Sample records for tidal power wave

  1. Tidal power

    SciTech Connect (OSTI)

    Hammons, T.J. (Glasgow Univ., Scotland (United Kingdom))

    1993-03-01T23:59:59.000Z

    The paper reviews the physics of tidal power considering gravitational effects of moon and sun; semidiurnal, diurnal, and mixed tides; and major periodic components that affect the tidal range. Shelving, funneling, reflection, and resonance phenomena that have a significant effect on tidal range are also discussed. The paper then examines tidal energy resource for principal developments estimated from parametric modeling in Europe and worldwide. Basic parameters that govern the design of tidal power schemes in terms of mean tidal range and surface area of the enclosed basin are identified. While energy extracted is proportional to the tidal amplitude squared, requisite sluicing are is proportional to the square root of the tidal amplitude. Sites with large tidal amplitudes are therefore best suited for tidal power developments, whereas sites with low tidal amplitudes have sluicing that may be prohibitive. It is shown that 48% of the European tidal resource is in the United Kingdom, 42% in France and 8% in Ireland, other countries having negligible potential. Worldwide tidal resource is identified. Tidal barrage design and construction using caissons is examined, as are alternative operating modes (single-action generation, outflow generation, flood generation, two-way generation, twin basin generation, pumping, etc), development trends and possibilities, generation cost at the barrage boundary, sensitivity to discount rates, general economics, and markets. Environmental effects, and institutional constraints to the development of tidal barrage schemes are also discussed.

  2. Integration of Wave and Tidal Power into the Haida Gwaii Electrical Grid

    E-Print Network [OSTI]

    Victoria, University of

    , Canada that relies heavily on diesel fuel for energy generation. An investigation is done into the potential for electricity generation using both tidal stream and wave energy in Haida Gwaii. A mixed integer

  3. Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current,...

  4. Overland Tidal Power Generation Using Modular Tidal Prism

    SciTech Connect (OSTI)

    Khangaonkar, Tarang; Yang, Zhaoqing; Geerlofs, Simon H.; Copping, Andrea

    2010-03-01T23:59:59.000Z

    Naturally occurring sites with sufficient kinetic energy suitable for tidal power generation with sustained currents > 1 to 2 m/s are relatively rare. Yet sites with greater than 3 to 4 m of tidal range are relatively common around the U.S. coastline. Tidal potential does exist along the shoreline but is mostly distributed, and requires an approach which allows trapping and collection to also be conducted in a distributed manner. In this paper we examine the feasibility of generating sustainable tidal power using multiple nearshore tidal energy collection units and present the Modular Tidal Prism (MTP) basin concept. The proposed approach utilizes available tidal potential by conversion into tidal kinetic energy through cyclic expansion and drainage from shallow modular manufactured overland tidal prisms. A preliminary design and configuration of the modular tidal prism basin including inlet channel configuration and basin dimensions was developed. The unique design was shown to sustain momentum in the penstocks during flooding as well as ebbing tidal cycles. The unstructured-grid finite volume coastal ocean model (FVCOM) was used to subject the proposed design to a number of sensitivity tests and to optimize the size, shape and configuration of MTP basin for peak power generation capacity. The results show that an artificial modular basin with a reasonable footprint (? 300 acres) has the potential to generate 10 to 20 kw average energy through the operation of a small turbine located near the basin outlet. The potential of generating a total of 500 kw to 1 MW of power through a 20 to 40 MTP basin tidal power farms distributed along the coastline of Puget Sound, Washington, is explored.

  5. 12th Annual Wave & Tidal 2015

    Broader source: Energy.gov [DOE]

    The UK is currently the undisputed global leader in marine energy, with more wave and tidal stream devices installed than the rest of the world combined. This leading position is built on an...

  6. Regulation of Tidal and Wave Energy Projects (Maine)

    Broader source: Energy.gov [DOE]

    State regulation of tidal and wave energy projects is covered under the Maine Waterway Development and Conservation Act (MWDCA), and complements regulation by the Federal Energy Regulation...

  7. Directly Imaging Tidally Powered Migrating Jupiters

    E-Print Network [OSTI]

    Dong, Subo; Socrates, Aristotle

    2012-01-01T23:59:59.000Z

    We show that ongoing direct imaging experiments may detect a new class of long-period, highly luminous, tidally powered extrasolar gas giants. Even though they are hosted by Gyr-"old" main-sequence stars, they can be as "hot" as young Jupiters at ~100 Myr, the prime targets of direct imaging surveys. These planets, with years-long orbits, are presently migrating to "feed" the "hot Jupiters" in steady state. Their existence is expected from a class of "high-e" migration mechanisms, in which gas giants are excited to highly eccentric orbits and then shrink their semi-major axis by factor of ~ 10-100 due to tidal dissipation at successive close periastron passages. The dissipated orbital energy is converted to heat, and if it is deposited deep enough into the planet atmosphere, the planet likely radiates steadily at luminosity ~2-3 orders of magnitude larger than that of our Jupiter during a typical Gyr migration time scale. Their large orbital separations and expected high planet-to-star flux ratios in IR make ...

  8. Quantifying Turbulence for Tidal Power Applications

    SciTech Connect (OSTI)

    Thomson, Jim; Richmond, Marshall C.; Polagye, Brian; Durgesh, Vibhav

    2010-08-01T23:59:59.000Z

    Using newly collected data from a tidal power site in Puget Sound, WA, metrics for turbulence quantification are assessed and discussed. The quality of raw ping Acoustic Doppler Current Profiler (ADCP) data for turbulence studies is evaluated against Acoustic Doppler Velocimeter (ADV) data at a point. Removal of Doppler noise from the raw ping data is shown to be a crucial step in turbulence quantification. Excluding periods of slack tide, the turbulent intensity estimates at a height of 4.6 m above the seabed are 8% and 11% from the ADCP and ADV, respectively. Estimates of the turbulent dissipation rate are more variable, from 10e-3 to 10e-1 W/m^3. An example analysis of coherent Turbulent Kinetic Energy (TKE) is presented.

  9. Overview of Ocean Wave and Tidal Energy Lingchuan Mei

    E-Print Network [OSTI]

    Lavaei, Javad

    Overview of Ocean Wave and Tidal Energy Lingchuan Mei Department of Electrical Engineering Columbia with the climate change has led us to the exploration of new renewable energy in the past few decades. Oceans of this paper is to briefly overview the technology development of the ocean energy exploration, focusing on two

  10. MSL F693 F01 French Tidal Power CRN # 36273 Station

    E-Print Network [OSTI]

    Kowalik, Zygmunt

    MSL F693 F01 French Tidal Power CRN # 36273 Station 3 CREDITS Zygmunt Kowalik A new course on TIDES. Such application has raised many questions about an environmental impact of tidal power development. The course a function of the changes in the sun- earth-moon system, caused by dissipation of the tidal energy

  11. Investigation of tidal power, Cobscook Bay, Maine. Environmental Appendix

    SciTech Connect (OSTI)

    Not Available

    1980-08-01T23:59:59.000Z

    This report presents information regarding existing terrestrial and marine resources and water quality conditions in the Cobscook Bay area. A preliminary assessment of impacts from a tidal power project is also presented and data gaps are identified. Reports contained in the appendix were prepared by the U.S. Fish and Wildlife Service, the National Marine Fisheries Service, the University of Maine at Orino, School of Forestry Resources and the U.S. Army Corps of Engineers.

  12. innovati nNREL Uses Computing Power to Investigate Tidal Power

    E-Print Network [OSTI]

    innovati nNREL Uses Computing Power to Investigate Tidal Power Researchers at the National Renewable Energy Laboratory (NREL) have applied their knowledge of wind flow and turbulence to simulations water currents that carry a significant amount of kinetic energy. To capture this energy, several

  13. Predictive Power Control of Doubly-Fed Induction Generator for Wave Energy Converters

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Predictive Power Control of Doubly-Fed Induction Generator for Wave Energy Converters M.S. Lagoun1. There are several wave energy converters to harness this energy. Some of them, as in tidal applications, use of a DFIG-based Wave Energy Converter (WEC). In the proposed control approach, the predicted output power

  14. A Predictive power control of Doubly Fed Induction Generator for Wave Energy Converter

    E-Print Network [OSTI]

    Brest, Université de

    A Predictive power control of Doubly Fed Induction Generator for Wave Energy Converter in Irregular there are several wave energy converters to harness this energy. Some of them, as in tidal applications, use based Wave Energy Converter under irregular wave climate which is modeled as time series elevation from

  15. Tidal Energy System for On-Shore Power Generation

    SciTech Connect (OSTI)

    Bruce, Allan J

    2012-06-26T23:59:59.000Z

    Addressing the urgent need to develop LCOE competitive renewable energy solutions for US energy security and to replace fossil-fuel generation with the associated benefits to environment impacts including a reduction in CO2 emissions, this Project focused on the advantages of using hydraulic energy transfer (HET) in large-scale Marine Hydrokinetic (MHK) systems for harvesting off-shore tidal energy in US waters. A recent DOE resource assessment, identifies water power resources have a potential to meet 15% of the US electric supply by 2030, with MHK technologies being a major component. The work covered a TRL-4 laboratory proof-in-concept demonstration plus modeling of a 15MW full scale system based on an approach patented by NASA-JPL, in which submerged high-ratio gearboxes and electrical generators in conventional MHK turbine systems are replaced by a submerged hydraulic radial pump coupled to on-shore hydraulic motors driving a generator. The advantages are; first, the mean-time-between-failure (MTBF), or maintenance, can be extended from approximately 1 to 5 years and second, the range of tidal flow speeds which can be efficiently harvested can be extended beyond that of a conventional submerged generator. The approach uses scalable, commercial-off-the-shelf (COTS) components, facilitating scale-up and commercialization. All the objectives of the Project have been successfully met (1) A TRL4 system was designed, constructed and tested. It simulates a tidal energy turbine, with a 2-m diameter blade in up to a 2.9 m/sec flow. The system consists of a drive motor assembly providing appropriate torque and RPM, attached to a radial piston pump. The pump circulates pressurized, environmentally-friendly, HEES hydraulic fluid in a closed loop to an axial piston motor which drives an electrical generator, with a resistive load. The performance of the components, subsystems and system were evaluated during simulated tidal cycles. The pump is contained in a tank for immersion testing. The COTS pump and motor were selected to scale to MW size and were oversized for the TRL-4 demonstration, operating at only 1-6% of rated values. Nevertheless, in for 2-18 kW drive power, in agreement with manufacturer performance data, we measured efficiencies of 85-90% and 75-80% for the pump and motor, respectively. These efficiencies being 95-96% at higher operating powers. (2) Two follow-on paths were identified. In both cases conventional turbine systems can be modified, replacing existing gear box and generator with a hydraulic pump and on-shore components. On a conventional path, a TRL5/6 15kW turbine system can be engineered and tested on a barge at an existing site in Maine. Alternatively, on an accelerated path, a TRL-8 100kW system can be engineered and tested by modifying a team member's existing MHK turbines, with barge and grid-connected test sites in-place. On both paths the work can be expedited and cost effective by reusing TRL-4 components, modifying existing turbines and using established test sites. (3) Sizing, performance modeling and costing of a scaled 15MW system, suitable for operation in Maine's Western Passage, was performed. COTS components are identified and the performance projections are favorable. The estimated LCOE is comparable to wind generation with peak production at high demand times. (4) We determined that a similar HET approach can be extended to on-shore and off-shore wind turbine systems. These are very large energy resources which can be addressed in parallel for even great National benefit. (5) Preliminary results on this project were presented at two International Conferences on renewable energy in 2012, providing a timely dissemination of information. We have thus demonstrated a proof-in-concept of a novel, tidal HET system that eliminates all submerged gears and electronics to improve reliability. Hydraulic pump efficiencies of 90% have been confirmed in simulated tidal flows between 1 and 3 m/s, and at only 1-6% of rated power. Total system efficiencies have also been modeled, up to MW-scale, for ti

  16. Power Limitation Control for a PMSG-Based Marine Current Turbine at High Tidal Speed and

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Power Limitation Control for a PMSG-Based Marine Current Turbine at High Tidal Speed and Strong Sea the generator power at rated value. In this paper, two power limitation strategies with flux-weakening control by the power limitation and the rotor speed; this method enables to control the generator power at the limited

  17. "Circularization" vs. Accretion -- What Powers Tidal Disruption Events?

    E-Print Network [OSTI]

    Piran, Tsvi; Krolik, Julian; Cheng, Roseanne M; Shiokawa, Hotaka

    2015-01-01T23:59:59.000Z

    A tidal disruption event (TDE) takes place when a star passes near enough to a massive black hole to be disrupted. About half the star's matter is given elliptical trajectories with large apocenter distances, the other half is unbound. To "circularize", i.e., to form an accretion flow, the bound matter must lose a significant amount of energy, with the actual amount depending on the characteristic scale of the flow measured in units of the black hole's gravitational radius (~ 10^{51} (R/1000R_g)^{-1} erg). Recent numerical simulations (Shiokawa et al., 2015) have revealed that the circularization scale is close to the scale of the most-bound initial orbits, ~ 10^3 M_{BH,6.5}^{-2/3} R_g ~ 10^{15} M_{BH,6.5}^{1/3} cm from the black hole, and the corresponding circularization energy dissipation rate is $\\sim 10^{44} M_{BH,6.5}^{-1/6}$~erg/s. We suggest that the energy liberated during circularization, rather then energy liberated by accretion onto the black hole, powers the observed optical TDE candidates (e.g.A...

  18. Tidal Conversion at a Submarine Ridge FRANOIS PTRLIS

    E-Print Network [OSTI]

    Young, William R.

    that control the tidally powered radiation of in- ternal gravity waves (the "tidal conversion") from received 30 July 2003, in final form 20 January 2004) ABSTRACT The radiative flux of internal wave energy tide over submarine topography is a main source of the mechanical energy required to power the internal

  19. Marine Tidal Current Electric Power Generation Technology: State of the Art and Current Status

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    resurgence in development of renewable ocean energy technology. Therefore, several demonstration projects appreciated as a vast renewable energy source. The energy is stored in oceans partly as thermal energy, partly categories: wave energy, marine and tidal current energy, ocean thermal energy, energy from salinity

  20. Hydropower, Wave and Tidal Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)Hydrogen Storage in CarbonLaboratories'Hydropower, Wave and

  1. Tidal Stream Power Web GIS Tool | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson Ethanol LLCEnergyoThornwood,TianfuTidal Sails AS Jump

  2. Measuring the Impact of Tidal Power Installations on Endangered...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on Endangered Beluga Whales April 9, 2013 - 12:00am Addthis With EERE support, Ocean Renewable Power Company (ORPC) is conducting a two-year study on the effects of...

  3. Green Power Purchasing

    Broader source: Energy.gov [DOE]

    Eligible resources include tidal and wave power, fuel cells using renewable fuels, hydropower facilities less than 60 megawatts (MW), solar thermal-electric systems, photovoltaics (PV), wind,...

  4. Internal wave and boundary current generation by tidal flow over topography Amadeus Dettner, Harry L. Swinney, and M. S. Paoletti

    E-Print Network [OSTI]

    Texas at Austin. University of

    ( , shape)/SIW, where Ptide is the effective tidal power that interacts with the topography, and /8 of a uniformly stratified fluid. The radiated power PIW and kinetic energy density of the boundary currents characterized by large kinetic energy densities form over critical topography ( = 1). However, we find

  5. Internal wave and boundary current generation by tidal flow over topography Amadeus Dettner, Harry L. Swinney, and M. S. Paoletti

    E-Print Network [OSTI]

    Texas at Austin. University of

    ( , shape)/SIW, where Ptide is the effective tidal power that interacts with the topography, and /8 fluid. The radiated power PIW and kinetic energy density of the boundary currents are computed characterized by large kinetic energy densities form over critical topography ( = 1). However, we find

  6. Measuring the Impact of Tidal Power Installations on Endangered Beluga

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a NewCuneo Matthew1, 20121+ Cross Section

  7. Power recycling for an interferometric gravitational wave

    E-Print Network [OSTI]

    Ejiri, Shinji

    THESIS Power recycling for an interferometric gravitational wave detector Masaki Ando Department . . . . . . . . . . . . . . 48 3.3 Power recycling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.3.1 Principle of power recycling . . . . . . . . . . . . . . . . . 50 3.3.2 Recycling cavity

  8. Wave Power Demonstration Project at Reedsport, Oregon

    SciTech Connect (OSTI)

    Mekhiche, Mike [Principal Investigator] [Principal Investigator; Downie, Bruce [Project Manager] [Project Manager

    2013-10-21T23:59:59.000Z

    Ocean wave power can be a significant source of large?scale, renewable energy for the US electrical grid. The Electrical Power Research Institute (EPRI) conservatively estimated that 20% of all US electricity could be generated by wave energy. Ocean Power Technologies, Inc. (OPT), with funding from private sources and the US Navy, developed the PowerBuoy? to generate renewable energy from the readily available power in ocean waves. OPT's PowerBuoy converts the energy in ocean waves to electricity using the rise and fall of waves to move the buoy up and down (mechanical stroking) which drives an electric generator. This electricity is then conditioned and transmitted ashore as high?voltage power via underwater cable. OPT's wave power generation system includes sophisticated techniques to automatically tune the system for efficient conversion of random wave energy into low cost green electricity, for disconnecting the system in large waves for hardware safety and protection, and for automatically restoring operation when wave conditions normalize. As the first utility scale wave power project in the US, the Wave Power Demonstration Project at Reedsport, OR, will consist of 10 PowerBuoys located 2.5 miles off the coast. This U.S. Department of Energy Grant funding along with funding from PNGC Power, an Oregon?based electric power cooperative, was utilized for the design completion, fabrication, assembly and factory testing of the first PowerBuoy for the Reedsport project. At this time, the design and fabrication of this first PowerBuoy and factory testing of the power take?off subsystem are complete; additionally the power take?off subsystem has been successfully integrated into the spar.

  9. MHK Projects/Willapa Bay Tidal Power Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK Projects Jump to:Vicksburg BendWillapa Bay Tidal Power

  10. Green Power Purchase Plan

    Broader source: Energy.gov [DOE]

    Class I renewable energy resources include solar, wind, new sustainable biomass, landfill gas, fuel cells (using renewable or non-renewable fuels), ocean thermal power, wave or tidal power, low...

  11. Experimental determination of radiated internal wave power without pressure field data

    SciTech Connect (OSTI)

    Lee, Frank M.; Morrison, P. J. [Physics Department and Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712–1192 (United States)] [Physics Department and Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712–1192 (United States); Paoletti, M. S.; Swinney, Harry L. [Physics Department, The University of Texas at Austin, Austin, Texas 78712–1192 (United States)] [Physics Department, The University of Texas at Austin, Austin, Texas 78712–1192 (United States)

    2014-04-15T23:59:59.000Z

    We present a method to determine, using only velocity field data, the time-averaged energy flux (J) and total radiated power P for two-dimensional internal gravity waves. Both (J) and P are determined from expressions involving only a scalar function, the stream function ?. We test the method using data from a direct numerical simulation for tidal flow of a stratified fluid past a knife edge. The results for the radiated internal wave power given by the stream function method agree to within 0.5% with results obtained using pressure and velocity data from the numerical simulation. The results for the radiated power computed from the stream function agree well with power computed from the velocity and pressure if the starting point for the stream function computation is on a solid boundary, but if a boundary point is not available, care must be taken to choose an appropriate starting point. We also test the stream function method by applying it to laboratory data for tidal flow past a knife edge, and the results are found to agree with the direct numerical simulation. The supplementary material includes a Matlab code with a graphical user interface that can be used to compute the energy flux and power from two-dimensional velocity field data.

  12. Seasonal patterns of coarse sediment transport on a mixed sand and gravel beach due to vessel wakes, wind waves, and tidal currents

    E-Print Network [OSTI]

    Talke, Stefan

    Seasonal patterns of coarse sediment transport on a mixed sand and gravel beach due to vessel wakes, wind waves, and tidal currents Gregory M. Curtiss a, , Philip D. Osborne b,1 , Alexander R. Horner December 2008 Accepted 29 December 2008 Keywords: mixed sand and gravel beach ferry wake wash beach

  13. The giant star of the symbiotic system YY Her: Rotation, Tidal wave, Solar-type cycle and Spots

    E-Print Network [OSTI]

    Liliana Formiggini; Elia M. Leibowitz

    2006-09-17T23:59:59.000Z

    We analyze the historical light curve of the symbiotic star YY Her, from 1890 up to December 2005. A secular declining trend is detected, at a rate of ~.01 magn in 1000 d, suggesting that the system could belong to the sub-class of symbiotic novae. Several outburst events are superposed on this slow decline. Three independent periodicities are identified in the light curve. A quasi-periodicity of 4650.7 d is detected for the outburst occurrence. We suggest that it is a signature of a solar-type magnetic dynamo cycle in the giant component. A period of 593.2 d modulates the quiescent light curve and it is identified as the binary period of the system. During outburst events the system shows a stable periodic oscillation of 551.4 d. We suggest that it is the rotation period of the giant.The secondary minima detected at some epochs of quiescence are probably due to dark spots on the surface of the rotating giant. The difference between the frequencies of these two last periods is the frequency of a tidal wave in the outer layers of the giant. A period which is a beat between the magnetic cycle and the tidal wave period is also apparent in the light curve. YY Her is a third symbiotic system exhibiting these cycles in their light curve, suggesting that a magnetic dynamo process is prevalent in the giant components of symbiotic stars, playing an important role in the outburst mechanism of some of these systems.

  14. Revamped Simulation Tool to Power Up Wave Energy Development...

    Energy Savers [EERE]

    Revamped Simulation Tool to Power Up Wave Energy Development Revamped Simulation Tool to Power Up Wave Energy Development May 21, 2015 - 2:40pm Addthis Revamped Simulation Tool to...

  15. Columbia Power Technologies, Inc. Deploys its Direct Drive Wave...

    Office of Environmental Management (EM)

    Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy April 9, 2013 - 12:00am...

  16. Underestimation of the UK Tidal David J.C. MacKay

    E-Print Network [OSTI]

    MacKay, David J.C.

    there and would deliver up to 40 GW (peak). In this note, I present back­of­envelope models of tidal power physical model of the flow of energy in a tidal wave. In a shallow­water­wave model of tide, the true flow­page comment on the DTI Energy Review, Salter [2005] suggests that this standard figure may well be an under

  17. Under-estimation of the UK Tidal David J.C. MacKay

    E-Print Network [OSTI]

    MacKay, David J.C.

    there and would deliver up to 40 GW (peak). In this note, I present back-of-envelope models of tidal power of the flow of energy in a tidal wave. In a shallow-water-wave model of tide, the true flow of en- ergy on the DTI Energy Review, Salter [2005] suggests that this standard figure may well be an under-estimate (see

  18. Wind waves in shallow microtidal basins and the dynamic equilibrium of tidal flats

    E-Print Network [OSTI]

    Fagherazzi, Sergio

    resuspension by wind waves and is applied to the Venice lagoon, Italy. Model results show that the equilibrium becomes emergent, the inundation period decreases, so that less sediment deposits leading to a reduction

  19. Langlee Wave Power AS | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind Energy Development Jump to:Wave Power AS Jump to:

  20. Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030 |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE'sSummaryDepartmentEnergyonWIPPDepartment of Energy

  1. Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030 |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,ZaleskiThis Decision considersTable 1: PointsGas Reductions

  2. Pelamis Wave Power Ocean Power Delivery Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympiaAnalysis)Pearl River Valley ElPelamis Wave Power

  3. High-Efficiency and High-Power CMOS Power Amplifiers for Millimeter-Wave Applications /

    E-Print Network [OSTI]

    Agah, Amir

    2013-01-01T23:59:59.000Z

    large output powers at the millimeter-wave regime has been mainly focused on power combining techniques, using Wilkinson combiners and transformer-

  4. MHK Technologies/Sihwa tidal barrage power plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter < MHK Technologies Jump to:Sihwa tidal

  5. Large-Eddy Simulation Study of Wake Propagation and Power Production in an Array of Tidal-Current Turbines: Preprint

    SciTech Connect (OSTI)

    Churchfield, M. J.; Li, Y.; Moriarty, P. J.

    2012-07-01T23:59:59.000Z

    This paper presents our initial work in performing large-eddy simulations of tidal turbine array flows. First, a horizontally-periodic precursor simulation is performed to create turbulent flow data. Then that data is used as inflow into a tidal turbine array two rows deep and infinitely wide. The turbines are modeled using rotating actuator lines, and the finite-volume method is used to solve the governing equations. In studying the wakes created by the turbines, we observed that the vertical shear of the inflow combined with wake rotation causes lateral wake asymmetry. Also, various turbine configurations are simulated, and the total power production relative to isolated turbines is examined. Staggering consecutive rows of turbines in the simulated configurations allows the greatest efficiency using the least downstream row spacing. Counter-rotating consecutive downstream turbines in a non-staggered array shows a small benefit. This work has identified areas for improvement, such as the use of a larger precursor domain to better capture elongated turbulent structures, the inclusion of salinity and temperature equations to account for density stratification and its effect on turbulence, improved wall shear stress modelling, and the examination of more array configurations.

  6. Large-Eddy Simulation Study of Wake Propagation and Power Production in an Array of Tidal-Current Turbines: Preprint

    SciTech Connect (OSTI)

    Churchfield, M. J.; Li, Y.; Moriarty, P. J.

    2011-07-01T23:59:59.000Z

    This paper presents our initial work in performing large-eddy simulations of tidal turbine array flows. First, a horizontally-periodic precursor simulation is performed to create turbulent flow data. Then that data is used to determine the inflow into a tidal turbine array two rows deep and infinitely wide. The turbines are modeled using rotating actuator lines, and the finite-volume method is used to solve the governing equations. In studying the wakes created by the turbines, we observed that the vertical shear of the inflow combined with wake rotation causes lateral wake asymmetry. Also, various turbine configurations are simulated, and the total power production relative to isolated turbines is examined. Staggering consecutive rows of turbines in the simulated configurations allows the greatest efficiency using the least downstream row spacing. Counter-rotating consecutive downstream turbines in a non-staggered array shows a small benefit. This work has identified areas for improvement, such as the use of a larger precursor domain to better capture elongated turbulent structures, the inclusion of salinity and temperature equations to account for density stratification and its effect on turbulence, improved wall shear stress modeling, and the examination of more array configurations.

  7. Sandia National Laboratories: convert wave power into electricity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wave power into electricity WEC-Sim Code Development Meeting at the National Renewable Energy Laboratory On April 29, 2014, in Computational Modeling & Simulation, Energy, News,...

  8. Wave Power: Destroyer of Rocks; Creator of Clean Energy

    Broader source: Energy.gov [DOE]

    Presentation covers the topic of wave power at the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

  9. Reaction force control implementation of a linear generator in irregular waves for a wave power system 

    E-Print Network [OSTI]

    Li, Bin

    2012-11-29T23:59:59.000Z

    Most designs for wave energy converters include a hydraulic (or pneumatic) interface between the wave device and the generator to smooth electricity production, but a direct drive power take-off system is a possible way ...

  10. Sandia National Laboratories: tidal energy converters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team includes a partnership between...

  11. Wave Power Resources off the Hawaiian Islands luisvega@hawaii.edu Wave Resources for Representative Sites Around the Hawaiian Islands

    E-Print Network [OSTI]

    Wave Power Resources off the Hawaiian Islands luisvega@hawaii.edu 1 Wave Resources for Representative Sites Around the Hawaiian Islands Table of Contents Summary p2 Background: Wave Power Conversion p3 Licensing and Permitting p3 Challenges and Barriers p4 Wave Power Resources: Previous Work p5 Wave

  12. Power Maximization in Wave-Energy Converters Using Sampled -Data Extremum Seeking /

    E-Print Network [OSTI]

    Chen, Tianjia

    2013-01-01T23:59:59.000Z

    Power Maximization in Wave-Energy Converters Using Sampled-design optimization of wave energy converters con- sistingN. Sahinkaya. A review of wave energy converter technology.

  13. Protective, Modular Wave Power Generation System

    SciTech Connect (OSTI)

    Vvedensky, Jane M.; Park, Robert Y.

    2012-11-27T23:59:59.000Z

    The concept of small wave energy conversion modules that can be built into large, scalable arrays, in the same vein as solar panels, has been developed. This innovation lends itself to an organic business and development model, and enables the use of large-run manufacturing technology to reduce system costs. The first prototype module has been built to full-scale, and tested in a laboratory wave channel. The device has been shown to generate electricity and dissipate wave energy. Improvements need to be made to the electrical generator and a demonstration of an array of modules should be made in natural conditions.

  14. Power and polarization monitor development for high power millimeter-wave

    SciTech Connect (OSTI)

    Makino, R., E-mail: makino.ryohhei@ms.nifs.ac.jp; Kobayashi, K. [Department of Energy Engineering and Science, Nagoya University, Nagoya 464-8603 (Japan); Kubo, S. [Department of Energy Engineering and Science, Nagoya University, Nagoya 464-8603 (Japan); National Institute for Fusion Science, Toki 509-5292 (Japan); Kobayashi, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Takahashi, H.; Mutoh, T. [National Institute for Fusion Science, Toki 509-5292 (Japan)

    2014-11-15T23:59:59.000Z

    A new type monitor of power and polarization states of millimeter-waves has been developed to be installed at a miter-bend, which is a part of transmission lines of millimeter-waves, for electron cyclotron resonance heating on the Large Helical Device. The monitor measures amplitudes and phase difference of the electric field of the two orthogonal polarizations which are needed for calculation of the power and polarization states of waves. The power and phase differences of two orthogonal polarizations were successfully detected simultaneously.

  15. Gravitational wave generation in power-law inflationary models

    E-Print Network [OSTI]

    Paulo M. Sá; Alfredo B. Henriques

    2008-06-06T23:59:59.000Z

    We investigate the generation of gravitational waves in power-law inflationary models. The energy spectrum of the gravitational waves is calculated using the method of continuous Bogoliubov coefficients. We show that, by looking at the interval of frequencies between 10^(-5) and 10^5 Hz and also at the GHz range, important information can be obtained, both about the inflationary period itself and about the thermalization regime between the end of inflation and the beginning of the radiation-dominated era. We thus deem the development of gravitational wave detectors, covering the MHz/GHz range of frequencies, to be an important task for the future.

  16. EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine

    Broader source: Energy.gov [DOE]

    Draft Environmental AssessmentThis EA evaluates the environmental impacts of a project that would use the tidal currents of Cobscook Bay to generate electricity via cross-flow Kinetic System turbine generator units (TGU) mounted on the seafloor. The TGUs would capture energy from the flow in both ebb and flood directions.

  17. Advanced, High Power, Next Scale, Wave Energy Conversion Device

    SciTech Connect (OSTI)

    Mekhiche, Mike [Principal Investigator] [Principal Investigator; Dufera, Hiz [Project Manager] [Project Manager; Montagna, Deb [Business Point of Contact] [Business Point of Contact

    2012-10-29T23:59:59.000Z

    The project conducted under DOE contract DE?EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven?stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy? technology to deliver a device with much increased power delivery. Scaling?up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke? unlimited Power Take?Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

  18. All Eyes on Eastport: Tidal Energy Project Brings Change, Opportunity...

    Office of Environmental Management (EM)

    Ocean Renewable Power Company will unveil its first commercial-scale tidal turbine before it is deployed underwater to generate power. The pilot project -- supported by...

  19. A powerful reflector in relativistic backward wave oscillator

    SciTech Connect (OSTI)

    Cao, Yibing, E-mail: caoyibing@nint.ac.cn; Sun, Jun; Teng, Yan; Zhang, Yuchuan; Zhang, Lijun; Shi, Yanchao; Ye, Hu; Chen, Changhua [Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an, Shaanxi 710024 (China)

    2014-09-15T23:59:59.000Z

    An improved TM{sub 021} resonant reflector is put forward. Similarly with most of the slow wave structures used in relativistic backward wave oscillator, the section plane of the proposed reflector is designed to be trapezoidal. Compared with the rectangular TM{sub 021} resonant reflector, such a structure can depress RF breakdown more effectively by weakening the localized field convergence and realizing good electrostatic insulation. As shown in the high power microwave (HPM) generation experiments, with almost the same output power obtained by the previous structure, the improved structure can increase the pulse width from 25?ns to over 27?ns and no obvious surface damage is observed even if the generated HPM pulses exceed 1000 shots.

  20. Tidal Energy Research

    SciTech Connect (OSTI)

    Stelzenmuller, Nickolas [Univ of Washington; Aliseda, Alberto [Univ of Washington; Palodichuk, Michael [Univ of Washington; Polagye, Brian [Univ of Washington; Thomson, James [Univ of Washington; Chime, Arshiya [Univ of Washington; Malte, Philip [Univ of washington

    2014-03-31T23:59:59.000Z

    This technical report contains results on the following topics: 1) Testing and analysis of sub-scale hydro-kinetic turbines in a flume, including the design and fabrication of the instrumented turbines. 2) Field measurements and analysis of the tidal energy resource and at a site in northern Puget Sound, that is being examined for turbine installation. 3) Conceptual design and performance analysis of hydro-kinetic turbines operating at high blockage ratio, for use for power generation and flow control in open channel flows.

  1. Relativistic theory of tidal Love numbers

    E-Print Network [OSTI]

    Taylor Binnington; Eric Poisson

    2009-09-16T23:59:59.000Z

    In Newtonian gravitational theory, a tidal Love number relates the mass multipole moment created by tidal forces on a spherical body to the applied tidal field. The Love number is dimensionless, and it encodes information about the body's internal structure. We present a relativistic theory of Love numbers, which applies to compact bodies with strong internal gravities; the theory extends and completes a recent work by Flanagan and Hinderer, which revealed that the tidal Love number of a neutron star can be measured by Earth-based gravitational-wave detectors. We consider a spherical body deformed by an external tidal field, and provide precise and meaningful definitions for electric-type and magnetic-type Love numbers; and these are computed for polytropic equations of state. The theory applies to black holes as well, and we find that the relativistic Love numbers of a nonrotating black hole are all zero.

  2. Edinburgh University aka Wave Power Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois:Edinburgh University aka Wave Power Group Jump to:

  3. Bragg scattering and wave-power extraction by an array of small buoys

    E-Print Network [OSTI]

    Boyer, Edmond

    Bragg scattering and wave-power extraction by an array of small buoys By Xavier Garnaud & Chiang C to power-takeoff devices. The spacing between buoys is assumed to be comparable to the incident wavelength to the potential of power extraction from sea waves by an isolated unit such as a buoy, a raft or an oscillating

  4. 24 DTU International Energy Report 2013 Stochastic power generation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    that their power output can be curtailed if necessary. Renewable energy sources such as wind, solar, wave and tidal are not dispatchable. Indeed, wind farms and solar power plants can be scheduled and controlled only to the extent of energy storage, which can compen- sate for the limited predictability of wind and solar power. Changing

  5. Effect of a nonlinear power take off on a wave energy converter 

    E-Print Network [OSTI]

    Bailey, Helen Louise

    2011-11-22T23:59:59.000Z

    This thesis is titled The influence of a nonlinear Power Take Off on a Wave Energy Converter. It looks at the effect that having a nonlinear Power Take Off (PTO) has on an inertial referenced, slack moored, point absorber, ...

  6. High-power parametric conversion from near-infrared to short-wave infrared

    E-Print Network [OSTI]

    Dalang, Robert C.

    High-power parametric conversion from near-infrared to short-wave infrared Adrien Billat,1,* Steevy.billat@epfl.ch Abstract: We report the design of an all-fiber continuous wave Short-Wave Infrared source capable to output.4370) Nonlinear optics, fibers; (140.3070) Infrared and far-infrared lasers. References and links 1. M. N

  7. Area Solar energy production BACKGROUND -All renewable energies, except for geothermal and tidal, derive their energy from the sun. By harnessing the power of

    E-Print Network [OSTI]

    Keinan, Alon

    Area Solar energy production ­ BACKGROUND - All renewable energies installations. Advantages: · A renewable form of energy - "Locks up" carbon, except for geothermal and tidal, derive their energy from the sun

  8. Enhancing Electrical Supply by Pumped Storage in Tidal Lagoons

    E-Print Network [OSTI]

    MacKay, David J.C.

    to demand into high­value demand­following power; and second, it can simultaneously serve as a tidal power/3/07 Summary The principle that the net energy delivered by a tidal pool can be increased by pumping extra stop blowing for two days at a time? Chemical or kinetic­energy storage systems are an economical way

  9. Enhancing Electrical Supply by Pumped Storage in Tidal Lagoons

    E-Print Network [OSTI]

    MacKay, David J.C.

    to demand into high-value demand-following power; and second, it can simultaneously serve as a tidal power/3/07 Summary The principle that the net energy delivered by a tidal pool can be increased by pumping extra stop blowing for two days at a time? Chemical or kinetic-energy storage systems are an economical way

  10. Tidal deformations of a spinning compact object

    E-Print Network [OSTI]

    Paolo Pani; Leonardo Gualtieri; Andrea Maselli; Valeria Ferrari

    2015-03-25T23:59:59.000Z

    The deformability of a compact object induced by a perturbing tidal field is encoded in the tidal Love numbers, which depend sensibly on the object's internal structure. These numbers are known only for static, spherically-symmetric objects. As a first step to compute the tidal Love numbers of a spinning compact star, here we extend powerful perturbative techniques to compute the exterior geometry of a spinning object distorted by an axisymmetric tidal field to second order in the angular momentum. The spin of the object introduces couplings between electric and magnetic deformations and new classes of induced Love numbers emerge. For example, a spinning object immersed in a quadrupolar, electric tidal field can acquire some induced mass, spin, quadrupole, octupole and hexadecapole moments to second order in the spin. The deformations are encoded in a set of inhomogeneous differential equations which, remarkably, can be solved analytically in vacuum. We discuss certain subtleties in defining the multipole moments of the central object, which are due to the difficulty in separating the tidal field from the linear response of the object in the solution. By extending the standard procedure to identify the linear response in the static case, we prove analytically that the Love numbers of a Kerr black hole remain zero to second order in the spin. As a by-product, we provide the explicit form for a slowly-rotating, tidally-deformed Kerr black hole to quadratic order in the spin, and discuss its geodesic and geometrical properties.

  11. Tidal Wetlands Regulations (Connecticut)

    Broader source: Energy.gov [DOE]

    Most activities occurring in or near tidal wetlands are regulated, and this section contains information on such activities and required permit applications for proposed activities. Applications...

  12. Half Moon Cove Tidal Project. Feasibility report

    SciTech Connect (OSTI)

    Not Available

    1980-11-01T23:59:59.000Z

    The proposed Half Moon Cove Tidal Power Project would be located in a small cove in the northern part of Cobscook Bay in the vicinity of Eastport, Maine. The project would be the first tidal electric power generating plant in the United States of America. The basin impounded by the barrier when full will approximate 1.2 square miles. The average tidal range at Eastport is 18.2 feet. The maximum spring tidal range will be 26.2 feet and the neap tidal range 12.8 feet. The project will be of the single pool-type single effect in which generation takes place on the ebb tide only. Utilizing an average mean tidal range of 18.2 feet the mode of operation enables generation for approximately ten and one-half (10-1/2) hours per day or slightly in excess of five (5) hours per tide. The installed capacity will be 12 MW utilizing 2 to 6 MW units. An axial flow, or Bulb type of turbine was selected for this study.

  13. axis tidal turbines: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Power Limitation Control for a PMSG-Based Marine Current Turbine at High Tidal Speed and Physics Websites Summary: Power Limitation Control for a PMSG-Based Marine Current...

  14. Clarence Strait Tidal Energy Project, Tenax Energy Tropical Tidal...

    Open Energy Info (EERE)

    Test Centre, Jump to: navigation, search 1 Retrieved from "http:en.openei.orgwindex.php?titleClarenceStraitTidalEnergyProject,TenaxEnergyTropicalTidalTestCentre,&o...

  15. Electron Trapping in Shear Alfven Waves that Power the Aurora

    SciTech Connect (OSTI)

    Watt, Clare E. J.; Rankin, Robert [University of Alberta, Edmonton, Alberta (Canada)

    2009-01-30T23:59:59.000Z

    Results from 1D Vlasov drift-kinetic plasma simulations reveal how and where auroral electrons are accelerated along Earth's geomagnetic field. In the warm plasma sheet, electrons become trapped in shear Alfven waves, preventing immediate wave damping. As waves move to regions with larger v{sub Te}/v{sub A}, their parallel electric field decreases, and the trapped electrons escape their influence. The resulting electron distribution functions compare favorably with in situ observations, demonstrating for the first time a self-consistent link between Alfven waves and electrons that form aurora.

  16. Design of Millimeter-Wave Power Ampliers in Silicon /

    E-Print Network [OSTI]

    Kalantari, Nader

    2013-01-01T23:59:59.000Z

    K. Han, “W-Band, 5W Solid-State Power Amplifier/Combiner,”Ended Switching Power Amplifiers,” Solid-State Circuits,Class-E Power Am- plifier in SiGe,” Solid-State Circuits

  17. Origin of Tidal Dissipation in Jupiter: I. Properties of Inertial-Mode

    E-Print Network [OSTI]

    Yanqin Wu

    2005-11-28T23:59:59.000Z

    We study global inertial-modes with the purpose of unraveling the role they play in the tidal dissipation process of Jupiter. For spheres of uniformly rotating, neutrally buoyant fluid, we show that the partial differential equation governing inertial-modes can be separated into two ordinary differential equations when the density is constant, or when the density has a power-law dependence on radius. For more general density dependencies, we show that one can obtain an approximate solution to the inertial-modes that is accurate to the second order in wave-vector. Frequencies of inertial-modes are limited to $\\omega < 2 \\Omega$ ($\\Omega$ is the rotation rate), with modes propagating closer to the rotation axis having higher frequencies. An inertial-mode propagates throughout much of the sphere with a relatively constant wavelength, and a wave amplitude that scales with density as $1/\\sqrt{\\rho}$. It is reflected near the surface at a depth that depends on latitude, with the depth being much shallower near the special latitudes $\\theta = \\cos^{-1} \\pm \\omega/2\\Omega$. Around this region, this mode has the highest wave amplitude as well as the sharpest spatial gradient (the ``singularity belt''), thereby incurring the strongest turbulent dissipation. Inertial-modes naturally cause small Eulerian density perturbations, so they are only weakly coupled to the tidal potential. In a companion paper, we attempt to apply these results to the problem of tidal dissipation in Jupiter.

  18. Second Proof Work, Power, and Energy

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    ) energy sources, such as solar energy, wind, water flows, ocean and tidal waves, and biomassSecond Proof Work, Power, and Energy M. KOSTIC Northern Illinois University DeKalb, Illinois, United States 1. Basic Concepts 2. Forms, Classifications, and Conservation of Energy 3. Work

  19. Wave-plate structures, power selective optical filter devices, and optical systems using same

    DOE Patents [OSTI]

    Koplow, Jeffrey P. (San Ramon, CA)

    2012-07-03T23:59:59.000Z

    In an embodiment, an optical filter device includes an input polarizer for selectively transmitting an input signal. The device includes a wave-plate structure positioned to receive the input signal, which includes first and second substantially zero-order, zero-wave plates arranged in series with and oriented at an angle relative to each other. The first and second zero-wave plates are configured to alter a polarization state of the input signal passing in a manner that depends on the power of the input signal. Each zero-wave plate includes an entry and exit wave plate each having a fast axis, with the fast axes oriented substantially perpendicular to each other. Each entry wave plate is oriented relative to a transmission axis of the input polarizer at a respective angle. An output polarizer is positioned to receive a signal output from the wave-plate structure and selectively transmits the signal based on the polarization state.

  20. Coordinated control and network integration of wave power farms 

    E-Print Network [OSTI]

    Nambiar, Anup Jayaprakash

    2012-11-29T23:59:59.000Z

    Significant progress has been made in the development of wave energy converters (WECs) during recent years, with prototypes and farms of WECs being installed in different parts of the world. With increasing sizes of ...

  1. Theoretical modelling of two wave-power devices

    E-Print Network [OSTI]

    Lovas, Stéphanie

    2010-01-01T23:59:59.000Z

    Many wave energy devices are currently studied. In this thesis we focus on two specific devices: the Oscillating Water Column (OWC), and the buoys. In the first part of this thesis we examine the effects of coastline ...

  2. No evidence for the blue-tilted power spectrum of relic gravitational waves

    E-Print Network [OSTI]

    Huang, Qing-Guo

    2015-01-01T23:59:59.000Z

    In this paper, we constrain the tilt of the power spectrum of relic gravitational waves by combining the data from BICEP2/Keck array and Planck (BKP) and the Laser Interferometer Gravitational-Waves Observatory (LIGO). From the data of BKP B-modes, the constraint on the tensor tilt is $n_t=0.66^{+1.83}_{-1.44}$ at the $68%$ confidence level. By further adding the LIGO upper limit on the energy density of gravitational waves, the constraint becomes $n_t=-0.76^{+1.37}_{-0.52}$ at the $68%$ confidence level. We conclude that there is no evidence for a blue-tilted power spectrum of relic gravitational waves and either sign of the index of tensor power spectrum is compatible with the data.

  3. No evidence for the blue-tilted power spectrum of relic gravitational waves

    E-Print Network [OSTI]

    Qing-Guo Huang; Sai Wang

    2015-02-09T23:59:59.000Z

    In this paper, we constrain the tilt of the power spectrum of relic gravitational waves by combining the data from BICEP2/Keck array and Planck (BKP) and the Laser Interferometer Gravitational-Waves Observatory (LIGO). From the data of BKP B-modes, the constraint on the tensor tilt is $n_t=0.66^{+1.83}_{-1.44}$ at the $68%$ confidence level. By further adding the LIGO upper limit on the energy density of gravitational waves, the constraint becomes $n_t=-0.76^{+1.37}_{-0.52}$ at the $68%$ confidence level. We conclude that there is no evidence for a blue-tilted power spectrum of relic gravitational waves and either sign of the index of tensor power spectrum is compatible with the data.

  4. A Case Study of Wave Power Integration into the Ucluelet Area Electrical Grid Louise Anne St.Germain

    E-Print Network [OSTI]

    Victoria, University of

    as a renewable energy resource on Vancouver Island, specifically in the Tofino/Ucluelet area. A model of a waveA Case Study of Wave Power Integration into the Ucluelet Area Electrical Grid by Louise Anne St of wave power projects on Vancouver Island. Supervisors: Dr. Andrew Rowe, (Department of Mechanical

  5. High Power Superconducting Continuous Wave Linacs for Protons...

    Office of Science (SC) Website

    research, national security, therapeutic isotopes and transmutation of spent nuclear fuel Argonne National Laboratory has been working on research and development of high power...

  6. High-Efficiency and High-Power CMOS Power Amplifiers for Millimeter-Wave Applications /

    E-Print Network [OSTI]

    Agah, Amir

    2013-01-01T23:59:59.000Z

    K. Han, “W-band, 5W Solid-State Power Amplifier/Combiner,”materials have made high-power solid-state power amplifiersCMOS RF power amplifier for GSM-EDGE,” IEEE J. Solid-State

  7. 2008 NWFSC Tidal Freshwater Genetics Results

    SciTech Connect (OSTI)

    David Teel

    2009-05-01T23:59:59.000Z

    Genetic Analysis of Juvenile Chinook Salmon for inclusion in 'Ecology of Juvenile Salmon in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2008. Annual Report to Bonneville Power Administration, Contract DE-AC05-76RL01830.'

  8. High Performance Circuits for Power Management and Millimeter Wave Applications

    E-Print Network [OSTI]

    Amer, Ahmed 1979-

    2012-01-23T23:59:59.000Z

    to achieve the required goals in terms of small silicon area and power consumption while at the same time achieve high performance. Four key building blocks in power management and a switchable harmonic mixer with pre-amplifier and poly-phase generator as a...

  9. Interactions Between Tidal Flows and Ooid Shoals, Northern Bahamas

    E-Print Network [OSTI]

    Reeder, Stacy Lynn; Rankey, Gene C.

    2008-03-01T23:59:59.000Z

    active sand waves and ripples. Towards the platform margin, tidal currents pass through narrow inlets. The main inlet opening oceanward (NW) of the shoal stretches between two Pleistocene bedrock islands, connected by a bedrock high that extends... include both flood and ebb tidal deltas, with generally lobate forms, convex away from the islands, and with endpoints at the inlets. Although the inner portions of these lobes are mainly seagrass-stabilized muddy peloidal and skeletal sands with local...

  10. High power water load for microwave and millimeter-wave radio frequency sources

    DOE Patents [OSTI]

    Ives, R. Lawrence (Saratoga, CA); Mizuhara, Yosuke M. (Palo Alto, CA); Schumacher, Richard V. (Sunnyvale, CA); Pendleton, Rand P. (Saratoga, CA)

    1999-01-01T23:59:59.000Z

    A high power water load for microwave and millimeter wave radio frequency sources has a front wall including an input port for the application of RF power, a cylindrical dissipation cavity lined with a dissipating material having a thickness which varies with depth, and a rear wall including a rotating reflector for the reflection of wave energy inside the cylindrical cavity. The dissipation cavity includes a water jacket for removal of heat generated by the absorptive material coating the dissipation cavity, and this absorptive material has a thickness which is greater near the front wall than near the rear wall. Waves entering the cavity reflect from the rotating reflector, impinging and reflecting multiple times on the absorptive coating of the dissipation cavity, dissipating equal amounts of power on each internal reflection.

  11. T E C H N O L O G Y A V E N U E Wave EnergyMohammad-Reza Alam

    E-Print Network [OSTI]

    Alam, Mohammad-Reza

    energy from the ocean. Tidal power includes using the potential energy created by lunar tidesT E C H N O L O G Y A V E N U E 12 IRIS Wave EnergyMohammad-Reza Alam orldwide demand acceptable methods of generating power. The ocean is a large, relatively untapped renewable energy resource

  12. Harmonic oscillator with time-dependent effective-mass and frequency with a possible application to 'chirped tidal' gravitational waves forces affecting interferometric detectors

    E-Print Network [OSTI]

    Yacob Ben-Aryeh

    2008-07-29T23:59:59.000Z

    The general theory of time-dependent frequency and time-dependent mass ('effective mass') is described.The general theory for time-dependent harmonic- oscillator is applied in the present research for studying certain quantum effects in the interferometers for detecting gravitational waves.When an astronomical binary system approaches its point of coalescence the gravitational wave intensity and frequency are increasing and this can lead to strong deviations from the simple description of harmonic-oscillations for the interferometric masses on which the mirrors are placed.It is shown that under such condtions the harmonic-oscillations of these masses can be described by mechanical harmonic-oscillators with time-dependent frequency and effective-mass. In the present theoretical model the effective-mass is decreasing with time describing pumping phenomena in which the oscillator amplitude is increasing with time . The quantization of this system is analyzed by the use of the adiabatic approximation. It is found that the increase of the gravitational wave intensity, within the adiabatic approximation, leads to squeezing phenomena where the quantum noise in one quadrature is increased and in the other quadrature is decreased.

  13. Wave-actuated power take-off device for electricity generation

    SciTech Connect (OSTI)

    Chertok, Allan

    2013-01-31T23:59:59.000Z

    Since 2008, Resolute Marine Energy, Inc. (RME) has been engaged in the development of a rigidly moored shallow-water point absorber wave energy converter, the "3D-WEC". RME anticipated that the 3D-WEC configuration with a fully buoyant point absorber buoy coupled to three power take off (PTO) units by a tripod array of tethers would achieve higher power capture than a more conventional 1-D configuration with a single tether and PTO. The investigation conducted under this program and documented herein addressed the following principal research question regarding RME'Â?Â?s power take off (PTO) concept for its 3D-WEC: Is RME's winch-driven generator PTO concept, previously implemented at sub-scale and tested at the Ohmsett wave tank facility, scalable in a cost-effective manner to significant power levels Â?Â?e.g., 10 to 100kW?

  14. Decommissioning nuclear power plants - the wave of the future

    SciTech Connect (OSTI)

    Griggs, F.S. Jr. [Raytheon Engineers and Contractors, Cumberland City, TN (United States)

    1994-12-31T23:59:59.000Z

    The paper discusses the project controls developed in the decommissioning of a nuclear power plant. Considerations are given to the contaminated piping and equipment that have to be removed and the spent and used fuel that has to be disposed of. The storage issue is of primary concern here. The cost control aspects and the dynamics of decommissioning are discussed. The effects of decommissioning laws on the construction and engineering firms are mentioned. 5 refs.

  15. Inflation that runs naturally: Gravitational waves and suppression of power at large and small scales

    E-Print Network [OSTI]

    Quinn E. Minor; Manoj Kaplinghat

    2015-03-08T23:59:59.000Z

    We point out three correlated predictions of the axion monodromy inflation model: large amplitude of gravitational waves, suppression of power on horizon scales and on scales relevant for the formation of dwarf galaxies. While these predictions are likely generic to models with oscillations in the inflaton potential, the axion monodromy model naturally accommodates the required running spectral index through Planck-scale corrections to the inflaton potential. Applying this model to a combined data set of Planck, ACT, SPT, and WMAP low-$\\ell$ polarization cosmic microwave background (CMB) data, we find a best-fit tensor-to-scalar ratio $r_{0.05} = 0.07^{+0.05}_{-0.04}$ due to gravitational waves, which may have been observed by the BICEP2 experiment. Despite the contribution of gravitational waves, the total power on large scales (CMB power spectrum at low multipoles) is lower than the standard $\\Lambda$CDM cosmology with a power-law spectrum of initial perturbations and no gravitational waves, thus mitigating some of the tension on large scales. There is also a reduction in the matter power spectrum of 20-30\\% at scales corresponding to $k = 10~{\\rm Mpc}^{-1}$, which are relevant for dwarf galaxy formation. This will alleviate some of the unsolved small-scale structure problems in the standard $\\Lambda$CDM cosmology. The inferred matter power spectrum is also found to be consistent with recent Lyman-$\\alpha$ forest data, which is in tension with the Planck-favored $\\Lambda$CDM model with power-law primordial power spectrum.

  16. Abstract This article will begin by presenting two power take-off (PTO) technologies for the SEAREV wave energy

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    for the SEAREV wave energy converter (WEC) followed by the design methodology applied to electromagnetic with the SEAREV WEC before discussing the two conversion technologies intended to transform wave energy, including one featuring power leveling. Index Terms ­ wave energy conversion - electromagnetic generator

  17. Calling All Coders: Help Advance America's Wave Power Industry | Department

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010 1AAcquisition »Department link to

  18. Experimental Investigation of Non-Thermal Electric Fields and Plasma Waves in Pulsed-Power Plasmas

    E-Print Network [OSTI]

    -field-plasma interaction, particle accelera- tion, growth of instabilities and plasma waves. As yet, to the hest of our and the properties of plasmas under high-power pulses at the nanosecond time scale. The method is based on resonant in a coaxial-pulsed-plasma configura- tion. The plasma is doped with a laser-produced lithium heam, fol- lowed

  19. Investigation of an improved relativistic backward wave oscillator in efficiency and power capacity

    SciTech Connect (OSTI)

    Song, W.; Chen, C. H.; Sun, J.; Zhang, X. W.; Shao, H.; Song, Z. M.; Huo, S. F.; Shi, Y. C.; Li, X. Z. [Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an, Shaanxi 710024 (China)

    2012-10-15T23:59:59.000Z

    Investigation of relativistic backward wave oscillator with high efficiency and power capacity is presented in this paper. To obtain high power and high efficiency, a TM{sub 021} mode resonant reflector is used to reduce the pulse shortening and increase power capacity to about 1.7 times. Meanwhile, an extraction cavity at the end of slow wave structure is employed to improve the efficiency from less than 30% to over 40%, through the beam-wave interaction intensification and better energy conversion from modulated electron beam to the electromagnetic field. Consistent with the numerical results, microwave with a power of 3.2 GW, a frequency of 9.75 GHz, and a pulse width of 27 ns was obtained in the high power microwave generation experiment, where the electron beam energy was configured to be {approx}910 kV and its current to be {approx}8.6 kA. The efficiency of the RBWO exceeds 40% at a voltage range of 870 kV-1000 kV.

  20. Experimental Investigation of the Power Generation Performance of Floating-Point Absorber Wave Energy Systems: Preprint

    SciTech Connect (OSTI)

    Li, Y.; Yu, Y.; Epler, J.; Previsic, M.

    2012-04-01T23:59:59.000Z

    The extraction of energy from ocean waves has gained interest in recent years. The floating-point absorber (FPA) is one of the most promising devices among a wide variety of wave energy conversion technologies. Early theoretical studies mainly focused on understanding the hydrodynamics of the system and on predicting the maximum power that could be extracted by a heaving body. These studies evolve from the investigation of floating-body interactions in offshore engineering and naval architecture disciplines. To our best knowledge, no systematic study has been reported about the investigation of the power generation performance of an FPA with a close-to-commercial design. A series of experimental tests was conducted to investigate the power extraction performance of an FPA system.

  1. Effect of electron density profile on power absorption of high frequency electromagnetic waves in plasma

    SciTech Connect (OSTI)

    Xi Yanbin; Liu Yue [MOE Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2012-07-15T23:59:59.000Z

    Considering different typical electron density profiles, a multi slab approximation model is built up to study the power absorption of broadband (0.75-30 GHz) electromagnetic waves in a partially ionized nonuniform magnetized plasma layer. Based on the model, the power absorption spectra for six cases are numerically calculated and analyzed. It is shown that the absorption strongly depends on the electron density fluctuant profile, the background electron number density, and the collision frequency. A potential optimum profile is also analyzed and studied with some particular parameters.

  2. Sandia National Laboratories: wave energy converters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team includes a partnership between...

  3. Power Smoothing and Limitation Control of a PMSG-Based Marine Current Turbine under Swell Waves

    E-Print Network [OSTI]

    Boyer, Edmond

    Power Smoothing and Limitation Control of a PMSG-Based Marine Current Turbine under Swell Waves la puissance maximale (MPPT) nécessiterait d'accélérer ou de décélérer fréquemment la turbine à par une turbine marine associée à un générateur synchrone à aimants permanents (GSAP). Un algorithme

  4. Non-intrusive beam power monitor for high power pulsed or continuous wave lasers

    DOE Patents [OSTI]

    Hawsey, Robert A. (Oak Ridge, TN); Scudiere, Matthew B. (Oak Ridge, TN)

    1993-01-01T23:59:59.000Z

    A system and method for monitoring the output of a laser is provided in which the output of a photodiode disposed in the cavity of the laser is used to provide a correlated indication of the laser power. The photodiode is disposed out of the laser beam to view the extraneous light generated in the laser cavity whose intensity has been found to be a direct correlation of the laser beam output power level. Further, the system provides means for monitoring the phase of the laser output beam relative to a modulated control signal through the photodiode monitor.

  5. Sandia National Laboratories: tidal energy resource assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    resource assessment Tidal Energy Resource Assessment in the East River Tidal Strait, New York On April 1, 2014, in Energy, News, News & Events, Partnership, Renewable Energy, Water...

  6. Under consideration for publication in J. Fluid Mech. 1 Wave-power extraction by a compact array

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Under consideration for publication in J. Fluid Mech. 1 Wave-power extraction by a compact array of buoys X A V I E R G A R N A U D1 AND C H I A N G C. M E I2 1 Department of Aeronautics and Astronautics) The majority of existing single-unit devices for extracting power from sea-waves relies on resonance

  7. On-chip Sensing and Actuation Methods for Integrated Self-healing mm-Wave CMOS Power Amplifier

    E-Print Network [OSTI]

    Hajimiri, Ali

    GHz. The RF power sensors are designed to measure true input and output power in the presence of load and healing of a mm-Wave power amplifier. We demonstrate low insertion loss (0.4dB) RF sensors which measure true input and output power in presence of load variations and very low- headroom (10-30mV) DC sensors

  8. HAWAIIAN OCEAN MIXING EXPERIMENT (HOME): FARFIELD PROGRAM HAWAIIAN TIDAL ENERGY BUDGET

    E-Print Network [OSTI]

    Dushaw, Brian

    precision to quantify the tidal power dissipated in the nearfield of the Ridge. The data are vitalHAWAIIAN OCEAN MIXING EXPERIMENT (HOME): FARFIELD PROGRAM HAWAIIAN TIDAL ENERGY BUDGET Principal and ocean acoustic tomography have brought a new dimension to the subject. We propose to measure the energy

  9. Waves

    E-Print Network [OSTI]

    LaCure, Mari Mae

    2010-04-29T23:59:59.000Z

    Waves is the supporting document to the Master of Fine Arts thesis exhibition of the same title. Exhibited March 7-12 2010 in the Art and Design Gallery at the University of Kansas, Waves was comprised of a series of mixed media drawings...

  10. Virginia Wetlands Report Tools of the Tidal Shoreline

    E-Print Network [OSTI]

    Virginia Wetlands Report Tools of the Tidal Shoreline Management Trade Friday, October 13, 2006 of new tools produced by the Center for Coastal Resources Managment (CCRM) and other programs) technology with digital aerial photographs and the power of the Internet. They are accessible from desktop

  11. Topic 5: Renewable Power 1Networking and Distributed Systems

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    . · Desired choices (Renewable Sources): · Marine: Wave and Tidal · PV: Solar · Wind · Hydro #12;Carbon Tax Dr: ·Are influenced by the alignment of the sun and moon. #12;Tidal Energ

  12. Fast-wave Power Flow Along SOL Field Lines In NSTX nd The Associated Power Deposition Profile Across The SOL In Front Of The Antenna

    SciTech Connect (OSTI)

    Perkins, Roy

    2013-06-21T23:59:59.000Z

    Fast-wave heating and current drive efficiencies can be reduced by a number of processes in the vicinity of the antenna and in the scrape off layer (SOL). On NSTX from around 25% to more than 60% of the high-harmonic fast-wave power can be lost to the SOL regions, and a large part of this lost power flows along SOL magnetic field lines and is deposited in bright spirals on the divertor floor and ceiling. We show that field-line mapping matches the location of heat deposition on the lower divertor, albeit with a portion of the heat outside of the predictions. The field-line mapping can then be used to partially reconstruct the profile of lost fast-wave power at the midplane in front of the antenna, and the losses peak close to the last closed flux surface (LCFS) as well as the antenna. This profile suggests a radial standing-wave pattern formed by fast-wave propagation in the SOL, and this hypothesis will be tested on NSTX-U. Advanced RF codes must reproduce these results so that such codes can be used to understand this edge loss and to minimize RF heat deposition and erosion in the divertor region on ITER.

  13. High-frequency matrix converter with square wave input - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America...

  14. Power Maximization in Wave-Energy Converters Using Sampled -Data Extremum Seeking /

    E-Print Network [OSTI]

    Chen, Tianjia

    2013-01-01T23:59:59.000Z

    design optimization of wave energy converters con- sistingN. Sahinkaya. A review of wave energy converter technology.2009. [6] A.F.O. Falc˜ao. Wave energy utilization: A review

  15. Tidal and Wind Mixing versus Thermal Stratification in the South Atlantic Bight.

    E-Print Network [OSTI]

    North Carolina at Chapel Hill, University of

    overcome the tendency for tidal power to produce a well-mixed system". Additionally, they expressed some are explored using a potential energy formulation for the South Atlantic Bight (SAB). The efficiency of wind

  16. Maine Project Takes Historic Step Forward in U.S. Tidal Energy...

    Energy Savers [EERE]

    contracts will be in place for 20 years -- making them the first long-term tidal energy power purchase agreements in the United States. The implications of these agreements are...

  17. Bayesian semiparametric power spectral density estimation in gravitational wave data analysis

    E-Print Network [OSTI]

    Edwards, Matthew C; Christensen, Nelson

    2015-01-01T23:59:59.000Z

    The standard noise model in gravitational wave (GW) data analysis assumes detector noise is stationary and Gaussian distributed, with a known power spectral density (PSD) that is usually estimated using clean off-source data. Real GW data often depart from these assumptions, and misspecified parametric models of the PSD could result in misleading inferences. We propose a Bayesian semiparametric approach to improve this. We use a nonparametric Bernstein polynomial prior on the PSD, with weights attained via a Dirichlet process distribution, and update this using the Whittle likelihood. Posterior samples are obtained using a Metropolis-within-Gibbs sampler. We simultaneously estimate the reconstruction parameters of a rotating core collapse supernova GW burst that has been embedded in simulated Advanced LIGO noise. We also discuss an approach to deal with non-stationary data by breaking longer data streams into smaller and locally stationary components.

  18. The constraints on power spectrum of relic gravitational waves from current observations of large-scale structure of the Universe

    E-Print Network [OSTI]

    B. Novosyadlyj; S. Apunevych

    2004-12-02T23:59:59.000Z

    We carry out the determination of the amplitude of relic gravitational waves power spectrum. Indirect best-fit technique was applied to compare observational data and theory predictions. As observations we have used data on large-scale structure (LSS) of the Universe and anisotropy of cosmic microwave background (CMB) temperature. The conventional inflationary model with 11 parameters has been investigated, all of them evaluated jointly. This approach gave us a possibility to find parameters of power spectrum of gravitational waves along with statistical errors. The main result consists in following: WMAP data on power spectrum of CMB temperature fluctuations along with LSS data prefer model with small amplitude of tensor mode power spectrum, close to zero. The upper limit for its amplitude at quadupole harmonics T/S=0.6 at 95% C.L.

  19. Gravitational self-force corrections to two-body tidal interactions and the effective one-body formalism

    E-Print Network [OSTI]

    Donato Bini; Thibault Damour

    2014-09-24T23:59:59.000Z

    Tidal interactions have a significant influence on the late dynamics of compact binary systems, which constitute the prime targets of the upcoming network of gravitational-wave detectors. We refine the theoretical description of tidal interactions (hitherto known only to the second post-Newtonian level) by extending our recently developed analytic self-force formalism, for extreme mass-ratio binary systems, to the computation of several tidal invariants. Specifically, we compute, to linear order in the mass ratio and to the 7.5$^{\\rm th}$ post-Newtonian order, the following tidal invariants: the square and the cube of the gravitoelectric quadrupolar tidal tensor, the square of the gravitomagnetic quadrupolar tidal tensor, and the square of the gravitoelectric octupolar tidal tensor. Our high-accuracy analytic results are compared to recent numerical self-force tidal data by Dolan et al. \\cite{Dolan:2014pja}, and, notably, provide an analytic understanding of the light ring asymptotic behavior found by them. We transcribe our kinematical tidal-invariant results in the more dynamically significant effective one-body description of the tidal interaction energy. By combining, in a synergetic manner, analytical and numerical results, we provide simple, accurate analytic representations of the global, strong-field behavior of the gravitoelectric quadrupolar tidal factor. A striking finding is that the linear-in-mass-ratio piece in the latter tidal factor changes sign in the strong-field domain, to become negative (while its previously known second post-Newtonian approximant was always positive). We, however, argue that this will be more than compensated by a probable fast growth, in the strong-field domain, of the nonlinear-in-mass-ratio contributions in the tidal factor.

  20. Pennamaquan Tidal Power LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompanyPCN TechnologyFrance)

  1. First-post-Newtonian quadrupole tidal interactions in binary systems

    E-Print Network [OSTI]

    Justin Vines; Éanna É. Flanagan

    2014-10-09T23:59:59.000Z

    We consider tidal coupling in a binary stellar system to first-post-Newtonian order. We derive the orbital equations of motion for bodies with spins and mass quadrupole moments and show that they conserve the total linear momentum of the binary. We note that spin-orbit coupling must be included in a 1PN treatment of tidal interactions in order to maintain consistency (except in the special case of adiabatically induced quadrupoles); inclusion of 1PN quadrupolar tidal effects while omitting spin effects would lead to a failure of momentum conservation for generic evolution of the quadrupoles. We use momentum conservation to specialize our analysis to the system's center-of-mass-energy frame; we find the binary's relative equation of motion in this frame and also present a generalized Lagrangian from which it can be derived. We then specialize to the case in which the quadrupole moment is adiabatically induced by the tidal field (in which case it is consistent to ignore spin effects). We show how the adiabatic dynamics for the quadrupole can be incorporated into our action principle and present the simplified orbital equations of motion and conserved energy for the adiabatic case. These results are relevant to gravitational wave signals from inspiralling binary neutron stars.

  2. Shear-horizontal surface acoustic wave phononic device with high density filling material for ultra-low power sensing applications

    SciTech Connect (OSTI)

    Richardson, M.; Bhethanabotla, V. R., E-mail: bhethana@usf.edu [Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, Florida 33620 (United States); Sankaranarayanan, S. K. R. S. [Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2014-06-23T23:59:59.000Z

    Finite element simulations of a phononic shear-horizontal surface acoustic wave (SAW) sensor based on ST 90°-X Quartz reveal a dramatic reduction in power consumption. The phononic sensor is realized by artificially structuring the delay path to form an acoustic meta-material comprised of a periodic microcavity array incorporating high-density materials such as tantalum or tungsten. Constructive interference of the scattered and secondary reflected waves at every microcavity interface leads to acoustic energy confinement in the high-density regions translating into reduced power loss. Tantalum filled cavities show the best performance while tungsten inclusions create a phononic bandgap. Based on our simulation results, SAW devices with tantalum filled microcavities were fabricated and shown to significantly decrease insertion loss. Our findings offer encouraging prospects for designing low power, highly sensitive portable biosensors.

  3. Modeling the Energy Output from an In-Stream Tidal Turbine Farm

    E-Print Network [OSTI]

    Ye Li; Barbara J. Lence; Sander M. Calisal

    Abstract—This paper is based on a recent paper presented in the 2007 IEEE SMC conference by the same authors [1], discussing an approach to predicting energy output from an instream tidal turbine farm. An in-stream tidal turbine is a device for harnessing energy from tidal currents in channels, and functions in a manner similar to a wind turbine. A group of such turbines distributed in a site is called an in-stream tidal turbine farm which is similar to a wind farm. Approaches to estimating energy output from wind farms cannot be fully transferred to study tidal farms, however, because of the complexities involved in modeling turbines underwater. In this paper, we intend to develop an approach for predicting energy output of an in-stream tidal turbine farm. The mathematical formulation and basic procedure for predicting power output of a stand-alone turbine 1 is presented, which includes several highly nonlinear terms. In order to facilitate the computation and utilize the formulation for predicting power output from a turbine farm, a simplified relationship between turbine distribution and turbine farm energy output is derived. A case study is then conducted by applying the numerical procedure to predict the energy output of the farms. Various scenarios are implemented according to the environmental conditions in Seymour Narrows, British Columbia, Canada. Additionally, energy cost results are presented as an extension. Index Terms—renewable energy, in-stream turbine, tidal current, tidal power, vertical axis turbine, farm system modeling, in-stream tidal turbine farm 1 A stand-alone turbine refers to a turbine around which there is no other turbine that might potentially affect the performance of this turbine.

  4. Tidal channel deposits in Upper Cretaceous of northern Kaiparowits Plateau, Utah

    SciTech Connect (OSTI)

    Sanchez, J.D.; McCabe, P.J.

    1988-02-01T23:59:59.000Z

    Seven coarsening-upward sequences have been recognized in the 300 to 400-m thick John Henry Member of the Straight Cliffs Formation. These sequences have abundant hummocky cross-stratification and are interpreted as having formed by the progradation of wave-dominated shorelines. A detailed study of these sequences showed that in many cases channel deposits are incised into upper shoreface deposits. These channels are up t 15 m deep. Mudclasts, Ostrea and Inoceramus fragments, and pebbles are present at the base of many channels. Some channel lag deposits also contain logs with Teredolites borings. Thin units of flaser, wavy and lenticular bedding may be present at any position within the channel deposits but are most common higher in the sequences. The channels are, however, infilled predominantly with trough cross-bedded, fine to medium-grained sandstones. Some cross-beds show multiple reactivation surfaces and the bimodal nature of the paleocurrents suggests that the cross-beds were deposited by tidal currents. The presence of tidal bundles with double mud drapes in a few cross-beds confirms the interpretation of the sandstones as tidal channel deposits. At least 22 tidal bundles are present in one tidal bundle sequence, suggesting a semi-diurnal tidal cycle. Although, there is convincing evidence of tides within the channel deposits, the shoreface deposits show little evidence of reworking by tidal currents. Possible beach or intertidal mudflat deposits have a maximum thickness of 1.5 m. The Kaiparowits region during the Upper Cretaceous probably experienced, therefore, a microtidal regime with significant tidal currents being restricted to tidal inlets or estuaries.

  5. Tidal channel deposits in Upper Cretaceous of northern Kaiparowits Plateau, Utah

    SciTech Connect (OSTI)

    Sanchez, J.D.; McCabe, P.J.

    1988-01-01T23:59:59.000Z

    Seven coarsening-upward sequences have been recognized in the 300 to 400-m thick John Henry Member of the Straight Cliffs Formation. These sequences have abundant hummocky cross-stratification and are interpreted as having formed by the progradation of wave-dominated shorelines. A detailed study of these sequences showed that in many cases channel deposits are incised into upper shoreface deposits. These channels are up to 15 m deep. Mudclasts, Ostrea and Inoceramus fragments, and pebbles are present at the base of many channels. Some channel lag deposits also contain logs with Teredolites borings. Thin units of flaser, wavy and lenticular bedding may be present at any position within the channel deposits but are most common higher in the sequences. The channels are, however, infilled predominantly with trough cross-bedded, fine to medium-grained sandstones. Some crossbeds show multiple reactivation surfaces and the bimodal nature of the paleocurrents suggests that the cross-beds were deposited by tidal currents. The presence of tidal bundles with double mud drapes in a few cross-beds confirms the interpretation of the sandstones as tidal channel deposits. At least 22 tidal bundles are present in one tidal bundle sequence, suggesting a semi-diurnal tidal cycle. Although there is convincing evidence of tides within the channel deposits, the shoreface deposits show little evidence of reworking by tidal currents. Possible beach or intertidal mudflat deposits have a maximum thickness of 1.5 m. The Kaiparowits region during the Upper Cretaceous probably experience, therefore, a microtidal regime with significant tidal currents being restricted to tidal inlets or estuaries.

  6. Large-scale tidal fields on primordial density perturbations ?

    E-Print Network [OSTI]

    Alejandro Gonzalez

    1997-02-17T23:59:59.000Z

    We calculate the strength of the tidal field produced by the large-scale density field acting on primordial density perturbations in power law models. By analysing changes in the orientation of the deformation tensor, resulted from smoothing the density field on different mass scales, we show that the large-scale tidal field can strongly affect the morphology and orientation of density peaks. The measure of the strength of the tidal field is performed as a function of the distance to the peak and of the spectral index. We detected evidence that two populations of perturbations seems to coexist; one, with a misalignment between the main axes of their inertia and deformation tensors. This would lead to the angular momentum acquisition and morphological changes. For the second population, the perturbations are found nearly aligned in the direction of the tidal field, which would imprint them low angular momentum and which would allow an alignment of structures as those reported between clusters of galaxies in filaments, and between galaxies in clusters. Evidence is presented that the correlation between the orientation of perturbations and the large-scale density field could be a common property of Gaussian density fields with spectral indexes $n < 0$. We argue that alignment of structures can be used to probe the flatness of the spectrum on large scales but it cannot determine the exact value of the spectral index.

  7. Development of floating-type system for uranium extraction from seawater using sea current and wave power

    SciTech Connect (OSTI)

    Nobukawa, Hisashi; Kitamura, Mitsuru [Hiroshima Univ., Higashi-Hiroshima (Japan); Swilem, S.A.M. [Univ. of Alexandria (Egypt); Ishibashi, Kozo [Marine Technology Inst. Co., Ltd., Imari (Japan)

    1994-12-31T23:59:59.000Z

    The concept of a system for extracting uranium from seawater utilizing sea current and wave power is presented in this paper. The uranium absorption tests using model bed units whose size is 1/4 of the real absorbent system were carried out based on the concept design of the system. The model units are towed in the seawater with the velocity of about 2 knots for 30 hours. After the towing, the units were moored for 36 days in Imari Bay. Another absorption test, hanging the model bed units from a mooring ship in an open sea, was performed for 40 hours for assessing the effect of wave power in the uranium absorption. Based on the data obtained from the above tests, the production cost of uranium extraction was also calculated. It becomes about 34,000 yen/kg-uranium for extraction period of 60 days.

  8. Tidally-induced thermonuclear Supernovae

    E-Print Network [OSTI]

    S. Rosswog; E. Ramirez-Ruiz; W. R. Hix

    2008-11-13T23:59:59.000Z

    We discuss the results of 3D simulations of tidal disruptions of white dwarfs by moderate-mass black holes as they may exist in the cores of globular clusters or dwarf galaxies. Our simulations follow self-consistently the hydrodynamic and nuclear evolution from the initial parabolic orbit over the disruption to the build-up of an accretion disk around the black hole. For strong enough encounters (pericentre distances smaller than about 1/3 of the tidal radius) the tidal compression is reversed by a shock and finally results in a thermonuclear explosion. These explosions are not restricted to progenitor masses close to the Chandrasekhar limit, we find exploding examples throughout the whole white dwarf mass range. There is, however, a restriction on the masses of the involved black holes: black holes more massive than $2\\times 10^5$ M$_\\odot$ swallow a typical 0.6 M$_\\odot$ dwarf before their tidal forces can overwhelm the star's self-gravity. Therefore, this mechanism is characteristic for black holes of moderate masses. The material that remains bound to the black hole settles into an accretion disk and produces an X-ray flare close to the Eddington limit of $L_{\\rm Edd} \\simeq 10^{41} {\\rm erg/s} M_{\\rm bh}/1000 M$_\\odot$), typically lasting for a few months. The combination of a peculiar thermonuclear supernova together with an X-ray flare thus whistle-blows the existence of such moderate-mass black holes. The next generation of wide field space-based instruments should be able to detect such events.

  9. Power Maximization in Wave-Energy Converters Using Sampled -Data Extremum Seeking /

    E-Print Network [OSTI]

    Chen, Tianjia

    2013-01-01T23:59:59.000Z

    irregular waves. Ocean engineering, 26(7):625–651, 1999. [Engineering University of California, San Diego, 2013 Professor Sonia Martinez, Chair Ocean

  10. Power Maximization in Wave-Energy Converters Using Sampled -Data Extremum Seeking /

    E-Print Network [OSTI]

    Chen, Tianjia

    2013-01-01T23:59:59.000Z

    power maximization problem while ensuring the system stability.of power extraction and ensures the stability of the system.power maximization problem while ensuring the stability of the system.

  11. Riding the Clean Energy Wave: New Projects Aim to Improve Water Power Devices

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department announces two projects as part of a larger effort to deploy innovative technologies for clean, domestic power generation from water power resources.

  12. Physical interpretation of fractional diffusion-wave equation via lossy media obeying frequency power law

    E-Print Network [OSTI]

    Physical interpretation of fractional diffusion-wave equation via lossy media obeying frequency not been clearly explained in this regard. Here the attempt is made to interpret the FDWE via a new time, for example, in medical ultrasonic and seismic wave propagations ( )z eEE - = 0 7-9 . Here E represents

  13. Modeling Tidal Stream Energy Extraction and its Effects on Transport Processes in a Tidal Channel and Bay System Using a Three-dimensional Coastal Ocean Model

    SciTech Connect (OSTI)

    Yang, Zhaoqing; Wang, Taiping; Copping, Andrea E.

    2013-02-28T23:59:59.000Z

    This paper presents a numerical modeling study for simulating in-stream tidal energy extraction and assessing its effects on the hydrodynamics and transport processes in a tidal channel and bay system connecting to coastal ocean. A marine and hydrokinetic (MHK) module was implemented in a three-dimensional (3-D) coastal ocean model using the momentum sink approach. The MHK model was validated with the analytical solutions for tidal channels under one-dimensional (1-D) conditions. Model simulations were further carried out to compare the momentum sink approach with the quadratic bottom friction approach. The effects of 3-D simulations on the vertical velocity profile, maximum extractable energy, and volume flux reduction across the channel were investigated through a series of numerical experiments. 3-D model results indicate that the volume flux reduction at the maximum extractable power predicted by the 1-D analytical model or two-dimensional (2-D) depth-averaged numerical model may be overestimated. Maximum extractable energy strongly depends on the turbine hub height in the water column, and which reaches a maximum when turbine hub height is located at mid-water depth. Far-field effects of tidal turbines on the flushing time of the tidal bay were also investigated. Model results demonstrate that tidal energy extraction has a greater effect on the flushing time than volume flux reduction, which could negatively affect the biogeochemical processes in estuarine and coastal waters that support primary productivity and higher forms of marine life.

  14. GEOPHYSICAL RESEARCH LETTERS, VOL. 28, NO. 5, PAGES 811-814, MARCH 1, 2001 Parameterizing Tidal Dissipation over Rough

    E-Print Network [OSTI]

    Jayne, Steven

    of barotropic tidal energy. The first line of evidence comes from observations of mix- ing in the abyssal Brazil ocean, the energy flux carried by internal waves generated over rough topog- raphy dominates the energy issues. The first is whether including a parameterization for internal wave energy-flux in a model

  15. Plasma physics and related challenges of millimeter-wave-to-terahertz and high power microwave generationa...

    E-Print Network [OSTI]

    Smith, James E.

    confronting "classic" high power microwave HPM generators including long-life bright electron beam sources, high power mmw-to-THz sources are compared and contrasted to those of HPM generation, and future assume long pulse or average power, with exceptions be- tween 1 and 10 GHz for high power microwave HPM

  16. CONSTRAINTS ON THE HIGH-l POWER SPECTRUM OF MILLIMETER-WAVE ANISOTROPIES FROM APEX-SZ

    SciTech Connect (OSTI)

    Reichardt, C. L.; Zahn, O.; Ferrusca, D.; Holzapfel, W. L.; Johnson, B. R.; Lee, A. T.; Lueker, M. [Department of Physics, University of California, Berkeley, CA 94720 (United States); Ade, P. A. R.; Lanting, T. [School of Physics and Astronomy, Cardiff University, CF24 3YB (United Kingdom); Basu, K.; Chon, G.; Kneissl, R. [Max Planck Institute for Radioastronomy, 53121 Bonn (Germany); Bender, A. N.; Halverson, N. W. [Center for Astrophysics and Space Astronomy, Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309 (United States); Bertoldi, F. [Argelander Institute for Astronomy, Bonn University, Bonn (Germany); Cho, H.-M. [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Dobbs, M.; Kennedy, J. [Department of Physics, McGill University, Montreal, H3A 2T8 (Canada); Horellou, C.; Johansson, D. [Onsala Space Observatory, Chalmers University of Technology, SE-439 92 Onsala (Sweden)] (and others)

    2009-08-20T23:59:59.000Z

    We present measurements of the angular power spectrum of millimeter wave anisotropies with the APEX-SZ instrument. APEX-SZ has mapped 0.8 deg{sup 2} of sky at a frequency of 150 GHz with an angular resolution of 1'. These new measurements significantly improve the constraints on anisotropy power at 150 GHz over the range of angular multipoles 3000 < l < 10, 000, limiting the total astronomical signal in a flat band power to be less than 105 {mu}K{sup 2} at 95% CL. We expect both submillimeter-bright, dusty galaxies and to a lesser extent secondary cosmic microwave background anisotropies from the Sunyaev-Zel'dovich effect (SZE) to significantly contribute to the observed power. Subtracting the SZE power spectrum expected for {sigma}{sub 8} = 0.8 and masking bright sources, the best-fit value for the remaining power is C {sub l} = 1.1{sup +0.9} {sub -0.8} x 10{sup -5} {mu}K{sup 2} (1.7{sup +1.4} {sub -1.3} Jy{sup 2} sr{sup -1}). This agrees well with model predictions for power due to submillimeter-bright, dusty galaxies. Comparing this power to the power detected by BLAST at 600 GHz, we find the frequency dependence of the source fluxes to be S{sub {nu}}{proportional_to}{nu}{sup 2.6+0.4}{sub -0.2}} if both experiments measure the same population of sources. Simultaneously fitting for the amplitude of the SZE power spectrum and a Poisson-distributed point source population, we place an upper limit on the matter fluctuation amplitude of {sigma}{sub 8} < 1.18 at 95% confidence.

  17. MHK Projects/Orient Point Tidal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet <|Galway Bay IE <Orcadian WaveTidal

  18. MHK Projects/Wave Powered Pumping of Seawater for On Shore Use...

    Open Energy Info (EERE)

    s Cove Burin Peninsula, Newfoundland Project Country Canada Project Resource Click here Wave Coordinates 46.53, -55.4 Project Phase Phase 3 Project Details Although SARAHS Pump...

  19. Tidal Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson Ethanol LLCEnergyoThornwood,Tianfu PVOverseeingTidal

  20. Tidal Stream | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson Ethanol LLCEnergyoThornwood,TianfuTidal Sails AS

  1. Tidal | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin Hydropower Station Jump to: navigation, searchNewTidal Home

  2. Three-dimensional Modeling of Tidal Hydrodynamics in the San Francisco Estuary

    E-Print Network [OSTI]

    Gross, Edward S.; MacWilliams, Michael L.; Kimmerer, Wim J.

    2009-01-01T23:59:59.000Z

    1993. Tidal residual intertidal mudflat (TRIM) model and itsthe Tidal Residual Intertidal Mudflat (TRIM) model (Casulli

  3. Assessment of Energy Production Potential from Tidal Streams...

    Energy Savers [EERE]

    Tidal Streams in the United States Assessment of Energy Production Potential from Tidal Streams in the United States The project documented in this report created a national...

  4. 1204 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 34, NO. 9, SEPTEMBER 1999 Breakdown in Millimeter-Wave Power InP

    E-Print Network [OSTI]

    del Alamo, Jesús A.

    1204 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 34, NO. 9, SEPTEMBER 1999 Breakdown in Millimeter-Wave Power InP HEMT's: A Comparison with GaAs PHEMT's J. A. del Alamo and M. H. Somerville Abstract's) deliver lower output power than GaAs pseudomorphic HEMT's (PHEMT's) throughout most of the millimeter

  5. NREL Uses Computing Power to Investigate Tidal Power (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-10-01T23:59:59.000Z

    Until now, wind turbine controls that reduce the impacts of wind gusts and turbulence were always reactive - responding to the wind rather than anticipating it. But with today's laser-based sensors that measure wind speed ahead of the turbine, researchers at the National Renewable Energy Laboratory (NREL) and their industry partners are developing more intelligent controls. The world's first field tests of these controls are currently underway at the National Wind Technology Center (NWTC) at NREL, with plans for future commercialization.

  6. A Modeling Study of the Potential Water Quality Impacts from In-Stream Tidal Energy Extraction

    SciTech Connect (OSTI)

    Wang, Taiping; Yang, Zhaoqing; Copping, Andrea E.

    2013-11-09T23:59:59.000Z

    To assess the effects of tidal energy extraction on water quality in a simplified estuarine system, which consists of a tidal bay connected to the coastal ocean through a narrow channel where energy is extracted using in-stream tidal turbines, a three-dimensional coastal ocean model with built-in tidal turbine and water quality modules was applied. The effects of tidal energy extraction on water quality were examined for two energy extraction scenarios as compared with the baseline condition. It was found, in general, that the environmental impacts associated with energy extraction depend highly on the amount of power extracted from the system. Model results indicate that, as a result of energy extraction from the channel, the competition between decreased flushing rates in the bay and increased vertical mixing in the channel directly affects water quality responses in the bay. The decreased flushing rates tend to cause a stronger but negative impact on water quality. On the other hand, the increase of vertical mixing could lead to higher bottom dissolved oxygen at times. As the first modeling effort directly aimed at examining the impacts of tidal energy extraction on estuarine water quality, this study demonstrates that numerical models can serve as a very useful tool for this purpose. However, more careful efforts are warranted to address system-specific environmental issues in real-world, complex estuarine systems.

  7. Generation of Alfven waves by high power pulse at the electron plasma frequency

    E-Print Network [OSTI]

    California at Los Angles, University of

    to a pulse of field aligned superthermal electrons. This electron current pulse then launches an Alfve´n wave with w wci. In space plasmas, there are many instances where pulses of field aligned superthermal-plasma interaction is the means of generating the electron pulse. Superthermal electron pulses, with duration

  8. IEEE MICROWAVE AND GUIDED WAVE LETTERS, VOL. 9, NO. 7, JULY 1999 277 18-GHz GaN-Based Power Amplifier

    E-Print Network [OSTI]

    York, Robert A.

    IEEE MICROWAVE AND GUIDED WAVE LETTERS, VOL. 9, NO. 7, JULY 1999 277 1­8-GHz GaN-Based Power, Senior Member, IEEE Abstract-- We report the first gallium nitride (GaN)-based broad-band power amplifier. The circuit was fabricated on an AlN substrate using AlGaN/GaN power high-electron mobil- ity transistors

  9. Near-Millimeter Wave Issues for a Space Power Grid Narayanan Komerath, Vigneshwar Venkat, Jason Fernandez

    E-Print Network [OSTI]

    to the commissioning of renewable power plants, thus reducing lag between investment and revenue generation. 4@gatech.edu Abstract This paper reports continuing work on an evolutionary revenue-generating approach to Space Solar reports continuing work on an evolutionary revenue-generating approach to Space Solar Power. The concept

  10. Experimental determination of radiated internal wave power without pressure field Frank M. Lee,1

    E-Print Network [OSTI]

    Morrison, Philip J.,

    = S d2 x pv · ^n , (1) where J = pv is the baroclinic energy flux, p is the perturbed pressure field, v to determine, using only velocity field data, the time-averaged energy flux J and total radiated power P) that can be used to compute the energy flux and power from any two-dimensional velocity field data. PACS

  11. Tidal Heating of Extra-Solar Planets

    E-Print Network [OSTI]

    Brian Jackson; Richard Greenberg; Rory Barnes

    2008-02-29T23:59:59.000Z

    Extra-solar planets close to their host stars have likely undergone significant tidal evolution since the time of their formation. Tides probably dominated their orbital evolution once the dust and gas had cleared away, and as the orbits evolved there was substantial tidal heating within the planets. The tidal heating history of each planet may have contributed significantly to the thermal budget that governed the planet's physical properties, including its radius, which in many cases may be measured by observing transit events. Typically, tidal heating increases as a planet moves inward toward its star and then decreases as its orbit circularizes. Here we compute the plausible heating histories for several planets with measured radii, using the same tidal parameters for the star and planet that had been shown to reconcile the eccentricity distribution of close-in planets with other extra-solar planets. Several planets are discussed, including for example HD 209458 b, which may have undergone substantial tidal heating during the past billion years, perhaps enough to explain its large measured radius. Our models also show that GJ 876 d may have experienced tremendous heating and is probably not a solid, rocky planet. Theoretical models should include the role of tidal heating, which is large, but time-varying.

  12. High-power and wavelength-tunable traveling-wave semiconductor ring laser

    E-Print Network [OSTI]

    Peng, En Titus

    1991-01-01T23:59:59.000Z

    purely electromagnetic effect, in contrast to traditional mechanically based instruments typified by the spinning-wheel gyroscope. Recent work on semiconductor ring lasers and erbium fiber ring lasers are largely directed towards achieving narrow..., "Narrow spectral linewidth semiconductor optical-fiber ring laser, " Appl. Phys. Lett?voL 49, pp. 1328-1330, 1986. [4] P, R, Morkel, G. J. Cowle, and D. N. Payne, "Travelling-wave erbium fibre ring laser with 60 kHz linewidth, " Electron. Lett. , vol...

  13. A Conceptual Restoration Plan and Tidal Hydrology Assessment for Reconnecting Spring Branch Creek to Suisun Marsh, Solano County, California

    E-Print Network [OSTI]

    Olson, Jessica J.

    2012-01-01T23:59:59.000Z

    tidal wetland below MHLW Table 4.19. Performance IndicatorsPerformance Indicator All Tidal wetlands Tidal wetlands All

  14. AIP/123-QED Experimental determination of radiated internal wave power without pressure field

    E-Print Network [OSTI]

    Texas at Austin. University of

    S is given by, P = S d2 x J · ^n = S d2 x pv · ^n , (1) where J = pv is the baroclinic energy flux, p, using only velocity field data, the time-averaged energy flux J and total radiated power P for two the energy flux and power from any two-dimensional velocity field data. PACS numbers: Valid PACS appear here

  15. Overturning circulation driven by breaking internal waves in the deep ocean

    E-Print Network [OSTI]

    Nikurashin, Maxim

    A global estimate of the water-mass transformation by internal wave-driven mixing in the deep ocean is presented. The estimate is based on the energy conversion from tidal and geostrophic motions into internal waves combined ...

  16. Three-dimensional Numerical Analysis on Blade Response of Vertical Axis Tidal Current Turbine Under Operational Condition

    SciTech Connect (OSTI)

    Li, Ye; Karri, Naveen K.; Wang, Qi

    2014-04-30T23:59:59.000Z

    Tidal power as a large-scale renewable source of energy has been receiving significant attention recently because of its advantages over the wind and other renewal energy sources. The technology used to harvest energy from tidal current is called a tidal current turbine. Though some of the principles of wind turbine design are applicable to tidal current turbines, the design of latter ones need additional considerations like cavitation damage, corrosion etc. for the long-term reliability of such turbines. Depending up on the orientation of axis, tidal current turbines can be classified as vertical axis turbines or horizontal axis turbines. Existing studies on the vertical axis tidal current turbine focus more on the hydrodynamic aspects of the turbine rather than the structural aspects. This paper summarizes our recent efforts to study the integrated hydrodynamic and structural aspects of the vertical axis tidal current turbines. After reviewing existing methods in modeling tidal current turbines, we developed a hybrid approach that combines discrete vortex method -finite element method that can simulate the integrated hydrodynamic and structural response of a vertical axis turbine. This hybrid method was initially employed to analyze a typical three-blade vertical axis turbine. The power coefficient was used to evaluate the hydrodynamic performance, and critical deflection was considered to evaluate the structural reliability. A sensitivity analysis was also conducted with various turbine height-to-radius ratios. The results indicate that both the power output and failure probability increase with the turbine height, suggesting a necessity for optimal design. An attempt to optimize a 3-blade vertical axis turbine design with hybrid method yielded a ratio of turbine height to radius (H/R) about 3.0 for reliable maximum power output.

  17. Modeling the dynamics of tidally-interacting binary neutron stars up to merger

    E-Print Network [OSTI]

    Sebastiano Bernuzzi; Alessandro Nagar; Tim Dietrich; Thibault Damour

    2015-02-18T23:59:59.000Z

    The data analysis of the gravitational wave signals emitted by coalescing neutron star binaries requires the availability of an accurate analytical representation of the dynamics and waveforms of these systems. We propose an effective-one-body (EOB) model that describes the general relativistic dynamics of neutron star binaries from the early inspiral up to merger. Our EOB model incorporates an enhanced attractive tidal potential motivated by recent analytical advances in the post-Newtonian and gravitational self-force description of relativistic tidal interactions. No fitting parameters are introduced for the description of tidal interaction in the late, strong-field dynamics. We compare the model energetics and the gravitational wave phasing with new high-resolution multi-orbit numerical relativity simulations of equal-mass configurations with different equations of state. We find agreement within the uncertainty of the numerical data for all configurations. Our model is the first semi-analytical model which captures the tidal amplification effects close to merger. It thereby provides the most accurate analytical representation of binary neutron star dynamics and waveforms currently available.

  18. Viscoelastic Models of Tidally Heated Exomoons

    E-Print Network [OSTI]

    Dobos, Vera

    2015-01-01T23:59:59.000Z

    Tidal heating of exomoons may play a key role in their habitability, since the elevated temperature can melt the ice on the body even without significant solar radiation. The possibility of life is intensely studied on Solar System moons such as Europa or Enceladus, where the surface ice layer covers tidally heated water ocean. Tidal forces may be even stronger in extrasolar systems, depending on the properties of the moon and its orbit. For studying the tidally heated surface temperature of exomoons, we used a viscoelastic model for the first time. This model is more realistic than the widely used, so-called fixed Q models, because it takes into account the temperature dependency of the tidal heat flux, and the melting of the inner material. With the use of this model we introduced the circumplanetary Tidal Temperate Zone (TTZ), that strongly depends on the orbital period of the moon, and less on its radius. We compared the results with the fixed Q model and investigated the statistical volume of the TTZ usi...

  19. Power combiner

    DOE Patents [OSTI]

    Arnold, Mobius; Ives, Robert Lawrence

    2006-09-05T23:59:59.000Z

    A power combiner for the combining of symmetric and asymmetric traveling wave energy comprises a feed waveguide having an input port and a launching port, a reflector for reflecting launched wave energy, and a final waveguide for the collection and transport of launched wave energy. The power combiner has a launching port for symmetrical waves which comprises a cylindrical section coaxial to the feed waveguide, and a launching port for asymmetric waves which comprises a sawtooth rotated about a central axis.

  20. Tidal Evolution of Rubble Piles

    E-Print Network [OSTI]

    Peter Goldreich; Re'em Sari

    2007-12-04T23:59:59.000Z

    Many small bodies in the solar system are believed to be rubble piles, a collection of smaller elements separated by voids. We propose a model for the structure of a self-gravitating rubble pile. Static friction prevents its elements from sliding relative to each other. Stresses are concentrated around points of contact between individual elements. The effective dimensionless rigidity, $\\tilde\\mu_{rubble}$, is related to that of a monolithic body of similar composition and size, $\\tilde\\mu$ by $\\tilde \\mu_{rubble} \\sim \\tilde \\mu^{1/2} \\epsilon_Y^{-1/2}$, where $\\epsilon_Y \\sim 10^{-2}$ is the yield strain. This represents a reduction in effective rigidity below the maximum radius, $R_{max}\\sim [\\mu\\epsilon_Y/(G\\rho^2)]^{1/2}\\sim 10^3\\km$, at which a rubble pile can exist. Densities derived for binary near-Earth asteroids imply that they are rubble piles. As a consequence, their tidal evolution proceeds $10^3$ to $10^4$ times faster than it would if they were monoliths. This accounts for both the sizes of their semimajor axes and their small orbital eccentricities. We show that our model for the rigidity of rubble piles is compatible with laboratory experiment in sand.

  1. Fitting orbits to tidal streams

    E-Print Network [OSTI]

    James Binney

    2008-02-11T23:59:59.000Z

    Recent years have seen the discovery of many tidal streams through the Galaxy. Relatively straightforward observations of a stream allow one to deduce three phase-space coordinates of an orbit. An algorithm is presented that reconstructs the missing phase-space coordinates from these data. The reconstruction starts from assumed values of the Galactic potential and a distance to one point on the orbit, but with noise-free data the condition that energy be conserved on the orbit enables one to reject incorrect assumptions. The performance of the algorithm is investigated when errors are added to the input data that are comparable to those in published data for the streams of Pal 5. It is found that the algorithm returns distances and proper motions that are accurate to of order one percent, and enables one to reject quite reasonable but incorrect trial potentials. In practical applications it will be important to minimize errors in the input data, and there is considerable scope for doing this.

  2. Probing the plasma near high power wave launchers in fusion devices for static and dynamic electric fields (invited)

    SciTech Connect (OSTI)

    Klepper, C. C., E-mail: kleppercc@ornl.gov; Isler, R. C.; Biewer, T. M.; Caughman, J. B.; Green, D. L.; Harris, J. H.; Hillis, D. L. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6169 (United States); Martin, E. H. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6169 (United States); North Carolina State University, Raleigh, North Carolina 27607 (United States); Colas, L.; Goniche, M.; Hillairet, J.; Panayotis, S.; Pegourié, B.; Jacquot, J.; Lotte, Ph.; Colledani, G.; Ekedahl, A.; Litaudon, X. [CEA, IRFM, F-13108 Saint Paul-lez-Durance (France); Shannon, S. C. [North Carolina State University, Raleigh, North Carolina 27607 (United States)

    2014-11-15T23:59:59.000Z

    An exploratory study was carried out in the long-pulse tokamak Tore Supra, to determine if electric fields in the plasma around high-power, RF wave launchers could be measured with non-intrusive, passive, optical emission spectroscopy. The focus was in particular on the use of the external electric field Stark effect. The feasibility was found to be strongly dependent on the spatial extent of the electric fields and overlap between regions of strong (>?1 kV/cm) electric fields and regions of plasma particle recycling and plasma-induced, spectral line emission. Most amenable to the measurement was the RF electric field in edge plasma, in front of a lower hybrid heating and current drive launcher. Electric field strengths and direction, derived from fitting the acquired spectra to a model including time-dependent Stark effect and the tokamak-range magnetic field Zeeman-effect, were found to be in good agreement with full-wave modeling of the observed launcher.

  3. Probing the plasma near high power wave launchers in fusion devices for static and dynamic electric fields

    SciTech Connect (OSTI)

    Klepper, C Christopher [ORNL; Martin, Elijah H [ORNL; Isler, Ralph C [ORNL; Colas, L. [French Atomic Energy Commission (CEA), Cadarache, St. Paul lez Durance; Goniche, M. [French Atomic Energy Commission (CEA), Cadarache, St. Paul lez Durance; Hillairet, J. [French Atomic Energy Commission (CEA), Institute for Magnetic Fusion Research (IRFM); Panayotis, Stephanie [French Atomic Energy Commission (CEA), Institute for Magnetic Fusion Research (IRFM); Jacquot, Jonathan [French Atomic Energy Commission (CEA), Institute for Magnetic Fusion Research (IRFM); Lotte, Ph. [French Atomic Energy Commission (CEA), Cadarache, St. Paul lez Durance; Colledani, G. [French Atomic Energy Commission (CEA), Institute for Magnetic Fusion Research (IRFM); Biewer, Theodore M [ORNL; Caughman, J. B. O. [Oak Ridge National Laboratory (ORNL); Ekedahl, A. [French Atomic Energy Commission (CEA), Institute for Magnetic Fusion Research (IRFM); Green, David L [ORNL; Harris, Jeffrey H [ORNL; Hillis, Donald Lee [ORNL; Shannon, Prof. Steven [North Carolina State University; Litaudon, X [French Atomic Energy Commission (CEA)

    2014-01-01T23:59:59.000Z

    An exploratory study was carried out in the long-pulse tokamak Tore Supra, to determine if electric fields in the plasma around high-power, RF wave launchers could be measured with non-intrusive, passive, optical emission spectroscopy. The focus was in particular on the use of the external electric field Stark effect. The feasibility was found to be strongly dependent on the spatial extent of the electric fields and overlap between regions of strong (> 1 kV/cm) electric fields and regions of plasma particle recycling and plasma-induced, spectral line emission. Most amenable to the measurement was the RF electric field in edge plasma, in front of a lower hybrid heating and current drive launcher. Electric field strengths and direction, derived from fitting the acquired spectra to a model including time-dependent Stark effect and the tokamak-range magnetic field Zeeman-effect, were found to be in good agreement with full-wave modeling of the observed launcher.

  4. Measurements of Turbulence at Two Tidal Energy Sites in Puget Sound, WA

    SciTech Connect (OSTI)

    Thomson, Jim; Polagye, Brian; Durgesh, Vibhav; Richmond, Marshall C.

    2012-06-05T23:59:59.000Z

    Field measurements of turbulence are pre- sented from two sites in Puget Sound, WA (USA) that are proposed for electrical power generation using tidal current turbines. Rapidly sampled data from multiple acoustic Doppler instruments are analyzed to obtain statistical mea- sures of fluctuations in both the magnitude and direction of the tidal currents. The resulting turbulence intensities (i.e., the turbulent velocity fluctuations normalized by the harmonic tidal currents) are typically 10% at the hub- heights (i.e., the relevant depth bin) of the proposed turbines. Length and time scales of the turbulence are also analyzed. Large-scale, anisotropic eddies dominate the energy spectra, which may be the result of proximity to headlands at each site. At small scales, an isotropic turbulent cascade is observed and used to estimate the dissipation rate of turbulent kinetic energy. Data quality and sampling parameters are discussed, with an emphasis on the removal of Doppler noise from turbulence statistics.

  5. TIDAL TURBULENCE SPECTRA FROM A COMPLIANT MOORING

    SciTech Connect (OSTI)

    Thomson, Jim; Kilcher, Levi; Richmond, Marshall C.; Talbert, Joe; deKlerk, Alex; Polagye, Brian; Guerra, Maricarmen; Cienfuegos, Rodrigo

    2013-06-13T23:59:59.000Z

    A compliant mooring to collect high frequency turbulence data at a tidal energy site is evaluated in a series of short demon- stration deployments. The Tidal Turbulence Mooring (TTM) improves upon recent bottom-mounted approaches by suspend- ing Acoustic Doppler Velocimeters (ADVs) at mid-water depths (which are more relevant to tidal turbines). The ADV turbulence data are superior to Acoustic Doppler Current Profiler (ADCP) data, but are subject to motion contamination when suspended on a mooring in strong currents. In this demonstration, passive stabilization is shown to be sufficient for acquiring bulk statistics of the turbulence, without motion correction. With motion cor- rection (post-processing), data quality is further improved; the relative merits of direct and spectral motion correction are dis- cussed.

  6. U.S. West: The Next Energy Nexus

    E-Print Network [OSTI]

    Davis, Sandra K.; Kear, Andrew R.

    2014-01-01T23:59:59.000Z

    energy. Western states also have sizeable sources of solar, wind, geothermal, biomass, wave and tidal power.

  7. Status of High Power Tests of Normal Conducting Single-Cell Standing Wave Structures

    SciTech Connect (OSTI)

    Dolgashev, Valery; /SLAC; Tantawi, Sami; /SLAC; Yeremian, Anahid; /SLAC; Higashi, Yasuo; /KEK, Tsukuba; Spataro, Bruno; /INFN, Rome

    2012-06-25T23:59:59.000Z

    Our experiments are directed toward the understanding of the physics of rf breakdown in systems that can be used to accelerate electron beams at {approx}11.4 GHz. The structure geometries have apertures, stored energy per cell, and rf pulse duration close to that of the NLC or CLIC. The breakdown rate is the main parameter that we use to compare rf breakdown behavior for different structures at a given set of rf pulse parameters (pulse shape and peak power) at 60 Hz repetition rate. In our experiments, the typical range of the breakdown rate is from one per few hours to {approx}100 per hour. To date we have tested 29 structures. We consistently found that after the initial conditioning, the behavior of the breakdown rate is reproducible for structures of the same geometry and material, and the breakdown rate dependence on peak magnetic fields is stronger than on peak surface electric fields for structures of different geometries. Below we report the main results from tests of seven structures made from hard copper, soft copper alloys and hard-copper alloys. Additional details on these and other structures will be discussed in future publications.

  8. Performance Assessment of the Wave Dragon Wave Energy Converter

    E-Print Network [OSTI]

    Hansen, René Rydhof

    Performance Assessment of the Wave Dragon Wave Energy Converter Based on the EquiMar Methodology S of the wave energy sector, device developers are called to provide reliable estimates on power performanceMar, Nissum Bredning, Hanstholm, North Sea, Ekofisk, Wave-to-wire, Wave energy. I. INTRODUCTION The wave

  9. Turbulence and internal waves in tidal flow over topography

    E-Print Network [OSTI]

    Gayen, Bishakhdatta

    2012-01-01T23:59:59.000Z

    structures in oscillatory boundary layers. J. Fluid. Mech.structures in oscillatory boundary layers. J. Fluid Mech.zero time-mean oscillatory boundary layer based on the value

  10. Hydropower, Wave and Tidal Technologies Available for Licensing - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNotSeventy yearsCoordinationInnovation

  11. European Wave and Tidal Energy Conference | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    (EWTEC) series are international, technical and scientific conferences, focussed on ocean renewable energy and widely respected for their commitment to maintain high...

  12. European Wave and Tidal Energy Conference | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010Salt | Department of Energy

  13. Active core profile and transport modification by application of Ion Bernstein Wave power in PBX-M

    SciTech Connect (OSTI)

    LeBlanc, B.; Bell, R. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Batha, S. [Fusion Physics and Technology, Torrance, CA (United States)] [and others

    1995-01-01T23:59:59.000Z

    Application of Ion Bernstein Wave Heating (IBWH) into the Princeton Beta Experiment-Modification (PBX-M) tokamak stabilizes sawtooth oscillations and generates peaked density profiles. A transport barrier, spatially correlated with the IBWH power deposition profile, is observed in the core of IBWH assisted neutral beam injection (NBI) discharges. A precursor to the fully developed barrier is seen in the soft x-ray data during edge localized mode (ELM) activity. Sustained IBWH operation is conducive to a regime where the barrier supports large {triangledown}n{sub e}, {triangledown}T{sub e}, {triangledown}v{sub phi}, and {triangledown}T{sub i}, delimiting the confinement zone. This regime is reminiscent of the H(high)-mode but with a confinement zone moved inwards. The core region has better than H-mode confinement while the peripheral region is L(low)-mode-like. The peaked profile enhanced NBI core deposition and increases nuclear reactivity. An increase in central T{sub i} results from {chi}{sub i} reduction (compared to H-mode) and better beam penetration. Bootstrap current fractions of up to 0.32--0.35 locally and 0.28 overall were obtained when an additional NBI burst is applied to this plasma.

  14. Wind Wave Float

    Broader source: Energy.gov (indexed) [DOE]

    Water Power Peer Review WindWaveFloat Alla Weinstein Principle Power, Inc. aweinstein@principlepowerinc.com November 1, 2011 2 | Wind and Water Power Program eere.energy.gov...

  15. Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska FINAL REPORT

    SciTech Connect (OSTI)

    Wright, Bruce Albert [Aleutian Pribilof Islands Association] [Aleutian Pribilof Islands Association

    2014-05-07T23:59:59.000Z

    The Aleutian Pribilof Islands Association was awarded a U.S. Department of Energy Tribal Energy Program grant (DE-EE0005624) for the Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska (Project). The goal of the Project was to perform a feasibility study to determine if a tidal energy project would be a viable means to generate electricity and heat to meet long-term fossil fuel use reduction goals, specifically to produce at least 30% of the electrical and heating needs of the tribally-owned buildings in False Pass. The Project Team included the Aleut Region organizations comprised of the Aleutian Pribilof Island Association (APIA), and Aleutian Pribilof Island Community Development Association (APICDA); the University of Alaska Anchorage, ORPC Alaska a wholly-owned subsidiary of Ocean Renewable Power Company (ORPC), City of False Pass, Benthic GeoScience, and the National Renewable Energy Laboratory (NREL). The following Project objectives were completed: collected existing bathymetric, tidal, and ocean current data to develop a basic model of current circulation at False Pass, measured current velocities at two sites for a full lunar cycle to establish the viability of the current resource, collected data on transmission infrastructure, electrical loads, and electrical generation at False Pass, performed economic analysis based on current costs of energy and amount of energy anticipated from and costs associated with the tidal energy project conceptual design and scoped environmental issues. Utilizing circulation modeling, the Project Team identified two target sites with strong potential for robust tidal energy resources in Isanotski Strait and another nearer the City of False Pass. In addition, the Project Team completed a survey of the electrical infrastructure, which identified likely sites of interconnection and clarified required transmission distances from the tidal energy resources. Based on resource and electrical data, the Project Team developed a conceptual tidal energy project design utilizing ORPC’s TidGen® Power System. While the Project Team has not committed to ORPC technology for future development of a False Pass project, this conceptual design was critical to informing the Project’s economic analysis. The results showed that power from a tidal energy project could be provided to the City of False at a rate at or below the cost of diesel generated electricity and sold to commercial customers at rates competitive with current market rates, providing a stable, flat priced, environmentally sound alternative to the diesel generation currently utilized for energy in the community. The Project Team concluded that with additional grants and private investment a tidal energy project at False Pass is well-positioned to be the first tidal energy project to be developed in Alaska, and the first tidal energy project to be interconnected to an isolated micro grid in the world. A viable project will be a model for similar projects in coastal Alaska.

  16. Acoustic Monitoring of Beluga Whale Interactions with Cook Inlet Tidal Energy Project

    SciTech Connect (OSTI)

    Worthington, Monty [Project Director - AK] [Project Director - AK

    2014-02-05T23:59:59.000Z

    Cook Inlet, Alaska is home to some of the greatest tidal energy resources in the U.S., as well as an endangered population of beluga whales (Delphinapterus leucas). Successfully permitting and operating a tidal power project in Cook Inlet requires a biological assessment of the potential and realized effects of the physical presence and sound footprint of tidal turbines on the distribution, relative abundance, and behavior of Cook Inlet beluga whales. ORPC Alaska, working with the Project Team—LGL Alaska Research Associates, University of Alaska Anchorage, TerraSond, and Greeneridge Science—undertook the following U.S. Department of Energy (DOE) study to characterize beluga whales in Cook Inlet – Acoustic Monitoring of Beluga Whale Interactions with the Cook Inlet Tidal Energy Project (Project). ORPC Alaska, LLC, is a wholly-owned subsidiary of Ocean Renewable Power Company, LLC, (collectively, ORPC). ORPC is a global leader in the development of hydrokinetic power systems and eco-conscious projects that harness the power of ocean and river currents to create clean, predictable renewable energy. ORPC is developing a tidal energy demonstration project in Cook Inlet at East Foreland where ORPC has a Federal Energy Regulatory Commission (FERC) preliminary permit (P-13821). The Project collected baseline data to characterize pre-deployment patterns of marine mammal distribution, relative abundance, and behavior in ORPC’s proposed deployment area at East Foreland. ORPC also completed work near Fire Island where ORPC held a FERC preliminary permit (P-12679) until March 6, 2013. Passive hydroacoustic devices (previously utilized with bowhead whales in the Beaufort Sea) were adapted for study of beluga whales to determine the relative abundance of beluga whale vocalizations within the proposed deployment areas. Hydroacoustic data collected during the Project were used to characterize the ambient acoustic environment of the project site pre-deployment to inform the FERC pilot project process. The Project compared results obtained from this method to results obtained from other passive hydrophone technologies and to visual observation techniques performed simultaneously. This Final Report makes recommendations on the best practice for future data collection, for ORPC’s work in Cook Inlet specifically, and for tidal power projects in general. This Project developed a marine mammal study design and compared technologies for hydroacoustic and visual data collection with potential for broad application to future tidal and hydrokinetic projects in other geographic areas. The data collected for this Project will support the environmental assessment of future Cook Inlet tidal energy projects, including ORPC’s East Foreland Tidal Energy Project and any tidal energy developments at Fire Island. The Project’s rigorous assessment of technology and methodologies will be invaluable to the hydrokinetic industry for developing projects in an environmentally sound and sustainable way for areas with high marine mammal activity or endangered populations. By combining several different sampling methods this Project will also contribute to the future preparation of a comprehensive biological assessment of ORPC’s projects in Cook Inlet.

  17. Clarence Strait Tidal Energy Project, Tenax Energy Tropical Tidal Test

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDatasetCity of Holyoke,Monroe,CityCityCentre, |

  18. 1. Department, Course Number, Title ORE 330, Mineral & Energy Resources of the Sea

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    · OTEC (Ocean thermal energy conversion) · Wind power · Wave power · Current and tidal power · Energy

  19. Deployment Effects of Marine Renewable Energy Technologies: Wave Energy Scenarios

    SciTech Connect (OSTI)

    Mirko Previsic

    2010-06-17T23:59:59.000Z

    Given proper care in siting, design, deployment, operation and maintenance, wave energy conversion could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that, due to a lack of technical certainty, many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood,. In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based assessment to the emerging hydrokinetic technology sector in order to evaluate the potential impact of these technologies on the marine environment and navigation constraints. The project’s scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios capture variations in technical approaches and deployment scales to properly identify and characterize environmental effects and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential range of technical attributes and potential effects of these emerging technologies and focus all stakeholders on the critical issues that need to be addressed. By identifying and addressing navigational and environmental concerns in the early stages of the industry’s development, serious mistakes that could potentially derail industry-wide development can be avoided. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industry’s development in the U.S. today. Re vision is coordinating its efforts with two other project teams funded by DoE which are focused on regulatory issues (Pacific Energy Ventures) and navigational issues (PCCI). The results of this study are structured into three reports: (1) Wave power scenario description (2) Tidal power scenario description (3) Framework for Identifying Key Environmental Concerns This is the first report in the sequence and describes the results of conceptual feasibility studies of wave power plants deployed in Humboldt County, California and Oahu, Hawaii. These two sites contain many of the same competing stakeholder interactions identified at other wave power sites in the U.S. and serve as representative case studies. Wave power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize potential effects, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informed the process of selecting representative wave power devices. The selection criteria requires that devices are at an advanced stage of development to reduce technical uncertainties, and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. Table 1 summarizes the selected wave power technologies. A number of other developers are also at an advanced stage of development, but are not directly mentioned here. Many environmental effects will largely scale with the size of the wave power plant. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments. In order to characterize these effects, scenarios are established at three deployment scales which nominally represent (1) a small pilot deployment, (2) a small commercial deployment, and (3) a large commercial sc

  20. THE 1998 NOVEMBER 14 OCCULTATION OF GSC 0622-00345 BY SATURN. II. STRATOSPHERIC THERMAL PROFILE, POWER SPECTRUM, AND GRAVITY WAVES

    SciTech Connect (OSTI)

    Harrington, Joseph [Planetary Sciences Group, Department of Physics, University of Central Florida, Orlando, FL 32816-2385 (United States); French, Richard G. [Astronomy Department, Wellesley College, Wellesley, MA 02481 (United States); Matcheva, Katia, E-mail: jh@physics.ucf.ed, E-mail: rfrench@wellesley.ed, E-mail: katia@phys.ufl.ed [Department of Physics, University of Florida, P.O. Box 118440, Gainesville, FL 32611 (United States)

    2010-06-10T23:59:59.000Z

    On 1998 November 14, Saturn and its rings occulted the star GSC 0622-00345. The occultation latitude was 55.{sup 0}5 S. This paper analyzes the 2.3 {mu}m light curve derived by Harrington and French. A fixed-baseline isothermal fit to the light curve has a temperature of 140 {+-} 3 K, assuming a mean molecular mass of 2.35 AMU. The thermal profile obtained by numerical inversion is valid between 1 and 60 {mu}bar. The vertical temperature gradient is > 0.2 K km{sup -1} more stable than the adiabatic lapse rate, but it still shows the alternating-rounded-spiked features seen in many temperature gradient profiles from other atmospheric occultations and usually attributed to breaking gravity (buoyancy) waves. We conduct a wavelet analysis of the thermal profile, and show that, even with our low level of noise, scintillation due to turbulence in Earth's atmosphere can produce large temperature swings in light-curve inversions. Spurious periodic features in the 'reliable' region of a wavelet amplitude spectrum can exceed 0.3 K in our data. We also show that gravity-wave model fits to noisy isothermal light curves can lead to convincing wave 'detections'. We provide new significance tests for localized wavelet amplitudes, wave model fits, and global power spectra of inverted occultation light curves by assessing the effects of pre- and post-occultation noise on these parameters. Based on these tests, we detect several significant ridges and isolated peaks in wavelet amplitude, to which we fit a gravity wave model. We also strongly detect the global power spectrum of thermal fluctuations in Saturn's atmosphere, which resembles the 'universal' (modified Desaubies) curve associated with saturated spectra of propagating gravity waves on Earth and Jupiter.

  1. System using a megawatt class millimeter wave source and a high-power rectenna to beam power to a suspended platform

    DOE Patents [OSTI]

    Caplan, Malcolm; Friedman, Herbert W.

    2005-07-19T23:59:59.000Z

    A system for beaming power to a high altitude platform is based upon a high power millimeter gyrotron source, optical transmission components, and a high-power receiving antenna (i.e., a rectenna) capable of rectifying received millimeter energy and converting such energy into useable electrical power.

  2. Puget Sound Tidal Energy In-Water Testing and Development Project Final Technical Report

    SciTech Connect (OSTI)

    Craig W. Collar

    2012-11-16T23:59:59.000Z

    Tidal energy represents potential for the generation of renewable, emission free, environmentally benign, and cost effective energy from tidal flows. A successful tidal energy demonstration project in Puget Sound, Washington may enable significant commercial development resulting in important benefits for the northwest region and the nation. This project promoted the United States Department of Energy�s Wind and Hydropower Technologies Program�s goals of advancing the commercial viability, cost-competitiveness, and market acceptance of marine hydrokinetic systems. The objective of the Puget Sound Tidal Energy Demonstration Project is to conduct in-water testing and evaluation of tidal energy technology as a first step toward potential construction of a commercial-scale tidal energy power plant. The specific goal of the project phase covered by this award was to conduct all activities necessary to complete engineering design and obtain construction approvals for a pilot demonstration plant in the Admiralty Inlet region of the Puget Sound. Public Utility District No. 1 of Snohomish County (The District) accomplished the objectives of this award through four tasks: Detailed Admiralty Inlet Site Studies, Plant Design and Construction Planning, Environmental and Regulatory Activities, and Management and Reporting. Pre-Installation studies completed under this award provided invaluable data used for site selection, environmental evaluation and permitting, plant design, and construction planning. However, these data gathering efforts are not only important to the Admiralty Inlet pilot project. Lessons learned, in particular environmental data gathering methods, can be applied to future tidal energy projects in the United States and other parts of the world. The District collaborated extensively with project stakeholders to complete the tasks for this award. This included Federal, State, and local government agencies, tribal governments, environmental groups, and others. All required permit and license applications were completed and submitted under this award, including a Final License Application for a pilot hydrokinetic license from the Federal Energy Regulatory Commission. The tasks described above have brought the project through all necessary requirements to construct a tidal pilot project in Admiralty Inlet with the exception of final permit and license approvals, and the selection of a general contractor to perform project construction.

  3. On tidal capture of primordial black holes by neutron stars

    E-Print Network [OSTI]

    Guillaume Defillon; Etienne Granet; Petr Tinyakov; Michel H. G. Tytgat

    2014-09-01T23:59:59.000Z

    The fraction of primordial black holes (PBHs) of masses $10^{17} - 10^{26}$ g in the total amount of dark matter may be constrained by considering their capture by neutron stars (NSs), which leads to the rapid destruction of the latter. The constraints depend crucially on the capture rate which, in turn, is determined by the energy loss by a PBH passing through a NS. Two alternative approaches to estimate the energy loss have been used in the literature: the one based on the dynamical friction mechanism, and another on tidal deformations of the NS by the PBH. The second mechanism was claimed to be more efficient by several orders of magnitude due to the excitation of particular oscillation modes reminiscent of the surface waves. We address this disagreement by considering a simple analytically solvable model that consists of a flat incompressible fluid in an external gravitational field. In this model, we calculate the energy loss by a PBH traversing the fluid surface. We find that the excitation of modes with the propagation velocity smaller than that of PBH is suppressed, which implies that in a realistic situation of a supersonic PBH the large contributions from the surface waves are absent and the above two approaches lead to consistent expressions for the energy loss.

  4. Poster presented at the OCEANS'11 Conference, September, 2011 Seeking Optimal Geometry of a Heaving Body for Improved Wave Power

    E-Print Network [OSTI]

    , standard of living, and dependency on technology indicate a future increase in energy demand (Fujita, 2002). This increase in energy demand coupled with recent concern for climate change and rising oil prices has the radiated wave amplitude at negative infinity (-) The plastic floater models have the same width as the wave

  5. Tidally-induced warps in protostellar discs

    E-Print Network [OSTI]

    C. Terquem; J. Papaloizou; R. Nelson

    1998-10-01T23:59:59.000Z

    We review results on the dynamics of warped gaseous discs. We consider tidal perturbation of a Keplerian disc by a companion star orbiting in a plane inclined to the disc. The perturbation induces the precession of the disc, and thus of any jet it could drive. In some conditions the precession rate is uniform, and as a result the disc settles into a warp mode. The tidal torque also leads to the truncation of the disc, to the evolution of the inclination angle (not necessarily towards alignment of the disc and orbital planes) and to a transport of angular momentum in the disc. We note that the spectral energy distribution of such a warped disc is different from that of a flat disc. We conclude by listing observational effects of warps in protostellar discs.

  6. Tidal heating in multilayered terrestrial exoplanets

    SciTech Connect (OSTI)

    Henning, Wade G.; Hurford, Terry, E-mail: wade.g.henning@nasa.gov [NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)

    2014-07-01T23:59:59.000Z

    The internal pattern and overall magnitude of tidal heating for spin-synchronous terrestrial exoplanets from 1 to 2.5 R{sub E} is investigated using a propagator matrix method for a variety of layer structures. Particular attention is paid to ice-silicate hybrid super-Earths, where a significant ice mantle is modeled to rest atop an iron-silicate core, and may or may not contain a liquid water ocean. We find multilayer modeling often increases tidal dissipation relative to a homogeneous model, across multiple orbital periods, due to the ability to include smaller volume low viscosity regions, and the added flexure allowed by liquid layers. Gradations in parameters with depth are explored, such as allowed by the Preliminary Earth Reference Model. For ice-silicate hybrid worlds, dramatically greater dissipation is possible beyond the case of a silicate mantle only, allowing non-negligible tidal activity to extend to greater orbital periods than previously predicted. Surface patterns of tidal heating are found to potentially be useful for distinguishing internal structure. The influence of ice mantle depth and water ocean size and position are shown for a range of forcing frequencies. Rates of orbital circularization are found to be 10-100 times faster than standard predictions for Earth-analog planets when interiors are moderately warmer than the modern Earth, as well as for a diverse range of ice-silicate hybrid super-Earths. Circularization rates are shown to be significantly longer for planets with layers equivalent to an ocean-free modern Earth, as well as for planets with high fractions of either ice or silicate melting.

  7. Tidal interactions in multi-planet systems

    E-Print Network [OSTI]

    Papaloizou, J C B

    2011-01-01T23:59:59.000Z

    We study systems of close orbiting planets evolving under the influence of tidal circularization. It is supposed that a commensurability forms through the action of disk induced migration and orbital circularization. After the system enters an inner cavity or the disk disperses the evolution continues under the influence of tides due to the central star which induce orbital circularization. We derive approximate analytic models that describe the evolution away from a general first order resonance that results from tidal circularization in a two planet system and which can be shown to be a direct consequence of the conservation of energy and angular momentum. We consider the situation when the system is initially very close to resonance and also when the system is between resonances. We also perform numerical simulations which confirm these models and then apply them to two and four planet systems chosen to have parameters related to the GJ581 and HD10180 systems. We also estimate the tidal dissipation rates t...

  8. Department of Energy Bonneville Power Administration

    E-Print Network [OSTI]

    Department of Energy Bonneville Power Administration P.O. Box 3621 Portland, Oregon 97208Op prioritizes habitat projects that are in tidally influenced areas of the tributaries. CRESTS new habitat

  9. A numerical and observational investigation of short and long internal wave interactions

    E-Print Network [OSTI]

    Vanderhoff, Julie Crockett

    2007-01-01T23:59:59.000Z

    waves are present in the ocean, with energy in the spectrumthe dissipation of energy in the ocean and atmosphere. Thedissipation of tidal energy in the deep ocean inferred from

  10. Tidal inlet processes and deposits along a low energy coastline: easter Barataria Bight, Louisiana

    SciTech Connect (OSTI)

    Moslow, T.F.; Levin, D.R.

    1985-01-01T23:59:59.000Z

    Historical, seismic and vibracore data were used to determine the geologic framework of sand deposits along the predominantly muddy coastline of eastern Barataria Bight, Louisiana. Three inlet types with distinct sand body geometries and morphologies were identified and are found 1) at flanking barrier island systems spread laterally across the front of interdistributary bays; 2) in old distributary channels; 3) at overwash breaches; or 4) combination of these. Barataria Bight, a sheltered barrier island shoreline embayment with limited sand supply, minimal tidal range (36 cm) and low wave energies (30 cm) can be used to show examples of each inlet type. Barataria Pass and Quatre Bayou Pass are inlets located in old distributary channels. However, Barataria Pass has also been affected by construction between barrier islands. Pass Ronquille is located where the coastline has transgressed a low area in the delta plain. This breach is situated in a hydraulically efficient avenue between the Gulf and Bay Long behind it. Pass Abel is a combination of a low-profile barrier breach and the reoccupation of an old distributary channel. Shelf and shoreline sands are reworked from abandoned deltaic distributaries and headlands. Inner shelf sands are concentrated in thick (10 m) shore-normal relict distributary channels with fine grained cross-bedded and ripple laminated sand overlain by burrowed shelf muds. Shoreface sand deposits occur as 2-3 m thick, fine-grained, coarsening upward and burrowed ebb-tidal delta sequences and shore-parallel relict tidal inlet channels filled through lateral accretion.

  11. MHK Technologies/New Knowledge Wind and Wave Renewable Mobile...

    Open Energy Info (EERE)

    Wave Renewable Mobile Wind and Wave Power Plant Platform < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage New Knowledge Wind and Wave Renewable...

  12. THE EFFECT OF MASS LOSS ON THE TIDAL EVOLUTION OF EXTRASOLAR PLANET

    E-Print Network [OSTI]

    Guo, Jianheng

    By combining mass loss and tidal evolution of close-in planets, we present a qualitative study on their tidal migrations. We incorporate mass loss in tidal evolution for planets with different masses and find that mass ...

  13. Investigation of tidal power, cobscook bay, maine. Reconnaissance report

    SciTech Connect (OSTI)

    Not Available

    1980-08-01T23:59:59.000Z

    Cobscook Bay is located in Eastern, Maine, near Eastport. The bay experiences an average tide range of 18 feet and has a surface area of about 40 square miles at high tide. Single pool, single effect projects have been analyzed. Two projects, one having an installed capacity of 165 Mw and the other, 195 Mw were found to be economically feasible when forecasted, fuel escalation costs were considered.

  14. Severn Tidal Power Group STpg | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformationScottsOklahoma: EnergySeoulSettlers

  15. MHK Projects/Pennamaquan Tidal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet <|Galway Bay IE

  16. MHK Technologies/Jiangxia Tidal Power Station | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK ProjectsFlagship <Helix

  17. Tidal Energy Resource Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|Industrial Sector,Department ThirdCosts | Department ofTidal Energy

  18. Tidal Sails AS | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson Ethanol LLCEnergyoThornwood,TianfuTidal Sails AS Jump to:

  19. TidalStream | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin Hydropower Station Jump to: navigation, searchNewTidal

  20. Ion acoustic waves in the plasma with the power-law q-distribution in nonextensive statistics

    E-Print Network [OSTI]

    Liyan, Liu

    2008-01-01T23:59:59.000Z

    We investigate the dispersion relation and Landau damping of ion acoustic waves in the collisionless magnetic-field-free plasma if it is described by the nonextensive q-distributions of Tsallis statistics. We show that the increased numbers of superthermal particles and low velocity particles can explain the strengthened and weakened modes of Landau damping, respectively, with the q-distribution. When the ion temperature is equal to the electron temperature, the weakly damped waves are found to be the distributions with small values of q.

  1. Bragg grating rogue wave

    E-Print Network [OSTI]

    Degasperis, Antonio; Aceves, Alejandro B

    2015-01-01T23:59:59.000Z

    We derive the rogue wave solution of the classical massive Thirring model, that describes nonlinear optical pulse propagation in Bragg gratings. Combining electromagnetically induced transparency with Bragg scattering four-wave mixing, may lead to extreme waves at extremely low powers.

  2. Environmental Effects of Sediment Transport Alteration and Impacts on Protected Species: Edgartown Tidal Energy Project

    SciTech Connect (OSTI)

    Barrett, Stephen B.; Schlezinger, David, Ph.D; Cowles, Geoff, Ph.D; Hughes, Patricia; Samimy; Roland, I.; and Terray, E, Ph.D.

    2012-12-29T23:59:59.000Z

    The Islands of Martha�¢����s Vineyard and Nantucket are separated from the Massachusetts mainland by Vineyard and Nantucket Sounds; water between the two islands flows through Muskeget Channel. The towns of Edgartown (on Martha�¢����s Vineyard) and Nantucket recognize that they are vulnerable to power supply interruptions due to their position at the end of the power grid, and due to sea level rise and other consequences of climate change. The tidal energy flowing through Muskeget Channel has been identified by the Electric Power Research Institute as the strongest tidal resource in Massachusetts waters. The Town of Edgartown proposes to develop an initial 5 MW (nameplate) tidal energy project in Muskeget Channel. The project will consist of 14 tidal turbines with 13 providing electricity to Edgartown and one operated by the University of Massachusetts at Dartmouth for research and development. Each turbine will be 90 feet long and 50 feet high. The electricity will be brought to shore by a submarine cable buried 8 feet below the seabed surface which will landfall in Edgartown either on Chappaquiddack or at Katama. Muskeget Channel is located between Martha�¢����s Vineyard and Nantucket. Its depth ranges between 40 and 160 feet in the deepest portion. It has strong currents where water is transferred between Nantucket Sound and the Atlantic Ocean continental shelf to the south. This makes it a treacherous passage for navigation. Current users of the channel are commercial and recreational fishing, and cruising boats. The US Coast Guard has indicated that the largest vessel passing through the channel is a commercial scallop dragger with a draft of about 10 feet. The tidal resource in the channel has been measured by the University of Massachusetts-Dartmouth and the peak velocity flow is approximately 5 knots. The technology proposed is the helical Gorlov-type turbine positioned with a horizontal axis that is positively buoyant in the water column and held down by anchors. This is the same technology proposed by Ocean Renewable Power Company in the Western Passage and Cobscook Bay near Eastport Maine. The blades rotate in two directions capturing the tides energy both during flood and ebb tides. The turbines will be anchored to the bottom and suspended in the water column. Initial depth of the turbines is expected to be about 25 feet below the surface to avoid impacting navigation while also capturing the strongest currents. The Town of Edgartown was initially granted a Preliminary Permit by the Federal Energy Regulatory Commission (FERC) on March 1, 2008, and has recently received a second permit valid through August 2014. The Preliminary Permit gives Edgartown the exclusive right to apply for a power generation license for power generated from the hydrokinetic energy in the water flowing in this area. Edgartown filed a Draft Pilot License Application with FERC on February 1, 2010 and an Expanded Environmental Notification Form with the Massachusetts Environmental Policy Act (MEPA) Office at the same time. It expects to file a Final License Application in late 2013. Harris Miller Miller & Hanson (HMMH) of Burlington Massachusetts is acting as the Project Manager for the Town of Edgartown and collaborating with other partners of the project including the University of Massachusetts - Dartmouth's Marine Renewable Energy Center and the Massachusetts Clean Energy Center. HMMH was awarded a grant under the Department of Energy's Advanced Water Program to conduct marine science and hydrokinetic site-specific environmental studies for projects actively seeking a FERC License. HMMH, on behalf of the Town, is managing this comprehensive study of the marine environment in Muskeget Channel and potential impacts of the tidal project on indicator species and habitats. The University of Massachusetts School of Marine Science and Technology (SMAST) conducted oceanographic studies of tidal currents, tide level, benthic habit

  3. Water Power for a Clean Energy Future (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01T23:59:59.000Z

    This fact sheet provides an overview of the U.S. Department of Energy's Wind and Water Power Program's water power research activities. Water power is the nation's largest source of clean, domestic, renewable energy. Harnessing energy from rivers, manmade waterways, and oceans to generate electricity for the nation's homes and businesses can help secure America's energy future. Water power technologies fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower facilities include run-of-the-river, storage, and pumped storage. Most conventional hydropower plants use a diversion structure, such as a dam, to capture water's potential energy via a turbine for electricity generation. Marine and hydrokinetic technologies obtain energy from waves, tides, ocean currents, free-flowing rivers, streams and ocean thermal gradients to generate electricity. The United States has abundant water power resources, enough to meet a large portion of the nation's electricity demand. Conventional hydropower generated 257 million megawatt-hours (MWh) of electricity in 2010 and provides 6-7% of all electricity in the United States. According to preliminary estimates from the Electric Power Resource Institute (EPRI), the United States has additional water power resource potential of more than 85,000 megawatts (MW). This resource potential includes making efficiency upgrades to existing hydroelectric facilities, developing new low-impact facilities, and using abundant marine and hydrokinetic energy resources. EPRI research suggests that ocean wave and in-stream tidal energy production potential is equal to about 10% of present U.S. electricity consumption (about 400 terrawatt-hours per year). The greatest of these resources is wave energy, with the most potential in Hawaii, Alaska, and the Pacific Northwest. The Department of Energy's (DOE's) Water Power Program works with industry, universities, other federal agencies, and DOE's national laboratories to promote the development and deployment of technologies capable of generating environmentally sustainable and cost-effective electricity from the nation's water resources.

  4. A deeper X-ray study of the core of the Perseus galaxy cluster: the power of sound waves and the distribution of metals and cosmic rays

    E-Print Network [OSTI]

    J. S. Sanders; A. C. Fabian

    2007-08-15T23:59:59.000Z

    We make a further study of the very deep Chandra observation of the X-ray brightest galaxy cluster, A426 in Perseus. We examine the radial distribution of energy flux inferred by the quasi-concentric ripples in surface brightness, assuming they are due to sound waves, and show that it is a significant fraction of the energy lost by radiative cooling within the inner 75-100 kpc, where the cooling time is 4-5 Gyr, respectively. The wave flux decreases outward with radius, consistent with energy being dissipated. Some newly discovered large ripples beyond 100 kpc, and a possible intact bubble at 170 kpc radius, may indicate a larger level of activity by the nucleus a few 100 Myr ago. The distribution of metals in the intracluster gas peaks at a radius of about 40 kpc and is significantly clumpy on scales of 5 kpc. The temperature distribution of the soft X-ray filaments and the hard X-ray emission component found within the inner 50 kpc are analysed in detail. The pressure due to the nonthermal electrons, responsible for a spectral component interpreted as inverse Compton emission, is high within 40 kpc of the centre and boosts the power in sound waves there; it drops steeply beyond 40 kpc. We find no thermal emission from the radio bubbles; in order for any thermal gas to have a filling factor within the bubbles exceeding 50 per cent, the temperature of that gas has to exceed 50 keV.

  5. 2/1/2014 Tinywindmills mayone daypower cell phones | INDIAN POWER SECTOR http://indianpowersector.com/home/2014/01/tiny-windmills-may-one-day-power-cell-phones/ 1/8

    E-Print Network [OSTI]

    Chiao, Jung-Chih

    Electricity Regulation RGGVY National Solar Mission R-APDRP Power Plant Thermal Power Plant Hydro Power Plant Nuclear Power Plant Renewable Energy Wind Power Tidal Power Biomass Power Geothermal Energy Solar Power Solar India Info Policy Support for Renewable Energy Power Companies State Electricity Board PSU Private

  6. Design, characterization, and modeling of GaN based HFETs for millimeter wave and microwave power amplifier applications

    E-Print Network [OSTI]

    Conway, Adam M.

    2006-01-01T23:59:59.000Z

    power GaN electronics thermally resistive substrates,” IEEE400um SiC (Si, GaN, Sapphire, Diamond) substrate 5um Au 50umfree standing GaN or SiC substrates). At room temperature,

  7. Cycloidal Wave Energy Converter

    SciTech Connect (OSTI)

    Stefan G. Siegel, Ph.D.

    2012-11-30T23:59:59.000Z

    This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will exceed this initial performance estimates. In advancing the Technology Readiness Level (TRL) of this type of wave energy converter from 3 to 4, we find the CycWEC to exceed our initial estimates in terms of hydrodynamic performance. Once fully developed and optimized, it has the potential to not just outperform all other WEC technologies, but to also deliver power at a lower LCOE than competing conventional renewables like wind and solar. Given the large wave power resource both domestically and internationally, this technology has the potential to lead to a large improvement in our ability to produce clean electricity at affordable cost.

  8. Broadband Acoustic Environment at a Tidal Energy Site in Puget Sound

    SciTech Connect (OSTI)

    Xu, Jinshan; Deng, Zhiqun; Martinez, Jayson J.; Carlson, Thomas J.; Myers, Joshua R.; Weiland, Mark A.

    2012-04-04T23:59:59.000Z

    Admiralty Inlet has been selected as a potential tidal energy site. It is located near shipping lanes, is a highly variable acoustic environment, and is frequented by the endangered southern resident killer whale (SRKW). Resolving environmental impacts is the first step to receiving approval to deploy tidal turbines. Several monitoring technologies are being considered to determine the presence of SRKW near the turbines. Broadband noise level measurements are critical for determining design and operational specifications of these technologies. Acoustic environment data at the proposed site was acquired at different depths using a cabled vertical line array from three different cruises during high tidal period in February, May, and June 2011. The ambient noise level decreases approximately 25 dB re 1 ?Pa per octave from frequency ranges of 1 kHz to 70 kHz, and increases approximately 20 dB re 1 ?Pa per octave for the frequency from 70 kHz to 200 kHz. The difference of noise pressure levels in different months varies from 10 to 30 dB re 1 ?Pa for the frequency range below 70 kHz. Commercial shipping and ferry vessel traffic were found to be the most significant contributors to sound pressure levels for the frequency range from 100 Hz to 70 kHz, and the variation could be as high as 30 dB re 1 ?Pa. These noise level measurements provide the basic information for designing and evaluating both active and passive monitoring systems proposed for deploying and operating for tidal power generation alert system.

  9. On the circulation and tidal flushing of Mobile Bay, Alabama 

    E-Print Network [OSTI]

    Austin, George Belden

    1953-01-01T23:59:59.000Z

    is not filling with sediment to any apparent degree. The U. S. Corps of Engineers maintains ths Mobile Ship Channel to a depth of thirty-two feet. Dredging operations proceed during most of the year since this depth is some twenty-two f'eet below the mean bay... ~ ~ ~ ~ ix ~ ~ ~ ~ ~ ~ ~ ~ ~ 1 ~ 4 6 9 10 E. Meteorological III. TIDAL FLUSHING THEORY 15 A. Ketchum's Tidal Prism Theory B. Stommel's and Arons' Ydxing Length Theory. of Tidal Flushing IV. THE HYDROGRAPHIC SURVEY 22 27 A. Planning B...

  10. On the circulation and tidal flushing of Mobile Bay, Alabama

    E-Print Network [OSTI]

    Austin, George Belden

    1953-01-01T23:59:59.000Z

    . For each of the twenty-eight station positions, curves vere then drawn for temperature-depth and salinity&epth for the different ob- served tidal stages. From these curves temperature-depth sections (Figure V) and salinity-depth sections (Figures VI, VII...) vere oon- structed 1' or six cross-sections of Mobile Bay and for the ship channel length, for the different tidal stages. Current velocity vectors were plotted by station for surface and bottom at ebb and flood tidal stages. From these data surface...

  11. NAME: Elkhorn Slough Tidal Marsh Restoration: Building Resilience with the Beneficial Reuse of Sediment

    E-Print Network [OSTI]

    US Army Corps of Engineers

    stormwater runoff. EXPECTED BENEFITS: Habitats, particularly tidal marsh, intertidal mudflat, and soft

  12. Numerical and Experimental Investigation of Tidal Current Energy Extraction 

    E-Print Network [OSTI]

    Sun, Xiaojing

    2008-01-01T23:59:59.000Z

    Numerical and experimental investigations of tidal current energy extraction have been conducted in this study. A laboratory-scale water flume was simulated using commercial computational fluid dynamics (CFD) code FLUENT. ...

  13. analysing tidally induced: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Tidally-induced thermonuclear Supernovae Astrophysics (arXiv) Summary: We discuss the results of 3D simulations...

  14. Hydrodynamic analysis of a vertical axis tidal current turbine 

    E-Print Network [OSTI]

    Gretton, Gareth I.

    2009-01-01T23:59:59.000Z

    Tidal currents can be used as a predictable source of sustainable energy, and have the potential to make a useful contribution to the energy needs of the UK and other countries with such a resource. One of the technologies ...

  15. Geomorphic structure of tidal hydrodynamics in salt marsh creeks

    E-Print Network [OSTI]

    Fagherazzi, Sergio

    of the tidal signal within the marsh area. Citation: Fagherazzi, S., M. Hannion, and P. D'Odorico (2008 by elegant hydrological and geomorphological theories [Gupta et al., 1980; Rodriguez-Iturbe and Valdes, 1979

  16. Nonrotating black hole in a post-Newtonian tidal environment

    E-Print Network [OSTI]

    Stephanne Taylor; Eric Poisson

    2008-09-11T23:59:59.000Z

    We examine the motion and tidal dynamics of a nonrotating black hole placed within a post-Newtonian external spacetime. The tidal perturbation created by the external environment is treated as a small perturbation. At a large distance from the black hole, the gravitational field of the external distribution of matter is assumed to be sufficiently weak to be adequately described by the (first) post-Newtonian approximation to general relativity. There, the black hole is treated as a monopole contribution to the total gravitational field. There exists an overlap in the domains of validity of each description, and the black-hole and post-Newtonian metrics are matched in the overlap. The matching procedure produces the equations of motion for the black hole and the gravito-electric and gravito-magnetic tidal fields acting on the black hole. We first calculate the equations of motion and tidal fields by making no assumptions regarding the nature of the post-Newtonian environment; this could contain a continuous distribution of matter or any number of condensed bodies. We next specialize our discussion to a situation in which the black hole is a member of a post-Newtonian two-body system. As an application of our results, we examine the geometry of the deformed event horizon and calculate the tidal heating of the black hole, the rate at which it acquires mass as a result of its tidal interaction with the companion body.

  17. The tidal disruption of protoplanetary accretion discs

    E-Print Network [OSTI]

    John D. Larwood

    1997-05-30T23:59:59.000Z

    In this paper we revisit the problem of the tidal interaction occuring between a protostellar accretion disc and a secondary point mass following a parabolic trajectory. We model the disc response analytically and we compare our results with three-dimensional SPH simulations. Inviscid as well as viscous hydrodynamics is considered. We show that in a viscous system the response derived from inviscid considerations is predominant even for the highest estimates of an anomalous disc shear viscosity. The angular momentum lost from the disc during the encounter is derived from linear theory, for distant fly-bys, as well as the changes to the disc orientation expected in non-coplanar encounters. It is shown that the target discs can become warped and precess by a small amount during non-coplanar encounters. This small precession is shown to give rise to a relative tilt of the disc which is always more important for determining its final orientation than is the change to the orbital inclination. We discuss the implications of our results for protostellar accretion discs and planetary systems.

  18. Gravity Waves Gravity Waves

    E-Print Network [OSTI]

    Weijgaert, Rien van de

    ;14/03/2014 6 H L H L L Phase & Group Velocity #12;14/03/2014 7 Doppler Effect #12;14/03/2014 8 Shock Waves #12;14/03/2014 14 Supernova Remnant Cassiopeia A Supernova blast waves #12;14/03/2014 15 Tycho's Remnant (SN 1572AD A SNR flythrough Theory of Supernova Blast Waves Supernovae: Type Ia Subsonic deflagration wave turning

  19. The Wirewalker: A Vertically Profiling Instrument Carrier Powered by Ocean Waves R. PINKEL, M. A. GOLDIN, J. A. SMITH, O. M. SUN, A. A. AJA, M. N. BUI, AND T. HUGHEN

    E-Print Network [OSTI]

    Smith, Jerome A.

    The Wirewalker: A Vertically Profiling Instrument Carrier Powered by Ocean Waves R. PINKEL, M. A­time record. The elements of the WW system in- clude a surface buoy, a wire suspended from the buoy, a weight at the end of the wire, and the profiler itself. The wire and weight follow the surface motion of the buoy

  20. Using Tidal Tails to Probe Dark Matter Halos

    E-Print Network [OSTI]

    John Dubinski; J. Christopher Mihos; Lars Hernquist

    1995-09-04T23:59:59.000Z

    We use simulations of merging galaxies to explore the sensitivity of the morphology of tidal tails to variations of the halo mass distributions in the parent galaxies. Our goal is to constrain the mass of dark halos in well-known merging pairs. We concentrate on prograde encounters between equal mass galaxies which represent the best cases for creating tidal tails, but also look at systems with different relative orientations, orbital energies and mass ratios. As the mass and extent of the dark halo increase in the model galaxies, the resulting tidal tails become shorter and less massive, even under the most favorable conditions for producing these features. Our simulations imply that the observed merging galaxies with long tidal tails ($\\sim 50-100$ kpc) such as NGC 4038/39 (the Antennae) and NGC 7252 probably have halo:disk+bulge mass ratios less than 10:1. These results conflict with the favored values of the dark halo mass of the Milky Way derived from satellite kinematics and the timing argument which give a halo:disk+bulge mass ratio of $\\sim 30:1$. However, the lower bound of the estimated dark halo mass in the Milky Way (mass ratio $\\sim 10:1$) is still consistent with the inferred tidal tail galaxy masses. Our results also conflict with the expectations of $\\Omega=1$ cosmologies such as CDM which predict much more massive and extended dark halos.

  1. Non-dissipative tidal synchronization in accreting binary white dwarf systems

    E-Print Network [OSTI]

    Etienne Racine; E. Sterl Phinney; Phil Arras

    2007-09-18T23:59:59.000Z

    We study a non-dissipative hydrodynamical mechanism that can stabilize the spin of the accretor in an ultra-compact double white dwarf binary. This novel synchronization mechanism relies on a nonlinear wave interaction spinning down the background star. The essential physics of the synchronization mechanism is summarized as follows. As the compact binary coalesces due to gravitational wave emission, the largest star eventually fills its Roche lobe and accretion starts. The accretor then spins up due to infalling material and eventually reaches a spin frequency where a normal mode of the star is resonantly driven by the gravitational tidal field of the companion. If the resonating mode satisfies a set of specific criteria, which we elucidate in this paper, it exchanges angular momentum with the background star at a rate such that the spin of the accretor locks at this resonant frequency, even though accretion is ongoing. Some of the accreted angular momentum that would otherwise spin up the accretor is fed back into the orbit through this resonant tidal interaction. Two modes capable of stabilizing the accretor's spin are the l=4,m=2 and l=5,m=3 CFS unstable hybrid r-modes, which stabilize the spin of the accretor at frequency 2.6 and 1.5 times the binary's orbital frequency respectively. Since the stabilization mechanism relies on continuously driving a mode at resonance, its lifetime is limited since eventually the mode amplitude saturates due to non-linear mode-mode coupling. Rough estimates of the lifetime of the effect lie from a few orbits to millions of years.

  2. TIDAL DISRUPTION FLARES: THE ACCRETION DISK PHASE

    SciTech Connect (OSTI)

    Montesinos Armijo, Matias; De Freitas Pacheco, Jose A. [Observatoire de la Cote d'Azur, Laboratoire Cassiopee, Universite de Nice Sophia-Antipolis Bd de l'Observatoire, BP 4229, 06304 Nice Cedex 4 (France)

    2011-08-01T23:59:59.000Z

    The evolution of an accretion disk, formed as a consequence of the disruption of a star by a black hole, is followed by solving numerically hydrodynamic equations. The present investigation aims to study the dependence of resulting light curves on dynamical and physical properties of such a transient disk during its existence. One of the main results derived from our simulations is that blackbody fits of X-ray data tend to overestimate the true mean disk temperature. In fact, the temperature derived from blackbody fits should be identified with the color X-ray temperature rather than the average value derived from the true temperature distribution along the disk. The time interval between the beginning of the circularization of the bound debris and the beginning of the accretion process by the black hole is determined by the viscous (or accretion) timescale, which also fixes the rising part of the resulting light curve. The luminosity peak coincides with the beginning of matter accretion by the black hole and the late evolution of the light curve depends on the evolution of the debris fallback rate. Peak bolometric luminosities are in the range 10{sup 45}-10{sup 46} erg s{sup -1}, whereas peak luminosities in soft X-rays (0.2-2.0 keV) are typically one order of magnitude lower. The typical timescale derived from our preferred models for the flare luminosity to decay by two orders of magnitude is about 3-4 yr. Predicted soft X-ray light curves reproduce quite well data on galaxies in which a variable X-ray emission possibly related to a tidal event was detected. In the cases of NGC 3599 and IC 3599, data are reproduced well by models defined by a black hole with mass {approx}10{sup 7} M{sub sun} and a disrupted star of about 1 solar mass. The X-ray variation observed in XMMSL1 is consistent with a model defined by a black hole with mass {approx}3 x 10{sup 6} M{sub sun} and a disrupted star of 1 solar mass, while that observed in the galaxy situated in the cluster A1689 is consistent with a model including a black hole of {approx}10{sup 7} M{sub sun} and a disrupted star of {approx}0.5 M{sub sun}.

  3. Resonant Oscillations and Tidal Heating in Coalescing Binary Neutron Stars

    E-Print Network [OSTI]

    Dong Lai

    1994-04-25T23:59:59.000Z

    Tidal interaction in a coalescing neutron star binary can resonantly excite the g-mode oscillations of the neutron star when the frequency of the tidal driving force equals the intrinsic g-mode frequencies. We study the g-mode oscillations of cold neutron stars using recent microscopic nuclear equations of state, where we determine self-consistently the sound speed and Brunt-V\\"ais\\"al\\"a frequency in the nuclear liquid core. The properties of the g-modes associated with the stable stratification of the core depend sensitively on the pressure-density relation as well as the symmetry energy of the dense nuclear matter. The frequencies of the first ten g-modes lie approximately in the range of $10-100$ Hz. Resonant excitations of these g-modes during the last few minutes of the binary coalescence result in energy transfer and angular momentum transfer from the binary orbit to the neutron star. The angular momentum transfer is possible because a dynamical tidal lag develops even in the absence of fluid viscosity. However, since the coupling between the g-mode and the tidal potential is rather weak, the amount of energy transfer during a resonance and the induced orbital phase error are very small. Resonant excitations of the g-modes play an important role in tidal heating of binary neutron stars. Without the resonances, viscous dissipation is effective only when the stars are close to contact. The resonant oscillations result in dissipation at much larger orbital separation. The actual amount of tidal heating depends on the viscosity of the neutron star. Using the microscopic viscosity, we find that the binary neutron stars are heated to a temperature $\\sim 10^8$ K before they come into contact.

  4. Modeling Tidal Freshwater Marsh Sustainability in the Sacramento–San Joaquin Delta Under a Broad Suite of Potential Future Scenarios

    E-Print Network [OSTI]

    Swanson, Kathleen M.; Drexler, Judith Z.; Fuller, Christopher C.; Schoellhamer, David H.

    2015-01-01T23:59:59.000Z

    Tidal Freshwater Marsh Sustainability in the Sacramento–Sanof pulsing events to sustainability. Estuaries Coasts 18:Evaluating tidal marsh sustainability in the face of sea-

  5. Sustainability of a Tidal Freshwater Marsh Exposed to a Long-term Hydrologic Barrier and Sea Level Rise

    E-Print Network [OSTI]

    Vermont, University of

    a tidal fresh- water marsh perpendicular to the Patuxent River (Maryland) channel has created a northern elevation change . Accretion . Tidal freshwater marsh . Seasonal sedimentation . Jug Bay . Patuxent River

  6. A Conceptual Restoration Plan and Tidal Hydrology Assessment for Reconnecting Spring Branch Creek to Suisun Marsh, Solano County, California

    E-Print Network [OSTI]

    Olson, Jessica J.

    2012-01-01T23:59:59.000Z

    Marsh. UC Berkeley LA 222 Hydrology Term Paper. Orr, M. , S.Restoration Plan and Tidal Hydrology Assessment forthree consists of a tidal hydrology analysis before and

  7. Methylmercury Production in Tidal Salt Marsh Sediments and Potential Control Using Iron Amendments

    E-Print Network [OSTI]

    Ulrich, Patrick D.

    2011-01-01T23:59:59.000Z

    Bay, a freshwater tidal mudflat wetland in the Hudson River.species that utilized tidal mudflat or open bay habitats (in forage fish that utilize mudflat and wetland habitats

  8. Relativistic tidal heating of Hamiltonian quasi-local boundary expressions

    E-Print Network [OSTI]

    So, Lau Loi

    2015-01-01T23:59:59.000Z

    Purdue and Favata calculate the tidal heating used certain classical pseudotensors. Booth and Creighton employed the quasi-local mass formalism of Brown and York to demonstrate the same subject. All of them give the result matched with the Newtonian theory. Here we present another Hamiltonian quasi-local boundary expressions and all give the same desired value. This indicates that the tidal heating is unique as Thorne predicted. Moreover, we discovered that the pseudo-tensor method and quasi-local method are fundamentally different.

  9. Relativistic tidal heating of Hamiltonian quasi-local boundary expressions

    E-Print Network [OSTI]

    Lau Loi So

    2015-05-19T23:59:59.000Z

    Purdue and Favata calculate the tidal heating used certain classical pseudotensors. Booth and Creighton employed the quasi-local mass formalism of Brown and York to demonstrate the same subject. All of them give the result matched with the Newtonian theory. Here we present another Hamiltonian quasi-local boundary expressions and all give the same desired value. This indicates that the tidal heating is unique as Thorne predicted. Moreover, we discovered that the pseudo-tensor method and quasi-local method are fundamentally different.

  10. Extreme Value Analysis of Tidal Stream Velocity Perturbations

    SciTech Connect (OSTI)

    Harding, Samuel; Thomson, Jim; Polagye, Brian; Richmond, Marshall C.; Durgesh, Vibhav; Bryden, Ian

    2011-04-26T23:59:59.000Z

    This paper presents a statistical extreme value analysis of maximum velocity perturbations from the mean flow speed in a tidal stream. This study was performed using tidal velocity data measured using both an Acoustic Doppler Velocimeter (ADV) and an Acoustic Doppler Current Profiler (ADCP) at the same location which allows for direct comparison of predictions. The extreme value analysis implements of a Peak-Over-Threshold method to explore the effect of perturbation length and time scale on the magnitude of a 50-year perturbation.

  11. A numerical model for the coupled long-term evolution of salt marshes and tidal flats

    E-Print Network [OSTI]

    Fagherazzi, Sergio

    -shore mudflat model that takes into account tidal effects; Waeles et al. [2004] incor- porated in the same

  12. TIDAL HEATING OF EXTRASOLAR PLANETS Brian Jackson, Richard Greenberg, and Rory Barnes

    E-Print Network [OSTI]

    Barnes, Rory

    TIDAL HEATING OF EXTRASOLAR PLANETS Brian Jackson, Richard Greenberg, and Rory Barnes Lunar and gas cleared away, and as the orbits evolved there was substantial tidal heating within the planets. The tidal heating history of each planet may have contributed significantly to the thermal budget governing

  13. Tidal-Fluvial and Estuarine Processes in the Lower Columbia River: I. Along-channel Water Level Variations, Pacific Ocean to Bonneville Dam

    SciTech Connect (OSTI)

    Jay, D. A.; Leffler, K.; Diefenderfer, Heida L.; Borde, Amy B.

    2014-06-07T23:59:59.000Z

    This two-part paper provides comprehensive time and frequency domain analyses and models of along-channel water level variations in the 234km-long Lower Columbia River and Estuary (LCRE) and documents the response of floodplain wetlands thereto. In Part I, power spectra, continuous wavelet transforms, and harmonic analyses are used to understand the influences of tides, river flow, upwelling and downwelling, and hydropower operations ("power-peaking") on the water level regime. Estuarine water levels are influenced primarily by astronomical tides and coastal processes, and secondarily by river flow. The importance of coastal and tidal influences decreases in the landward direction, and water levels are increasingly controlled by river flow variations at periods from ?1day to years. Water level records are only slightly non-stationary near the ocean, but become increasingly irregular upriver. Although astronomically forced tidal constituents decrease above the estuary, tidal fortnightly and overtide variations increase for 80-200km landward, both relative to major tidal constituents and in absolute terms.

  14. Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2007

    SciTech Connect (OSTI)

    Sobocinski, Kathryn L.; Johnson, Gary E.; Sather, Nichole K.; Storch, Adam; Jones, Tucker A.; Mallette, Christine; Dawley, Earl M.; Skalski, John R.; Teel, David; Moran, Paul

    2008-03-18T23:59:59.000Z

    This document is the first annual report for the study titled “Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta in the Lower Columbia River.” Hereafter, we refer to this research as the Tidal Freshwater Monitoring (TFM) Study. The study is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, U.S. Army Corps of Engineers, U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act as a result of operation of the Federal Columbia River Power System (FCRPS). The project is performed under the auspices of the Northwest Power and Conservation Council’s Columbia Basin Fish and Wildlife Program.

  15. The Centre for Power Transmission

    E-Print Network [OSTI]

    Burton, Geoffrey R.

    The Centre for Power Transmission and Motion Control Centre for PTMC Department of Mechanical) 1225 38-6371 Email: ptmc@bath.ac.uk Web: http://www.bath.ac.uk/ptmc/ Consultancy Project WAVE POWER SYSTEM SIMULATIONS Power take-off systems Wave power take-off systems are an exciting new development

  16. Tidal Stage Variability of Fecal Coliform and Chlorophyll a

    E-Print Network [OSTI]

    Mallin, Michael

    leachates, leaking sewer mains, wild and do- mestic animal wastes, and runo. However, the inter- action environmental hazards, to enter an estuarine environment characterized by high variability regarding temperature to understanding both the basic ecology of tidal creeks and the applied aspects of sampling protocols and pollutant

  17. Pasture and Soil Management Following Tidal Saltwater Intrusion

    E-Print Network [OSTI]

    Provin, Tony; Redmon, Larry; McFarland, Mark L.; Feagley, Sam E.

    2009-05-26T23:59:59.000Z

    When land is flooded by saltwater, as after a hurricane tidal surge, it can long-term effects on soil productivity and fertility. This publication explains how to reclaim flooded pasture land. Having soil tested for salinity is an important step....

  18. Long-range propagation of ocean waves

    E-Print Network [OSTI]

    Young, William R.

    hours. Friday, February 22, 2013 #12;OceanPowerTechnologies A 103 foot long, 260ton buoy being tested #12;Wave Power? PelamisWavePower With T=10sec and a = 1 meter, the energy flux is 40kW/meter. An average 40kW/meter of wave power is typical of good sites. Energy Flux = cg × Energy Density = g2 Ta2 8

  19. Modeling In-stream Tidal Energy Extraction and Its Potential Environmental Impacts

    SciTech Connect (OSTI)

    Yang, Zhaoqing; Wang, Taiping; Copping, Andrea; Geerlofs, Simon H.

    2014-09-30T23:59:59.000Z

    In recent years, there has been growing interest in harnessing in-stream tidal energy in response to concerns of increasing energy demand and to mitigate climate change impacts. While many studies have been conducted to assess and map tidal energy resources, efforts for quantifying the associated potential environmental impacts have been limited. This paper presents the development of a tidal turbine module within a three-dimensional unstructured-grid coastal ocean model and its application for assessing the potential environmental impacts associated with tidal energy extraction. The model is used to investigate in-stream tidal energy extraction and associated impacts on estuarine hydrodynamic and biological processes in a tidally dominant estuary. A series of numerical experiments with varying numbers and configurations of turbines installed in an idealized estuary were carried out to assess the changes in the hydrodynamics and biological processes due to tidal energy extraction. Model results indicated that a large number of turbines are required to extract the maximum tidal energy and cause significant reduction of the volume flux. Preliminary model results also indicate that extraction of tidal energy increases vertical mixing and decreases flushing rate in a stratified estuary. The tidal turbine model was applied to simulate tidal energy extraction in Puget Sound, a large fjord-like estuary in the Pacific Northwest coast.

  20. Pis'ma v ZhETF, vol. 98, iss. 4, pp. 265 269 c 2013 August 25 Universal power law for the energy spectrum of breaking Riemann

    E-Print Network [OSTI]

    Pelinovsky, Dmitry

    , 2], surface and internal waves in oceans [3­7], tidal and tsunami waves in rivers [8, 9], ion tsunami in fiber optics [12]. In homogeneous and sta- tionary media, the Riemann waves continuously deform since this stage occurs during many wavelengths [13, 14, 15, 16]. Cor- responding nonlinear evolution

  1. Spatial motion of the Magellanic Clouds. Tidal models ruled out?

    E-Print Network [OSTI]

    Ruzicka, Adam; Palous, Jan

    2008-01-01T23:59:59.000Z

    Recently, Kallivayalil et al. derived new values of the proper motion for the Large and Small Magellanic Clouds (LMC and SMC, respectively). The spatial velocities of both Clouds are unexpectedly higher than their previous values resulting from agreement between the available theoretical models of the Magellanic System and the observations of neutral hydrogen (HI) associated with the LMC and the SMC. Such proper motion estimates are likely to be at odds with the scenarios for creation of the large-scale structures in the Magellanic System suggested so far. We investigated this hypothesis for the pure tidal models, as they were the first ones devised to explain the evolution of the Magellanic System, and the tidal stripping is intrinsically involved in every model assuming the gravitational interaction. The parameter space for the Milky Way (MW)-LMC-SMC interaction was analyzed by a robust search algorithm (genetic algorithm) combined with a fast restricted N-body model of the interaction. Our method extended ...

  2. Atmospheric heat redistribution and collapse on tidally locked rocky planets

    E-Print Network [OSTI]

    Wordsworth, Robin

    2014-01-01T23:59:59.000Z

    Atmospheric collapse is likely to be of fundamental importance to tidally locked rocky exoplanets but remains understudied. Here, general results on the heat transport and stability of tidally locked terrestrial-type atmospheres are reported. First, the problem is modeled with an idealized 3D general circulation model (GCM) with gray gas radiative transfer. It is shown that over a wide range of parameters the atmospheric boundary layer, rather than the large-scale circulation, is the key to understanding the planetary energy balance. Through a scaling analysis of the interhemispheric energy transfer, theoretical expressions for the day-night temperature difference and surface wind speed are created that reproduce the GCM results without tuning. Next, the GCM is used with correlated-k radiative transfer to study heat transport for two real gases (CO2 and CO). For CO2, empirical formulae for the collapse pressure as a function of planetary mass and stellar flux are produced, and critical pressures for atmospher...

  3. EA-1949: Admiralty Inlet Pilot Tidal Project, Puget Sound, WA

    Broader source: Energy.gov [DOE]

    This EA analyzes the potential environmental effects of a proposal by the Public Utility District No. 1 of Snohomish County, Washington to construct and operate the Admiralty Inlet Tidal Project. The proposed 680-kilowatt project would be located on the east side of Admiralty Inlet in Puget Sound, Washington, about 1 kilometer west of Whidbey Island, entirely within Island County, Washington. The Federal Energy Regulatory Commission (FERC) is the lead agency. The DOE NEPA process for this project has been canceled.

  4. Orbital motions as gradiometers for post-Newtonian tidal effects

    E-Print Network [OSTI]

    Lorenzo Iorio

    2014-07-31T23:59:59.000Z

    The direct long-term changes occurring in the orbital dynamics of a local gravitationally bound binary system $S$ due to the post-Newtonian tidal acceleration caused by an external massive source are investigated. A class of systems made of a test particle $m$ rapidly orbiting with orbital frequency $n_{\\rm b}$ an astronomical body of mass $M$ which, in turn, slowly revolves around a distant object of mass $M^{'}$ with orbital frequency $n_{\\rm b}^{'}\\ll n_{\\rm b}$ is considered. The characteristic frequencies of the non-Keplerian orbital variations of $m$ and of $M$ itself are assumed to be negligible with respect to both $n_{\\rm b}$ and $n_{\\rm b}^{'}$. General expressions for the resulting Newtonian and post-Newtonian tidal orbital shifts of $m$ are obtained. The future missions BepiColombo and JUICE to Mercury and Ganymede, respectively, are considered in view of a possible detection. The largest effects, of the order of $\\approx 0.1-0.5$ milliarcseconds per year (mas yr$^{-1}$), occur for the Ganymede orbiter of the JUICE mission. Although future improvements in spacecraft tracking and orbit determination might, perhaps, reach the required sensitivity, the systematic bias represented by the other known orbital perturbations of both Newtonian and post-Newtonian origin would be overwhelming. The realization of a dedicated artificial mini-planetary system to be carried onboard and Earth-orbiting spacecraft is considered as well. Post-Newtonian tidal precessions as large as $\\approx 1-10^2$ mas yr$^{-1}$ could be obtained, but the quite larger Newtonian tidal effects would be a major source of systematic bias because of the present-day percent uncertainty in the product of the Earth's mass times the Newtonian gravitational parameter.

  5. Modeling Tidal Streams in evolving dark matter halos

    E-Print Network [OSTI]

    Jorge Penarrubia; Andrew J. Benson; David Martinez-Delgado; Hans-Walter Rix

    2005-12-20T23:59:59.000Z

    We explore whether stellar tidal streams can provide information on the secular, cosmological evolution of the Milky Way's gravitational potential and on the presence of subhalos. We carry out long-term (~t_hubble) N-body simulations of disrupting satellite galaxies in a semi-analytic Galaxy potential where the dark matter halo and the subhalos evolve according to a LCDM cosmogony. All simulations are constrained to end up with the same position and velocity at present. Our simulations account for: (i) the secular evolution of the host halo's mass, size and shape, (ii) the presence of subhalos and (iii) dynamical friction. We find that tidal stream particles respond adiabatically to the Galaxy growth so that, at present, the energy and angular momentum distribution is exclusively determined by the present Galaxy potential. In other words, all present-day observables can only constrain the present mass distribution of the Galaxy independent of its past evolution. We also show that, if the full phase-space distribution of a tidal stream is available, we can accurately determine (i) the present Galaxy's shape and (ii) the amount of mass loss from the stream's progenitor, even if this evolution spanned a cosmologically significant epoch.

  6. Resonant oscillations and tidal heating in coalescing binary neutron stars

    E-Print Network [OSTI]

    Lai, D

    1994-01-01T23:59:59.000Z

    Tidal interaction in a coalescing neutron star binary can resonantly excite the g-mode oscillations of the neutron star when the frequency of the tidal driving force equals the intrinsic g-mode frequencies. We study the g-mode oscillations of cold neutron stars using recent microscopic nuclear equations of state, where we determine self-consistently the sound speed and Brunt-V\\"ais\\"al\\"a frequency in the nuclear liquid core. The properties of the g-modes associated with the stable stratification of the core depend sensitively on the pressure-density relation as well as the symmetry energy of the dense nuclear matter. The frequencies of the first ten g-modes lie approximately in the range of 10-100 Hz. Resonant excitations of these g-modes during the last few minutes of the binary coalescence result in energy transfer and angular momentum transfer from the binary orbit to the neutron star. The angular momentum transfer is possible because a dynamical tidal lag develops even in the absence of fluid viscosity. ...

  7. The mass-metallicity relation of tidal dwarf galaxies

    E-Print Network [OSTI]

    Recchi, S; Ploeckinger, S

    2015-01-01T23:59:59.000Z

    Dwarf galaxies generally follow a mass-metallicity (MZ) relation, where more massive objects retain a larger fraction of heavy elements. Young tidal dwarf galaxies (TDGs), born in the tidal tails produced by interacting gas-rich galaxies, have been thought to not follow the MZ relation, because they inherit the metallicity of the more massive parent galaxies. We present chemical evolution models to investigate if TDGs that formed at very high redshifts, where the metallicity of their parent galaxy was very low, can produce the observed MZ relation. Assuming that galaxy interactions were more frequent in the denser high-redshift universe, TDGs could constitute an important contribution to the dwarf galaxy population. The survey of chemical evolution models of TDGs presented here captures for the first time an initial mass function (IMF) of stars that is dependent on both the star formation rate and the gas metallicity via the integrated galactic IMF (IGIMF) theory. As TDGs form in the tidal debris of interacti...

  8. Sandia Energy - Advanced Controls of Wave Energy Converters May...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WEC designs efficiently produce power only within a narrow wave frequency range. Advanced control of the power-conversion chain can alter this paradigm. Models have shown...

  9. Wave Energy Resources Representative Sites Around the Hawaiian Islands

    E-Print Network [OSTI]

    Flux p14 Appendix A ­ SWAN Numerical Model Calibration with NOAA/NDBO Buoys p21 #12;Wave Power. Vega Ph.D October 11, 2010 #12;Wave Power Resources off the Hawaiian Islands October 11, 2010 1 of Contents Summary p2 Background: Wave Power Conversion p3 Licensing and Permitting p3 Challenges

  10. Sandia National Laboratories: wave energy converter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    release. This model has ... Sandia Funded to Model Power Pods for Utility-Scale Wave-Energy Converter On September 16, 2014, in Computational Modeling & Simulation, Energy,...

  11. Tidal Heating of Terrestrial Extra-Solar Planets and Implications for their Habitability

    E-Print Network [OSTI]

    Brian Jackson; Rory Barnes; Richard Greenberg

    2008-08-20T23:59:59.000Z

    The tidal heating of hypothetical rocky (or terrestrial) extra-solar planets spans a wide range of values depending on stellar masses and initial orbits. Tidal heating may be sufficiently large (in many cases, in excess of radiogenic heating) and long-lived to drive plate tectonics, similar to the Earth's, which may enhance the planet's habitability. In other cases, excessive tidal heating may result in Io-like planets with violent volcanism, probably rendering them unsuitable for life. On water-rich planets, tidal heating may generate sub-surface oceans analogous to Europa's with similar prospects for habitability. Tidal heating may enhance the outgassing of volatiles, contributing to the formation and replenishment of a planet's atmosphere. To address these issues, we model the tidal heating and evolution of hypothetical extra-solar terrestrial planets. The results presented here constrain the orbital and physical properties required for planets to be habitable.

  12. A comparison of measured and modeled tidal currents in the Gulf of Maine

    E-Print Network [OSTI]

    Cook, Michael S

    1990-01-01T23:59:59.000Z

    of Advisory Committee; Dr. David A. Brooks A modified version of the National Ocean Survey harmonic analysis computer program was used to extract the tidal signal from current meter records at five mooring stations (present stations) collected during four... summer periods in the Gulf of Maine. The results showed that the dominant tidal current constituent at all stations was the M2 constituent. The M2 tidal currents at each present station were vertically-averaged using a depth-weighting scheme...

  13. The Unusual Tidal Dwarf Candidate in the Merger System NGC 3227/6: Star Formation in a Tidal Shock?

    E-Print Network [OSTI]

    Carole G. Mundell; Phil A. James; Nora Loiseau; Eva Schinnerer; Duncan A. Forbes; ;

    2004-07-07T23:59:59.000Z

    We report the discovery of active star formation in the HI cloud associated with the interacting Seyfert system NGC 3227/NGC 3226 that was originally identified as a candidate tidal dwarf galaxy (TDG) by Mundell et al. and that we name J1023+1952. We present the results of broad-band BRIJHK and ultraviolet imaging that show the HI cloud is associated with massive on-going star formation seen as a cluster of blue knots (M_B < -15.5 mag) surrounded by a diffuse ultraviolet halo and co-spatial with a ridge of high column density neutral hydrogen its southern half. We also detect Ha emission from the knots with a flux density corresponding to a star-formation rate of SFR~0.011 Msun per yr. Although J1023+1952 spatially overlaps the edge of the disk of NGC 3227, it has a mean HI velocity 150 km/s higher than that of NGC 3227 so is kinematically distinct; comparison of ionized and neutral gas kinematics in the star-forming region show closely matched velocities, providing strong evidence that the knots are embedded in J1023+1952 and do not merely lie behind in the disk of NGC 3227, thus confirming J1023+1952 as a gas-rich dwarf galaxy. We discuss two scenarios for the origin of J1023+1952; as a third, pre-existing dwarf galaxy involved in the interaction with NGC 3227 and NGC 3226, or a newly-forming dwarf galaxy condensing out of the tidal debris removed from the gaseous disk of NGC 3227. Given the lack of a detectable old stellar population, a tidal origin is more likely. If J1023+1952 is a bound object forming from returning gaseous tidal tail material, we infer a dynamically young age similar to its star-formation age, and suggests it is in the earliest stages of TDG evolution. Whatever the origin of J1023+1952 we suggest that its star formation is shock-triggered by collapsing tidal debris. (Abridged)

  14. Modeling the Effects of Tidal Energy Extraction on Estuarine Hydrodynamics in a Stratified Estuary

    SciTech Connect (OSTI)

    Yang, Zhaoqing; Wang, Taiping

    2013-08-15T23:59:59.000Z

    A three-dimensional coastal ocean model with a tidal turbine module was used in this paper to study the effects of tidal energy extraction on temperature and salinity stratification and density driven two-layer estuarine circulation. Numerical experiments with various turbine array configurations were carried out to investigate the changes in tidally mean temperature, salinity and velocity profiles in an idealized stratified estuary that connects to coastal water through a narrow tidal channel. The model was driven by tides, river inflow and sea surface heat flux. To represent the realistic size of commercial tidal farms, model simulations were conducted based on a small percentage of the total number of turbines that would generate the maximum extractable energy in the system. Model results indicated that extraction of tidal energy will increase the vertical mixing and decrease the stratification in the estuary. Extraction of tidal energy has stronger impact on the tidally-averaged salinity, temperature and velocity in the surface layer than the bottom. Energy extraction also weakens the two-layer estuarine circulation, especially during neap tides when tidal mixing the weakest and energy extraction is the smallest. Model results also show that energy generation can be much more efficient with higher hub height with relatively small changes in stratification and two-layer estuarine circulation.

  15. Ocean Tidal Dissipation and its Role in Solar System Satellite Evolution

    E-Print Network [OSTI]

    Chen, Erinna

    2013-01-01T23:59:59.000Z

    dominant contributor to the ocean energy dissipation (see §dominant contributor to the ocean energy dissipation (see §of interest, e.g. the ocean kinetic energy and tidal

  16. Assessment of Strike of Adult Killer Whales by an OpenHydro Tidal Turbine Blade

    SciTech Connect (OSTI)

    Carlson, Thomas J.; Elster, Jennifer L.; Jones, Mark E.; Watson, Bruce E.; Copping, Andrea E.; Watkins, Michael L.; Jepsen, Richard A.; Metzinger, Kurt

    2012-02-01T23:59:59.000Z

    Report to DOE on an analysis to determine the effects of a potential impact to an endangered whale from tidal turbines proposed for deployment in Puget Sound.

  17. MECHANISMS GENERATING MODIFICATION OF BENTHOS FOLLOWING TIDAL FLAT INVASION BY A SPARTINA HYBRID

    E-Print Network [OSTI]

    Neira, Carlos; Grosholz, Edwin D; Levin, Lisa A; Blake, Rachael

    2006-01-01T23:59:59.000Z

    1997. Kinetics of tidal resuspension of microbiota: testingare susceptible to resuspension following bio- turbation (in barnacle recruitment and resuspension of adult benthic

  18. Mechanisms generating modification of benthos following tidal flat invasion by a Spartina hybrid

    E-Print Network [OSTI]

    Neira, C; Grosholz, E D; Levin, L A; Blake, R

    2006-01-01T23:59:59.000Z

    1997. Kinetics of tidal resuspension of microbiota: testingare susceptible to resuspension following bio- turbation (in barnacle recruitment and resuspension of adult benthic

  19. Using a Bore-Soliton-Splash to understand Rogue Waves, Tsunamis & Wave Energy

    E-Print Network [OSTI]

    Wirosoetisno, Djoko

    )compression] use wave focussing in a convergence [3]. · IPS wave buoy has a linear dynamo below sea level. · Designed & built new RogueWavEnergy device: it works, a LED is blinking & we measured the power output. 8

  20. Application of wave generator theory to the development of a Wave Energy Converter

    E-Print Network [OSTI]

    Wood, Stephen L.

    of the second buoy's curved face. Upon deployment, the WEC successfully logged the power output of the system a wave energy converter (WEC) capable of providing at least a quarter-Watt of power to a small aquatic and basic wave generation technology to improving the power capture design of a basic direct drive WEC

  1. 314 IEEE MICROWAVE AND GUIDED WAVE LETTERS, VOL. 9, NO. 8, AUGUST 1999 39-GHz GaN-Based Microwave Power

    E-Print Network [OSTI]

    York, Robert A.

    314 IEEE MICROWAVE AND GUIDED WAVE LETTERS, VOL. 9, NO. 8, AUGUST 1999 3­9-GHz GaN-Based Microwave. P. Keller, and U. K. Mishra, Fellow, IEEE Abstract--We present an initial demonstration of GaN-band network. Using 0.7-m gate-length GaN high-electron-mobility transistors (HEMT's) with current

  2. Traveling-wave photodetector

    DOE Patents [OSTI]

    Hietala, V.M.; Vawter, G.A.

    1993-12-14T23:59:59.000Z

    The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size. 4 figures.

  3. Tilted accretion discs in cataclysmic variables: tidal instabilities and superhumps

    E-Print Network [OSTI]

    J. R. Murray; P. J. Armitage

    1998-09-10T23:59:59.000Z

    We investigate the growth of tidal instabilities in accretion discs in a binary star potential, using three dimensional numerical simulations. As expected from analytic work, the disc is prone to an eccentric instability provided that it is large enough to extend to the 3:1 resonance. The eccentric disc leads to positive superhumps in the light curve. It has been proposed that negative superhumps might arise from a tilted disc, but we find no evidence that the companion gravitational tilt instability can grow fast enough in a fluid disc to create a measurable inclination. The origin of negative superhumps in the light curves of cataclysmic variables remains a puzzle.

  4. Pulse Tidal formerly Pulse Generation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook icon TwitterZip JumpProwindPuda Coal IncPulse Tidal

  5. MHK Projects/BW2 Tidal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other4Q07)AK ProjectMS ProjectJerseyBW2 Tidal

  6. MHK Technologies/KESC Tidal Generator | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK ProjectsFlagship <HelixKESC Tidal Generator <

  7. MHK Technologies/TidalStar | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter < MHKDUCK <TidalStar < MHK

  8. Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2007 Annual Report.

    SciTech Connect (OSTI)

    Sobocinski, Kathryn; Johnson, Gary; Sather, Nichole [Pacific Northwest National Laboratory

    2008-03-17T23:59:59.000Z

    This document is the first annual report for the study titled 'Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta in the Lower Columbia River'. Hereafter, we refer to this research as the Tidal Freshwater Monitoring (TFM) Study. The study is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, U.S. Army Corps of Engineers, U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act as a result of operation of the Federal Columbia River Power System (FCRPS). The project is performed under the auspices of the Northwest Power and Conservation Council's Columbia Basin Fish and Wildlife Program. The goal of the 2007-2009 Tidal Freshwater Monitoring Study is to answer the following questions: In what types of habitats within the tidal freshwater area of the lower Columbia River and estuary (LCRE; Figure 1) are yearling and subyearling salmonids found, when are they present, and under what environmental conditions?1 And, what is the ecological importance2 of shallow (0-5 m) tidal freshwater habitats to the recovery of Upper Columbia River spring Chinook salmon and steelhead and Snake River fall Chinook salmon? Research in 2007 focused mainly on the first question, with fish stock identification data providing some indication of Chinook salmon presence at the variety of habitat types sampled. The objectives and sub-objectives for the 2007 study were as follows: (1) Habitat and Fish Community Characteristics-Provide basic data on habitat and fish community characteristics for yearling and subyearling salmonids at selected sites in the tidal freshwater reach in the vicinity of the Sandy River delta. (1a) Characterize vegetation assemblage percent cover, conventional water quality, substrate composition, and beach slope at each of six sampling sites in various tidal freshwater habitat types. (1b) Determine fish community characteristics, including species composition, abundance, and temporal and spatial distributions. (1c) Estimate the stock of origin for the yearling and subyearling Chinook salmon captured at the sampling sites using genetic analysis. (1d) Statistically assess the relationship between salmonid abundance and habitat parameters, including ancillary variables such as temperature and river stage. (2) Acoustic Telemetry Monitoring-Assess feasibility of applying Juvenile Salmon Acoustic Telemetry System (JSATS) technology to determine migration characteristics from upriver of Bonneville Dam through the study area (vicinity of the Sandy River delta/Washougal River confluence). (2a) Determine species composition, release locations, and distributions of JSATS-tagged fish. (2b) Estimate run timing, residence times, and migration pathways for these fish. Additionally, both objectives serve the purpose of baseline research for a potential tidal rechannelization project on the Sandy River. The U.S. Forest Service, in partnership with the Bonneville Power Administration and the U.S. Army Corps of Engineers, is currently pursuing reconnection of the east (relict) Sandy River channel with the current channel to improve fish and wildlife habitat in the Sandy River delta. Our study design and the location of sampling sites in this reach provide baseline data to evaluate the potential restoration.

  9. A Tidal Hydrology Assessment for Reconnecting Spring Branch Creek to Suisun Marsh, Solano County CA: Predicting the Impact to the Federally Listed Plant Soft Bird's Beak

    E-Print Network [OSTI]

    Olson, Jessica J.

    2011-01-01T23:59:59.000Z

    this study. Changes in hydrology are not the only potentialA Tidal Hydrology Assessment for Reconnecting Spring Branchmay change the tidal hydrology and impact the area occupied

  10. Intracranial Pressure Variation Associated with Changes in End-Tidal CO2

    E-Print Network [OSTI]

    Intracranial Pressure Variation Associated with Changes in End-Tidal CO2 Sunghan Kim, James Mc that the partial pressure of arterial CO2 (PaCO2) can affect cerebral blood flow, cerebral blood volume, and therefore ICP. The end-tidal CO2 (ETCO2) is usually monitored by clinicians as a proxy for PaCO2. We show

  11. Continental Shelf Research 26 (2006) 13601374 Characterizing chaotic dispersion in a coastal tidal model

    E-Print Network [OSTI]

    LaCasce, Joseph H.

    2006-01-01T23:59:59.000Z

    Lyapunov exponents; Norwegian coast; Tidal currents 1. Introduction The coastal shelf is an important of Mathematics, University of Oslo, P.O. Box 1053, 0316 Blindern, Norway c Norwegian Meteorological Institute, P to study dispersion and mixing in a model in the Norwegian Trondheim fjord. We focus on the tidally driven

  12. NOAA Technical Memorandum OAR PMEL-122 Tidal Datum Distributions in Puget Sound,

    E-Print Network [OSTI]

    NOAA Technical Memorandum OAR PMEL-122 Tidal Datum Distributions in Puget Sound, Washington, Based . . . . . . . . . . . . . . 5 3. Puget Sound Channel Tide Model . . . . . . . . . . . . . . . 6 3.1 Description of the channel . . . . . . . . . . . . . . . . . . . . . . . . . 30 9. Appendix: Tidal harmonic constants in Puget Sound . . . 30 10. References

  13. Impact of sheep grazing on juvenile sea bass, Dicentrarchus labrax L., in tidal salt marshes

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Impact of sheep grazing on juvenile sea bass, Dicentrarchus labrax L., in tidal salt marshes P L., from sheep grazed and ungrazed tidal salt marshes were com- pared qualitatively. Juvenile sea bass colonise the salt marsh at ¯ood during 43% of the spring tides which inundate the salt

  14. Cross-shore suspended sediment transport under tidal currents Andrew J. Hogg1

    E-Print Network [OSTI]

    -mail: david@bpi.cam.ac.uk Abstract The transport of sediment over an intertidal mudflat by a cross-shore tidal lag and indicates that the cross-shore flows tend to accrete sediment on the intertidal mudflats and the amplitude of the tidal current. 1. Introduction Intertidal mudflats are extensive coastal regions

  15. On the dynamics and morphology of extensive tidal mudflats: Integrating remote sensing data

    E-Print Network [OSTI]

    Ezer,Tal

    On the dynamics and morphology of extensive tidal mudflats: Integrating remote sensing data sensing data and inundation models allows the mapping of extensive tidal mudflats in a sub-Arctic estuary changes in mudflats morphology, and 3. mapping previously unobserved mud- flat topographies in order

  16. Cross-shore sediment transport and the equilibrium morphology of mudflats under tidal currents

    E-Print Network [OSTI]

    Hogg, Andrew

    Cross-shore sediment transport and the equilibrium morphology of mudflats under tidal currents D of suspended sediment transport under cross-shore tidal currents on an intertidal mudflat. We employ; 4558 Oceanography: Physical: Sediment transport; KEYWORDS: estuaries, intertidal mudflats, intertidal

  17. Dynamical resonance locking in tidally interacting binary systems

    E-Print Network [OSTI]

    Joshua Burkart; Eliot Quataert; Phil Arras

    2014-10-25T23:59:59.000Z

    We examine the dynamics of resonance locking in detached, tidally interacting binary systems. In a resonance lock, a given stellar or planetary mode is trapped in a highly resonant state for an extended period of time, during which the spin and orbital frequencies vary in concert to maintain the resonance. This phenomenon is qualitatively similar to resonance capture in planetary dynamics. We show that resonance locks can accelerate the course of tidal evolution in eccentric systems and also efficiently couple spin and orbital evolution in circular binaries. Previous analyses of resonance locking have not treated the mode amplitude as a fully dynamical variable, but rather assumed the adiabatic (i.e. Lorentzian) approximation valid only in the limit of relatively strong mode damping. We relax this approximation, analytically derive conditions under which the fixed point associated with resonance locking is stable, and further check these analytic results using numerical integrations of the coupled mode, spin, and orbital evolution equations. These show that resonance locking can sometimes take the form of complex limit cycles or even chaotic trajectories. We provide simple analytic formulae that define the binary and mode parameter regimes in which resonance locks of some kind occur (stable, limit cycle, or chaotic). We briefly discuss the astrophysical implications of our results for white dwarf and neutron star binaries as well as eccentric stellar binaries.

  18. Tidal deformation of a slowly rotating material body. I. External metric

    E-Print Network [OSTI]

    Landry, Philippe

    2015-01-01T23:59:59.000Z

    We construct the external metric of a slowly rotating, tidally deformed material body in general relativity. The tidal forces acting on the body are assumed to be weak and to vary slowly with time, and the metric is obtained as a perturbation of a background metric that describes the external geometry of an isolated, slowly rotating body. The tidal environment is generic and characterized by two symmetric-tracefree tidal moments E_{ab} and B_{ab}, and the body is characterized by its mass M, its radius R, and a dimensionless angular-momentum vector \\chi^a environment requires the introduction of four new quantities, which we designate as rotational-tidal Love numbers. All these Love numbers are gauge ...

  19. Traveling wave device for combining or splitting symmetric and asymmetric waves

    DOE Patents [OSTI]

    Möbius, Arnold (Eggenstein, DE); Ives, Robert Lawrence (Saratoga, CA)

    2005-07-19T23:59:59.000Z

    A traveling wave device for the combining or splitting of symmetric and asymmetric traveling wave energy includes a feed waveguide for traveling wave energy, the feed waveguide having an input port and a launching port, a reflector for coupling wave energy between the feed waveguide and a final waveguide for the collection and transport of wave energy to or from the reflector. The power combiner has a launching port for symmetrical waves which includes a cylindrical section coaxial to the feed waveguide, and a launching port for asymmetric waves which includes a sawtooth rotated about a central axis.

  20. Southern/Northern California Coastal Processes Annotated Bibliography: Coast of California Storm and Tidal Waves Study

    E-Print Network [OSTI]

    US Army Corps of Engineers, Los Angeles District, Planning Division, Coastal Resources Branch

    1987-01-01T23:59:59.000Z

    Cost analysis of present and alternative dredging methods. Includes design data.data collection and analyzes the design study for an experimental sand-bypass system to reduce periodic maintenance dredging costs.

  1. 1 | September 2013 | des courantsWave energyTidal turbines

    E-Print Network [OSTI]

    ), the goal is to maximize energy production in order to reduce the COE (Cost Of Energy), which is the key element in making OTEC a turnkey industrial reality. Energy production depends on both instantaneous

  2. Southern/Northern California Coastal Processes Annotated Bibliography: Coast of California Storm and Tidal Waves Study

    E-Print Network [OSTI]

    US Army Corps of Engineers, Los Angeles District, Planning Division, Coastal Resources Branch

    1987-01-01T23:59:59.000Z

    of December 1966 in Salinas River Basin, California AUTHOR(Big Sur, Carmel, Salinas, and Pajaro River basins. KEYWORDS:

  3. Energy Department Invests $16 Million to Harness Wave and Tidal Energy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register /ofConcentratingDepartment

  4. Southern/Northern California Coastal Processes Annotated Bibliography: Coast of California Storm and Tidal Waves Study

    E-Print Network [OSTI]

    US Army Corps of Engineers, Los Angeles District, Planning Division, Coastal Resources Branch

    1987-01-01T23:59:59.000Z

    Reach Coast of California, Carpinteria to Point Mugu, BeachCell Coast of California, Carpinteria to Point Mugu, Beach1, Coast of California, Carpinteria to Point Mugu, Beach

  5. Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments from Tarasa U.S.LLC |AquionMr.August Contract No.|and In-Stream

  6. Energy Department Invests $16 Million to Harness Wave and Tidal Energy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard |in STEM Education |DepartmentSolarDepartment of Energy

  7. Tidal Residual Eddies and their Effect on Water Exchange in Puget Sound

    SciTech Connect (OSTI)

    Yang, Zhaoqing; Wang, Taiping

    2013-08-30T23:59:59.000Z

    Tidal residual eddies are one of the important hydrodynamic features in tidally dominant estuaries and coastal bays, and they could have significant effects on water exchange in a tidal system. This paper presents a modeling study of tides and tidal residual eddies in Puget Sound, a tidally dominant fjord-like estuary in the Pacific Northwest coast, using a three-dimensional finite-volume coastal ocean model. Mechanisms of vorticity generation and asymmetric distribution patterns around an island/headland were analyzed using the dynamic vorticity transfer approach and numerical experiments. Model results of Puget Sound show that a number of large twin tidal residual eddies exist in the Admiralty Inlet because of the presence of major headlands in the inlet. Simulated residual vorticities near the major headlands indicate that the clockwise tidal residual eddy (negative vorticity) is generally stronger than the anticlockwise eddy (positive vorticity) because of the effect of Coriolis force. The effect of tidal residual eddies on water exchange in Puget Sound and its sub-basins were evaluated by simulations of dye transport. It was found that the strong transverse variability of residual currents in the Admiralty Inlet results in a dominant seaward transport along the eastern shore and a dominant landward transport along the western shore of the Inlet. A similar transport pattern in Hood Canal is caused by the presence of tidal residual eddies near the entrance of the canal. Model results show that tidal residual currents in Whidbey Basin are small in comparison to other sub-basins. A large clockwise residual circulation is formed around Vashon Island near entrance of South Sound, which can potentially constrain the water exchange between the Central Basin and South Sound.

  8. Tidal Marsh Vegetation of China Camp, San Pablo Bay, California

    E-Print Network [OSTI]

    Baye, Peter R.

    2012-01-01T23:59:59.000Z

    to be spreading into the mudflat. Smaller wave- cut scarpsCamp Marsh’s fringing marsh/mudflat zone, as well as its

  9. Tidal Downsizing model. II. Planet-metallicity correlations

    E-Print Network [OSTI]

    Nayakshin, Sergei

    2015-01-01T23:59:59.000Z

    Core Accretion (CA), the de-facto accepted theory of planet formation, requires formation of massive solid cores as a prerequisite for assembly of gas giant planets. The observed metallicity correlations of exoplanets are puzzling in the context of CA. While gas giant planets are found preferentially around metal-rich host stars, planets smaller than Neptune orbit hosts with a wide range of metallicities. We propose an alternative interpretation of these observations in the framework of a recently developed planet formation hypothesis called Tidal Downsizing (TD). We perform population synthesis calculations based on TD, and find that the connection between the populations of the gas giant and the smaller solid-core dominated planets is non linear and not even monotonic. While gas giant planets formed in the simulations in the inner few AU region follow a strong positive correlation with the host star metallicity, the smaller planets do not. The simulated population of these smaller planets shows a shallow pe...

  10. Active Flow Control on Bidirectional Rotors for Tidal MHK Applications

    SciTech Connect (OSTI)

    Shiu, Henry [Research Engineer; van Dam, Cornelis P. [Professor

    2013-08-22T23:59:59.000Z

    A marine and hydrokinetic (MHK) tidal turbine extracts energy from tidal currents, providing clean, sustainable electricity generation. In general, all MHK conversion technologies are confronted with significant operational hurdles, resulting in both increased capital and operations and maintenance (O&M) costs. To counter these high costs while maintaining reliability, MHK turbine designs can be simplified. Prior study found that a tidal turbine could be cost-effectively simplified by removing blade pitch and rotor/nacelle yaw. Its rotor would run in one direction during ebb and then reverse direction when the current switched to flood. We dubbed such a turbine a bidirectional rotor tidal turbine (BRTT). The bidirectional hydrofoils of a BRTT are less efficient than conventional hydrofoils and capture less energy, but the elimination of the pitch and yaw systems were estimated to reduce levelized cost of energy by 7.8%-9.6%. In this study, we investigated two mechanisms for recapturing some of the performance shortfall of the BRTT. First, we developed a novel set of hydrofoils, designated the yy series, for BRTT application. Second, we investigated the use of active flow control via microtabs. Microtabs are small deployable/retractable tabs, typically located near the leading or trailing edge of an air/hydrofoil with height on the order of the boundary layer thickness (1% - 2% of chord). They deploy approximately perpendicularly to the foil surface and, like gurney flaps and plain flaps, globally affect the aerodynamics of the airfoil. By strategically placing microtabs and selectively deploying them based on the direction of the inflow, performance of a BRTT rotor can be improved while retaining bidirectional operation. The yy foils were computationally designed and analyzed. They exhibited better performance than the baseline bidirectional foil, the ellipse. For example, the yyb07cn-180 had 14.7% higher (l/d)max than an ellipse of equal thickness. The yyb07cn family also had higher c{sub p,min} than equivalently thick ellipses, indicating less susceptibility to cavitation. Microtabs applied on yy foils demonstrated improved energy capture. A series of variable speed and constant speed rotors were developed with the yyb07cn family of hydrofoils. The constant speed yyb07cn rotor (yy-B02-Rcs,opt) captured 0.45% more energy than the equivalent rotor with ellipses (e-B02-Rcs,opt). With microtabs deployed (yy?t-B02-Rcs,opt), the energy capture increase over the rotor with ellipses was 1.05%. Note, however, that microtabs must be applied judiciously to bidirectional foils. On the 18% thick ellipse, performance decreased with the addition of microtabs. Details of hydrofoil performance, microtab sizing and positioning, rotor configurations, and revenue impacts are presented herein.

  11. Ocean Wave Converters: State of the Art and Current Status

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    and benefits have been identified in the area of ocean wave energy extraction, i.e., harnessing the wave [3]. To harness the power energy in waves present a different set of technical challenges and a wide, this paper presents ocean wave energy fundamentals and then reviews the fundamental concepts and the main

  12. Experimental Wave Tank Test for Reference Model 3 Floating-Point Absorber Wave Energy Converter Project

    SciTech Connect (OSTI)

    Yu, Y. H.; Lawson, M.; Li, Y.; Previsic, M.; Epler, J.; Lou, J.

    2015-01-01T23:59:59.000Z

    The U.S. Department of Energy established a reference model project to benchmark a set of marine and hydrokinetic technologies including current (tidal, open-ocean, and river) turbines and wave energy converters. The objectives of the project were to first evaluate the status of these technologies and their readiness for commercial applications. Second, to evaluate the potential cost of energy and identify cost-reduction pathways and areas where additional research could be best applied to accelerate technology development to market readiness.

  13. SPH simulations of tidally unstable accretion disks in cataclysmic variables

    E-Print Network [OSTI]

    James R. Murray

    1995-11-08T23:59:59.000Z

    We numerically study the precessing disk model for superhump in the SU~UMa subclass of cataclysmic variables, using a two dimensional SPH code specifically designed for thin disk problems. Two disk simulations for a binary with mass ratio $q=\\frac{3}{17}$ (similar to OY~Car) are performed, in order to investigate the Lubow (1991 a,b) tidal resonance instability mechanism. In the first calculation, a disk evolves under steady mass transfer from $L_1$. In the second simulation, mass is added in Keplerian orbit to the inner disk. The two disks follow similar evolutionary paths. However the $L_1$ stream-disk interaction is found to slow the disk's radial expansion and to circularise gas orbits. The initial eccentricity growth in our simulations is exponential at a rate slightly less than predicted by Lubow (1991a). We do not observe a clearing of material from the resonance region via the disk's tidal response to the $m=2$ component of the binary potential as was described in Lubow (1992). Instead the $m=2$ response weakens as the disk eccentricty increases. Both disks reach an eccentric equilibrium state, in which they undergo prograde precession. The rate of viscous energy dissipation in the disks has a periodic excess with a period matching the disk's rotation. The source is identified as a large region in the outer disk, and the mechanism by which it is produced is identified. The time taken for the periodic excess to develop is consistent with the first appearance of superhumps in a superoutburst.

  14. Low latency search for Gravitational waves from BH-NS binaries in coincidence with Short Gamma Ray Bursts

    E-Print Network [OSTI]

    Andrea Maselli; Valeria Ferrari

    2014-02-24T23:59:59.000Z

    We propose a procedure to be used in the search for gravitational waves from black hole-neutron star coalescing binaries, in coincidence with short gamma-ray bursts. It is based on two recently proposed semi-analytic fits, one reproducing the mass of the remnant disk surrounding the black hole which forms after the merging as a function of some binary parameters, the second relating the neutron star compactness, i.e. the ratio of mass and radius, with its tidal deformability. Using a Fisher matrix analysis and the two fits, we assign a probability that the emitted gravitational signal is associated to the formation of an accreting disk massive enough to supply the energy needed to power a short gamma ray burst. This information can be used in low-latency data analysis to restrict the parameter space searching for gravitational wave signals in coincidence with short gamma-ray bursts, and to gain information on the dynamics of the coalescing system and on the internal structure of the components. In addition, when the binary parameters will be measured with high accuracy, it will be possible to use this information to trigger the search for off-axis gamma-ray bursts afterglows.

  15. Origin of Tidal Dissipation in Jupiter: II. the Value of Q

    E-Print Network [OSTI]

    Yanqin Wu

    2005-11-28T23:59:59.000Z

    The process of tidal dissipation inside Jupiter is not yet understood. Its tidal quality factor ($Q$) is inferred to lie between $10^5$ and $10^6$. We examine effects of inertial-modes on tidal dissipation in a neutrally bouyant, core-less, uniformly rotating planet. The rate of dissipation caused by resonantly excited inertial-modes depends on the following three parameters: how well they are coupled to the tidal potential, how strongly they are dissipated (by the turbulent viscosity), and how densely distributed they are in frequency. We find that as a function of tidal frequency, the $Q$ value exhibits large fluctuations, with its maximum value set by the group of inertial-modes that have a typical offset from an exact resonance of order their turbulent damping rates. In our model, inertial-modes shed their tidally acquired energy very close to the surface within a narrow latitudinal zone (the 'singularity belt'), and the tidal luminosity escapes freely out of the planet. Strength of coupling between the tidal potential and inertial-modes is sensitive to the presence of density discontinuities inside Jupiter. In the case of a discreet density jump (as may be caused by the transition between metallic and molecular hydrogen), we find a time-averaged $Q \\sim 10^7$. Even though it remains unclear whether tidal dissipation due to resonant inertial-modes is the correct answer to the problem, it is impressive that our simple treatment here already leads to three to five orders of magnitude stronger damping than that from the equilibrium tide. Moreover, our conclusions are not affected by the presence of a small solid core, a different prescription for the turbulent viscosity, or nonlinear mode coupling, but they depend critically on the static stability in the upper atmosphere of Jupiter.

  16. TIDAL DISSIPATION COMPARED TO SEISMIC DISSIPATION: IN SMALL BODIES, EARTHS, AND SUPER-EARTHS

    SciTech Connect (OSTI)

    Efroimsky, Michael, E-mail: michael.efroimsky@usno.navy.mil [U.S. Naval Observatory, Washington, DC 20392 (United States)

    2012-02-20T23:59:59.000Z

    While the seismic quality factor and phase lag are defined solely by the bulk properties of the mantle, their tidal counterparts are determined by both the bulk properties and the size effect (self-gravitation of a body as a whole). For a qualitative estimate, we model the body with a homogeneous sphere, and express the tidal phase lag through the lag in a sample of material. Although simplistic, our model is sufficient to understand that the lags are not identical. The difference emerges because self-gravitation pulls the tidal bulge down. At low frequencies, this reduces strain and the damping rate, making tidal damping less efficient in larger objects. At higher frequencies, competition between self-gravitation and rheology becomes more complex, though for sufficiently large super-Earths the same rule applies: the larger the planet, the weaker the tidal dissipation in it. Being negligible for small terrestrial planets and moons, the difference between the seismic and tidal lagging (and likewise between the seismic and tidal damping) becomes very considerable for large exoplanets (super-Earths). In those, it is much lower than what one might expect from using a seismic quality factor. The tidal damping rate deviates from the seismic damping rate, especially in the zero-frequency limit, and this difference takes place for bodies of any size. So the equal in magnitude but opposite in sign tidal torques, exerted on one another by the primary and the secondary, have their orbital averages going smoothly through zero as the secondary crosses the synchronous orbit. We describe the mantle rheology with the Andrade model, allowing it to lean toward the Maxwell model at the lowest frequencies. To implement this additional flexibility, we reformulate the Andrade model by endowing it with a free parameter {zeta} which is the ratio of the anelastic timescale to the viscoelastic Maxwell time of the mantle. Some uncertainty in this parameter's frequency dependence does not influence our principal conclusions.

  17. Hyperaccretion during tidal disruption events: Weakly bound debris envelopes and jets

    SciTech Connect (OSTI)

    Coughlin, Eric R.; Begelman, Mitchell C., E-mail: eric.coughlin@colorado.edu, E-mail: mitch@jila.colorado.edu [Also at Department of Astrophysical and Planetary Sciences, University of Colorado, UCB 391, Boulder, CO 80309, USA. (United States)

    2014-02-01T23:59:59.000Z

    After the destruction of the star during a tidal disruption event (TDE), the cataclysmic encounter between a star and the supermassive black hole (SMBH) of a galaxy, approximately half of the original stellar debris falls back onto the hole at a rate that can initially exceed the Eddington limit by orders of magnitude. We argue that the angular momentum of this matter is too low to allow it to attain a disk-like configuration with accretion proceeding at a mildly super-Eddington rate, the excess energy being carried away by a combination of radiative losses and radially distributed winds. Instead, we propose that the infalling gas traps accretion energy until it inflates into a weakly bound, quasi-spherical structure with gas extending nearly to the poles. We study the structure and evolution of such 'zero-Bernoulli accretion' flows as a model for the super-Eddington phase of TDEs. We argue that such flows cannot stop extremely super-Eddington accretion from occurring, and that once the envelope is maximally inflated, any excess accretion energy escapes through the poles in the form of powerful jets. We compare the predictions of our model to Swift J1644+57, the putative super-Eddington TDE, and show that it can qualitatively reproduce some of its observed features. Similar models, including self-gravity, could be applicable to gamma-ray bursts from collapsars and the growth of SMBH seeds inside quasi-stars.

  18. Evolution of the angular momentum of protogalaxies from tidal torques: Zel'dovich approximation

    E-Print Network [OSTI]

    Paolo Catelan; Tom Theuns

    1996-04-15T23:59:59.000Z

    The growth of the angular momentum L of protogalaxies induced by tidal torques is reconsidered within the Zel'dovich approximation. We obtain a general expression for the ensemble expectation value of the square of L in terms of the first and second invariant of the inertia tensor of the Lagrangian volume enclosing the protoobject's collapsing mass. We then specialize the formalism to the particular case in which this volume is centered on a peak of the smoothed Gaussian density field and approximated by an isodensity ellipsoid. The result is the appropriate analytical estimate for the rms angular momentum of peaks to be compared against simulations that make use of the Hoffman-Ribak algorithm to set up a constrained density field that contains a peak with given shape. Extending the work of Heavens & Peacock, we calculate the joint probability distribution function for several spin parameters and peak mass M using the distribution of peak shapes, for different initial power spectra. The values of observed specific angular momentum versus mass are well fitted by our theoretical isoprobability contours. In contrast, the observed lower values for the specific angular momentum for ellipticals of the same mass cannot be accounted for within our linear regime investigation, highlighting the importance of strongly non-linear phenomena to explain the spin of such objects.

  19. Water gate array for current flow or tidal movement pneumatic harnessing system

    DOE Patents [OSTI]

    Gorlov, Alexander M. (Brookline, MA)

    1991-01-01T23:59:59.000Z

    The invention, which provides a system for harnessing power from current flow or tidal movement in a body of water, comprises first and second hydro-pneumatic chambers each having ingress and egress below the water surface near the river or ocean floor and water gates operative to open or seal the ports to the passage of water. In an exemplary embodiment, the gates are sychronized by shafts so that the ingress ports of each chamber are connected to the egress ports of each other chamber. Thus, one set of gates is closed, while the other is open, thereby allowing water to flow into one chamber and build air pressure therein and allowing water to flow out of the other chamber and create a partial vacuum therein. A pipe connects the chambers, and an air turbine harnesses the air movement within the pipe. When water levels are equilibrated, the open set of gates is closed by a counterweight, and the other set is allowed to open by natural force of the water differential. The water gates may be comprised of a plurality of louvers which are ganged for simultaneous opening and closing. The system is designed to operate with air turbines or other pneumatic devices. Its design minimizes construction cost and environmental impact, yet provides a clean renewable energy source.

  20. Power Factor Reactive Power

    E-Print Network [OSTI]

    motor power: 117.7 V x 5.1 A = 600 W? = 0.6 kW? NOT the power measured by meter #12;Page 9 PSERC: displacement power factor: angle between voltage and current = 0 degrees pf = cos(0 degrees) = 1.0 true powerPage 1 PSERC Power Factor and Reactive Power Ward Jewell Wichita State University Power Systems

  1. Vacuum Waves

    E-Print Network [OSTI]

    Paul S. Wesson

    2012-12-11T23:59:59.000Z

    As an example of the unification of gravitation and particle physics, an exact solution of the five-dimensional field equations is studied which describes waves in the classical Einstein vacuum. While the solution is essentially 5D in nature, the waves exist in ordinary 3D space, and may provide a way to test for an extra dimension.

  2. Texas Tech Effort Overview Collaborative Research on Novel High Power

    E-Print Network [OSTI]

    Anlage, Steven

    N) · Nonlinear Transmission lines · High Power Microwave source development · High reprate rf sources · HPM wave Power Microwave breakdown · Vacuum UV Spectroscopy in atmospheric gases · Explosively driven HPM

  3. Multiscale heterogeneity characterization of tidal channel, tidal delta and foreshore facies, Almond Formation outcrops, Rock Springs uplift, Wyoming

    SciTech Connect (OSTI)

    Schatzinger, R.A.; Tomutsa, L. [BDM Petroleum Technologies, Bartlesville, OK (United States)

    1997-08-01T23:59:59.000Z

    In order to accurately predict fluid flow within a reservoir, variability in the rock properties at all scales relevant to the specific depositional environment needs to be taken into account. The present work describes rock variability at scales from hundreds of meters (facies level) to millimeters (laminae) based on outcrop studies of the Almond Formation. Tidal channel, tidal delta and foreshore facies were sampled on the eastern flank of the Rock Springs uplift, southeast of Rock Springs, Wyoming. The Almond Fm. was deposited as part of a mesotidal Upper Cretaceous transgressive systems tract within the greater Green River Basin. Bedding style, lithology, lateral extent of beds of bedsets, bed thickness, amount and distribution of depositional clay matrix, bioturbation and grain sorting provide controls on sandstone properties that may vary more than an order of magnitude within and between depositional facies in outcrops of the Almond Formation. These features can be mapped on the scale of an outcrop. The products of diagenesis such as the relative timing of carbonate cement, scale of cemented zones, continuity of cemented zones, selectively leached framework grains, lateral variability of compaction of sedimentary rock fragments, and the resultant pore structure play an equally important, although less predictable role in determining rock property heterogeneity. A knowledge of the spatial distribution of the products of diagenesis such as calcite cement or compaction is critical to modeling variation even within a single facies in the Almond Fin. because diagenesis can enhance or reduce primary (depositional) rock property heterogeneity. Application of outcrop heterogeneity models to the subsurface is greatly hindered by differences in diagenesis between the two settings. The measurements upon which this study is based were performed both on drilled outcrop plugs and on blocks.

  4. TidGen Power System Commercialization Project

    SciTech Connect (OSTI)

    Sauer, Christopher R. [President & CEO] [President & CEO; McEntee, Jarlath [VP Engineering & CTO] [VP Engineering & CTO

    2013-12-30T23:59:59.000Z

    ORPC Maine, LLC, a wholly-owned subsidiary of Ocean Renewable Power Company, LLC (collectively ORPC), submits this Final Technical Report for the TidGen® Power System Commercialization Project (Project), partially funded by the U.S. Department of Energy (DE-EE0003647). The Project was built and operated in compliance with the Federal Energy Regulatory Commission (FERC) pilot project license (P-12711) and other permits and approvals needed for the Project. This report documents the methodologies, activities and results of the various phases of the Project, including design, engineering, procurement, assembly, installation, operation, licensing, environmental monitoring, retrieval, maintenance and repair. The Project represents a significant achievement for the renewable energy portfolio of the U.S. in general, and for the U.S. marine hydrokinetic (MHK) industry in particular. The stated Project goal was to advance, demonstrate and accelerate deployment and commercialization of ORPC’s tidal-current based hydrokinetic power generation system, including the energy extraction and conversion technology, associated power electronics, and interconnection equipment capable of reliably delivering electricity to the domestic power grid. ORPC achieved this goal by designing, building and operating the TidGen® Power System in 2012 and becoming the first federally licensed hydrokinetic tidal energy project to deliver electricity to a power grid under a power purchase agreement in North America. Located in Cobscook Bay between Eastport and Lubec, Maine, the TidGen® Power System was connected to the Bangor Hydro Electric utility grid at an on-shore station in North Lubec on September 13, 2012. ORPC obtained a FERC pilot project license for the Project on February 12, 2012 and the first Maine Department of Environmental Protection General Permit issued for a tidal energy project on January 31, 2012. In addition, ORPC entered into a 20-year agreement with Bangor Hydro Electric Company on January 1, 2013 for up to 5 megawatts at a price of $215/MWh, escalating at 2.0% per year.

  5. New methodologies and scenarios for evaluating tidal current energy potential 

    E-Print Network [OSTI]

    Sankaran Iyer, Abhinaya

    2012-06-25T23:59:59.000Z

    Transition towards a low carbon economy raises concerns of loss of security of supply with high penetrations of renewable generation displacing traditional fossil fuel based generation. While wind and wave resources are ...

  6. ESM 254 Course Syllabus COASTAL MARINE ECOSYSTEM PROCESSES

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    ­ Tides, tidal currents, and tidal power Thursday Discussio to the specific topics. Topics include wave energy, sea level rise, beach management energy and aquaculture, or limit nanomaterial production and release to better

  7. Development of PTO-Sim: A Power Performance Module for the Open-Source Wave Energy Converter Code WEC-Sim

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: Potential Application toDevelopingandDevelopment ofNovel

  8. Division of Water, Parts 660-661: Tidal Wetlands (New York)

    Broader source: Energy.gov [DOE]

    These regulations require permits for any activity which directly or indirectly may have a significant adverse effect on the existing condition of any tidal wetland, including but not limited to...

  9. Analytical Model of Tidal Distortion and Dissipation for a Giant Planet with a Viscoelastic Core

    E-Print Network [OSTI]

    Storch, Natalia I

    2015-01-01T23:59:59.000Z

    We present analytical expressions for the tidal Love numbers of a giant planet with a solid core and a fluid envelope. We model the core as a uniform, incompressible, elastic solid, and the envelope as a non-viscous fluid satisfying the $n=1$ polytropic equation of state. We discuss how the Love numbers depend on the size, density, and shear modulus of the core. We then model the core as a viscoelastic Maxwell solid and compute the tidal dissipation rate in the planet as characterized by the imaginary part of the Love number $k_2$. Our results improve upon existing calculations based on planetary models with a solid core and a uniform ($n=0$) envelope. Our analytical expressions for the Love numbers can be applied to study tidal distortion and viscoelastic dissipation of giant planets with solid cores of various rheological properties, and our general method can be extended to study tidal distortion/dissipation of super-earths.

  10. The Distribution of Submersed Aquatic Vegetation in the Fresh and Oligohaline Tidal Potomac River, 2004

    E-Print Network [OSTI]

    Washington, DC to Broad Creek, MD, 2004...............................................................................6 2. Percent cover of hydrilla in SAV beds located in the tidal Potomac River from Broad Creek, MD to Chicamuxen Creek, MD, 2004.......................................................................7 3. Percent

  11. Sudden increase in tidal response linked to calving and acceleration at a large Greenland outlet glacier

    E-Print Network [OSTI]

    de Juan, J.; Elosegui, P.; Nettles, M.; Larsen, T.B.; Davis, J.L.; Hamilton, Gordon S.; Stearns, Leigh; Anderson, M.L.; Ekstrom, G.; Ahlstrom, A.P.; Stenseng, L.; Khan, S.A.; Forsberg, R.

    2010-06-23T23:59:59.000Z

    [1] Large calving events at Greenland's largest outlet glaciers are associated with glacial earthquakes and near-instantaneous increases in glacier flow speed. At some glaciers and ice streams, flow is also modulated in a regular way by ocean tidal...

  12. A numerical study of horizontal dispersion in a macro tidal basin

    E-Print Network [OSTI]

    Maine, University of

    boundary layer near the tidal mixing front on Georges Bank (Houghton and Ho 2001) and in Hudson River that significant horizon- tal dispersion and mixing can be induced in oscillatory flows (Aref 1984; Ottino 1989

  13. Groundwater response to dual tidal fluctuations in a peninsula or an elongated island

    E-Print Network [OSTI]

    Zhan, Hongbin

    1 , Hongbin Zhan2,3, *, and Zhonghua Tang1 1 School of Environmental Studies, China University of the tidal fluctuations. This is called quasi-steady state condition *Correspondence to: Hongbin Zhan

  14. Riding the Clean Energy Wave: New Projects Aim to Improve Water...

    Broader source: Energy.gov (indexed) [DOE]

    Riding the Clean Energy Wave: New Projects Aim to Improve Water Power Devices Riding the Clean Energy Wave: New Projects Aim to Improve Water Power Devices April 16, 2014 - 1:56pm...

  15. Hydraulic properties of an artificial tidal inlet through a Texas barrier beach

    E-Print Network [OSTI]

    Prather, Stanley Harold

    1972-01-01T23:59:59.000Z

    HYDRAULIC PROPERTIES OF AN ARTIFICIAL TIDAL INLET THROUGH A TEXAS BARRIER BEACH A Thesis by STANLEY HAROLD PRATHER Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE August 1972 Major Sub]ect: Civil Engineering HYDRAULIC PROPERTIES OF AN ARTIFICIAL TIDAL INLET THROUGH A TEXAS BARRIER BEACH A Thesis by STANLEY HAROLD PRATHER Approved as to style and content by: (Chairman of Committee) (( (Head...

  16. PPPL-3195 -Preprint: May 1996, UC-426, 427 INVESTIGATION OF LOWER HYBRID WAVE DAMPING

    E-Print Network [OSTI]

    of the spatial distribution of the superthermal electrons, which can be used to monitor the wave power deposition

  17. PPPL3195 Preprint: May 1996, UC426, 427 INVESTIGATION OF LOWER HYBRID WAVE DAMPING

    E-Print Network [OSTI]

    of the spatial distribution of the superthermal electrons, which can be used to monitor the wave power deposition

  18. Ecology of Juvenile Salmon in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2008

    SciTech Connect (OSTI)

    Sather, Nichole K.; Johnson, Gary E.; Storch, Adam; Teel, David; Skalski, John R.; Jones, Tucker A.; Dawley, Earl M.; Zimmerman, Shon A.; Borde, Amy B.; Mallette, Christine; Farr, R.

    2009-05-29T23:59:59.000Z

    The tidal freshwater monitoring (TFM) project reported herein is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, the U.S. Army Corps of Engineers [USACE], and the U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act (ESA) as a result of operation of the Federal Columbia River Power System. The project is being performed under the auspices of the Northwest Power and Conservation Council’s Columbia Basin Fish and Wildlife Program (Project No. 2005-001-00). The research is a collaborative effort among the Pacific Northwest National Laboratory, the Oregon Department of Fish and Wildlife, the National Marine Fisheries Service, and the University of Washington.

  19. Coincidence searches of gravitational waves and short gamma-ray bursts

    E-Print Network [OSTI]

    Andrea Maselli; Valeria Ferrari

    2014-05-28T23:59:59.000Z

    Black-hole neutron-star coalescing binaries have been invoked as one of the most suitable scenario to explain the emission of short gamma-ray bursts. Indeed, if the black-hole which forms after the merger, is surrounded by a massive disk, neutrino annihilation processes may produce high-energy and collimated electromagnetic radiation. In this paper, we devise a new procedure, to be used in the search for gravitational waves from black-hole-neutron-star binaries, to assign a probability that a detected gravitational signal is associated to the formation of an accreting disk, massive enough to power gamma-ray bursts. This method is based on two recently proposed semi-analytic fits, one reproducing the mass of the remnant disk surrounding the black hole as a function of some binary parameters, the second relating the neutron star compactness, with its tidal deformability. Our approach can be used in low-latency data analysis to restrict the parameter space searching for gravitational signals associated with short gamma-ray bursts, and to gain information on the dynamics of the coalescing system and on the neutron star equation of state.

  20. Tidal Streams and Low Mass Companions of M31

    E-Print Network [OSTI]

    Robert Braun; David Thilker

    2003-12-04T23:59:59.000Z

    We have imaged the extended HI environment of M31 with an unprecedented combination of high resolution and sensitivity. We detect a number of distinct High Velocity Cloud components associated with M31. A sub-set of the features within 30 kpc appear to be tidal in origin. A filamentary ``halo'' component is concentrated at the M31 systemic velocity and appears to extend into a ``bridge'' connecting M31 and M33. This may represent condensation in coronal gas. A population of discrete clouds is detected out to radii of about 150 kpc. Discrete cloud line-widths are correlated with HI mass and are consistent with a 100:1 ratio of dark to HI mass. These may be the gaseous counterparts of low-mass dark-matter satellites. The combined distribution of M31's HVC components can be characterized by a spatial Gaussian of 55 kpc dispersion and yields an N_HI distribution function which agrees well with that of low red-shift QSOs.

  1. Tidal Accelerometry: Exploring the Cosmos Via Gravitational Correlations

    E-Print Network [OSTI]

    Datta, Timir; Wescott, Mike; Jeong, Yeuncheol; Morawiec, Pawel; Gambrell, James; Overcash, Dan; Zhang, Huaizhou; Voulgaris, George

    2010-01-01T23:59:59.000Z

    Newtonian gravitation is non-radiative but is extremely pervasive and penetrates equally into every media because it cannot be shielded. The extra terrestrial fgravity is responsible for earth's trajectory. However its correlation or geodesic deviation is manifested as semi-diurnal and diurnal tides. Tidal signals, A(t) are temporal modulations in the field differential which can be observed in a wide variety of natural and laboratory situations. A(t) is a quasi-static, low frequency signal which arises from the relative changes in positions of the detector and source and is not part of the electromagnetic spectrum. Isaac Newton was the first to recognize the importance of tides in astrometry and attempetd to estimate lunar mass from ocean tides. By a case study we show, how the systematics of the gravitational correlation can be used for calibration and de-trending which can significantly increase the confidence level of high precision experiments. A(t) can also be used to determine the distribution of celes...

  2. Sandia National Laboratories: WEC power conversion chain

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Modeling & Simulation, Energy, News, News & Events, Partnership, Renewable Energy, Water Power Although ocean waves represent an enormous energy resource, most...

  3. Wave represents displacement Wave represents pressure Source -Sound Waves

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    Wave represents displacement Wave represents pressure Source - Sound Waves Distance between crests is wavelength Number of crests passing a point in 1 second is frequency Wave represents pressure Target - Radio Waves Distance between crests is wavelength Number of crests passing a point in 1 second is frequency

  4. Sandia Energy - Sandia, NREL Release Wave Energy Converter Modeling...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia, NREL Release Wave Energy Converter Modeling and Simulation Code: WEC-Sim Home Renewable Energy Energy Water Power Partnership News News & Events Computational Modeling &...

  5. DOE Announces Webinars on the Wave Energy Converter Prize, the...

    Broader source: Energy.gov (indexed) [DOE]

    24: Live Webinar on the Administration of the Wave Energy Converter Prize Funding Opportunity Announcement Webinar Sponsor: EERE Water Power Program The Energy Department will...

  6. Modeling of In-stream Tidal Energy Development and its Potential Effects in Tacoma Narrows, Washington, USA

    SciTech Connect (OSTI)

    Yang, Zhaoqing; Wang, Taiping; Copping, Andrea E.; Geerlofs, Simon H.

    2014-10-01T23:59:59.000Z

    Understanding and providing proactive information on the potential for tidal energy projects to cause changes to the physical system and to key water quality constituents in tidal waters is a necessary and cost-effective means to avoid costly regulatory involvement and late stage surprises in the permitting process. This paper presents a modeling study for evaluating the tidal energy extraction and its potential impacts on the marine environment in a real world site - Tacoma Narrows of Puget Sound, Washington State, USA. An unstructured-grid coastal ocean model, fitted with a module that simulates tidal energy devices, was applied to simulate the tidal energy extracted by different turbine array configurations and the potential effects of the extraction at local and system-wide scales in Tacoma Narrows and South Puget Sound. Model results demonstrated the advantage of an unstructured-grid model for simulating the far-field effects of tidal energy extraction in a large model domain, as well as assessing the near-field effect using a fine grid resolution near the tidal turbines. The outcome shows that a realistic near-term deployment scenario extracts a very small fraction of the total tidal energy in the system and that system wide environmental effects are not likely; however, near-field effects on the flow field and bed shear stress in the area of tidal turbine farm are more likely. Model results also indicate that from a practical standpoint, hydrodynamic or water quality effects are not likely to be the limiting factor for development of large commercial-scale tidal farms. Results indicate that very high numbers of turbines are required to significantly alter the tidal system; limitations on marine space or other environmental concerns are likely to be reached before reaching these deployment levels. These findings show that important information obtained from numerical modeling can be used to inform regulatory and policy processes for tidal energy development.

  7. DOE in the News: Tidal Power in Maine on PBS Newshour | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRUJuly 29, 2013SavannahRenewableofofappoints

  8. Marine & Hydrokinetic Technology Readiness Initiative TIDAL ENERGY SYSTEM FOR ON-SHORE POWER GENERATION

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found TheHot electron dynamics in807 DE899 06 Revision 0U7114-

  9. DOE in the News: Tidal Power in Maine on PBS Newshour | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. DepartmentEnergyBoilersPlantof Energy The OakDepartmentHeather

  10. MHK Projects/Homeowner Tidal Power Elec Gen | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet < MHKSound, NYMananBend Project

  11. MHK Projects/Ward s Island Tidal Power Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK Projects Jump to:Vicksburg Bend < MHK ProjectsWECs

  12. MHK Technologies/MORILD 2 Floating Tidal Power System | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK ProjectsFlagship <HelixKESC

  13. MHK Technologies/Uldolmok Pilot Tidal Current Power Plant | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter < MHKDUCKInformation MadaTech

  14. NERC Presentation: Accommodating High Levels of Variable Generation...

    Office of Environmental Management (EM)

    of variable electricity eneration. Variable resources are types of electric power generation that rely on an uncontrolled, "variable" fuel (e.g. wind, sunlight, waves, tidal...

  15. Clean energy funds: An overview of state support for renewable energy

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan; Milford, Lew; Stoddard, Michael; Porter, Kevin

    2001-01-01T23:59:59.000Z

    ocean thermal, wave, or tidal energy; fuel cells; landfill gas; naturally flowing water and hydroelectric; low emission, advanced biomass power conversion

  16. Power Plant Power Plant

    E-Print Network [OSTI]

    Tingley, Joseph V.

    Basin Center for Geothermal Energy at University of Nevada, Reno (UNR) 2 Nevada Geodetic LaboratoryStillwater Power Plant Wabuska Power Plant Casa Diablo Power Plant Glass Mountain Geothermal Area Lassen Geothermal Area Coso Hot Springs Power Plants Lake City Geothermal Area Thermo Geothermal Area

  17. Ultra-Micro Wave Rotor Investigations Florin Iancu, Janusz Piechna*

    E-Print Network [OSTI]

    Müller, Norbert

    Nowowiejska Str., 00-665 Warsaw, Poland Abstract Ultra Micro Gas Turbines (UµGT) are expected to be a next of incorporating a wave rotor to an ultra-micro gas turbine and the advantages of wave rotors, topping gas turbines at about 70%. Keywords: PowerMEMS, wave rotor, ultra micro gas turbine, pressure exchanger, efficiency 1

  18. Structural power flow measurement

    SciTech Connect (OSTI)

    Falter, K.J.; Keltie, R.F.

    1988-12-01T23:59:59.000Z

    Previous investigations of structural power flow through beam-like structures resulted in some unexplained anomalies in the calculated data. In order to develop structural power flow measurement as a viable technique for machine tool design, the causes of these anomalies needed to be found. Once found, techniques for eliminating the errors could be developed. Error sources were found in the experimental apparatus itself as well as in the instrumentation. Although flexural waves are the carriers of power in the experimental apparatus, at some frequencies longitudinal waves were excited which were picked up by the accelerometers and altered power measurements. Errors were found in the phase and gain response of the sensors and amplifiers used for measurement. A transfer function correction technique was employed to compensate for these instrumentation errors.

  19. WindWaveFloat Final Report

    SciTech Connect (OSTI)

    Alla Weinstein, Dominique Roddier, Kevin Banister

    2012-03-30T23:59:59.000Z

    Principle Power Inc. and National Renewable Energy Lab (NREL) have completed a contract to assess the technical and economic feasibility of integrating wave energy converters into the WindFloat, resulting in a new concept called the WindWaveFloat (WWF). The concentration of several devices on one platform could offer a potential for both economic and operational advantages. Wind and wave energy converters can share the electrical cable and power transfer equipment to transport the electricity to shore. Access to multiple generation devices could be simplified, resulting in cost saving at the operational level. Overall capital costs may also be reduced, provided that the design of the foundation can be adapted to multiple devices with minimum modifications. Finally, the WindWaveFloat confers the ability to increase energy production from individual floating support structures, potentially leading to a reduction in levelized energy costs, an increase in the overall capacity factor, and greater stability of the electrical power delivered to the grid. The research conducted under this grant investigated the integration of several wave energy device types into the WindFloat platform. Several of the resulting system designs demonstrated technical feasibility, but the size and design constraints of the wave energy converters (technical and economic) make the WindWaveFloat concept economically unfeasible at this time. Not enough additional generation could be produced to make the additional expense associated with wave energy conversion integration into the WindFloat worthwhile.

  20. Tidal hydraulics of San Luis Pass, Texas: a field and numerical investigation

    E-Print Network [OSTI]

    Morton, Scott Jerome

    1980-01-01T23:59:59.000Z

    TIDAL HYDPAULICS OF SAN LUIS PASS, TEXAS: A FIELD AND VBKRICAL INSTIGATION A Thesis by SCOTT JEROME MORTON Submitted to the Graduate College of Texas A(II University in partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE August 1980 i&Iajor Subject: Ocean Engineering TIDAL HyDRAULICS OF SAN LUIS PASS, TEXAS: A FIELD AND M&IERICAL INVESTIGATION A Thesis by SCOTI' JEROIIE MORTON Approved as to style and content by: (C?airman of Committee) (Member) /member...

  1. Macroscopic traversable wormholes with zero tidal forces inspired by noncommutative geometry

    E-Print Network [OSTI]

    Peter K. F. Kuhfittig

    2015-01-08T23:59:59.000Z

    This paper addresses the following issues: (1) the possible existence of macroscopic traversable wormholes, given a noncommutative-geometry background, and (2) the possibility of allowing zero tidal forces, given a known density. It is shown that whenever the energy density describes a classical wormhole, the resulting solution is incompatible with quantum field theory. If the energy density originates from noncommutative geometry, then zero tidal forces are allowed. Also attributable to the noncommutative geometry is the violation of the null energy condition. The wormhole geometry satisfies the usual requirements, including asymptotic flatness.

  2. China Camp's race against the tides: Predicting tidal marsh survival through comparison of project sea level rise elevations and sediment accretion rates

    E-Print Network [OSTI]

    Hannah, Whitney; Kuhn, Marlene

    2012-01-01T23:59:59.000Z

    2). The lowest zone, the mudflat, is primarily unvegetatedre-suspension of existing tidal mudflat sediment (Williams

  3. Effect of squeezing on parameter estimation of gravitational waves emitted by compact binary systems

    E-Print Network [OSTI]

    Ryan Lynch; Salvatore Vitale; Lisa Barsotti; Matthew Evans; Sheila Dwyer

    2014-11-06T23:59:59.000Z

    The LIGO gravitational wave (GW) detectors will begin collecting data in 2015, with Virgo following shortly after. The use of squeezing has been proposed as a way to reduce the quantum noise without increasing the laser power, and has been successfully tested at one of the LIGO sites and at GEO in Germany. When used in Advanced LIGO without a filter cavity, the squeezer improves the performances of detectors above about 100 Hz, at the cost of a higher noise floor in the low frequency regime. Frequency-dependent squeezing, on the other hand, will lower the noise floor throughout the entire band. Squeezing technology will have a twofold impact: it will change the number of expected detections and it will impact the quality of parameter estimation for the detected signals. In this work we consider three different GW detector networks, each utilizing a different type of squeezer, all corresponding to plausible implementations. Using LALInference, a powerful Monte Carlo parameter estimation algorithm, we study how each of these networks estimates the parameters of GW signals emitted by compact binary systems, and compare the results with a baseline advanced LIGO-Virgo network. We find that, even in its simplest implementation, squeezing has a large positive impact: the sky error area of detected signals will shrink by about 30% on average, increasing the chances of finding an electromagnetic counterpart to the GW detection. Similarly, we find that the measurability of tidal deformability parameters for neutron stars in binaries increases by about 30%, which could aid in determining the equation of state of neutron stars. The degradation in the measurement of the chirp mass, as a result of the higher low-frequency noise, is shown to be negligible when compared to systematic errors.

  4. MHK Projects/Paimpol Brehat tidal farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma:Energy Information Basin BayWaveConnect

  5. MHK Projects/Cape May Tidal Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other4Q07)AKBrough Head Wave FarmCanal

  6. Coda wave interferometry 1 Coda wave interferometry

    E-Print Network [OSTI]

    Snieder, Roel

    Coda wave interferometry 1 Coda wave interferometry An interferometer is an instrument that is sensitive to the interference of two or more waves (optical or acoustic). For example, an optical interferometer uses two interfering light beams to measure small length changes. Coda wave interferometry

  7. Ecology of Juvenile Salmon in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2008 Annual Report.

    SciTech Connect (OSTI)

    Sather, NK; Johnson, GE; Storch, AJ [Pacific Northwest National Laboratory

    2009-07-06T23:59:59.000Z

    The tidal freshwater monitoring (TFM) project reported herein is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, the U.S. Army Corps of Engineers [USACE], and the U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act (ESA) as a result of operation of the Federal Columbia River Power System. The project is being performed under the auspices of the Northwest Power and Conservation Council's Columbia Basin Fish and Wildlife Program (Project No. 2005-001-00). The research is a collaborative effort among the Pacific Northwest National Laboratory, the Oregon Department of Fish and Wildlife, the National Marine Fisheries Service, and the University of Washington. The overarching goal of the TFM project is to bridge the gap in knowledge between tidal freshwater habitats and the early life history attributes of migrating salmon. The research questions include: In what types of habitats within the tidal freshwater area of the Columbia River are juvenile salmon found, when are they present, and under what environmental conditions? What is the ecological contribution of shallow (0-5 m) tidal freshwater habitats to the recovery of ESA-listed salmon in the Columbia River basin? Field data collection for the TFM project commenced in June 2007 and since then has continued monthly at six to nine sites in the vicinity of the Sandy River delta (river kilometer 192-208). While this report includes summary data spanning the 19-month period of study from June 2007 through December 2008, it highlights sampling conducted during calendar year 2008. Detailed data for calendar year 2007 were reported previously. The 2008 research objectives were as follows: (1) Characterize the vegetation composition and percent cover, conventional water quality, water surface elevation, substrate composition, bathymetry, and beach slope at the study sites within the vicinity of the Sandy River delta. (2) Characterize the fish community and juvenile salmon migration, including species composition, length-frequency distribution, density (number/m{sup 2}), and temporal and spatial distributions in the vicinity of the Sandy River delta in the lower Columbia River and estuary (LCRE). (3) Determine the stock of origin for juvenile Chinook salmon (Oncorhynchus tshawytscha) captured at sampling sites through genetic identification. (4) Characterize the diets of juvenile Chinook and coho (O. kisutch) salmon captured within the study area. (5) Estimate run timing, residence times, and migration pathways for acoustic-tagged fish in the study area. (6) Conduct a baseline evaluation of the potential restoration to reconnect the old Sandy River channel with the delta. (7) Apply fish density data to initiate a design for a juvenile salmon monitoring program for beach habitats within the tidal freshwater segment of the LCRE (river kilometer 56-234).

  8. Refrigeration system having standing wave compressor

    DOE Patents [OSTI]

    Lucas, Timothy S. (Glen Allen, VA)

    1992-01-01T23:59:59.000Z

    A compression-evaporation refrigeration system, wherein gaseous compression of the refrigerant is provided by a standing wave compressor. The standing wave compressor is modified so as to provide a separate subcooling system for the refrigerant, so that efficiency losses due to flashing are reduced. Subcooling occurs when heat exchange is provided between the refrigerant and a heat pumping surface, which is exposed to the standing acoustic wave within the standing wave compressor. A variable capacity and variable discharge pressure for the standing wave compressor is provided. A control circuit simultaneously varies the capacity and discharge pressure in response to changing operating conditions, thereby maintaining the minimum discharge pressure needed for condensation to occur at any time. Thus, the power consumption of the standing wave compressor is reduced and system efficiency is improved.

  9. Wave Power Plant Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation,Goff, 2002) | OpenEnergy AS Jump

  10. Kinetic Wave Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii |Island,KasVinod Privatea metamorphic

  11. A CLASS OF ECCENTRIC BINARIES WITH DYNAMIC TIDAL DISTORTIONS DISCOVERED WITH KEPLER

    SciTech Connect (OSTI)

    Thompson, Susan E.; Barclay, Thomas; Howell, Steve B.; Still, Martin; Ibrahim, Khadeejah A. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Everett, Mark [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Mullally, Fergal; Rowe, Jason; Christiansen, Jessie L.; Twicken, Joseph D.; Clarke, Bruce D. [SETI Institute, 189 Bernardo Avenue, Suite 100, Mountain View, CA 94043 (United States); Kurtz, Donald W.; Hambleton, Kelly, E-mail: susan.e.thompson@nasa.gov [Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE (United Kingdom)

    2012-07-01T23:59:59.000Z

    We have discovered a class of eccentric binary systems within the Kepler data archive that have dynamic tidal distortions and tidally induced pulsations. Each has a uniquely shaped light curve that is characterized by periodic brightening or variability at timescales of 4-20 days, frequently accompanied by shorter period oscillations. We can explain the dominant features of the entire class with orbitally varying tidal forces that occur in close, eccentric binary systems. The large variety of light curve shapes arises from viewing systems at different angles. This hypothesis is supported by spectroscopic radial velocity measurements for five systems, each showing evidence of being in an eccentric binary system. Prior to the discovery of these 17 new systems, only four stars, where KOI-54 is the best example, were known to have evidence of these dynamic tides and tidally induced oscillations. We perform preliminary fits to the light curves and radial velocity data, present the overall properties of this class, and discuss the work required to accurately model these systems.

  12. Tidal Interactions and Disruptions of Giant Planets on Highly Eccentric Orbits

    E-Print Network [OSTI]

    Joshua A. Faber; Frederic A. Rasio; Bart Willems

    2004-11-15T23:59:59.000Z

    We calculate the evolution of planets undergoing a strong tidal encounter using smoothed particle hydrodynamics (SPH), for a range of periastron separations. We find that outside the Roche limit, the evolution of the planet is well-described by the standard model of linear, non-radial, adiabatic oscillations. If the planet passes within the Roche limit at periastron, however, mass can be stripped from it, but in no case do we find enough energy transferred to the planet to lead to complete disruption. In light of the three new extrasolar planets discovered with periods shorter than two days, we argue that the shortest-period cases observed in the period-mass relation may be explained by a model whereby planets undergo strong tidal encounters with stars, after either being scattered by dynamical interactions into highly eccentric orbits, or tidally captured from nearly parabolic orbits. Although this scenario does provide a natural explanation for the edge found for planets at twice the Roche limit, it does not explain how such planets will survive the inevitable expansion that results from energy injection during tidal circularization.

  13. The Distribution of Submersed Aquatic Vegetation in the Fresh and Oligohaline Tidal

    E-Print Network [OSTI]

    . Cover: Summer 2005 aerial photo of Dogue Creek and the Potomac River showing extensive dark areas to Dogue Creek, VA, 2005 ....................................................... 9 3. Percent cover of hydrilla in SAV beds located in the tidal Potomac River from Dogue Creek, VA to Quantico Creek, VA, 2005

  14. Covariation of coastal water temperature and microbial pollution at interannual to tidal periods

    E-Print Network [OSTI]

    Winant, Clinton D.

    Covariation of coastal water temperature and microbial pollution at interannual to tidal periods, California, USA Daniel B. Lluch-Cota Centro de Investigaciones Biologicas del Noroeste, La Paz, Mexico-period cooling are coincident with elevated levels of microbial pollution in the surf zone. This relationship can

  15. Multi-point tidal prediction using artificial neural network with tide-generating forces

    E-Print Network [OSTI]

    Multi-point tidal prediction using artificial neural network with tide-generating forces Hsien Available online 23 June 2006 Abstract This paper presents a neural network model of simulating tides Elsevier B.V. All rights reserved. Keywords: Neural networks; Tides; Tide-generating forces; Harmonic

  16. PHYSIOLOGICAL PERFORMANCE OF INTERTIDAL CORALLINE ALGAE DURING A SIMULATED TIDAL CYCLE1

    E-Print Network [OSTI]

    Martone, Patrick T.

    PHYSIOLOGICAL PERFORMANCE OF INTERTIDAL CORALLINE ALGAE DURING A SIMULATED TIDAL CYCLE1 Rebecca J, Lobban and Harrison 1997, Helmuth and Hofmann 2001). During high tide, intertidal algae are underwater algae may be emerged and exposed to increased light stress, elevated air tem- peratures, and increased

  17. Numerical study of the diapycnal flow through a tidal front with passive tracers

    E-Print Network [OSTI]

    Dong, Changming "Charles"

    . This qualitatively agrees with a recent field experiment using a dye tracer on Georges Bank. Additional experiments are performed to investigate the sensitivity of the tracer dispersion to the tidal phase and the location, the previous studies indicated Eulerian cross-front mean circu- lation maybe is in a multiple-cell structure

  18. Dissolved oxygen stratification in two micro-tidal partially-mixed estuaries

    E-Print Network [OSTI]

    Mallin, Michael

    Dissolved oxygen stratification in two micro-tidal partially-mixed estuaries Jing Lin a,*, Lian Xie online 21 August 2006 Abstract The controlling physical factors for vertical oxygen stratification that vertical stratification of dissolved oxygen (DO) concentration can be explained by the extended Hansen

  19. Asymmetric mixing transport: a horizontal transport mechanism for sinking plankton and sediment in tidal flows

    E-Print Network [OSTI]

    Pringle, James "Jamie"

    on the flood tide creates enhanced vertical mixing, and resuspension of sinking particles higher into the water retards the tidal flow near the bottom, this leads to a net horizontal transport toward the less]. To a large extent these larvae are at the mercy of the prevailing currents, often leading to a strong

  20. Nitrogen Cycling and Ecosystem Exchanges in a Virginia Tidal Freshwater Marsh

    E-Print Network [OSTI]

    Neubauer, Scott C.

    loading due to watershed development and urbanization. We present a process-based mass balance model of N habitats for juvenile fishes, and buffering storm and flood waters (Odum et al. 1984; Mitsch and Gosselink dominated tidal freshwater marsh in the York River estuary, Virginia. The model, which was based

  1. Final Report for Sea-level Rise Response Modeling for San Francisco Bay Estuary Tidal

    E-Print Network [OSTI]

    Fleskes, Joe

    i Final Report for Sea-level Rise Response Modeling for San Francisco Bay Estuary Tidal Marshes Refuge in northern San Francisco Bay, California. #12;iii Final Report for Sea-level Rise Response)................................................................... 7 Sea-level rise scenario model inputs

  2. An analytical solution of groundwater response to tidal fluctuation in a leaky confined aquifer

    E-Print Network [OSTI]

    Jiao, Jiu Jimmy

    of China. 1. Introduction In most coastal areas, groundwater and seawater are in con- stant communicationAn analytical solution of groundwater response to tidal fluctuation in a leaky confined aquifer Jiu of the solution presented in this paper. This solution is based on a conceptual model under the assumption

  3. Tidal mixing around the Maritime continent: implications for1 paleoclimate simulations2

    E-Print Network [OSTI]

    of mechanical energy for the ocean circulation and as such is 6 being incorporated changes in the ocean thermal structure, including 12 a ~1o C warming into state-of-the-art climate models. Calculation of the tidal energy flux depends on 7

  4. Hydrodynamic Modeling, Optimization and Performance Assessment for Ducted and Non-ducted Tidal Turbines

    E-Print Network [OSTI]

    Pedersen, Tom

    Turbines by Michael Robert Shives B.Eng., Carleton University, 2008 A Dissertation Submitted in Partial Hydrodynamic Modeling, Optimization and Performance Assessment for Ducted and Non-ducted Tidal Turbines) #12;iii ABSTRACT This thesis examines methods for designing and analyzing kinetic turbines based

  5. Hydrodynamic Modeling, Optimization and Performance Assessment for Ducted and Non-ducted Tidal Turbines

    E-Print Network [OSTI]

    Victoria, University of

    Turbines by Michael Robert Shives B.Eng., Carleton University, 2008 A Thesis Submitted in Partial Hydrodynamic Modeling, Optimization and Performance Assessment for Ducted and Non-ducted Tidal Turbines examines methods for designing and analyzing kinetic turbines based on blade element momentum (BEM) theory

  6. Some characteristics on nonbreaking waves passing a submerged longshore bar

    E-Print Network [OSTI]

    Chandler, Pierce Leon

    1971-01-01T23:59:59.000Z

    Figure 3. Typical wave records Figure 4. The envelope of transformation ~Pa e 15 17 Figure 5. Nave forms produced in constant depth by a periodic wave generator - after Galvin (3) 18 Figure 6. Relative energy transformed to higher frequencies. . 22.... Power spectra run 4 (T = 1. 2 sec, Figure 13. Power spectra run 5 (T = 2. 0 sec, Figure 14. Power spectra run 6 (T = 2. 0 sec, Figure 15. Power spectra run 7 (T = 1. 2 sec, Figure 16. Power spectra run 8 (T = 1. 4 sec, Figure 17. Power spectra run 9...

  7. Innovative Wave Power Device Starts Producing Clean Power in Hawaii |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732on Armed

  8. Shock-activated electrochemical power supplies

    DOE Patents [OSTI]

    Benedick, W.B.; Graham, R.A.; Morosin, B.

    1988-11-08T23:59:59.000Z

    A shock-activated electrochemical power supply is provided which is initiated extremely rapidly and which has a long shelf life. Electrochemical power supplies of this invention are initiated much faster than conventional thermal batteries. Power supplies of this invention comprise an inactive electrolyte and means for generating a high-pressure shock wave such that the shock wave is propagated through the electrolytes rendering the electrolyte electrochemically active. 2 figs.

  9. Shock-activated electrochemical power supplies

    DOE Patents [OSTI]

    Benedick, W.B.; Graham, R.A.; Morosin, B.

    1987-04-20T23:59:59.000Z

    A shock-activated electrochemical power supply is provided which is initiated extremely rapidly and which has a long shelf life. Electrochemical power supplies of this invention are initiated much faster than conventional thermal batteries. Power supplies of this invention comprise an inactive electrolyte and means for generating a high-pressure shock wave such that the shock wave is propagated through the electrolyte rendering the electrolyte electrochemically active. 2 figs.

  10. Pool spacing, channel morphology, and the restoration of tidal forested wetlands of the Columbia River, U.S.A.

    SciTech Connect (OSTI)

    Diefenderfer, Heida L.; Montgomery, David R.

    2008-10-09T23:59:59.000Z

    Tidal forested wetlands have sustained substantial areal losses, and restoration practitioners lack a description of many ecosystem structures associated with these late-successional systems in which surface water is a significant controlling factor on the flora and fauna. The roles of large woody debris in terrestrial and riverine ecosystems have been well described compared to functions in tidal areas. This study documents the role of large wood in forcing channel morphology in Picea-sitchensis (Sitka spruce) dominated freshwater tidal wetlands in the floodplain of the Columbia River, U.S.A. near the Pacific coast. The average pool spacing documented in channel surveys of three freshwater tidal forested wetlands near Grays Bay were 2.2 ± 1.3, 2.3 ± 1.2, and 2.5 ± 1.5. There were significantly greater numbers of pools on tidal forested wetland channels than on a nearby restoration site. On the basis of pool spacing and the observed sequences of log jams and pools, the tidal forested wetland channels were classified consistent with a forced step-pool class. Tidal systems, with bidirectional flow, have not previously been classified in this way. The classification provides a useful basis for restoration project design and planning in historically forested tidal freshwater areas, particularly in regard to the use of large wood in restoration actions and the development of pool habitats for aquatic species. Significant modifications by beaver on these sites warrant further investigation to explore the interactions between these animals and restoration actions affecting hydraulics and channel structure in tidal areas.

  11. Scattering of internal gravity waves

    E-Print Network [OSTI]

    Leaman Nye, Abigail

    2011-04-19T23:59:59.000Z

    of the perturbed buoy- ancy field throughout a period of the motion. Curves represent cross-sections taken from the incident beam (cyan); a beam after reflection from a solid horizontal bound- ary (dark blue) and a beam after interaction with the sponge formation... wavenumber components and (b) plots power spectra calculated with Fourier and maximum entropy methods. k˜ is a nondimensional wavenumber representing the number of waves in an across-beam section of length Rc. . . . . . . 114 4.7 Two-dimensional power spectra...

  12. Study of the Acoustic Effects of Hydrokinetic Tidal Turbines in Admiralty Inlet, Puget Sound

    SciTech Connect (OSTI)

    Brian Polagye; Jim Thomson; Chris Bassett; Jason Wood; Dom Tollit; Robert Cavagnaro; Andrea Copping

    2012-03-30T23:59:59.000Z

    Hydrokinetic turbines will be a source of noise in the marine environment - both during operation and during installation/removal. High intensity sound can cause injury or behavioral changes in marine mammals and may also affect fish and invertebrates. These noise effects are, however, highly dependent on the individual marine animals; the intensity, frequency, and duration of the sound; and context in which the sound is received. In other words, production of sound is a necessary, but not sufficient, condition for an environmental impact. At a workshop on the environmental effects of tidal energy development, experts identified sound produced by turbines as an area of potentially significant impact, but also high uncertainty. The overall objectives of this project are to improve our understanding of the potential acoustic effects of tidal turbines by: (1) Characterizing sources of existing underwater noise; (2) Assessing the effectiveness of monitoring technologies to characterize underwater noise and marine mammal responsiveness to noise; (3) Evaluating the sound profile of an operating tidal turbine; and (4) Studying the effect of turbine sound on surrogate species in a laboratory environment. This study focuses on a specific case study for tidal energy development in Admiralty Inlet, Puget Sound, Washington (USA), but the methodologies and results are applicable to other turbine technologies and geographic locations. The project succeeded in achieving the above objectives and, in doing so, substantially contributed to the body of knowledge around the acoustic effects of tidal energy development in several ways: (1) Through collection of data from Admiralty Inlet, established the sources of sound generated by strong currents (mobilizations of sediment and gravel) and determined that low-frequency sound recorded during periods of strong currents is non-propagating pseudo-sound. This helped to advance the debate within the marine and hydrokinetics acoustic community as to whether strong currents produce propagating sound. (2) Analyzed data collected from a tidal turbine operating at the European Marine Energy Center to develop a profile of turbine sound and developed a framework to evaluate the acoustic effects of deploying similar devices in other locations. This framework has been applied to Public Utility District No. 1 of Snohomish Country's demonstration project in Admiralty Inlet to inform postinstallation acoustic and marine mammal monitoring plans. (3) Demonstrated passive acoustic techniques to characterize the ambient noise environment at tidal energy sites (fixed, long-term observations recommended) and characterize the sound from anthropogenic sources (drifting, short-term observations recommended). (4) Demonstrated the utility and limitations of instrumentation, including bottom mounted instrumentation packages, infrared cameras, and vessel monitoring systems. In doing so, also demonstrated how this type of comprehensive information is needed to interpret observations from each instrument (e.g., hydrophone data can be combined with vessel tracking data to evaluate the contribution of vessel sound to ambient noise). (5) Conducted a study that suggests harbor porpoise in Admiralty Inlet may be habituated to high levels of ambient noise due to omnipresent vessel traffic. The inability to detect behavioral changes associated with a high intensity source of opportunity (passenger ferry) has informed the approach for post-installation marine mammal monitoring. (6) Conducted laboratory exposure experiments of juvenile Chinook salmon and showed that exposure to a worse than worst case acoustic dose of turbine sound does not result in changes to hearing thresholds or biologically significant tissue damage. Collectively, this means that Chinook salmon may be at a relatively low risk of injury from sound produced by tidal turbines located in or near their migration path. In achieving these accomplishments, the project has significantly advanced the District's goals of developing a demonstration-scale tidal energy proj

  13. Quantification of the influence of directional sea state parameters over the performances of wave energy converters 

    E-Print Network [OSTI]

    Pascal, Remy Claude Rene

    2012-11-29T23:59:59.000Z

    Accurate predictions of the annual energy yield from wave energy converters are essential to the development of the wave industry. The current method based on power matrices uses only a small part of the data available ...

  14. Geometrical vs wave optics under gravitational waves

    E-Print Network [OSTI]

    Raymond Angélil; Prasenjit Saha

    2015-05-20T23:59:59.000Z

    We present some new derivations of the effect of a plane gravitational wave on a light ray. A simple interpretation of the results is that a gravitational wave causes a phase modulation of electromagnetic waves. We arrive at this picture from two contrasting directions, namely null geodesics and Maxwell's equations, or, geometric and wave optics. Under geometric optics, we express the geodesic equations in Hamiltonian form and solve perturbatively for the effect of gravitational waves. We find that the well-known time-delay formula for light generalizes trivially to massive particles. We also recover, by way of a Hamilton-Jacobi equation, the phase modulation obtained under wave optics. Turning then to wave optics - rather than solving Maxwell's equations directly for the fields, as in most previous approaches - we derive a perturbed wave equation (perturbed by the gravitational wave) for the electromagnetic four-potential. From this wave equation it follows that the four-potential and the electric and magnetic fields all experience the same phase modulation. Applying such a phase modulation to a superposition of plane waves corresponding to a Gaussian wave packet leads to time delays.

  15. Changes in Beachface Bed Elevation over a Tidal Cycle on Santa Rosa Island, Florida and Matagorda, Texas

    E-Print Network [OSTI]

    Barrett, Gemma

    2009-06-09T23:59:59.000Z

    . Data from one ultrasonic sensor was chosen to compile for the tidal cycle. Sonic 4 was chosen because it was located midway through the swash zone and positioned on station 4 of the 8 transect stations which showed the best data for rising, high tide... CHANGES IN BEACHFACE BED ELEVATION OVER A TIDAL CYCLE ON SANTA ROSA ISLAND, FLORIDA AND MATAGORDA PENINSULA, TEXAS Major: Environmental Geosciences April 2009 Submitted to the Office of Undergraduate Research Texas A...

  16. Non-linear evolution of the angular momentum of protostructures from tidal torques

    E-Print Network [OSTI]

    Paolo Catelan; Tom Theuns

    1996-04-15T23:59:59.000Z

    We discuss the non-linear evolution of the angular momentum L acquired by protostructures, like protogalaxies and protoclusters, due to tidal interactions with the surrounding matter inhomogeneities. The primordial density distribution is assumed to be Gaussian and the non-linear dynamics of the collisionless mass fluid is followed using Lagrangian perturbation theory. For a Cold Dark Matter spectrum, the inclusion of the leading-order Lagrangian correction terms results in a value of the rms ensemble average ^{1/2} which is only a factor of 1.3 higher than the corresponding linear estimate, irrespective of the scale. Consequently, the predictions of linear theory are rather accurate in quantifying the evolution of the angular momentum of protostructures before collapse sets in. In the Einstein-de Sitter universe, the initial torque is a good estimate for the tidal torque over the whole period during which the object is spun up.

  17. Spin alignments within the cosmic web: a theory of constrained tidal torques near filaments

    E-Print Network [OSTI]

    Codis, Sandrine; Pogosyan, Dmitry

    2015-01-01T23:59:59.000Z

    The geometry of the cosmic web drives in part the spin acquisition of galaxies. This can be explained in a Lagrangian framework, by identifying the specific long-wavelength correlations within the primordial Gaussian random field which are relevant to spin acquisition. Tidal Torque Theory is revisited in the context of such anisotropic environments, biased by the presence of a filament within a wall. The point process of filament-type saddles represents it most efficiently. The constrained misalignment between the tidal and the inertia tensors in the vicinity of filament-type saddles simply explains the distribution of spin directions. This misalignment implies in particular an azimuthal orientation for the spins of more massive galaxies and a spin alignment with the filament for less massive galaxies. This prediction is found to be in qualitative agreement with measurements in Gaussian random fields and N-body simulations. It relates the transition mass to the geometry of the saddle, and accordingly predicts...

  18. Structural Design of a Horizontal-Axis Tidal Current Turbine Composite Blade

    SciTech Connect (OSTI)

    Bir, G. S.; Lawson, M. J.; Li, Y.

    2011-10-01T23:59:59.000Z

    This paper describes the structural design of a tidal composite blade. The structural design is preceded by two steps: hydrodynamic design and determination of extreme loads. The hydrodynamic design provides the chord and twist distributions along the blade length that result in optimal performance of the tidal turbine over its lifetime. The extreme loads, i.e. the extreme flap and edgewise loads that the blade would likely encounter over its lifetime, are associated with extreme tidal flow conditions and are obtained using a computational fluid dynamics (CFD) software. Given the blade external shape and the extreme loads, we use a laminate-theory-based structural design to determine the optimal layout of composite laminas such that the ultimate-strength and buckling-resistance criteria are satisfied at all points in the blade. The structural design approach allows for arbitrary specification of the chord, twist, and airfoil geometry along the blade and an arbitrary number of shear webs. In addition, certain fabrication criteria are imposed, for example, each composite laminate must be an integral multiple of its constituent ply thickness. In the present effort, the structural design uses only static extreme loads; dynamic-loads-based fatigue design will be addressed in the future. Following the blade design, we compute the distributed structural properties, i.e. flap stiffness, edgewise stiffness, torsion stiffness, mass, moments of inertia, elastic-axis offset, and center-of-mass offset along the blade. Such properties are required by hydro-elastic codes to model the tidal current turbine and to perform modal, stability, loads, and response analyses.

  19. EVOLUTION OF PLANETARY ORBITS WITH STELLAR MASS LOSS AND TIDAL DISSIPATION

    SciTech Connect (OSTI)

    Adams, Fred C. [Physics Department, University of Michigan, Ann Arbor, MI 48109 (United States)] [Physics Department, University of Michigan, Ann Arbor, MI 48109 (United States); Bloch, Anthony M. [Math Department, University of Michigan, Ann Arbor, MI 48109 (United States)] [Math Department, University of Michigan, Ann Arbor, MI 48109 (United States)

    2013-11-10T23:59:59.000Z

    Intermediate mass stars and stellar remnants often host planets, and these dynamical systems evolve because of mass loss and tides. This paper considers the combined action of stellar mass loss and tidal dissipation on planetary orbits in order to determine the conditions required for planetary survival. Stellar mass loss is included using a so-called Jeans model, described by a dimensionless mass loss rate ? and an index ?. We use an analogous prescription to model tidal effects, described here by a dimensionless dissipation rate ? and two indices (q, p). The initial conditions are determined by the starting value of angular momentum parameter ?{sub 0} (equivalently, the initial eccentricity) and the phase ? of the orbit. Within the context of this model, we derive an analytic formula for the critical dissipation rate ?, which marks the boundary between orbits that spiral outward due to stellar mass loss and those that spiral inward due to tidal dissipation. This analytic result ? = ?(?, ?, q, p, ?{sub 0}, ?) is essentially exact for initially circular orbits and holds to within an accuracy of ?50% over the entire multi-dimensional parameter space, where the individual parameters vary by several orders of magnitude. For stars that experience mass loss, the stellar radius often displays quasi-periodic variations, which produce corresponding variations in tidal forcing; we generalize the calculation to include such pulsations using a semi-analytic treatment that holds to the same accuracy as the non-pulsating case. These results can be used in many applications, e.g., to predict/constrain properties of planetary systems orbiting white dwarfs.

  20. Deflection microwave and millimeter-wave amplifiers

    SciTech Connect (OSTI)

    Tang., C.M. [Naval Research Lab., Washington, DC (United States)] [Naval Research Lab., Washington, DC (United States); Lau, Y.Y. [Univ. of Michigan, Ann Arbor, MI (United States)] [Univ. of Michigan, Ann Arbor, MI (United States); Swyden, T.A. [FM Technologies, Inc., Fairfax, VA (United States)] [FM Technologies, Inc., Fairfax, VA (United States)

    1994-03-01T23:59:59.000Z

    A new class of microwave and millimeter-wave amplifiers, called deflectron amplifiers, which are based on the deflection of low voltage electron beams in a microstructure were analyzed. This concept may be applied in two ways: as microelectronic amplifiers or as bunched beam cathodes to power conventional amplifier configurations such as klystrodes and traveling wave tubes. Estimates for gain and efficiency are obtained from a circuit analysis. Particle codes are used to test the viability of the concept. Frequencies of operation are projected up to a few tens of GHz for microelectronic amplifiers and up to {approx}80 GHz for power amplifiers 29 refs., 5 figs.

  1. Formation of Hot Planets by a combination of planet scattering, tidal circularization, and Kozai mechanism

    E-Print Network [OSTI]

    M. Nagasawa; S. Ida; T. Bessho

    2008-01-09T23:59:59.000Z

    We have investigated the formation of close-in extrasolar giant planets through a coupling effect of mutual scattering, Kozai mechanism, and tidal circularization, by orbital integrations. We have carried out orbital integrations of three planets with Jupiter-mass, directly including the effect of tidal circularization. We have found that in about 30% runs close-in planets are formed, which is much higher than suggested by previous studies. We have found that Kozai mechanism by outer planets is responsible for the formation of close-in planets. During the three-planet orbital crossing, the Kozai excitation is repeated and the eccentricity is often increased secularly to values close enough to unity for tidal circularization to transform the inner planet to a close-in planet. Since a moderate eccentricity can remain for the close-in planet, this mechanism may account for the observed close-in planets with moderate eccentricities and without nearby secondary planets. Since these planets also remain a broad range of orbital inclinations (even retrograde ones), the contribution of this process would be clarified by more observations of Rossiter-McLaughlin effects for transiting planets.

  2. Lagoon and tidal flat sedimentation of the Upper Devonian Nisku Formation in southern Alberta

    SciTech Connect (OSTI)

    Slingsby, A. (Norcen Energy Resources Ltd., Calgary, Alberta (Canada)); Kissling, D.L. (Jackalope Geological Ltd., Lafayette, CO (United States))

    1991-06-01T23:59:59.000Z

    Since 1985, 26 oil pools containing 64 million bbl of oil in place have been discovered in the Nisku Formation in southern Alberta. The thoroughly dolomitized Nisku Formation varies from 20 to 30 m thick in southern Alberta and northern Montana. It overlies anhydrites and shaly carbonates of the Southesk or Duperow formations and underlies anhydrites of the Stettler or Potlatch formation. Burrowed, nodular-bedded skeletal wackestone, deposited over a shallow marine shelf, forms the basal Nisku Formation. These strata are succedded diachronously and unconformably by several tidal-flat and lagoon facies that include (1) southeast-thinning washover fans of cross-bedded peloidal grainstone; (2) laminated mudstone to current-bedded peloidal and intraclastic grainstone sourced within the lagoon; (3) stromatolitic mudstones; (4) laminated anhydrite beds precipitated during salina episodes; (5) Amphipora and brachiopod wackestones and thrombolites containing Renalcis, serpulids, and ostracoes, marking a brief marine invasion; and (6) brackish or freshwater shale and mudstone containing fragmented lycopod leaves and antiarch fish remains. These sediments are overlain by cross-bedded, peloidal, and calcisiltite grainstone and stromatolitic mudstone deposited in tidal channels and over shoals. All facies have been subjected to periodic subareal exposure which has produced leaching, solution collapse brecciation, teepee structures, and nodular-mosaic and void-filling anhydrite. Permeable reservoirs exist where leached, dolomitized tidal flat and lagoon sediments contain intercrystalline and pelmoldic porosity and little anhydrite cement.

  3. Tidal salt marshes of the southeast Atlantic Coast: A community profile

    SciTech Connect (OSTI)

    Wiegert, R.G.; Freeman, B.J.

    1990-09-01T23:59:59.000Z

    This report is part of a series of community profiles on the ecology of wetland and marine communities. This particular profile considers tidal marshes of the southeastern Atlantic coast, from North Carolina south to northern Florida. Alone among the earth's ecosystems, coastal communities are subjected to a bidirectional flooding sometimes occurring twice each day; this flooding affects successional development, species composition, stability, and productivity. In the tidally influenced salt marsh, salinity ranges from less than 1 ppt to that of seawater. Dominant plant species include cordgrasses (Spartina alterniflora and S. cynosuroides), black needlerush (Juncus romerianus), and salt marsh bulrush (Scirpus robustus). Both terrestrail and aquatic animals occur in salt marshes and include herons, egrets ospreys (Pandion haliaetus), bald eagles (Haliaeetus leucocephalus), alligators (Alligator Mississippiensis), manatees (Trichecus manatus), oysters, mussels, and fiddler crabs. Currently, the only significant direct commercial use of the tidal salt marshes is by crabbers seeking the blue crab Callinectes sapidus, but the marshes are quite important recreationally, aesthetically, and educationally. 151 refs., 45 figs., 6 tabs.

  4. Tidally dominated depositional environment for the Mt. Simon Sandstone in central Illinois

    SciTech Connect (OSTI)

    Sargent, M.L.; Lasemi, Z. (Illinois State Geological Survey, Champaign, IL (United States))

    1993-03-01T23:59:59.000Z

    Several hundred feet of core from the upper part of the Mt. Simon in central Illinois have been examined macroscopically. Grain sizes and their systematics, bedding characteristics, sedimentary structures, and relationships among beds show that the upper Mt. Simon Sandstone is composed of a series of fining-upward cycles up to 10 m (30 feet) thick. A typical cycle consists, in ascending order, of a sandy subtidal facies, a mixed sand and mud intertidal-flat facies, and a muddy upper tidal-flat facies upward through the succession, the maximum and average grain size becomes progressively finer and the cycles thinner. The lower sandstone of each cycle contains beds that are massive to cross bedded and cross laminated; some beds show scoured reactivation surfaces. A few cycles contain a middle unit characterized by flaser and lenticular bedding and abundant mudcracks. Mudcracks also are common in the shale beds at the top of each cycle. Sedimentary structures such as reactivation surfaces, flaser and lenticular bedding, and mudcracks suggest that these cycles were deposited in peritidal environments. The presence of Skolithos in some cycles suggests very shallow marine conditions. The within-cycle upward fining is caused by regression or progradation that reflects a progressive decrease in current velocity from subtidal to intertidal parts of the tidal flat. Frequent flooding of the tidal flat resulted in repeated fining-upward cycles within the upper part of the Mt. Simon Sandstone.

  5. Ages of Star Clusters in the Tidal Tails of Merging Galaxies

    E-Print Network [OSTI]

    Mulia, A J; Whitmore, B C

    2015-01-01T23:59:59.000Z

    We study the stellar content in the tidal tails of three nearby merging galaxies, NGC 520, NGC 2623, and NGC 3256, using BVI imaging taken with the Advanced Camera for Surveys on board the Hubble Space Telescope. The tidal tails in all three systems contain compact and fairly massive young star clusters, embedded in a sea of diffuse, unresolved stellar light. We compare the measured colors and luminosities with predictions from population synthesis models to estimate cluster ages and find that clusters began forming in tidal tails during or shortly after the formation of the tails themselves. We find a lack of very young clusters ($\\le 10$ Myr old), implying that eventually star formation shuts off in the tails as the gas is used up or dispersed. There are a few clusters in each tail with estimated ages that are older than the modeled tails themselves, suggesting that these may have been stripped out from the original galaxy disks. The luminosity function of the tail clusters can be described by a single powe...

  6. Water Waves Roger Grimshaw

    E-Print Network [OSTI]

    ,2) provide a kinematic description of water waves, which to this point means that the conditionsWater Waves Roger Grimshaw May 7, 2003 Abstract A short review of the theory of weakly nonlinear water waves, prepared for the forthcoming Encyclopedia of Nonlinear Science 1 Introduction Water waves

  7. Can New Nuclear Power Plants be Project Financed?

    E-Print Network [OSTI]

    Taylor, Simon

    This paper considers the prospects for financing a wave of new nuclear power plants (NPP) using project financing, which is used widely in large capital intensive infrastructure investments, including the power and gas sectors, but has...

  8. Gravity Waves on Hot Extrasolar Planets: I. Propagation and Interaction with the Background

    E-Print Network [OSTI]

    Watkins, Chris

    2010-01-01T23:59:59.000Z

    We study the effects of gravity waves, or g-modes, on hot extrasolar planets. These planets are expected to possess stably-stratified atmospheres, which support gravity waves. In this paper, we review the derivation of the equation that governs the linear dynamics of gravity waves and describe its application to a hot extrasolar planet, using HD209458 b as a generic example. We find that gravity waves can exhibit a wide range of behaviors, even for a single atmospheric profile. The waves can significantly accelerate or decelerate the background mean flow, depending on the difference between the wave phase and mean flow speeds. In addition, the waves can provide significant heating (~100 to ~1000 K per planetary rotation), especially to the region of the atmosphere above about 10 scale heights from the excitation region. Furthermore, by propagating horizontally, gravity waves provide a mechanism for transporting momentum and heat from the dayside of a tidally locked planet to its nightside. We discuss work tha...

  9. MHK Projects/US Navy Wave Energy Technology WET Program at Marine...

    Open Energy Info (EERE)

    assessment was completed with an objective of demonstrating the applicability of wave power for use at US Navy bases worldwide. Project Installed Capacity (MW) 1 Device Nameplate...

  10. Gravitational waves from a curvaton model with blue spectrum

    SciTech Connect (OSTI)

    Kawasaki, Masahiro; Kitajima, Naoya; Yokoyama, Shuichiro, E-mail: kawasaki@icrr.u-tokyo.ac.jp, E-mail: nk610@icrr.u-tokyo.ac.jp, E-mail: shu@icrr.u-tokyo.ac.jp [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan)

    2013-08-01T23:59:59.000Z

    We investigate the gravitational wave background induced by the first order scalar perturbations in the curvaton models. We consider the quadratic and axion-like curvaton potential which can generate the blue-tilted power spectrum of curvature perturbations on small scales and derive the maximal amount of gravitational wave background today. We find the power spectrum of the induced gravitational wave background has a characteristic peak at the frequency corresponding to the scale reentering the horizon at the curvaton decay, in the case where the curvaton does not dominate the energy density of the Universe. We also find the enhancement of the amount of the gravitational waves in the case where the curvaton dominates the energy density of the Universe. Such induced gravitational waves would be detectable by the future space-based gravitational wave detectors or pulsar timing observations.

  11. Kinetic Alfvén wave turbulence and formation of localized structures

    SciTech Connect (OSTI)

    Sharma, R. P. [Centre for Energy Studies, Indian Institute of Technology Delhi, Delhi 110016 (India)] [Centre for Energy Studies, Indian Institute of Technology Delhi, Delhi 110016 (India); Modi, K. V. [Centre for Energy Studies, Indian Institute of Technology Delhi, Delhi 110016 (India) [Centre for Energy Studies, Indian Institute of Technology Delhi, Delhi 110016 (India); Mechanical Engineering Department, Government Engineering College Valsad, Gujarat 396001 (India)

    2013-08-15T23:59:59.000Z

    This work presents non-linear interaction of magnetosonic wave with kinetic Alfvén wave for intermediate ?-plasma (m{sub e}/m{sub i}???1). A set of dimensionless equations have been developed for analysis by considering ponderomotive force due to pump kinetic Alfvén wave in the dynamics of magnetosonic wave. Stability analysis has been done to study modulational instability or linear growth rate. Further, numerical simulation has been carried out to study the nonlinear stage of instability and resulting power spectrum applicable to solar wind around 1 AU. Due to the nonlinearity, background density of magnetosonic wave gets modified which results in localization of kinetic Alfvén wave. From the obtained results, we observed that spectral index follows k{sup ?3.0}, consistent with observation received by Cluster spacecraft for the solar wind around 1 AU. The result shows the steepening of power spectrum which may be responsible for heating and acceleration of plasma particles in solar wind.

  12. On the wave energy potential of Western Black Sea shelf

    E-Print Network [OSTI]

    Galabov, Vasko

    2013-01-01T23:59:59.000Z

    In the present study we evaluate the approaches to estimate the wave energy potential of the western Black Sea shelf with numerical models. For the purpose of our evaluation and due to the lack of long time series of measurements in the selected area of the Black Sea, we compare the modeled mean wave power flux output from the SWAN wave model with the only available long term measurements from the buoy of Gelendzhik for the period 1997-2003 (with gaps). The forcing meteorological data for the numerical wave models for the selected years is extracted from the ERA Interim reanalysis of ECMWF (European Centre for Medium range Forecasts). For the year 2003 we also compare the estimated wave power with the modeled by SWAN, using ALADIN regional atmospheric model winds. We try to identify the shortcomings and limitations of the numerical modeling approach to the evaluation of the wave energy potential in Black Sea.

  13. the wave model A traveling wave is an organized disturbance

    E-Print Network [OSTI]

    Winokur, Michael

    1 waves the wave model A traveling wave is an organized disturbance propagating at a well-defined wave speed v. · In transverse waves the particles of the medium move perpendicular to the direction of wave propagation. · In longitudinal waves the particles of the medium move parallel to the direction

  14. Power conditioning system for energy sources

    DOE Patents [OSTI]

    Mazumder, Sudip K. (Chicago, IL); Burra, Rajni K. (Chicago, IL); Acharya, Kaustuva (Chicago, IL)

    2008-05-13T23:59:59.000Z

    Apparatus for conditioning power generated by an energy source includes an inverter for converting a DC input voltage from the energy source to a square wave AC output voltage, and a converter for converting the AC output voltage from the inverter to a sine wave AC output voltage.

  15. Simulation of anisotropic wave propagation in Vertical Seismic Profiles

    E-Print Network [OSTI]

    Durussel, Vincent Bernard

    2004-09-30T23:59:59.000Z

    they are powerful tools to simulate seismic wave propagation in three-dimensional anisotropic subsurface models. The code is currently under development using a C++ object oriented programming approach because it provides high flexibility in the design of new...

  16. Sandia National Laboratories: resonant wave-energy converter...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    resonant wave-energy converter devices Inter-Agency Agreement Signed between DOE's Wind and Water Power Program and Carderock On December 3, 2014, in Energy, News, News & Events,...

  17. MATHEMATICAL ANALYSIS OF A WAVE ENERGY CONVERTER ARNAUD ROUGIREL

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    for buoy-type ocean wave energy converter. The simplest model for this scheme is a non autonomous piecewise): see [OOS10]. Basically, a WEC is a floating body with a power takeoff system. It uses the vertical

  18. Fast wave stabilization/destabilization of drift waves in a plasma

    SciTech Connect (OSTI)

    Kumar, Pawan; Tripathi, V. K. [Department of Physics, IIT Delhi, New Delhi-110016 (India)

    2013-03-15T23:59:59.000Z

    Four wave-nonlinear coupling of a large amplitude whistler with low frequency drift wave and whistler wave sidebands is examined. The pump and whistler sidebands exert a low frequency ponderomotive force on electrons introducing a frequency shift in the drift wave. For whistler pump propagating along the ambient magnetic field B{sub s}z-caret with wave number k(vector sign){sub 0}, drift waves of wave number k(vector sign)=k(vector sign){sub Up-Tack }+k{sub ||}z-caret see an upward frequency shift when k{sub Up-Tack }{sup 2}/k{sub 0}{sup 2}>4k{sub ||}/k{sub 0} and are stabilized once the whistler power exceeds a threshold value. The drift waves of low transverse wavelength tend to be destabilized by the nonlinear coupling. Oblique propagating whistler pump with transverse wave vector parallel to k(vector sign){sub Up-Tack} is also effective but with reduced effectiveness.

  19. Evaluating Tidal Marsh Sustainability in the Face of Sea-Level Rise: A Hybrid Modeling Approach Applied to San Francisco Bay

    E-Print Network [OSTI]

    Kelly, Maggi

    2011-01-01T23:59:59.000Z

    on sedimentation and intertidal mudflat change in San Pablowill transition to a mudflat [9,31]. When topographicallybetween tidal marsh and mudflat habitats according to the

  20. The ultraviolet-bright, slowly declining transient PS1-11af as a partial tidal disruption event

    SciTech Connect (OSTI)

    Chornock, R.; Berger, E.; Zauderer, B. A.; Kamble, A.; Soderberg, A. M.; Czekala, I.; Dittmann, J.; Drout, M.; Foley, R. J.; Fong, W.; Kirshner, R. P.; Lunnan, R.; Marion, G. H.; Narayan, G. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Gezari, S. [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Rest, A.; Riess, A. G. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Chomiuk, L. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Huber, M. E. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Lawrence, A., E-mail: rchornock@cfa.harvard.edu [Institute for Astronomy, University of Edinburgh Scottish Universities Physics Alliance, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); and others

    2014-01-01T23:59:59.000Z

    We present the Pan-STARRS1 discovery of the long-lived and blue transient PS1-11af, which was also detected by Galaxy Evolution Explorer with coordinated observations in the near-ultraviolet (NUV) band. PS1-11af is associated with the nucleus of an early type galaxy at redshift z = 0.4046 that exhibits no evidence for star formation or active galactic nucleus activity. Four epochs of spectroscopy reveal a pair of transient broad absorption features in the UV on otherwise featureless spectra. Despite the superficial similarity of these features to P-Cygni absorptions of supernovae (SNe), we conclude that PS1-11af is not consistent with the properties of known types of SNe. Blackbody fits to the spectral energy distribution are inconsistent with the cooling, expanding ejecta of a SN, and the velocities of the absorption features are too high to represent material in homologous expansion near a SN photosphere. However, the constant blue colors and slow evolution of the luminosity are similar to previous optically selected tidal disruption events (TDEs). The shape of the optical light curve is consistent with models for TDEs, but the minimum accreted mass necessary to power the observed luminosity is only ?0.002 M {sub ?}, which points to a partial disruption model. A full disruption model predicts higher bolometric luminosities, which would require most of the radiation to be emitted in a separate component at high energies where we lack observations. In addition, the observed temperature is lower than that predicted by pure accretion disk models for TDEs and requires reprocessing to a constant, lower temperature. Three deep non-detections in the radio with the Very Large Array over the first two years after the event set strict limits on the production of any relativistic outflow comparable to Swift J1644+57, even if off-axis.

  1. Photon wave function

    E-Print Network [OSTI]

    Iwo Bialynicki-Birula

    2005-08-26T23:59:59.000Z

    Photon wave function is a controversial concept. Controversies stem from the fact that photon wave functions can not have all the properties of the Schroedinger wave functions of nonrelativistic wave mechanics. Insistence on those properties that, owing to peculiarities of photon dynamics, cannot be rendered, led some physicists to the extreme opinion that the photon wave function does not exist. I reject such a fundamentalist point of view in favor of a more pragmatic approach. In my view, the photon wave function exists as long as it can be precisely defined and made useful.

  2. MAKING WAVES AT FAU FLORIDA ATLANTIC UNIVERSITY

    E-Print Network [OSTI]

    Fernandez, Eduardo

    to generate energy by harnessing the power of Florida's ocean currents. FAU has been named to Military TimesMAKING WAVES AT FAU FLORIDA ATLANTIC UNIVERSITY QUICK FACTS #12;About FAu 1 PeoPle 7 AcAdemics 12 Marine Renewable Energy Center, a federally funded research facility that is developing technology

  3. Rogue Wave Modes for the Long Wave-Short Wave Resonance Kwok Wing CHOW*(1)

    E-Print Network [OSTI]

    1 Rogue Wave Modes for the Long Wave-Short Wave Resonance Model Kwok Wing CHOW*(1) , Hiu Ning CHAN.45.Yv; 47.35.Fg ABSTRACT The long wave-short wave resonance model arises physically when the phase velocity of a long wave matches the group velocity of a short wave. It is a system of nonlinear evolution

  4. Aspects of Wave Turbulence in Preheating

    E-Print Network [OSTI]

    José A. Crespo; H. P. de Oliveira

    2014-06-04T23:59:59.000Z

    In this work we have studied the nonlinear preheating dynamics of the $\\frac{1}{4} \\lambda \\phi^4$ inflationary model. It is well established that after a linear stage of preheating characterized by the parametric resonance, the nonlinear dynamics becomes relevant driving the system towards turbulence. Wave turbulence is the appropriated description of this phase since matter distributions are fields instead of usual fluids. Therefore, turbulence develops due to the nonlinear interations of waves, here represented by the small inhomogeneities of the inflaton field. We present relevant aspects of wave turbulence such as the Kolmogorov-Zakharov spectrum in frequency and wave number domains that indicates that there are a transfer of energy through scales. From the power spectrum of the matter energy density we were able to estimate the temperature of the thermalized system.

  5. Double Kelvin Wave Cascade in Superfluid Helium

    E-Print Network [OSTI]

    G. Boffetta; A. Celani; D. Dezzani; J. Laurie; S. Nazarenko

    2008-10-20T23:59:59.000Z

    We study the double cascade of energy and wave action in a local model of superfluid vortex filaments. The model is obtained from a truncated expansion of the 2D Local Induction Approximation and it is shown to support six-wave interactions. We argue that, because of the uncertainty in the vortex core profile, this model has the same status of validity as the traditionally used Biot-Savart model with cutoff, but it has advantage of being much simpler. Our minimal model leads to a wave kinetic equation for which we predict existence of two distinct power-law scaling in the spectrum, corresponding to a direct cascade of energy and an inverse one of wave action. Direct numerical simulations confirm the theoretical predictions in the weak turbulence regime.

  6. Power-Aware Task Motion for Enhancing Dynamic Range

    E-Print Network [OSTI]

    Chou, Pai H.

    . They are being built today to draw energy from solar power, wind power, or even ocean waves. They represent is that many of these new energy sources are far from being ideal power supplies. For example, the output for fixed budgets. For example, a system with an XScale draws approximately 1W of power, but when the solar

  7. TIDAL TAIL EJECTION AS A SIGNATURE OF TYPE Ia SUPERNOVAE FROM WHITE DWARF MERGERS

    SciTech Connect (OSTI)

    Raskin, Cody; Kasen, Daniel [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

    2013-07-20T23:59:59.000Z

    The merger of two white dwarfs may be preceded by the ejection of some mass in ''tidal tails,'' creating a circumstellar medium around the system. We consider the variety of observational signatures from this material, which depend on the lag time between the start of the merger and the ultimate explosion (assuming one occurs) of the system in a Type Ia supernova (SN Ia). If the time lag is fairly short, then the interaction of the supernova ejecta with the tails could lead to detectable shock emission at radio, optical, and/or X-ray wavelengths. At somewhat later times, the tails produce relatively broad NaID absorption lines with velocity widths of the order of the white dwarf escape speed ({approx}1000 km s{sup -1}). That none of these signatures have been detected in normal SNe Ia constrains the lag time to be either very short ({approx}< 100 s) or fairly long ({approx}> 100 yr). If the tails have expanded and cooled over timescales {approx}10{sup 4} yr, then they could be observable through narrow NaID and Ca II H and K absorption lines in the spectra, which are seen in some fraction of SNe Ia. Using a combination of three-dimensional and one-dimensional hydrodynamical codes, we model the mass loss from tidal interactions in binary systems, and the subsequent interactions with the interstellar medium, which produce a slow-moving, dense shell of gas. We synthesize NaID line profiles by ray casting through this shell, and show that in some circumstances tidal tails could be responsible for narrow absorptions similar to those observed.

  8. THE TIDAL ORIGIN OF THE MAGELLANIC STREAM AND THE POSSIBILITY OF A STELLAR COUNTERPART

    SciTech Connect (OSTI)

    Diaz, Jonathan D.; Bekki, Kenji, E-mail: jdiaz@ast.cam.ac.uk [ICRAR, M468, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009 (Australia)

    2012-05-01T23:59:59.000Z

    We present an N-body model that reproduces the morphology and kinematics of the Magellanic Stream (MS), a vast neutral hydrogen (H I) structure that trails behind the Large and Small Magellanic Clouds (LMC and SMC, respectively) in their orbit about the Milky Way (MW). After investigating 8 Multiplication-Sign 10{sup 6} possible orbits consistent with the latest proper motions, we adopt an orbital history in which the LMC and SMC have only recently become a strongly interacting binary pair. We find that their first close encounter {approx}2 Gyr ago provides the necessary tidal forces to disrupt the disk of the SMC and thereby create the MS. The model also reproduces the on-sky bifurcation of the two filaments of the MS, and we suggest that a bound association with the MW is required to reproduce the bifurcation. Additional H I structures are created during the tidal evolution of the SMC disk, including the Magellanic Bridge, the 'Counter-Bridge', and two branches of leading material. Insights into the chemical evolution of the LMC are also provided, as a substantial fraction of the material stripped away from the SMC is engulfed by the LMC. Lastly, we compare three different N-body realizations of the stellar component of the SMC, which we model as a pressure-supported spheroid motivated by recent kinematical observations. We find that an extended spheroid is better able to explain the stellar periphery of the SMC, and the tidal evolution of the spheroid may imply the existence of a stellar stream akin to the gaseous MS.

  9. Internal Wave Interferometry

    E-Print Network [OSTI]

    Mathur, Manikandan S.

    Internal waves are a ubiquitous and significant means of momentum and energy transport in the oceans, atmosphere, and astrophysical bodies. Here, we show that internal wave propagation in nonuniform density stratifications, ...

  10. New wave generation

    E-Print Network [OSTI]

    Mercier, Matthieu J.

    We present the results of a combined experimental and numerical study of the generation of internal waves using the novel internal wave generator design of Gostiaux et al. (Exp. Fluids, vol. 42, 2007, pp. 123–130). This ...

  11. Theoretical Examination of Transfer Cavities in a Standing-wave Free-electron Laser Two-beam Accelerator

    E-Print Network [OSTI]

    Govil, R.

    2008-01-01T23:59:59.000Z

    Standing-Wave Free-Electron Laser Two-Beam Accelerator",the Standing-Wave Free-Electron Laser Two-Beam Accelerator",A.M. Sessler, "The Free-Electron Laser as a Power Source for

  12. Gravitational waves emitted by solar-type stars excited by orbiting planets

    E-Print Network [OSTI]

    Emanuele Berti; Valeria Ferrari

    2000-11-30T23:59:59.000Z

    The possibility of exciting the g-modes of a solar-type star as a consequence of the gravitational interaction with a close companion (a planet or a brown dwarf) is studied by a perturbative approach. The amplitude of the emitted gravitational wave is computed and compared with the quadrupole emission of the system, showing that in some cases it can be considerably larger. The effects of radiation reaction are considered to evaluate the timescale of the emission process, and a Roche lobe analysis is used to establish the region where the companion can orbit without being disrupted by tidal interactions with the star.

  13. Wave | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmweltVillageGraph HomeWaranaWater Power ForumGeothermalWave

  14. TIDAL ENERGY SITE RESOURCE ASSESSMENT: TECHNICAL SPECIFICATIONS, BEST PRACTICES AND CASE STUDIES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2D Alloys & Heterostructures |TIDAL ENERGY

  15. Internal wave instability: Wave-wave versus wave-induced mean flow interactions

    E-Print Network [OSTI]

    Sutherland, Bruce

    , known as parametric sub- harmonic instability, results generally when a disturbance of one frequency imparts energy to disturbances of half that frequency.13,14 Generally, a plane periodic internal wave, energy from primary waves is transferred, for example, to waves with half frequency. Self

  16. Dust-Acoustic Waves: Visible Sound Waves Robert L. Merlino

    E-Print Network [OSTI]

    Merlino, Robert L.

    Dust-Acoustic Waves: Visible Sound Waves Robert L. Merlino Department of Physics and Astronomy with their announcement that: "We find that a new type of sound wave, namely, the dust-acoustic waves, can appear" [1 and experimental work on dust acoustic waves is given. The basic physics of the dust acoustic wave and some

  17. Author's personal copy Wave energy resources along the Hawaiian Island chain

    E-Print Network [OSTI]

    model Wave atlas Wave energy Wave power a b s t r a c t Hawaii's access to the ocean and remoteness from heights show good agreement with data from satellites and buoys. Bi-monthly median and percentile plots Elsevier Ltd. All rights reserved. 1. Introduction The Earth's changing climate, the increasing cost of oil

  18. Low Mach number simulation of a loaded standing-wave thermoacoustic engine

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Low Mach number simulation of a loaded standing-wave thermoacoustic engine L. Maa , C. I. Weismana standing-wave thermoacoustic engine are performed using a low Mach number model. This work uses- wave thermoacoustic engine, the acoustic power developed is calculated and the efficiency is estimated

  19. A Synthesis of Environmental and Plant Community Data for Tidal Wetland Restoration Planning in the Lower Columbia River and Estuary

    SciTech Connect (OSTI)

    Diefenderfer, Heida L.; Borde, Amy B.; Cullinan, Valerie I.

    2013-12-01T23:59:59.000Z

    This report reanalyzes and synthesizes previously existing environmental and plant community data collected by PNNL at 55 tidal wetlands and 3 newly restored sites in the lower Columbia River and estuary (LCRE) between 2005 and 2011. Whereas data were originally collected for various research or monitoring objectives of five studies, the intent of this report is to provide only information that will have direct utility in planning tidal wetland restoration projects. Therefore, for this report, all tidal wetland data on plants and the physical environment, which were originally developed and reported by separate studies, were tabulated and reanalyzed as a whole. The geographic scope of the data collected in this report is from Bonneville Lock and Dam to the mouth of the Columbia River

  20. Connecting Numerical Relativity and Data Analysis of Gravitational Wave Detectors

    E-Print Network [OSTI]

    Shoemaker, Deirdre; London, Lionel; Pekowsky, Larne

    2015-01-01T23:59:59.000Z

    Gravitational waves deliver information in exquisite detail about astrophysical phenomena, among them the collision of two black holes, a system completely invisible to the eyes of electromagnetic telescopes. Models that predict gravitational wave signals from likely sources are crucial for the success of this endeavor. Modeling binary black hole sources of gravitational radiation requires solving the Eintein equations of General Relativity using powerful computer hardware and sophisticated numerical algorithms. This proceeding presents where we are in understanding ground-based gravitational waves resulting from the merger of black holes and the implications of these sources for the advent of gravitational-wave astronomy.

  1. of our pre-medical majors are accepted to medical school

    E-Print Network [OSTI]

    systems and other sources on climate and air quality and the analysis of renewable energy resources, hydroelectric, wave, or tidal power. As such, the use of cellulosic or corn ethanol at the expense of the other: global warming; air pollution; wind and solar energy; geothermal energy; tidal and wave energy

  2. Hydraulic Geometry and Microtopography of Tidal Freshwater Forested Wetlands and Implications for Restoration, Columbia River, U.S.A.

    SciTech Connect (OSTI)

    Diefenderfer, Heida L.; Coleman, Andre M.; Borde, Amy B.; Sinks, Ian A.

    2008-01-01T23:59:59.000Z

    The hydrologic reconnection of tidal channels, riverine floodplains, and main stem channels are among responses by ecological restoration practitioners to the increasing fragmentation and land conversion occurring in coastal and riparian zones. Design standards and monitoring of such ecological restoration depend upon the characterization of reference sites that vary within and among regions. Few locales, such as the 235 km tidal portion of the Columbia River on the West Coast U.S.A., remain in which the reference conditions and restoration responses of tidal freshwater forested wetlands on temperate zone large river floodplains can be compared. This study developed hydraulic geometry relationships for Picea sitchensis (Sitka spruce) dominated tidal forests (swamps) in the vicinity of Grays Bay on the Columbia River some 37 km from the Pacific Coast using field surveys and Light Detection and Ranging (LiDAR) data. Scaling relationships between catchment area and the parameters of channel cross-sectional area at outlet and total channel length were comparable to tidally influenced systems of San Francisco Bay and the United Kingdom. Dike breaching, culvert replacement, and tide gate replacement all affected channel cross-sectional geometry through changes in the frequency of over-marsh flows. Radiocarbon dating of buried wood provided evidence of changes in sedimentation rates associated with diking, and restoration trajectories may be confounded by historical subsidence behind dikes rendering topographical relationships with water level incomparable to reference conditions. At the same time, buried wood is influencing the development of channel morphology toward characteristics resembling reference conditions. Ecological restoration goals and practices in tidal forested wetland regions of large river floodplains should reflect the interactions of these controlling factors.

  3. GRB060218 AS A TIDAL DISRUPTION OF A WHITE DWARF BY AN INTERMEDIATE-MASS BLACK HOLE

    SciTech Connect (OSTI)

    Shcherbakov, Roman V.; Reynolds, Christopher S. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Pe'er, Asaf [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Haas, Roland [Theoretical AstroPhysics Including Relativity, California Institute of Technology, Pasadena, CA 91125 (United States); Bode, Tanja; Laguna, Pablo [Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2013-06-01T23:59:59.000Z

    The highly unusual pair of a gamma-ray burst (GRB) GRB060218 and an associated supernova, SN2006aj, has puzzled theorists for years. A supernova shock breakout and a jet from a newborn stellar mass compact object have been proposed to explain this pair's multiwavelength signature. Alternatively, we propose that the source is naturally explained by another channel: the tidal disruption of a white dwarf (WD) by an intermediate-mass black hole (IMBH). This tidal disruption is accompanied by a tidal pinching, which leads to the ignition of a WD and a supernova. Some debris falls back onto the IMBH, forms a disk, which quickly amplifies the magnetic field, and launches a jet. We successfully fit soft X-ray spectra with the Comptonized blackbody emission from a jet photosphere. The optical/UV emission is consistent with self-absorbed synchrotron emission from the expanding jet front. The temporal dependence of the accretion rate M-dot (t) in a tidal disruption provides a good fit to the soft X-ray light curve. The IMBH mass is found to be about 10{sup 4} M{sub Sun} in three independent estimates: (1) fitting the tidal disruption M-dot (t) to the soft X-ray light curve, (2) computing the jet base radius in a jet photospheric emission model, and (3) inferring the mass of the central black hole based on the host dwarf galaxy's stellar mass. The position of the supernova is consistent with the center of the host galaxy, while the low supernova ejecta mass is consistent with that of a WD. The high expected rate of tidal disruptions in dwarf galaxies is consistent with one source observed by the Swift satellite over several years at a distance of 150 Mpc measured for GRB060218. Encounters with WDs provide much fuel for the growth of IMBHs.

  4. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    energy. | Photo courtesy of Georgia Institute of Technology Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030 In the most rigorous analyses undertaken to date, two...

  5. Coastal Wave Generation and Wave Breaking over Terrain: Two Problems in Mesoscale Wave Dynamics 

    E-Print Network [OSTI]

    Qian, Tingting

    2010-07-14T23:59:59.000Z

    Two problems in mesoscale wave dynamics are addressed: (i) wave-turbulence interaction in a breaking mountain wave and (ii) gravity wave generation associated with coastal heating gradients. The mean and turbulent structures in a breaking mountain...

  6. Coastal Wave Generation and Wave Breaking over Terrain: Two Problems in Mesoscale Wave Dynamics

    E-Print Network [OSTI]

    Qian, Tingting

    2010-07-14T23:59:59.000Z

    Two problems in mesoscale wave dynamics are addressed: (i) wave-turbulence interaction in a breaking mountain wave and (ii) gravity wave generation associated with coastal heating gradients. The mean and turbulent structures in a breaking mountain...

  7. Combining remote sensing data and an inundation model to map tidal mudflat regions and improve flood predictions: A proof of concept

    E-Print Network [OSTI]

    Ezer,Tal

    Combining remote sensing data and an inundation model to map tidal mudflat regions and improve mudflats. The remote sensing-based analysis provides for the first time a way to evaluate the flood., and H. Liu (2009), Combining remote sensing data and an inundation model to map tidal mudflat regions

  8. Ecology of Juvenile Salmon in Shallow Tidal Freshwater Habitats of the Lower Columbia River, 2007–2010

    SciTech Connect (OSTI)

    Johnson, Gary E.; Storch, Adam; Skalski, J. R.; Bryson, Amanda J.; Mallette, Christine; Borde, Amy B.; Van Dyke, E.; Sobocinski, Kathryn L.; Sather, Nichole K.; Teel, David; Dawley, Earl M.; Ploskey, Gene R.; Jones, Tucker A.; Zimmerman, Shon A.; Kuligowski, D. R.

    2011-03-01T23:59:59.000Z

    The TFM study was designed to investigate the ecology and early life history of juvenile salmonids within shallow (<5 m) tidal freshwater habitats of the LCRE. We started collecting field data in June 2007. Since then, monthly sampling has occurred in the vicinity of the Sandy River delta (rkm 192–208) and at other sites and times in lower river reaches of tidal freshwater (rkm 110 to 141). This report provides a comprehensive synthesis of data covering the field period from June 2007 through April 2010.

  9. Conformally curved binary black hole initial data including tidal deformations and outgoing radiation

    E-Print Network [OSTI]

    Nathan K. Johnson-McDaniel; Nicolas Yunes; Wolfgang Tichy; Benjamin J. Owen

    2009-07-06T23:59:59.000Z

    (Abridged) By asymptotically matching a post-Newtonian (PN) metric to two tidally perturbed Schwarzschild metrics, we generate approximate initial data (in the form of a 4-metric) for a nonspinning black hole binary in a circular orbit. We carry out this matching through O(v^4) in the binary's orbital velocity v, so the resulting data are conformally curved. Far from the holes, we use the appropriate PN metric that accounts for retardation, which we construct using the highest-order PN expressions available to compute the binary's past history. The data set's uncontrolled remainders are thus O(v^5) throughout the timeslice; we also generate an extension to the data set that has uncontrolled remainders of O(v^6) in the purely PN portion of the timeslice (i.e., not too close to the holes). The resulting data are smooth, since we join all the metrics together by smoothly interpolating between them. We perform this interpolation using transition functions constructed to avoid introducing excessive additional constraint violations. Due to their inclusion of tidal deformations and outgoing radiation, these data should substantially reduce the initial spurious ("junk") radiation observed in current simulations that use conformally flat initial data. Such reductions in the nonphysical components of the initial data will be necessary for simulations to achieve the accuracy required to supply Advanced LIGO and LISA with the templates necessary for parameter estimation.

  10. The flattenings of the layers of rotating planets and satellites deformed by a tidal potential

    E-Print Network [OSTI]

    Folonier, Hugo; Kholshevnikov, Konstantin V

    2015-01-01T23:59:59.000Z

    We consider the Clairaut theory of the equilibrium ellipsoidal figures for differentiated non-homogeneous bodies in non-synchronous rotation adding to it a tidal deformation due to the presence of an external gravitational force. We assume that the body is a fluid formed by $n$ homogeneous layers of ellipsoidal shape and we calculate the external polar flattenings and the mean radius of each layer, or, equivalently, their semiaxes. To first order in the flattenings, the general solution can be written as $\\epsilon_k={\\cal H}_k*\\epsilon_h$ and $\\mu_k={\\cal H}_k*\\mu_h$, where $\\cal{H}_k$ is a characteristic coefficient for each layer which only depends on the internal structure of the body and $\\epsilon_h, \\mu_h$ are the flattenings of the equivalent homogeneous problem. For the continuous case, we study the Clairaut differential equation for the flattening profile, using the Radau transformation to find the boundary conditions when the tidal potential is added. Finally, the theory is applied to several example...

  11. Using Neutron Star Observations to Determine Crust Thicknesses, Moments of Inertia, and Tidal Deformabilities

    E-Print Network [OSTI]

    Andrew W. Steiner; Stefano Gandolfi; Farrukh J. Fattoyev; William G. Newton

    2015-01-25T23:59:59.000Z

    We perform a systematic assessment of models for the equation of state (EOS) of dense matter in the context of recent neutron star mass and radius measurements to obtain a broad picture of the structure of neutron stars. We demonstrate that currently available neutron star mass and radius measurements provide strong constraints on moments of inertia, tidal deformabilities, and crust thicknesses. A measurement of the moment of inertia of PSR J0737-3039A with 10% error, without any other information from observations, will constrain the EOS over a range of densities to within 50%$-$60%. We find tidal deformabilities between 0.6 and $6\\times 10^{36}$ g cm$^{2}$ s$^{2}$ (to 95% confidence) for $M=1.4~\\mathrm{M}_{\\odot}$, and any measurement which constrains this range will provide an important constraint on dense matter. The crustal fraction of the moment of inertia can be as large as 10% for $M=1.4~\\mathrm{M}_{\\odot}$ permitting crusts to have a large enough moment of inertia reservoir to explain glitches in the Vela pulsar even with a large amount of superfluid entrainment. Finally, due to the uncertainty in the equation of state, there is at least a 40% variation in the thickness of the crust for a fixed mass and radius, which implies that future simulations of the cooling of a neutron star crust which has been heated by accretion will need to take this variation into account.

  12. Revealing the escape mechanism of three-dimensional orbits in a tidally limited star cluster

    E-Print Network [OSTI]

    Euaggelos E. Zotos

    2014-11-18T23:59:59.000Z

    The aim of this work is to explore the escape process of three-dimensional orbits in a star cluster rotating around its parent galaxy in a circular orbit. The gravitational field of the cluster is represented by a smooth, spherically symmetric Plummer potential, while the tidal approximation was used to model the steady tidal field of the galaxy. We conduct a thorough numerical analysis distinguishing between regular and chaotic orbits as well as between trapped and escaping orbits, considering only unbounded motion for several energy levels. It is of particular interest to locate the escape basins towards the two exit channels and relate them with the corresponding escape times of the orbits. For this purpose, we split our investigation into three cases depending on the initial value of the $z$ coordinate which was used for launching the stars. The most noticeable finding is that the majority of stars initiated very close to the primary $(x,y)$ plane move in chaotic orbits and they remain trapped for vast time intervals, while orbits with relatively high values of $z_0$ on the other hand, form well-defined basins of escape. It was also observed, that for energy levels close to the critical escape energy the escape rates of orbits are large, while for much higher values of energy most of the orbits have low escape periods or they escape immediately to infinity. We hope our outcomes to be useful for a further understanding of the dissolution process and the escape mechanism in open star clusters.

  13. Gravitational wave radiometry: Mapping a stochastic gravitational wave background

    SciTech Connect (OSTI)

    Mitra, Sanjit [Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411007 (India); Observatoire de la Cote d'Azur, BP 4229, 06304 Nice Cedex 4 (France); Dhurandhar, Sanjeev; Souradeep, Tarun [Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411007 (India); Lazzarini, Albert; Mandic, Vuk; Ballmer, Stefan [LIGO Laboratory, California Institute of Technology, MS 18-34, Pasadena, California 91125 (United States); Bose, Sukanta [Department of Physics, Washington State University, Pullman, Washington 99164-2814 (United States)

    2008-02-15T23:59:59.000Z

    The problem of the detection and mapping of a stochastic gravitational wave background (SGWB), either cosmological or astrophysical, bears a strong semblance to the analysis of the cosmic microwave background (CMB) anisotropy and polarization, which too is a stochastic field, statistically described in terms of its correlation properties. An astrophysical gravitational wave background (AGWB) will likely arise from an incoherent superposition of unmodelled and/or unresolved sources and cosmological gravitational wave backgrounds (CGWB) are also predicted in certain scenarios. The basic statistic we use is the cross correlation between the data from a pair of detectors. In order to ''point'' the pair of detectors at different locations one must suitably delay the signal by the amount it takes for the gravitational waves (GW) to travel to both detectors corresponding to a source direction. Then the raw (observed) sky map of the SGWB is the signal convolved with a beam response function that varies with location in the sky. We first present a thorough analytic understanding of the structure of the beam response function using an analytic approach employing the stationary phase approximation. The true sky map is obtained by numerically deconvolving the beam function in the integral (convolution) equation. We adopt the maximum likelihood framework to estimate the true sky map using the conjugate gradient method that has been successfully used in the broadly similar, well-studied CMB map-making problem. We numerically implement and demonstrate the method on signal generated by simulated (unpolarized) SGWB for the GW radiometer consisting of the LIGO pair of detectors at Hanford and Livingston. We include 'realistic' additive Gaussian noise in each data stream based on the LIGO-I noise power spectral density. The extension of the method to multiple baselines and polarized GWB is outlined. In the near future the network of GW detectors, including the Advanced LIGO and Virgo detectors that will be sensitive to sources within a thousand times larger spatial volume, could provide promising data sets for GW radiometry.

  14. A comparison between matter wave and light wave interferometers for the detection of gravitational waves

    E-Print Network [OSTI]

    Pacôme Delva; Marie-Christine Angonin; Philippe Tourrenc

    2006-09-20T23:59:59.000Z

    We calculate and compare the response of light wave interferometers and matter wave interferometers to gravitational waves. We find that metric matter wave interferometers will not challenge kilometric light wave interferometers such as Virgo or LIGO, but could be a good candidate for the detection of very low frequency gravitational waves.

  15. Multimodal standing gravity waves: a completely resonant system.

    E-Print Network [OSTI]

    Iooss, Gérard

    .iooss@inln.cnrs.fr Russian academy of Sciences, Lavryentyev pr. 15, Novosibirsk 630090, Russia. plotnikov@hydro be expanded in powers of amplitude is then given up to order 2 . Key words: nonlinear water waves, standing solutions for our problem, in the form of asymptotic expansions in powers of the amplitude , was proved

  16. RESEARCH ARTICLE 10.1002/2013JC009469

    E-Print Network [OSTI]

    internal wave power PIW to an estimate of the tidal power that interacts with the topography Ptide 5HLy circula- tion in the oceans [Munk and Wunsch, 1998]. The energy spectrum of internal waves in the oceans internal waves. Approximately half of the internal wave energy in the ocean [Wunsch and Ferrari, 2004

  17. Writing magnetic patterns with surface acoustic waves

    SciTech Connect (OSTI)

    Li, Weiyang; Buford, Benjamin; Jander, Albrecht; Dhagat, Pallavi, E-mail: dhagat@eecs.oregonstate.edu [School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon 97331 (United States)

    2014-05-07T23:59:59.000Z

    A novel patterning technique that creates magnetization patterns in a continuous magnetostrictive film with surface acoustic waves is demonstrated. Patterns of 10??m wide stripes of alternating magnetization and a 3??m dot of reversed magnetization are written using standing and focusing acoustic waves, respectively. The magnetization pattern is size-tunable, erasable, and rewritable by changing the magnetic field and acoustic power. This versatility, along with its solid-state implementation (no moving parts) and electronic control, renders it as a promising technique for application in magnetic recording, magnonic signal processing, magnetic particle manipulation, and spatial magneto-optical modulation.

  18. Nonlinear Lattice Waves in Random Potentials

    E-Print Network [OSTI]

    Sergej Flach

    2014-09-10T23:59:59.000Z

    Localization of waves by disorder is a fundamental physical problem encompassing a diverse spectrum of theoretical, experimental and numerical studies in the context of metal-insulator transition, quantum Hall effect, light propagation in photonic crystals, and dynamics of ultra-cold atoms in optical arrays. Large intensity light can induce nonlinear response, ultracold atomic gases can be tuned into an interacting regime, which leads again to nonlinear wave equations on a mean field level. The interplay between disorder and nonlinearity, their localizing and delocalizing effects is currently an intriguing and challenging issue in the field. We will discuss recent advances in the dynamics of nonlinear lattice waves in random potentials. In the absence of nonlinear terms in the wave equations, Anderson localization is leading to a halt of wave packet spreading. Nonlinearity couples localized eigenstates and, potentially, enables spreading and destruction of Anderson localization due to nonintegrability, chaos and decoherence. The spreading process is characterized by universal subdiffusive laws due to nonlinear diffusion. We review extensive computational studies for one- and two-dimensional systems with tunable nonlinearity power. We also briefly discuss extensions to other cases where the linear wave equation features localization: Aubry-Andre localization with quasiperiodic potentials, Wannier-Stark localization with dc fields, and dynamical localization in momentum space with kicked rotors.

  19. Power selective optical filter devices and optical systems using same

    DOE Patents [OSTI]

    Koplow, Jeffrey P

    2014-10-07T23:59:59.000Z

    In an embodiment, a power selective optical filter device includes an input polarizer for selectively transmitting an input signal. The device includes a wave-plate structure positioned to receive the input signal, which includes at least one substantially zero-order, zero-wave plate. The zero-order, zero-wave plate is configured to alter a polarization state of the input signal passing in a manner that depends on the power of the input signal. The zero-order, zero-wave plate includes an entry and exit wave plate each having a fast axis, with the fast axes oriented substantially perpendicular to each other. Each entry wave plate is oriented relative to a transmission axis of the input polarizer at a respective angle. An output polarizer is positioned to receive a signal output from the wave-plate structure and selectively transmits the signal based on the polarization state.

  20. Wave Energy Converter Effects on Wave Fields: Evaluation of SNL-SWAN and Sensitivity Studies in Monterey Bay CA.

    SciTech Connect (OSTI)

    Roberts, Jesse D.; Chang, Grace; Magalen, Jason; Jones, Craig

    2014-09-01T23:59:59.000Z

    A modified version of an indust ry standard wave modeling tool was evaluated, optimized, and utilized to investigate model sensitivity to input parameters a nd wave energy converter ( WEC ) array deployment scenarios. Wave propagation was investigated d ownstream of the WECs to evaluate overall near - and far - field effects of WEC arrays. The sensitivity study illustrate d that wave direction and WEC device type we r e most sensitive to the variation in the model parameters examined in this study . Generally, the changes in wave height we re the primary alteration caused by the presence of a WEC array. Specifically, W EC device type and subsequently their size directly re sult ed in wave height variations; however, it is important to utilize ongoing laboratory studies and future field tests to determine the most appropriate power matrix values for a particular WEC device and configuration in order to improve modeling results .

  1. Nonlinear spherical Alfven waves

    E-Print Network [OSTI]

    Ulf Torkelsson; G. Christopher Boynton

    1997-09-23T23:59:59.000Z

    We present an one-dimensional numerical study of Alfven waves propagating along a radial magnetic field. Neglecting losses, any spherical Alfven wave, no matter how small its initial amplitude is, becomes nonlinear at sufficiently large radii. From previous simulations of Alfven waves in plane parallel atmospheres we did expect the waves to steepen and produce current sheets in the nonlinear regime, which was confirmed by our new calculations. On the other hand we did find that even the least nonlinear waves were damped out almost completely before 10 solar radii. A damping of that kind is required by models of Alfven wave-driven winds from old low-mass stars as these winds are mainly accelerated within a few stellar radii.

  2. Zygmunt Kowalik1 and John Luick2

    E-Print Network [OSTI]

    Kowalik, Zygmunt

    . . . . . . . . 133 5. Tidal energy balance in local water bodies . . . . . . . . . . . 135 6. Tidal power from bays of high tidal energy . . . . . . . . . . . 140 7. Tidal power from the sea level difference . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Chapter IV: Tide distribution and tidal power . . . . . . . . . . 120 1. Introduction

  3. Variations of net ecosystem CO2 exchange in a tidal inundated wetland: Coupling MODIS and towerbased fluxes

    E-Print Network [OSTI]

    Chen, Jiquan

    .e., biomass), nutrient availability and use, and species composition in coastal Chongming Island, Shanghai, but gradual changes of water level can play an important role in deter- mining the net ecosystem CO2 exchange multiple towers to detect the changes along the tidal gradient, but the high cost and maintenance hinder

  4. Comparison of SF6 and Fluorescein as Tracers for Measuring Transport Processes in a Large Tidal River

    E-Print Network [OSTI]

    Ho, David

    Comparison of SF6 and Fluorescein as Tracers for Measuring Transport Processes in a Large Tidal SF6 as tracers of advection and longitudinal dispersion from a dual tracer release experiment of SF6 were injected into the Hudson River at an averaged depth of 9.5 m, 1 m above the bottom, near

  5. 2013 American Geophysical Union. All Rights Reserved. Tidal dissipation in the early Eocene and implications for ocean mixing

    E-Print Network [OSTI]

    Holland, Jeffrey

    © 2013 American Geophysical Union. All Rights Reserved. Tidal dissipation in the early Eocene this article as doi: 10.1002/grl.50510 AcceptedArticle #12;© 2013 American Geophysical Union. All Rights Passage and Tasman Gateways AcceptedArticle #12;© 2013 American Geophysical Union. All Rights Reserved

  6. Tidal effects on net ecosystem exchange of carbon in an estuarine wetland Haiqiang Guo a,c

    E-Print Network [OSTI]

    Noormets, Asko

    Tidal effects on net ecosystem exchange of carbon in an estuarine wetland Haiqiang Guo a,c , Asko, Shanghai, China b Southern Global Change Program, USDA Forest Service, Raleigh, NC, USA c Department concentrations of carbon dioxide (CO2) and methane (CH4) have stimulated great interest in studying the carbon

  7. Environmental links to interannual variability in shellfish toxicity in Cobscook Bay and eastern Maine, a strongly tidally mixed coastal region

    E-Print Network [OSTI]

    Townsend, David W.

    Environmental links to interannual variability in shellfish toxicity in Cobscook Bay and eastern e i n f o Keywords: Harmful algal blooms Gulf of Maine Cobscook Bay Shellfish toxicity a b s t r a c of Cobscook Bay, where strong tidal mixing tends to reduce seasonal variability in oceanographic properties

  8. Tidally-induced thermonuclear Supernovae Stephan Rosswog1, Enrico Ramirez-Ruiz2, W. Raphael Hix3

    E-Print Network [OSTI]

    Rosswog, Stephan

    Tidally-induced thermonuclear Supernovae Stephan Rosswog1, Enrico Ramirez-Ruiz2, W. Raphael Hix3 1 in a thermonuclear explosion. These explosions are not restricted to progenitor masses close to the Chandrasekhar thermonuclear supernova together with an X-ray flare thus whistle-blows the existence of such moderate

  9. Orbital effects of a monochromatic plane gravitational wave with ultra-low frequency incident on a gravitationally bound two-body system

    E-Print Network [OSTI]

    Lorenzo Iorio

    2014-09-12T23:59:59.000Z

    We analytically compute the long-term orbital variations of a test particle orbiting a central body acted upon by an incident monochromatic plane gravitational wave. We assume that the characteristic size of the perturbed two-body system is much smaller than the wavelength of the wave. Moreover, we also suppose that the wave's frequency is much smaller than the particle's orbital one. We make neither a priori assumptions about the direction of the wavevector nor on the orbital geometry of the planet. We find that, while the semi-major axis is left unaffected, the eccentricity, the inclination, the longitude of the ascending node, the longitude of pericenter and the mean anomaly undergo non-vanishing long-term changes. They are not secular trends because of the slow modulation introduced by the tidal matrix coefficients and by the orbital elements themselves. They could be useful to indepenedently constrain the ultra-low frequency waves which may have been indirectly detected in the BICEP2 experiment. Our calculation holds, in general, for any gravitationally bound two-body system whose characteristic frequency is much larger than the frequency of the external wave. It is also valid for a generic perturbation of tidal type with constant coefficients over timescales of the order of the orbital period of the perturbed particle.

  10. Structure-borne sound Flexural wave (bending wave)

    E-Print Network [OSTI]

    Berlin,Technische Universität

    1 Structure-borne sound · Flexural wave (bending wave) »One dimensional (beam) +(/x)dx +(/x)dx = (/x) (/x)dx=(2/x2)dx Mz +(Mz/x)dx Mz vy Fy Fy +(Fy/x)dx Structure-borne sound · Bending wave ­ flexural wave #12;2 Structure-borne sound · Two obliquely propagating waves + - + + - + - Structure

  11. Wave Propagation Theory 2.1 The Wave Equation

    E-Print Network [OSTI]

    2 Wave Propagation Theory 2.1 The Wave Equation The wave equation in an ideal fluid can be derived #12;66 2. Wave Propagation Theory quantities of the quiescent (time independent) medium are identified perturbations is much smaller than the speed of sound. 2.1.1 The Nonlinear Wave Equation Retaining higher

  12. Wave momentum flux parameter: a descriptor for nearshore waves

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Wave momentum flux parameter: a descriptor for nearshore waves Steven A. Hughes* US Army Engineer Available online 7 October 2004 Abstract A new parameter representing the maximum depth-integrated wave momentum flux occurring over a wave length is proposed for characterizing the wave contribution

  13. New wave generation

    E-Print Network [OSTI]

    Mercier, Matthieu J; Mathur, Manikandan; Gostiaux, Louis; Peacock, Thomas; Dauxois, Thierry

    2015-01-01T23:59:59.000Z

    We present the results of a combined experimental and numerical study of the generation of internal waves using the novel internal wave generator design of Gostiaux et al. (2007). This mechanism, which involves a tunable source comprised of oscillating plates, has so far been used for a few fundamental studies of internal waves, but its full potential has yet to be realized. Our studies reveal that this approach is capable of producing a wide variety of two-dimensional wave fields, including plane waves, wave beams and discrete vertical modes in finite-depth stratifications. The effects of discretization by a finite number of plates, forcing amplitude and angle of propagation are investigated, and it is found that the method is remarkably efficient at generating a complete wave field despite forcing only one velocity component in a controllable manner. We furthermore find that the nature of the radiated wave field is well predicted using Fourier transforms of the spatial structure of the wave generator.

  14. Directed Relativistic Blast Wave

    E-Print Network [OSTI]

    Andrei Gruzinov

    2007-04-23T23:59:59.000Z

    A spherically symmetrical ultra-relativistic blast wave is not an attractor of a generic asymmetric explosion. Spherical symmetry is reached only by the time the blast wave slows down to non-relativistic velocities, when the Sedov-Taylor-von Neumann attractor solution sets in. We show however, that a directed relativistic explosion, with the explosion momentum close to the explosion energy, produces a blast wave with a universal intermediate asymptotic -- a selfsimilar directed ultra-relativistic blast wave. This universality might be of interest for the astrophysics of gamma-ray burst afterglows.

  15. JULY 2005 1 An estimate of tidal energy lost to turbulence at the Hawaiian Ridge

    E-Print Network [OSTI]

    Klymak, Jody M.

    of 2) spring-neap variation in dissipation was observed. The observations also suggest a kinematic-integrated dissipation (D), such that D E1±0.5 at sites along the ridge. This kinematic relationship is supported by combining a simple knife-edge model to estimate internal tide generation with wave-wave interaction time

  16. Wave turbulence served up on a plate

    E-Print Network [OSTI]

    Pablo Cobelli; Philippe Petitjeans; Agnes Maurel; Vincent Pagneux; Nicolas Mordant

    2009-10-28T23:59:59.000Z

    Wave turbulence in a thin elastic plate is experimentally investigated. By using a Fourier transform profilometry technique, the deformation field of the plate surface is measured simultaneously in time and space. This enables us to compute the wavevector-frequency Fourier ($\\mathbf k, \\omega$) spectrum of the full space-time deformation velocity. In the 3D ($\\mathbf k, \\omega$) space, we show that the energy of the motion is concentrated on a 2D surface that represents a nonlinear dispersion relation. This nonlinear dispersion relation is close to the linear dispersion relation. This validates the usual wavenumber-frequency change of variables used in many experimental studies of wave turbulence. The deviation from the linear dispersion, which increases with the input power of the forcing, is attributed to weak non linear effects. Our technique opens the way for many new extensive quantitative comparisons between theory and experiments of wave turbulence.

  17. Active micromixer using surface acoustic wave streaming

    DOE Patents [OSTI]

    Branch; Darren W. (Albuquerque, NM), Meyer; Grant D. (Ithaca, NY), Craighead; Harold G. (Ithaca, NY)

    2011-05-17T23:59:59.000Z

    An active micromixer uses a surface acoustic wave, preferably a Rayleigh wave, propagating on a piezoelectric substrate to induce acoustic streaming in a fluid in a microfluidic channel. The surface acoustic wave can be generated by applying an RF excitation signal to at least one interdigital transducer on the piezoelectric substrate. The active micromixer can rapidly mix quiescent fluids or laminar streams in low Reynolds number flows. The active micromixer has no moving parts (other than the SAW transducer) and is, therefore, more reliable, less damaging to sensitive fluids, and less susceptible to fouling and channel clogging than other types of active and passive micromixers. The active micromixer is adaptable to a wide range of geometries, can be easily fabricated, and can be integrated in a microfluidic system, reducing dead volume. Finally, the active micromixer has on-demand on/off mixing capability and can be operated at low power.

  18. Switching power supply

    DOE Patents [OSTI]

    Mihalka, A.M.

    1984-06-05T23:59:59.000Z

    The invention is a repratable capacitor charging, switching power supply. A ferrite transformer steps up a dc input. The transformer primary is in a full bridge configuration utilizing power MOSFETs as the bridge switches. The transformer secondary is fed into a high voltage, full wave rectifier whose output is connected directly to the energy storage capacitor. The transformer is designed to provide adequate leakage inductance to limit capacitor current. The MOSFETs are switched to the variable frequency from 20 to 50 kHz to charge a capacitor from 0.6 kV. The peak current in a transformer primary and secondary is controlled by increasing the pulse width as the capacitor charges. A digital ripple counter counts pulses and after a preselected desired number is reached an up-counter is clocked.

  19. Wave Energy challenges and possibilities

    E-Print Network [OSTI]

    © Wave Energy ­ challenges and possibilities By: Per Resen Steenstrup www.WaveStarEnergy.com Risø-R-1608(EN) 161 #12;© Wave energy is an old story.... The first wave energy patent is 200 years old. Over the last 100 years more than 200 new wave energy devices have been developped and more than 1.000 patents

  20. On the tidal interaction of massive extra-solar planets on highly eccentric orbit

    E-Print Network [OSTI]

    P. B. Ivanov; J. C. B. Papaloizou

    2003-10-09T23:59:59.000Z

    In this paper we develop a theory of disturbances induced by the stellar tidal field in a fully convective slowly rotating planet orbiting on a highly eccentric orbit around a central star. We show that there are two contributions to the mode energy and angular momentum gain due to impulsive tidal interaction: a) 'the quasi-static' contribution which requires dissipative processes operating in the planet; b) the dynamical contribution associated with excitation of modes of oscillation. These contributions are obtained self-consistently from a single set of the governing equations. We calculate a critical 'equilibrium' value of angular velocity of the planet \\Omega_{crit} determined by the condition that action of the dynamical tides does not alter the angular velocity at that rotation rate. We show that this can be much larger than the corresponding rate associated with quasi-static tides and that at this angular velocity, the rate of energy exchange is minimised. We also investigate the conditions for the stochastic increase in oscillation energy that may occur if many periastron passages are considered. We make some simple estimates of time scale of circularization of initially eccentric orbit due to tides, using a realistic model of the planet, for orbits withperiods after circularization typical of those observed for extra-solar planets P_{obs} > 3days. We find that dynamic tides could have produced a very large decrease of the semi-major axis of a planet with mass of the order of the Jupiter mass M_{J} and final periods P_{obs} < 4.5days on a time-scale < a few Gyrs. We also discuss several unresolved issues in the context of the scenario of the orbit circularization due to dynamic tides.

  1. Wave-Corpuscle Mechanics for Electric Charges

    E-Print Network [OSTI]

    Babin, Anatoli; Figotin, Alexander

    2010-01-01T23:59:59.000Z

    superposition in nonlinear wave dynamics. Rev. Math. Phys.6. Babin, A. , Figotin, A. : Wave-corpuscle mechanics forV. , Fortunato, D. : Solitary waves in the nonlinear wave

  2. Wave Energy Resource Analysis for Use in Wave Energy Conversion 

    E-Print Network [OSTI]

    Pastor, J.; Liu, Y.; Dou, Y.

    2014-01-01T23:59:59.000Z

    In order to predict the response of wave energy converters an accurate representation of the wave climate resource is crucial. This paper gives an overview of wave resource modeling techniques as well as detailing a methodology for estimating...

  3. Harmonic generation of gravitational wave induced Alfven waves

    E-Print Network [OSTI]

    Mats Forsberg; Gert Brodin

    2007-11-26T23:59:59.000Z

    Here we consider the nonlinear evolution of Alfven waves that have been excited by gravitational waves from merging binary pulsars. We derive a wave equation for strongly nonlinear and dispersive Alfven waves. Due to the weak dispersion of the Alfven waves, significant wave steepening can occur, which in turn implies strong harmonic generation. We find that the harmonic generation is saturated due to dispersive effects, and use this to estimate the resulting spectrum. Finally we discuss the possibility of observing the above process.

  4. Developing de Broglie Wave

    E-Print Network [OSTI]

    J X Zheng-Johansson; P-I Johansson

    2006-08-27T23:59:59.000Z

    The electromagnetic component waves, comprising together with their generating oscillatory massless charge a material particle, will be Doppler shifted when the charge hence particle is in motion, with a velocity $v$, as a mere mechanical consequence of the source motion. We illustrate here that two such component waves generated in opposite directions and propagating at speed $c$ between walls in a one-dimensional box, superpose into a traveling beat wave of wavelength ${\\mit\\Lambda}_d$$=(\\frac{v}{c}){\\mit\\Lambda}$ and phase velocity $c^2/v+v$ which resembles directly L. de Broglie's hypothetic phase wave. This phase wave in terms of transporting the particle mass at the speed $v$ and angular frequency ${\\mit\\Omega}_d=2\\pi v /{\\mit\\Lambda}_d$, with ${\\mit\\Lambda}_d$ and ${\\mit\\Omega}_d$ obeying the de Broglie relations, represents a de Broglie wave. The standing-wave function of the de Broglie (phase) wave and its variables for particle dynamics in small geometries are equivalent to the eigen-state solutions to Schr\\"odinger equation of an identical system.

  5. Secondary dust density waves excited by nonlinear dust acoustic waves

    SciTech Connect (OSTI)

    Heinrich, J. R.; Kim, S.-H.; Meyer, J. K.; Merlino, R. L. [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States); Rosenberg, M. [Department of Electrical and Computer Engineering, University of California, San Diego, California 92093 (United States)

    2012-08-15T23:59:59.000Z

    Secondary dust density waves were observed in conjunction with high amplitude (n{sub d}/n{sub d0}>2) dust acoustic waves (DAW) that were spontaneously excited in a dc glow discharge dusty plasma in the moderately coupled, {Gamma}{approx}1, state. The high amplitude dust acoustic waves produced large dust particle oscillations, displacements, and trapping. Secondary dust density waves were excited in the wave troughs of the high amplitude DAWs. The waveforms, amplitudes, wavelengths, and wave speeds of the primary DAWs and the secondary waves were measured. A dust-dust streaming instability is discussed as a possible mechanism for the production of the secondary waves.

  6. Natasha SorianoNatasha Soriano CEE 491 S09

    E-Print Network [OSTI]

    Prevedouros, Panos D.

    . This is the most common tidal power plant· This is the most common tidal power plant #12;Today's Tidal Energy expansion to its 245 MW capacity Other tidal power schemes areOther tidal power schemes are being considered for cost of tidal power plants Tidal power plant and location Out put Cost Yalu, China (pre- commercial

  7. Recirculation in multiple wave conversions

    E-Print Network [OSTI]

    Brizard, A.J.

    2008-01-01T23:59:59.000Z

    model lies with the simple wave energy conservation law itthe recirculation of wave energy introduces interference e?particles, the tertiary-wave energy may be negative and thus

  8. Arnold Schwarzenegger CALIFORNIA OCEAN WAVE

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor CALIFORNIA OCEAN WAVE ENERGY ASSESSMENT Prepared For: California this report as follows: Previsic, Mirko. 2006. California Ocean Wave Energy Assessment. California Energy Systems Integration · Transportation California Ocean Wave Energy Assessment is the final report

  9. Nuclear Power

    E-Print Network [OSTI]

    Vilhena and Bardo E.J. Bodmann Carbon-#1;? in Terrestrial and Aquatic Environment of Ignalina Nuclear Power Plant: Sources of Production, Releases and Dose Estimates #3;?? Jonas Mazeika Impact of radionuclide discharges from Temel?n Nuclear Power... (chapter 5), ? Instrumentation and control (chapter 6), ? Diagnostics (chapter 7), ? Safety evaluation methods (chapters 6, 8, 9 and 10), ? Environment and nuclear power plants (chapters 11 - 15), ? Human factors (chapter 16), ? Software development...

  10. Diagonalization of pp-waves

    E-Print Network [OSTI]

    B. V. Ivanov

    1997-05-21T23:59:59.000Z

    A coordinate transformation is found which diagonalizes the axisymmetric pp-waves. Its effect upon concrete solutions, including impulsive and shock waves, is discussed.

  11. Effects of Tidal Turbine Noise on Fish Hearing and Tissues - Draft Final Report - Environmental Effects of Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    Halvorsen, Michele B.; Carlson, Thomas J.; Copping, Andrea E.

    2011-09-30T23:59:59.000Z

    Snohomish Public Utility District No.1 plans to deploy two 6 meter OpenHydro tidal turbines in Admiralty Inlet in Puget Sound, under a FERC pilot permitting process. Regulators and stakeholders have raised questions about the potential effect of noise from the turbines on marine life. Noise in the aquatic environment is known to be a stressor to many types of aquatic life, including marine mammals, fish and birds. Marine mammals and birds are exceptionally difficult to work with for technical and regulatory reasons. Fish have been used as surrogates for other aquatic organisms as they have similar auditory structures. This project was funded under the FY09 Funding Opportunity Announcement (FOA) to Snohomish PUD, in partnership with the University of Washington - Northwest National Marine Renewable Energy Center, the Sea Mammal Research Unit, and Pacific Northwest National Laboratory. The results of this study will inform the larger research project outcomes. Proposed tidal turbine deployments in coastal waters are likely to propagate noise into nearby waters, potentially causing stress to native organisms. For this set of experiments, juvenile Chinook salmon (Oncorhynchus tshawytscha) were used as the experimental model. Plans exist for prototype tidal turbines to be deployed into their habitat. Noise is known to affect fish in many ways, such as causing a threshold shift in auditory sensitivity or tissue damage. The characteristics of noise, its spectra and level, are important factors that influence the potential for the noise to injure fish. For example, the frequency range of the tidal turbine noise includes the audiogram (frequency range of hearing) of most fish. This study was performed during FY 2011 to determine if noise generated by a 6-m diameter OpenHydro turbine might affect juvenile Chinook salmon hearing or cause barotrauma. Naturally spawning stocks of Chinook salmon that utilize Puget Sound are listed as threatened (http://www.nwr.noaa.gov/ESA-Salmon-Listings/Salmon-Populations/Chinook/CKPUG.cfm); the fish used in this experiment were hatchery raised and their populations are not in danger of depletion. After they were exposed to simulated tidal turbine noise, the hearing of juvenile Chinook salmon was measured and necropsies performed to check for tissue damage. Experimental groups were (1) noise exposed, (2) control (the same handling as treatment fish but without exposure to tidal turbine noise), and (3) baseline (never handled). Experimental results indicate that non-lethal, low levels of tissue damage may have occurred but that there were no effects of noise exposure on the auditory systems of the test fish.

  12. Wave-wave interactions in solar type III radio bursts

    SciTech Connect (OSTI)

    Thejappa, G. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); MacDowall, R. J. [NASA/Goddard Space Flight Center, Greenbelt MD 20771 (United States)

    2014-02-11T23:59:59.000Z

    The high time resolution observations from the STEREO/WAVES experiment show that in type III radio bursts, the Langmuir waves often occur as localized magnetic field aligned coherent wave packets with durations of a few ms and with peak intensities well exceeding the strong turbulence thresholds. Some of these wave packets show spectral signatures of beam-resonant Langmuir waves, down- and up-shifted sidebands, and ion sound waves, with frequencies, wave numbers, and tricoherences satisfying the resonance conditions of the oscillating two stream instability (four wave interaction). The spectra of a few of these wave packets also contain peaks at f{sub pe}, 2f{sub pe} and 3 f{sub pe} (f{sub pe} is the electron plasma frequency), with frequencies, wave numbers and bicoherences (computed using the wavelet based bispectral analysis techniques) satisfying the resonance conditions of three wave interactions: (1) excitation of second harmonic electromagnetic waves as a result of coalescence of two oppositely propagating Langmuir waves, and (2) excitation of third harmonic electromagnetic waves as a result of coalescence of Langmuir waves with second harmonic electromagnetic waves. The implication of these findings is that the strong turbulence processes play major roles in beam stabilization as well as conversion of Langmuir waves into escaping radiation in type III radio bursts.

  13. Experimental and Numerical Study of Spar Buoy-magnet/spring Oscillators Used as Wave Energy Annette R. Grilli

    E-Print Network [OSTI]

    Grilli, Stéphan T.

    Experimental and Numerical Study of Spar Buoy-magnet/spring Oscillators Used as Wave Energy.g., latching) of the SSLG, in order to further improve power generation. KEYWORDS : Wave energy systems networks), based on captur- ing renewable wave energy. To do so, we design and optimize a new type

  14. Design Methodology for a SEAREV Wave Energy Marie Ruellan, Hamid BenAhmed, Bernard Multon, Christophe Josset, Aurelien Babarit,

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Design Methodology for a SEAREV Wave Energy Converter Marie Ruellan, Hamid BenAhmed, Bernard by presenting two power take-off (PTO) technologies for the SEAREV wave energy converter (WEC) followed technologies in- tended to transform wave energy into electricity. The types of systems are twofold

  15. Wave Turbulence on the Surface of a Ferrofluid in a Magnetic Field Francois Boyer and Eric Falcon*

    E-Print Network [OSTI]

    Falcon, Eric

    Wave Turbulence on the Surface of a Ferrofluid in a Magnetic Field Franc¸ois Boyer and Eric Falcon the observation of wave turbulence on the surface of a ferrofluid mechanically forced and submitted to a static normal magnetic field. We show that magnetic surface waves arise only above a critical field. The power

  16. Wave turbulence on the surface of a ferrofluid submitted to a magnetic field Francois Boyer and Eric Falcon

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Wave turbulence on the surface of a ferrofluid submitted to a magnetic field Fran¸cois Boyer the observation of wave turbulence on the surface of a ferrofluid mechanically forced and submitted to a static normal magnetic field. We show that magnetic surface waves arise only above a critical field. The power

  17. The Loudest Gravitational Wave Events

    E-Print Network [OSTI]

    Hsin-Yu Chen; Daniel E. Holz

    2014-09-04T23:59:59.000Z

    As first emphasized by Bernard Schutz, there exists a universal distribution of signal-to-noise ratios for gravitational wave detection. Because gravitational waves (GWs) are almost impossible to obscure via dust absorption or other astrophysical processes, the strength of the detected signal is dictated solely by the emission strength and the distance to the source. Assuming that the space density of an arbitrary population of GW sources does not evolve, we show explicitly that the distribution of detected signal-to-noise (SNR) values depends solely on the detection threshold; it is independent of the detector network (interferometer or pulsar timing array), the individual detector noise curves (initial or Advanced LIGO), the nature of the GW sources (compact binary coalescence, supernova, or some other discrete source), and the distributions of source variables (only non-spinning neutron stars of mass exactly $1.4\\,M_\\odot$ or a complicated distribution of masses and spins). We derive the SNR distribution for each individual detector within a network as a function of the relative detector orientations and sensitivities. While most detections will have SNR near the detection threshold, there will be a tail of events to higher SNR. We derive the SNR distribution of the loudest (highest SNR) events in any given sample of detections. We find that the median SNR of the loudest out of the first four events should have an $\\mbox{SNR}=22$ (for a threshold of 12, appropriate for the Advanced LIGO/Virgo network), increasing to a median value for the loudest SNR of 47 for 40 detections. We expect these loudest events to provide particularly powerful constraints on their source parameters, and they will play an important role in extracting astrophysics from gravitational wave sources. These distributions also offer an important internal calibration of the response of the GW detector networks.

  18. Power LCAT

    ScienceCinema (OSTI)

    Drennen, Thomas

    2014-06-27T23:59:59.000Z

    POWER LCAT is a software tool used to compare elements of efficiency, cost, and environmental effects between different sources of energy.

  19. Power LCAT

    SciTech Connect (OSTI)

    Drennen, Thomas

    2012-08-15T23:59:59.000Z

    POWER LCAT is a software tool used to compare elements of efficiency, cost, and environmental effects between different sources of energy.

  20. Investigation of dominant spin wave modes by domain walls collision

    SciTech Connect (OSTI)

    Ramu, M.; Purnama, I.; Goolaup, S.; Chandra Sekhar, M.; Lew, W. S., E-mail: wensiang@ntu.edu.sg [School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore)

    2014-06-28T23:59:59.000Z

    Spin wave emission due to field-driven domain wall (DW) collision has been investigated numerically and analytically in permalloy nanowires. The spin wave modes generated are diagonally symmetric with respect to the collision point. The non-propagating mode has the highest amplitude along the middle of the width. The frequency of this mode is strongly correlated to the nanowire geometrical dimensions and is independent of the strength of applied field within the range of 0.1?mT to 1?mT. For nanowire with film thickness below 5?nm, a second spin wave harmonic mode is observed. The decay coefficient of the spin wave power suggests that the DWs in a memory device should be at least 300?nm apart for them to be free of interference from the spin waves.

  1. Seasonal variations of semidiurnal tidal perturbations in mesopause region temperature and zonal and meridional winds above

    E-Print Network [OSTI]

    monthly mean temperature and zonal wind from the same data set as well as HAMMONIA output to calculate.1029/2007JD009687. 1. Introduction [2] Solar thermal tides are global-scale waves that dom- inate

  2. Reliability Estimates for Power Supplies

    SciTech Connect (OSTI)

    Lee C. Cadwallader; Peter I. Petersen

    2005-09-01T23:59:59.000Z

    Failure rates for large power supplies at a fusion facility are critical knowledge needed to estimate availability of the facility or to set priorties for repairs and spare components. A study of the "failure to operate on demand" and "failure to continue to operate" failure rates has been performed for the large power supplies at DIII-D, which provide power to the magnet coils, the neutral beam injectors, the electron cyclotron heating systems, and the fast wave systems. When one of the power supplies fails to operate, the research program has to be either temporarily changed or halted. If one of the power supplies for the toroidal or ohmic heating coils fails, the operations have to be suspended or the research is continued at de-rated parameters until a repair is completed. If one of the power supplies used in the auxiliary plasma heating systems fails the research is often temporarily changed until a repair is completed. The power supplies are operated remotely and repairs are only performed when the power supplies are off line, so that failure of a power supply does not cause any risk to personnel. The DIII-D Trouble Report database was used to determine the number of power supply faults (over 1,700 reports), and tokamak annual operations data supplied the number of shots, operating times, and power supply usage for the DIII-D operating campaigns between mid-1987 and 2004. Where possible, these power supply failure rates from DIII-D will be compared to similar work that has been performed for the Joint European Torus equipment. These independent data sets support validation of the fusion-specific failure rate values.

  3. An unstructured C-grid based method for 3-D global ocean dynamics: Free-surface formulations and tidal test cases

    E-Print Network [OSTI]

    Peltier, W. Richard

    and tidal test cases G.R. Stuhne *, W.R. Peltier Department of Physics, University of Toronto, 60 St. George rights reserved. 1. Introduction In a previous paper (Stuhne and Peltier, 2006, hereafter SP), we

  4. Full wave simulations of lower hybrid wave propagation in tokamaks

    E-Print Network [OSTI]

    Wright, John C.

    Full wave simulations of lower hybrid wave propagation in tokamaks J. C. Wright , P. T. Bonoli , C hybrid (LH) waves have the attractive property of damping strongly via electron Landau resonance. Consequently these waves are well-suited to driving current in the plasma periphery where the electron

  5. Sound waves in the intracluster medium of the Centaurus cluster

    E-Print Network [OSTI]

    J. S Sanders; A. C. Fabian

    2008-08-18T23:59:59.000Z

    We report the discovery of ripple-like X-ray surface brightness oscillations in the core of the Centaurus cluster of galaxies, found with 200 ks of Chandra observations. The features are between 3 to 5 per cent variations in surface brightness with a wavelength of around 9 kpc. If, as has been conjectured for the Perseus cluster, these are sound waves generated by the repetitive inflation of central radio bubbles, they represent around 5x10^42 erg/s of spherical sound-wave power at a radius of 30 kpc. The period of the waves would be 10^7 yr. If their power is dissipated in the core of the cluster, it would balance much of the radiative cooling by X-ray emission, which is around 1.3x10^43 erg/s within the inner 30 kpc. The power of the sound waves would be a factor of four smaller that the heating power of the central radio bubbles, which means that energy is converted into sound waves efficiently.

  6. Direct Drive Wave Energy Buoy – 33rd scale experiment

    SciTech Connect (OSTI)

    Rhinefrank, Kenneth E. [Columbia Power Technologies, Inc.; Lenee-Bluhm, Pukha [Columbia Power Technologies, Inc.; Prudell, Joseph H. [Columbia Power Technologies, Inc.; Schacher, Alphonse A.; Hammagren, Erik J.; Zhang, Zhe [Columbia Power Technologies, Inc.

    2013-07-29T23:59:59.000Z

    Columbia Power Technologies (ColPwr) and Oregon State University (OSU) jointly conducted a series of tests in the Tsunami Wave Basin (TWB) at the O.H. Hinsdale Wave Research Laboratory (HWRL). These tests were run between November 2010 and February 2011. Models at 33rd scale representing Columbia Power’s Manta series Wave Energy Converter (WEC) were moored in configurations of one, three and five WEC arrays, with both regular waves and irregular seas generated. The primary research interest of ColPwr is the characterization of WEC response. The WEC response will be investigated with respect to power performance, range of motion and generator torque/speed statistics. The experimental results will be used to validate a numerical model. The primary research interests of OSU include an investigation into the effects of the WEC arrays on the near- and far-field wave propagation. This report focuses on the characterization of the response of a single WEC in isolation. To facilitate understanding of the commercial scale WEC, results will be presented as full scale equivalents.

  7. Current-drive by lower hybrid waves in the presence of energetic alpha-particles

    SciTech Connect (OSTI)

    Fisch, N.J.; Rax, J.M.

    1991-10-01T23:59:59.000Z

    Many experiments have now proved the effectiveness of lower hybrid waves for driving toroidal current in tokamaks. The use of these waves, however, to provide all the current in a reactor is thought to be uncertain because the waves may not penetrate the center of the more energetic reactor plasma, and, if they did, the wave power may be absorbed by alpha particles rather than by electrons. This paper explores the conditions under which lower-hybrid waves might actually drive all the current. 26 refs.

  8. Reconstructing the neutron-star equation of state with gravitational-wave detectors from a realistic population of inspiralling binary neutron stars

    E-Print Network [OSTI]

    Benjamin D. Lackey; Leslie Wade

    2014-10-31T23:59:59.000Z

    Gravitational-wave observations of inspiralling binary neutron star systems can be used to measure the neutron-star equation of state (EOS) through the tidally induced shift in the waveform phase that depends on the tidal deformability parameter $\\lambda$. Previous work has shown that $\\lambda$, a function of the neutron-star EOS and mass, is measurable by Advanced LIGO for a single event when including tidal information up to the merger frequency. In this work, we describe a method for stacking measurements of $\\lambda$ from multiple inspiral events to measure the EOS. We use Markov chain Monte Carlo simulations to estimate the parameters of a 4-parameter piecewise polytrope EOS that matches theoretical EOS models to a few percent. We find that, for "realistic" event rates ($\\sim 40$ binary neutron star inspiral events per year with signal-to-noise ratio $> 8$ in a single Advanced LIGO detector), combining a year of gravitational-wave data from a three-detector network with the constraints from causality and recent high mass neutron-star measurements, the EOS above nuclear density can be measured to better than a factor of two in pressure in most cases. We also find that in the mass range $1M_\\odot$--$2M_\\odot$, the neutron-star radius can be measured to better than $\\pm 1$ km and the tidal deformability can be measured to better than $\\pm 1 \\times 10^{36}$ g cm$^2$ s$^2$ (10%--50% depending on the EOS and mass). The overwhelming majority of this information comes from the loudest $\\sim 5$ events. Current uncertainties in the post-Newtonian waveform model, however, lead to systematic errors in the EOS measurement that are as large as the statistical errors, and more accurate waveform models are needed to minimize this error.

  9. Power system

    DOE Patents [OSTI]

    Hickam, Christopher Dale (Glasford, IL)

    2008-03-18T23:59:59.000Z

    A power system includes a prime mover, a transmission, and a fluid coupler having a selectively engageable lockup clutch. The fluid coupler may be drivingly connected between the prime mover and the transmission. Additionally, the power system may include a motor/generator drivingly connected to at least one of the prime mover and the transmission. The power-system may also include power-system controls configured to execute a control method. The control method may include selecting one of a plurality of modes of operation of the power system. Additionally, the control method may include controlling the operating state of the lockup clutch dependent upon the mode of operation selected. The control method may also include controlling the operating state of the motor/generator dependent upon the mode of operation selected.

  10. Benchmark Modeling of the Near-Field and Far-Field Wave Effects of Wave Energy Arrays

    SciTech Connect (OSTI)

    Rhinefrank, Kenneth E.; Haller, Merrick C.; Ozkan-Haller, H. Tuba

    2013-01-26T23:59:59.000Z

    This project is an industry-led partnership between Columbia Power Technologies and Oregon State University that will perform benchmark laboratory experiments and numerical modeling of the near-field and far-field impacts of wave scattering from an array of wave energy devices. These benchmark experimental observations will help to fill a gaping hole in our present knowledge of the near-field effects of multiple, floating wave energy converters and are a critical requirement for estimating the potential far-field environmental effects of wave energy arrays. The experiments will be performed at the Hinsdale Wave Research Laboratory (Oregon State University) and will utilize an array of newly developed Buoys������� that are realistic, lab-scale floating power converters. The array of Buoys will be subjected to realistic, directional wave forcing (1:33 scale) that will approximate the expected conditions (waves and water depths) to be found off the Central Oregon Coast. Experimental observations will include comprehensive in-situ wave and current measurements as well as a suite of novel optical measurements. These new optical capabilities will include imaging of the 3D wave scattering using a binocular stereo camera system, as well as 3D device motion tracking using a newly acquired LED system. These observing systems will capture the 3D motion history of individual Buoys as well as resolve the 3D scattered wave field; thus resolving the constructive and destructive wave interference patterns produced by the array at high resolution. These data combined with the device motion tracking will provide necessary information for array design in order to balance array performance with the mitigation of far-field impacts. As a benchmark data set, these data will be an important resource for testing of models for wave/buoy interactions, buoy performance, and far-field effects on wave and current patterns due to the presence of arrays. Under the proposed project we will initiate high-resolution (fine scale, very near-field) fluid/structure interaction simulations of buoy motions, as well as array-scale, phase-resolving wave scattering simulations. These modeling efforts will utilize state-of-the-art research quality models, which have not yet been brought to bear on this complex problem of large array wave/structure interaction problem.

  11. Numerical simulations of acoustically generated gravitational waves at a first order phase transition

    E-Print Network [OSTI]

    Mark Hindmarsh; Stephan J. Huber; Kari Rummukainen; David J. Weir

    2015-04-13T23:59:59.000Z

    We present details of numerical simulations of the gravitational radiation produced by a first order {thermal} phase transition in the early universe. We confirm that the dominant source of gravitational waves is sound waves generated by the expanding bubbles of the low-temperature phase. We demonstrate that the sound waves have a power spectrum with power-law form between the scales set by the average bubble separation (which sets the length scale of the fluid flow $L_\\text{f}$) and the bubble wall width. The sound waves generate gravitational waves whose power spectrum also has a power-law form, at a rate proportional to $L_\\text{f}$ and the square of the fluid kinetic energy density. We identify a dimensionless parameter $\\tilde\\Omega_\\text{GW}$ characterising the efficiency of this "acoustic" gravitational wave production whose value is $8\\pi\\tilde\\Omega_\\text{GW} \\simeq 0.8 \\pm 0.1$ across all our simulations. We compare the acoustic gravitational waves with the standard prediction from the envelope approximation. Not only is the power spectrum steeper (apart from an initial transient) but the gravitational wave energy density is generically two orders of magnitude or more larger.

  12. Waving in the rain

    E-Print Network [OSTI]

    Cavaleri, Luigi; Bidlot, Jean-Raymond

    2015-01-01T23:59:59.000Z

    We consider the effect of rain on wind wave generation and dissipation. Rain falling on a wavy surface may have a marked tendency to dampen the shorter waves in the tail of the spectrum, the related range increasing with the rain rate. Following the coupling between meteorological and wave models, we derive that on the whole this should imply stronger wind and higher waves in the most energetic part of the spectrum. This is supported by numerical experiments. However, a verification based on the comparison between operational model results and measured data suggests that the opposite is true. This leads to a keen analysis of the overall process, in particular on the role of the tail of the spectrum in modulating the wind input and the white-capping. We suggest that the relationship between white-capping and generation by wind is deeper and more implicative than presently generally assumed.

  13. Surface wave interferometry 

    E-Print Network [OSTI]

    Halliday, David Fraser

    2009-01-01T23:59:59.000Z

    This thesis concerns the application of seismic interferometry to surface waves. Seismic interferometry is the process by which the wavefield between two recording locations is estimated, resulting in new recordings at ...

  14. Millimeter-wave sensors

    E-Print Network [OSTI]

    Kim, Seoktae

    2006-04-12T23:59:59.000Z

    New millimeter wave interferometric, multifunctional sensors have been studied for industrial sensing applications: displacement measurement, liquid-level gauging and velocimetry. Two types of configuration were investigated to implement the sensor...

  15. Pilot-wave hydrodynamics

    E-Print Network [OSTI]

    Bush, John W. M.

    Yves Couder, Emmanuel Fort, and coworkers recently discovered that a millimetric droplet sustained on the surface of a vibrating fluid bath may self-propel through a resonant interaction with its own wave field. This article ...

  16. 550 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 28, NO. 3, JUNE 2000 Overmoded GW-Class Surface-Wave

    E-Print Network [OSTI]

    Hassam, Adil

    --High-power microwave (HPM), overmoded, sur- face-wave oscillator. I. INTRODUCTION APPLICATIONS of high-power microwave (HPM) devices capable of generating gigawatt (GW) levels of output power at centimeter wavelengths of electronic systems. However, the maximum peak-power handling capability of HPM sources is severely limited

  17. Tides and Tidal Capture in post-Main Sequence Binaries: A Period Gap for Planets Around White Dwarfs

    E-Print Network [OSTI]

    Nordhaus, J; Ibgui, L; Goodman, J; Burrows, A

    2010-01-01T23:59:59.000Z

    The presence of a close, low-mass companion is thought to play a substantial and perhaps necessary role in shaping post-Asymptotic Giant Branch and Planetary Nebula outflows. During post-main-sequence evolution, radial expansion of the primary star, accompanied by intense winds, can significantly alter the binary orbit via tidal dissipation and mass loss. To investigate this, we couple stellar evolution models (from the zero-age main-sequence through the end of the post-main sequence) to a tidal evolution code. The binary's fate is determined by the initial masses of the primary and the companion, the initial orbit (taken to be circular), and the Reimer's mass-loss parameter. For a range of these parameters, we determine whether the orbit expands due to mass loss or decays due to tidal torques. Where a common envelope phase (CEP) ensues, we estimate the final orbital separation based on the energy required to unbind the envelope. These calculations predict a period gap for planetary companions to white dwarfs...

  18. Autoresonant Excitation of Diocotron Waves

    E-Print Network [OSTI]

    Wurtele, Jonathan

    of the wave, the pump and the wave will phase lock at very low wave amplitude. When the pump reachesAutoresonant Excitation of Diocotron Waves J. Fajans E. Gilson U.C. Berkeley L. Friedland Hebrew of phase with the oscillator, and the os- cillator's amplitude will decrease, eventually reaching zero

  19. Strathclyde powerS ahead

    E-Print Network [OSTI]

    Mottram, Nigel

    Strathclyde powerS ahead the future of renewable energy SHARING AND ENHANCING RESEARCH Discover the vision of Principal Professor Jim McDonald THE FUTURE OF ENERGY Strathclyde pioneers renewableEdicinE Snapshot the reSearcher Following a decade of environmental research in her native egypt, nabila saleem

  20. Spitzer View of Massive Star Formation in the Tidally Stripped Magellanic Bridge

    E-Print Network [OSTI]

    Chen, C -H Rosie; Muller, Erik; Kawamura, Akiko; Gordon, Karl D; Sewi?o, Marta; Whitney, Barbara A; Fukui, Yasuo; Madden, Suzanne C; Meade, Marilyn R; Meixner, Margaret; Oliveira, Joana M; Robitaille, Thomas P; Seale, Jonathan P; Shiao, Bernie; van Loon, Jacco Th

    2014-01-01T23:59:59.000Z

    The Magellanic Bridge is the nearest low-metallicity, tidally stripped environment, offering a unique high-resolution view of physical conditions in merging and forming galaxies. In this paper we present analysis of candidate massive young stellar objects (YSOs), i.e., {\\it in situ, current} massive star formation (MSF) in the Bridge using {\\it Spitzer} mid-IR and complementary optical and near-IR photometry. While we definitely find YSOs in the Bridge, the most massive are $\\sim10 M_\\odot$, $\\ll45 M_\\odot$ found in the Large Magellanic Cloud (LMC). The intensity of MSF in the Bridge also appears decreasing, as the most massive YSOs are less massive than those formed in the past. To investigate environmental effects on MSF, we have compared properties of massive YSOs in the Bridge to those in the LMC. First, YSOs in the Bridge are apparently less embedded than in the LMC: 81% of Bridge YSOs show optical counterparts, compared to only 56% of LMC sources with the same range of mass, circumstellar dust mass, and...