Powered by Deep Web Technologies
Note: This page contains sample records for the topic "tidal power wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030 |  

Broader source: Energy.gov (indexed) [DOE]

Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030 Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030 Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030 January 27, 2012 - 11:30am Addthis A map generated by Georgia Tech's tidal energy resource database shows mean current speed of tidal streams. The East Coast, as shown above, has strong tides that could be tapped to produce energy. | Photo courtesy of Georgia Institute of Technology A map generated by Georgia Tech's tidal energy resource database shows mean current speed of tidal streams. The East Coast, as shown above, has strong tides that could be tapped to produce energy. | Photo courtesy of Georgia Institute of Technology Hoyt Battey Water Power Market Acceleration and Deployment Team Lead, Wind and Water Power Program

2

Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power  

Broader source: Energy.gov [DOE]

Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power

3

Studies in Tidal Power  

Science Journals Connector (OSTI)

... at Aber-vrach near Brest. The proposed barrage will be 150 metres long and the turbines will have a maximum output of about 1200 h.p. The tidal station is ... 1200 h.p. The tidal station is to be worked in conjunction with a second hydroelectric station utilising the waters of the river Diouris, which discharges into the estuary of ...

1924-01-26T23:59:59.000Z

4

Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current,...

5

Tidal-powered water sampler  

SciTech Connect (OSTI)

A tidal-powered compositing water sampler has been designed to operate over a wide range of tides. It can sample water over long periods without attention and can be made from inexpensive hardware components and two check valves. The working principle of the sampler is to use the reduction of pressure by the falling tide and the stored pressure from the previous high tide to pump water into a collection bottle. The sampler can produce a constant volume of water per tidal cycle over a tidal range of 2 to 4 m.

Hayes, D.W.; Harris, S.D.; Stoughton, R.S.

1980-07-01T23:59:59.000Z

6

European Wave and Tidal Energy Conference  

Broader source: Energy.gov [DOE]

The European Wave and Tidal Energy Conference (EWTEC) series are international, technical and scientific conferences, focussed on ocean renewable energy and widely respected for their commitment to...

7

Overland Tidal Power Generation Using Modular Tidal Prism  

SciTech Connect (OSTI)

Naturally occurring sites with sufficient kinetic energy suitable for tidal power generation with sustained currents > 1 to 2 m/s are relatively rare. Yet sites with greater than 3 to 4 m of tidal range are relatively common around the U.S. coastline. Tidal potential does exist along the shoreline but is mostly distributed, and requires an approach which allows trapping and collection to also be conducted in a distributed manner. In this paper we examine the feasibility of generating sustainable tidal power using multiple nearshore tidal energy collection units and present the Modular Tidal Prism (MTP) basin concept. The proposed approach utilizes available tidal potential by conversion into tidal kinetic energy through cyclic expansion and drainage from shallow modular manufactured overland tidal prisms. A preliminary design and configuration of the modular tidal prism basin including inlet channel configuration and basin dimensions was developed. The unique design was shown to sustain momentum in the penstocks during flooding as well as ebbing tidal cycles. The unstructured-grid finite volume coastal ocean model (FVCOM) was used to subject the proposed design to a number of sensitivity tests and to optimize the size, shape and configuration of MTP basin for peak power generation capacity. The results show that an artificial modular basin with a reasonable footprint (? 300 acres) has the potential to generate 10 to 20 kw average energy through the operation of a small turbine located near the basin outlet. The potential of generating a total of 500 kw to 1 MW of power through a 20 to 40 MTP basin tidal power farms distributed along the coastline of Puget Sound, Washington, is explored.

Khangaonkar, Tarang; Yang, Zhaoqing; Geerlofs, Simon H.; Copping, Andrea

2010-03-01T23:59:59.000Z

8

12th Annual Wave & Tidal 2015  

Broader source: Energy.gov [DOE]

The UK is currently the undisputed global leader in marine energy, with more wave and tidal stream devices installed than the rest of the world combined. This leading position is built on an...

9

Energy Department Invests $16 Million to Harness Wave and Tidal Energy |  

Broader source: Energy.gov (indexed) [DOE]

6 Million to Harness Wave and Tidal 6 Million to Harness Wave and Tidal Energy Energy Department Invests $16 Million to Harness Wave and Tidal Energy August 29, 2013 - 2:35pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's all-of-the-above strategy to deploy every available source of American energy, the Energy Department today announced $16 million for seventeen projects to help sustainably and efficiently capture energy from waves, tides and currents. Together, these projects will increase the power production and reliability of wave and tidal devices and help gather valuable data on how deployed devices interact with the surrounding environment. "Wave and tidal energy represent a large, untapped resource for the United States and responsible development of this clean, renewable energy

10

Energy Department Invests $16 Million to Develop Wave and Tidal Energy  

Broader source: Energy.gov (indexed) [DOE]

6 Million to Develop Wave and Tidal 6 Million to Develop Wave and Tidal Energy Technologies Energy Department Invests $16 Million to Develop Wave and Tidal Energy Technologies August 29, 2013 - 12:00pm Addthis Image of machinery to generate energy using tides. As part of the Obama Administration's all-of-the-above strategy to deploy every available source of American energy, the Energy Department today announced $16 million for seventeen projects to help sustainably and efficiently capture energy from waves, tides, and currents. Together, these projects will increase the power production and reliability of wave and tidal devices and help gather valuable data on how deployed devices interact with the surrounding environment. "Wave and tidal energy represent a large, untapped resource for the United

11

Tidal waves as yrast states in transitional nuclei  

E-Print Network [OSTI]

The yrast states of transitional nuclei are described as quadrupole waves running over the nuclear surface, which we call tidal waves. In contrast to a rotor, which generates angular momentum by increasing the angular velocity at approximately constant deformation, a tidal wave generates angular momentum by increasing the deformation at approximately constant angular velocity. The properties of the tidal waves are calculated by means of the cranking model in a microscopic way. The calculated energies and E2 transition probabilities of the yrast states in the transitional nuclides with $Z$= 44, 46, 48 and $N=56, 58, ..., 66$ reproduce the experiment in detail. The nonlinear response of the nucleonic orbitals results in a strong coupling between shape and single particle degrees of freedom.

S. Frauendorf; Y. Gu; J. Sun

2010-02-16T23:59:59.000Z

12

Quantifying Turbulence for Tidal Power Applications  

SciTech Connect (OSTI)

Using newly collected data from a tidal power site in Puget Sound, WA, metrics for turbulence quantification are assessed and discussed. The quality of raw ping Acoustic Doppler Current Profiler (ADCP) data for turbulence studies is evaluated against Acoustic Doppler Velocimeter (ADV) data at a point. Removal of Doppler noise from the raw ping data is shown to be a crucial step in turbulence quantification. Excluding periods of slack tide, the turbulent intensity estimates at a height of 4.6 m above the seabed are 8% and 11% from the ADCP and ADV, respectively. Estimates of the turbulent dissipation rate are more variable, from 10e-3 to 10e-1 W/m^3. An example analysis of coherent Turbulent Kinetic Energy (TKE) is presented.

Thomson, Jim; Richmond, Marshall C.; Polagye, Brian; Durgesh, Vibhav

2010-08-01T23:59:59.000Z

13

Hybrid Offshore Wind and Tidal Turbine Power System to Compensate for Fluctuation (HOTCF)  

Science Journals Connector (OSTI)

The hybrid system proposed in this study involves an offshore-wind turbine and a complementary tidal turbine that supplies grid power. The hybrid wind–tidal system consistently combines wind power and tidal power...

Mohammad Lutfur Rahman; Shunsuke Oka; Yasuyuki Shirai

2011-01-01T23:59:59.000Z

14

Severn Tidal Power Group STpg | Open Energy Information  

Open Energy Info (EERE)

Power Group STpg Jump to: navigation, search Name: Severn Tidal Power Group STpg Region: United Kingdom Sector: Marine and Hydrokinetic Website: http:http:www.reuk.co.uks This...

15

MHK Technologies/Jiangxia Tidal Power Station | Open Energy Information  

Open Energy Info (EERE)

Jiangxia Tidal Power Station Jiangxia Tidal Power Station < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Jiangxia Tidal Power Station.jpg Technology Profile Primary Organization China Guodian Corporation Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 9 Commercial Scale Production Application Technology Description There are 6 bulb turbine generator units operating in both ebb and flood tides with a total installed capacity up to 3 9 MW Technology Dimensions Technology Nameplate Capacity (MW) 3 9 Device Testing Date Submitted 14:15.7 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Jiangxia_Tidal_Power_Station&oldid=681601

16

Energy Department Announces Funding for Demonstration and Testing of Advanced Wave and Tidal Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department today announced $10 million to strengthen the U.S. marine and hydrokinetic (MHK) energy industry, including wave and tidal energy sources.

17

NATIONAL GEODATABASE OF TIDAL STREAM POWER RESOURCE IN USA  

SciTech Connect (OSTI)

A geodatabase of tidal constituents is developed to present the regional assessment of tidal stream power resource in the USA. Tidal currents are numerically modeled with the Regional Ocean Modeling System (ROMS) and calibrated with the available measurements of tidal current speeds and water level surfaces. The performance of the numerical model in predicting the tidal currents and water levels is assessed by an independent validation. The geodatabase is published on a public domain via a spatial database engine with interactive tools to select, query and download the data. Regions with the maximum average kinetic power density exceeding 500 W/m2 (corresponding to a current speed of ~1 m/s), total surface area larger than 0.5 km2 and depth greater than 5 m are defined as hotspots and documented. The regional assessment indicates that the state of Alaska (AK) has the largest number of locations with considerably high kinetic power density, followed by, Maine (ME), Washington (WA), Oregon (OR), California (CA), New Hampshire (NH), Massachusetts (MA), New York (NY), New Jersey (NJ), North and South Carolina (NC, SC), Georgia (GA), and Florida (FL).

Smith, Brennan T [ORNL; Neary, Vincent S [ORNL; Stewart, Kevin M [ORNL

2012-01-01T23:59:59.000Z

18

Tidal flow to power New York City  

Science Journals Connector (OSTI)

... Verdant Power, an energy company based in Arlington, Virginia, plans to plunge six electricity turbines into the East River. If the $4.5-million project is successful, the ... 5-million project is successful, the generators will form the first farm of tide-powered turbines in the world. The plan is to attach the machines, which look like small ...

Helen Pearson

2004-08-13T23:59:59.000Z

19

Tidal power from the Severn. Volume 2A  

SciTech Connect (OSTI)

This interim study on the generation of electricity from tidal power in the Severn Estuary has been carried out by the Severn Tidal Power Group (STPG) under a joint funding arrangement with the Department of Energy. Two schemes have been examined, one being an extension to the work carried out by the Severn Barrage Committee in 1981 under the chairmanship of Sir Herman Bondi, and relates to the barrage alignment between Lavernock Point on the Welsh shore and Brean Down on the English shore (known as the Cardiff Weston line). The other scheme would be much smaller with a barrage in the vicinity of English Stones some eight kilometres downstream from the existing Severn Bridge (English Stones scheme). The results of the investigation are presented. This book gives the main details on engineering and cost aspects for the CardiffWeston barrage work and discusses program implementation, economics, environmental and infrasture aspects.

Not Available

1986-01-01T23:59:59.000Z

20

Tidal power from the Severn. Volume 2B  

SciTech Connect (OSTI)

This interim study on the generation of electricity from tidal power in the Severn Estuary has been carried out by the Severn Tidal Power Group (STPG) under a joint funding arrangement with the Department of Energy. Two schemes have been examined, one being an extension to the work carried out by the Severn Barrage Committee in 1981 under the chairmanship of Sir Herman Bondi, and relates to the barrage alignment between Lavernock Point on the Welsh shore and Brean Down on the English shore (known as the Cardiff Weston line). The other scheme would be much smaller with a barrage in the vicinity of English Stones, some eight kilometres downstream from the existing Severn Bridge (English Stones scheme). The results of the investigation are presented. This book focuses on the engineering and economic aspects of the English Stones scheme.

Not Available

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "tidal power wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Tidal Stream Power Web GIS Tool | Open Energy Information  

Open Energy Info (EERE)

Tidal Stream Power Web GIS Tool Tidal Stream Power Web GIS Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Tidal Stream Power Web GIS Tool Agency/Company /Organization: Georgia Tech Savannah Sector: Energy Focus Area: Renewable Energy Resource Type: Software/modeling tools User Interface: Website Website: www.tidalstreampower.gatech.edu/ Country: United States Web Application Link: www.tidalstreampower.gatech.edu/ Cost: Free UN Region: Northern America Coordinates: 32.167482°, -81.212405° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.167482,"lon":-81.212405,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

22

Measuring the Impact of Tidal Power Installations on Endangered...  

Office of Environmental Management (EM)

innovative technologies for clean, domestic power generation from resources such as hydropower, waves, and tides. Addthis Related Articles Portland Company to Receive 1.3 Million...

23

MHK Technologies/Uldolmok Pilot Tidal Current Power Plant | Open Energy  

Open Energy Info (EERE)

Uldolmok Pilot Tidal Current Power Plant Uldolmok Pilot Tidal Current Power Plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Uldolmok Pilot Tidal Current Power Plant.jpg Technology Profile Primary Organization Korea East West Power Co LTD Technology Resource Click here Current Technology Type Click here Overtopping Technology Readiness Level Click here TRL 9 Commercial Scale Production Application Technology Description The tidal current power plant uses current energy that can be differentiated from a typical tidal power plant using marine energy The latter confines water in a dam and when released it gets processed in a turbine to produce electric power The tidal current power plant on the other hand does not need a dam thus concerns of social dislocations and degradation of ecosystems primarily endangering marine life can be avoided

24

Overview of Ocean Wave and Tidal Energy Lingchuan Mei  

E-Print Network [OSTI]

resources such as solar and wind energy, waves and tides have the advantages of having much higher power stronger energy conversion devices lower in capital cost than for other renewable technologies and creating more job opportunities. For these major benefits the marine energy can provide us with, a great

Lavaei, Javad

25

Regulation of Tidal and Wave Energy Projects (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tidal and Wave Energy Projects (Maine) Tidal and Wave Energy Projects (Maine) Regulation of Tidal and Wave Energy Projects (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Water Buying & Making Electricity Program Info State Maine Program Type Siting and Permitting Provider Department of Environmental Protection State regulation of tidal and wave energy projects is covered under the Maine Waterway Development and Conservation Act (MWDCA), and complements

26

The Signature of Inertial and Tidal Currents in Offshore Wave Records  

Science Journals Connector (OSTI)

The roughness of the sea surface can be affected by strong currents. Here, long records of surface wave heights from buoy observations in the northeastern Pacific Ocean are examined. The data show the influence of tidal currents, but the first ...

Johannes Gemmrich; Chris Garrett

2012-06-01T23:59:59.000Z

27

MHK Technologies/MORILD 2 Floating Tidal Power System | Open Energy  

Open Energy Info (EERE)

MORILD 2 Floating Tidal Power System MORILD 2 Floating Tidal Power System < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage MORILD 2 Floating Tidal Power System.jpg Technology Profile Primary Organization Hydra Tidal Energy Technology AS Project(s) where this technology is utilized *MHK Projects/Morild 2 Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 7/8: Open Water System Testing & Demonstration & Operation Technology Description Hydra Tidal´s Morild II tidal power plant technology at-a-glance: - A unique and patented floating tidal power plant - Prototype has an installed effect of 1,5 MW - Turbine diameter of 23 meters - Each turbine is pitchable - 4 turbines with a total of 8 turbine blades - Unique wooden turbine blades - The MORILD II can be anchored at different depths, thus it can be positioned in spots with ideal tidal stream conditions - The plant carries a sea vessel verification, and is both towable and dockable - The floating installation enables maintenance in surface position, and on site - The MORILD II will be remotely operated, and has on-shore surveillance systems - Technology patented for all relevant territories The Morild power plant is a floating, moored construction based on the same principle as horizontal axis wind turbines. The plant has 4 two-blade underwater turbines and can utilize the energy potential in tidal and ocean currents. The 4 turbines transmit power via hydraulic transmission to 2 synchronous generators. Can be pitched 180 degrees to utilize energy in both directions. A cable from the transformer on the prototype to shore transfers energy.

28

MHK Technologies/Sihwa tidal barrage power plant | Open Energy Information  

Open Energy Info (EERE)

Sihwa tidal barrage power plant Sihwa tidal barrage power plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Sihwa tidal barrage power plant.jpg Technology Profile Technology Type Click here Overtopping Technology Readiness Level Click here TRL 9 Commercial Scale Production Application Technology Description Sihwa TBPP operates only on flood tide generation which produces electrical power during the flood tide the water is discharged back from basin to sea during ebb tide Technology Dimensions Technology Nameplate Capacity (MW) 254 Device Testing Date Submitted 59:41.3 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Sihwa_tidal_barrage_power_plant&oldid=681654

29

EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy  

Broader source: Energy.gov (indexed) [DOE]

16: Ocean Renewable Power Company Maine, LLC Cobscook Bay 16: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine Summary This EA evaluates the environmental impacts of a project that would use the tidal currents of Cobscook Bay to generate electricity via cross-flow Kinetic System turbine generator units (TGU) mounted on the seafloor. The TGUs would capture energy from the flow in both ebb and flood directions. Public Comment Opportunities None available at this time. Documents Available for Download March 19, 2012 EA-1916: Finding of No Significant Impact Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot

30

EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy  

Broader source: Energy.gov (indexed) [DOE]

1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay 1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine Summary This EA evaluates the environmental impacts of a project that would use the tidal currents of Cobscook Bay to generate electricity via cross-flow Kinetic System turbine generator units (TGU) mounted on the seafloor. The TGUs would capture energy from the flow in both ebb and flood directions. Public Comment Opportunities None available at this time. Documents Available for Download March 19, 2012 EA-1916: Finding of No Significant Impact Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot

31

Internal Waves and Tidal Conversion from a Finite Submarine Ridge  

E-Print Network [OSTI]

. The ocean, due to the constantly varying density gradient, effectively has a long boundary gradient across waves. In a density stratified fluid, which in the ocean is caused by variations in salinity

Morrison, Philip J.,

32

Measurability of the tidal polarizability of neutron stars in late-inspiral gravitational-wave signals  

E-Print Network [OSTI]

The gravitational wave signal from a binary neutron star inspiral contains information on the nuclear equation of state. This information is contained in a combination of the tidal polarizability parameters of the two neutron stars and is clearest in the late inspiral, just before merger. We use the recently defined tidal extension of the effective one-body formalism to construct a controlled analytical description of the frequency-domain phasing of neutron star inspirals up to merger. Exploiting this analytical description we find that the tidal polarizability parameters of neutron stars can be measured by the advanced LIGO-Virgo detector network from gravitational wave signals having a reasonable signal-to-noise ratio of $\\rho=16$. This measurability result seems to hold for all the nuclear equations of state leading to a maximum mass larger than $1.97M_\\odot$. We also propose a promising new way of extracting information on the nuclear equation of state from a coherent analysis of an ensemble of gravitational wave observations of separate binary merger events.

Thibault Damour; Alessandro Nagar; Loic Villain

2012-03-20T23:59:59.000Z

33

Power Limitation Control for a PMSG-Based Marine Current Turbine at High Tidal Speed and  

E-Print Network [OSTI]

Power Limitation Control for a PMSG-Based Marine Current Turbine at High Tidal Speed and Strong Sea Abstract--This paper deals with the control strategies for a fixed-pitch marine current turbine (MCT) when the nominal MPPT tracking speed during high speed marine currents. In the speed control strategy, the turbine

Paris-Sud XI, Université de

34

SKA as a powerful hunter of jetted Tidal Disruption Events  

E-Print Network [OSTI]

Observational consequences of the tidal disruption of stars by supermassive black holes (SMBHs) can enable us to discover quiescent SMBHs and constrain their mass function. Moreover, observing jetted TDEs (from previously non-active galaxies) provides us with a new means of studying the early phases of jet formation and evolution in an otherwise "pristine" environment. Although several (tens) TDEs have been discovered since 1999, only two jetted TDEs have been recently discovered in hard X-rays, and only one, Swift J1644+57, has a precise localization which further supports the TDE interpretation. These events alone are not sufficient to address those science issues, which require a substantial increase of the current sample. Despite the way they were discovered, the highest discovery potential for {\\em jetted} TDEs is not held by current and up-coming X-ray instruments, which will yield only a few to a few tens events per year. In fact, the best strategy is to use the Square Kilometer Array to detect TDEs an...

Donnarumma, I; Fender, R; Komossa, S; Paragi, Z; Van Velzen, S; Prandoni, I

2015-01-01T23:59:59.000Z

35

Advanced, High Power, Next Scale, Wave Energy Conversion Device...  

Broader source: Energy.gov (indexed) [DOE]

Advanced, High Power, Next Scale, Wave Energy Conversion Device Advanced, High Power, Next Scale, Wave Energy Conversion Device Advanced, High Power, Next Scale, Wave Energy...

36

MHK Projects/Homeowner Tidal Power Elec Gen | Open Energy Information  

Open Energy Info (EERE)

Homeowner Tidal Power Elec Gen Homeowner Tidal Power Elec Gen < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.4468,"lon":-69.6933,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

37

MHK Projects/Ward s Island Tidal Power Project | Open Energy Information  

Open Energy Info (EERE)

Ward s Island Tidal Power Project Ward s Island Tidal Power Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7818,"lon":-73.9316,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

38

MHK Projects/Willapa Bay Tidal Power Project | Open Energy Information  

Open Energy Info (EERE)

Willapa Bay Tidal Power Project Willapa Bay Tidal Power Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.7161,"lon":-124.038,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

39

Hydrodynamic principles of wave power extraction  

Science Journals Connector (OSTI)

...Based on statistical data, Thorpe [12] has estimated the wave power potential along various...and K. Budal1982Wave-power absorption by parallel...de2008Phase control through load control of oscillating-body...and C. C. Mei2009Wave power extraction by a compact...

2012-01-01T23:59:59.000Z

40

NREL Uses Computing Power to Investigate Tidal Power (Fact Sheet), Innovation: The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Uses Computing Power to Uses Computing Power to Investigate Tidal Power Researchers at the National Renewable Energy Laboratory (NREL) have applied their knowledge of wind flow and turbulence to simulations of underwater tidal turbines. Inspired by similar simulations of wind turbine arrays, NREL researchers used their wind expertise, a supercomputer, and large-eddy simulation to study how the placement of turbines affects the power production of an underwater tidal turbine array. As tides ebb and flow, they create water currents that carry a significant amount of kinetic energy. To capture this energy, several companies are developing and deploying devices known as horizontal-axis tidal turbines, which resemble small wind turbines. These devices can be arranged in an array of multiple turbines to maximize the energy extracted in tidal

Note: This page contains sample records for the topic "tidal power wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Power recycling for an interferometric gravitational wave  

E-Print Network [OSTI]

THESIS Power recycling for an interferometric gravitational wave detector Masaki Ando Department . . . . . . . . . . . . . . 48 3.3 Power recycling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.3.1 Principle of power recycling . . . . . . . . . . . . . . . . . 50 3.3.2 Recycling cavity

Ejiri, Shinji

42

Wave Power Demonstration Project at Reedsport, Oregon  

SciTech Connect (OSTI)

Ocean wave power can be a significant source of large?scale, renewable energy for the US electrical grid. The Electrical Power Research Institute (EPRI) conservatively estimated that 20% of all US electricity could be generated by wave energy. Ocean Power Technologies, Inc. (OPT), with funding from private sources and the US Navy, developed the PowerBuoy? to generate renewable energy from the readily available power in ocean waves. OPT's PowerBuoy converts the energy in ocean waves to electricity using the rise and fall of waves to move the buoy up and down (mechanical stroking) which drives an electric generator. This electricity is then conditioned and transmitted ashore as high?voltage power via underwater cable. OPT's wave power generation system includes sophisticated techniques to automatically tune the system for efficient conversion of random wave energy into low cost green electricity, for disconnecting the system in large waves for hardware safety and protection, and for automatically restoring operation when wave conditions normalize. As the first utility scale wave power project in the US, the Wave Power Demonstration Project at Reedsport, OR, will consist of 10 PowerBuoys located 2.5 miles off the coast. This U.S. Department of Energy Grant funding along with funding from PNGC Power, an Oregon?based electric power cooperative, was utilized for the design completion, fabrication, assembly and factory testing of the first PowerBuoy for the Reedsport project. At this time, the design and fabrication of this first PowerBuoy and factory testing of the power take?off subsystem are complete; additionally the power take?off subsystem has been successfully integrated into the spar.

Mekhiche, Mike [Principal Investigator] [Principal Investigator; Downie, Bruce [Project Manager] [Project Manager

2013-10-21T23:59:59.000Z

43

A Large-Eddy Simulation Study of Wake Propagation and Power Production in an Array of Tidal-Current Turbines: Preprint  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Large-Eddy Simulation Study Large-Eddy Simulation Study of Wake Propagation and Power Production in an Array of Tidal- Current Turbines Preprint M.J. Churchfield, Y. Li, and P.J. Moriarty To be presented at the 9 th European Wave and Tidal Energy Conference 2011 Southhampton, England September 4 - 9, 2011 Conference Paper NREL/CP-5000-51765 July 2011 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government.

44

Kinetic Wave Power | Open Energy Information  

Open Energy Info (EERE)

Wave Power Address: 2861 N Tupelo St Place: Midland Zip: 48642 Region: United States Sector: Marine and Hydrokinetic Phone Number: 989-839-9757 Website: http:...

45

Wave Power Plant Inc | Open Energy Information  

Open Energy Info (EERE)

Powered Compressed Air Stations This article is a stub. You can help OpenEI by expanding it. Retrieved from "http:en.openei.orgwindex.php?titleWavePowerPlantInc&oldid76915...

46

Wave Power: Destroyer of Rocks; Creator of Clean Energy  

Broader source: Energy.gov (indexed) [DOE]

E E PG&E Wave Energy Wave Energy Federal Utility Partnership Federal Utility Partnership Working Group Meeting Working Group Meeting Wave Energy Wave Energy Development Development Ontario, CA Ontario, CA November 18 November 18- -19, 200 19, 2009 9 Donald G. Price Donald G. Price Senior Consulting Scientist, PG&E Senior Consulting Scientist, PG&E Wave Power Overview Wave Power Overview * * What is Wave Power? What is Wave Power? o o Wave power or wave energy is the energy contained in ocean Wave power or wave energy is the energy contained in ocean o o Wave power or wave energy is the energy contained in ocean Wave power or wave energy is the energy contained in ocean waves that is converted into electricity by various means. waves that is converted into electricity by various means. o o It is a clean, renewable energy resource capable of being utilized

47

DOE Science Showcase - Tidal Energy | OSTI, US Dept of Energy, Office of  

Office of Scientific and Technical Information (OSTI)

DOE Science Showcase - Tidal Energy DOE Science Showcase - Tidal Energy Point absorbers generate electricity by converting the energy in waves using a float that rides the waves and is attached to a moored conversion device. The Department of Energy's Water Power Program Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030, Energy.gov News Assessment of Energy Production Potential from Tidal Streams in the United States, Energy Citations Database Georgia Tech's Tidal Energy Resources Database U.S. Renewable Resources Atlas , NREL Tidal energy research in WorldWideScience.org OSTI Homepage Mobile Gallery Subscribe to RSS OSTI Blog Get Widgets Get Alert Services OSTI Facebook OSTI Twitter OSTI Google+ Bookmark and Share (Link will open in a new window) Go to Videos Loading...

48

Tidal Waves -- a non-adiabatic microscopic description of the yrast states in near-spherical nuclei  

E-Print Network [OSTI]

The yrast states of nuclei that are spherical or weakly deformed in their ground states are described as quadrupole waves running over the nuclear surface, which we call "tidal waves". The energies and E2 transition probabilities of the yrast states in nuclides with $Z$= 44, 46, 48 and $N=56, ~58,..., 66$ are calculated by means of the cranking model in a microscopic way. The nonlinear response of the nucleonic orbitals results in a strong coupling between shape and single particle degrees of freedom.

S. Frauendorf; Y. Gu; J. Sun

2011-09-08T23:59:59.000Z

49

Tidally Forced Internal Waves and Overturns Observed on a Slope: Results from HOME  

Science Journals Connector (OSTI)

Tidal mixing over a slope was explored using moored time series observations on Kaena Ridge extending northwest from Oahu, Hawaii, during the Survey component of the Hawaii Ocean Mixing Experiment (HOME). A mooring was instrumented to sample the ...

Murray D. Levine; Timothy J. Boyd

2006-06-01T23:59:59.000Z

50

wave power density | OpenEI  

Open Energy Info (EERE)

power density power density Dataset Summary Description This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration's (NOAA's) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. Source Electric Power Research Institute (EPRI) Date Released December 05th, 2011 (2 years ago) Date Updated Unknown Keywords EPRI MHK NREL ocean Virginia Tech wave wave power density Data application/pdf icon Download Full Report (pdf, 8.8 MiB) Quality Metrics Level of Review Some Review Comment

51

Hydrodynamic principles of wave power extraction  

Science Journals Connector (OSTI)

...Despite the abundance of wave power in the sea, technologies...extraction share with offshore wind power at least two similar challenges...present, the estimated power-generating capacity of...20-40 buoys to match a wind turbine of 2MW capacity...

2012-01-01T23:59:59.000Z

52

MHK Technologies/Yongsoo Wave Power Plant | Open Energy Information  

Open Energy Info (EERE)

Yongsoo Wave Power Plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Yongsoo Wave Power Plant.jpg Technology Profile Technology Type Click...

53

Measuring Tiny Waves with High Power Particle Beams | Princeton...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Measuring Tiny Waves with High Power Particle Beams American Fusion News Category: U.S. Universities Link: Measuring Tiny Waves with High Power Particle Beams...

54

Floating type ocean wave power station equipped with hydroelectric unit  

Science Journals Connector (OSTI)

The authors have invented the unique ocean wave power station, which is composed of the floating ... wave pitch and the counter-rotating type wave power unit, its runners are submerged in the ... as requested, be...

Shun Okamoto; Toshiaki Kanemoto; Toshihiko Umekage

2013-10-01T23:59:59.000Z

55

Marine & Hydrokinetic Technology Readiness Initiative TIDAL ENERGY...  

Office of Scientific and Technical Information (OSTI)

Marine & Hydrokinetic Technology Readiness Initiative TIDAL ENERGY SYSTEM FOR ON-SHORE POWER GENERATION Marine & Hydrokinetic Technology Readiness Initiative DE-EE0003636 TIDAL...

56

High-resolution survey of tidal energy towards power generation and influence of sea-level-rise: A case study at coast of New Jersey, USA  

Science Journals Connector (OSTI)

Abstract The first and a crucial step in development of tidal power, which is now attracting more and more attention worldwide, is a reliable survey of temporal and spatial distribution of tidal energy along coastlines. This paper first reviews the advance in assessment of tidal energy, in particular marine hydrokinetic (MHK) energy, and discusses involved challenges and necessary approaches, and then it makes a thorough survey as an illustrative case study on distributions and top sites of MHK energy within the Might-Atlantic-Bight (MAB) with emphasis on the New Jersey (NJ) coastlines. In view of the needs in actual development of tidal power generation and sensitivity of tidal power to flow speed, the former being proportional to the third power of the latter, a high-resolution and detailed modeling is desired. Data with best available accuracy for coastlines, bathymetry, tributaries, etc. are used, meshes as fine as 20 m and less for the whole NJ coast are generated, and the unstructured grid finite volume coastal ocean model (FVCOM) and high performance computing (HPC) facilities are employed. Besides comparison with observation data, a series of numerical tests have been made to ensure reliability of the modeling results. A detailed tidal energy distribution and a list of top sites for tidal power are presented. It is shown that indeed sea-level-rise (SLR) affects the tidal energy distribution significantly. With SLR of 0.5 m and 1 m, tidal energy in NJ coastal waters increases by 21% and 43%, respectively, and the number of the top sties tends to decrease along the barrier islands facing the Atlantic Ocean and increase in the Delaware Bay and the Delaware River. On the basis of these results, further discussions are made on future development for accurate assessment of tidal energy.

H.S. Tang; S. Kraatz; K. Qu; G.Q. Chen; N. Aboobaker; C.B. Jiang

2014-01-01T23:59:59.000Z

57

Impact of different operating modes for a Severn Barrage on the tidal power and flood inundation in the Severn Estuary, UK  

Science Journals Connector (OSTI)

The Severn Estuary has a spring tidal range approaching 14 m and is regarded as having one of the highest tidal ranges in the world. Various proposals have been made regarding the construction of a tidal barrage across the estuary to enable tidal energy to be extracted. The barrage scheme originally proposed by the Severn Tidal Power Group (STPG) would be the largest project for tidal power generation in the world if built as proposed. Therefore, it is important to study the impact of different operating modes for this barrage on the tidal power output and flood inundation extent in the estuary. In this paper, an existing two-dimensional hydrodynamic model based on an unstructured triangular mesh has been integrated with a new algorithm developed for the estimation of tidal power output, which can account for three barrage operating modes, including ebb generation, flood generation, and two-way generation. The refined model was then used to investigate the impact of different barrage operating modes on the tidal power output and the associated extent of flood inundation along the Severn Estuary. Predicted results indicate that the mode of flood generation would produce the least electrical energy and cause a larger reduction in the maximum water levels upstream of the barrage. Two-way generation would provide an improvement to these conditions, and produce an equivalent amount of electricity to that from ebb generation, with a low installed capacity and a small loss of intertidal zones. Therefore, the mode of ebb generation or two-way generation would appear to be a preferred option for power generation, because both would offer benefits of acceptable electrical energy and reduced flood risk.

Junqiang Xia; Roger A. Falconer; Binliang Lin

2010-01-01T23:59:59.000Z

58

Tidal Power. Proceedings of a conference, Halifax, Nova Scotia, May 1970. T. J. Gray and 0. K. Gashus, Eds. Plenum, New York, 1972. x, 630 pp., illus. $28  

Science Journals Connector (OSTI)

...possibility of combining tidal power production with a pumped-storage scheme. The objective of the paper entitled "Mathematical...to aqueous solutions. The inclusion of chapters on seawater and biological fluids, to remind the reader that these...

Donald Harleman

1972-09-01T23:59:59.000Z

59

Offshore wave power measurements—A review  

Science Journals Connector (OSTI)

The first wave power patent was filed in 1799. Since then, hundreds of ideas for extraction of energy from ocean waves have surfaced. In the process of developing a concept, it is important to learn from previous successes and failures, and this is not least important when moving into the ocean. In this paper, a review has been made with the purpose of finding wave power projects that have made ocean trials, and that also have reported what has been measured during the trials, and how it has been measured. In relation to how many projects have done work on wave power, surprisingly few have reported on such measurements. There can be many reasons for this, but one is likely the great difficulties in working with experiments in an ocean environment. Many of the projects have reported on sensor failures, unforeseen events, and other general problems in making measurements at sea. The most common site measurement found in this review was wave height. Such measurements was almost universal, although the technologies used differed somewhat. The most common device measurements were electric voltages and/or currents and system pressures (air and water). Device motion and mooring forces were also commonly measured. The motion measurements differed the most between the projects, and many varying methods were used, such as accelerometers, wire sensors, GPS systems, optical systems and echo sounders.

Simon Lindroth; Mats Leijon

2011-01-01T23:59:59.000Z

60

Tidal Energy Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tidal Energy Basics Tidal Energy Basics Tidal Energy Basics August 16, 2013 - 4:26pm Addthis Photo of the ocean rising along the beach. Some of the oldest ocean energy technologies use tidal power. All coastal areas experience two high tides and two low tides over a period of slightly more than 24 hours. For those tidal differences to be harnessed into electricity, the difference between high and low tides must be more than 16 feet (or at least 5 meters). However, there are only about 40 sites on Earth with tidal ranges of this magnitude. Currently, there are no tidal power plants in the United States, but conditions are good for tidal power generation in the Pacific Northwest and the Atlantic Northeast regions. Tidal Energy Technologies Tidal energy technologies include barrages or dams, tidal fences, and tidal

Note: This page contains sample records for the topic "tidal power wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Experimental determination of radiated internal wave power without pressure field data  

SciTech Connect (OSTI)

We present a method to determine, using only velocity field data, the time-averaged energy flux (J) and total radiated power P for two-dimensional internal gravity waves. Both (J) and P are determined from expressions involving only a scalar function, the stream function ?. We test the method using data from a direct numerical simulation for tidal flow of a stratified fluid past a knife edge. The results for the radiated internal wave power given by the stream function method agree to within 0.5% with results obtained using pressure and velocity data from the numerical simulation. The results for the radiated power computed from the stream function agree well with power computed from the velocity and pressure if the starting point for the stream function computation is on a solid boundary, but if a boundary point is not available, care must be taken to choose an appropriate starting point. We also test the stream function method by applying it to laboratory data for tidal flow past a knife edge, and the results are found to agree with the direct numerical simulation. The supplementary material includes a Matlab code with a graphical user interface that can be used to compute the energy flux and power from two-dimensional velocity field data.

Lee, Frank M.; Morrison, P. J. [Physics Department and Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712–1192 (United States)] [Physics Department and Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712–1192 (United States); Paoletti, M. S.; Swinney, Harry L. [Physics Department, The University of Texas at Austin, Austin, Texas 78712–1192 (United States)] [Physics Department, The University of Texas at Austin, Austin, Texas 78712–1192 (United States)

2014-04-15T23:59:59.000Z

62

Wireless power transmission using ultrasonic guided waves  

Science Journals Connector (OSTI)

The unavailability of suitable power supply at desired locations is currently an important obstacle in the development of distributed, wireless sensor networks for applications such as structural health monitoring of aircraft. Proposed solutions range from improved batteries to energy harvesting from vibration, temperature gradients and other sources. A novel approach is being investigated at Cardiff University School of Engineering in cooperation with Airbus. It aims to utilise ultrasonic guided Lamb waves to transmit energy through the aircraft skin. A vibration generator is to be placed in a location where electricity supply is readily available. Ultrasonic waves generated by this device will travel through the aircraft structure to a receiver in a remote wireless sensor node. The receiver will convert the mechanical vibration of the ultrasonic waves back to electricity, which will be used to power the sensor node. This paper describes the measurement and modelling of the interference pattern which emerges when Lamb waves are transmitted continuously as in this power transmission application. The discovered features of the pattern, such as a large signal amplitude variation and a relatively high frequency, are presented and their importance for the development of a power transmission system is discussed.

A Kural; R Pullin; C Featherston; C Paget; K Holford

2011-01-01T23:59:59.000Z

63

Columbia Power Technologies, Inc. Deploys its Direct Drive Wave...  

Energy Savers [EERE]

Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy April 9, 2013 - 12:00am...

64

Inverter System Design and Control for a Wave Power Substation.  

E-Print Network [OSTI]

?? This Master thesis has been performed as part of the Lysekil wave power project at the Division of Electricity, Uppsala University. Power electronics, placed… (more)

Ekström, Rickard

2009-01-01T23:59:59.000Z

65

Energy Department Announces $8 Million to Develop Advanced Components for Wave, Tidal, and Current Energy Systems  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department today announced $8 million in available funding to spur innovation in next-generation marine and hydrokinetic control and component technologies. In the United States, waves, tides, and ocean currents represent a largely untapped renewable energy resource that could provide clean, affordable energy to homes and businesses across the country's coastal regions.

66

New Wave Power Project In Oregon | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wave Power Project In Oregon Wave Power Project In Oregon New Wave Power Project In Oregon June 17, 2011 - 3:12pm Addthis Mike Reed Water Power Program Manager, Water Power Program What does this project do? Promises to add tremendous value to the wave energy industry, reinforcing utility-scale viability, collecting ground-breaking environmental impact data and exploring avenues for cost reduction. Has issued localized manufacturing contracts for the PB150 to several Oregon companies. If you've ever been surfing, or gone swimming in choppy water, you've experienced first-hand the striking power of waves. In fact, further offshore, wave activity becomes even more powerful, making it an excellent resource for generating clean, renewable energy. That's exactly what the Department of Energy and its partner Ocean Power Technologies (OPT) are

67

Estimating the potential of ocean wave power resources  

Science Journals Connector (OSTI)

The realistic assessment of an ocean wave energy resource that can be converted to an electrical power at various offshore sites depends upon many factors, and these include estimating the resource recognizing the random nature of the site-specific wave field, and optimizing the power conversion from particular wave energy conversion devices. In order to better account for the uncertainty in wave power resource estimates, conditional probability distribution functions of wave power in a given sea-state are derived. Theoretical expressions for the deep and shallow water limits are derived and the role of spectral width is studied. The theoretical model estimates were compared with the statistics obtained from the wave-by-wave analysis of JONSWAP based ocean wave time-series. It was shown that the narrow-band approximation is appropriate when the variability due to wave period is negligible. The application of the short-term models in evaluating the long-term wave power resource at a site was illustrated using wave data measured off the California coast. The final example illustrates the procedure for incorporating the local wave data and the sea-state model together with a wave energy device to obtain an estimate of the potential wave energy that could be converted into a usable energy resource.

Amir H. Izadparast; John M. Niedzwecki

2011-01-01T23:59:59.000Z

68

1 | September 2013 | des courantsWave energyTidal turbines  

E-Print Network [OSTI]

performance and the ability to maintain this performance through the lifetime of the power plant, at a high Symposium Honolulu ­ Hawaï sept 2013 Floating offshore wind Ocean thermal energy conversion DCNS - Ocean of the adopted technical solutions using both numerical simulations and representative trials. From their adpoted

69

A large-eddy simulation study of wake propagation and power production in an array of tidal-current turbines  

Science Journals Connector (OSTI)

...production in an array of tidal-current turbines Matthew J. Churchfield Ye Li Patrick...performing large-eddy simulations of tidal turbine array flows. First, a horizontally periodic...those data are used as inflow into a tidal turbine array two rows deep and infinitely wide...

2013-01-01T23:59:59.000Z

70

Large-Eddy Simulation Study of Wake Propagation and Power Production in an Array of Tidal-Current Turbines: Preprint  

SciTech Connect (OSTI)

This paper presents our initial work in performing large-eddy simulations of tidal turbine array flows. First, a horizontally-periodic precursor simulation is performed to create turbulent flow data. Then that data is used to determine the inflow into a tidal turbine array two rows deep and infinitely wide. The turbines are modeled using rotating actuator lines, and the finite-volume method is used to solve the governing equations. In studying the wakes created by the turbines, we observed that the vertical shear of the inflow combined with wake rotation causes lateral wake asymmetry. Also, various turbine configurations are simulated, and the total power production relative to isolated turbines is examined. Staggering consecutive rows of turbines in the simulated configurations allows the greatest efficiency using the least downstream row spacing. Counter-rotating consecutive downstream turbines in a non-staggered array shows a small benefit. This work has identified areas for improvement, such as the use of a larger precursor domain to better capture elongated turbulent structures, the inclusion of salinity and temperature equations to account for density stratification and its effect on turbulence, improved wall shear stress modeling, and the examination of more array configurations.

Churchfield, M. J.; Li, Y.; Moriarty, P. J.

2011-07-01T23:59:59.000Z

71

Large-Eddy Simulation Study of Wake Propagation and Power Production in an Array of Tidal-Current Turbines: Preprint  

SciTech Connect (OSTI)

This paper presents our initial work in performing large-eddy simulations of tidal turbine array flows. First, a horizontally-periodic precursor simulation is performed to create turbulent flow data. Then that data is used as inflow into a tidal turbine array two rows deep and infinitely wide. The turbines are modeled using rotating actuator lines, and the finite-volume method is used to solve the governing equations. In studying the wakes created by the turbines, we observed that the vertical shear of the inflow combined with wake rotation causes lateral wake asymmetry. Also, various turbine configurations are simulated, and the total power production relative to isolated turbines is examined. Staggering consecutive rows of turbines in the simulated configurations allows the greatest efficiency using the least downstream row spacing. Counter-rotating consecutive downstream turbines in a non-staggered array shows a small benefit. This work has identified areas for improvement, such as the use of a larger precursor domain to better capture elongated turbulent structures, the inclusion of salinity and temperature equations to account for density stratification and its effect on turbulence, improved wall shear stress modelling, and the examination of more array configurations.

Churchfield, M. J.; Li, Y.; Moriarty, P. J.

2012-07-01T23:59:59.000Z

72

Wave Power: Destroyer of Rocks; Creator of Clean Energy  

Broader source: Energy.gov [DOE]

Presentation covers the topic of wave power at the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

73

Sandia National Laboratories: convert wave power into electricity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

wave power into electricity WEC-Sim Code Development Meeting at the National Renewable Energy Laboratory On April 29, 2014, in Computational Modeling & Simulation, Energy, News,...

74

MHK Technologies/SyncWave Power Resonator | Open Energy Information  

Open Energy Info (EERE)

Power Resonator Power Resonator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage SyncWave Power Resonator.jpg Technology Profile Primary Organization Marinus Power Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The SyncWave Power Resonator makes power by capturing the motion differential due to the phase lag between the two concentric float structures the Float and the Spar each having a very different resonance characteristic in waves The power generated from this phase lag is maximized under varying ocean wave conditions via a proprietary variable inertia tuning system SWELS located inside the central Spar Power is captured by an hydraulic power take off which drives a variable speed generator Power outputs conditioned by modern power electronics from several SyncWave Units in a wave farm will be collected and converted to in farm power in a sea bed mounted collector hub then transmitted ashore by subsea cable for interconnection to a shoreside load

75

The available power from tidal stream turbines in the Pentland Firth  

Science Journals Connector (OSTI)

...time-averaged available power of a wind turbine varies from...substantially greater power per swept area than a wind turbine at the upper...equivalent to an offshore wind turbine), the estimated maximum available power is about 1.9GW. To...

2013-01-01T23:59:59.000Z

76

Sandia National Laboratories: Tidal Energy Resource Assessment...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of current speed * temporal variation of power density * temporal variation of turbulence intensity * tidal energy resource assessment * Verdant Power Inc. Comments are closed....

77

MHK Technologies/Float Wave Electric Power Station | Open Energy  

Open Energy Info (EERE)

Wave Electric Power Station Wave Electric Power Station < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Float Wave Electric Power Station.jpg Technology Profile Primary Organization Applied Technologies Company Ltd Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The module of FWEPS is an oblong axisymmetrical capsule float which is located on the sea surface Inside the capsule there is a mechanical wave energy converter consisting of an oscillatory system and drive and an electric generator and energy accumulator Under the wave effect the capsule float and inner oscillatory system of the mechanical converter are in continuous oscillatory motion while the drive engaged with the system provides a continuous turn for the electric generator

78

Power Maximization in Wave-Energy Converters Using Sampled -Data Extremum Seeking /  

E-Print Network [OSTI]

Power Maximization in Wave-Energy Converters Using Sampled-design optimization of wave energy converters con- sistingN. Sahinkaya. A review of wave energy converter technology.

Chen, Tianjia

2013-01-01T23:59:59.000Z

79

On the application of circular–cylindrical waves to ocean wave power absorption  

Science Journals Connector (OSTI)

This study derives mathematical forms for the waves radiated from a heaving, surging and swaying point source on the surface of a three dimensional ocean. The interactions between a monochromatic plane wave and monochromatic circular–cylindrical radiated waves are examined, and solutions to the time averaged power are calculated. These calculations confirm pre-existing theoretical maximum absorption lengths for both a heaving and surging point source. The derivations also lead to the definition of the amplitude, phase and form of the radiated waves required to achieve these maximums. Two experimental case studies match measured radiated wave with circular waves. These matches demonstrate a correlation between the body motions and the dominant form of radiated waves as well as higher frequency waves. The study develops three general guidelines for the design of efficient point absorber wave energy converters (PAWECs). Optimum power absorption occurs when the PAWEC radiates theoretical heave and surge waves of the appropriate amplitude and phase. Theoretical sway type waves should be minimized as these radiate energy and do not interact with the incident wave. Similarly, the radiation of higher harmonic waves should also be minimized for the same reasons.

Matthew Wypych; Lan Le-Ngoc; Keith Alexander; Alister Gardner

2012-01-01T23:59:59.000Z

80

MHK Technologies/Gyroscopic wave power generation system | Open Energy  

Open Energy Info (EERE)

Gyroscopic wave power generation system Gyroscopic wave power generation system < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization Gyrodynamics Corporation Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description This gyroscopic wave power generation system is a pure rotational mechanical system that does not use conventional air turbines and is housed on a unique floating platform float In particular its outstanding feature is that it utilizes the gyroscopic spinning effect A motor is used to turn a 1 meter diameter steel disc flywheel inside the apparatus and when the rolling action of waves against the float tilts it at an angle the gyroscopic effect causes the disc to rotate longitudinally This energy turns a generator producing electricity

Note: This page contains sample records for the topic "tidal power wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Tidal Energy  

Science Journals Connector (OSTI)

Tidal energy, as interpreted in this essay, is considered to be the artificial extraction of energy from: either the rise or fall of the sea surface under the influence of tides or the extraction of energy from t...

Ian G. Bryden

2012-01-01T23:59:59.000Z

82

Tidal Energy  

Science Journals Connector (OSTI)

Tidal energy, as interpreted in this essay, is considered to be the artificial extraction of energy from: either the rise or fall of the sea surface under the influence of tides or the extraction of energy from t...

Ian G. Bryden

2013-01-01T23:59:59.000Z

83

Protective, Modular Wave Power Generation System  

SciTech Connect (OSTI)

The concept of small wave energy conversion modules that can be built into large, scalable arrays, in the same vein as solar panels, has been developed. This innovation lends itself to an organic business and development model, and enables the use of large-run manufacturing technology to reduce system costs. The first prototype module has been built to full-scale, and tested in a laboratory wave channel. The device has been shown to generate electricity and dissipate wave energy. Improvements need to be made to the electrical generator and a demonstration of an array of modules should be made in natural conditions.

Vvedensky, Jane M.; Park, Robert Y.

2012-11-27T23:59:59.000Z

84

A large-eddy simulation study of wake propagation and power production in an array of tidal-current turbines  

Science Journals Connector (OSTI)

...consecutive rows of turbines in the simulated...allows the greatest efficiency using the least...the next upstream turbines, an efficiency increase of about...performance and efficiency of a tidal turbine array. Table 1...

2013-01-01T23:59:59.000Z

85

Wave power absorption: Experiments in open sea and simulation  

Science Journals Connector (OSTI)

A full scale prototype of a wave power plant based on a direct drive linear generator driven by a point absorber has been installed at the west coast of Sweden. In this paper experimentally collected data of energy absorption for different electrical loads are used to verify a model of the wave power plant including the interactions of wave buoy generator and external load circuit. The wave-buoy interaction is modeled with linear potential wavetheory. The generator is modeled as a nonlinear mechanical damping function that is dependent on piston velocity and electric load. The results show good agreement between experiments and simulations. Potential wavetheory is well suited for the modeling of a point absorber in normal operation and for the design of future converters. Moreover the simulations are fast which opens up for simulations of wave farms.

M. Eriksson; R. Waters; O. Svensson; J. Isberg; M. Leijon

2007-01-01T23:59:59.000Z

86

Langlee Wave Power AS | Open Energy Information  

Open Energy Info (EERE)

Power AS Address: Smedsvingen 4 Entrance B 1st floor Place: Hvalstad Zip: 1395 Region: Norway Sector: Marine and Hydrokinetic Phone Number: +47 90044104 Website: http:...

87

High Power Superconducting Continuous Wave Linacs for Protons and  

Office of Science (SC) Website

Power Superconducting Continuous Power Superconducting Continuous Wave Linacs for Protons and Heavy-Ions Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives High Power Superconducting Continuous Wave Linacs for Protons and Heavy-Ions Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: High Power Superconducting Continuous Wave Linacs for Protons and Heavy-Ions

88

Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy  

Office of Energy Efficiency and Renewable Energy (EERE)

Columbia Power Technologies, Inc. is working to advance their wave energy buoy to commercial readiness.

89

TIDAL NOVAE IN COMPACT BINARY WHITE DWARFS  

SciTech Connect (OSTI)

Compact binary white dwarfs (WDs) undergoing orbital decay due to gravitational radiation can experience significant tidal heating prior to merger. In these WDs, the dominant tidal effect involves the excitation of outgoing gravity waves in the inner stellar envelope and the dissipation of these waves in the outer envelope. As the binary orbit decays, the WDs are synchronized from outside in (with the envelope synchronized first, followed by the core). We examine the deposition of tidal heat in the envelope of a carbon-oxygen WD and study how such tidal heating affects the structure and evolution of the WD. We show that significant tidal heating can occur in the star's degenerate hydrogen layer. This layer heats up faster than it cools, triggering runaway nuclear fusion. Such 'tidal novae' may occur in all WD binaries containing a CO WD, at orbital periods between 5 minutes and 20 minutes, and precede the final merger by 10{sup 5}-10{sup 6} years.

Fuller, Jim; Lai Dong [Department of Astronomy, Cornell University, Ithaca, NY 14850 (United States)

2012-09-01T23:59:59.000Z

90

Gravitational wave generation in power-law inflationary models  

E-Print Network [OSTI]

We investigate the generation of gravitational waves in power-law inflationary models. The energy spectrum of the gravitational waves is calculated using the method of continuous Bogoliubov coefficients. We show that, by looking at the interval of frequencies between 10^(-5) and 10^5 Hz and also at the GHz range, important information can be obtained, both about the inflationary period itself and about the thermalization regime between the end of inflation and the beginning of the radiation-dominated era. We thus deem the development of gravitational wave detectors, covering the MHz/GHz range of frequencies, to be an important task for the future.

Paulo M. Sá; Alfredo B. Henriques

2008-06-06T23:59:59.000Z

91

Britain to Cut CO2 Without Relying on Nuclear Power  

Science Journals Connector (OSTI)

...Over the next few decades, wind, waves, and tidal power will...speed approval of onshore and offshore wind farms. Although critics of the white...speed approval of onshore and offshore wind farms. Although critics of the white...

Daniel Bachtold

2003-02-28T23:59:59.000Z

92

Advanced, High Power, Next Scale, Wave Energy Conversion Device  

SciTech Connect (OSTI)

The project conducted under DOE contract DE?EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven?stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy? technology to deliver a device with much increased power delivery. Scaling?up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke? unlimited Power Take?Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

Mekhiche, Mike [Principal Investigator] [Principal Investigator; Dufera, Hiz [Project Manager] [Project Manager; Montagna, Deb [Business Point of Contact] [Business Point of Contact

2012-10-29T23:59:59.000Z

93

About measurements of stopping power behind intense shock waves  

Science Journals Connector (OSTI)

Method of generation of plasma targets with electron densities n e ?10 21 ? cm ?3 behind strong shock wave for study of energy losses of protons and heavy ions is discussed. The problems of matching of large scale accelerator facility and explosive technique are considered. It is suggested to use small (<150 g TNT) vacuum pumped explosive metallic chambers with fast valves in such experiments. Construction of small-sized explosively driven generators of strong shock waves is described. Estimations of stopping power in strong shock waves in hydrogen xenon and argon were carried out. It is shown that to get main contribution of free electrons it is necessary to have velocities of shock wave in xenon and argon more than 20 km/s and in hydrogen more than 60 km/s.

V. Gryaznov; M. Kulish; V. Mintsev; V. Fortov; B. Sharkov; A. Golubev; A. Fertman; N. Mescheryakov; D. H. H. Hoffmann; M. Stetter; C. Stöckl; D. Gardes

1998-01-01T23:59:59.000Z

94

Energy storage inherent in large tidal turbine farms  

Science Journals Connector (OSTI)

...Research articles 1006 154 139 140 Energy storage inherent in large tidal turbine...in channels have short-term energy storage. This storage lies in the inertia...channels. inertia|renewable energy|storage|tidal|current|power| 1...

2014-01-01T23:59:59.000Z

95

A low-power wave union TDC implemented in FPGA  

SciTech Connect (OSTI)

A low-power time-to-digital convertor (TDC) for an application inside a vacuum has been implemented based on the Wave Union TDC scheme in a low-cost field programmable gate array (FPGA) device. Bench top tests have shown that a time measurement resolution better than 30 ps (standard deviation of time differences between two channels) is achieved. Special firmware design practices are taken to reduce power consumption. The measurements indicate that with 32 channels fitting in the FPGA device, the power consumption on the FPGA core voltage is approximately 9.3 mW/channel and the total power consumption including both core and I/O banks is less than 27 mW/channel.

Wu, Jinyuan; /Fermilab; Shi, Yanchen; Zhu, Douglas; /Illinois Math. Sci. Acad.

2011-10-01T23:59:59.000Z

96

Tidal | OpenEI Community  

Open Energy Info (EERE)

Tidal Tidal Home Ocop's picture Submitted by Ocop(5) Member 18 April, 2013 - 13:41 MHK LCOE Reporting Guidance Draft Cost Current DOE LCOE numerical modeling Performance Tidal Wave To normalize competing claims of LCOE, DOE has developed-for its own use-a standardized cost and performance data reporting process to facilitate uniform calculation of LCOE from MHK device developers. This standardization framework is only the first version in what is anticipated to be an iterative process that involves industry and the broader DOE stakeholder community. Multiple files are attached here for review and comment.Upload Files: application/vnd.openxmlformats-officedocument.wordprocessingml.document icon device_performance_validation_data_request.docx application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon

97

Tidal Energy Research  

SciTech Connect (OSTI)

This technical report contains results on the following topics: 1) Testing and analysis of sub-scale hydro-kinetic turbines in a flume, including the design and fabrication of the instrumented turbines. 2) Field measurements and analysis of the tidal energy resource and at a site in northern Puget Sound, that is being examined for turbine installation. 3) Conceptual design and performance analysis of hydro-kinetic turbines operating at high blockage ratio, for use for power generation and flow control in open channel flows.

Stelzenmuller, Nickolas [Univ of Washington; Aliseda, Alberto [Univ of Washington; Palodichuk, Michael [Univ of Washington; Polagye, Brian [Univ of Washington; Thomson, James [Univ of Washington; Chime, Arshiya [Univ of Washington; Malte, Philip [Univ of washington

2014-03-31T23:59:59.000Z

98

Near?Millimeter Wave Issues for a Space Power Grid  

Science Journals Connector (OSTI)

This paper reports continuing work on an evolutionary revenue?generating approach to Space Solar Power. The 220 GHz atmospheric transmission window is chosen leaving open the option of using millimeter wave or laser wavelengths. The progression from frequency to system business case is laid out seeking the performance figures needed for a self?sustaining system and to open up Space Solar Power in 15 to 17 years from first launch. An overall transmission efficiency in excess of 30 percent is required from DC to beamed power and back to DC or high?voltage AC to meet a delivered free?market price target of 30 cents per KWH or 20 percent if a price of 45 cents per KWH. Climate data show that rain obscuration is a non?issue for many of the renewable?power sites that comprise the market. The technology of direct solar conversion to DC and to beamed power would satisfy the needed efficiencies but requires advances in nano?scale fabrication with dielectrics.

Narayanan Komerath; Vigneshwar Venkat; Jason Fernandez

2009-01-01T23:59:59.000Z

99

Tidal Deposits of the Campanian Western Interior Seaway, Wyoming, Utah and Colorado, USA  

Science Journals Connector (OSTI)

The large-scale effects of tidal waves entering the Cretaceous Western Interior Seaway from the Gulf of Mexico ... southwestern margin of the seaway, in Utah, Colorado and Wyoming are documented. Tidal currents d...

Ronald J. Steel; Piret Plink-Bjorklund…

2012-01-01T23:59:59.000Z

100

High-Power Thermoelectrically-Cooled and Uncooled Mid-Wave Infrared Quantum Cascade Lasers  

Science Journals Connector (OSTI)

We present high performance thermoelectrically-cooled and uncooled mid-wave infrared (?=4.6 ?m) quantum cascade lasers with continuous-wave output power of 2.9 W and 1 W at room...

Maulini, Richard; Lyakh, Arkadiy; Tsekoun, Alexei; Pflugl, Christian; Diehl, Laurent; Capasso, Federico; Patel, Kumar

Note: This page contains sample records for the topic "tidal power wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Experimental determination of radiated internal wave power without pressure field Frank M. Lee,1  

E-Print Network [OSTI]

in global ocean mixing, it is important to understand the power present in the internal wave fieldExperimental determination of radiated internal wave power without pressure field data Frank M. Lee to determine, using only velocity field data, the time-averaged energy flux J and total radiated power P

Morrison, Philip J.,

102

MHK Technologies/Deep Gen Tidal Turbines | Open Energy Information  

Open Energy Info (EERE)

Deep Gen Tidal Turbines Deep Gen Tidal Turbines < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Deep Gen Tidal Turbines.jpg Technology Profile Primary Organization Tidal Generation Ltd Project(s) where this technology is utilized *MHK Projects/Tidal Generation Ltd EMEC Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The DEEP Gen 1 MW fully submerged tidal turbine best exploits resources in depths 30m The horizontal axis turbine is inexpensive to construct and easy to install due to the lightweight 80 tons MW support structure allows rapid removal and replacement of powertrains enabling safe maintenance in a dry environment and is located out of the wave zone for improved survivability

103

8.01 - Generating Electrical Power from Ocean Resources  

Science Journals Connector (OSTI)

Abstract Ocean energy resources derived from wind, waves, tidal or marine currents can be utilized and converted to large scale sustainable electrical power. Conversion technologies are easily adaptable and can be integrated within the current utility infrastructure. However, ocean energy has many forms - tides, surface waves, ocean circulation, salinity, and thermal gradients. The focus of this chapter is dedicated to two of these, namely waves and tidal energy. The first are the result of wind-driven waves derived ultimately from solar energy and the latter represents those found in tidal or marine currents, driven by gravitational effects. This chapter also gives an analysis of the current state of art of generating electricity from wave and tidal currents (termed ocean energy). Section 8.01.1 provides an overview of ocean wave and marine current energy conversion with more emphasis on the latter; Sections 8.01.2, 8.01.3, 8.01.4, and 8.01.5 address respectively the history of wave energy, wave resource assessment, wave device development, and air turbines; and Section 8.01.6 gives a review of the economics of ocean energy as applied to wave and tidal energy conversion technologies.

A.S. Bahaj

2012-01-01T23:59:59.000Z

104

Effect of a nonlinear power take off on a wave energy converter   

E-Print Network [OSTI]

This thesis is titled The influence of a nonlinear Power Take Off on a Wave Energy Converter. It looks at the effect that having a nonlinear Power Take Off (PTO) has on an inertial referenced, slack moored, point absorber, ...

Bailey, Helen Louise

2011-11-22T23:59:59.000Z

105

High power continuous-wave titanium:sapphire laser  

DOE Patents [OSTI]

A high-power continuous-wave laser resonator is provided, wherein first, second, third, fourth, fifth and sixth mirrors form a double-Z optical cavity. A first Ti:sapphire rod is disposed between the second and third mirrors and at the mid-point of the length of the optical cavity, and a second Ti:sapphire rod is disposed between the fourth and fifth mirrors at a quarter-length point in the optical cavity. Each Ti:sapphire rod is pumped by two counter-propagating pump beams from a pair of argon-ion lasers. For narrow band operation, a 3-plate birefringent filter and an etalon are disposed in the optical cavity so that the spectral output of the laser consists of 5 adjacent cavity modes. For increased power, seventy and eighth mirrors are disposed between the first and second mirrors to form a triple-Z optical cavity. A third Ti:sapphire rod is disposed between the seventh and eighth mirrors at the other quarter-length point in the optical cavity, and is pumped by two counter-propagating pump beams from a third pair of argon-ion lasers. 5 figures.

Erbert, G.V.; Bass, I.L.; Hackel, R.P.; Jenkins, S.L.; Kanz, V.K.; Paisner, J.A.

1993-09-21T23:59:59.000Z

106

Investigating the impact of wave energy in the electric power system - A case study of southern Sweden.  

E-Print Network [OSTI]

??The aim of this thesis has been to investigate the impact of wave energy in the electric power system of southern Sweden. How does wave… (more)

von Sydow, Tyra

2014-01-01T23:59:59.000Z

107

High-power parametric conversion from near-infrared to short-wave infrared  

E-Print Network [OSTI]

High-power parametric conversion from near-infrared to short-wave infrared Adrien Billat,1,* Steevy.billat@epfl.ch Abstract: We report the design of an all-fiber continuous wave Short-Wave Infrared source capable to output.4370) Nonlinear optics, fibers; (140.3070) Infrared and far-infrared lasers. References and links 1. M. N

Dalang, Robert C.

108

Coupled-Oscillator Arrays for Millimeter-Wave Power-Combining and Mode-Locking  

E-Print Network [OSTI]

. 1. INTRODUCTION Obtaining useful levels of power from solid-state millimeter- wave systems trains of high-energy pulses. This new operation is based on a mode- locking technique similarIF1 P-1 Coupled-Oscillator Arrays for Millimeter-Wave Power-Combining and Mode-Locking Robert A

York, Robert A.

109

Reaction force control implementation of a linear generator in irregular waves for a wave power system.  

E-Print Network [OSTI]

??Most designs for wave energy converters include a hydraulic (or pneumatic) interface between the wave device and the generator to smooth electricity production, but a… (more)

Li, Bin

2012-01-01T23:59:59.000Z

110

MHK Technologies/IVEC Floating Wave Power Plant | Open Energy Information  

Open Energy Info (EERE)

IVEC Floating Wave Power Plant IVEC Floating Wave Power Plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage IVEC Floating Wave Power Plant.jpg Technology Profile Primary Organization Ivec Pty Ltd Technology Resource Click here Wave Technology Readiness Level Click here TRL 7 8 Open Water System Testing Demonstration and Operation Technology Description FWP design is based on an array of linked OWC s or chambers Similar to the cylinders of a combustion engine each FWP chamber has inlet low pressure flaps valves and outlet high pressure flaps valves As a wave passes through the FWP the water level and thus the air pressure within each chamber oscillates depending on its position within the wave cycle Mooring Configuration single point

111

Tidal Wetlands Regulations (Connecticut)  

Broader source: Energy.gov [DOE]

Most activities occurring in or near tidal wetlands are regulated, and this section contains information on such activities and required permit applications for proposed activities. Applications...

112

MHK Technologies/Tidal Sails | Open Energy Information  

Open Energy Info (EERE)

Sails Sails < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Sails.jpg Technology Profile Primary Organization Tidal Sails AS Technology Resource Click here Current Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Tidal Sails device is a series of underwater sails affixed to wires strung across the tidal stream at an angle The sails are driven back and forth by the tidal flow between two stations at one of which the generator is installed Technology Dimensions Device Testing Date Submitted 26:04.6 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Tidal_Sails&oldid=681675

113

Global Calculation of Tidal Energy Conversion into Vertical Normal Modes  

Science Journals Connector (OSTI)

A direct calculation of the tidal generation of internal waves over the global ocean is presented. The calculation is based on a semianalytical model, assuming that the internal tide characteristic slope exceeds the bathymetric slope (subcritical ...

Saeed Falahat; Jonas Nycander; Fabien Roquet; Moundheur Zarroug

2014-12-01T23:59:59.000Z

114

MHK Technologies/Ocean Wave Power Spar Buoy Engine | Open Energy  

Open Energy Info (EERE)

Spar Buoy Engine Spar Buoy Engine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Wave Power Spar Buoy Engine.jpg Technology Profile Primary Organization Functional Design Engineering Inc Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description A long period spar buoy supports a subsurface flow augmentor The augmentor directs water from the wave s submarine flow field to a free prime mover piston The prime mover is decoupled from the machine s PTO during times in the wave s cycle when there is little power available for conversion Wave energy is stored in the device until the is enough flow magnetude that power take off can efficiently take place Power can be taken off as high pressure water crankshaft torque or directly as DC electricity

115

Clarence Strait Tidal Energy Project, Tenax Energy Tropical Tidal...  

Open Energy Info (EERE)

Energy Tropical Tidal Test Centre, Jump to: navigation, search 1 Retrieved from "http:en.openei.orgwindex.php?titleClarenceStraitTidalEnergyProject,TenaxEnergyTropica...

116

Half Moon Cove Tidal Project. Feasibility report  

SciTech Connect (OSTI)

The proposed Half Moon Cove Tidal Power Project would be located in a small cove in the northern part of Cobscook Bay in the vicinity of Eastport, Maine. The project would be the first tidal electric power generating plant in the United States of America. The basin impounded by the barrier when full will approximate 1.2 square miles. The average tidal range at Eastport is 18.2 feet. The maximum spring tidal range will be 26.2 feet and the neap tidal range 12.8 feet. The project will be of the single pool-type single effect in which generation takes place on the ebb tide only. Utilizing an average mean tidal range of 18.2 feet the mode of operation enables generation for approximately ten and one-half (10-1/2) hours per day or slightly in excess of five (5) hours per tide. The installed capacity will be 12 MW utilizing 2 to 6 MW units. An axial flow, or Bulb type of turbine was selected for this study.

Not Available

1980-11-01T23:59:59.000Z

117

Electron Trapping in Shear Alfvén Waves that Power the Aurora  

Science Journals Connector (OSTI)

Results from 1D Vlasov drift-kinetic plasma simulations reveal how and where auroral electrons are accelerated along Earth’s geomagnetic field. In the warm plasma sheet, electrons become trapped in shear Alfvén waves, preventing immediate wave damping. As waves move to regions with larger vTe/vA, their parallel electric field decreases, and the trapped electrons escape their influence. The resulting electron distribution functions compare favorably with in situ observations, demonstrating for the first time a self-consistent link between Alfvén waves and electrons that form aurora.

Clare E. J. Watt and Robert Rankin

2009-01-26T23:59:59.000Z

118

Electron Trapping in Shear Alfven Waves that Power the Aurora  

SciTech Connect (OSTI)

Results from 1D Vlasov drift-kinetic plasma simulations reveal how and where auroral electrons are accelerated along Earth's geomagnetic field. In the warm plasma sheet, electrons become trapped in shear Alfven waves, preventing immediate wave damping. As waves move to regions with larger v{sub Te}/v{sub A}, their parallel electric field decreases, and the trapped electrons escape their influence. The resulting electron distribution functions compare favorably with in situ observations, demonstrating for the first time a self-consistent link between Alfven waves and electrons that form aurora.

Watt, Clare E. J.; Rankin, Robert [University of Alberta, Edmonton, Alberta (Canada)

2009-01-30T23:59:59.000Z

119

Making Wave Power Efficient and Affordable | Department of Energy  

Energy Savers [EERE]

is currently testing its Cycloidal Wave Energy Converter design at the Texas A&M Offshore Technology Research Center in College Station, Texas. The company hopes to...

120

Bragg scattering and wave-power extraction by an array of small buoys  

Science Journals Connector (OSTI)

...studies have been devoted to the potential of power extraction from sea waves by an isolated...Mei et al. 2005; Cruz 2008). To achieve power output comparable to a conventional power plant or a wind-turbine farm, a large array of absorbing...

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "tidal power wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Predictive Power Control of Doubly-Fed Induction Generator for Wave Energy Converters  

E-Print Network [OSTI]

the Doubly- fed induction generator (DFIG). This paper deals then with a model-based predictive power control of a DFIG-based Wave Energy Converter (WEC). In the proposed control approach, the predicted output power was calculated using a DFIG linearized state-space model. The DFIG-based WEC power tracking performances further

Paris-Sud XI, Université de

122

Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Add description List of Tidal Energy Incentives Retrieved from "http:en.openei.orgwindex.php?titleTidalEnergy&oldid267201" Category: Articles with outstanding TODO tasks...

123

Tidal Dissipation in Rotating Giant Planets  

Science Journals Connector (OSTI)

Many extrasolar planets orbit sufficiently close to their host stars that significant tidal interactions can be expected, resulting in an evolution of the spin and orbital properties of the planets. The accompanying dissipation of energy can also be an important source of heat, leading to the inflation of short-period planets and even mass loss through Roche lobe overflow. Tides may therefore play an important role in determining the observed distributions of mass, orbital period, and eccentricity of the extrasolar planets. In addition, tidal interactions between gaseous giant planets in the solar system and their moons are thought to be responsible for the orbital migration of the satellites, leading to their capture into resonant configurations. Traditionally, the efficiency of tidal dissipation is simply parameterized by a quality factor Q, which depends, in principle, in an unknown way on the frequency and amplitude of the tidal forcing. In this paper we treat the underlying fluid dynamical problem with the aim of determining the efficiency of tidal dissipation in gaseous giant planets such as Jupiter, Saturn, or the short-period extrasolar planets. Efficient convection enforces a nearly adiabatic stratification in these bodies, which may or may not contain solid cores. With some modifications, our approach can also be applied to low-mass stars with extended convective envelopes. In cases of interest, the tidal forcing frequencies are typically comparable to the spin frequency of the planet but are small compared to its dynamical frequency. We therefore study the linearized response of a slowly and possibly differentially rotating planet to low-frequency tidal forcing. Convective regions of the planet support inertial waves, which possess a dense or continuous frequency spectrum in the absence of viscosity, while any radiative regions support generalized Hough waves. We formulate the relevant equations for studying the excitation of these disturbances and present a set of illustrative numerical calculations of the tidal dissipation rate. We argue that inertial waves provide a natural avenue for efficient tidal dissipation in most cases of interest. In the presence of a solid core, the excited disturbance tends to be localized on a web of rays rather than resembling a smooth eigenfunction. The resulting value of Q depends, in principle, in a highly erratic way on the forcing frequency, but we provide analytical and numerical evidence that the frequency-averaged dissipation rate may be asymptotically independent of the viscosity in the limit of small Ekman number. For a smaller viscosity, the tidal disturbance has a finer spatial structure and individual resonances are more pronounced. In short-period extrasolar planets, tidal dissipation via inertial waves becomes somewhat less efficient once they are spun down to a synchronous state. However, if the stellar irradiation of the planet leads to the formation of a radiative outer layer that supports generalized Hough modes, the tidal dissipation rate can be enhanced, albeit with significant uncertainty, through the excitation and damping of these waves. The dissipative mechanisms that we describe offer a promising explanation of the historical evolution and current state of the Galilean satellites, as well as the observed circularization of the orbits of short-period extrasolar planets.

G. I. Ogilvie; D. N. C. Lin

2004-01-01T23:59:59.000Z

124

Practical limits to the power that can be captured from ocean waves by oscillating bodies  

Science Journals Connector (OSTI)

Abstract The maximum average power that can be captured from ocean waves by an idealised and unconstrained oscillating body depends on two hydrodynamic properties: the wave radiation pattern and the radiation resistance (also called added damping or wave damping coefficient). These properties depend on the body geometry and the mode of oscillation. For such unconstrained motion the limits of absorbed power are well described. Power bounds due to physical restrictions like limited volume stroke or machinery stroke length has also received some attention, but has not been sufficiently explored. This paper looks at such physical bounds to the achievable absorbed power. It is done by physical reasoning leading to analytical expressions for the upper bounds, treating heave, surge and pitch motions separately. It is shown how size, oscillation mode and volume stroke of the oscillating body inherently influence the absorption ability. Furthermore, implications for the practical and economical design of wave energy are identified and discussed.

Jørgen Hals Todalshaug

2013-01-01T23:59:59.000Z

125

A power analysis and data acquisition system for ocean wave energy device testing  

Science Journals Connector (OSTI)

In the testing of ocean wave energy devices, the demand for a portable and robust data acquisition and electrical loading system has become apparent. This paper investigates the development of a 30 kW inclusive system combining loading capabilities, real-time power analysis, and data acquisition for the testing of deployed ocean wave energy devices. Hardware results for ocean testing are included.

Ean Amon; Ted K.A. Brekken; Annette von Jouanne

2011-01-01T23:59:59.000Z

126

Generation of Alfven waves by high power pulse at the electron plasma frequency  

E-Print Network [OSTI]

Generation of Alfve´n waves by high power pulse at the electron plasma frequency B. Van CompernolleG, Helium) capable of supporting Alfve´n waves has been studied. The interaction leads to the generation locations. Citation: Van Compernolle, B., W. Gekelman, P. Pribyl, and T. A. Carter (2005), Generation

California at Los Angles, University of

127

Grating formation by a high power radio wave in near-equator ionosphere  

SciTech Connect (OSTI)

The formation of a volume grating in the near-equator regions of ionosphere due to a high power radio wave is investigated. The radio wave, launched from a ground based transmitter, forms a standing wave pattern below the critical layer, heating the electrons in a space periodic manner. The thermal conduction along the magnetic lines of force inhibits the rise in electron temperature, limiting the efficacy of heating to within a latitude of few degrees around the equator. The space periodic electron partial pressure leads to ambipolar diffusion creating a space periodic density ripple with wave vector along the vertical. Such a volume grating is effective to cause strong reflection of radio waves at a frequency one order of magnitude higher than the maximum plasma frequency in the ionosphere. Linearly mode converted plasma wave could scatter even higher frequency radio waves.

Singh, Rohtash; Sharma, A. K.; Tripathi, V. K. [Department of Physics, Indian Institute of Technology Delhi, New Delhi-110016 (India)

2011-11-15T23:59:59.000Z

128

Chaos and Tidal Capture  

E-Print Network [OSTI]

We review the tidal capture mechanism for binary formation, an important process in globular cluster cores and perhaps open cluster cores. Tidal capture binaries may be the precursors for some of the low-mass X-ray binaries observed in abundance in globular clusters. They may also play an important role in globular cluster dynamics. We summarize the chaos model for tidal interaction (Mardling 1995, ApJ, 450, 722, 732), and discuss how this affects our understanding of the circularization process which follows capture.

Rosemary A. Mardling

1995-12-07T23:59:59.000Z

129

Underestimation of the UK Tidal David J.C. MacKay  

E-Print Network [OSTI]

physical model of the flow of energy in a tidal wave. In a shallow­water­wave model of tide, the true flow and h is the tide's verti­ cal amplitude. The tidal resource may therefore have been underestimated­page comment on the DTI Energy Review, Salter [2005] suggests that this standard figure may well be an under

MacKay, David J.C.

130

New Interactive Map Reveals U.S. Tidal Energy Resources | Department of  

Broader source: Energy.gov (indexed) [DOE]

Interactive Map Reveals U.S. Tidal Energy Resources Interactive Map Reveals U.S. Tidal Energy Resources New Interactive Map Reveals U.S. Tidal Energy Resources July 7, 2011 - 10:50am Addthis A map generated by Georgia Tech's tidal energy resource database shows mean current speed of tidal streams | Source: Georgia Institute of Technology A map generated by Georgia Tech's tidal energy resource database shows mean current speed of tidal streams | Source: Georgia Institute of Technology Mike Reed Water Power Program Manager, Water Power Program Tidal energy -- a renewable, predictable resource available up and down America's coastlines -- holds great promise for clean energy generation. And now, a first of its kind database gives researchers deeper insight into the potential of this energy resource for the United States.

131

A Predictive power control of Doubly Fed Induction Generator for Wave Energy Converter  

E-Print Network [OSTI]

using a linearized state- space model. The DFIG-based WEC power tracking performances further converter (WEC), irregular wave, doubly-fed induction generator (DFIG), predictive power control, I rotational motion for connection to a conventional rotating electrical generator as a DFIG (Fig. 1). Fig.1

Brest, Université de

132

Enthusiasm for UK wave power survives high costs  

Science Journals Connector (OSTI)

... drive a turbine. But other proposals include on site conversion to hydrogen, on site desalination or direct use of the mechanical power to make heat.

Joe Schwartz

1978-11-30T23:59:59.000Z

133

Control of offshore marine substation for grid-connection of a wave power farm  

Science Journals Connector (OSTI)

Abstract To grid-connect an offshore wave power farm, an intermediate marine substation is suggested. As a part of the Uppsala University wave power project, a marine substation has been designed, assembled and deployed at sea. The substation is capable of connecting up to seven wave energy converters (WECs), and to transfer the power to the onshore 1 kV-grid. In this article, the control procedure for grid connection of the \\{WECs\\} is described step-by-step, and the practical implementations are presented. The system is designed with autonomous control and will connect or disconnect the WECs, depending on the sea state. Fault handling is taken into account, and grid power quality such as harmonic distortion and flicker are considered in the design. Experimental results are presented to verify the system functionalities.

Rickard Ekström; Mats Leijon

2014-01-01T23:59:59.000Z

134

Hydra Tidal Energy Technology AS | Open Energy Information  

Open Energy Info (EERE)

Tidal Energy Technology AS Tidal Energy Technology AS Jump to: navigation, search Name Hydra Tidal Energy Technology AS Address PO Box 399 Place Harstad Zip 9484 Sector Marine and Hydrokinetic Year founded 2001 Phone number (+47) 77 06 08 08 Website http://http://www.hydratidal.i Region Norway LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: MORILD Demonstration Plant Morild 2 This company is involved in the following MHK Technologies: MORILD 2 Floating Tidal Power System Morild Power Plant This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Hydra_Tidal_Energy_Technology_AS&oldid=678333

135

A Case Study of Wave–Current–Bathymetry Interactions at the Columbia River Entrance  

Science Journals Connector (OSTI)

A unique set of field observations has documented intense wave–current–bathymetry interactions in a tidal inlet, providing a severe test of existing wave theory. Hourly wave spectral estimates were acquired over ten complete tidal cycles at ...

F. I. Gonazález

1984-06-01T23:59:59.000Z

136

Tidal energy from the Severn Estuary  

Science Journals Connector (OSTI)

... , a tidal power scheme could possess much of the flexibility of highly versatile, conventional hydroelectric stations, and many types of project have been suggested. To assess in 1974 the ... opt for thermal energy schemes (few are even now able to rely on further conventional hydroelectric sources, and stations which require fossil fuels are unlikely to be favoured in large ...

T. L. Shaw

1974-06-21T23:59:59.000Z

137

2008 NWFSC Tidal Freshwater Genetics Results  

SciTech Connect (OSTI)

Genetic Analysis of Juvenile Chinook Salmon for inclusion in 'Ecology of Juvenile Salmon in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2008. Annual Report to Bonneville Power Administration, Contract DE-AC05-76RL01830.'

David Teel

2009-05-01T23:59:59.000Z

138

MHK Technologies/Tidal Lagoons | Open Energy Information  

Open Energy Info (EERE)

Tidal Lagoons Tidal Lagoons < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Lagoons.jpg Technology Profile Primary Organization Tidal Electric Project(s) where this technology is utilized *MHK Projects/Dandong City *MHK Projects/Swansea Bay Technology Resource Click here Current/Tidal Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description idal Lagoons are situated a mile or more offshore in high tidal range areas, and use a rubble mound impoundment structure and low-head hydroelectric bulb turbines. Shallow tidal flats provide the most economical sites. Multi-cell Tidal Lagoons provide higher load factors (about 62%) and have the flexibility to shape the output curve in order to dispatch power in response to demand price signals. The impoundment structure is a conventional rubble mound breakwater (loose rock, concrete, and marine sheetpiles are among the types of appropriate materials for the impoundment structure), with ordinary performance specifications and is built from the most economical materials. The barrage is much shorter than an impoundment structure with the same output capacity, but the barrage is a much larger structure. The offshore tidal generator uses conventional low-head hydroelectric generation equipment and control systems. The equipment consists of a mixed-flow reversible bulb turbine, a generator, and the control system. Manufacturers/suppliers include Alstom, GE, Kvaerner, Siemens, Voith, Sulzer, and others.

139

Tidal energy site resource assessment in the East River tidal strait, near Roosevelt Island, New York, New York  

Science Journals Connector (OSTI)

Abstract This study demonstrates a site resource assessment to examine the temporal variation of the current speeds, current directions, turbulence intensities, and power densities for a tidal energy site in the East River tidal strait. These variables were derived from two months of acoustic Doppler velocimeter (ADV) measurements at the design hub height of the Verdant Power Gen5 hydrokinetic turbine. The study site is a tidal strait that exhibits semi-diurnal tidal current characteristics, with a mean horizontal current speed of 1.4 m s?1, and a turbulence intensity of 15% at a reference mean current of 2 m s?1. Flood and ebb flow directions are nearly bi-directional, with a higher current speed during flood tide, which skews the power production towards the flood tide period. The tidal hydrodynamics at the site are highly regular, as indicated by the tidal current time series that resembles a sinusoidal function. This study also shows that the theoretical force and the power densities derived from the current measurements can be significantly influenced by the length of the time window used for averaging the current speed data. Furthermore, the theoretical power density at the site, derived from the current speed measurements, is one order of magnitude greater than that reported in the U.S. national resource assessment. This discrepancy highlights the importance of conducting site resource assessments based on measurements at the tidal energy converter device scale.

Budi Gunawan; Vincent S. Neary; Jonathan Colby

2014-01-01T23:59:59.000Z

140

Restoration of Tidal Flow to Degraded Tidal Wetlands in Connecticut  

Science Journals Connector (OSTI)

Connecticut’s tidal wetlands, ranging from salt marsh ... the state’s rivers (e.g., Connecticut, Quinnipiac, and Housatonic). Today, approximately 5900 hectares of tidal wetland occur in Connecticut, two thirds o...

Ron Rozsa

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "tidal power wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

High power water load for microwave and millimeter-wave radio frequency sources  

DOE Patents [OSTI]

A high power water load for microwave and millimeter wave radio frequency sources has a front wall including an input port for the application of RF power, a cylindrical dissipation cavity lined with a dissipating material having a thickness which varies with depth, and a rear wall including a rotating reflector for the reflection of wave energy inside the cylindrical cavity. The dissipation cavity includes a water jacket for removal of heat generated by the absorptive material coating the dissipation cavity, and this absorptive material has a thickness which is greater near the front wall than near the rear wall. Waves entering the cavity reflect from the rotating reflector, impinging and reflecting multiple times on the absorptive coating of the dissipation cavity, dissipating equal amounts of power on each internal reflection.

Ives, R. Lawrence (Saratoga, CA); Mizuhara, Yosuke M. (Palo Alto, CA); Schumacher, Richard V. (Sunnyvale, CA); Pendleton, Rand P. (Saratoga, CA)

1999-01-01T23:59:59.000Z

142

Inflation that runs naturally: Gravitational waves and suppression of power at large and small scales  

E-Print Network [OSTI]

We point out three correlated predictions of the axion monodromy inflation model: large amplitude of gravitational waves, suppression of power on horizon scales and on scales relevant for the formation of dwarf galaxies. While these predictions are likely generic to models with oscillations in the inflaton potential, the axion monodromy model naturally accommodates the required running spectral index through Planck-scale corrections to the inflaton potential. Applying this model to a combined data set of Planck, ACT, SPT, and WMAP low-$\\ell$ polarization cosmic microwave background (CMB) data, we find a best-fit tensor-to-scalar ratio $r_{0.05} = 0.07^{+0.05}_{-0.04}$ due to gravitational waves, which may have been observed by the BICEP2 experiment. Despite the contribution of gravitational waves, the total power on large scales (CMB power spectrum at low multipoles) is lower than the standard $\\Lambda$CDM cosmology with a power-law spectrum of initial perturbations and no gravitational waves, thus mitigating some of the tension on large scales. There is also a reduction in the matter power spectrum of 20-30\\% at scales corresponding to $k = 10~{\\rm Mpc}^{-1}$, which are relevant for dwarf galaxy formation. This will alleviate some of the unsolved small-scale structure problems in the standard $\\Lambda$CDM cosmology.

Quinn E. Minor; Manoj Kaplinghat

2014-11-03T23:59:59.000Z

143

Innovative Deepwater Platform Aims to Harness Offshore Wind and Wave Power  

Broader source: Energy.gov (indexed) [DOE]

Deepwater Platform Aims to Harness Offshore Wind and Deepwater Platform Aims to Harness Offshore Wind and Wave Power Innovative Deepwater Platform Aims to Harness Offshore Wind and Wave Power March 28, 2011 - 5:55pm Addthis An employee installs a smart meter as part of a smart grid initiative by EPB. The project is supporting 390 jobs in the Chattanooga area. | Photo courtesy of EPB An employee installs a smart meter as part of a smart grid initiative by EPB. The project is supporting 390 jobs in the Chattanooga area. | Photo courtesy of EPB Mark Higgins Operations Supervisor, Wind & Water Power Technologies Office Principle Power, Inc, of Seattle is using $1.4 million in funding from the Department of Energy's Office of Energy Efficiency and Renewable Energy to develop an innovative technology with the potential to generate electricity

144

Wave-actuated power take-off device for electricity generation  

SciTech Connect (OSTI)

Since 2008, Resolute Marine Energy, Inc. (RME) has been engaged in the development of a rigidly moored shallow-water point absorber wave energy converter, the "3D-WEC". RME anticipated that the 3D-WEC configuration with a fully buoyant point absorber buoy coupled to three power take off (PTO) units by a tripod array of tethers would achieve higher power capture than a more conventional 1-D configuration with a single tether and PTO. The investigation conducted under this program and documented herein addressed the following principal research question regarding RME'Â?Â?s power take off (PTO) concept for its 3D-WEC: Is RME's winch-driven generator PTO concept, previously implemented at sub-scale and tested at the Ohmsett wave tank facility, scalable in a cost-effective manner to significant power levels Â?Â?e.g., 10 to 100kW?

Chertok, Allan

2013-01-31T23:59:59.000Z

145

Long period oscillations and tidal level in the Port of Ferrol  

Science Journals Connector (OSTI)

ABSTRACT A new container terminal will soon be inaugurated in the Port of Ferrol (Spain). Sea level observations show the occurrence of seiche events in the basin. The objective of this work is to investigate the long wave oscillations and their dependence on the tidal level. Two analysis techniques, fast Fourier transform (FFT) and short time Fourier transform (STFT), are applied. Time-averaged spectra corresponding to different tidal levels are obtained with the FFT, whereas seiche events are identified on spectrograms computed with the STFT. The time-averaged power density spectra features eleven well-marked peaks, with moderate to high amplification. A clear influence of the tide on the spectral peaks is found, with most peaks presenting higher frequencies and greater power densities at high tide. The analysis of the individual seiche events shows that the behavior of long wave energy in the basin varies across the spectrum; on these grounds, three frequency bands are proposed: LF (low frequency), VLF (very low frequency), and ULF (ultra low frequency). The LF band exhibits a high correlation with the offshore swell energy, both outside and inside the harbor. At the other end of the long wave spectrum, the ULF band is only weakly correlated with the swell; it responds to a different forcing, possibly related to atmospheric disturbances. Finally, the intermediate VLF band presents a mixed character, with influences both from the swell and the other driving agent. The contributions of the paper are as follows. First, the long wave behavior at the Port of Ferrol, a major port in Spain, is characterized for the first time. Second, two contrasting behaviors affecting different frequency ranges are identified—one is proven to be swell-driven, whereas the other is proven, on the contrary, to not be swell-related. And, finally, the tidal oscillation is found to be relevant to the long wave behavior within the port, for it affects both the frequencies and power densities of the spectral peaks—but not to the generation of long waves outside the harbor.

M. López; G. Iglesias; N. Kobayashi

2012-01-01T23:59:59.000Z

146

Super-radiant backward-wave oscillators with enhanced power conversion  

SciTech Connect (OSTI)

We propose a method for a very significant increase of the peak power of a backward-wave electron oscillator operating in the non-stationary regime of the super-radiation of short rf pulses. This method is based on sectioning: a regular self-oscillator section is supported with a section providing amplification of the super-radiant pulse. Profiling of a resonant parameter in the amplifying section is used to avoid the parasitic self-excitation and to increase the efficiency of the electron-wave interaction. In such systems, the conversion factor (the ratio between the rf pulse power and the electron beam power) can achieve a few hundred percent.

Rostov, V. V. [Institute of High Current Electronics, Siberian Branch of Russian Academy of Science, Tomsk (Russian Federation); Savilov, A. V. [Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia, and Lobachevsky State University of Nizhny Novgorod (Russian Federation)

2013-02-15T23:59:59.000Z

147

Experimental Investigation of the Power Generation Performance of Floating-Point Absorber Wave Energy Systems: Preprint  

SciTech Connect (OSTI)

The extraction of energy from ocean waves has gained interest in recent years. The floating-point absorber (FPA) is one of the most promising devices among a wide variety of wave energy conversion technologies. Early theoretical studies mainly focused on understanding the hydrodynamics of the system and on predicting the maximum power that could be extracted by a heaving body. These studies evolve from the investigation of floating-body interactions in offshore engineering and naval architecture disciplines. To our best knowledge, no systematic study has been reported about the investigation of the power generation performance of an FPA with a close-to-commercial design. A series of experimental tests was conducted to investigate the power extraction performance of an FPA system.

Li, Y.; Yu, Y.; Epler, J.; Previsic, M.

2012-04-01T23:59:59.000Z

148

Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment |  

Broader source: Energy.gov (indexed) [DOE]

Maine Project Takes Historic Step Forward in U.S. Tidal Energy Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment May 4, 2012 - 12:11pm Addthis Cobscook Bay, Maine, is the site of a tidal energy pilot project led by Ocean Renewable Power Company. | Photo courtesy of Ocean Renewable Power Company. Cobscook Bay, Maine, is the site of a tidal energy pilot project led by Ocean Renewable Power Company. | Photo courtesy of Ocean Renewable Power Company. Hoyt Battey Water Power Market Acceleration and Deployment Team Lead, Wind and Water Power Program What does this project do? ORPC will deploy cross flow turbine devices in Cobscook Bay, at the mouth of the Bay of Fundy. These devices are designed to generate electricity over a range of

149

Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment |  

Broader source: Energy.gov (indexed) [DOE]

Maine Project Takes Historic Step Forward in U.S. Tidal Energy Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment May 4, 2012 - 12:11pm Addthis Cobscook Bay, Maine, is the site of a tidal energy pilot project led by Ocean Renewable Power Company. | Photo courtesy of Ocean Renewable Power Company. Cobscook Bay, Maine, is the site of a tidal energy pilot project led by Ocean Renewable Power Company. | Photo courtesy of Ocean Renewable Power Company. Hoyt Battey Water Power Market Acceleration and Deployment Team Lead, Wind and Water Power Program What does this project do? ORPC will deploy cross flow turbine devices in Cobscook Bay, at the mouth of the Bay of Fundy. These devices are designed to generate electricity over a range of

150

Wave and Tide-Dominated Coasts  

Science Journals Connector (OSTI)

Between the wave- and tide-dominated coastal extremes is a broad spectrum of wave and tide-dominated coasts. These range from settings with high wave energy and perceptible tidal energy associated with a low tida...

Edward J. Anthony

2005-01-01T23:59:59.000Z

151

MHK Projects/Coos County Offshore Wave Energy Power Plant | Open Energy  

Open Energy Info (EERE)

Coos County Offshore Wave Energy Power Plant Coos County Offshore Wave Energy Power Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0238,"lon":-124.519,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

152

A binary ACO for controlling all-electric power take off system in wave energy converters  

Science Journals Connector (OSTI)

This paper describes a metaheuristic algorithm for controlling all-electric power take off (PTO) system of wave energy converters. It provides optimal parameter values to the controller following the instantaneously changing sea state. The output of the algorithm is used to tune the electrical control systems in the PTO system in order to provide sufficient time for the point absorber to achieve desired heaving resonance compare with the ocean wave. This maximises the power extraction capability of WECs. The method consists of a binary ant colony optimisation algorithm capable of performing optimisation in continuous space. A binary encoding method is introduced to enhance its search exploration feature, hence allowing it to find optimal solution in short time.

Phen Chiak See; Vin Cent Tai; Marta Molinas

2013-01-01T23:59:59.000Z

153

Effect of electron density profile on power absorption of high frequency electromagnetic waves in plasma  

SciTech Connect (OSTI)

Considering different typical electron density profiles, a multi slab approximation model is built up to study the power absorption of broadband (0.75-30 GHz) electromagnetic waves in a partially ionized nonuniform magnetized plasma layer. Based on the model, the power absorption spectra for six cases are numerically calculated and analyzed. It is shown that the absorption strongly depends on the electron density fluctuant profile, the background electron number density, and the collision frequency. A potential optimum profile is also analyzed and studied with some particular parameters.

Xi Yanbin; Liu Yue [MOE Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

2012-07-15T23:59:59.000Z

154

Tidal flow over threedimensional topography generates outofforcingplane harmonics  

E-Print Network [OSTI]

the barotropic tide [Munk and Wunsch, 1998; Egbert and Ray, 2000]. The transfer of this barotropic energy from energy conversion from the barotropic to the baroclinic tide. The generation of internal waves by tidal circulation is maintained by roughly 2 TW of mixing energy, about half of which is extracted from

Texas at Austin. University of

155

Sandia National Laboratories: wave energy converters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is a partnered effort to develop marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team...

156

MHK Technologies/Sabella subsea tidal turbine | Open Energy Information  

Open Energy Info (EERE)

subsea tidal turbine subsea tidal turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Description It is characterised by a turbine configuration on the seafloor, without impinging on the surface. These turbines are stabilised by gravity and/or are anchored according to the nature of the seafloor. They are pre-orientated in the direction of the tidal currents, and the profile of their symmetrical blades helps to capture the ebb and flow. The rotor activated, at slow speeds (10 to 15 rpm), by the tides powers a generator, which exports the electricity produced to the coast via a submarine cable anchored and embedded at its landfall.

157

MHK Technologies/Tidal Stream Turbine | Open Energy Information  

Open Energy Info (EERE)

Stream Turbine Stream Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Stream Turbine.jpg Technology Profile Primary Organization StatoilHydro co owned by Hammerfest Strong Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description A fully operational 300kW prototype tidal turbine has been running in Norway since 2003 and has achieved good results It s the world s first tidal turbine to supply electricity directly to the onshore grid In the autumn of 2008 Hammerfest Str�m signed an intention agreement with Scottish Power to further develop tidal technology in the UK A 1 MW turbine is currently under development

158

Sandia National Laboratories: Water Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

knowledge and providing design tools for deploying the first generation of wave and tidal energy converter arrays, Sandia is developing a fast-running current energy...

159

Sandia National Laboratories: Water Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is a partnered effort to develop marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team...

160

NREL: Water Power Research Home Page  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Aerial photo of ocean waves breaking as they near the shore. Aerial photo of ocean waves breaking as they near the shore. NREL's water power technologies research leverages 35 years of experience developing renewable energy technologies to support the U.S. Department of Energy Water Power Program's efforts to research, test, evaluate, develop and demonstrate deployment of innovative water power technologies. These include marine and hydrokinetic technologies, a suite of renewable technologies that harness the energy from untapped wave, tidal, current and ocean thermal resources, as well as technologies and processes to improve the efficiency, flexibility, and environmental performance of hydropower generation. The vision of the water power team at NREL is to be an essential partner for the technical development and deployment of water power technologies.

Note: This page contains sample records for the topic "tidal power wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

High power millimeter wave experiment of ITER relevant electron cyclotron heating and current drive system  

SciTech Connect (OSTI)

High power, long pulse millimeter (mm) wave experiments of the RF test stand (RFTS) of Japan Atomic Energy Agency (JAEA) were performed. The system consists of a 1 MW/170 GHz gyrotron, a long and short distance transmission line (TL), and an equatorial launcher (EL) mock-up. The RFTS has an ITER-relevant configuration, i.e., consisted by a 1 MW-170 GHz gyrotron, a mm wave TL, and an EL mock-up. The TL is composed of a matching optics unit, evacuated circular corrugated waveguides, 6-miter bends, an in-line waveguide switch, and an isolation valve. The EL-mock-up is fabricated according to the current design of the ITER launcher. The Gaussian-like beam radiation with the steering capability of 20 deg. - 40 deg. from the EL mock-up was also successfully proved. The high power, long pulse power transmission test was conducted with the metallic load replaced by the EL mock-up, and the transmission of 1 MW/800 s and 0.5 MW/1000 s was successfully demonstrated with no arcing and no damages. The transmission efficiency of the TL was 96%. The results prove the feasibility of the ITER electron cyclotron heating and current drive system.

Takahashi, K.; Kajiwara, K.; Oda, Y.; Kasugai, A.; Kobayashi, N.; Sakamoto, K. [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Doane, J.; Olstad, R. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Henderson, M. [ITER Organization, CS90 046, 13067 St. Paul lez Durance Cedex (France)

2011-06-15T23:59:59.000Z

162

MHK Technologies/Scotrenewables Tidal Turbine SRTT | Open Energy  

Open Energy Info (EERE)

Scotrenewables Tidal Turbine SRTT Scotrenewables Tidal Turbine SRTT < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Scotrenewables Tidal Turbine SRTT.jpg Technology Profile Primary Organization Scotrenewables Project(s) where this technology is utilized *MHK Projects/Scotrenewables EMEC Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description The Scotrenewables Tidal Turbine (SRTT) system is a free-floating rotor-based tidal current energy converter. The concept in its present configuration involves dual counter-rotating horizontal axis rotors driving generators within sub-surface nacelles, each suspended from separate keel and rotor arm sections attached to a single surface-piercing cylindrical buoyancy tube. The device is anchored to the seabed via a yoke arrangement. A separate flexible power and control umbilical line connects the device to a subsea junction box. The rotor arm sections are hinged to allow each two-bladed rotor to be retracted so as to be parallel with the longitudinal axis of the buoyancy tube, giving the system a transport draught of less than 4.5m at full-scale to facilitate towing the device into harbors for maintenance.

163

E-Print Network 3.0 - attenuator wave energy Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in estuaries Summary: is the effectiveness of saltmarsh vegetation in attenuating the energy of both wind and tidal waves and the ensuing... Modelling wave attenuation over the...

164

Maine Deploys First U.S. Commercial, Grid-Connected Tidal Energy Project |  

Broader source: Energy.gov (indexed) [DOE]

Maine Deploys First U.S. Commercial, Grid-Connected Tidal Energy Maine Deploys First U.S. Commercial, Grid-Connected Tidal Energy Project Maine Deploys First U.S. Commercial, Grid-Connected Tidal Energy Project July 24, 2012 - 1:12pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON -- Today, Energy Secretary Steven Chu recognized the nation's first commercial, grid-connected tidal energy project off the coast of Eastport, Maine. Leveraging a $10 million investment from the Energy Department, Ocean Renewable Power Company (ORPC) will deploy its first commercial tidal energy device into Cobscook Bay this summer. The project, which injected $14 million into the local economy and has supported more than 100 local and supply chain jobs, represents the first tidal energy project in the United States with long-term contracts to sell electricity

165

Key issues of tidal energy and factors affecting it globally with civil structures  

Science Journals Connector (OSTI)

This paper focus on some of the key challenges to be met in the development of marine energy, it present prototype form to being a widely deployed contributor to future energy supply of the world. Large-scale wave and tidal current prototypes have been demonstrated around the world, but marine renewable energy technology is still 10-15 years behind that of wind energy. However, having started later, the developing technology can make use of more advanced science and engineering, and it is therefore reasonable to expect rapid progress. Many scientific advances are required to meet these challenges and their likelihood is explored based on current and future capabilities. The paper incorporating aspects of technology, power production effects and capital cost factor implications. The aim is to give grounding in the nature of the industry, the current state of the industry and the key factors which will potentially shape and limit the growth of the industry. This is achieved by evaluating tidal power from technological, environmental and socioeconomic viewpoints.

Kiranben V. Patel; Suvin M. Patel

2010-01-01T23:59:59.000Z

166

Poster presented at the OCEANS'11 Conference, September, 2011 Seeking Optimal Geometry of a Heaving Body for Improved Wave Power  

E-Print Network [OSTI]

1 Poster presented at the OCEANS'11 Conference, September, 2011 Seeking Optimal Geometry of a Heaving Body for Improved Wave Power Absorption Efficiency Rachael Hager, Nelson Fernandez and Michelle H power absorption efficiency with various shaped bodies. The goal is to optimize the geometry of a two

167

High-Harmonic Fast-Wave Power Flow along Magnetic Field Lines in the Scrape-Off Layer of NSTX  

Science Journals Connector (OSTI)

A significant fraction of high-harmonic fast-wave (HHFW) power applied to NSTX can be lost to the scrape-off layer (SOL) and deposited in bright and hot spirals on the divertor rather than in the core plasma. We show that the HHFW power flows to these spirals along magnetic field lines passing through the SOL in front of the antenna, implying that the HHFW power couples across the entire width of the SOL rather than mostly at the antenna face. This result will help guide future efforts to understand and minimize these edge losses in order to maximize fast-wave heating and current drive.

R. J. Perkins; J. C. Hosea; G. J. Kramer; J.-W. Ahn; R. E. Bell; A. Diallo; S. Gerhardt; T. K. Gray; D. L. Green; E. F. Jaeger; M. A. Jaworski; B. P. LeBlanc; A. McLean; R. Maingi; C. K. Phillips; L. Roquemore; P. M. Ryan; S. Sabbagh; G. Taylor; J. R. Wilson

2012-07-27T23:59:59.000Z

168

High-Harmonic Fast-Wave Power Flow Along Magnetic Field Lines in the Scrape-Off Layer of NSTX  

SciTech Connect (OSTI)

A significant fraction of high-harmonic fast-wave (HHFW) power applied to NSTX can be lost to the scrape-off layer (SOL) and deposited in bright and hot spirals on the divertor rather than in the core plasma. We show that the HHFW power flows to these spirals along magnetic field lines passing through the SOL in front of the antenna, implying that the HHFW power couples across the entire width of the SOL rather than mostly at the antenna face. This result will help guide future efforts to understand and minimize these edge losses in order to maximize fast-wave heating and current drive.

Perkins, R. J. [Princeton Plasma Physics Laboratory (PPPL); Hosea, J. [Princeton Plasma Physics Laboratory (PPPL); Kramer, G. [Princeton Plasma Physics Laboratory (PPPL); Ahn, Joonwook [ORNL; Bell, R. E. [Princeton Plasma Physics Laboratory (PPPL); Diallo, A. [Princeton Plasma Physics Laboratory (PPPL); Gerhardt, S. [Princeton Plasma Physics Laboratory (PPPL); Gray, T. K. [Oak Ridge National Laboratory (ORNL); Green, David L [ORNL; Jaeger, Erwin Frederick [ORNL; Jaworski, M. A. [Princeton Plasma Physics Laboratory (PPPL); LeBlanc, B [Princeton Plasma Physics Laboratory (PPPL); McLean, Adam G [ORNL; Maingi, Rajesh [ORNL; Phillips, C. K. [Princeton Plasma Physics Laboratory (PPPL); Roquemore, L. [Princeton Plasma Physics Laboratory (PPPL); Ryan, Philip Michael [ORNL; Sabbagh, S. A. [Columbia University; Taylor, G. [Princeton Plasma Physics Laboratory (PPPL); Wilson, J. R. [Princeton Plasma Physics Laboratory (PPPL)

2012-01-01T23:59:59.000Z

169

Waves  

E-Print Network [OSTI]

Waves is the supporting document to the Master of Fine Arts thesis exhibition of the same title. Exhibited March 7-12 2010 in the Art and Design Gallery at the University of Kansas, Waves was comprised of a series of mixed media drawings...

LaCure, Mari Mae

2010-04-29T23:59:59.000Z

170

Fast-wave power flow along SOL field lines in NSTX and the associated power deposition profile across the SOL in front of the antenna  

Science Journals Connector (OSTI)

Fast-wave heating and current drive efficiencies can be reduced by a number of processes in the vicinity of the antenna and in the scrape-off layer (SOL). On NSTX from around 25% to more than 60% of the high-harmonic fast-wave power can be lost to the SOL regions, and a large part of this lost power flows along SOL magnetic field lines and is deposited in bright spirals on the divertor floor and ceiling. We show that field-line mapping matches the location of heat deposition on the lower divertor, albeit with a portion of the heat outside of the predictions. The field-line mapping can then be used to partially reconstruct the profile of lost fast-wave power at the midplane in front of the antenna, and the losses peak close to the last closed flux surface as well as the antenna. This profile suggests a radial standing-wave pattern formed by fast-wave propagation in the SOL, and this hypothesis will be tested on NSTX-U. RF codes must reproduce these results so that such codes can be used to understand this edge loss and to minimize RF heat deposition and erosion in the divertor region on ITER.

R.J. Perkins; J.-W. Ahn; R.E. Bell; A. Diallo; S. Gerhardt; T.K. Gray; D.L. Green; E.F. Jaeger; J.C. Hosea; M.A. Jaworski; B.P. LeBlanc; G.J. Kramer; A. McLean; R. Maingi; C.K. Phillips; M. Podestà; L. Roquemore; P.M. Ryan; S. Sabbagh; F. Scotti; G. Taylor; J.R. Wilson

2013-01-01T23:59:59.000Z

171

Fast-wave Power Flow Along SOL Field Lines In NSTX nd The Associated Power Deposition Profile Across The SOL In Front Of The Antenna  

SciTech Connect (OSTI)

Fast-wave heating and current drive efficiencies can be reduced by a number of processes in the vicinity of the antenna and in the scrape off layer (SOL). On NSTX from around 25% to more than 60% of the high-harmonic fast-wave power can be lost to the SOL regions, and a large part of this lost power flows along SOL magnetic field lines and is deposited in bright spirals on the divertor floor and ceiling. We show that field-line mapping matches the location of heat deposition on the lower divertor, albeit with a portion of the heat outside of the predictions. The field-line mapping can then be used to partially reconstruct the profile of lost fast-wave power at the midplane in front of the antenna, and the losses peak close to the last closed flux surface (LCFS) as well as the antenna. This profile suggests a radial standing-wave pattern formed by fast-wave propagation in the SOL, and this hypothesis will be tested on NSTX-U. Advanced RF codes must reproduce these results so that such codes can be used to understand this edge loss and to minimize RF heat deposition and erosion in the divertor region on ITER.

Perkins, Roy

2013-06-21T23:59:59.000Z

172

Water Power News | Department of Energy  

Energy Savers [EERE]

12, 2015 Energy Department Announces 8 Million to Develop Advanced Components for Wave, Tidal, and Current Energy Systems The Energy Department today announced 8 million...

173

Seasonal variations of semidiurnal tidal perturbations in mesopause region temperature and zonal and meridional winds above  

E-Print Network [OSTI]

.1029/2007JD009687. 1. Introduction [2] Solar thermal tides are global-scale waves that dom- inate to conserve wave energy. When propagating into the MLT region, the horizontal wind tidal amplitude can reach with fluorescence lidar's advantages of high temporal and spatial resolution and the capability of full diurnal

174

Earth Tidal Analysis | Open Energy Information  

Open Energy Info (EERE)

Earth Tidal Analysis Earth Tidal Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Earth Tidal Analysis Details Activities (6) Areas (4) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Well Testing Techniques Information Provided by Technique Lithology: Enables estimation of in-situ reservoir elastic parameters. Stratigraphic/Structural: Hydrological: Enables estimation of in-situ reservoir hydraulic parameters. Thermal: Dictionary.png Earth Tidal Analysis: Earth tidal analysis is the measurement of the impact of tidal and barometric fluctuations on effective pore volume in a porous reservoir. Other definitions:Wikipedia Reegle

175

MHK Technologies/Tidal Hydraulic Generators THG | Open Energy Information  

Open Energy Info (EERE)

Generators THG Generators THG < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Hydraulic Generators THG.jpg Technology Profile Primary Organization Tidal Hydraulic Generators Ltd Project(s) where this technology is utilized *MHK Projects/Ramsey Sound Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The concept of generating energy in this way is made unique by our novel design feature. The generator, devised in 1998, is a hydraulic accumulator system, involving relatively small revolving blades which gather power to a central collector, where electricity is generated. The generator, which is situated under water, is 80 metres square, stands at 15 metres high, and is designed to run for a minimum of ten years without service.

176

Aquamarine Power Airtricity JV | Open Energy Information  

Open Energy Info (EERE)

Aquamarine Power Airtricity JV Aquamarine Power Airtricity JV Jump to: navigation, search Name Aquamarine Power & Airtricity JV Place United Kingdom Product Joint Venture between Aquamarine Power and Airtricity to develop tidal and wave projects in UK and Ireland. References Aquamarine Power & Airtricity JV[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Aquamarine Power & Airtricity JV is a company located in United Kingdom . References ↑ "Aquamarine Power & Airtricity JV" Retrieved from "http://en.openei.org/w/index.php?title=Aquamarine_Power_Airtricity_JV&oldid=342262" Categories: Clean Energy Organizations Companies Organizations Stubs What links here

177

Tidal Electric | Open Energy Information  

Open Energy Info (EERE)

Electric Electric Jump to: navigation, search Name Tidal Electric Place London, Greater London, United Kingdom Zip SW19 8UY Product Developed a technology named 'tidal lagoons' to build tidal electric projects. Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

178

Derivation of Power from Tidal Waters  

Science Journals Connector (OSTI)

... for carrying out large works are so great that they are difficult to realise. The hydroelectric installations in those days were so few in number and so unimportant in effect, ... energy by damming the stream at a convenient place to obtain a working head for turbines; the difference in level of the stream above and below the dam being but ...

C. A. BATTISCOMBE

1913-08-28T23:59:59.000Z

179

Assessing wave energy effects on biodiversity: the Wave Hub experience  

Science Journals Connector (OSTI)

...effects of wave energy on biodiversity...accelerate the implementation of wave energy, within a coherent...in the form of wind, wave and tidal...Rajapandian2007A review of wind energy technologiesRenew...emergence and the challenges it facesRefocus...

2012-01-01T23:59:59.000Z

180

Low Power Body Sensor Network for Wireless ECG Based on Relaying of Creeping Waves at 2.4GHz1  

E-Print Network [OSTI]

Low Power Body Sensor Network for Wireless ECG Based on Relaying of Creeping Waves at 2.4GHz1 Engineering Rochester Institute of Technology Abstract- A wireless communication platform for ECG operating applications that demand higher data rates than ECG.1 I. INTRODUCTION The Electrocardiogram (ECG) [1

Tsouri, Gill

Note: This page contains sample records for the topic "tidal power wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

GLOBAL CHANGE AND TIDAL FRESHWATER WETLANDS  

E-Print Network [OSTI]

Chapter 23 GLOBAL CHANGE AND TIDAL FRESHWATER WETLANDS: SCENARIOS AND IMPACTS Scott C. Neubauer Tidal Freshwater Wetlands, edited by Aat Barendregt, Dennis Whigham & Andrew Baldwin 2009, viii + 320pp Publishers GmbH This chapter was originally published in the book ,,Tidal Freshwater Wetlands". The copy

Neubauer, Scott C.

182

Waves  

Science Journals Connector (OSTI)

The fractal behavior of accidents like the Fukushima dai-ichi disaster gives scientists a tool ... by the projection of nuclear power incidents going forward, in Fig. 1.4c. The likelihood of a reportable incident...

Ted G. Lewis

2014-01-01T23:59:59.000Z

183

Universal power spectra for acoustic turbulence: Applications to wind waves, 1/f noise, and classical second sound  

Science Journals Connector (OSTI)

A continuum pumped full of waveenergy at an amplitude sufficiently large so that reversible nonlinearities dominate irreversible linear response becomes waveturbulent. In the limit of high nonlinearity acoustic turbulence and wind waveturbulence accumulate at 1/f and 1/f 5 power spectra respectively. A waveturbulent system can support new propagating energy modes analogous to second sound in superfluid He4. This hyperbolic (nondiffusive) transport could account for the anomalous diffusivity observed in plasma devices and for the difficulties faced in achieving confinement. The key to the understanding of these phenomena is the nonlinearity in the continuum mechanics which leads to three basic effects: (1) scattering of sound by sound to produce waves with sum and difference frequencies; (2) refraction of waves by a slowly varying (inhomogeneous) background; (3) reaction of the background due to changes in the distribution of sound waves. Details of these processes are presented in the framework of the Euler equations.

Seth Putterman; A. Larraza; P. H. Roberts

1986-01-01T23:59:59.000Z

184

Tidally-induced thermonuclear Supernovae  

E-Print Network [OSTI]

We discuss the results of 3D simulations of tidal disruptions of white dwarfs by moderate-mass black holes as they may exist in the cores of globular clusters or dwarf galaxies. Our simulations follow self-consistently the hydrodynamic and nuclear evolution from the initial parabolic orbit over the disruption to the build-up of an accretion disk around the black hole. For strong enough encounters (pericentre distances smaller than about 1/3 of the tidal radius) the tidal compression is reversed by a shock and finally results in a thermonuclear explosion. These explosions are not restricted to progenitor masses close to the Chandrasekhar limit, we find exploding examples throughout the whole white dwarf mass range. There is, however, a restriction on the masses of the involved black holes: black holes more massive than $2\\times 10^5$ M$_\\odot$ swallow a typical 0.6 M$_\\odot$ dwarf before their tidal forces can overwhelm the star's self-gravity. Therefore, this mechanism is characteristic for black holes of moderate masses. The material that remains bound to the black hole settles into an accretion disk and produces an X-ray flare close to the Eddington limit of $L_{\\rm Edd} \\simeq 10^{41} {\\rm erg/s} M_{\\rm bh}/1000 M$_\\odot$), typically lasting for a few months. The combination of a peculiar thermonuclear supernova together with an X-ray flare thus whistle-blows the existence of such moderate-mass black holes. The next generation of wide field space-based instruments should be able to detect such events.

S. Rosswog; E. Ramirez-Ruiz; W. R. Hix

2008-11-13T23:59:59.000Z

185

Planetary waves in the upper stratosphere and lower mesosphere during 2009 Arctic major stratospheric warming  

E-Print Network [OSTI]

J. M. : The quasi-two-day wave studied using the Northernview of nonlinear water waves: the Hilbert spectrum, Annu.Pancheva, D. V. : Quasi-2-day wave and tidal variability

Kishore, P.; Velicogna, I.; Venkat Ratnam, M.; Jiang, J. H; Madhavi, G. N

2012-01-01T23:59:59.000Z

186

Riding the Clean Energy Wave: New Projects Aim to Improve Water Power Devices  

Broader source: Energy.gov [DOE]

The Energy Department announces two projects as part of a larger effort to deploy innovative technologies for clean, domestic power generation from water power resources.

187

TIDAL FRICTION AND TIDAL LAGGING. APPLICABILITY LIMITATIONS OF A POPULAR FORMULA FOR THE TIDAL TORQUE  

SciTech Connect (OSTI)

Tidal torques play a key role in rotational dynamics of celestial bodies. They govern these bodies' tidal despinning and also participate in the subtle process of entrapment of these bodies into spin-orbit resonances. This makes tidal torques directly relevant to the studies of habitability of planets and their moons. Our work begins with an explanation of how friction and lagging should be built into the theory of bodily tides. Although much of this material can be found in various publications, a short but self-consistent summary on the topic has been lacking in the hitherto literature, and we are filling the gap. After these preparations, we address a popular concise formula for the tidal torque, which is often used in the literature, for planets or stars. We explain why the derivation of this expression, offered in the paper by Goldreich and in the books by Kaula (Equation (4.5.29)) and Murray and Dermott (Equation (4.159)), implicitly sets the time lag to be frequency independent. Accordingly, the ensuing expression for the torque can be applied only to bodies having a very special (and very hypothetical) rheology which makes the time lag frequency independent, i.e., the same for all Fourier modes in the spectrum of tide. This expression for the torque should not be used for bodies of other rheologies. Specifically, the expression cannot be combined with an extra assertion of the geometric lag being constant, because at finite eccentricities the said assumption is incompatible with the constant-time-lag condition.

Efroimsky, Michael; Makarov, Valeri V., E-mail: michael.efroimsky@usno.navy.mil, E-mail: vvm@usno.navy.mil [US Naval Observatory, Washington, DC 20392 (United States)

2013-02-10T23:59:59.000Z

188

Modeling Tidal Stream Energy Extraction and its Effects on Transport Processes in a Tidal Channel and Bay System Using a Three-dimensional Coastal Ocean Model  

SciTech Connect (OSTI)

This paper presents a numerical modeling study for simulating in-stream tidal energy extraction and assessing its effects on the hydrodynamics and transport processes in a tidal channel and bay system connecting to coastal ocean. A marine and hydrokinetic (MHK) module was implemented in a three-dimensional (3-D) coastal ocean model using the momentum sink approach. The MHK model was validated with the analytical solutions for tidal channels under one-dimensional (1-D) conditions. Model simulations were further carried out to compare the momentum sink approach with the quadratic bottom friction approach. The effects of 3-D simulations on the vertical velocity profile, maximum extractable energy, and volume flux reduction across the channel were investigated through a series of numerical experiments. 3-D model results indicate that the volume flux reduction at the maximum extractable power predicted by the 1-D analytical model or two-dimensional (2-D) depth-averaged numerical model may be overestimated. Maximum extractable energy strongly depends on the turbine hub height in the water column, and which reaches a maximum when turbine hub height is located at mid-water depth. Far-field effects of tidal turbines on the flushing time of the tidal bay were also investigated. Model results demonstrate that tidal energy extraction has a greater effect on the flushing time than volume flux reduction, which could negatively affect the biogeochemical processes in estuarine and coastal waters that support primary productivity and higher forms of marine life.

Yang, Zhaoqing; Wang, Taiping; Copping, Andrea E.

2013-02-28T23:59:59.000Z

189

Surface and internal semidiurnal tides and tidally induced diapycnal diffusion in the Barents Sea: a numerical study  

Science Journals Connector (OSTI)

Abstract The simulation results for the surface and internal semidiurnal tides in the Barents Sea are presented. A modified version of the finite-element hydrostatic model QUODDY-4 is taken as a basis. The simulated surface tide agrees in a qualitative sense with the results obtained previously by other authors, but quantitative discrepancies are significant. The predicted internal tide belongs to the family of trapped waves. Their generation sites are located in regions of frequent internal tidal wave (ITW) detection by remote sensing. Here, the maximum baroclinic tidal velocities have a clear expressed mode-one (corresponding to the first baroclinic mode) vertical structure. This is also true for the averaged (over a tidal cycle) local density of baroclinic tidal energy. For the no-ice case, the averaged (over a tidal cycle) local rate of baroclinic tidal energy dissipation is enhanced as the bottom is approached. A comparison of the predicted tidally induced values of the depth-averaged diapycnal diffusivity with typical estimates of the combined vertical eddy diffusivity in oceans of mid- and lower latitudes, determined by the wind and thermohaline forcings, indicates that they either have the same order of magnitude or these values are larger than the latter. It follows that the contribution of tides is not negligible for the Barents Sea climate.

B.A. Kagan; E.V. Sofina

2014-01-01T23:59:59.000Z

190

Tocardo Tidal Energy Ltd | Open Energy Information  

Open Energy Info (EERE)

Tocardo Tidal Energy Ltd Address: De Weel 20 Place: Zijdewind Zip: 1736KB Region: Netherlands Sector: Marine and Hydrokinetic Phone Number: 31 226 423411 Website: http:...

191

Water Power Forum | OpenEI Community  

Open Energy Info (EERE)

Water Power Forum Water Power Forum Home > Water Power Forum > Posts by term Content Group Activity By term Q & A Feeds CBS (1) community (1) Cost (1) Current (1) current energy (1) DOE (1) forum (1) gateway (1) GMREC (1) LCOE (2) levelized cost of energy (1) marine energy (1) MHK (1) numerical modeling (1) ocean energy (1) OpenEI (1) Performance (1) Tidal (1) Water power (1) Wave (1) Groups Menu You must login in order to post into this group. Recent content MHK LCOE Reporting Guidance Draft MHK Cost Breakdown Structure Draft Global Marine Renewable Energy Conference (GMREC) OpenEI launches new Water Power Gateway and Community Forum Group members (8) Managers: Graham7781 Recent members: Gdavis Jim mcveigh Ocop Thomas.heibel NickL Kch Rmckeel 429 Throttled (bot load) Error 429 Throttled (bot load)

192

Category:Earth Tidal Analysis | Open Energy Information  

Open Energy Info (EERE)

Geothermalpower.jpg Looking for the Earth Tidal Analysis page? For detailed information on Earth Tidal Analysis, click here. Category:Earth Tidal Analysis Add.png Add a new Earth...

193

Calculation of the thrust of a wave-powered marine propelling device  

SciTech Connect (OSTI)

A scheme for calculating the thrust of a wave propelling device with limiters is proposed. The scheme can be extended to similar propelling devices with a more complex wing suspension or a more complex wing system.

Konstantinov, G.A.; Yakimov, Yu.L.

1995-11-01T23:59:59.000Z

194

Tidal Capture of Stars by Intermediate-Mass Black Holes  

E-Print Network [OSTI]

Recent X-ray observations and theoretical modelling have made it plausible that some ultraluminous X-ray sources (ULX) are powered by intermediate-mass black holes (IMBHs). N-body simulations have also shown that runaway merging of stars in dense star clusters is a way to form IMBHs. In the present paper we have performed N-body simulations of young clusters such as MGG-11 of M82 in which IMBHs form through runaway merging. We took into account the effect of tidal heating of stars by the IMBH to study the tidal capture and disruption of stars by IMBHs. Our results show that the IMBHs have a high chance of capturing stars through tidal heating within a few core relaxation times and we find that 1/3 of all runs contain a ULX within the age limits of MGG-11, a result consistent with the fact that a ULX is found in this galaxy. Our results strengthen the case for some ULX being powered by intermediate-mass black holes.

H. Baumgardt; C. Hopman; S. Portegies Zwart; J. Makino

2005-11-27T23:59:59.000Z

195

Tidal Love Numbers of Neutron Stars  

SciTech Connect (OSTI)

For a variety of fully relativistic polytropic neutron star models we calculate the star's tidal Love number k{sub 2}. Most realistic equations of state for neutron stars can be approximated as a polytrope with an effective index n {approx} 0.5-1.0. The equilibrium stellar model is obtained by numerical integration of the Tolman-Oppenheimer-Volkhov equations. We calculate the linear l = 2 static perturbations to the Schwarzschild spacetime following the method of Thorne and Campolattaro. Combining the perturbed Einstein equations into a single second-order differential equation for the perturbation to the metric coefficient g{sub tt} and matching the exterior solution to the asymptotic expansion of the metric in the star's local asymptotic rest frame gives the Love number. Our results agree well with the Newtonian results in the weak field limit. The fully relativistic values differ from the Newtonian values by up to {approx}24%. The Love number is potentially measurable in gravitational wave signals from inspiralling binary neutron stars.

Hinderer, Tanja [Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853 (United States)], E-mail: tph25@cornell.edu

2008-04-20T23:59:59.000Z

196

TWO NEW TIDALLY DISTORTED WHITE DWARFS  

SciTech Connect (OSTI)

We identify two new tidally distorted white dwarfs (WDs), SDSS J174140.49+652638.7 and J211921.96-001825.8 (hereafter J1741 and J2119). Both stars are extremely low mass (ELM, {<=} 0.2 M{sub Sun }) WDs in short-period, detached binary systems. High-speed photometric observations obtained at the McDonald Observatory reveal ellipsoidal variations and Doppler beaming in both systems; J1741, with a minimum companion mass of 1.1 M{sub Sun }, has one of the strongest Doppler beaming signals ever observed in a binary system (0.59% {+-} 0.06% amplitude). We use the observed ellipsoidal variations to constrain the radius of each WD. For J1741, the star's radius must exceed 0.074 R{sub Sun }. For J2119, the radius exceeds 0.10 R{sub Sun }. These indirect radius measurements are comparable to the radius measurements for the bloated WD companions to A-stars found by the Kepler spacecraft, and they constitute some of the largest radii inferred for any WD. Surprisingly, J1741 also appears to show a 0.23% {+-} 0.06% reflection effect, and we discuss possible sources for this excess heating. Both J1741 and J2119 are strong gravitational wave sources, and the time-of-minimum of the ellipsoidal variations can be used to detect the orbital period decay. This may be possible on a timescale of a decade or less.

Hermes, J. J.; Montgomery, M. H.; Winget, D. E. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Kilic, Mukremin [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK 73019 (United States); Brown, Warren R., E-mail: jjhermes@astro.as.utexas.edu [Smithsonian Astrophysical Observatory, 60 Garden St, Cambridge, MA 02138 (United States)

2012-04-10T23:59:59.000Z

197

Ultrafast ignition with relativistic shock waves induced by high power lasers  

E-Print Network [OSTI]

In this paper we consider laser intensities larger than $10^{16} W/cm^2$ where the ablation pressure is negligible in comparison with the radiation pressure. The radiation pressure is caused by the ponderomotive force acting mainly on the electrons that are separated from the ions to create a double layer (DL). This DL is accelerated into the target, like a piston that pushes the matter in such a way that a shock wave is created. Here we discuss two novel ideas. First is the transition domain between the relativistic and non-relativistic laser induced shock waves. Our solution is based on relativistic hydrodynamics also for the above transition domain. The relativistic shock wave parameters, such as compression, pressure, shock wave and particle flow velocities, sound velocity and rarefaction wave velocity in the compressed target, and the temperature are calculated. Secondly, we would like to use this transition domain for shock wave induced ultrafast ignition of a pre-compressed target. The laser parameters...

Eliezer, Shalom; Pinhasi, Shirly Vinikman; Raicher, Erez; Val, José Maria Martinez

2014-01-01T23:59:59.000Z

198

Under-estimation of the UK Tidal David J.C. MacKay  

E-Print Network [OSTI]

of the flow of energy in a tidal wave. In a shallow-water-wave model of tide, the true flow of en- ergy is greater than the Black-and-Veatch flow by a factor of d/h, where d is the water depth and h is the tide on the DTI Energy Review, Salter [2005] suggests that this standard figure may well be an under-estimate (see

MacKay, David J.C.

199

All Eyes on Eastport: Tidal Energy Project Brings Change, Opportunity to  

Broader source: Energy.gov (indexed) [DOE]

All Eyes on Eastport: Tidal Energy Project Brings Change, All Eyes on Eastport: Tidal Energy Project Brings Change, Opportunity to Local Community All Eyes on Eastport: Tidal Energy Project Brings Change, Opportunity to Local Community July 24, 2012 - 2:40pm Addthis Captain Gerald "Gerry" Morrison, Vice President of Perry Marine & Consctruction. | Photo Courtesy of Ocean Renewable Power Company. Captain Gerald "Gerry" Morrison, Vice President of Perry Marine & Consctruction. | Photo Courtesy of Ocean Renewable Power Company. Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs Today in Eastport, Maine, people are gathering to celebrate a project that will harness the power of the massive tides of Cobscook Bay to generate clean electricity. At a public dedication event this afternoon, Portland-based Ocean Renewable

200

Shelf?break tidally induced environmental influences on acoustic propagation  

Science Journals Connector (OSTI)

Continuous wave propagation in the 100–500 Hz band in littoral regions depends upon both time?dependent oceanography and bathymetry. The environmental influences interact nonlinearly in the acoustical time variation especially since the diurnal tidesurface height changes creates time?dependent total water depth. A submesoscale hydrodynamic model developed by Shen and Evans is used with tidal forcing and a simple shelf?break bathymetry to produce surface height variation and internal wave activity due to internal tide in a stratified ocean environment. A three?dimensional parabolic equation acoustic model is used to acoustically probe this environment at various bearings relative to the shelf break and the resulting internal tidal dynamics. In particular the acoustical results are examined for three?dimensional effects such as horizontal refraction. First the influence of bathymetry alone is shown and then compared to the full environment due to hydrodynamic action. The relative influences will then be compared by various measures such as modal decomposition acoustic energy summed over depth and signal gain degradation. [This research is sponsored by the ONR.

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "tidal power wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

The role of tides in shelf-scale simulations of the wave energy resource  

Science Journals Connector (OSTI)

Abstract Many regions throughout the world that are suitable for exploitation of the wave energy resource also experience large tidal ranges and associated strong tidal flows. However, tidal effects are not included in the majority of modelling studies which quantify the wave energy resource. This research attempts to quantify the impact of tides on the wave energy resource of the northwest European shelf seas, a region with a significant wave energy resource, and where many wave energy projects are under development. Results of analysis based on linear wave theory, and the application of a non-linear coupled wave-tide model (SWAN–ROMS), suggest that the impact of tides is significant, and can exceed 10% in some regions of strong tidal currents (e.g. headlands). Results also show that the effect of tidal currents on the wave resource is much greater than the contribution of variations in tidal water depth, and that regions which experience lower wave energy (and hence shorter wave periods) are more affected by tides than high wave energy regions. While this research provides general guidelines on the scale of the impact in regions of strong tidal flow, high resolution site-specific coupled wave-tide models are necessary for more detailed analysis.

M. Reza Hashemi; Simon P. Neill

2014-01-01T23:59:59.000Z

202

Tidal Heating of Extra-Solar Planets  

E-Print Network [OSTI]

Extra-solar planets close to their host stars have likely undergone significant tidal evolution since the time of their formation. Tides probably dominated their orbital evolution once the dust and gas had cleared away, and as the orbits evolved there was substantial tidal heating within the planets. The tidal heating history of each planet may have contributed significantly to the thermal budget that governed the planet's physical properties, including its radius, which in many cases may be measured by observing transit events. Typically, tidal heating increases as a planet moves inward toward its star and then decreases as its orbit circularizes. Here we compute the plausible heating histories for several planets with measured radii, using the same tidal parameters for the star and planet that had been shown to reconcile the eccentricity distribution of close-in planets with other extra-solar planets. Several planets are discussed, including for example HD 209458 b, which may have undergone substantial tidal heating during the past billion years, perhaps enough to explain its large measured radius. Our models also show that GJ 876 d may have experienced tremendous heating and is probably not a solid, rocky planet. Theoretical models should include the role of tidal heating, which is large, but time-varying.

Brian Jackson; Richard Greenberg; Rory Barnes

2008-02-29T23:59:59.000Z

203

The slow-mode nature of compressible wave power in solar wind turbulence  

E-Print Network [OSTI]

We use a large, statistical set of measurements from the Wind spacecraft at 1 AU, and supporting synthetic spacecraft data based on kinetic plasma theory, to show that the compressible component of inertial range solar wind turbulence is primarily in the kinetic slow mode. The zero-lag cross correlation C(delta n, delta B_parallel) between proton density fluctuations delta n and the field-aligned (compressible) component of the magnetic field delta B_parallel is negative and close to -1. The typical dependence of C(delta n,delta B_parallel) on the ion plasma beta_i is consistent with a spectrum of compressible wave energy that is almost entirely in the kinetic slow mode. This has important implications for both the nature of the density fluctuation spectrum and for the cascade of kinetic turbulence to short wavelengths, favoring evolution to the kinetic Alfven wave mode rather than the (fast) whistler mode.

Howes, G G; Klein, K G; Chen, C H K; Salem, C S; TenBarge, J M

2011-01-01T23:59:59.000Z

204

Modeling and experimental verification of electric and magnetic fields generated by undersea power transmission cables.  

E-Print Network [OSTI]

??As interest grows in developing devices to harvest energy from ocean waves, tidal currents, and offshore wind, concerns over possible environmental effects from such devices… (more)

York, Charles E.

2010-01-01T23:59:59.000Z

205

Energy Department Releases New Energy 101 Video on Ocean Power | Department  

Broader source: Energy.gov (indexed) [DOE]

Energy 101 Video on Ocean Power Energy 101 Video on Ocean Power Energy Department Releases New Energy 101 Video on Ocean Power April 30, 2013 - 12:40pm Addthis See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings and cities. Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy FIND OUT MORE Read about the Energy Department's assessments of wave and tidal energy resources. You've probably seen water at work generating electricity at dams and other hydropower facilities in your region. But an emerging clean energy technology called marine and hydrokinetic (MHK) energy -- or ocean power -- uses water to generate electricity in a different way, and has yet to get

206

Energy Department Releases New Energy 101 Video on Ocean Power | Department  

Broader source: Energy.gov (indexed) [DOE]

Energy Department Releases New Energy 101 Video on Ocean Power Energy Department Releases New Energy 101 Video on Ocean Power Energy Department Releases New Energy 101 Video on Ocean Power April 30, 2013 - 12:40pm Addthis See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings and cities. Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy FIND OUT MORE Read about the Energy Department's assessments of wave and tidal energy resources. You've probably seen water at work generating electricity at dams and other hydropower facilities in your region. But an emerging clean energy technology called marine and hydrokinetic (MHK) energy -- or ocean power -- uses water to generate electricity in a different way, and has yet to get

207

Key features of wave energy  

Science Journals Connector (OSTI)

...strong analogy with a wind or tidal turbine, where the power is the product of the...Instead, we shed power above a certain modest wind speed (the rated speed...without reducing the wind force F (and thus the power), by making the turbine...

2012-01-01T23:59:59.000Z

208

High-power and wavelength-tunable traveling-wave semiconductor ring laser  

E-Print Network [OSTI]

in Fig. 3, to direct the TM-mode light to a 50/50 beamsplitter, which deflects 50% of the light out of the ring cavity. With the combination of a Faraday rotator and a X/2-plate, we can operate the ring laser unidirectionally. The direction... of the traveling wave is as indicated in Fig. 1. Unidirectional propagation of light can be achieved as follows: The Faraday rotator is used to rotate the polarization of the light that comes from the k/2-plate by 45', say in the clockwise direction...

Peng, En Titus

2012-06-07T23:59:59.000Z

209

Three-dimensional Numerical Analysis on Blade Response of Vertical Axis Tidal Current Turbine Under Operational Condition  

SciTech Connect (OSTI)

Tidal power as a large-scale renewable source of energy has been receiving significant attention recently because of its advantages over the wind and other renewal energy sources. The technology used to harvest energy from tidal current is called a tidal current turbine. Though some of the principles of wind turbine design are applicable to tidal current turbines, the design of latter ones need additional considerations like cavitation damage, corrosion etc. for the long-term reliability of such turbines. Depending up on the orientation of axis, tidal current turbines can be classified as vertical axis turbines or horizontal axis turbines. Existing studies on the vertical axis tidal current turbine focus more on the hydrodynamic aspects of the turbine rather than the structural aspects. This paper summarizes our recent efforts to study the integrated hydrodynamic and structural aspects of the vertical axis tidal current turbines. After reviewing existing methods in modeling tidal current turbines, we developed a hybrid approach that combines discrete vortex method -finite element method that can simulate the integrated hydrodynamic and structural response of a vertical axis turbine. This hybrid method was initially employed to analyze a typical three-blade vertical axis turbine. The power coefficient was used to evaluate the hydrodynamic performance, and critical deflection was considered to evaluate the structural reliability. A sensitivity analysis was also conducted with various turbine height-to-radius ratios. The results indicate that both the power output and failure probability increase with the turbine height, suggesting a necessity for optimal design. An attempt to optimize a 3-blade vertical axis turbine design with hybrid method yielded a ratio of turbine height to radius (H/R) about 3.0 for reliable maximum power output.

Li, Ye; Karri, Naveen K.; Wang, Qi

2014-04-30T23:59:59.000Z

210

Overturning circulation driven by breaking internal waves in the deep ocean  

E-Print Network [OSTI]

A global estimate of the water-mass transformation by internal wave-driven mixing in the deep ocean is presented. The estimate is based on the energy conversion from tidal and geostrophic motions into internal waves combined ...

Nikurashin, Maxim

211

Interferometric adaptive optics for high power laser pointing, wave-front control and phasing  

SciTech Connect (OSTI)

Implementing the capability to perform fast ignition experiments, as well as, radiography experiments on the National Ignition Facility (NIF) places stringent requirements on the control of each of the beam's pointing and overall wavefront quality. One quad of the NIF beams, 4 beam pairs, will be utilized for these experiments and hydrodynamic and particle-in-cell simulations indicate that for the fast ignition experiments, these beams will be required to deliver 50% (4.0 kJ) of their total energy (7.96 kJ) within a 40 {micro}m diameter spot at the end of a fast ignition cone target. This requirement implies a stringent pointing and overall phase conjugation error budget on the adaptive optics system used to correct these beam lines. The overall encircled energy requirement is more readily met by phasing of the beams in pairs but still requires high Strehl ratios, Sr, and rms tip/tilt errors of approximately one {micro}rad. To accomplish this task we have designed an interferometric adaptive optics system capable of beam pointing, high Strehl ratio and beam phasing with a single pixilated MEMS deformable mirror and interferometric wave-front sensor. We present the design of a testbed used to evaluate the performance of this wave-front sensor below along with simulations of its expected performance level.

Baker, K L; Stappaerts, E A; Homoelle, D C; Henesian, M A; Bliss, E S; Siders, C W; Barty, C J

2009-01-21T23:59:59.000Z

212

Definition: Concentrating solar power | Open Energy Information  

Open Energy Info (EERE)

Dictionary.png Dictionary.png Concentrating solar power Technologies that use mirrors to reflect and concentrate sunlight onto receivers that collect solar energy and convert it to heat. This thermal energy can then be used to produce electricity via a steam turbine or heat engine that drives a generator.[1][2] View on Wikipedia Wikipedia Definition . ]] File:El-v-01 ubt. jpeg Sustainable energy Renewable energy Anaerobic digestion Hydroelectricity · Geothermal Microgeneration · Solar Tidal · Wave · Wind Energy conservation Cogeneration · Energy efficiency Geothermal heat pump Green building · Passive Solar Sustainable transport Plug-in hybrids · Electric vehicles File:Terra- edge blur. png Environment Portal v · d · e Concentrated solar power (also called concentrating solar power, concentrated solar thermal, and CSP) systems use

213

High power, continuous-wave ytterbium-doped fiber laser tunable from 976 to 1120 nm  

E-Print Network [OSTI]

narrow linewidth double-clad fiber ring laser," Opt. Express 10(2), 139­144 (2002). 6. A. Silva, K. J. Paschotta, A. C. Tropper, and D. C. Hanna, "Ring-doped cladding-pumped single- mode three-level fiber laser, and T. Thomas, "Efficient high power Yb3þ-silica fibre laser cladding-pumped at 1064 nm," Opt. Commun

Paris-Sud XI, Université de

214

MHK Technologies/Current Power | Open Energy Information  

Open Energy Info (EERE)

Power Power < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Current Power.jpg Technology Profile Primary Organization Current Power AB Project(s) where this technology is utilized *MHK Projects/Norde lv Technology Resource Click here Current/Tidal Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The Current Power device is a slow speed vertical axis turbine that utilizes a direct drive permanent magnet rotating generator The concept is based on a vertical axle turbine directly coupled to a permanent magnet synchronous generator The system is intended to be placed on the bottom of the ocean or a river where it would be protected from storm surges and strong waves The output from the generator has to be rectified and inverted before connection to the grid Robustness is achived by the simple mechanical construction

215

Plasma diagnostics of low pressure high power impulse magnetron sputtering assisted by electron cyclotron wave resonance plasma  

SciTech Connect (OSTI)

This paper reports on an investigation of the hybrid pulsed sputtering source based on the combination of electron cyclotron wave resonance (ECWR) inductively coupled plasma and high power impulse magnetron sputtering (HiPIMS) of a Ti target. The plasma source, operated in an Ar atmosphere at a very low pressure of 0.03 Pa, provides plasma where the major fraction of sputtered particles is ionized. It was found that ECWR assistance increases the electron temperature during the HiPIMS pulse. The discharge current and electron density can achieve their stable maximum 10 {mu}s after the onset of the HiPIMS pulse. Further, a high concentration of double charged Ti{sup ++} with energies of up to 160 eV was detected. All of these facts were verified experimentally by time-resolved emission spectroscopy, retarding field analyzer measurement, Langmuir probe, and energy-resolved mass spectrometry.

Stranak, Vitezslav [Ernst-Moritz-Arndt-Universitaet Greifswald, Institut fuer Physik, Felix-Hausdorff-Str. 6, 17489 Greifswald (Germany); University of South Bohemia, Institute of Physics and Biophysics, Branisovska 31, 370 05 Ceske Budejovice (Czech Republic); Herrendorf, Ann-Pierra; Drache, Steffen; Bogdanowicz, Robert; Hippler, Rainer [Ernst-Moritz-Arndt-Universitaet Greifswald, Institut fuer Physik, Felix-Hausdorff-Str. 6, 17489 Greifswald (Germany); Cada, Martin; Hubicka, Zdenek [Institute of Physics v. v. i., Academy of Science of the Czech Republic, Na Slovance 2, 182 21 Prague (Czech Republic); Tichy, Milan [Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, 180 00 Prague (Czech Republic)

2012-11-01T23:59:59.000Z

216

Probing the plasma near high power wave launchers in fusion devices for static and dynamic electric fields  

SciTech Connect (OSTI)

An exploratory study was carried out in the long-pulse tokamak Tore Supra, to determine if electric fields in the plasma around high-power, RF wave launchers could be measured with non-intrusive, passive, optical emission spectroscopy. The focus was in particular on the use of the external electric field Stark effect. The feasibility was found to be strongly dependent on the spatial extent of the electric fields and overlap between regions of strong (> 1 kV/cm) electric fields and regions of plasma particle recycling and plasma-induced, spectral line emission. Most amenable to the measurement was the RF electric field in edge plasma, in front of a lower hybrid heating and current drive launcher. Electric field strengths and direction, derived from fitting the acquired spectra to a model including time-dependent Stark effect and the tokamak-range magnetic field Zeeman-effect, were found to be in good agreement with full-wave modeling of the observed launcher.

Klepper, C Christopher [ORNL; Martin, Elijah H [ORNL; Isler, Ralph C [ORNL; Colas, L. [French Atomic Energy Commission (CEA), Cadarache, St. Paul lez Durance; Goniche, M. [French Atomic Energy Commission (CEA), Cadarache, St. Paul lez Durance; Hillairet, J. [French Atomic Energy Commission (CEA), Institute for Magnetic Fusion Research (IRFM); Panayotis, Stephanie [French Atomic Energy Commission (CEA), Institute for Magnetic Fusion Research (IRFM); Jacquot, Jonathan [French Atomic Energy Commission (CEA), Institute for Magnetic Fusion Research (IRFM); Lotte, Ph. [French Atomic Energy Commission (CEA), Cadarache, St. Paul lez Durance; Colledani, G. [French Atomic Energy Commission (CEA), Institute for Magnetic Fusion Research (IRFM); Biewer, Theodore M [ORNL; Caughman, J. B. O. [Oak Ridge National Laboratory (ORNL); Ekedahl, A. [French Atomic Energy Commission (CEA), Institute for Magnetic Fusion Research (IRFM); Green, David L [ORNL; Harris, Jeffrey H [ORNL; Hillis, Donald Lee [ORNL; Shannon, Prof. Steven [North Carolina State University; Litaudon, X [French Atomic Energy Commission (CEA)

2014-01-01T23:59:59.000Z

217

On the statistical stability of the M2 barotropic and baroclinic tidal characteristics from along-track TOPEX//Poseidon  

E-Print Network [OSTI]

with internal tidal wave activity and for those who assimilate altimetric data in their models by giving-track TOPEX//Poseidon satellite altimetry analysis Loren Carre`re, Christian Le Provost, and Florent Lyard. [1] An along-track analysis of 7 years of TOPEX/Poseidon (T/P) data has been performed on the global

218

Impact of different tidal renewable energy projects on the hydrodynamic processes in the Severn Estuary, UK  

Science Journals Connector (OSTI)

The Severn Estuary, located in the UK between south east Wales and south west England, is an ideal site for tidal renewable energy projects, since this estuary has the third highest tidal range in the world, with a spring tidal range approaching 14 m. The UK Government recently invited proposals for tidal renewable energy projects from the estuary and many proposals were submitted for consideration. Among the proposals submitted and subsequently shortlisted were: the Cardiff–Weston Barrage, the Fleming Lagoon and the Shoots Barrage, all three of which are nationally public interest. Therefore a two-dimensional finite volume numerical model, based on an unstructured triangular mesh, has been refined to study the hydrodynamic impact and flood inundation extent, post construction, of all three of these proposed tidal power projects. The model-predicted hydrodynamic processes have been analysed in detail, both without and with the structures, including the discharge processes at key sections, the contours of maximum and minimum water levels, the envelope curves of high and low water levels, the maximum tidal currents, the local velocity fields around the structures and the mean power output curves. Simulated results indicate that: (i) although the construction of the Cardiff–Weston Barrage would have an adverse impact on a range of environmental aspects, due to there being approximately a 50% decrease in the peak discharge entering the upstream region, it would reduce the maximum water levels upstream of the barrage by typically 0.3–1.2 m, which could be positive in respect of coastal flooding; (ii) the construction of the Fleming Lagoon would have little influence on the hydrodynamic processes in the Severn Estuary; and (iii) the construction of the Shoots Barrage would decrease the maximum water levels upstream of the M4 bridge by between 0.3 and 1.0 m, but it could lead to an increase in the maximum water levels downstream of the barrage by typically 20–30 cm.

Junqiang Xia; Roger A. Falconer; Binliang Lin

2010-01-01T23:59:59.000Z

219

Tidal Energy Limited | Open Energy Information  

Open Energy Info (EERE)

Tidal Energy Limited (TEL) Tidal Energy Limited (TEL) Place Cardiff, Wales, United Kingdom Zip CF23 8RS Product Tidal stream device developer. Coordinates 51.48125°, -3.180734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.48125,"lon":-3.180734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

220

Tidal Energy Test Platform | Open Energy Information  

Open Energy Info (EERE)

Test Platform Test Platform Jump to: navigation, search Basic Specifications Facility Name Tidal Energy Test Platform Overseeing Organization University of New Hampshire Hydrodynamics Hydrodynamic Testing Facility Type Offshore Berth Water Type Saltwater Cost(per day) Contact POC Special Physical Features The Tidal Testing Platform is presently a 10.7m long x 3m wide pontoon barge with a derrick and an opening for deploying tidal energy devices. The platform is intentionally configured to be adaptive for the changing needs of different devices. Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition Cameras None

Note: This page contains sample records for the topic "tidal power wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Tidal Sails AS | Open Energy Information  

Open Energy Info (EERE)

Sails AS Sails AS Jump to: navigation, search Name Tidal Sails AS Address Standgaten 130 Place Haugesund Zip 5531 Sector Marine and Hydrokinetic Phone number +32 474 98 06 16 Website http://www.tidalsails.com Region Norway LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Technologies: Tidal Sails This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Tidal_Sails_AS&oldid=678479" Categories: Clean Energy Organizations Companies Organizations Stubs MHK Companies What links here Related changes Special pages Printable version Permanent link Browse properties

222

TIDAL TURBULENCE SPECTRA FROM A COMPLIANT MOORING  

SciTech Connect (OSTI)

A compliant mooring to collect high frequency turbulence data at a tidal energy site is evaluated in a series of short demon- stration deployments. The Tidal Turbulence Mooring (TTM) improves upon recent bottom-mounted approaches by suspend- ing Acoustic Doppler Velocimeters (ADVs) at mid-water depths (which are more relevant to tidal turbines). The ADV turbulence data are superior to Acoustic Doppler Current Profiler (ADCP) data, but are subject to motion contamination when suspended on a mooring in strong currents. In this demonstration, passive stabilization is shown to be sufficient for acquiring bulk statistics of the turbulence, without motion correction. With motion cor- rection (post-processing), data quality is further improved; the relative merits of direct and spectral motion correction are dis- cussed.

Thomson, Jim; Kilcher, Levi; Richmond, Marshall C.; Talbert, Joe; deKlerk, Alex; Polagye, Brian; Guerra, Maricarmen; Cienfuegos, Rodrigo

2013-06-13T23:59:59.000Z

223

Mandatory Utility Green Power Option | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Mandatory Utility Green Power Option Mandatory Utility Green Power Option Mandatory Utility Green Power Option < Back Eligibility Investor-Owned Utility Municipal Utility Rural Electric Cooperative Savings Category Bioenergy Buying & Making Electricity Water Solar Wind Program Info State District of Columbia Program Type Mandatory Utility Green Power Option Provider Washington State Department of Commerce In May 2001, Washington enacted legislation (EHB 2247) that requires all electric utilities serving more than 25,000 customers to offer customers the option of purchasing renewable energy. Eligible renewables include wind, solar, geothermal, landfill gas, wave or tidal action, wastewater treatment gas, certain biomass resources, and "qualified hydropower" that is fish-friendly. Beginning January 1, 2002, each electric utility must inform its customers

224

Incoherent internal tidal currents in the deep ocean  

Science Journals Connector (OSTI)

‘Eleven months’ current meter observations from the deep Bay of Biscay were examined for the residual (incoherent internal tidal; icIT) signal, left after harmonic analysis using eight tidal constituents (larg...

Hans van Haren

2004-02-01T23:59:59.000Z

225

Assessment of Energy Production Potential from Tidal Streams...  

Broader source: Energy.gov (indexed) [DOE]

this report created a national database of tidal stream energy potential, as well as a GIS tool usable by industry in order to accelerate the market for tidal energy conversion...

226

WaveDyn: A Design Tool for Performance & Operational Loads Modeling of WECs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Experience with Validating MHK Tools Experience with Validating MHK Tools National Renewable Energy Laboratory - Broomfield, CO - July 9 th 2012 Contents * Overview of GL Garrad Hassan * List of Tools/Core Expertise: Dedicated Software * Waves: Resource assessment and site data analysis * WaveDyn: WEC performance and loads calculation (time-domain) * WaveFarmer: Planning and optimization of a WEC array * Tides: Resource assessment and site data analysis * Tidal Bladed: Tidal Turbine performance and loads calculation (time-domain) * TidalFarmer: Planning and optimization of a tidal turbine array * Validation Experience * Tidal Bladed * ReDAPT * PerAWaT * WaveDyn Who are GL Garrad Hassan? * Industry-leading independent renewable energy consultancy * Established in 1984 * Over 950 full time staff, in 42 locations, across 24 countries worldwide

227

Wave power extraction from a bottom-mounted oscillating water column converter with a V-shaped channel  

Science Journals Connector (OSTI)

...CW Finkl. 2009 Ocean energy. Berlin, Germany...ME . 1981 Ocean wave energy conversion. New York, NY: Wiley Interscience...Justino. 1999 OWC wave energy devices with air flow...mathematical tables. New York, NY: Dover. 23 Mavrakos...

2014-01-01T23:59:59.000Z

228

A Case Study of Wave Power Integration into the Ucluelet Area Electrical Grid Louise Anne St.Germain  

E-Print Network [OSTI]

and resulting device scaling. The results of the wave energy conversion with and without storage, as well ...................................................................................................... 9 2.3.5 Compressed air Wild Abstract Technologies exist that can capture and convert wave energy but there are few studies

Victoria, University of

229

Turbulence and internal waves in tidal flow over topography  

E-Print Network [OSTI]

water, so as to avoid an unnecessary increase in computational grid points. Simulations at subcritical

Gayen, Bishakhdatta

2012-01-01T23:59:59.000Z

230

Turbulence and internal waves in tidal flow over topography  

E-Print Network [OSTI]

Haren, H. 2007 Internal tides and energy fluxes over greatInternal tides are susceptible to dissipation and energysemidiurnal tide, suggesting direct energy transfer from the

Gayen, Bishakhdatta

2012-01-01T23:59:59.000Z

231

Modeling the dynamics of tidally-interacting binary neutron stars up to merger  

E-Print Network [OSTI]

We propose an effective-one-body (EOB) model that describes the general relativistic dynamics of neutron star binaries from the early inspiral up to merger. Our EOB model incorporates an enhanced attractive tidal potential motivated by recent analytical advances in the post-Newtonian and gravitational self-force description of relativistic tidal interactions. No fitting parameters are introduced for the description of tidal interaction in the late, strong-field dynamics. We compare the model dynamics (described by the gauge invariant relation between binding energy and orbital angular momentum), and the gravitational wave phasing, with new high-resolution multi-orbit numerical relativity simulations of equal-mass configurations with different equations of state. We find agreement essentially within the uncertainty of the numerical data for all the configurations. Our model is the first semi-analytical model which captures the tidal amplification effects close to merger. It thereby provides the most accurate analytical representation of binary neutron star dynamics and waveforms currently available.

Sebastiano Bernuzzi; Alessandro Nagar; Tim Dietrich; Thibault Damour

2014-12-15T23:59:59.000Z

232

TIDAL FRESHWATER WETLANDS OF THE MID-ATLANTIC AND  

E-Print Network [OSTI]

Chapter 14 TIDAL FRESHWATER WETLANDS OF THE MID-ATLANTIC AND SOUTHEASTERN UNITED STATES James E Publishers, Weikersheim, 2009 Tidal Freshwater Wetlands, edited by Aat Barendregt in the book ,,Tidal Freshwater Wetlands". The copy attached is provided by Margraf Publishers Gmb

Newman, Michael C.

233

The effects of a Severn Barrage on wave conditions in the Bristol Channel  

Science Journals Connector (OSTI)

Abstract The study investigates the impact that construction of a Severn Barrage in the Severn Estuary, on the west coast of the UK, might have on local wave conditions. Implementation of a barrage will impact on tidal currents and water elevations in the wider region. There is strong tidal modulation of wave conditions under the natural regime and therefore barrage-induced changes to tidal conditions could affect wave modulation in the region. This paper uses Swan, an open source 3rd generation spectral wave model, to investigate the possible impacts of construction of a barrage on tidal modulation of the wave conditions. It is found that current variations, rather than water level variations, are the dominant factor in tidal modulation of wave conditions. Barrage implementation does not substantially change the modulation of the wave period or direction. However, barrage implementation does affect the tidal modulation of wave heights in the area of interest. The tidal modulation of the wave heights is generally reduced compared to the natural case; the peaks in the wave heights on an incoming tide are slightly lowered and there is lesser attenuation in wave heights on the outgoing tide. This modulation leads to net changes in the wave heights over one tidal cycle. For all of the tested wave conditions, this net change is small for the majority of the tested domain, namely to within ±5% of the no barrage case. There are some areas of greater change, most notably larger net increases in the wave heights near the North Somerset coast where the post-construction net wave height increase over a tidal cycle approach 20% of the pre-construction conditions. These changes do not impact coastal flooding because the wave height increase is not co-incident with high tide. Importantly, the maximum wave height is not increased and thus the likelihood of extreme events is not increased. The area of greatest reduction is between Swansea and Porthcawl. Changes over a neap tidal cycle show similar patterns of net change, but the modulation over the tidal cycle is different; primarily the magnitude of modulation is half that for the spring tide case and the shape is altered in some locations.

I. Fairley; R. Ahmadian; R.A. Falconer; M.R. Willis; I. Masters

2014-01-01T23:59:59.000Z

234

Performance Assessment of the Wave Dragon Wave Energy Converter  

E-Print Network [OSTI]

Performance Assessment of the Wave Dragon Wave Energy Converter Based on the EquiMar Methodology S of the wave energy sector, device developers are called to provide reliable estimates on power performanceMar, Nissum Bredning, Hanstholm, North Sea, Ekofisk, Wave-to-wire, Wave energy. I. INTRODUCTION The wave

Hansen, René Rydhof

235

Development of two-variable maximum power point tracking control for ocean wave energy converters utilizing a power analysis and data acquisition system.  

E-Print Network [OSTI]

??Ocean wave energy shows great potential as a developing form of renewable energy. However, challenges arise in maturing this technology to achieve cost-effective energy conversion.… (more)

Amon, Ean A.

2010-01-01T23:59:59.000Z

236

The importance of tidal creek ecosystems Keywords: Estuary; Tidal creek; Pollution  

E-Print Network [OSTI]

systems such as the rocky intertidal of the northeast United States and eastern Canada, the open beaches rarely exceeds 3.0 m at high tide, and some tidal creeks contain broad intertidal sand or mud flats

Mallin, Michael

237

Tidal Generation Ltd | Open Energy Information  

Open Energy Info (EERE)

Ltd Ltd Jump to: navigation, search Name Tidal Generation Ltd Address University Gate East Park Row Place Bristol, United Kingdom Zip BS1 5UB Sector Marine and Hydrokinetic Product Tidal Generation is developing a 1MW fully submerged tidal turbine to generate electricity from tidal currents in water depths up to 50m. Phone number 4.41E+11 Website http://www.tidalgeneration.co. Coordinates 42.55678°, -88.050449° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.55678,"lon":-88.050449,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

238

Relativistic tidal properties of neutron stars  

E-Print Network [OSTI]

We study the various linear responses of neutron stars to external relativistic tidal fields. We focus on three different tidal responses, associated to three different tidal coefficients: (i) a gravito-electric-type coefficient G\\mu_\\ell=[length]^{2\\ell+1} measuring the \\ell^{th}-order mass multipolar moment GM_{a_1... a_\\ell} induced in a star by an external \\ell^{th}-order gravito-electric tidal field G_{a_1... a_\\ell}; (ii) a gravito-magnetic-type coefficient G\\sigma_\\ell=[length]^{2\\ell+1} measuring the \\ell^{th} spin multipole moment G S_{a_1... a_\\ell} induced in a star by an external \\ell^{th}-order gravito-magnetic tidal field H_{a_1... a_\\ell}; and (iii) a dimensionless ``shape'' Love number h_\\ell measuring the distortion of the shape of the surface of a star by an external \\ell^{th}-order gravito-electric tidal field. All the dimensionless tidal coefficients G\\mu_\\ell/R^{2\\ell+1}, G\\sigma_\\l/R^{2\\ell+1} and h_\\ell (where R is the radius of the star) are found to have a strong sensitivity to the value of the star's ``compactness'' c\\equiv GM/(c_0^2 R) (where we indicate by c_0 the speed of light). In particular, G\\mu_\\l/R^{2\\l+1}\\sim k_\\ell is found to strongly decrease, as c increases, down to a zero value as c is formally extended to the ``black-hole (BH) limit'' c^{BH}=1/2. The shape Love number h_\\ell is also found to significantly decrease as c increases, though it does not vanish in the formal limit c\\to c^{BH}. The formal vanishing of \\mu_\\ell and \\sigma_\\ell as c\\to c^{BH} is a consequence of the no-hair properties of black holes; this suggests, but in no way proves, that the effective action describing the gravitational interactions of black holes may not need to be augmented by nonminimal worldline couplings.

Thibault Damour; Alessandro Nagar

2009-05-30T23:59:59.000Z

239

Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska FINAL REPORT  

SciTech Connect (OSTI)

The Aleutian Pribilof Islands Association was awarded a U.S. Department of Energy Tribal Energy Program grant (DE-EE0005624) for the Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska (Project). The goal of the Project was to perform a feasibility study to determine if a tidal energy project would be a viable means to generate electricity and heat to meet long-term fossil fuel use reduction goals, specifically to produce at least 30% of the electrical and heating needs of the tribally-owned buildings in False Pass. The Project Team included the Aleut Region organizations comprised of the Aleutian Pribilof Island Association (APIA), and Aleutian Pribilof Island Community Development Association (APICDA); the University of Alaska Anchorage, ORPC Alaska a wholly-owned subsidiary of Ocean Renewable Power Company (ORPC), City of False Pass, Benthic GeoScience, and the National Renewable Energy Laboratory (NREL). The following Project objectives were completed: collected existing bathymetric, tidal, and ocean current data to develop a basic model of current circulation at False Pass, measured current velocities at two sites for a full lunar cycle to establish the viability of the current resource, collected data on transmission infrastructure, electrical loads, and electrical generation at False Pass, performed economic analysis based on current costs of energy and amount of energy anticipated from and costs associated with the tidal energy project conceptual design and scoped environmental issues. Utilizing circulation modeling, the Project Team identified two target sites with strong potential for robust tidal energy resources in Isanotski Strait and another nearer the City of False Pass. In addition, the Project Team completed a survey of the electrical infrastructure, which identified likely sites of interconnection and clarified required transmission distances from the tidal energy resources. Based on resource and electrical data, the Project Team developed a conceptual tidal energy project design utilizing ORPC’s TidGen® Power System. While the Project Team has not committed to ORPC technology for future development of a False Pass project, this conceptual design was critical to informing the Project’s economic analysis. The results showed that power from a tidal energy project could be provided to the City of False at a rate at or below the cost of diesel generated electricity and sold to commercial customers at rates competitive with current market rates, providing a stable, flat priced, environmentally sound alternative to the diesel generation currently utilized for energy in the community. The Project Team concluded that with additional grants and private investment a tidal energy project at False Pass is well-positioned to be the first tidal energy project to be developed in Alaska, and the first tidal energy project to be interconnected to an isolated micro grid in the world. A viable project will be a model for similar projects in coastal Alaska.

Wright, Bruce Albert [Aleutian Pribilof Islands Association] [Aleutian Pribilof Islands Association

2014-05-07T23:59:59.000Z

240

Acoustic Monitoring of Beluga Whale Interactions with Cook Inlet Tidal Energy Project  

SciTech Connect (OSTI)

Cook Inlet, Alaska is home to some of the greatest tidal energy resources in the U.S., as well as an endangered population of beluga whales (Delphinapterus leucas). Successfully permitting and operating a tidal power project in Cook Inlet requires a biological assessment of the potential and realized effects of the physical presence and sound footprint of tidal turbines on the distribution, relative abundance, and behavior of Cook Inlet beluga whales. ORPC Alaska, working with the Project Team—LGL Alaska Research Associates, University of Alaska Anchorage, TerraSond, and Greeneridge Science—undertook the following U.S. Department of Energy (DOE) study to characterize beluga whales in Cook Inlet – Acoustic Monitoring of Beluga Whale Interactions with the Cook Inlet Tidal Energy Project (Project). ORPC Alaska, LLC, is a wholly-owned subsidiary of Ocean Renewable Power Company, LLC, (collectively, ORPC). ORPC is a global leader in the development of hydrokinetic power systems and eco-conscious projects that harness the power of ocean and river currents to create clean, predictable renewable energy. ORPC is developing a tidal energy demonstration project in Cook Inlet at East Foreland where ORPC has a Federal Energy Regulatory Commission (FERC) preliminary permit (P-13821). The Project collected baseline data to characterize pre-deployment patterns of marine mammal distribution, relative abundance, and behavior in ORPC’s proposed deployment area at East Foreland. ORPC also completed work near Fire Island where ORPC held a FERC preliminary permit (P-12679) until March 6, 2013. Passive hydroacoustic devices (previously utilized with bowhead whales in the Beaufort Sea) were adapted for study of beluga whales to determine the relative abundance of beluga whale vocalizations within the proposed deployment areas. Hydroacoustic data collected during the Project were used to characterize the ambient acoustic environment of the project site pre-deployment to inform the FERC pilot project process. The Project compared results obtained from this method to results obtained from other passive hydrophone technologies and to visual observation techniques performed simultaneously. This Final Report makes recommendations on the best practice for future data collection, for ORPC’s work in Cook Inlet specifically, and for tidal power projects in general. This Project developed a marine mammal study design and compared technologies for hydroacoustic and visual data collection with potential for broad application to future tidal and hydrokinetic projects in other geographic areas. The data collected for this Project will support the environmental assessment of future Cook Inlet tidal energy projects, including ORPC’s East Foreland Tidal Energy Project and any tidal energy developments at Fire Island. The Project’s rigorous assessment of technology and methodologies will be invaluable to the hydrokinetic industry for developing projects in an environmentally sound and sustainable way for areas with high marine mammal activity or endangered populations. By combining several different sampling methods this Project will also contribute to the future preparation of a comprehensive biological assessment of ORPC’s projects in Cook Inlet.

Worthington, Monty [Project Director - AK] [Project Director - AK

2014-02-05T23:59:59.000Z

Note: This page contains sample records for the topic "tidal power wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Puget Sound Tidal Energy In-Water Testing and Development Project Final Technical Report  

SciTech Connect (OSTI)

Tidal energy represents potential for the generation of renewable, emission free, environmentally benign, and cost effective energy from tidal flows. A successful tidal energy demonstration project in Puget Sound, Washington may enable significant commercial development resulting in important benefits for the northwest region and the nation. This project promoted the United States Department of Energy�s Wind and Hydropower Technologies Program�s goals of advancing the commercial viability, cost-competitiveness, and market acceptance of marine hydrokinetic systems. The objective of the Puget Sound Tidal Energy Demonstration Project is to conduct in-water testing and evaluation of tidal energy technology as a first step toward potential construction of a commercial-scale tidal energy power plant. The specific goal of the project phase covered by this award was to conduct all activities necessary to complete engineering design and obtain construction approvals for a pilot demonstration plant in the Admiralty Inlet region of the Puget Sound. Public Utility District No. 1 of Snohomish County (The District) accomplished the objectives of this award through four tasks: Detailed Admiralty Inlet Site Studies, Plant Design and Construction Planning, Environmental and Regulatory Activities, and Management and Reporting. Pre-Installation studies completed under this award provided invaluable data used for site selection, environmental evaluation and permitting, plant design, and construction planning. However, these data gathering efforts are not only important to the Admiralty Inlet pilot project. Lessons learned, in particular environmental data gathering methods, can be applied to future tidal energy projects in the United States and other parts of the world. The District collaborated extensively with project stakeholders to complete the tasks for this award. This included Federal, State, and local government agencies, tribal governments, environmental groups, and others. All required permit and license applications were completed and submitted under this award, including a Final License Application for a pilot hydrokinetic license from the Federal Energy Regulatory Commission. The tasks described above have brought the project through all necessary requirements to construct a tidal pilot project in Admiralty Inlet with the exception of final permit and license approvals, and the selection of a general contractor to perform project construction.

Craig W. Collar

2012-11-16T23:59:59.000Z

242

Hydrodynamic impact of a tidal barrage in the Severn Estuary, UK  

Science Journals Connector (OSTI)

The Severn Estuary has a spring tidal range approaching 14 m, which is among the highest tides in the world. Various proposals have been made regarding the construction of a tidal barrage across the estuary to enable tidal energy to be generated. The aim of the current study is to investigate the impact of constructing a tidal barrage on the hydrodynamic processes in the Severn Estuary using a numerical model. A two-dimensional hydrodynamic model based on an unstructured triangular mesh has been used in this study. The model employs a TVD finite volume method to solve the 2D shallow water equations, with the numerical scheme being second-order accurate in both time and space. The model has been calibrated by comparing model predictions with observed tidal levels and currents at different sites, for typical spring and neap tides, and it has also been verified using tidal level time series at four tide gauging stations measured in 2003. In order to predict the hydrodynamic processes with a barrage, the model domain was divided into two subdomains: one each side of the barrage. Details were given of the method used for representing the various hydraulic structures, including the sluices and turbines, along the proposed Cardiff-Weston barrage. The impact of constructing the barrage on the water levels and velocities was then investigated using this model. Model-predicted hydrodynamic parameters, without and with the barrage, were analysed in detail. Model predictions indicated that with the barrage the mean power output could reach 2.0 GW with up to 25 GWh units of electricity being generated over a typical mean spring tidal cycle. At some cross-sections, the maximum discharges were predicted to decrease by 30–50%, as compared with the corresponding discharges predicted without the barrage. The model also predicted that with the barrage, the maximum water levels upstream of the barrage would decrease by 0.5–1.5 m, and with the peak tidal currents also being reduced considerably. For different operating modes, complex velocity fields were predicted to occur in the vicinity of the barrage.

Junqiang Xia; Roger A. Falconer; Binliang Lin

2010-01-01T23:59:59.000Z

243

PHYSICAL REVIEW E 86, 046204 (2012) Impedance and power fluctuations in linear chains of coupled wave chaotic cavities  

E-Print Network [OSTI]

cavities takes place through a small port, and electromagnetic energy flows in a single propagation mode of electromagnetic wave energy through a chain of coupled cavities is considered. The cavities are assumed that can be characterized as an enclosed region with ports for the ingress and egress of waves, less work

Anlage, Steven

244

Design and feasibility study of a microgeneration system to obtain renewable energy from tidal currents  

Science Journals Connector (OSTI)

Tidal energy to obtain electrical energy is yet an unexploited renewable energy. Existing generator designs and prototypes are not feasible due to the high investment conditioned by their high rated powers and off-shore locations. In addition these prototypes are not readily available. This investigation presents a design of a microgeneration system with vertical axis microturbines. The design of the microturbines utilizes off-the-shelf electronic components thus reducing the initial investment. The nominal data for selection of power electronic components and the total energy that can be obtained in a year are calculated. The investigation also studies the feasibility of an 80?kW microgeneration system to be applied in Spain taking advantage of the actual electricity prices. The feasibility study quantifies the influence of the parameters: initial investment tidal current speed operation hours turbine efficiency price of electricity and number of microturbines obtaining the limiting values of the suitable scenarios.

2014-01-01T23:59:59.000Z

245

NREL: Water Power Research - Computer-Aided Engineering Tools  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Computer-Aided Engineering Tools Computer-Aided Engineering Tools Computer simulation of a floating point absorber in water. The water is represented by blue and red stripes. The absorber is represented by a red disk above water connected to a blue disk below water. NREL develops advanced computer-aided engineering (CAE) tools to support the wind and water power industries with state-of-the-art design and analysis capabilities. NREL is developing a suite of integrated CAE tools for wave and tidal energy converters that will provide a full range of simulation capabilities for single devices and arrays for research, development and demonstration efforts at all technology readiness levels. These CAE tools will produce realistic models that simulate the behavior of marine and hydrokinetic (MHK) systems in complex environments-waves,

246

MHK Technologies/Tidal Defense and Energy System TIDES | Open Energy  

Open Energy Info (EERE)

MHK Technologies/Tidal Defense and Energy System TIDES MHK Technologies/Tidal Defense and Energy System TIDES < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Defense and Energy System TIDES.jpg Technology Profile Primary Organization Oceana Energy Company Project(s) where this technology is utilized *MHK Projects/Astoria Tidal Energy *MHK Projects/Cape Islands Tidal Energy Project *MHK Projects/Central Cook Inlet Tidal Energy Project *MHK Projects/Icy Passage Tidal Energy Project *MHK Projects/Kachemak Bay Tidal Energy Project *MHK Projects/Kendall Head Tidal Energy *MHK Projects/Kennebec *MHK Projects/Penobscot Tidal Energy Project *MHK Projects/Portsmouth Area Tidal Energy Project *MHK Projects/Wrangell Narrows Tidal Energy Project Technology Resource Click here Current/Tidal

247

Tidal Marsh Vegetation of China Camp, San Pablo Bay, California  

E-Print Network [OSTI]

at China Camp continued throughout most of the 20th century,Camp tidal marsh that escaped diking and intensive agricultural modifica- tion in the 19th century:

Baye, Peter R.

2012-01-01T23:59:59.000Z

248

First Commercial, Grid-Connected, Hydrokinetic Tidal Energy Project...  

Office of Science (SC) Website

First Commercial, Grid-Connected, Hydrokinetic Tidal Energy Project in North America Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) SBIR...

249

MHK Projects/Pennamaquan Tidal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Plant Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.0051,"lon":-67.2259,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

250

Generation of internal waves in the deep ocean J. Nycander  

E-Print Network [OSTI]

topography. The geographical distribution of the energy flux from tides to internal waves is determined essential to determine the energy flux from tides to internal waves. [3] The total dissipation of the M2 tide, which accounts for about two thirds of the energy of all tidal components combined, is known

Nycander, Jonas

251

Ocean Wave Converters: State of the Art and Current Status  

E-Print Network [OSTI]

Ocean Wave Converters: State of the Art and Current Status M.S. Lagoun1,2 , A. Benalia2 and M in one of the following categories: wave energy, marine and tidal current energy, ocean thermal energy of energy exists in oceans. Ocean energy exists in many forms. Among these forms, significant opportunities

Paris-Sud XI, Université de

252

Realizing the potential of tidal currents and the efficiency of turbine farms in a channel  

Science Journals Connector (OSTI)

Tidal turbines in strong flows have the potential to produce significant power. However, not all of this potential can be realized when gaps between turbines are required to allow navigation along a channel. A review of recent works is used to estimate the scale of farm required to realize a significant fraction of a channel's potential. These works provide the first physically coherent approach to estimating the maximum power output from a given number of turbines in a channel. The fraction of the potential realizable from a number of turbines, a farm's fluid dynamic efficiency, is constrained by how much of the channel's cross-section the turbines are permitted to occupy and an environmentally acceptable flow speed reduction. Farm efficiency increases as optimally tuned turbines are added to its cross-section, while output per turbine increases in tidal straits and decreases in shallow channels. Adding rows of optimally tuned turbines also increases farm efficiency, but with a diminishing return on additional rows. The diminishing return and flow reduction are strongly influenced by how much of the cross-section can be occupied and the dynamical balance of the undisturbed channel. Estimates for two example channels show that realizing much of the MW potential of shallow channels may well be possible with existing turbines. However unless high blockage ratios are possible, it will be more difficult to realize the proportionately larger potential of tidal straits until larger turbines with a lower optimum operating velocity are developed.

Ross Vennell

2012-01-01T23:59:59.000Z

253

The Semidiurnal Tidal Oscillation of the Earth's Atmosphere  

Science Journals Connector (OSTI)

The semidiurnal barometric oscillation with maxima at about 10 A.M. and 10 P.M. local solar time is interpreted according to current theory as an air-tide. Although the lunar tidal force is 2.2 times more powerful than the solar and hence lunartides in the oceans are 2.2 times stronger than the solar this is not found to be the case in the atmosphere. The observations show a solar semidiurnal atmospheric oscillation about 100 times greater than might be expected and a very feeble lunaroscillation. The difficulty is resolved with a suggestion by Kelvin. This is the famous “resonance theory ” and illustrates how the effect of a comparatively small tide-generating force might be magnified if the atmosphere had a period of free oscillation close to 12 solar hours. The linearized equations of atmospheric oscillations are stated tidal wind fields indicated and conclusions summarized.

Harold L. Stolov

1951-01-01T23:59:59.000Z

254

MHK Technologies/New Knowledge Wind and Wave Renewable Mobile...  

Open Energy Info (EERE)

Wave Renewable Mobile Wind and Wave Power Plant Platform < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage New Knowledge Wind and Wave Renewable...

255

The Equilibrium Tide Model for Tidal Friction  

Science Journals Connector (OSTI)

We derive from first principles the equations governing (a) the quadrupole tensor of a star distorted both by rotation and by the presence of a companion in a possibly eccentric orbit; (b) a functional form for the dissipative force of tidal friction, based on the concept that the rate of energy loss from a time-dependent tide should be a positive-definite function of the rate of change of the quadrupole tensor as seen in the frame that rotates with the star; and (c) the equations governing the rates of change of the magnitude and the direction of the stellar rotation, the orbital period and eccentricity, based on the concept of the Laplace-Runge-Lenz vector. Our analysis leads relatively simply to a closed set of equations, valid for arbitrary inclination of the stellar spin to the orbit. The results are equivalent to classical results based on the rather less clear principle that the tidal bulge lags behind the line of centers by some time determined by the rate of dissipation. Our analysis gives the effective lag time as a function of the dissipation rate and the quadrupole moment. We discuss briefly some possible applications of the formulation.

Peter P. Eggleton; Ludmila G. Kiseleva; Piet Hut

1998-01-01T23:59:59.000Z

256

Photo-carrier radiometry of semiconductors: A novel powerful optoelectronic diffusion-wave technique for silicon process  

E-Print Network [OSTI]

Photo-carrier radiometry of semiconductors: A novel powerful optoelectronic diffusion-defect PCR images thus obtained prove that very-near-surface (where optoelectronic device fabrication takes

Mandelis, Andreas

257

Tidal disruption flares of stars from moderately recoiled black holes  

Science Journals Connector (OSTI)

......distribution and the uncertain physics of the last stages of...time-averaged tidal disruption rates. We then fit these functions...2.2Tidal disruption physics Stars that pass within a radius of an...characteristic mass return rate is (Phinney 1989......

Nicholas Stone; Abraham Loeb

2012-05-21T23:59:59.000Z

258

Dynamics, diffusion and geomorphological significance of tidal residual eddies  

Science Journals Connector (OSTI)

... or parabolic sand ridges in tidal areas, such as the Flemish Banks in the Southern Bight of the North Sea. We now know that nearly all shallow tidal areas where ... Numerical/hydraulic7,19 model\t0.1\t2\t5x10-5\t4.10-1\tA\t44

J. T. F. Zimmerman

1981-04-16T23:59:59.000Z

259

Internal waves across the Pacific M. H. Alford,1,2  

E-Print Network [OSTI]

.7) are interpreted as the inertial waves resulting from PSI of the internal tide. Elevated near-inertial energy comprise most internal-wave energy in the ocean. Internal tides (internal waves of tidal frequency) are pri and below the surface by extracting energy from the internal tide through parametric subharmonic instability

MacKinnon, Jennifer

260

A review of the tidal current energy resource in Norway  

Science Journals Connector (OSTI)

As interest in renewable energy sources is steadily on the rise, tidal current energy is receiving more and more attention from politicans, industrialists, and academics. In this article, the conditions for and potential of tidal currents as an energy resource in Norway are reviewed. There having been a relatively small amount of academic work published in this particular field, closely related topics such as the energy situation in Norway in general, the oceanography of the Norwegian coastline, and numerical models of tidal currents in Norwegian waters are also examined. Two published tidal energy resource assessments are reviewed and compared to a desktop study made specifically for this review based on available data in pilot books. The argument is made that tidal current energy ought to be an important option for Norway in terms of renewable energy.

Mårten Grabbe; Emilia Lalander; Staffan Lundin; Mats Leijon

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "tidal power wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

MHK Technologies/TidalStar | Open Energy Information  

Open Energy Info (EERE)

TidalStar TidalStar < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage TidalStar.jpg Technology Profile Primary Organization Bourne Energy Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The horizontal axis TidalStar device uses a bidirectional twin rotor turbine to produce approximately 50 kW at peak capacity in both ebb and flood tides Technology Dimensions Length (m) 6 Width (m) 6 Freeboard (m) 1 Technology Nameplate Capacity (MW) 5 Device Testing Date Submitted 46:38.3 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/TidalStar&oldid=681677

262

Single-Frequency High-Power Continuous-Wave Oscillation at 1003 nm of an Optically Pumped Semiconductor Laser  

E-Print Network [OSTI]

reduction of the thermal resistance of the active semiconductor medium, resulting in a high power laser powers [1,2]. However the poor thermal conductivity of III-V materials might prevent an efficient heat by bonding it to a material of high thermal conductivity and good optical quality [2,4,5]. In this work we

Boyer, Edmond

263

Performance of a Wave Energy Converter with Mechanical Energy Smoothing.  

E-Print Network [OSTI]

??A wave energy converter which uses a power balancing mechanism for turning intermittent and irregular wave motion input to smoothed continuous electrical power output is… (more)

Josefsson, Andreas; Berghuvud, Ansel; Ahlin, Kjell

2011-01-01T23:59:59.000Z

264

Water Power for a Clean Energy Future (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides an overview of the U.S. Department of Energy's Wind and Water Power Program's water power research activities. Water power is the nation's largest source of clean, domestic, renewable energy. Harnessing energy from rivers, manmade waterways, and oceans to generate electricity for the nation's homes and businesses can help secure America's energy future. Water power technologies fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower facilities include run-of-the-river, storage, and pumped storage. Most conventional hydropower plants use a diversion structure, such as a dam, to capture water's potential energy via a turbine for electricity generation. Marine and hydrokinetic technologies obtain energy from waves, tides, ocean currents, free-flowing rivers, streams and ocean thermal gradients to generate electricity. The United States has abundant water power resources, enough to meet a large portion of the nation's electricity demand. Conventional hydropower generated 257 million megawatt-hours (MWh) of electricity in 2010 and provides 6-7% of all electricity in the United States. According to preliminary estimates from the Electric Power Resource Institute (EPRI), the United States has additional water power resource potential of more than 85,000 megawatts (MW). This resource potential includes making efficiency upgrades to existing hydroelectric facilities, developing new low-impact facilities, and using abundant marine and hydrokinetic energy resources. EPRI research suggests that ocean wave and in-stream tidal energy production potential is equal to about 10% of present U.S. electricity consumption (about 400 terrawatt-hours per year). The greatest of these resources is wave energy, with the most potential in Hawaii, Alaska, and the Pacific Northwest. The Department of Energy's (DOE's) Water Power Program works with industry, universities, other federal agencies, and DOE's national laboratories to promote the development and deployment of technologies capable of generating environmentally sustainable and cost-effective electricity from the nation's water resources.

Not Available

2012-03-01T23:59:59.000Z

265

BOOMERANG: A Balloon-borne Millimeter Wave Telescope and Total Power Receiver for Mapping Anisotropy in the Cosmic Microwave Background  

E-Print Network [OSTI]

We describe BOOMERANG; a balloon-borne microwave telescope designed to map the Cosmic Microwave Background (CMB) at a resolution of 10' from the Long Duration Balloon (LDB) platform. The millimeter-wave receiver employs new technology in bolometers, readout electronics, cold re-imaging optics, millimeter-wave filters, and cryogenics to obtain high sensitivity to CMB anisotropy. Sixteen detectors observe in 4 spectral bands centered at 90, 150, 240 and 410 GHz. The wide frequency coverage, the long duration flight, the optical design and the observing strategy provide strong rejection of systematic effects. We report the flight performance of the instrument during a 10.5 day stratospheric balloon flight launched from McMurdo Station, Antarctica that mapped ~2000 square degrees of the sky.

B. P. Crill; P. A. R. Ade; D. R. Artusa; R. S. Bhatia; J. J. Bock; A. Boscaleri; P. Cardoni; S. E. Church; K. Coble; P. deBernardis; G. deTroia; P. Farese; K. M. Ganga; M. Giacometti; C. V. Haynes; E. Hivon; V. V. Hristov; A. Iacoangeli; W. C. Jones; A. E. Lange; L. Martinis; S. Masi; P. V. Mason; P. D. Mauskopf; L. Miglio; T. Montroy; C. B. Netterfield; C. G. Paine; E. Pascale; F. Piacentini; G. Polenta; F. Pongetti; G. Romeo; J. E. Ruhl; F. Scaramuzzi; D. Sforna; A. D. Turner

2002-06-14T23:59:59.000Z

266

Sandia National Laboratories: wave energy converter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

wave energy converter Sandia Funded to Model Power Pods for Utility-Scale Wave-Energy Converter On September 16, 2014, in Computational Modeling & Simulation, Energy, News, News &...

267

1744 OPTICS LETTERS / Vol. 24, No. 23 / December 1, 1999 High-power continuous-wave mid-infrared radiation  

E-Print Network [OSTI]

- perature and powers in excess of 200 mW are required for long-term, sensitive, and continuous monitoring, periodically poled lithium niobate (PPLN) is the nonlinear material of choice. DFG mixing of a Ti

268

The Pattern Method for Incorporating Tidal Uncertainty Into Probabilistic Tsunami Hazard Assessment (PTHA)  

E-Print Network [OSTI]

In this paper we describe a general framework for incorporating tidal uncertainty into probabilistic tsunami hazard assessment and propose the Pattern Method and a simpler special case called the $\\Delta t$ Method as effective approaches. The general framework also covers the method developed by Mofjeld et.al in 2007 that was used for the 2009 Seaside, Oregon probabilistic study by Gonzalez et.al. We show the Pattern Method is superior to past approaches because it takes advantage of our ability to run the tsunami simulation at multiple tide stages and uses the time history of flow depth at strategic gauge locations to infer the temporal pattern of waves that is unique to each tsunami source. Combining these patterns with knowledge of the tide cycle at a particular location improves the ability to estimate the probability that a wave will arrive at a time when the tidal stage is sufficiently large that a quantity of interest such as the maximum flow depth exceeds a specified level.

Adams, Loyce M; González, Frank I

2014-01-01T23:59:59.000Z

269

Disc formation from stellar tidal disruptions  

E-Print Network [OSTI]

The potential of tidal disruption of stars to probe otherwise quiescent supermassive black holes cannot be exploited, if their dynamics is not fully understood. So far, the observational appearance of these events has been commonly derived from analytical extrapolations of the debris dynamical properties just after the stellar disruption. In this paper, we perform hydrodynamical simulations of stars in highly eccentric orbits, that follow the stellar debris after disruption and investigate their ultimate fate. We demonstrate that gas debris circularize on an orbital timescale because relativistic apsidal precession causes the stream to self-cross. The higher the eccentricity and/or the deeper the encounter, the faster is the circularization. If the internal energy deposited by shocks during stream self-interaction is readily radiated, the gas forms a narrow ring at the circularization radius. It will then proceed to accrete viscously at a super-Eddington rate, puffing up under radiation pressure. If instead c...

Bonnerot, Clément; Lodato, Giuseppe; Price, Daniel J

2015-01-01T23:59:59.000Z

270

Derivation of Delaware Bay tidal parameters from space shuttle photography  

SciTech Connect (OSTI)

The tide-related parameters of the Delaware Bay are derived from space shuttle time-series photographs. The water areas in the bay are measured from interpretation maps of the photographs with a CALCOMP 9100 digitizer and ERDAS Image Processing System. The corresponding tidal levels are calculated using the exposure time annotated on the photographs. From these data, an approximate function relating the water area to the tidal level at a reference point is determined. Based on the function, the water areas of the Delaware Bay at mean high water (MHW) and mean low water (MLW), below 0 m, and for the tidal zone are inferred. With MHW and MLW areas and the mean tidal range, the authors calculate the tidal influx of the Delaware Bay, which is 2.76 x 1O[sup 9] m[sup 3]. Furthermore, the velocity of flood tide at the bay mouth is determined using the tidal flux and an integral of the velocity distribution function at the cross section between Cape Henlopen and Cape May. The result is 132 cm/s, which compares well with the data on tidal current charts.

Zheng, Quanan; Yan, Xiaohai; Klemas, V. (Univ. of Delaware, Newark (United States))

1993-06-01T23:59:59.000Z

271

Sandia National Laboratories: Water Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering, Water Power Sandia researchers are investigating the seasonal effects of a wave-energy converter (WEC) array on nearshore wave propagation using SNL-SWAN. WECs were...

272

The Role of Tidal Marsh Restoration in Fish Management in the San Francisco Estuary  

E-Print Network [OSTI]

unpublished data). Seasonal floods bring riverine materialsoccasional large-scale flood events. Tidal wetland channels

2014-01-01T23:59:59.000Z

273

Energy potential of a tidal fence deployed near a coastal headland  

Science Journals Connector (OSTI)

...192 Theme Issue New research in tidal current energy compiled and edited by AbuBakr Bahaj Energy potential of a tidal fence deployed near a...a Theme Issue New research in tidal current energy . Enhanced tidal streams close to coastal headlands...

2013-01-01T23:59:59.000Z

274

Wave attenuation over coastal salt marshes under storm surge conditions  

E-Print Network [OSTI]

to fracture along lines of weakness that formed when stems folded over to high bending 108 angles. Cumulatively, this breakage resulted in a loss of 31% (30 kg) of the total 98 kg of biomass 109 after two days of runs under higher energy conditions (Fig. 2c... and tidal flow or as wave/tidal energy 37 buffers7,11–13. The inclusion of such natural features into quantitative flood risk assessments, 38 however, has been hampered by a lack of (i) empirical evidence for their capacity to act as wave 39 dissipaters...

Möller, Iris; Kudella, Matthias; Rupprecht, Franziska; Spencer, Tom; Paul, Maike; van Wesenbeeck, Bregje K.; Wolters, Guido; Jensen, Kai; Bouma, Tjeerd J.; Miranda-Lange, Martin; Schimmels, Stefan

2014-09-29T23:59:59.000Z

275

Wave Energy Conversion Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wave Energy Conversion Technology Wave Energy Conversion Technology Speaker(s): Mirko Previsic Date: August 2, 2001 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Julie Osborn Scientists have been working on wave power conversion for the past twenty years, but recent advances in offshore and IT technologies have made it economically competitive. Sea Power & Associates is a Berkeley-based renewable energy technology company. We have developed patented technology to generate electricity from ocean wave energy using a system of concrete buoys and highly efficient hydraulic pumps. Our mission is to provide competitively priced, non-polluting, renewable energy for coastal regions worldwide. Mirko Previsic, founder and CEO, of Sea Power & Associates will discuss ocean wave power, existing technologies for its conversion into

276

Analyzing power for ?-p charge exchange in the backward hemisphere from 301 to 625 MeV/c and a test of ?N partial-wave analyses  

Science Journals Connector (OSTI)

The analyzing power of ?-p??0n has been measured for p?=301-625 MeV/c with a transversely polarized target, mainly in the backward hemisphere. The final-state neutron and a ? from the ?0 were detected in coincidence with two counter arrays. Our results are compared with predictions of recent ?N partial-wave analyses by the groups of Karlsruhe-Helsinki, Carnegie-Mellon University-Lawrence Berkeley Laboratory (CMU-LBL), and Virginia Polytechnic Institute (VPI). At the lower incident energies little difference is seen among the three analyses, and there is excellent agreement with our data. At 547 MeV/c and above, our data strongly favor the VPI phases, and disagree with Karlsruhe-Helsinki and CMU-LBL analyses, which are the source of the ?N resonance parameters given in the Particle Data Group table.

G. J. Kim; J. Arends; W. J. Briscoe; J. Engelage; B. M. K. Nefkens; M. E. Sadler; M. Taragin; H. J. Ziock

1990-02-01T23:59:59.000Z

277

Reservoir response to tidal and barometric effects | Open Energy  

Open Energy Info (EERE)

to tidal and barometric effects to tidal and barometric effects Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Reservoir response to tidal and barometric effects Details Activities (2) Areas (2) Regions (0) Abstract: Solid earth tidal strain and surface loading due to fluctuations in barometric pressure have the effect, although extremely minute, of dilating or contracting the effective pore volume in a porous reservoir. If a well intersects the formation, the change in pore pressure can be measured with sensitive quartz pressure gauges. Mathematical models of the relevant fluid dynamics of the well-reservoir system have been generated and tested against conventional well pumping results or core data at the Salton Sea Geothermal Field (SSGF), California and at the Raft River,

278

The effects of the Tidal Force on Shear Instabilities in the Dust Layer of the Solar Nebula  

E-Print Network [OSTI]

The linear analysis of the instability due to vertical shear in the dust layer of the solar nebula is performed. The following assumptions are adopted throughout this paper: (1) The self-gravity of the dust layer is neglected. (2) One fluid model is adopted, where the dust aggregates have the same velocity with the gas due to strong coupling by the drag force. (3) The gas is incompressible. The calculations with both the Coriolis and the tidal forces show that the tidal force has a stabilizing effect. The tidal force causes the radial shear in the disk. This radial shear changes the wave number of the mode which is at first unstable, and the mode is eventually stabilized. Thus the behavior of the mode is divided into two stages: (1) the first growth of the unstable mode which is similar to the results without the tidal force, and (2) the subsequent stabilization due to an increase of the wave number by the radial shear. If the midplane dust/gas density ratio is smaller than 2, the stabilization occurs before the unstable mode grows largely. On the other hand, the mode grows faster by one hundred orders of magnitude, if this ratio is larger than 20. Because the critical density of the gravitational instability is a few hundreds times as large as the gas density, the hydrodynamic instability investigated in this paper grows largely before the onset of the gravitational instability. It is expected that the hydrodynamic instability develops turbulence in the dust layer and the dust aggregates are stirred up to prevent from settling further. The formation of planetesimals through the gravitational instabilities is difficult to occur as long as the dust/gas surface density ratio is equal to that for the solar abundance.

Naoki Ishitsu; Minoru Sekiya

2003-05-30T23:59:59.000Z

279

Numerical investigation of the physical model of a high-power electromagnetic wave in a magnetically insulated transmission line  

SciTech Connect (OSTI)

An efficient numerical code for simulating the propagation of a high-power electromagnetic pulse in a vacuum transmission line is required to study the physical phenomena occurring in such a line, to analyze the operation of present-day megavolt generators at an {approx}10-TW power level, and to design such new devices. The main physical theoretical principles are presented, and the stability of flows in the near-threshold region at the boundary of the regime of magnetic self-insulation is investigated based on one-dimensional telegraph equations with electron losses. Numerical (difference) methods-specifically, a method of characteristics and a finite-difference scheme-are described and their properties and effectiveness are compared by analyzing the high-frequency modes.

Samokhin, A. A. [Troitsk Institute for Innovation and Fusion Research (Russian Federation)

2010-02-15T23:59:59.000Z

280

Simultaneous propagation of heat waves induced by sawteeth and electron cyclotron heating power modulation in the RTP tokamak  

Science Journals Connector (OSTI)

The incremental electron heat diffusivity ?inc is determined in Rijnhuizen Tokamak Project plasmas by measurements of simultaneous heat pulses due to (1) the sawtooth instability and (2) modulated electron cyclotron heating. No systematic difference is observed between the two measured ?inc values, which are both significantly larger (?inc/?ePB=2-4) than the diffusivity obtained from power balance analysis, ?ePB.

G. Gorini; P. Mantica; G. M. D. Hogeweij; F. De Luca; A. Jacchia; J. A. Konings; N. J. Lopes Cardozo; M. Peters

1993-09-27T23:59:59.000Z

Note: This page contains sample records for the topic "tidal power wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Resonant Generation of Internal Waves on a Model Continental Slope H. P. Zhang, B. King, and Harry L. Swinney  

E-Print Network [OSTI]

Resonant Generation of Internal Waves on a Model Continental Slope H. P. Zhang, B. King, and Harry wave generation in a laboratory model of oscillating tidal flow on a continental margin. Waves are found to be generated only in a near-critical region where the slope of the bottom topography matches

Texas at Austin. University of

282

MHK Technologies/Tidal Stream | Open Energy Information  

Open Energy Info (EERE)

Stream Stream < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Stream.jpg Technology Profile Primary Organization Tidal Stream Project(s) where this technology is utilized *MHK Projects/Thames at Chiswick Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The TidalStream SST (Semi-Submersible Turbine) is designed for deep water, typically 60m+ (e.g., Pentland Firth) where it is too deep to mount turbines rigidly to the seabed and too rough for surface floaters to survive. Tidal Stream SST consists of turbines connected to unique semi-submersible spar buoys that are moored to the seabed using anchors through swing-arms. This ensures automatic alignment to the tidal flow to maximize energy capture. By blowing the water ballast, the device will rise, rotate, and float to the surface still tethered to the base to allow for on- or off-site maintenance. By releasing the tether arm the device can be towed to a harbor at the end of its life or for major repair or exchange.

283

Sandia National Laboratories: Wave Energy Resource Characterization...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Impacts of Ivanpah Solar Power Site Sandia Funded to Model Power Pods for Utility-Scale Wave-Energy Converter Wave Energy Resource Characterization at US Test Sites On September...

284

Wind Wave Float | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

(TRL 1 2 3 Component) Ocean Power Technologies (TRL 5 6 System) - PB500, 500 kW Utility-Scale PowerBuoy Project WaveBob (TRL 5 6 System) - Advanced Wave Energy Conversion Project...

285

Earth Tidal Analysis At Raft River Geothermal Area (1980) | Open Energy  

Open Energy Info (EERE)

Earth Tidal Analysis At Raft River Geothermal Earth Tidal Analysis At Raft River Geothermal Area(1980) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Earth Tidal Analysis Activity Date 1980 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the reservoir response to tidal and barometric effects Notes Porosity-total compressibility product evaluation based on tidal strain response compares favorably with results based on conventional pumping techniques. Analysis of reservoir response to barometric loading using Auto Regressive Integrated Moving Average (ARIMA) stochastic modeling appears also to have potential use for the evaluation of reservoir parameters. References Hanson, J. M. (29 May 1980) Reservoir response to tidal and barometric effects

286

Wave | OpenEI Community  

Open Energy Info (EERE)

Wave Wave Home Ocop's picture Submitted by Ocop(5) Member 18 April, 2013 - 13:41 MHK LCOE Reporting Guidance Draft Cost Current DOE LCOE numerical modeling Performance Tidal Wave To normalize competing claims of LCOE, DOE has developed-for its own use-a standardized cost and performance data reporting process to facilitate uniform calculation of LCOE from MHK device developers. This standardization framework is only the first version in what is anticipated to be an iterative process that involves industry and the broader DOE stakeholder community. Multiple files are attached here for review and comment.Upload Files: application/vnd.openxmlformats-officedocument.wordprocessingml.document icon device_performance_validation_data_request.docx application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon

287

MHK Technologies/Rotech Tidal Turbine RTT | Open Energy Information  

Open Energy Info (EERE)

Rotech Tidal Turbine RTT Rotech Tidal Turbine RTT < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Rotech Tidal Turbine RTT.jpg Technology Profile Primary Organization Lunar Energy Project(s) where this technology is utilized *MHK Projects/Lunar Energy St David s Peninsula Pembrokeshire South Wales UK *MHK Projects/Lunar Energy Wando Hoenggan Waterway South Korea Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description he Rotech Tidal Turbine (RTT) is a bi-directional horizontal axis turbine housed in a symmetrical venturi duct. The Venturi duct draws the existing ocean currents into the RTT in order to capture and convert energy into electricity. Use of a gravity foundation will allow the RTT to be deployed quickly with little or no seabed preparation at depths in excess of 40 meters. This gives the RTT a distinct advantage over most of its competitors and opens up a potential energy resource that is five times the size of that available to companies using pile foundations.

288

MHK Technologies/KESC Tidal Generator | Open Energy Information  

Open Energy Info (EERE)

KESC Tidal Generator KESC Tidal Generator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage KESC Tidal Generator.jpg Technology Profile Primary Organization Kinetic Energy Systems Project(s) where this technology is utilized *MHK Projects/Newfound Harbor Project Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The Tidal Generator is based on free flow hydrodynamics for regions that have flood and ebb tides. Strategically attached to bridges, pilings, river, channel, or sea bottoms, this multi-directional generator contains two sets of turbine blades. As the tide flows inward the inward turbine blades opens to maximum rotor diameter while the outward turbine closes into the outward cone-shaped hub to create a hydro dynamically clean surface for water to flow without drag. The center diameter is 75% of the diameter of the turbine blades at full rotor extension for stability.

289

Overview of Renewables for Power Rangan Banerjee  

E-Print Network [OSTI]

;Wind Solar Small Hydro Biomass Tidal Energy Wave Energy Ocean Thermal Energy Solar Thermal Solar Gasifier 69 70% 423 Bagasse Cogeneration 379 60% 1992 Small Hydro 1603 50% 7021 Waste to Energy 41 70% 251 Coal Oil Gas Nuclear Biomass PV Hydro-electric Wind CO2 g/kWh 960 -1300 800-860 690-870 460-1230 9

Banerjee, Rangan

290

Gravitational wave heating of stars and accretion discs  

Science Journals Connector (OSTI)

......suppression of the heating rate if the forcing period...accretion discs. black hole physics|gravitational waves...the tidal disruption rate of stars due to the refilling...the medium that the GW passes through. The dissipation rate of the GW energy gives......

Gongjie Li; Bence Kocsis; Abraham Loeb

2012-10-01T23:59:59.000Z

291

What can wave energy learn from offshore oil and gas?  

Science Journals Connector (OSTI)

...is happening in the wind power industry. Alternatively...and access and for power valuation. Persistence modelling for wind and wave conditions...components in wave power may be problematic. By analogy with wind turbine gearboxes...

2012-01-01T23:59:59.000Z

292

TIDAL DISRUPTION FLARES: THE ACCRETION DISK PHASE  

SciTech Connect (OSTI)

The evolution of an accretion disk, formed as a consequence of the disruption of a star by a black hole, is followed by solving numerically hydrodynamic equations. The present investigation aims to study the dependence of resulting light curves on dynamical and physical properties of such a transient disk during its existence. One of the main results derived from our simulations is that blackbody fits of X-ray data tend to overestimate the true mean disk temperature. In fact, the temperature derived from blackbody fits should be identified with the color X-ray temperature rather than the average value derived from the true temperature distribution along the disk. The time interval between the beginning of the circularization of the bound debris and the beginning of the accretion process by the black hole is determined by the viscous (or accretion) timescale, which also fixes the rising part of the resulting light curve. The luminosity peak coincides with the beginning of matter accretion by the black hole and the late evolution of the light curve depends on the evolution of the debris fallback rate. Peak bolometric luminosities are in the range 10{sup 45}-10{sup 46} erg s{sup -1}, whereas peak luminosities in soft X-rays (0.2-2.0 keV) are typically one order of magnitude lower. The typical timescale derived from our preferred models for the flare luminosity to decay by two orders of magnitude is about 3-4 yr. Predicted soft X-ray light curves reproduce quite well data on galaxies in which a variable X-ray emission possibly related to a tidal event was detected. In the cases of NGC 3599 and IC 3599, data are reproduced well by models defined by a black hole with mass {approx}10{sup 7} M{sub sun} and a disrupted star of about 1 solar mass. The X-ray variation observed in XMMSL1 is consistent with a model defined by a black hole with mass {approx}3 x 10{sup 6} M{sub sun} and a disrupted star of 1 solar mass, while that observed in the galaxy situated in the cluster A1689 is consistent with a model including a black hole of {approx}10{sup 7} M{sub sun} and a disrupted star of {approx}0.5 M{sub sun}.

Montesinos Armijo, Matias; De Freitas Pacheco, Jose A. [Observatoire de la Cote d'Azur, Laboratoire Cassiopee, Universite de Nice Sophia-Antipolis Bd de l'Observatoire, BP 4229, 06304 Nice Cedex 4 (France)

2011-08-01T23:59:59.000Z

293

MHK Technologies/Tidal Delay | Open Energy Information  

Open Energy Info (EERE)

Delay Delay < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Delay.png Technology Profile Primary Organization Woodshed Technologies Ltd Technology Resource Click here Current Technology Type Click here Overtopping Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Tidal Delay utilizes an existing natural land formation such as a peninsula or isthmus that creates a natural tidal barrier separating moving rising and falling bodies of seawater As the seawater on each side of the natural barrier rises and falls the device captures the energy resulting from the difference in water levels across the barrier using proven hydroelectric technology The device utilizes a standard impulse turbine installed in siphon pipe over under the natural barrier

294

E-Print Network 3.0 - advanced gravitational wave Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

gravitational wave Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced gravitational wave Page: << < 1 2 3 4 5 > >> 1 Gravitational waves...

295

Earth Tidal Analysis At Marysville Mountain Geothermal Area (1984) | Open  

Open Energy Info (EERE)

Mountain Geothermal Area (1984) Mountain Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Earth Tidal Analysis At Marysville Mountain Geothermal Area (1984) Exploration Activity Details Location Marysville Mountain Geothermal Area Exploration Technique Earth Tidal Analysis Activity Date 1984 Usefulness useful DOE-funding Unknown Exploration Basis Determine porosity of the reservoir Notes The response of a confined, areally infinite aquifer to external loads imposed by earth tides is examined. Because the gravitational influence of celestial objects occurs over large areas of the earth, the confined aquifer is assumed to respond in an undrained fashion. Since undrained response is controlled by water compressibility, earth tide response can be

296

MHK Projects/Kendall Head Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Kendall Head Tidal Energy Kendall Head Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

297

MHK Technologies/Tidal Barrage | Open Energy Information  

Open Energy Info (EERE)

Barrage Barrage < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Barrage.jpg Technology Profile Technology Resource Click here Current Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description No information provided Technology Dimensions Device Testing Date Submitted 01:04.7 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Tidal_Barrage&oldid=681672" Category: Marine and Hydrokinetic Technologies What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

298

Laboratory Analysis of Vortex Dynamics For Shallow Tidal Inlets  

E-Print Network [OSTI]

LABORATORY ANALYSIS OF VORTEX DYNAMICS FOR SHALLOW TIDAL INLETS A Thesis by KERRI ANN WHILDEN Submitted to the O ce of Graduate Studies of Texas A&M University in partial ful llment of the requirements for the degree of MASTER OF SCIENCE August 2009... Major Subject: Ocean Engineering LABORATORY ANALYSIS OF VORTEX DYNAMICS FOR SHALLOW TIDAL INLETS A Thesis by KERRI ANN WHILDEN Submitted to the O ce of Graduate Studies of Texas A&M University in partial ful llment of the requirements for the degree...

Whilden, Kerri Ann

2010-10-12T23:59:59.000Z

299

Extreme Value Analysis of Tidal Stream Velocity Perturbations  

SciTech Connect (OSTI)

This paper presents a statistical extreme value analysis of maximum velocity perturbations from the mean flow speed in a tidal stream. This study was performed using tidal velocity data measured using both an Acoustic Doppler Velocimeter (ADV) and an Acoustic Doppler Current Profiler (ADCP) at the same location which allows for direct comparison of predictions. The extreme value analysis implements of a Peak-Over-Threshold method to explore the effect of perturbation length and time scale on the magnitude of a 50-year perturbation.

Harding, Samuel; Thomson, Jim; Polagye, Brian; Richmond, Marshall C.; Durgesh, Vibhav; Bryden, Ian

2011-04-26T23:59:59.000Z

300

MHK Technologies/Tidal Turbine | Open Energy Information  

Open Energy Info (EERE)

Turbine Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Turbine.jpg Technology Profile Primary Organization Aquascientific Project(s) where this technology is utilized *MHK Projects/Race Rocks Demonstration Technology Resource Click here Current/Tidal Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description Turbine is positioned by anchoring and cabling Energy extraction from flow that is transverse to the rotation axis Turbines utilize both lift and drag Mooring Configuration Gravity base although other options are currently being explored Technology Dimensions Device Testing Date Submitted 10/8/2010

Note: This page contains sample records for the topic "tidal power wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Modelling of the flow field surrounding tidal turbine arrays for varying positions in a channel  

Science Journals Connector (OSTI)

...in velocity around turbines. This work demonstrated...output and overall efficiency were functions of flow...at arranging tidal turbine arrays such that the...Cummins. 2007 The efficiency of a turbine in a tidal channel...

2013-01-01T23:59:59.000Z

302

Assessment of Energy Production Potential from Tidal Streams in the United States  

Broader source: Energy.gov [DOE]

The project documented in this report created a national database of tidal stream energy potential, as well as a GIS tool usable by industry in order to accelerate the market for tidal energy conversion technology.

303

DC Connected Hybrid Offshore-Wind and Tidal Turbine Generation System  

Science Journals Connector (OSTI)

“Hybrid Offshore-wind and Tidal Turbine” (HOTT) generation system (Rahman and ... interconnecting method for a DC side cluster of wind and tidal turbine generators system are proposed. This method can be achieved...

Mohammad Lutfur Rahman; Yasuyuki Shirai

2010-01-01T23:59:59.000Z

304

wave | OpenEI  

Open Energy Info (EERE)

9 9 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142281559 Varnish cache server wave Dataset Summary Description This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration's (NOAA's) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. Source Electric Power Research Institute (EPRI) Date Released December 05th, 2011 (3 years ago) Date Updated Unknown Keywords

305

TIDAL HEATING OF EXTRASOLAR PLANETS Brian Jackson, Richard Greenberg, and Rory Barnes  

E-Print Network [OSTI]

TIDAL HEATING OF EXTRASOLAR PLANETS Brian Jackson, Richard Greenberg, and Rory Barnes Lunar and gas cleared away, and as the orbits evolved there was substantial tidal heating within the planets. The tidal heating history of each planet may have contributed significantly to the thermal budget governing

Barnes, Rory

306

KOI-54: The Kepler Discovery of Tidally Excited Pulsations and Brightenings in a Highly Eccentric Binary  

Science Journals Connector (OSTI)

Kepler observations of the star HD 187091 (KIC 8112039, hereafter KOI-54) revealed a remarkable light curve exhibiting sharp periodic brightening events every 41.8 days with a superimposed set of oscillations forming a beating pattern in phase with the brightenings. Spectroscopic observations revealed that this is a binary star with a highly eccentric orbit, e = 0.83. We are able to match the Kepler light curve and radial velocities with a nearly face-on (i = 55) binary star model in which the brightening events are caused by tidal distortion and irradiation of nearly identical A stars during their close periastron passage. The two dominant oscillations in the light curve, responsible for the beating pattern, have frequencies that are the 91st and 90th harmonic of the orbital frequency. The power spectrum of the light curve, after removing the binary star brightening component, reveals a large number of pulsations, 30 of which have a signal-to-noise ratio 7. Nearly all of these pulsations have frequencies that are either integer multiples of the orbital frequency or are tidally split multiples of the orbital frequency. This pattern of frequencies unambiguously establishes the pulsations as resonances between the dynamic tides at periastron and the free oscillation modes of one or both of the stars. KOI-54 is only the fourth star to show such a phenomenon and is by far the richest in terms of excited modes.

William F. Welsh; Jerome A. Orosz; Conny Aerts; Timothy M. Brown; Erik Brugamyer; William D. Cochran; Ronald L. Gilliland; Joyce Ann Guzik; D. W. Kurtz; David W. Latham; Geoffrey W. Marcy; Samuel N. Quinn; Wolfgang Zima; Christopher Allen; Natalie M. Batalha; Steve Bryson; Lars A. Buchhave; Douglas A. Caldwell; Thomas N. Gautier III; Steve B. Howell; K. Kinemuchi; Khadeejah A. Ibrahim; Howard Isaacson; Jon M. Jenkins; Andrej Prsa; Martin Still; Rachel Street; Bill Wohler; David G. Koch; William J. Borucki

2011-01-01T23:59:59.000Z

307

Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2007  

SciTech Connect (OSTI)

This document is the first annual report for the study titled “Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta in the Lower Columbia River.” Hereafter, we refer to this research as the Tidal Freshwater Monitoring (TFM) Study. The study is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, U.S. Army Corps of Engineers, U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act as a result of operation of the Federal Columbia River Power System (FCRPS). The project is performed under the auspices of the Northwest Power and Conservation Council’s Columbia Basin Fish and Wildlife Program.

Sobocinski, Kathryn L.; Johnson, Gary E.; Sather, Nichole K.; Storch, Adam; Jones, Tucker A.; Mallette, Christine; Dawley, Earl M.; Skalski, John R.; Teel, David; Moran, Paul

2008-03-18T23:59:59.000Z

308

Enhancing Electrical Supply by Pumped Storage in Tidal Lagoons  

E-Print Network [OSTI]

/3/07 Summary The principle that the net energy delivered by a tidal pool can be increased by pumping extra water into the pool at high tide or by pumping extra water out of the pool at low tide is well known pumping and generating worsens the intermittency­of­supply problem from which simple tide pools suf­ fer

MacKay, David J.C.

309

LOFT as a discovery machine for jetted Tidal Disruption Events  

E-Print Network [OSTI]

This is a White Paper in support of the mission concept of the Large Observatory for X-ray Timing (LOFT), proposed as a medium-sized ESA mission. We discuss the potential of LOFT for the study of jetted tidal disruption events. For a summary, we refer to the paper.

Rossi, E M; Fender, R; Jonker, P; Komossa, S; Paragi, Z; Prandoni, I; Zampieri, L

2015-01-01T23:59:59.000Z

310

Heartbeat Stars and the Ringing of Tidal Pulsations Kelly Hambleton  

E-Print Network [OSTI]

Heartbeat Stars and the Ringing of Tidal Pulsations Kelly Hambleton Andrej Prsa, Don Kurtz, Jim Fuller, Susan Thompson University of Central Lancashire kmhambleton@uclan.ac.uk March 27, 2014 Kelly 3 Summary Conclusions Future Work Kelly Hambleton (UCLan) Heartbeat Stars March 27, 2014 2 / 33 #12

Â?umer, Slobodan

311

Pasture and Soil Management Following Tidal Saltwater Intrusion  

E-Print Network [OSTI]

When land is flooded by saltwater, as after a hurricane tidal surge, it can long-term effects on soil productivity and fertility. This publication explains how to reclaim flooded pasture land. Having soil tested for salinity is an important step....

Provin, Tony; Redmon, Larry; McFarland, Mark L.; Feagley, Sam E.

2009-05-26T23:59:59.000Z

312

Influence of tidal parameters on SeaGen flicker performance  

Science Journals Connector (OSTI)

...Figure 12. Impact of flood...the tidal energy converter...quality of wind turbines and...interaction with the grid. In Proc. of the European Wind Energy Conf. (EWEC...characteristics of grid connected wind turbines...Sustainable Energy, October...

2013-01-01T23:59:59.000Z

313

Sediment rarefaction resuspension and contaminant release under tidal curren- ts  

Science Journals Connector (OSTI)

Abstract Based on experiment in tidal flume, this paper analyzes the sediment rarefactive phenomenon and hydraulic characteristics of sediment resuspension with different physical properties under the effect of tidal current. According to this experiment, sediment resuspension is related to the hydraulic characteristics of overlying water and its own dry density, namely the moisture content of sediment and deposition time. Generally, river sediment can be classified into the upper layer of floating sludge and lower layer of deposit sediment. Incipient velocity goes higher as the sediment layer goes thicker. Based on the experiment, incipient velocity formula of sediment can be obtained. There is a cohesive force among natural fine sediment whose resuspension is almost irrelevant to their diameters. Therefore, the critical incipient velocity is determined by the cohesive force instead of particle diameter. The lower layer of deposit sediment is generally not so easy to start up. And it will be rarified and release into the overlying water when contacting with overlying water. However, this rarefaction release velocity is gentle and slow. Under the same flow condition, annual loss amount of lower layer deposited sediment is about one fifth of upper layer of floating sediment. Flow velocity of tidal river and variation of the water level are asymmetrical, both of which vary under different tidal cycles. During long tidal cycle, flow velocity and water level change in the same phase and amplitude with tide. During the whole ebb and flow, flow direction does not change as the water level goes under the influence of acceleration and deceleration. As the tide cycle increases, the incipient velocity of sediment goes higher. This means that the long period tide cycle plays buffer effect on the resuspension of sediment, which makes the sediment not so easy both to start up and to suspend.

Peng-da CHENG; Hong-wei ZHU; Bao-chang ZHONG; Dao-zeng WANG

2014-01-01T23:59:59.000Z

314

Modeling In-stream Tidal Energy Extraction and Its Potential Environmental Impacts  

SciTech Connect (OSTI)

In recent years, there has been growing interest in harnessing in-stream tidal energy in response to concerns of increasing energy demand and to mitigate climate change impacts. While many studies have been conducted to assess and map tidal energy resources, efforts for quantifying the associated potential environmental impacts have been limited. This paper presents the development of a tidal turbine module within a three-dimensional unstructured-grid coastal ocean model and its application for assessing the potential environmental impacts associated with tidal energy extraction. The model is used to investigate in-stream tidal energy extraction and associated impacts on estuarine hydrodynamic and biological processes in a tidally dominant estuary. A series of numerical experiments with varying numbers and configurations of turbines installed in an idealized estuary were carried out to assess the changes in the hydrodynamics and biological processes due to tidal energy extraction. Model results indicated that a large number of turbines are required to extract the maximum tidal energy and cause significant reduction of the volume flux. Preliminary model results also indicate that extraction of tidal energy increases vertical mixing and decreases flushing rate in a stratified estuary. The tidal turbine model was applied to simulate tidal energy extraction in Puget Sound, a large fjord-like estuary in the Pacific Northwest coast.

Yang, Zhaoqing; Wang, Taiping; Copping, Andrea; Geerlofs, Simon H.

2014-09-30T23:59:59.000Z

315

Harmonic generation by reflecting internal waves Bruce Rodenborn, D. Kiefer, H. P. Zhang, and Harry L. Swinney  

E-Print Network [OSTI]

Harmonic generation by reflecting internal waves Bruce Rodenborn, D. Kiefer, H. P. Zhang, and Harry 2011 The generation of internal gravity waves by tidal flow over topography is an important oceanic­Stokes equations to determine the value of the topographic slope that gives the most intense generation of second

Texas at Austin. University of

316

MHK Technologies/Morild Power Plant | Open Energy Information  

Open Energy Info (EERE)

Morild Power Plant Morild Power Plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Morild Power Plant.jpg Technology Profile Primary Organization Hydra Tidal Energy Technology AS Project(s) where this technology is utilized *MHK Projects/MORILD Demonstration Plant Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description The Morild power plant is a floating, moored construction based on the same principle as horizontal axis wind turbines. The plant has 4 two-blade underwater turbines and can utilize the energy potential in tidal and ocean currents. The 4 turbines transmit power via hydraulic transmission to 2 synchronous generators. Can be pitched 180 degrees to utilize energy in both directions. A cable from the transformer on the prototype to shore transfers energy.

317

Wave energy  

Science Journals Connector (OSTI)

Waves receive their energy from the wind by means of a ... whose yield is not yet clearly understood. Energy in the wave is more concentrated than in the wind ... density. For this reason a motor utilizing wave p...

Ferruccio Mosetti

1982-01-01T23:59:59.000Z

318

Tidal turbine representation in an ocean circulation model: Towards realistic applications  

Science Journals Connector (OSTI)

Abstract The present method proposes the use and adaptation of ocean circulation models as an assessment tool framework for tidal current turbine (TCT) array-layout optimization. By adapting both momentum and turbulence transport equations of an existing model, the present TCT representation method is proposed to extend the actuator disc concept to 3-D large scale ocean circulation models. Through the reproduction of experimental flume tests, this method has shown its ability to simulate accurately both momentum and turbulent wake interactions. In addition, through an up-scaling test, this method has shown to be applicable at any scale. Thanks to its short computational time, the present TCT representation method is a very promising basis for the development of a TCT array layout optimization tool. Furthermore, on the basis of the simulations performed for the present publication, a reflection on the quantification of the array layout effects on power assessment and device deployment strategy has been initiated.

Thomas Roc; Deborah Greaves; Kristen M. Thyng; Daniel C. Conley

2014-01-01T23:59:59.000Z

319

2011 Waves -1 STANDING WAVES  

E-Print Network [OSTI]

-multiple of the wavelength: n 2 L ,n 1,2,... . A vibrating string is an example of a transverse wave: its oscillation2011 Waves - 1 STANDING WAVES ON A STRING The objectives of the experiment are: · To show that standing waves can be set up on a string. · To determine the velocity of a standing wave. · To understand

Glashausser, Charles

320

MHK Technologies/Hybrid wave Wind Wave pumps and turbins | Open Energy  

Open Energy Info (EERE)

Wind Wave pumps and turbins Wind Wave pumps and turbins < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Hybrid wave Wind Wave pumps and turbins.jpg Technology Profile Primary Organization Ocean Wave Wind Energy Ltd OWWE Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description 2Wave1Wind The hybrid wave power rig uses two wave converting technologies in addition to wind mills The main system is a pneumatic float in the category of overtopping as Wave Dragon In addition the pneumatic float can house point absorbers The hybrid wave power rig is based on the patented wave energy converter from 2005

Note: This page contains sample records for the topic "tidal power wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

MHK Projects/Cohansey River Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Cohansey River Tidal Energy Cohansey River Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3829,"lon":-75.2995,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

322

MHK Projects/Dorchester Maurice Tidal | Open Energy Information  

Open Energy Info (EERE)

Dorchester Maurice Tidal Dorchester Maurice Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3262,"lon":-74.938,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

323

MHK Projects/Orient Point Tidal | Open Energy Information  

Open Energy Info (EERE)

Orient Point Tidal Orient Point Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.0748,"lon":-72.9461,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

324

MHK Projects/Gastineau Channel Tidal | Open Energy Information  

Open Energy Info (EERE)

Gastineau Channel Tidal Gastineau Channel Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":58.295,"lon":-134.407,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

325

MHK Projects/Highlands Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Tidal Energy Project Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.3432,"lon":-73.9977,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

326

MHK Projects/Piscataqua Tidal Hydrokinetic Energy Project | Open Energy  

Open Energy Info (EERE)

Piscataqua Tidal Hydrokinetic Energy Project Piscataqua Tidal Hydrokinetic Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.1055,"lon":-70.7912,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

327

MHK Projects/Paimpol Brehat tidal farm | Open Energy Information  

Open Energy Info (EERE)

Paimpol Brehat tidal farm Paimpol Brehat tidal farm < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.869,"lon":-2.98546,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

328

MHK Projects/Turnagain Arm Tidal | Open Energy Information  

Open Energy Info (EERE)

Turnagain Arm Tidal Turnagain Arm Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.3378,"lon":-151.875,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

329

MHK Projects/Wiscasset Tidal Energy Plant | Open Energy Information  

Open Energy Info (EERE)

Wiscasset Tidal Energy Plant Wiscasset Tidal Energy Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.8146,"lon":-69.8697,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

330

MHK Projects/Nantucket Tidal Energy Plant | Open Energy Information  

Open Energy Info (EERE)

Nantucket Tidal Energy Plant Nantucket Tidal Energy Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.389,"lon":-70.5134,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

331

MHK Projects/Kingsbridge Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Kingsbridge Tidal Energy Project Kingsbridge Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.1008,"lon":-74.0495,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

332

MHK Projects/Rockaway Tidal Energy Plant | Open Energy Information  

Open Energy Info (EERE)

Rockaway Tidal Energy Plant Rockaway Tidal Energy Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.5667,"lon":-73.922,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

333

MHK Projects/Muskeget Channel Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Muskeget Channel Tidal Energy Muskeget Channel Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.3501,"lon":-70.3995,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

334

MHK Projects/Killisnoo Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Killisnoo Tidal Energy Killisnoo Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":57.4724,"lon":-134.56,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

335

MHK Projects/Deception Pass Tidal Energy Hydroelectric Project | Open  

Open Energy Info (EERE)

Deception Pass Tidal Energy Hydroelectric Project Deception Pass Tidal Energy Hydroelectric Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.4072,"lon":-122.643,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

336

MHK Projects/Lubec Narrows Tidal | Open Energy Information  

Open Energy Info (EERE)

Lubec Narrows Tidal Lubec Narrows Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.8652,"lon":-66.9828,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

337

MHK Projects/Housatonic Tidal Energy Plant | Open Energy Information  

Open Energy Info (EERE)

Housatonic Tidal Energy Plant Housatonic Tidal Energy Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.2713,"lon":-73.0883,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

338

MHK Projects/Tidal Energy Project Portugal | Open Energy Information  

Open Energy Info (EERE)

Tidal Energy Project Portugal Tidal Energy Project Portugal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.702,"lon":-9.13445,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

339

MHK Projects/Treat Island Tidal | Open Energy Information  

Open Energy Info (EERE)

Treat Island Tidal Treat Island Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.0234,"lon":-67.0672,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

340

MHK Projects/Maurice River Tidal | Open Energy Information  

Open Energy Info (EERE)

Maurice River Tidal Maurice River Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3261,"lon":-74.9379,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "tidal power wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

MHK Projects/Penobscot Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Penobscot Tidal Energy Project Penobscot Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.5404,"lon":-68.7838,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

342

MHK Projects/Cape May Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Cape May Tidal Energy Cape May Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9668,"lon":-74.963,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

343

MHK Projects/Salem Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Salem Tidal Energy Salem Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.5739,"lon":-75.5438,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

344

MHK Projects/Angoon Tidal Energy Plant | Open Energy Information  

Open Energy Info (EERE)

Angoon Tidal Energy Plant Angoon Tidal Energy Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":57.5034,"lon":-134.58,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

345

MHK Projects/Seaflow Tidal Energy System | Open Energy Information  

Open Energy Info (EERE)

Seaflow Tidal Energy System Seaflow Tidal Energy System < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.2353,"lon":-3.8356,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

346

MHK Projects/East Foreland Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

East Foreland Tidal Energy East Foreland Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.2223,"lon":-151.905,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

347

MHK Projects/Margate Tidal | Open Energy Information  

Open Energy Info (EERE)

Margate Tidal Margate Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3793,"lon":-74.4384,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

348

MHK Projects/Cuttyhunk Tidal Energy Plant | Open Energy Information  

Open Energy Info (EERE)

Cuttyhunk Tidal Energy Plant Cuttyhunk Tidal Energy Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7778,"lon":-70.8489,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

349

MHK Projects/Wrangell Narrows Tidal Energy Project | Open Energy  

Open Energy Info (EERE)

Wrangell Narrows Tidal Energy Project Wrangell Narrows Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":56.6324,"lon":-132.936,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

350

MHK Projects/Astoria Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Astoria Tidal Energy Astoria Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7172,"lon":-73.9703,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

351

Atmospheric heat redistribution and collapse on tidally locked rocky planets  

E-Print Network [OSTI]

Atmospheric collapse is likely to be of fundamental importance to tidally locked rocky exoplanets but remains understudied. Here, general results on the heat transport and stability of tidally locked terrestrial-type atmospheres are reported. First, the problem is modeled with an idealized 3D general circulation model (GCM) with gray gas radiative transfer. It is shown that over a wide range of parameters the atmospheric boundary layer, rather than the large-scale circulation, is the key to understanding the planetary energy balance. Through a scaling analysis of the interhemispheric energy transfer, theoretical expressions for the day-night temperature difference and surface wind speed are created that reproduce the GCM results without tuning. Next, the GCM is used with correlated-k radiative transfer to study heat transport for two real gases (CO2 and CO). For CO2, empirical formulae for the collapse pressure as a function of planetary mass and stellar flux are produced, and critical pressures for atmospher...

Wordsworth, Robin

2014-01-01T23:59:59.000Z

352

MHK Projects/Cook Inlet Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Cook Inlet Tidal Energy Cook Inlet Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.6893,"lon":-151.437,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

353

MHK Projects/BW2 Tidal | Open Energy Information  

Open Energy Info (EERE)

BW2 Tidal BW2 Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3264,"lon":-74.9336,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

354

MHK Projects/Avalon Tidal | Open Energy Information  

Open Energy Info (EERE)

Avalon Tidal Avalon Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.1068,"lon":-74.7463,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

355

MHK Projects/Admirality Inlet Tidal Energy Project | Open Energy  

Open Energy Info (EERE)

Admirality Inlet Tidal Energy Project Admirality Inlet Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.1169,"lon":-122.76,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

356

EA-1949: Admiralty Inlet Pilot Tidal Project, Puget Sound, WA  

Broader source: Energy.gov [DOE]

This EA analyzes the potential environmental effects of a proposal by the Public Utility District No. 1 of Snowhomish County, Washington to construct and operate the Admiralty Inlet Tidal Project. The proposed 680-kilowatt project would be located on the east side of Admiralty Inlet in Puget Sound, Washington, about 1 kilometer west of Whidbey Island, entirely within Island County, Washington. The Federal Energy Regulatory Commission (FERC) is the lead agency. DOE is a cooperating agency.

357

Extremely Close-In Giant Planets from Tidal Capture  

E-Print Network [OSTI]

Planets that form around stars born in dense stellar environments are subject to dynamical perturbations from other stars in the system. These perturbations will strip outer planets, forming a population of free-floating planets, some of which will be tidally captured before they evaporate from the system. For systems with velocity dispersion of 1 km/s, Jupiter-mass planets can be captured into orbits with periods of 0.1-0.4 days, which are generally stable over a Gyr, assuming quadratic suppression of eddy viscosity in the convective zones of the host stars. Under this assumption, and that most stars form several massive planets at separations 5-50 AU, about 0.03% of stars in rich, mature open clusters should have extremely close-in tidally captured planets. Approximately 0.005% of field stars should also have such planets, which may be found in field searches for transiting planets. Detection of a population of tidally-captured planets would indicate that most stars formed in stellar clusters. In globular clusters, the fraction of stars with tidally-captured planets rises to 0.1% -- in conflict with the null result of the transit search in 47 Tuc. This implies that, if the quadratic prescription for viscosity suppression is correct, planetary formation was inhibited in 47 Tuc: less than one planet of Jupiter-mass or greater (bound or free-floating) formed per cluster star. Less than half of the stars formed solar-system analogs. Brown dwarfs can also be captured in tight orbits; the lack of such companions in 47 Tuc in turn implies an upper limit on the initial frequency of brown dwarfs in this cluster. However, this upper limit is extremely sensitive to the highly uncertain timescale for orbital decay, and thus it is difficult to draw robust conclusions about the low-mass end of the mass function in 47 Tuc.

B. Scott Gaudi

2003-07-15T23:59:59.000Z

358

Self-interfering matter-wave patterns generated by a moving laser obstacle in a two-dimensional Bose-Einstein condensate inside a power trap cut off by box potential boundaries  

SciTech Connect (OSTI)

We report the observation of highly energetic self-interfering matter-wave (SIMW) patterns generated by a moving obstacle in a two-dimensional Bose-Einstein condensate (BEC) inside a power trap cut off by hard-wall box potential boundaries. The obstacle initially excites circular dispersive waves radiating away from the center of the trap which are reflected from hard-wall box boundaries at the edges of the trap. The resulting interference between outgoing waves from the center of the trap and reflected waves from the box boundaries institutes, to the best of our knowledge, unprecedented SIMW patterns. For this purpose we simulated the time-dependent Gross-Pitaevskii equation using the split-step Crank-Nicolson method and the obstacle was modelled by a moving impenetrable Gaussian potential barrier. Various trapping geometries are considered in which the dynamics of the spatial and momentum density, as well as the energy, are considered. The momentum dynamics reveal an oscillatory behavior for the condensate fraction, indicative of excitations out of and de-excitations back into the condensate state. An oscillatory pattern for the energy dynamics reveals the presence of solitons in the system. Some vortex features are also obtained.

Sakhel, Roger R. [Department of Basic Sciences, Faculty of Information Technology, Isra University, Amman 11622 (Jordan); Sakhel, Asaad R. [Department of Applied Sciences, Faculty of Engineering Technology, Al-Balqa Applied University, Amman 11134 (Jordan); Ghassib, Humam B. [Department of Physics, The University of Jordan, Amman 11942 (Jordan)

2011-09-15T23:59:59.000Z

359

E-Print Network 3.0 - acoustic waves propagating Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

propagating Search Powered by Explorit Topic List Advanced Search Sample search results for: acoustic waves propagating...

360

E-Print Network 3.0 - acoustic waves propagation Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

propagation Search Powered by Explorit Topic List Advanced Search Sample search results for: acoustic waves propagation...

Note: This page contains sample records for the topic "tidal power wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Fracture orientation analysis by the solid earth tidal strain method | Open  

Open Energy Info (EERE)

orientation analysis by the solid earth tidal strain method orientation analysis by the solid earth tidal strain method Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Fracture orientation analysis by the solid earth tidal strain method Details Activities (1) Areas (1) Regions (0) Abstract: A new practical method has been developed to estimate subsurface fracture orientation based on an analysis of solid earth tidal strains. The tidal strain fracture orientation technique is a passive method which has no depth limitation. The orientation of either natural or hydraulically stimulated fractures can be measured using either new or old static observation wells. Estimates for total compressibility and areal interconnected porosity can also be developed for reservoirs with matrix permeability using a combination of tidal and barometric strain analysis.

362

Tidal Heating of Terrestrial Extra-Solar Planets and Implications for their Habitability  

E-Print Network [OSTI]

The tidal heating of hypothetical rocky (or terrestrial) extra-solar planets spans a wide range of values depending on stellar masses and initial orbits. Tidal heating may be sufficiently large (in many cases, in excess of radiogenic heating) and long-lived to drive plate tectonics, similar to the Earth's, which may enhance the planet's habitability. In other cases, excessive tidal heating may result in Io-like planets with violent volcanism, probably rendering them unsuitable for life. On water-rich planets, tidal heating may generate sub-surface oceans analogous to Europa's with similar prospects for habitability. Tidal heating may enhance the outgassing of volatiles, contributing to the formation and replenishment of a planet's atmosphere. To address these issues, we model the tidal heating and evolution of hypothetical extra-solar terrestrial planets. The results presented here constrain the orbital and physical properties required for planets to be habitable.

Brian Jackson; Rory Barnes; Richard Greenberg

2008-08-20T23:59:59.000Z

363

MHK Technologies/Wave Rotor | Open Energy Information  

Open Energy Info (EERE)

Rotor Rotor < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Rotor.jpg Technology Profile Primary Organization Ecofys Subsidiary of Econcern Project(s) where this technology is utilized *MHK Projects/C Energy Technology Resource Click here Wave Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description The Wave Rotor uses a combined Darrieus-Wells rotor, which is contained on the same vertical axis of rotation. These are respectively omni- and bi-directional rotors that can operate in currents of changing directions. The Wave Rotor is mounted on a platform to allow for the capture of wave energy from circulating water particles created by local currents. Since it uses two types of rotor on a single axis of rotation it is able to convert not only tidal currents, but also waves into electricity.

364

Assessment of Strike of Adult Killer Whales by an OpenHydro Tidal Turbine Blade  

SciTech Connect (OSTI)

Report to DOE on an analysis to determine the effects of a potential impact to an endangered whale from tidal turbines proposed for deployment in Puget Sound.

Carlson, Thomas J.; Elster, Jennifer L.; Jones, Mark E.; Watson, Bruce E.; Copping, Andrea E.; Watkins, Michael L.; Jepsen, Richard A.; Metzinger, Kurt

2012-02-01T23:59:59.000Z

365

Earth Tidal Analysis At Salton Sea Geothermal Area (1980) | Open Energy  

Open Energy Info (EERE)

80) 80) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Earth Tidal Analysis At Salton Sea Geothermal Area (1980) Exploration Activity Details Location Salton Sea Geothermal Area Exploration Technique Earth Tidal Analysis Activity Date 1980 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the reservoir response to tidal and barometric effects Notes Porosity-total compressibility product evaluation based on tidal strain response compares favorably with results based on conventional pumping techniques. Analysis of reservoir response to barometric loading using Auto Regressive Integrated Moving Average (ARIMA) stochastic modeling appears also to have potential use for the evaluation of reservoir parameters.

366

Wave Energy Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wave Energy Basics Wave Energy Basics Wave Energy Basics August 16, 2013 - 4:30pm Addthis Photo of a large wave. Wave energy technologies extract energy directly from surface waves or from pressure fluctuations below the surface. Renewable energy analysts believe there is enough energy in ocean waves to provide up to 2 terawatts of electricity. (A terawatt is equal to a trillion watts.) However, wave energy cannot be harnessed everywhere. Wave power-rich areas of the world include the western coasts of Scotland, northern Canada, southern Africa, and Australia as well as the northeastern and northwestern coasts of the United States. In the Pacific Northwest alone, it is feasible that wave energy could produce 40-70 kilowatts (kW) per 3.3 feet (1 meter) of western coastline. Wave Energy Technologies

367

A One-Dimensional Propagation of Shock Wave Supported by Atmospheric Millimeter-Wave Plasma  

Science Journals Connector (OSTI)

A shock wave supported by an atmospheric breakdown plasma caused by a high-power millimeter-wave ... was detached from the ionization front of the plasma whenever the propagation velocity of the ionization ... . ...

Yasuhisa Oda; Toshikazu Yamaguchi…

2011-06-01T23:59:59.000Z

368

Sandia National Laboratories: Water Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water Power Sandia-NREL Wave Energy Converter (WEC)-Sim Development Meeting On August 28, 2013, in Computational Modeling & Simulation, Energy, Partnership, Renewable Energy, Water...

369

List of Tidal Energy Incentives | Open Energy Information  

Open Energy Info (EERE)

Incentives Incentives Jump to: navigation, search The following contains the list of 538 Tidal Energy Incentives. CSV (rows 1-500) CSV (rows 501-538) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Abatement of Air Pollution: Control of Carbon Dioxide Emissions/Carbon Dioxide Budget Trading Program (Connecticut) Environmental Regulations Connecticut Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Biomass/Biogas

370

Traveling-wave photodetector  

SciTech Connect (OSTI)

The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size.

Hietala, V.M.; Vawter, G.A.

1992-12-31T23:59:59.000Z

371

Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2007 Annual Report.  

SciTech Connect (OSTI)

This document is the first annual report for the study titled 'Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta in the Lower Columbia River'. Hereafter, we refer to this research as the Tidal Freshwater Monitoring (TFM) Study. The study is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, U.S. Army Corps of Engineers, U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act as a result of operation of the Federal Columbia River Power System (FCRPS). The project is performed under the auspices of the Northwest Power and Conservation Council's Columbia Basin Fish and Wildlife Program. The goal of the 2007-2009 Tidal Freshwater Monitoring Study is to answer the following questions: In what types of habitats within the tidal freshwater area of the lower Columbia River and estuary (LCRE; Figure 1) are yearling and subyearling salmonids found, when are they present, and under what environmental conditions?1 And, what is the ecological importance2 of shallow (0-5 m) tidal freshwater habitats to the recovery of Upper Columbia River spring Chinook salmon and steelhead and Snake River fall Chinook salmon? Research in 2007 focused mainly on the first question, with fish stock identification data providing some indication of Chinook salmon presence at the variety of habitat types sampled. The objectives and sub-objectives for the 2007 study were as follows: (1) Habitat and Fish Community Characteristics-Provide basic data on habitat and fish community characteristics for yearling and subyearling salmonids at selected sites in the tidal freshwater reach in the vicinity of the Sandy River delta. (1a) Characterize vegetation assemblage percent cover, conventional water quality, substrate composition, and beach slope at each of six sampling sites in various tidal freshwater habitat types. (1b) Determine fish community characteristics, including species composition, abundance, and temporal and spatial distributions. (1c) Estimate the stock of origin for the yearling and subyearling Chinook salmon captured at the sampling sites using genetic analysis. (1d) Statistically assess the relationship between salmonid abundance and habitat parameters, including ancillary variables such as temperature and river stage. (2) Acoustic Telemetry Monitoring-Assess feasibility of applying Juvenile Salmon Acoustic Telemetry System (JSATS) technology to determine migration characteristics from upriver of Bonneville Dam through the study area (vicinity of the Sandy River delta/Washougal River confluence). (2a) Determine species composition, release locations, and distributions of JSATS-tagged fish. (2b) Estimate run timing, residence times, and migration pathways for these fish. Additionally, both objectives serve the purpose of baseline research for a potential tidal rechannelization project on the Sandy River. The U.S. Forest Service, in partnership with the Bonneville Power Administration and the U.S. Army Corps of Engineers, is currently pursuing reconnection of the east (relict) Sandy River channel with the current channel to improve fish and wildlife habitat in the Sandy River delta. Our study design and the location of sampling sites in this reach provide baseline data to evaluate the potential restoration.

Sobocinski, Kathryn; Johnson, Gary; Sather, Nichole [Pacific Northwest National Laboratory

2008-03-17T23:59:59.000Z

372

The Magellanic Bridge: The Nearest Purely Tidal Stellar Population  

E-Print Network [OSTI]

We report on observations of the stellar populations in twelve fields spanning the region between the Magellanic Clouds, made with the Mosaic-II camera on the 4-meter telescope at the Cerro-Tololo Inter-American Observatory. The two main goals of the observations are to characterize the young stellar population (which presumably formed in situ in the Bridge and therefore represents the nearest stellar population formed from tidal debris), and to search for an older stellar component (which would have been stripped from either Cloud as stars, by the same tidal forces which formed the gaseous Bridge). We determine the star-formation history of the young inter-Cloud population, which provides a constraint on the timing of the gravitational interaction which formed the Bridge. We do not detect an older stellar population belonging to the Bridge in any of our fields, implying that the material that was stripped from the Clouds to form the Magellanic Bridge was very nearly a pure gas.

Jason Harris

2006-12-04T23:59:59.000Z

373

Mercury Dynamics in a San Francisco Estuary Tidal Wetland: Assessing Dynamics Using In Situ Measurements  

E-Print Network [OSTI]

Mercury Dynamics in a San Francisco Estuary Tidal Wetland: Assessing Dynamics Using In Situ the tidally driven exchange of mercury (Hg) between the waters of the San Francisco estuary and Browns Island, respectively--together predicted 94 % of the observed variability in measured total mercury concentra- tion

Boss, Emmanuel S.

374

Transport and Resuspension of Fine Particles in a Tidal Boundary Layer near a Small Peninsula  

Science Journals Connector (OSTI)

The authors present a theory on the transport and resuspension of fine particles in a tidal boundary layer when the ambient tidal flow is nonuniform due to a peninsula along the coastline. As a first step toward better physical understanding the ...

Chiang C. Mei; Chimin Chian; Feng Ye

1998-11-01T23:59:59.000Z

375

Cross-shore sediment transport and the equilibrium morphology of mudflats under tidal currents  

E-Print Network [OSTI]

Cross-shore sediment transport and the equilibrium morphology of mudflats under tidal currents D of suspended sediment transport under cross-shore tidal currents on an intertidal mudflat. We employ a Lagrangian formulation to obtain periodic solutions for the sediment transport over idealized bathymetries

Hogg, Andrew

376

Verdant Power | Open Energy Information  

Open Energy Info (EERE)

Verdant Power Verdant Power Jump to: navigation, search Name Verdant Power Place New York, New York Zip 10044 Sector Marine and Hydrokinetic Product A systems integrator and a developer of free-flow turbine systems that generates utility and village scale electric power from natural underwater currents. References Verdant Power[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Cornwall Ontario River Energy CORE Roosevelt Island Tidal Energy RITE This company is involved in the following MHK Technologies: Kinetic Hydropower System KHPS This article is a stub. You can help OpenEI by expanding it. Verdant Power is a company located in New York, New York .

377

Earth Tidal Analysis At Raft River Geothermal Area (1982) | Open Energy  

Open Energy Info (EERE)

Tidal Analysis At Raft River Geothermal Area Tidal Analysis At Raft River Geothermal Area (1982) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Earth Tidal Analysis Activity Date 1982 Usefulness not indicated DOE-funding Unknown Exploration Basis To estimate subsurface fracture orientation based on an analysis of solid earth tidal strains. Notes A new practical method has been developed. The tidal strain fracture orientation technique is a passive method which has no depth limitation. The orientation of either natural or hydraulically stimulated fractures can be measured using either new or old static observation wells. Estimates for total compressibility and areal interconnected porosity can also be developed for reservoirs with matrix permeability using a combination of

378

The Power of People  

Science Journals Connector (OSTI)

The Power of People ... Once, about 20 years ago, I was swimming in the ocean along North Carolina's Outer Banks when an innocent-looking wave wiped me out. ...

MADELEINE JACOBS

1996-03-18T23:59:59.000Z

379

Tidal Residual Eddies and their Effect on Water Exchange in Puget Sound  

SciTech Connect (OSTI)

Tidal residual eddies are one of the important hydrodynamic features in tidally dominant estuaries and coastal bays, and they could have significant effects on water exchange in a tidal system. This paper presents a modeling study of tides and tidal residual eddies in Puget Sound, a tidally dominant fjord-like estuary in the Pacific Northwest coast, using a three-dimensional finite-volume coastal ocean model. Mechanisms of vorticity generation and asymmetric distribution patterns around an island/headland were analyzed using the dynamic vorticity transfer approach and numerical experiments. Model results of Puget Sound show that a number of large twin tidal residual eddies exist in the Admiralty Inlet because of the presence of major headlands in the inlet. Simulated residual vorticities near the major headlands indicate that the clockwise tidal residual eddy (negative vorticity) is generally stronger than the anticlockwise eddy (positive vorticity) because of the effect of Coriolis force. The effect of tidal residual eddies on water exchange in Puget Sound and its sub-basins were evaluated by simulations of dye transport. It was found that the strong transverse variability of residual currents in the Admiralty Inlet results in a dominant seaward transport along the eastern shore and a dominant landward transport along the western shore of the Inlet. A similar transport pattern in Hood Canal is caused by the presence of tidal residual eddies near the entrance of the canal. Model results show that tidal residual currents in Whidbey Basin are small in comparison to other sub-basins. A large clockwise residual circulation is formed around Vashon Island near entrance of South Sound, which can potentially constrain the water exchange between the Central Basin and South Sound.

Yang, Zhaoqing; Wang, Taiping

2013-08-30T23:59:59.000Z

380

Chemo-dynamical evolution of tidal dwarf galaxies. II. The long-term evolution and influence of a tidal field  

E-Print Network [OSTI]

In a series of papers, we present detailed chemo-dynamical simulations of tidal dwarf galaxies (TDGs). After the first paper, where we focused on the very early evolution, we present in this work simulations on the long-term evolution of TDGs, ranging from their formation to an age of 3 Gyr. Dark-matter free TDGs may constitute a significant component of the dwarf galaxy (DG) population. But it remains to be demonstrated that TDGs can survive their formation phase given stellar feedback processes, the time-variable tidal field of the post-encounter host galaxy and its dark matter halo and ram-pressure wind from the gaseous halo of the host. For robust results the maximally damaging feedback by a fully populated invariant stellar IMF in each star cluster is assumed, such that fractions of massive stars contribute during phases of low star-formation rates. The model galaxies are studied in terms of their star-formation history, chemical enrichment and rotational curves. All models evolve into a self-regulated l...

Ploeckinger, Sylvia; Hensler, Gerhard; Kroupa, Pavel

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "tidal power wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Optimization of multiple turbine arrays in a channel with tidally reversing flow by numerical modelling with adaptive mesh  

Science Journals Connector (OSTI)

...tidal energy and wind energy. In a tidal channel...current and hence energy extraction. Also...flow compared with wind turbine arrays where...captured the most energy over a tidal cycle...a) Adaptive grid An initial grid was...large to reduce the impact of high vorticity...

2013-01-01T23:59:59.000Z

382

Traveling wave device for combining or splitting symmetric and asymmetric waves  

DOE Patents [OSTI]

A traveling wave device for the combining or splitting of symmetric and asymmetric traveling wave energy includes a feed waveguide for traveling wave energy, the feed waveguide having an input port and a launching port, a reflector for coupling wave energy between the feed waveguide and a final waveguide for the collection and transport of wave energy to or from the reflector. The power combiner has a launching port for symmetrical waves which includes a cylindrical section coaxial to the feed waveguide, and a launching port for asymmetric waves which includes a sawtooth rotated about a central axis.

Möbius, Arnold (Eggenstein, DE); Ives, Robert Lawrence (Saratoga, CA)

2005-07-19T23:59:59.000Z

383

Gravity Waves in the Sun  

E-Print Network [OSTI]

We present numerical simulations of penetrative convection and gravity wave excitation in the Sun. Gravity waves are self-consistently generated by a convective zone overlying a radiative interior. We produce power spectra for gravity waves in the radiative region as well as estimates for the energy flux of gravity waves below the convection zone. We calculate a peak energy flux in waves below the convection zone to be three orders of magnitude smaller than previous estimates for m=1. The simulations show that the linear dispersion relation is a good approximation only deep below the convective-radiative boundary. Both low frequency propagating gravity waves as well as higher frequency standing modes are generated; although we find that convection does not continually drive the standing g-mode frequencies.

Tamara M. Rogers; Gary A. Glatzmaier

2005-08-25T23:59:59.000Z

384

Tidal Conversion by Supercritical Topography NEIL J. BALMFORTH  

E-Print Network [OSTI]

are presented of the rate of energy conversion of the barotropic tide into internal gravity waves above and are scattered both up and down). A complicated pattern is found for the dependence of energy conversion on e of internal waves as the barotropic tide flows over topography on the ocean floor has lately received wide

Balmforth, Neil

385

Circularization of Tidally Disrupted Stars around Spinning Supermassive Black Holes  

E-Print Network [OSTI]

We study the circularization of tidally disrupted stars on bound orbits around spinning supermassive black holes by performing three-dimensional smoothed particle hydrodynamic simulations with Post-Newtonian corrections. Our simulations reveal that debris circularization depends sensitively on the efficiency of radiative cooling. There are two stages in debris circularization if radiative cooling is inefficient: first, the stellar debris streams self-intersect due to relativistic apsidal precession; shocks at the intersection points thermalize orbital energy and the debris forms a geometrically thick, ring-like structure around the black hole. The ring rapidly spreads via viscous diffusion, leading to the formation of a geometrically thick accretion disk. In contrast, if radiative cooling is efficient, the stellar debris circularizes due to self-intersection shocks and forms a geometrically thin ring-like structure. In this case, the dissipated energy can be emitted during debris circularization as a precurso...

Hayasaki, Kimitake; Loeb, Abraham

2015-01-01T23:59:59.000Z

386

Dwarf Galaxies of Tidal Origin -- Relevant for Cosmology ?  

E-Print Network [OSTI]

Evolutionary synthesis models for Tidal Dwarf Galaxies (TDGs) are presented that allow to have varying proportions of young stars formed in the merger-induced starburst and of stars from the merging spirals' disks. The specific metallicities as well as the gaseous emission of actively star forming TDGs are consistently accounted for. Comparison of models with observational data (e.g. Duc, this volume) gives information on the present evolutionary state and possible future luminosity evolution of TDGs. The redshift evolution of merger rates and of the gas content and metallicities of spiral galaxies are used to estimate the number of TDGs at various redshifts and to investigate their contribution to magnitude limited surveys.

U. Fritze-v. Alvensleben; C. S. Möller; P. - A. Duc

1998-05-27T23:59:59.000Z

387

Active Flow Control on Bidirectional Rotors for Tidal MHK Applications  

SciTech Connect (OSTI)

A marine and hydrokinetic (MHK) tidal turbine extracts energy from tidal currents, providing clean, sustainable electricity generation. In general, all MHK conversion technologies are confronted with significant operational hurdles, resulting in both increased capital and operations and maintenance (O&M) costs. To counter these high costs while maintaining reliability, MHK turbine designs can be simplified. Prior study found that a tidal turbine could be cost-effectively simplified by removing blade pitch and rotor/nacelle yaw. Its rotor would run in one direction during ebb and then reverse direction when the current switched to flood. We dubbed such a turbine a bidirectional rotor tidal turbine (BRTT). The bidirectional hydrofoils of a BRTT are less efficient than conventional hydrofoils and capture less energy, but the elimination of the pitch and yaw systems were estimated to reduce levelized cost of energy by 7.8%-9.6%. In this study, we investigated two mechanisms for recapturing some of the performance shortfall of the BRTT. First, we developed a novel set of hydrofoils, designated the yy series, for BRTT application. Second, we investigated the use of active flow control via microtabs. Microtabs are small deployable/retractable tabs, typically located near the leading or trailing edge of an air/hydrofoil with height on the order of the boundary layer thickness (1% - 2% of chord). They deploy approximately perpendicularly to the foil surface and, like gurney flaps and plain flaps, globally affect the aerodynamics of the airfoil. By strategically placing microtabs and selectively deploying them based on the direction of the inflow, performance of a BRTT rotor can be improved while retaining bidirectional operation. The yy foils were computationally designed and analyzed. They exhibited better performance than the baseline bidirectional foil, the ellipse. For example, the yyb07cn-180 had 14.7% higher (l/d)max than an ellipse of equal thickness. The yyb07cn family also had higher c{sub p,min} than equivalently thick ellipses, indicating less susceptibility to cavitation. Microtabs applied on yy foils demonstrated improved energy capture. A series of variable speed and constant speed rotors were developed with the yyb07cn family of hydrofoils. The constant speed yyb07cn rotor (yy-B02-Rcs,opt) captured 0.45% more energy than the equivalent rotor with ellipses (e-B02-Rcs,opt). With microtabs deployed (yy?t-B02-Rcs,opt), the energy capture increase over the rotor with ellipses was 1.05%. Note, however, that microtabs must be applied judiciously to bidirectional foils. On the 18% thick ellipse, performance decreased with the addition of microtabs. Details of hydrofoil performance, microtab sizing and positioning, rotor configurations, and revenue impacts are presented herein.

Shiu, Henry [Research Engineer; van Dam, Cornelis P. [Professor

2013-08-22T23:59:59.000Z

388

wave energy  

Science Journals Connector (OSTI)

wave energy ? Wellenenergie f [Die einer Schwerewelle innewohnende potentielle und kinetische Energie. Sie ist etwa proportional dem Quadrat der Wellenhöhe. Zeichen: E we ...

2014-08-01T23:59:59.000Z

389

Nearshore oscillating wave surge converters and the development of Oyster  

Science Journals Connector (OSTI)

...dramatically less than that offshore. It is true that the...power converters in wave farms with an economic cap...10-20% lower than that offshore-[9]. In 2002, the...power available to a wave farm. Unlike wind farms, wave energy converters...

2012-01-01T23:59:59.000Z

390

Experimental Wave Tank Test for Reference Model 3 Floating-Point Absorber Wave Energy Converter Project  

SciTech Connect (OSTI)

The U.S. Department of Energy established a reference model project to benchmark a set of marine and hydrokinetic technologies including current (tidal, open-ocean, and river) turbines and wave energy converters. The objectives of the project were to first evaluate the status of these technologies and their readiness for commercial applications. Second, to evaluate the potential cost of energy and identify cost-reduction pathways and areas where additional research could be best applied to accelerate technology development to market readiness.

Yu, Y. H.; Lawson, M.; Li, Y.; Previsic, M.; Epler, J.; Lou, J.

2015-01-01T23:59:59.000Z

391

Water gate array for current flow or tidal movement pneumatic harnessing system  

DOE Patents [OSTI]

The invention, which provides a system for harnessing power from current flow or tidal movement in a body of water, comprises first and second hydro-pneumatic chambers each having ingress and egress below the water surface near the river or ocean floor and water gates operative to open or seal the ports to the passage of water. In an exemplary embodiment, the gates are sychronized by shafts so that the ingress ports of each chamber are connected to the egress ports of each other chamber. Thus, one set of gates is closed, while the other is open, thereby allowing water to flow into one chamber and build air pressure therein and allowing water to flow out of the other chamber and create a partial vacuum therein. A pipe connects the chambers, and an air turbine harnesses the air movement within the pipe. When water levels are equilibrated, the open set of gates is closed by a counterweight, and the other set is allowed to open by natural force of the water differential. The water gates may be comprised of a plurality of louvers which are ganged for simultaneous opening and closing. The system is designed to operate with air turbines or other pneumatic devices. Its design minimizes construction cost and environmental impact, yet provides a clean renewable energy source.

Gorlov, Alexander M. (Brookline, MA)

1991-01-01T23:59:59.000Z

392

Challenges and Instrumentation Solutions to Understanding the Nature of Tidal Flows  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Approach to Characterization of Full-Spectrum Approach to Characterization of Full-Spectrum Turbulence Near Current Tidal Energy Devices Presented by Brett Prairie of Rockland Scientific at the Marine and Hydrokinetic Technology and Environmental Instrumentation, Measurement & Computer Modeling Workshop Broomfield, Colorado July 9 - 11, 2012 ©2012 Rockland Scientific Inc. Presentation Agenda ©2012 Rockland Scientific Inc. 1. Introduction & Background 2. The importance of full-spectrum turbulence characterization for current tidal energy project development 3. How non-acoustic measurements can characterize small-scale turbulence near current tidal energy devices 4. Development of a continuous monitoring system to measure full-spectrum turbulence for the National Renewable Energy Laboratory

393

Vacuum Waves  

E-Print Network [OSTI]

As an example of the unification of gravitation and particle physics, an exact solution of the five-dimensional field equations is studied which describes waves in the classical Einstein vacuum. While the solution is essentially 5D in nature, the waves exist in ordinary 3D space, and may provide a way to test for an extra dimension.

Paul S. Wesson

2012-12-11T23:59:59.000Z

394

Multiscale heterogeneity characterization of tidal channel, tidal delta and foreshore facies, Almond Formation outcrops, Rock Springs uplift, Wyoming  

SciTech Connect (OSTI)

In order to accurately predict fluid flow within a reservoir, variability in the rock properties at all scales relevant to the specific depositional environment needs to be taken into account. The present work describes rock variability at scales from hundreds of meters (facies level) to millimeters (laminae) based on outcrop studies of the Almond Formation. Tidal channel, tidal delta and foreshore facies were sampled on the eastern flank of the Rock Springs uplift, southeast of Rock Springs, Wyoming. The Almond Fm. was deposited as part of a mesotidal Upper Cretaceous transgressive systems tract within the greater Green River Basin. Bedding style, lithology, lateral extent of beds of bedsets, bed thickness, amount and distribution of depositional clay matrix, bioturbation and grain sorting provide controls on sandstone properties that may vary more than an order of magnitude within and between depositional facies in outcrops of the Almond Formation. These features can be mapped on the scale of an outcrop. The products of diagenesis such as the relative timing of carbonate cement, scale of cemented zones, continuity of cemented zones, selectively leached framework grains, lateral variability of compaction of sedimentary rock fragments, and the resultant pore structure play an equally important, although less predictable role in determining rock property heterogeneity. A knowledge of the spatial distribution of the products of diagenesis such as calcite cement or compaction is critical to modeling variation even within a single facies in the Almond Fin. because diagenesis can enhance or reduce primary (depositional) rock property heterogeneity. Application of outcrop heterogeneity models to the subsurface is greatly hindered by differences in diagenesis between the two settings. The measurements upon which this study is based were performed both on drilled outcrop plugs and on blocks.

Schatzinger, R.A.; Tomutsa, L. [BDM Petroleum Technologies, Bartlesville, OK (United States)

1997-08-01T23:59:59.000Z

395

Low latency search for Gravitational waves from BH-NS binaries in coincidence with Short Gamma Ray Bursts  

E-Print Network [OSTI]

We propose a procedure to be used in the search for gravitational waves from black hole-neutron star coalescing binaries, in coincidence with short gamma-ray bursts. It is based on two recently proposed semi-analytic fits, one reproducing the mass of the remnant disk surrounding the black hole which forms after the merging as a function of some binary parameters, the second relating the neutron star compactness, i.e. the ratio of mass and radius, with its tidal deformability. Using a Fisher matrix analysis and the two fits, we assign a probability that the emitted gravitational signal is associated to the formation of an accreting disk massive enough to supply the energy needed to power a short gamma ray burst. This information can be used in low-latency data analysis to restrict the parameter space searching for gravitational wave signals in coincidence with short gamma-ray bursts, and to gain information on the dynamics of the coalescing system and on the internal structure of the components. In addition, when the binary parameters will be measured with high accuracy, it will be possible to use this information to trigger the search for off-axis gamma-ray bursts afterglows.

Andrea Maselli; Valeria Ferrari

2014-02-24T23:59:59.000Z

396

Swift J1644+57: A White Dwarf Tidally Disrupted by a 10^4 M_{odot} Black Hole?  

E-Print Network [OSTI]

We propose that the remarkable object Swift J1644+57, in which multiple recurring hard X-ray flares were seen over a span of several days, is a system in which a white dwarf was tidally disrupted by an intermediate mass black hole. Disruption of a white dwarf rather than a main sequence star offers a number of advantages in understanding the multiple, and short, timescales seen in the light curve of this system. In particular, the short internal dynamical timescale of a white dwarf offers a more natural way of understanding the short rise times (~100s) observed. The relatively long intervals between flares (~5 x 10^4 s) may also be readily understood as the period between successive pericenter passages of the remnant white dwarf. In addition, the expected jet power is larger when a white dwarf is disrupted. If this model is correct, the black hole responsible must have mass < 10^5 M_{odot}.

Krolik, Julian H

2011-01-01T23:59:59.000Z

397

Systematic and statistical errors in a Bayesian approach to the estimation of the neutron-star equation of state using advanced gravitational wave detectors  

Science Journals Connector (OSTI)

Advanced ground-based gravitational-wave detectors are capable of measuring tidal influences in binary neutron-star systems. In this work, we report on the statistical uncertainties in measuring tidal deformability with a full Bayesian parameter estimation implementation. We show how simultaneous measurements of chirp mass and tidal deformability can be used to constrain the neutron-star equation of state. We also study the effects of waveform modeling bias and individual instances of detector noise on these measurements. We notably find that systematic error between post-Newtonian waveform families can significantly bias the estimation of tidal parameters, thus motivating the continued development of waveform models that are more reliable at high frequencies.

Leslie Wade; Jolien D.?E. Creighton; Evan Ochsner; Benjamin D. Lackey; Benjamin F. Farr; Tyson B. Littenberg; Vivien Raymond

2014-05-23T23:59:59.000Z

398

Systematic and statistical errors in a bayesian approach to the estimation of the neutron-star equation of state using advanced gravitational wave detectors  

E-Print Network [OSTI]

Advanced ground-based gravitational-wave detectors are capable of measuring tidal influences in binary neutron-star systems. In this work, we report on the statistical uncertainties in measuring tidal deformability with a full Bayesian parameter estimation implementation. We show how simultaneous measurements of chirp mass and tidal deformability can be used to constrain the neutron-star equation of state. We also study the effects of waveform modeling bias and individual instances of detector noise on these measurements. We notably find that systematic error between post-Newtonian waveform families can significantly bias the estimation of tidal parameters, thus motivating the continued development of waveform models that are more reliable at high frequencies.

Wade, Leslie; Ochsner, Evan; Lackey, Benjamin D; Farr, Benjamin F; Littenberg, Tyson B; Raymond, Vivien

2014-01-01T23:59:59.000Z

399

Systematic and statistical errors in a bayesian approach to the estimation of the neutron-star equation of state using advanced gravitational wave detectors  

E-Print Network [OSTI]

Advanced ground-based gravitational-wave detectors are capable of measuring tidal influences in binary neutron-star systems. In this work, we report on the statistical uncertainties in measuring tidal deformability with a full Bayesian parameter estimation implementation. We show how simultaneous measurements of chirp mass and tidal deformability can be used to constrain the neutron-star equation of state. We also study the effects of waveform modeling bias and individual instances of detector noise on these measurements. We notably find that systematic error between post-Newtonian waveform families can significantly bias the estimation of tidal parameters, thus motivating the continued development of waveform models that are more reliable at high frequencies.

Leslie Wade; Jolien D. E. Creighton; Evan Ochsner; Benjamin D. Lackey; Benjamin F. Farr; Tyson B. Littenberg; Vivien Raymond

2014-02-20T23:59:59.000Z

400

Division of Water, Parts 660-661: Tidal Wetlands (New York)  

Broader source: Energy.gov [DOE]

These regulations require permits for any activity which directly or indirectly may have a significant adverse effect on the existing condition of any tidal wetland, including but not limited to...

Note: This page contains sample records for the topic "tidal power wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Tidal Flushing and Vertical Diffusion in South West Arm, Port Hacking  

Science Journals Connector (OSTI)

South West Arm (SWA), a small Australian estuary, is hydrodynamically a small fjord with highly intermittent river discharge; tidal inflow sinks into it in a thin turbulent sheet. An existing water quality mod...

J. Stuart Godfrey

1983-01-01T23:59:59.000Z

402

Analysis of Vortex Dynamics of Lateral Circulation in a Straight Tidal Estuary  

Science Journals Connector (OSTI)

The dynamics associated with lateral circulation in a tidally driven estuarine channel is analyzed on the basis of streamwise vorticity. Without rotational effects, differential advection and diffusive boundary mixing produce two counterrotating ...

Ming Li; Peng Cheng; Robert Chant; Arnoldo Valle-Levinson; Kim Arnott

2014-10-01T23:59:59.000Z

403

Accurate ocean tide modeling in southeast Alaska and large tidal dissipation around Glacier Bay  

Science Journals Connector (OSTI)

An accurate prediction of ocean tides in southeast Alaska is developed using a...et al.... (2000). The model bathymetry dominates the model skill. We re-estimate tidal energy dissipation in the Alaska Panhandle a...

Daisuke Inazu; Tadahiro Sato; Satoshi Miura; Yusaku Ohta…

2009-06-01T23:59:59.000Z

404

Currents and suspended particulate matter in tidal channels of the Sylt-Rømø basin  

Science Journals Connector (OSTI)

Measurements of fluxes of water and suspended particulate matter (SPM) through the inlet and the three major channels of the Sylt-Rømø bight covering several tidal periods in August 1992 ... budgets a relationshi...

Jens Kappenberg; Hans-Ulrich Fanger; Agmar Müller

405

ORGANISM-SEDIMENT RELATIONSHIPS ON A MODERN TIDAL FLAT, BODEGA HARBOR, CALIFORNIA  

E-Print Network [OSTI]

ORGANISM-SEDIMENT RELATIONSHIPS ON A MODERN TIDAL FLAT, BODEGA HARBOR, CALIFORNIA Thomas E. Ronan r e d from prevailing northwesterly winds by a rocky peninsula, Bodega Head, and a beach and dune

Farmer, Jack D.

406

EA-1949: Admiralty Inlet Pilot Tidal Project, Puget Sound, WA | Department  

Broader source: Energy.gov (indexed) [DOE]

49: Admiralty Inlet Pilot Tidal Project, Puget Sound, WA 49: Admiralty Inlet Pilot Tidal Project, Puget Sound, WA EA-1949: Admiralty Inlet Pilot Tidal Project, Puget Sound, WA SUMMARY This EA analyzes the potential environmental effects of a proposal by the Public Utility District No. 1 of Snowhomish County, Washington to construct and operate the Admiralty Inlet Tidal Project. The proposed 680-kilowatt project would be located on the east side of Admiralty Inlet in Puget Sound, Washington, about 1 kilometer west of Whidbey Island, entirely within Island County, Washington. The Federal Energy Regulatory Commission (FERC) is the lead agency. DOE is a cooperating agency. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 9, 2013 EA-1949: FERC Notice of Availability Errata Sheet

407

Estimating wave energy from a wave record  

Science Journals Connector (OSTI)

This note is concerned with the calculation of wave energy from a time series record of wave heights. Various methods are used to estimate the wave energy. For wave records that contain a number of different ... ...

Sasithorn Aranuvachapun; John A. Johnson

1977-01-01T23:59:59.000Z

408

TidGen Power System Commercialization Project  

SciTech Connect (OSTI)

ORPC Maine, LLC, a wholly-owned subsidiary of Ocean Renewable Power Company, LLC (collectively ORPC), submits this Final Technical Report for the TidGen® Power System Commercialization Project (Project), partially funded by the U.S. Department of Energy (DE-EE0003647). The Project was built and operated in compliance with the Federal Energy Regulatory Commission (FERC) pilot project license (P-12711) and other permits and approvals needed for the Project. This report documents the methodologies, activities and results of the various phases of the Project, including design, engineering, procurement, assembly, installation, operation, licensing, environmental monitoring, retrieval, maintenance and repair. The Project represents a significant achievement for the renewable energy portfolio of the U.S. in general, and for the U.S. marine hydrokinetic (MHK) industry in particular. The stated Project goal was to advance, demonstrate and accelerate deployment and commercialization of ORPC’s tidal-current based hydrokinetic power generation system, including the energy extraction and conversion technology, associated power electronics, and interconnection equipment capable of reliably delivering electricity to the domestic power grid. ORPC achieved this goal by designing, building and operating the TidGen® Power System in 2012 and becoming the first federally licensed hydrokinetic tidal energy project to deliver electricity to a power grid under a power purchase agreement in North America. Located in Cobscook Bay between Eastport and Lubec, Maine, the TidGen® Power System was connected to the Bangor Hydro Electric utility grid at an on-shore station in North Lubec on September 13, 2012. ORPC obtained a FERC pilot project license for the Project on February 12, 2012 and the first Maine Department of Environmental Protection General Permit issued for a tidal energy project on January 31, 2012. In addition, ORPC entered into a 20-year agreement with Bangor Hydro Electric Company on January 1, 2013 for up to 5 megawatts at a price of $215/MWh, escalating at 2.0% per year.

Sauer, Christopher R. [President & CEO] [President & CEO; McEntee, Jarlath [VP Engineering & CTO] [VP Engineering & CTO

2013-12-30T23:59:59.000Z

409

Topic 5: Renewable Power 1Networking and Distributed Systems  

E-Print Network [OSTI]

Communications and Control in Smart Grid 10 · Wave power is the energy from ocean surface waves. · Orbital motion the device to the ocean floor to hold it. cable Power modules Tubular section #12;Wave Energy Converter DrTopic 5: Renewable Power 1Networking and Distributed Systems Department of Electrical & Computer

Mohsenian-Rad, Hamed

410

Fourier and autocorrelation analysis of estuarine tidal rhythmites, lower Breathitt Formation (Pennsylvania), eastern Kentucky, USA  

SciTech Connect (OSTI)

Outcrops of the Pennsylvanian Breathitt Formation in eastern Kentucky reveal a rhythmic pattern of siliciclastic sedimentation in a marginal marine coastal setting. A 15-23 m thick stratigraphic interval of thinly interbedded, fine sandstone and shale displays tidally generated features such as flaser and wavy current ripple bedding, bipolar paleocurrents, and cyclic thickening and thinning of mud-draped sandstone layers. A statistical analysis of sand layer thickness was carried out using shale partings as bounding surfaces for the individual sand units. Fourier and autocorrelation analyses were performed on two vertical sequences containing a total of over 2,100 layers. The results reveal the presence of four cycles of thickness variation. First-order cycles consist of alternating thick-thin sand layers. These daily couplets may reflect unequal flood and ebb currents during a single tidal cycle or dominant and subordinate tidal deposits in an ebb or flood dominated semidiurnal or mixed system. Second-order cycles typically consist of 11-14 sand layers and reflect spring-neap variations in tidal range and current velocities. Third-order cycles are usually composed of 24-35 layers and are formed in response to monthly variations in tidal range resulting from the ellipticity of the moon's orbit. Fourth-order cycles generally contain about 150 layers (range, 100-166) and were caused by seasonal maxima in tidal range associated with the solstice (winter, summer) and seasonal minima associated with the equinox (spring, fall).

Martino, R.L.; Sanderson, D.D. (Marshall Univ., Huntington, WV (United States))

1993-01-01T23:59:59.000Z

411

Impact of flood defences and sea-level rise on the European Shelf tidal regime  

Science Journals Connector (OSTI)

Abstract The tidal response of the European Shelf to moderate ( < 1 m ) levels of sea level rise is investigated using a high resolution, well established tidal model. The model is validated for present day conditions and the tidal response to sea level rise by comparing the modelled response to long term tide gauge data. The effects of coastal defence schemes are tested, with three levels of present day coastal defences simulated. Full walls are added at the present day coastline, no coast defence schemes are used and a set of present day coastal defence schemes is simulated. The simulations show that there is a significant tidal response to moderate levels of SLR and that the response is strongly dependant on level of coastal defence simulated. The simulation using coastal defence data resulted in the strongest response as the tide was able to build up behind the coastal defence walls and create a patchwork of sea and land at the coastline. This had a strong impact on the spatial tidal energy dissipation field and in turn this has large effects on the tidal regime throughout the domain.

Holly E. Pelling; J.A. Mattias Green

2014-01-01T23:59:59.000Z

412

Coherence waves  

Science Journals Connector (OSTI)

In 1955 Wolf noticed that the mutual coherence function ? obeys two wave equations [Proc. R. Soc. London230, 246 (1955)]. The physical optics of this finding is thoroughly presented in...

Lohmann, Adolf W; Mendlovic, David; Shabtay, Gal

1999-01-01T23:59:59.000Z

413

Tidal signals in basin?scale acoustic transmissions  

Science Journals Connector (OSTI)

Travel times of acoustic signals were measured between a bottom?mounted source near Oahu and five bottom?mounted receivers located near Washington Oregon and California in 1988 and 1989. This paper discusses the observed tidal signals. At three out of five receivers observed travel times at M2 and S2 periods agree with predictions from a barotropic tide model to within ±30° in phase and a factor of 1.6 in amplitude. The discrepancies at the fourth and fifth receivers can largely be accounted for with a simple model for the generation of baroclinic tides by interactions between the barotropic tides and guyots in the Moonless mountains. These baroclinic tides are phase locked to the astronomical tide?generating forces. A simple model is used to estimate the conversion of energy from barotropic to baroclinic tides by the world’s seamounts. At M2 the conversion amounts to about 1×1018 erg s?1 or about 4% of the total dissipation at M2. Although this estimate is very approximate it is similar to other published values.

Robert H. Headrick; John L. Spiesberger; Paul J. Bushong

1993-01-01T23:59:59.000Z

414

Water Trapping on Tidally Locked Terrestrial Planets Requires Special Conditions  

E-Print Network [OSTI]

Surface liquid water is essential for standard planetary habitability. Calculations of atmospheric circulation on tidally locked planets around M stars suggest that this peculiar orbital configuration lends itself to the trapping of large amounts of water in kilometers-thick ice on the night side, potentially removing all liquid water from the day side where photosynthesis is possible. We study this problem using a global climate model including coupled atmosphere, ocean, land, and sea-ice components as well as a continental ice sheet model driven by the climate model output. For a waterworld we find that surface winds transport sea ice toward the day side and the ocean carries heat toward the night side. As a result, night-side sea ice remains O(10 m) thick and night-side water trapping is insignificant. If a planet has large continents on its night side, they can grow ice sheets O(1000 m) thick if the geothermal heat flux is similar to Earth's or smaller. Planets with a water complement similar to Earth's w...

Yang, Jun; Hu, Yongyun; Abbot, Dorian S

2014-01-01T23:59:59.000Z

415

Wave represents displacement Wave represents pressure Source -Sound Waves  

E-Print Network [OSTI]

Wave represents displacement Wave represents pressure Source - Sound Waves Distance between crests is wavelength Number of crests passing a point in 1 second is frequency Wave represents pressure Target - Radio Waves Distance between crests is wavelength Number of crests passing a point in 1 second is frequency

Colorado at Boulder, University of

416

Internal?wave effects on 1000?km oceanic acoustic pulse propagation: Simulation and comparison with experiment  

Science Journals Connector (OSTI)

A recent 1000?km acoustic pulse transmission experiment in the Pacific revealed unexpected fluctuations on received wavefronts including a dominant rapid variation called the broadband fluctuation with time scales less than 10 minutes and spatial scales of less than 60 m; a distinct breakdown of the geometrical optics wavefront pattern and broadening of the wavefront near the transmission finalé; and a coherent wavefront motion with a timescale near the semi?diurnal tidal period. Parabolic?equation numerical simulations have been carried out which utilize environmental data and which take into account internal?wave?induced sound?speed perturbations obeying the Garrett–Munk (GM) spectral model. It is shown that the effects of internal waves can account for the broadband fluctuations the breakdown of the geometrical opticspattern and the wavefront broadening. The sensitivity of these fluctuations to internal?wave energy and modal content is examined. The spectral energy in the GM model at tidal periods proves insufficient to explain the tidal period coherent fluctuations strongly suggesting the influence of an internal tide during the experiment. The simulations allow the estimation of the average travel?time bias caused by internal waves. The simulation results for travel?time wander and bias are compared with analytic calculations based on the path?integral technique.

John A. Colosi; Stanley M. Flatté; Charles Bracher

1994-01-01T23:59:59.000Z

417

Coincidence searches of gravitational waves and short gamma-ray bursts  

E-Print Network [OSTI]

Black-hole neutron-star coalescing binaries have been invoked as one of the most suitable scenario to explain the emission of short gamma-ray bursts. Indeed, if the black-hole which forms after the merger, is surrounded by a massive disk, neutrino annihilation processes may produce high-energy and collimated electromagnetic radiation. In this paper, we devise a new procedure, to be used in the search for gravitational waves from black-hole-neutron-star binaries, to assign a probability that a detected gravitational signal is associated to the formation of an accreting disk, massive enough to power gamma-ray bursts. This method is based on two recently proposed semi-analytic fits, one reproducing the mass of the remnant disk surrounding the black hole as a function of some binary parameters, the second relating the neutron star compactness, with its tidal deformability. Our approach can be used in low-latency data analysis to restrict the parameter space searching for gravitational signals associated with short gamma-ray bursts, and to gain information on the dynamics of the coalescing system and on the neutron star equation of state.

Andrea Maselli; Valeria Ferrari

2014-05-28T23:59:59.000Z

418

Windblade Power Corp | Open Energy Information  

Open Energy Info (EERE)

Windblade Power Corp Windblade Power Corp Jump to: navigation, search Name Windblade Power Corp Place Nevada Sector Biomass, Hydro, Wind energy Product Nevada-based project developer; focused on wind, tidal, biomass and small hydro projects. References Windblade Power Corp[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Windblade Power Corp is a company located in Nevada . References ↑ "Windblade Power Corp" Retrieved from "http://en.openei.org/w/index.php?title=Windblade_Power_Corp&oldid=353087" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load)

419

A new approach to modeling and simulation of small scale tidal power generation  

SciTech Connect (OSTI)

Owing to the dynamic nature of the tide behavior and complex relationship between the flow and the head, the model is one of the most challenging and complex tasks. It is acknowledged in the literature that a more sophisticated model can lead to better results and accuracy. In this report the authors propose an artificial neural network to capture the complex relationship of tide dynamics as against the conventional models. The model is tested on the existing site located near Bombay. The training patterns are derived directly form field data. The model is employed for estimating maximum energy potential. The simulations carried out for the existing site are presented and discussed.

Khaparde, S.A.; Deokar, D.N.; Sukhatme, S.P. [Indian Inst. of Tech., Bombay (India). Dept. of Mechanical Engineering

1996-11-01T23:59:59.000Z

420

D. W. Hayes, S. D. Harris, R. S. Stoughton. A tidal-powered water ...  

Science Journals Connector (OSTI)

May 21, 1979 ... of pressure by the falling tide and the stored pressure from the previous high tide to pump ... Department of Energy contract AT(07-2)-l.

2000-01-12T23:59:59.000Z

Note: This page contains sample records for the topic "tidal power wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Effects of Localized Energy Extraction in an Idealized, Energetically Complete Numerical Model of an Ocean-Estuary Tidal System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

localized energy extraction in an localized energy extraction in an idealized, energetically complete numerical model of an ocean-estuary tidal system MHK Instrumentation, Measurement & Computer Modeling Workshop, Broomfield CO, July 10 2012 Mitsuhiro Kawase and Marisa Gedney Northwest National Marine Renewable Energy Center / School of Oceanography University of Washington Seattle WA 98195 United States * Far-field (Estuary-wide) - Changes in the tidal range - Changes in tidal currents ï‚— Near-field (Vicinity of the Device) ï‚— Flow redirection ï‚— Interaction with marine life ï‚— Impact on bottom sediments and benthos Environmental Effects of Tidal Energy Extraction * Reduction in tidal range can permanently expose/submerge tidal flats, altering nearshore habitats * Reduction in kinetic energy of

422

Rotordynamics in alternative energy power generation.  

E-Print Network [OSTI]

??This thesis analyses and discusses the main alternative energy systems that work with rotordynamics machines to generate power. Hydropower systems, wave and ocean energy, geothermal,… (more)

Cortes-Zambrano, Ivan

2011-01-01T23:59:59.000Z

423

Assessment of wave energy variation in the Persian Gulf  

Science Journals Connector (OSTI)

Abstract Since wave energy has the highest marine energy density in the coastal areas, assessment of its potential is of great importance. Furthermore, long term variation of wave power must be studied to ensure the availability of stable wave energy. In this paper, wave energy potential is assessed along the southern coasts of Iran, the Persian Gulf. For this purpose, SWAN numerical model and ECMWF wind fields were used to produce the time series of wave characteristics over 25 years from 1984 till 2008. Moreover, three points in the western, central and eastern parts of the Persian Gulf were selected and the time series of energy extracted from the modeled waves were evaluated at these points. The results show that there are both seasonal and decadal variations in the wave energy trends in all considered points due to the climate variability. There was a reduction in wave power values from 1990 to 2000 in comparison with the previous and following years. Comparison of wind speed and corresponding wave power variations indicates that a small variation in the wind speed can cause a large variation in the wave power. The seasonal oscillations lead to variation of the wave power from the lowest value in summer to the highest value in winter in all considered stations. In addition, the seasonal trend of wave power changed during the decadal variation of wave power. Directional variations of wave power were also assessed during the decadal variations and the results showed that the dominant direction of wave propagation changed in the period of 1990 to 2000 especially in the western station.

B. Kamranzad; A. Etemad-shahidi; V. Chegini

2013-01-01T23:59:59.000Z

424

Author's personal copy Wave energy resources along the Hawaiian Island chain  

E-Print Network [OSTI]

Author's personal copy Wave energy resources along the Hawaiian Island chain Justin E. Stopa model Wave atlas Wave energy Wave power a b s t r a c t Hawaii's access to the ocean and remoteness from demand for sustainable energy. The wave resources include swells from distant storms and year-round seas

425

All Eyes on Eastport: Tidal Energy Project Brings Change, Opportunity...  

Office of Environmental Management (EM)

Vice President of Perry Marine & Consctruction. | Photo Courtesy of Ocean Renewable Power Company. Captain Gerald "Gerry" Morrison, Vice President of Perry Marine &...

426

Long Wave/Short Wave Resonance in Equatorial Waves  

Science Journals Connector (OSTI)

It is shown that resonant coupling between ultra long equatorial Rossby waves and packets of either short Rossby or short westward-traveling gravity waves is possible. Simple analytic formulas give the discrete value of the packet wave number k, ...

John P. Boyd

1983-03-01T23:59:59.000Z

427

Tidally Generated Turbulence over the Knight Inlet Sill  

Science Journals Connector (OSTI)

Very high turbulent dissipation rates (above ? = 10?4 W kg?1) were observed in the nonlinear internal lee waves that form each tide over a sill in Knight Inlet, British Columbia. This turbulence was due to both shear instabilities and the ...

Jody M. Klymak; Michael C. Gregg

2004-05-01T23:59:59.000Z

428

MHK Technologies/New Knowledge Wind and Wave Renewable Mobile Wind and Wave  

Open Energy Info (EERE)

Wind and Wave Renewable Mobile Wind and Wave Wind and Wave Renewable Mobile Wind and Wave Power Plant Platform < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage New Knowledge Wind and Wave Renewable Mobile Wind and Wave Power Plant Platform.jpg Technology Profile Primary Organization Darrel Dammen Technology Resource Click here Wave Technology Description Buoyant vessel attached to a lever the lever being attached to a stationary source like near shore Oil Rigs docks or a vessel less affected by swells and waves like large ships floating Oil rigs or boats the levers going up and down creates a torque at the pivot point by the vessel being raised and lowered this works on all size levers making it possible to collect energy from all size Waves with enough levers with in reasonable size and numbers the force can be used hydraulically mechanically or to compress air to power generators Ten tons going up and down is a lot of force when connected to a 100 so connecting to 100 tons then to 50 tons then to 25 tons then to 10 tons to 5 tons to 2 tons continuing down in size and multiplying the levers from the less affected floating object or stationary object will mean We collect energy from 1 foot to 100 foot waves and swells This Wind and Wave with 120 oarsmen showing buoyant vessels are the oarsman in this picture with hund

429

SEEN AND UNSEEN TIDAL CAUSTICS IN THE ANDROMEDA GALAXY  

SciTech Connect (OSTI)

Indirect detection of high-energy particles from dark matter interactions is a promising avenue for learning more about dark matter, but is hampered by the frequent coincidence of high-energy astrophysical sources of such particles with putative high-density regions of dark matter. We calculate the boost factor and gamma-ray flux from dark matter associated with two shell-like caustics of luminous tidal debris recently discovered around the Andromeda galaxy, under the assumption that dark matter is its own supersymmetric antiparticle. These shell features could be a good candidate for indirect detection of dark matter via gamma rays because they are located far from the primary confusion sources at the galaxy's center, and because the shapes of the shells indicate that most of the mass has piled up near the apocenter. Using a numerical estimator specifically calibrated to estimate densities in N-body representations with sharp features and a previously determined N-body model of the shells, we find that the largest boost factors do occur in the shells but are only a few percent. We also find that the gamma-ray flux is an order of magnitude too low to be detected with Fermi for likely dark matter parameters, and about two orders of magnitude less than the signal that would have come from the dwarf galaxy that produces the shells in the N-body model. We further show that the radial density profiles and relative radial spacing of the shells, in either dark or luminous matter, is relatively insensitive to the details of the potential of the host galaxy but depends in a predictable way on the velocity dispersion of the progenitor galaxy.

Sanderson, R. E.; Bertschinger, E., E-mail: robyn@mit.ed [MIT Department of Physics and Kavli Institute for Space Research, Cambridge, MA 02139 (United States)

2010-12-20T23:59:59.000Z

430

Decays of electron Bernstein waves near plasma edge  

SciTech Connect (OSTI)

Nonlinear wave-wave couplings near the upper hybrid resonance are studied via particle-in-cell simulations. It is found that the decay of an electron Bernstein wave (EBW) depends on the ratio of the incident frequency and electron cyclotron frequency. For ratios less than two, parametric decay into a lower hybrid wave (or an ion Bernstein wave) and EBWs at a lower frequency is observed. For ratios larger than two, the daughter waves could be an electron cyclotron quasi-mode and another EBW or an ion wave and EBW. For sufficiently high incident power, the former process may dominate. Because of the electron cyclotron quasi-mode, electrons can be strongly heated by nonlinear Landau damping. As a result, the bulk of the incident power can be absorbed near plasma edge at high power. The increase in number of decay channels with frequency implies that the allowable power into the plasma must decrease with frequency.

Xiang Nong [Institute of Plasma Physics, CAS, Hefei, Anhui 230031 (China); Center for Integrated Plasma Studies, University of Colorado at Boulder, Boulder, Colorado 80309 (United States); Cary, John R. [Center for Integrated Plasma Studies, University of Colorado at Boulder, Boulder, Colorado 80309 (United States); Tech-X Corporation, Boulder, Colorado 80303 (United States)

2011-12-15T23:59:59.000Z

431

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Questions Associated with Questions Associated with Free Flow Axial Turbines Jim Gibson Devine Tarbell & Associates, Inc. October 27, 2005 2 Roosevelt Island Tidal Energy Project * Verdant Power's RITE Project * Proceeding Through Stage II Licensing Activities * Permits Required (obtained) to Perform Studies * New York State Section 401 / Excavation and Fill * Department of State Coastal Consistency Review * New York SEQR and Federal NEPA Reviews * Army Corps Section 404 and Section 10 Permits * Four Public Notices (for temporary pilot project) * Numerous Agency and Stakeholder Meetings 3 Project Location 4 Project Location 5 6 7 "Six-Pack" Under Water 8 Comments Received From * New York State Department of Environmental Conservation * US Fish and Wildlife Service * NOAA Fisheries (NMFS) * US Coast Guard

432

Rogue waves for a long wave-short wave resonance model with multiple short waves  

E-Print Network [OSTI]

1 Rogue waves for a long wave-short wave resonance model with multiple short waves Hiu Ning Chan (1 waves; Long-short resonance PACS Classification: 02.30.Jr; 05.45.Yv; 47.35.Fg #12;2 ABSTRACT A resonance between long and short waves will occur if the phase velocity of the long wave matches the group velocity

433

Superconducting travelling wave ring with high gradient accelerating section  

SciTech Connect (OSTI)

Use of a superconducting traveling wave accelerating (STWA) structure instead of a standing wave cavity has major advantages in increasing the accelerating gradient in the ILC. In contrast with standing wave cavity STWA requires feedback loop, which sends wave from the structure output to input, making a superconducting traveling wave ring (STWR). One or few input couplers need to excite STWR and compensate power dissipations due to beam loading. To control traveling wave regime in the structure two independent knobs can be used for tuning both resonant ring frequency and backward wave. We discuss two variants of the STWR with one and two feed couplers.

Avrakhov, P.; Solyak, N.; /Fermilab

2007-06-01T23:59:59.000Z

434

Directional Spectra of Wind-Generated Waves  

Science Journals Connector (OSTI)

...H. Hui From observations of wind and of water surface elevation...the directional spectrum of wind-generated waves on deep water...inversely proportional to the fourth power of the frequency , with the...clearly dependent on the ratio of wind speed to peak wave speed...

1985-01-01T23:59:59.000Z

435

Vortices in Brain waves  

E-Print Network [OSTI]

2003). Vortices in Brain Waves 62. M. E. Raichle, ScienceVORTICES IN BRAIN WAVES WALTER J. FREEMAN Department ofthat is recorded in brain waves (electroencephalogram, EEG).

Freeman, Walter J III; Vitiello, Giuseppe

2010-01-01T23:59:59.000Z

436

Strong-field tidal distortions of rotating black holes: Formalism and results for circular, equatorial orbits  

E-Print Network [OSTI]

Tidal coupling between members of a compact binary system can have an interesting and important influence on that binary's dynamical inspiral. Tidal coupling also distorts the binary's members, changing them (at lowest order) from spheres to ellipsoids. At least in the limit of fluid bodies and Newtonian gravity, there are simple connections between the geometry of the distorted ellipsoid and the impact of tides on the orbit's evolution. In this paper, we develop tools for investigating tidal distortions of rapidly rotating black holes using techniques that are good for strong-field, fast-motion binary orbits. We use black hole perturbation theory, so our results assume extreme mass ratios. We develop tools to compute the distortion to a black hole's curvature for any spin parameter, and for tidal fields arising from any bound orbit, in the frequency domain. We also develop tools to visualize the horizon's distortion for black hole spin $a/M \\le \\sqrt{3}/2$ (leaving the more complicated $a/M > \\sqrt{3}/2$ case to a future analysis). We then study how a Kerr black hole's event horizon is distorted by a small body in a circular, equatorial orbit. We find that the connection between the geometry of tidal distortion and the orbit's evolution is not as simple as in the Newtonian limit.

Stephen O'Sullivan; Scott A. Hughes

2014-07-25T23:59:59.000Z

437

THE INFLUENCE OF ORBITAL ECCENTRICITY ON TIDAL RADII OF STAR CLUSTERS  

SciTech Connect (OSTI)

We have performed N-body simulations of star clusters orbiting in a spherically symmetric smooth galactic potential. The model clusters cover a range of initial half-mass radii and orbital eccentricities in order to test the historical assumption that the tidal radius of a cluster is imposed at perigalacticon. The traditional assumption for globular clusters is that since the internal relaxation time is larger than its orbital period, the cluster is tidally stripped at perigalacticon. Instead, our simulations show that a cluster with an eccentric orbit does not need to fully relax in order to expand. After a perigalactic pass, a cluster recaptures previously unbound stars, and the tidal shock at perigalacticon has the effect of energizing inner region stars to larger orbits. Therefore, instead of the limiting radius being imposed at perigalacticon, it more nearly traces the instantaneous tidal radius of the cluster at any point in the orbit. We present a numerical correction factor to theoretical tidal radii calculated at perigalacticon which takes into consideration both the orbital eccentricity and current orbital phase of the cluster.

Webb, Jeremy J.; Harris, William E.; Sills, Alison [Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1 (Canada)] [Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1 (Canada); Hurley, Jarrod R., E-mail: webbjj@mcmaster.ca [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218, VIC 3122 (Australia)

2013-02-20T23:59:59.000Z

438

General Relativistic Hydrodynamic Simulation of Accretion Flow from a Stellar Tidal Disruption  

E-Print Network [OSTI]

We study how the matter dispersed when a supermassive black hole tidally disrupts a star joins an accretion flow. Combining a relativistic hydrodynamic simulation of the stellar disruption with a relativistic hydrodynamics simulation of the tidal debris motion, we track such a system until ~80% of the stellar mass bound to the black hole has settled into an accretion flow. Shocks near the stellar pericenter and also near the apocenter of the most tightly-bound debris dissipate orbital energy, but only enough to make the characteristic radius comparable to the semi-major axis of the most-bound material, not the tidal radius as previously thought. The outer shocks are caused by post-Newtonian effects, both on the stellar orbit during its disruption and on the tidal forces. Accumulation of mass into the accretion flow is non-monotonic and slow, requiring ~3--10x the orbital period of the most tightly-bound tidal streams, while the inflow time for most of the mass may be comparable to or longer than the mass accu...

Shiokawa, Hotaka; Cheng, Roseanne M; Piran, Tsvi; Noble, Scott C

2015-01-01T23:59:59.000Z

439

Low latency search for gravitational waves from black-hole–neutron-star binaries in coincidence with short gamma-ray bursts  

Science Journals Connector (OSTI)

We propose a procedure to be used in the search for gravitational waves from black-hole–neutron-star coalescing binaries, in coincidence with short gamma-ray bursts. It is based on two recently proposed semianalytic fits, one reproducing the mass of the remnant disk surrounding the black hole which forms after the merging as a function of some binary parameters, the second relating the neutron star compactness, i.e., the ratio of mass and radius, with its tidal deformability. Using a Fisher matrix analysis and the two fits, we assign a probability that the emitted gravitational signal is associated to the formation of an accreting disk massive enough to supply the energy needed to power a short gamma-ray burst. This information can be used in low-latency data analysis to restrict the parameter space searching for gravitational wave signals in coincidence with short gamma-ray bursts and to gain information on the dynamics of the coalescing system and on the internal structure of the components. In addition, when the binary parameters are measured with high accuracy, it will be possible to use this information to trigger the search for off-axis gamma-ray burst afterglows.

Andrea Maselli and Valeria Ferrari

2014-03-24T23:59:59.000Z

440

NREL: State and Local Governments - Feed-In Tariffs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

all renewable technologies including: Wind Photovoltaics (PV) Solar thermal Geothermal Biogas Biomass Fuel cells Tidal and wave power. So long as the payment levels are...

Note: This page contains sample records for the topic "tidal power wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

United States' Clean Energy Patents Soar, Report Indicates |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

are: solar and wind energy; hybrid and electric vehicles (EV); fuel cells; hydroelectric, tidal, and wave power; geothermal energy; biomass and biofuels; and other...

442

Power Plant Power Plant  

E-Print Network [OSTI]

Basin Center for Geothermal Energy at University of Nevada, Reno (UNR) 2 Nevada Geodetic LaboratoryStillwater Power Plant Wabuska Power Plant Casa Diablo Power Plant Glass Mountain Geothermal Area Lassen Geothermal Area Coso Hot Springs Power Plants Lake City Geothermal Area Thermo Geothermal Area

Tingley, Joseph V.

443

Extreme responses of a combined spar-type floating wind turbine and floating wave energy converter (STC) system with survival modes  

Science Journals Connector (OSTI)

Abstract Offshore wind is an important source of renewable energy and is steadier and stronger than onshore wind. Offshore areas not only have strong winds but also contain other potential renewable energy sources, such as ocean waves and tidal currents. Therefore, it is interesting to investigate the possibility to utilise these energy potentials simultaneously, particularly the combination of wind and ocean wave energy due to their natural correlation. For this reason, previous researchers have examined the use of a floating wind turbine (FWT) and a wave energy converter (WEC) on a single platform (Aubault et al., 2011; Peiffer et al., 2011; Soulard and Babarit, 2012). In this paper, a combined concept involving a spar-type FWT and an axi-symmetric two-body WEC is considered and denoted as STC. With respect to operational conditions, a previous study (Muliawan et al., 2013) indicates that the STC not only reduces the total capital cost but also increases the total power production compared to the use of segregated FWT and WEC concepts. As with other floating systems, the STC must be designed to ensure serviceability and survivability during its entire service life. One of the design criteria is the ultimate limit state (ULS), which ensures that the entire STC system will have adequate strength to withstand the load effects imposed by extreme environmental actions. Therefore, in the present study, coupled (wave- and wind-induced response mooring) analysis is performed using SIMO/TDHMILL in the time domain to investigate such responses of the STC system as mooring tension, spar-tower interface bending moment, end stop force, and contact force at the Spar-Torus interface under extreme conditions. Environmental conditions that pertain to the northern North Sea metocean data are selected and include operational, survival and 50-year conditions. Finally, the ULS level responses that are capital cost indicators for both FWT alone and for the STC system are estimated and compared.

Made Jaya Muliawan; Madjid Karimirad; Zhen Gao; Torgeir Moan

2013-01-01T23:59:59.000Z

444

All Eyes on Eastport: Tidal Energy Project Brings Change, Opportunity...  

Energy Savers [EERE]

to go back to the days when there were a lot of people here and people had jobs. That's what I'd like to see," he added. For Morrison, Ocean Renewable Power's project spells...

445

Power Factor Reactive Power  

E-Print Network [OSTI]

power: 130 watts Induction motor PSERC Incandescent lights 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0 power: 150 watts #12;Page 4 PSERC Incandescent Lights PSERC Induction motor with no load #12;Page 5 Incandescent Lights #12;Page 7 PSERC Incandescent lights power: Power = 118 V x 1.3 A = 153 W = 0.15 kW = power

446

Earth Tidal Analysis At Raft River Geothermal Area (1984) | Open Energy  

Open Energy Info (EERE)

Earth Tidal Analysis At Raft River Geothermal Area Earth Tidal Analysis At Raft River Geothermal Area (1984) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Earth Tidal Analysis Activity Date 1984 Usefulness useful DOE-funding Unknown Exploration Basis Determine porosity of the reservoir Notes The response of a confined, areally infinite aquifer to external loads imposed by earth tides is examined. Because the gravitational influence of celestial objects occurs over large areas of the earth, the confined aquifer is assumed to respond in an undrained fashion. Since undrained response is controlled by water compressibility, earth tide response can be directly used only to evaluate porous medium compressibility if porosity is known. In the present work, change in external stress is estimated from

447

Gravitational Wave Induced Vibrations of Slender Structures in Space  

E-Print Network [OSTI]

This paper explores the interaction of weak gravitational fields with slender elastic materials in space and estimates their sensitivities for the detection of gravitational waves with frequencies between $10^{-4}$ and 1 Hz. The dynamic behaviour of such slender structures is ideally suited to analysis by the simple theory of Cosserat rods. Such a description offers a clean conceptual separation of the vibrations induced by bending, shear, twist and extension and the response to gravitational tidal accelerations can be reliably estimated in terms of the constitutive properties of the structure. The sensitivity estimates are based on a truncation of the theory in the presence of thermally induced homogeneous Gaussian stochastic forces.

R W Tucker; C Wang

2001-12-06T23:59:59.000Z

448

THRESHING IN ACTION: THE TIDAL DISRUPTION OF A DWARF GALAXY BY THE HYDRA I CLUSTER  

SciTech Connect (OSTI)

We report on the discovery of strong tidal features around a dwarf spheroidal galaxy in the Hydra I galaxy cluster, indicating its ongoing tidal disruption. This very low surface brightness object, HCC-087, was originally classified as an early-type dwarf in the Hydra Cluster Catalogue (HCC), but our re-analysis of the ESO-VLT/FORS images of the HCC unearthed a clear indication of an S-shaped morphology and a large spatial extent. Its shape, luminosity (M{sub V} = -11.6 mag), and physical size (at a half-light radius of 3.1 kpc and a full length of {approx}5.9 kpc) are comparable to the recently discovered NGC 4449B and the Sagittarius dwarf spheroidal, all of which are undergoing clear tidal disruption. Aided by N-body simulations we argue that HCC-087 is currently at its first apocenter, at 150 kpc, around the cluster center and that it is being tidally disrupted by the galaxy cluster's potential itself. An interaction with the nearby (50 kpc) S0 cluster galaxy HCC-005, at M{sub *} {approx} 3 Multiplication-Sign 10{sup 10} M{sub Sun} is rather unlikely, as this constellation requires a significant amount of dynamical friction and thus low relative velocities. The S-shaped morphology and large spatial extent of the satellite would, however, also appear if HCC-087 would orbit the cluster center. These features appear to be characteristic properties of satellites that are seen in the process of being tidally disrupted, independent of the environment of the destruction. An important finding of our simulations is an orientation of the tidal tails perpendicular to the orbit.

Koch, Andreas [Zentrum fuer Astronomie der Universitaet Heidelberg, Landessternwarte, Koenigstuhl 12, D-69117 Heidelberg (Germany); Burkert, Andreas [Universitaetssternwarte der Ludwig-Maximilians Universitaet, Scheinerstr. 1, D-81679 Muenchen (Germany); Rich, R. Michael; Black, Christine S. [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA (United States); Collins, Michelle L. M. [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Hilker, Michael [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Benson, Andrew J., E-mail: akoch@lsw.uni-heidelberg.de [Department of Astronomy, Caltech, Pasadena, CA (United States)

2012-08-10T23:59:59.000Z

449

The relative importance of the wind-driven and tidal circulations in Malacca Strait  

Science Journals Connector (OSTI)

Abstract The Malacca Strait is traditionally treated as a typical tidally-driven channel with the wind-driven and other components considered negligible. However, the strait is frequently affected by intense tropical weather events distorting the background monsoon winds. The variable winds can create large wind-stress curl at the surface level. To answer the question of how significant the wind-driven circulation is to the total circulation, numerical simulations are carried out by isolating or superimposing the different driving mechanisms. Comparison of the time series at selected points reveals that the winds significantly affect the tidal currents in different ways in the northern and southern strait. In the northern wide strait, the tidal current is enhanced while in the southern narrow channel it is weakened. Experiments with uniform water depth confirm that the weakening is mainly due to the interaction among tidal current, wind-driven current and bathymetry in the southern strait. Spectral analysis of the currents in the whole MS quantifies that the wind-driven current energy is more significant in the northern channel than in the southern one. Furthermore, winds with high intensity and large wind-stress curl can produce an eddy as large as the northern channel width which significantly distorts the tidal circulation especially during the neap tide. Vorticity analysis shows that the eddy in the northern Malacca Strait is purely wind-driven. Our study highlights that the wind stress, which has been ignored in previous studies in this region, is an important driver of the circulation in the Malacca Strait even when tidal forcing is strong.

Haoliang Chen; Paola Malanotte-Rizzoli; Tieh-Yong Koh; Guiting Song

2014-01-01T23:59:59.000Z

450

Modelling and geometry optimisation of wave energy converters  

E-Print Network [OSTI]

Modelling and geometry optimisation of wave energy converters Adi Kurniawan Supervisors: Prof DIY Riding radical wave power" #12;#12;Any device will deliver some energyAny device will deliver some energy #12;What matters is the cost of energy Ultimate problem Given the waves, design a device

Nørvåg, Kjetil

451

Structural power flow measurement  

SciTech Connect (OSTI)

Previous investigations of structural power flow through beam-like structures resulted in some unexplained anomalies in the calculated data. In order to develop structural power flow measurement as a viable technique for machine tool design, the causes of these anomalies needed to be found. Once found, techniques for eliminating the errors could be developed. Error sources were found in the experimental apparatus itself as well as in the instrumentation. Although flexural waves are the carriers of power in the experimental apparatus, at some frequencies longitudinal waves were excited which were picked up by the accelerometers and altered power measurements. Errors were found in the phase and gain response of the sensors and amplifiers used for measurement. A transfer function correction technique was employed to compensate for these instrumentation errors.

Falter, K.J.; Keltie, R.F.

1988-12-01T23:59:59.000Z

452

A comparison of measured and modeled tidal currents in the Gulf of Maine  

E-Print Network [OSTI]

to the persistence of the clockwise circulation around the Bank (Garrett er al. , 1978). Loder (1980) has shown theoretically that rectification of the strong semidiurnal tidal current across the steeply sloping northern edge of Georges Bank can produce a... astronomical forcing (Garrett, 1972; Brown and Moody, 1987). Garrett (1972) estimated the natural period of the Gulf of Maine-Bay of Fundy basin to be 13. 3M. 4 hours, which is near the frequency of the semidiurnal tidal constituents. Since the M2 semidiurnal...

Cook, Michael S

1990-01-01T23:59:59.000Z

453

CASTANEA 55(1): 56.64. MARCH 1990 New County Records Collected in Tidal Wetlands of Four Coastal  

E-Print Network [OSTI]

salinity gradient exists in the James River. Salinity aver- ages 22 ppt (parts per thousand) at the mouth that horizontal salinity gradients also exist in tidal tributaries of the James River. The distance salt water 1982). The distribution of tidal wetland vegetation appears to be determined by horizontal salinity

Newman, Michael C.

454

Harvesting Broadband Kinetic Impact Energy from Mechanical Triggering/Vibration and Water Waves  

Science Journals Connector (OSTI)

(13) Although efforts in utilizing ocean wave energy could be dated back to 1890,(13) there has not been any commercial wave power farms up to now. ... This demonstrates that in addition to water wave energy harvesting our TENG also has the potential for hydrological analysis, which is a very important function for a wave energy farming system. ... Last but not least, the major component for ocean wave harvesting is the offshore wind power. ...

Xiaonan Wen; Weiqing Yang; Qingshen Jing; Zhong Lin Wang

2014-06-25T23:59:59.000Z

455

Ecology of Juvenile Salmon in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2008 Annual Report.  

SciTech Connect (OSTI)

The tidal freshwater monitoring (TFM) project reported herein is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, the U.S. Army Corps of Engineers [USACE], and the U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act (ESA) as a result of operation of the Federal Columbia River Power System. The project is being performed under the auspices of the Northwest Power and Conservation Council's Columbia Basin Fish and Wildlife Program (Project No. 2005-001-00). The research is a collaborative effort among the Pacific Northwest National Laboratory, the Oregon Department of Fish and Wildlife, the National Marine Fisheries Service, and the University of Washington. The overarching goal of the TFM project is to bridge the gap in knowledge between tidal freshwater habitats and the early life history attributes of migrating salmon. The research questions include: In what types of habitats within the tidal freshwater area of the Columbia River are juvenile salmon found, when are they present, and under what environmental conditions? What is the ecological contribution of shallow (0-5 m) tidal freshwater habitats to the recovery of ESA-listed salmon in the Columbia River basin? Field data collection for the TFM project commenced in June 2007 and since then has continued monthly at six to nine sites in the vicinity of the Sandy River delta (river kilometer 192-208). While this report includes summary data spanning the 19-month period of study from June 2007 through December 2008, it highlights sampling conducted during calendar year 2008. Detailed data for calendar year 2007 were reported previously. The 2008 research objectives were as follows: (1) Characterize the vegetation composition and percent cover, conventional water quality, water surface elevation, substrate composition, bathymetry, and beach slope at the study sites within the vicinity of the Sandy River delta. (2) Characterize the fish community and juvenile salmon migration, including species composition, length-frequency distribution, density (number/m{sup 2}), and temporal and spatial distributions in the vicinity of the Sandy River delta in the lower Columbia River and estuary (LCRE). (3) Determine the stock of origin for juvenile Chinook salmon (Oncorhynchus tshawytscha) captured at sampling sites through genetic identification. (4) Characterize the diets of juvenile Chinook and coho (O. kisutch) salmon captured within the study area. (5) Estimate run timing, residence times, and migration pathways for acoustic-tagged fish in the study area. (6) Conduct a baseline evaluation of the potential restoration to reconnect the old Sandy River channel with the delta. (7) Apply fish density data to initiate a design for a juvenile salmon monitoring program for beach habitats within the tidal freshwater segment of the LCRE (river kilometer 56-234).

Sather, NK; Johnson, GE; Storch, AJ [Pacific Northwest National Laboratory

2009-07-06T23:59:59.000Z

456

ULATION OFPOWERELECTRONICCIRC USED IN WAVE DIGITAL FI  

E-Print Network [OSTI]

mode power supplies already in use in industry. 1. INTRODUCTION Wave digital filters (WDFs) represent Institute for Power Electronics and Electrical Drives University of Paderbom, FB14 Postfach 1621,33098Paderborn, Germany Tel.: ++49 - 5251 -60 3157, FAX: ++49 -5251-60 3443, E-mail: fiedler

Paderborn, Universität

457

U.S. West: The Next Energy Nexus  

E-Print Network [OSTI]

as we can, but also develop wind power and solar power andsolar, wind, geothermal, biomass, wave and tidal power. Theyto hydroelectric power (Table 2). Wind genera- tors are the

Davis, Sandra K.; Kear, Andrew R.

2014-01-01T23:59:59.000Z

458

SeWave | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » SeWave Jump to: navigation, search Name SeWave Place Denmark Zip FO-110 Product Denmark-based 50:50 JV between UK's Wavegen and Faroese electricity company SEV to to design and build a tunnelled demonstration wave power plant in the Faroes Islands. References SeWave[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This article is a stub. You can help OpenEI by expanding it. SeWave is a company located in Denmark . References ↑ "SeWave"

459

Refrigeration system having standing wave compressor  

DOE Patents [OSTI]

A compression-evaporation refrigeration system, wherein gaseous compression of the refrigerant is provided by a standing wave compressor. The standing wave compressor is modified so as to provide a separate subcooling system for the refrigerant, so that efficiency losses due to flashing are reduced. Subcooling occurs when heat exchange is provided between the refrigerant and a heat pumping surface, which is exposed to the standing acoustic wave within the standing wave compressor. A variable capacity and variable discharge pressure for the standing wave compressor is provided. A control circuit simultaneously varies the capacity and discharge pressure in response to changing operating conditions, thereby maintaining the minimum discharge pressure needed for condensation to occur at any time. Thus, the power consumption of the standing wave compressor is reduced and system efficiency is improved.

Lucas, Timothy S. (Glen Allen, VA)

1992-01-01T23:59:59.000Z

460

Asymmetry of Tidal Plume Fronts in an Eastern Boundary Current Regime  

E-Print Network [OSTI]

water mass. This vorticity controls the transition of the tidal plume 2 #12;front to a subcritical state bulge, which in turn is embedded in far-field plume and coastal waters. Because of the mixing caused on its upwind or northern side) and marks a transition from supercritical to subcritical flow for 6

Jay, David

Note: This page contains sample records for the topic "tidal power wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Asymmetry of Columbia River tidal plume fronts David A. Jay a,  

E-Print Network [OSTI]

or northern side and mark a transition from supercritical to subcritical flow for up to 12 h after high water plume water mass. This vorticitycontrols the transition of the tidal plume front to a subcritical state plume may overlie newly upwelled waters, these fronts can mix nutrients into the plume. Symmetry would

Hickey, Barbara

462

Isolation of Four Diatom Strains from Tidal Mud toward Biofuel Production  

Science Journals Connector (OSTI)

Development and utilization of bio-energy is an important way to relieve the pressure of global energy shortage. Biodiesel can be a focus of the bio-energy, because it is a cleaner-burning and renewable fuel. Micro algae have been considered to be an ... Keywords: biodiesel, diatom, isolation, tidal mud

Yu Gao; Yang Yu; Junrong Liang; Yahui Gao; Qiaoqi Luo

2012-05-01T23:59:59.000Z

463

Multi-point tidal prediction using artificial neural network with tide-generating forces  

E-Print Network [OSTI]

Multi-point tidal prediction using artificial neural network with tide-generating forces Hsien Available online 23 June 2006 Abstract This paper presents a neural network model of simulating tides Elsevier B.V. All rights reserved. Keywords: Neural networks; Tides; Tide-generating forces; Harmonic

464

TIDAL EVOLUTION OF CLOSE-IN EXTRASOLAR PLANETS: HIGH STELLAR Q FROM NEW THEORETICAL MODELS  

SciTech Connect (OSTI)

In recent years it has been shown that the tidal coupling between extrasolar planets and their stars could be an important mechanism leading to orbital evolution. Both the tides the planet raises on the star and vice versa are important and dissipation efficiencies ranging over four orders of magnitude are being used. In addition, the discovery of extrasolar planets extremely close to their stars has made it clear that the estimates of the tidal quality factor, Q, of the stars based on Jupiter and its satellite system and on main-sequence binary star observations are too low, resulting in lifetimes for the closest planets orders of magnitude smaller than their age. We argue that those estimates of the tidal dissipation efficiency are not applicable for stars with spin periods much longer than the extrasolar planets' orbital period. We address the problem by applying our own values for the dissipation efficiency of tides, based on our numerical simulations of externally perturbed volumes of stellar-like convection. The range of dissipation we find for main-sequence stars corresponds to stellar Q{sub *} of 10{sup 8} to 3 x 10{sup 9}. The derived orbit lifetimes are comparable to or much longer than the ages of the observed extrasolar planetary systems. The predicted orbital decay transit timing variations due to the tidal coupling are below the rate of ms yr{sup -1} for currently known systems, but within reach of an extended Kepler mission provided such objects are found in its field.

Penev, Kaloyan; Sasselov, Dimitar [Astronomy Department, Harvard University, 60 Garden St., M.S. 16, Cambridge, MA 02138 (United States)

2011-04-10T23:59:59.000Z

465

PHYSIOLOGICAL PERFORMANCE OF INTERTIDAL CORALLINE ALGAE DURING A SIMULATED TIDAL CYCLE1  

E-Print Network [OSTI]

PHYSIOLOGICAL PERFORMANCE OF INTERTIDAL CORALLINE ALGAE DURING A SIMULATED TIDAL CYCLE1 Rebecca J, Lobban and Harrison 1997, Helmuth and Hofmann 2001). During high tide, intertidal algae are underwater algae may be emerged and exposed to increased light stress, elevated air tem- peratures, and increased

Martone, Patrick T.

466

Assessment of arrays of in-stream tidal turbines in the Bay of Fundy  

Science Journals Connector (OSTI)

...Assessment of arrays of in-stream tidal turbines in the Bay of Fundy Richard Karsten...energy . Theories of in-stream turbines are adapted to analyse the potential electricity generation and impact of turbine arrays deployed in Minas Passage...

2013-01-01T23:59:59.000Z

467

Nekton Density Patterns in Tidal Ponds and Adjacent Wetlands Related to Pond Size and Salinity  

E-Print Network [OSTI]

appeared to be structured by the responses of individual species to the estuarine salinity gradient shown that nekton abundance can be affected by salinity gradients in estuaries (Baltz et al. 1993, 1998Nekton Density Patterns in Tidal Ponds and Adjacent Wetlands Related to Pond Size and Salinity

468

Laboratory experiments on the generation of internal tidal beams over steep slopes  

E-Print Network [OSTI]

baroclinic tides, generated by barotropic currents over ocean ridges and seamounts, are an important source decades, it has become apparent that substantial internal tides can be generated by tidal currents over ridges and other rough topography of the ocean floor. This problem is of paramount importance since

Dauxois, Thierry

469

Tidal constituent database. West Coast of the United States and Eastern North pacific ocean. Technical note  

SciTech Connect (OSTI)

This technical note describes a database of tidal elevation boundary condition information generated in support of the `Long-Term Fate of Dredged Material Disposed in Open Water` research of the Dredging Research Program (DRP), being conducted at the U.S. Army Engineer Waterways Experiment Station. The database, described in detail by Hench and others (1994), allows the user to manually generate time series of tidal elevations or to use a program to access the full database to generate time series of both tidal elevations and currents for any location along the West Coast of the United States and Eastern North Pacific Ocean, extending from Seal Cape on Unimak Island, Alaska, in the North to Punta Parada, Peru, in the South. The land boundary includes the Pacific shorelines of Alaska, Canada, mainland United States, Mexico, Guatemala, El Salvador, Nicaragua, Costa Rica, Panama, Columbia, and Northern Peru. Although the capability to generate these time series was developed to provide input to the Long-Term Fate and Stability Model (LTFATE), the generated time series can be used for any application requiring tidal forcing data.

NONE

1995-01-01T23:59:59.000Z

470

Final Report for Sea-level Rise Response Modeling for San Francisco Bay Estuary Tidal  

E-Print Network [OSTI]

i Final Report for Sea-level Rise Response Modeling for San Francisco Bay Estuary Tidal Marshes Refuge in northern San Francisco Bay, California. #12;iii Final Report for Sea-level Rise Response)................................................................... 7 Sea-level rise scenario model inputs

Fleskes, Joe

471

Dissolved oxygen stratification in two micro-tidal partially-mixed estuaries  

E-Print Network [OSTI]

Dissolved oxygen stratification in two micro-tidal partially-mixed estuaries Jing Lin a,*, Lian Xie online 21 August 2006 Abstract The controlling physical factors for vertical oxygen stratification that vertical stratification of dissolved oxygen (DO) concentration can be explained by the extended Hansen

Mallin, Michael

472

Lateral circulation generates flood-tide stratification and estuarine exchange flow in a curved tidal inlet  

Science Journals Connector (OSTI)

Cross-channel transect measurements of micro-structure and velocity in a well-mixed and curved tidal inlet in the German Wadden Sea show the occurrence of significant late-flood stratification. This stratification is found to be due to lateral ...

Johannes Becherer; Mark T. Stacey; Lars Umlauf; Hans Burchard

473

Assessing Soil and Hydrologic Properties for the Successful Creation of Non-Tidal Wetlands  

E-Print Network [OSTI]

1 Assessing Soil and Hydrologic Properties for the Successful Creation of Non-Tidal Wetlands W. Lee, VA 23529-0276 rwhittec@odu.edu Introduction Federal and state wetlands protection regulations require the mitigation of impacts to jurisdictional wetlands via avoidance and minimization of damage whenever possible

Darby, Dennis

474

Refinement and validation of a multi-level assessment method for Mid-Atlantic tidal wetlands  

E-Print Network [OSTI]

Refinement and validation of a multi-level assessment method for Mid-Atlantic tidal wetlands (EPA of wetland resources across the Mid-Atlantic physiographic region, efforts are currently underway in a number of states, most notably Delaware, Maryland, Pennsylvania and Virginia, to develop and implement wetland

475

Inventory and Ventilation Efficiency of Nonnative and Native Phragmites australis (Common Reed) in Tidal  

E-Print Network [OSTI]

NOTE Inventory and Ventilation Efficiency of Nonnative and Native Phragmites australis (Common Reed: 3 July 2012 # Coastal and Estuarine Research Federation 2012 Abstract Nonnative Phragmites is among the most in- vasive plants in the U.S. Atlantic coast tidal wetlands, whereas the native Phragmites has

476

Appraising the extractable tidal energy resource of the UK's western coastal waters  

Science Journals Connector (OSTI)

...streams has also been explored. renewable energy|tidal energy|barrages or...paramount that all viable sources of renewable energy are fully exploited. Towards...target for the UK of 15 per cent renewable energies (heating/cooling, transport...

2013-01-01T23:59:59.000Z

477

MHK Technologies/bioWave | Open Energy Information  

Open Energy Info (EERE)

bioWave bioWave < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage BioWave.jpg Technology Profile Primary Organization BioPower Systems Pty Ltd Project(s) where this technology is utilized *MHK Projects/bioWAVE Pilot Plant Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description TThe bioWAVE is based on the swaying motion of sea plants in the presence of ocean waves. The hydrodynamic interaction of the buoyant blades with the oscillating flow field is designed for maximum energy absorption. Mooring Configuration Gravity base Optimum Marine/Riverline Conditions 30 to 50M depth 20kW m wave climate or greater

478

Ocean Power Technologies (TRL 5 6 System) - PB500, 500 kW Utility...  

Broader source: Energy.gov (indexed) [DOE]

technologiesinchart.ppt More Documents & Publications Advanced, High Power, Next Scale, Wave Energy Conversion Device Ocean Power Technologies (TRL 7 8 System) - Reedsport PB150...

479

Plane waves Lumped systems  

E-Print Network [OSTI]

1 Impedance · Plane waves ­ Lumped systems S x y z Impedance · Plane waves ­ Lumped systems · open tube #12;2 Impedance · Plane waves ­ Lumped systems · closed tube Impedance · Cylindrical waves z x y r #12;3 Impedance · Cylindrical waves ­ Circumferential part n=0 n=1 n=2 n=3 Impedance · Cylindrical

Berlin,Technische Universität

480

Navy Catching Waves in Hawaii | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Navy Catching Waves in Hawaii Navy Catching Waves in Hawaii Navy Catching Waves in Hawaii June 2, 2010 - 11:56am Addthis This experimental power-generating buoy installed off the coast of Oahu can produce enough energy to power 25 homes under optimal conditions. | Photo courtesy of Ocean Power Technologies, Inc. This experimental power-generating buoy installed off the coast of Oahu can produce enough energy to power 25 homes under optimal conditions. | Photo courtesy of Ocean Power Technologies, Inc. To a casual observer, the buoy off the shore of Marine Corps Base Hawaii (MCBH) might look like nothing more than a bright yellow spot in a blue ocean. But this isn't an ordinary buoy - it's a small electrical generator, creating renewable electricity as it bobs up and down on the waves. It's also a test project by the U.S. Navy to see whether a wider

First Page Previous Page 1 2 3 4 5 6 7 8 9 10