Powered by Deep Web Technologies
Note: This page contains sample records for the topic "tidal stream power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

NATIONAL GEODATABASE OF TIDAL STREAM POWER RESOURCE IN USA  

Science Conference Proceedings (OSTI)

A geodatabase of tidal constituents is developed to present the regional assessment of tidal stream power resource in the USA. Tidal currents are numerically modeled with the Regional Ocean Modeling System (ROMS) and calibrated with the available measurements of tidal current speeds and water level surfaces. The performance of the numerical model in predicting the tidal currents and water levels is assessed by an independent validation. The geodatabase is published on a public domain via a spatial database engine with interactive tools to select, query and download the data. Regions with the maximum average kinetic power density exceeding 500 W/m2 (corresponding to a current speed of ~1 m/s), total surface area larger than 0.5 km2 and depth greater than 5 m are defined as hotspots and documented. The regional assessment indicates that the state of Alaska (AK) has the largest number of locations with considerably high kinetic power density, followed by, Maine (ME), Washington (WA), Oregon (OR), California (CA), New Hampshire (NH), Massachusetts (MA), New York (NY), New Jersey (NJ), North and South Carolina (NC, SC), Georgia (GA), and Florida (FL).

Smith, Brennan T [ORNL; Neary, Vincent S [ORNL; Stewart, Kevin M [ORNL

2012-01-01T23:59:59.000Z

2

Tidal Stream Power Web GIS Tool | Open Energy Information  

Open Energy Info (EERE)

Tidal Stream Power Web GIS Tool Tidal Stream Power Web GIS Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Tidal Stream Power Web GIS Tool Agency/Company /Organization: Georgia Tech Savannah Sector: Energy Focus Area: Renewable Energy Resource Type: Software/modeling tools User Interface: Website Website: www.tidalstreampower.gatech.edu/ Country: United States Web Application Link: www.tidalstreampower.gatech.edu/ Cost: Free UN Region: Northern America Coordinates: 32.167482°, -81.212405° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.167482,"lon":-81.212405,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

3

MHK Technologies/Tidal Stream Turbine | Open Energy Information  

Open Energy Info (EERE)

Stream Turbine Stream Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Stream Turbine.jpg Technology Profile Primary Organization StatoilHydro co owned by Hammerfest Strong Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description A fully operational 300kW prototype tidal turbine has been running in Norway since 2003 and has achieved good results It s the world s first tidal turbine to supply electricity directly to the onshore grid In the autumn of 2008 Hammerfest Str�m signed an intention agreement with Scottish Power to further develop tidal technology in the UK A 1 MW turbine is currently under development

4

Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030 Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030 Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030 January 27, 2012 - 11:30am Addthis A map generated by Georgia Tech's tidal energy resource database shows mean current speed of tidal streams. The East Coast, as shown above, has strong tides that could be tapped to produce energy. | Photo courtesy of Georgia Institute of Technology A map generated by Georgia Tech's tidal energy resource database shows mean current speed of tidal streams. The East Coast, as shown above, has strong tides that could be tapped to produce energy. | Photo courtesy of Georgia Institute of Technology Hoyt Battey Water Power Market Acceleration and Deployment Team Lead, Wind and Water Power Program

5

Ecological safety of tidal-power projects  

SciTech Connect

The operating regime of tidal power plants requires ecological monitoring of their associated water area.

Fedorov, M. P.; Shilin, M. B. [St. Petersburg State Polytechnic University (Russian Federation)

2010-07-15T23:59:59.000Z

6

Overland Tidal Power Generation Using Modular Tidal Prism  

SciTech Connect

Naturally occurring sites with sufficient kinetic energy suitable for tidal power generation with sustained currents > 1 to 2 m/s are relatively rare. Yet sites with greater than 3 to 4 m of tidal range are relatively common around the U.S. coastline. Tidal potential does exist along the shoreline but is mostly distributed, and requires an approach which allows trapping and collection to also be conducted in a distributed manner. In this paper we examine the feasibility of generating sustainable tidal power using multiple nearshore tidal energy collection units and present the Modular Tidal Prism (MTP) basin concept. The proposed approach utilizes available tidal potential by conversion into tidal kinetic energy through cyclic expansion and drainage from shallow modular manufactured overland tidal prisms. A preliminary design and configuration of the modular tidal prism basin including inlet channel configuration and basin dimensions was developed. The unique design was shown to sustain momentum in the penstocks during flooding as well as ebbing tidal cycles. The unstructured-grid finite volume coastal ocean model (FVCOM) was used to subject the proposed design to a number of sensitivity tests and to optimize the size, shape and configuration of MTP basin for peak power generation capacity. The results show that an artificial modular basin with a reasonable footprint (? 300 acres) has the potential to generate 10 to 20 kw average energy through the operation of a small turbine located near the basin outlet. The potential of generating a total of 500 kw to 1 MW of power through a 20 to 40 MTP basin tidal power farms distributed along the coastline of Puget Sound, Washington, is explored.

Khangaonkar, Tarang; Yang, Zhaoqing; Geerlofs, Simon H.; Copping, Andrea

2010-03-01T23:59:59.000Z

7

Tidal Energy  

Office of Scientific and Technical Information (OSTI)

into Wave and Tidal Ocean Power: 15% Water Power by 2030, Energy.gov News Assessment of Energy Production Potential from Tidal Streams in the United States, Energy Citations...

8

MHK Technologies/Tidal Stream | Open Energy Information  

Open Energy Info (EERE)

Stream Stream < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Stream.jpg Technology Profile Primary Organization Tidal Stream Project(s) where this technology is utilized *MHK Projects/Thames at Chiswick Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The TidalStream SST (Semi-Submersible Turbine) is designed for deep water, typically 60m+ (e.g., Pentland Firth) where it is too deep to mount turbines rigidly to the seabed and too rough for surface floaters to survive. Tidal Stream SST consists of turbines connected to unique semi-submersible spar buoys that are moored to the seabed using anchors through swing-arms. This ensures automatic alignment to the tidal flow to maximize energy capture. By blowing the water ballast, the device will rise, rotate, and float to the surface still tethered to the base to allow for on- or off-site maintenance. By releasing the tether arm the device can be towed to a harbor at the end of its life or for major repair or exchange.

9

Assessment of Energy Production Potential from Tidal Streams in the United States  

DOE Green Energy (OSTI)

Tidal stream energy is one of the alternative energy sources that are renewable and clean. With the constantly increasing effort in promoting alternative energy, tidal streams have become one of the more promising energy sources due to their continuous, predictable and spatially-concentrated characteristics. However, the present lack of a full spatial-temporal assessment of tidal currents for the U.S. coastline down to the scale of individual devices is a barrier to the comprehensive development of tidal current energy technology. This project created a national database of tidal stream energy potential, as well as a GIS tool usable by industry in order to accelerate the market for tidal energy conversion technology. Tidal currents are numerically modeled with the Regional Ocean Modeling System and calibrated with the available measurements of tidal current speed and water level surface. The performance of the model in predicting the tidal currents and water levels is assessed with an independent validation. The geodatabase is published at a public domain via a spatial database engine and interactive tools to select, query and download the data are provided. Regions with the maximum of the average kinetic power density larger than 500 W/m2 (corresponding to a current speed of ~1 m/s), surface area larger than 0.5 km2 and depth larger than 5 m are defined as hotspots and list of hotspots along the USA coast is documented. The results of the regional assessment show that the state of Alaska (AK) contains the largest number of locations with considerably high kinetic power density, and is followed by, Maine (ME), Washington (WA), Oregon (OR), California (CA), New Hampshire (NH), Massachusetts (MA), New York (NY), New Jersey (NJ), North and South Carolina (NC, SC), Georgia (GA), and Florida (FL). The average tidal stream power density at some of these locations can be larger than 8 kW/m2 with surface areas on the order of few hundred kilometers squared, and depths larger than 100 meters. The Cook Inlet in AK is found to have a substantially large tidal stream power density sustained over a very large area.

Haas, Kevin A.

2011-06-29T23:59:59.000Z

10

RED CLUMP STARS IN THE SAGITTARIUS TIDAL STREAMS  

SciTech Connect

We have probed a section (l {approx} 150, b {approx} -60) of the trailing tidal arm of the Sagittarius dwarf spheroidal galaxy by identifying a sample of Red Clump (RC) stream stars. RC stars are not generally found in the halo field, but are found in significant numbers in both the Sagittarius galaxy and its tidal streams, making them excellent probes of stream characteristics. Our target sample was selected using photometric data from the Sloan Digital Sky Survey, Data Release 6, which was constrained in color to match the Sagittarius RC stars. Spectroscopic observations of the target stars were conducted at Kitt Peak National Observatory using the WIYN telescope. The resulting spectroscopic sample is magnitude limited and contains both main-sequence disk stars and evolved RC stars. We have developed a method to systematically separate these two stellar classes using kinematic information and a Bayesian approach for surface gravity determination. The resulting RC sample allows us to determine an absolute stellar density of {rho} = 2.7 {+-} 0.5 RC stars kpc{sup -3} at this location in the stream. Future measurements of stellar densities for a variety of populations and at various locations along the streams will lead to a much improved understanding of the original nature of the Sagittarius galaxy and the physical processes controlling its disruption and subsequent stream generation.

Carrell, Kenneth; Chen Yuqin [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Wilhelm, Ronald, E-mail: carrell@nao.cas.cn [Physics and Astronomy Department, University of Kentucky, Lexington, KY 40506 (United States)

2012-07-15T23:59:59.000Z

11

Tides turn for tidal power  

Science Conference Proceedings (OSTI)

Capricious air currents and passing clouds may thwart wind and solar power, but the tides, governed by the gravitational pull of the moon and the sun, might prove a more dependable energy source. In certain spots, the tides have already proved a good ...

J. Calamia

2011-03-01T23:59:59.000Z

12

MHK Technologies/MORILD 2 Floating Tidal Power System | Open Energy  

Open Energy Info (EERE)

MORILD 2 Floating Tidal Power System MORILD 2 Floating Tidal Power System < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage MORILD 2 Floating Tidal Power System.jpg Technology Profile Primary Organization Hydra Tidal Energy Technology AS Project(s) where this technology is utilized *MHK Projects/Morild 2 Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 7/8: Open Water System Testing & Demonstration & Operation Technology Description Hydra Tidal´s Morild II tidal power plant technology at-a-glance: - A unique and patented floating tidal power plant - Prototype has an installed effect of 1,5 MW - Turbine diameter of 23 meters - Each turbine is pitchable - 4 turbines with a total of 8 turbine blades - Unique wooden turbine blades - The MORILD II can be anchored at different depths, thus it can be positioned in spots with ideal tidal stream conditions - The plant carries a sea vessel verification, and is both towable and dockable - The floating installation enables maintenance in surface position, and on site - The MORILD II will be remotely operated, and has on-shore surveillance systems - Technology patented for all relevant territories The Morild power plant is a floating, moored construction based on the same principle as horizontal axis wind turbines. The plant has 4 two-blade underwater turbines and can utilize the energy potential in tidal and ocean currents. The 4 turbines transmit power via hydraulic transmission to 2 synchronous generators. Can be pitched 180 degrees to utilize energy in both directions. A cable from the transformer on the prototype to shore transfers energy.

13

Quantifying Turbulence for Tidal Power Applications  

SciTech Connect

Using newly collected data from a tidal power site in Puget Sound, WA, metrics for turbulence quantification are assessed and discussed. The quality of raw ping Acoustic Doppler Current Profiler (ADCP) data for turbulence studies is evaluated against Acoustic Doppler Velocimeter (ADV) data at a point. Removal of Doppler noise from the raw ping data is shown to be a crucial step in turbulence quantification. Excluding periods of slack tide, the turbulent intensity estimates at a height of 4.6 m above the seabed are 8% and 11% from the ADCP and ADV, respectively. Estimates of the turbulent dissipation rate are more variable, from 10e-3 to 10e-1 W/m^3. An example analysis of coherent Turbulent Kinetic Energy (TKE) is presented.

Thomson, Jim; Richmond, Marshall C.; Polagye, Brian; Durgesh, Vibhav

2010-08-01T23:59:59.000Z

14

MHK Technologies/Jiangxia Tidal Power Station | Open Energy Information  

Open Energy Info (EERE)

Jiangxia Tidal Power Station Jiangxia Tidal Power Station < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Jiangxia Tidal Power Station.jpg Technology Profile Primary Organization China Guodian Corporation Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 9 Commercial Scale Production Application Technology Description There are 6 bulb turbine generator units operating in both ebb and flood tides with a total installed capacity up to 3 9 MW Technology Dimensions Technology Nameplate Capacity (MW) 3 9 Device Testing Date Submitted 14:15.7 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Jiangxia_Tidal_Power_Station&oldid=681601

15

Low-head tidal power in South Carolina. Feasibility study  

DOE Green Energy (OSTI)

This report details the possibilities of extracting tidal power from sites with moderate tides and naturally occurring storage locations (estuaries). The important points covered include: available power, power extraction, and the best locations and techniques to utilize the tides in South Carolina.

Not Available

1981-12-01T23:59:59.000Z

16

MHK Projects/Hammerfest Strom UK Tidal Stream | Open Energy Information  

Open Energy Info (EERE)

Hammerfest Strom UK Tidal Stream Hammerfest Strom UK Tidal Stream < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.3781,"lon":-3.43597,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

17

IEC 61400-25 protocol based monitoring and control protocol for tidal current power plant  

Science Conference Proceedings (OSTI)

Wind energy and tidal current power have a common operation principle. Tidal current power converts kinetic energy of fluid to electric power. The communication infrastructure is very important to control the system and to monitor the working conditions ... Keywords: IEC 61400-25, monitoring, remote control, tidal current power

Jung Woo Kim; Hong Hee Lee

2010-09-01T23:59:59.000Z

18

MHK Technologies/Uldolmok Pilot Tidal Current Power Plant | Open Energy  

Open Energy Info (EERE)

Uldolmok Pilot Tidal Current Power Plant Uldolmok Pilot Tidal Current Power Plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Uldolmok Pilot Tidal Current Power Plant.jpg Technology Profile Primary Organization Korea East West Power Co LTD Technology Resource Click here Current Technology Type Click here Overtopping Technology Readiness Level Click here TRL 9 Commercial Scale Production Application Technology Description The tidal current power plant uses current energy that can be differentiated from a typical tidal power plant using marine energy The latter confines water in a dam and when released it gets processed in a turbine to produce electric power The tidal current power plant on the other hand does not need a dam thus concerns of social dislocations and degradation of ecosystems primarily endangering marine life can be avoided

19

EVIDENCE FOR A TRIAXIAL MILKY WAY DARK MATTER HALO FROM THE SAGITTARIUS STELLAR TIDAL STREAM  

Science Conference Proceedings (OSTI)

Observations of the lengthy tidal streams produced by the destruction of the Sagittarius dwarf spheroidal (Sgr dSph) are capable of providing strong constraints on the shape of the Galactic gravitational potential. However, previous work, based on modeling different stream properties in axisymmetric Galactic models, has yielded conflicting results: while the angular precession of the Sgr leading arm is most consistent with a spherical or slightly oblate halo, the radial velocities of stars in this arm are reproduced only by prolate halo models. We demonstrate that this apparent paradox can be resolved by instead adopting a triaxial potential. Our new Galactic halo model, which simultaneously fits all well-established phase space constraints from the Sgr stream, provides the first conclusive evidence for, and tentative measurement of, triaxiality in an individual dark matter halo. The Milky Way halo within {approx}60 kpc is best characterized by a minor/major axis ratio of the isovelocity contours c/a {approx} 0.67, intermediate/major axis ratio b/a {approx} 0.83, and triaxiality parameter T {approx} 0.56. In this model, the minor axis of the dark halo is coincident with the Galactic X-axis connecting the Sun and the Galactic center to within {approx}15 deg., while the major axis also lies in the Galactic plane, approximately along the Galactic Y-axis.

Law, David R. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Majewski, Steven R. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904-0818 (United States); Johnston, Kathryn V., E-mail: drlaw@astro.ucla.ed, E-mail: srm4n@virginia.ed, E-mail: kvj@astro.columbia.ed [Department of Astronomy, Columbia University, New York, NY 10027 (United States)

2009-09-20T23:59:59.000Z

20

A STATISTICAL METHOD FOR MEASURING THE GALACTIC POTENTIAL AND TESTING GRAVITY WITH COLD TIDAL STREAMS  

SciTech Connect

We introduce the Minimum Entropy Method, a simple statistical technique for constraining the Milky Way gravitational potential and simultaneously testing different gravity theories directly from 6D phase-space surveys and without adopting dynamical models. We demonstrate that orbital energy distributions that are separable (i.e., independent of position) have an associated entropy that increases under wrong assumptions about the gravitational potential and/or gravity theory. Of known objects, 'cold' tidal streams from low-mass progenitors follow orbital distributions that most nearly satisfy the condition of separability. Although the orbits of tidally stripped stars are perturbed by the progenitor's self-gravity, systematic variations of the energy distribution can be quantified in terms of the cross-entropy of individual tails, giving further sensitivity to theoretical biases in the host potential. The feasibility of using the Minimum Entropy Method to test a wide range of gravity theories is illustrated by evolving restricted N-body models in a Newtonian potential and examining the changes in entropy introduced by Dirac, MONDian, and f(R) gravity modifications.

Penarrubia, Jorge [Instituto de Astrofisica de Andalucia-CSIC, Glorieta de la Astronomia s/n, E-18008 Granada (Spain); Koposov, Sergey E. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom); Walker, Matthew G., E-mail: jorpega@iaa.es [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States)

2012-11-20T23:59:59.000Z

Note: This page contains sample records for the topic "tidal stream power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

STELLAR TIDAL STREAMS IN SPIRAL GALAXIES OF THE LOCAL VOLUME: A PILOT SURVEY WITH MODEST APERTURE TELESCOPES  

Science Conference Proceedings (OSTI)

Within the hierarchical framework for galaxy formation, minor merging and tidal interactions are expected to shape all large galaxies to the present day. As a consequence, most seemingly normal disk galaxies should be surrounded by spatially extended stellar 'tidal features' of low surface brightness. As part of a pilot survey for such interaction signatures, we have carried out ultra deep, wide field imaging of eight isolated spiral galaxies in the Local Volume, with data taken at small (D = 0.1-0.5 m) robotic telescopes that provide exquisite surface brightness sensitivity ({mu}{sub lim}(V) {approx} 28.5 mag arcsec{sup -2}). This initial observational effort has led to the discovery of six previously undetected extensive (to {approx}30 kpc) stellar structures in the halos surrounding these galaxies, likely debris from tidally disrupted satellites. In addition, we confirm and clarify several enormous stellar over-densities previously reported in the literature, but never before interpreted as tidal streams. Even this pilot sample of galaxies exhibits strikingly diverse morphological characteristics of these extended stellar features: great circle-like features that resemble the Sagittarius stream surrounding the Milky Way, remote shells and giant clouds of presumed tidal debris far beyond the main stellar body, as well as jet-like features emerging from galactic disks. Together with presumed remains of already disrupted companions, our observations also capture surviving satellites caught in the act of tidal disruption. A qualitative comparison with available simulations set in a {Lambda}Cold Dark Matter cosmology (that model the stellar halo as the result of satellite disruption evolution) shows that the extraordinary variety of stellar morphologies detected in this pilot survey matches that seen in those simulations. The common existence of these tidal features around 'normal' disk galaxies and the morphological match to the simulations constitutes new evidence that these theoretical models also apply to a large number of other Milky Way-mass disk galaxies in the Local Volume.

MartInez-Delgado, David; Zibetti, Stefano; Rix, Hans-Walter [Max Planck Institut fuer Astronomie, Heidelberg (Germany); Gabany, R. Jay [Black Bird Observatory, Mayhill, NM (United States); Crawford, Ken [Rancho del Sol Observatory, Modesto, CA (United States); Majewski, Steven R.; McDavid, David A. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States); Fliri, Juergen; Carballo-Bello, Julio A.; Bardalez-Gagliuffi, Daniella C.; Trujillo, Ignacio [Instituto de Astrofisica de Canarias, La Laguna (Spain); Penarrubia, Jorge [Institute of Astronomy, University of Cambridge (United Kingdom); Chonis, Taylor S. [Department of Astronomy, University of Texas, Austin, TX 78712-0259 (United States); Madore, Barry [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Schirmer, Mischa [Argelander Institut fuer Astronomie, Universitaet Bonn (Germany)

2010-10-15T23:59:59.000Z

22

Tidal Energy System for On-Shore Power Generation  

DOE Green Energy (OSTI)

Addressing the urgent need to develop LCOE competitive renewable energy solutions for US energy security and to replace fossil-fuel generation with the associated benefits to environment impacts including a reduction in CO2 emissions, this Project focused on the advantages of using hydraulic energy transfer (HET) in large-scale Marine Hydrokinetic (MHK) systems for harvesting off-shore tidal energy in US waters. A recent DOE resource assessment, identifies water power resources have a potential to meet 15% of the US electric supply by 2030, with MHK technologies being a major component. The work covered a TRL-4 laboratory proof-in-concept demonstration plus modeling of a 15MW full scale system based on an approach patented by NASA-JPL, in which submerged high-ratio gearboxes and electrical generators in conventional MHK turbine systems are replaced by a submerged hydraulic radial pump coupled to on-shore hydraulic motors driving a generator. The advantages are; first, the mean-time-between-failure (MTBF), or maintenance, can be extended from approximately 1 to 5 years and second, the range of tidal flow speeds which can be efficiently harvested can be extended beyond that of a conventional submerged generator. The approach uses scalable, commercial-off-the-shelf (COTS) components, facilitating scale-up and commercialization. All the objectives of the Project have been successfully met (1) A TRL4 system was designed, constructed and tested. It simulates a tidal energy turbine, with a 2-m diameter blade in up to a 2.9 m/sec flow. The system consists of a drive motor assembly providing appropriate torque and RPM, attached to a radial piston pump. The pump circulates pressurized, environmentally-friendly, HEES hydraulic fluid in a closed loop to an axial piston motor which drives an electrical generator, with a resistive load. The performance of the components, subsystems and system were evaluated during simulated tidal cycles. The pump is contained in a tank for immersion testing. The COTS pump and motor were selected to scale to MW size and were oversized for the TRL-4 demonstration, operating at only 1-6% of rated values. Nevertheless, in for 2-18 kW drive power, in agreement with manufacturer performance data, we measured efficiencies of 85-90% and 75-80% for the pump and motor, respectively. These efficiencies being 95-96% at higher operating powers. (2) Two follow-on paths were identified. In both cases conventional turbine systems can be modified, replacing existing gear box and generator with a hydraulic pump and on-shore components. On a conventional path, a TRL5/6 15kW turbine system can be engineered and tested on a barge at an existing site in Maine. Alternatively, on an accelerated path, a TRL-8 100kW system can be engineered and tested by modifying a team member's existing MHK turbines, with barge and grid-connected test sites in-place. On both paths the work can be expedited and cost effective by reusing TRL-4 components, modifying existing turbines and using established test sites. (3) Sizing, performance modeling and costing of a scaled 15MW system, suitable for operation in Maine's Western Passage, was performed. COTS components are identified and the performance projections are favorable. The estimated LCOE is comparable to wind generation with peak production at high demand times. (4) We determined that a similar HET approach can be extended to on-shore and off-shore wind turbine systems. These are very large energy resources which can be addressed in parallel for even great National benefit. (5) Preliminary results on this project were presented at two International Conferences on renewable energy in 2012, providing a timely dissemination of information. We have thus demonstrated a proof-in-concept of a novel, tidal HET system that eliminates all submerged gears and electronics to improve reliability. Hydraulic pump efficiencies of 90% have been confirmed in simulated tidal flows between 1 and 3 m/s, and at only 1-6% of rated power. Total system efficiencies have also been modeled, up to MW-scale, for ti

Bruce, Allan J

2012-06-26T23:59:59.000Z

23

Tidal Energy System for On-Shore Power Generation  

SciTech Connect

Addressing the urgent need to develop LCOE competitive renewable energy solutions for US energy security and to replace fossil-fuel generation with the associated benefits to environment impacts including a reduction in CO2 emissions, this Project focused on the advantages of using hydraulic energy transfer (HET) in large-scale Marine Hydrokinetic (MHK) systems for harvesting off-shore tidal energy in US waters. A recent DOE resource assessment, identifies water power resources have a potential to meet 15% of the US electric supply by 2030, with MHK technologies being a major component. The work covered a TRL-4 laboratory proof-in-concept demonstration plus modeling of a 15MW full scale system based on an approach patented by NASA-JPL, in which submerged high-ratio gearboxes and electrical generators in conventional MHK turbine systems are replaced by a submerged hydraulic radial pump coupled to on-shore hydraulic motors driving a generator. The advantages are; first, the mean-time-between-failure (MTBF), or maintenance, can be extended from approximately 1 to 5 years and second, the range of tidal flow speeds which can be efficiently harvested can be extended beyond that of a conventional submerged generator. The approach uses scalable, commercial-off-the-shelf (COTS) components, facilitating scale-up and commercialization. All the objectives of the Project have been successfully met (1) A TRL4 system was designed, constructed and tested. It simulates a tidal energy turbine, with a 2-m diameter blade in up to a 2.9 m/sec flow. The system consists of a drive motor assembly providing appropriate torque and RPM, attached to a radial piston pump. The pump circulates pressurized, environmentally-friendly, HEES hydraulic fluid in a closed loop to an axial piston motor which drives an electrical generator, with a resistive load. The performance of the components, subsystems and system were evaluated during simulated tidal cycles. The pump is contained in a tank for immersion testing. The COTS pump and motor were selected to scale to MW size and were oversized for the TRL-4 demonstration, operating at only 1-6% of rated values. Nevertheless, in for 2-18 kW drive power, in agreement with manufacturer performance data, we measured efficiencies of 85-90% and 75-80% for the pump and motor, respectively. These efficiencies being 95-96% at higher operating powers. (2) Two follow-on paths were identified. In both cases conventional turbine systems can be modified, replacing existing gear box and generator with a hydraulic pump and on-shore components. On a conventional path, a TRL5/6 15kW turbine system can be engineered and tested on a barge at an existing site in Maine. Alternatively, on an accelerated path, a TRL-8 100kW system can be engineered and tested by modifying a team member's existing MHK turbines, with barge and grid-connected test sites in-place. On both paths the work can be expedited and cost effective by reusing TRL-4 components, modifying existing turbines and using established test sites. (3) Sizing, performance modeling and costing of a scaled 15MW system, suitable for operation in Maine's Western Passage, was performed. COTS components are identified and the performance projections are favorable. The estimated LCOE is comparable to wind generation with peak production at high demand times. (4) We determined that a similar HET approach can be extended to on-shore and off-shore wind turbine systems. These are very large energy resources which can be addressed in parallel for even great National benefit. (5) Preliminary results on this project were presented at two International Conferences on renewable energy in 2012, providing a timely dissemination of information. We have thus demonstrated a proof-in-concept of a novel, tidal HET system that eliminates all submerged gears and electronics to improve reliability. Hydraulic pump efficiencies of 90% have been confirmed in simulated tidal flows between 1 and 3 m/s, and at only 1-6% of rated power. Total system efficiencies have also been modeled, up to MW-sca

Bruce, Allan J

2012-06-26T23:59:59.000Z

24

MHK Technologies/Sihwa tidal barrage power plant | Open Energy Information  

Open Energy Info (EERE)

Sihwa tidal barrage power plant Sihwa tidal barrage power plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Sihwa tidal barrage power plant.jpg Technology Profile Technology Type Click here Overtopping Technology Readiness Level Click here TRL 9 Commercial Scale Production Application Technology Description Sihwa TBPP operates only on flood tide generation which produces electrical power during the flood tide the water is discharged back from basin to sea during ebb tide Technology Dimensions Technology Nameplate Capacity (MW) 254 Device Testing Date Submitted 59:41.3 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Sihwa_tidal_barrage_power_plant&oldid=681654

25

EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16: Ocean Renewable Power Company Maine, LLC Cobscook Bay 16: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine Summary This EA evaluates the environmental impacts of a project that would use the tidal currents of Cobscook Bay to generate electricity via cross-flow Kinetic System turbine generator units (TGU) mounted on the seafloor. The TGUs would capture energy from the flow in both ebb and flood directions. Public Comment Opportunities None available at this time. Documents Available for Download March 19, 2012 EA-1916: Finding of No Significant Impact Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot

26

EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay 1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine Summary This EA evaluates the environmental impacts of a project that would use the tidal currents of Cobscook Bay to generate electricity via cross-flow Kinetic System turbine generator units (TGU) mounted on the seafloor. The TGUs would capture energy from the flow in both ebb and flood directions. Public Comment Opportunities None available at this time. Documents Available for Download March 19, 2012 EA-1916: Finding of No Significant Impact Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot

27

Fishing in Tidal Streams: New Radial Velocity and Proper Motion Constraints on the Orbit of the Anticenter Stream  

E-Print Network (OSTI)

We have obtained radial velocity measurements for stars in two, widely-separated fields in the Anticenter Stream. Combined with SDSS/USNO-B proper motions, the new measurements allow us to establish that the stream is on a nearly circular, somewhat inclined, prograde orbit around the Galaxy. While the orbital eccentricity is similar to that previously determined for the Monoceros stream, the sizes, inclinations, and positions of the orbits for the two systems differ significantly. Integrating our best fitting Anticenter Stream orbit forward, we find that it is closely aligned along and lies almost on top of a stream-like feature previously designated the "Eastern Banded Structure". The position of this feature coincides with the apogalacticon of the orbit. We tentatively conclude that this feature is the next wrap of the Anticenter Stream.

Carl J. Grillmair; Jeffrey L. Carlin; Steven R. Majewski

2008-11-12T23:59:59.000Z

28

A PETAL OF THE SUNFLOWER: PHOTOMETRY OF THE STELLAR TIDAL STREAM IN THE HALO OF MESSIER 63 (NGC 5055)  

Science Conference Proceedings (OSTI)

We present deep surface photometry of a very faint, giant arc-loop feature in the halo of the nearby spiral galaxy NGC 5055 (M63) that is consistent with being a part of a stellar stream resulting from the disruption of a dwarf satellite galaxy. This faint feature was first detected in early photographic studies by van der Kruit; more recently, in the study of Martinez-Delgado and as presented in this work, from the loop has been realized to be the result of a recent minor merger through evidence obtained by wide-field, deep images taken with a telescope of only 0.16 m aperture. The stellar stream is clearly confirmed in additional deep images taken with the 0.5 m telescope of the BlackBird Remote Observatory and the 0.8 m telescope of the McDonald Observatory. This low surface brightness ({mu}{sub R} Almost-Equal-To 26 mag arcsec{sup -2}) arc-like structure around the disk of the galaxy extends 14.'0 ({approx}29 kpc projected) from its center, with a projected width of 1.'6 ({approx}3.3 kpc). The stream's morphology is consistent with that of the visible part of a giant, 'great-circle' type stellar stream originating from the recent accretion of a {approx}10{sup 8} M{sub Sun} dwarf satellite in the last few Gyr. The progenitor satellite's current position and final fate are not conclusive from our data. The color of the stream's stars is consistent with dwarfs in the Local Group and is similar to the outer faint regions of M63's disk and stellar halo. From our photometric study, we detect other low surface brightness 'plumes'; some of these may be extended spiral features related to the galaxy's complex spiral structure, and others may be tidal debris associated with the disruption of the galaxy's outer stellar disk as a result of the accretion event. We are able to differentiate between features related to the tidal stream and faint, blue extended features in the outskirts of the galaxy's disk previously detected by the Galaxy Evolution Explorer satellite. With its highly warped H I gaseous disk ({approx}20 Degree-Sign ), M63 represents one of the several examples of an isolated spiral galaxy with a warped disk showing recently discovered strong evidence of an ongoing minor merger.

Chonis, Taylor S. [Department of Astronomy, University of Texas at Austin, 1 University Station, C1400, Austin, TX 78712 (United States); Martinez-Delgado, David [Max-Planck Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Gabany, R. Jay [BlackBird Observatory, Mayhill, NM (United States); Majewski, Steven R. [Department of Astronomy, University of Virginia, 530 McCormick Rd., Charlottesville, VA 22904 (United States); Hill, Gary J. [McDonald Observatory, University of Texas at Austin, 1 University Station, C1402, Austin, TX 78712 (United States); Gralak, Ray [Sirius Imaging Observatory, Mayhill, NM (United States); Trujillo, Ignacio, E-mail: tschonis@astro.as.utexas.edu [Instituto de Astrofisica de Canarias, C/Via Lactea, s/n, E38205 - La Laguna (Tenerife) (Spain)

2011-11-15T23:59:59.000Z

29

Stream computing based synchrophasor application for power grids  

Science Conference Proceedings (OSTI)

This paper proposes an application of stream computing analytics framework to high speed synchrophasor data for real time monitoring and control of electric grid. High volume streaming synchrophasor data from geographically distributed grid sensors (namely, ... Keywords: power grid, stream computing, synchrophasor, voltage stability

Jagabondhu Hazra; Kaushik Das; Deva P. Seetharam; Amith Singhee

2011-11-01T23:59:59.000Z

30

New Interactive Map Reveals U.S. Tidal Energy Resources | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Interactive Map Reveals U.S. Tidal Energy Resources Interactive Map Reveals U.S. Tidal Energy Resources New Interactive Map Reveals U.S. Tidal Energy Resources July 7, 2011 - 10:50am Addthis A map generated by Georgia Tech's tidal energy resource database shows mean current speed of tidal streams | Source: Georgia Institute of Technology A map generated by Georgia Tech's tidal energy resource database shows mean current speed of tidal streams | Source: Georgia Institute of Technology Mike Reed Water Power Program Manager, Water Power Program Tidal energy -- a renewable, predictable resource available up and down America's coastlines -- holds great promise for clean energy generation. And now, a first of its kind database gives researchers deeper insight into the potential of this energy resource for the United States.

31

Tidal Energy  

Energy.gov (U.S. Department of Energy (DOE))

Some of the oldest ocean energy technologies use tidal power. All coastal areas experience two high tides and two low tides over a period of slightly more than 24 hours. For those tidal differences to be harnessed into electricity, the difference between high and low tides must be more than 16 feet (or at least 5 meters). However, there are only about 40 sites on Earth with tidal ranges of this magnitude.

32

Integrated power management for video streaming to mobile handheld devices  

Science Conference Proceedings (OSTI)

Optimizing user experience for streaming video applications on handheld devices is a significant research challenge. In this paper, we propose an integrated power management approach that unifies low level architectural optimizations (CPU, memory, register), ... Keywords: cross-layer adaptation, low-power, multimedia streaming

Shivajit Mohapatra; Radu Cornea; Nikil Dutt; Alex Nicolau; Nalini Venkatasubramanian

2003-11-01T23:59:59.000Z

33

MHK Projects/Willapa Bay Tidal Power Project | Open Energy Information  

Open Energy Info (EERE)

Willapa Bay Tidal Power Project Willapa Bay Tidal Power Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.7161,"lon":-124.038,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

34

MHK Projects/Homeowner Tidal Power Elec Gen | Open Energy Information  

Open Energy Info (EERE)

Homeowner Tidal Power Elec Gen Homeowner Tidal Power Elec Gen < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.4468,"lon":-69.6933,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

35

MHK Projects/Ward s Island Tidal Power Project | Open Energy Information  

Open Energy Info (EERE)

Ward s Island Tidal Power Project Ward s Island Tidal Power Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7818,"lon":-73.9316,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

36

NREL Uses Computing Power to Investigate Tidal Power (Fact Sheet), Innovation: The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Uses Computing Power to Uses Computing Power to Investigate Tidal Power Researchers at the National Renewable Energy Laboratory (NREL) have applied their knowledge of wind flow and turbulence to simulations of underwater tidal turbines. Inspired by similar simulations of wind turbine arrays, NREL researchers used their wind expertise, a supercomputer, and large-eddy simulation to study how the placement of turbines affects the power production of an underwater tidal turbine array. As tides ebb and flow, they create water currents that carry a significant amount of kinetic energy. To capture this energy, several companies are developing and deploying devices known as horizontal-axis tidal turbines, which resemble small wind turbines. These devices can be arranged in an array of multiple turbines to maximize the energy extracted in tidal

37

Water Power Program: Marine and Hydrokinetic Resource Assessment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the Tidal Streams Resource Map. Tidal Streams Resource Assessment The Assessment of the Energy Production from Tidal Streams in the United States report, created by Georgia Tech,...

38

DOE Science Showcase - Tidal Energy | OSTI, US Dept of Energy, Office of  

Office of Scientific and Technical Information (OSTI)

DOE Science Showcase - Tidal Energy DOE Science Showcase - Tidal Energy Point absorbers generate electricity by converting the energy in waves using a float that rides the waves and is attached to a moored conversion device. The Department of Energy's Water Power Program Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030, Energy.gov News Assessment of Energy Production Potential from Tidal Streams in the United States, Energy Citations Database Georgia Tech's Tidal Energy Resources Database U.S. Renewable Resources Atlas , NREL Tidal energy research in WorldWideScience.org OSTI Homepage Mobile Gallery Subscribe to RSS OSTI Blog Get Widgets Get Alert Services OSTI Facebook OSTI Twitter OSTI Google+ Bookmark and Share (Link will open in a new window) Go to Videos Loading...

39

An empirical evaluation of battery power consumption for streaming data transmission to mobile devices  

Science Conference Proceedings (OSTI)

Internet streaming applications are becoming increasingly popular on mobile devices. However, receiving streaming services on mobile devices is often constrained by their limited battery power supply. Various techniques have been proposed to save battery ... Keywords: battery power consumption, data transmission, internet mobile streaming, power saving

Yao Liu; Lei Guo; Fei Li; Songqing Chen

2011-11-01T23:59:59.000Z

40

Tidal Energy Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tidal Energy Basics Tidal Energy Basics Tidal Energy Basics August 16, 2013 - 4:26pm Addthis Photo of the ocean rising along the beach. Some of the oldest ocean energy technologies use tidal power. All coastal areas experience two high tides and two low tides over a period of slightly more than 24 hours. For those tidal differences to be harnessed into electricity, the difference between high and low tides must be more than 16 feet (or at least 5 meters). However, there are only about 40 sites on Earth with tidal ranges of this magnitude. Currently, there are no tidal power plants in the United States, but conditions are good for tidal power generation in the Pacific Northwest and the Atlantic Northeast regions. Tidal Energy Technologies Tidal energy technologies include barrages or dams, tidal fences, and tidal

Note: This page contains sample records for the topic "tidal stream power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Energy Basics: Tidal Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the cost per kilowatt-hour of tidal power is not competitive with conventional fossil fuel power. Contacts | Web Site Policies | U.S. Department of Energy | USA.gov Content Last...

42

Status of Wave and Tidal Power Technologies for the United States  

DOE Green Energy (OSTI)

This paper presents the status of marine applications for renewable energy as of 2008 from a U.S. perspective. Technologies examined include wave, tidal, and ocean current energy extraction devices.

Musial, W.

2008-08-01T23:59:59.000Z

43

DWARFS GOBBLING DWARFS: A STELLAR TIDAL STREAM AROUND NGC 4449 AND HIERARCHICAL GALAXY FORMATION ON SMALL SCALES  

Science Conference Proceedings (OSTI)

A candidate diffuse stellar substructure was previously reported in the halo of the nearby dwarf starburst galaxy NGC 4449 by Karachentsev et al. We map and analyze this feature using a unique combination of deep integrated-light images from the BlackBird 0.5 m telescope, and high-resolution wide-field images from the 8 m Subaru Telescope, which resolve the nebulosity into a stream of red giant branch stars, and confirm its physical association with NGC 4449. The properties of the stream imply a massive dwarf spheroidal progenitor, which after complete disruption will deposit an amount of stellar mass that is comparable to the existing stellar halo of the main galaxy. The stellar mass ratio between the two galaxies is {approx}1:50, while the indirectly measured dynamical mass ratio, when including dark matter, may be {approx}1:10-1:5. This system may thus represent a 'stealth' merger, where an infalling satellite galaxy is nearly undetectable by conventional means, yet has a substantial dynamical influence on its host galaxy. This singular discovery also suggests that satellite accretion can play a significant role in building up the stellar halos of low-mass galaxies, and possibly in triggering their starbursts.

Martinez-Delgado, David; Rix, Hans-Walter; Maccio, Andrea V. [Max-Planck-Institut fuer Astronomy, Heidelberg (Germany); Romanowsky, Aaron J.; Arnold, Jacob A.; Brodie, Jean P. [UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Jay Gabany, R. [Black Bird Observatory, Mayhill, New Mexico (United States); Annibali, Francesca [Osservatorio Astronomico di Bologna, INAF, Via Ranzani 1, I-40127 Bologna (Italy); Fliri, Juergen [LERMA, CNRS UMR 8112, Observatoire de Paris, 61 Avenue de l'Observatoire, F-75014 Paris (France); Zibetti, Stefano [Dark Cosmology Centre, Niels Bohr Institute-University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Van der Marel, Roeland P.; Aloisi, Alessandra [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Chonis, Taylor S. [Department of Astronomy, University of Texas at Austin, Texas (United States); Carballo-Bello, Julio A. [Instituto de Astrofisica de Canarias, Tenerife (Spain); Gallego-Laborda, J. [Fosca Nit Observatory, Montsec Astronomical Park, Ager (Spain); Merrifield, Michael R. [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

2012-04-01T23:59:59.000Z

44

Modeling and analysis of middleware design for streaming power grid applications  

Science Conference Proceedings (OSTI)

High quality, high throughput sensor devices in the power distribution network are driving an increase in the volume and the rate of data streams available to monitor and control the power grid. Middleware support is essential to coordinate data streams ... Keywords: distributed system, middleware, modeling, performance, smart grids

Ilge Akkaya; Yan Liu; Ian Gorton

2012-12-01T23:59:59.000Z

45

Large-Eddy Simulation Study of Wake Propagation and Power Production in an Array of Tidal-Current Turbines: Preprint  

DOE Green Energy (OSTI)

This paper presents our initial work in performing large-eddy simulations of tidal turbine array flows. First, a horizontally-periodic precursor simulation is performed to create turbulent flow data. Then that data is used as inflow into a tidal turbine array two rows deep and infinitely wide. The turbines are modeled using rotating actuator lines, and the finite-volume method is used to solve the governing equations. In studying the wakes created by the turbines, we observed that the vertical shear of the inflow combined with wake rotation causes lateral wake asymmetry. Also, various turbine configurations are simulated, and the total power production relative to isolated turbines is examined. Staggering consecutive rows of turbines in the simulated configurations allows the greatest efficiency using the least downstream row spacing. Counter-rotating consecutive downstream turbines in a non-staggered array shows a small benefit. This work has identified areas for improvement, such as the use of a larger precursor domain to better capture elongated turbulent structures, the inclusion of salinity and temperature equations to account for density stratification and its effect on turbulence, improved wall shear stress modelling, and the examination of more array configurations.

Churchfield, M. J.; Li, Y.; Moriarty, P. J.

2012-07-01T23:59:59.000Z

46

Large-Eddy Simulation Study of Wake Propagation and Power Production in an Array of Tidal-Current Turbines: Preprint  

DOE Green Energy (OSTI)

This paper presents our initial work in performing large-eddy simulations of tidal turbine array flows. First, a horizontally-periodic precursor simulation is performed to create turbulent flow data. Then that data is used to determine the inflow into a tidal turbine array two rows deep and infinitely wide. The turbines are modeled using rotating actuator lines, and the finite-volume method is used to solve the governing equations. In studying the wakes created by the turbines, we observed that the vertical shear of the inflow combined with wake rotation causes lateral wake asymmetry. Also, various turbine configurations are simulated, and the total power production relative to isolated turbines is examined. Staggering consecutive rows of turbines in the simulated configurations allows the greatest efficiency using the least downstream row spacing. Counter-rotating consecutive downstream turbines in a non-staggered array shows a small benefit. This work has identified areas for improvement, such as the use of a larger precursor domain to better capture elongated turbulent structures, the inclusion of salinity and temperature equations to account for density stratification and its effect on turbulence, improved wall shear stress modeling, and the examination of more array configurations.

Churchfield, M. J.; Li, Y.; Moriarty, P. J.

2011-07-01T23:59:59.000Z

47

MHK Technologies/Pulse Stream 100 | Open Energy Information  

Open Energy Info (EERE)

Pulse Stream 100 Pulse Stream 100 < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Pulse Stream 100.jpg Technology Profile Primary Organization Pulse Tidal Ltd Project(s) where this technology is utilized *MHK Projects/Pulse Stream 100 Demonstration Project Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description The 100kW Humber prototype system uses tidal streams to oscillate horizontal blades rather than extracting energy in the same way as a wind turbine through rotary blades. This mode of operation is the key to the device's unique access to shallow water and has so far shown that it can harness enough energy to power 70 homes. The device is connected to the national grid through nearby industrial process plant Millennium Inorganic Chemicals and Ethernet connected through neighbouring resin manufacturing company Cray Valley.

48

A Large-Eddy Simulation Study of Wake Propagation and Power Production in an Array of Tidal-Current Turbines: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

Large-Eddy Simulation Study Large-Eddy Simulation Study of Wake Propagation and Power Production in an Array of Tidal- Current Turbines Preprint M.J. Churchfield, Y. Li, and P.J. Moriarty To be presented at the 9 th European Wave and Tidal Energy Conference 2011 Southhampton, England September 4 - 9, 2011 Conference Paper NREL/CP-5000-51765 July 2011 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government.

49

Application of Data Stream Outlier Mining Techniques in Steam Generator Safety Early Warning System of Nuclear Power Plant  

Science Conference Proceedings (OSTI)

Mining outliers in data streams is a popular research issue in data mining field, which can help to find outliers under abnormal condition and then corresponding measures can be taken. The security guarantee of nuclear power plant is the center topic ... Keywords: safety early warning system, data stream, outlier mining, NPP

Liu Dingping, Zheng Kaitao, Yan Qiqi

2013-01-01T23:59:59.000Z

50

Wind-Power Development in Germany and the U.S.: Multiple Streams, Advocacy Coalitions, and Turning Points  

E-Print Network (OSTI)

Wind-Power Development in Germany and the U.S.: Multiple Streams, Advocacy Coalitions, and Turning). Of the various forms of renewable energy, wind-generated electricity has a unique set of advantages, which make especially large. Wind power produces relatively low levels of environmental damage over its life cycle (like

Qiu, Weigang

51

Utilizing the heat content of gas-to-liquids by-product streams for commercial power generation  

E-Print Network (OSTI)

The Gas-to-liquids (GTL) processes produce a large fraction of by-products whose disposal or handling ordinarily becomes a cost rather than benefit. As an alternative strategy to market stranded gas reserves, GTL provides middle distillates to an unsaturated global market and offers opportunities to generate power for commercial purposes from waste by-product streams, which normally are associated with increased expenses incurred from additional handling cost. The key concept investigated in this work is the possibility of integrating the GTL process with power generation using conventional waste by-product steam streams. Simulation of the integrated process was conducted with the aim of identifying the critical operating conditions for successful integration of the GTL and power generation processes. About 500 MW of electric power can be generated from 70% of the exit steam streams, with around 20 to 25% steam plant thermal efficiency. A detailed economic analysis on the LNG, stand-alone GTL, and Integrated GTL Power-Generation plants indicates that the integrated system is more profitable than the other options considered. Justifying the technology and economics involved in the use of the by-product streams to generate power could increase the net revenue and overall profitability of GTL projects. This technology may be transferable to GTL projects in the world, wherever a market for generated power exists.

Adegoke, Adesola Ayodeji

2006-08-01T23:59:59.000Z

52

Tidal Conversion at a Submarine Ridge  

Science Conference Proceedings (OSTI)

The radiative flux of internal wave energy (the tidal conversion) powered by the oscillating flow of a uniformly stratified fluid over a two-dimensional submarine ridge is computed using an integral-equation method. The problem is characterized ...

Franois Ptrlis; Stefan Llewellyn Smith; W. R. Young

2006-06-01T23:59:59.000Z

53

MHK Technologies/Microturbine River In Stream | Open Energy Information  

Open Energy Info (EERE)

Microturbine River In Stream Microturbine River In Stream < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Microturbine River In Stream.png Technology Profile Primary Organization Whitestone Power Communications Project(s) where this technology is utilized *MHK Projects/Microturbine River In Stream Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description HDPE blades are the only moving parts in the water.This gives the turbine high resistance to silty or salty water. Blades designed to survive impact of 1500 lb object. HDPE provides flexibility and strength. Blades penetrate water 24 inches allowing for deep and shallow operation. Mounting design allows for variable depth operation for varying river conditions.All submerged prime-mover parts constructed from HDPE. No underwater gearboxes, generators or electrical cables. Velocity of blades 50% of velocity of river current.

54

MHK Technologies/Tidal Sails | Open Energy Information  

Open Energy Info (EERE)

Sails Sails < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Sails.jpg Technology Profile Primary Organization Tidal Sails AS Technology Resource Click here Current Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Tidal Sails device is a series of underwater sails affixed to wires strung across the tidal stream at an angle The sails are driven back and forth by the tidal flow between two stations at one of which the generator is installed Technology Dimensions Device Testing Date Submitted 26:04.6 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Tidal_Sails&oldid=681675

55

Tidal Energy Limited | Open Energy Information  

Open Energy Info (EERE)

Tidal Energy Limited (TEL) Tidal Energy Limited (TEL) Place Cardiff, Wales, United Kingdom Zip CF23 8RS Product Tidal stream device developer. Coordinates 51.48125°, -3.180734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.48125,"lon":-3.180734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

56

The Orbit of the Orphan Stream  

Science Conference Proceedings (OSTI)

We use recent SEGUE spectroscopy and SDSS and SEGUE imaging data to measure the sky position, distance, and radial velocities of stars in the tidal debris stream that is commonly referred to as the 'Orphan Stream.' We fit orbital parameters to the data, and find a prograde orbit with an apogalacticon, perigalacticon, and eccentricity of 90 kpc, 16.4 kpc and e = 0.7, respectively. Neither the dwarf galaxy UMa II nor the Complex A gas cloud have velocities consistent with a kinematic association with the Orphan Stream. It is possible that Segue-1 is associated with the Orphan Stream, but no other known Galactic clusters or dwarf galaxies in the Milky Way lie along its orbit. The detected portion of the stream ranges from 19 to 47 kpc from the Sun and is an indicator of the mass interior to these distances. There is a marked increase in the density of Orphan Stream stars near (l, b) = (253{sup o}; 49{sup o}), which could indicate the presence of the progenitor at the edge of the SDSS data. If this is the progenitor, then the detected portion of the Orphan Stream is a leading tidal tail. We find blue horizontal branch (BHB) stars and F turnoff stars associated with the Orphan Stream. The turnoff color is (g-r){sub 0} = 0.22. The BHB stars have a low metallicity of [Fe/H]{sub WBG} = -2.1. The orbit is best fit to a halo potential with a halo plus disk mass of about 2.6 x 10{sup 11} M{sub {circle_dot}}, integrated to 60 kpc from the Galactic center. Our fits are done to orbits rather than full N-body simulations; we show that if N-body simulations are used, the inferred mass of the galaxy would be slightly smaller. Our best fit is found with a logarithmic halo speed of v{sub halo} = 73 {+-} 24 km s{sup -1}, a disk+bulge mass of M(R distant parts of the stream would be a powerful probe of the mass of the Milky Way.

Newberg, Heidi Jo; Willett, Benjamin A.; Yanny, Brian; Xu, Yan

2010-01-01T23:59:59.000Z

57

Some new conceptions in the approach to harnessing tidal energy  

Science Conference Proceedings (OSTI)

This paper outlines a method of converting the energy of ocean tides into electrical and other forms of industrial energy. The main disadvantage of extracting tidal power arises from the low density of tidal power per unit area of the ocean. This leads to the high cost of required investment for the production of a substantial volume of the energy. 10 refs.

Gorlov, A.M.

1981-01-01T23:59:59.000Z

58

Tidal heating and tidal evolution in the solar system  

E-Print Network (OSTI)

In this thesis, we examine the effects of tidal dissipation on solid bodies in application and in theory. First, we study the effects of tidal heating and tidal evolution in the Saturnian satellite system. We constrain the ...

Meyer, Jennifer Ann

2011-01-01T23:59:59.000Z

59

Energy Basics: Tidal Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

60

Tidal Wetlands Regulations (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

Most activities occurring in or near tidal wetlands are regulated, and this section contains information on such activities and required permit applications for proposed activities. Applications...

Note: This page contains sample records for the topic "tidal stream power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

PowerPoint Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

and Tidal Stream Energy Conversion Devices * Ocean Energy - HydroKinetic Energy - Marine Energy Terminology 4 Terminology: HydroKinetic * Hydro Greek word for water (hydor) *...

62

Area Solar energy production BACKGROUND -All renewable energies, except for geothermal and tidal, derive their energy from the sun. By harnessing the power of  

E-Print Network (OSTI)

Area Solar energy production ­ BACKGROUND - All renewable energies installations. Advantages: · A renewable form of energy - "Locks up" carbon, except for geothermal and tidal, derive their energy from the sun

Keinan, Alon

63

Half Moon Cove Tidal Project. Feasibility report  

DOE Green Energy (OSTI)

The proposed Half Moon Cove Tidal Power Project would be located in a small cove in the northern part of Cobscook Bay in the vicinity of Eastport, Maine. The project would be the first tidal electric power generating plant in the United States of America. The basin impounded by the barrier when full will approximate 1.2 square miles. The average tidal range at Eastport is 18.2 feet. The maximum spring tidal range will be 26.2 feet and the neap tidal range 12.8 feet. The project will be of the single pool-type single effect in which generation takes place on the ebb tide only. Utilizing an average mean tidal range of 18.2 feet the mode of operation enables generation for approximately ten and one-half (10-1/2) hours per day or slightly in excess of five (5) hours per tide. The installed capacity will be 12 MW utilizing 2 to 6 MW units. An axial flow, or Bulb type of turbine was selected for this study.

Not Available

1980-11-01T23:59:59.000Z

64

Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Add description List of Tidal Energy Incentives Retrieved from "http:en.openei.orgwindex.php?titleTidalEnergy&oldid267201" Category: Articles with outstanding TODO tasks...

65

Tidal Response in Estuaries  

Science Conference Proceedings (OSTI)

A new general theory has been developed to determine both the tidal response of estuaries and the effects of cross-channel tidal barriers on this response. The theory is shown to be widely applicable and provides a connecting framework against ...

D. Prandle; M. Rahman

1980-10-01T23:59:59.000Z

66

MHK Technologies/bioSTREAM | Open Energy Information  

Open Energy Info (EERE)

bioSTREAM bioSTREAM < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage BioSTREAM.jpg Technology Profile Primary Organization BioPower Systems Pty Ltd Project(s) where this technology is utilized *MHK Projects/bioSTREAM Pilot Plant Technology Resource Click here Current/Tidal Technology Type Click here Reciprocating Device Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description The bioSTREAM is an oscillating hydrofoil based on the highly efficient propulsion of Thunniform-mode swimming species, such as shark, tuna, and mackerel. The bioSTREAM mimics the shape and motion characteristics of these species, but is a fixed device in a moving stream. In this configuration the propulsion mechanism is reversed, and the energy in the passing flow is used to drive the device motion against the resisting torque of an electrical generator. Due to the single point of rotation, this device can align with the flow in any direction and can assume a streamlined configuration to avoid excess loading in extreme conditions. Systems are being developed for 250 kW, 500 kW, and 1 MW capacities to match conditions in various locations.

67

Power extraction from a hot stream in the presence of phase change  

E-Print Network (OSTI)

exchanger, where the water temperature remains constant. In this case the spatial distribution of the m . w) #12;forced to match the smooth distribution of the hot-gas temperature. The second complication which the m . w stream boils, and ®nally, the surface As that superheats the steam. The simplicity

Ordonez, Juan C.

68

Hawaii Ocean Current Resources and Tidal Turbine Assessment  

Science Conference Proceedings (OSTI)

Interest in converting the kinetic energy of ocean current and tidal flow into electrical power has increased in recent years. This report focuses on the ocean current resource in Hawaii, which includes tidal flows as well as uni-directional oceanic current flows around the main Hawaiian Islands, with the exception of Kauai, from the shoreline to approximately the 2000-m depth contour.

2008-09-02T23:59:59.000Z

69

Hydra Tidal Energy Technology AS | Open Energy Information  

Open Energy Info (EERE)

Tidal Energy Technology AS Tidal Energy Technology AS Jump to: navigation, search Name Hydra Tidal Energy Technology AS Address PO Box 399 Place Harstad Zip 9484 Sector Marine and Hydrokinetic Year founded 2001 Phone number (+47) 77 06 08 08 Website http://http://www.hydratidal.i Region Norway LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: MORILD Demonstration Plant Morild 2 This company is involved in the following MHK Technologies: MORILD 2 Floating Tidal Power System Morild Power Plant This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Hydra_Tidal_Energy_Technology_AS&oldid=678333

70

MHK Technologies/Tidal Lagoons | Open Energy Information  

Open Energy Info (EERE)

Tidal Lagoons Tidal Lagoons < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Lagoons.jpg Technology Profile Primary Organization Tidal Electric Project(s) where this technology is utilized *MHK Projects/Dandong City *MHK Projects/Swansea Bay Technology Resource Click here Current/Tidal Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description idal Lagoons are situated a mile or more offshore in high tidal range areas, and use a rubble mound impoundment structure and low-head hydroelectric bulb turbines. Shallow tidal flats provide the most economical sites. Multi-cell Tidal Lagoons provide higher load factors (about 62%) and have the flexibility to shape the output curve in order to dispatch power in response to demand price signals. The impoundment structure is a conventional rubble mound breakwater (loose rock, concrete, and marine sheetpiles are among the types of appropriate materials for the impoundment structure), with ordinary performance specifications and is built from the most economical materials. The barrage is much shorter than an impoundment structure with the same output capacity, but the barrage is a much larger structure. The offshore tidal generator uses conventional low-head hydroelectric generation equipment and control systems. The equipment consists of a mixed-flow reversible bulb turbine, a generator, and the control system. Manufacturers/suppliers include Alstom, GE, Kvaerner, Siemens, Voith, Sulzer, and others.

71

2008 NWFSC Tidal Freshwater Genetics Results  

SciTech Connect

Genetic Analysis of Juvenile Chinook Salmon for inclusion in 'Ecology of Juvenile Salmon in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2008. Annual Report to Bonneville Power Administration, Contract DE-AC05-76RL01830.'

David Teel

2009-05-01T23:59:59.000Z

72

A Comparison of Tidal Conversion Parameterizations for Tidal Models  

Science Conference Proceedings (OSTI)

The conversion of barotropic to baroclinic tidal energy in the global abyssal ocean is calculated using three different formulations. The calculations are done both offline, that is, using externally given tidal currents to estimate the energy ...

J. A. Mattias Green; Jonas Nycander

2013-01-01T23:59:59.000Z

73

Integration of electric drive vehicles with the electric power grida new value stream  

E-Print Network (OSTI)

Battery-electric vehicles and grid-connected hybrid vehicles rely on the power grid for energy-- they have to plug in to charge their batteries. With power alerts and blackouts a recent reality in California, it is easy to conclude that the energy requirements of grid-connected electric vehicles will make the energy crisis worse. Actually, quite the opposite may be true. With a bi-directional grid power interface, virtually any vehicle that can plug into the grid can potentially provide beneficial support to the grid. Battery electric vehicles can support the grid exceptionally well by providing any of a number of functions known collectively as ancillary services. These services are vital to the smooth and efficient operation of the power grid. A hybrid vehicle can provide ancillary services, and can also generate power. Fuel cells are already being commercialized for small stationary power sources, so a vehiclemounted fuel cell could also serve as a vehicle-to-grid power source. Sharing power assets between transportation and power generation functions can create a compelling new economics for electrically-propelled vehicles.

Alec Brooks; Tom Gage; Ac Propulsion

2001-01-01T23:59:59.000Z

74

Modeling the Limits and Effects of Energy?Extraction from Tidal...  

NLE Websites -- All DOE Office Websites (Extended Search)

agree well with analytical solution by Garrett & Cummins (2004, 2005) Extractable Max Power Function of (tidal amplitude, volume flux) P model 2,154 MW; P analytical ...

75

Tidal Venuses: Triggering a Climate Catastrophe via Tidal Heating  

E-Print Network (OSTI)

Traditionally stellar radiation has been the only heat source considered capable of determining global climate on long timescales. Here we show that terrestrial exoplanets orbiting low-mass stars may be tidally heated at high enough levels to induce a runaway greenhouse for a long enough duration for all the hydrogen to escape. Without hydrogen, the planet no longer has water and cannot support life. We call these planets "Tidal Venuses," and the phenomenon a "tidal greenhouse." Tidal effects also circularize the orbit, which decreases tidal heating. Hence, some planets may form with large eccentricity, with its accompanying large tidal heating, and lose their water, but eventually settle into nearly circular orbits in the habitable zone (HZ). However, these planets are not habitable as past tidal heating desiccated them, and hence should not be ranked highly for detailed follow-up observations aimed at detecting biosignatures. We simulate the evolution of hypothetical planetary systems in a quasi-continuous ...

Barnes, Rory; Goldblatt, Colin; Meadows, Victoria S; Kasting, James F; Heller, Rene

2012-01-01T23:59:59.000Z

76

The Orbit of the Orphan Stream  

SciTech Connect

We use recent SEGUE spectroscopy and SDSS and SEGUE imaging data to measure the sky position, distance, and radial velocities of stars in the tidal debris stream that is commonly referred to as the 'Orphan Stream.' We fit orbital parameters to the data, and find a prograde orbit with an apogalacticon, perigalacticon, and eccentricity of 90 kpc, 16.4 kpc and e = 0.7, respectively. Neither the dwarf galaxy UMa II nor the Complex A gas cloud have velocities consistent with a kinematic association with the Orphan Stream. It is possible that Segue-1 is associated with the Orphan Stream, but no other known Galactic clusters or dwarf galaxies in the Milky Way lie along its orbit. The detected portion of the stream ranges from 19 to 47 kpc from the Sun and is an indicator of the mass interior to these distances. There is a marked increase in the density of Orphan Stream stars near (l, b) = (253{sup o}; 49{sup o}), which could indicate the presence of the progenitor at the edge of the SDSS data. If this is the progenitor, then the detected portion of the Orphan Stream is a leading tidal tail. We find blue horizontal branch (BHB) stars and F turnoff stars associated with the Orphan Stream. The turnoff color is (g-r){sub 0} = 0.22. The BHB stars have a low metallicity of [Fe/H]{sub WBG} = -2.1. The orbit is best fit to a halo potential with a halo plus disk mass of about 2.6 x 10{sup 11} M{sub {circle_dot}}, integrated to 60 kpc from the Galactic center. Our fits are done to orbits rather than full N-body simulations; we show that if N-body simulations are used, the inferred mass of the galaxy would be slightly smaller. Our best fit is found with a logarithmic halo speed of v{sub halo} = 73 {+-} 24 km s{sup -1}, a disk+bulge mass of M(R < 60 kpc) = 1.3 x 10{sup 11} M{sub {circle_dot}}, and a halo mass of M(R < 60 kpc) = 1.4 x 10{sup 11} M{sub {circle_dot}}. However, we can find similar fits to the data that use an NFW halo profile, or that have smaller disk masses and correspondingly larger halo masses. Distinguishing between different classes of models requires data over a larger range of distances. The Orphan Stream is projected to extend to 90 kpc from the Galactic center, and measurements of these distant parts of the stream would be a powerful probe of the mass of the Milky Way.

Newberg, Heidi Jo; Willett, Benjamin A.; Yanny, Brian; Xu, Yan

2010-01-01T23:59:59.000Z

77

Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine Project Takes Historic Step Forward in U.S. Tidal Energy Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment May 4, 2012 - 12:11pm Addthis Cobscook Bay, Maine, is the site of a tidal energy pilot project led by Ocean Renewable Power Company. | Photo courtesy of Ocean Renewable Power Company. Cobscook Bay, Maine, is the site of a tidal energy pilot project led by Ocean Renewable Power Company. | Photo courtesy of Ocean Renewable Power Company. Hoyt Battey Water Power Market Acceleration and Deployment Team Lead, Wind and Water Power Program What does this project do? ORPC will deploy cross flow turbine devices in Cobscook Bay, at the mouth of the Bay of Fundy. These devices are designed to generate electricity over a range of

78

Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine Project Takes Historic Step Forward in U.S. Tidal Energy Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment May 4, 2012 - 12:11pm Addthis Cobscook Bay, Maine, is the site of a tidal energy pilot project led by Ocean Renewable Power Company. | Photo courtesy of Ocean Renewable Power Company. Cobscook Bay, Maine, is the site of a tidal energy pilot project led by Ocean Renewable Power Company. | Photo courtesy of Ocean Renewable Power Company. Hoyt Battey Water Power Market Acceleration and Deployment Team Lead, Wind and Water Power Program What does this project do? ORPC will deploy cross flow turbine devices in Cobscook Bay, at the mouth of the Bay of Fundy. These devices are designed to generate electricity over a range of

79

The environmental interactions of tidal and wave energy generation devices  

Science Conference Proceedings (OSTI)

Global energy demand continues to grow and tidal and wave energy generation devices can provide a significant source of renewable energy. Technological developments in offshore engineering and the rising cost of traditional energy means that offshore energy resources will be economic in the next few years. While there is now a growing body of data on the ecological impacts of offshore wind farms, the scientific basis on which to make informed decisions about the environmental effects of other offshore energy developments is lacking. Tidal barrages have the potential to cause significant ecological impacts particularly on bird feeding areas when they are constructed at coastal estuaries or bays. Offshore tidal stream energy and wave energy collectors offer the scope for developments at varying scales. They also have the potential to alter habitats. A diversity of designs exist, including floating, mid-water column and seabed mounted devices, with a variety of moving-part configurations resulting in a unique complex of potential environmental effects for each device type, which are discussed to the extent possible. - Highlights: Black-Right-Pointing-Pointer We review the environmental impacts of tidal barrages and fences, tidal stream farms and wave energy capture devices. Black-Right-Pointing-Pointer Impacts on habitats, species and the water column, and effects of noise and electromagnetic fields are considered. Black-Right-Pointing-Pointer Tidal barrages can cause significant impacts on bird feeding areas when constructed at coastal estuaries or bays. Black-Right-Pointing-Pointer Wave energy collectors can alter water column and sea bed habitats locally and over large distances.

Frid, Chris, E-mail: c.l.j.frid@liv.ac.uk [School of Environmental Sciences, University of Liverpool, Crown Street, Liverpool, L69 7ZB (United Kingdom); Andonegi, Eider, E-mail: eandonegi@azti.es [AZTI-Tecnalia, Txatxarramendi ugartea, z/g E-48395 Sukarrieta (Bizkaia) (Spain); Depestele, Jochen, E-mail: jochen.depestele@ilvo.vlaanderen.be [Institute for Agricultural and Fisheries Research, Ankerstraat 1, B-8400 Oostende (Belgium); Judd, Adrian, E-mail: Adrian.Judd@cefas.co.uk [Centre for Environment, Fisheries and Aquaculture Science , Lowestoft Laboratory, Pakefield Road, Lowestoft NR33 0HT United Kingdom (United Kingdom); Rihan, Dominic, E-mail: Dominic.RIHAN@ec.europa.eu [Irish Sea Fisheries Board, P.O. Box 12 Dun Laoghaire, Co. Dublin (Ireland); Rogers, Stuart I., E-mail: stuart.rogers@cefas.co.uk [Centre for Environment, Fisheries and Aquaculture Science , Lowestoft Laboratory, Pakefield Road, Lowestoft NR33 0HT United Kingdom (United Kingdom); Kenchington, Ellen, E-mail: Ellen.Kenchington@dfo-mpo.gc.ca [Fisheries and Oceans Canada, Bedford Institute of Oceanography, P.O. Box 1006, Dartmouth Canada, NS B2Y 4A2 (Canada)

2012-01-15T23:59:59.000Z

80

MHK Technologies/Sabella subsea tidal turbine | Open Energy Information  

Open Energy Info (EERE)

subsea tidal turbine subsea tidal turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Description It is characterised by a turbine configuration on the seafloor, without impinging on the surface. These turbines are stabilised by gravity and/or are anchored according to the nature of the seafloor. They are pre-orientated in the direction of the tidal currents, and the profile of their symmetrical blades helps to capture the ebb and flow. The rotor activated, at slow speeds (10 to 15 rpm), by the tides powers a generator, which exports the electricity produced to the coast via a submarine cable anchored and embedded at its landfall.

Note: This page contains sample records for the topic "tidal stream power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Ocean Tidal and Wave Energy  

Science Conference Proceedings (OSTI)

First published in 2000, the annual Renewable Energy Technical Assessment Guide (TAG-RE) provides a consistent basis for evaluating the economic feasibility of renewable generation technologies. This excerpt from the 2005 TAG-RE addresses ocean tidal and wave energy conversion technologies, which offer promise for converting the significant energy potential available in ocean tidal currents and waves to electricity in the future.

2005-12-19T23:59:59.000Z

82

Microsoft PowerPoint - S08-03_Peeler_Feed Qualification for New Streams.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Feed Qualification for New Streams Feed Qualification for New Streams to DWPF Connie C. Herman (Presented by David Peeler) Manager, Process Technology Programs Savannah River National Laboratory November 17, 2010 Print Close 2 Feed Qualification for New Streams to DWPF Presentation Outline Overview of High Level Waste System Considerations for Qualification Qualification Process Flowsheet Testing Glass Formulation and Processing Impacts Radioactive Sample Characterization & Verification Print Close 3 Feed Qualification for New Streams to DWPF Waste Removal Grout Vault H Area Tanks F Area Tanks 2F 2H 3H Evaporators Extended Sludge Processing Canisters of Vitrified Glass Saltstone S a l t Salt Processing Tank Closure Tank Farm Storage & Evaporation Waste Removal & Pretreatment Final Processing Washed Sludge Low Level

83

MHK Technologies/Scotrenewables Tidal Turbine SRTT | Open Energy  

Open Energy Info (EERE)

Scotrenewables Tidal Turbine SRTT Scotrenewables Tidal Turbine SRTT < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Scotrenewables Tidal Turbine SRTT.jpg Technology Profile Primary Organization Scotrenewables Project(s) where this technology is utilized *MHK Projects/Scotrenewables EMEC Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description The Scotrenewables Tidal Turbine (SRTT) system is a free-floating rotor-based tidal current energy converter. The concept in its present configuration involves dual counter-rotating horizontal axis rotors driving generators within sub-surface nacelles, each suspended from separate keel and rotor arm sections attached to a single surface-piercing cylindrical buoyancy tube. The device is anchored to the seabed via a yoke arrangement. A separate flexible power and control umbilical line connects the device to a subsea junction box. The rotor arm sections are hinged to allow each two-bladed rotor to be retracted so as to be parallel with the longitudinal axis of the buoyancy tube, giving the system a transport draught of less than 4.5m at full-scale to facilitate towing the device into harbors for maintenance.

84

Maine Deploys First U.S. Commercial, Grid-Connected Tidal Energy Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine Deploys First U.S. Commercial, Grid-Connected Tidal Energy Maine Deploys First U.S. Commercial, Grid-Connected Tidal Energy Project Maine Deploys First U.S. Commercial, Grid-Connected Tidal Energy Project July 24, 2012 - 1:12pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON -- Today, Energy Secretary Steven Chu recognized the nation's first commercial, grid-connected tidal energy project off the coast of Eastport, Maine. Leveraging a $10 million investment from the Energy Department, Ocean Renewable Power Company (ORPC) will deploy its first commercial tidal energy device into Cobscook Bay this summer. The project, which injected $14 million into the local economy and has supported more than 100 local and supply chain jobs, represents the first tidal energy project in the United States with long-term contracts to sell electricity

85

Tidal Energy Dissipation at the Sill of Sechelt Inlet, British Columbia  

Science Conference Proceedings (OSTI)

The energy budget of a tidally active, shallow silled fjord is discussed. Constriction of the flow over the shallow sill causes a reduction in tidal amplitude and a phase lag across the sill. A generalized expression for the total power extracted ...

Scott W. Tinis; Stephen Pond

2001-12-01T23:59:59.000Z

86

Optimizing the performance of streaming numerical kernels on the IBM Blue Gene/P PowerPC 450 processor  

Science Conference Proceedings (OSTI)

Several emerging petascale architectures use energy-efficient processors with vectorized computational units and in-order thread processing. On these architectures the sustained performance of streaming numerical kernels, ubiquitous in the solution of ... Keywords: Blue Gene/P, SIMD, code generation, high-performance computing, performance optimization

Tareq Malas, Aron J. Ahmadia, Jed Brown, John A. Gunnels, David E. Keyes

2013-05-01T23:59:59.000Z

87

APPENDIX A CRUDE STREAM CODES COUNTRY Stream Code Stream Name ...  

U.S. Energy Information Administration (EIA)

Page ?? 6 * A Former Soviet Republic APPENDIX A CRUDE STREAM CODES COUNTRY Stream Code Stream Name Gravity Sulfur Columbia - Continued CO043 Orito ...

88

MHK Technologies/Submergible Power Generator | Open Energy Information  

Open Energy Info (EERE)

Submergible Power Generator Submergible Power Generator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Submergible Power Generator.jpg Technology Profile Primary Organization Current to Current Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The design of the SPG leverages water flows in varying scenarios to generate electricity While the focus of the C2C deployments is ocean currents the SPG works in a bi directional manner Therefore the SPG can be deployed to generate electricity from tidal differential tidal streams In areas where currents and tidal differential streams converge the SPG with remote control and telemetry systems will track the water velocity In this manner the SPG can be maneuver in three dimensions to optimize water flow Each tube of the catamaran is approximately 150 feet in length The inner tube contains the electronic components and the outer tube is the rotating impeller system comprising a generator with a four blade turbine which measures approximately 100 feet in diameter The total area covered by each SPG is about the size of a football field

89

Earth Tidal Analysis | Open Energy Information  

Open Energy Info (EERE)

Earth Tidal Analysis Earth Tidal Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Earth Tidal Analysis Details Activities (6) Areas (4) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Well Testing Techniques Information Provided by Technique Lithology: Enables estimation of in-situ reservoir elastic parameters. Stratigraphic/Structural: Hydrological: Enables estimation of in-situ reservoir hydraulic parameters. Thermal: Dictionary.png Earth Tidal Analysis: Earth tidal analysis is the measurement of the impact of tidal and barometric fluctuations on effective pore volume in a porous reservoir. Other definitions:Wikipedia Reegle

90

MHK Technologies/Tidal Hydraulic Generators THG | Open Energy Information  

Open Energy Info (EERE)

Generators THG Generators THG < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Hydraulic Generators THG.jpg Technology Profile Primary Organization Tidal Hydraulic Generators Ltd Project(s) where this technology is utilized *MHK Projects/Ramsey Sound Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The concept of generating energy in this way is made unique by our novel design feature. The generator, devised in 1998, is a hydraulic accumulator system, involving relatively small revolving blades which gather power to a central collector, where electricity is generated. The generator, which is situated under water, is 80 metres square, stands at 15 metres high, and is designed to run for a minimum of ten years without service.

91

The Interaction of Tides with the Sill of a Tidally Energetic Inlet  

Science Conference Proceedings (OSTI)

The interaction of the tides with the sill of a tidally energetic inlet, Observatory Inlet, British Columbia, is studied. Because of temporal variations in the stratification of the inlet, a substantial seasonal variation is observed in the power ...

Michael W. Stacey

1984-06-01T23:59:59.000Z

92

Tidal Current Predictions Using Rotary Empirical Orthogonal Functions  

Science Conference Proceedings (OSTI)

In the conventional point tidal analysis approach, a set of tidal harmonic constituents is derived from each time series of currents. These sets of tidal constituents are then used to predict the tidal currents. For a large database of current ...

Betty Ng

1993-12-01T23:59:59.000Z

93

Tidal | OpenEI Community  

Open Energy Info (EERE)

Tidal Tidal Home Ocop's picture Submitted by Ocop(5) Member 18 April, 2013 - 13:41 MHK LCOE Reporting Guidance Draft Cost Current DOE LCOE numerical modeling Performance Tidal Wave To normalize competing claims of LCOE, DOE has developed-for its own use-a standardized cost and performance data reporting process to facilitate uniform calculation of LCOE from MHK device developers. This standardization framework is only the first version in what is anticipated to be an iterative process that involves industry and the broader DOE stakeholder community. Multiple files are attached here for review and comment.Upload Files: application/vnd.openxmlformats-officedocument.wordprocessingml.document icon device_performance_validation_data_request.docx application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon

94

Tidal Electric | Open Energy Information  

Open Energy Info (EERE)

Electric Electric Jump to: navigation, search Name Tidal Electric Place London, Greater London, United Kingdom Zip SW19 8UY Product Developed a technology named 'tidal lagoons' to build tidal electric projects. Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

95

On Tidal Damping in Laplace's Global Ocean  

Science Conference Proceedings (OSTI)

Laplace's tidal equations are augmented by dissipation in a bottom boundary layer that is intermediate in character between those of Ekman and Stokes. Laplace's tidal equation for a global ocean remains second-order and self-adjoint, but the ...

John W. Miles

1986-02-01T23:59:59.000Z

96

Tidal Diffusivity: A Mechanism for Frontogenesis  

Science Conference Proceedings (OSTI)

It is hypothesized that tidal mixing may provide a diffusivity mechanism for frontogenesis. It stems from the fact that tidal diffusivity varies in the opposite sense from the water depth, so the vertically integrated diffusivity may exhibit a ...

Hsien-Wang Ou; Chang-Ming Dong; Dake Chen

2003-04-01T23:59:59.000Z

97

Tidal Mixing Signatures in the Indonesian Seas  

Science Conference Proceedings (OSTI)

Expressions of low-frequency tidal periods are found throughout the Indonesian Seas' temperature field, supporting the hypothesis that vertical mixing is enhanced within the Indonesian Seas by the tides. The thermal signatures of tidal mixing ...

Amy Ffield; Arnold L. Gordon

1996-09-01T23:59:59.000Z

98

Clean Streams  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Streams Clean Streams Nature Bulletin No. 538-A October 5, 1974 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation CLEAN STREAMS Each year in mid-May is Clean Streams Week in Cook County by proclamation of the president of the county board and the Board of Forest Preserve Commissioners, and in all of Illinois by proclamation of the Governor. Its purpose is to focus the attention of everyone, young and old, upon the disgraceful conditions in our streams, formerly clean and beautiful, which have been made foul and unsightly by pollution with sewage and by the dumping of garbage and junk into them. Some of us remember when fish such as northern pike, black bass, sunfish, bluegills, crappies and channel catfish were plentiful in the rivers and creeks of Cook County. Now the desirable kinds of fish have largely disappeared and many portions are so polluted that even carp cannot exist. Swimming, once popular in the DesPlaines River, Salt Creek and other streams, has long been prohibited by the State Board of Health. In some streams the stench and appearance of the water is so repulsive that no one enjoys picnicking or resting in the shade along their banks.

99

Energy Department Invests $16 Million to Harness Wave and Tidal Energy |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 Million to Harness Wave and Tidal 6 Million to Harness Wave and Tidal Energy Energy Department Invests $16 Million to Harness Wave and Tidal Energy August 29, 2013 - 2:35pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's all-of-the-above strategy to deploy every available source of American energy, the Energy Department today announced $16 million for seventeen projects to help sustainably and efficiently capture energy from waves, tides and currents. Together, these projects will increase the power production and reliability of wave and tidal devices and help gather valuable data on how deployed devices interact with the surrounding environment. "Wave and tidal energy represent a large, untapped resource for the United States and responsible development of this clean, renewable energy

100

Energy Department Invests $16 Million to Develop Wave and Tidal Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 Million to Develop Wave and Tidal 6 Million to Develop Wave and Tidal Energy Technologies Energy Department Invests $16 Million to Develop Wave and Tidal Energy Technologies August 29, 2013 - 12:00pm Addthis Image of machinery to generate energy using tides. As part of the Obama Administration's all-of-the-above strategy to deploy every available source of American energy, the Energy Department today announced $16 million for seventeen projects to help sustainably and efficiently capture energy from waves, tides, and currents. Together, these projects will increase the power production and reliability of wave and tidal devices and help gather valuable data on how deployed devices interact with the surrounding environment. "Wave and tidal energy represent a large, untapped resource for the United

Note: This page contains sample records for the topic "tidal stream power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

MHK Technologies/Pulse Stream 1200 | Open Energy Information  

Open Energy Info (EERE)

Stream 1200 Stream 1200 < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Pulse Stream 1200.jpg Technology Profile Primary Organization Pulse Tidal Ltd Technology Resource Click here Current Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description Building on the success of the Pulse Stream 100 which was installed in 2009 Pulse Tidal has formed a large technical team and secured a European Union grant for development of a commercial scale product This device will be installed in Scotland in 2012 Mooring Configuration Secured to the seabed with drilled and grouted pin piles Optimum Marine/Riverline Conditions 2 5m s flow rate Depth average 60ft

102

Observing Lense-Thirring Precession in Tidal Disruption Flares  

E-Print Network (OSTI)

When a star is tidally disrupted by a supermassive black hole (SMBH), the streams of liberated gas form an accretion disk after their return to pericenter. We demonstrate that Lense-Thirring precession in the spacetime around a rotating SMBH can produce significant time evolution of the disk angular momentum vector, due to both the periodic precession of the disk and the nonperiodic, differential precession of the bound debris streams. Jet precession and periodic modulation of disk luminosity are possible consequences. The persistence of the jetted X-ray emission in the Swift J164449.3+573451 flare suggests that the jet axis was aligned with the spin axis of the SMBH during this event.

Nicholas Stone; Abraham Loeb

2011-09-29T23:59:59.000Z

103

Stream Pollution  

NLE Websites -- All DOE Office Websites (Extended Search)

Stream Pollution Stream Pollution Nature Bulletin No. 401-A January 9, 1971 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation STREAM POLLUTION The pollution of surface waters in the United States is one of man's most shameful and dangerous crimes against himself. It is ruining one of the nation's basic resources by rendering water unfit for human consumption and unsuitable for many industrial or domestic uses. Pollution is particularly alarming near most big cities, but, emptied into rivers and creeks, other communities may feel its effect a hundred or more miles downstream. Even in remote or rural regions, it originates as wastes from mines, paper mills, canneries and creameries . A lot of the pleasure of living is taken away because our streams and lakes are fouled and spoiled for bathing, boating, fishing and other recreations. Further, the health hazard is very real. Unless such waters are boiled or chlorinated there is danger from typhoid, dysentery and many other diseases.

104

MHK Technologies/Pulse-Stream 120 | Open Energy Information  

Open Energy Info (EERE)

Pulse-Stream 120 Pulse-Stream 120 < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization Pulse Tidal Ltd Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Description Building on the success of the Pulse-Stream 100 which was installed in 2009, Pulse Tidal has formed a large technical team and secured a European Union grant for development of a commercial scale product. This device will be installed in Scotland in 2012. Mooring Configuration Secured to the seabed with drilled and grouted pin-piles Optimum Marine/Riverline Conditions 2.5m/s flow-rate. Depth average 60ft. Technology Dimensions Length (m) 10 Width (m) 45 Height (m) 13

105

Tidal Hydraulic Generators Ltd | Open Energy Information  

Open Energy Info (EERE)

Hydraulic Generators Ltd Jump to: navigation, search Name Tidal Hydraulic Generators Ltd Address 14 Thislesboon Drive Place Mumbles Zip SA3 4HY Sector Marine and Hydrokinetic Phone...

106

Hydropower, Wave and Tidal Technologies Available for ...  

Site Map; Printable Version; Share this resource. Send a link to Hydropower, Wave and Tidal Technologies Available for Licensing - Energy Innovation Portalto someone ...

107

Tidal Transport in the Florida Current and Its Relationship to Tidal Heights and Cable Voltages  

Science Conference Proceedings (OSTI)

A linear relationship between tidal height (sea level of tidal frequencies) and tidal transport near 27N in the Straits of Florida is confirmed. Transport estimates from this relationship for the O1 and M2 constituents are compared with those ...

Dennis A. Mayer; Jimmy C. Larsen

1986-12-01T23:59:59.000Z

108

Spectral Scaling in a Tidal Boundary Layer  

Science Conference Proceedings (OSTI)

The simple scaling of a tidal bottom boundary layer by the shear velocity, u*, and the wall to the wall describes well the mean Bow field. To test the full extent of this scaling measurements were made of the turbulence spectra in a natural tidal ...

Thomas F. Gross; Arthur R. M. Nowell

1985-05-01T23:59:59.000Z

109

Tidal Heating of Extra-Solar Planets  

E-Print Network (OSTI)

Extra-solar planets close to their host stars have likely undergone significant tidal evolution since the time of their formation. Tides probably dominated their orbital evolution once the dust and gas had cleared away, and as the orbits evolved there was substantial tidal heating within the planets. The tidal heating history of each planet may have contributed significantly to the thermal budget that governed the planet's physical properties, including its radius, which in many cases may be measured by observing transit events. Typically, tidal heating increases as a planet moves inward toward its star and then decreases as its orbit circularizes. Here we compute the plausible heating histories for several planets with measured radii, using the same tidal parameters for the star and planet that had been shown to reconcile the eccentricity distribution of close-in planets with other extra-solar planets. Several planets are discussed, including for example HD 209458 b, which may have undergone substantial tida...

Jackson, Brian; Barnes, Rory

2008-01-01T23:59:59.000Z

110

All Eyes on Eastport: Tidal Energy Project Brings Change, Opportunity to  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

All Eyes on Eastport: Tidal Energy Project Brings Change, All Eyes on Eastport: Tidal Energy Project Brings Change, Opportunity to Local Community All Eyes on Eastport: Tidal Energy Project Brings Change, Opportunity to Local Community July 24, 2012 - 2:40pm Addthis Captain Gerald "Gerry" Morrison, Vice President of Perry Marine & Consctruction. | Photo Courtesy of Ocean Renewable Power Company. Captain Gerald "Gerry" Morrison, Vice President of Perry Marine & Consctruction. | Photo Courtesy of Ocean Renewable Power Company. Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs Today in Eastport, Maine, people are gathering to celebrate a project that will harness the power of the massive tides of Cobscook Bay to generate clean electricity. At a public dedication event this afternoon, Portland-based Ocean Renewable

111

MHK Technologies/DeltaStream | Open Energy Information  

Open Energy Info (EERE)

Technologies Technologies Jump to: navigation, search << Return to the MHK database homepage DeltaStream.jpg Technology Profile Primary Organization Tidal Energy Ltd Project(s) where this technology is utilized *MHK Projects/DeltaStream *MHK Projects/DeltaStream Pembrokeshire Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The DeltaStream device is a nominal 1 2MW unit which sits on the seabed without the need for a positive anchoring system generating electricity from three separate horizontal axis turbines mounted on a common frame The use of three turbines on a single circa 30m wide triangular frame produces a low center of gravity enabling the device to satisfy its structural stability requirements including the avoidance of overturning and sliding The device utilizes fixed pitch blades designed to maximize the energy extracted from the tidal flow distribution at the deployment site A mechanical yaw system allows the nacelles to oscillate by a control system which is programmed to seek the optimum flow The rotors extract the energy from the water flow at an elevation of between approximately 5 20m above the seabed assuming a 15m rotor diameter

112

Tidal Heating of Extra-Solar Planets  

E-Print Network (OSTI)

Extra-solar planets close to their host stars have likely undergone significant tidal evolution since the time of their formation. Tides probably dominated their orbital evolution once the dust and gas had cleared away, and as the orbits evolved there was substantial tidal heating within the planets. The tidal heating history of each planet may have contributed significantly to the thermal budget that governed the planet's physical properties, including its radius, which in many cases may be measured by observing transit events. Typically, tidal heating increases as a planet moves inward toward its star and then decreases as its orbit circularizes. Here we compute the plausible heating histories for several planets with measured radii, using the same tidal parameters for the star and planet that had been shown to reconcile the eccentricity distribution of close-in planets with other extra-solar planets. Several planets are discussed, including for example HD 209458 b, which may have undergone substantial tidal heating during the past billion years, perhaps enough to explain its large measured radius. Our models also show that GJ 876 d may have experienced tremendous heating and is probably not a solid, rocky planet. Theoretical models should include the role of tidal heating, which is large, but time-varying.

Brian Jackson; Richard Greenberg; Rory Barnes

2008-02-29T23:59:59.000Z

113

2007 NWFSC Tidal Freshwater Genetics Results  

SciTech Connect

Genetic Analysis of Juvenile Chinook Salmon for inclusion in 'Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, lower Columbia River, 2007. Final report submitted to the Bonneville Power Administration, Contract DE-AC05-76RLO1830.' Genotypic data were collected for 108 Chinook salmon and used in the genetic stock identification analysis. Results of the mixture analysis are presented in Table 1. Percentage estimates for four genetic stock groups (West Cascade Tributary Fall, Willamette River Spring, Deschutes River Fall, and Upper Columbia River Summer/Fall) ranged from 11% to 43%, all with non-zero lower 95% confidence intervals. Small contributions were also estimated for the West Cascade Tributary Spring (3%) and Snake River Fall (6%) stock groups. Results of individual fish probability assignments were summed by collection date (Figure 1) and site (Figure 2). Assignment probabilities for the most likely stock group for each individual ranged from 0.51 to 1.00 with approximately 60% of the assignments greater than 0.90 (data not shown). Nearly all of the low probability assignments were fish with assignments split between the Deschutes River Fall and Upper Columbia River Summer/Fall groups.

David Teel

2008-03-18T23:59:59.000Z

114

Data stream management and mining Georges HEBRAIL  

E-Print Network (OSTI)

arriving at a very high rate. Table 1 shows an example of a data stream representing electric power in a database before being processed, due in particular to its historical dimension. This problem has recently historical data from raw data produced by input streams. As data stored in data bases and warehouses

Paris-Sud XI, Université de

115

NREL Uses Computing Power to Investigate Tidal Power (Fact Sheet)  

DOE Green Energy (OSTI)

Until now, wind turbine controls that reduce the impacts of wind gusts and turbulence were always reactive - responding to the wind rather than anticipating it. But with today's laser-based sensors that measure wind speed ahead of the turbine, researchers at the National Renewable Energy Laboratory (NREL) and their industry partners are developing more intelligent controls. The world's first field tests of these controls are currently underway at the National Wind Technology Center (NWTC) at NREL, with plans for future commercialization.

Not Available

2012-10-01T23:59:59.000Z

116

Observational Signature of Tidal Disruption of a Star by a Massive Black Hole  

E-Print Network (OSTI)

Abstract. We have modeled the time-variable profiles of the H? emission line from the nonaxisymmetric disk and debris tail created in the tidal disruption of a solar-type star by a 10 6 M? black hole. We find that the line profiles at these very early stages of the evolution of the postdisruption debris do not resemble the double peaked profiles expected from a rotating disk since the debris has not yet settled into such a stable structure. The predicted line profiles vary on fairly short time scales (of order hours to days). As a result of the uneven distribution of the debris and the existence of a tidal tail (the stream of returning debris), the line profiles depend sensitively on the orientation of the tail relative to the line of sight. Given the illuminating UV/X-ray light curve, we also model the H? light curve from the debris. Light Curves and Emission Line Profiles From the Tidal Debris Simulations of tidal disruption of a star were carried out using a three-dimensional, relativistic, smooth-particle hydrodynamics code (Laguna et al. 1993), to describe the early evolution of the debris during the first fifty to ninety days. We have used the photoionization code CLOUDY (Ferland 1996) to calculate the physical conditions and radiative processes in the debris. To obtain the observed profile from the relativistic

Tamara Bogdanovi?; Michael Eracleous; Suvrath Mahadevan; Steinn Sigurdsson; Pablo Laguna

2004-01-01T23:59:59.000Z

117

TIDAL INTERACTIONS IN MERGING WHITE DWARF BINARIES  

SciTech Connect

The recently discovered system J0651 is the tightest known detached white dwarf (WD) binary. Since it has not yet initiated Roche-lobe overflow, it provides a relatively clean environment for testing our understanding of tidal interactions. I investigate the tidal heating of each WD, parameterized in terms of its tidal Q parameter. Assuming that the heating can be radiated efficiently, the current luminosities are consistent with Q {sub 1} {approx} 7 x 10{sup 10} and Q {sub 2} {approx} 2 x 10{sup 7}, for the He and C/O WDs, respectively. Conversely, if the observed luminosities are merely from the cooling of the WDs, these estimated values of Q represent the upper limits. A large Q {sub 1} for the He WD means its spin velocity will be slower than that expected if it was tidally locked, which, since the binary is eclipsing, may be measurable via the Rossiter-McLaughlin effect. After one year, gravitational wave emission shifts the time of eclipses by 5.5 s, but tidal interactions cause the orbit to shrink more rapidly, changing the time by up to an additional 0.3 s after a year. Future eclipse timing measurements may therefore infer the degree of tidal locking.

Piro, Anthony L., E-mail: piro@caltech.edu [Theoretical Astrophysics, California Institute of Technology, 1200 East California Boulevard, M/C 350-17, Pasadena, CA 91125 (United States)

2011-10-20T23:59:59.000Z

118

Stream Flow Standards and Regulations (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations apply to all rivers and streams in Connecticut. Dam owners need to comply with these regulations unless the dam is principally used for hydroelectric power generation and is under...

119

Methods, Apparatuses and Systems for Processing Fluid Streams ...  

Applications and Industries Gas separations of capture flue gas and/or pipeline gas streams; Oil & gas, power & manufacturing industries. More ...

120

Measurements of Turbulence at Two Tidal Energy Sites in Puget Sound, WA  

SciTech Connect

Field measurements of turbulence are pre- sented from two sites in Puget Sound, WA (USA) that are proposed for electrical power generation using tidal current turbines. Rapidly sampled data from multiple acoustic Doppler instruments are analyzed to obtain statistical mea- sures of fluctuations in both the magnitude and direction of the tidal currents. The resulting turbulence intensities (i.e., the turbulent velocity fluctuations normalized by the harmonic tidal currents) are typically 10% at the hub- heights (i.e., the relevant depth bin) of the proposed turbines. Length and time scales of the turbulence are also analyzed. Large-scale, anisotropic eddies dominate the energy spectra, which may be the result of proximity to headlands at each site. At small scales, an isotropic turbulent cascade is observed and used to estimate the dissipation rate of turbulent kinetic energy. Data quality and sampling parameters are discussed, with an emphasis on the removal of Doppler noise from turbulence statistics.

Thomson, Jim; Polagye, Brian; Durgesh, Vibhav; Richmond, Marshall C.

2012-06-05T23:59:59.000Z

Note: This page contains sample records for the topic "tidal stream power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Tidal Sails AS | Open Energy Information  

Open Energy Info (EERE)

Sails AS Sails AS Jump to: navigation, search Name Tidal Sails AS Address Standgaten 130 Place Haugesund Zip 5531 Sector Marine and Hydrokinetic Phone number +32 474 98 06 16 Website http://www.tidalsails.com Region Norway LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Technologies: Tidal Sails This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Tidal_Sails_AS&oldid=678479" Categories: Clean Energy Organizations Companies Organizations Stubs MHK Companies What links here Related changes Special pages Printable version Permanent link Browse properties

122

Tidal Energy Test Platform | Open Energy Information  

Open Energy Info (EERE)

Test Platform Test Platform Jump to: navigation, search Basic Specifications Facility Name Tidal Energy Test Platform Overseeing Organization University of New Hampshire Hydrodynamics Hydrodynamic Testing Facility Type Offshore Berth Water Type Saltwater Cost(per day) Contact POC Special Physical Features The Tidal Testing Platform is presently a 10.7m long x 3m wide pontoon barge with a derrick and an opening for deploying tidal energy devices. The platform is intentionally configured to be adaptive for the changing needs of different devices. Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition Cameras None

123

All Eyes on Eastport: Tidal Energy Project Brings Change, Opportunity...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tidal Energy Project Brings Change, Opportunity to Local Community All Eyes on Eastport: Tidal Energy Project Brings Change, Opportunity to Local Community July 24, 2012 - 2:40pm...

124

A Geostrophic Adjustment Model of a Tidal Mixing Front  

Science Conference Proceedings (OSTI)

This paper presents a model of a tidal mixing front as occurring between well mixed and (seasonally) stratified water in tidally energetic areas in continental shelf seas. The model examines the geostrophic adjustment of a stratified two-layer ...

G. J. F. van Heijst

1985-09-01T23:59:59.000Z

125

A COLD MILKY WAY STELLAR STREAM IN THE DIRECTION OF TRIANGULUM  

Science Conference Proceedings (OSTI)

We present evidence for a new Milky Way stellar tidal stream in the direction of the Andromeda and Triangulum (M31 and M33) galaxies. Using a matched-filter technique, we search the Sloan Digital Sky Survey Data Release 8 by creating stellar density maps which probe the Milky Way halo at distances between 8 and 40 kpc. A visual search of these maps recovers all of the major known stellar streams, as well as a new stream in the direction of M31/M33 that we name the Triangulum stream. The stream spans 0.{sup 0}2 by 12 Degree-Sign on the sky, or 75 pc by 5.5 kpc in physical units with a best-fitting distance of 26 {+-} 4 kpc. The width of the stream is consistent with being the tidal remnant of a globular cluster. A color-magnitude diagram of the stream region shows an overdensity which, if identified as a main-sequence turnoff, corresponds to an old ({approx}12 Gyr) and metal-poor ([Fe/H] {approx}-1.0 dex) stellar population. Future kinematic studies of this and similar cold streams will provide tight constraints on the shape of the Galactic gravitational potential.

Bonaca, Ana; Geha, Marla; Kallivayalil, Nitya, E-mail: ana.bonaca@yale.edu [Department of Astronomy, Yale University, New Haven, CT 06511 (United States)

2012-11-20T23:59:59.000Z

126

Tidal disruption flares from stars on eccentric orbits  

E-Print Network (OSTI)

We study tidal disruption and subsequent mass fallback for stars approaching supermassive black holes on bound orbits, by performing three dimensional Smoothed Particle Hydrodynamics simulations with a pseudo-Newtonian potential. We find that the mass fallback rate decays with the expected -5/3 power of time for parabolic orbits, albeit with a slight deviation due to the self-gravity of the stellar debris. For eccentric orbits, however, there is a critical value of the orbital eccentricity, significantly below which all of the stellar debris is bound to the supermassive black hole. All the mass therefore falls back to the supermassive black hole in a much shorter time than in the standard, parabolic case. The resultant mass fallback rate considerably exceeds the Eddington accretion rate and substantially differs from the -5/3 power of time.

Kimitake Hayasaki; Nicholas Stone; Abraham Loeb

2012-10-03T23:59:59.000Z

127

Merrimac: Supercomputing with Streams  

Science Conference Proceedings (OSTI)

Merrimac uses stream architecture and advanced interconnection networks to give an order of magnitude more performance per unit cost than cluster-based scientific computers built from the same technology. Organizing the computation into streams and exploiting ...

William J. Dally; Francois Labonte; Abhishek Das; Patrick Hanrahan; Jung-Ho Ahn; Jayanth Gummaraju; Mattan Erez; Nuwan Jayasena; Ian Buck; Timothy J. Knight; Ujval J. Kapasi

2003-11-01T23:59:59.000Z

128

Tidal Generation Ltd | Open Energy Information  

Open Energy Info (EERE)

Ltd Ltd Jump to: navigation, search Name Tidal Generation Ltd Address University Gate East Park Row Place Bristol, United Kingdom Zip BS1 5UB Sector Marine and Hydrokinetic Product Tidal Generation is developing a 1MW fully submerged tidal turbine to generate electricity from tidal currents in water depths up to 50m. Phone number 4.41E+11 Website http://www.tidalgeneration.co. Coordinates 42.55678°, -88.050449° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.55678,"lon":-88.050449,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

129

Turbulence Characteristics in a Tidal Channel  

Science Conference Proceedings (OSTI)

A broadband ADCP and a moored microstructure instrument (TAMI) were deployed in a tidal channel of 30-m depth and with peak speeds of 1 m s?1. The measurements enable us to derive profiles of stress, turbulent kinetic energy (TKE), the rate of ...

Youyu Lu; Rolf G. Lueck; Daiyan Huang

2000-05-01T23:59:59.000Z

130

Resonant Tidal Disruption in Galactic Nuclei  

E-Print Network (OSTI)

It has recently been shown that the rate of angular momentum relaxation in nearly-Keplerian star clusters is greatly increased by a process termed resonant relaxation (Rauch & Tremaine 1996), who also argued that tidal disruption of stars in galactic nuclei containing massive black holes could be noticeably enhanced by this process. We describe here the results of numerical simulations of resonant tidal disruption which quantitatively test the predictions made by Rauch & Tremaine. The simulation method is based on an N-body routine incorporating cloning of stars near the loss cone and a semi-relativistic symplectic integration scheme. We also briefly describe the discovery of chaos in the Wisdom-Holman symplectic integrator applied to highly eccentric orbits and propose a modified integration scheme that remains robust under these conditions. We find that resonant disruption rates exceed their non-resonant counterparts by an amount consistent with the predictions; in particular, we estimate the net tidal disruption rate for a fully resonant cluster to be about twice that of its non-resonant counterpart. No significant enhancement in rates is observed outside the critical radius. Relativistic quenching of the effect is found to occur for hole masses M>8*10^7 solar masses. The numerical results combined with the observed properties of galactic nuclei indicate that for most galaxies the resonant enhancement to tidal disruption rates will be very small.

Kevin P. Rauch; Brian Ingalls

1997-10-24T23:59:59.000Z

131

Tidal Flow through the Straits of Dover  

Science Conference Proceedings (OSTI)

Results are presented from the first long-term deployment of the Mark II OSCR high-frequency radar system. This new system measures surface currents at 700 preselected locations every 20 minutes at a range up to 25 km offshore. Tidal analysis, in ...

D. Prandle; S. G. Loch; R. Player

1993-01-01T23:59:59.000Z

132

A majorization approach to downlink multiuser VBR video streaming  

Science Conference Proceedings (OSTI)

In this paper, we investigate the problem of optimal power control for multiuser variable bit rate (VBR) video streaming in a cellular network with orthogonal channels. We adopt a deterministic model for VBR video traffic that incorporates video frame ... Keywords: Majorization, Power control, Stochastic programming, Variable bit rate, Video streaming

Yingsong Huang; Shiwen Mao; Yihan Li

2012-09-01T23:59:59.000Z

133

Adaptation of a commercially available 200 kW natural gas fuel cell power plant for operation on a hydrogen rich gas stream  

DOE Green Energy (OSTI)

International Fuel Cells (IFC) has designed a hydrogen fueled fuel cell power plant based on a modification of its standard natural gas fueled PC25{trademark} C fuel cell power plant. The natural gas fueled PC25 C is a 200 kW, fuel cell power plant that is commercially available. The program to accomplish the fuel change involved deleting the natural gas processing elements, designing a new fuel pretreatment subsystem, modifying the water and thermal management subsystem, developing a hydrogen burner to combust unconsumed hydrogen, and modifying the control system. Additionally, the required modifications to the manufacturing and assembly procedures necessary to allow the hydrogen fueled power plant to be manufactured in conjunction with the on-going production of the standard PC25 C power plants were identified. This work establishes the design and manufacturing plan for the 200 kW hydrogen fueled PC25 power plant.

Maston, V.A.

1997-12-01T23:59:59.000Z

134

MHK Technologies/Deep Gen Tidal Turbines | Open Energy Information  

Open Energy Info (EERE)

Deep Gen Tidal Turbines Deep Gen Tidal Turbines < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Deep Gen Tidal Turbines.jpg Technology Profile Primary Organization Tidal Generation Ltd Project(s) where this technology is utilized *MHK Projects/Tidal Generation Ltd EMEC Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The DEEP Gen 1 MW fully submerged tidal turbine best exploits resources in depths 30m The horizontal axis turbine is inexpensive to construct and easy to install due to the lightweight 80 tons MW support structure allows rapid removal and replacement of powertrains enabling safe maintenance in a dry environment and is located out of the wave zone for improved survivability

135

Streams, Stream Transformers and Domain Representations  

Science Conference Proceedings (OSTI)

Abstract. We present a general theory for the computation of stream transformers of the form F: (R B) (T A), where time T and R, and data A and B, are discrete or continuous. We show how methods for representing ...

Jens Blanck; Viggo Stoltenberg-Hansen; J. V. Tucker

1998-01-01T23:59:59.000Z

136

Puget Sound Tidal Energy In-Water Testing and Development Project Final Technical Report  

Science Conference Proceedings (OSTI)

Tidal energy represents potential for the generation of renewable, emission free, environmentally benign, and cost effective energy from tidal flows. A successful tidal energy demonstration project in Puget Sound, Washington may enable significant commercial development resulting in important benefits for the northwest region and the nation. This project promoted the United States Department of Energyâ??s Wind and Hydropower Technologies Programâ??s goals of advancing the commercial viability, cost-competitiveness, and market acceptance of marine hydrokinetic systems. The objective of the Puget Sound Tidal Energy Demonstration Project is to conduct in-water testing and evaluation of tidal energy technology as a first step toward potential construction of a commercial-scale tidal energy power plant. The specific goal of the project phase covered by this award was to conduct all activities necessary to complete engineering design and obtain construction approvals for a pilot demonstration plant in the Admiralty Inlet region of the Puget Sound. Public Utility District No. 1 of Snohomish County (The District) accomplished the objectives of this award through four tasks: Detailed Admiralty Inlet Site Studies, Plant Design and Construction Planning, Environmental and Regulatory Activities, and Management and Reporting. Pre-Installation studies completed under this award provided invaluable data used for site selection, environmental evaluation and permitting, plant design, and construction planning. However, these data gathering efforts are not only important to the Admiralty Inlet pilot project. Lessons learned, in particular environmental data gathering methods, can be applied to future tidal energy projects in the United States and other parts of the world. The District collaborated extensively with project stakeholders to complete the tasks for this award. This included Federal, State, and local government agencies, tribal governments, environmental groups, and others. All required permit and license applications were completed and submitted under this award, including a Final License Application for a pilot hydrokinetic license from the Federal Energy Regulatory Commission. The tasks described above have brought the project through all necessary requirements to construct a tidal pilot project in Admiralty Inlet with the exception of final permit and license approvals, and the selection of a general contractor to perform project construction.

Craig W. Collar

2012-11-16T23:59:59.000Z

137

Finite, Intense Accretion Bursts from Tidal Disruption of Stars on Bound Orbits  

E-Print Network (OSTI)

We study accretion processes for tidally disrupted stars approaching supermassive black holes on bound orbits, by performing three dimensional Smoothed Particle Hydrodynamics simulations with a pseudo-Newtonian potential. We find that there is a critical value of the orbital eccentricity below which all the stellar debris remains bound to the black hole. For high but sub-critical eccentricities, all the stellar mass is accreted onto the black hole in a finite time, causing a significant deviation from the canonical $t^{-5/3}$ mass fallback rate. When a star is on a moderately eccentric orbit and its pericenter distance is deeply inside the tidal disruption radius, there can be several orbit crossings of the debris streams due to relativistic precession. This dissipates orbital energy in shocks, allowing for rapid circularization of the debris streams and formation of an accretion disk. The resultant accretion rate greatly exceeds the Eddington rate and differs strongly from the canonical rate of $t^{-5/3}$. By contrast, there is little dissipation due to orbital crossings for the equivalent simulation with a purely Newtonian potential. This shows that general relativistic precession is crucial for accretion disk formation via circularization of stellar debris from stars on moderately eccentric orbits.

Kimitake Hayasaki; Nicholas Stone; Abraham Loeb

2012-10-04T23:59:59.000Z

138

Reservoir response to tidal and barometric effects  

DOE Green Energy (OSTI)

Solid earth tidal strain and surface loading due to fluctuations in barometric pressure have the effect, although extremely minute, of dilating or contracting the effective pore volume in a porous reservoir. If a well intersects the formation, the change in pore pressure can be measured with sensitive quartz pressure gauges. Mathematical models of the relevant fluid dynamics of the well-reservoir system have been generated and tested against conventional well pumping results or core data at the Salton Sea Geothermal Field (SSGF), California and at the Raft River, Geothermal Field (RRGF), Idaho. Porosity-total compressibility product evaluation based on tidal strain response compares favorably with results based on conventional pumping techniques. Analysis of reservoir response to barometric loading using Auto Regressive Integrated Moving Average (ARIMA) stochastic modeling appears also to have potential use for the evaluation of reservoir parameters.

Hanson, J.M.

1980-05-29T23:59:59.000Z

139

Gas/Star Offsets in Tidal Tails  

E-Print Network (OSTI)

We use numerical simulations to study the development of gas/star offsets in the tidal tails of merging galaxies. These offsets are shown to be a natural consequence of the radially extended HI spatial distribution in disk galaxies, coupled with internal dissipation in the gaseous component driven by the interaction. This mechanism explains the observed gas/star offsets in interacting galaxies without invoking interactions with a hot (unseen) gaseous component.

Mihos, C

2000-01-01T23:59:59.000Z

140

Gas/Star Offsets in Tidal Tails  

E-Print Network (OSTI)

We use numerical simulations to study the development of gas/star offsets in the tidal tails of merging galaxies. These offsets are shown to be a natural consequence of the radially extended HI spatial distribution in disk galaxies, coupled with internal dissipation in the gaseous component driven by the interaction. This mechanism explains the observed gas/star offsets in interacting galaxies without invoking interactions with a hot (unseen) gaseous component.

Chris Mihos

2000-08-09T23:59:59.000Z

Note: This page contains sample records for the topic "tidal stream power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

MHK Technologies/Tidal Defense and Energy System TIDES | Open Energy  

Open Energy Info (EERE)

MHK Technologies/Tidal Defense and Energy System TIDES MHK Technologies/Tidal Defense and Energy System TIDES < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Defense and Energy System TIDES.jpg Technology Profile Primary Organization Oceana Energy Company Project(s) where this technology is utilized *MHK Projects/Astoria Tidal Energy *MHK Projects/Cape Islands Tidal Energy Project *MHK Projects/Central Cook Inlet Tidal Energy Project *MHK Projects/Icy Passage Tidal Energy Project *MHK Projects/Kachemak Bay Tidal Energy Project *MHK Projects/Kendall Head Tidal Energy *MHK Projects/Kennebec *MHK Projects/Penobscot Tidal Energy Project *MHK Projects/Portsmouth Area Tidal Energy Project *MHK Projects/Wrangell Narrows Tidal Energy Project Technology Resource Click here Current/Tidal

142

Apparatus for establishing and maintaining a stable discharge across a stream of flowing gas, particularly useful for high-power lasers  

SciTech Connect

Apparatus is described for establishing and maintaining a stable discharge across a stream of gas flowing through a gas-flow channel, which consists of: an electrode system including a group of working electrodes disposed on opposite sides of the gas flow channel and spaced longitudinally thereof in the direction of gas flow, which working electrodes include at least one upstream electrode at the upstream end of the gas flow channel; a high-voltage alternating current source connected at one side to each of the working electrodes and at the opposite side to a point of fixed reference potential; and a ballast impedance connected to each of the working electrodes for stabilizing the electrical discharge; the electrode system further including at least one starting electrode adjacent to the upstream working electrode and connected to the point of fixed reference potential via a ballast impedance of substantially larger impedance value than those connected to the working electrodes, such that the starting electrode is effective to bring the point of fixed reference potential to the upstream working electrode to start the discharge, and to draw little current after the discharge has been started.

Katz, D.

1986-03-04T23:59:59.000Z

143

OPTICAL DISCOVERY OF PROBABLE STELLAR TIDAL DISRUPTION FLARES  

SciTech Connect

Using archival Sloan Digital Sky Survey (SDSS) multi-epoch imaging data (Stripe 82), we have searched for the tidal disruption of stars by supermassive black holes in non-active galaxies. Two candidate tidal disruption events (TDEs) are identified. The TDE flares have optical blackbody temperatures of 2 Multiplication-Sign 10{sup 4} K and observed peak luminosities of M{sub g} = -18.3 and -20.4 ({nu}L{sub {nu}} = 5 Multiplication-Sign 10{sup 42}, 4 Multiplication-Sign 10{sup 43} erg s{sup -1}, in the rest frame); their cooling rates are very low, qualitatively consistent with expectations for tidal disruption flares. The properties of the TDE candidates are examined using (1) SDSS imaging to compare them to other flares observed in the search, (2) UV emission measured by GALEX, and (3) spectra of the hosts and of one of the flares. Our pipeline excludes optically identifiable AGN hosts, and our variability monitoring over nine years provides strong evidence that these are not flares in hidden AGNs. The spectra and color evolution of the flares are unlike any SN observed to date, their strong late-time UV emission is particularly distinctive, and they are nuclear at high resolution arguing against these being first cases of a previously unobserved class of SNe or more extreme examples of known SN types. Taken together, the observed properties are difficult to reconcile with an SN or an AGN-flare explanation, although an entirely new process specific to the inner few hundred parsecs of non-active galaxies cannot be excluded. Based on our observed rate, we infer that hundreds or thousands of TDEs will be present in current and next-generation optical synoptic surveys. Using the approach outlined here, a TDE candidate sample with O(1) purity can be selected using geometric resolution and host and flare color alone, demonstrating that a campaign to create a large sample of TDEs, with immediate and detailed multi-wavelength follow-up, is feasible. A by-product of this work is quantification of the power spectrum of extreme flares in AGNs.

Van Velzen, Sjoert; Farrar, Glennys R. [Center for Cosmology and Particle Physics, New York University, NY 10003 (United States); Gezari, Suvi [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Morrell, Nidia [Carnegie Observatories, Las Campanas Observatory, Casillas 601, La Serena (Chile); Zaritsky, Dennis [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Oestman, Linda [Institut de Fisica d'Altes Energies, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Barcelona) (Spain); Smith, Mathew [Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch, 7701 (South Africa); Gelfand, Joseph [New York University-Abu Dhabi, Abu Dhabi (United Arab Emirates); Drake, Andrew J., E-mail: s.vanvelzen@astro.ru.nl [Center for Advance Computing Research, California Institute of Technology, Pasadena, CA 91225 (United States)

2011-11-10T23:59:59.000Z

144

Hydropower, Wave and Tidal Technologies - Energy Innovation Portal  

Biomass and Biofuels Hydropower, Wave and Tidal Industrial ... raw materials suggests the need for elimination of these materials from electric motors ...

145

THE INNER STRUCTURE AND KINEMATICS OF THE SAGITTARIUS DWARF GALAXY AS A PRODUCT OF TIDAL STIRRING  

Science Conference Proceedings (OSTI)

The tidal stirring model envisions the formation of dwarf spheroidal (dSph) galaxies in the Local Group and similar environments via the tidal interaction of disky dwarf systems with a larger host galaxy like the Milky Way. These progenitor disks are embedded in extended dark halos and during the evolution both components suffer strong mass loss. In addition, the disks undergo the morphological transformation into spheroids and the transition from ordered to random motion of their stars. Using collisionless N-body simulations, we construct a model for the nearby and highly elongated Sagittarius (Sgr) dSph galaxy within the framework of the tidal stirring scenario. Constrained by the present orbit of the dwarf, which is fairly well known, the model suggests that in order to produce the majority of tidal debris observed as the Sgr stream, but not yet transform the core of the dwarf into a spherical shape, Sgr must have just passed the second pericenter of its current orbit around the Milky Way. In the model, the stellar component of Sgr is still very elongated after the second pericenter and morphologically intermediate between the strong bar formed at the first pericenter and the almost spherical shape existing after the third pericenter. This is thus the first model of the evolution of the Sgr dwarf that accounts for its observed very elliptical shape. At the present time, there is very little intrinsic rotation left and the velocity gradient detected along the major axis is almost entirely of tidal origin. We model the recently measured velocity dispersion profile for Sgr assuming that mass traces light and estimate its current total mass within 5 kpc to be 5.2 x 10{sup 8} M{sub sun}. To have this mass at present, the model requires that the initial virial mass of Sgr must have been as high as 1.6 x 10{sup 10} M{sub sun}, comparable to that of the Large Magellanic Cloud, which may serve as a suitable analog for the pre-interaction, Sgr progenitor.

Lokas, Ewa L. [Nicolaus Copernicus Astronomical Center, 00-716 Warsaw (Poland); Kazantzidis, Stelios [Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210 (United States); Majewski, Steven R. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States); Law, David R. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Mayer, Lucio [Institute for Theoretical Physics, University of Zuerich, CH-8057 Zuerich (Switzerland); Frinchaboy, Peter M., E-mail: lokas@camk.edu.p, E-mail: stelios@mps.ohio-state.ed, E-mail: srm4n@virginia.ed, E-mail: drlaw@astro.ucla.ed, E-mail: lucio@phys.ethz.c, E-mail: p.frinchaboy@tcu.ed [Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129 (United States)

2010-12-20T23:59:59.000Z

146

Water Power for a Clean Energy Future (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet provides an overview of the U.S. Department of Energy's Wind and Water Power Program's water power research activities. Water power is the nation's largest source of clean, domestic, renewable energy. Harnessing energy from rivers, manmade waterways, and oceans to generate electricity for the nation's homes and businesses can help secure America's energy future. Water power technologies fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower facilities include run-of-the-river, storage, and pumped storage. Most conventional hydropower plants use a diversion structure, such as a dam, to capture water's potential energy via a turbine for electricity generation. Marine and hydrokinetic technologies obtain energy from waves, tides, ocean currents, free-flowing rivers, streams and ocean thermal gradients to generate electricity. The United States has abundant water power resources, enough to meet a large portion of the nation's electricity demand. Conventional hydropower generated 257 million megawatt-hours (MWh) of electricity in 2010 and provides 6-7% of all electricity in the United States. According to preliminary estimates from the Electric Power Resource Institute (EPRI), the United States has additional water power resource potential of more than 85,000 megawatts (MW). This resource potential includes making efficiency upgrades to existing hydroelectric facilities, developing new low-impact facilities, and using abundant marine and hydrokinetic energy resources. EPRI research suggests that ocean wave and in-stream tidal energy production potential is equal to about 10% of present U.S. electricity consumption (about 400 terrawatt-hours per year). The greatest of these resources is wave energy, with the most potential in Hawaii, Alaska, and the Pacific Northwest. The Department of Energy's (DOE's) Water Power Program works with industry, universities, other federal agencies, and DOE's national laboratories to promote the development and deployment of technologies capable of generating environmentally sustainable and cost-effective electricity from the nation's water resources.

Not Available

2012-03-01T23:59:59.000Z

147

DISCOVERY OF TIDAL TAILS AROUND THE DISTANT GLOBULAR CLUSTER PALOMAR 14  

SciTech Connect

We report the detection of a pair of degree-long tidal tails associated with the globular cluster Palomar 14, using images obtained at the Canada-France-Hawaii Telescope. We reveal a power-law departure from a King profile at large distances to the cluster center. The density map constructed with the optimal matched filter technique shows a nearly symmetrical and elongated distribution of stars on both sides of the cluster, forming an S-shape characteristic of mass loss. This evidence may be the telltale signature of tidal stripping in action. This, together with its large Galactocentric distance, imposes strong constraints on its orbit and/or origin: (1) it must follow an external orbit confined to the peripheral region of the Galactic halo and/or (2) it formed in a satellite galaxy later accreted by the Milky Way.

Sollima, A.; Martinez-Delgado, D. [Instituto de Astrofisica de Canarias, E-38205 San Cristobal de La Laguna (Spain); Valls-Gabaud, D. [GEPI, CNRS UMR 8111, Observatoire de Paris, 5 Place Jules Janssen, 92195 Meudon (France); Penarrubia, J. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom)

2011-01-01T23:59:59.000Z

148

Reynolds Stress and Turbulent Energy Production in a Tidal Channel  

Science Conference Proceedings (OSTI)

A high-frequency (1.2 MHz) acoustic Doppler current profiler (ADCP) moored on the seabed has been used to observe the mean and turbulent flow components in a narrow tidally energetic channel over six tidal cycles at neap and spring tides. The ...

Tom P. Rippeth; Eirwen Williams; John H. Simpson

2002-04-01T23:59:59.000Z

149

Tidal Energetics over the Chatham Rise, New Zealand  

Science Conference Proceedings (OSTI)

Separate one-month current meter deployments in 1996 and 1997 over the Chatham Rise, east of New Zealand, show that tidal phases are both stable in time and close to those derived from a barotropic tidal model, while amplitudes show coefficients ...

Stephen M. Chiswell

2000-09-01T23:59:59.000Z

150

Lyman Alpha Absorption and Tidal Debris  

E-Print Network (OSTI)

The origin and evolution of structure in the Universe is one of the major questions occupying astronomers today. An understanding of the Lyalpha absorbers seen in QSO spectra is an important part of this program since such absorbers can be traced back to very high redshifts. Their mere existence places constraints on the physical state of the intergalactic medium. The discovery of Lyalpha absorbers at low redshift allows us to estimate for the first time what fraction of low redshift Lyalpha absorbers are (i) randomly distributed, (ii) distributed like galaxies but not physically associated with luminous objects, (iii) actually part of the halos of luminous galaxies, or (iv) tidal tails within galaxy groups. Results from the sightline to the QSO 3C273 suggest that the majority of the absorbers are not associated with galaxies, but that there is a significant subset that are. The absorbers associated with galaxies may be produced in enormous gaseous disks surrounding normal spiral galaxies, or may be tidal material bound up in small groups of galaxies

Simon L. Morris

1994-09-29T23:59:59.000Z

151

MHK Technologies/TidalStar | Open Energy Information  

Open Energy Info (EERE)

TidalStar TidalStar < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage TidalStar.jpg Technology Profile Primary Organization Bourne Energy Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The horizontal axis TidalStar device uses a bidirectional twin rotor turbine to produce approximately 50 kW at peak capacity in both ebb and flood tides Technology Dimensions Length (m) 6 Width (m) 6 Freeboard (m) 1 Technology Nameplate Capacity (MW) 5 Device Testing Date Submitted 46:38.3 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/TidalStar&oldid=681677

152

TimeStream: reliable stream computation in the cloud  

Science Conference Proceedings (OSTI)

TimeStream is a distributed system designed specifically for low-latency continuous processing of big streaming data on a large cluster of commodity machines. The unique characteristics of this emerging application domain have led to a ... Keywords: StreamInsight, cluster computing, distributed stream processing, dynamic reconfiguration, fault-tolerance, real-time, resilient substitution

Zhengping Qian; Yong He; Chunzhi Su; Zhuojie Wu; Hongyu Zhu; Taizhi Zhang; Lidong Zhou; Yuan Yu; Zheng Zhang

2013-04-01T23:59:59.000Z

153

Persistent temporal streams  

Science Conference Proceedings (OSTI)

Distributed continuous live stream analysis applications are increasingly common. Video-based surveillance, emergency response, disaster recovery, and critical infrastructure protection are all examples of such applications. They are characterized by ...

David Hilley; Umakishore Ramachandran

2009-11-01T23:59:59.000Z

154

Effectively grouping trajectory streams  

Science Conference Proceedings (OSTI)

Trajectory data streams are huge amounts of data pertaining to time and position of moving objects. They are continuously generated by different sources exploiting a wide variety of technologies (e.g., RFID tags, GPS, GSM networks). Mining such amount ...

Gianni Costa, Giuseppe Manco, Elio Masciari

2012-09-01T23:59:59.000Z

155

Environmental Effects of Sediment Transport Alteration and Impacts on Protected Species: Edgartown Tidal Energy Project  

DOE Green Energy (OSTI)

The Islands of Martha?¢????s Vineyard and Nantucket are separated from the Massachusetts mainland by Vineyard and Nantucket Sounds; water between the two islands flows through Muskeget Channel. The towns of Edgartown (on Martha?¢????s Vineyard) and Nantucket recognize that they are vulnerable to power supply interruptions due to their position at the end of the power grid, and due to sea level rise and other consequences of climate change. The tidal energy flowing through Muskeget Channel has been identified by the Electric Power Research Institute as the strongest tidal resource in Massachusetts waters. The Town of Edgartown proposes to develop an initial 5 MW (nameplate) tidal energy project in Muskeget Channel. The project will consist of 14 tidal turbines with 13 providing electricity to Edgartown and one operated by the University of Massachusetts at Dartmouth for research and development. Each turbine will be 90 feet long and 50 feet high. The electricity will be brought to shore by a submarine cable buried 8 feet below the seabed surface which will landfall in Edgartown either on Chappaquiddack or at Katama. Muskeget Channel is located between Martha?¢????s Vineyard and Nantucket. Its depth ranges between 40 and 160 feet in the deepest portion. It has strong currents where water is transferred between Nantucket Sound and the Atlantic Ocean continental shelf to the south. This makes it a treacherous passage for navigation. Current users of the channel are commercial and recreational fishing, and cruising boats. The US Coast Guard has indicated that the largest vessel passing through the channel is a commercial scallop dragger with a draft of about 10 feet. The tidal resource in the channel has been measured by the University of Massachusetts-Dartmouth and the peak velocity flow is approximately 5 knots. The technology proposed is the helical Gorlov-type turbine positioned with a horizontal axis that is positively buoyant in the water column and held down by anchors. This is the same technology proposed by Ocean Renewable Power Company in the Western Passage and Cobscook Bay near Eastport Maine. The blades rotate in two directions capturing the tides energy both during flood and ebb tides. The turbines will be anchored to the bottom and suspended in the water column. Initial depth of the turbines is expected to be about 25 feet below the surface to avoid impacting navigation while also capturing the strongest currents. The Town of Edgartown was initially granted a Preliminary Permit by the Federal Energy Regulatory Commission (FERC) on March 1, 2008, and has recently received a second permit valid through August 2014. The Preliminary Permit gives Edgartown the exclusive right to apply for a power generation license for power generated from the hydrokinetic energy in the water flowing in this area. Edgartown filed a Draft Pilot License Application with FERC on February 1, 2010 and an Expanded Environmental Notification Form with the Massachusetts Environmental Policy Act (MEPA) Office at the same time. It expects to file a Final License Application in late 2013. Harris Miller Miller & Hanson (HMMH) of Burlington Massachusetts is acting as the Project Manager for the Town of Edgartown and collaborating with other partners of the project including the University of Massachusetts - Dartmouth's Marine Renewable Energy Center and the Massachusetts Clean Energy Center. HMMH was awarded a grant under the Department of Energy's Advanced Water Program to conduct marine science and hydrokinetic site-specific environmental studies for projects actively seeking a FERC License. HMMH, on behalf of the Town, is managing this comprehensive study of the marine environment in Muskeget Channel and potential impacts of the tidal project on indicator species and habitats. The University of Massachusetts School of Marine Science and Technology (SMAST) conducted oceanographic studies of tidal currents, tide level, benthic habit

Barrett, Stephen B.; Schlezinger, David, Ph.D; Cowles, Geoff, Ph.D; Hughes, Patricia; Samimy; Roland, I.; and Terray, E, Ph.D.

2012-12-29T23:59:59.000Z

156

MHK Projects/Pennamaquan Tidal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Plant Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.0051,"lon":-67.2259,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

157

Water Mixing in a Tidal Current and the Effect of Turbulence on Tidal Exchange through a Strait  

Science Conference Proceedings (OSTI)

By means of numerical calculations of the Lagrangian movement of water particles released in a turbulent tidal current during three cycles of the M2 tide, the mechanism of tidal mixing of the inner and outer waters divided initially by a strait ...

Toshiyuki Awaji

1982-06-01T23:59:59.000Z

158

Partial oxidation power plant with reheating and method thereof  

DOE Patents (OSTI)

A system and method are disclosed for generating power having an air compression/partial oxidation system, a turbine, and a primary combustion system. The air compression/partial oxidation system receives a first air stream and a fuel stream and produces a first partially oxidized fuel stream and a first compressed air stream therefrom. The turbine expands the first partially oxidized fuel stream while being cooled by the first compressed air stream to produce a heated air stream. The heated air stream is injected into the expanding first partially oxidized fuel stream, thereby reheating it in the turbine. A second partially oxidized fuel stream is emitted from the turbine. The primary combustion system receives said second partially oxidized fuel stream and a second air stream, combusts said second partially oxidized fuel stream, and produces rotating shaft power and an emission stream therefrom. 2 figs.

Newby, R.A.; Yang, W.C.; Bannister, R.L.

1999-08-10T23:59:59.000Z

159

Partial oxidation power plant with reheating and method thereof  

DOE Patents (OSTI)

A system and method for generating power having an air compression/partial oxidation system, a turbine, and a primary combustion system. The air compression/partial oxidation system receives a first air stream and a fuel stream and produces a first partially oxidized fuel stream and a first compressed air stream therefrom. The turbine expands the first partially oxidized fuel stream while being cooled by the first compressed air stream to produce a heated air stream. The heated air stream is injected into the expanding first partially oxidized fuel stream, thereby reheating it in the turbine. A second partially oxidized fuel stream is emitted from the turbine. The primary combustion system receives said second partially oxidized fuel stream and a second air stream, combusts said second partially oxidized fuel stream, and produces rotating shaft power and an emission stream therefrom.

Newby, Richard A. (Pittsburgh, PA); Yang, Wen-Ching (Export, PA); Bannister, Ronald L. (Winter Springs, FL)

1999-01-01T23:59:59.000Z

160

THE ENVIRONMENTAL DEPENDENCE OF THE INCIDENCE OF GALACTIC TIDAL FEATURES  

Science Conference Proceedings (OSTI)

In a sample of 54 galaxy clusters (0.04 < z < 0.15) containing 3551 early-type galaxies suitable for study, we identify those with tidal features both interactively and automatically. We find that {approx}3% have tidal features that can be detected with data that reach a 3{sigma} sensitivity limit of 26.5 mag arcsec{sup -2}. Regardless of the method used to classify tidal features, or the fidelity imposed on such classifications, we find a deficit of tidally disturbed galaxies with decreasing clustercentric radius that is most pronounced inside of {approx}0.5 R{sub 200}. We cannot distinguish whether the trend arises from an increasing likelihood of recent mergers with increasing clustercentric radius or a decrease in the lifetime of tidal features with decreasing clustercentric radius. We find no evidence for a relationship between local density and the incidence of tidal features, but our local density measure has large uncertainties. We find interesting behavior in the rate of tidal features among cluster early-types as a function of clustercentric radius and expect such results to provide constraints on the effect of the cluster environment on the structure of galaxy halos, the build-up of the red sequence of galaxies, and the origin of the intracluster stellar population.

Adams, Scott M.; Zaritsky, Dennis [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Sand, David J.; Graham, Melissa L. [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Dr., Suite 102, Santa Barbara, CA 93117 (United States); Bildfell, Chris; Pritchet, Chris [Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, STN CSC, Victoria, BC V8W 3P6 (Canada); Hoekstra, Henk [Leiden Observatory, Leiden University, Niels Bohrweg 2, NL-2333 CA Leiden (Netherlands)

2012-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "tidal stream power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Broadband Acoustic Environment at a Tidal Energy Site in Puget Sound  

SciTech Connect

Admiralty Inlet has been selected as a potential tidal energy site. It is located near shipping lanes, is a highly variable acoustic environment, and is frequented by the endangered southern resident killer whale (SRKW). Resolving environmental impacts is the first step to receiving approval to deploy tidal turbines. Several monitoring technologies are being considered to determine the presence of SRKW near the turbines. Broadband noise level measurements are critical for determining design and operational specifications of these technologies. Acoustic environment data at the proposed site was acquired at different depths using a cabled vertical line array from three different cruises during high tidal period in February, May, and June 2011. The ambient noise level decreases approximately 25 dB re 1 ?Pa per octave from frequency ranges of 1 kHz to 70 kHz, and increases approximately 20 dB re 1 ?Pa per octave for the frequency from 70 kHz to 200 kHz. The difference of noise pressure levels in different months varies from 10 to 30 dB re 1 ?Pa for the frequency range below 70 kHz. Commercial shipping and ferry vessel traffic were found to be the most significant contributors to sound pressure levels for the frequency range from 100 Hz to 70 kHz, and the variation could be as high as 30 dB re 1 ?Pa. These noise level measurements provide the basic information for designing and evaluating both active and passive monitoring systems proposed for deploying and operating for tidal power generation alert system.

Xu, Jinshan; Deng, Zhiqun; Martinez, Jayson J.; Carlson, Thomas J.; Myers, Joshua R.; Weiland, Mark A.

2012-04-04T23:59:59.000Z

162

Ocean Tidal Dissipation and its Role in Solar System Satellite Evolution  

E-Print Network (OSTI)

Magma ocean dissipation . . . . . . . . . . . . . . . .of the ocean . . . . . . . . . . . . . . . . . . . . . .Tidally-driven flow in global satellite oceans

Chen, Erinna

2013-01-01T23:59:59.000Z

163

Streams in the Aquarius stellar haloes  

E-Print Network (OSTI)

We use the very high resolution, fully cosmological simulations from the Aquarius project, coupled to a semi-analytical model of galaxy formation, to study the phase-space distribution of halo stars in "solar neighbourhood"-like volumes. We find that this distribution is very rich in substructure in the form of stellar streams for all five stellar haloes we have analysed. These streams can be easily identified in velocity space, as well as in spaces of pseudo-conserved quantities such as E vs. Lz. In our best-resolved local volumes, the number of identified streams ranges from ~ 300 to 600, in very good agreement with previous analytical predictions, even in the presence of chaotic mixing. The fraction of particles linked to (massive) stellar streams in these volumes can be as large as 84%. The number of identified streams is found to decrease as a power-law with galactocentric radius. We show that the strongest limitation to the quantification of substructure in our poorest-resolved local volumes is particle...

Gmez, Facundo A; Cooper, Andrew P; Frenk, Carlos S; Navarro, Julio F; White, Simon D M

2013-01-01T23:59:59.000Z

164

Reservoir response to tidal and barometric effects | Open Energy  

Open Energy Info (EERE)

to tidal and barometric effects to tidal and barometric effects Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Reservoir response to tidal and barometric effects Details Activities (2) Areas (2) Regions (0) Abstract: Solid earth tidal strain and surface loading due to fluctuations in barometric pressure have the effect, although extremely minute, of dilating or contracting the effective pore volume in a porous reservoir. If a well intersects the formation, the change in pore pressure can be measured with sensitive quartz pressure gauges. Mathematical models of the relevant fluid dynamics of the well-reservoir system have been generated and tested against conventional well pumping results or core data at the Salton Sea Geothermal Field (SSGF), California and at the Raft River,

165

Residual Circulations Due to Bottom Roughness Variability under Tidal Flows  

Science Conference Proceedings (OSTI)

Tidal flows over irregular bathymetry are known to produce residual circulation flows due to nonlinear interaction with gradients of depth. Using the depth-averaged vorticity equations, the generation of residual vorticity and residual flows due ...

Thomas F. Gross; Francisco E. Werner

1994-07-01T23:59:59.000Z

166

Tidal Motion in Submarine CanyonsA Laboratory Experiment  

Science Conference Proceedings (OSTI)

The reasons for the large-amplitude tidal motion observed in oceanic submarine canyons have been explored with a laboratory experiment. A barotropic tide was forced in a stratified tank, containing continental shelf-slope topography into which a ...

Peter G. Baines

1983-02-01T23:59:59.000Z

167

Estimating Open-Ocean Barotropic Tidal Dissipation: The Hawaiian Ridge  

Science Conference Proceedings (OSTI)

The generalized inverse of a regional model is used to estimate barotropic tidal dissipation along the Hawaiian Ridge. The model, based on the linear shallow-water equations, incorporates parameterizations for the dissipation of energy via ...

Edward D. Zaron; Gary D. Egbert

2006-06-01T23:59:59.000Z

168

Boils and Turbulence in a Weakly Stratified Shallow Tidal Sea  

Science Conference Proceedings (OSTI)

Measurements of turbulence are made in a weakly but variably stratified region of tidal straining in the eastern Irish Sea using turbulence sensors profiling vertically through the water column on the Fast Light Yo-yo (FLY) profiler and ...

S. A. Thorpe; J. A. M. Green; J. H. Simpson; T. R. Osborn; W. A. M. Nimmo Smith

2008-08-01T23:59:59.000Z

169

Asymmetric Tidal Mixing due to the Horizontal Density Gradient  

Science Conference Proceedings (OSTI)

Stratification and turbulent mixing exhibit a floodebb tidal asymmetry in estuaries and continental shelf regions affected by horizontal density gradients. The authors use a large-eddy simulation (LES) model to investigate the penetration of a ...

Ming Li; John Trowbridge; Rocky Geyer

2008-02-01T23:59:59.000Z

170

Three-Dimensional Tidal Flow in an Elongated, Rotating Basin  

Science Conference Proceedings (OSTI)

The three-dimensional tidal circulation in an elongated basin of arbitrary depth is described with a linear, constant-density model on the f plane. Rotation fundamentally alters the lateral flow, introducing a lateral recirculation comparable in ...

Clinton D. Winant

2007-09-01T23:59:59.000Z

171

Instability of Baroclinic Tidal Flow in a Stratified Fjord  

Science Conference Proceedings (OSTI)

The TaylorGoldstein equation is used to investigate the stability of a baroclinic tidal flow observed in a stratified fjord. The flow is analyzed at hourly intervals when turbulent dissipation measurements were made. The critical gradient ...

Zhiyu Liu

2010-01-01T23:59:59.000Z

172

Low-Pass Filters to Suppress Inertial and Tidal Frequencies  

Science Conference Proceedings (OSTI)

A systematic way is given to design digital filters which allow clear separation of signals with periods of a few days from noise of higher frequency, particularly tidal and inertial. Several examples are given which pass little high-frequency ...

Rory O. R. Y. Thompson

1983-06-01T23:59:59.000Z

173

Observations of Quasi-Two-Dimensional Turbulence in Tidal Currents  

Science Conference Proceedings (OSTI)

Observational evidence for the existence of quasi-two-dimensional turbulence in tidal currents is derived from the auto- and cross-correlation spectra of vertically separated current meters. The observed quasi- two-dimensional turbulence seems to ...

C. Veth; J. T. F. Zimmerman

1981-10-01T23:59:59.000Z

174

Decadal Climate Variability: Is There a Tidal Connection?  

Science Conference Proceedings (OSTI)

A possible connection between oceanic tides and climate variability arises from modulations in tidally induced vertical mixing. The idea is reexamined here with emphasis on near-decadal time scales. Occasional extreme tides caused by unusually ...

Richard D. Ray

2007-07-01T23:59:59.000Z

175

A Simple Parameterization of Turbulent Tidal Mixing near Supercritical Topography  

Science Conference Proceedings (OSTI)

A simple parameterization for tidal dissipation near supercritical topography, designed to be applied at deep midocean ridges, is presented. In this parameterization, radiation of internal tides is quantified using a linear knife-edge model. ...

Jody M. Klymak; Sonya Legg; Robert Pinkel

2010-09-01T23:59:59.000Z

176

Relationships between Tidal Dynamics and Bathymetry in Strongly Convergent Estuaries  

Science Conference Proceedings (OSTI)

Localized analytical solutions are derived for the propagation of a single (predominant) tidal constituent in estuaries with strongly convergent triangular cross sections. The advective term is neglected, and the friction term is linearized. The ...

D. Prandle

2003-12-01T23:59:59.000Z

177

Environmental impacts of nonfusion power systems. [Data on environmental effects of all power sources that may be competitive with fusion reactor power plants  

DOE Green Energy (OSTI)

Data were collected on the environmental effects of power sources that may be competitive with future fusion reactor power plants. Data are included on nuclear power plants using HTGR, LMBR, GCFR, LMFBR, and molten salt reactors; fossil-fuel electric power plants; geothermal power plants; solar energy power plants, including satellite-based solar systems; wind energy power plants; ocean thermal gradient power plants; tidal energy power plants; and power plants using hydrogen and other synthetic fuels as energy sources.

Brouns, R.J.

1976-09-01T23:59:59.000Z

178

Gulf Stream Ring Trajectories  

Science Conference Proceedings (OSTI)

During the period 197678, the movement of 14 Gulf Stream rings, including two anticyclonic and 12 cyclonic rings, was measured with satellite-tracked free-drifting buoys. The buoys in the cyclonic rings showed a tendency to move out toward the ...

Philip L. Richardson

1980-01-01T23:59:59.000Z

179

Nonrotating black hole in a post-Newtonian tidal environment  

E-Print Network (OSTI)

We examine the motion and tidal dynamics of a nonrotating black hole placed within a post-Newtonian external spacetime. The tidal perturbation created by the external environment is treated as a small perturbation. At a large distance from the black hole, the gravitational field of the external distribution of matter is assumed to be sufficiently weak to be adequately described by the (first) post-Newtonian approximation to general relativity. There, the black hole is treated as a monopole contribution to the total gravitational field. There exists an overlap in the domains of validity of each description, and the black-hole and post-Newtonian metrics are matched in the overlap. The matching procedure produces the equations of motion for the black hole and the gravito-electric and gravito-magnetic tidal fields acting on the black hole. We first calculate the equations of motion and tidal fields by making no assumptions regarding the nature of the post-Newtonian environment; this could contain a continuous distribution of matter or any number of condensed bodies. We next specialize our discussion to a situation in which the black hole is a member of a post-Newtonian two-body system. As an application of our results, we examine the geometry of the deformed event horizon and calculate the tidal heating of the black hole, the rate at which it acquires mass as a result of its tidal interaction with the companion body.

Stephanne Taylor; Eric Poisson

2008-06-18T23:59:59.000Z

180

Novel approach to the exploitation of tidal energy. Volume I. Summary and discussion, Final report  

Science Conference Proceedings (OSTI)

The objective of this program is the development of the hydropneumatic concept in the approach to harnessing low-head tidal hydropower. The approach is based on converting the energy of water flow into the energy of an air jet by means of a specialized air chamber which is placed on the ocean floor across a flowing watercourse. Water passes through the chamber where it works as a natural piston compressing air in the upper part of the closure. Then, compressed air is used as a new working plenum to drive air turbines. The kinetic energy of an air jet provided by the air chamber is sufficient for stable operation of industrial air turbines. Also, because of the absence of the power turbogenerators in the dam body and because of decreased water pressure (two-meter head, or even less) it becomes possible to use light plastic barriers instead of conventional rigid dams (the water sail concept). Figures presented confirmed that the proposed concept can result in a less expensive and more effective tidal power plant project than the conventional hydroturbine approach. The scale of the power installation actually does not affect the economic characteristics.

Gorlov, A.M.

1981-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "tidal stream power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

STAR CLUSTERS IN THE TIDAL TAILS OF INTERACTING GALAXIES: CLUSTER POPULATIONS ACROSS A VARIETY OF TAIL ENVIRONMENTS  

Science Conference Proceedings (OSTI)

We have searched for compact stellar structures within 17 tidal tails in 13 different interacting galaxies using F606W- and F814W-band images from the Wide Field Planetary Camera 2 on the Hubble Space Telescope. The sample of tidal tails includes a diverse population of optical properties, merging galaxy mass ratios, H I content, and ages. Combining our tail sample with Knierman et al., we find evidence of star clusters formed in situ with M{sub V} < -8.5 and V - I < 2.0 in 10 of 23 tidal tails; we are able to identify cluster candidates to M{sub V} = -6.5 in the closest tails. Three tails offer clear examples of 'beads on a string' star formation morphology in V - I color maps. Two tails present both tidal dwarf galaxy candidates and cluster candidates. Statistical diagnostics indicate that clusters in tidal tails may be drawn from the same power-law luminosity functions (with logarithmic slopes {approx}-2 to -2.5) found in quiescent spiral galaxies and interiors of interacting systems. We find that the tail regions with the largest number of observable clusters are relatively young ({approx}<250 Myr old) and bright (V {approx}< 24 mag arcsec{sup -2}), probably attributed to the strong bursts of star formation in interacting systems soon after periapse. Otherwise, we find no statistical difference between cluster-rich and cluster-poor tails in terms of many observable characteristics, though this analysis suffers from complex, unresolved gas dynamics and projection effects.

Mullan, B.; Konstantopoulos, I. S.; Lee, K. H.; Charlton, J. C.; Gronwall, C.; Hunsberger, S.; Palma, C. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Lab, University Park, PA 16803 (United States); Kepley, A. A.; Johnson, K. E. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Knierman, K. [School of Earth and Space Exploration, Bateman Physical Sciences Center, Arizona State University, F-wing Room 686, Tempe, AZ 85287-1404 (United States); Bastian, N. [School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom); Chandar, R. [Department of Physics and Astronomy, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606 (United States); Durrell, P. R. [Department of Physics and Astronomy, Youngstown State University, Youngstown, OH 44555 (United States); Elmegreen, D. [Department of Physics and Astronomy, Vassar College, Box 745, Poughkeepsie, NY 12604 (United States); English, J. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); Gallagher, S. C. [Department of Physics and Astronomy, University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 3K7 (Canada); Hibbard, J. E. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475 (United States); Maybhate, A. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Trancho, G. [Gemini Observatory, Casilla 603, Colina el Pino S/N, La Serena (Chile); Vacca, W. D., E-mail: mullan@astro.psu.edu [Stratospheric Observatory for Infrared Astronomy/Universities Space Research Association, NASA Ames Research Center, MS 144-2, Moffett Field, CA 94035 (United States)

2011-04-20T23:59:59.000Z

182

Gas stream cleanup  

Science Conference Proceedings (OSTI)

This report describes the current status and recent accomplishments of gas stream cleanup (GSCU) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Gas Stream Cleanup Program is to develop contaminant control strategies that meet environmental regulations and protect equipment in advanced coal conversion systems. Contaminant control systems are being developed for integration into seven advanced coal conversion processes: Pressurized fludized-bed combustion (PFBC), Direct coal-fueled turbine (DCFT), Intergrated gasification combined-cycle (IGCC), Gasification/molten carbonate fuel cell (MCFC), Gasification/solid oxide fuel cell (SOFC), Coal-fueled diesel (CFD), and Mild gasification (MG). These advanced coal conversion systems present a significant challenge for development of contaminant control systems because they generate multi-contaminant gas streams at high-pressures and high temperatures. Each of the seven advanced coal conversion systems incorporates distinct contaminant control strategies because each has different contaminant tolerance limits and operating conditions. 59 refs., 17 figs., 5 tabs.

Bossart, S.J.; Cicero, D.C.; Zeh, C.M.; Bedick, R.C.

1990-08-01T23:59:59.000Z

183

Earth Tidal Analysis At Raft River Geothermal Area (1980) | Open Energy  

Open Energy Info (EERE)

Earth Tidal Analysis At Raft River Geothermal Earth Tidal Analysis At Raft River Geothermal Area(1980) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Earth Tidal Analysis Activity Date 1980 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the reservoir response to tidal and barometric effects Notes Porosity-total compressibility product evaluation based on tidal strain response compares favorably with results based on conventional pumping techniques. Analysis of reservoir response to barometric loading using Auto Regressive Integrated Moving Average (ARIMA) stochastic modeling appears also to have potential use for the evaluation of reservoir parameters. References Hanson, J. M. (29 May 1980) Reservoir response to tidal and barometric effects

184

MHK Technologies/KESC Tidal Generator | Open Energy Information  

Open Energy Info (EERE)

KESC Tidal Generator KESC Tidal Generator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage KESC Tidal Generator.jpg Technology Profile Primary Organization Kinetic Energy Systems Project(s) where this technology is utilized *MHK Projects/Newfound Harbor Project Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The Tidal Generator is based on free flow hydrodynamics for regions that have flood and ebb tides. Strategically attached to bridges, pilings, river, channel, or sea bottoms, this multi-directional generator contains two sets of turbine blades. As the tide flows inward the inward turbine blades opens to maximum rotor diameter while the outward turbine closes into the outward cone-shaped hub to create a hydro dynamically clean surface for water to flow without drag. The center diameter is 75% of the diameter of the turbine blades at full rotor extension for stability.

185

MHK Technologies/Rotech Tidal Turbine RTT | Open Energy Information  

Open Energy Info (EERE)

Rotech Tidal Turbine RTT Rotech Tidal Turbine RTT < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Rotech Tidal Turbine RTT.jpg Technology Profile Primary Organization Lunar Energy Project(s) where this technology is utilized *MHK Projects/Lunar Energy St David s Peninsula Pembrokeshire South Wales UK *MHK Projects/Lunar Energy Wando Hoenggan Waterway South Korea Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description he Rotech Tidal Turbine (RTT) is a bi-directional horizontal axis turbine housed in a symmetrical venturi duct. The Venturi duct draws the existing ocean currents into the RTT in order to capture and convert energy into electricity. Use of a gravity foundation will allow the RTT to be deployed quickly with little or no seabed preparation at depths in excess of 40 meters. This gives the RTT a distinct advantage over most of its competitors and opens up a potential energy resource that is five times the size of that available to companies using pile foundations.

186

Interruption of Tidal Disruption Flares By Supermassive Black Hole Binaries  

E-Print Network (OSTI)

Supermassive black hole binaries (SMBHBs) are products of galaxy mergers, and are important in testing Lambda cold dark matter cosmology and locating gravitational-wave-radiation sources. A unique electromagnetic signature of SMBHBs in galactic nuclei is essential in identifying the binaries in observations from the IR band through optical to X-ray. Recently, the flares in optical, UV, and X-ray caused by supermassive black holes (SMBHs) tidally disrupting nearby stars have been successfully used to observationally probe single SMBHs in normal galaxies. In this Letter, we investigate the accretion of the gaseous debris of a tidally disrupted star by a SMBHB. Using both stability analysis of three-body systems and numerical scattering experiments, we show that the accretion of stellar debris gas, which initially decays with time $\\propto t^{-5/3}$, would stop at a time $T_{\\rm tr} \\simeq \\eta T_{\\rm b}$. Here, $\\eta \\sim0.25$ and $T_{\\rm b}$ is the orbital period of the SMBHB. After a period of interruption, the accretion recurs discretely at time $T_{\\rm r} \\simeq \\xi T_b$, where $\\xi \\sim 1$. Both $\\eta$ and $\\xi$ sensitively depend on the orbital parameters of the tidally disrupted star at the tidal radius and the orbit eccentricity of SMBHB. The interrupted accretion of the stellar debris gas gives rise to an interrupted tidal flare, which could be used to identify SMBHBs in non-active galaxies in the upcoming transient surveys.

F. K. Liu; S. Li; Xian Chen

2009-10-21T23:59:59.000Z

187

Consequences of Strong Compression in Tidal Disruption Events  

E-Print Network (OSTI)

The tidal disruption of a star by a supermassive black hole (SMBH) is a highly energetic event with consequences dependent on the degree to which the star plunges inside the SMBH's tidal sphere. We introduce a new analytic model for tidal disruption events (TDEs) to analyze the dependence of these events on beta, the ratio of the tidal radius to the orbital pericenter. We find, contrary to most previous work, that the spread in debris energy for a TDE is largely constant for all beta. This result has important consequences for optical transient searches targeting TDEs, which we discuss. We quantify leading-order general relativistic corrections to this spread in energy and find that they are small. We also examine the role of stellar spin, and find that a combination of spin-orbit misalignment, rapid rotation, and high beta may increase the spread in debris energy. Finally, we quantify for the first time the gravitational wave emission due to the strong compression of a star in a high-beta TDE. Although this signal is unlikely to be detectable for disruptions of main sequence stars, the tidal disruption of a white dwarf by an intermediate mass black hole can produce a strong signal visible to Advanced LIGO at tens of megaparsecs.

Nicholas Stone; Re'em Sari; Abraham Loeb

2012-10-11T23:59:59.000Z

188

MHK Technologies/Tidal Delay | Open Energy Information  

Open Energy Info (EERE)

Delay Delay < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Delay.png Technology Profile Primary Organization Woodshed Technologies Ltd Technology Resource Click here Current Technology Type Click here Overtopping Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Tidal Delay utilizes an existing natural land formation such as a peninsula or isthmus that creates a natural tidal barrier separating moving rising and falling bodies of seawater As the seawater on each side of the natural barrier rises and falls the device captures the energy resulting from the difference in water levels across the barrier using proven hydroelectric technology The device utilizes a standard impulse turbine installed in siphon pipe over under the natural barrier

189

CLIMATE INSTABILITY ON TIDALLY LOCKED EXOPLANETS  

Science Conference Proceedings (OSTI)

Feedbacks that can destabilize the climates of synchronously rotating rocky planets may arise on planets with strong day-night surface temperature contrasts. Earth-like habitable planets maintain stable surface liquid water over geologic time. This requires equilibrium between the temperature-dependent rate of greenhouse-gas consumption by weathering, and greenhouse-gas resupply by other processes. Detected small-radius exoplanets, and anticipated M-dwarf habitable-zone rocky planets, are expected to be in synchronous rotation (tidally locked). In this paper, we investigate two hypothetical feedbacks that can destabilize climate on planets in synchronous rotation. (1) If small changes in pressure alter the temperature distribution across a planet's surface such that the weathering rate goes up when the pressure goes down, a runaway positive feedback occurs involving increasing weathering rate near the substellar point, decreasing pressure, and increasing substellar surface temperature. We call this feedback enhanced substellar weathering instability (ESWI). (2) When decreases in pressure increase the fraction of surface area above the melting point (through reduced advective cooling of the substellar point), and the corresponding increase in volume of liquid causes net dissolution of the atmosphere, a further decrease in pressure will occur. This substellar dissolution feedback can also cause a runaway climate shift. We use an idealized energy balance model to map out the conditions under which these instabilities may occur. In this simplified model, the weathering runaway can shrink the habitable zone and cause geologically rapid 10{sup 3}-fold atmospheric pressure shifts within the habitable zone. Mars may have undergone a weathering runaway in the past. Substellar dissolution is usually a negative feedback or weak positive feedback on changes in atmospheric pressure. It can only cause runaway changes for small, deep oceans and highly soluble atmospheric gases. Both instabilities are suppressed if the atmosphere has a high radiative efficiency. Our results are most relevant for atmospheres that are thin, have low greenhouse-gas radiative efficiency, and have a principal greenhouse gas that is also the main constituent of the atmosphere. ESWI also requires land near the substellar point, and tectonic resurfacing (volcanism, mountain-building) is needed for large jumps in pressure. These results identify a new pathway by which habitable-zone planets can undergo rapid climate shifts and become uninhabitable.

Kite, Edwin S.; Manga, Michael [Department of Earth and Planetary Science, University of California at Berkeley, CA 94720 (United States); Gaidos, Eric, E-mail: edwin.kite@gmail.com [Department of Geology and Geophysics, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)

2011-12-10T23:59:59.000Z

190

Tidal Dynamics and Residual Circulation in a Well-Mixed Inverse Estuary  

Science Conference Proceedings (OSTI)

The tidal and residual circulations in Laguna San Ignacio (LSI), a well-mixed evaporative lagoon located on the Pacific coast of the Baja California peninsula in Mexico, is described based on surveys and moored observations. At tidal periods ...

Clinton D. Winant; Guillermo Gutirrez de Velasco

2003-07-01T23:59:59.000Z

191

Depth-Dependent Studies of Tidally Induced Residual Currents on the Sides of Georges Bank  

Science Conference Proceedings (OSTI)

Using a depth-dependent tidal model, the tidally induced residual currents on the northern and southern sections of Georges Bank are computed and the effects of various physical parameters on the current are examined. Because of significant on-...

Kim-Tai Tee

1985-12-01T23:59:59.000Z

192

A Numerical Study of Stratified Tidal Rectification over Finite-Amplitude Banks. Part I: Symmetric Banks  

Science Conference Proceedings (OSTI)

Tidal rectification over a two-dimensional finite-amplitude symmetrical bank is studied using the Blumberg and Mellor primitive equation coastal ocean circulation model (ECOM-si). In the homogeneous case, the nonlinear interaction of tidal ...

Changsheng Chen; Robert C. Beardsley

1995-09-01T23:59:59.000Z

193

Adaptation of Classical Tidal Harmonic Analysis to Nonstationary Tides, with Application to River Tides  

Science Conference Proceedings (OSTI)

One of the most challenging areas in tidal analysis is the study of nonstationary signals with a tidal component, as they confront both current analysis methods and dynamical understanding. A new analysis tool has been developed, NS_TIDE, adapted ...

Pascal Matte; David A. Jay; Edward D. Zaron

2013-03-01T23:59:59.000Z

194

The Cascade of Tidal Energy from Low to High Modes on a Continental Slope  

Science Conference Proceedings (OSTI)

The linear transfer of tidal energy from large to small scales is quantified for small tidal excursion over a near-critical continental slope. A theoretical framework for low-wavenumber energy transfer is derived from flat bottom vertical modes ...

Samuel M. Kelly; Jonathan D. Nash; Kim I. Martini; Matthew H. Alford; Eric Kunze

2012-07-01T23:59:59.000Z

195

Tidal Eulerian Residual Currents over a Slope: Analytical and Numerical Frictionless Models  

Science Conference Proceedings (OSTI)

The Eulerian residual tidal currents generated over a continental slope are examined. Using the assumption of a Poincar wave, the linear frictionless solution of a semidiurnal tidal wave propagating from the deep ocean to a constant depth ...

Robert Maz; Gilbert Langlois; Franois Grosjean

1998-07-01T23:59:59.000Z

196

Residual Currents Induced by Asymmetric Tidal Mixing in Weakly Stratified Narrow Estuaries  

Science Conference Proceedings (OSTI)

Residual currents induced by asymmetric tidal mixing were examined for weakly stratified, narrow estuaries using analytical and numerical models. The analytical model is an extension of the work of R. K. McCarthy, with the addition of tidal ...

Peng Cheng; Arnoldo Valle-Levinson; Huib E. de Swart

2010-09-01T23:59:59.000Z

197

A Model of Tidal Rectification by Potential Vorticity Mixing. Part I: Homogeneous Ocean  

Science Conference Proceedings (OSTI)

In previous studies of tidal generation of mean flow over varying topography, the rectification mechanism has generally invoked bottom friction as a source of tidal flux of momentum and vorticity (hence referred asfriction mechanism). The ...

Hsien-Wang Ou

1999-04-01T23:59:59.000Z

198

The Role of Advection, Straining, and Mixing on the Tidal Variability of Estuarine Stratification  

Science Conference Proceedings (OSTI)

Data from the Hudson River estuary demonstrate that the tidal variations in vertical salinity stratification are not consistent with the patterns associated with along-channel tidal straining. These observations result from three additional ...

Malcolm E. Scully; W. Rockwell Geyer

2012-05-01T23:59:59.000Z

199

MHK Technologies/Tidal Barrage | Open Energy Information  

Open Energy Info (EERE)

Barrage Barrage < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Barrage.jpg Technology Profile Technology Resource Click here Current Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description No information provided Technology Dimensions Device Testing Date Submitted 01:04.7 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Tidal_Barrage&oldid=681672" Category: Marine and Hydrokinetic Technologies What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

200

Tidal indicators in the spacetime of a rotating deformed mass  

E-Print Network (OSTI)

Tidal indicators are commonly associated with the electric and magnetic parts of the Riemann tensor (and its covariant derivatives) with respect to a given family of observers in a given spacetime. Recently, observer-dependent tidal effects have been extensively investigated with respect to a variety of special observers in the equatorial plane of the Kerr spacetime. This analysis is extended here by considering a more general background solution to include the case of matter which is also endowed with an arbitrary mass quadrupole moment. Relation with curvature invariants and Bel-Robinson tensor, i.e., observer-dependent super-energy density and super-Poynting vector, are investigated too.

Donato Bini; Kuantay Boshkayev; Andrea Geralico

2013-06-20T23:59:59.000Z

Note: This page contains sample records for the topic "tidal stream power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

MHK Technologies/Tidal Turbine | Open Energy Information  

Open Energy Info (EERE)

Turbine Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Turbine.jpg Technology Profile Primary Organization Aquascientific Project(s) where this technology is utilized *MHK Projects/Race Rocks Demonstration Technology Resource Click here Current/Tidal Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description Turbine is positioned by anchoring and cabling Energy extraction from flow that is transverse to the rotation axis Turbines utilize both lift and drag Mooring Configuration Gravity base although other options are currently being explored Technology Dimensions Device Testing Date Submitted 10/8/2010

202

Earth Tidal Analysis At Marysville Mountain Geothermal Area (1984) | Open  

Open Energy Info (EERE)

Mountain Geothermal Area (1984) Mountain Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Earth Tidal Analysis At Marysville Mountain Geothermal Area (1984) Exploration Activity Details Location Marysville Mountain Geothermal Area Exploration Technique Earth Tidal Analysis Activity Date 1984 Usefulness useful DOE-funding Unknown Exploration Basis Determine porosity of the reservoir Notes The response of a confined, areally infinite aquifer to external loads imposed by earth tides is examined. Because the gravitational influence of celestial objects occurs over large areas of the earth, the confined aquifer is assumed to respond in an undrained fashion. Since undrained response is controlled by water compressibility, earth tide response can be

203

MHK Projects/Kendall Head Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Kendall Head Tidal Energy Kendall Head Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

204

A Generalized Streaming Model for Concurrent Computing  

E-Print Network (OSTI)

Multicore parallel programming has some very difficult problems such as deadlocks during synchronizations and race conditions brought by concurrency. Added to the difficulty is the lack of a simple, well-accepted computing model for multicore architectures--because of that it is hard to develop powerful programming environments and debugging tools. To tackle the challenges, we promote a generalized stream computing model, inspired by previous researches on stream computing, that unifies parallelization strategies for programming language design, compiler design and operating system design. Our model provides a high-level abstraction in designing language constructs to convey concepts of concurrent operations, in organizing a program's runtime layout for parallel execution, and in scheduling concurrent instruction blocks through runtime and/or operating systems. In this paper, we give a high-level description of the proposed model: we define the foundation of the model, show its simplicity through algebraic/co...

Wang, Yibing

2010-01-01T23:59:59.000Z

205

From a stream of relational queries to distributed stream processing  

Science Conference Proceedings (OSTI)

Applications from several domains are now being written to process live data originating from hardware and software-based streaming sources. Many of these applications have been written relying solely on database and data warehouse technologies, despite ... Keywords: ODBC, continuous processing, streaming processing

Qiong Zou; Huayong Wang; Robert Soul; Martin Hirzel; Henrique Andrade; Bu?ra Gedik; Kun-Lung Wu

2010-09-01T23:59:59.000Z

206

The Small-Scale Power Spectrum of Cold Dark Matter  

E-Print Network (OSTI)

One of the best motivated hypotheses in cosmology states that most of the matter in the universe is in the form of weakly-interacting massive particles that decoupled early in the history of the universe and cooled adiabatically to an extremely low temperature. Nevertheless, the finite temperature and horizon scales at which these particles decoupled imprint generic signatures on their small scales density fluctuations. We show that the previously recognized cut-off in the fluctuation power-spectrum due to free-streaming of particles at the thermal speed of decoupling, is supplemented by acoustic oscillations owing to the initial coupling between the cold dark matter (CDM) and the radiation field. The power-spectrum oscillations appear on the scale of the horizon at thermal decoupling which corresponds to a mass scale of \\~10^{-4}*(T_d/10MeV)^{-3} solar masses for a CDM decoupling temperature T_d. The suppression of the power-spectrum on smaller scales by the acoustic oscillations is physically independent from the free-streaming effect, although the two cut-off scales are coincidentally comparable for T_d~10MeV and a particle mass of M~100GeV. The initial conditions for recent numerical simulations of the earliest and smallest objects to have formed in the universe, need to be modified accordingly. The smallest dark matter clumps may be detectable through gamma-ray production from particle annihilation, through fluctuations in the event rate of direct detection experiments, or through their tidal gravitational effect on wide orbits of objects near the outer edge of the solar system.

Abraham Loeb; Matias Zaldarriaga

2005-04-05T23:59:59.000Z

207

Pasture and Soil Management Following Tidal Saltwater Intrusion  

E-Print Network (OSTI)

When land is flooded by saltwater, as after a hurricane tidal surge, it can long-term effects on soil productivity and fertility. This publication explains how to reclaim flooded pasture land. Having soil tested for salinity is an important step.

Provin, Tony; Redmon, Larry; McFarland, Mark L.; Feagley, Sam E.

2009-05-26T23:59:59.000Z

208

A SENSITIVITY ANALYSIS FOR A TIDALLY-INFLUENCED RIVERINE SYSTEM  

E-Print Network (OSTI)

-integrated, finite element coastal circulation code that solves the nonlinear shallow water equations, ADCIRC- 2DDI water. The model is forced with seven main tidal constituents at the open ocean boundary: M2, M4, M6, N2 entire experience at UCF; Dr. Gour-Tsyh (George) Yeh and Dr. John D. Dietz for serving on my committee

Central Florida, University of

209

TWO CHEMICAL SPILL PATTERNS IN TIDALLY DOMINATED SAN DIEGO BAY  

E-Print Network (OSTI)

6 TWO CHEMICAL SPILL PATTERNS IN TIDALLY DOMINATED SAN DIEGO BAY Peter C. Chu and Kleanthis, Inc., 70 Dean Knauss Drive, Narragansett, RI 02882, USA ABSTRACT A coupled hydrodynamic-chemical spill model is used to investigate the chemical spill in the San Diego Bay. The hydrodynamic model shows

Chu, Peter C.

210

Tidal flow over threedimensional topography generates outofforcingplane harmonics  

E-Print Network (OSTI)

energy conversion from the barotropic to the baroclinic tide. The generation of internal waves by tidal, a significant amount of the energy converted from barotropic to baroclinic tides can be generated perpendicular of a sphere, J. Fluid Mech., 183, 439­450. Baines, P. G. (2007), Internal tide generation by seamounts, Deep

Texas at Austin. University of

211

Analysis of Supercritical Stratified Tidal Flow in a Scottish Fjord  

Science Conference Proceedings (OSTI)

The baroclinic tidal regime of the fjord Loch Etive (Scotland) is studied. Analysis is performed on the basis of both in situ data and numerical simulations, with the use of a fully nonlinear nonhydrostatic fine-resolution model. It was found ...

Nataliya Stashchuk; Mark Inall; Vasiliy Vlasenko

2007-07-01T23:59:59.000Z

212

Radar Measurement of Tidal Winds at Stratospheric Heights over Arecibo  

Science Conference Proceedings (OSTI)

Wind oscillations of tidal periods that showed a marked downward phase progression were detected at the lower stratosphere using the Arecibo radar. The amplitudes of 15 m s?1 were inferred for both diurnal and semidiurnal components, much larger ...

Shoichiro Fukao; Toru Sato; Norikazu Yamasaki; Robert M. Harper; Susumu Kato

1980-11-01T23:59:59.000Z

213

Sampling streaming data with replacement  

Science Conference Proceedings (OSTI)

Simple random sampling is a widely accepted basis for estimation from a population. When data come as a stream, the total population size continuously grows and only one pass through the data is possible. Reservoir sampling is a method of maintaining ... Keywords: Data stream mining, Random sampling with replacement, Reservoir sampling

Byung-Hoon Park; George Ostrouchov; Nagiza F. Samatova

2007-10-01T23:59:59.000Z

214

Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2007  

Science Conference Proceedings (OSTI)

This document is the first annual report for the study titled Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta in the Lower Columbia River. Hereafter, we refer to this research as the Tidal Freshwater Monitoring (TFM) Study. The study is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, U.S. Army Corps of Engineers, U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act as a result of operation of the Federal Columbia River Power System (FCRPS). The project is performed under the auspices of the Northwest Power and Conservation Councils Columbia Basin Fish and Wildlife Program.

Sobocinski, Kathryn L.; Johnson, Gary E.; Sather, Nichole K.; Storch, Adam; Jones, Tucker A.; Mallette, Christine; Dawley, Earl M.; Skalski, John R.; Teel, David; Moran, Paul

2008-03-18T23:59:59.000Z

215

KINEMATICS AND CHEMISTRY OF STARS ALONG THE SAGITTARIUS TRAILING TIDAL TAIL AND CONSTRAINTS ON THE MILKY WAY MASS DISTRIBUTION  

Science Conference Proceedings (OSTI)

We present three-dimensional (3D) kinematics of Sagittarius (Sgr) trailing tidal debris in six fields located 70 Degree-Sign -130 Degree-Sign along the stream from the Sgr dwarf galaxy core. The data are from our proper-motion (PM) survey of Kapteyn's Selected Areas, in which we have measured accurate PMs to faint magnitudes in {approx}40' Multiplication-Sign 40' fields evenly spaced across the sky. The radial velocity (RV) signature of Sgr has been identified among our follow-up spectroscopic data in four of the six fields and combined with mean PMs of spectroscopically confirmed members to derive space motions of Sgr debris based on {approx}15-64 confirmed stream members per field. These kinematics are compared to predictions of the Law and Majewski model of Sgr disruption; we find reasonable agreement with model predictions in RVs and PMs along Galactic latitude. However, an upward adjustment of the local standard of rest velocity ({Theta}{sub LSR}) from its standard 220 km s{sup -1} to at least 232 {+-} 14 km s{sup -1} (and possibly as high as 264 {+-} 23 km s{sup -1}) is necessary to bring 3D model debris kinematics and our measurements into agreement. Satisfactory model fits that simultaneously reproduce known position, distance, and RV trends of the Sgr tidal streams, while significantly increasing {Theta}{sub LSR}, could only be achieved by increasing the Galactic bulge and disk mass while leaving the dark matter halo fixed to the best-fit values from Law and Majewski. We derive low-resolution spectroscopic abundances along this stretch of the Sgr stream and find a constant [Fe/H] {approx} -1.15 (with {approx}0.5 dex scatter in each field-typical for dwarf galaxy populations) among the four fields with reliable measurements. A constant metallicity suggests that debris along the {approx}60 Degree-Sign span of this study was all stripped from Sgr on the same orbital passage.

Carlin, Jeffrey L.; Majewski, Steven R.; Patterson, Richard J. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Casetti-Dinescu, Dana I.; Girard, Terrence M. [Astronomy Department, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Law, David R., E-mail: jc4qn@mail.astro.virginia.edu, E-mail: carlij@rpi.edu [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States)

2012-01-01T23:59:59.000Z

216

Efficient pattern matching over event streams  

Science Conference Proceedings (OSTI)

Pattern matching over event streams is increasingly being employed in many areas including financial services, RFIDbased inventory management, click stream analysis, and electronic health systems. While regular expression matching is well studied, pattern ... Keywords: event streams, pattern matching, query optimization

Jagrati Agrawal; Yanlei Diao; Daniel Gyllstrom; Neil Immerman

2008-06-01T23:59:59.000Z

217

Adaptive, unsupervised stream mining  

Science Conference Proceedings (OSTI)

Sensor devices and embedded processors are becoming widespread, especially in measurement/monitoring applications. Their limited resources (CPU, memory and/or communication bandwidth, and power) pose some interesting challenges. We need concise, expressive ...

Spiros Papadimitriou; Anthony Brockwell; Christos Faloutsos

2004-09-01T23:59:59.000Z

218

Pervaporation process and use in treating waste stream from glycol dehydrator  

DOE Patents (OSTI)

Pervaporation processes and apparatus with few moving parts. Ideally, only one pump is used to provide essentially all of the motive power and driving force needed. The process is particularly useful for handling small streams with flow rates less than about 700 gpd. Specifically, the process can be used to treat waste streams from glycol dehydrator regeneration units.

Kaschemekat, Jurgen (Campbell, CA); Baker, Richard W. (Palo Alto, CA)

1994-01-01T23:59:59.000Z

219

Side Stream Filtration for Cooling Towers  

NLE Websites -- All DOE Office Websites (Extended Search)

treatment in addition to the side stream filtration, mechanical cleaning of the heat exchangers can be reduced and efficiency increased (Wymore, 2003). 7 2 Side Stream...

220

Thermalization of a two-stream plasma  

SciTech Connect

Improvements on the theory of two oppositely directed plasma streams are obtained by improving the calculation of the friction force between the two streams. (AIP)

Alipchenkov, V.M.; Konkashbaev, I.K.; Ryl' tseva, T.V.; Ulinich, F.P.

1978-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "tidal stream power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Discretized streams: fault-tolerant streaming computation at scale  

Science Conference Proceedings (OSTI)

Many "big data" applications must act on data in real time. Running these applications at ever-larger scales requires parallel platforms that automatically handle faults and stragglers. Unfortunately, current distributed stream processing models provide ...

Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, Ion Stoica

2013-11-01T23:59:59.000Z

222

HYDROKAL: A module for in-stream hydrokinetic resource assessment  

Science Conference Proceedings (OSTI)

A new tool for hydrokinetic energy potential assessment in rivers-HYDROKAL, which stands for a ''hydrokinetic calculator''-is presented. This tool was developed in the Fortran 90 programming language as an external module for the CCHE2D application, ... Keywords: Instantaneous power density, Numerical modeling, Resource assessment, Stream

Paul Duvoy; Horacio Toniolo

2012-02-01T23:59:59.000Z

223

EXPLORING HALO SUBSTRUCTURE WITH GIANT STARS: SUBSTRUCTURE IN THE LOCAL HALO AS SEEN IN THE GRID GIANT STAR SURVEY INCLUDING EXTENDED TIDAL DEBRIS FROM {omega}CENTAURI  

Science Conference Proceedings (OSTI)

We present the latitude-normalized radial velocity (v{sub b} ) distribution of 3318 subsolar metallicity, V {approx}< 13.5 stars from the Grid Giant Star Survey (GGSS) in southern hemisphere fields. The sample includes giants mostly within {approx}5 kpc from the Galactic disks and halo. The nearby halo is found to (1) exhibit significant kinematical substructure, and (2) be prominently represented by several velocity coherent structures, including a very retrograde 'cloud' of stars at l {approx} 285 Degree-Sign and extended, retrograde 'streams' visible as relatively tight l-v{sub b} sequences. One sequence in the fourth Galactic quadrant lies within the l-v{sub b} space expected to contain tidal debris from the 'star cluster' {omega}Centauri. Not only does {omega}Cen lie precisely in this l-v{sub b} sequence, but the positions and v{sub b} of member stars match those of N-body simulations of tidally disrupting dwarf galaxies on orbits ending with {omega}Cen's current position and space motion. But the ultimate proof that we have very likely found extended parts of the {omega}Cen tidal stream comes from echelle spectroscopy of a subsample of the stars that reveals a very particular chemical abundance signature known to occur only in {omega}Cen. The newly discovered {omega}Cen debris accounts for almost all fourth Galactic quadrant retrograde stars in the southern GGSS, which suggests {omega}Cen is a dominant contributor of retrograde giant stars in the inner Galaxy.

Majewski, Steven R.; Nidever, David L.; Damke, Guillermo J.; Patterson, Richard J.; Garcia Perez, Ana E. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States); Smith, Verne V. [National Optical Astronomy Observatories, P.O. Box 26732, Tucson, AZ 85726 (United States); Kunkel, William E. [Las Campanas Observatory, Casilla 601, La Serena (Chile); Bizyaev, Dmitry, E-mail: srm4n@virginia.edu, E-mail: dln5q@virginia.edu, E-mail: gjd3r@virginia.edu, E-mail: ricky@virginia.edu, E-mail: aeg4x@virginia.edu, E-mail: vsmith@noao.edu, E-mail: kunkel@jeito.lco.cl, E-mail: dmbiz@apo.nmsu.edu [Department of Astronomy, New Mexico State University/Apache Point Observatory, Sunspot NM 88349 (United States)

2012-03-10T23:59:59.000Z

224

Suppression of acoustic streaming in tapered pulse tubes  

Science Conference Proceedings (OSTI)

In a pulse tube cryocooler, the gas in the pulse tube can be thought of as an insulating piston, transmitting pressure and velocity from the cold heat exchanger to the hot end of the pulse tube. Unfortunately, convective heat transfer can carry heat from the hot end to the cold end and reduce the net cooling power. Here, the authors discuss one driver of such convection: steady acoustic streaming as generated by interactions between the boundary and the oscillating pressure, velocity, and temperature. Using a perturbation method, they have derived an analytical expression for the streaming in a tapered pulse tube with axially varying mean temperature in the acoustic boundary layer limit. The calculations showed that the streaming depends strongly on the taper angle, the ratio of velocity and pressure amplitudes, and the phase between the velocity and pressure, but it depends only weakly on the mean temperature profile and is independent of the overall oscillatory amplitude. With the appropriate tapering of the tube, streaming can be eliminated for a particular operating condition. Experimentally, the authors have demonstrated that an orifice pulse tube cryocooler with the calculated zero-streaming taper has more cooling power than one with either a cylindrical tube or a tapered pulse tube with twice the optimum taper angle.

Olson, J.R.; Swift, G.W.

1998-12-31T23:59:59.000Z

225

MHK Projects/East Foreland Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

East Foreland Tidal Energy East Foreland Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.2223,"lon":-151.905,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

226

MHK Projects/Margate Tidal | Open Energy Information  

Open Energy Info (EERE)

Margate Tidal Margate Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3793,"lon":-74.4384,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

227

MHK Projects/Cuttyhunk Tidal Energy Plant | Open Energy Information  

Open Energy Info (EERE)

Cuttyhunk Tidal Energy Plant Cuttyhunk Tidal Energy Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7778,"lon":-70.8489,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

228

MHK Projects/Wrangell Narrows Tidal Energy Project | Open Energy  

Open Energy Info (EERE)

Wrangell Narrows Tidal Energy Project Wrangell Narrows Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":56.6324,"lon":-132.936,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

229

MHK Projects/Astoria Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Astoria Tidal Energy Astoria Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7172,"lon":-73.9703,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

230

MHK Projects/Cook Inlet Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Cook Inlet Tidal Energy Cook Inlet Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.6893,"lon":-151.437,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

231

MHK Projects/BW2 Tidal | Open Energy Information  

Open Energy Info (EERE)

BW2 Tidal BW2 Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3264,"lon":-74.9336,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

232

MHK Projects/Avalon Tidal | Open Energy Information  

Open Energy Info (EERE)

Avalon Tidal Avalon Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.1068,"lon":-74.7463,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

233

MHK Projects/Admirality Inlet Tidal Energy Project | Open Energy  

Open Energy Info (EERE)

Admirality Inlet Tidal Energy Project Admirality Inlet Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.1169,"lon":-122.76,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

234

MHK Projects/Cohansey River Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Cohansey River Tidal Energy Cohansey River Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3829,"lon":-75.2995,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

235

MHK Projects/Dorchester Maurice Tidal | Open Energy Information  

Open Energy Info (EERE)

Dorchester Maurice Tidal Dorchester Maurice Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3262,"lon":-74.938,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

236

MHK Projects/Orient Point Tidal | Open Energy Information  

Open Energy Info (EERE)

Orient Point Tidal Orient Point Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.0748,"lon":-72.9461,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

237

MHK Projects/Gastineau Channel Tidal | Open Energy Information  

Open Energy Info (EERE)

Gastineau Channel Tidal Gastineau Channel Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":58.295,"lon":-134.407,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

238

MHK Projects/Highlands Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Tidal Energy Project Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.3432,"lon":-73.9977,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

239

MHK Projects/Piscataqua Tidal Hydrokinetic Energy Project | Open Energy  

Open Energy Info (EERE)

Piscataqua Tidal Hydrokinetic Energy Project Piscataqua Tidal Hydrokinetic Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.1055,"lon":-70.7912,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

240

MHK Projects/Paimpol Brehat tidal farm | Open Energy Information  

Open Energy Info (EERE)

Paimpol Brehat tidal farm Paimpol Brehat tidal farm < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.869,"lon":-2.98546,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "tidal stream power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

MHK Projects/Turnagain Arm Tidal | Open Energy Information  

Open Energy Info (EERE)

Turnagain Arm Tidal Turnagain Arm Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.3378,"lon":-151.875,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

242

MHK Projects/Wiscasset Tidal Energy Plant | Open Energy Information  

Open Energy Info (EERE)

Wiscasset Tidal Energy Plant Wiscasset Tidal Energy Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.8146,"lon":-69.8697,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

243

MHK Projects/Nantucket Tidal Energy Plant | Open Energy Information  

Open Energy Info (EERE)

Nantucket Tidal Energy Plant Nantucket Tidal Energy Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.389,"lon":-70.5134,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

244

MHK Projects/Kingsbridge Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Kingsbridge Tidal Energy Project Kingsbridge Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.1008,"lon":-74.0495,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

245

MHK Projects/Rockaway Tidal Energy Plant | Open Energy Information  

Open Energy Info (EERE)

Rockaway Tidal Energy Plant Rockaway Tidal Energy Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.5667,"lon":-73.922,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

246

MHK Projects/Muskeget Channel Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Muskeget Channel Tidal Energy Muskeget Channel Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.3501,"lon":-70.3995,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

247

MHK Projects/Killisnoo Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Killisnoo Tidal Energy Killisnoo Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":57.4724,"lon":-134.56,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

248

MHK Projects/Deception Pass Tidal Energy Hydroelectric Project | Open  

Open Energy Info (EERE)

Deception Pass Tidal Energy Hydroelectric Project Deception Pass Tidal Energy Hydroelectric Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.4072,"lon":-122.643,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

249

MHK Projects/Lubec Narrows Tidal | Open Energy Information  

Open Energy Info (EERE)

Lubec Narrows Tidal Lubec Narrows Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.8652,"lon":-66.9828,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

250

MHK Projects/Housatonic Tidal Energy Plant | Open Energy Information  

Open Energy Info (EERE)

Housatonic Tidal Energy Plant Housatonic Tidal Energy Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.2713,"lon":-73.0883,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

251

MHK Projects/Tidal Energy Project Portugal | Open Energy Information  

Open Energy Info (EERE)

Tidal Energy Project Portugal Tidal Energy Project Portugal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.702,"lon":-9.13445,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

252

MHK Projects/Treat Island Tidal | Open Energy Information  

Open Energy Info (EERE)

Treat Island Tidal Treat Island Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.0234,"lon":-67.0672,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

253

MHK Projects/Maurice River Tidal | Open Energy Information  

Open Energy Info (EERE)

Maurice River Tidal Maurice River Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3261,"lon":-74.9379,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

254

MHK Projects/Penobscot Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Penobscot Tidal Energy Project Penobscot Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.5404,"lon":-68.7838,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

255

MHK Projects/Cape May Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Cape May Tidal Energy Cape May Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9668,"lon":-74.963,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

256

MHK Projects/Salem Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Salem Tidal Energy Salem Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.5739,"lon":-75.5438,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

257

MHK Projects/Angoon Tidal Energy Plant | Open Energy Information  

Open Energy Info (EERE)

Angoon Tidal Energy Plant Angoon Tidal Energy Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":57.5034,"lon":-134.58,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

258

MHK Projects/Seaflow Tidal Energy System | Open Energy Information  

Open Energy Info (EERE)

Seaflow Tidal Energy System Seaflow Tidal Energy System < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.2353,"lon":-3.8356,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

259

Evolution of star clusters in arbitrary tidal fields  

E-Print Network (OSTI)

We present a novel and flexible tensor approach to computing the effect of a time-dependent tidal field acting on a stellar system. The tidal forces are recovered from the tensor by polynomial interpolation in time. The method has been implemented in a direct-summation stellar dynamics integrator (NBODY6) and test-proved through a set of reference calculations: heating, dissolution time and structural evolution of model star clusters are all recovered accurately. The tensor method is applicable to arbitrary configurations, including the important situation where the background potential is a strong function of time. This opens up new perspectives in stellar population studies reaching to the formation epoch of the host galaxy or galaxy cluster, as well as for star-burst events taking place during the merger of large galaxies. A pilot application to a star cluster in the merging galaxies NGC 4038/39 (the Antennae) is presented.

Renaud, Florent; Boily, Christian

2011-01-01T23:59:59.000Z

260

The Development of Gas/Star Offsets in Tidal Tails  

E-Print Network (OSTI)

We present models of interacting galaxies in order to study the development of spatial offsets between the gaseous and stellar components in tidal tails. Observationally, such offsets are observed to exist over large scales (e.g., NGC 3690; Hibbard et al. 2000), suggesting an interaction between the tidal gas and some (unseen) hot ISM. Instead, our models show these offsets are a natural consequence of the radially extended HI spatial distribution in disk galaxies, coupled with internal dissipation in the gaseous component driven by the interaction. This mechanism is most effective in systems involved in very prograde interactions, and explains the observed gas/star offsets in interacting galaxies without invoking interactions with a hot ISM, starburst ionization, or dust obscuration within the tails.

Chris Mihos

2000-11-06T23:59:59.000Z

Note: This page contains sample records for the topic "tidal stream power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

The Development of Gas/Star Offsets in Tidal Tails  

E-Print Network (OSTI)

We present models of interacting galaxies in order to study the development of spatial offsets between the gaseous and stellar components in tidal tails. Observationally, such offsets are observed to exist over large scales (e.g., NGC 3690; Hibbard et al. 2000), suggesting an interaction between the tidal gas and some (unseen) hot ISM. Instead, our models show these offsets are a natural consequence of the radially extended HI spatial distribution in disk galaxies, coupled with internal dissipation in the gaseous component driven by the interaction. This mechanism is most effective in systems involved in very prograde interactions, and explains the observed gas/star offsets in interacting galaxies without invoking interactions with a hot ISM, starburst ionization, or dust obscuration within the tails.

Mihos, C

2001-01-01T23:59:59.000Z

262

Stream Energy | Open Energy Information  

Open Energy Info (EERE)

Stream Energy Place Texas Utility Id 50041 Utility Location Yes Ownership R Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1a1 LinkedIn...

263

EA-1949: Admiralty Inlet Pilot Tidal Project, Puget Sound, WA  

Energy.gov (U.S. Department of Energy (DOE))

This EA analyzes the potential environmental effects of a proposal by the Public Utility District No. 1 of Snowhomish County, Washington to construct and operate the Admiralty Inlet Tidal Project. The proposed 680-kilowatt project would be located on the east side of Admiralty Inlet in Puget Sound, Washington, about 1 kilometer west of Whidbey Island, entirely within Island County, Washington. The Federal Energy Regulatory Commission (FERC) is the lead agency. DOE is a cooperating agency.

264

Tidal Heating of Terrestrial Extra-Solar Planets and Implications for their Habitability  

E-Print Network (OSTI)

The tidal heating of hypothetical rocky (or terrestrial) extra-solar planets spans a wide range of values depending on stellar masses and initial orbits. Tidal heating may be sufficiently large (in many cases, in excess of radiogenic heating) and long-lived to drive plate tectonics, similar to the Earth's, which may enhance the planet's habitability. In other cases, excessive tidal heating may result in Io-like planets with violent volcanism, probably rendering them unsuitable for life. On water-rich planets, tidal heating may generate sub-surface oceans analogous to Europa's with similar prospects for habitability. Tidal heating may enhance the outgassing of volatiles, contributing to the formation and replenishment of a planet's atmosphere. To address these issues, we model the tidal heating and evolution of hypothetical extra-solar terrestrial planets. The results presented here constrain the orbital and physical properties required for planets to be habitable.

Brian Jackson; Rory Barnes; Richard Greenberg

2008-08-20T23:59:59.000Z

265

Tidal Heating of Terrestrial Extra-Solar Planets and Implications for their Habitability  

E-Print Network (OSTI)

The tidal heating of hypothetical rocky (or terrestrial) extra-solar planets spans a wide range of values depending on stellar masses and initial orbits. Tidal heating may be sufficiently large (in many cases, in excess of radiogenic heating) and long-lived to drive plate tectonics, similar to the Earth's, which may enhance the planet's habitability. In other cases, excessive tidal heating may result in Io-like planets with violent volcanism, probably rendering them unsuitable for life. On water-rich planets, tidal heating may generate sub-surface oceans analogous to Europa's with similar prospects for habitability. Tidal heating may enhance the outgassing of volatiles, contributing to the formation and replenishment of a planet's atmosphere. To address these issues, we model the tidal heating and evolution of hypothetical extra-solar terrestrial planets. The results presented here constrain the orbital and physical properties required for planets to be habitable.

Jackson, Brian; Greenberg, Richard

2008-01-01T23:59:59.000Z

266

Fracture orientation analysis by the solid earth tidal strain method | Open  

Open Energy Info (EERE)

orientation analysis by the solid earth tidal strain method orientation analysis by the solid earth tidal strain method Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Fracture orientation analysis by the solid earth tidal strain method Details Activities (1) Areas (1) Regions (0) Abstract: A new practical method has been developed to estimate subsurface fracture orientation based on an analysis of solid earth tidal strains. The tidal strain fracture orientation technique is a passive method which has no depth limitation. The orientation of either natural or hydraulically stimulated fractures can be measured using either new or old static observation wells. Estimates for total compressibility and areal interconnected porosity can also be developed for reservoirs with matrix permeability using a combination of tidal and barometric strain analysis.

267

MHK Technologies/Morild Power Plant | Open Energy Information  

Open Energy Info (EERE)

Morild Power Plant Morild Power Plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Morild Power Plant.jpg Technology Profile Primary Organization Hydra Tidal Energy Technology AS Project(s) where this technology is utilized *MHK Projects/MORILD Demonstration Plant Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description The Morild power plant is a floating, moored construction based on the same principle as horizontal axis wind turbines. The plant has 4 two-blade underwater turbines and can utilize the energy potential in tidal and ocean currents. The 4 turbines transmit power via hydraulic transmission to 2 synchronous generators. Can be pitched 180 degrees to utilize energy in both directions. A cable from the transformer on the prototype to shore transfers energy.

268

CX-000900: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determination CX-000900: Categorical Exclusion Determination An Assessment of Projected Life-Cycle Cost for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power in the...

269

HVS-DBS: human visual system-aware dynamic luminance backlight scaling for video streaming applications  

Science Conference Proceedings (OSTI)

Despite the advances in Liquid Crystal Display's (LCD) technology, LCD power consumption is still one of the major limiters of battery lifetime for handheld devices. The main contribution to LCD subsystem power consumption comes from the backlight. This ... Keywords: LCD, backlight scaling, display, power management, video streaming

Andrea Bartolini; Martino Ruggiero; Luca Benini

2009-10-01T23:59:59.000Z

270

Stream combination: Adaptive IO scheduling for streaming servers  

E-Print Network (OSTI)

Cycle-based IO schedulers use statically configured timecycle durations. As a result, they are unable to avoid the formation of virtual bottlenecks. We term a bottleneck as virtual when it occurs within a single resource subsystem, and it is possible to use a secondary under-utilized resource to thwart the bottleneck. The primary reason for virtual bottlenecks in streaming servers is static allocation of memory and disk-bandwidth resources using fixed time-cycle durations. As a result, shifting request workload can cause a virtual bottleneck either in the memory or disk subsystem. We present stream combination, an adaptive IO scheduling technique that addresses this problem in a comprehensive fashion. Stream combination predicts the formation of virtual bottlenecks and proactively alters the IO schedule to avoid them. A simulation study suggests significant performance gains compared to the current state-of-the-art fixed time-cycle IO scheduler. 1

Bin Liu; Raju Rangaswami

2006-01-01T23:59:59.000Z

271

Consistent Streaming Through Time: A Vision for Event Stream Processing  

E-Print Network (OSTI)

Event processing will play an increasingly important role in constructing enterprise applications that can immediately react to business critical events. Various technologies have been proposed in recent years, such as event processing, data streams and asynchronous messaging (e.g. pub/sub). We believe these technologies share a common processing model and differ only in target workload, including query language features and consistency requirements. We argue that integrating these technologies is the next step in a natural progression. In this paper, we present an overview and discuss the foundations of CEDR, an event streaming system that embraces a temporal stream model to unify and further enrich query language features, handle imperfections in event delivery, define correctness guarantees, and define operator semantics. We describe specific contributions made so far and outline next steps in developing the CEDR system.

Roger S. Barga; Jonathan Goldstein; Mohamed Ali; Mingsheng Hong

2007-01-01T23:59:59.000Z

272

Assessment of Strike of Adult Killer Whales by an OpenHydro Tidal Turbine Blade  

SciTech Connect

Report to DOE on an analysis to determine the effects of a potential impact to an endangered whale from tidal turbines proposed for deployment in Puget Sound.

Carlson, Thomas J.; Elster, Jennifer L.; Jones, Mark E.; Watson, Bruce E.; Copping, Andrea E.; Watkins, Michael L.; Jepsen, Richard A.; Metzinger, Kurt

2012-02-01T23:59:59.000Z

273

Earth Tidal Analysis At Salton Sea Geothermal Area (1980) | Open Energy  

Open Energy Info (EERE)

80) 80) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Earth Tidal Analysis At Salton Sea Geothermal Area (1980) Exploration Activity Details Location Salton Sea Geothermal Area Exploration Technique Earth Tidal Analysis Activity Date 1980 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the reservoir response to tidal and barometric effects Notes Porosity-total compressibility product evaluation based on tidal strain response compares favorably with results based on conventional pumping techniques. Analysis of reservoir response to barometric loading using Auto Regressive Integrated Moving Average (ARIMA) stochastic modeling appears also to have potential use for the evaluation of reservoir parameters.

274

Hierarchical phase space structure of dark matter haloes: Tidal debris, caustics, and dark matter annihilation  

E-Print Network (OSTI)

Most of the mass content of dark matter haloes is expected to be in the form of tidal debris. The density

Bertschinger, Edmund

275

Streaming Compression of Hexahedral Meshes  

Science Conference Proceedings (OSTI)

We describe a method for streaming compression of hexahedral meshes. Given an interleaved stream of vertices and hexahedral our coder incrementally compresses the mesh in the presented order. Our coder is extremely memory efficient when the input stream documents when vertices are referenced for the last time (i.e. when it contains topological finalization tags). Our coder then continuously releases and reuses data structures that no longer contribute to compressing the remainder of the stream. This means in practice that our coder has only a small fraction of the whole mesh in memory at any time. We can therefore compress very large meshes - even meshes that do not file in memory. Compared to traditional, non-streaming approaches that load the entire mesh and globally reorder it during compression, our algorithm trades a less compact compressed representation for significant gains in speed, memory, and I/O efficiency. For example, on the 456k hexahedra 'blade' mesh, our coder is twice as fast and uses 88 times less memory (only 3.1 MB) with the compressed file increasing about 3% in size. We also present the first scheme for predictive compression of properties associated with hexahedral cells.

Isenburg, M; Courbet, C

2010-02-03T23:59:59.000Z

276

Dynamic visualization of data streams  

DOE Patents (OSTI)

One embodiment of the present invention includes a data communication subsystem to receive a data stream, and a data processing subsystem responsive to the data communication subsystem to generate a visualization output based on a group of data vectors corresponding to a first portion of the data stream. The processing subsystem is further responsive to a change in rate of receipt of the data to modify the visualization output with one or more other data vectors corresponding to a second portion of the data stream as a function of eigenspace defined with the group of data vectors. The system further includes a display device responsive to the visualization output to provide a corresponding visualization.

Wong, Pak Chung (Richalnd, WA); Foote, Harlan P. (Richland, WA); Adams, Daniel R. (Kennewick, WA); Cowley, Wendy E. (Richland, WA); Thomas, James J. (Richland, WA)

2009-07-07T23:59:59.000Z

277

List of Tidal Energy Incentives | Open Energy Information  

Open Energy Info (EERE)

Incentives Incentives Jump to: navigation, search The following contains the list of 538 Tidal Energy Incentives. CSV (rows 1-500) CSV (rows 501-538) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Abatement of Air Pollution: Control of Carbon Dioxide Emissions/Carbon Dioxide Budget Trading Program (Connecticut) Environmental Regulations Connecticut Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Biomass/Biogas

278

Efficient gas stream cooling in Second-Generation PFBC plants  

SciTech Connect

The coal-fueled Advanced or Second-Generation Pressurized Fluidized Bed Combustor concept (APFBC) is an efficient combined cycle in which coal is carbonized (partially gasified) to fuel a gas turbine, gas turbine exhaust heats feedwater for the steam cycle, and carbonizer char is used to generate steam for a steam turbine while heating combustion air for the gas turbine. The system can be described as an energy cascade in which chemical energy in solid coal is converted to gaseous form and flows to the gas turbine followed by the steam turbine, where it is converted to electrical power. Likewise, chemical energy in the char flows to both turbines generating electrical power in parallel. The fuel gas and vitiated air (PFBC exhaust) streams must be cleaned of entrained particulates by high-temperature equipment representing significant extensions of current technology. The energy recovery in the APFBC cycle allows these streams to be cooled to lower temperatures without significantly reducing the efficiency of the plant. Cooling these streams would allow the use of lower-temperature gas cleanup equipment that more closely approaches commercially available equipment, reducing cost and technological risk, and providing an earlier path to commercialization. This paper describes the performance effects of cooling the two hottest APFBC process gas streams: carbonizer fuel gas and vitiated air. Each cooling variation is described in terms of energy utilization, cycle efficiency, and cost implications.

White, J.S.; Horazak, D.A. [Foster Wheeler Development Corp., Livingston, NJ (United States); Robertson, A. [Foster Wheeler Development Corp., Livingston, NJ (United States)

1994-07-01T23:59:59.000Z

279

StreamNet; 1999 Annual Report.  

DOE Green Energy (OSTI)

This report was funded by the Bonneville Power Administration (BPA), US Department of Energy, as part of BPA's program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric facilities on the Columbia River and its tributaries. The views of this report are the author's and do not necessarily represent the views of BPA. This annual report covers progress made by: Columbia River Inter-Tribal Fish Commission Idaho; Department of Fish and Game; Montana Department of Fish, Wildlife and Parks; Oregon Department of Fish and Wildlife; Pacific States Marine Fisheries Commission; Shoshone-Bannock Tribes; US Fish and Wildlife Service; Washington Department of Fish and Wildlife; and FY1999 StreamNet Quickplan.

Columbia River Inter-Tribal Fish Commission

2000-01-01T23:59:59.000Z

280

Data streams: algorithms and applications  

Science Conference Proceedings (OSTI)

In the data stream scenario, input arrives very rapidly and there is limited memory to store the input. Algorithms have to work with one or few passes over the data, space less than linear in the input size or time significantly less than the input size. ...

S. Muthukrishnan

2005-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "tidal stream power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2007 Annual Report.  

DOE Green Energy (OSTI)

This document is the first annual report for the study titled 'Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta in the Lower Columbia River'. Hereafter, we refer to this research as the Tidal Freshwater Monitoring (TFM) Study. The study is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, U.S. Army Corps of Engineers, U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act as a result of operation of the Federal Columbia River Power System (FCRPS). The project is performed under the auspices of the Northwest Power and Conservation Council's Columbia Basin Fish and Wildlife Program. The goal of the 2007-2009 Tidal Freshwater Monitoring Study is to answer the following questions: In what types of habitats within the tidal freshwater area of the lower Columbia River and estuary (LCRE; Figure 1) are yearling and subyearling salmonids found, when are they present, and under what environmental conditions?1 And, what is the ecological importance2 of shallow (0-5 m) tidal freshwater habitats to the recovery of Upper Columbia River spring Chinook salmon and steelhead and Snake River fall Chinook salmon? Research in 2007 focused mainly on the first question, with fish stock identification data providing some indication of Chinook salmon presence at the variety of habitat types sampled. The objectives and sub-objectives for the 2007 study were as follows: (1) Habitat and Fish Community Characteristics-Provide basic data on habitat and fish community characteristics for yearling and subyearling salmonids at selected sites in the tidal freshwater reach in the vicinity of the Sandy River delta. (1a) Characterize vegetation assemblage percent cover, conventional water quality, substrate composition, and beach slope at each of six sampling sites in various tidal freshwater habitat types. (1b) Determine fish community characteristics, including species composition, abundance, and temporal and spatial distributions. (1c) Estimate the stock of origin for the yearling and subyearling Chinook salmon captured at the sampling sites using genetic analysis. (1d) Statistically assess the relationship between salmonid abundance and habitat parameters, including ancillary variables such as temperature and river stage. (2) Acoustic Telemetry Monitoring-Assess feasibility of applying Juvenile Salmon Acoustic Telemetry System (JSATS) technology to determine migration characteristics from upriver of Bonneville Dam through the study area (vicinity of the Sandy River delta/Washougal River confluence). (2a) Determine species composition, release locations, and distributions of JSATS-tagged fish. (2b) Estimate run timing, residence times, and migration pathways for these fish. Additionally, both objectives serve the purpose of baseline research for a potential tidal rechannelization project on the Sandy River. The U.S. Forest Service, in partnership with the Bonneville Power Administration and the U.S. Army Corps of Engineers, is currently pursuing reconnection of the east (relict) Sandy River channel with the current channel to improve fish and wildlife habitat in the Sandy River delta. Our study design and the location of sampling sites in this reach provide baseline data to evaluate the potential restoration.

Sobocinski, Kathryn; Johnson, Gary; Sather, Nichole [Pacific Northwest National Laboratory

2008-03-17T23:59:59.000Z

282

Numerical simulation and analysis to tidal currents and wave field of pearl river  

Science Conference Proceedings (OSTI)

A hydrodynamic model (MOCOE) is used in tidal current and wave calculation in Yamen river, which is one of the eight estuaries of Pearl River. The method of combining curvilinear orthogonal coordinates in the horizontal direction with Sigma mapping coordinates ... Keywords: curvilinear orthogonal, numerical simulation, tidal currents

Wu Hongxu

2009-11-01T23:59:59.000Z

283

ADCP Measurements of Momentum Balance and Dynamic Topography in a Constricted Tidal Channel  

Science Conference Proceedings (OSTI)

The dynamics of tidal flow through inlets are not fully understood; observations are scarce because of the small spatial scales over which the flow varies. This paper gives the first detailed measurements of the 2D structure of tidal currents and ...

Ross Vennell

2006-02-01T23:59:59.000Z

284

Mapping the tidal motion of an Antarctic ice shelf from space  

E-Print Network (OSTI)

grounded and floating ice). Loss of clarity of phase cycles (noise) ­ likely due to changes on the ice-eyes" suggests a ridgeline is running under the ice. The phase (colour) cycles represent the difference in tidalMapping the tidal motion of an Antarctic ice shelf from space Malcolm McMillan1 , Andrew Shepherd

285

Transport and Resuspension of Fine Particles in a Tidal Boundary Layer near a Small Peninsula  

Science Conference Proceedings (OSTI)

The authors present a theory on the transport and resuspension of fine particles in a tidal boundary layer when the ambient tidal flow is nonuniform due to a peninsula along the coastline. As a first step toward better physical understanding the ...

Chiang C. Mei; Chimin Chian; Feng Ye

1998-11-01T23:59:59.000Z

286

Cyclonic Spirals in Tidally Accelerating Bottom Boundary Layers in the Zhujiang (Pearl River) Estuary  

Science Conference Proceedings (OSTI)

A velocity spiral in the tidally accelerating bottom boundary layer (BBL) was defined as a directional shear of the prevailing flow with the elevation and the tidal phase. However, so far there is no information on the spiral for the oscillatory ...

Jiaxue Wu; Huan Liu; Jie Ren; Junjie Deng

2011-06-01T23:59:59.000Z

287

An HI Threshold for Star Cluster Formation in Tidal Debris  

E-Print Network (OSTI)

Super star clusters are young, compact star clusters found in the central regions of interacting galaxies. Recently, they have also been reported to preferentially form in certain tidal tails, but not in others. In this paper, we have used 21 cm HI maps and the Hubble Space Telescope Wide Field Planetary Camera 2 images of eight tidal tail regions of four merging galaxy pairs to compare the kiloparsec scale HI distribution with the location of super star clusters found from the optical images. For most of the tails, we find that there is an increase in super star cluster density with increasing projected HI column density, such that the star cluster density is highest when log N(HI) >= 20.6 cm^{-2}, but equal to the background count rate at lower HI column density. However, for two tails (NGC 4038/39 Pos A and NGC 3921), there is no significant star cluster population despite the presence of gas at high column density. This implies that the N(HI) threshold is a necessary but not sufficient condition for clust...

Maybhate, A; Hibbard, J E; Charlton, J C; Palma, C; Knierman, K A; English, J

2007-01-01T23:59:59.000Z

288

An HI Threshold for Star Cluster Formation in Tidal Debris  

E-Print Network (OSTI)

Super star clusters are young, compact star clusters found in the central regions of interacting galaxies. Recently, they have also been reported to preferentially form in certain tidal tails, but not in others. In this paper, we have used 21 cm HI maps and the Hubble Space Telescope Wide Field Planetary Camera 2 images of eight tidal tail regions of four merging galaxy pairs to compare the kiloparsec scale HI distribution with the location of super star clusters found from the optical images. For most of the tails, we find that there is an increase in super star cluster density with increasing projected HI column density, such that the star cluster density is highest when log N(HI) >= 20.6 cm^{-2}, but equal to the background count rate at lower HI column density. However, for two tails (NGC 4038/39 Pos A and NGC 3921), there is no significant star cluster population despite the presence of gas at high column density. This implies that the N(HI) threshold is a necessary but not sufficient condition for cluster formation. Gas volume density is likely to provide a more direct criterion for cluster formation, and other factors such as gas pressure or strength of encounter may also have an influence. Comparison of HI thresholds needed for formation of different types of stellar structures await higher resolution HI and optical observations of larger numbers of interacting galaxies.

A. Maybhate; J. Masiero; J. E. Hibbard; J. C. Charlton; C. Palma; K. A. Knierman; J. English

2007-07-24T23:59:59.000Z

289

N-Stream Approximations to Radiative Transfer  

Science Conference Proceedings (OSTI)

Schuster's two-stream approximation is first derived from Chandrasekhar's radiative transfer equation, and then generalized to an arbitrary number of streams. The resulting technique for solving the transfer equation that is similar to the ...

Charles Acquista; Frederick House; James Jafolla

1981-07-01T23:59:59.000Z

290

Language and compiler support for stream programs  

E-Print Network (OSTI)

Stream programs represent an important class of high-performance computations. Defined by their regular processing of sequences of data, stream programs appear most commonly in the context of audio, video, and digital ...

Thies, William Frederick, 1978-

2009-01-01T23:59:59.000Z

291

Earth Tidal Analysis At Raft River Geothermal Area (1982) | Open Energy  

Open Energy Info (EERE)

Tidal Analysis At Raft River Geothermal Area Tidal Analysis At Raft River Geothermal Area (1982) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Earth Tidal Analysis Activity Date 1982 Usefulness not indicated DOE-funding Unknown Exploration Basis To estimate subsurface fracture orientation based on an analysis of solid earth tidal strains. Notes A new practical method has been developed. The tidal strain fracture orientation technique is a passive method which has no depth limitation. The orientation of either natural or hydraulically stimulated fractures can be measured using either new or old static observation wells. Estimates for total compressibility and areal interconnected porosity can also be developed for reservoirs with matrix permeability using a combination of

292

Gravitational signals due to tidal interactions between white dwarfs and black holes  

E-Print Network (OSTI)

In this paper we compute the gravitational signal emitted when a white dwarf moves around a black hole on a closed or open orbit using the affine model approach. We compare the orbital and the tidal contributions to the signal, assuming that the star moves in a safe region where, although very close to the black hole, the strength of the tidal interaction is insufficient to provoque the stellar disruption. We show that for all considered orbits the tidal signal presents sharp peaks corresponding to the excitation of the star non radial oscillation modes, the amplitude of which depends on how deep the star penetrates the black hole tidal radius and on the type of orbit. Further structure is added to the emitted signal by the coupling between the orbital and the tidal motion.

C. Casalvieri; V. Ferrari; A. Stavridis

2005-08-08T23:59:59.000Z

293

Gravitational signals due to tidal interactions between white dwarfs and black holes  

E-Print Network (OSTI)

In this paper we compute the gravitational signal emitted when a white dwarf moves around a black hole on a closed or open orbit using the affine model approach. We compare the orbital and the tidal contributions to the signal, assuming that the star moves in a safe region where, although very close to the black hole, the strength of the tidal interaction is insufficient to provoque the stellar disruption. We show that for all considered orbits the tidal signal presents sharp peaks corresponding to the excitation of the star non radial oscillation modes, the amplitude of which depends on how deep the star penetrates the black hole tidal radius and on the type of orbit. Further structure is added to the emitted signal by the coupling between the orbital and the tidal motion.

Casalvieri, C; Stavridis, A

2006-01-01T23:59:59.000Z

294

Data stream management for historical XML data  

Science Conference Proceedings (OSTI)

We are presenting a framework for continuous querying of time-varying streamed XML data. A continuous stream in our framework consists of a finite XML document followed by a continuous stream of updates. The unit of update is an XML fragment, which can ...

Sujoe Bose; Leonidas Fegaras

2004-06-01T23:59:59.000Z

295

Efficient elastic burst detection in data streams  

Science Conference Proceedings (OSTI)

Burst detection is the activity of finding abnormal aggregates in data streams. Such aggregates are based on sliding windows over data streams. In some applications, we want to monitor many sliding window sizes simultaneously and to report those windows ... Keywords: data stream, elastic burst

Yunyue Zhu; Dennis Shasha

2003-08-01T23:59:59.000Z

296

Programmable transitions for video stream editing  

Science Conference Proceedings (OSTI)

Video editing applications provide a facility to transition from one video stream to another, or to filter a video stream in some way. New transitions are usually developed using a custom API for the particular package. In this article we present a shading ... Keywords: stream processing, video editing, video shaders

Alexandre Hardy

2009-02-01T23:59:59.000Z

297

DRM protected dynamic adaptive HTTP streaming  

Science Conference Proceedings (OSTI)

Dynamic adaptive HTTP streaming (DASH) is a new concept for video streaming using consecutive downloads of short video segments. 3GPP has developed the basic DASH standard which is further extended by the Open IPTV Forum (OIPF) and MPEG. In all versions ... Keywords: adaptive http streaming, content protection, digital rights management, encryption

Frank Hartung; Sinan Kesici; Daniel Catrein

2011-02-01T23:59:59.000Z

298

384 Power plant waste water sampling and analysis plan  

Science Conference Proceedings (OSTI)

This document presents the 384 Power House Sampling and Analysis Plan. The Plan describes sampling methods, locations, frequency, analytes, and stream descriptions. The effluent streams from 384, were characterized in 1989, in support of the Stream Specific Report (WHC-EP-0342, Addendum 1).

Hagerty, K.J.; Knotek, H.M.

1995-01-01T23:59:59.000Z

299

Towards Flexible Exascale Stream Processing System Simulation  

Science Conference Proceedings (OSTI)

Stream processing is an important emerging computational model for performing complex operations on and across multi-source, high-volume, unpredictable dataflows. We present Flow, a platform for parallel and distributed stream processing system simulation that provides a flexible modeling environment for analyzing stream processing applications. The Flow stream processing system simulator is a high-performance, scalable simulator that automatically parallelizes chunks of the model space and incurs near-zero synchronization overhead for acyclic stream application graphs. We show promising parallel and distributed event rates exceeding 149 million events per second on a cluster with 512 processor cores.

Li, Cheng-Hong [IBM T. J. Watson Research Center; Nair, Ravi [IBM T. J. Watson Research Center; Ohba, Noboyuki [IBM Research, Japan; Shvadron, Uzi [IBM Corporation, Haifa Research Center; Zaks, Ayal [IBM Corporation, Haifa Research Center; Schenfeld, Eugen [IBM T. J. Watson Research Center

2012-01-01T23:59:59.000Z

300

Idle Operating Total Stream Day  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 11 10 1 1,293,200 1,265,200 28,000 1,361,700 1,329,700 32,000 ............................................................................................................................................... PAD District I 1 1 0 182,200 182,200 0 190,200 190,200 0 ................................................................................................................................................................................................................................................................................................ Delaware......................................

Note: This page contains sample records for the topic "tidal stream power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Security of jump controlled sequence generators for stream ciphers  

Science Conference Proceedings (OSTI)

The use of jump control technique provides efficient and secure ways for generating key-stream for stream ciphers. This design approach was recently implemented in some algorithms submitted to eSTREAM, the ECRYPT Stream Cipher Project. However, inappropriately ... Keywords: Pomaranch, cryptanalysis, jump register, key-stream generator, linear relations, stream cipher

Tor Helleseth; Cees J. A. Jansen; Shahram Khazaei; Alexander Kholosha

2006-09-01T23:59:59.000Z

302

Two decades of internet video streaming: A retrospective view  

Science Conference Proceedings (OSTI)

For over two decades, video streaming over the Internet has received a substantial amount of attention from both academia and industry. Starting from the design of transport protocols for streaming video, research interests have later shifted to the ... Keywords: HTTP streaming, P2P streaming, Video streaming, cloud computing, multicast, multimedia streaming, social media

Baochun Li, Zhi Wang, Jiangchuan Liu, Wenwu Zhu

2013-10-01T23:59:59.000Z

303

Evaluation of subsurface fracture geometry using fluid pressure response to solid earth tidal strain  

DOE Green Energy (OSTI)

The nature of solid earth tidal strain and surface load deformation due to the influence of gravitational forces and barometric pressure loading are discussed. The pore pressure response to these types of deformation is investigated in detail, including the cases of a confined aquifer intersected by a well and a discrete fracture intersected by a well. The integration of the tidal response method with conventional pump tests in order to independently calculate the hydraulic parameters of the fracture-formation system is discussed. How advanced spectral analysis methods, coupled with correlation analysis can be used to extract the tidal response signals from the pressure record is shown. Uncertainties in the signals are estimated using various information-theoretic methods in order to place a confidence level at which we can safely assume that the measured signal is indeed of tidal origin. A detailed case study of the method carried out at the Raft River Geothermal Reservoir in Idaho is presented. All of the analyzed tidal data is presented and the results of the computed fracture orientation using the solid earth tidal strain approach are compared with the extensive field work carried out at Raft River over the past decade. The direction that future work in the continuing development of this technology should take is discussed, including: (1) the present need for an expanded data base for the confirmation of present tidal strain response models, and (2) improvement in response models.

Hanson, J.M.

1984-09-01T23:59:59.000Z

304

First Commercial, Grid-Connected, Hydrokinetic Tidal Energy Project...  

Office of Science (SC) Website

Image courtesy of Ocean Renewable Power Company ORPC's TidGen(tm) turbine generator unit. R&D Opportunity Advanced water power technologies include devices capable of extracting...

305

Lean manufacturing system design and value stream management in a high-mix, low-volume environment  

E-Print Network (OSTI)

Value Stream Mapping is a powerful tool for identifying sources of waste and for creating the vision for the future state of a production system. As a management tool, however, it lacks in specific focus of roles, ...

Gates, Matthew David, 1973-

2004-01-01T23:59:59.000Z

306

Challenges and Instrumentation Solutions to Understanding the Nature of Tidal Flows  

NLE Websites -- All DOE Office Websites (Extended Search)

Approach to Characterization of Full-Spectrum Approach to Characterization of Full-Spectrum Turbulence Near Current Tidal Energy Devices Presented by Brett Prairie of Rockland Scientific at the Marine and Hydrokinetic Technology and Environmental Instrumentation, Measurement & Computer Modeling Workshop Broomfield, Colorado July 9 - 11, 2012 ©2012 Rockland Scientific Inc. Presentation Agenda ©2012 Rockland Scientific Inc. 1. Introduction & Background 2. The importance of full-spectrum turbulence characterization for current tidal energy project development 3. How non-acoustic measurements can characterize small-scale turbulence near current tidal energy devices 4. Development of a continuous monitoring system to measure full-spectrum turbulence for the National Renewable Energy Laboratory

307

A relativistic jetted outburst from a massive black hole fed by a tidally disrupted star  

E-Print Network (OSTI)

While gas accretion onto some massive black holes (MBHs) at the centers of galaxies actively powers luminous emission, the vast majority of MBHs are considered dormant. Occasionally, a star passing too near a MBH is torn apart by gravitational forces, leading to a bright panchromatic tidal disruption flare (TDF). While the high-energy transient Swift J164449.3+573451 ("Sw 1644+57") initially displayed none of the theoretically anticipated (nor previously observed) TDF characteristics, we show that the observations (Levan et al. 2011) suggest a sudden accretion event onto a central MBH of mass ~10^6-10^7 solar masses. We find evidence for a mildly relativistic outflow, jet collimation, and a spectrum characterized by synchrotron and inverse Compton processes; this leads to a natural analogy of Sw 1644+57 with a smaller-scale blazar. The phenomenologically novel Sw 1644+57 thus connects the study of TDFs and active galaxies, opening a new vista on disk-jet interactions in BHs and magnetic field generation and t...

Bloom, Joshua S; Metzger, Brian D; Cenko, S Bradley; Perley, Daniel A; Butler, Nathaniel R; Tanvir, Nial R; Levan, Andrew J; Brien, Paul T O'; Strubbe, Linda E; De Colle, Fabio; Ramirez-Ruiz, Enrico; Lee, William H; Nayakshin, Sergei; Quataert, Eliot; King, Andrew R; Cucchiara, Antonino; Guillochon, James; Bower, Geoffrey C; Fruchter, Andrew S; Morgan, Adam N; van der Horst, Alexander J

2011-01-01T23:59:59.000Z

308

Water gate array for current flow or tidal movement pneumatic harnessing system  

DOE Patents (OSTI)

The invention, which provides a system for harnessing power from current flow or tidal movement in a body of water, comprises first and second hydro-pneumatic chambers each having ingress and egress below the water surface near the river or ocean floor and water gates operative to open or seal the ports to the passage of water. In an exemplary embodiment, the gates are sychronized by shafts so that the ingress ports of each chamber are connected to the egress ports of each other chamber. Thus, one set of gates is closed, while the other is open, thereby allowing water to flow into one chamber and build air pressure therein and allowing water to flow out of the other chamber and create a partial vacuum therein. A pipe connects the chambers, and an air turbine harnesses the air movement within the pipe. When water levels are equilibrated, the open set of gates is closed by a counterweight, and the other set is allowed to open by natural force of the water differential. The water gates may be comprised of a plurality of louvers which are ganged for simultaneous opening and closing. The system is designed to operate with air turbines or other pneumatic devices. Its design minimizes construction cost and environmental impact, yet provides a clean renewable energy source.

Gorlov, Alexander M. (Brookline, MA)

1991-01-01T23:59:59.000Z

309

Fuel-cell engine stream conditioning system  

SciTech Connect

A stream conditioning system for a fuel cell gas management system or fuel cell engine. The stream conditioning system manages species potential in at least one fuel cell reactant stream. A species transfer device is located in the path of at least one reactant stream of a fuel cell's inlet or outlet, which transfer device conditions that stream to improve the efficiency of the fuel cell. The species transfer device incorporates an exchange media and a sorbent. The fuel cell gas management system can include a cathode loop with the stream conditioning system transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell related to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

DuBose, Ronald Arthur (Marietta, GA)

2002-01-01T23:59:59.000Z

310

Simulation Data as Data Streams  

SciTech Connect

Computational or scientific simulations are increasingly being applied to solve a variety of scientific problems. Domains such as astrophysics, engineering, chemistry, biology, and environmental studies are benefiting from this important capability. Simulations, however, produce enormous amounts of data that need to be analyzed and understood. In this overview paper, we describe scientific simulation data, its characteristics, and the way scientists generate and use the data. We then compare and contrast simulation data to data streams. Finally, we describe our approach to analyzing simulation data, present the AQSim (Ad-hoc Queries for Simulation data) system, and discuss some of the challenges that result from handling this kind of data.

Abdulla, G; Arrighi, W; Critchlow, T

2003-11-18T23:59:59.000Z

311

Coastal Countercurrent and Mesoscale Eddy Formation by Tidal Rectification near an Oceanic Cape  

Science Conference Proceedings (OSTI)

Cape St. James is an extensive triangular-shaped promontory located in a tidally energetic region at the southern tip of the Queen Charlotte Islands approximately 150 km off the mainland coast or British Columbia. Several years of oceanographic ...

Richard E. Thomson; Robert E. Wilson

1987-11-01T23:59:59.000Z

312

EA-1949: Admiralty Inlet Pilot Tidal Project, Puget Sound, WA | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

49: Admiralty Inlet Pilot Tidal Project, Puget Sound, WA 49: Admiralty Inlet Pilot Tidal Project, Puget Sound, WA EA-1949: Admiralty Inlet Pilot Tidal Project, Puget Sound, WA SUMMARY This EA analyzes the potential environmental effects of a proposal by the Public Utility District No. 1 of Snowhomish County, Washington to construct and operate the Admiralty Inlet Tidal Project. The proposed 680-kilowatt project would be located on the east side of Admiralty Inlet in Puget Sound, Washington, about 1 kilometer west of Whidbey Island, entirely within Island County, Washington. The Federal Energy Regulatory Commission (FERC) is the lead agency. DOE is a cooperating agency. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 9, 2013 EA-1949: FERC Notice of Availability Errata Sheet

313

Regulation of Tidal and Wave Energy Projects (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tidal and Wave Energy Projects (Maine) Tidal and Wave Energy Projects (Maine) Regulation of Tidal and Wave Energy Projects (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Water Buying & Making Electricity Program Info State Maine Program Type Siting and Permitting Provider Department of Environmental Protection State regulation of tidal and wave energy projects is covered under the Maine Waterway Development and Conservation Act (MWDCA), and complements

314

Form Drag and Mixing Due to Tidal Flow past a Sharp Point  

Science Conference Proceedings (OSTI)

Barotropic tidal currents flowing over rough topography may be slowed by two bottom boundaryrelated processes: tangential stress of the bottom boundary layer, which is generally well represented by a quadratic drag law, and normal stress from ...

Kathleen A. Edwards; Parker MacCready; James N. Moum; Geno Pawlak; Jody M. Klymak; Alexander Perlin

2004-06-01T23:59:59.000Z

315

Optimal Control Theory Applied to an Objective Analysis of a Tidal Current Mapping by HF Radar  

Science Conference Proceedings (OSTI)

Optimal control can provide a tool to perform an optimization of a tidal model via a data assimilation operation. A pilot study is presented here to test the theoretical and numerical feasibility of an assimilation of HF radar current ...

Jean-Luc Devenon

1990-04-01T23:59:59.000Z

316

The Effect of Channel Length on the Residual Circulation in Tidally Dominated Channels  

Science Conference Proceedings (OSTI)

With an analytic model, this paper describes the subtidal circulation in tidally dominated channels of different lengths, with arbitrary lateral depth variations. The focus is on an important parameter associated with the reversal of the exchange ...

Chunyan Li; James ODonnell

2005-10-01T23:59:59.000Z

317

Internal Hydraulic Jumps and Overturning Generated by Tidal Flow over a Tall Steep Ridge  

Science Conference Proceedings (OSTI)

Recent observations from the Hawaiian Ridge indicate episodes of overturning and strong dissipation coupled with the tidal cycle near the top of the ridge. Simulations with realistic topography and stratification suggest that this overturning has ...

Sonya Legg; Jody Klymak

2008-09-01T23:59:59.000Z

318

Surface Pressure Response to Elevated Tidal Heating Sources: Comparison of Earth and Mars  

Science Conference Proceedings (OSTI)

Modern atmospheric tidal theory has shown that the dominance of the terrestrial semidiurnal surface pressure oscillation, relative to its diurnal counterpart, is the result of the elevated heating source generated by solar heating of ...

Richard W. Zurek

1980-05-01T23:59:59.000Z

319

Spectral Estimates of Gravity Wave Energy and Momentum Fluxes. Part III: Gravity Wave-Tidal Interactions  

Science Conference Proceedings (OSTI)

An application of the gravity wave parameterization scheme developed in the companion papers by Fritts and VanZandt and Fritts and Lu to the mutual interaction of gravity waves and tidal motions is presented. The results suggest that interaction ...

Wentong Lu; David C. Fritts

1993-11-01T23:59:59.000Z

320

Tidal Mixing Events on the Deep Flanks of Kaena Ridge, Hawaii  

Science Conference Proceedings (OSTI)

A 3-month mooring deployment (AugustNovember 2002) was made in 2425-m depth, on the south flank of Kaena Ridge, Hawaii, to examine tidal variations within 200 m of the steeply sloping bottom. Horizontal currents and vertical displacements, ...

Jerome Aucan; Mark A. Merrifield; Douglas S. Luther; Pierre Flament

2006-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "tidal stream power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Tidally Forced Internal Waves and Overturns Observed on a Slope: Results from HOME  

Science Conference Proceedings (OSTI)

Tidal mixing over a slope was explored using moored time series observations on Kaena Ridge extending northwest from Oahu, Hawaii, during the Survey component of the Hawaii Ocean Mixing Experiment (HOME). A mooring was instrumented to sample the ...

Murray D. Levine; Timothy J. Boyd

2006-06-01T23:59:59.000Z

322

Residual Sediment Fluxes in Weakly-to-Periodically Stratified Estuaries and Tidal Inlets  

Science Conference Proceedings (OSTI)

In this idealized numerical modeling study, the composition of residual sediment fluxes in energetic (e.g., weakly or periodically stratified) tidal estuaries is investigated by means of one-dimensional water column models, with some focus on the ...

Hans Burchard; Henk M. Schuttelaars; W. Rockwell Geyer

2013-09-01T23:59:59.000Z

323

A Numerical Study of Stratified Tidal Rectification over Finite-Amplitude Banks. Part II: Georges Bank  

Science Conference Proceedings (OSTI)

Tidal rectification over an idealized two-dimensional cross section of Georges Bank, which is a large, shallow, elongated submarine bank in the Gulf of Maine, is studied using a primitive equation coastal ocean circulation model. In the ...

Changsheng Chen; Robert C. Beardsley; Richard Limeburner

1995-09-01T23:59:59.000Z

324

Singular Spectrum Analysis of Nonstationary Tidal Currents Applied to ADCP Data from the Northeast Brazilian Shelf  

Science Conference Proceedings (OSTI)

The development of new tools for the analysis of nonstationary currents, including tidal currents, has been the subject of recent research. In this work a method for studies of nonstationary barotropic or baroclinic currents based on empirical ...

Marcio L. Vianna; Viviane V. Menezes

2006-01-01T23:59:59.000Z

325

Observed and Computed M2 Tidal Currents in the North Sea  

Science Conference Proceedings (OSTI)

M2 tidal elevations and currents have been computed using a three-dimensional hydrodynamic numerical model of the northwest European shelf. These have been compared with observational data from tide gages and current meter rigs moored in ...

A. M. Davies; G. K. Furnes

1980-02-01T23:59:59.000Z

326

The Harmonic Constant Datum Method: Options for Overcoming Datum Discontinuities at MixedDiurnal Tidal Transitions  

Science Conference Proceedings (OSTI)

The harmonic constant datum (HCD) method is a computationally efficient way of estimating tidal datums relative to mean sea level, without the need to compute long time series. However, datum discontinuities can occur between mixed and diurnal ...

Harold O. Mofjeld; Angie J. Venturato; Frank I. Gonzlez; Vasily V. Titov; Jean C. Newman

2004-01-01T23:59:59.000Z

327

Using a Broadband ADCP in a Tidal Channel. Part I: Mean Flow and Shear  

Science Conference Proceedings (OSTI)

This paper discusses the principles of measuring the mean velocity and its vertical shear in a turbulent flow using an acoustic Doppler current profiler (ADCP), and presents an analysis of data gathered in a tidal channel. The assumption of ...

Youyu Lu; Rolf G. Lueck

1999-11-01T23:59:59.000Z

328

Fog and Tidal Current Connection at Cape Cod CanalEarly Recognition and Recent Measurements  

Science Conference Proceedings (OSTI)

Notes by Gardner Emmons about the initiation of low advective fogs on Cape Cod are presented. Subsequent measurements made in these fogs confirm his suggestion that mixing and temperature changes associated with tidal currents account for the ...

Alfred H. Woodcock

1982-02-01T23:59:59.000Z

329

Analysis of Tidal Straining as Driver for Estuarine Circulation in Well-Mixed Estuaries  

Science Conference Proceedings (OSTI)

Tidal straining, which can mathematically be described as the covariance between eddy viscosity and vertical shear of the along-channel velocity component, has been acknowledged as one of the major drivers for estuarine circulation in channelized ...

Hans Burchard; Henk M. Schuttelaars

2012-02-01T23:59:59.000Z

330

Aspects of the Tidal Variability Observed on the Southern California Continental Shelf  

Science Conference Proceedings (OSTI)

Observations of the current and temperature field from the southern California continental shelf are analyzed in a frequency band (0.66 cpd) dominated by tidal fluctuations. The seasonal variability of the temperature and horizontal velocity ...

A. Bratkovich

1985-03-01T23:59:59.000Z

331

Topographic Rectification of Tidal Currents on the Sides of Georges Bank  

Science Conference Proceedings (OSTI)

The rectification of M2 tidal currents on the sloping sides of Georges Bank is predicted to make an important year-round contribution to its observed mean clockwise circulation. A rectification mechanism involving continuity and Coriolis effects, ...

John W. Loder

1980-09-01T23:59:59.000Z

332

A Study of Tidal Energy Dissipation and Bottom Stress in an Estuary  

Science Conference Proceedings (OSTI)

A Method for inferring an area-averaged bottom stress and energy dissipation rate in a tidal estuarine channel is presented. The one-dimensional continuity and momentum relations are developed using simplifying assumptions appropriate for a well-...

Wendell S. Brown; Richard P. Trask

1980-11-01T23:59:59.000Z

333

The Cycle of Turbulent Dissipation in the Presence of Tidal Straining  

Science Conference Proceedings (OSTI)

In regions of large horizontal density gradient, tidal straining acts to produce a periodic component of stratification that interacts with turbulent mixing to control water column structure and flow. A 25-h series of measurements of the rate of ...

Tom P. Rippeth; Neil R. Fisher; John H. Simpson

2001-08-01T23:59:59.000Z

334

The Signature of Inertial and Tidal Currents in Offshore Wave Records  

Science Conference Proceedings (OSTI)

The roughness of the sea surface can be affected by strong currents. Here, long records of surface wave heights from buoy observations in the northeastern Pacific Ocean are examined. The data show the influence of tidal currents, but the first ...

Johannes Gemmrich; Chris Garrett

2012-06-01T23:59:59.000Z

335

A Model of the Tidally Induced Residual Circulation in the Gulf of Maine and Georges Bank  

Science Conference Proceedings (OSTI)

A three-dimensional nonlinear numerical hydrodynamic model using Legendre polynomials to represent the vertical structure of the horizontal currents has been used to study the tidally induced residual flows in the Gulf of MaineGeorges Bank study ...

Tatsusaburo Isaji; Malcolm L. Spaulding

1984-06-01T23:59:59.000Z

336

General Spectral Computations of the Nonlinear Shallow Water Tidal Interactions within the Bight of Abaco  

Science Conference Proceedings (OSTI)

An iterative frequencytime domain finite element tidal circulation model is applied to the Bight of Abaco in the Bahamas to study the nonlinear interactions that occur between the various astronomical, overtide and compound-tide constituents. ...

J. J. Westerink; K. D. Stolzenbach; J. J. Connor

1989-09-01T23:59:59.000Z

337

Abyssal Penetration and Bottom Reflection of Internal Tidal Energy in the Bay of Biscay  

Science Conference Proceedings (OSTI)

This paper describes field observations in the Bay of Biscay, and presents convincing evidence for the existence of a broad beam of internal tidal energy propagating downward from a source region on the upper continental slopes, which, after ...

R. D. Pingree; A. L. New

1991-01-01T23:59:59.000Z

338

A Comparison of Georges Bank, Gulf of Maine and New England Shelf Tidal Dynamics  

Science Conference Proceedings (OSTI)

The semidiurnal tidal currents associated with the near-resonant response of the Gulf of Maine-Bay of Fundy system are amplified over the relatively shallow depths of Georges Bank, thus leading to enhanced energy dissipation, vertical mixing and ...

Wendell S. Brown

1984-01-01T23:59:59.000Z

339

Residual Sediment Fluxes in Weakly-to-Periodically Stratified Estuaries and Tidal Inlets  

Science Conference Proceedings (OSTI)

In this idealized numerical modeling study, the composition of residual sediment fluxes in energetic (e.g., weakly stratified or periodically stratified) tidal estuaries is investigated by means of one-dimensional water column models, with some ...

Hans Burchard; Henk M. Schuttelaars; W. Rockwell Geyer

340

Method of immobilizing carbon dioxide from gas streams  

DOE Patents (OSTI)

This invention is a method for rapidly and continuously immobilizing carbon dioxide contained in various industrial off-gas streams, the carbon dioxide being immobilized as dry, stable, and substantially water-insoluble particulates. Briefly, the method comprises passing the gas stream through a fixed or fluidized bed of hydrated barium hydroxide to remove and immobilize the carbon dioxide by converting the bed to barium carbonate. The method has several important advantages: it can be conducted effectively at ambient temperature; it provides a very rapid reaction rate over a wide range of carbon dioxide concentrations; it provides high decontamination factors; and it has a high capacity for carbon dioxide. The invention is especially well suited for the removal of radioactive carbon dioxide from off-gases generated by nuclear-fuel reprocessing facilities and nuclear power plants.

Holladay, David W. (Knoxville, TN); Haag, Gary L. (Oliver Springs, TN)

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "tidal stream power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Alternate Fuels: Is Your Waste Stream a Fuel Source?  

E-Print Network (OSTI)

Before the year 2000, more than one quarter of U.S. businesses will be firing Alternate Fuels in their boiler systems. And, the trend toward using Process Gases, Flammable Liquids, and Volatile Organic Compounds (VOC's), to supplement fossil fuels, will be considered a key element of the management strategy for industrial power plants. The increase in interest in Alternate Fuels and demand for proven Alternate Fuel technology is being driven by three factors -* The requirement of U.S. firms to compete in a global market. * The improvements in Alternate Fuel technologies. * The increasing federal regulations encompassing more types of waste streams. This paper will provide an overview of the types of waste utilized as fuel sources in packaged boilers and the technology available to successfully handle these waste streams.

Coerper, P.

1992-04-01T23:59:59.000Z

342

Verdant Power | Open Energy Information  

Open Energy Info (EERE)

Verdant Power Verdant Power Jump to: navigation, search Name Verdant Power Place New York, New York Zip 10044 Sector Marine and Hydrokinetic Product A systems integrator and a developer of free-flow turbine systems that generates utility and village scale electric power from natural underwater currents. References Verdant Power[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Cornwall Ontario River Energy CORE Roosevelt Island Tidal Energy RITE This company is involved in the following MHK Technologies: Kinetic Hydropower System KHPS This article is a stub. You can help OpenEI by expanding it. Verdant Power is a company located in New York, New York .

343

THE SHAPES OF MILKY WAY SATELLITES: LOOKING FOR SIGNATURES OF TIDAL STIRRING  

Science Conference Proceedings (OSTI)

We study the shapes of Milky Way satellites in the context of the tidal stirring scenario for the formation of dwarf spheroidal galaxies. The standard procedures used to measure shapes involve smoothing and binning of data and thus may not be sufficient to detect structural properties such as bars, which are usually subtle in low surface brightness systems. Taking advantage of the fact that in nearby dwarfs photometry of individual stars is available, we introduce discrete measures of shape based on the two-dimensional inertia tensor and the Fourier bar mode. We apply these measures of shape first to a variety of simulated dwarf galaxies formed via tidal stirring of disks embedded in dark matter halos and orbiting the Milky Way. In addition to strong mass loss and randomization of stellar orbits, the disks undergo morphological transformation that typically involves the formation of a triaxial bar after the first pericenter passage. These tidally induced bars persist for a few Gyr before being shortened toward a more spherical shape if the tidal force is strong enough. We test this prediction by measuring in a similar way the shape of nearby dwarf galaxies, satellites of the Milky Way. We detect inner bars in Ursa Minor, Sagittarius, Large Magellanic Cloud, and possibly Carina. In addition, 6 out of 11 dwarfs that we studied show elongated stellar distributions in the outer parts that may signify transition to tidal tails. We thus find the shapes of Milky Way satellites to be consistent with the predictions of the tidal stirring model.

Lokas, Ewa L. [Nicolaus Copernicus Astronomical Center, 00-716 Warsaw (Poland); Majewski, Steven R.; Nidever, David L. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States); Kazantzidis, Stelios [Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210 (United States); Mayer, Lucio [Institute for Theoretical Physics, University of Zuerich, CH-8057 Zuerich (Switzerland); Carlin, Jeffrey L. [Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, NY 12180-3590 (United States); Moustakas, Leonidas A., E-mail: lokas@camk.edu.pl [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

2012-05-20T23:59:59.000Z

344

THE DYNAMICS, APPEARANCE, AND DEMOGRAPHICS OF RELATIVISTIC JETS TRIGGERED BY TIDAL DISRUPTION OF STARS IN QUIESCENT SUPERMASSIVE BLACK HOLES  

SciTech Connect

We examine the consequences of a model in which relativistic jets can be triggered in quiescent massive black holes when a geometrically thick and hot accretion disk forms as a result of the tidal disruption of a star. To estimate the power, thrust, and lifetime of the jet, we use the mass accretion history onto the black hole as calculated by detailed hydrodynamic simulations of the tidal disruption of stars. We go on to determine the states of the interstellar medium in various types of quiescent galactic nuclei, and describe how this external matter can affect jets propagating through it. We use this information, together with a two-dimensional hydrodynamic model of the structure of the relativistic flow, to study the dynamics of the jet, the propagation of which is regulated by the density stratification of the environment and by its injection history. The breaking of symmetry involved in transitioning from one to two dimensions is crucial and leads to qualitatively new phenomena. At early times, as the jet power increases, the high pressure of the cocoon collimates the jet, increasing its shock velocity as compared to that of spherical models. We show that small velocity gradients, induced near or at the source, steepen into internal shocks and provide a source of free energy for particle acceleration and radiation along the jet's channel. The jets terminate at a working surface where they interact strongly with the surrounding medium through a combination of shock waves and instabilities; a continuous flow of relativistic fluid emanating from the nucleus supplies this region with mass, momentum, and energy. Information about the t {sup -5/3} decrease in power supply propagates within the jet at the internal sound speed. As a result, the internal energy at the jet head continues to accumulate until long after the peak feeding rate is reached. An appreciable time delay is thus expected between peaks in the short-wavelength radiation emanating near the jet's origin and the long-wavelength emission produced at the head of the jet. Many of the observed properties of the Swift 1644+57/GRB 110328A event can be understood as resulting from accretion onto and jets driven by a 10{sup 6} M {sub Sun} central mass black hole following the disruption of a sun-like star. With the inclusion of a stochastic contribution to the luminosity due to variations in the feeding rate driven by instabilities near the tidal radius, we find that our model can explain the X-ray light curve without invoking a rarely occurring deep encounter. In conjunction with the number density of black holes in the local universe, we hypothesize that the conditions required to produce the Swift event are not anomalous, but are in fact representative of the jet-driven flare population arising from tidal disruptions.

De Colle, Fabio; Guillochon, James; Naiman, Jill; Ramirez-Ruiz, Enrico, E-mail: fabio@ucolick.org, E-mail: jfg@ucolick.org, E-mail: jnaiman@ucolick.org, E-mail: enrico@ucolick.org [TASC, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

2012-12-01T23:59:59.000Z

345

Carbon Dioxide Hydrate Process for Gas Separation from a Shifted Synthesis Gas Stream  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequestration and Sequestration and Gasification Technologies Carbon DioxiDe HyDrate ProCess for Gas seParation from a sHifteD syntHesis Gas stream Background One approach to de-carbonizing coal is to gasify it to form fuel gas consisting predominately of carbon monoxide and hydrogen. This fuel gas is sent to a shift conversion reactor where carbon monoxide reacts with steam to produce carbon dioxide (CO 2 ) and hydrogen. After scrubbing the CO 2 from the fuel, a stream of almost pure hydrogen stream remains, which can be burned in a gas turbine or used to power a fuel cell with essentially zero emissions. However, for this approach to be practical, it will require an economical means of separating CO 2 from mixed gas streams. Since viable options for sequestration or reuse of CO

346

High Temperature Electrochemical Polishing of H(2)S from Coal Gasification Process Streams.  

DOE Green Energy (OSTI)

An advanced process for the separation of hydrogen sulfide from coal gasification streams through an electrochemical membrane is being perfected. H{sub 2}S is removed from a synthetic gas stream, split into hydrogen, which enriches the exiting syngas, and sulfur, which is condensed downstream from an inert sweep gas stream. The process allows for continuous removal of H{sub 2}S without cooling the gas stream while allowing negligible pressure loss through the separator. Moreover, the process is economically attractive due to the elimination of the need for a Claus process for sulfur recovery. To this extent the project presents a novel concept for improving utilization of coal for more efficient power generation.

Winnick, J.

1997-12-31T23:59:59.000Z

347

PARTICULATE HOT GAS STREAM CLEANUP TECHNICAL ISSUES  

Science Conference Proceedings (OSTI)

This is the fourth annual report describing the activities performed under Task 1 of Contract No. DE-AC21-94MC31160. The analyses of hot gas stream cleanup (HGCU) ashes and descriptions of filter performance studied under this contract are designed to address problems with filter operation that are apparently linked to characteristics of the collected ash. This work is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters and to relate these ash properties to the operation and performance of these filters and their components. This report summarizes characterizations of ash and char samples from pressurized fluidized-bed combustion and gasification facilities. Efforts are under way to develop a method for preserving fragile filter cakes formed on ceramic filter elements. The HGCU data base was formatted for Microsoft Access 97 . Plans for the remainder of the project include characterization of additional samples collected during site visits to the Department of Energy / Southern Company Services Power Systems Development Facility and completion and delivery of the HGCU data base.

None

1999-05-05T23:59:59.000Z

348

PARTICULATE HOT GAS STREAM CLEANUP TECHNICAL ISSUES  

Science Conference Proceedings (OSTI)

This is the fourth annual report describing the activities performed under Task 1 of Contract No. DE-AC21-94MC31160. The analyses of hot gas stream cleanup (HGCU) ashes and descriptions of filter performance studied under this contract are designed to address problems with filter operation that are apparently linked to characteristics of the collected ash. This work is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters and to relate these ash properties to the operation and performance of these filters and their components. This report summarizes characterizations of ash and char samples from pressurized fluidized-bed combustion and gasification facilities. Efforts are under way to develop a method for preserving fragile filter cakes formed on ceramic filter elements. The HGCU data base was formatted for Microsoft Access 97 . Plans for the remainder of the project include characterization of additional samples collected during site visits to the Department of Energy / Southern Company Services Power Systems Development Facility and completion and delivery of the HGCU data base.

NONE

1998-11-30T23:59:59.000Z

349

PARTICULATE HOT GAS STREAM CLEANUP TECHNICAL ISSUES  

Science Conference Proceedings (OSTI)

This is the fourth annual report describing the activities performed under Task 1 of Contract No. DE-AC21-94MC31160. The analyses of hot gas stream cleanup (HGCU) ashes and descriptions of filter performance studied under this contract are designed to address problems with filter operation that are apparently linked to characteristics of the collected ash. This work is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters and to relate these ash properties to the operation and performance of these filters and their components. This report summarizes characterizations of ash and char samples from pressurized fluidized-bed combustion and gasification facilities. Efforts are under way to develop a method for preserving fragile filter cakes formed on ceramic filter elements. The HGCU data base was formatted for Microsoft Access 97{reg_sign}. Plans for the remainder of the project include characterization of additional samples collected during site visits to the Department of Energy/Southern Company Services Power Systems Development Facility and completion and delivery of the HGCU data base.

NONE

1999-05-05T23:59:59.000Z

350

Hydropower Resource Assessment of Brazilian Streams  

DOE Green Energy (OSTI)

The Idaho National Laboratory (INL) in collaboration with the U.S. Geological Survey (USGS) with the assistance of the Empresa de Pesquisa Energetica (EPE) and the Agencia Nacional de Energia Electrica (ANEEL) has performed a comprehensive assessment of the hydropower potential of all Brazilian natural streams. The methodology by which the assessment was performed is described. The results of the assessment are presented including an estimate of the hydropower potential for all of Brazil, and the spatial distribution of hydropower potential thus providing results on a state by state basis. The assessment results have been incorporated into a geographic information system (GIS) application for the Internet called the Virtual Hydropower Prospector do Brasil. VHP do Brasil displays potential hydropower sites on a map of Brazil in the context of topography and hydrography, existing power and transportation infrastructure, populated places and political boundaries, and land use. The features of the application, which includes tools for finding and selecting potential hydropower sites and other features and displaying their attributes, is fully described.

Douglas G. Hall

2011-09-01T23:59:59.000Z

351

Effects of Localized Energy Extraction in an Idealized, Energetically Complete Numerical Model of an Ocean-Estuary Tidal System  

NLE Websites -- All DOE Office Websites (Extended Search)

localized energy extraction in an localized energy extraction in an idealized, energetically complete numerical model of an ocean-estuary tidal system MHK Instrumentation, Measurement & Computer Modeling Workshop, Broomfield CO, July 10 2012 Mitsuhiro Kawase and Marisa Gedney Northwest National Marine Renewable Energy Center / School of Oceanography University of Washington Seattle WA 98195 United States * Far-field (Estuary-wide) - Changes in the tidal range - Changes in tidal currents  Near-field (Vicinity of the Device)  Flow redirection  Interaction with marine life  Impact on bottom sediments and benthos Environmental Effects of Tidal Energy Extraction * Reduction in tidal range can permanently expose/submerge tidal flats, altering nearshore habitats * Reduction in kinetic energy of

352

Error resilient video streaming for heterogeneous networks  

Science Conference Proceedings (OSTI)

We consider the problem of video streaming for a critical private web cast, for a medium sized audience with heterogeneous nodes having different bandwidths and reliabilities. The nodes can distribute video in a peer-to-peer manner by forming a multicast ... Keywords: error resilience, multiple description coding (MDC), path diversity, video streaming

Divyashikha Sethia; Huzur Saran

2006-12-01T23:59:59.000Z

353

Efficient and compositional higher-order streams  

Science Conference Proceedings (OSTI)

Stream-based programming has been around for a long time, but it is typically restricted to static data-flow networks. By introducing first-class streams that implement the monad interface, we can describe arbitrary dynamic networks in an elegant and ...

Gergely Patai

2010-01-01T23:59:59.000Z

354

Real time video streaming over heterogeneous networks  

Science Conference Proceedings (OSTI)

Technological advances allow handheld devices to be equipped with faster processors and wireless interfaces, making the performance comparable to laptop Computers. In this paper, we describe real-time video streaming over heterogeneous networks namely ... Keywords: GPRS-EDGE, IEEE802.11, IETF, MPEG-4, PSS, RTCP, RTP, RTSP, bluetooth, performance, piconet, quality of service, video streaming, wireless LANs

Mohammed A. Qadeer; Rehan Ahmad; Mohd Siddique Khan; Tauseef Ahmad

2009-02-01T23:59:59.000Z

355

Ecology of Juvenile Salmon in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2008  

SciTech Connect

The tidal freshwater monitoring (TFM) project reported herein is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, the U.S. Army Corps of Engineers [USACE], and the U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act (ESA) as a result of operation of the Federal Columbia River Power System. The project is being performed under the auspices of the Northwest Power and Conservation Councils Columbia Basin Fish and Wildlife Program (Project No. 2005-001-00). The research is a collaborative effort among the Pacific Northwest National Laboratory, the Oregon Department of Fish and Wildlife, the National Marine Fisheries Service, and the University of Washington.

Sather, Nichole K.; Johnson, Gary E.; Storch, Adam; Teel, David; Skalski, John R.; Jones, Tucker A.; Dawley, Earl M.; Zimmerman, Shon A.; Borde, Amy B.; Mallette, Christine; Farr, R.

2009-05-29T23:59:59.000Z

356

PROPER MOTIONS IN KAPTEYN SELECTED AREA 103: A PRELIMINARY ORBIT FOR THE VIRGO STELLAR STREAM  

Science Conference Proceedings (OSTI)

We present absolute proper motions in Kapteyn Selected Area (SA) 103. This field is located 7 deg. west of the center of the Virgo Stellar Stream (VSS), and has a well-defined main sequence representing the stream. In SA 103, we identify one RR Lyrae star as a member of the VSS, according to its metallicity, radial velocity, and distance. VSS candidate turnoff and subgiant stars have proper motions consistent with that of the RR Lyrae star. The three-dimensional velocity data imply an orbit with a pericenter of {approx}11 kpc and an apocenter of {approx}90 kpc. Thus, the VSS comprises tidal debris found near the pericenter of a highly destructive orbit. Examining the six globular clusters at distances larger than 50 kpc from the Galactic center, and the proposed orbit of the VSS, we find one tentative association, NGC 2419. We speculate that NGC 2419 is possibly the nucleus of a disrupted system of which the VSS is a part.

Casetti-Dinescu, Dana I.; Girard, Terrence M.; Van Altena, William F. [Astronomy Department, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Majewski, Steven R.; Carlin, Jeffrey L. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Vivas, A. Katherina [Centro de Investigaciones de Astronomia (CIDA), Apartado Postal 264, Merida 5101-A (Venezuela, Bolivarian Republic of); Wilhelm, Ronald [Department of Physics, Texas Tech University, Lubbock, TX 79409 (United States); Beers, Timothy C. [Department of Physics and Astronomy, Center for the Study of Cosmic Evolution (CSCE), and Joint Institution for Nuclear Astrophysics (JINA), Michigan State University, East Lansing, MI 48824 (United States)

2009-08-10T23:59:59.000Z

357

Comparing data streams using Hamming norms (how to zero in)  

Science Conference Proceedings (OSTI)

Massive data streams are now fundamental to many data processing applications. For example, Internet routers produce large scale diagnostic data streams. Such streams are rarely stored in traditional databases, and instead must be processed "on the fly" ...

Graham Cormode; Mayur Datar; Piotr Indyk; S. Muthukrishnan

2002-08-01T23:59:59.000Z

358

Global Characteristics of Stream Flow Seasonality and Variability  

Science Conference Proceedings (OSTI)

Monthly stream flow series from 1345 sites around the world are used to characterize geographic differences in the seasonality and year-to-year variability of stream flow. Stream flow seasonality varies regionally, depending on the timing of ...

Michael D. Dettinger; Henry F. Diaz

2000-08-01T23:59:59.000Z

359

Compiler optimizations for an asynchronous stream-oriented programming language  

E-Print Network (OSTI)

Stream-oriented programs allow different opportunities for optimization than procedural programs. Moreover, as compared to purely synchronous stream-oriented programs, optimizing for asynchronous stream-based programs is ...

Craig, Michael B

2008-01-01T23:59:59.000Z

360

Hydropower, Wave and Tidal Technologies - Energy Innovation Portal  

The pinning action keeps the oil from leeching out of the coating, ... field weakening, and power factor improvement and novel locks for higher peak s ...

Note: This page contains sample records for the topic "tidal stream power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Mixed and Low-Level Treatment Facility Project. Appendix B, Waste stream engineering files, Part 1, Mixed waste streams  

SciTech Connect

This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

1992-04-01T23:59:59.000Z

362

Black-Hole Spin Dependence in the Light Curves of Tidal Disruption Events  

E-Print Network (OSTI)

A star orbiting a supermassive black hole can be tidally disrupted if the black hole's gravitational tidal field exceeds the star's self gravity at pericenter. Some of this stellar tidal debris can become gravitationally bound to the black hole, leading to a bright electromagnetic flare with bolometric luminosity proportional to the rate at which material falls back to pericenter. In the Newtonian limit, this flare will have a light curve that scales as t^-5/3 if the tidal debris has a flat distribution in binding energy. We investigate the time dependence of the black-hole mass accretion rate when tidal disruption occurs close enough the black hole that relativistic effects are significant. We find that for orbits with pericenters comparable to the radius of the marginally bound circular orbit, relativistic effects can double the peak accretion rate and halve the time it takes to reach this peak accretion rate. The accretion rate depends on both the magnitude of the black-hole spin and its orientation with respect to the stellar orbit; for orbits with a given pericenter radius in Boyer-Lindquist coordinates, a maximal black-hole spin anti-aligned with the orbital angular momentum leads to the largest peak accretion rate.

Michael Kesden

2012-07-26T23:59:59.000Z

363

Life on the Bottom of a Stream  

NLE Websites -- All DOE Office Websites (Extended Search)

on the Bottom of a Stream on the Bottom of a Stream Nature Bulletin No. 690 October 20, 1962 Forest Preserve District of Cook County Seymour Simon, President David H. Thompson, Senior Naturalist LIFE ON THE BOTTOM OF A STREAM A stream conceals a teeming world of bottom-dwelling animals that are the food supply for all stream fish and a source of live bait for catching them. Raccoons, mink, muskrats, ducks, shore birds, turtles and frogs hunt here for mussels, snails, crayfish and aquatic insects. These insects, after passing their young stages on the stream bottom, emerge as swarms of flying adults devoured by dozens of kinds of song birds. These, too, are the insects that fly fishermen imitate in making their artificial lures. Streams of all sizes have about the same kinds of bottom animals, whether a brook small enough to be stepped across or the mile-wide Mississippi. The greatest differences are found when the populations from different types of bottom are compared -- rock, gravel, sand and mud. These main types result from the sorting action of the water, especially during floods. Rock bottom is found in the fastest water because all smaller materials are swept downstream. As the current becomes slower the gravel, then the sand, and finally the mud, settle out.

364

The Clean Streams Law (Pennsylvania) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Clean Streams Law (Pennsylvania) The Clean Streams Law (Pennsylvania) Eligibility Agricultural Commercial Construction Fuel Distributor General PublicConsumer Industrial...

365

TidGen Power System Commercialization Project  

SciTech Connect

ORPC Maine, LLC, a wholly-owned subsidiary of Ocean Renewable Power Company, LLC (collectively ORPC), submits this Final Technical Report for the TidGen Power System Commercialization Project (Project), partially funded by the U.S. Department of Energy (DE-EE0003647). The Project was built and operated in compliance with the Federal Energy Regulatory Commission (FERC) pilot project license (P-12711) and other permits and approvals needed for the Project. This report documents the methodologies, activities and results of the various phases of the Project, including design, engineering, procurement, assembly, installation, operation, licensing, environmental monitoring, retrieval, maintenance and repair. The Project represents a significant achievement for the renewable energy portfolio of the U.S. in general, and for the U.S. marine hydrokinetic (MHK) industry in particular. The stated Project goal was to advance, demonstrate and accelerate deployment and commercialization of ORPCs tidal-current based hydrokinetic power generation system, including the energy extraction and conversion technology, associated power electronics, and interconnection equipment capable of reliably delivering electricity to the domestic power grid. ORPC achieved this goal by designing, building and operating the TidGen Power System in 2012 and becoming the first federally licensed hydrokinetic tidal energy project to deliver electricity to a power grid under a power purchase agreement in North America. Located in Cobscook Bay between Eastport and Lubec, Maine, the TidGen Power System was connected to the Bangor Hydro Electric utility grid at an on-shore station in North Lubec on September 13, 2012. ORPC obtained a FERC pilot project license for the Project on February 12, 2012 and the first Maine Department of Environmental Protection General Permit issued for a tidal energy project on January 31, 2012. In addition, ORPC entered into a 20-year agreement with Bangor Hydro Electric Company on January 1, 2013 for up to 5 megawatts at a price of $215/MWh, escalating at 2.0% per year.

Sauer, Christopher R. [President & CEO; McEntee, Jarlath [VP Engineering & CTO

2013-12-30T23:59:59.000Z

366

Aquamarine Power Airtricity JV | Open Energy Information  

Open Energy Info (EERE)

Aquamarine Power Airtricity JV Aquamarine Power Airtricity JV Jump to: navigation, search Name Aquamarine Power & Airtricity JV Place United Kingdom Product Joint Venture between Aquamarine Power and Airtricity to develop tidal and wave projects in UK and Ireland. References Aquamarine Power & Airtricity JV[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Aquamarine Power & Airtricity JV is a company located in United Kingdom . References ↑ "Aquamarine Power & Airtricity JV" Retrieved from "http://en.openei.org/w/index.php?title=Aquamarine_Power_Airtricity_JV&oldid=342262" Categories: Clean Energy Organizations Companies Organizations Stubs What links here

367

Methods of separating particulate residue streams  

SciTech Connect

A particulate residue separator and a method for separating a particulate residue stream may include an air plenum borne by a harvesting device, and have a first, intake end and a second, exhaust end; first and second particulate residue air streams that are formed by the harvesting device and that travel, at least in part, along the air plenum and in a direction of the second, exhaust end; and a baffle assembly that is located in partially occluding relation relative to the air plenum and that substantially separates the first and second particulate residue air streams.

Hoskinson, Reed L. (Rigby, ID); Kenney, Kevin L. (Idaho Falls, ID); Wright, Christopher T. (Idaho Falls, ID); Hess, J. Richard (Idaho Falls, ID)

2011-04-05T23:59:59.000Z

368

Online OLED dynamic voltage scaling for video streaming applications on mobile devices  

Science Conference Proceedings (OSTI)

This work proposes an online DVS approach for OLED-based mobile video applications to reduce display power consumption. A time-efficient representative-region based DVS scheme is developed and applied in MPEG video streaming. Based on the proposed scheme, ...

Mengying Zhao, Yiran Chen, Xiang Chen, Chun Jason Xue

2013-07-01T23:59:59.000Z

369

Multimodal analysis of body sensor network data streams for real-time healthcare  

Science Conference Proceedings (OSTI)

Fundamental advances in low power circuits, wireless communication, physiological sensor design, and multimedia stream processing, have led to the deployment of body sensor networks for the real-time monitoring of individual health in diverse settings. ... Keywords: body sensor networks, multi-modal analysis, sensor networks, systems and communications

Manoj K. Garg; Duk-Jin Kim; Deepak S. Turaga; Balakrishnan Prabhakaran

2010-03-01T23:59:59.000Z

370

Earth Tidal Analysis At Raft River Geothermal Area (1984) | Open Energy  

Open Energy Info (EERE)

Earth Tidal Analysis At Raft River Geothermal Area Earth Tidal Analysis At Raft River Geothermal Area (1984) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Earth Tidal Analysis Activity Date 1984 Usefulness useful DOE-funding Unknown Exploration Basis Determine porosity of the reservoir Notes The response of a confined, areally infinite aquifer to external loads imposed by earth tides is examined. Because the gravitational influence of celestial objects occurs over large areas of the earth, the confined aquifer is assumed to respond in an undrained fashion. Since undrained response is controlled by water compressibility, earth tide response can be directly used only to evaluate porous medium compressibility if porosity is known. In the present work, change in external stress is estimated from

371

Visualizing Spacetime Curvature via Frame-Drag Vortexes and Tidal Tendexes II. Stationary Black Holes  

E-Print Network (OSTI)

When one splits spacetime into space plus time, the Weyl curvature tensor (which equals the Riemann tensor in vacuum) splits into two spatial, symmetric, traceless tensors: the tidal field $E$, which produces tidal forces, and the frame-drag field $B$, which produces differential frame dragging. In recent papers, we and colleagues have introduced ways to visualize these two fields: tidal tendex lines (integral curves of the three eigenvector fields of $E$) and their tendicities (eigenvalues of these eigenvector fields); and the corresponding entities for the frame-drag field: frame-drag vortex lines and their vorticities. These entities fully characterize the vacuum Riemann tensor. In this paper, we compute and depict the tendex and vortex lines, and their tendicities and vorticities, outside the horizons of stationary (Schwarzschild and Kerr) black holes; and we introduce and depict the black holes' horizon tendicity and vorticity (the normal-normal components of $E$ and $B$ on the horizon). For Schwarzschil...

Zhang, Fan; Nichols, David A; Chen, Yanbei; Lovelace, Geoffrey; Matthews, Keith D; Owen, Robert; Thorne, Kip S

2012-01-01T23:59:59.000Z

372

THRESHING IN ACTION: THE TIDAL DISRUPTION OF A DWARF GALAXY BY THE HYDRA I CLUSTER  

Science Conference Proceedings (OSTI)

We report on the discovery of strong tidal features around a dwarf spheroidal galaxy in the Hydra I galaxy cluster, indicating its ongoing tidal disruption. This very low surface brightness object, HCC-087, was originally classified as an early-type dwarf in the Hydra Cluster Catalogue (HCC), but our re-analysis of the ESO-VLT/FORS images of the HCC unearthed a clear indication of an S-shaped morphology and a large spatial extent. Its shape, luminosity (M{sub V} = -11.6 mag), and physical size (at a half-light radius of 3.1 kpc and a full length of {approx}5.9 kpc) are comparable to the recently discovered NGC 4449B and the Sagittarius dwarf spheroidal, all of which are undergoing clear tidal disruption. Aided by N-body simulations we argue that HCC-087 is currently at its first apocenter, at 150 kpc, around the cluster center and that it is being tidally disrupted by the galaxy cluster's potential itself. An interaction with the nearby (50 kpc) S0 cluster galaxy HCC-005, at M{sub *} {approx} 3 Multiplication-Sign 10{sup 10} M{sub Sun} is rather unlikely, as this constellation requires a significant amount of dynamical friction and thus low relative velocities. The S-shaped morphology and large spatial extent of the satellite would, however, also appear if HCC-087 would orbit the cluster center. These features appear to be characteristic properties of satellites that are seen in the process of being tidally disrupted, independent of the environment of the destruction. An important finding of our simulations is an orientation of the tidal tails perpendicular to the orbit.

Koch, Andreas [Zentrum fuer Astronomie der Universitaet Heidelberg, Landessternwarte, Koenigstuhl 12, D-69117 Heidelberg (Germany); Burkert, Andreas [Universitaetssternwarte der Ludwig-Maximilians Universitaet, Scheinerstr. 1, D-81679 Muenchen (Germany); Rich, R. Michael; Black, Christine S. [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA (United States); Collins, Michelle L. M. [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Hilker, Michael [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Benson, Andrew J., E-mail: akoch@lsw.uni-heidelberg.de [Department of Astronomy, Caltech, Pasadena, CA (United States)

2012-08-10T23:59:59.000Z

373

Anticyclonic Eddies in the Alaskan Stream  

Science Conference Proceedings (OSTI)

Anticyclonic eddies propagating southwestward in the Alaskan Stream (AS) were investigated through analysis of altimetry data from satellite observations during 19922006 and hydrographic data from profiling float observations during 200106. ...

Hiromichi Ueno; Kanako Sato; Howard J. Freeland; William R. Crawford; Hiroji Onishi; Eitarou Oka; Toshio Suga

2009-04-01T23:59:59.000Z

374

Allocation and Admission Policies for Service Streams  

E-Print Network (OSTI)

A service provisioning system is examined, where a number of servers are used to offer different types of services to paying customers. A customer is charged for the execution of a stream of jobs; the number of jobs in the stream and the rate of their submission is specified. On the other hand, the provider promises a certain quality of service (QoS), measured by the average waiting time of the jobs in the stream. A penalty is paid if the agreed QoS requirement is not met. The objective is to maximize the total average revenue per unit time. Dynamic policies for making server allocation and stream admission decisions are introduced and evaluated. The results of several simulations are described.

Mazzucco, Michele; Fisher, Mike; McKee, Paul

2011-01-01T23:59:59.000Z

375

Randomized data allocation in scalable streaming architectures  

Science Conference Proceedings (OSTI)

IP-networked streaming media storage has been increasingly used as a part of many applications. Random placement of data blocks has been proven to be an effective approach to balance heterogeneous workload in multi-disk steaming architectures. However, ...

Kun Fu; Roger Zimmermann

2005-04-01T23:59:59.000Z

376

Alpine Stream Temperature Response to Storm Events  

Science Conference Proceedings (OSTI)

Despite continued interest in meteorological influences on the thermal variability of river systems, there are few detailed studies of stream temperature dynamics during storm events. This paper reports high-resolution (15 min) water column and ...

Lee E. Brown; David M. Hannah

2007-08-01T23:59:59.000Z

377

One Video Stream to Serve Diverse Receivers  

E-Print Network (OSTI)

The fundamental problem of wireless video multicast is to scalably serve multiple receivers which may have very different channel characteristics. Ideally, one would like to broadcast a single stream that allows each ...

Woo, Grace

2008-10-18T23:59:59.000Z

378

Adaptively detecting aggregation bursts in data streams  

Science Conference Proceedings (OSTI)

Finding bursts in data streams is attracting much attention in research community due to its broad applications. Existing burst detection methods suffer the problems that 1) the parameters of window size and absolute burst threshold, which are hard to ...

Aoying Zhou; Shouke Qin; Weining Qian

2005-04-01T23:59:59.000Z

379

Dorsal stream : from algorithm to neuroscience  

E-Print Network (OSTI)

The dorsal stream in the primate visual cortex is involved in the perception of motion and the recognition of actions. The two topics, motion processing in the brain, and action recognition in videos, have been developed ...

Jhuang, Hueihan

2011-01-01T23:59:59.000Z

380

Counting Distinct Elements in a Data Stream  

Science Conference Proceedings (OSTI)

We present three algorithms to count the number of distinct elements in a data stream to within a factor of 1 . Our algorithms improve upon known algorithms for this problem, and offer a spectrum of time/space tradeoffs.

Ziv Bar-Yossef; T. S. Jayram; Ravi Kumar; D. Sivakumar; Luca Trevisan

2002-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "tidal stream power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Original article: Estimation of spatially varying open boundary conditions for a numerical internal tidal model with adjoint method  

Science Conference Proceedings (OSTI)

The adjoint data assimilation technique is applied to the estimation of the spatially varying open boundary conditions (OBCs) for a numerical internal tidal model. The spatial variation of the OBCs is realized by the so-called 'independent point scheme' ... Keywords: Adjoint method, Internal tidal model, Open boundary conditions, Parameter estimation, Spatial variation

Haibo Chen, Anzhou Cao, Jicai Zhang, Chunbao Miao, Xianqing Lv

2014-03-01T23:59:59.000Z

382

Production of tidal-charged black holes at the Large Hadron Collider  

E-Print Network (OSTI)

Tidal-charged black hole solutions localized on a three-brane in the five-dimensional gravity scenario of Randall and Sundrum have been known for some time. The solutions have been used to study the decay, and growth, of black holes with initial mass of about 10 TeV. These studies are interesting in that certain black holes, if produced at the Large Hadron Collider, could live long enough to leave the detectors. I examine the production of tidal-charged black holes at the Large Hadron Collider and show that it is very unlikely that they will be produced during the lifetime of the accelerator.

Douglas M. Gingrich

2010-01-05T23:59:59.000Z

383

Production of tidal-charged black holes at the Large Hadron Collider  

SciTech Connect

Tidal-charged black hole solutions localized on a three-brane in the five-dimensional gravity scenario of Randall and Sundrum have been known for some time. The solutions have been used to study the decay, and growth, of black holes with initial mass of about 10 TeV. These studies are interesting in that certain black holes, if produced at the Large Hadron Collider, could live long enough to leave the detectors. I examine the production of tidal-charged black holes at the Large Hadron Collider and show that it is very unlikely that they will be produced during the lifetime of the accelerator.

Gingrich, Douglas M. [Centre for Particle Physics, Department of Physics, University of Alberta, Edmonton, AB T6G 2G7 (Canada)

2010-03-01T23:59:59.000Z

384

Real-time spatio-temporal analytics using Microsoft StreamInsight  

Science Conference Proceedings (OSTI)

Microsoft StreamInsight (StreamInsight, for brevity) is a platform for developing and deploying streaming applications that run continuous queries over high-rate streaming events. StreamInsight adopts a temporal stream model to handle imperfections in ... Keywords: SQL server, StreamInsight, analytics, complex event processing, data streaming, spatio-temporal

Mohamed Ali; Badrish Chandramouli; Balan S. Raman; Ed Katibah

2010-11-01T23:59:59.000Z

385

Windblade Power Corp | Open Energy Information  

Open Energy Info (EERE)

Windblade Power Corp Windblade Power Corp Jump to: navigation, search Name Windblade Power Corp Place Nevada Sector Biomass, Hydro, Wind energy Product Nevada-based project developer; focused on wind, tidal, biomass and small hydro projects. References Windblade Power Corp[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Windblade Power Corp is a company located in Nevada . References ↑ "Windblade Power Corp" Retrieved from "http://en.openei.org/w/index.php?title=Windblade_Power_Corp&oldid=353087" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load)

386

Ecology of Juvenile Salmon in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2008 Annual Report.  

DOE Green Energy (OSTI)

The tidal freshwater monitoring (TFM) project reported herein is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, the U.S. Army Corps of Engineers [USACE], and the U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act (ESA) as a result of operation of the Federal Columbia River Power System. The project is being performed under the auspices of the Northwest Power and Conservation Council's Columbia Basin Fish and Wildlife Program (Project No. 2005-001-00). The research is a collaborative effort among the Pacific Northwest National Laboratory, the Oregon Department of Fish and Wildlife, the National Marine Fisheries Service, and the University of Washington. The overarching goal of the TFM project is to bridge the gap in knowledge between tidal freshwater habitats and the early life history attributes of migrating salmon. The research questions include: In what types of habitats within the tidal freshwater area of the Columbia River are juvenile salmon found, when are they present, and under what environmental conditions? What is the ecological contribution of shallow (0-5 m) tidal freshwater habitats to the recovery of ESA-listed salmon in the Columbia River basin? Field data collection for the TFM project commenced in June 2007 and since then has continued monthly at six to nine sites in the vicinity of the Sandy River delta (river kilometer 192-208). While this report includes summary data spanning the 19-month period of study from June 2007 through December 2008, it highlights sampling conducted during calendar year 2008. Detailed data for calendar year 2007 were reported previously. The 2008 research objectives were as follows: (1) Characterize the vegetation composition and percent cover, conventional water quality, water surface elevation, substrate composition, bathymetry, and beach slope at the study sites within the vicinity of the Sandy River delta. (2) Characterize the fish community and juvenile salmon migration, including species composition, length-frequency distribution, density (number/m{sup 2}), and temporal and spatial distributions in the vicinity of the Sandy River delta in the lower Columbia River and estuary (LCRE). (3) Determine the stock of origin for juvenile Chinook salmon (Oncorhynchus tshawytscha) captured at sampling sites through genetic identification. (4) Characterize the diets of juvenile Chinook and coho (O. kisutch) salmon captured within the study area. (5) Estimate run timing, residence times, and migration pathways for acoustic-tagged fish in the study area. (6) Conduct a baseline evaluation of the potential restoration to reconnect the old Sandy River channel with the delta. (7) Apply fish density data to initiate a design for a juvenile salmon monitoring program for beach habitats within the tidal freshwater segment of the LCRE (river kilometer 56-234).

Sather, NK; Johnson, GE; Storch, AJ [Pacific Northwest National Laboratory

2009-07-06T23:59:59.000Z

387

Dissipation Measurement with a Moored Instrument in a Swift Tidal Channel  

Science Conference Proceedings (OSTI)

A moored and autonomous instrument that measures velocity and temperature fluctuations in the inertial subrange using shear probes and FP07 thermistors has been deployed in a swift [O(1 m s?1)] tidal channel for eight days. The measured velocity ...

Rolf Lueck; Daniel Huang

1999-11-01T23:59:59.000Z

388

Occultation of the T Tauri Star RW Aurigae A by its Tidally Disrupted Disk  

E-Print Network (OSTI)

RW Aur A is a classical T Tauri star, believed to have undergone a reconfiguration of its circumstellar environment as a consequence of a recent fly-by of its stellar companion, RW Aur B. This interaction stripped away part of the circumstellar disk of RW Aur A, leaving a tidally disrupted arm and a short truncated circumstellar disk. We present photometric observations of the RW Aur system from the Kilodegree Extremely Little Telescope (KELT) survey showing a long and deep dimming that occurred from September 2010 until March 2011. The dimming has a depth of ~2 magnitudes, a duration of ~180 days and was confirmed by archival observations from American Association of Variable Star Observers (AAVSO). We suggest that this event is the result of a portion of the tidally disrupted disk occulting RW Aur A, specifically a fragment of the tidally disrupted arm. The calculated transverse linear velocity of the occulter is in excellent agreement with the measured relative radial velocity of the tidally disrupted arm....

Rodriguez, Joseph E; Stassun, Keivan G; Siverd, Robert J; Cargile, Phillip; Beatty, Thomas G; Gaudi, B Scott

2013-01-01T23:59:59.000Z

389

The Tidally Averaged Momentum Balance in a Partially and Periodically Stratified Estuary  

Science Conference Proceedings (OSTI)

Observations of turbulent stresses and mean velocities over an entire springneap cycle are used to evaluate the dynamics of tidally averaged flows in a partially stratified estuarine channel. In a depth-averaged sense, the net flow in this ...

Mark T. Stacey; Matthew L. Brennan; Jon R. Burau; Stephen G. Monismith

2010-11-01T23:59:59.000Z

390

Gravity and tectonic patterns of Mercury: Effect of tidal deformation, spin-orbit resonance, nonzero  

E-Print Network (OSTI)

Gravity and tectonic patterns of Mercury: Effect of tidal deformation, spin-orbit resonance of spin-orbit resonance, nonzero eccentricity, despinning, and reorientation on Mercury's gravity and tectonic pattern. Large variations of the gravity and shape coefficients from the synchronous rotation

Nimmo, Francis

391

Vertical Variations of Tidal Currents in Shallow Land Fast Ice-Covered Regions  

Science Conference Proceedings (OSTI)

Arctic tidal currents with periods near the local inertial period are strongest and rotate clockwise at mid-depth, and decrease in amplitude towards the bottom and ice-cover, experiencing a change in direction of rotation of the current vector to ...

S. J. Prinsenberg; E. B. Bennett

1989-09-01T23:59:59.000Z

392

Tidal Exchange through a Strait: A Numerical Experiment Using a Simple Model Basin  

Science Conference Proceedings (OSTI)

In order to investigate the mechanism of tidal exchange through a strait, we numerically track the Lagrangian movement of water particles over a full cycle of the M2 tide. As a result, it is found that the spatially rapid changes of the amplitude ...

Toshiyuki Awaji; Norihisa Imasato; Hideaki Kunishi

1980-10-01T23:59:59.000Z

393

A Case Study of WaveCurrent Interaction in a Strong Tidal Current  

Science Conference Proceedings (OSTI)

During August 1991, a field program was carried out in the vicinity of Cape St. James, off the British Columbia coast, where a strong tidally driven flow interacts with an active wave climate. Surface current maps were obtained from a CODAR-type ...

Diane Masson

1996-03-01T23:59:59.000Z

394

Dissecting the Pressure Field in Tidal Flow past a Headland: When Is Form Drag Real?  

Science Conference Proceedings (OSTI)

In the few previous measurements of topographic form drag in the ocean, drag that is much larger than a typical bluff body drag estimate has been consistently found. In this work, theory combined with a numerical model of tidal flow around a ...

Sally J. Warner; Parker MacCready

2009-11-01T23:59:59.000Z

395

Tidal Mixing in the Southern Weddell Sea: Results from a Three-Dimensional Model  

Science Conference Proceedings (OSTI)

A three-dimensional primitive equation ocean model is used to study the magnitude and distribution of tidal mixing in the southern Weddell Sea. The contributions of (i) semidiurnal barotropic constituents M2 and S2, (ii) internal tides, and (iii) ...

Adriene F. Pereira; Aike Beckmann; Hartmut H. Hellmer

2002-07-01T23:59:59.000Z

396

Isolation of Four Diatom Strains from Tidal Mud toward Biofuel Production  

Science Conference Proceedings (OSTI)

Development and utilization of bio-energy is an important way to relieve the pressure of global energy shortage. Biodiesel can be a focus of the bio-energy, because it is a cleaner-burning and renewable fuel. Micro algae have been considered to be an ... Keywords: biodiesel, diatom, isolation, tidal mud

Yu Gao; Yang Yu; Junrong Liang; Yahui Gao; Qiaoqi Luo

2012-05-01T23:59:59.000Z

397

Tidally Forced Internal Wave Mixing in a k? Model Framework Applied to Fjord Basins  

Science Conference Proceedings (OSTI)

A simple method for including tidally forced internal wave mixing in a two-equation turbulence closure framework, the k? model, is presented. The purpose is to model the vertical mixing in the basin waters of stagnant sill fjords. An internal ...

Olof Liungman

2000-02-01T23:59:59.000Z

398

PowerPoint Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Questions Associated with Questions Associated with Free Flow Axial Turbines Jim Gibson Devine Tarbell & Associates, Inc. October 27, 2005 2 Roosevelt Island Tidal Energy Project * Verdant Power's RITE Project * Proceeding Through Stage II Licensing Activities * Permits Required (obtained) to Perform Studies * New York State Section 401 / Excavation and Fill * Department of State Coastal Consistency Review * New York SEQR and Federal NEPA Reviews * Army Corps Section 404 and Section 10 Permits * Four Public Notices (for temporary pilot project) * Numerous Agency and Stakeholder Meetings 3 Project Location 4 Project Location 5 6 7 "Six-Pack" Under Water 8 Comments Received From * New York State Department of Environmental Conservation * US Fish and Wildlife Service * NOAA Fisheries (NMFS) * US Coast Guard

399

StreamNet; Northwest Aquatic Information Network, 2003-2004 Annual Report.  

DOE Green Energy (OSTI)

StreamNet is a cooperative data compilation, development, and distribution project involving the state, tribal and federal fish and wildlife agencies in the Columbia River basin. It is funded by the Bonneville Power Administration (BPA) through the Fish and Wildlife Program (FWP) of the Northwest Power and Conservation Council (NPCC), and is administered by the Pacific States Marine Fisheries Commission (PSMFC). The project is organized to perform three broad functions: Agency support: The project supports staff in the Idaho, Montana, Oregon and Washington state fish and wildlife agencies; the Columbia River Inter Tribal Fish Commission (CRITFC); and the U.S. Fish and Wildlife Service (USFWS) who locate, obtain, quality check and format specific types of fish related data. They convert these data into a standard data exchange format (DEF) and submit them, with references, to the regional StreamNet office. Regional Support: The regional component of StreamNet at PSMFC administers the project, coordinates with the FWP and other regional entities, and disseminates data regionally. As data are received from cooperators they are again quality checked then imported into the StreamNet database. Access to the data is provided on-line via a tabular data query system and interactive map applications at www.streamnet.org. The web site also provides access to independent data sets from other projects, pre-sorted data sets useful for specific purposes (such as for a recent pesticide spraying ruling or subbasin assessments), and general fish information for education purposes. Reference Support: The StreamNet Library, located at CRITFC, maintains access to all reference documents supporting the data in the StreamNet database, and provides full library services for patrons interested in fish and wildlife in the Pacific Northwest. The StreamNet Library also maintains probably the largest collection of agency gray literature related to fish and wildlife resources in the basin. The library participates in the Inter Library Loan program, and can exchange literature worldwide. This report summarizes StreamNet Project activities during fiscal year 2004 (FY-04). Detailed descriptions of accomplishments by individual objective and task are provided in the Project's quarterly progress reports, available on the reports and publications page of the StreamNet web site.

Schmidt, Bruce (Pacific States Marine Fisheries Commission, Portland, OR); Roger, Phil (Columbia River Inter-Tribal Fish Commission, Portland, OR); Butterfield, Bart (Idaho Department of Fish and Game, Boise, ID)

2005-01-01T23:59:59.000Z

400

Relativistic effects in the tidal interaction between a white dwarf and a massive black hole in Fermi normal coordinates  

E-Print Network (OSTI)

We consider tidal encounters between a white dwarf and an intermediate mass black hole. Both weak encounters and those at the threshold of disruption are modeled. The numerical code combines mesh-based hydrodynamics, a spectral method solution of the self-gravity, and a general relativistic Fermi normal coordinate system that follows the star and debris. Fermi normal coordinates provide an expansion of the black hole tidal field that includes quadrupole and higher multipole moments and relativistic corrections. We compute the mass loss from the white dwarf that occurs in weak tidal encounters. Secondly, we compute carefully the energy deposition onto the star, examining the effects of nonradial and radial mode excitation, surface layer heating, mass loss, and relativistic orbital motion. We find evidence of a slight relativistic suppression in tidal energy transfer. Tidal energy deposition is compared to orbital energy loss due to gravitational bremsstrahlung and the combined losses are used to estimate tidal capture orbits. Heating and partial mass stripping will lead to an expansion of the white dwarf, making it easier for the star to be tidally disrupted on the next passage. Finally, we examine angular momentum deposition. By including the octupole tide, we are able for the first time to calculate deflection of the center of mass of the star and debris. With this observed deflection, and taking into account orbital relativistic effects, we compute directly the change in orbital angular momentum and show its balance with computed spin angular momentum deposition.

Roseanne M. Cheng; Charles R. Evans

2013-03-18T23:59:59.000Z

Note: This page contains sample records for the topic "tidal stream power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

From Multi-Component Gas Streams Opportunity  

NLE Websites -- All DOE Office Websites (Extended Search)

Separation of CO Separation of CO 2 From Multi-Component Gas Streams Opportunity Research is active on the patent-pending technology, titled "Apparatus and Process for the Separation of Gases Using Supersonic Expansion and Oblique Shock Wave Compression." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory. Overview The separation of a gaseous mixture into constituent gases has proven to be useful for a variety of industrial and commercial applications. Currently CO 2 can be separated from multi- component gas streams using compression and refrigeration techniques in order to condense the CO 2 out of a vapor phase so that it can be mechanically separated from the stream.

402

Water Power Forum | OpenEI Community  

Open Energy Info (EERE)

Tidal Type Term Title Author Replies Last Post sort icon Document Tidal MHK LCOE Reporting Guidance Draft Ocop 1 18 Apr 2013 - 14:56...

403

MPD streaming plasma source for MFTF  

SciTech Connect

The applicability of Magneto-plasma-dynamic (MPD) arcs as a source of warm, streaming plasma for start-up and for the suppression of instabilities is discussed. The plasma source emits a high particle flux (1000-5000 amp) of well directed ions having kinetic energy in the 10-100 eV range. The construction details of an MPD plasma source are given and a sequence of proposed tests are presented. The tests are designed to demonstrate the large flux and good gas utilization of the source as well as investigate the behavior of the streaming plasma in a high magnetic field environment.

Poulsen, P.

1977-07-01T23:59:59.000Z

404

A protocol for instruction stream processing  

E-Print Network (OSTI)

The behaviour produced by an instruction sequence under execution is a behaviour to be controlled by some execution environment: each step performed actuates the processing of an instruction by the execution environment and a reply returned at completion of the processing determines how the behaviour proceeds. In this paper, we are concerned with the case where the processing takes place remotely. We describe a protocol to deal with the case where the behaviour produced by an instruction sequence under execution leads to the generation of a stream of instructions to be processed and a remote execution unit handles the processing of that stream of instructions.

Bergstra, J A

2009-01-01T23:59:59.000Z

405

Direct fired power cycle  

SciTech Connect

A method for implementing a thermodynamic cycle is described comprising the steps of: expanding a gaseous working stream to transform its energy into usable form; removing from the expanded gaseous working stream a withdrawal stream; combining the withdrawal stream with a lean stream, having a higher content of a higher-boiling component than is contained in the withdrawal stream, to form a composite stream; condensing the composite stream to provide heat; separating the composite stream to form a liquid stream; forming an oncoming liquid working stream that evaporates at a temperature lower than the temperature at which the composite stream condenses; and evaporating the oncoming liquid working stream, using the heat produced by condensing the composite stream, to form the gaseous working stream.

Kalina, A.I.

1988-03-22T23:59:59.000Z

406

An extensible test framework for the Microsoft StreamInsight query processor  

Science Conference Proceedings (OSTI)

Microsoft StreamInsight (StreamInsight, for brevity) is a platform for developing and deploying streaming applications. StreamInsight adopts a deterministic stream model that leverages a temporal algebra as the underlying basis for processing ... Keywords: SQL server, StreamInsight, data streaming, testing, verification

Alex Raizman; Asvin Ananthanarayan; Anton Kirilov; Badrish Chandramouli; Mohamed Ali

2010-06-01T23:59:59.000Z

407

Study of the Acoustic Effects of Hydrokinetic Tidal Turbines in Admiralty Inlet, Puget Sound  

SciTech Connect

Hydrokinetic turbines will be a source of noise in the marine environment - both during operation and during installation/removal. High intensity sound can cause injury or behavioral changes in marine mammals and may also affect fish and invertebrates. These noise effects are, however, highly dependent on the individual marine animals; the intensity, frequency, and duration of the sound; and context in which the sound is received. In other words, production of sound is a necessary, but not sufficient, condition for an environmental impact. At a workshop on the environmental effects of tidal energy development, experts identified sound produced by turbines as an area of potentially significant impact, but also high uncertainty. The overall objectives of this project are to improve our understanding of the potential acoustic effects of tidal turbines by: (1) Characterizing sources of existing underwater noise; (2) Assessing the effectiveness of monitoring technologies to characterize underwater noise and marine mammal responsiveness to noise; (3) Evaluating the sound profile of an operating tidal turbine; and (4) Studying the effect of turbine sound on surrogate species in a laboratory environment. This study focuses on a specific case study for tidal energy development in Admiralty Inlet, Puget Sound, Washington (USA), but the methodologies and results are applicable to other turbine technologies and geographic locations. The project succeeded in achieving the above objectives and, in doing so, substantially contributed to the body of knowledge around the acoustic effects of tidal energy development in several ways: (1) Through collection of data from Admiralty Inlet, established the sources of sound generated by strong currents (mobilizations of sediment and gravel) and determined that low-frequency sound recorded during periods of strong currents is non-propagating pseudo-sound. This helped to advance the debate within the marine and hydrokinetics acoustic community as to whether strong currents produce propagating sound. (2) Analyzed data collected from a tidal turbine operating at the European Marine Energy Center to develop a profile of turbine sound and developed a framework to evaluate the acoustic effects of deploying similar devices in other locations. This framework has been applied to Public Utility District No. 1 of Snohomish Country's demonstration project in Admiralty Inlet to inform postinstallation acoustic and marine mammal monitoring plans. (3) Demonstrated passive acoustic techniques to characterize the ambient noise environment at tidal energy sites (fixed, long-term observations recommended) and characterize the sound from anthropogenic sources (drifting, short-term observations recommended). (4) Demonstrated the utility and limitations of instrumentation, including bottom mounted instrumentation packages, infrared cameras, and vessel monitoring systems. In doing so, also demonstrated how this type of comprehensive information is needed to interpret observations from each instrument (e.g., hydrophone data can be combined with vessel tracking data to evaluate the contribution of vessel sound to ambient noise). (5) Conducted a study that suggests harbor porpoise in Admiralty Inlet may be habituated to high levels of ambient noise due to omnipresent vessel traffic. The inability to detect behavioral changes associated with a high intensity source of opportunity (passenger ferry) has informed the approach for post-installation marine mammal monitoring. (6) Conducted laboratory exposure experiments of juvenile Chinook salmon and showed that exposure to a worse than worst case acoustic dose of turbine sound does not result in changes to hearing thresholds or biologically significant tissue damage. Collectively, this means that Chinook salmon may be at a relatively low risk of injury from sound produced by tidal turbines located in or near their migration path. In achieving these accomplishments, the project has significantly advanced the District's goals of developing a demonstration-scale tidal energy proj

Brian Polagye; Jim Thomson; Chris Bassett; Jason Wood; Dom Tollit; Robert Cavagnaro; Andrea Copping

2012-03-30T23:59:59.000Z

408

KOI-54: The Kepler Discovery of Tidally-Excited Pulsations and Brightenings in a Highly Eccentric Binary  

E-Print Network (OSTI)

Kepler observations of the star HD 187091 (KID 8112039, hereafter KOI-54) revealed a remarkable light curve exhibiting sharp periodic brightening events every 41.8 days with a superimposed set of oscillations forming a beating pattern in phase with the brightenings. Spectroscopic observations revealed that this is a binary star with a highly eccentric orbit, e=0.83. We are able to match the Kepler light curve and radial velocities with a nearly face-on (i=5.5 degree) binary star model in which the brightening events are caused by tidal distortion and irradiation of nearly identical A stars during their close periastron passage. The two dominant oscillations in the light curve, responsible for the beating pattern, have frequencies that are the 91st and 90th harmonic of the orbital frequency. The power spectrum of the light curve, after removing the binary star brightening component, reveals a large number of pulsations, 30 of which have a signal-to-noise ratio > 7. Nearly all of these pulsations have frequenci...

Welsh, William F; Aerts, Conny; Brown, Timothy; Brugamyer, Erik; Cochran, William; Gilliland, Ronald L; Guzik, Joyce Ann; Kurtz, Donald W; Latham, David; Marcy, Geoffrey W; Quinn, Samuel N; Zima, Wolfgang; Allen, Christopher; Batalha, Natalie; Bryson, Steve; Buchhave, Lars; Caldwell, Douglas A; Gautier, Thomas N; Howell, Steven; Kinemuchi, K; Ibrahim, Khadeejah A; Isaacson, Howard; Jenkins, Jon; Prsa, Andrej; Still, Martin; Street, Rachel; Wohler, Bill; Koch, David G; Borucki, William J

2011-01-01T23:59:59.000Z

409

Using the Biphase Turbine to Generate Useful Energy from Process Streams  

E-Print Network (OSTI)

The Biphase turbine is a device for effectively converting enthalpy changes in a two-phase (liquid and gas) working fluid into mechanical energy. No other device is currently available for performing this task. The working fluid may be a single component, two-phase stream, as in a water-steam combination; or it may be a multi-component, two phase stream such as is often present in industrial processes. The performance of the Biphase turbine and its advantages over single-phase energy conversion devices' (steam or hydraulic turbines for example) have been demonstrated in its application to geothermal energy conversion. Its development and application to other areas such as waste-heat recovery, desalination, solar cooling, and now, two phase industrial process streams is being pursued by Biphase Energy Systems. This paper identifies specific industrial process streams from which power recoveries of up to two MW can be obtained. In current practice, this power is dissipated across two phase flash valves. A total potential national energy savings equivalent to 58 million barrels of oil per year is identified for processes examined in the five most energy-intensive industries.

Helgeson, N. L.; Studhalter, W. R.

1981-01-01T23:59:59.000Z

410

GENERAL ELECTRIC POWER SYSTEMS  

E-Print Network (OSTI)

Since last years GTC Conference, a considerable number of significant events have occurred in the gasification technology marketplace. New IGCC projects have come on stream with commercial operation, other new IGCC projects have been announced and started in development, environmental issues have gained emphasis, and energy prices, notably natural gas, have escalated dramatically. Directionally, all of these events appear to have created a more favorable atmosphere for IGCC projects. Related to an ongoing IGCC project currently in development, a joint analysis has been performed by Global Energy, General Electric Power Systems, and Praxair to evaluate technical and economic elements for the performance of BGL Gasification Technology based on solid hydrocarbon fuel feed to an IGCC for power generation. Results of the analysis provide a picture of the relative economics in todays environment for electrical power generation by conventional natural gas fired combined cycle power systems compared to using BGL Gasification Technology in an IGCC configuration. 2

Igcc Power Generation; Richard A. Olliver; John M. Wainwright; Raymond F. Drnevich Abstract

2000-01-01T23:59:59.000Z

411

Disc valve for sampling erosive process streams  

DOE Patents (OSTI)

This is a patent for a disc-type, four-port sampling valve for service with erosive high temperature process streams. Inserts and liners of ..cap alpha..-silicon carbide respectively, in the faceplates and in the sampling cavities, limit erosion while providing lubricity for a smooth and precise operation. 1 fig.

Mrochek, J.E.; Dinsmore, S.R.; Chandler, E.W.

1984-08-16T23:59:59.000Z

412

Nuclear Utility Mixed Waste Stream Characterization Study  

Science Conference Proceedings (OSTI)

This report presents industry experience at nuclear utilities in characterizing the hazardous component of potential mixed waste streams. It identifies key considerations for characterizing mixed waste; provides background information, including actual sample results, on the majority of plant processes with a potential to generate mixed waste; and presents a methodology for characterizing mixed waste.

1994-12-31T23:59:59.000Z

413

Efficient and robust streaming provisioning in VPNs  

Science Conference Proceedings (OSTI)

Today, most large companies maintain virtual private networks (VPNs) to connect their remote locations into a single secure network. VPNs can be quite large covering more than 1000 locations and in most cases use standard Internet protocols and services. ... Keywords: VPNs, streaming server placement

Z. Morley Mao; David Johnson; Oliver Spatscheck; Jacobus E. van der Merwe; Jia Wang

2003-05-01T23:59:59.000Z

414

Operational Waste Stream Assumption for TSLCC Estimates  

Science Conference Proceedings (OSTI)

This document provides the background and basis for the operational waste stream used in the 2000 Total System Life Cycle Cost (TSLCC) estimate for the Civilian Radioactive Waste Management System (CRWMS). This document has been developed in accordance with its Development Plan (CRWMS M&O 2000a), and AP-3.11Q, ''Technical Reports''.

S. Gillespie

2000-09-01T23:59:59.000Z

415

Density estimation for spatial data streams  

Science Conference Proceedings (OSTI)

In this paper we study the problem of estimating several types of spatial queries in a streaming environment. We propose a new approach, which we call Local Kernels, for computing density estimators by using local rather than global statistics on the ...

Cecilia M. Procopiuc; Octavian Procopiuc

2005-08-01T23:59:59.000Z

416

Annotations for streaming video on the web  

Science Conference Proceedings (OSTI)

Streaming video on the World Wide Web is being widely deployed, and workplace training and distance education are two key applications. The ability to annotate video presentations on the Web can add significant value by enabling "in context" note-taking ... Keywords: asynchronous collaboration, video annotation

David Bargeron; Anoop Gupta; Jonathan Grudin; Elizabeth Sanocki

1999-05-01T23:59:59.000Z

417

Mixed Stream Test Rig (MISTER) Startup Report  

DOE Green Energy (OSTI)

This report describes the work accomplished to date to design, procure, assemble, authorize, and startup the Mixed Stream Test Rig (MISTER) at the Idaho National Laboratory (INL). It describes the reasons for establishing this capability, physical configuration of the test equipment, operations methodology, initial success, and plans for completing the initial 1,000 hour test.

Charles Park

2011-02-01T23:59:59.000Z

418

Archaeal Communities in Surface Stream Sediments  

E-Print Network (OSTI)

-5324 Contact: Tony Palumbo, palumboav@ornl.gov DOE/Office of Science/Biological & Environmental Research #12;Archaeal Communities in Surface Stream Sediments Contact: Tony Palumbo, palumboav@ornl.gov DOE/Office of Science/Biological & Environmental Research Freshwater Group Miscellaneous Crenarchaeota Group I3 Rice

419

Evaluation of MerCAP^TM for Power Plant Mercury Control  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of MErCaP(tm) for PowEr Plant MErCury Control Background Several technologies are under development for removing mercury from power plant flue gas streams. The mercury...

420

A Coupled Model for Laplace's Tidal Equations in a Fluid with One Horizontal Dimension and Variable Depth  

Science Conference Proceedings (OSTI)

Tidetopography interactions dominate the transfer of tidal energy from large to small scales. At present, it is poorly understood how low-mode internal tides reflect and scatter along the continental margins. Here, the coupling equations for ...

Samuel M. Kelly; Nicole L. Jones; Jonathan D. Nash

2013-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "tidal stream power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Assessment of the Effects of Tidal Mixing in the Kuril Straits on the Formation of the North Pacific Intermediate Water  

Science Conference Proceedings (OSTI)

To assess accurately the effect of tidal mixing in the Kuril Straits on the formation of the North Pacific Intermediate Water (NPIW), the spatial distribution of diapycnal diffusivity recently obtained by the present authors is incorporated into ...

Yuki Tanaka; Toshiyuki Hibiya; Yoshihiro Niwa

2010-12-01T23:59:59.000Z

422

Drivers of Residual Estuarine Circulation in Tidally Energetic Estuaries: Straight and Irrotational Channels with Parabolic Cross Section  

Science Conference Proceedings (OSTI)

The generation of residual circulation in a tidally energetic estuary with constant longitudinal salinity gradient and parabolic cross section is examined by means of a two-dimensional cross-sectional numerical model, neglecting river runoff and ...

Hans Burchard; Robert D. Hetland; Elisabeth Schulz; Henk M. Schuttelaars

2011-03-01T23:59:59.000Z

423

The Spatial Structure of Tidal and Mean Circulation over the Inner Shelf South of Martha's Vineyard, Massachusetts  

Science Conference Proceedings (OSTI)

The spatial structure of the tidal and background circulation over the inner shelf south of Martha's Vineyard, Massachusetts, was investigated using observations from a high-resolution, high-frequency coastal radar system, paired with satellite ...

Anthony R. Kirincich; Steven J. Lentz; J. Thomas Farrar; Neil K. Ganju

2013-09-01T23:59:59.000Z

424

NREL: Water Power Research Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerial photo of ocean waves breaking as they near the shore. Aerial photo of ocean waves breaking as they near the shore. NREL's water power technologies research leverages 35 years of experience developing renewable energy technologies to support the U.S. Department of Energy Water Power Program's efforts to research, test, evaluate, develop and demonstrate deployment of innovative water power technologies. These include marine and hydrokinetic technologies, a suite of renewable technologies that harness the energy from untapped wave, tidal, current and ocean thermal resources, as well as technologies and processes to improve the efficiency, flexibility, and environmental performance of hydropower generation. The vision of the water power team at NREL is to be an essential partner for the technical development and deployment of water power technologies.

425

Water Power Forum | OpenEI Community  

Open Energy Info (EERE)

Water Power Forum Water Power Forum Home > Water Power Forum > Posts by term Content Group Activity By term Q & A Feeds CBS (1) community (1) Cost (1) Current (1) current energy (1) DOE (1) forum (1) gateway (1) GMREC (1) LCOE (2) levelized cost of energy (1) marine energy (1) MHK (1) numerical modeling (1) ocean energy (1) OpenEI (1) Performance (1) Tidal (1) Water power (1) Wave (1) Groups Menu You must login in order to post into this group. Recent content MHK LCOE Reporting Guidance Draft MHK Cost Breakdown Structure Draft Global Marine Renewable Energy Conference (GMREC) OpenEI launches new Water Power Gateway and Community Forum Group members (8) Managers: Graham7781 Recent members: Gdavis Jim mcveigh Ocop Thomas.heibel NickL Kch Rmckeel 429 Throttled (bot load) Error 429 Throttled (bot load)

426

Sour Gas Streams Safe for Carbon Sequestration, DOE-Sponsored...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sour Gas Streams Safe for Carbon Sequestration, DOE-Sponsored Study Shows Sour Gas Streams Safe for Carbon Sequestration, DOE-Sponsored Study Shows September 23, 2010 - 1:00pm...

427

Real-Time streaming and rendering of terrains  

Science Conference Proceedings (OSTI)

Terrains and other geometric models have been traditionally stored locally. Their remote access presents the characteristics that are a combination of file serving and realtime streaming like audio-visual media. This paper presents a terrain streaming ...

Soumyajit Deb; Shiben Bhattacharjee; Suryakant Patidar; P. J. Narayanan

2006-12-01T23:59:59.000Z

428

Biosorption beads for removal of dissolved metals from aqueous streams  

DOE Patents (OSTI)

This invention is comprised of a process for removing heavy metals from aqueous waste streams 5 by contacting such streams with certain biological adsorbents, either living, dead or in fragments, that may be immobilized in gel beads. 1 tab.

Scott, C.D.

1988-01-21T23:59:59.000Z

429

Event dissemination via group-aware stream filtering  

Science Conference Proceedings (OSTI)

We consider a distributed system that disseminates high-volume event streams to many simultaneous monitoring applications over a low-bandwidth network. For bandwidth efficiency, we propose a group-aware stream filtering approach, used together with multicasting, ...

Ming Li; David Kotz

2008-07-01T23:59:59.000Z

430

Parallel detection of temporal events from streaming data  

Science Conference Proceedings (OSTI)

Advanced applications of sensors, network traffic, and financial markets have produced massive, continuous, and time-ordered data streams, calling for high-performance stream querying and event detection techniques. Beyond the widely adopted sequence ...

Hao Wang; Ling Feng; Wenwei Xue

2011-09-01T23:59:59.000Z

431

Optimising Skeletal-Stream Parallelism on a BSP Computer  

Science Conference Proceedings (OSTI)

Stream parallelism allows parallel programs to exploit the potential of executing different parts of the computation on distinct input data items. Stream parallelism can also exploit the concurrent evaluation of the same function on different input items. ...

Andrea Zavanella

1999-08-01T23:59:59.000Z

432

Computing Enables New Insights into Generating Power Like the...  

NLE Websites -- All DOE Office Websites (Extended Search)

powers stars like our Sun, the world could have an inexhaustible energy source. In theory, scientists could produce a steady stream of fusion energy on Earth by heating up two...

433

STREAM II-V5: REVISION OF STREAM II-V4 TO ACCOUNT FOR THE EFFECTS OF RAINFALL EVENTS  

SciTech Connect

STREAM II-V4 is the aqueous transport module currently used by the Savannah River Site emergency response Weather Information Display (WIND) system. The transport model of the Water Quality Analysis Simulation Program (WASP) was used by STREAM II to perform contaminant transport calculations. WASP5 is a US Environmental Protection Agency (EPA) water quality analysis program that simulates contaminant transport and fate through surface water. STREAM II-V4 predicts peak concentration and peak concentration arrival time at downstream locations for releases from the SRS facilities to the Savannah River. The input flows for STREAM II-V4 are derived from the historical flow records measured by the United States Geological Survey (USGS). The stream flow for STREAM II-V4 is fixed and the flow only varies with the month in which the releases are taking place. Therefore, the effects of flow surge due to a severe storm are not accounted for by STREAM II-V4. STREAM II-V4 has been revised to account for the effects of a storm event. The steps used in this method are: (1) generate rainfall hyetographs as a function of total rainfall in inches (or millimeters) and rainfall duration in hours; (2) generate watershed runoff flow based on the rainfall hyetographs from step 1; (3) calculate the variation of stream segment volume (cross section) as a function of flow from step 2; (4) implement the results from steps 2 and 3 into the STREAM II model. The revised model (STREAM II-V5) will find the proper stream inlet flow based on the total rainfall and rainfall duration as input by the user. STREAM II-V5 adjusts the stream segment volumes (cross sections) based on the stream inlet flow. The rainfall based stream flow and the adjusted stream segment volumes are then used for contaminant transport calculations.

Chen, K.

2010-02-01T23:59:59.000Z

434

MHK Projects/Guemes Channel Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Guemes Channel Tidal Energy Project Guemes Channel Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.5343,"lon":-123.017,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

435

MHK Projects/Icy Passage Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Icy Passage Tidal Energy Project Icy Passage Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":58.4133,"lon":-135.737,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

436

MHK Projects/Roosevelt Island Tidal Energy RITE | Open Energy Information  

Open Energy Info (EERE)

Roosevelt Island Tidal Energy RITE Roosevelt Island Tidal Energy RITE < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7639,"lon":-73.9466,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

437

MHK Projects/Indian River Tidal Hydrokinetic Energy Project | Open Energy  

Open Energy Info (EERE)

Tidal Hydrokinetic Energy Project Tidal Hydrokinetic Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.6853,"lon":-75.0694,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

438

MHK Projects/Tacoma Narrows Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Narrows Tidal Energy Project Narrows Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.2591,"lon":-122.445,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

439

MHK Projects/Cape Islands Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Islands Tidal Energy Project Islands Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4833,"lon":-70.7578,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

440

MHK Projects/Central Cook Inlet Alaska Tidal Energy Project | Open Energy  

Open Energy Info (EERE)

Tidal Energy Project Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.3378,"lon":-151.875,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "tidal stream power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

MHK Projects/Portsmouth Area Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Portsmouth Area Tidal Energy Project Portsmouth Area Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.1081,"lon":-70.7776,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

442

MHK Projects/San Juan Channel Tidal Energy Project | Open Energy  

Open Energy Info (EERE)

San Juan Channel Tidal Energy Project San Juan Channel Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.5896,"lon":-123.012,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

443

Earth Tidal Analysis At East Mesa Geothermal Area (1984) | Open Energy  

Open Energy Info (EERE)

Geothermal Area (1984) Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Earth Tidal Analysis At East Mesa Geothermal Area (1984) Exploration Activity Details Location East Mesa Geothermal Area Exploration Technique Earth Tidal Analysis Activity Date 1984 Usefulness useful DOE-funding Unknown Exploration Basis Determine porosity of the reservoir Notes The response of a confined, areally infinite aquifer to external loads imposed by earth tides is examined. Because the gravitational influence of celestial objects occurs over large areas of the earth, the confined aquifer is assumed to respond in an undrained fashion. Since undrained response is controlled by water compressibility, earth tide response can be directly used only to evaluate porous medium compressibility if porosity is

444

MHK Projects/Long Island Sound Tidal Energy Project | Open Energy  

Open Energy Info (EERE)

Long Island Sound Tidal Energy Project Long Island Sound Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.1674,"lon":-72.218,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

445

MHK Projects/Half Moon Cove Tidal Project | Open Energy Information  

Open Energy Info (EERE)

Half Moon Cove Tidal Project Half Moon Cove Tidal Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.9062,"lon":-66.99,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

446

MHK Projects/Fishers Island Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Fishers Island Tidal Energy Project Fishers Island Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.2379,"lon":-72.0599,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

447

MHK Projects/Spieden Channel Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Spieden Channel Tidal Energy Project Spieden Channel Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.5341,"lon":-123.013,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

448

MHK Projects/Town of Wiscasset Tidal Resources | Open Energy Information  

Open Energy Info (EERE)

Town of Wiscasset Tidal Resources Town of Wiscasset Tidal Resources < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.8028,"lon":-69.7833,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

449

MHK Projects/Kachemak Bay Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Kachemak Bay Tidal Energy Project Kachemak Bay Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.3378,"lon":-151.875,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

450

MHK Projects/Edgar Town Nantucket Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Edgar Town Nantucket Tidal Energy Edgar Town Nantucket Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.3638,"lon":-70.2766,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

451

MHK Projects/San Francisco Bay Tidal Energy Project | Open Energy  

Open Energy Info (EERE)

Francisco Bay Tidal Energy Project Francisco Bay Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.691,"lon":-122.311,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

452

MHK Projects/Cape Cod Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Cape Cod Tidal Energy Project Cape Cod Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7686,"lon":-70.5651,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

453

MHK Projects/Shelter Island Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Shelter Island Tidal Energy Project Shelter Island Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.0453,"lon":-72.3748,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

454

Oscillations of rotating bodies: A self-adjoint formalism applied to dynamic tides and tidal capture  

E-Print Network (OSTI)

We consider the excitation of the inertial modes of a uniformly rotating fully convective body due to a close encounter with another object. This could lead to a tidal capture or orbital circularisation depending on whether the initial orbit is unbound or highly eccentric. We develop a general self-adjoint formalism for the response problem and thus solve it taking into account the inertial modes with $m=2$ for a full polytrope with $n=1.5.$ We are accordingly able to show in this case that the excitation of inertial modes dominates the response for large impact parameters and thus cannot be neglected in calculations of tidal energy and angular momentum exchange or orbital circularisation from large eccentricity.

J. C. B. Papaloizou; P. B. Ivanov

2005-09-20T23:59:59.000Z

455

CONSTRAINING TIDAL DISSIPATION IN STARS FROM THE DESTRUCTION RATES OF EXOPLANETS  

Science Conference Proceedings (OSTI)

We use the distribution of extrasolar planets in circular orbits around stars with surface convective zones detected by ground-based transit searches to constrain how efficiently tides raised by the planet are dissipated on the parent star. We parameterize this efficiency as a tidal quality factor (Q{sub *}). We conclude that the population of currently known planets is inconsistent with Q{sub *} < 10{sup 7} at the 99% level. Previous studies show that values of Q{sub *} between 10{sup 5} and 10{sup 7} are required in order to explain the orbital circularization of main-sequence low-mass binary stars in clusters, suggesting that different dissipation mechanisms might be acting in the two cases, most likely due to the very different tidal forcing frequencies relative to the stellar rotation frequency occurring for star-star versus planet-star systems.

Penev, Kaloyan [Department of Astrophysical Sciences, 4 Ivy Lane, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); Jackson, Brian [Carnegie DTM, 5241 Broad Branch Road, NW, Washington, DC 20015-1305 (United States); Spada, Federico [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Thom, Nicole [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

2012-06-01T23:59:59.000Z

456

A New Giant Stellar Structure Near the Outer Halo of M31: Satellite or Stream?  

E-Print Network (OSTI)

The Sloan Digital Sky Survey has revealed an overdensity of stars ~3 degrees to the north-east of the Andromeda galaxy through a number excess of luminous red giant stars, which we have called Andromeda NE. With the data at hand, the distance to Andromeda NE is well enough determined to ascertain that these stars are bound within M31's dark matter halo, rather than a physically unrelated projection. Andromeda NE has a g-band absolute magnitude of ~ -11.6 and central surface brightness of ~29 mag/arcsec, making it nearly two orders of magnitude more diffuse than any known Local Group dwarf galaxy at that luminosity. Andromeda NE's red giant branch color is unlike that of M31's outer disk or the stellar stream reported by Ibata et al. (2001), arguing against a direct link between Andromeda NE and these structures. Depending on its exact distance, Andromeda NE may be undergoing tidal disruption, if indeed we have imaged the main body of the stellar feature.

Zucker, D B; Bell, E F; Martnez-Delgado, D; Grebel, E K; Rix, H W; Rockosi, C M; Holtzman, J A; Walterbos, R A M; Ivezic, Z; Brinkmann, J; Brewington, H; Harvanek, M J; Kleinman, S J; Krzesnski, J; Long, D; Newman, P R; Nitta, A; Snedden, S A; Zucker, Daniel B.; Kniazev, Alexei Y.; Bell, Eric F.; Martinez-Delgado, David; Grebel, Eva K.; Rix, Hans-Walter; Rockosi, Constance M.; Holtzman, Jon A.; Walterbos, Rene A. M.; Ivezic, Zeljko; Brewington, Howard; Harvanek, Michael; Krzesinski, Jurek; Long, Dan; Newman, Peter R.; Nitta, Atsuko; Snedden, Stephanie A.

2004-01-01T23:59:59.000Z

457

TIDAL TAILS OF MINOR MERGERS: STAR FORMATION EFFICIENCY IN THE WESTERN TAIL OF NGC 2782  

SciTech Connect

While major mergers and their tidal debris are well studied, they are less common than minor mergers (mass ratios {approx}< 0.3). The peculiar spiral NGC 2782 is the result of a merger between two disk galaxies with a mass ratio of {approx}4: 1 occurring {approx}200 Myr ago. This merger produced a molecular and H I-rich, optically bright eastern tail and an H I-rich, optically faint western tail. Non-detection of CO in the western tail by Braine et al. suggested that star formation had not yet begun to occur in that tidal tail. However, deep H{alpha} narrowband images show evidence of recent star formation in the western tail. Across the entire western tail, we find the global star formation rate per unit area ({Sigma}{sub SFR}) to be several orders of magnitude less than expected from the total gas density. Together with extended FUV+NUV emission from Galaxy Evolution Explorer along the tail, this indicates a low global star formation efficiency in the tidal tail producing lower mass star clusters. The H II region that we observed has a local (few-kiloparsec scale) {Sigma}{sub SFR} from H{alpha} that is less than that expected from the total gas density, which is consistent with other observations of tidal debris. The star formation efficiency of this H II region inferred from the total gas density is low, but normal when inferred from the molecular gas density. These results suggest the presence of a very small, locally dense region in the western tail of NGC 2782 or of a low-metallicity and/or low-pressure star-forming region.

Knierman, Karen; Scowen, Paul; Jansen, Rolf A. [School of Earth and Space Exploration, Arizona State University, 550 East Tyler Mall, Room PSF-686 (P.O. Box 871404), Tempe, AZ 85287-1404 (United States); Knezek, Patricia M. [WIYN Consortium, Inc., 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Wehner, Elizabeth, E-mail: karen.knierman@asu.edu, E-mail: paul.scowen@asu.edu, E-mail: rolf.jansen@asu.edu, E-mail: pknezek@noao.edu, E-mail: ewehner@haverford.edu [Department of Astronomy, Haverford College, Haverford, PA 19041 (United States)

2012-04-10T23:59:59.000Z

458

Structural Design of a Horizontal-Axis Tidal Current Turbine Composite Blade  

DOE Green Energy (OSTI)

This paper describes the structural design of a tidal composite blade. The structural design is preceded by two steps: hydrodynamic design and determination of extreme loads. The hydrodynamic design provides the chord and twist distributions along the blade length that result in optimal performance of the tidal turbine over its lifetime. The extreme loads, i.e. the extreme flap and edgewise loads that the blade would likely encounter over its lifetime, are associated with extreme tidal flow conditions and are obtained using a computational fluid dynamics (CFD) software. Given the blade external shape and the extreme loads, we use a laminate-theory-based structural design to determine the optimal layout of composite laminas such that the ultimate-strength and buckling-resistance criteria are satisfied at all points in the blade. The structural design approach allows for arbitrary specification of the chord, twist, and airfoil geometry along the blade and an arbitrary number of shear webs. In addition, certain fabrication criteria are imposed, for example, each composite laminate must be an integral multiple of its constituent ply thickness. In the present effort, the structural design uses only static extreme loads; dynamic-loads-based fatigue design will be addressed in the future. Following the blade design, we compute the distributed structural properties, i.e. flap stiffness, edgewise stiffness, torsion stiffness, mass, moments of inertia, elastic-axis offset, and center-of-mass offset along the blade. Such properties are required by hydro-elastic codes to model the tidal current turbine and to perform modal, stability, loads, and response analyses.

Bir, G. S.; Lawson, M. J.; Li, Y.

2011-10-01T23:59:59.000Z

459

Visualizing Spacetime Curvature via Frame-Drag Vortexes and Tidal Tendexes II. Stationary Black Holes  

E-Print Network (OSTI)

When one splits spacetime into space plus time, the Weyl curvature tensor (which equals the Riemann tensor in vacuum) splits into two spatial, symmetric, traceless tensors: the tidal field $E$, which produces tidal forces, and the frame-drag field $B$, which produces differential frame dragging. In recent papers, we and colleagues have introduced ways to visualize these two fields: tidal tendex lines (integral curves of the three eigenvector fields of $E$) and their tendicities (eigenvalues of these eigenvector fields); and the corresponding entities for the frame-drag field: frame-drag vortex lines and their vorticities. These entities fully characterize the vacuum Riemann tensor. In this paper, we compute and depict the tendex and vortex lines, and their tendicities and vorticities, outside the horizons of stationary (Schwarzschild and Kerr) black holes; and we introduce and depict the black holes' horizon tendicity and vorticity (the normal-normal components of $E$ and $B$ on the horizon). For Schwarzschild and Kerr black holes, the horizon tendicity is proportional to the horizon's intrinsic scalar curvature, and the horizon vorticity is proportional to an extrinsic scalar curvature. We show that, for horizon-penetrating time slices, all these entities ($E$, $B$, the tendex lines and vortex lines, the lines' tendicities and vorticities, and the horizon tendicities and vorticities) are affected only weakly by changes of slicing and changes of spatial coordinates, within those slicing and coordinate choices that are commonly used for black holes. [Abstract is abbreviated.

Fan Zhang; Aaron Zimmerman; David A. Nichols; Yanbei Chen; Geoffrey Lovelace; Keith D. Matthews; Robert Owen; Kip S. Thorne

2012-08-15T23:59:59.000Z

460

Evaluation of the NeuStream-S Flue Gas Desulfurization Process  

Science Conference Proceedings (OSTI)

Harris Group Inc. (HGI) of Denver, Colorado, was contracted by the Electric Power Research Institute (EPRI) to monitor, evaluate, and prepare this report on a dual-alkali flue gas desulfurization (FGD) process developed by Neumann Systems Group, Inc. (NSG). The process is being demonstrated in a nominal 20-MW demonstration plant, treating a slip stream of flue gas from the Colorado Springs Utilities 142-MW Drake Unit 7. HGI evaluated performance, operability, and readiness for scale-up of the process. Co...

2011-05-31T23:59:59.000Z