamics Model of a Horizontal-Axis Tidal Current Turbine M.J. Lawson and Y. Li. National Renewable Energy Laboratory D.C. Sale University of Washington Presented at the 30 th International Conference on Ocean, Offshore, and Arctic Engineering Rotterdam, The Netherlands June 19-24, 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Conference Paper NREL/CP-5000-50981 October 2011 Contract No. DE-AC36-08GO28308 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US

51

Development and Verification of a Computational Fluid Dynamics Model of a Horizontal-Axis Tidal Current Turbine  

DOE Green Energy (OSTI)

This paper describes the development of a computational fluid dynamics (CFD) methodology to simulate the hydrodynamics of horizontal-axis tidal current turbines. Qualitative measures of the CFD solutions were independent of the grid resolution. Conversely, quantitative comparisons of the results indicated that the use of coarse computational grids results in an under prediction of the hydrodynamic forces on the turbine blade in comparison to the forces predicted using more resolved grids. For the turbine operating conditions considered in this study, the effect of the computational timestep on the CFD solution was found to be minimal, and the results from steady and transient simulations were in good agreement. Additionally, the CFD results were compared to corresponding blade element momentum method calculations and reasonable agreement was shown. Nevertheless, we expect that for other turbine operating conditions, where the flow over the blade is separated, transient simulations will be required.

Lawson, M. J.; Li, Y.; Sale, D. C.

2011-10-01T23:59:59.000Z

52

Resistance to Barotropic Tidal Flow in Straits by Baroclinic Wave Drag  

Science Conference Proceedings (OSTI)

Energy transfer from barotropic tides to baroclinic motions may take place at the ends of straits connecting stratified basins, implying generation of internal waves propagating into the basins. Different aspects of this have been described in ...

Anders Stigebrandt

1999-02-01T23:59:59.000Z

53

Southern/Northern California Coastal Processes Annotated Bibliography: Coast of California Storm and Tidal Waves Study  

E-Print Network (OSTI)

Mendocino Thermal Power Plant on the Marine Environmentmarine environmental problems connected with the construction and operation of nuclear powerpower of sea and swell, calculated from hindcast wave data as compiled by National Marine

US Army Corps of Engineers, Los Angeles District, Planning Division, Coastal Resources Branch

1987-01-01T23:59:59.000Z

54

Tidal and Low-Frequency Currents Near the Shelf-Break: Northeastern Coast of Brazil  

Science Conference Proceedings (OSTI)

Time series of a 40-day (13 March-23 April 1979) wind and current observational experiment are analyzed. The wind data originated from the Fortaleza Airport Weather Station (Ceará, Brazil), and the current meter data originated concurrently from ...

Sérgio R. Signorini; Luiz B. De Miranda

1983-11-01T23:59:59.000Z

55

TIDAL INTERACTIONS IN MERGING WHITE DWARF BINARIES  

SciTech Connect

The recently discovered system J0651 is the tightest known detached white dwarf (WD) binary. Since it has not yet initiated Roche-lobe overflow, it provides a relatively clean environment for testing our understanding of tidal interactions. I investigate the tidal heating of each WD, parameterized in terms of its tidal Q parameter. Assuming that the heating can be radiated efficiently, the current luminosities are consistent with Q {sub 1} {approx} 7 x 10{sup 10} and Q {sub 2} {approx} 2 x 10{sup 7}, for the He and C/O WDs, respectively. Conversely, if the observed luminosities are merely from the cooling of the WDs, these estimated values of Q represent the upper limits. A large Q {sub 1} for the He WD means its spin velocity will be slower than that expected if it was tidally locked, which, since the binary is eclipsing, may be measurable via the Rossiter-McLaughlin effect. After one year, gravitational wave emission shifts the time of eclipses by 5.5 s, but tidal interactions cause the orbit to shrink more rapidly, changing the time by up to an additional 0.3 s after a year. Future eclipse timing measurements may therefore infer the degree of tidal locking.

Piro, Anthony L., E-mail: piro@caltech.edu [Theoretical Astrophysics, California Institute of Technology, 1200 East California Boulevard, M/C 350-17, Pasadena, CA 91125 (United States)

2011-10-20T23:59:59.000Z

56

Transient Ocean Currents Induced by Wind and Growing Waves  

Science Conference Proceedings (OSTI)

A theoretical nonlinear model for wind- and wave-induced currents in a viscous, rotating ocean is developed. The analysis is based on a Lagrangian description of motion. The nonlinear drift problem is formulated such that the solution depends on ...

Jan Erik Weber; Arne Melsom

1993-02-01T23:59:59.000Z

57

Internal Waves and Turbulence in the Antarctic Circumpolar Current  

Science Conference Proceedings (OSTI)

This study reports on observations of turbulent dissipation and internal wave-scale flow properties in a standing meander of the Antarctic Circumpolar Current (ACC) north of the Kerguelen Plateau. The authors characterize the intensity and spatial ...

Stephanie Waterman; Alberto C. Naveira Garabato; Kurt L. Polzin

2013-02-01T23:59:59.000Z

58

Tidal Energy Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tidal Energy Basics Tidal Energy Basics Tidal Energy Basics August 16, 2013 - 4:26pm Addthis Photo of the ocean rising along the beach. Some of the oldest ocean energy technologies use tidal power. All coastal areas experience two high tides and two low tides over a period of slightly more than 24 hours. For those tidal differences to be harnessed into electricity, the difference between high and low tides must be more than 16 feet (or at least 5 meters). However, there are only about 40 sites on Earth with tidal ranges of this magnitude. Currently, there are no tidal power plants in the United States, but conditions are good for tidal power generation in the Pacific Northwest and the Atlantic Northeast regions. Tidal Energy Technologies Tidal energy technologies include barrages or dams, tidal fences, and tidal

59

Fast wave current drive on DIII-D  

SciTech Connect

The physics of electron heating and current drive with the fast magnetosonic wave has been demonstrated on DIII-D, in reasonable agreement with theoretical modeling. A recently completed upgrade to the fast wave capability should allow full noninductive current drive in steady state advanced confinement discharges and provide some current density profile control for the Advanced Tokamak Program. DIII-D now has three four-strap fast wave antennas and three transmitters, each with nominally 2 MW of generator power. Extensive experiments have been conducted with the first system, at 60 MHz, while the two newer systems have come into operation within the past year. The newer systems are configured for 60 to 120 MHz. The measured FWCD efficiency is found to increase linearly with electron temperature as {gamma} = 0.4 {times} 10{sup 18} T{sub eo} (keV) [A/m{sup 2}W], measured up to central electron temperature over 5 keV. A newly developed technique for determining the internal noninductive current density profile gives efficiencies in agreement with this scaling and profiles consistent with theoretical predictions. Full noninductive current drive at 170 kA was achieved in a discharge prepared by rampdown of the Ohmic current. Modulation of microwave reflectometry signals at the fast wave frequency is being used to investigate fast wave propagation and damping. Additionally, rf pick-up probes on the internal boundary of the vessel provide a comparison with ray tracing codes, with dear evidence for a toroidally directed wave with antenna phasing set for current drive. There is some experimental evidence for fast wave absorption by energetic beam ions at high cyclotron harmonic resonances.

deGrassie, J.S.; Petty, C.C.; Pinsker, R.I. [and others

1995-07-01T23:59:59.000Z

60

Development and Verification of a Computational Fluid Dynamics Model of a Horizontal-Axis Tidal Current Turbine  

SciTech Connect

This paper describes the development of a computational fluid dynamics (CFD) methodology to simulate the hydrodynamics of horizontal-axis tidal current turbines (HATTs). First, an HATT blade was designed using the blade element momentum method in conjunction with a genetic optimization algorithm. Several unstructured computational grids were generated using this blade geometry and steady CFD simulations were used to perform a grid resolution study. Transient simulations were then performed to determine the effect of time-dependent flow phenomena and the size of the computational timestep on the numerical solution. Qualitative measures of the CFD solutions were independent of the grid resolution. Conversely, quantitative comparisons of the results indicated that the use of coarse computational grids results in an under prediction of the hydrodynamic forces on the turbine blade in comparison to the forces predicted using more resolved grids. For the turbine operating conditions considered in this study, the effect of the computational timestep on the CFD solution was found to be minimal, and the results from steady and transient simulations were in good agreement. Additionally, the CFD results were compared to corresponding blade element momentum method calculations and reasonable agreement was shown. Nevertheless, we expect that for other turbine operating conditions, where the flow over the blade is separated, transient simulations will be required.

Lawson, Mi. J.; Li, Y.; Sale, D. C.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "tidal wave current" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Sea-Surface Drift Currents Induced by Wind and Waves  

Science Conference Proceedings (OSTI)

Wind-induced shell currents and wave-induced mass transports at various fetches of both clean and slick sea surfaces are separately estimated. At the clean surface, the ratio between wind-induced current and wind velocity decreases, while the ...

Jin Wu

1983-08-01T23:59:59.000Z

62

Fast wave current drive system design for DIII-D  

SciTech Connect

DIII-D has a major effort underway to develop the physics and technology of fast wave electron heating and current drive in conjunction with electron cyclotron heating. The present system consists of a four strap antenna driven by one 2 MW transmitter in the 32--60 MHz band. Experiments have been successful in demonstrating the physics of heating and current drive. In order to validate fast wave current drive for future machines a greater power capability is necessary to drive all of the plasma current. Advanced tokamak modeling for DIII-D has indicated that this goal can be met for plasma configurations of interest (i.e. high [beta] VH-mode discharges) with 8 MW of transmitter fast wave capability. It is proposed that four transmitters drive fast wave antennas at three locations in DIII-D to provide the power for current drive and current profile modification. As the next step in acquiring this capability, two modular four strap antennas are in design and the procurement of a high power transmitter in the 30--120 MHz range is in progress. Additionally, innovations in the technology are being investigated, such as the use of a coupled combine antenna to reduce the number of required feedthroughs and to provide for parallel phase velocity variation with a relatively small change in frequency, and the use of fast ferrite tuners to provide millisecond timescale impedance matching. A successful test of a low power fast ferrite prototype was conducted on DIII-D.

deGrassie, J.S.; Callis, R.; Lin-Liu, Y.R.; Moeller, C..; Petty, C.C.; Phelps, D.R.; Pinsker, R.I.; Remsen, D. (General Atomics, San Diego, CA (United States)); Baity, F.W.; Hoffman, D.J.; Taylor, D.J. (Oak Ridge National Lab., TN (United States)); Arnold, W.; Martin, S. (ANT-Nachrichtentechnik GmbH, Backnang (Germany))

1992-09-01T23:59:59.000Z

63

Fast wave current drive system design for DIII-D  

SciTech Connect

DIII-D has a major effort underway to develop the physics and technology of fast wave electron heating and current drive in conjunction with electron cyclotron heating. The present system consists of a four strap antenna driven by one 2 MW transmitter in the 32--60 MHz band. Experiments have been successful in demonstrating the physics of heating and current drive. In order to validate fast wave current drive for future machines a greater power capability is necessary to drive all of the plasma current. Advanced tokamak modeling for DIII-D has indicated that this goal can be met for plasma configurations of interest (i.e. high {beta} VH-mode discharges) with 8 MW of transmitter fast wave capability. It is proposed that four transmitters drive fast wave antennas at three locations in DIII-D to provide the power for current drive and current profile modification. As the next step in acquiring this capability, two modular four strap antennas are in design and the procurement of a high power transmitter in the 30--120 MHz range is in progress. Additionally, innovations in the technology are being investigated, such as the use of a coupled combine antenna to reduce the number of required feedthroughs and to provide for parallel phase velocity variation with a relatively small change in frequency, and the use of fast ferrite tuners to provide millisecond timescale impedance matching. A successful test of a low power fast ferrite prototype was conducted on DIII-D.

deGrassie, J.S.; Callis, R.; Lin-Liu, Y.R.; Moeller, C..; Petty, C.C.; Phelps, D.R.; Pinsker, R.I.; Remsen, D. [General Atomics, San Diego, CA (United States); Baity, F.W.; Hoffman, D.J.; Taylor, D.J. [Oak Ridge National Lab., TN (United States); Arnold, W.; Martin, S. [ANT-Nachrichtentechnik GmbH, Backnang (Germany)

1992-09-01T23:59:59.000Z

64

Tidal Energy  

Energy.gov (U.S. Department of Energy (DOE))

Some of the oldest ocean energy technologies use tidal power. All coastal areas experience two high tides and two low tides over a period of slightly more than 24 hours. For those tidal differences to be harnessed into electricity, the difference between high and low tides must be more than 16 feet (or at least 5 meters). However, there are only about 40 sites on Earth with tidal ranges of this magnitude.

65

Spectral Effects on Fast Wave Core Heating and Current Drive  

SciTech Connect

Recent results obtained with high harmonic fast wave (HHFW) heating and current drive (CD) on NSTX strongly support the hypothesis that the onset of perpendicular fast wave propagation right at or very near the launcher is a primary cause for a reduction in core heating efficiency at long wavelengths that is also observed in ICRF heating experiments in numerous tokamaks. A dramatic increase in core heating efficiency was first achieved in NSTX L-mode helium majority plasmas when the onset for perpendicular wave propagation was moved away from the antenna and nearby vessel structures. Efficient core heating in deuterium majority L mode and H mode discharges, in which the edge density is typically higher than in comparable helium majority plasmas, was then accomplished by reducing the edge density in front of the launcher with lithium conditioning and avoiding operational points prone to instabilities. These results indicate that careful tailoring of the edge density profiles in ITER should be considered to limit rf power losses to the antenna and plasma facing materials. Finally, in plasmas with reduced rf power losses in the edge regions, the first direct measurements of high harmonic fast wave current drive were obtained with the motional Stark effect (MSE) diagnostic. The location and radial dependence of HHFW CD measured by MSE are in reasonable agreement with predictions from both full wave and ray tracing simulations.

C.K. Phillips, R.E. Bell, L.A. Berry, P.T. Bonoli, R.W. Harvey, J.C. Hosea, E.F. Jaeger, B.P. LeBlanc, P.M. Ryan, G. Taylor, E.J. Valeo, J.R. Wilson, J.C. Wright, H. Yuh, and the NSTX Team

2009-05-11T23:59:59.000Z

66

Energy Flux and Generation of Diurnal Shelf Waves along Vancouver Island  

Science Conference Proceedings (OSTI)

Recent observations along the west coast of Vancouver Island reveal among diurnal-period currents due to a tidally driven continental shelf wave superimposed upon a Kelvin wave. The energy flux of this system is investigated here. It is shown ...

William R. Crawford

1984-10-01T23:59:59.000Z

67

The Effects of a Jet-Like Current on Gravity Waves in Shallow Water  

Science Conference Proceedings (OSTI)

The effects of a strong current with horizontal shear on shallow water waves is studied. For jet-like currents, the existence of trapped waves and the reciprocity of scattering coefficients are pointed out. Detailed consequences of current ...

Chiang C. Mei; Edmond Lo

1984-02-01T23:59:59.000Z

68

Spectral effects on fast wave core heating and current drive  

Science Conference Proceedings (OSTI)

Recent results obtained with high harmonic fast wave (HHFW) heating and current drive (CD) on NSTX strongly support the hypothesis that the onset of perpendicular fast wave propagation right at or very near the launcher is a primary cause for a reduction in core heating efficiency at long wavelengths that is also observed in ICRF heating experiments in numerous tokamaks. A dramatic increase in core heating efficiency was first achieved in NSTX L-mode helium majority plasmas when the onset for perpendicular wave propagation was moved away from the antenna and nearby vessel structures. Efficient core heating in deuterium majority L-mode and H-mode discharges, in which the edge density is typically higher than in comparable helium majority plasmas, was then accomplished by reducing the edge density in front of the launcher with lithium conditioning and avoiding operational points prone to instabilities. These results indicate that careful tailoring of the edge density profiles in ITER should be considered to limit radio frequency (rf) power losses to the antenna and plasma facing materials. Finally, in plasmas with reduced rf power losses in the edge regions, the first direct measurements of HHFW CD were obtained with the motional Stark effect (MSE) diagnostic. The location and radial dependence of HHFW CD measured by MSE are in reasonable agreement with predictions from both full wave and ray tracing simulations.

Phillips, Cynthia [Princeton Plasma Physics Laboratory (PPPL); Bell, R. E. [Princeton Plasma Physics Laboratory (PPPL); Berry, Lee [Oak Ridge National Laboratory (ORNL); Jaeger, Erwin Frederick [ORNL; Ryan, Philip Michael [ORNL; Wilgen, John B [ORNL

2009-01-01T23:59:59.000Z

69

Overland Tidal Power Generation Using Modular Tidal Prism  

SciTech Connect

Naturally occurring sites with sufficient kinetic energy suitable for tidal power generation with sustained currents > 1 to 2 m/s are relatively rare. Yet sites with greater than 3 to 4 m of tidal range are relatively common around the U.S. coastline. Tidal potential does exist along the shoreline but is mostly distributed, and requires an approach which allows trapping and collection to also be conducted in a distributed manner. In this paper we examine the feasibility of generating sustainable tidal power using multiple nearshore tidal energy collection units and present the Modular Tidal Prism (MTP) basin concept. The proposed approach utilizes available tidal potential by conversion into tidal kinetic energy through cyclic expansion and drainage from shallow modular manufactured overland tidal prisms. A preliminary design and configuration of the modular tidal prism basin including inlet channel configuration and basin dimensions was developed. The unique design was shown to sustain momentum in the penstocks during flooding as well as ebbing tidal cycles. The unstructured-grid finite volume coastal ocean model (FVCOM) was used to subject the proposed design to a number of sensitivity tests and to optimize the size, shape and configuration of MTP basin for peak power generation capacity. The results show that an artificial modular basin with a reasonable footprint (? 300 acres) has the potential to generate 10 to 20 kw average energy through the operation of a small turbine located near the basin outlet. The potential of generating a total of 500 kw to 1 MW of power through a 20 to 40 MTP basin tidal power farms distributed along the coastline of Puget Sound, Washington, is explored.

Khangaonkar, Tarang; Yang, Zhaoqing; Geerlofs, Simon H.; Copping, Andrea

2010-03-01T23:59:59.000Z

70

Large-Eddy Simulation Study of Wake Propagation and Power Production in an Array of Tidal-Current Turbines: Preprint  

DOE Green Energy (OSTI)

This paper presents our initial work in performing large-eddy simulations of tidal turbine array flows. First, a horizontally-periodic precursor simulation is performed to create turbulent flow data. Then that data is used as inflow into a tidal turbine array two rows deep and infinitely wide. The turbines are modeled using rotating actuator lines, and the finite-volume method is used to solve the governing equations. In studying the wakes created by the turbines, we observed that the vertical shear of the inflow combined with wake rotation causes lateral wake asymmetry. Also, various turbine configurations are simulated, and the total power production relative to isolated turbines is examined. Staggering consecutive rows of turbines in the simulated configurations allows the greatest efficiency using the least downstream row spacing. Counter-rotating consecutive downstream turbines in a non-staggered array shows a small benefit. This work has identified areas for improvement, such as the use of a larger precursor domain to better capture elongated turbulent structures, the inclusion of salinity and temperature equations to account for density stratification and its effect on turbulence, improved wall shear stress modelling, and the examination of more array configurations.

Churchfield, M. J.; Li, Y.; Moriarty, P. J.

2012-07-01T23:59:59.000Z

71

Large-Eddy Simulation Study of Wake Propagation and Power Production in an Array of Tidal-Current Turbines: Preprint  

DOE Green Energy (OSTI)

This paper presents our initial work in performing large-eddy simulations of tidal turbine array flows. First, a horizontally-periodic precursor simulation is performed to create turbulent flow data. Then that data is used to determine the inflow into a tidal turbine array two rows deep and infinitely wide. The turbines are modeled using rotating actuator lines, and the finite-volume method is used to solve the governing equations. In studying the wakes created by the turbines, we observed that the vertical shear of the inflow combined with wake rotation causes lateral wake asymmetry. Also, various turbine configurations are simulated, and the total power production relative to isolated turbines is examined. Staggering consecutive rows of turbines in the simulated configurations allows the greatest efficiency using the least downstream row spacing. Counter-rotating consecutive downstream turbines in a non-staggered array shows a small benefit. This work has identified areas for improvement, such as the use of a larger precursor domain to better capture elongated turbulent structures, the inclusion of salinity and temperature equations to account for density stratification and its effect on turbulence, improved wall shear stress modeling, and the examination of more array configurations.

Churchfield, M. J.; Li, Y.; Moriarty, P. J.

2011-07-01T23:59:59.000Z

72

Numerical Wave Modeling in Conditions with Strong Currents: Dissipation, Refraction, and Relative Wind  

Science Conference Proceedings (OSTI)

Currents effects on waves have led to many developments in numerical wave modeling over the past two decades, from numerical choices to parameterizations. The performance of numerical models in conditions with strong currents is reviewed here, and ...

Fabrice Ardhuin; Aron Roland; Franck Dumas; Anne-Claire Bennis; Alexei Sentchev; Philippe Forget; Judith Wolf; Françoise Girard; Pedro Osuna; Michel Benoit

2012-12-01T23:59:59.000Z

73

Hindcast of Waves and Currents in Hurricane Katrina  

Science Conference Proceedings (OSTI)

Hurricane Katrina caused extensive damage to offshore oil and gas production facilities. In this study, the state-of-the-art ocean circulation (the Princeton Ocean Model) and surface wave (Wave Watch III) models, together with high-resolution ...

Dong-Ping Wang; Lie-Yauw Oey

2008-04-01T23:59:59.000Z

74

Multiscale Momentum Flux and Diffusion due to Whitecapping in Wave–Current Interactions  

Science Conference Proceedings (OSTI)

Whitecapping affects the Reynolds stresses near the ocean surface. A model for the conservative dynamics of waves and currents is modified to include the averaged effect of multiple, short-lived, and random wave-breaking events on large ...

Juan M. Restrepo; Jorge M. Ramírez; James C. McWilliams; Michael Banner

2011-05-01T23:59:59.000Z

75

Surf Zone Longshore Currents and Random Waves: Field Data and Models  

Science Conference Proceedings (OSTI)

Analytic and numerical models for longshore currents generated by obliquely incident random waves am compared with field observations. Five days of observations were selected during which the waves were narrow banded in both frequency and ...

Edward B. Thornton; R. T. Guza

1986-07-01T23:59:59.000Z

76

Tidal Conversion at a Submarine Ridge  

Science Conference Proceedings (OSTI)

The radiative flux of internal wave energy (the “tidal conversion”) powered by the oscillating flow of a uniformly stratified fluid over a two-dimensional submarine ridge is computed using an integral-equation method. The problem is characterized ...

François Pétrélis; Stefan Llewellyn Smith; W. R. Young

2006-06-01T23:59:59.000Z

77

Wake II model for hydrodynamic forces on marine pipelines for the wave plus current case.  

E-Print Network (OSTI)

??The concept of the Wake II model for the determination of the hydrodynamic forces on marine pipelines is extended to include the wave plus current… (more)

Ramirez Sabag, Said

2012-01-01T23:59:59.000Z

78

Current Shear–Inertial Wave Interaction in the Sargasso Sea  

Science Conference Proceedings (OSTI)

Acoustic Doppler profiler measurements of inertial waves embedded within the high shell region of a cold core ring in the Sargasso Sea are described. By repeatedly traversing the same point from different directions, a sampling pattern resembling ...

Richard P. Mied; Colin Y. Shen; Matthew J. Kidd

1990-01-01T23:59:59.000Z

79

High-Resolution Directional Wave Spectra from Horizontally Mounted Acoustic Doppler Current Meters  

Science Conference Proceedings (OSTI)

The paper discusses the estimation of directional wave spectra by the Iterative Maximum Likelihood Method. The performance of the estimate is illustrated using data obtained by an Acoustic Doppler Current Meter in the CUrrent Measurement ...

Harald E. Krogstad; R. Lee Gordon; Martin C. Miller

1988-04-01T23:59:59.000Z

80

Current-Induced Modulation of the Ocean Wave Spectrum and the Role of Nonlinear Energy Transfer  

Science Conference Proceedings (OSTI)

Numerical simulations were performed to investigate current-induced modulation of the spectral and statistical properties of ocean waves advected by idealized and realistic current fields. In particular, the role of nonlinear energy transfer ...

Hitoshi Tamura; Takuji Waseda; Yasumasa Miyazawa; Kosei Komatsu

2008-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "tidal wave current" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Current generation by unidirectional lower hybrid waves in the ACT-1 toroidal device  

SciTech Connect

An unambiguious experimental observation of current generation by unidirectional lower hybrid waves in a toroidal plasma is reported. Up to 10 amperes of current was driven by 500 watts of rf power at 160 MHz.

Wong, K.L.; Horton, R.; Ono, M.

1980-05-01T23:59:59.000Z

82

MHK Technologies/Tidal Defense and Energy System TIDES | Open Energy  

Open Energy Info (EERE)

MHK Technologies/Tidal Defense and Energy System TIDES MHK Technologies/Tidal Defense and Energy System TIDES < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Defense and Energy System TIDES.jpg Technology Profile Primary Organization Oceana Energy Company Project(s) where this technology is utilized *MHK Projects/Astoria Tidal Energy *MHK Projects/Cape Islands Tidal Energy Project *MHK Projects/Central Cook Inlet Tidal Energy Project *MHK Projects/Icy Passage Tidal Energy Project *MHK Projects/Kachemak Bay Tidal Energy Project *MHK Projects/Kendall Head Tidal Energy *MHK Projects/Kennebec *MHK Projects/Penobscot Tidal Energy Project *MHK Projects/Portsmouth Area Tidal Energy Project *MHK Projects/Wrangell Narrows Tidal Energy Project Technology Resource Click here Current/Tidal

83

Dissipation of Nonlinear Alfven Waves with Current Sheets in Relativistic Plasmas  

E-Print Network (OSTI)

We present results from 2.5-dimensional Particle-in-Cell simulations of the interaction of nonlinear Alfven waves with thin current sheets in relativistic plasmas. We find that the Alfven waves cause the current sheet to bend and kink and increase its dissipation. The electrons are eventually heated to form a double Maxwellian, with the hotter Maxwellian caused by the current sheet dissipation and cooler Maxwellian caused by the Alfven turbulence cascade. These results may have important implications for the kinetic dissipation of MHD turbulence in which both nonlinear Alfven waves and current sheets are present, such as turbulence in accretion flows driven by the saturated magnetorotational instability (MRI).

Liang, Edison

2009-01-01T23:59:59.000Z

84

The influence of an electromagnetic field on the wave-current interaction  

E-Print Network (OSTI)

We study the propagation of surface waves on a current in the presence of an electromagnetic field. A horizontal (vertical) field strengthens (weakens) the counter-current which blocks the waves. We compute the phase space diagrams (blocking velocities versus period of the waves) with and without surface tension. Three new dimensionless numbers are introduced to compare the relative strengths of gravity, surface tension and field effects. This work shows the importance of an electromagnetic field in order to design wave-breakers or in microfluidics applications.

Germain Rousseaux; Philippe Maïssa

2010-10-11T23:59:59.000Z

85

Calculating Reynolds Stresses from ADCP Measurements in the Presence of Surface Gravity Waves Using the Cospectra-Fit Method  

Science Conference Proceedings (OSTI)

Recently, the velocity observations of acoustic Doppler current profilers (ADCPs) have been successfully used to estimate turbulent Reynolds stresses in estuaries and tidal channels. However, the presence of surface gravity waves can ...

Anthony R. Kirincich; Steven J. Lentz; Gregory P. Gerbi

2010-05-01T23:59:59.000Z

86

The Generation and Evolution of Nonlinear Internal Waves in the Deep Basin of the South China Sea  

Science Conference Proceedings (OSTI)

Time series observations of nonlinear internal waves in the deep basin of the South China Sea are used to evaluate mechanisms for their generation and evolution. Internal tides are generated by tidal currents over ridges in Luzon Strait and ...

Qiang Li; David M. Farmer

2011-07-01T23:59:59.000Z

87

Wave–Current Interaction: A Comparison of Radiation-Stress and Vortex-Force Representations  

Science Conference Proceedings (OSTI)

The vortex-force representation of the wave-averaged effects on currents is compared to the radiation-stress representation in a scaling regime appropriate to coastal and shelf waters. Three-dimensional and vertically integrated expressions for ...

E. M. Lane; J. M. Restrepo; J. C. McWilliams

2007-05-01T23:59:59.000Z

88

Loop current order and d-wave superconductivity: Some observable consequences  

E-Print Network (OSTI)

Loop current order has been reported in the pseudogap regime of a few cuprate systems in polarized neutron scattering experiments. Here we study several observable consequences of such order in the d-wave superconducting ...

Allais, Andrea

89

Lagrangian Solution for an Irrotational Progressive Water Wave Propagating on a Uniform Current  

Science Conference Proceedings (OSTI)

Experiments are conducted to measure the motion properties of water particle for the progressive water wave propagation in the presence of following and adverse uniform currents. The experimental data are used to validate the fifth-order ...

Yang-Yih Chen; Hsuan-Shan Chen; Chu-Yu Lin; Meng-Syue Li

2013-04-01T23:59:59.000Z

90

The Interaction of Equatorial Kelvin Waves with Realistically Sheared Zonal Currents  

Science Conference Proceedings (OSTI)

We investigate the interaction of baroclinic equatorial Kelvin waves with realistically sheared background zonal currents in a linearized, continuously stratified model. The background flows are in thermal wind balance and allowed to vary ...

M. J. McPhaden; J. A. Proehl; L. M. Rothstein

1986-09-01T23:59:59.000Z

91

A Third-Generation Model for Wind Waves on Slowly Varying, Unsteady, and Inhomogeneous Depths and Currents  

Science Conference Proceedings (OSTI)

A full discrete spectral model for propagation generation and dissipation of wind waves for arbitrary depth, current and wind fields is presented (WAVEWATCH). This model incorporates all relevant wave-current interaction mechanisms including ...

Hendrik L. Tolman

1991-06-01T23:59:59.000Z

92

Boundary Currents, Free Currents and Dissipation in the Low-Frequency Scattering of Shelf Waves  

Science Conference Proceedings (OSTI)

The low-frequency scattering of barotropic shelf waves is considered in the limit of small but nonzero dissipation. For a rectilinear shelf it is shown that an intense oscillatory boundary layer forms on the incident side of any obstacle. This ...

E. R. Johnson

1989-09-01T23:59:59.000Z

93

Modeling of Alfven wave heating and current drive in Phaedrus-T  

Science Conference Proceedings (OSTI)

Theoretical analysis and numerical modeling of Alfven wave plasma heating and current drive experiments on the Phaedrus-T tokamak is presented. The full-wave hot-plasma code, ALFA, is used in these calculations. The code features toroidal geometry and poloidal magnetic field effects. It is essentially a 2D full-wave code, but can obtain a 3D picture of RF wave fields and absorbed power via Fourier composition of solutions for many toroidal modes. The stand-alone current diffusion code, DIFF, is intergrated with ALFA to model the transient processes of current drive in the Phaedrus-T tokamak. Comparison of numerical calculations to experimental data is given thus permitting a deeper understanding of AWCD processes. {copyright} {ital 1996 American Institute of Physics.}

Moroz, P.; Kishinevsky, M.; Wukitch, S.; Vukovic, M. [University of Wisconsin, Madison, Wisconsin 53706 (United States)

1996-02-01T23:59:59.000Z

94

9/18/09 2:43 PM'Big Wave' Theory Offers Alternative to Dark Energy // Current Page 1 of 11http://current.com/items/90718274_big-wave-theory-offers-alternative-to-dark-energy.htm  

E-Print Network (OSTI)

9/18/09 2:43 PM'Big Wave' Theory Offers Alternative to Dark Energy // Current Page 1 of 11http://current.com/items/90718274_big-wave-theory-offers-alternative-to-dark-energy.htm login | register |home tv shows schedule to Dark Energy // Current Page 2 of 11http://current.com/items/90718274_big-wave-theory-offers-alternative-to-dark-energy

Temple, Blake

95

Pulsed current wave shaping with a transmission line by utilizing superposition of a forward and a backward voltage wave for fast capillary Z-pinch discharge  

Science Conference Proceedings (OSTI)

By using a water transmission line, current wave shaping was demonstrated for a fast capillary Z-pinch discharge recombination soft x-ray laser study. The pulsed power system consists of a water capacitor, a gap switch, a transmission line, and a capillary plasma load. A voltage wave initiated at the water capacitor propagates toward the capillary load through the transmission line. Control of the pulse delay that occurred in the transmission line provides the superposition of the forward and the backward voltage waves effectively in order to perform current wave shaping with higher current amplitude and rapid current decay.

Sakai, Y.; Takahashi, S.; Watanabe, M.; Hotta, E. [Department of Energy Sciences, Tokyo Institute of Technology, Nagatsuta, Midoriku, Yokohama, Kanagawa 226-8502 (Japan); Kim, G.-H. [Department of Nuclear Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of)

2010-04-15T23:59:59.000Z

96

The Effect of Wind–Wave–Current Interaction on Air–Sea Momentum Fluxes and Ocean Response in Tropical Cyclones  

Science Conference Proceedings (OSTI)

In this paper, the wind–wave–current interaction mechanisms in tropical cyclones and their effect on the surface wave and ocean responses are investigated through a set of numerical experiments. The key element of the authors’ modeling approach ...

Yalin Fan; Isaac Ginis; Tetsu Hara

2009-04-01T23:59:59.000Z

97

Remote Synoptic Surface Current Measurements by Gravity Waves; A Method and its Test in a Small Body of Water  

Science Conference Proceedings (OSTI)

Synoptic surface current data in a lagoon have been obtained utilizing a new approach that evolved from the kinematics of wave-current interaction. Surface current at a position was determined from wavelength and direction of two monochromatic ...

David Sheres

1982-02-01T23:59:59.000Z

98

Tidal heating and tidal evolution in the solar system  

E-Print Network (OSTI)

In this thesis, we examine the effects of tidal dissipation on solid bodies in application and in theory. First, we study the effects of tidal heating and tidal evolution in the Saturnian satellite system. We constrain the ...

Meyer, Jennifer Ann

2011-01-01T23:59:59.000Z

99

Tidal Wetlands Regulations (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

Most activities occurring in or near tidal wetlands are regulated, and this section contains information on such activities and required permit applications for proposed activities. Applications...

100

Energy Basics: Wave Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

Note: This page contains sample records for the topic "tidal wave current" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Filamentation instability of current-driven dust ion-acoustic waves in a collisional dusty plasma  

Science Conference Proceedings (OSTI)

A theoretical investigation has been made of the dust ion-acoustic filamentation instability in an unmagnetized current-driven dusty plasma by using the Lorentz transformation formulas. The effect of collision between the charged particles with neutrals and their thermal motion on this instability is considered. Developing the filamentation instability of the current-driven dust ion-acoustic wave allows us to determine the period and the establishment time of the filamentation structure and threshold for instability development.

Niknam, A. R. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran 19839-63113 (Iran, Islamic Republic of); Haghtalab, T.; Khorashadizadeh, S. M. [Physics Department, Birjand University, Birjand 97179-63384 (Iran, Islamic Republic of)

2011-11-15T23:59:59.000Z

102

Mass Flux and Vertical Distribution of Currents Caused by Strong Winds in a Wave Tank  

Science Conference Proceedings (OSTI)

The velocity fields of wind-driven currents under strong winds were measured in a wind-wave tank with a double bottom. The tank has the characteristics to satisfy partially the continuity of the mass flux and to reduce return-flow effects on the ...

Toshinori Ogasawara; Takashi Yasuda

2004-12-01T23:59:59.000Z

103

Wind and Wave Induced Currents in a Rotating Sea with Depth-varying Eddy Viscosity  

Science Conference Proceedings (OSTI)

A theory is presented for time-dependent currents induced by a variable wind stress and wave field in deep water away from coastal boundaries. It is based on a second-order perturbation expansion of a version of the Navier-Stokes equations in ...

Alastair D. Jenkins

1987-07-01T23:59:59.000Z

104

Tidal Response in Estuaries  

Science Conference Proceedings (OSTI)

A new general theory has been developed to determine both the tidal response of estuaries and the effects of cross-channel tidal barriers on this response. The theory is shown to be widely applicable and provides a connecting framework against ...

D. Prandle; M. Rahman

1980-10-01T23:59:59.000Z

105

Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Add description List of Tidal Energy Incentives Retrieved from "http:en.openei.orgwindex.php?titleTidalEnergy&oldid267201" Category: Articles with outstanding TODO tasks...

106

Preseismic oscillating electric field "strange attractor like" precursor, of T = 6 months, triggered by Ssa tidal wave. Application on large (Ms > 6.0R) EQs in Greece (October 1st, 2006 - December 2nd, 2008)  

E-Print Network (OSTI)

In this work the preseismic "strange attractor like" precursor is studied, in the domain of the Earth's oscillating electric field for T = 6 months. It is assumed that the specific oscillating electric field is generated by the corresponding lithospheric oscillation, triggered by the Ssa tidal wave of the same wave length (6 months) under excess strain load conditions met in the focal area of a future large earthquake. The analysis of the recorded Earth's oscillating electric field by the two distant monitoring sites of PYR and HIO and for a period of time of 26 months (October 1st, 2006 - December 2nd, 2008) suggests that the specific precursor can successfully resolve the predictive time window in terms of months and for a "swarm" of large EQs (Ms > 6.0R), in contrast to the resolution obtained by the use of electric fields of shorter (T = 1, 14 days, single EQ identification) wave length. More over, the fractal character of the "strange attractor like" precursor in the frequency domain is pointed out. Fina...

Thanassoulas, C; Verveniotis, G; Zymaris, N

2009-01-01T23:59:59.000Z

107

4 MW fast wave current drive upgrade for DIII-D  

SciTech Connect

The DIII-D program has just completed a major addition to its ion cyclotron range of frequency (ICRF) systems. This upgrade project added two new fast wave current drive (FWCD) systems, with each system consisting of a 2 MW, 30 to 120 MHz transmitter, ceramic insulated transmission lines and tuner elements, and water-cooled four-strap antenna. With this addition of 4 MW of FWCD power to the original 2 MW, 30 to 60 MHz capability, experiments can be performed that will explore advanced tokamak plasma configurations by using the centrally localized current drive to effect current profile modifications.

Callis, R.W.; Cary, W.P. [General Atomics, San Diego, CA (United States); Baity, F.W. [Oak Ridge National Lab., TN (United States)] [and others

1994-09-01T23:59:59.000Z

108

Natural Currents Energy Services | Open Energy Information  

Open Energy Info (EERE)

Natural Currents Energy Services Natural Currents Energy Services Jump to: navigation, search Name Natural Currents Energy Services Address 24 Roxanne Blvd Place Highland Zip 12528 Sector Marine and Hydrokinetic Phone number 845-691-4008 Website http://www.naturalcurrents.com Region United States LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Angoon Tidal Energy Plant Avalon Tidal BW2 Tidal Cape Cod Tidal Energy Project Cape May Tidal Energy Cohansey River Tidal Energy Cuttyhunk Tidal Energy Plant Dorchester Maurice Tidal Fishers Island Tidal Energy Project Gastineau Channel Tidal Highlands Tidal Energy Project Housatonic Tidal Energy Plant

109

Adaptation of Classical Tidal Harmonic Analysis to Nonstationary Tides, with Application to River Tides  

Science Conference Proceedings (OSTI)

One of the most challenging areas in tidal analysis is the study of nonstationary signals with a tidal component, as they confront both current analysis methods and dynamical understanding. A new analysis tool has been developed, NS_TIDE, adapted ...

Pascal Matte; David A. Jay; Edward D. Zaron

2013-03-01T23:59:59.000Z

110

Energy Basics: Tidal Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the cost per kilowatt-hour of tidal power is not competitive with conventional fossil fuel power. Contacts | Web Site Policies | U.S. Department of Energy | USA.gov Content Last...

111

Simulation of enhanced tokamak performance on DIII-D using fast wave current drive  

SciTech Connect

The fast magnetosonic wave is now recognized to be a leading candidate for noninductive for the tokamak reactor due to the ability of the wave to penetrate to the hot dense core region. Fast wave current drive (FWCD) experiments on D3D have realized up to 120 kA of rf current drive, with up to 40% of the plasma current driven noninductively. The success of these experiments at 60 MHZ with a 2 MW transmitter source capability has led to a major upgrade of the FWCD system. Two additional transmitters, 30 to 120 NM, with a 2 MW source capability each, will be added together with two new four-strap antennas in early 1994. Another major thrust of the D3-D program is to develop advanced tokamak modes of operation, simultaneously demonstrating improvements in confinement and stability in quasi-steady-state operation. In some of the initial advanced tokamak experiments on D3-D with neutral beam heated (NBI) discharges it has been demonstrated that energy confinement nine can be improved by rapidly elongating the plasma to force the current density profile to be more centrally peaked. However, this high-l[sub i] phase of the discharge with the commensurate improvement in confinement is transient as the current density profile relaxes. By applying FWCD to the core of such a [kappa]-ramped discharge it may be possible to sustain the high internal inductance and elevated confinement.Using computational tools validated on the initial DM-D FWCD experiments we find that such a high-l[sub i] advanced tokamak discharge should be capable of sustainment at the 1 MA level with the upgraded capability of the FWCD system.

deGrassie, J.S.; Lin-Liu, Y.R. Petty, C.C.; Pinsker, R.I.; Chan, V.S.; Prater, R.; St. John, H. (General Atomics, San Diego, CA (United States)); Baity, F.W.; Goulding, R.H.; Hoffman, D.J. (Oak Ridge National Lab., TN (United States))

1993-05-01T23:59:59.000Z

112

Reynolds Stress and Turbulent Energy Production in a Tidal Channel  

Science Conference Proceedings (OSTI)

A high-frequency (1.2 MHz) acoustic Doppler current profiler (ADCP) moored on the seabed has been used to observe the mean and turbulent flow components in a narrow tidally energetic channel over six tidal cycles at neap and spring tides. The ...

Tom P. Rippeth; Eirwen Williams; John H. Simpson

2002-04-01T23:59:59.000Z

113

Tidal Energetics over the Chatham Rise, New Zealand  

Science Conference Proceedings (OSTI)

Separate one-month current meter deployments in 1996 and 1997 over the Chatham Rise, east of New Zealand, show that tidal phases are both stable in time and close to those derived from a barotropic tidal model, while amplitudes show coefficients ...

Stephen M. Chiswell

2000-09-01T23:59:59.000Z

114

DOE Science Showcase - Tidal Energy | OSTI, US Dept of Energy, Office of  

Office of Scientific and Technical Information (OSTI)

DOE Science Showcase - Tidal Energy DOE Science Showcase - Tidal Energy Point absorbers generate electricity by converting the energy in waves using a float that rides the waves and is attached to a moored conversion device. The Department of Energy's Water Power Program Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030, Energy.gov News Assessment of Energy Production Potential from Tidal Streams in the United States, Energy Citations Database Georgia Tech's Tidal Energy Resources Database U.S. Renewable Resources Atlas , NREL Tidal energy research in WorldWideScience.org OSTI Homepage Mobile Gallery Subscribe to RSS OSTI Blog Get Widgets Get Alert Services OSTI Facebook OSTI Twitter OSTI Google+ Bookmark and Share (Link will open in a new window) Go to Videos Loading...

115

Reactive instabilities of lower hybrid-like waves in regions with parallel currents  

Science Conference Proceedings (OSTI)

The dispersion and reactive instabilities of obliquely propagating waves near the lower hybrid (LH) frequency are studied in plasma carrying a current parallel to the magnetic field. Possible applications of these instabilities include magnetic reconnection regions, where LH-like waves may accelerate and heat both ions and electrons. In plasmas with a bulk drift of electrons relative to the ions at speed v{sub d} along the magnetic field, the forward and backward propagating LH modes are shown to be replaced by four LH-like modes. Reactive instabilities are discovered here for a forward propagating mode with Re({omega}){approx_equal}k{sub ||}v{sub d}/2 and a backward propagating mode with Re({omega})cold plasma calculations and agree well, confirming that the discovered instabilities are reactive. In the cold plasma limit, the forward and backward propagating instabilities occur for v{sub d} below and above some thresholds, respectively.

Verdon, A. L.; Cairns, Iver H.; Melrose, D. B.; Robinson, P. A. [School of Physics, University of Sydney, Sydney, New South Wales 2006 (Australia)

2011-05-15T23:59:59.000Z

116

New Interactive Map Reveals U.S. Tidal Energy Resources | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Interactive Map Reveals U.S. Tidal Energy Resources Interactive Map Reveals U.S. Tidal Energy Resources New Interactive Map Reveals U.S. Tidal Energy Resources July 7, 2011 - 10:50am Addthis A map generated by Georgia Tech's tidal energy resource database shows mean current speed of tidal streams | Source: Georgia Institute of Technology A map generated by Georgia Tech's tidal energy resource database shows mean current speed of tidal streams | Source: Georgia Institute of Technology Mike Reed Water Power Program Manager, Water Power Program Tidal energy -- a renewable, predictable resource available up and down America's coastlines -- holds great promise for clean energy generation. And now, a first of its kind database gives researchers deeper insight into the potential of this energy resource for the United States.

117

MHK Technologies/Tidal Lagoons | Open Energy Information  

Open Energy Info (EERE)

Tidal Lagoons Tidal Lagoons < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Lagoons.jpg Technology Profile Primary Organization Tidal Electric Project(s) where this technology is utilized *MHK Projects/Dandong City *MHK Projects/Swansea Bay Technology Resource Click here Current/Tidal Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description idal Lagoons are situated a mile or more offshore in high tidal range areas, and use a rubble mound impoundment structure and low-head hydroelectric bulb turbines. Shallow tidal flats provide the most economical sites. Multi-cell Tidal Lagoons provide higher load factors (about 62%) and have the flexibility to shape the output curve in order to dispatch power in response to demand price signals. The impoundment structure is a conventional rubble mound breakwater (loose rock, concrete, and marine sheetpiles are among the types of appropriate materials for the impoundment structure), with ordinary performance specifications and is built from the most economical materials. The barrage is much shorter than an impoundment structure with the same output capacity, but the barrage is a much larger structure. The offshore tidal generator uses conventional low-head hydroelectric generation equipment and control systems. The equipment consists of a mixed-flow reversible bulb turbine, a generator, and the control system. Manufacturers/suppliers include Alstom, GE, Kvaerner, Siemens, Voith, Sulzer, and others.

118

Tidal Flow through the Straits of Dover  

Science Conference Proceedings (OSTI)

Results are presented from the first long-term deployment of the Mark II OSCR high-frequency radar system. This new system measures surface currents at 700 preselected locations every 20 minutes at a range up to 25 km offshore. Tidal analysis, in ...

D. Prandle; S. G. Loch; R. Player

1993-01-01T23:59:59.000Z

119

Variability in the internal wave field induced by the Atlantic Deep Western Boundary Current at 16°N  

Science Conference Proceedings (OSTI)

Five years of continuous mooring data combined with CTD/LADCP measurements from five cruises are used to investigate the influence of the Deep Western Boundary Current (DWBC) on the internal wave field and associated vertical mixing at the ...

Janna Köhler; Christian Mertens; Maren Walter; Uwe Stöber; Monika Rhein; Torsten Kanzow

120

High power millimeter wave experiment of ITER relevant electron cyclotron heating and current drive system  

Science Conference Proceedings (OSTI)

High power, long pulse millimeter (mm) wave experiments of the RF test stand (RFTS) of Japan Atomic Energy Agency (JAEA) were performed. The system consists of a 1 MW/170 GHz gyrotron, a long and short distance transmission line (TL), and an equatorial launcher (EL) mock-up. The RFTS has an ITER-relevant configuration, i.e., consisted by a 1 MW-170 GHz gyrotron, a mm wave TL, and an EL mock-up. The TL is composed of a matching optics unit, evacuated circular corrugated waveguides, 6-miter bends, an in-line waveguide switch, and an isolation valve. The EL-mock-up is fabricated according to the current design of the ITER launcher. The Gaussian-like beam radiation with the steering capability of 20 deg. - 40 deg. from the EL mock-up was also successfully proved. The high power, long pulse power transmission test was conducted with the metallic load replaced by the EL mock-up, and the transmission of 1 MW/800 s and 0.5 MW/1000 s was successfully demonstrated with no arcing and no damages. The transmission efficiency of the TL was 96%. The results prove the feasibility of the ITER electron cyclotron heating and current drive system.

Takahashi, K.; Kajiwara, K.; Oda, Y.; Kasugai, A.; Kobayashi, N.; Sakamoto, K. [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Doane, J.; Olstad, R. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Henderson, M. [ITER Organization, CS90 046, 13067 St. Paul lez Durance Cedex (France)

2011-06-15T23:59:59.000Z

Note: This page contains sample records for the topic "tidal wave current" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Comments on “The Three-Dimensional Current and Surface Wave Equations”  

Science Conference Proceedings (OSTI)

The lowest order sigma-transformed momentum equation given by Mellor takes into account a phase-averaged wave forcing based on Airy wave theory. This equation is shown to be generally inconsistent because of inadequate approximations of the wave ...

Fabrice Ardhuin; Alastair D. Jenkins; Konstadinos A. Belibassakis

2008-06-01T23:59:59.000Z

122

Tidal Venuses: Triggering a Climate Catastrophe via Tidal Heating  

E-Print Network (OSTI)

Traditionally stellar radiation has been the only heat source considered capable of determining global climate on long timescales. Here we show that terrestrial exoplanets orbiting low-mass stars may be tidally heated at high enough levels to induce a runaway greenhouse for a long enough duration for all the hydrogen to escape. Without hydrogen, the planet no longer has water and cannot support life. We call these planets "Tidal Venuses," and the phenomenon a "tidal greenhouse." Tidal effects also circularize the orbit, which decreases tidal heating. Hence, some planets may form with large eccentricity, with its accompanying large tidal heating, and lose their water, but eventually settle into nearly circular orbits in the habitable zone (HZ). However, these planets are not habitable as past tidal heating desiccated them, and hence should not be ranked highly for detailed follow-up observations aimed at detecting biosignatures. We simulate the evolution of hypothetical planetary systems in a quasi-continuous ...

Barnes, Rory; Goldblatt, Colin; Meadows, Victoria S; Kasting, James F; Heller, Rene

2012-01-01T23:59:59.000Z

123

MHK Technologies/TidalStar | Open Energy Information  

Open Energy Info (EERE)

TidalStar TidalStar < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage TidalStar.jpg Technology Profile Primary Organization Bourne Energy Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The horizontal axis TidalStar device uses a bidirectional twin rotor turbine to produce approximately 50 kW at peak capacity in both ebb and flood tides Technology Dimensions Length (m) 6 Width (m) 6 Freeboard (m) 1 Technology Nameplate Capacity (MW) 5 Device Testing Date Submitted 46:38.3 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/TidalStar&oldid=681677

124

The Influence of Unsteady Depths and Currents of Tides on Wind-Wave Propagation in Shelf Seas  

Science Conference Proceedings (OSTI)

The influence of unsteady depths and currents on wind wave propagation on the scale of shelf seas such as the North Sea is investigated. The attention is focused on depth and current variations due to tides, which are essentially stationary at ...

H. L. Tolman

1990-08-01T23:59:59.000Z

125

Coherence of Western Boundary Pressure at the RAPID WAVE Array: Boundary Wave Adjustments or Deep Western Boundary Current Advection?  

Science Conference Proceedings (OSTI)

This study investigates the coherence between ocean bottom pressure signals at the Rapid Climate Change programme (RAPID) West Atlantic Variability Experiment (WAVE) array on the western North Atlantic continental slope, including the Woods Hole ...

Shane Elipot; Chris Hughes; Sofia Olhede; John Toole

2013-04-01T23:59:59.000Z

126

Evolution of a Rossby Wave Packet in Barotropic Flows with Asymmetric Basic Current, Topography and ?-Effect  

Science Conference Proceedings (OSTI)

Using the Rossby wave packet approximation and the WKB method, the evolution of a single geostrophic synoptic disturbance has been studied. The structural changes of the wave packet due to the variation of ? with latitude, the asymmetric basic ...

Huijun Yang

1987-08-01T23:59:59.000Z

127

Tidal Generation Ltd | Open Energy Information  

Open Energy Info (EERE)

Ltd Ltd Jump to: navigation, search Name Tidal Generation Ltd Address University Gate East Park Row Place Bristol, United Kingdom Zip BS1 5UB Sector Marine and Hydrokinetic Product Tidal Generation is developing a 1MW fully submerged tidal turbine to generate electricity from tidal currents in water depths up to 50m. Phone number 4.41E+11 Website http://www.tidalgeneration.co. Coordinates 42.55678°, -88.050449° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.55678,"lon":-88.050449,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

128

MHK Technologies/Zero Impact Water Current Turbine | Open Energy  

Open Energy Info (EERE)

Zero Impact Water Current Turbine Zero Impact Water Current Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization Green Wave Energy Corp GWEC Project(s) where this technology is utilized *MHK Projects/Green Wave Mendocino *MHK Projects/Green Wave San Luis Obispo Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description The Green Wave Zero Impact Water Current Turbine is a water current turbine that will revolutionize power generation as we know it Technology Dimensions Device Testing Date Submitted 10/8/2010 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Zero_Impact_Water_Current_Turbine&oldid=681718

129

MHK Technologies/Sabella subsea tidal turbine | Open Energy Information  

Open Energy Info (EERE)

subsea tidal turbine subsea tidal turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Description It is characterised by a turbine configuration on the seafloor, without impinging on the surface. These turbines are stabilised by gravity and/or are anchored according to the nature of the seafloor. They are pre-orientated in the direction of the tidal currents, and the profile of their symmetrical blades helps to capture the ebb and flow. The rotor activated, at slow speeds (10 to 15 rpm), by the tides powers a generator, which exports the electricity produced to the coast via a submarine cable anchored and embedded at its landfall.

130

MHK Technologies/Tidal Stream Turbine | Open Energy Information  

Open Energy Info (EERE)

Stream Turbine Stream Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Stream Turbine.jpg Technology Profile Primary Organization StatoilHydro co owned by Hammerfest Strong Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description A fully operational 300kW prototype tidal turbine has been running in Norway since 2003 and has achieved good results It s the world s first tidal turbine to supply electricity directly to the onshore grid In the autumn of 2008 Hammerfest Str�m signed an intention agreement with Scottish Power to further develop tidal technology in the UK A 1 MW turbine is currently under development

131

MHK Technologies/Wave Rotor | Open Energy Information  

Open Energy Info (EERE)

Rotor Rotor < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Rotor.jpg Technology Profile Primary Organization Ecofys Subsidiary of Econcern Project(s) where this technology is utilized *MHK Projects/C Energy Technology Resource Click here Wave Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description The Wave Rotor uses a combined Darrieus-Wells rotor, which is contained on the same vertical axis of rotation. These are respectively omni- and bi-directional rotors that can operate in currents of changing directions. The Wave Rotor is mounted on a platform to allow for the capture of wave energy from circulating water particles created by local currents. Since it uses two types of rotor on a single axis of rotation it is able to convert not only tidal currents, but also waves into electricity.

132

Tidal flow over threedimensional topography generates outofforcingplane harmonics  

E-Print Network (OSTI)

energy conversion from the barotropic to the baroclinic tide. The generation of internal waves by tidal, a significant amount of the energy converted from barotropic to baroclinic tides can be generated perpendicular of a sphere, J. Fluid Mech., 183, 439­450. Baines, P. G. (2007), Internal tide generation by seamounts, Deep

Texas at Austin. University of

133

4 MW upgrade to the DIII-D fast wave current drive system  

SciTech Connect

The DIII-D fast wave current drive (FWCD) system is being upgraded by an additional 4 MW in the 30 to 120 MHz frequency range. This capability adds to the existing 2 MW 30 to 60 MHz system. Two new ABB transmitters of the type that are in use on the ASDEX-Upgrade tokamak in Garching will be used to drive two new water-cooled four-strap antennas to be installed in DIII-D in early 1994. The transmission and tuning system for each antenna will be similar to that now in use for the first 2 MW system on DIII-D, but with some significant improvements. One improvement consists of adding a decoupler element to counter the mutual coupling between the antenna straps which results in large imbalances in the power to a strap for the usual current drive intrastrap phasing of 90{degrees}. Another improvement is to utilize pressurized, ceramic-insulated transmission lines. The intrastrap phasing will again be controlled in pairs, with a pair of straps coupled in a resonant loop configuration, locking their phase difference at either 0 or 180{degrees}, depending upon the length of line installed. These resonant loops will incorporate a phase shifter so that they will be able to be tuned to resonance at several frequencies in the operating band of the transmitter. With the frequency change capability of the ABB generators, the FWCD frequency will thus be selectable on a shot-to-shot basis, from this preselected set of frequencies. The schedule is for experiments to begin with this added 4 MW capability in mid-1994. The details of the system are described.

deGrassie, J.S.; Pinsker, R.I.; Cary, W.P.

1993-10-01T23:59:59.000Z

134

Analysis of Lower Hybrid Current Drive Scenario on Alcator C-Mod with a Full Wave  

E-Print Network (OSTI)

power deposition. 2 CompX #12;LHRF waves have simple dispersion relation For LHRF Physics Regime we useX #12;For wavelength estimation, look at slab dispersion. Consider the lower hybrid dispersion relation done. Full Wave Annulus Plasma Parameters: Deuterium gas, n =1.5, f0 = 4.6 GHz, B0 = 5.3 T, Te=3.5 ke

Wright, John C.

135

Linear and nonlinear dynamics of current-driven waves in dusty plasmas  

SciTech Connect

The linear and nonlinear dynamics of a recently proposed plasma mode of dusty plasma is studied using kappa distribution for electrons. This electrostatic wave can propagate in the plasma due to the sheared flow of electrons and ions parallel to the external magnetic field in the presence of stationary dust. The coupling of this wave with the usual drift wave and ion acoustic wave is investigated. D'Angelo's mode is also modified in the presence of superthermal electrons. In the nonlinear regime, the wave can give rise to dipolar vortex structures if the shear in flow is weaker and tripolar vortices if the flow has steeper gradient. The results have been applied to Saturn's magnetosphere corresponding to negatively charged dust grains. But the theoretical model is applicable for positively charged dust as well. This work will be useful for future observations and studies of dusty environments of planets and comets.

Ahmad, Ali [National Centre for Physics (NCP), Shahdara Valley Road, 44000 Islamabad (Pakistan); Department of Physics, COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan); Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad (Pakistan); Ali Shan, S.; Haque, Q. [National Centre for Physics (NCP), Shahdara Valley Road, 44000 Islamabad (Pakistan); Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad (Pakistan); Saleem, H. [National Centre for Physics (NCP), Shahdara Valley Road, 44000 Islamabad (Pakistan); Department of Physics, COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan)

2012-09-15T23:59:59.000Z

136

MHK Technologies/Scotrenewables Tidal Turbine SRTT | Open Energy  

Open Energy Info (EERE)

Scotrenewables Tidal Turbine SRTT Scotrenewables Tidal Turbine SRTT < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Scotrenewables Tidal Turbine SRTT.jpg Technology Profile Primary Organization Scotrenewables Project(s) where this technology is utilized *MHK Projects/Scotrenewables EMEC Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description The Scotrenewables Tidal Turbine (SRTT) system is a free-floating rotor-based tidal current energy converter. The concept in its present configuration involves dual counter-rotating horizontal axis rotors driving generators within sub-surface nacelles, each suspended from separate keel and rotor arm sections attached to a single surface-piercing cylindrical buoyancy tube. The device is anchored to the seabed via a yoke arrangement. A separate flexible power and control umbilical line connects the device to a subsea junction box. The rotor arm sections are hinged to allow each two-bladed rotor to be retracted so as to be parallel with the longitudinal axis of the buoyancy tube, giving the system a transport draught of less than 4.5m at full-scale to facilitate towing the device into harbors for maintenance.

137

Scattering of Sound by Internal Wave Currents: The Relation to Vertical Momentum Flux  

Science Conference Proceedings (OSTI)

Internal waves scatter sound by two related perturbations: 1) those associated with vertical particle displacements ?(x, y, z, t) in the presence of a vertical gradient of (potential) sound speed (?c = ??zcp); and 2) those associated with ...

W. Munk; P. Worcester; F. Zachariasen

1981-04-01T23:59:59.000Z

138

A survey of current issues in inverse problem theory as applied to thermal wave imaging  

Science Conference Proceedings (OSTI)

The recovery of optical and thermal property depth profiles using thermal waves relies directly on the application of inverse problem theory to the photothermal data. A general strategy for assessing and interrelating existing works in the field is presented.

J. F. Power

1999-01-01T23:59:59.000Z

139

Coastal-Trapped Waves off the Coast of South Africa: Generation, Propagation and Current Structures  

Science Conference Proceedings (OSTI)

Coastal sea level variations from six sites around South Africa are used to establish the characteristics of coastal-trapped wave (CTW) propagation. Substantial amplitudes (>50 cm) are found along the south coast, but further propagation on the ...

E. H. Schumann; K. H. Brink

1990-08-01T23:59:59.000Z

140

NATIONAL GEODATABASE OF TIDAL STREAM POWER RESOURCE IN USA  

Science Conference Proceedings (OSTI)

A geodatabase of tidal constituents is developed to present the regional assessment of tidal stream power resource in the USA. Tidal currents are numerically modeled with the Regional Ocean Modeling System (ROMS) and calibrated with the available measurements of tidal current speeds and water level surfaces. The performance of the numerical model in predicting the tidal currents and water levels is assessed by an independent validation. The geodatabase is published on a public domain via a spatial database engine with interactive tools to select, query and download the data. Regions with the maximum average kinetic power density exceeding 500 W/m2 (corresponding to a current speed of ~1 m/s), total surface area larger than 0.5 km2 and depth greater than 5 m are defined as hotspots and documented. The regional assessment indicates that the state of Alaska (AK) has the largest number of locations with considerably high kinetic power density, followed by, Maine (ME), Washington (WA), Oregon (OR), California (CA), New Hampshire (NH), Massachusetts (MA), New York (NY), New Jersey (NJ), North and South Carolina (NC, SC), Georgia (GA), and Florida (FL).

Smith, Brennan T [ORNL; Neary, Vincent S [ORNL; Stewart, Kevin M [ORNL

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "tidal wave current" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Deep Currents and Their Interpretation as Equatorial Waves in the Western Pacific Ocean  

Science Conference Proceedings (OSTI)

Vertical profiles of current and density made within 5° latitude of the equator along longitudes 168 and 179°E (the vicinity of the Gilbert Islands) reveal multiple deep current reversals which are confined to the equator. These current jets have ...

Charles C. Eriksen

1981-01-01T23:59:59.000Z

142

High Harmonic Fast Wave Heating Efficiency Enhancement and Current Drive at Longer Wavelength on the National Spherical Torus Experiment  

Science Conference Proceedings (OSTI)

High harmonic fast wave heating and current drive CD are being developed on the National Spherical Torus Experiment M. Ono et al., Nucl. Fusion 41, 1435 2001 for supporting startup and sustainment of the spherical torus plasma. Considerable enhancement of the core heating efficiency from 44% to 65% has been obtained for CD phasing of the antenna strap-to-strap = 90 , k= 8 m 1 by increasing the magnetic field from 4.5 to 5.5 kG. This increase in efficiency is strongly correlated to moving the location of the onset density for perpendicular fast wave propagation nonsetBk 2 / away from the antenna face and wall, and hence reducing the propagating surface wave fields. Radio frequency RF waves propagating close to the wall at lower B and k can enhance power losses from both the parametric decay instability PDI and wave dissipation in sheaths and structures around the machine. The improved efficiency found here is attributed to a reduction in the latter, as PDI losses are little changed at the higher magnetic field. Under these conditions of higher coupling efficiency, initial measurements of localized CD effects have been made and compared with advanced RF code simulations.

Hosea, J. [Princeton Plasma Physics Laboratory (PPPL); Bell, R. E. [Princeton Plasma Physics Laboratory (PPPL); LeBlanc, B [Princeton Plasma Physics Laboratory (PPPL); Phillips, Cynthia [Princeton Plasma Physics Laboratory (PPPL); Taylor, G. [Princeton Plasma Physics Laboratory (PPPL); Valeo, Dr Ernest [Princeton Plasma Physics Laboratory (PPPL); Wilson, J. R. [Princeton Plasma Physics Laboratory (PPPL); Jaeger, Erwin Frederick [ORNL; Ryan, Philip Michael [ORNL; Wilgen, John B [ORNL; Yuh, H. [Nova Photonics; Levinton, F. [Fusion Physics and Technology; Sabbagh, S. A. [Columbia University; Tritz, K. [Johns Hopkins University; Parker, J. [Cornell University; Bonoli, P. [Massachusetts Institute of Technology (MIT); Harvey, R. W. [CompX, Del Mar, CA

2008-01-01T23:59:59.000Z

143

High Harmonic Fast Wave Heating Efficiency Enhancemen and Current Drive at Longer Wavelength on the National Spherical Torus Experiment  

SciTech Connect

High harmonic fast wave heating and current drive (CD) are being developed on the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 41, 1435 (2001)] for supporting startup and sustainment of the ST plasma. Considerable enhancement of the core heating efficiency (?) from 44% to 65% has been obtained for CD phasing of the antenna (strap-to-strap ? = -90o, k? = -8 m-1) by increasing the magnetic field from 4.5 kG to 5.5 kG. This increase in efficiency is strongly correlated to moving the location of the onset density for perpendicular fast wave propagation (nonset ? ??× k|| 2/w) away from the antenna face and wall, and hence reducing the propagating surface wave fields. RF waves propagating close to the wall at lower B? and k|| can enhance power losses from both the parametric decay instability (PDI) and wave dissipation in sheaths and structures around the machine. The improved efficiency found here is attributed to a reduction in the latter, as PDI losses are little changed at the higher magnetic field. Under these conditions of higher coupling efficiency, initial measurements of localized CD effects have been made and compared with advanced RF code simulations

J. Hosea, R. E. Bell, B.P. LeBlanc, C.K. Phillips, G. Taylor, E. Valeo, J.R. Wilson, E.F. Jaeger, P.M. Ryan, J. Wilgen, H. Yuh, F. Levinton, S. Sabbagh, K. Tritz, J. Parker, P.T. Bonoli, R. Harvey, and the NSTX Team

2008-01-14T23:59:59.000Z

144

Ecological safety of tidal-power projects  

SciTech Connect

The operating regime of tidal power plants requires ecological monitoring of their associated water area.

Fedorov, M. P.; Shilin, M. B. [St. Petersburg State Polytechnic University (Russian Federation)

2010-07-15T23:59:59.000Z

145

Wave | OpenEI Community  

Open Energy Info (EERE)

Wave Wave Home Ocop's picture Submitted by Ocop(5) Member 18 April, 2013 - 13:41 MHK LCOE Reporting Guidance Draft Cost Current DOE LCOE numerical modeling Performance Tidal Wave To normalize competing claims of LCOE, DOE has developed-for its own use-a standardized cost and performance data reporting process to facilitate uniform calculation of LCOE from MHK device developers. This standardization framework is only the first version in what is anticipated to be an iterative process that involves industry and the broader DOE stakeholder community. Multiple files are attached here for review and comment.Upload Files: application/vnd.openxmlformats-officedocument.wordprocessingml.document icon device_performance_validation_data_request.docx application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon

146

MHK Technologies/Tidal Stream | Open Energy Information  

Open Energy Info (EERE)

Stream Stream < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Stream.jpg Technology Profile Primary Organization Tidal Stream Project(s) where this technology is utilized *MHK Projects/Thames at Chiswick Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The TidalStream SST (Semi-Submersible Turbine) is designed for deep water, typically 60m+ (e.g., Pentland Firth) where it is too deep to mount turbines rigidly to the seabed and too rough for surface floaters to survive. Tidal Stream SST consists of turbines connected to unique semi-submersible spar buoys that are moored to the seabed using anchors through swing-arms. This ensures automatic alignment to the tidal flow to maximize energy capture. By blowing the water ballast, the device will rise, rotate, and float to the surface still tethered to the base to allow for on- or off-site maintenance. By releasing the tether arm the device can be towed to a harbor at the end of its life or for major repair or exchange.

147

Interruption of Tidal Disruption Flares By Supermassive Black Hole Binaries  

E-Print Network (OSTI)

Supermassive black hole binaries (SMBHBs) are products of galaxy mergers, and are important in testing Lambda cold dark matter cosmology and locating gravitational-wave-radiation sources. A unique electromagnetic signature of SMBHBs in galactic nuclei is essential in identifying the binaries in observations from the IR band through optical to X-ray. Recently, the flares in optical, UV, and X-ray caused by supermassive black holes (SMBHs) tidally disrupting nearby stars have been successfully used to observationally probe single SMBHs in normal galaxies. In this Letter, we investigate the accretion of the gaseous debris of a tidally disrupted star by a SMBHB. Using both stability analysis of three-body systems and numerical scattering experiments, we show that the accretion of stellar debris gas, which initially decays with time $\\propto t^{-5/3}$, would stop at a time $T_{\\rm tr} \\simeq \\eta T_{\\rm b}$. Here, $\\eta \\sim0.25$ and $T_{\\rm b}$ is the orbital period of the SMBHB. After a period of interruption, the accretion recurs discretely at time $T_{\\rm r} \\simeq \\xi T_b$, where $\\xi \\sim 1$. Both $\\eta$ and $\\xi$ sensitively depend on the orbital parameters of the tidally disrupted star at the tidal radius and the orbit eccentricity of SMBHB. The interrupted accretion of the stellar debris gas gives rise to an interrupted tidal flare, which could be used to identify SMBHBs in non-active galaxies in the upcoming transient surveys.

F. K. Liu; S. Li; Xian Chen

2009-10-21T23:59:59.000Z

148

Consequences of Strong Compression in Tidal Disruption Events  

E-Print Network (OSTI)

The tidal disruption of a star by a supermassive black hole (SMBH) is a highly energetic event with consequences dependent on the degree to which the star plunges inside the SMBH's tidal sphere. We introduce a new analytic model for tidal disruption events (TDEs) to analyze the dependence of these events on beta, the ratio of the tidal radius to the orbital pericenter. We find, contrary to most previous work, that the spread in debris energy for a TDE is largely constant for all beta. This result has important consequences for optical transient searches targeting TDEs, which we discuss. We quantify leading-order general relativistic corrections to this spread in energy and find that they are small. We also examine the role of stellar spin, and find that a combination of spin-orbit misalignment, rapid rotation, and high beta may increase the spread in debris energy. Finally, we quantify for the first time the gravitational wave emission due to the strong compression of a star in a high-beta TDE. Although this signal is unlikely to be detectable for disruptions of main sequence stars, the tidal disruption of a white dwarf by an intermediate mass black hole can produce a strong signal visible to Advanced LIGO at tens of megaparsecs.

Nicholas Stone; Re'em Sari; Abraham Loeb

2012-10-11T23:59:59.000Z

149

MHK Technologies/Tidal Turbine | Open Energy Information  

Open Energy Info (EERE)

Turbine Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Turbine.jpg Technology Profile Primary Organization Aquascientific Project(s) where this technology is utilized *MHK Projects/Race Rocks Demonstration Technology Resource Click here Current/Tidal Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description Turbine is positioned by anchoring and cabling Energy extraction from flow that is transverse to the rotation axis Turbines utilize both lift and drag Mooring Configuration Gravity base although other options are currently being explored Technology Dimensions Device Testing Date Submitted 10/8/2010

150

Tropical Instability Wave Variability in the Pacific and Its Relation to Large-Scale Currents  

Science Conference Proceedings (OSTI)

Shipboard acoustic Doppler current profiler (ADCP)-derived zonal currents from 170° to 110°W are assembled into composite seasonal and ENSO cycles to produce detailed representations of large-scale ocean flow regimes that favor tropical ...

Eric S. Johnson; Jeffrey A. Proehl

2004-10-01T23:59:59.000Z

151

Investigation of the polar electrojet-current system using radio-wave heating from a ground-based facility  

SciTech Connect

The High Power Auroral Stimulation (HIPAS) heating facility has been used to modulate D region ionospheric currents at high latitudes, producing very low frequency (VLF) radio wave emissions. The behavior of these ionospheric currents can be deduced from a comprehensive study of the VLF signals received at a local field site. This Paper examines the relationship between the VLF magnetic field strength measured on the ground and the intensity of an overhead electrojet current for the purpose of enhancing communications. The mapping of the polar electrojet current from the E region down through the D region, where it can then be modulated by the heater beam, is investigated. A finite difference solution to the electrojet mapping .problem is presented in which arbitrary conductivity profiles can be specified. Results have been obtained using a simple Cowling model of the electrojet. These results indicate that for electrojets flowing between 100 and 110 km with scale sizes in excess of 100 km, the mapping of the horizontal current density can be completely characterized in terms of the Pedersen and Hall conductivities. This indicates that the mapping becomes independent of scale sizes which exceed 100 km. A promising new diagnostic technique, for studying ionospheric D region currents, has been implemented using the HIPAS facility. This technique involves high frequency (HF) beam steering for localized VLF generation in the mapped region below electrojets. Beam steering has been used to estimate the strength and current distribution of the polar electrojet, and for charting the movements of overhead currents.

Werner, D.H.; Ferraro, A.J.; Brandt, R.G.

1990-10-01T23:59:59.000Z

152

ADCP Measurements of Momentum Balance and Dynamic Topography in a Constricted Tidal Channel  

Science Conference Proceedings (OSTI)

The dynamics of tidal flow through inlets are not fully understood; observations are scarce because of the small spatial scales over which the flow varies. This paper gives the first detailed measurements of the 2D structure of tidal currents and ...

Ross Vennell

2006-02-01T23:59:59.000Z

153

MHK Technologies/Rotech Tidal Turbine RTT | Open Energy Information  

Open Energy Info (EERE)

Rotech Tidal Turbine RTT Rotech Tidal Turbine RTT < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Rotech Tidal Turbine RTT.jpg Technology Profile Primary Organization Lunar Energy Project(s) where this technology is utilized *MHK Projects/Lunar Energy St David s Peninsula Pembrokeshire South Wales UK *MHK Projects/Lunar Energy Wando Hoenggan Waterway South Korea Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description he Rotech Tidal Turbine (RTT) is a bi-directional horizontal axis turbine housed in a symmetrical venturi duct. The Venturi duct draws the existing ocean currents into the RTT in order to capture and convert energy into electricity. Use of a gravity foundation will allow the RTT to be deployed quickly with little or no seabed preparation at depths in excess of 40 meters. This gives the RTT a distinct advantage over most of its competitors and opens up a potential energy resource that is five times the size of that available to companies using pile foundations.

154

Current driven instabilities of the kinetic shear Alfven wave: application to reversed field pinches and spheromaks  

DOE Green Energy (OSTI)

The kinetic Alfven wave is studied in a cylindrical force-free plasma with self-consistent magnetic fields. This equilibrium represents a reversed field pinch or a spheromak. The stability of the wave is found to depend on the ratio of the electron drift velocity to the Alfven velocity. This ratio varies inversely with the square root of the plasma line density. The critical line density using the Spitzer-Harm electron distribution function is found for reversed field pinches with deuterium plasmas to be approximately 2 x 10/sup 18/ m/sup -1/ and is 5 x 10/sup 17/ m/sup -1/ in spheromaks with hydrogen plasmas. The critical line density is in reasonable agreement with experimental data for reversed field pinches.

Meyerhofer, D.D.; Perkins, F.W.

1984-04-01T23:59:59.000Z

155

Earth Tidal Analysis | Open Energy Information  

Open Energy Info (EERE)

Earth Tidal Analysis Earth Tidal Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Earth Tidal Analysis Details Activities (6) Areas (4) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Well Testing Techniques Information Provided by Technique Lithology: Enables estimation of in-situ reservoir elastic parameters. Stratigraphic/Structural: Hydrological: Enables estimation of in-situ reservoir hydraulic parameters. Thermal: Dictionary.png Earth Tidal Analysis: Earth tidal analysis is the measurement of the impact of tidal and barometric fluctuations on effective pore volume in a porous reservoir. Other definitions:Wikipedia Reegle

156

EERE News: Energy Department Invests $16 Million to Develop Wave...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Invests 16 Million to Develop Wave and Tidal Energy Technologies August 29, 2013 Image of machinery to generate energy using tides. As part of the Obama Administration's...

157

Challenges and Instrumentation Solutions to Understanding the Nature of Tidal Flows  

NLE Websites -- All DOE Office Websites (Extended Search)

Approach to Characterization of Full-Spectrum Approach to Characterization of Full-Spectrum Turbulence Near Current Tidal Energy Devices Presented by Brett Prairie of Rockland Scientific at the Marine and Hydrokinetic Technology and Environmental Instrumentation, Measurement & Computer Modeling Workshop Broomfield, Colorado July 9 - 11, 2012 ©2012 Rockland Scientific Inc. Presentation Agenda ©2012 Rockland Scientific Inc. 1. Introduction & Background 2. The importance of full-spectrum turbulence characterization for current tidal energy project development 3. How non-acoustic measurements can characterize small-scale turbulence near current tidal energy devices 4. Development of a continuous monitoring system to measure full-spectrum turbulence for the National Renewable Energy Laboratory

158

A note on energy currents and decay for the wave equation on a Schwarzschild background  

E-Print Network (OSTI)

In recent work, we have proven uniform decay bounds for solutions of the wave equation $\\Box_g\\phi=0$ on a Schwarzschild exterior, in particular, the uniform pointwise estimate $|\\phi|\\le Cv_+^{-1}$, which holds throughout the domain of outer communications, where $v$ is an advanced Eddington-Finkelstein coordinate, $v_+=\\max\\{v,1\\}$, and $C$ is a constant depending on a Sobolev norm of initial data. A crucial estimate in the proof required a decomposition into spherical harmonics. We here give an alternative proof of this estimate not requiring such a decomposition.

Dafermos, Mihalis

2007-01-01T23:59:59.000Z

159

Inhibition of the current-driven ion wave instability by electron trapping in the FM-1 spherator  

SciTech Connect

An experimental analysis is made of the scattering of microwaves by the density fluctuations due to the current-driven ion wave instability in a toroidal plasma confinement device, the FM-1 spherator. It is found that the instability exists in the collisional regime and it is inhibited (i.e., quenched by two orders in magnitude) in the trapped-electron (i.e., banana) regime. The inhibition occurs when the electron collision frequency is about equal to the electron bounce frequency between mirror trapping. (auth)

Arunasalam, V.; Okabayaski, M.; Hawryluk, R.J.; Suckewer, S.

1975-10-01T23:59:59.000Z

160

Tidal Electric | Open Energy Information  

Open Energy Info (EERE)

Electric Electric Jump to: navigation, search Name Tidal Electric Place London, Greater London, United Kingdom Zip SW19 8UY Product Developed a technology named 'tidal lagoons' to build tidal electric projects. Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "tidal wave current" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Initiation of a Solitary Wave Family in the Demise of a Nocturnal Thunderstorm Density Current  

Science Conference Proceedings (OSTI)

This paper describes the characteristics and evolving nature of a vigorous thunderstorm density current very early in the morning of 9 May 1981 in Oklahoma. Because the ambient lower atmosphere was stratified, interesting interactions between the ...

Richard Fulton; Dusan S. Zrni?; Richard J. Doviak

1990-02-01T23:59:59.000Z

162

MHK Technologies/Tidal Barrage | Open Energy Information  

Open Energy Info (EERE)

Barrage Barrage < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Barrage.jpg Technology Profile Technology Resource Click here Current Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description No information provided Technology Dimensions Device Testing Date Submitted 01:04.7 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Tidal_Barrage&oldid=681672" Category: Marine and Hydrokinetic Technologies What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

163

MHK Technologies/KESC Tidal Generator | Open Energy Information  

Open Energy Info (EERE)

KESC Tidal Generator KESC Tidal Generator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage KESC Tidal Generator.jpg Technology Profile Primary Organization Kinetic Energy Systems Project(s) where this technology is utilized *MHK Projects/Newfound Harbor Project Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The Tidal Generator is based on free flow hydrodynamics for regions that have flood and ebb tides. Strategically attached to bridges, pilings, river, channel, or sea bottoms, this multi-directional generator contains two sets of turbine blades. As the tide flows inward the inward turbine blades opens to maximum rotor diameter while the outward turbine closes into the outward cone-shaped hub to create a hydro dynamically clean surface for water to flow without drag. The center diameter is 75% of the diameter of the turbine blades at full rotor extension for stability.

164

On Tidal Damping in Laplace's Global Ocean  

Science Conference Proceedings (OSTI)

Laplace's tidal equations are augmented by dissipation in a bottom boundary layer that is intermediate in character between those of Ekman and Stokes. Laplace's tidal equation for a global ocean remains second-order and self-adjoint, but the ...

John W. Miles

1986-02-01T23:59:59.000Z

165

Tidal Diffusivity: A Mechanism for Frontogenesis  

Science Conference Proceedings (OSTI)

It is hypothesized that tidal mixing may provide a “diffusivity” mechanism for frontogenesis. It stems from the fact that tidal diffusivity varies in the opposite sense from the water depth, so the vertically integrated diffusivity may exhibit a ...

Hsien-Wang Ou; Chang-Ming Dong; Dake Chen

2003-04-01T23:59:59.000Z

166

Tidal Mixing Signatures in the Indonesian Seas  

Science Conference Proceedings (OSTI)

Expressions of low-frequency tidal periods are found throughout the Indonesian Seas' temperature field, supporting the hypothesis that vertical mixing is enhanced within the Indonesian Seas by the tides. The thermal signatures of tidal mixing ...

Amy Ffield; Arnold L. Gordon

1996-09-01T23:59:59.000Z

167

MHK Technologies/Tidal Delay | Open Energy Information  

Open Energy Info (EERE)

Delay Delay < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Delay.png Technology Profile Primary Organization Woodshed Technologies Ltd Technology Resource Click here Current Technology Type Click here Overtopping Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Tidal Delay utilizes an existing natural land formation such as a peninsula or isthmus that creates a natural tidal barrier separating moving rising and falling bodies of seawater As the seawater on each side of the natural barrier rises and falls the device captures the energy resulting from the difference in water levels across the barrier using proven hydroelectric technology The device utilizes a standard impulse turbine installed in siphon pipe over under the natural barrier

168

MHK Technologies/Tidal Hydraulic Generators THG | Open Energy Information  

Open Energy Info (EERE)

Generators THG Generators THG < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Hydraulic Generators THG.jpg Technology Profile Primary Organization Tidal Hydraulic Generators Ltd Project(s) where this technology is utilized *MHK Projects/Ramsey Sound Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The concept of generating energy in this way is made unique by our novel design feature. The generator, devised in 1998, is a hydraulic accumulator system, involving relatively small revolving blades which gather power to a central collector, where electricity is generated. The generator, which is situated under water, is 80 metres square, stands at 15 metres high, and is designed to run for a minimum of ten years without service.

169

Traveling wave current drive theory for an arbitrary m-polar configuration  

Science Conference Proceedings (OSTI)

An extension of the formalism employed to describe current drive in magnetized plasmas by means of traveling magnetic fields (or double-helix configuration) is presented. In all previous theoretical studies, only driving fields with dipolar topology have been employed and the figure of merit of the current drive mechanism has never been analyzed in terms of the dissipation in the power feeding circuit. In this paper, we show how to express the model equations in terms of the current amplitude in the coils, for an arbitrary number of equally spaced coils wound around the plasma column. We present a brief review of the existing theory and a theoretical formulation, valid for an arbitrary m-polar helical symmetry, which removes the above mentioned complications and limitations. In the limit of straight coils, our magnetic field expression agrees exactly with well-established results of the literature for rotating magnetic field current drive. Finally, we present initial numerical results from a recently developed code which consistently compares the steady driven nonlinear Hall currents and steady fields, corresponding to different configurations in terms of the Ohmic dissipation in the helical coils and discuss future perspectives.

Duarte, V. N. [Instituto de Fisica, Universidade de Sao Paulo, 05508-090 Sao Paulo-SP (Brazil); Clemente, R. A. [Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, 13083-859 Campinas-SP (Brazil); Farengo, R. [Centro Atomico Bariloche and Instituto Balseiro, S. C. de Bariloche (8400), RN (Argentina)

2013-03-15T23:59:59.000Z

170

Current:  

Office of Legacy Management (LM)

OWNE3 (55) OWNE3 (55) -------- past: _--_-------------------- Current: Owner contacted I-J yes ,Fqna; ------------_------------- if yes, date contacted TYPE OF OPEF(ATION ---__-------_____ c] Research & Development -4 Facility Type ci Production scale testing 0 Pilbt Scale 0 Bench Scale Process 0 Theoretical Studies 0 Sample & Analysis C Productian E Disposal/Storage TYPE OF CONTRACi _------_-------_ tlanuf acturi ng University Research Organizaticn q Prime --. _' cl Other information (i.e., cost price, + fixed fee, unit time % material, qtr) ------- ~----~---~~------__--------- YuncOntractor Purchase Order Contract/Purkhase Order # cc-km ----_----~~-----___--------- --------------------------------- OWNEKSHIP: AEC/ME3 AEC/MED GOVT GOUT CONTRACTOR CCNTRACTOR

171

Current:  

Office of Legacy Management (LM)

Qwner contacted n yes Qwner contacted n yes Current: ---------------------L---- if yes, date contacted Research & Development cl Facility Type 0 . Productioff 0 Di 3pcsal /Storage TYPE OF CONTRACT ---------------- q Prime q Subcontractor 0 Purchase Order 0 Other information (i.e. q cast + fixed fee, unit piice, time & material, etr) ------- ------_-----_--------------- 0 Production scale testing 0 Pilot Scale 0 Bench Scale Process a Theoretical Studies Sample & Analysis rcc t O' L~1 q Manufacturing 0 University 0 Research Organization 0 Government Sponsored Facility 0 Other ~--~~---_--__-____--- ' Contract/Purchase Order # __-u~-rc,~~--___~~I_IzI__zpI------------ CONTRACTING PE3IOD: lW/ ------------------ _----__--~-~~--~~_-----~~~~~~~~~~~~~~ ClWNERSHIP:

172

Investigation of lower hybrid wave coupling and current drive experiments at different configurations in experimental advanced superconducting tokamak  

SciTech Connect

Using a 2 MW 2.45 GHz lower hybrid wave (LHW) system installed in experimental advanced superconducting tokamak, we have systematically carried out LHW-plasma coupling and lower hybrid current drive experiments in both divertor (double null and lower single null) and limiter plasma configuration with plasma current (I{sub p}) {approx} 250 kA and central line averaged density (n{sub e}) {approx} 1.0-1.3 x 10{sup 19} m{sup -3} recently. Results show that the reflection coefficient (RC) first is flat up to some distance between plasma and LHW grill, and then increases with the distance. Studies indicate that with the same plasma parameters, the best coupling is obtained in the limiter case (with plasma leaning on the inner wall), followed by the lower single null, and the one with the worst coupling is the double null configuration, explained by different magnetic connection length. The RCs in the different poloidal rows show that they have different coupling characteristics, possibly due to local magnetic connection length. Current drive efficiency has been investigated by a least squares fit with N{sub //}{sup peak}=2.1, where N{sub //}{sup peak} is the peak value of parallel refractive index of the launched wave. Results show that there is no obvious difference in the current drive efficiency between double null and lower single null cases, whereas the efficiency is somewhat small in the limiter configuration. This is in agreement with the ray tracing/Fokker-Planck code simulation by LUKE/C3PO and can be interpreted by the power spectrum up-shift factor in different plasma configurations. A transformer recharge is realized with {approx}0.8 MW LHW power and the energy conversion efficiency from LHW to poloidal field energy is about 2%.

Ding, B. J.; Qin, Y. L.; Li, W. K.; Li, M. H.; Kong, E. H.; Zhang, L.; Wang, M.; Xu, H. D.; Hu, H. C.; Xu, G. S.; Shan, J. F.; Liu, F. K.; Zhao, Y. P.; Wan, B. N.; Li, J. G.; Group, EAST [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Ekedahl, A.; Peysson, Y.; Decker, J. [CEA, IRFM, F-13108 Saint Paul-Lez-Durance (France)

2011-08-15T23:59:59.000Z

173

Form Drag and Mixing Due to Tidal Flow past a Sharp Point  

Science Conference Proceedings (OSTI)

Barotropic tidal currents flowing over rough topography may be slowed by two bottom boundary–related processes: tangential stress of the bottom boundary layer, which is generally well represented by a quadratic drag law, and normal stress from ...

Kathleen A. Edwards; Parker MacCready; James N. Moum; Geno Pawlak; Jody M. Klymak; Alexander Perlin

2004-06-01T23:59:59.000Z

174

Tidal Mixing Events on the Deep Flanks of Kaena Ridge, Hawaii  

Science Conference Proceedings (OSTI)

A 3-month mooring deployment (August–November 2002) was made in 2425-m depth, on the south flank of Kaena Ridge, Hawaii, to examine tidal variations within 200 m of the steeply sloping bottom. Horizontal currents and vertical displacements, ...

Jerome Aucan; Mark A. Merrifield; Douglas S. Luther; Pierre Flament

2006-06-01T23:59:59.000Z

175

Using a Broadband ADCP in a Tidal Channel. Part I: Mean Flow and Shear  

Science Conference Proceedings (OSTI)

This paper discusses the principles of measuring the mean velocity and its vertical shear in a turbulent flow using an acoustic Doppler current profiler (ADCP), and presents an analysis of data gathered in a tidal channel. The assumption of ...

Youyu Lu; Rolf G. Lueck

1999-11-01T23:59:59.000Z

176

Aspects of the Tidal Variability Observed on the Southern California Continental Shelf  

Science Conference Proceedings (OSTI)

Observations of the current and temperature field from the southern California continental shelf are analyzed in a frequency band (0.6–6 cpd) dominated by tidal fluctuations. The seasonal variability of the temperature and horizontal velocity ...

A. Bratkovich

1985-03-01T23:59:59.000Z

177

A Model of the Tidally Induced Residual Circulation in the Gulf of Maine and Georges Bank  

Science Conference Proceedings (OSTI)

A three-dimensional nonlinear numerical hydrodynamic model using Legendre polynomials to represent the vertical structure of the horizontal currents has been used to study the tidally induced residual flows in the Gulf of Maine–Georges Bank study ...

Tatsusaburo Isaji; Malcolm L. Spaulding

1984-06-01T23:59:59.000Z

178

A Comparison of Georges Bank, Gulf of Maine and New England Shelf Tidal Dynamics  

Science Conference Proceedings (OSTI)

The semidiurnal tidal currents associated with the near-resonant response of the Gulf of Maine-Bay of Fundy system are amplified over the relatively shallow depths of Georges Bank, thus leading to enhanced energy dissipation, vertical mixing and ...

Wendell S. Brown

1984-01-01T23:59:59.000Z

179

MHK Technologies/MORILD 2 Floating Tidal Power System | Open Energy  

Open Energy Info (EERE)

MORILD 2 Floating Tidal Power System MORILD 2 Floating Tidal Power System < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage MORILD 2 Floating Tidal Power System.jpg Technology Profile Primary Organization Hydra Tidal Energy Technology AS Project(s) where this technology is utilized *MHK Projects/Morild 2 Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 7/8: Open Water System Testing & Demonstration & Operation Technology Description Hydra Tidal´s Morild II tidal power plant technology at-a-glance: - A unique and patented floating tidal power plant - Prototype has an installed effect of 1,5 MW - Turbine diameter of 23 meters - Each turbine is pitchable - 4 turbines with a total of 8 turbine blades - Unique wooden turbine blades - The MORILD II can be anchored at different depths, thus it can be positioned in spots with ideal tidal stream conditions - The plant carries a sea vessel verification, and is both towable and dockable - The floating installation enables maintenance in surface position, and on site - The MORILD II will be remotely operated, and has on-shore surveillance systems - Technology patented for all relevant territories The Morild power plant is a floating, moored construction based on the same principle as horizontal axis wind turbines. The plant has 4 two-blade underwater turbines and can utilize the energy potential in tidal and ocean currents. The 4 turbines transmit power via hydraulic transmission to 2 synchronous generators. Can be pitched 180 degrees to utilize energy in both directions. A cable from the transformer on the prototype to shore transfers energy.

180

Current | OpenEI Community  

Open Energy Info (EERE)

351 351 Varnish cache server Home Groups Community Central Green Button Applications Developer Utility Rate FRED: FRee Energy Database More Public Groups Private Groups Features Groups Blog posts Content Stream Documents Discussions Polls Q & A Events Notices My stuff Energy blogs 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142233351 Varnish cache server Current Home Ocop's picture Submitted by Ocop(5) Member 18 April, 2013 - 13:41 MHK LCOE Reporting Guidance Draft Cost Current DOE LCOE numerical modeling Performance Tidal Wave To normalize competing claims of LCOE, DOE has developed-for its own use-a standardized cost and performance data reporting process to facilitate uniform calculation of LCOE from MHK device developers. This standardization framework is only the first version in what is anticipated

Note: This page contains sample records for the topic "tidal wave current" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Effects of Localized Energy Extraction in an Idealized, Energetically Complete Numerical Model of an Ocean-Estuary Tidal System  

NLE Websites -- All DOE Office Websites (Extended Search)

localized energy extraction in an localized energy extraction in an idealized, energetically complete numerical model of an ocean-estuary tidal system MHK Instrumentation, Measurement & Computer Modeling Workshop, Broomfield CO, July 10 2012 Mitsuhiro Kawase and Marisa Gedney Northwest National Marine Renewable Energy Center / School of Oceanography University of Washington Seattle WA 98195 United States * Far-field (Estuary-wide) - Changes in the tidal range - Changes in tidal currents ï‚— Near-field (Vicinity of the Device) ï‚— Flow redirection ï‚— Interaction with marine life ï‚— Impact on bottom sediments and benthos Environmental Effects of Tidal Energy Extraction * Reduction in tidal range can permanently expose/submerge tidal flats, altering nearshore habitats * Reduction in kinetic energy of

182

Quantifying Turbulence for Tidal Power Applications  

SciTech Connect

Using newly collected data from a tidal power site in Puget Sound, WA, metrics for turbulence quantification are assessed and discussed. The quality of raw ping Acoustic Doppler Current Profiler (ADCP) data for turbulence studies is evaluated against Acoustic Doppler Velocimeter (ADV) data at a point. Removal of Doppler noise from the raw ping data is shown to be a crucial step in turbulence quantification. Excluding periods of slack tide, the turbulent intensity estimates at a height of 4.6 m above the seabed are 8% and 11% from the ADCP and ADV, respectively. Estimates of the turbulent dissipation rate are more variable, from 10e-3 to 10e-1 W/m^3. An example analysis of coherent Turbulent Kinetic Energy (TKE) is presented.

Thomson, Jim; Richmond, Marshall C.; Polagye, Brian; Durgesh, Vibhav

2010-08-01T23:59:59.000Z

183

Current-wave spectra coupling project. Volume III. Cumulative distribution of forces on structures subjected to the combined action of currents and random waves for potential OTEC sites: (A) Keahole Point, Hawaii, 100 year hurricane; (B) Punta Tuna, Puerto Rico, 100 year hurricane; (C) New Orleans, Louisiana, 100 year hurricane; (D) West Coast of Florida, 100 year hurricane. [CUFOR code  

SciTech Connect

This volume details a new methodology to analyze statistically the forces experienced by a structure at sea. Conventionally a wave climate is defined using a spectral function. The wave climate is described using a joint distribution of wave heights and periods (wave lengths), characterizing actual sea conditions through some measured or estimated parameters like the significant wave height, maximum spectral density, etc. Random wave heights and periods satisfying the joint distribution are then generated. Wave kinetics are obtained using linear or non-linear theory. In the case of currents a linear wave-current interaction theory of Venezian (1979) is used. The peak force experienced by the structure for each individual wave is identified. Finally, the probability of exceedance of any given peak force on the structure may be obtained. A three-parameter Longuet-Higgins type joint distribution of wave heights and periods is discussed in detail. This joint distribution was used to model sea conditions at four potential OTEC locations. A uniform cylindrical pipe of 3 m diameter, extending to a depth of 550 m was used as a sample structure. Wave-current interactions were included and forces computed using Morison's equation. The drag and virtual mass coefficients were interpolated from published data. A Fortran program CUFOR was written to execute the above procedure. Tabulated and graphic results of peak forces experienced by the structure, for each location, are presented. A listing of CUFOR is included. Considerable flexibility of structural definition has been incorporated. The program can easily be modified in the case of an alternative joint distribution or for inclusion of effects like non-linearity of waves, transverse forces and diffraction.

Venezian, G.; Bretschneider, C.L.

1980-08-01T23:59:59.000Z

184

Assessment of Energy Production Potential from Tidal Streams in the United States  

DOE Green Energy (OSTI)

Tidal stream energy is one of the alternative energy sources that are renewable and clean. With the constantly increasing effort in promoting alternative energy, tidal streams have become one of the more promising energy sources due to their continuous, predictable and spatially-concentrated characteristics. However, the present lack of a full spatial-temporal assessment of tidal currents for the U.S. coastline down to the scale of individual devices is a barrier to the comprehensive development of tidal current energy technology. This project created a national database of tidal stream energy potential, as well as a GIS tool usable by industry in order to accelerate the market for tidal energy conversion technology. Tidal currents are numerically modeled with the Regional Ocean Modeling System and calibrated with the available measurements of tidal current speed and water level surface. The performance of the model in predicting the tidal currents and water levels is assessed with an independent validation. The geodatabase is published at a public domain via a spatial database engine and interactive tools to select, query and download the data are provided. Regions with the maximum of the average kinetic power density larger than 500 W/m2 (corresponding to a current speed of ~1 m/s), surface area larger than 0.5 km2 and depth larger than 5 m are defined as hotspots and list of hotspots along the USA coast is documented. The results of the regional assessment show that the state of Alaska (AK) contains the largest number of locations with considerably high kinetic power density, and is followed by, Maine (ME), Washington (WA), Oregon (OR), California (CA), New Hampshire (NH), Massachusetts (MA), New York (NY), New Jersey (NJ), North and South Carolina (NC, SC), Georgia (GA), and Florida (FL). The average tidal stream power density at some of these locations can be larger than 8 kW/m2 with surface areas on the order of few hundred kilometers squared, and depths larger than 100 meters. The Cook Inlet in AK is found to have a substantially large tidal stream power density sustained over a very large area.

Haas, Kevin A.

2011-06-29T23:59:59.000Z

185

Tidal Hydraulic Generators Ltd | Open Energy Information  

Open Energy Info (EERE)

Hydraulic Generators Ltd Jump to: navigation, search Name Tidal Hydraulic Generators Ltd Address 14 Thislesboon Drive Place Mumbles Zip SA3 4HY Sector Marine and Hydrokinetic Phone...

186

Dissipation in Internal Tides and Solitary Waves  

Science Conference Proceedings (OSTI)

Solitons have been observed and studied on the Scotian Shelf using the vertical microstructure profiler EPSONDE. During one tidal cycle a packet of solitary waves has been sampled four times as it propagated onto the shelf to examine its ...

H. Sandstrom; N. S. Oakey

1995-04-01T23:59:59.000Z

187

Spectral Scaling in a Tidal Boundary Layer  

Science Conference Proceedings (OSTI)

The simple scaling of a tidal bottom boundary layer by the shear velocity, u*, and the wall to the wall describes well the mean Bow field. To test the full extent of this scaling measurements were made of the turbulence spectra in a natural tidal ...

Thomas F. Gross; Arthur R. M. Nowell

1985-05-01T23:59:59.000Z

188

Current-wave spectra coupling project. Volume I. Hurricane fields and cross sections, surface winds and currents, significant waves and wave spectra for potential OTEC sites: (A) Keahole Point, Hawaii, 100 year hurricane; (B) Punta Tuna, Puerto Rico, 100 year hurricane; (C) New Orleans, Louisiana, 100 year hurricane; (D) West Coast of Florida, 100 year hurricane; and for (E) Hurricane Camille (1969) off Louisiana Coast  

Science Conference Proceedings (OSTI)

This volume is an extension of and consists of several modifications to the earlier report by Bretschneider (April 1979) on the subject of hurricane design wind, wave and current criteria for the four potential OTEC sites. The 100-year hurricane criteria for the design of OTEC plants is included. The criteria, in addition to the maximum conditions of winds, waves and surface current, include: hurricane fields for wind speed U/sub s/ and significant wave height H/sub s/; hurricane fields for modal wave period f/sub 0//sup -1/ and maximum energy density S/sub max/ of the wave spectrum; the corresponding Ekman wind-driven surface current V/sub s/; tabulated cross-sections for U/sub s/, H/sub s/, f/sub 0//sup -1/ and S/sub max/ through max U/sub s/ and through max H/sub s/ along traverses at right angles to and along traverses parallel to the forward movement of the hurricane; most probable maximum wave height and the expected corresponding wave period, based on statistical analysis of maximum wave heights from five hurricanes; design wave spectra for maximum U/sub s/ and also maximum H/sub s/, since maximum U/sub s/ and maximum H/sub s/ do not occur simultaneously; the envelope of wave spectra through maximum U/sub s/ and through maximum H/sub s/ along traverses parallel to the forward movement of the hurricane; the above same determinations for Hurricane Camille (1969) as for the four OTEC locations; and alternative methods (suggested) for obtaining design wave spectra from the joint probability distribution functions for wave height and period given by Longuet-Higgins (1975) and C.N.E.X.O. after Arhan, et al (1976).

Bretschneider, C.L.

1980-06-01T23:59:59.000Z

189

Tidal Heating of Extra-Solar Planets  

E-Print Network (OSTI)

Extra-solar planets close to their host stars have likely undergone significant tidal evolution since the time of their formation. Tides probably dominated their orbital evolution once the dust and gas had cleared away, and as the orbits evolved there was substantial tidal heating within the planets. The tidal heating history of each planet may have contributed significantly to the thermal budget that governed the planet's physical properties, including its radius, which in many cases may be measured by observing transit events. Typically, tidal heating increases as a planet moves inward toward its star and then decreases as its orbit circularizes. Here we compute the plausible heating histories for several planets with measured radii, using the same tidal parameters for the star and planet that had been shown to reconcile the eccentricity distribution of close-in planets with other extra-solar planets. Several planets are discussed, including for example HD 209458 b, which may have undergone substantial tida...

Jackson, Brian; Barnes, Rory

2008-01-01T23:59:59.000Z

190

EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16: Ocean Renewable Power Company Maine, LLC Cobscook Bay 16: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine Summary This EA evaluates the environmental impacts of a project that would use the tidal currents of Cobscook Bay to generate electricity via cross-flow Kinetic System turbine generator units (TGU) mounted on the seafloor. The TGUs would capture energy from the flow in both ebb and flood directions. Public Comment Opportunities None available at this time. Documents Available for Download March 19, 2012 EA-1916: Finding of No Significant Impact Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot

191

EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay 1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine Summary This EA evaluates the environmental impacts of a project that would use the tidal currents of Cobscook Bay to generate electricity via cross-flow Kinetic System turbine generator units (TGU) mounted on the seafloor. The TGUs would capture energy from the flow in both ebb and flood directions. Public Comment Opportunities None available at this time. Documents Available for Download March 19, 2012 EA-1916: Finding of No Significant Impact Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot

192

Tidal Heating of Extra-Solar Planets  

E-Print Network (OSTI)

Extra-solar planets close to their host stars have likely undergone significant tidal evolution since the time of their formation. Tides probably dominated their orbital evolution once the dust and gas had cleared away, and as the orbits evolved there was substantial tidal heating within the planets. The tidal heating history of each planet may have contributed significantly to the thermal budget that governed the planet's physical properties, including its radius, which in many cases may be measured by observing transit events. Typically, tidal heating increases as a planet moves inward toward its star and then decreases as its orbit circularizes. Here we compute the plausible heating histories for several planets with measured radii, using the same tidal parameters for the star and planet that had been shown to reconcile the eccentricity distribution of close-in planets with other extra-solar planets. Several planets are discussed, including for example HD 209458 b, which may have undergone substantial tidal heating during the past billion years, perhaps enough to explain its large measured radius. Our models also show that GJ 876 d may have experienced tremendous heating and is probably not a solid, rocky planet. Theoretical models should include the role of tidal heating, which is large, but time-varying.

Brian Jackson; Richard Greenberg; Rory Barnes

2008-02-29T23:59:59.000Z

193

Measurements of Turbulence at Two Tidal Energy Sites in Puget Sound, WA  

SciTech Connect

Field measurements of turbulence are pre- sented from two sites in Puget Sound, WA (USA) that are proposed for electrical power generation using tidal current turbines. Rapidly sampled data from multiple acoustic Doppler instruments are analyzed to obtain statistical mea- sures of fluctuations in both the magnitude and direction of the tidal currents. The resulting turbulence intensities (i.e., the turbulent velocity fluctuations normalized by the harmonic tidal currents) are typically 10% at the hub- heights (i.e., the relevant depth bin) of the proposed turbines. Length and time scales of the turbulence are also analyzed. Large-scale, anisotropic eddies dominate the energy spectra, which may be the result of proximity to headlands at each site. At small scales, an isotropic turbulent cascade is observed and used to estimate the dissipation rate of turbulent kinetic energy. Data quality and sampling parameters are discussed, with an emphasis on the removal of Doppler noise from turbulence statistics.

Thomson, Jim; Polagye, Brian; Durgesh, Vibhav; Richmond, Marshall C.

2012-06-05T23:59:59.000Z

194

Tidal Conversion by Supercritical Topography  

E-Print Network (OSTI)

Calculations are presented of the rate of energy conversion of the barotropic tide into internal gravity waves above topography on the ocean floor. The ocean is treated as infinitely deep, and the topography consists of ...

Balmforth, Neil J.

195

Tidal Conversion by Subcritical Topography  

Science Conference Proceedings (OSTI)

Analytical estimates of the rate at which energy is extracted from the barotropic tide at topography and converted into internal gravity waves are given. The ocean is idealized as an inviscid, vertically unbounded fluid on the f plane. The ...

N. J. Balmforth; G. R. Ierley; W. R. Young

2002-10-01T23:59:59.000Z

196

Tidal Conversion by Supercritical Topography  

Science Conference Proceedings (OSTI)

Calculations are presented of the rate of energy conversion of the barotropic tide into internal gravity waves above topography on the ocean floor. The ocean is treated as infinitely deep, and the topography consists of periodic obstructions; a ...

Neil J. Balmforth; Thomas Peacock

2009-08-01T23:59:59.000Z

197

Wave polarizations for a beam-like gravitational wave in quadratic curvature gravity  

E-Print Network (OSTI)

We compute analytically the tidal field and polarizations of an exact gravitational wave generated by a cylindrical beam of null matter of finite width and length in quadratic curvature gravity. We propose that this wave can represent the gravitational wave that keep up with the high energy photons produced in a gamma ray burst (GRB) source.

E. C. de Rey Neto; J. C. N. de Araujo; O. D. Aguiar

2003-11-14T23:59:59.000Z

198

Half Moon Cove Tidal Project. Feasibility report  

DOE Green Energy (OSTI)

The proposed Half Moon Cove Tidal Power Project would be located in a small cove in the northern part of Cobscook Bay in the vicinity of Eastport, Maine. The project would be the first tidal electric power generating plant in the United States of America. The basin impounded by the barrier when full will approximate 1.2 square miles. The average tidal range at Eastport is 18.2 feet. The maximum spring tidal range will be 26.2 feet and the neap tidal range 12.8 feet. The project will be of the single pool-type single effect in which generation takes place on the ebb tide only. Utilizing an average mean tidal range of 18.2 feet the mode of operation enables generation for approximately ten and one-half (10-1/2) hours per day or slightly in excess of five (5) hours per tide. The installed capacity will be 12 MW utilizing 2 to 6 MW units. An axial flow, or Bulb type of turbine was selected for this study.

Not Available

1980-11-01T23:59:59.000Z

199

MHK Technologies/Current Power | Open Energy Information  

Open Energy Info (EERE)

Power Power < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Current Power.jpg Technology Profile Primary Organization Current Power AB Project(s) where this technology is utilized *MHK Projects/Norde lv Technology Resource Click here Current/Tidal Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The Current Power device is a slow speed vertical axis turbine that utilizes a direct drive permanent magnet rotating generator The concept is based on a vertical axle turbine directly coupled to a permanent magnet synchronous generator The system is intended to be placed on the bottom of the ocean or a river where it would be protected from storm surges and strong waves The output from the generator has to be rectified and inverted before connection to the grid Robustness is achived by the simple mechanical construction

200

Structural Design of a Horizontal-Axis Tidal Current Turbine...  

NLE Websites -- All DOE Office Websites (Extended Search)

M.J. Lawson, and Y. Li Presented at the ASME 30 th International Conference on Ocean, Offshore, and Arctic Engineering Rotterdam, The Netherlands June 19-24, 2011 Conference Paper...

Note: This page contains sample records for the topic "tidal wave current" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Observation and Estimation of Lagrangian, Stokes, and Eulerian Currents Induced by Wind and Waves at the Sea Surface  

Science Conference Proceedings (OSTI)

The surface current response to winds is analyzed in a 2-yr time series of a 12-MHz (HF) Wellen Radar (WERA) off the west coast of France. Consistent with previous observations, the measured currents, after filtering tides, are on the order of ...

Fabrice Ardhuin; Louis Marié; Nicolas Rascle; Philippe Forget; Aron Roland

2009-11-01T23:59:59.000Z

202

Tidal Sails AS | Open Energy Information  

Open Energy Info (EERE)

Sails AS Sails AS Jump to: navigation, search Name Tidal Sails AS Address Standgaten 130 Place Haugesund Zip 5531 Sector Marine and Hydrokinetic Phone number +32 474 98 06 16 Website http://www.tidalsails.com Region Norway LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Technologies: Tidal Sails This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Tidal_Sails_AS&oldid=678479" Categories: Clean Energy Organizations Companies Organizations Stubs MHK Companies What links here Related changes Special pages Printable version Permanent link Browse properties

203

Tidal Energy Limited | Open Energy Information  

Open Energy Info (EERE)

Tidal Energy Limited (TEL) Tidal Energy Limited (TEL) Place Cardiff, Wales, United Kingdom Zip CF23 8RS Product Tidal stream device developer. Coordinates 51.48125°, -3.180734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.48125,"lon":-3.180734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

204

Tidal Energy Test Platform | Open Energy Information  

Open Energy Info (EERE)

Test Platform Test Platform Jump to: navigation, search Basic Specifications Facility Name Tidal Energy Test Platform Overseeing Organization University of New Hampshire Hydrodynamics Hydrodynamic Testing Facility Type Offshore Berth Water Type Saltwater Cost(per day) Contact POC Special Physical Features The Tidal Testing Platform is presently a 10.7m long x 3m wide pontoon barge with a derrick and an opening for deploying tidal energy devices. The platform is intentionally configured to be adaptive for the changing needs of different devices. Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition Cameras None

205

Doppler Sodar and Radar Wind-Profiler Observations Of Gravity-Wave Activity Associated with a Gravity Current  

Science Conference Proceedings (OSTI)

Observations from two Doppler sodars and a radar wind profiler have been used in conjunction with data from a rawinsonde station and a mesoscale surface observation network to conduct a case study of a gravity current entering into an environment ...

F. M. Ralph; C. Mazaudier; M. Crochet; S. V. Venkateswaran

1993-02-01T23:59:59.000Z

206

Hydropower, Wave and Tidal Technologies - Energy Innovation Portal  

This enables the oil to persist on the surface of the coating without significantly reducing the coated surface’s coefficient of friction. Oak Ridge National ...

207

Hydropower, Wave and Tidal Technologies - Energy Innovation Portal  

The pinning action keeps the oil from leeching out of the coating, ... field weakening, and power factor improvement and novel locks for higher peak s ...

208

Observations of Tidal Internal Wave Beams at Kauai Channel, Hawaii  

Science Conference Proceedings (OSTI)

To observe the across-ridge structure of internal tides, density and velocity were measured using SeaSoar and a Doppler sonar over the upper 400–600 m of the ocean extending 152 km on each side of the Hawaiian Ridge at Kauai Channel. Eighteen ...

S. T. Cole; D. L. Rudnick; B. A. Hodges; J. P. Martin

2009-02-01T23:59:59.000Z

209

All Eyes on Eastport: Tidal Energy Project Brings Change, Opportunity...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tidal Energy Project Brings Change, Opportunity to Local Community All Eyes on Eastport: Tidal Energy Project Brings Change, Opportunity to Local Community July 24, 2012 - 2:40pm...

210

A Geostrophic Adjustment Model of a Tidal Mixing Front  

Science Conference Proceedings (OSTI)

This paper presents a model of a tidal mixing front as occurring between well mixed and (seasonally) stratified water in tidally energetic areas in continental shelf seas. The model examines the geostrophic adjustment of a stratified two-layer ...

G. J. F. van Heijst

1985-09-01T23:59:59.000Z

211

WaveDyn: A Design Tool for Performance & Operational Loads Modeling of WECs  

NLE Websites -- All DOE Office Websites (Extended Search)

Experience with Validating MHK Tools Experience with Validating MHK Tools National Renewable Energy Laboratory - Broomfield, CO - July 9 th 2012 Contents * Overview of GL Garrad Hassan * List of Tools/Core Expertise: Dedicated Software * Waves: Resource assessment and site data analysis * WaveDyn: WEC performance and loads calculation (time-domain) * WaveFarmer: Planning and optimization of a WEC array * Tides: Resource assessment and site data analysis * Tidal Bladed: Tidal Turbine performance and loads calculation (time-domain) * TidalFarmer: Planning and optimization of a tidal turbine array * Validation Experience * Tidal Bladed * ReDAPT * PerAWaT * WaveDyn Who are GL Garrad Hassan? * Industry-leading independent renewable energy consultancy * Established in 1984 * Over 950 full time staff, in 42 locations, across 24 countries worldwide

212

A Note on the Effect of Wind Waves on Vertical Mixing in Franks Tract, Sacramento-San Joaquin Delta, California  

E-Print Network (OSTI)

Wang W, Huang RX. 2004. Wind energy input to the surfacecoefficient variability under wind waves in a tidal estuary.2008. A Note on the Effect of Wind Waves on Vertical Mixing

Jones, Nicole L; Thompson, Janet K; Monismith, Stephen G

2008-01-01T23:59:59.000Z

213

Turbulence Characteristics in a Tidal Channel  

Science Conference Proceedings (OSTI)

A broadband ADCP and a moored microstructure instrument (TAMI) were deployed in a tidal channel of 30-m depth and with peak speeds of 1 m s?1. The measurements enable us to derive profiles of stress, turbulent kinetic energy (TKE), the rate of ...

Youyu Lu; Rolf G. Lueck; Daiyan Huang

2000-05-01T23:59:59.000Z

214

Resonant Tidal Disruption in Galactic Nuclei  

E-Print Network (OSTI)

It has recently been shown that the rate of angular momentum relaxation in nearly-Keplerian star clusters is greatly increased by a process termed resonant relaxation (Rauch & Tremaine 1996), who also argued that tidal disruption of stars in galactic nuclei containing massive black holes could be noticeably enhanced by this process. We describe here the results of numerical simulations of resonant tidal disruption which quantitatively test the predictions made by Rauch & Tremaine. The simulation method is based on an N-body routine incorporating cloning of stars near the loss cone and a semi-relativistic symplectic integration scheme. We also briefly describe the discovery of chaos in the Wisdom-Holman symplectic integrator applied to highly eccentric orbits and propose a modified integration scheme that remains robust under these conditions. We find that resonant disruption rates exceed their non-resonant counterparts by an amount consistent with the predictions; in particular, we estimate the net tidal disruption rate for a fully resonant cluster to be about twice that of its non-resonant counterpart. No significant enhancement in rates is observed outside the critical radius. Relativistic quenching of the effect is found to occur for hole masses M>8*10^7 solar masses. The numerical results combined with the observed properties of galactic nuclei indicate that for most galaxies the resonant enhancement to tidal disruption rates will be very small.

Kevin P. Rauch; Brian Ingalls

1997-10-24T23:59:59.000Z

215

2008 NWFSC Tidal Freshwater Genetics Results  

SciTech Connect

Genetic Analysis of Juvenile Chinook Salmon for inclusion in 'Ecology of Juvenile Salmon in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2008. Annual Report to Bonneville Power Administration, Contract DE-AC05-76RL01830.'

David Teel

2009-05-01T23:59:59.000Z

216

NREL Uses Computing Power to Investigate Tidal Power (Fact Sheet), Innovation: The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Uses Computing Power to Uses Computing Power to Investigate Tidal Power Researchers at the National Renewable Energy Laboratory (NREL) have applied their knowledge of wind flow and turbulence to simulations of underwater tidal turbines. Inspired by similar simulations of wind turbine arrays, NREL researchers used their wind expertise, a supercomputer, and large-eddy simulation to study how the placement of turbines affects the power production of an underwater tidal turbine array. As tides ebb and flow, they create water currents that carry a significant amount of kinetic energy. To capture this energy, several companies are developing and deploying devices known as horizontal-axis tidal turbines, which resemble small wind turbines. These devices can be arranged in an array of multiple turbines to maximize the energy extracted in tidal

217

Tides turn for tidal power  

Science Conference Proceedings (OSTI)

Capricious air currents and passing clouds may thwart wind and solar power, but the tides, governed by the gravitational pull of the moon and the sun, might prove a more dependable energy source. In certain spots, the tides have already proved a good ...

J. Calamia

2011-03-01T23:59:59.000Z

218

THRESHING IN ACTION: THE TIDAL DISRUPTION OF A DWARF GALAXY BY THE HYDRA I CLUSTER  

Science Conference Proceedings (OSTI)

We report on the discovery of strong tidal features around a dwarf spheroidal galaxy in the Hydra I galaxy cluster, indicating its ongoing tidal disruption. This very low surface brightness object, HCC-087, was originally classified as an early-type dwarf in the Hydra Cluster Catalogue (HCC), but our re-analysis of the ESO-VLT/FORS images of the HCC unearthed a clear indication of an S-shaped morphology and a large spatial extent. Its shape, luminosity (M{sub V} = -11.6 mag), and physical size (at a half-light radius of 3.1 kpc and a full length of {approx}5.9 kpc) are comparable to the recently discovered NGC 4449B and the Sagittarius dwarf spheroidal, all of which are undergoing clear tidal disruption. Aided by N-body simulations we argue that HCC-087 is currently at its first apocenter, at 150 kpc, around the cluster center and that it is being tidally disrupted by the galaxy cluster's potential itself. An interaction with the nearby (50 kpc) S0 cluster galaxy HCC-005, at M{sub *} {approx} 3 Multiplication-Sign 10{sup 10} M{sub Sun} is rather unlikely, as this constellation requires a significant amount of dynamical friction and thus low relative velocities. The S-shaped morphology and large spatial extent of the satellite would, however, also appear if HCC-087 would orbit the cluster center. These features appear to be characteristic properties of satellites that are seen in the process of being tidally disrupted, independent of the environment of the destruction. An important finding of our simulations is an orientation of the tidal tails perpendicular to the orbit.

Koch, Andreas [Zentrum fuer Astronomie der Universitaet Heidelberg, Landessternwarte, Koenigstuhl 12, D-69117 Heidelberg (Germany); Burkert, Andreas [Universitaetssternwarte der Ludwig-Maximilians Universitaet, Scheinerstr. 1, D-81679 Muenchen (Germany); Rich, R. Michael; Black, Christine S. [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA (United States); Collins, Michelle L. M. [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Hilker, Michael [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Benson, Andrew J., E-mail: akoch@lsw.uni-heidelberg.de [Department of Astronomy, Caltech, Pasadena, CA (United States)

2012-08-10T23:59:59.000Z

219

Reservoir response to tidal and barometric effects  

DOE Green Energy (OSTI)

Solid earth tidal strain and surface loading due to fluctuations in barometric pressure have the effect, although extremely minute, of dilating or contracting the effective pore volume in a porous reservoir. If a well intersects the formation, the change in pore pressure can be measured with sensitive quartz pressure gauges. Mathematical models of the relevant fluid dynamics of the well-reservoir system have been generated and tested against conventional well pumping results or core data at the Salton Sea Geothermal Field (SSGF), California and at the Raft River, Geothermal Field (RRGF), Idaho. Porosity-total compressibility product evaluation based on tidal strain response compares favorably with results based on conventional pumping techniques. Analysis of reservoir response to barometric loading using Auto Regressive Integrated Moving Average (ARIMA) stochastic modeling appears also to have potential use for the evaluation of reservoir parameters.

Hanson, J.M.

1980-05-29T23:59:59.000Z

220

Gas/Star Offsets in Tidal Tails  

E-Print Network (OSTI)

We use numerical simulations to study the development of gas/star offsets in the tidal tails of merging galaxies. These offsets are shown to be a natural consequence of the radially extended HI spatial distribution in disk galaxies, coupled with internal dissipation in the gaseous component driven by the interaction. This mechanism explains the observed gas/star offsets in interacting galaxies without invoking interactions with a hot (unseen) gaseous component.

Mihos, C

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "tidal wave current" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Gas/Star Offsets in Tidal Tails  

E-Print Network (OSTI)

We use numerical simulations to study the development of gas/star offsets in the tidal tails of merging galaxies. These offsets are shown to be a natural consequence of the radially extended HI spatial distribution in disk galaxies, coupled with internal dissipation in the gaseous component driven by the interaction. This mechanism explains the observed gas/star offsets in interacting galaxies without invoking interactions with a hot (unseen) gaseous component.

Chris Mihos

2000-08-09T23:59:59.000Z

222

OPTICAL DISCOVERY OF PROBABLE STELLAR TIDAL DISRUPTION FLARES  

SciTech Connect

Using archival Sloan Digital Sky Survey (SDSS) multi-epoch imaging data (Stripe 82), we have searched for the tidal disruption of stars by supermassive black holes in non-active galaxies. Two candidate tidal disruption events (TDEs) are identified. The TDE flares have optical blackbody temperatures of 2 Multiplication-Sign 10{sup 4} K and observed peak luminosities of M{sub g} = -18.3 and -20.4 ({nu}L{sub {nu}} = 5 Multiplication-Sign 10{sup 42}, 4 Multiplication-Sign 10{sup 43} erg s{sup -1}, in the rest frame); their cooling rates are very low, qualitatively consistent with expectations for tidal disruption flares. The properties of the TDE candidates are examined using (1) SDSS imaging to compare them to other flares observed in the search, (2) UV emission measured by GALEX, and (3) spectra of the hosts and of one of the flares. Our pipeline excludes optically identifiable AGN hosts, and our variability monitoring over nine years provides strong evidence that these are not flares in hidden AGNs. The spectra and color evolution of the flares are unlike any SN observed to date, their strong late-time UV emission is particularly distinctive, and they are nuclear at high resolution arguing against these being first cases of a previously unobserved class of SNe or more extreme examples of known SN types. Taken together, the observed properties are difficult to reconcile with an SN or an AGN-flare explanation, although an entirely new process specific to the inner few hundred parsecs of non-active galaxies cannot be excluded. Based on our observed rate, we infer that hundreds or thousands of TDEs will be present in current and next-generation optical synoptic surveys. Using the approach outlined here, a TDE candidate sample with O(1) purity can be selected using geometric resolution and host and flare color alone, demonstrating that a campaign to create a large sample of TDEs, with immediate and detailed multi-wavelength follow-up, is feasible. A by-product of this work is quantification of the power spectrum of extreme flares in AGNs.

Van Velzen, Sjoert; Farrar, Glennys R. [Center for Cosmology and Particle Physics, New York University, NY 10003 (United States); Gezari, Suvi [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Morrell, Nidia [Carnegie Observatories, Las Campanas Observatory, Casillas 601, La Serena (Chile); Zaritsky, Dennis [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Oestman, Linda [Institut de Fisica d'Altes Energies, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Barcelona) (Spain); Smith, Mathew [Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch, 7701 (South Africa); Gelfand, Joseph [New York University-Abu Dhabi, Abu Dhabi (United Arab Emirates); Drake, Andrew J., E-mail: s.vanvelzen@astro.ru.nl [Center for Advance Computing Research, California Institute of Technology, Pasadena, CA 91225 (United States)

2011-11-10T23:59:59.000Z

223

Generation and detection of gravitational waves at microwave frequencies by means of a superconducting two-body system  

E-Print Network (OSTI)

The 2-body system of a superconducting sphere levitated in the magnetic field generated by a persistent current in a superconducting ring, can possibly convert gravitational waves into electromagnetic waves, and vice versa. Faraday's law of induction implies that the time-varying distance between the sphere and the ring caused by the tidal force of an incident gravitational wave induces time-varying electrical currents, which are the source of an electromagnetic wave at the same frequency as the incident gravitational wave. At sufficiently low temperatures, the internal degrees of freedom of the superconductors are frozen out because of the superconducting energy gap, and only external degrees of freedom, which are coupled to the radiation fields, remain. Hence this wave-conversion process is loss-free and therefore efficient, and by time-reversal symmetry, so is the reverse process. A Hertz-like experiment at microwave frequencies should therefore be practical to perform. This would open up observations of the gravitational-wave analog of the Cosmic Microwave Background from the extremely early Big Bang, and also communications directly through the interior of the Earth.

Raymond Y. Chiao

2007-10-08T23:59:59.000Z

224

Forced Shelf Wave Dynamics for a Discontinuous Shelf Width: Application to Vancouver Island  

Science Conference Proceedings (OSTI)

The authors examine barotropic nondivergent shelf waves generated on an exponential continental shelf that has an abrupt change in width. Three types of forcing are considered: 1) a tidal period volume flux through a gap in the coastline located ...

Andrew J. Willmott; Richard E. Thomson

1994-06-01T23:59:59.000Z

225

Study of the Acoustic Effects of Hydrokinetic Tidal Turbines in Admiralty Inlet, Puget Sound  

SciTech Connect

Hydrokinetic turbines will be a source of noise in the marine environment - both during operation and during installation/removal. High intensity sound can cause injury or behavioral changes in marine mammals and may also affect fish and invertebrates. These noise effects are, however, highly dependent on the individual marine animals; the intensity, frequency, and duration of the sound; and context in which the sound is received. In other words, production of sound is a necessary, but not sufficient, condition for an environmental impact. At a workshop on the environmental effects of tidal energy development, experts identified sound produced by turbines as an area of potentially significant impact, but also high uncertainty. The overall objectives of this project are to improve our understanding of the potential acoustic effects of tidal turbines by: (1) Characterizing sources of existing underwater noise; (2) Assessing the effectiveness of monitoring technologies to characterize underwater noise and marine mammal responsiveness to noise; (3) Evaluating the sound profile of an operating tidal turbine; and (4) Studying the effect of turbine sound on surrogate species in a laboratory environment. This study focuses on a specific case study for tidal energy development in Admiralty Inlet, Puget Sound, Washington (USA), but the methodologies and results are applicable to other turbine technologies and geographic locations. The project succeeded in achieving the above objectives and, in doing so, substantially contributed to the body of knowledge around the acoustic effects of tidal energy development in several ways: (1) Through collection of data from Admiralty Inlet, established the sources of sound generated by strong currents (mobilizations of sediment and gravel) and determined that low-frequency sound recorded during periods of strong currents is non-propagating pseudo-sound. This helped to advance the debate within the marine and hydrokinetics acoustic community as to whether strong currents produce propagating sound. (2) Analyzed data collected from a tidal turbine operating at the European Marine Energy Center to develop a profile of turbine sound and developed a framework to evaluate the acoustic effects of deploying similar devices in other locations. This framework has been applied to Public Utility District No. 1 of Snohomish Country's demonstration project in Admiralty Inlet to inform postinstallation acoustic and marine mammal monitoring plans. (3) Demonstrated passive acoustic techniques to characterize the ambient noise environment at tidal energy sites (fixed, long-term observations recommended) and characterize the sound from anthropogenic sources (drifting, short-term observations recommended). (4) Demonstrated the utility and limitations of instrumentation, including bottom mounted instrumentation packages, infrared cameras, and vessel monitoring systems. In doing so, also demonstrated how this type of comprehensive information is needed to interpret observations from each instrument (e.g., hydrophone data can be combined with vessel tracking data to evaluate the contribution of vessel sound to ambient noise). (5) Conducted a study that suggests harbor porpoise in Admiralty Inlet may be habituated to high levels of ambient noise due to omnipresent vessel traffic. The inability to detect behavioral changes associated with a high intensity source of opportunity (passenger ferry) has informed the approach for post-installation marine mammal monitoring. (6) Conducted laboratory exposure experiments of juvenile Chinook salmon and showed that exposure to a worse than worst case acoustic dose of turbine sound does not result in changes to hearing thresholds or biologically significant tissue damage. Collectively, this means that Chinook salmon may be at a relatively low risk of injury from sound produced by tidal turbines located in or near their migration path. In achieving these accomplishments, the project has significantly advanced the District's goals of developing a demonstration-scale tidal energy proj

Brian Polagye; Jim Thomson; Chris Bassett; Jason Wood; Dom Tollit; Robert Cavagnaro; Andrea Copping

2012-03-30T23:59:59.000Z

226

Lyman Alpha Absorption and Tidal Debris  

E-Print Network (OSTI)

The origin and evolution of structure in the Universe is one of the major questions occupying astronomers today. An understanding of the Lyalpha absorbers seen in QSO spectra is an important part of this program since such absorbers can be traced back to very high redshifts. Their mere existence places constraints on the physical state of the intergalactic medium. The discovery of Lyalpha absorbers at low redshift allows us to estimate for the first time what fraction of low redshift Lyalpha absorbers are (i) randomly distributed, (ii) distributed like galaxies but not physically associated with luminous objects, (iii) actually part of the halos of luminous galaxies, or (iv) tidal tails within galaxy groups. Results from the sightline to the QSO 3C273 suggest that the majority of the absorbers are not associated with galaxies, but that there is a significant subset that are. The absorbers associated with galaxies may be produced in enormous gaseous disks surrounding normal spiral galaxies, or may be tidal material bound up in small groups of galaxies

Simon L. Morris

1994-09-29T23:59:59.000Z

227

Some new conceptions in the approach to harnessing tidal energy  

Science Conference Proceedings (OSTI)

This paper outlines a method of converting the energy of ocean tides into electrical and other forms of industrial energy. The main disadvantage of extracting tidal power arises from the low density of tidal power per unit area of the ocean. This leads to the high cost of required investment for the production of a substantial volume of the energy. 10 refs.

Gorlov, A.M.

1981-01-01T23:59:59.000Z

228

Hydra Tidal Energy Technology AS | Open Energy Information  

Open Energy Info (EERE)

Tidal Energy Technology AS Tidal Energy Technology AS Jump to: navigation, search Name Hydra Tidal Energy Technology AS Address PO Box 399 Place Harstad Zip 9484 Sector Marine and Hydrokinetic Year founded 2001 Phone number (+47) 77 06 08 08 Website http://http://www.hydratidal.i Region Norway LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: MORILD Demonstration Plant Morild 2 This company is involved in the following MHK Technologies: MORILD 2 Floating Tidal Power System Morild Power Plant This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Hydra_Tidal_Energy_Technology_AS&oldid=678333

229

CONSTRAINING TIDAL DISSIPATION IN STARS FROM THE DESTRUCTION RATES OF EXOPLANETS  

Science Conference Proceedings (OSTI)

We use the distribution of extrasolar planets in circular orbits around stars with surface convective zones detected by ground-based transit searches to constrain how efficiently tides raised by the planet are dissipated on the parent star. We parameterize this efficiency as a tidal quality factor (Q{sub *}). We conclude that the population of currently known planets is inconsistent with Q{sub *} < 10{sup 7} at the 99% level. Previous studies show that values of Q{sub *} between 10{sup 5} and 10{sup 7} are required in order to explain the orbital circularization of main-sequence low-mass binary stars in clusters, suggesting that different dissipation mechanisms might be acting in the two cases, most likely due to the very different tidal forcing frequencies relative to the stellar rotation frequency occurring for star-star versus planet-star systems.

Penev, Kaloyan [Department of Astrophysical Sciences, 4 Ivy Lane, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); Jackson, Brian [Carnegie DTM, 5241 Broad Branch Road, NW, Washington, DC 20015-1305 (United States); Spada, Federico [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Thom, Nicole [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

2012-06-01T23:59:59.000Z

230

Intrusive gravity currents  

E-Print Network (OSTI)

The front speed of intrusive gravity currents. J. FluidP.F. Linden. Intrusive gravity currents. J. Fluid Mechanics,of mesoscale variability of gravity waves. Part II: Frontal,

Hang, Alice Thanh

2009-01-01T23:59:59.000Z

231

A Model for the Alboran Sea Internal Solitary Waves  

Science Conference Proceedings (OSTI)

The propagation into the Alboran Sea of the interface depression generated at the Strait of Gibraltar by the interaction of the semidiurnal tidal current with the main (Camarinal) sill is studied numerically by using a unidirectional model with ...

Stefano Pierini

1989-06-01T23:59:59.000Z

232

THE ENVIRONMENTAL DEPENDENCE OF THE INCIDENCE OF GALACTIC TIDAL FEATURES  

Science Conference Proceedings (OSTI)

In a sample of 54 galaxy clusters (0.04 < z < 0.15) containing 3551 early-type galaxies suitable for study, we identify those with tidal features both interactively and automatically. We find that {approx}3% have tidal features that can be detected with data that reach a 3{sigma} sensitivity limit of 26.5 mag arcsec{sup -2}. Regardless of the method used to classify tidal features, or the fidelity imposed on such classifications, we find a deficit of tidally disturbed galaxies with decreasing clustercentric radius that is most pronounced inside of {approx}0.5 R{sub 200}. We cannot distinguish whether the trend arises from an increasing likelihood of recent mergers with increasing clustercentric radius or a decrease in the lifetime of tidal features with decreasing clustercentric radius. We find no evidence for a relationship between local density and the incidence of tidal features, but our local density measure has large uncertainties. We find interesting behavior in the rate of tidal features among cluster early-types as a function of clustercentric radius and expect such results to provide constraints on the effect of the cluster environment on the structure of galaxy halos, the build-up of the red sequence of galaxies, and the origin of the intracluster stellar population.

Adams, Scott M.; Zaritsky, Dennis [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Sand, David J.; Graham, Melissa L. [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Dr., Suite 102, Santa Barbara, CA 93117 (United States); Bildfell, Chris; Pritchet, Chris [Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, STN CSC, Victoria, BC V8W 3P6 (Canada); Hoekstra, Henk [Leiden Observatory, Leiden University, Niels Bohrweg 2, NL-2333 CA Leiden (Netherlands)

2012-11-01T23:59:59.000Z

233

Ocean Tidal Dissipation and its Role in Solar System Satellite Evolution  

E-Print Network (OSTI)

Magma ocean dissipation . . . . . . . . . . . . . . . .of the ocean . . . . . . . . . . . . . . . . . . . . . .Tidally-driven flow in global satellite oceans

Chen, Erinna

2013-01-01T23:59:59.000Z

234

Stratified Tidal Flow over a Bump  

Science Conference Proceedings (OSTI)

The interaction of a stratified flow with an isolated topographic feature can introduce numerous disturbances into the flow, including turbulent wakes, internal waves, and eddies. Measurements made near a “bump” east of Race Rocks, Vancouver ...

Richard Dewey; David Richmond; Chris Garrett

2005-10-01T23:59:59.000Z

235

Environmental Effects of Sediment Transport Alteration and Impacts on Protected Species: Edgartown Tidal Energy Project  

DOE Green Energy (OSTI)

The Islands of Martha�¢����s Vineyard and Nantucket are separated from the Massachusetts mainland by Vineyard and Nantucket Sounds; water between the two islands flows through Muskeget Channel. The towns of Edgartown (on Martha�¢����s Vineyard) and Nantucket recognize that they are vulnerable to power supply interruptions due to their position at the end of the power grid, and due to sea level rise and other consequences of climate change. The tidal energy flowing through Muskeget Channel has been identified by the Electric Power Research Institute as the strongest tidal resource in Massachusetts waters. The Town of Edgartown proposes to develop an initial 5 MW (nameplate) tidal energy project in Muskeget Channel. The project will consist of 14 tidal turbines with 13 providing electricity to Edgartown and one operated by the University of Massachusetts at Dartmouth for research and development. Each turbine will be 90 feet long and 50 feet high. The electricity will be brought to shore by a submarine cable buried 8 feet below the seabed surface which will landfall in Edgartown either on Chappaquiddack or at Katama. Muskeget Channel is located between Martha�¢����s Vineyard and Nantucket. Its depth ranges between 40 and 160 feet in the deepest portion. It has strong currents where water is transferred between Nantucket Sound and the Atlantic Ocean continental shelf to the south. This makes it a treacherous passage for navigation. Current users of the channel are commercial and recreational fishing, and cruising boats. The US Coast Guard has indicated that the largest vessel passing through the channel is a commercial scallop dragger with a draft of about 10 feet. The tidal resource in the channel has been measured by the University of Massachusetts-Dartmouth and the peak velocity flow is approximately 5 knots. The technology proposed is the helical Gorlov-type turbine positioned with a horizontal axis that is positively buoyant in the water column and held down by anchors. This is the same technology proposed by Ocean Renewable Power Company in the Western Passage and Cobscook Bay near Eastport Maine. The blades rotate in two directions capturing the tides energy both during flood and ebb tides. The turbines will be anchored to the bottom and suspended in the water column. Initial depth of the turbines is expected to be about 25 feet below the surface to avoid impacting navigation while also capturing the strongest currents. The Town of Edgartown was initially granted a Preliminary Permit by the Federal Energy Regulatory Commission (FERC) on March 1, 2008, and has recently received a second permit valid through August 2014. The Preliminary Permit gives Edgartown the exclusive right to apply for a power generation license for power generated from the hydrokinetic energy in the water flowing in this area. Edgartown filed a Draft Pilot License Application with FERC on February 1, 2010 and an Expanded Environmental Notification Form with the Massachusetts Environmental Policy Act (MEPA) Office at the same time. It expects to file a Final License Application in late 2013. Harris Miller Miller & Hanson (HMMH) of Burlington Massachusetts is acting as the Project Manager for the Town of Edgartown and collaborating with other partners of the project including the University of Massachusetts - Dartmouth's Marine Renewable Energy Center and the Massachusetts Clean Energy Center. HMMH was awarded a grant under the Department of Energy's Advanced Water Program to conduct marine science and hydrokinetic site-specific environmental studies for projects actively seeking a FERC License. HMMH, on behalf of the Town, is managing this comprehensive study of the marine environment in Muskeget Channel and potential impacts of the tidal project on indicator species and habitats. The University of Massachusetts School of Marine Science and Technology (SMAST) conducted oceanographic studies of tidal currents, tide level, benthic habit

Barrett, Stephen B.; Schlezinger, David, Ph.D; Cowles, Geoff, Ph.D; Hughes, Patricia; Samimy; Roland, I.; and Terray, E, Ph.D.

2012-12-29T23:59:59.000Z

236

MHK Technologies/Jiangxia Tidal Power Station | Open Energy Information  

Open Energy Info (EERE)

Jiangxia Tidal Power Station Jiangxia Tidal Power Station < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Jiangxia Tidal Power Station.jpg Technology Profile Primary Organization China Guodian Corporation Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 9 Commercial Scale Production Application Technology Description There are 6 bulb turbine generator units operating in both ebb and flood tides with a total installed capacity up to 3 9 MW Technology Dimensions Technology Nameplate Capacity (MW) 3 9 Device Testing Date Submitted 14:15.7 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Jiangxia_Tidal_Power_Station&oldid=681601

237

Reservoir response to tidal and barometric effects | Open Energy  

Open Energy Info (EERE)

to tidal and barometric effects to tidal and barometric effects Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Reservoir response to tidal and barometric effects Details Activities (2) Areas (2) Regions (0) Abstract: Solid earth tidal strain and surface loading due to fluctuations in barometric pressure have the effect, although extremely minute, of dilating or contracting the effective pore volume in a porous reservoir. If a well intersects the formation, the change in pore pressure can be measured with sensitive quartz pressure gauges. Mathematical models of the relevant fluid dynamics of the well-reservoir system have been generated and tested against conventional well pumping results or core data at the Salton Sea Geothermal Field (SSGF), California and at the Raft River,

238

Residual Circulations Due to Bottom Roughness Variability under Tidal Flows  

Science Conference Proceedings (OSTI)

Tidal flows over irregular bathymetry are known to produce residual circulation flows due to nonlinear interaction with gradients of depth. Using the depth-averaged vorticity equations, the generation of residual vorticity and residual flows due ...

Thomas F. Gross; Francisco E. Werner

1994-07-01T23:59:59.000Z

239

Tidal Motion in Submarine Canyons—A Laboratory Experiment  

Science Conference Proceedings (OSTI)

The reasons for the large-amplitude tidal motion observed in oceanic submarine canyons have been explored with a laboratory experiment. A barotropic tide was forced in a stratified tank, containing continental shelf-slope topography into which a ...

Peter G. Baines

1983-02-01T23:59:59.000Z

240

Estimating Open-Ocean Barotropic Tidal Dissipation: The Hawaiian Ridge  

Science Conference Proceedings (OSTI)

The generalized inverse of a regional model is used to estimate barotropic tidal dissipation along the Hawaiian Ridge. The model, based on the linear shallow-water equations, incorporates parameterizations for the dissipation of energy via ...

Edward D. Zaron; Gary D. Egbert

2006-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "tidal wave current" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Boils and Turbulence in a Weakly Stratified Shallow Tidal Sea  

Science Conference Proceedings (OSTI)

Measurements of turbulence are made in a weakly but variably stratified region of tidal straining in the eastern Irish Sea using turbulence sensors profiling vertically through the water column on the Fast Light Yo-yo (FLY) profiler and ...

S. A. Thorpe; J. A. M. Green; J. H. Simpson; T. R. Osborn; W. A. M. Nimmo Smith

2008-08-01T23:59:59.000Z

242

Asymmetric Tidal Mixing due to the Horizontal Density Gradient  

Science Conference Proceedings (OSTI)

Stratification and turbulent mixing exhibit a flood–ebb tidal asymmetry in estuaries and continental shelf regions affected by horizontal density gradients. The authors use a large-eddy simulation (LES) model to investigate the penetration of a ...

Ming Li; John Trowbridge; Rocky Geyer

2008-02-01T23:59:59.000Z

243

Three-Dimensional Tidal Flow in an Elongated, Rotating Basin  

Science Conference Proceedings (OSTI)

The three-dimensional tidal circulation in an elongated basin of arbitrary depth is described with a linear, constant-density model on the f plane. Rotation fundamentally alters the lateral flow, introducing a lateral recirculation comparable in ...

Clinton D. Winant

2007-09-01T23:59:59.000Z

244

Instability of Baroclinic Tidal Flow in a Stratified Fjord  

Science Conference Proceedings (OSTI)

The Taylor–Goldstein equation is used to investigate the stability of a baroclinic tidal flow observed in a stratified fjord. The flow is analyzed at hourly intervals when turbulent dissipation measurements were made. The critical gradient ...

Zhiyu Liu

2010-01-01T23:59:59.000Z

245

Low-Pass Filters to Suppress Inertial and Tidal Frequencies  

Science Conference Proceedings (OSTI)

A systematic way is given to design digital filters which allow clear separation of signals with periods of a few days from noise of higher frequency, particularly tidal and inertial. Several examples are given which pass little high-frequency ...

Rory O. R. Y. Thompson

1983-06-01T23:59:59.000Z

246

Decadal Climate Variability: Is There a Tidal Connection?  

Science Conference Proceedings (OSTI)

A possible connection between oceanic tides and climate variability arises from modulations in tidally induced vertical mixing. The idea is reexamined here with emphasis on near-decadal time scales. Occasional extreme tides caused by unusually ...

Richard D. Ray

2007-07-01T23:59:59.000Z

247

A Simple Parameterization of Turbulent Tidal Mixing near Supercritical Topography  

Science Conference Proceedings (OSTI)

A simple parameterization for tidal dissipation near supercritical topography, designed to be applied at deep midocean ridges, is presented. In this parameterization, radiation of internal tides is quantified using a linear knife-edge model. ...

Jody M. Klymak; Sonya Legg; Robert Pinkel

2010-09-01T23:59:59.000Z

248

Relationships between Tidal Dynamics and Bathymetry in Strongly Convergent Estuaries  

Science Conference Proceedings (OSTI)

Localized analytical solutions are derived for the propagation of a single (predominant) tidal constituent in estuaries with strongly convergent triangular cross sections. The advective term is neglected, and the friction term is linearized. The ...

D. Prandle

2003-12-01T23:59:59.000Z

249

A single-spin precessing gravitational wave in closed form  

E-Print Network (OSTI)

In coming years, gravitational wave detectors should find black hole-neutron star binaries, potentially coincident with astronomical phenomena like short GRBs. These binaries are expected to precess. Gravitational wave science requires a tractable model for precessing binaries, to disentangle precession physics from other phenomena like modified strong field gravity, tidal deformability, or Hubble flow; and to measure compact object masses, spins, and alignments. Moreover, current searches for gravitational waves from compact binaries use templates where the binary does not precess and are ill-suited for detection of generic precessing sources. In this paper we provide a closed-form representation of the single-spin precessing waveform in the frequency domain by reorganizing the signal as a sum over harmonics, each of which resembles a nonprecessing waveform. This form enables simple analytic calculations (e.g., a Fisher matrix) with easily-interpreted results. We have verified that for generic BH-NS binaries, our model agress with the time-domain waveform to 2\\%. Straightforward extensions of the derivations outlined here [and provided in full online] allow higher accuracy and error estimates.

A. Lundgren; R. O'Shaughnessy

2013-04-11T23:59:59.000Z

250

THE INNER STRUCTURE AND KINEMATICS OF THE SAGITTARIUS DWARF GALAXY AS A PRODUCT OF TIDAL STIRRING  

Science Conference Proceedings (OSTI)

The tidal stirring model envisions the formation of dwarf spheroidal (dSph) galaxies in the Local Group and similar environments via the tidal interaction of disky dwarf systems with a larger host galaxy like the Milky Way. These progenitor disks are embedded in extended dark halos and during the evolution both components suffer strong mass loss. In addition, the disks undergo the morphological transformation into spheroids and the transition from ordered to random motion of their stars. Using collisionless N-body simulations, we construct a model for the nearby and highly elongated Sagittarius (Sgr) dSph galaxy within the framework of the tidal stirring scenario. Constrained by the present orbit of the dwarf, which is fairly well known, the model suggests that in order to produce the majority of tidal debris observed as the Sgr stream, but not yet transform the core of the dwarf into a spherical shape, Sgr must have just passed the second pericenter of its current orbit around the Milky Way. In the model, the stellar component of Sgr is still very elongated after the second pericenter and morphologically intermediate between the strong bar formed at the first pericenter and the almost spherical shape existing after the third pericenter. This is thus the first model of the evolution of the Sgr dwarf that accounts for its observed very elliptical shape. At the present time, there is very little intrinsic rotation left and the velocity gradient detected along the major axis is almost entirely of tidal origin. We model the recently measured velocity dispersion profile for Sgr assuming that mass traces light and estimate its current total mass within 5 kpc to be 5.2 x 10{sup 8} M{sub sun}. To have this mass at present, the model requires that the initial virial mass of Sgr must have been as high as 1.6 x 10{sup 10} M{sub sun}, comparable to that of the Large Magellanic Cloud, which may serve as a suitable analog for the pre-interaction, Sgr progenitor.

Lokas, Ewa L. [Nicolaus Copernicus Astronomical Center, 00-716 Warsaw (Poland); Kazantzidis, Stelios [Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210 (United States); Majewski, Steven R. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States); Law, David R. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Mayer, Lucio [Institute for Theoretical Physics, University of Zuerich, CH-8057 Zuerich (Switzerland); Frinchaboy, Peter M., E-mail: lokas@camk.edu.p, E-mail: stelios@mps.ohio-state.ed, E-mail: srm4n@virginia.ed, E-mail: drlaw@astro.ucla.ed, E-mail: lucio@phys.ethz.c, E-mail: p.frinchaboy@tcu.ed [Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129 (United States)

2010-12-20T23:59:59.000Z

251

Nonrotating black hole in a post-Newtonian tidal environment  

E-Print Network (OSTI)

We examine the motion and tidal dynamics of a nonrotating black hole placed within a post-Newtonian external spacetime. The tidal perturbation created by the external environment is treated as a small perturbation. At a large distance from the black hole, the gravitational field of the external distribution of matter is assumed to be sufficiently weak to be adequately described by the (first) post-Newtonian approximation to general relativity. There, the black hole is treated as a monopole contribution to the total gravitational field. There exists an overlap in the domains of validity of each description, and the black-hole and post-Newtonian metrics are matched in the overlap. The matching procedure produces the equations of motion for the black hole and the gravito-electric and gravito-magnetic tidal fields acting on the black hole. We first calculate the equations of motion and tidal fields by making no assumptions regarding the nature of the post-Newtonian environment; this could contain a continuous distribution of matter or any number of condensed bodies. We next specialize our discussion to a situation in which the black hole is a member of a post-Newtonian two-body system. As an application of our results, we examine the geometry of the deformed event horizon and calculate the tidal heating of the black hole, the rate at which it acquires mass as a result of its tidal interaction with the companion body.

Stephanne Taylor; Eric Poisson

2008-06-18T23:59:59.000Z

252

2007 NWFSC Tidal Freshwater Genetics Results  

SciTech Connect

Genetic Analysis of Juvenile Chinook Salmon for inclusion in 'Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, lower Columbia River, 2007. Final report submitted to the Bonneville Power Administration, Contract DE-AC05-76RLO1830.' Genotypic data were collected for 108 Chinook salmon and used in the genetic stock identification analysis. Results of the mixture analysis are presented in Table 1. Percentage estimates for four genetic stock groups (West Cascade Tributary Fall, Willamette River Spring, Deschutes River Fall, and Upper Columbia River Summer/Fall) ranged from 11% to 43%, all with non-zero lower 95% confidence intervals. Small contributions were also estimated for the West Cascade Tributary Spring (3%) and Snake River Fall (6%) stock groups. Results of individual fish probability assignments were summed by collection date (Figure 1) and site (Figure 2). Assignment probabilities for the most likely stock group for each individual ranged from 0.51 to 1.00 with approximately 60% of the assignments greater than 0.90 (data not shown). Nearly all of the low probability assignments were fish with assignments split between the Deschutes River Fall and Upper Columbia River Summer/Fall groups.

David Teel

2008-03-18T23:59:59.000Z

253

The Structure of Three-Dimensional Tide-Induced Current. Part II: Residual Currents  

Science Conference Proceedings (OSTI)

A simple method of computing the second-order, three-dimensional, tidally-induced residual current is presented. The depth-averaged residual current and the mean-surface gradient from the depth-averaged equations are first computed, assuming that ...

Kim-Tai Tee

1980-12-01T23:59:59.000Z

254

Wave Dragon  

NLE Websites -- All DOE Office Websites (Extended Search)

Overtopping Wave Devices Wave Dragon ApSLtd HWETTEI - Workshop October 26-28, 2005, Washington, DC Hydrokinetic Technologies Technical and Environmental Issues Workshop the Wave...

255

Earth Tidal Analysis At Raft River Geothermal Area (1980) | Open Energy  

Open Energy Info (EERE)

Earth Tidal Analysis At Raft River Geothermal Earth Tidal Analysis At Raft River Geothermal Area(1980) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Earth Tidal Analysis Activity Date 1980 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the reservoir response to tidal and barometric effects Notes Porosity-total compressibility product evaluation based on tidal strain response compares favorably with results based on conventional pumping techniques. Analysis of reservoir response to barometric loading using Auto Regressive Integrated Moving Average (ARIMA) stochastic modeling appears also to have potential use for the evaluation of reservoir parameters. References Hanson, J. M. (29 May 1980) Reservoir response to tidal and barometric effects

256

Generation of Nonlinear Internal Tides and Solitary Waves  

Science Conference Proceedings (OSTI)

A set of generalized Boussinesq equations is derived for internal waves in a two-layer system; the effects of earth's rotation are included by using the f-plane approximation; a forcing mechanism due to the interaction between a tidal flow and a ...

T. Gerkema; J. T. F. Zimmerman

1995-06-01T23:59:59.000Z

257

Current-wave spectra coupling project. Volume II. Hurricane fields and cross sections, surface winds and currents, significant waves and wave spectra for potential OTEC sites: (A) Keahole Point, Hawaii, 100 year hurricane; (B) Punta Tuna, Puerto Rico, 100 year hurricane; (C) New Orleans, Louisiana, 100 year hurricane; (D) West Coast of Florida, 100 year hurricane; and for (E) Hurricane Camille (1969) off Louisiana Coast. Technical support for Volume I. [HURICA1 and HURICA2 codes  

DOE Green Energy (OSTI)

This volume represents the details of the technical development of and the calibration of the two-directional three parameter wave forecasting relationships, which are specially adapted for forecasting hurricane significant wave height, H/sub s/, modal wave period f/sub 0//sup -1/ and the peak of the wave spectrum, S/sub max/. These three parameters lead to the determination of the three-parameter wave spectrum which has been verified by use of hurricane wind generated wave spectra from Hurricane Eloise (1975). The hurricane wind field is still based on the original US Weather Service model as given by Meyers (1954). Hurricane winds, waves and wave spectra data from Hurricane Eloise (1975) published by Withee and Johnson, NOAA (1975), have been used. Although the data is of an analyzed form, the term raw data was used as distinguished from smoothed data. An analysis of the raw data is presented in this volume, and considerable sense of the analysis has been made. A weighted average technique was not used, but could have reduced the scatter in the so-called raw data during the first 2/3 of the storm when the winds and waves were less than gale force and quite variable. There is considerably less variability in the wind and wave data when the wind reaches gale force, and these are the data for which the greatest emphasis is given in the analysis. (WHK)

Bretschneider, C.L.; Huang, T.S.; Endo, H.

1980-07-01T23:59:59.000Z

258

CLIMATE INSTABILITY ON TIDALLY LOCKED EXOPLANETS  

Science Conference Proceedings (OSTI)

Feedbacks that can destabilize the climates of synchronously rotating rocky planets may arise on planets with strong day-night surface temperature contrasts. Earth-like habitable planets maintain stable surface liquid water over geologic time. This requires equilibrium between the temperature-dependent rate of greenhouse-gas consumption by weathering, and greenhouse-gas resupply by other processes. Detected small-radius exoplanets, and anticipated M-dwarf habitable-zone rocky planets, are expected to be in synchronous rotation (tidally locked). In this paper, we investigate two hypothetical feedbacks that can destabilize climate on planets in synchronous rotation. (1) If small changes in pressure alter the temperature distribution across a planet's surface such that the weathering rate goes up when the pressure goes down, a runaway positive feedback occurs involving increasing weathering rate near the substellar point, decreasing pressure, and increasing substellar surface temperature. We call this feedback enhanced substellar weathering instability (ESWI). (2) When decreases in pressure increase the fraction of surface area above the melting point (through reduced advective cooling of the substellar point), and the corresponding increase in volume of liquid causes net dissolution of the atmosphere, a further decrease in pressure will occur. This substellar dissolution feedback can also cause a runaway climate shift. We use an idealized energy balance model to map out the conditions under which these instabilities may occur. In this simplified model, the weathering runaway can shrink the habitable zone and cause geologically rapid 10{sup 3}-fold atmospheric pressure shifts within the habitable zone. Mars may have undergone a weathering runaway in the past. Substellar dissolution is usually a negative feedback or weak positive feedback on changes in atmospheric pressure. It can only cause runaway changes for small, deep oceans and highly soluble atmospheric gases. Both instabilities are suppressed if the atmosphere has a high radiative efficiency. Our results are most relevant for atmospheres that are thin, have low greenhouse-gas radiative efficiency, and have a principal greenhouse gas that is also the main constituent of the atmosphere. ESWI also requires land near the substellar point, and tectonic resurfacing (volcanism, mountain-building) is needed for large jumps in pressure. These results identify a new pathway by which habitable-zone planets can undergo rapid climate shifts and become uninhabitable.

Kite, Edwin S.; Manga, Michael [Department of Earth and Planetary Science, University of California at Berkeley, CA 94720 (United States); Gaidos, Eric, E-mail: edwin.kite@gmail.com [Department of Geology and Geophysics, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)

2011-12-10T23:59:59.000Z

259

Property:Project Resource | Open Energy Information  

Open Energy Info (EERE)

Project Resource Project Resource Jump to: navigation, search Property Name Project Resource Property Type Text Pages using the property "Project Resource" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + Wave MHK Projects/ADM 3 + Wave MHK Projects/ADM 4 + Wave MHK Projects/ADM 5 + Wave MHK Projects/AWS II + Wave MHK Projects/Agucadoura + Wave MHK Projects/Alaska 13 + Current /Tidal MHK Projects/Alaska 35 + Current /Tidal MHK Projects/Algiers Light Project + Current /Tidal MHK Projects/Anconia Point Project + Current /Tidal MHK Projects/Ashley Point Project + Current /Tidal MHK Projects/Astoria Tidal Energy + Current /Tidal MHK Projects/Atchafalaya River Hydrokinetic Project II + Current /Tidal MHK Projects/Avalon Tidal + Current /Tidal

260

Tidal indicators in the spacetime of a rotating deformed mass  

E-Print Network (OSTI)

Tidal indicators are commonly associated with the electric and magnetic parts of the Riemann tensor (and its covariant derivatives) with respect to a given family of observers in a given spacetime. Recently, observer-dependent tidal effects have been extensively investigated with respect to a variety of special observers in the equatorial plane of the Kerr spacetime. This analysis is extended here by considering a more general background solution to include the case of matter which is also endowed with an arbitrary mass quadrupole moment. Relation with curvature invariants and Bel-Robinson tensor, i.e., observer-dependent super-energy density and super-Poynting vector, are investigated too.

Donato Bini; Kuantay Boshkayev; Andrea Geralico

2013-06-20T23:59:59.000Z

Note: This page contains sample records for the topic "tidal wave current" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Earth Tidal Analysis At Marysville Mountain Geothermal Area (1984) | Open  

Open Energy Info (EERE)

Mountain Geothermal Area (1984) Mountain Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Earth Tidal Analysis At Marysville Mountain Geothermal Area (1984) Exploration Activity Details Location Marysville Mountain Geothermal Area Exploration Technique Earth Tidal Analysis Activity Date 1984 Usefulness useful DOE-funding Unknown Exploration Basis Determine porosity of the reservoir Notes The response of a confined, areally infinite aquifer to external loads imposed by earth tides is examined. Because the gravitational influence of celestial objects occurs over large areas of the earth, the confined aquifer is assumed to respond in an undrained fashion. Since undrained response is controlled by water compressibility, earth tide response can be

262

MHK Projects/Kendall Head Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Kendall Head Tidal Energy Kendall Head Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

263

Tidal Dynamics and Residual Circulation in a Well-Mixed Inverse Estuary  

Science Conference Proceedings (OSTI)

The tidal and residual circulations in Laguna San Ignacio (LSI), a well-mixed evaporative lagoon located on the Pacific coast of the Baja California peninsula in Mexico, is described based on surveys and moored observations. At tidal periods ...

Clinton D. Winant; Guillermo Gutiérrez de Velasco

2003-07-01T23:59:59.000Z

264

A Numerical Study of Stratified Tidal Rectification over Finite-Amplitude Banks. Part I: Symmetric Banks  

Science Conference Proceedings (OSTI)

Tidal rectification over a two-dimensional finite-amplitude symmetrical bank is studied using the Blumberg and Mellor primitive equation coastal ocean circulation model (ECOM-si). In the homogeneous case, the nonlinear interaction of tidal ...

Changsheng Chen; Robert C. Beardsley

1995-09-01T23:59:59.000Z

265

The Cascade of Tidal Energy from Low to High Modes on a Continental Slope  

Science Conference Proceedings (OSTI)

The linear transfer of tidal energy from large to small scales is quantified for small tidal excursion over a near-critical continental slope. A theoretical framework for low-wavenumber energy transfer is derived from “flat bottom” vertical modes ...

Samuel M. Kelly; Jonathan D. Nash; Kim I. Martini; Matthew H. Alford; Eric Kunze

2012-07-01T23:59:59.000Z

266

A Model of Tidal Rectification by Potential Vorticity Mixing. Part I: Homogeneous Ocean  

Science Conference Proceedings (OSTI)

In previous studies of tidal generation of mean flow over varying topography, the rectification mechanism has generally invoked bottom friction as a source of tidal flux of momentum and vorticity (hence referred as“friction” mechanism). The ...

Hsien-Wang Ou

1999-04-01T23:59:59.000Z

267

The Role of Advection, Straining, and Mixing on the Tidal Variability of Estuarine Stratification  

Science Conference Proceedings (OSTI)

Data from the Hudson River estuary demonstrate that the tidal variations in vertical salinity stratification are not consistent with the patterns associated with along-channel tidal straining. These observations result from three additional ...

Malcolm E. Scully; W. Rockwell Geyer

2012-05-01T23:59:59.000Z

268

Factors Affecting the Accuracy of SHOWEX HF Radar Wave Measurements  

Science Conference Proceedings (OSTI)

Ocean Surface Current Radar (OSCR) HF radar measurements of ocean waves and currents were made during the Shoaling Waves Experiment (SHOWEX) in the fall of 1999. During some periods, at some locations, good quality wave measurements were ...

Lucy R. Wyatt; Guennadi Liakhovetski; Hans C. Graber; Brian K. Haus

2005-07-01T23:59:59.000Z

269

A Current-Induced Ekman Spiral in the St. Lawrence Estuary  

Science Conference Proceedings (OSTI)

Current-meter measurements indicate the presence of a mean Ekman spiral imposed upon the dominant tidal oscillation of the St. Lawrence estuary. Estimates of vertical eddy coefficients are consistent with previous estimates. It is hypothesized ...

Clifford L. Trump

1983-08-01T23:59:59.000Z

270

Forced Trench Waves  

Science Conference Proceedings (OSTI)

A general theory for forced barotropic long trench waves in the presence of linear bottom friction is presented. Two specific forcing mechanisms are considered: (i) transverse fluctuations in a western boundary current as it flows across a trench,...

Lawrence A. Mysak; Andrew J. Willmott

1981-11-01T23:59:59.000Z

271

Pasture and Soil Management Following Tidal Saltwater Intrusion  

E-Print Network (OSTI)

When land is flooded by saltwater, as after a hurricane tidal surge, it can long-term effects on soil productivity and fertility. This publication explains how to reclaim flooded pasture land. Having soil tested for salinity is an important step.

Provin, Tony; Redmon, Larry; McFarland, Mark L.; Feagley, Sam E.

2009-05-26T23:59:59.000Z

272

A SENSITIVITY ANALYSIS FOR A TIDALLY-INFLUENCED RIVERINE SYSTEM  

E-Print Network (OSTI)

-integrated, finite element coastal circulation code that solves the nonlinear shallow water equations, ADCIRC- 2DDI water. The model is forced with seven main tidal constituents at the open ocean boundary: M2, M4, M6, N2 entire experience at UCF; Dr. Gour-Tsyh (George) Yeh and Dr. John D. Dietz for serving on my committee

Central Florida, University of

273

TWO CHEMICAL SPILL PATTERNS IN TIDALLY DOMINATED SAN DIEGO BAY  

E-Print Network (OSTI)

6 TWO CHEMICAL SPILL PATTERNS IN TIDALLY DOMINATED SAN DIEGO BAY Peter C. Chu and Kleanthis, Inc., 70 Dean Knauss Drive, Narragansett, RI 02882, USA ABSTRACT A coupled hydrodynamic-chemical spill model is used to investigate the chemical spill in the San Diego Bay. The hydrodynamic model shows

Chu, Peter C.

274

Analysis of Supercritical Stratified Tidal Flow in a Scottish Fjord  

Science Conference Proceedings (OSTI)

The baroclinic tidal regime of the fjord Loch Etive (Scotland) is studied. Analysis is performed on the basis of both in situ data and numerical simulations, with the use of a fully nonlinear nonhydrostatic fine-resolution model. It was found ...

Nataliya Stashchuk; Mark Inall; Vasiliy Vlasenko

2007-07-01T23:59:59.000Z

275

Low-head tidal power in South Carolina. Feasibility study  

DOE Green Energy (OSTI)

This report details the possibilities of extracting tidal power from sites with moderate tides and naturally occurring storage locations (estuaries). The important points covered include: available power, power extraction, and the best locations and techniques to utilize the tides in South Carolina.

Not Available

1981-12-01T23:59:59.000Z

276

Radar Measurement of Tidal Winds at Stratospheric Heights over Arecibo  

Science Conference Proceedings (OSTI)

Wind oscillations of tidal periods that showed a marked downward phase progression were detected at the lower stratosphere using the Arecibo radar. The amplitudes of 1–5 m s?1 were inferred for both diurnal and semidiurnal components, much larger ...

Shoichiro Fukao; Toru Sato; Norikazu Yamasaki; Robert M. Harper; Susumu Kato

1980-11-01T23:59:59.000Z

277

Wave Breaking Dissipation in the Wave-Driven Ocean Circulation  

Science Conference Proceedings (OSTI)

If wave breaking modifies the Lagrangian fluid paths by inducing an uncertainty in the orbit itself and this uncertainty on wave motion time scales is observable as additive noise, it is shown that within the context of a wave–current interaction ...

Juan M. Restrepo

2007-07-01T23:59:59.000Z

278

Trimodal steady water waves  

E-Print Network (OSTI)

We construct three-dimensional families of small-amplitude gravity-driven rotational steady water waves on finite depth. The solutions contain counter-currents and multiple crests in each minimal period. Each such wave generically is a combination of three different Fourier modes, giving rise to a rich and complex variety of wave patterns. The bifurcation argument is based on a blow-up technique, taking advantage of three parameters associated with the vorticity distribution, the strength of the background stream, and the period of the wave.

Mats Ehrnström; Erik Wahlén

2013-10-31T23:59:59.000Z

279

Summertime Coastal Currents in the Northeastern Gulf of Mexico  

Science Conference Proceedings (OSTI)

Observations of currents and temperature at a mooring on the 18 m isobath, 30 km south of the Florida shoreline, are discussed for the 31-day period 15 August–15 September 1978. Tidal currents, having average amplitudes of 10 cm s?1, account for ...

G. O. Marmorino

1983-01-01T23:59:59.000Z

280

The Energy Level Shifts, Wave Functions and the Probability Current Distributions for the Bound Scalar and Spinor Particles Moving in a Uniform Magnetic Field  

E-Print Network (OSTI)

We discuss the equations for the bound one-active electron states based on the analytic solutions of the Schrodinger and Pauli equations for a uniform magnetic field and a single attractive $\\delta({\\bf r})$-potential. It is vary important that ground electron states in the magnetic field differ essentially from the analogous state of spin-0 particles, whose binding energy was intensively studied more than forty years ago. We show that binding energy equations for spin-1/2 particles can be obtained without using the language of boundary conditions in the $\\delta$-potential model developed in pioneering works. We use the obtained equations to calculate the energy level displacements analytically and demonstrate nonlinear dependencies on field intensity. We show that the magnetic field indeed plays a stabilizing role in considered systems in a case of the weak intensity, but the opposite occurs in the case of strong intensity. These properties may be important for real quantum mechanical fermionic systems in two and three dimensions. We also analyze the exact solution of the Pauli equation for an electron moving in the potential field determined by the three-dimensional $\\delta$-well in the presence of a strong magnetic field. We obtain asymptotic expressions for this solution for different values of the problem parameters. In addition, we consider electron probability currents and their dependence on the magnetic field. We show that including the spin in the framework of the nonrelativistic approach allows correctly taking the effect of the magnetic field on the electric current into account. The obtained dependencies of the current distribution, which is an experimentally observable quantity, can be manifested directly in scattering processes, for example.

V. N. Rodionov; G. A. Kravtsova

2011-02-19T23:59:59.000Z

Note: This page contains sample records for the topic "tidal wave current" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

MHK Projects/East Foreland Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

East Foreland Tidal Energy East Foreland Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.2223,"lon":-151.905,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

282

MHK Projects/Margate Tidal | Open Energy Information  

Open Energy Info (EERE)

Margate Tidal Margate Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3793,"lon":-74.4384,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

283

MHK Projects/Cuttyhunk Tidal Energy Plant | Open Energy Information  

Open Energy Info (EERE)

Cuttyhunk Tidal Energy Plant Cuttyhunk Tidal Energy Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7778,"lon":-70.8489,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

284

MHK Projects/Wrangell Narrows Tidal Energy Project | Open Energy  

Open Energy Info (EERE)

Wrangell Narrows Tidal Energy Project Wrangell Narrows Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":56.6324,"lon":-132.936,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

285

MHK Projects/Astoria Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Astoria Tidal Energy Astoria Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7172,"lon":-73.9703,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

286

MHK Projects/Cohansey River Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Cohansey River Tidal Energy Cohansey River Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3829,"lon":-75.2995,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

287

MHK Projects/Dorchester Maurice Tidal | Open Energy Information  

Open Energy Info (EERE)

Dorchester Maurice Tidal Dorchester Maurice Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3262,"lon":-74.938,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

288

MHK Projects/Orient Point Tidal | Open Energy Information  

Open Energy Info (EERE)

Orient Point Tidal Orient Point Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.0748,"lon":-72.9461,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

289

MHK Projects/Gastineau Channel Tidal | Open Energy Information  

Open Energy Info (EERE)

Gastineau Channel Tidal Gastineau Channel Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":58.295,"lon":-134.407,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

290

MHK Projects/Highlands Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Tidal Energy Project Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.3432,"lon":-73.9977,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

291

MHK Projects/Piscataqua Tidal Hydrokinetic Energy Project | Open Energy  

Open Energy Info (EERE)

Piscataqua Tidal Hydrokinetic Energy Project Piscataqua Tidal Hydrokinetic Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.1055,"lon":-70.7912,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

292

MHK Projects/Paimpol Brehat tidal farm | Open Energy Information  

Open Energy Info (EERE)

Paimpol Brehat tidal farm Paimpol Brehat tidal farm < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.869,"lon":-2.98546,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

293

MHK Projects/Turnagain Arm Tidal | Open Energy Information  

Open Energy Info (EERE)

Turnagain Arm Tidal Turnagain Arm Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.3378,"lon":-151.875,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

294

MHK Projects/Wiscasset Tidal Energy Plant | Open Energy Information  

Open Energy Info (EERE)

Wiscasset Tidal Energy Plant Wiscasset Tidal Energy Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.8146,"lon":-69.8697,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

295

MHK Projects/Nantucket Tidal Energy Plant | Open Energy Information  

Open Energy Info (EERE)

Nantucket Tidal Energy Plant Nantucket Tidal Energy Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.389,"lon":-70.5134,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

296

MHK Projects/Kingsbridge Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Kingsbridge Tidal Energy Project Kingsbridge Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.1008,"lon":-74.0495,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

297

MHK Projects/Rockaway Tidal Energy Plant | Open Energy Information  

Open Energy Info (EERE)

Rockaway Tidal Energy Plant Rockaway Tidal Energy Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.5667,"lon":-73.922,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

298

MHK Projects/Muskeget Channel Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Muskeget Channel Tidal Energy Muskeget Channel Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.3501,"lon":-70.3995,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

299

MHK Projects/Killisnoo Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Killisnoo Tidal Energy Killisnoo Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":57.4724,"lon":-134.56,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

300

MHK Projects/Deception Pass Tidal Energy Hydroelectric Project | Open  

Open Energy Info (EERE)

Deception Pass Tidal Energy Hydroelectric Project Deception Pass Tidal Energy Hydroelectric Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.4072,"lon":-122.643,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "tidal wave current" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

MHK Projects/Lubec Narrows Tidal | Open Energy Information  

Open Energy Info (EERE)

Lubec Narrows Tidal Lubec Narrows Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.8652,"lon":-66.9828,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

302

MHK Projects/Housatonic Tidal Energy Plant | Open Energy Information  

Open Energy Info (EERE)

Housatonic Tidal Energy Plant Housatonic Tidal Energy Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.2713,"lon":-73.0883,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

303

MHK Projects/Tidal Energy Project Portugal | Open Energy Information  

Open Energy Info (EERE)

Tidal Energy Project Portugal Tidal Energy Project Portugal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.702,"lon":-9.13445,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

304

MHK Projects/Treat Island Tidal | Open Energy Information  

Open Energy Info (EERE)

Treat Island Tidal Treat Island Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.0234,"lon":-67.0672,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

305

MHK Projects/Maurice River Tidal | Open Energy Information  

Open Energy Info (EERE)

Maurice River Tidal Maurice River Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3261,"lon":-74.9379,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

306

MHK Projects/Penobscot Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Penobscot Tidal Energy Project Penobscot Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.5404,"lon":-68.7838,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

307

MHK Projects/Cape May Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Cape May Tidal Energy Cape May Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9668,"lon":-74.963,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

308

MHK Projects/Salem Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Salem Tidal Energy Salem Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.5739,"lon":-75.5438,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

309

MHK Projects/Angoon Tidal Energy Plant | Open Energy Information  

Open Energy Info (EERE)

Angoon Tidal Energy Plant Angoon Tidal Energy Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":57.5034,"lon":-134.58,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

310

MHK Projects/Seaflow Tidal Energy System | Open Energy Information  

Open Energy Info (EERE)

Seaflow Tidal Energy System Seaflow Tidal Energy System < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.2353,"lon":-3.8356,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

311

Evolution of star clusters in arbitrary tidal fields  

E-Print Network (OSTI)

We present a novel and flexible tensor approach to computing the effect of a time-dependent tidal field acting on a stellar system. The tidal forces are recovered from the tensor by polynomial interpolation in time. The method has been implemented in a direct-summation stellar dynamics integrator (NBODY6) and test-proved through a set of reference calculations: heating, dissolution time and structural evolution of model star clusters are all recovered accurately. The tensor method is applicable to arbitrary configurations, including the important situation where the background potential is a strong function of time. This opens up new perspectives in stellar population studies reaching to the formation epoch of the host galaxy or galaxy cluster, as well as for star-burst events taking place during the merger of large galaxies. A pilot application to a star cluster in the merging galaxies NGC 4038/39 (the Antennae) is presented.

Renaud, Florent; Boily, Christian

2011-01-01T23:59:59.000Z

312

The Development of Gas/Star Offsets in Tidal Tails  

E-Print Network (OSTI)

We present models of interacting galaxies in order to study the development of spatial offsets between the gaseous and stellar components in tidal tails. Observationally, such offsets are observed to exist over large scales (e.g., NGC 3690; Hibbard et al. 2000), suggesting an interaction between the tidal gas and some (unseen) hot ISM. Instead, our models show these offsets are a natural consequence of the radially extended HI spatial distribution in disk galaxies, coupled with internal dissipation in the gaseous component driven by the interaction. This mechanism is most effective in systems involved in very prograde interactions, and explains the observed gas/star offsets in interacting galaxies without invoking interactions with a hot ISM, starburst ionization, or dust obscuration within the tails.

Chris Mihos

2000-11-06T23:59:59.000Z

313

The Development of Gas/Star Offsets in Tidal Tails  

E-Print Network (OSTI)

We present models of interacting galaxies in order to study the development of spatial offsets between the gaseous and stellar components in tidal tails. Observationally, such offsets are observed to exist over large scales (e.g., NGC 3690; Hibbard et al. 2000), suggesting an interaction between the tidal gas and some (unseen) hot ISM. Instead, our models show these offsets are a natural consequence of the radially extended HI spatial distribution in disk galaxies, coupled with internal dissipation in the gaseous component driven by the interaction. This mechanism is most effective in systems involved in very prograde interactions, and explains the observed gas/star offsets in interacting galaxies without invoking interactions with a hot ISM, starburst ionization, or dust obscuration within the tails.

Mihos, C

2001-01-01T23:59:59.000Z

314

MHK Projects/Cook Inlet Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Cook Inlet Tidal Energy Cook Inlet Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.6893,"lon":-151.437,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

315

MHK Projects/BW2 Tidal | Open Energy Information  

Open Energy Info (EERE)

BW2 Tidal BW2 Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3264,"lon":-74.9336,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

316

MHK Projects/Avalon Tidal | Open Energy Information  

Open Energy Info (EERE)

Avalon Tidal Avalon Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.1068,"lon":-74.7463,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

317

MHK Projects/Admirality Inlet Tidal Energy Project | Open Energy  

Open Energy Info (EERE)

Admirality Inlet Tidal Energy Project Admirality Inlet Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.1169,"lon":-122.76,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

318

EA-1949: Admiralty Inlet Pilot Tidal Project, Puget Sound, WA  

Energy.gov (U.S. Department of Energy (DOE))

This EA analyzes the potential environmental effects of a proposal by the Public Utility District No. 1 of Snowhomish County, Washington to construct and operate the Admiralty Inlet Tidal Project. The proposed 680-kilowatt project would be located on the east side of Admiralty Inlet in Puget Sound, Washington, about 1 kilometer west of Whidbey Island, entirely within Island County, Washington. The Federal Energy Regulatory Commission (FERC) is the lead agency. DOE is a cooperating agency.

319

Tidal Stream Power Web GIS Tool | Open Energy Information  

Open Energy Info (EERE)

Tidal Stream Power Web GIS Tool Tidal Stream Power Web GIS Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Tidal Stream Power Web GIS Tool Agency/Company /Organization: Georgia Tech Savannah Sector: Energy Focus Area: Renewable Energy Resource Type: Software/modeling tools User Interface: Website Website: www.tidalstreampower.gatech.edu/ Country: United States Web Application Link: www.tidalstreampower.gatech.edu/ Cost: Free UN Region: Northern America Coordinates: 32.167482°, -81.212405° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.167482,"lon":-81.212405,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

320

Ionization tube simmer current circuit  

DOE Patents (OSTI)

A highly efficient flash lamp simmer current circuit utilizes a fifty percent duty cycle square wave pulse generator to pass a current over a current limiting inductor to a full wave rectifier. The DC output of the rectifier is then passed over a voltage smoothing capacitor through a reverse current blocking diode to a flash lamp tube to sustain ionization in the tube between discharges via a small simmer current. An alternate embodiment of the circuit combines the pulse generator and inductor in the form of an FET off line square wave generator with an impedance limited step up output transformer which is then applied to the full wave rectifier as before to yield a similar simmer current.

Steinkraus, Jr., Robert F. (Livermore, CA)

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "tidal wave current" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Ionization tube simmer current circuit  

DOE Patents (OSTI)

A highly efficient flash lamp simmer current circuit utilizes a fifty percent duty cycle square wave pulse generator to pass a current over a current limiting inductor to a full wave rectifier. The DC output of the rectifier is then passed over a voltage smoothing capacitor through a reverse current blocking diode to a flash lamp tube to sustain ionization in the tube between discharges via a small simmer current. An alternate embodiment of the circuit combines the pulse generator and inductor in the form of an FET off line square wave generator with an impedance limited step up output transformer which is then applied to the full wave rectifier as before to yield a similar simmer current. 6 figures.

Steinkraus, R.F. Jr.

1994-12-13T23:59:59.000Z

322

Probing Nuclear Symmetry Energy and its Imprints on Properties of Nuclei, Nuclear Reactions, Neutron Stars and Gravitational Waves  

E-Print Network (OSTI)

Significant progress has been made in recent years in constraining nuclear symmetry energy at and below the saturation density of nuclear matter using data from both terrestrial nuclear experiments and astrophysical observations. However, many interesting questions remain to be studied especially at supra-saturation densities. In this lecture note, after a brief summary of the currently available constraints on nuclear symmetry energy near the saturation density we first discuss the relationship between the symmetry energy and the isopin and momentum dependence of the single-nucleon potential in isospin-asymmetric nuclear medium. We then discuss several open issues regarding effects of the tensor force induced neutron-proton short-range correlation (SRC) on nuclear symmetry energy. Finally, as an example of the impacts of nuclear symmetry energy on properties of neutron stars and gravitational waves, we illustrate effects of the high-density symmetry energy on the tidal polarizability of neutron stars in coal...

Li, Bao-An; Fattoyev, Farrukh J; Newton, William G; Xu, Chang

2012-01-01T23:59:59.000Z

323

Hinsdale Wave Basin 2 | Open Energy Information  

Open Energy Info (EERE)

Wave Basin 2 Wave Basin 2 Jump to: navigation, search Basic Specifications Facility Name Hinsdale Wave Basin 2 Overseeing Organization Oregon State University Hydrodynamics Length(m) 48.8 Beam(m) 26.5 Depth(m) 2.1 Water Type Freshwater Cost(per day) $3500 Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.8 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 10.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Monochromatic waves (cnoidal, Stokes, Airy), solitary waves, user-defined free surface timeseries or board displacement timeseries for random waves Wave Direction Both Simulated Beach Yes Description of Beach Built to client specifications, currently rigid concrete over gravel fill

324

MHK Technologies/DEXA Wave Converter | Open Energy Information  

Open Energy Info (EERE)

Wave Technology Type Click here Attenuator Technology Description The wave energy conversion is similar to other devices There is no data publicly available currently on the...

325

Prospecting for Hydrothermal Vents Using Moored Current and Temperature Data: Axial Volcano on the Juan de Fuca Ridge, Northeast Pacific  

Science Conference Proceedings (OSTI)

Tidal and inertial currents and profuse hydrothermal discharge at recently erupted Axial Volcano, Juan de Fuca Ridge, cause relatively large and rapid temperature (T) changes in the near-bottom water column. Measurements show short-term T ...

J. W. Lavelle; M. A. Wetzler; E. T. Baker; R. W. Embley

2001-03-01T23:59:59.000Z

326

Three-Dimensional Model Simulations of Tides and Buoyancy Currents along the West Coast of Vancouver Island  

Science Conference Proceedings (OSTI)

A three-dimensional finite element model is used to calculate the barotropic tides and seasonal buoyancy flows off the western and northern coasts of Vancouver Island. The model buoyancy currents and the harmonics of eight tidal constituents are ...

Michael G. G. Foreman; Richard E. Thomson

1997-07-01T23:59:59.000Z

327

Tidal Heating of Terrestrial Extra-Solar Planets and Implications for their Habitability  

E-Print Network (OSTI)

The tidal heating of hypothetical rocky (or terrestrial) extra-solar planets spans a wide range of values depending on stellar masses and initial orbits. Tidal heating may be sufficiently large (in many cases, in excess of radiogenic heating) and long-lived to drive plate tectonics, similar to the Earth's, which may enhance the planet's habitability. In other cases, excessive tidal heating may result in Io-like planets with violent volcanism, probably rendering them unsuitable for life. On water-rich planets, tidal heating may generate sub-surface oceans analogous to Europa's with similar prospects for habitability. Tidal heating may enhance the outgassing of volatiles, contributing to the formation and replenishment of a planet's atmosphere. To address these issues, we model the tidal heating and evolution of hypothetical extra-solar terrestrial planets. The results presented here constrain the orbital and physical properties required for planets to be habitable.

Brian Jackson; Rory Barnes; Richard Greenberg

2008-08-20T23:59:59.000Z

328

Tidal Heating of Terrestrial Extra-Solar Planets and Implications for their Habitability  

E-Print Network (OSTI)

The tidal heating of hypothetical rocky (or terrestrial) extra-solar planets spans a wide range of values depending on stellar masses and initial orbits. Tidal heating may be sufficiently large (in many cases, in excess of radiogenic heating) and long-lived to drive plate tectonics, similar to the Earth's, which may enhance the planet's habitability. In other cases, excessive tidal heating may result in Io-like planets with violent volcanism, probably rendering them unsuitable for life. On water-rich planets, tidal heating may generate sub-surface oceans analogous to Europa's with similar prospects for habitability. Tidal heating may enhance the outgassing of volatiles, contributing to the formation and replenishment of a planet's atmosphere. To address these issues, we model the tidal heating and evolution of hypothetical extra-solar terrestrial planets. The results presented here constrain the orbital and physical properties required for planets to be habitable.

Jackson, Brian; Greenberg, Richard

2008-01-01T23:59:59.000Z

329

Maine Deploys First U.S. Commercial, Grid-Connected Tidal Energy Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine Deploys First U.S. Commercial, Grid-Connected Tidal Energy Maine Deploys First U.S. Commercial, Grid-Connected Tidal Energy Project Maine Deploys First U.S. Commercial, Grid-Connected Tidal Energy Project July 24, 2012 - 1:12pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON -- Today, Energy Secretary Steven Chu recognized the nation's first commercial, grid-connected tidal energy project off the coast of Eastport, Maine. Leveraging a $10 million investment from the Energy Department, Ocean Renewable Power Company (ORPC) will deploy its first commercial tidal energy device into Cobscook Bay this summer. The project, which injected $14 million into the local economy and has supported more than 100 local and supply chain jobs, represents the first tidal energy project in the United States with long-term contracts to sell electricity

330

Fracture orientation analysis by the solid earth tidal strain method | Open  

Open Energy Info (EERE)

orientation analysis by the solid earth tidal strain method orientation analysis by the solid earth tidal strain method Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Fracture orientation analysis by the solid earth tidal strain method Details Activities (1) Areas (1) Regions (0) Abstract: A new practical method has been developed to estimate subsurface fracture orientation based on an analysis of solid earth tidal strains. The tidal strain fracture orientation technique is a passive method which has no depth limitation. The orientation of either natural or hydraulically stimulated fractures can be measured using either new or old static observation wells. Estimates for total compressibility and areal interconnected porosity can also be developed for reservoirs with matrix permeability using a combination of tidal and barometric strain analysis.

331

Hinsdale Wave Basin 1 | Open Energy Information  

Open Energy Info (EERE)

Hinsdale Wave Basin 1 Hinsdale Wave Basin 1 Jump to: navigation, search Basic Specifications Facility Name Hinsdale Wave Basin 1 Overseeing Organization Oregon State University Hydrodynamics Hydrodynamic Testing Facility Type Wave Basin Length(m) 104.0 Beam(m) 3.7 Depth(m) 4.6 Cost(per day) $3500 Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 1.8 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 10.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Monochromatic waves (cnoidal, Stokes, Airy), solitary waves, user-defined free surface timeseries or board displacement timeseries for random waves Wave Direction Uni-Directional Simulated Beach Yes Description of Beach 12' by 12' concrete slabs anchored to flume walls

332

Assessment of Strike of Adult Killer Whales by an OpenHydro Tidal Turbine Blade  

SciTech Connect

Report to DOE on an analysis to determine the effects of a potential impact to an endangered whale from tidal turbines proposed for deployment in Puget Sound.

Carlson, Thomas J.; Elster, Jennifer L.; Jones, Mark E.; Watson, Bruce E.; Copping, Andrea E.; Watkins, Michael L.; Jepsen, Richard A.; Metzinger, Kurt

2012-02-01T23:59:59.000Z

333

Hierarchical phase space structure of dark matter haloes: Tidal debris, caustics, and dark matter annihilation  

E-Print Network (OSTI)

Most of the mass content of dark matter haloes is expected to be in the form of tidal debris. The density

Bertschinger, Edmund

334

Modeling the Limits and Effects of Energy?Extraction from Tidal...  

NLE Websites -- All DOE Office Websites (Extended Search)

agree well with analytical solution by Garrett & Cummins (2004, 2005) Extractable Max Power Function of (tidal amplitude, volume flux) P model 2,154 MW; P analytical ...

335

Earth Tidal Analysis At Salton Sea Geothermal Area (1980) | Open Energy  

Open Energy Info (EERE)

80) 80) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Earth Tidal Analysis At Salton Sea Geothermal Area (1980) Exploration Activity Details Location Salton Sea Geothermal Area Exploration Technique Earth Tidal Analysis Activity Date 1980 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the reservoir response to tidal and barometric effects Notes Porosity-total compressibility product evaluation based on tidal strain response compares favorably with results based on conventional pumping techniques. Analysis of reservoir response to barometric loading using Auto Regressive Integrated Moving Average (ARIMA) stochastic modeling appears also to have potential use for the evaluation of reservoir parameters.

336

Current discontinuities on superconducting cosmic strings  

Science Conference Proceedings (OSTI)

The propagation of current perturbations on superconducting cosmic strings is considered. The conditions for the existence of discontinuities similar to shock waves have been found. The formulas relating the string parameters and the discontinuity propagation speed are derived. The current growth law in a shock wave is deduced. The propagation speeds of shock waves with arbitrary amplitudes are calculated. The reason why there are no shock waves in the case of time-like currents (in the 'electric' regime) is explained; this is attributable to the shock wave instability with respect to perturbations of the string world sheet.

Troyan, E., E-mail: et@iaaru.astronautiko.org; Vlasov, Yu. V. [Moscow Institute of Physics and Technology (Russian Federation)

2011-07-15T23:59:59.000Z

337

The Evolution of Inhomogeneous Wave Statistics through a Variable Medium  

Science Conference Proceedings (OSTI)

The interaction of ocean waves with variable currents and topography in coastal areas can result in inhomogeneous statistics because of coherent interferences, which affect wave-driven circulation and transport processes. Stochastic wave models, ...

P. B. Smit; T. T. Janssen

2013-08-01T23:59:59.000Z

338

The Diffraction of Kelvin Waves and Bores at Coastal Bends  

Science Conference Proceedings (OSTI)

Bends in coastal mountain ranges may diffract propagating atmospheric Kelvin waves and trapped coastal currents. Analytic solutions exist for the diffraction of both linear Kelvin waves and linear nonrotating gravity waves. Within the context of ...

William C. Skamarock; Joseph B. Klemp; Richard Rotunno

1996-05-01T23:59:59.000Z

339

Generation of Turbulence by Atmospheric Gravity Waves  

Science Conference Proceedings (OSTI)

The standard current criterion for the generation of turbulence by atmospheric gravity waves and for the associated limitation on wave growth is based upon the standard criterion for static instability of the unperturbed atmosphere, namely, that ...

Colin O. Hines

1988-04-01T23:59:59.000Z

340

Modeling and Control of a Marine Current Turbine Driven Doubly-Fed Induction Generator  

E-Print Network (OSTI)

with the modeling and the control of a variable speed DFIG-based marine current turbine with and without tidal synchronous speed); r = Rotor current frequency (r = s ­ ); = DFIG speed ( = /p); f = Viscosity coefficient; J = Rotor Inertia; p = Pole pair number. GLOSSARY MCT = Marine Current Turbine; DFIG = Doubly

Brest, Université de

Note: This page contains sample records for the topic "tidal wave current" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Wave Energy  

Energy.gov (U.S. Department of Energy (DOE))

Wave energy technologies extract energy directly from surface waves or from pressure fluctuations below the surface. Renewable energy analysts believe there is enough energy in ocean waves to provide up to 2 terawatts of electricity. (A terawatt is equal to a trillion watts.)

342

List of Tidal Energy Incentives | Open Energy Information  

Open Energy Info (EERE)

Incentives Incentives Jump to: navigation, search The following contains the list of 538 Tidal Energy Incentives. CSV (rows 1-500) CSV (rows 501-538) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Abatement of Air Pollution: Control of Carbon Dioxide Emissions/Carbon Dioxide Budget Trading Program (Connecticut) Environmental Regulations Connecticut Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Biomass/Biogas

343

Modeling Tidal Current Profiles and Vertical Mixing beneath Filchner–Ronne Ice Shelf, Antarctica  

Science Conference Proceedings (OSTI)

One of the warmest water masses beneath Filchner–Ronne Ice Shelf (FRIS) is dense, high salinity shelf water (HSSW) that flows into the sub-ice-shelf cavity from the ice front and occupies the lower portion of the water column. A one-dimensional ...

Keith Makinson

2002-01-01T23:59:59.000Z

344

Tidal Wetland Restoration in San Francisco Bay: History and Current Issues  

E-Print Network (OSTI)

p. Mount JF, Twiss R. 2005. Subsidence, sea level rise, andR, Wheeler G. 2008. Subsidence reversal in a re-establishedIreland RL. 1988. Land subsidence in the Santa Clara Valley,

Callaway, John C.; Parker, V. Thomas; Vasey, Michael C.; Schile, Lisa M.; Herbert, Ellen R.

2011-01-01T23:59:59.000Z

345

Ballooning of River-Plume Bulge and Its Stabilization by Tidal Currents  

Science Conference Proceedings (OSTI)

When freshwater debouches into an adjacent ocean, an anticyclonic eddy (bulge) is formed in front of the river mouth. It is well known that a bulge growing offshore (ballooning) hardly reaches a steady state in the absence of either ambient ...

Atsuhiko Isobe

2005-12-01T23:59:59.000Z

346

Refraction and Shoaling of Nonlinear Internal Waves at the Malin Shelf Break  

Science Conference Proceedings (OSTI)

This paper applies a numerical model to explain the refraction and shoaling of nonlinear internal waves observed at the Malin slope for a sequence of tidal cycles in the summer of 1995. The model is first order in dispersion and second order in ...

Justin Small

2003-12-01T23:59:59.000Z

347

Including realistic tidal deformations in binary black-hole initial data  

E-Print Network (OSTI)

A shortcoming of current binary black-hole initial data is the generation of spurious gravitational radiation, so-called junk radiation, when they are evolved. This problem is a consequence of an oversimplified modeling of the binary's physics in the initial data. Since junk radiation is not astrophysically realistic, it contaminates the actual waveforms of interest and poses a numerical nuisance. The work here presents a further step towards mitigating and understanding the origin of this issue, by incorporating post-Newtonian results in the construction of constraint-satisfying binary black-hole initial data. Here we focus on including realistic tidal deformations of the black holes in the initial data, by building on the method of superposing suitably chosen black hole metrics to compute the conformal data. We describe the details of our initial data for an equal-mass and nonspinning binary, compute the subsequent relaxation of horizon quantities in evolutions, and quantify the amount of junk radiation that is generated. These results are contrasted with those obtained with the most common choice of conformally flat (CF) initial data, as well as superposed Kerr-Schild (SKS) initial data. We find that when realistic tidal deformations are included, the early transients in the horizon geometries are significantly reduced, along with smaller deviations in the relaxed black hole masses and spins from their starting values. Likewise, the junk radiation content in the $l=2$ modes is reduced by a factor of $\\sim$1.7 relative to CF initial data, but only by a factor of $\\sim$1.2 relative to SKS initial data. More prominently, the junk radiation content in the $3\\leq l\\leq8$ modes is reduced by a factor of $\\sim$5 relative to CF initial data, and by a factor of $\\sim$2.4 relative to SKS initial data.

Tony Chu

2013-10-29T23:59:59.000Z

348

Sheets Wave Basin | Open Energy Information  

Open Energy Info (EERE)

Sheets Wave Basin Sheets Wave Basin Jump to: navigation, search Basic Specifications Facility Name Sheets Wave Basin Overseeing Organization University of Rhode Island Hydrodynamic Testing Facility Type Wave Basin Length(m) 30.0 Beam(m) 3.6 Depth(m) 1.8 Cost(per day) $750(+ Labor/Materials) Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 2.0 Length of Effective Tow(m) 25.0 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.3 Maximum Wave Height(m) at Wave Period(s) 3.0 Maximum Wave Length(m) 10 Wave Period Range(s) 3.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Pre-programmed for regular and irregular waves, but wavemaker is capable of any input motion. Wave Direction Uni-Directional

349

Haynes Wave Basin | Open Energy Information  

Open Energy Info (EERE)

Wave Basin Wave Basin Jump to: navigation, search Basic Specifications Facility Name Haynes Wave Basin Overseeing Organization Texas A&M (Haynes) Hydrodynamic Testing Facility Type Wave Basin Length(m) 38.1 Beam(m) 22.9 Depth(m) 1.5 Water Type Freshwater Cost(per day) $150/hour (excluding labor) Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.6 Maximum Wave Height(m) at Wave Period(s) 3.3 Maximum Wave Length(m) 10.7 Wave Period Range(s) 3.3 Current Velocity Range(m/s) 0.2 Programmable Wavemaking Yes Wavemaking Description Directional, irregular, any spectrum, cnoidal or solitary wave Wave Direction Both Simulated Beach Yes Description of Beach Stone Channel/Tunnel/Flume Channel/Tunnel/Flume None

350

The Effects of Wave Energy Converters on a Monochromatic Wave Climate  

E-Print Network (OSTI)

in wave energy converters as a possible means of providing renewable energy, the effects of a wave energy The interest in renewable energies is currently increasing due to the reported rise in global temperature is that of wave energy. The research is multifaceted and includes research on the efficiency of wave energy

Fox-Kemper, Baylor

351

Ship Waves and Lee Waves  

Science Conference Proceedings (OSTI)

Three-dimensional internal trapped lee wave modes produced by an isolated obstacle in a stratified fluid are shown to have dynamics analogous to surface ship waves on water of finite depth. Two models which allow for vertical trapping of wave ...

R. D. Sharman; M. G. Wurtele

1983-02-01T23:59:59.000Z

352

An HI Threshold for Star Cluster Formation in Tidal Debris  

E-Print Network (OSTI)

Super star clusters are young, compact star clusters found in the central regions of interacting galaxies. Recently, they have also been reported to preferentially form in certain tidal tails, but not in others. In this paper, we have used 21 cm HI maps and the Hubble Space Telescope Wide Field Planetary Camera 2 images of eight tidal tail regions of four merging galaxy pairs to compare the kiloparsec scale HI distribution with the location of super star clusters found from the optical images. For most of the tails, we find that there is an increase in super star cluster density with increasing projected HI column density, such that the star cluster density is highest when log N(HI) >= 20.6 cm^{-2}, but equal to the background count rate at lower HI column density. However, for two tails (NGC 4038/39 Pos A and NGC 3921), there is no significant star cluster population despite the presence of gas at high column density. This implies that the N(HI) threshold is a necessary but not sufficient condition for clust...

Maybhate, A; Hibbard, J E; Charlton, J C; Palma, C; Knierman, K A; English, J

2007-01-01T23:59:59.000Z

353

An HI Threshold for Star Cluster Formation in Tidal Debris  

E-Print Network (OSTI)

Super star clusters are young, compact star clusters found in the central regions of interacting galaxies. Recently, they have also been reported to preferentially form in certain tidal tails, but not in others. In this paper, we have used 21 cm HI maps and the Hubble Space Telescope Wide Field Planetary Camera 2 images of eight tidal tail regions of four merging galaxy pairs to compare the kiloparsec scale HI distribution with the location of super star clusters found from the optical images. For most of the tails, we find that there is an increase in super star cluster density with increasing projected HI column density, such that the star cluster density is highest when log N(HI) >= 20.6 cm^{-2}, but equal to the background count rate at lower HI column density. However, for two tails (NGC 4038/39 Pos A and NGC 3921), there is no significant star cluster population despite the presence of gas at high column density. This implies that the N(HI) threshold is a necessary but not sufficient condition for cluster formation. Gas volume density is likely to provide a more direct criterion for cluster formation, and other factors such as gas pressure or strength of encounter may also have an influence. Comparison of HI thresholds needed for formation of different types of stellar structures await higher resolution HI and optical observations of larger numbers of interacting galaxies.

A. Maybhate; J. Masiero; J. E. Hibbard; J. C. Charlton; C. Palma; K. A. Knierman; J. English

2007-07-24T23:59:59.000Z

354

RED CLUMP STARS IN THE SAGITTARIUS TIDAL STREAMS  

SciTech Connect

We have probed a section (l {approx} 150, b {approx} -60) of the trailing tidal arm of the Sagittarius dwarf spheroidal galaxy by identifying a sample of Red Clump (RC) stream stars. RC stars are not generally found in the halo field, but are found in significant numbers in both the Sagittarius galaxy and its tidal streams, making them excellent probes of stream characteristics. Our target sample was selected using photometric data from the Sloan Digital Sky Survey, Data Release 6, which was constrained in color to match the Sagittarius RC stars. Spectroscopic observations of the target stars were conducted at Kitt Peak National Observatory using the WIYN telescope. The resulting spectroscopic sample is magnitude limited and contains both main-sequence disk stars and evolved RC stars. We have developed a method to systematically separate these two stellar classes using kinematic information and a Bayesian approach for surface gravity determination. The resulting RC sample allows us to determine an absolute stellar density of {rho} = 2.7 {+-} 0.5 RC stars kpc{sup -3} at this location in the stream. Future measurements of stellar densities for a variety of populations and at various locations along the streams will lead to a much improved understanding of the original nature of the Sagittarius galaxy and the physical processes controlling its disruption and subsequent stream generation.

Carrell, Kenneth; Chen Yuqin [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Wilhelm, Ronald, E-mail: carrell@nao.cas.cn [Physics and Astronomy Department, University of Kentucky, Lexington, KY 40506 (United States)

2012-07-15T23:59:59.000Z

355

Southern/Northern California Coastal Processes Annotated Bibliography: Coast of California Storm and Tidal Waves Study  

E-Print Network (OSTI)

dispersion models, pulp and paper industrial wastes, trace metals, radiochemistry, pesticides and chlorine,

US Army Corps of Engineers, Los Angeles District, Planning Division, Coastal Resources Branch

1987-01-01T23:59:59.000Z

356

Boundary Mixing Associated with Tidal and Near-Inertial Internal Waves  

Science Conference Proceedings (OSTI)

Moorings deployed on the south (August–November 2002) and north (November 2002–June 2003) flanks of the Kaena Ridge, Hawaii, are used to document the flow variability associated with mixing within 200 m from the boundary, deep along the ridge, as ...

Jerome Aucan; Mark Merrifield

2008-06-01T23:59:59.000Z

357

Southern/Northern California Coastal Processes Annotated Bibliography: Coast of California Storm and Tidal Waves Study  

E-Print Network (OSTI)

S. Monterey Bay Cell Factors Affecting Gully Formation andFormation and Development of Beach Cusps on Del Monte Beach, Monterey,Monterey, CA, Master's Thesis, pages DATE: 12/01/68 ABSTRACT: Carmel Submarine Canyon is cut into the Santa Lucia granodiorite formation

US Army Corps of Engineers, Los Angeles District, Planning Division, Coastal Resources Branch

1987-01-01T23:59:59.000Z

358

Gravity Wave and Tidal Structures between 60 and 140 km Inferred from Space Shuttle Reentry Data  

Science Conference Proceedings (OSTI)

This study presents an analysis of density measurements made using high-resolution accelerometers aboard several space shuttles at altitudes from 60 to 140 km during reentry into the earth's atmosphere. The observed density fluctuations are ...

David C. Fritts; Ding-Yi Wang; Robert C. Blanchard

1993-03-01T23:59:59.000Z

359

Southern/Northern California Coastal Processes Annotated Bibliography: Coast of California Storm and Tidal Waves Study  

E-Print Network (OSTI)

construction of an offshore tanker platform at Humboldt Bay.offshore presented a particular challenge. A shallow-water work platform,

US Army Corps of Engineers, Los Angeles District, Planning Division, Coastal Resources Branch

1987-01-01T23:59:59.000Z

360

Southern/Northern California Coastal Processes Annotated Bibliography: Coast of California Storm and Tidal Waves Study  

E-Print Network (OSTI)

Specialty Conference, Oct. ASCE, N. Y. , Chapter 33 DATE:Coastal Zone '78, Vol. II, ASCE, N.Y. , pp. 943-964 DATE:California, March 1978; ASCE, N. Y. , Vol. I, pp. 402-412

US Army Corps of Engineers, Los Angeles District, Planning Division, Coastal Resources Branch

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "tidal wave current" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Southern/Northern California Coastal Processes Annotated Bibliography: Coast of California Storm and Tidal Waves Study  

E-Print Network (OSTI)

Describes damages to California coast from series of stormswave climate, precipitation California, South Coast Region,Analysis of the Southern California Santa Ana of January 15-

US Army Corps of Engineers, Los Angeles District, Planning Division, Coastal Resources Branch

1987-01-01T23:59:59.000Z

362

Southern/Northern California Coastal Processes Annotated Bibliography: Coast of California Storm and Tidal Waves Study  

E-Print Network (OSTI)

Pollution Control Board, Sacramento, CA, Annual Report, 110of Mines and Geology, Sacramento, CA, May 1973, Volume 26,Mines and Geology, Sacramento, CA, Volume 32, No. 4, Pages

US Army Corps of Engineers, Los Angeles District, Planning Division, Coastal Resources Branch

1987-01-01T23:59:59.000Z

363

Marine Current Turbines Ltd | Open Energy Information  

Open Energy Info (EERE)

Turbines Ltd Turbines Ltd Jump to: navigation, search Name Marine Current Turbines Ltd (MCT) Place Bristol, United Kingdom Zip BS34 8PD Sector Marine and Hydrokinetic Product Developer of tidal stream turbine technology for exploiting flowing water in general and tidal streams in particular. Coordinates 51.454513°, -2.58791° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.454513,"lon":-2.58791,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

364

Mapping the tidal motion of an Antarctic ice shelf from space  

E-Print Network (OSTI)

grounded and floating ice). Loss of clarity of phase cycles (noise) ­ likely due to changes on the ice-eyes" suggests a ridgeline is running under the ice. The phase (colour) cycles represent the difference in tidalMapping the tidal motion of an Antarctic ice shelf from space Malcolm McMillan1 , Andrew Shepherd

365

Tidal Energy Dissipation at the Sill of Sechelt Inlet, British Columbia  

Science Conference Proceedings (OSTI)

The energy budget of a tidally active, shallow silled fjord is discussed. Constriction of the flow over the shallow sill causes a reduction in tidal amplitude and a phase lag across the sill. A generalized expression for the total power extracted ...

Scott W. Tinis; Stephen Pond

2001-12-01T23:59:59.000Z

366

Transport and Resuspension of Fine Particles in a Tidal Boundary Layer near a Small Peninsula  

Science Conference Proceedings (OSTI)

The authors present a theory on the transport and resuspension of fine particles in a tidal boundary layer when the ambient tidal flow is nonuniform due to a peninsula along the coastline. As a first step toward better physical understanding the ...

Chiang C. Mei; Chimin Chian; Feng Ye

1998-11-01T23:59:59.000Z

367

Cyclonic Spirals in Tidally Accelerating Bottom Boundary Layers in the Zhujiang (Pearl River) Estuary  

Science Conference Proceedings (OSTI)

A velocity spiral in the tidally accelerating bottom boundary layer (BBL) was defined as a directional shear of the prevailing flow with the elevation and the tidal phase. However, so far there is no information on the spiral for the oscillatory ...

Jiaxue Wu; Huan Liu; Jie Ren; Junjie Deng

2011-06-01T23:59:59.000Z

368

Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine Project Takes Historic Step Forward in U.S. Tidal Energy Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment May 4, 2012 - 12:11pm Addthis Cobscook Bay, Maine, is the site of a tidal energy pilot project led by Ocean Renewable Power Company. | Photo courtesy of Ocean Renewable Power Company. Cobscook Bay, Maine, is the site of a tidal energy pilot project led by Ocean Renewable Power Company. | Photo courtesy of Ocean Renewable Power Company. Hoyt Battey Water Power Market Acceleration and Deployment Team Lead, Wind and Water Power Program What does this project do? ORPC will deploy cross flow turbine devices in Cobscook Bay, at the mouth of the Bay of Fundy. These devices are designed to generate electricity over a range of

369

Earth Tidal Analysis At Raft River Geothermal Area (1982) | Open Energy  

Open Energy Info (EERE)

Tidal Analysis At Raft River Geothermal Area Tidal Analysis At Raft River Geothermal Area (1982) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Earth Tidal Analysis Activity Date 1982 Usefulness not indicated DOE-funding Unknown Exploration Basis To estimate subsurface fracture orientation based on an analysis of solid earth tidal strains. Notes A new practical method has been developed. The tidal strain fracture orientation technique is a passive method which has no depth limitation. The orientation of either natural or hydraulically stimulated fractures can be measured using either new or old static observation wells. Estimates for total compressibility and areal interconnected porosity can also be developed for reservoirs with matrix permeability using a combination of

370

Gravitational signals due to tidal interactions between white dwarfs and black holes  

E-Print Network (OSTI)

In this paper we compute the gravitational signal emitted when a white dwarf moves around a black hole on a closed or open orbit using the affine model approach. We compare the orbital and the tidal contributions to the signal, assuming that the star moves in a safe region where, although very close to the black hole, the strength of the tidal interaction is insufficient to provoque the stellar disruption. We show that for all considered orbits the tidal signal presents sharp peaks corresponding to the excitation of the star non radial oscillation modes, the amplitude of which depends on how deep the star penetrates the black hole tidal radius and on the type of orbit. Further structure is added to the emitted signal by the coupling between the orbital and the tidal motion.

C. Casalvieri; V. Ferrari; A. Stavridis

2005-08-08T23:59:59.000Z

371

Gravitational signals due to tidal interactions between white dwarfs and black holes  

E-Print Network (OSTI)

In this paper we compute the gravitational signal emitted when a white dwarf moves around a black hole on a closed or open orbit using the affine model approach. We compare the orbital and the tidal contributions to the signal, assuming that the star moves in a safe region where, although very close to the black hole, the strength of the tidal interaction is insufficient to provoque the stellar disruption. We show that for all considered orbits the tidal signal presents sharp peaks corresponding to the excitation of the star non radial oscillation modes, the amplitude of which depends on how deep the star penetrates the black hole tidal radius and on the type of orbit. Further structure is added to the emitted signal by the coupling between the orbital and the tidal motion.

Casalvieri, C; Stavridis, A

2006-01-01T23:59:59.000Z

372

Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine Project Takes Historic Step Forward in U.S. Tidal Energy Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment May 4, 2012 - 12:11pm Addthis Cobscook Bay, Maine, is the site of a tidal energy pilot project led by Ocean Renewable Power Company. | Photo courtesy of Ocean Renewable Power Company. Cobscook Bay, Maine, is the site of a tidal energy pilot project led by Ocean Renewable Power Company. | Photo courtesy of Ocean Renewable Power Company. Hoyt Battey Water Power Market Acceleration and Deployment Team Lead, Wind and Water Power Program What does this project do? ORPC will deploy cross flow turbine devices in Cobscook Bay, at the mouth of the Bay of Fundy. These devices are designed to generate electricity over a range of

373

Equatorial Wave-Mean Flow Interaction: The Long Rossby Waves  

Science Conference Proceedings (OSTI)

The interaction of long equatorial Rossby waves with mean zonal currents in the ocean is investigated in a continuously stratified finite difference numerical model. The model allows for realistic specification of the mean state including both ...

Jeffrey A. Proehl

1990-02-01T23:59:59.000Z

374

Evolution of Persistent Wave Groups  

Science Conference Proceedings (OSTI)

During the near-field leg of the Hawaiian Ocean-Mixing Experiment (HOME-NF), short, steep surface wave groups were observed that elicited strong group-forced responses in the wave-filtered surface current field, as reported by Smith. Some of ...

Jerome A. Smith; Coralie Brulefert

2010-01-01T23:59:59.000Z

375

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

energy from waves, tides, and currents. Together, these projects will increase the power production and reliability of wave and tidal devices and help gather valuable data...

376

Wave Energy Extraction from buoys  

E-Print Network (OSTI)

Different types of Wave Energy Converters currently tested or under development are using the vertical movement of floating bodies to generate electricity. For commercial applications, arrays have to be considered in order ...

Garnaud, Xavier

2009-01-01T23:59:59.000Z

377

Explosive Instability of Vorticity Waves  

Science Conference Proceedings (OSTI)

The weakly nonlinear dynamics of “vorticity waves” (VW), specific wavelike motions occurring nearshore in the presence of an alongshore shear current is examined. By means of a standard asymptotic technique starting with the shallow-water ...

V. I. Shrira; V. V. Voronovich; N. G. Kozhelupova

1997-04-01T23:59:59.000Z

378

Alden Wave Basin | Open Energy Information  

Open Energy Info (EERE)

Wave Basin Wave Basin Jump to: navigation, search Basic Specifications Facility Name Alden Wave Basin Overseeing Organization Alden Research Laboratory, Inc Hydrodynamic Testing Facility Type Wave Basin Length(m) 33.5 Beam(m) 21.3 Depth(m) 1.2 Water Type Freshwater Cost(per day) Depends on study Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.3 Maximum Wave Height(m) at Wave Period(s) 1.0 Maximum Wave Length(m) 1.8 Wave Period Range(s) 1.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Period adjustable electronically, height adjustable mechanically Wave Direction Both Simulated Beach Yes Description of Beach Designed as needed using commercially available sand/sediment

379

Tidal disruption flares from stars on eccentric orbits  

E-Print Network (OSTI)

We study tidal disruption and subsequent mass fallback for stars approaching supermassive black holes on bound orbits, by performing three dimensional Smoothed Particle Hydrodynamics simulations with a pseudo-Newtonian potential. We find that the mass fallback rate decays with the expected -5/3 power of time for parabolic orbits, albeit with a slight deviation due to the self-gravity of the stellar debris. For eccentric orbits, however, there is a critical value of the orbital eccentricity, significantly below which all of the stellar debris is bound to the supermassive black hole. All the mass therefore falls back to the supermassive black hole in a much shorter time than in the standard, parabolic case. The resultant mass fallback rate considerably exceeds the Eddington accretion rate and substantially differs from the -5/3 power of time.

Kimitake Hayasaki; Nicholas Stone; Abraham Loeb

2012-10-03T23:59:59.000Z

380

Observing Lense-Thirring Precession in Tidal Disruption Flares  

E-Print Network (OSTI)

When a star is tidally disrupted by a supermassive black hole (SMBH), the streams of liberated gas form an accretion disk after their return to pericenter. We demonstrate that Lense-Thirring precession in the spacetime around a rotating SMBH can produce significant time evolution of the disk angular momentum vector, due to both the periodic precession of the disk and the nonperiodic, differential precession of the bound debris streams. Jet precession and periodic modulation of disk luminosity are possible consequences. The persistence of the jetted X-ray emission in the Swift J164449.3+573451 flare suggests that the jet axis was aligned with the spin axis of the SMBH during this event.

Nicholas Stone; Abraham Loeb

2011-09-29T23:59:59.000Z

Note: This page contains sample records for the topic "tidal wave current" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Current Meter Performance in the Surf Zone  

Science Conference Proceedings (OSTI)

Statistics of the nearshore velocity field in the wind–wave frequency band estimated from acoustic Doppler, acoustic travel time, and electromagnetic current meters are similar. Specifically, current meters deployed 25–100 cm above the seafloor ...

Steve Elgar; Britt Raubenheimer; R. T. Guza

2001-10-01T23:59:59.000Z

382

Tidal Energy System for On-Shore Power Generation  

DOE Green Energy (OSTI)

Addressing the urgent need to develop LCOE competitive renewable energy solutions for US energy security and to replace fossil-fuel generation with the associated benefits to environment impacts including a reduction in CO2 emissions, this Project focused on the advantages of using hydraulic energy transfer (HET) in large-scale Marine Hydrokinetic (MHK) systems for harvesting off-shore tidal energy in US waters. A recent DOE resource assessment, identifies water power resources have a potential to meet 15% of the US electric supply by 2030, with MHK technologies being a major component. The work covered a TRL-4 laboratory proof-in-concept demonstration plus modeling of a 15MW full scale system based on an approach patented by NASA-JPL, in which submerged high-ratio gearboxes and electrical generators in conventional MHK turbine systems are replaced by a submerged hydraulic radial pump coupled to on-shore hydraulic motors driving a generator. The advantages are; first, the mean-time-between-failure (MTBF), or maintenance, can be extended from approximately 1 to 5 years and second, the range of tidal flow speeds which can be efficiently harvested can be extended beyond that of a conventional submerged generator. The approach uses scalable, commercial-off-the-shelf (COTS) components, facilitating scale-up and commercialization. All the objectives of the Project have been successfully met (1) A TRL4 system was designed, constructed and tested. It simulates a tidal energy turbine, with a 2-m diameter blade in up to a 2.9 m/sec flow. The system consists of a drive motor assembly providing appropriate torque and RPM, attached to a radial piston pump. The pump circulates pressurized, environmentally-friendly, HEES hydraulic fluid in a closed loop to an axial piston motor which drives an electrical generator, with a resistive load. The performance of the components, subsystems and system were evaluated during simulated tidal cycles. The pump is contained in a tank for immersion testing. The COTS pump and motor were selected to scale to MW size and were oversized for the TRL-4 demonstration, operating at only 1-6% of rated values. Nevertheless, in for 2-18 kW drive power, in agreement with manufacturer performance data, we measured efficiencies of 85-90% and 75-80% for the pump and motor, respectively. These efficiencies being 95-96% at higher operating powers. (2) Two follow-on paths were identified. In both cases conventional turbine systems can be modified, replacing existing gear box and generator with a hydraulic pump and on-shore components. On a conventional path, a TRL5/6 15kW turbine system can be engineered and tested on a barge at an existing site in Maine. Alternatively, on an accelerated path, a TRL-8 100kW system can be engineered and tested by modifying a team member's existing MHK turbines, with barge and grid-connected test sites in-place. On both paths the work can be expedited and cost effective by reusing TRL-4 components, modifying existing turbines and using established test sites. (3) Sizing, performance modeling and costing of a scaled 15MW system, suitable for operation in Maine's Western Passage, was performed. COTS components are identified and the performance projections are favorable. The estimated LCOE is comparable to wind generation with peak production at high demand times. (4) We determined that a similar HET approach can be extended to on-shore and off-shore wind turbine systems. These are very large energy resources which can be addressed in parallel for even great National benefit. (5) Preliminary results on this project were presented at two International Conferences on renewable energy in 2012, providing a timely dissemination of information. We have thus demonstrated a proof-in-concept of a novel, tidal HET system that eliminates all submerged gears and electronics to improve reliability. Hydraulic pump efficiencies of 90% have been confirmed in simulated tidal flows between 1 and 3 m/s, and at only 1-6% of rated power. Total system efficiencies have also been modeled, up to MW-scale, for ti

Bruce, Allan J

2012-06-26T23:59:59.000Z

383

Tidal Energy System for On-Shore Power Generation  

SciTech Connect

Addressing the urgent need to develop LCOE competitive renewable energy solutions for US energy security and to replace fossil-fuel generation with the associated benefits to environment impacts including a reduction in CO2 emissions, this Project focused on the advantages of using hydraulic energy transfer (HET) in large-scale Marine Hydrokinetic (MHK) systems for harvesting off-shore tidal energy in US waters. A recent DOE resource assessment, identifies water power resources have a potential to meet 15% of the US electric supply by 2030, with MHK technologies being a major component. The work covered a TRL-4 laboratory proof-in-concept demonstration plus modeling of a 15MW full scale system based on an approach patented by NASA-JPL, in which submerged high-ratio gearboxes and electrical generators in conventional MHK turbine systems are replaced by a submerged hydraulic radial pump coupled to on-shore hydraulic motors driving a generator. The advantages are; first, the mean-time-between-failure (MTBF), or maintenance, can be extended from approximately 1 to 5 years and second, the range of tidal flow speeds which can be efficiently harvested can be extended beyond that of a conventional submerged generator. The approach uses scalable, commercial-off-the-shelf (COTS) components, facilitating scale-up and commercialization. All the objectives of the Project have been successfully met (1) A TRL4 system was designed, constructed and tested. It simulates a tidal energy turbine, with a 2-m diameter blade in up to a 2.9 m/sec flow. The system consists of a drive motor assembly providing appropriate torque and RPM, attached to a radial piston pump. The pump circulates pressurized, environmentally-friendly, HEES hydraulic fluid in a closed loop to an axial piston motor which drives an electrical generator, with a resistive load. The performance of the components, subsystems and system were evaluated during simulated tidal cycles. The pump is contained in a tank for immersion testing. The COTS pump and motor were selected to scale to MW size and were oversized for the TRL-4 demonstration, operating at only 1-6% of rated values. Nevertheless, in for 2-18 kW drive power, in agreement with manufacturer performance data, we measured efficiencies of 85-90% and 75-80% for the pump and motor, respectively. These efficiencies being 95-96% at higher operating powers. (2) Two follow-on paths were identified. In both cases conventional turbine systems can be modified, replacing existing gear box and generator with a hydraulic pump and on-shore components. On a conventional path, a TRL5/6 15kW turbine system can be engineered and tested on a barge at an existing site in Maine. Alternatively, on an accelerated path, a TRL-8 100kW system can be engineered and tested by modifying a team member's existing MHK turbines, with barge and grid-connected test sites in-place. On both paths the work can be expedited and cost effective by reusing TRL-4 components, modifying existing turbines and using established test sites. (3) Sizing, performance modeling and costing of a scaled 15MW system, suitable for operation in Maine's Western Passage, was performed. COTS components are identified and the performance projections are favorable. The estimated LCOE is comparable to wind generation with peak production at high demand times. (4) We determined that a similar HET approach can be extended to on-shore and off-shore wind turbine systems. These are very large energy resources which can be addressed in parallel for even great National benefit. (5) Preliminary results on this project were presented at two International Conferences on renewable energy in 2012, providing a timely dissemination of information. We have thus demonstrated a proof-in-concept of a novel, tidal HET system that eliminates all submerged gears and electronics to improve reliability. Hydraulic pump efficiencies of 90% have been confirmed in simulated tidal flows between 1 and 3 m/s, and at only 1-6% of rated power. Total system efficiencies have also been modeled, up to MW-sca

Bruce, Allan J

2012-06-26T23:59:59.000Z

384

Evaluation of subsurface fracture geometry using fluid pressure response to solid earth tidal strain  

DOE Green Energy (OSTI)

The nature of solid earth tidal strain and surface load deformation due to the influence of gravitational forces and barometric pressure loading are discussed. The pore pressure response to these types of deformation is investigated in detail, including the cases of a confined aquifer intersected by a well and a discrete fracture intersected by a well. The integration of the tidal response method with conventional pump tests in order to independently calculate the hydraulic parameters of the fracture-formation system is discussed. How advanced spectral analysis methods, coupled with correlation analysis can be used to extract the tidal response signals from the pressure record is shown. Uncertainties in the signals are estimated using various information-theoretic methods in order to place a confidence level at which we can safely assume that the measured signal is indeed of tidal origin. A detailed case study of the method carried out at the Raft River Geothermal Reservoir in Idaho is presented. All of the analyzed tidal data is presented and the results of the computed fracture orientation using the solid earth tidal strain approach are compared with the extensive field work carried out at Raft River over the past decade. The direction that future work in the continuing development of this technology should take is discussed, including: (1) the present need for an expanded data base for the confirmation of present tidal strain response models, and (2) improvement in response models.

Hanson, J.M.

1984-09-01T23:59:59.000Z

385

Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2007 Annual Report.  

DOE Green Energy (OSTI)

This document is the first annual report for the study titled 'Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta in the Lower Columbia River'. Hereafter, we refer to this research as the Tidal Freshwater Monitoring (TFM) Study. The study is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, U.S. Army Corps of Engineers, U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act as a result of operation of the Federal Columbia River Power System (FCRPS). The project is performed under the auspices of the Northwest Power and Conservation Council's Columbia Basin Fish and Wildlife Program. The goal of the 2007-2009 Tidal Freshwater Monitoring Study is to answer the following questions: In what types of habitats within the tidal freshwater area of the lower Columbia River and estuary (LCRE; Figure 1) are yearling and subyearling salmonids found, when are they present, and under what environmental conditions?1 And, what is the ecological importance2 of shallow (0-5 m) tidal freshwater habitats to the recovery of Upper Columbia River spring Chinook salmon and steelhead and Snake River fall Chinook salmon? Research in 2007 focused mainly on the first question, with fish stock identification data providing some indication of Chinook salmon presence at the variety of habitat types sampled. The objectives and sub-objectives for the 2007 study were as follows: (1) Habitat and Fish Community Characteristics-Provide basic data on habitat and fish community characteristics for yearling and subyearling salmonids at selected sites in the tidal freshwater reach in the vicinity of the Sandy River delta. (1a) Characterize vegetation assemblage percent cover, conventional water quality, substrate composition, and beach slope at each of six sampling sites in various tidal freshwater habitat types. (1b) Determine fish community characteristics, including species composition, abundance, and temporal and spatial distributions. (1c) Estimate the stock of origin for the yearling and subyearling Chinook salmon captured at the sampling sites using genetic analysis. (1d) Statistically assess the relationship between salmonid abundance and habitat parameters, including ancillary variables such as temperature and river stage. (2) Acoustic Telemetry Monitoring-Assess feasibility of applying Juvenile Salmon Acoustic Telemetry System (JSATS) technology to determine migration characteristics from upriver of Bonneville Dam through the study area (vicinity of the Sandy River delta/Washougal River confluence). (2a) Determine species composition, release locations, and distributions of JSATS-tagged fish. (2b) Estimate run timing, residence times, and migration pathways for these fish. Additionally, both objectives serve the purpose of baseline research for a potential tidal rechannelization project on the Sandy River. The U.S. Forest Service, in partnership with the Bonneville Power Administration and the U.S. Army Corps of Engineers, is currently pursuing reconnection of the east (relict) Sandy River channel with the current channel to improve fish and wildlife habitat in the Sandy River delta. Our study design and the location of sampling sites in this reach provide baseline data to evaluate the potential restoration.

Sobocinski, Kathryn; Johnson, Gary; Sather, Nichole [Pacific Northwest National Laboratory

2008-03-17T23:59:59.000Z

386

Coastal Countercurrent and Mesoscale Eddy Formation by Tidal Rectification near an Oceanic Cape  

Science Conference Proceedings (OSTI)

Cape St. James is an extensive triangular-shaped promontory located in a tidally energetic region at the southern tip of the Queen Charlotte Islands approximately 150 km off the mainland coast or British Columbia. Several years of oceanographic ...

Richard E. Thomson; Robert E. Wilson

1987-11-01T23:59:59.000Z

387

The Effect of Channel Length on the Residual Circulation in Tidally Dominated Channels  

Science Conference Proceedings (OSTI)

With an analytic model, this paper describes the subtidal circulation in tidally dominated channels of different lengths, with arbitrary lateral depth variations. The focus is on an important parameter associated with the reversal of the exchange ...

Chunyan Li; James O’Donnell

2005-10-01T23:59:59.000Z

388

Internal Hydraulic Jumps and Overturning Generated by Tidal Flow over a Tall Steep Ridge  

Science Conference Proceedings (OSTI)

Recent observations from the Hawaiian Ridge indicate episodes of overturning and strong dissipation coupled with the tidal cycle near the top of the ridge. Simulations with realistic topography and stratification suggest that this overturning has ...

Sonya Legg; Jody Klymak

2008-09-01T23:59:59.000Z

389

Surface Pressure Response to Elevated Tidal Heating Sources: Comparison of Earth and Mars  

Science Conference Proceedings (OSTI)

Modern atmospheric tidal theory has shown that the dominance of the terrestrial semidiurnal surface pressure oscillation, relative to its diurnal counterpart, is the result of the elevated heating source generated by solar heating of ...

Richard W. Zurek

1980-05-01T23:59:59.000Z

390

Residual Sediment Fluxes in Weakly-to-Periodically Stratified Estuaries and Tidal Inlets  

Science Conference Proceedings (OSTI)

In this idealized numerical modeling study, the composition of residual sediment fluxes in energetic (e.g., weakly or periodically stratified) tidal estuaries is investigated by means of one-dimensional water column models, with some focus on the ...

Hans Burchard; Henk M. Schuttelaars; W. Rockwell Geyer

2013-09-01T23:59:59.000Z

391

A Numerical Study of Stratified Tidal Rectification over Finite-Amplitude Banks. Part II: Georges Bank  

Science Conference Proceedings (OSTI)

Tidal rectification over an idealized two-dimensional cross section of Georges Bank, which is a large, shallow, elongated submarine bank in the Gulf of Maine, is studied using a primitive equation coastal ocean circulation model. In the ...

Changsheng Chen; Robert C. Beardsley; Richard Limeburner

1995-09-01T23:59:59.000Z

392

The Harmonic Constant Datum Method: Options for Overcoming Datum Discontinuities at Mixed–Diurnal Tidal Transitions  

Science Conference Proceedings (OSTI)

The harmonic constant datum (HCD) method is a computationally efficient way of estimating tidal datums relative to mean sea level, without the need to compute long time series. However, datum discontinuities can occur between mixed and diurnal ...

Harold O. Mofjeld; Angie J. Venturato; Frank I. González; Vasily V. Titov; Jean C. Newman

2004-01-01T23:59:59.000Z

393

Analysis of Tidal Straining as Driver for Estuarine Circulation in Well-Mixed Estuaries  

Science Conference Proceedings (OSTI)

Tidal straining, which can mathematically be described as the covariance between eddy viscosity and vertical shear of the along-channel velocity component, has been acknowledged as one of the major drivers for estuarine circulation in channelized ...

Hans Burchard; Henk M. Schuttelaars

2012-02-01T23:59:59.000Z

394

The Interaction of Tides with the Sill of a Tidally Energetic Inlet  

Science Conference Proceedings (OSTI)

The interaction of the tides with the sill of a tidally energetic inlet, Observatory Inlet, British Columbia, is studied. Because of temporal variations in the stratification of the inlet, a substantial seasonal variation is observed in the power ...

Michael W. Stacey

1984-06-01T23:59:59.000Z

395

A Study of Tidal Energy Dissipation and Bottom Stress in an Estuary  

Science Conference Proceedings (OSTI)

A Method for inferring an area-averaged bottom stress and energy dissipation rate in a tidal estuarine channel is presented. The one-dimensional continuity and momentum relations are developed using simplifying assumptions appropriate for a well-...

Wendell S. Brown; Richard P. Trask

1980-11-01T23:59:59.000Z

396

The Cycle of Turbulent Dissipation in the Presence of Tidal Straining  

Science Conference Proceedings (OSTI)

In regions of large horizontal density gradient, tidal straining acts to produce a periodic component of stratification that interacts with turbulent mixing to control water column structure and flow. A 25-h series of measurements of the rate of ...

Tom P. Rippeth; Neil R. Fisher; John H. Simpson

2001-08-01T23:59:59.000Z

397

General Spectral Computations of the Nonlinear Shallow Water Tidal Interactions within the Bight of Abaco  

Science Conference Proceedings (OSTI)

An iterative frequency–time domain finite element tidal circulation model is applied to the Bight of Abaco in the Bahamas to study the nonlinear interactions that occur between the various astronomical, overtide and compound-tide constituents. ...

J. J. Westerink; K. D. Stolzenbach; J. J. Connor

1989-09-01T23:59:59.000Z

398

Abyssal Penetration and Bottom Reflection of Internal Tidal Energy in the Bay of Biscay  

Science Conference Proceedings (OSTI)

This paper describes field observations in the Bay of Biscay, and presents convincing evidence for the existence of a broad beam of internal tidal energy propagating downward from a source region on the upper continental slopes, which, after ...

R. D. Pingree; A. L. New

1991-01-01T23:59:59.000Z

399

EA-1949: Admiralty Inlet Pilot Tidal Project, Puget Sound, WA | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

49: Admiralty Inlet Pilot Tidal Project, Puget Sound, WA 49: Admiralty Inlet Pilot Tidal Project, Puget Sound, WA EA-1949: Admiralty Inlet Pilot Tidal Project, Puget Sound, WA SUMMARY This EA analyzes the potential environmental effects of a proposal by the Public Utility District No. 1 of Snowhomish County, Washington to construct and operate the Admiralty Inlet Tidal Project. The proposed 680-kilowatt project would be located on the east side of Admiralty Inlet in Puget Sound, Washington, about 1 kilometer west of Whidbey Island, entirely within Island County, Washington. The Federal Energy Regulatory Commission (FERC) is the lead agency. DOE is a cooperating agency. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 9, 2013 EA-1949: FERC Notice of Availability Errata Sheet

400

MHK Technologies/Sihwa tidal barrage power plant | Open Energy Information  

Open Energy Info (EERE)

Sihwa tidal barrage power plant Sihwa tidal barrage power plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Sihwa tidal barrage power plant.jpg Technology Profile Technology Type Click here Overtopping Technology Readiness Level Click here TRL 9 Commercial Scale Production Application Technology Description Sihwa TBPP operates only on flood tide generation which produces electrical power during the flood tide the water is discharged back from basin to sea during ebb tide Technology Dimensions Technology Nameplate Capacity (MW) 254 Device Testing Date Submitted 59:41.3 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Sihwa_tidal_barrage_power_plant&oldid=681654

Note: This page contains sample records for the topic "tidal wave current" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Residual Sediment Fluxes in Weakly-to-Periodically Stratified Estuaries and Tidal Inlets  

Science Conference Proceedings (OSTI)

In this idealized numerical modeling study, the composition of residual sediment fluxes in energetic (e.g., weakly stratified or periodically stratified) tidal estuaries is investigated by means of one-dimensional water column models, with some ...

Hans Burchard; Henk M. Schuttelaars; W. Rockwell Geyer

402

Tidal disruptions in circumbinary discs (I): Star formation, dynamics, and binary evolution  

E-Print Network (OSTI)

In our current interpretation of the hierarchical structure of the universe it is well established that galaxies collide and merge with each other during their lifetime. If massive black holes (MBHs) reside in galactic centres, we expect them to form binaries in galactic nuclei surrounded by a circumbinary disc. If cooling is efficient enough, the gas in the disc will clump and trigger stellar formation in situ. In this first paper we address the evolution of the binary under the influence of the newly formed stars, which form individually and also clustered. We use SPH techniques to evolve the gas in the circumbinary disc and to study the phase of star formation. When the amount of gas in the disc is negligible, we further evolve the system with a high-accurate direct-summation $N-$body code to follow the evolution of the stars, the innermost binary and tidal disruption events (TDEs). For this, we modify the direct N-body code to (i) include treatment of TDEs and to (ii) include "gas cloud particles" that mimic the gas, so that the stellar clusters do not disolve when we follow their infall on to the MBHs. We find that the amount of stars disrupted by either infalling stellar clusters or individual stars is as large as 10^{-4}/yr per binary, higher than expected for typical galaxies.

Pau Amaro-Seoane; Patrick Brem; Jorge Cuadra

2012-12-11T23:59:59.000Z

403

DeFrees Large Wave Basin | Open Energy Information  

Open Energy Info (EERE)

Large Wave Basin Large Wave Basin Jump to: navigation, search Basic Specifications Facility Name DeFrees Large Wave Basin Overseeing Organization Cornell University Hydrodynamics Hydrodynamic Testing Facility Type Wave Basin Length(m) 32.0 Beam(m) 0.6 Depth(m) 0.9 Water Type Freshwater Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.5 Maximum Wave Height(m) at Wave Period(s) 3.0 Maximum Wave Length(m) 64 Wave Period Range(s) 3.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Computer controlled 4m hydraulic wave paddle stroke allows a series of solitary waves to be generated; arbitrary wave shape possible Wave Direction Uni-Directional Simulated Beach Yes

404

THE SHAPES OF MILKY WAY SATELLITES: LOOKING FOR SIGNATURES OF TIDAL STIRRING  

Science Conference Proceedings (OSTI)

We study the shapes of Milky Way satellites in the context of the tidal stirring scenario for the formation of dwarf spheroidal galaxies. The standard procedures used to measure shapes involve smoothing and binning of data and thus may not be sufficient to detect structural properties such as bars, which are usually subtle in low surface brightness systems. Taking advantage of the fact that in nearby dwarfs photometry of individual stars is available, we introduce discrete measures of shape based on the two-dimensional inertia tensor and the Fourier bar mode. We apply these measures of shape first to a variety of simulated dwarf galaxies formed via tidal stirring of disks embedded in dark matter halos and orbiting the Milky Way. In addition to strong mass loss and randomization of stellar orbits, the disks undergo morphological transformation that typically involves the formation of a triaxial bar after the first pericenter passage. These tidally induced bars persist for a few Gyr before being shortened toward a more spherical shape if the tidal force is strong enough. We test this prediction by measuring in a similar way the shape of nearby dwarf galaxies, satellites of the Milky Way. We detect inner bars in Ursa Minor, Sagittarius, Large Magellanic Cloud, and possibly Carina. In addition, 6 out of 11 dwarfs that we studied show elongated stellar distributions in the outer parts that may signify transition to tidal tails. We thus find the shapes of Milky Way satellites to be consistent with the predictions of the tidal stirring model.

Lokas, Ewa L. [Nicolaus Copernicus Astronomical Center, 00-716 Warsaw (Poland); Majewski, Steven R.; Nidever, David L. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States); Kazantzidis, Stelios [Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210 (United States); Mayer, Lucio [Institute for Theoretical Physics, University of Zuerich, CH-8057 Zuerich (Switzerland); Carlin, Jeffrey L. [Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, NY 12180-3590 (United States); Moustakas, Leonidas A., E-mail: lokas@camk.edu.pl [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

2012-05-20T23:59:59.000Z

405

Intrusive gravity currents in two-layer  

E-Print Network (OSTI)

Intrusive gravity currents in two-layer stratified media Morris R. Flynn & Paul F. Linden Dept to as a gravity current · In contrast to waves, gravity currents transport significant mass (e.g. fluid parcels, sediment, insects, etc.) Introduction Gravity currents in the environment www

Flynn, Morris R.

406

THE DYNAMICS, APPEARANCE, AND DEMOGRAPHICS OF RELATIVISTIC JETS TRIGGERED BY TIDAL DISRUPTION OF STARS IN QUIESCENT SUPERMASSIVE BLACK HOLES  

SciTech Connect

We examine the consequences of a model in which relativistic jets can be triggered in quiescent massive black holes when a geometrically thick and hot accretion disk forms as a result of the tidal disruption of a star. To estimate the power, thrust, and lifetime of the jet, we use the mass accretion history onto the black hole as calculated by detailed hydrodynamic simulations of the tidal disruption of stars. We go on to determine the states of the interstellar medium in various types of quiescent galactic nuclei, and describe how this external matter can affect jets propagating through it. We use this information, together with a two-dimensional hydrodynamic model of the structure of the relativistic flow, to study the dynamics of the jet, the propagation of which is regulated by the density stratification of the environment and by its injection history. The breaking of symmetry involved in transitioning from one to two dimensions is crucial and leads to qualitatively new phenomena. At early times, as the jet power increases, the high pressure of the cocoon collimates the jet, increasing its shock velocity as compared to that of spherical models. We show that small velocity gradients, induced near or at the source, steepen into internal shocks and provide a source of free energy for particle acceleration and radiation along the jet's channel. The jets terminate at a working surface where they interact strongly with the surrounding medium through a combination of shock waves and instabilities; a continuous flow of relativistic fluid emanating from the nucleus supplies this region with mass, momentum, and energy. Information about the t {sup -5/3} decrease in power supply propagates within the jet at the internal sound speed. As a result, the internal energy at the jet head continues to accumulate until long after the peak feeding rate is reached. An appreciable time delay is thus expected between peaks in the short-wavelength radiation emanating near the jet's origin and the long-wavelength emission produced at the head of the jet. Many of the observed properties of the Swift 1644+57/GRB 110328A event can be understood as resulting from accretion onto and jets driven by a 10{sup 6} M {sub Sun} central mass black hole following the disruption of a sun-like star. With the inclusion of a stochastic contribution to the luminosity due to variations in the feeding rate driven by instabilities near the tidal radius, we find that our model can explain the X-ray light curve without invoking a rarely occurring deep encounter. In conjunction with the number density of black holes in the local universe, we hypothesize that the conditions required to produce the Swift event are not anomalous, but are in fact representative of the jet-driven flare population arising from tidal disruptions.

De Colle, Fabio; Guillochon, James; Naiman, Jill; Ramirez-Ruiz, Enrico, E-mail: fabio@ucolick.org, E-mail: jfg@ucolick.org, E-mail: jnaiman@ucolick.org, E-mail: enrico@ucolick.org [TASC, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

2012-12-01T23:59:59.000Z

407

Curvilinear parabolic approximation for surface wave transformation with wavecurrent interaction  

E-Print Network (OSTI)

Curvilinear parabolic approximation for surface wave transformation with wave­current interaction not be an appropriate method for the purpose of simplifying the curvilinear parabolic approximation of the vector form of the wave­current equation given by Kirby [Higher-order approximations in the parabolic equation method

Kirby, James T.

408

Deflagration Wave Profiles  

SciTech Connect

Shock initiation in a plastic-bonded explosives (PBX) is due to hot spots. Current reactive burn models are based, at least heuristically, on the ignition and growth concept. The ignition phase occurs when a small localized region of high temperature (or hot spot) burns on a fast time scale. This is followed by a growth phase in which a reactive front spreads out from the hot spot. Propagating reactive fronts are deflagration waves. A key question is the deflagration speed in a PBX compressed and heated by a shock wave that generated the hot spot. Here, the ODEs for a steady deflagration wave profile in a compressible fluid are derived, along with the needed thermodynamic quantities of realistic equations of state corresponding to the reactants and products of a PBX. The properties of the wave profile equations are analyzed and an algorithm is derived for computing the deflagration speed. As an illustrative example, the algorithm is applied to compute the deflagration speed in shock compressed PBX 9501 as a function of shock pressure. The calculated deflagration speed, even at the CJ pressure, is low compared to the detonation speed. The implication of this are briefly discussed.

Menikoff, Ralph [Los Alamos National Laboratory

2012-04-03T23:59:59.000Z

409

Oceanic Internal Waves Are Not Weak Waves  

Science Conference Proceedings (OSTI)

It is shown that the oceanic internal wave field is too energetic by roughly two orders of magnitude to be treated theoretically as an assemblage of weakly interacting waves. This may be seen both from recent weak wave theoretical calculations ...

Greg Holloway

1980-06-01T23:59:59.000Z

410

Black-Hole Spin Dependence in the Light Curves of Tidal Disruption Events  

E-Print Network (OSTI)

A star orbiting a supermassive black hole can be tidally disrupted if the black hole's gravitational tidal field exceeds the star's self gravity at pericenter. Some of this stellar tidal debris can become gravitationally bound to the black hole, leading to a bright electromagnetic flare with bolometric luminosity proportional to the rate at which material falls back to pericenter. In the Newtonian limit, this flare will have a light curve that scales as t^-5/3 if the tidal debris has a flat distribution in binding energy. We investigate the time dependence of the black-hole mass accretion rate when tidal disruption occurs close enough the black hole that relativistic effects are significant. We find that for orbits with pericenters comparable to the radius of the marginally bound circular orbit, relativistic effects can double the peak accretion rate and halve the time it takes to reach this peak accretion rate. The accretion rate depends on both the magnitude of the black-hole spin and its orientation with respect to the stellar orbit; for orbits with a given pericenter radius in Boyer-Lindquist coordinates, a maximal black-hole spin anti-aligned with the orbital angular momentum leads to the largest peak accretion rate.

Michael Kesden

2012-07-26T23:59:59.000Z

411

Explicitly Stochastic Parameterization of Nonorographic Gravity Wave Drag  

Science Conference Proceedings (OSTI)

A straightforward methodology is presented for converting the deterministic multiwave parameterizations of nonorographic gravity wave drag, currently used in general circulation models (GCMs), to stochastic analogs that use fewer waves (in the ...

Stephen D. Eckermann

2011-08-01T23:59:59.000Z

412

Molecular Gas in Tidal Dwarf Galaxies: On-going Galaxy Formation  

E-Print Network (OSTI)

We investigate the process of galaxy formation as can be observed in the only currently forming galaxies -- the so-called Tidal Dwarf Galaxies, hereafter TDGs -- through observations of the molecular gas detected via its CO (Carbon Monoxide) emission. Molecular gas is a key element in the galaxy formation process, providing the link between a cloud of gas and a {\\it bona fide} galaxy. We have now detected CO in 9 TDGs with an overall detection rate of 80%, showing that molecular gas is abundant in TDGs, up to a few $10^8 M_\\odot$. The CO emission coincides both spatially and kinematically with the HI emission, indicating that the molecular gas forms from the atomic hydrogen where the HI column density is high. A possible trend of more evolved TDGs having greater molecular gas masses is observed, in accord with the transformation of HI into H$_2$. Although uncertainties are still large for individual objects as the geometry is unknown, we find that the "dynamical" masses of TDGs, estimated from the CO line widths, do not seem to be greater than the "visible" masses (HI + H$_2$ + a stellar component), i.e., TDGs require no dark matter. We provide evidence that TDGs are self-gravitating entities, implying that we are witnessing the ensemble of processes in galaxy formation: concentration of large amounts of gas in a bound object, condensation of the gas, which is atomic at this point, to form molecular gas and the subsequent star formation from the dense molecular component.

J. Braine; P. -A. Duc; U. Lisenfeld; E. Brinks; V. Charmandaris; S. Leon

2004-02-10T23:59:59.000Z

413

All Eyes on Eastport: Tidal Energy Project Brings Change, Opportunity to  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

All Eyes on Eastport: Tidal Energy Project Brings Change, All Eyes on Eastport: Tidal Energy Project Brings Change, Opportunity to Local Community All Eyes on Eastport: Tidal Energy Project Brings Change, Opportunity to Local Community July 24, 2012 - 2:40pm Addthis Captain Gerald "Gerry" Morrison, Vice President of Perry Marine & Consctruction. | Photo Courtesy of Ocean Renewable Power Company. Captain Gerald "Gerry" Morrison, Vice President of Perry Marine & Consctruction. | Photo Courtesy of Ocean Renewable Power Company. Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs Today in Eastport, Maine, people are gathering to celebrate a project that will harness the power of the massive tides of Cobscook Bay to generate clean electricity. At a public dedication event this afternoon, Portland-based Ocean Renewable

414

Visualizing Spacetime Curvature via Frame-Drag Vortexes and Tidal Tendexes II. Stationary Black Holes  

E-Print Network (OSTI)

When one splits spacetime into space plus time, the Weyl curvature tensor (which equals the Riemann tensor in vacuum) splits into two spatial, symmetric, traceless tensors: the tidal field $E$, which produces tidal forces, and the frame-drag field $B$, which produces differential frame dragging. In recent papers, we and colleagues have introduced ways to visualize these two fields: tidal tendex lines (integral curves of the three eigenvector fields of $E$) and their tendicities (eigenvalues of these eigenvector fields); and the corresponding entities for the frame-drag field: frame-drag vortex lines and their vorticities. These entities fully characterize the vacuum Riemann tensor. In this paper, we compute and depict the tendex and vortex lines, and their tendicities and vorticities, outside the horizons of stationary (Schwarzschild and Kerr) black holes; and we introduce and depict the black holes' horizon tendicity and vorticity (the normal-normal components of $E$ and $B$ on the horizon). For Schwarzschil...

Zhang, Fan; Nichols, David A; Chen, Yanbei; Lovelace, Geoffrey; Matthews, Keith D; Owen, Robert; Thorne, Kip S

2012-01-01T23:59:59.000Z

415

Earth Tidal Analysis At Raft River Geothermal Area (1984) | Open Energy  

Open Energy Info (EERE)

Earth Tidal Analysis At Raft River Geothermal Area Earth Tidal Analysis At Raft River Geothermal Area (1984) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Earth Tidal Analysis Activity Date 1984 Usefulness useful DOE-funding Unknown Exploration Basis Determine porosity of the reservoir Notes The response of a confined, areally infinite aquifer to external loads imposed by earth tides is examined. Because the gravitational influence of celestial objects occurs over large areas of the earth, the confined aquifer is assumed to respond in an undrained fashion. Since undrained response is controlled by water compressibility, earth tide response can be directly used only to evaluate porous medium compressibility if porosity is known. In the present work, change in external stress is estimated from

416

DeFrees Small Wave Basin | Open Energy Information  

Open Energy Info (EERE)

Wave Basin Wave Basin Jump to: navigation, search Basic Specifications Facility Name DeFrees Small Wave Basin Overseeing Organization Cornell University Hydrodynamics Hydrodynamic Testing Facility Type Wave Basin Length(m) 15.0 Beam(m) 0.8 Depth(m) 0.9 Water Type Freshwater Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.3 Maximum Wave Height(m) at Wave Period(s) 3.0 Maximum Wave Length(m) 30 Wave Period Range(s) 3.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Computer controlled hydraulic paddle, arbitrary wave shape possible Wave Direction Uni-Directional Simulated Beach Yes Description of Beach 1:10 sloping glass with dissipative horsehair covering if needed

417

Slope Control in Western Boundary Currents  

Science Conference Proceedings (OSTI)

An analytic solution is presented for the steady-state depth-averaged western boundary current flowing over the continental slope by combining three highly idealized models: the Stommel model, the Munk model, and the arrested topographic wave ...

Sang-Ki Lee; J. L. Pelegrí; John Kroll

2001-11-01T23:59:59.000Z

418

Evidence of Diurnal Shelf Waves in Satellite-Tracked Drifter Trajectories off the Kuril Islands  

Science Conference Proceedings (OSTI)

Satellite-tracked surface drifters deployed in September 1993 in the vicinity of the Kuril–Kamchatka Trench were advected onto the Pacific continental shelf of the Kuril Islands where they encountered strong (40–50 cm s?1) diurnal tidal currents. ...

Alexander B. Rabinovich; Richard E. Thomson

2001-09-01T23:59:59.000Z

419

Puget Sound Tidal Energy In-Water Testing and Development Project Final Technical Report  

Science Conference Proceedings (OSTI)

Tidal energy represents potential for the generation of renewable, emission free, environmentally benign, and cost effective energy from tidal flows. A successful tidal energy demonstration project in Puget Sound, Washington may enable significant commercial development resulting in important benefits for the northwest region and the nation. This project promoted the United States Department of Energy�s Wind and Hydropower Technologies Program�s goals of advancing the commercial viability, cost-competitiveness, and market acceptance of marine hydrokinetic systems. The objective of the Puget Sound Tidal Energy Demonstration Project is to conduct in-water testing and evaluation of tidal energy technology as a first step toward potential construction of a commercial-scale tidal energy power plant. The specific goal of the project phase covered by this award was to conduct all activities necessary to complete engineering design and obtain construction approvals for a pilot demonstration plant in the Admiralty Inlet region of the Puget Sound. Public Utility District No. 1 of Snohomish County (The District) accomplished the objectives of this award through four tasks: Detailed Admiralty Inlet Site Studies, Plant Design and Construction Planning, Environmental and Regulatory Activities, and Management and Reporting. Pre-Installation studies completed under this award provided invaluable data used for site selection, environmental evaluation and permitting, plant design, and construction planning. However, these data gathering efforts are not only important to the Admiralty Inlet pilot project. Lessons learned, in particular environmental data gathering methods, can be applied to future tidal energy projects in the United States and other parts of the world. The District collaborated extensively with project stakeholders to complete the tasks for this award. This included Federal, State, and local government agencies, tribal governments, environmental groups, and others. All required permit and license applications were completed and submitted under this award, including a Final License Application for a pilot hydrokinetic license from the Federal Energy Regulatory Commission. The tasks described above have brought the project through all necessary requirements to construct a tidal pilot project in Admiralty Inlet with the exception of final permit and license approvals, and the selection of a general contractor to perform project construction.

Craig W. Collar

2012-11-16T23:59:59.000Z

420

Production of tidal-charged black holes at the Large Hadron Collider  

E-Print Network (OSTI)

Tidal-charged black hole solutions localized on a three-brane in the five-dimensional gravity scenario of Randall and Sundrum have been known for some time. The solutions have been used to study the decay, and growth, of black holes with initial mass of about 10 TeV. These studies are interesting in that certain black holes, if produced at the Large Hadron Collider, could live long enough to leave the detectors. I examine the production of tidal-charged black holes at the Large Hadron Collider and show that it is very unlikely that they will be produced during the lifetime of the accelerator.

Douglas M. Gingrich

2010-01-05T23:59:59.000Z

Note: This page contains sample records for the topic "tidal wave current" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Production of tidal-charged black holes at the Large Hadron Collider  

SciTech Connect

Tidal-charged black hole solutions localized on a three-brane in the five-dimensional gravity scenario of Randall and Sundrum have been known for some time. The solutions have been used to study the decay, and growth, of black holes with initial mass of about 10 TeV. These studies are interesting in that certain black holes, if produced at the Large Hadron Collider, could live long enough to leave the detectors. I examine the production of tidal-charged black holes at the Large Hadron Collider and show that it is very unlikely that they will be produced during the lifetime of the accelerator.

Gingrich, Douglas M. [Centre for Particle Physics, Department of Physics, University of Alberta, Edmonton, AB T6G 2G7 (Canada)

2010-03-01T23:59:59.000Z

422

Original article: Estimation of spatially varying open boundary conditions for a numerical internal tidal model with adjoint method  

Science Conference Proceedings (OSTI)

The adjoint data assimilation technique is applied to the estimation of the spatially varying open boundary conditions (OBCs) for a numerical internal tidal model. The spatial variation of the OBCs is realized by the so-called 'independent point scheme' ... Keywords: Adjoint method, Internal tidal model, Open boundary conditions, Parameter estimation, Spatial variation

Haibo Chen, Anzhou Cao, Jicai Zhang, Chunbao Miao, Xianqing Lv

2014-03-01T23:59:59.000Z

423

Current Titles  

Science Conference Proceedings (OSTI)

This booklet is published for those interested in current research being conducted at the National Center for Electron Microscopy. The NCEM is a DOE-designated national user facility and is available at no charge to qualified researchers. Access is controlled by an external steering committee. Interested researchers may contact Jane Cavlina, Administrator, at 510/486-6036.

Various

2006-06-01T23:59:59.000Z

424

MHK Technologies/Current Catcher | Open Energy Information  

Open Energy Info (EERE)

Catcher Catcher < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Current Catcher.png Technology Profile Primary Organization Offshore Islands Ltd Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Description The Current Catcher harnesses the power and fluctuations of the ocean s currents to generate energy It uses cones to increase the velocity of the ocean current and to direct it to the turbine blades to maximize the production of energy which in turn is transferred through electrical swivels The Current Catcher uses conventional low cost steel tubular frames These frames can support both ocean and tidal current power generators rigidly fixed to the seabed or moored to the seabed

425

EXPLORING HALO SUBSTRUCTURE WITH GIANT STARS: SUBSTRUCTURE IN THE LOCAL HALO AS SEEN IN THE GRID GIANT STAR SURVEY INCLUDING EXTENDED TIDAL DEBRIS FROM {omega}CENTAURI  

Science Conference Proceedings (OSTI)

We present the latitude-normalized radial velocity (v{sub b} ) distribution of 3318 subsolar metallicity, V {approx}< 13.5 stars from the Grid Giant Star Survey (GGSS) in southern hemisphere fields. The sample includes giants mostly within {approx}5 kpc from the Galactic disks and halo. The nearby halo is found to (1) exhibit significant kinematical substructure, and (2) be prominently represented by several velocity coherent structures, including a very retrograde 'cloud' of stars at l {approx} 285 Degree-Sign and extended, retrograde 'streams' visible as relatively tight l-v{sub b} sequences. One sequence in the fourth Galactic quadrant lies within the l-v{sub b} space expected to contain tidal debris from the 'star cluster' {omega}Centauri. Not only does {omega}Cen lie precisely in this l-v{sub b} sequence, but the positions and v{sub b} of member stars match those of N-body simulations of tidally disrupting dwarf galaxies on orbits ending with {omega}Cen's current position and space motion. But the ultimate proof that we have very likely found extended parts of the {omega}Cen tidal stream comes from echelle spectroscopy of a subsample of the stars that reveals a very particular chemical abundance signature known to occur only in {omega}Cen. The newly discovered {omega}Cen debris accounts for almost all fourth Galactic quadrant retrograde stars in the southern GGSS, which suggests {omega}Cen is a dominant contributor of retrograde giant stars in the inner Galaxy.

Majewski, Steven R.; Nidever, David L.; Damke, Guillermo J.; Patterson, Richard J.; Garcia Perez, Ana E. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States); Smith, Verne V. [National Optical Astronomy Observatories, P.O. Box 26732, Tucson, AZ 85726 (United States); Kunkel, William E. [Las Campanas Observatory, Casilla 601, La Serena (Chile); Bizyaev, Dmitry, E-mail: srm4n@virginia.edu, E-mail: dln5q@virginia.edu, E-mail: gjd3r@virginia.edu, E-mail: ricky@virginia.edu, E-mail: aeg4x@virginia.edu, E-mail: vsmith@noao.edu, E-mail: kunkel@jeito.lco.cl, E-mail: dmbiz@apo.nmsu.edu [Department of Astronomy, New Mexico State University/Apache Point Observatory, Sunspot NM 88349 (United States)

2012-03-10T23:59:59.000Z

426

Current Status  

NLE Websites -- All DOE Office Websites (Extended Search)

Current Status Current Status > Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player July 31, 1942 The Army Corp of Engineers leases 1,025 acres of the Cook County Forest Preserve to build a research facility. November 1942 Under the direction of Enrico Fermi, a group of scientists at the University of Chicago begin building Chicago Pile-1 (CP-1). Security and secracy were essential. December 2, 1942 Enrico Fermi's team creates the world's first self-sustaining nuclear chain reaction using the CP-1 reactor under Stagg Field at the University of Chicago. CP-1 1943 The experiments under Stagg Field shut down, and the scientists move to a 19 acre section of the leased forest preserve, known as Site A. CP-1 is reconstructed and modified at Site A and renamed Chicago Pile 2 (CP-2).

427

Instability Waves in the Equatorial Atlantic Ocean  

Science Conference Proceedings (OSTI)

Evidence is presented for the generation of planetary waves by barotropic instability within the cyclonic shear region of the Atlantic Ocean's South Equatorial Current (SEC). Immediately following the springtime intensification of the southeast ...

Robert H. Weisberg; Thomas J. Weingartner

1988-11-01T23:59:59.000Z

428

OTRC Wave Basin | Open Energy Information  

Open Energy Info (EERE)

OTRC Wave Basin OTRC Wave Basin Jump to: navigation, search Basic Specifications Facility Name OTRC Wave Basin Overseeing Organization Texas A&M (OTRC) Hydrodynamic Testing Facility Type Wave Basin Length(m) 45.7 Beam(m) 30.5 Depth(m) 5.8 Water Type Freshwater Cost(per day) $300/hour (excluding labor) Special Physical Features 4.6m wide x 9.1m long x 16.8m deep pit with adjustable depth floor in test area Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 0.6 Length of Effective Tow(m) 27.4 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.9 Maximum Wave Height(m) at Wave Period(s) 4.0 Maximum Wave Length(m) 25 Wave Period Range(s) 4.0 Current Velocity Range(m/s) 0.6 Programmable Wavemaking Yes Wavemaking Description GEDAP 3D wave generation software, 48 hinged flap wave generator

429

Dissipation Measurement with a Moored Instrument in a Swift Tidal Channel  

Science Conference Proceedings (OSTI)

A moored and autonomous instrument that measures velocity and temperature fluctuations in the inertial subrange using shear probes and FP07 thermistors has been deployed in a swift [O(1 m s?1)] tidal channel for eight days. The measured velocity ...

Rolf Lueck; Daniel Huang

1999-11-01T23:59:59.000Z

430

Occultation of the T Tauri Star RW Aurigae A by its Tidally Disrupted Disk  

E-Print Network (OSTI)

RW Aur A is a classical T Tauri star, believed to have undergone a reconfiguration of its circumstellar environment as a consequence of a recent fly-by of its stellar companion, RW Aur B. This interaction stripped away part of the circumstellar disk of RW Aur A, leaving a tidally disrupted arm and a short truncated circumstellar disk. We present photometric observations of the RW Aur system from the Kilodegree Extremely Little Telescope (KELT) survey showing a long and deep dimming that occurred from September 2010 until March 2011. The dimming has a depth of ~2 magnitudes, a duration of ~180 days and was confirmed by archival observations from American Association of Variable Star Observers (AAVSO). We suggest that this event is the result of a portion of the tidally disrupted disk occulting RW Aur A, specifically a fragment of the tidally disrupted arm. The calculated transverse linear velocity of the occulter is in excellent agreement with the measured relative radial velocity of the tidally disrupted arm....

Rodriguez, Joseph E; Stassun, Keivan G; Siverd, Robert J; Cargile, Phillip; Beatty, Thomas G; Gaudi, B Scott

2013-01-01T23:59:59.000Z

431

The Tidally Averaged Momentum Balance in a Partially and Periodically Stratified Estuary  

Science Conference Proceedings (OSTI)

Observations of turbulent stresses and mean velocities over an entire spring–neap cycle are used to evaluate the dynamics of tidally averaged flows in a partially stratified estuarine channel. In a depth-averaged sense, the net flow in this ...

Mark T. Stacey; Matthew L. Brennan; Jon R. Burau; Stephen G. Monismith

2010-11-01T23:59:59.000Z

432

Gravity and tectonic patterns of Mercury: Effect of tidal deformation, spin-orbit resonance, nonzero  

E-Print Network (OSTI)

Gravity and tectonic patterns of Mercury: Effect of tidal deformation, spin-orbit resonance of spin-orbit resonance, nonzero eccentricity, despinning, and reorientation on Mercury's gravity and tectonic pattern. Large variations of the gravity and shape coefficients from the synchronous rotation

Nimmo, Francis

433

Tidal Exchange through a Strait: A Numerical Experiment Using a Simple Model Basin  

Science Conference Proceedings (OSTI)

In order to investigate the mechanism of tidal exchange through a strait, we numerically track the Lagrangian movement of water particles over a full cycle of the M2 tide. As a result, it is found that the spatially rapid changes of the amplitude ...

Toshiyuki Awaji; Norihisa Imasato; Hideaki Kunishi

1980-10-01T23:59:59.000Z

434

Observational Signature of Tidal Disruption of a Star by a Massive Black Hole  

E-Print Network (OSTI)

Abstract. We have modeled the time-variable profiles of the H? emission line from the nonaxisymmetric disk and debris tail created in the tidal disruption of a solar-type star by a 10 6 M? black hole. We find that the line profiles at these very early stages of the evolution of the postdisruption debris do not resemble the double peaked profiles expected from a rotating disk since the debris has not yet settled into such a stable structure. The predicted line profiles vary on fairly short time scales (of order hours to days). As a result of the uneven distribution of the debris and the existence of a “tidal tail ” (the stream of returning debris), the line profiles depend sensitively on the orientation of the tail relative to the line of sight. Given the illuminating UV/X-ray light curve, we also model the H? light curve from the debris. Light Curves and Emission Line Profiles From the Tidal Debris Simulations of tidal disruption of a star were carried out using a three-dimensional, relativistic, smooth-particle hydrodynamics code (Laguna et al. 1993), to describe the early evolution of the debris during the first fifty to ninety days. We have used the photoionization code CLOUDY (Ferland 1996) to calculate the physical conditions and radiative processes in the debris. To obtain the observed profile from the relativistic

Tamara Bogdanovi?; Michael Eracleous; Suvrath Mahadevan; Steinn Sigurdsson; Pablo Laguna

2004-01-01T23:59:59.000Z

435

Dissecting the Pressure Field in Tidal Flow past a Headland: When Is Form Drag “Real”?  

Science Conference Proceedings (OSTI)

In the few previous measurements of topographic form drag in the ocean, drag that is much larger than a typical bluff body drag estimate has been consistently found. In this work, theory combined with a numerical model of tidal flow around a ...

Sally J. Warner; Parker MacCready

2009-11-01T23:59:59.000Z

436

Tidal Mixing in the Southern Weddell Sea: Results from a Three-Dimensional Model  

Science Conference Proceedings (OSTI)

A three-dimensional primitive equation ocean model is used to study the magnitude and distribution of tidal mixing in the southern Weddell Sea. The contributions of (i) semidiurnal barotropic constituents M2 and S2, (ii) internal tides, and (iii) ...

Adriene F. Pereira; Aike Beckmann; Hartmut H. Hellmer

2002-07-01T23:59:59.000Z

437

Isolation of Four Diatom Strains from Tidal Mud toward Biofuel Production  

Science Conference Proceedings (OSTI)

Development and utilization of bio-energy is an important way to relieve the pressure of global energy shortage. Biodiesel can be a focus of the bio-energy, because it is a cleaner-burning and renewable fuel. Micro algae have been considered to be an ... Keywords: biodiesel, diatom, isolation, tidal mud

Yu Gao; Yang Yu; Junrong Liang; Yahui Gao; Qiaoqi Luo

2012-05-01T23:59:59.000Z

438

Numerical simulation and prediction of loads in marine current turbine full-scale rotor blades.  

E-Print Network (OSTI)

??Marine current turbines are submerged structures and subjected to loading conditions from both the currents and wave effects. The associated phenomena posed significant challenge to… (more)

Senat, Junior.

2011-01-01T23:59:59.000Z

439

Estuarine and Tidal Freshwater Habitat Cover Types Along the Lower Columbia River Estuary Determined from Landsat 7 Enhanced Thematic Mapper (ETM+) Imagery, Technical Report 2003.  

DOE Green Energy (OSTI)

Developing an understanding of the distribution and changes in estuarine and tidal floodplain ecosystems is critical to the management of biological resources in the lower Columbia River. Columbia River plants, fish, and wildlife require specific physicochemical and ecological conditions to sustain their populations. As habitats are degraded or lost, this capability is altered, often irretrievably; those species that cannot adapt are lost from the ecosystem. The Lower Columbia River Estuary Partnership (Estuary Partnership) completed a comprehensive ecosystem protection and enhancement plan for the lower Columbia River and estuary in 1999 (Jerrick, 1999). The plan identified habitat loss and modification as a critical threat to the integrity of the lower Columbia River ecosystem and called for a habitat inventory as a key first step in its long term restoration efforts. In 2000, the Estuary Partnership initiated a multiphase project to produce a spatial data set describing the current location and distribution of estuarine and tidal freshwater habitat cover types along the lower Columbia River from the river mouth to the Bonneville Dam using a consistent methodology and data sources (Fig. 1). The first phase of the project was the development of a broadbrush description of the estuarine and tidal freshwater habitat cover classes for the entire study area ({approx}146 river miles) using Landsat 7 ETM+ satellite imagery. Phase II of the project entailed analysis of the classified satellite imagery from Phase I. Analysis of change in landcover and a summary of the spatial relationships between cover types are part of Phase II. Phase III of the project included the classification of the high resolution hyperspectral imagery collected in 2000 and 2001 for key focal areas within the larger study area. Finally, Phase IV consists of this final report that presents results from refining the Landsat ETM+ classification and provides recommendations for future actions. Previous studies (Thomas, 1980; Thomas, 1983; Graves et al., 1995; NOAA, 1997; Allen, 1999) produced similar landcover data sets; however, most of these studies used multiple and varied data sources and differed from one another in methodologies. Currently, no single data set has been produced using a consistent methodology and uniform scale data, which describes current estuarine and tidal freshwater floodplain cover types from the Columbia's mouth to the Bonneville Dam (Fig. 1). Results from this study will be used by the Estuary Partnership and its cooperators to: (1) develop indicators of 'habitat health' for target species and populations, and biological integrity at the community and ecosystem scales; (2) develop definitions of 'important salmonid habitat'; (3) identify and evaluate potential wetland conservation and restoration sites; (4) track non-indigenous and invasive species; and (5) develop an understanding of how estuarine and floodplain habitats have changed over the past 200 years. This study focused on estuarine and tidal freshwater floodplain habitat cover types, which are important to native species, particularly juvenile salmonids. Results from this study are meant to provide support for the multiple efforts currently underway to recover 12 species of Columbia River salmonids identified as endangered or threatened under the Endangered Species Act. Spatial scale was an important consideration in this study. Our goal was to create a geographic information system (GIS) coverage depicting habitat cover types for the entire 146 river miles of the study area and the associated floodplain, at a spatial resolution sufficient to resolve important estuarine and floodplain features, wherever possible. Thus, in addition to the small scale (30 m pixel size) satellite imagery covering the study area described in this report, we also acquired high spatial resolution imagery ({approx}1.5 m pixel size) for key portions of the study area using a Compact Airborne Spectrographic Imager (CASI). Compared to the rather coarse, low spectral resolution of the satellite ima

Garono, Ralph; Robinson, Rob

2003-10-01T23:59:59.000Z

440

A, D. van der, Ribberink, J.S., Werf, J.J. Van der & O'Donoghue, T. (2011). New practical model for sand transport induced by non-breaking waves and currents, online  

E-Print Network (OSTI)

country. Bioethanol is currently made from sugar or starch. In the future, it is expected that ethanol building blocks from lignocellulosic biomass or conversion of sugars to aromatics is technologically still, and gasoline, LPG and kerosene which are used as fuels. This conversion is achieved by using numerous cracking

Twente, Universiteit

Note: This page contains sample records for the topic "tidal wave current" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Wave–Wave Interaction of Unstable Baroclinic Waves  

Science Conference Proceedings (OSTI)

Two slightly unstable baroclinic waves in the two-layer Phillips model are allowed to interact with each other as well as the mean flow. A theory for small dissipation rates is developed to examine the role of wave–wave interaction in the ...

Joseph Pedlosky; Lorenzo M. Polvani

1987-02-01T23:59:59.000Z

442

Comparisons on offshore structure responses to random waves using linear and high-order wave theories  

E-Print Network (OSTI)

The predicted responses of an offshore structure when the wave induced kinematics are computed from different estimation methods can change significantly. The sometimes controversial results have recently motivated the development of a new methodology for wave kinematics prediction. While the methods commonly used by the offshore industry are empirical and semi-empirical modifications of Linear (random) Wave Theory, the new approach (Hybrid Wave Model) satisfies the principles of hydrodynamics and explicitly considers the non-linear effect of the wave-wave interactions on wave elevation, kinematics and evolution. This methodology has been proven to be more accurate and reliable for the estimations of wave kinematics, but its impact on the prediction of the structural response is yet to be investigated. In this study, the performance of the new methodology arid other methods currently used for kinematics prediction was tested. The (surge) response of two offshore structures designed specially for deep-oil production was estimated using three methods (Hybrid Wave Model, Wheeler "Stretching" and Linear Extrapolation) and compared with the corresponding laboratory measurements. The wave forces were computed from the conventional Morison Equation evaluating the ambient wave kinematics from the wave elevation measurements. A numerical scheme based on a Finite Element time integration technique (Newmark-beta method) was used for the response evaluation after it had been validated and calibrated by an analytical (linear) solution and measured responses for regular waves. The comparisons between measured and predicted responses using kinematics calculated from the Hybrid Wave Model showed excellent agreement, specially for the low frequency components, while those using methods based on linear modifications rendered poor underestimations. The low frequency (peak) responses of these deep-water offshore structures were found to be greatly dominated by very low frequency wave excitations, which are mainly due to the wave-wave interactions.

Ramos Heredia, Rafael Juda

1995-01-01T23:59:59.000Z

443

Relativistic effects in the tidal interaction between a white dwarf and a massive black hole in Fermi normal coordinates  

E-Print Network (OSTI)

We consider tidal encounters between a white dwarf and an intermediate mass black hole. Both weak encounters and those at the threshold of disruption are modeled. The numerical code combines mesh-based hydrodynamics, a spectral method solution of the self-gravity, and a general relativistic Fermi normal coordinate system that follows the star and debris. Fermi normal coordinates provide an expansion of the black hole tidal field that includes quadrupole and higher multipole moments and relativistic corrections. We compute the mass loss from the white dwarf that occurs in weak tidal encounters. Secondly, we compute carefully the energy deposition onto the star, examining the effects of nonradial and radial mode excitation, surface layer heating, mass loss, and relativistic orbital motion. We find evidence of a slight relativistic suppression in tidal energy transfer. Tidal energy deposition is compared to orbital energy loss due to gravitational bremsstrahlung and the combined losses are used to estimate tidal capture orbits. Heating and partial mass stripping will lead to an expansion of the white dwarf, making it easier for the star to be tidally disrupted on the next passage. Finally, we examine angular momentum deposition. By including the octupole tide, we are able for the first time to calculate deflection of the center of mass of the star and debris. With this observed deflection, and taking into account orbital relativistic effects, we compute directly the change in orbital angular momentum and show its balance with computed spin angular momentum deposition.

Roseanne M. Cheng; Charles R. Evans

2013-03-18T23:59:59.000Z

444

Requirements for neutral beam current drive in tokamaks  

SciTech Connect

This paper contains viewgraphs on the use of neutral beam current drive in future tokamaks. Current profiles, slowing down distributions, beam destabilization of alfven waves and plasma parameters are some items covered in this paper. (DWL)

Dory, R.A.

1988-01-01T23:59:59.000Z

445

An Autumn Instability Event in the Gaspá: Current  

Science Conference Proceedings (OSTI)

The Gaspé Current is a buoyant jet driven primarily by the freshwater discharge from the St. Lawrence estuary. Previously, many incidents of unstable wave development in the3 Gaspé Current have been reported under summer, high runoff, ...

Gordon Mertz; Mohammed I. El-sabh

1989-01-01T23:59:59.000Z

446

Measurement of Tidal Form Drag Using Seafloor Pressure Sensors  

Science Conference Proceedings (OSTI)

As currents flow over rough topography, the pressure difference between the up- and downstream sides results in form drag—a force that opposes the flow. Measuring form drag is valuable because it can be used to estimate the loss of energy from ...

Sally J. Warner; Parker MacCready; James N. Moum; Jonathan D. Nash

2013-06-01T23:59:59.000Z

447

Linear water waves with vorticity: rotational features and particle paths  

E-Print Network (OSTI)

Steady linear gravity waves of small amplitude travelling on a current of constant vorticity are found. For negative vorticity we show the appearance of internal waves and vortices, wherein the particle trajectories are not any more closed ellipses. For positive vorticity the situation resembles that of Stokes waves, but for large vorticity the trajectories are affected.

Mats Ehrnstrom; Gabriele Villari

2007-12-04T23:59:59.000Z

448

Coupling to the fast wave via a phased waveguide array  

SciTech Connect

A dielectric-loaded waveguide array has been used to launch fast waves into a plasma in which ..omega../sup pi/ < ..omega.. << ..omega../sub pe/ approx. ..omega../sub ce/. The wave propagates when accessibility and cutoff requirements are satisfied. Reflection coefficients as low as 1% have been measured. Use of the fast wave for steady-state current drive is suggested.

Olson, L.; McWilliams, R.; Glanz, J.; Motley, R.W.

1984-03-01T23:59:59.000Z

449

Estimation of radial acoustic wave propagation in relative motion  

Science Conference Proceedings (OSTI)

Sound emission and propagation through the moving air in front of aircraft compressors and behind the turbine assemblies is investigated at UPB in a current research program. Results of the sound waves radial propagation in the first stage of the low ... Keywords: acoustics, finite volumes method, relative fluid mechanics, sound pressure level, sound propagation, sound waves, wave modeling

Alina Bogoi; Radu D. Rugescu

2008-11-01T23:59:59.000Z

450

CX-000900: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determination CX-000900: Categorical Exclusion Determination An Assessment of Projected Life-Cycle Cost for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power in the...

451

Energy Currents  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 Energy Currents Survey Result Our thanks to all of you who responded to our reader survey. We were pleased that many of you find this a useful publication. Your opinions will help us improve it further. The CBS News' readers include a variety of professions. 17% of respondents were consultants, 15% were engineers, 11% were teachers, 11% were scientists, 10% were program managers. The remainder included contractors, designers, marketing professionals policy analysts, journalists and others. Ranked according to highest response first, the majority of readers work in education, various levels of government, utilities, non-profit organizations, and a variety of private concerns. A surprisingly large number, 52% of the respondents, are Internet users and 23% have browsed the World Wide Web. 8% have browsed the Center's Web site

452

Energy Currents  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Energy Currents LBL Scientist Joins Clinton Administration Art Rosenfeld Art Rosenfeld, former head of LBL's Center for Building Science, has been named a senior advisor in the U.S. Department of Energy, serving under Assistant Secretary for Energy Efficiency and Renewable Energy Christine Ervin. His appointment began July 1. In Washington, Rosenfeld will sit on President Clinton's National Science and Technology Council. He will also serve as national spokesperson for the Administration's "Cool Communities" program and will help steer through the political process a proposed new "government-sponsored enterprise"- called EFFIE MAE for Energy Efficiency Mortgage and Loan Agency-that would guarantee loans for retrofitting energy-inefficient public buildings.

453

A Thunderstorm Bow Wave  

Science Conference Proceedings (OSTI)

The thunderstorm solitary gust or bow wave, observed by Doviak and Ge, is examined from the viewpoint of boundary layer wave theory. It is concluded that all its well defined characteristics are consistently modeled as a bow wave of ducted ...

G. Chimonas; Carmen J. Nappo

1987-02-01T23:59:59.000Z

454

The Sandia Wave Reflector  

The Sandia wave reflector is a magnetic conductor for wireless transmissions near 433 MHz. The device reflects perpendicular electromagnetic waves in-phase and suppresses surface waves resulting in improved gain performance and effective operation ...

455

Geostrophic Shock Waves  

Science Conference Proceedings (OSTI)

Organized depth discontinuities involving a balance between steepening and dissipation are usually referred to as shock waves. An analytical “educed gravity” model is used to examine a special kind of shock wave. The wave under study is a depth ...

Doron Nof

1986-05-01T23:59:59.000Z

456

A Coupled Atmosphere–Wave–Ocean Modeling System: Simulation of the Intensity of an Idealized Tropical Cyclone  

Science Conference Proceedings (OSTI)

A coupled atmosphere–wave–ocean modeling system (CAWOMS) based on the integration of atmosphere–wave, atmosphere–ocean, and wave–current interaction processes is developed. The component models consist of the Weather Research and Forecasting (WRF)...

Bin Liu; Huiqing Liu; Lian Xie; Changlong Guan; Dongliang Zhao

2011-01-01T23:59:59.000Z

457

MHD Wave Propagation in the Neighbourhood of Two Null Points  

E-Print Network (OSTI)

The nature of fast magnetoacoustic and Alfv\\'en waves is investigated in a zero $\\beta$ plasma in the neighbourhood of a pair of two-dimensional null points. This gives an indication of wave propagation in the low $\\beta$ solar corona, for a more complicated magnetic configuration than that looked at by McLaughlin & Hood (2004). It is found that the fast wave is attracted to the null points and that the front of the wave slows down as it approaches the null point pair, with the wave splitting and part of the wave accumulating at one null and the rest at the other. Current density will then accumulate at these points and ohmic dissipation will then extract the energy in the wave at these points. This suggests locations where wave heating will occur in the corona. The Alfv\\'en wave behaves in a different manner in that the wave accumulates along the separatrices. Hence, the current density will accumulate at this part of the topology and this is where wave heating will occur. However, the phenomenon of wave accumulation at a specific place is a feature of both wave types, and illustrates the importance of studying the topology of the corona when considering MHD wave propagation.

J. A. McLaughlin; A. W. Hood

2007-12-11T23:59:59.000Z

458

NREL Uses Computing Power to Investigate Tidal Power (Fact Sheet)  

DOE Green Energy (OSTI)

Until now, wind turbine controls that reduce the impacts of wind gusts and turbulence were always reactive - responding to the wind rather than anticipating it. But with today's laser-based sensors that measure wind speed ahead of the turbine, researchers at the National Renewable Energy Laboratory (NREL) and their industry partners are developing more intelligent controls. The world's first field tests of these controls are currently underway at the National Wind Technology Center (NWTC) at NREL, with plans for future commercialization.

Not Available

2012-10-01T23:59:59.000Z

459

Application of Turbulence Energy Models to the Computation of Tidal Currents and Mixing Intensities in Shelf Edge Regions  

Science Conference Proceedings (OSTI)

The major steps in the formulation of a three-dimensional shelf edge model using a sigma coordinate system in the vertical are briefly described. Vertical diffusion of momentum is parameterized using a range of turbulence closure models, and ...

Jiuxing Xing; Alan M. Davies

1996-04-01T23:59:59.000Z

460

Gravitational waves from gravitational collapse  

Science Conference Proceedings (OSTI)

Gravitational wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.

Fryer, Christopher L [Los Alamos National Laboratory; New, Kimberly C [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "tidal wave current" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

L-Shaped Flume Wave Basin | Open Energy Information  

Open Energy Info (EERE)

L-Shaped Flume Wave Basin L-Shaped Flume Wave Basin Jump to: navigation, search Basic Specifications Facility Name L-Shaped Flume Wave Basin Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility Type Wave Basin Length(m) 76.2 Beam(m) 15.2 Depth(m) 1.8 Water Type Freshwater Special Physical Features Contact POC Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.6 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 10.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wave Direction Uni-Directional Simulated Beach No Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Automated data acquisition and control sys

462

A Coupled Model for Laplace's Tidal Equations in a Fluid with One Horizontal Dimension and Variable Depth  

Science Conference Proceedings (OSTI)

Tide–topography interactions dominate the transfer of tidal energy from large to small scales. At present, it is poorly understood how low-mode internal tides reflect and scatter along the continental margins. Here, the coupling equations for ...

Samuel M. Kelly; Nicole L. Jones; Jonathan D. Nash

2013-08-01T23:59:59.000Z

463

Assessment of the Effects of Tidal Mixing in the Kuril Straits on the Formation of the North Pacific Intermediate Water  

Science Conference Proceedings (OSTI)

To assess accurately the effect of tidal mixing in the Kuril Straits on the formation of the North Pacific Intermediate Water (NPIW), the spatial distribution of diapycnal diffusivity recently obtained by the present authors is incorporated into ...

Yuki Tanaka; Toshiyuki Hibiya; Yoshihiro Niwa

2010-12-01T23:59:59.000Z

464

Drivers of Residual Estuarine Circulation in Tidally Energetic Estuaries: Straight and Irrotational Channels with Parabolic Cross Section  

Science Conference Proceedings (OSTI)

The generation of residual circulation in a tidally energetic estuary with constant longitudinal salinity gradient and parabolic cross section is examined by means of a two-dimensional cross-sectional numerical model, neglecting river runoff and ...

Hans Burchard; Robert D. Hetland; Elisabeth Schulz; Henk M. Schuttelaars

2011-03-01T23:59:59.000Z

465

The Spatial Structure of Tidal and Mean Circulation over the Inner Shelf South of Martha's Vineyard, Massachusetts  

Science Conference Proceedings (OSTI)

The spatial structure of the tidal and background circulation over the inner shelf south of Martha's Vineyard, Massachusetts, was investigated using observations from a high-resolution, high-frequency coastal radar system, paired with satellite ...

Anthony R. Kirincich; Steven J. Lentz; J. Thomas Farrar; Neil K. Ganju

2013-09-01T23:59:59.000Z

466

A PETAL OF THE SUNFLOWER: PHOTOMETRY OF THE STELLAR TIDAL STREAM IN THE HALO OF MESSIER 63 (NGC 5055)  

Science Conference Proceedings (OSTI)

We present deep surface photometry of a very faint, giant arc-loop feature in the halo of the nearby spiral galaxy NGC 5055 (M63) that is consistent with being a part of a stellar stream resulting from the disruption of a dwarf satellite galaxy. This faint feature was first detected in early photographic studies by van der Kruit; more recently, in the study of Martinez-Delgado and as presented in this work, from the loop has been realized to be the result of a recent minor merger through evidence obtained by wide-field, deep images taken with a telescope of only 0.16 m aperture. The stellar stream is clearly confirmed in additional deep images taken with the 0.5 m telescope of the BlackBird Remote Observatory and the 0.8 m telescope of the McDonald Observatory. This low surface brightness ({mu}{sub R} Almost-Equal-To 26 mag arcsec{sup -2}) arc-like structure around the disk of the galaxy extends 14.'0 ({approx}29 kpc projected) from its center, with a projected width of 1.'6 ({approx}3.3 kpc). The stream's morphology is consistent with that of the visible part of a giant, 'great-circle' type stellar stream originating from the recent accretion of a {approx}10{sup 8} M{sub Sun} dwarf satellite in the last few Gyr. The progenitor satellite's current position and final fate are not conclusive from our data. The color of the stream's stars is consistent with dwarfs in the Local Group and is similar to the outer faint regions of M63's disk and stellar halo. From our photometric study, we detect other low surface brightness 'plumes'; some of these may be extended spiral features related to the galaxy's complex spiral structure, and others may be tidal debris associated with the disruption of the galaxy's outer stellar disk as a result of the accretion event. We are able to differentiate between features related to the tidal stream and faint, blue extended features in the outskirts of the galaxy's disk previously detected by the Galaxy Evolution Explorer satellite. With its highly warped H I gaseous disk ({approx}20 Degree-Sign ), M63 represents one of the several examples of an isolated spiral galaxy with a warped disk showing recently discovered strong evidence of an ongoing minor merger.

Chonis, Taylor S. [Department of Astronomy, University of Texas at Austin, 1 University Station, C1400, Austin, TX 78712 (United States); Martinez-Delgado, David [Max-Planck Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Gabany, R. Jay [BlackBird Observatory, Mayhill, NM (United States); Majewski, Steven R. [Department of Astronomy, University of Virginia, 530 McCormick Rd., Charlottesville, VA 22904 (United States); Hill, Gary J. [McDonald Observatory, University of Texas at Austin, 1 University Station, C1402, Austin, TX 78712 (United States); Gralak, Ray [Sirius Imaging Observatory, Mayhill, NM (United States); Trujillo, Ignacio, E-mail: tschonis@astro.as.utexas.edu [Instituto de Astrofisica de Canarias, C/Via Lactea, s/n, E38205 - La Laguna (Tenerife) (Spain)

2011-11-15T23:59:59.000Z

467

Barotropic Rossby Waves Radiating from Tropical Instability Waves in the Pacific Ocean  

Science Conference Proceedings (OSTI)

Tropical instability waves are triggered by instabilities of the equatorial current systems, and their sea level signal, with peak amplitude near 5°N, is one of the most prominent features of the dynamic topography of the tropics. Cross-spectral ...

J. Thomas Farrar

2011-06-01T23:59:59.000Z

468

MHK Projects/Guemes Channel Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Guemes Channel Tidal Energy Project Guemes Channel Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.5343,"lon":-123.017,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

469

MHK Projects/Icy Passage Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Icy Passage Tidal Energy Project Icy Passage Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":58.4133,"lon":-135.737,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

470

MHK Projects/Roosevelt Island Tidal Energy RITE | Open Energy Information  

Open Energy Info (EERE)

Roosevelt Island Tidal Energy RITE Roosevelt Island Tidal Energy RITE < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7639,"lon":-73.9466,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

471

MHK Projects/Indian River Tidal Hydrokinetic Energy Project | Open Energy  

Open Energy Info (EERE)

Tidal Hydrokinetic Energy Project Tidal Hydrokinetic Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.6853,"lon":-75.0694,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

472

MHK Projects/Tacoma Narrows Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Narrows Tidal Energy Project Narrows Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.2591,"lon":-122.445,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

473

MHK Projects/Cape Islands Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Islands Tidal Energy Project Islands Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4833,"lon":-70.7578,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

474

MHK Projects/Central Cook Inlet Alaska Tidal Energy Project | Open Energy  

Open Energy Info (EERE)

Tidal Energy Project Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.3378,"lon":-151.875,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

475

MHK Projects/Portsmouth Area Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Portsmouth Area Tidal Energy Project Portsmouth Area Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.1081,"lon":-70.7776,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

476

MHK Projects/San Juan Channel Tidal Energy Project | Open Energy  

Open Energy Info (EERE)

San Juan Channel Tidal Energy Project San Juan Channel Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.5896,"lon":-123.012,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}