National Library of Energy BETA

Sample records for tidal hydrokinetic technology

  1. Marine & hydrokinetic technology development.

    SciTech Connect (OSTI)

    LiVecchi, Al; Jepsen, Richard Alan

    2010-06-01

    The Wind and Water Power Program supports the development of marine and hydrokinetic devices, which capture energy from waves, tides, ocean currents, the natural flow of water in rivers, and marine thermal gradients, without building new dams or diversions. The program works closely with industry and the Department of Energy's national laboratories to advance the development and testing of marine and hydrokinetic devices. In 2008, the program funded projects to develop and test point absorber, oscillating wave column, and tidal turbine technologies. The program also funds component design, such as techniques for manufacturing and installing coldwater pipes critical for ocean thermal energy conversion (OTEC) systems. Rigorous device testing is necessary to validate and optimize prototypes before beginning full-scale demonstration and deployment. The program supports device testing by providing technology developers with information on testing facilities. Technology developers require access to facilities capable of simulating open-water conditions in order to refine and validate device operability. The program has identified more than 20 tank testing operators in the United States with capabilities suited to the marine and hydrokinetic technology industry. This information is available to the public in the program's Hydrodynamic Testing Facilities Database. The program also supports the development of open-water, grid-connected testing facilities, as well as resource assessments that will improve simulations done in dry-dock and closed-water testing facilities. The program has established two university-led National Marine Renewable Energy Centers to be used for device testing. These centers are located on coasts and will have open-water testing berths, allowing researchers to investigate marine and estuary conditions. Optimal array design, development, modeling and testing are needed to maximize efficiency and electricity generation at marine and hydrokinetic power

  2. Marine and Hydrokinetic Technology Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    DOEs Marine and Hydrokinetic Technology Database provides up-to-date information on marine and hydrokinetic renewable energy, both in the U.S. and around the world. The database includes wave, tidal, current, and ocean thermal energy, and contains information on the various energy conversion technologies, companies active in the field, and development of projects in the water. Depending on the needs of the user, the database can present a snapshot of projects in a given region, assess the progress of a certain technology type, or provide a comprehensive view of the entire marine and hydrokinetic energy industry. Results are displayed as a list of technologies, companies, or projects. Data can be filtered by a number of criteria, including country/region, technology type, generation capacity, and technology or project stage. The database was updated in 2009 to include ocean thermal energy technologies, companies, and projects.

  3. Marine and Hydrokinetic Technology Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    DOE’s Marine and Hydrokinetic Technology Database provides up-to-date information on marine and hydrokinetic renewable energy, both in the U.S. and around the world. The database includes wave, tidal, current, and ocean thermal energy, and contains information on the various energy conversion technologies, companies active in the field, and development of projects in the water. Depending on the needs of the user, the database can present a snapshot of projects in a given region, assess the progress of a certain technology type, or provide a comprehensive view of the entire marine and hydrokinetic energy industry. Results are displayed as a list of technologies, companies, or projects. Data can be filtered by a number of criteria, including country/region, technology type, generation capacity, and technology or project stage. The database was updated in 2009 to include ocean thermal energy technologies, companies, and projects.

  4. Marine & Hydrokinetic Technologies

    SciTech Connect (OSTI)

    2011-07-01

    This fact sheet describes the Wind and Water Power Program's current approach to supporting the development and deployment of marine and hydrokinetic technologies.

  5. MHK Projects/Indian River Tidal Hydrokinetic Energy Project ...

    Open Energy Info (EERE)

    Tidal Hydrokinetic Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","...

  6. MHK Projects/Piscataqua Tidal Hydrokinetic Energy Project | Open...

    Open Energy Info (EERE)

    Piscataqua Tidal Hydrokinetic Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"goo...

  7. Marine & Hydrokinetic Technologies (Fact Sheet) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marine & Hydrokinetic Technologies (Fact Sheet) Marine & Hydrokinetic Technologies (Fact Sheet) This fact sheet describes the Wind and Water Power Program's current approach to...

  8. Form:Marine and Hydrokinetic Technology | Open Energy Information

    Open Energy Info (EERE)

    Form Edit History Form:Marine and Hydrokinetic Technology Jump to: navigation, search Add a Marine and Hydrokinetic Technology Input the name of your Marine and Hydrokinetic...

  9. Marine and Hydrokinetic Technology Instrumentation, Measurement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Instrumentation, Measurement, and Computer Modeling Workshop Marine and Hydrokinetic Technology Instrumentation, Measurement, and Computer Modeling Workshop The workshop ...

  10. Marine & Hydrokinetic Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marine & Hydrokinetic Technologies This fact sheet describes the U.S. Department of Energy's Wind and Water Power Program efforts to develop advanced water power devices that ...

  11. Acoustic Effects of Hydrokinetic Tidal Turbines

    SciTech Connect (OSTI)

    Polagye, Brian

    2011-11-01

    This presentation from the Water Peer Review highlights one of the program's marine and hyrokinetics environmental projects to determine the likely acoustic effects from a tidal energy device.

  12. Marine & Hydrokinetic Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-04-01

    This fact sheet describes the U.S. Department of Energy's Water Power Program. The program supports the development of advanced water power devices that capture energy from waves, tides, ocean currents, rivers, streams, and ocean thermal gradients. The program works to promote the development and deployment of these new technologies, known as marine and hydrokinetic technologies, to assess the potential extractable energy from rivers, estuaries, and coastal waters, and to help industry harness this renewable, emissions-free resource to generate environmentally sustainable and cost-effective electricity.

  13. Marine and Hydrokinetic Technology Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marine and Hydrokinetic Technology Resources Marine and Hydrokinetic Technology Resources Marine and hydrokinetic (MHK) energy technologies convert the energy of waves, tides, and river and ocean currents into electricity. The Department of Energy's "Marine and Hydrokinetic 101" video explains how these technologies work and highlights some of the Water Power Program's efforts in R&D in this area. Learn where marine and hydrokinetic technology research and testing is being done

  14. Proceedings of the Hydrokinetic and Wave Energy Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments Before the House Science and Technology Subcommittee on Energy and Environment Water Power Program: ...

  15. MHK Technologies/Deep water capable hydrokinetic turbine | Open...

    Open Energy Info (EERE)

    water capable hydrokinetic turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization Hills Inc...

  16. Marine & Hydrokinetic Technologies (Fact Sheet), Wind And Water...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Technology at Florida Atlantic University, are ... Marine & Hydrokinetic Technologies WIND AND WATER POWER ... Renewable Power Company's Turbine Generator Unit, NRELPIX ...

  17. Marine and Hydrokinetic Technology Instrumentation, Measurement, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Computer Modeling Workshop | Department of Energy Technology Instrumentation, Measurement, and Computer Modeling Workshop Marine and Hydrokinetic Technology Instrumentation, Measurement, and Computer Modeling Workshop The workshop brought together over 60 experts in marine energy technologies to disseminate technical information to the marine energy community, and to collect information to help identify ways in which the development of a commercially viable marine energy industry can be

  18. Marine and Hydrokinetic Technologies Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Fact Sheet Marine and Hydrokinetic Technologies Fact Sheet This fact sheet describes the Wind and Water Power Program's current approach to supporting the development and deployment of marine and hydrokinetic technologies. Marine and Hydrokinetic Technologies Fact Sheet (616.51 KB) More Documents & Publications 47688.pdf Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP) Leading the Nation in Clean Energy Deployment

  19. Marine and Hydrokinetic (MHK) Technology Development Risk Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Framework Webinar | Department of Energy Marine and Hydrokinetic (MHK) Technology Development Risk Management Framework Webinar Marine and Hydrokinetic (MHK) Technology Development Risk Management Framework Webinar December 16, 2014 9:00AM to 10:30AM EST This webinar is also being offered on the same day in the afternoon at 2:00 p.m. EST. Marine and hydrokinetic (MHK) technologies convert the kinetic energy from ocean waves, tides, currents, and ocean thermal resources into electricity. The

  20. Template:Marine and Hydrokinetic Technology Project Milestone...

    Open Energy Info (EERE)

    :MarineandHydrokineticTechnologyProjectMilestone&oldid675523" Feedback Contact needs updating Image needs updating Reference needed Missing content Broken link Other...

  1. Study of the Acoustic Effects of Hydrokinetic Tidal Turbines in Admiralty Inlet, Puget Sound

    SciTech Connect (OSTI)

    Brian Polagye; Jim Thomson; Chris Bassett; Jason Wood; Dom Tollit; Robert Cavagnaro; Andrea Copping

    2012-03-30

    Hydrokinetic turbines will be a source of noise in the marine environment - both during operation and during installation/removal. High intensity sound can cause injury or behavioral changes in marine mammals and may also affect fish and invertebrates. These noise effects are, however, highly dependent on the individual marine animals; the intensity, frequency, and duration of the sound; and context in which the sound is received. In other words, production of sound is a necessary, but not sufficient, condition for an environmental impact. At a workshop on the environmental effects of tidal energy development, experts identified sound produced by turbines as an area of potentially significant impact, but also high uncertainty. The overall objectives of this project are to improve our understanding of the potential acoustic effects of tidal turbines by: (1) Characterizing sources of existing underwater noise; (2) Assessing the effectiveness of monitoring technologies to characterize underwater noise and marine mammal responsiveness to noise; (3) Evaluating the sound profile of an operating tidal turbine; and (4) Studying the effect of turbine sound on surrogate species in a laboratory environment. This study focuses on a specific case study for tidal energy development in Admiralty Inlet, Puget Sound, Washington (USA), but the methodologies and results are applicable to other turbine technologies and geographic locations. The project succeeded in achieving the above objectives and, in doing so, substantially contributed to the body of knowledge around the acoustic effects of tidal energy development in several ways: (1) Through collection of data from Admiralty Inlet, established the sources of sound generated by strong currents (mobilizations of sediment and gravel) and determined that low-frequency sound recorded during periods of strong currents is non-propagating pseudo-sound. This helped to advance the debate within the marine and hydrokinetics acoustic

  2. NREL: Water Power Research - Marine and Hydrokinetic Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Instrumentation, Measurement, and Computer Modeling Workshop Marine and Hydrokinetic Technology Instrumentation, Measurement, and Computer Modeling Workshop The Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop was hosted by the NREL in Broomfield, Colorado from July 9 - 10, 2012. The workshop brought together over 60 experts in marine energy technologies to disseminate technical information to the marine energy community and to collect

  3. Sandia Energy - Marine Hydrokinetics Technology: Market Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on aquatic organisms, with early emphasis on the effects of electromagnetic fields (EMF), acoustic noise from currenttidal, wave and riverine hydrokinetic generators, toxicity...

  4. Marine and Hydrokinetic Technology Development and Testing |...

    Energy Savers [EERE]

    The Water Power Program supports the development of marine and hydrokinetic devices, which capture energy from waves, tides, ocean currents, the natural flow of water in rivers, ...

  5. Marine & Hydrokinetic Technology Readiness Initiative TIDAL ENERGY...

    Office of Scientific and Technical Information (OSTI)

    ... Wind energy costs are significantly lower than natural gas, solar power, or coal with ... efficiency, reduced noise, and longer lifetimes, all this comes at an expensive price. ...

  6. First Commercial, Grid-Connected, Hydrokinetic Tidal Energy Project...

    Office of Science (SC) Website

    ORPC's TidGen(tm) turbine generator unit. R&D Opportunity Advanced water power technologies include devices capable of extracting electrical power from waves, water currents, and ...

  7. Marine and Hydrokinetic Technology Development Risk Management...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Structural Failure: http:www.oceanrenewable.com20110912atlantis-resources-corporation-connects-1mw-tidal- turbine-to-the-national-grid http:...

  8. Proceedings of the Hydrokinetic and Wave Energy Technologies Technical and Environmental Issues Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proceedings of the Hydrokinetic and Wave Energy Technologies Technical and Environmental Issues Workshop October 26-28, 2005 Washington, D.C. Sponsored by: U.S. Department of Energy OFFICE OF ENERGY EFFICIENCY AND RENEWABLE ENERGY Wind and Hydropower Technologies Program March 24, 2006 To access this document and presentations made at the Hydrokinetic and Wave Energy Technologies Technical and Environmental Issues Workshop visit: http://hydropower.inl.gov/hydrokinetic_wave/ The production of

  9. Marine and Hydrokinetic Resources | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Marine and Hydrokinetic Resource Assessment and Characterization 2 CurrentTidalRiverine 3 Wave 4 Ocean Thermal Energy Conversion (OTEC) Marine and Hydrokinetic...

  10. Proceedings of the Hydrokinetic and Wave Energy Technologies Technical and Environmental Issues Workshop

    SciTech Connect (OSTI)

    2006-03-01

    Renewable energy technologies offer the promise of non-polluting alternatives to fossil and nuclear-fueled power plants to meet growing demand for electrical energy. Two emerging categories of renewable energy technologies, hydrokinetic and wave energy conversion devices, offer ways to tap the energy of moving water without impoundment (dams) or diversion required by many conventional hydroelectric facilities. These technologies include devices designed for deployment in natural streams, tidal estuaries, ocean currents, and constructed waterways, as well as devices designed to capture the energy of ocean waves. On October 26-28, 2005, 54 representatives from government, non-governmental organizations, and private business met to (1) identify the varieties of hydrokinetic energy and wave technology devices, their stages of development, and the projected cost to bring each to market; (2) identify where these technologies can best operate; (3) identify the potential environmental issues associated with these technologies and possible mitigation measures; (4) develop a list of research needs and/or practical solutions to address unresolved environmental issues. These workshop proceedings include detailed summaries of the 24 presentations made and the discussions that followed.

  11. Field Measurements at River and Tidal Current Sites for Hydrokinetic Energy Development: Best Practices Manual

    SciTech Connect (OSTI)

    Neary, Vincent S; Gunawan, Budi

    2011-09-01

    In this report, existing data collection techniques and protocols for characterizing open channel flows are reviewed and refined to further address the needs of the MHK industry. The report provides an overview of the hydrodynamics of river and tidal channels, and the working principles of modern acoustic instrumentation, including best practices in remote sensing methods that can be applied to hydrokinetic energy site characterization. Emphasis is placed upon acoustic Doppler velocimeter (ADV) and acoustic-Doppler current profiler (ADCP) instruments, as these represent the most practical and economical tools for use in the MHK industry. Incorporating the best practices as found in the literature, including the parameters to be measured, the instruments to be deployed, the instrument deployment strategy, and data post-processing techniques. The data collected from this procedure aims to inform the hydro-mechanical design of MHK systems with respect to energy generation and structural loading, as well as provide reference hydrodynamics for environmental impact studies. The standard metrics and protocols defined herein can be utilized to guide field experiments with MHK systems.

  12. Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Computer Modeling Workshop The workshop brought together over 60 experts in marine energy technologies to disseminate technical information to the marine energy...

  13. Quadrennial Technology Review 2015: Technology Assessments--Marine and Hydrokinetic Power

    SciTech Connect (OSTI)

    Sam Baldwin, Gilbert Bindewald, Austin Brown, Charles Chen, Kerry Cheung, Corrie Clark, Joe Cresko,

    2015-10-07

    Marine and hydrokinetic (MHK) technologies convert the energy of waves, tides, and river and ocean currents into electricity. With more than 50% of the U.S. population living within 50 miles of the nation’s coasts, MHK technologies hold significant potential to supply renewable electricity to consumers in coastal load centers, particularly in the near term in areas with high costs of electricity and longer term in high resource areas in close proximity to major coastal load centers. MHK resource assessments identify a total U.S. technical resource potential of approximately 1250–1850 terawatt-hours (TWh) of generation per year from ocean wave, ocean current, ocean tidal, and river current energy. Of this, the U.S. continental technical resource potential is approximately 500–750 TWh/year. For context, roughly 90,000 homes can be powered by 1 TWh of electricity generation each year. A cost-effective MHK industry could provide a substantial amount of electricity for the nation owing in large part to its unique advantages as a source of energy, including its vast resource potential, its close proximity to major coastal load centers, and its long-term predictability and near-term forecastability.

  14. Water Power Program: Marine and Hydrokinetic Technologies

    Broader source: Energy.gov [DOE]

    Pamphlet that describes the Office of EERE's Water Power Program in fiscal year 2009, including the fiscal year 2009 funding opportunities, the Small Business Innovation Research and Small Business Technology Transfer Programs, the U.S. hydrodynamic testing facilities, and the fiscal year 2008 Advanced Water Projects awards.

  15. Report to Congress on the Potential Environmental Effects of Marine and Hydrokinetic Energy Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report focuses on potential impacts of marine and hydrokinetic technologies to aquatic environments (i.e. rivers, estuaries, and oceans), fish and fish habitats, ecological relationships, and other marine and freshwater aquatic resources.

  16. Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy (MHK) Databases and Systems Fact Sheet Marine and Hydrokinetic (MHK) Databases and Systems Fact Sheet The following online information resources are designed to provide the public access to information pertaining to MHK technologies, projects, and research. Marine and Hydrokinetic (MHK) Databases and Systems Fact Sheet (381.97 KB) More Documents & Publications Before the Subcommittee on Water and Power - Senate Committee on Energy and Natural Resourses 2014 Water Power Program

  17. Chapter 4: Advancing Clean Electric Power Technologies | Marine and Hydrokinetic Power Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Value-Added Options Carbon Dioxide Capture for Natural Gas and Industrial Applications Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power

  18. Marine and Hydrokinetic Technology Development Risk Management Framework

    SciTech Connect (OSTI)

    Snowberg, David; Weber, Jochem

    2015-09-01

    Over the past decade, the global marine and hydrokinetic (MHK) industry has suffered a number of serious technological and commercial setbacks. To help reduce the risks of industry failures and advance the development of new technologies, the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) developed an MHK Risk Management Framework. By addressing uncertainties, the MHK Risk Management Framework increases the likelihood of successful development of an MHK technology. It covers projects of any technical readiness level (TRL) or technical performance level (TPL) and all risk types (e.g. technological risk, regulatory risk, commercial risk) over the development cycle. This framework is intended for the development and deployment of a single MHK technology—not for multiple device deployments within a plant. This risk framework is intended to meet DOE’s risk management expectations for the MHK technology research and development efforts of the Water Power Program (see Appendix A). It also provides an overview of other relevant risk management tools and documentation.1 This framework emphasizes design and risk reviews as formal gates to ensure risks are managed throughout the technology development cycle. Section 1 presents the recommended technology development cycle, Sections 2 and 3 present tools to assess the TRL and TPL of the project, respectively. Section 4 presents a risk management process with design and risk reviews for actively managing risk within the project, and Section 5 presents a detailed description of a risk registry to collect the risk management information into one living document. Section 6 presents recommendations for collecting and using lessons learned throughout the development process.

  19. MHK Technologies/Deep Gen Tidal Turbines | Open Energy Information

    Open Energy Info (EERE)

    Gen Tidal Turbines < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Deep Gen Tidal Turbines.jpg Technology Profile Primary Organization Tidal...

  20. MHK Technologies/Tidal Delay | Open Energy Information

    Open Energy Info (EERE)

    Tidal Delay < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Delay.png Technology Profile Primary Organization Woodshed Technologies Ltd...

  1. Marine and Hydrokinetic Renewable Energy Technologies: Potential Navigational Impacts and Mitigation Measures

    SciTech Connect (OSTI)

    Cool, Richard, M.; Hudon, Thomas, J.; Basco, David, R.; Rondorf, Neil, E.

    2009-12-10

    On April 15, 2008, the Department of Energy (DOE) issued a Funding Opportunity Announcement for Advanced Water Power Projects which included a Topic Area for Marine and Hydrokinetic Renewable Energy Market Acceleration Projects. Within this Topic Area, DOE identified potential navigational impacts of marine and hydrokinetic renewable energy technologies and measures to prevent adverse impacts on navigation as a sub-topic area. DOE defines marine and hydrokinetic technologies as those capable of utilizing one or more of the following resource categories for energy generation: ocean waves; tides or ocean currents; free flowing water in rivers or streams; and energy generation from the differentials in ocean temperature. PCCI was awarded Cooperative Agreement DE-FC36-08GO18177 from the DOE to identify the potential navigational impacts and mitigation measures for marine hydrokinetic technologies, as summarized herein. The contract also required cooperation with the U.S. Coast Guard (USCG) and two recipients of awards (Pacific Energy Ventures and reVision) in a sub-topic area to develop a protocol to identify streamlined, best-siting practices. Over the period of this contract, PCCI and our sub-consultants, David Basco, Ph.D., and Neil Rondorf of Science Applications International Corporation, met with USCG headquarters personnel, with U.S. Army Corps of Engineers headquarters and regional personnel, with U.S. Navy regional personnel and other ocean users in order to develop an understanding of existing practices for the identification of navigational impacts that might occur during construction, operation, maintenance, and decommissioning. At these same meetings, “standard” and potential mitigation measures were discussed so that guidance could be prepared for project developers. Concurrently, PCCI reviewed navigation guidance published by the USCG and international community. This report summarizes the results of this effort, provides guidance in the form of a

  2. Marine and Hydrokinetic Resources | Open Energy Information

    Open Energy Info (EERE)

    and Characterization 2 CurrentTidalRiverine 3 Wave 4 Ocean Thermal Energy Conversion (OTEC) Marine and Hydrokinetic Resource Assessment and Characterization To find out more...

  3. Report to Congress on the Potential Environmental Effects of Marine and Hydrokinetic Energy Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HYDROPOWER TECHNOLOGIES PROGRAM December 2009 PREPARED IN RESPONSE TO THE ENERGY INDEPENDENCE AND SECURITY ACT OF 2007, SECTION 633(B) Report to Congress on the Potential Environmental Effects of Marine and Hydrokinetic Energy Technologies NOTICE This report is being disseminated by the Department of Energy. As such, it was prepared in compliance with Section 515 of the Treasury and General Government Appropriations Act for Fiscal Year 2001 (Pub. L. No. 106- 554) and information guidelines

  4. Hydra Tidal Energy Technology AS | Open Energy Information

    Open Energy Info (EERE)

    Tidal Energy Technology AS Jump to: navigation, search Name: Hydra Tidal Energy Technology AS Address: PO Box 399 Place: Harstad Zip: 9484 Region: Norway Sector: Marine and...

  5. MHK Technologies/Sihwa tidal barrage power plant | Open Energy...

    Open Energy Info (EERE)

    Sihwa tidal barrage power plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Sihwa tidal barrage power plant.jpg Technology Profile...

  6. MHK Technologies/Jiangxia Tidal Power Station | Open Energy Informatio...

    Open Energy Info (EERE)

    Jiangxia Tidal Power Station < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Jiangxia Tidal Power Station.jpg Technology Profile Primary...

  7. MHK Technologies/Scotrenewables Tidal Turbine SRTT | Open Energy...

    Open Energy Info (EERE)

    Tidal Turbine SRTT < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Scotrenewables Tidal Turbine SRTT.jpg Technology Profile Primary...

  8. MHK Technologies/Rotech Tidal Turbine RTT | Open Energy Information

    Open Energy Info (EERE)

    Rotech Tidal Turbine RTT < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Rotech Tidal Turbine RTT.jpg Technology Profile Primary Organization...

  9. Potential Impacts of Hydrokinetic and Wave Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on ...

  10. Laboratory Experiments on the Effects of Blade Strike from Hydrokinetic Energy Technologies on Larval and Juvenile Freshwater Fishes

    SciTech Connect (OSTI)

    Schweizer, Peter E; Cada, Glenn F; Bevelhimer, Mark S

    2012-03-01

    There is considerable interest in the development of marine and hydrokinetic energy projects in rivers, estuaries, and coastal ocean waters of the United States. Hydrokinetic (HK) technologies convert the energy of moving water in river or tidal currents into electricity, without the impacts of dams and impoundments associated with conventional hydropower or the extraction and combustion of fossil fuels. The Federal Energy Regulatory Commission (FERC) maintains a database that displays the geographical distribution of proposed HK projects in inland and tidal waters (FERC 2012). As of March 2012, 77 preliminary permits had been issued to private developers to study HK projects in inland waters, the development of which would total over 8,000 MW. Most of these projects are proposed for the lower Mississippi River. In addition, the issuance of another 27 preliminary permits for HK projects in inland waters, and 3 preliminary permits for HK tidal projects (totaling over 3,100 MW) were under consideration by FERC. Although numerous HK designs are under development (see DOE 2009 for a description of the technologies and their potential environmental effects), the most commonly proposed current-based projects entail arrays of rotating devices, much like submerged wind turbines, that are positioned in the high-velocity (high energy) river channels. The many diverse HK designs imply a diversity of environmental impacts, but a potential impact common to most is the risk for blade strike to aquatic organisms. In conventional hydropower generation, research on fish passage through reaction turbines at low-head dams suggested that strike and mortality for small fish could be low. As a consequence of the large surface area to mass ratio of small fish, the drag forces in the boundary layer flow at the surface of a rotor blade may pull small fish around the leading edge of a rotor blade without making physical contact (Turnpenny 1998, Turnpenny et al. 2000). Although there is

  11. MHK Technologies/Uldolmok Pilot Tidal Current Power Plant | Open...

    Open Energy Info (EERE)

    Uldolmok Pilot Tidal Current Power Plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Uldolmok Pilot Tidal Current Power Plant.jpg...

  12. Category:Marine and Hydrokinetic Technologies | Open Energy Informatio...

    Open Energy Info (EERE)

    Centipod MHK TechnologiesCETO Wave Energy Technology MHK TechnologiesClosed Cycle OTEC MHK TechnologiesCoRMaT MHK TechnologiesCross Flow Turbine MHK TechnologiesCurrent...

  13. Report to Congress on the Potential Environmental Effects of Marine and Hydrokinetic Energy Technologies

    SciTech Connect (OSTI)

    Cada, Glenn

    2009-12-01

    This report focuses on potential impacts of marine and hydrokinetic technologies to aquatic environments (i.e. rivers, estuaries, and oceans), fish and fish habitats, ecological relationships, and other marine and freshwater aquatic resources. The report does not address impacts to terrestrial ecosystems and organisms that are common to other electricity-generating technologies (e.g., construction and maintenance of transmission lines) or possible effects on the human environment, including: human use conflicts, aesthetics, viewsheds, noise in the terrestrial environment, light, recreation, transportation, navigation, cultural resources, socioeconomic impacts.

  14. MHK Technologies/In stream River Hydrokinetics | Open Energy...

    Open Energy Info (EERE)

    homepage Technology Profile Primary Organization ABS Alaskan Inc Technology Resource Click here Current Technology Readiness Level Click here TRL 7 8 Open Water System Testing...

  15. MHK Technologies/Hydrokinetic Power Barge | Open Energy Information

    Open Energy Info (EERE)

    design and assembly mounted on a horizontal shaft on a twin hull pontoon or barge CAT or SWATH combines reaction and impulse technologies which can efficiently harvest...

  16. MHK Technologies/Tidal Barrage | Open Energy Information

    Open Energy Info (EERE)

    < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Barrage.jpg Technology Profile Technology Type Click here Cross Flow Turbine...

  17. MHK Technologies/KESC Tidal Generator | Open Energy Information

    Open Energy Info (EERE)

    Technology Resource Click here CurrentTidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery Concept Definition Early...

  18. In-stream hydrokinetic resource assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power Effects on the Physical Environment ...

  19. Abrasion Testing of Critical Components of Hydrokinetic Devices

    SciTech Connect (OSTI)

    Worthington, Monty; Ali, Muhammad; Ravens, Tom

    2013-12-06

    The objective of the Abrasion Testing of Critical Components of Hydrokinetic Devices (Project) was to test critical components of hydrokinetic devices in waters with high levels of suspended sediment – information that is widely applicable to the hydrokinetic industry. Tidal and river sites in Alaska typically have high suspended sediment concentrations. High suspended sediment also occurs in major rivers and estuaries throughout the world and throughout high latitude locations where glacial inputs introduce silt into water bodies. In assessing the vulnerability of technology components to sediment induced abrasion, one of the greatest concerns is the impact that the sediment may have on device components such as bearings and seals, failures of which could lead to both efficiency loss and catastrophic system failures.

  20. Marine and Hydrokinetic Technology Instrumentation, Measurement, and Computer Modeling Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    The workshop brought together over 60 experts in marine energy technologies to disseminate technical information to the marine energy community, and to collect information to help identify ways in which the development of a commercially viable marine energy industry can be accelerated. The workshop was comprised of plenary sessions that reviewed the state of the marine energy industry.

  1. Assessment and Mapping of the Riverine Hydrokinetic Resource in the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Continental United States | Department of Energy Assessment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States Assessment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States Report that describes the methodology and results of the most rigorous assessment to date of the riverine hydrokinetic energy resource in the contiguous 48 states and Alaska, excluding tidal waters. Assessment and Mapping of the Riverine Hydrokinetic Resource

  2. MHK Technologies/TidalStar | Open Energy Information

    Open Energy Info (EERE)

    search << Return to the MHK database homepage TidalStar.jpg Technology Profile Primary Organization Bourne Energy Technology Type Click here Axial Flow Turbine...

  3. MHK Technologies/Tidal Turbine | Open Energy Information

    Open Energy Info (EERE)

    Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Turbine.jpg Technology Profile Primary Organization Aquascientific Project(s)...

  4. MHK Technologies/Tidal Stream Turbine | Open Energy Information

    Open Energy Info (EERE)

    Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Stream Turbine.jpg Technology Profile Primary Organization StatoilHydro co owned...

  5. Marine and Hydrokinetic Resource Assessment and Characterization |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy & Hydrokinetic » Marine and Hydrokinetic Resource Assessment and Characterization Marine and Hydrokinetic Resource Assessment and Characterization With more than 50% of the population living within 50 miles of coastlines, there is vast potential to provide clean, renewable electricity to communities and cities across the United States using marine and hydrokinetic (MHK) technologies. In order to understand the full potential for future electricity production that

  6. 2014 Water Power Program Peer Review: Marine and Hydrokinetic Technologies, Compiled Presentations (Presentation)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01

    This document represents a collection of all presentations given during the EERE Wind and Water Power Program's 2014 Marine and Hydrokinetic Peer Review. The purpose of the meeting was to evaluate DOE-funded hydropower and marine and hydrokinetic R&D projects for their contribution to the mission and goals of the Water Power Program and to assess progress made against stated objectives.

  7. Marine and Hydrokinetic Energy Research & Development | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy and Hydrokinetic Energy Research & Development Marine and Hydrokinetic Energy Research & Development Marine and Hydrokinetic Energy Research & Development The Water Power Program's marine and hydrokinetic research and development (R&D) efforts focus on advancing technologies that capture energy from the nation's oceans and rivers. Unlike hydropower, marine and hydrokinetics represent an emerging industry with hundreds of potentially viable technologies. The program is

  8. Submersible Generator for Marine Hydrokinetics

    SciTech Connect (OSTI)

    Cinq-Mars, Robert S; Burke, Timothy; Irish, James; Gustafson, Brian; Kirtley, James; Alawa, Aiman

    2011-09-01

    A submersible generator was designed as a distinct and critical subassembly of marine hydrokinetics systems, specifically tidal and stream energy conversion. The generator is designed to work with both vertical and horizontal axis turbines. The final product is a high-pole-count, radial-flux, permanent magnet, rim mounted generator, initially rated at twenty kilowatts in a two-meter-per-second flow, and designed to leverage established and simple manufacturing processes. The generator was designed to work with a 3 meter by 7 meter Gorlov Helical Turbine or a marine hydrokinetic version of the FloDesign wind turbine. The team consisted of experienced motor/generator design engineers with cooperation from major US component suppliers (magnetics, coil winding and electrical steel laminations). Support for this effort was provided by Lucid Energy Technologies and FloDesign, Inc. The following tasks were completed: Identified the conditions and requirements for MHK generators. Defined a methodology for sizing and rating MHK systems. Selected an MHK generator topology and form factor. Completed electromechanical design of submersible generator capable of coupling to multiple turbine styles. Investigated MHK generator manufacturing requirements. Reviewed cost implications and financial viability. Completed final reporting and deliverables

  9. MHK Technologies/Tidal Stream | Open Energy Information

    Open Energy Info (EERE)

    Click here TRL 1-3: Discovery Concept Definition Early Stage Development & Design & Engineering Technology Description The TidalStream SST (Semi-Submersible Turbine) is...

  10. Energy 101: Marine and Hydrokinetic Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marine and Hydrokinetic Energy Energy 101: Marine and Hydrokinetic Energy Addthis Description See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings and cities. Topic Water Text Version Below is the text version for the Energy 101: Marine & Hydrokinetic Energy video. The words "Energy 101: Marine & Hydrokinetic Energy" appear onscreen. Montage of renewable energy

  11. Tethys: The Marine and Hydrokinetic Technology Environmental Impacts Knowledge Management System -- Requirements Specification -- Version 1.0

    SciTech Connect (OSTI)

    Butner, R. Scott; Snowden-Swan, Lesley J.; Ellis, Peter C.

    2010-11-09

    The marine and hydrokinetic (MHK) environmental impacts knowledge management system (KMS), dubbed Tethys after the mythical Greek goddess of the seas, is being developed for the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy Wind and Hydropower Technologies Program (WHTP) by Pacific Northwest National Laboratory (PNNL). This requirements specification establishes the essential capabilities required of Tethys and clarifies for WHTP and the Tethys development team the results that must be achieved by the system.

  12. Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments

    SciTech Connect (OSTI)

    Čada, Glenn F.

    2007-04-01

    A new generation of hydropower technologies, the kinetic hydro and wave energy conversion devices, offers the possibility of generating electricity from the movements of water, without the need for dams and diversions. The Energy Policy Act of 2005 encouraged the development of these sources of renewable energy in the United States, and there is growing interest in deploying them globally. The technologies that would extract electricity from free-flowing streams, estuaries, and oceans have not been widely tested. Consequently, the U.S. Department of Energy convened a workshop to (1) identify the varieties of hydrokinetic energy and wave energy conversion devices and their stages of development, (2) identify where these technologies can best operate, (3) identify the potential environmental issues associated with these technologies and possible mitigation measures, and (4) develop a list of research needs and/or practical solutions to address unresolved environmental issues. The article reviews the results of that workshop, focusing on potential effects on freshwater, estuarine, and marine ecosystems, and we describe recent national and international developments.

  13. Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop

    SciTech Connect (OSTI)

    Musial, W.; Lawson, M.; Rooney, S.

    2013-02-01

    The Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop was hosted by the National Renewable Energy Laboratory (NREL) in Broomfield, Colorado, July 9–10, 2012. The workshop brought together over 60 experts in marine energy technologies to disseminate technical information to the marine energy community, and to collect information to help identify ways in which the development of a commercially viable marine energy industry can be accelerated. The workshop was comprised of plenary sessions that reviewed the state of the marine energy industry and technical sessions that covered specific topics of relevance. Each session consisted of presentations, followed by facilitated discussions. During the facilitated discussions, the session chairs posed several prepared questions to the presenters and audience to encourage communication and the exchange of ideas between technical experts. Following the workshop, attendees were asked to provide written feedback on their takeaways from the workshop and their best ideas on how to accelerate the pace of marine energy technology development. The first four sections of this document give a general overview of the workshop format, provide presentation abstracts, supply discussion session notes, and list responses to the post-workshop questions. The final section presents key findings and conclusions from the workshop that suggest what the most pressing MHK technology needs are and how the U.S. Department of Energy (DOE) and national laboratory resources can be utilized to assist the marine energy industry in the most effective manner.

  14. Rochelle Blaustein Joins Office of Technology Transitions as Deputy

    Office of Environmental Management (EM)

    of Energy River Turbine Provides Clean Energy to Remote Alaskan Village River Turbine Provides Clean Energy to Remote Alaskan Village August 18, 2015 - 10:36am Addthis River Turbine Provides Clean Energy to Remote Alaskan Village Alison LaBonte Marine and Hydrokinetic Technology Manager To date, Ocean Renewable Power Company (ORPC) is the only company to have built, operated and delivered power to a utility grid from a hydrokinetic tidal project, and to a local microgrid from a hydrokinetic

  15. Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop

    SciTech Connect (OSTI)

    Musial, W.; Lawson, M.; Rooney, S.

    2013-02-01

    The Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop was hosted by the National Renewable Energy Laboratory (NREL) in Broomfield, Colorado, July 9-10, 2012. The workshop brought together over 60 experts in marine energy technologies to disseminate technical information to the marine energy community and collect information to help identify ways in which the development of a commercially viable marine energy industry can be accelerated. The workshop was comprised of plenary sessions that reviewed the state of the marine energy industry and technical sessions that covered specific topics of relevance. Each session consisted of presentations, followed by facilitated discussions. During the facilitated discussions, the session chairs posed several prepared questions to the presenters and audience to encourage communication and the exchange of ideas between technical experts. Following the workshop, attendees were asked to provide written feedback on their takeaways and their best ideas on how to accelerate the pace of marine energy technology development. The first four sections of this document give a general overview of the workshop format, provide presentation abstracts and discussion session notes, and list responses to the post-workshop questions. The final section presents key findings and conclusions from the workshop that suggest how the U.S. Department of Energy and national laboratory resources can be utilized to most effectively assist the marine energy industry.

  16. Effects of Tidal Turbine Noise on Fish Hearing and Tissues - Draft Final Report - Environmental Effects of Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    Halvorsen, Michele B.; Carlson, Thomas J.; Copping, Andrea E.

    2011-09-30

    Snohomish Public Utility District No.1 plans to deploy two 6 meter OpenHydro tidal turbines in Admiralty Inlet in Puget Sound, under a FERC pilot permitting process. Regulators and stakeholders have raised questions about the potential effect of noise from the turbines on marine life. Noise in the aquatic environment is known to be a stressor to many types of aquatic life, including marine mammals, fish and birds. Marine mammals and birds are exceptionally difficult to work with for technical and regulatory reasons. Fish have been used as surrogates for other aquatic organisms as they have similar auditory structures. This project was funded under the FY09 Funding Opportunity Announcement (FOA) to Snohomish PUD, in partnership with the University of Washington - Northwest National Marine Renewable Energy Center, the Sea Mammal Research Unit, and Pacific Northwest National Laboratory. The results of this study will inform the larger research project outcomes. Proposed tidal turbine deployments in coastal waters are likely to propagate noise into nearby waters, potentially causing stress to native organisms. For this set of experiments, juvenile Chinook salmon (Oncorhynchus tshawytscha) were used as the experimental model. Plans exist for prototype tidal turbines to be deployed into their habitat. Noise is known to affect fish in many ways, such as causing a threshold shift in auditory sensitivity or tissue damage. The characteristics of noise, its spectra and level, are important factors that influence the potential for the noise to injure fish. For example, the frequency range of the tidal turbine noise includes the audiogram (frequency range of hearing) of most fish. This study was performed during FY 2011 to determine if noise generated by a 6-m diameter OpenHydro turbine might affect juvenile Chinook salmon hearing or cause barotrauma. Naturally spawning stocks of Chinook salmon that utilize Puget Sound are listed as threatened (http://www.nwr.noaa

  17. Severn Tidal Power Group STpg | Open Energy Information

    Open Energy Info (EERE)

    Severn Tidal Power Group STpg Jump to: navigation, search Name: Severn Tidal Power Group STpg Region: United Kingdom Sector: Marine and Hydrokinetic Website: http: This company is...

  18. Marine and Hydrokinetic Energy Projects, Fiscal Years 2008-2014

    SciTech Connect (OSTI)

    2014-03-24

    This report covers the Wind and Water Power Technologies Office's Marine and Hydrokinetic Energy Projects from 2008 to 2014.

  19. Energy 101: Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    2013-04-29

    See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings and cities.

  20. Energy 101: Marine and Hydrokinetic Energy

    ScienceCinema (OSTI)

    None

    2014-06-26

    See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings and cities.

  1. Assessment and Mapping of the Riverine Hydrokinetic Resource in the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Continental United States | Department of Energy and Mapping of the Riverine Hydrokinetic Resource in the Continental United States Assessment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States Report that describes the methodology and results of the most rigorous assessment to date of the riverine hydrokinetic energy resource in the contiguous 48 states and Alaska, excluding tidal waters. More Documents & Publications Assessment and Mapping of the

  2. In-stream hydrokinetic power: Review and appraisal

    SciTech Connect (OSTI)

    Van Zwieten, J.; McAnally, William; Ahmad, Jameel; Davis, Trey; Martin, James; Bevelhimer, Mark S.; Cribbs, Allison; Lippert, Renee; Hudon, Thomas; Trudeau, Matthew

    2015-09-01

    The objective of this paper is to provide a review of in-stream hydrokinetic power, which is defined as electric power generated by devices capturing the energy of naturally flowing water-stream, tidal, or open ocean flows-without impounding the water. North America has significant in-stream energy resources, and hydrokinetic electric power technologies to harness those resources have the potential to make a significant contribution to U.S. electricity needs by adding as much as 120 TWh/year from rivers alone to the present hydroelectric power generation capacity. Additionally, tidal and ocean current resources in the U.S. respectively contain 438 TWh/year and 163 TWh/year of extractable power. Among their attractive features, in-stream hydrokinetic operations do not contribute to greenhouse gas emissions or other air pollution and have less visual impact than wind turbines. Since these systems do no utilize dams the way traditional hydropower systems typically do, their impact on the environment will differ, and a small but growing number of studies support conclusions regarding those impacts. Furthermore, potential environmental impacts include altered water quality, altered sediment deposition, altered habitats, direct impact on biota, and navigability of waterways.

  3. In-stream hydrokinetic power: Review and appraisal

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Van Zwieten, J.; McAnally, William; Ahmad, Jameel; Davis, Trey; Martin, James; Bevelhimer, Mark S.; Cribbs, Allison; Lippert, Renee; Hudon, Thomas; Trudeau, Matthew

    2015-09-01

    The objective of this paper is to provide a review of in-stream hydrokinetic power, which is defined as electric power generated by devices capturing the energy of naturally flowing water-stream, tidal, or open ocean flows-without impounding the water. North America has significant in-stream energy resources, and hydrokinetic electric power technologies to harness those resources have the potential to make a significant contribution to U.S. electricity needs by adding as much as 120 TWh/year from rivers alone to the present hydroelectric power generation capacity. Additionally, tidal and ocean current resources in the U.S. respectively contain 438 TWh/year and 163 TWh/year ofmore » extractable power. Among their attractive features, in-stream hydrokinetic operations do not contribute to greenhouse gas emissions or other air pollution and have less visual impact than wind turbines. Since these systems do no utilize dams the way traditional hydropower systems typically do, their impact on the environment will differ, and a small but growing number of studies support conclusions regarding those impacts. Furthermore, potential environmental impacts include altered water quality, altered sediment deposition, altered habitats, direct impact on biota, and navigability of waterways.« less

  4. Request for Information for Marine and Hydrokinetic Environmental Monitoring Technologies and Field Testing Opportunities

    Broader source: Energy.gov [DOE]

    The Energy Department’s Water Power Program is seeking feedback from the marine and hydrokinetic (MHK) industry, academia, research laboratories, government agencies, and other stakeholders regarding the program’s activities and priorities in MHK environmental monitoring and field testing opportunities.

  5. Tidal Sails AS | Open Energy Information

    Open Energy Info (EERE)

    Sails AS Jump to: navigation, search Name: Tidal Sails AS Address: Standgaten 130 Place: Haugesund Zip: 5531 Region: Norway Sector: Marine and Hydrokinetic Phone Number: +32 474 98...

  6. Marine and Hydrokinetic Energy Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marine and Hydrokinetic Energy Projects Marine and Hydrokinetic Energy Projects This report covers the Wind and Water Power Technologies Office's marine and hydrokinetic projects from fiscal years 2008 to 2015. 2008-2015 Marine and Hydrokinetic Power Projects (1.87 MB) More Documents & Publications NREL - FY09 Lab Call: Supporting Research and Testing for MHK Presentation from the 2011 Water Program Peer Review Water Power Program: 2011 Peer Review Report Before the House Science and

  7. Marine and Hydrokinetic Energy Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marine and Hydrokinetic Energy Projects Marine and Hydrokinetic Energy Projects This report covers the Wind and Water Power Technologies Office's marine and hydrokinetic projects from fiscal years 2008 to 2015. 2008-2015 Marine and Hydrokinetic Power Projects (1.87 MB) More Documents & Publications NREL - FY09 Lab Call: Supporting Research and Testing for MHK Presentation from the 2011 Water Program Peer Review Water Power Program: 2011 Peer Review Report Before the House Science and

  8. Assessment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States

    SciTech Connect (OSTI)

    Jacobson, P.

    2012-12-12

    This report describes the methodology and results of the most rigorous assessment to date of the riverine hydrokinetic energy resource in the contiguous 48 states and Alaska, excluding tidal waters. The assessment provides estimates of the gross, naturally available resource, termed the theoretical resource, as well as estimates, termed the technically recoverable resource, that account for selected technological factors affecting capture and conversion of the theoretical resource. The technically recoverable resource does not account for all technical constraints on energy capture and conversion.

  9. Hydrokinetic Laboratory | Open Energy Information

    Open Energy Info (EERE)

    Hydrokinetic Laboratory Jump to: navigation, search Name: Hydrokinetic Laboratory Region: United States Sector: Marine and Hydrokinetic Website: www.hklabllc.com This company is...

  10. Marine and Hydrokinetic Energy Research & Development | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development Marine and Hydrokinetic Energy Research & Development Marine and Hydrokinetic Energy Research & Development Marine and Hydrokinetic Energy Research &...

  11. Impacts of electromagnetic fields associated with marine and hydrokinetic surrogate technologies on fish movements and behaviors.

    SciTech Connect (OSTI)

    Claisse, Jeremy T.; Pondella, Daniel J.; Williams, Chelsea M.; Zahn, Laurel A.; Williams, Jonathan P.

    2015-09-30

    Marine and hydrokinetic energy (MHK) and offshore wind devices are being developed and deployed in U.S. and international waters. Electric current flowing through subsea transmission cables associated with these devices will generate electromagnetic fields (EMF), which may interact with, and potentially impact, marine fishes. Some marine fishes can detect electric and/or magnetic fields and use them to navigate, orientate, and sense prey, mates and predators. Over the past five years there have been multiple comprehensive reviews and studies evaluating the potential vulnerability of marine fishes to EMF produced by MHK devices. Most documented effects involve sub-lethal behavioral responses of individual fish when in close proximity to EMF (e.g., fish being repelled by or attracted to fields). These reviews reach conclusions that the current state of research on this topic is still in its infancy and evaluations of potential impacts are associated with great uncertainty. A variety of MHK technologies are likely to be considered for deployment offshore of the Hawaiian Islands, and there is a need to be able to better predict and assess potential associated environmental impacts. The goal of this study was to provide a complementary piece to these previous reviews (e.g., Normandeau et al. 2011) by focusing on marine fish species in the Hawaii region. We compiled the relevant available information, then prioritized fish species as candidates for various paths of future research. To address this, we first developed a list of Hawaii Region Focal Species, which included fishes that are more likely to be sensitive to EMF. We then compiled species-specific information available in the literature on their sensitivity to EMF, as well as life history, movement and habitat use information that could inform an analysis of their likelihood of encountering EMF from subsea cables associated with MHK devices. Studies have only documented EMF sensitivity in 11 of the marine fish

  12. Department of Energy Awards $37 Million for Marine and Hydrokinetic...

    Energy Savers [EERE]

    ... Department of Energy Awards 37 Million for Marine and Hydrokinetic Energy Technology Development River Turbine Provides Clean Energy to Remote Alaskan Village New Wave Power ...

  13. Tidal Stream | Open Energy Information

    Open Energy Info (EERE)

    Stream Jump to: navigation, search Name: Tidal Stream Address: 76 Dukes Ave Place: London Zip: W4 2 AK Region: United Kingdom Sector: Marine and Hydrokinetic Phone Number: 01926...

  14. Notice of Intent to Fund Marine and Hydrokinetic Instrumentation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Notice of Intent to Fund Marine and Hydrokinetic Instrumentation Notice of Intent to Fund Marine and Hydrokinetic Instrumentation January 6, 2014 - 11:15am Addthis The Water Power Program recently issued a Notice of Intent for a funding opportunity expected to be posted early in 2014, pending congressional appropriations. The Notice of Intent, titled "Environmental Stewardship for Renewable Energy Technologies: Marine and Hydrokinetic (MHK) Environmental and

  15. Energy 101: Marine & Hydrokinetic Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marine & Hydrokinetic Energy Energy 101: Marine & Hydrokinetic Energy August 13, 2013 - 10:54am Addthis See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings, and cities. The oceans represent a largely untapped renewable energy resource with potential to provide clean electricity to coastal communities and cities across the United States. In this edition of Energy 101, learn

  16. Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies

    SciTech Connect (OSTI)

    Jacobson, Paul T.; Amaral, Stephen V.; Castro-Santos, Theodore; Giza, Dan; Haro, Alexander J.; Hecker, George; McMahon, Brian; Perkins, Norman; Pioppi, Nick

    2013-06-01

    A primary issue of concern of regulatory and resource agencies is how the operation of hydrokinetic turbines will affect local and migratory fish populations. This collection of three reports describes desktop and laboratory flume studies that provide information to support assessment of the potential for injury and mortality of fish that encounter hydrokinetic turbines of various designs installed in tidal and river environments.

  17. Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies

    Broader source: Energy.gov [DOE]

    This collection of three reports describes desktop and laboratory flume studies that provide information to support assessment of the potential for injury and mortality of fish that encounter hydrokinetic turbines of various designs installed in tidal and river environments.

  18. DOE’s Deep Capabilities and Wide Possibilities Highlighted at Executive Summit on Marine and Hydrokinetic Research and Development

    Broader source: Energy.gov [DOE]

    When it comes to marine and hydrokinetic technology development, the Department of Energy (DOE) offers deep capabilities and wide possibilities.

  19. MHK Technologies/Tidal Sails | Open Energy Information

    Open Energy Info (EERE)

    to wires strung across the tidal stream at an angle The sails are driven back and forth by the tidal flow between two stations at one of which the generator is installed...

  20. Proceedings of the Hydrokinetic and Wave Energy Technologies Technical and Environmental Issues Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    This workshop focused on information about the technologies and identified potential environmental issues associated with deploying them, and outlined a list of research needs and possible approaches to addressing those issues.

  1. DOE Announces Webinars on Residential Energy Efficiency, Marine and Hydrokinetic Technology Development Risk Management, and More

    Office of Energy Efficiency and Renewable Energy (EERE)

    EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies, to training for the clean energy workforce. Webinars are...

  2. Department of Energy Awards $37 Million for Marine and Hydrokinetic Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Development | Department of Energy $37 Million for Marine and Hydrokinetic Energy Technology Development Department of Energy Awards $37 Million for Marine and Hydrokinetic Energy Technology Development September 9, 2010 - 12:00am Addthis Washington, DC - U.S. Energy Secretary Steven Chu today announced selections for more than $37 million in funding to accelerate the technological and commercial readiness of emerging marine and hydrokinetic (MHK) technologies, which seek to

  3. Investigations on Marine Hydrokinetic Turbine Foil Structural...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Marine Hydrokinetic Turbine Foil Structural Health Monitoring Presented at GMREC METS - ... Investigations on Marine Hydrokinetic Turbine Foil Structural Health Monitoring ...

  4. MHK Technologies/Underwater Electric Kite Turbines | Open Energy...

    Open Energy Info (EERE)

    Chitokoloki Project *MHK ProjectsCoal Creek Project *MHK ProjectsHalf Moon Cove Tidal Project *MHK ProjectsIndian River Tidal Hydrokinetic Energy Project *MHK Projects...

  5. Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Glenn Cada FeATURe: James Ahlgrimm Michael Bahleda BIOeNGINeeRING Tom Bigford Stefanie Damiani Stavrakas The views expressed in this article do not necessarily represent those of the authors' organizations. Douglas Hall Mention of a technology, company, or website link Russell Moursund does not imply endorsement. Michael Sale Cada is a research staff member in the Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee. He can be contacted at cadagf@ornl.gov.

  6. Technological cost-reduction pathways for attenuator wave energy converters in the marine hydrokinetic environment.

    SciTech Connect (OSTI)

    Bull, Diana L; Ochs, Margaret Ellen

    2013-09-01

    This report considers and prioritizes the primary potential technical costreduction pathways for offshore wave activated body attenuators designed for ocean resources. This report focuses on technical research and development costreduction pathways related to the device technology rather than environmental monitoring or permitting opportunities. Three sources of information were used to understand current cost drivers and develop a prioritized list of potential costreduction pathways: a literature review of technical work related to attenuators, a reference device compiled from literature sources, and a webinar with each of three industry device developers. Data from these information sources were aggregated and prioritized with respect to the potential impact on the lifetime levelized cost of energy, the potential for progress, the potential for success, and the confidence in success. Results indicate the five most promising costreduction pathways include advanced controls, an optimized structural design, improved power conversion, planned maintenance scheduling, and an optimized device profile.

  7. Tidal Energy Research

    SciTech Connect (OSTI)

    Stelzenmuller, Nickolas; Aliseda, Alberto; Palodichuk, Michael; Polagye, Brian; Thomson, James; Chime, Arshiya; Malte, Philip

    2014-03-31

    This technical report contains results on the following topics: 1) Testing and analysis of sub-scale hydro-kinetic turbines in a flume, including the design and fabrication of the instrumented turbines. 2) Field measurements and analysis of the tidal energy resource and at a site in northern Puget Sound, that is being examined for turbine installation. 3) Conceptual design and performance analysis of hydro-kinetic turbines operating at high blockage ratio, for use for power generation and flow control in open channel flows.

  8. Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and In-Stream Hydrokinetic Power | Department of Energy Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power 16_life_revision_previsic_update.ppt (2.64 MB) More Documents & Publications 2014 Water Power Program Peer Review

  9. Gulfstream Technologies | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Gulfstream Technologies Region: United States Sector: Marine and Hydrokinetic Website: http: This company is listed in the Marine and Hydrokinetic...

  10. Marine & Hydrokinetic Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PROGRAM C L E A N C I T I E S WIND AND WATER POWER PROGRAM * April 2011 * Page 2 C L E A N C I T I E S DOEGO-102011-3299 * April 2011

  11. Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, ...

  12. DOE Marine and Hydrokinetic Program Strategy Stakeholder Meeting

    Broader source: Energy.gov [DOE]

    The Wind and Water Power Technologies Office will hold a meeting to receive input for DOE’s Outyear Marine and Hydrokinetic Program Strategy based on this Request for Information (RFI) on Wednesday...

  13. MHK Technologies/Sabella subsea tidal turbine | Open Energy Informatio...

    Open Energy Info (EERE)

    surface. These turbines are stabilised by gravity andor are anchored according to the nature of the seafloor. They are pre-orientated in the direction of the tidal currents, and...

  14. MHK Technologies/MORILD 2 Floating Tidal Power System | Open...

    Open Energy Info (EERE)

    based on the same principle as horizontal axis wind turbines. The plant has 4 two-blade underwater turbines and can utilize the energy potential in tidal and ocean currents....

  15. Status of Wave and Tidal Power Technologies for the United States

    SciTech Connect (OSTI)

    Musial, W.

    2008-08-01

    This paper presents the status of marine applications for renewable energy as of 2008 from a U.S. perspective. Technologies examined include wave, tidal, and ocean current energy extraction devices.

  16. Experimental Design of Hydrokinetic Resource Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    419 Field Measurements at River and Tidal Current Sites for Hydrokinetic Energy Development: Best Practices Manual September 2011 Prepared by Vincent S. Neary, Ph.D., P.E. 1 Budi Gunawan, Ph.D. 1 Marshall C. Richmond, Ph.D. P.E. 2 Vibhav Durgesh, Ph.D. 2 Brian Polagye, Ph.D. 3 Jim Thomson, Ph.D. 3 Marian Muste, Ph.D. 4 Arnie Fontaine, Ph.D. 5 1 Oak Ridge National Laboratory 2 Pacific Northwest National Laboratory 3 Northwest National Marine Renewable Energy Center, University of Washington 4

  17. Muroran Institute of Technology | Open Energy Information

    Open Energy Info (EERE)

    Marine and Hydrokinetic Phone Number: 81 143 46 5200 Website: www.muroran-it.ac.jpenglish This company is listed in the Marine and Hydrokinetic Technology Database. This...

  18. Tidal Electric | Open Energy Information

    Open Energy Info (EERE)

    Tidal Electric Place: London, Greater London, United Kingdom Zip: SW19 8UY Product: Developed a technology named 'tidal lagoons' to build tidal electric projects. Coordinates:...

  19. Marine and Hydrokinetic | Open Energy Information

    Open Energy Info (EERE)

    Hydrokinetic Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleMarineandHydrokinetic&oldid619739" Feedback Contact needs updating Image...

  20. Siting Methodologies for Hydrokinetics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Siting Methodologies for Hydrokinetics Report that provides an overview of the federal and state regulatory framework for hydrokinetic projects. PDF icon sitinghandbook2009.pdf ...

  1. MHK technology developments include current

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology developments include current energy conversion (CEC) devices, for example, hydrokinetic turbines that extract power from water currents (riverine, tidal, and ocean) and wave energy conversion (WEC) devices that extract power from wave motion. Sandia's MHK research leverages decades of experience in engineering, design, and analysis of wind power technologies, and its vast research complex, including high- performance computing (HPC), advanced materials and coatings, nondestructive

  2. Ecomerit Technologies LLC see Dehlsen Associates LLC | Open Energy...

    Open Energy Info (EERE)

    LLC Region: United States Sector: Marine and Hydrokinetic Phone Number: 805.684.2495 X 450 Website: http: This company is listed in the Marine and Hydrokinetic Technology...

  3. Dehlsen Associates see Ecomerit Technologies LLC | Open Energy...

    Open Energy Info (EERE)

    LLC Region: United States Sector: Marine and Hydrokinetic Phone Number: 805.684.2495 X 450 Website: http: This company is listed in the Marine and Hydrokinetic Technology...

  4. Enviro effects of hydrokinetic turbines on fish | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    effects of hydrokinetic turbines on fish Enviro effects of hydrokinetic turbines on fish Enviro effects of hydrokinetic turbines on fish 47fish-hkturbineinteractionseprijacobs...

  5. Siting Methodologies for Hydrokinetics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Siting Methodologies for Hydrokinetics Siting Methodologies for Hydrokinetics Report that provides an overview of the federal and state regulatory framework for hydrokinetic projects. siting_handbook_2009.pdf (2.43 MB) More Documents & Publications Siting Methodologies for Hydrokinetics EIS-0488: Final Environmental Impact Statement EIS-0493: Draft Environmental Impact Statement

  6. Performance Evaluation of HYCOM-GOM for Hydrokinetic Resource Assessment in the Florida Strait

    SciTech Connect (OSTI)

    Neary, Vincent S; Gunawan, Budi; Ryou, Albert S

    2012-06-01

    The U.S. Department of Energy (DoE) is assessing and mapping the potential off-shore ocean current hydrokinetic energy resources along the U.S. coastline, excluding tidal currents, to facilitate market penetration of water power technologies. This resource assessment includes information on the temporal and three-dimensional spatial distribution of the daily averaged power density, and the overall theoretical hydrokinetic energy production, based on modeled historical simulations spanning a 7-year period of record using HYCOM-GOM, an ocean current observation assimilation model that generates a spatially distributed three-dimensional representation of daily averaged horizontal current magnitude and direction time series from which power density time series and their statistics can be derived. This study ascertains the deviation of HYCOM-GOM outputs, including transport (flow) and power density, from outputs based on three independent observation sources to evaluate HYCOM-GOM performance. The three independent data sources include NOAA s submarine cable data of transport, ADCP data at a high power density location, and HF radar data in the high power density region of the Florida Strait. Comparisons with these three independent observation sets indicate discrepancies with HYCOM model outputs, but overall indicate that the HYCOM-GOM model can provide an adequate assessment of the ocean current hydrokinetic resource in high power density regions like the Florida Strait. Additional independent observational data, in particular stationary ADCP measurements, would be useful for expanding this model performance evaluation study. ADCP measurements are rare in ocean environments not influenced by tides, and limited to one location in the Florida Strait. HF radar data, although providing great spatial coverage, is limited to surface currents only.

  7. Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies

    SciTech Connect (OSTI)

    Jacobson, Paul T.; Amaral, Stephen V.; Castro-Santos, Theodore; Giza, Dan; Haro, Alexander J.; Hecker, George; McMahon, Brian; Perkins, Norman; Pioppi, Nick

    2012-12-31

    This collection of three reports describes desktop and laboratory flume studies that provide information to support assessment of the potential for injury and mortality of fish that encounter hydrokinetic turbines of various designs installed in tidal and river environments. Behavioral responses to turbine exposure also are investigated to support assessment of the potential for disruptions to upstream and downstream movements of fish. The studies: (1) conducted an assessment of potential injury mechanisms using available data from studies with conventional hydro turbines; (2) developed theoretical models for predicting blade strike probabilities and mortality rates; and (3) performed flume testing with three turbine designs and several fish species and size groups in two laboratory flumes to estimate survival rates and document fish behavior. The project yielded three reports which this document comprises. The three constituent documents are addressed individually below Fish Passage Through Turbines: Application of Conventional Hydropower Data to Hydrokinetic Technologies Fish passing through the blade sweep of a hydrokinetic turbine experience a much less harsh physical environment than do fish entrained through conventional hydro turbines. The design and operation of conventional turbines results in high flow velocities, abrupt changes in flow direction, relatively high runner rotational and blade speeds, rapid and significant changes in pressure, and the need for various structures throughout the turbine passageway that can be impacted by fish. These conditions generally do not occur or are not significant factors for hydrokinetic turbines. Furthermore, compared to conventional hydro turbines, hydrokinetic turbines typically produce relatively minor changes in shear, turbulence, and pressure levels from ambient conditions in the surrounding environment. Injuries and mortality from mechanical injuries will be less as well, mainly due to low rotational speeds and

  8. Hydropower, Wave and Tidal Technologies Available for Licensing - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydropower | Department of Energy Hydropower Vision: New Report Highlights Future Pathways for U.S. Hydropower Hydropower Vision: New Report Highlights Future Pathways for U.S. Hydropower July 26, 2016 - 3:00pm Addthis Hydropower Vision: New Report Highlights Future Pathways for U.S. Hydropower Jose Zayas Jose Zayas Wind Energy Technologies Office Director Hydropower has been around for more than a century, and is currently the nation's largest source of clean, domestic, renewable

  9. Economic Impact of Large-Scale Deployment of Offshore Marine and Hydrokinetic Technology in Oregon Coastal Counties

    SciTech Connect (OSTI)

    Jimenez, T.; Tegen, S.; Beiter, P.

    2015-03-01

    To begin understanding the potential economic impacts of large-scale WEC technology, the Bureau of Ocean Energy Management (BOEM) commissioned the National Renewable Energy Laboratory (NREL) to conduct an economic impact analysis of largescale WEC deployment for Oregon coastal counties. This report follows a previously published report by BOEM and NREL on the jobs and economic impacts of WEC technology for the entire state (Jimenez and Tegen 2015). As in Jimenez and Tegen (2015), this analysis examined two deployment scenarios in the 2026-2045 timeframe: the first scenario assumed 13,000 megawatts (MW) of WEC technology deployed during the analysis period, and the second assumed 18,000 MW of WEC technology deployed by 2045. Both scenarios require major technology and cost improvements in the WEC devices. The study is on very large-scale deployment so readers can examine and discuss the potential of a successful and very large WEC industry. The 13,000-MW is used as the basis for the county analysis as it is the smaller of the two scenarios. Sensitivity studies examined the effects of a robust in-state WEC supply chain. The region of analysis is comprised of the seven coastal counties in Oregon—Clatsop, Coos, Curry, Douglas, Lane, Lincoln, and Tillamook—so estimates of jobs and other economic impacts are specific to this coastal county area.

  10. Marine Hydrokinetic Energy Regulators Workshop: Lessons from Wind

    SciTech Connect (OSTI)

    Baring-Gould, E. Ian

    2015-09-03

    Ian Baring-Gould presented these lessons learned from wind energy to an audience of marine hydrokinetic regulators. Lessons learned spanned the areas of technology advances, using collaborative approaches to involve key stakeholders; using baseline studies to measure and prioritize wildlife impacts, and look at avoidance and mitigation options early in the process.

  11. Effects of Tidal Turbine Noise on Fish Task 2.1.3.2: Effects on Aquatic Organisms: Acoustics/Noise - Fiscal Year 2011 - Progress Report - Environmental Effects of Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    Halvorsen, Michele B.; Carlson, Thomas J.; Copping, Andrea E.

    2011-09-30

    Naturally spawning stocks of Chinook salmon (Oncorhynchus tshawytscha) that utilize Puget Sound are listed as threatened (http://www.nwr.noaa.gov/ESA-Salmon-Listings/Salmon-Populations/ Chinook/CKPUG.cfm). Plans exist for prototype tidal turbines to be deployed into their habitat. Noise is known to affect fish in many ways, such as causing a threshold shift in auditory sensitivity or tissue damage. The characteristics of noise, its spectra and level, are important factors that influence the potential for the noise to injure fish. For example, the frequency range of the tidal turbine noise includes the audiogram (frequency range of hearing) of most fish. This study (Effects on Aquatic Organisms, Subtask 2.1.3.2: Acoustics) was performed during FY 2011 to determine if noise generated by a 6-m-diameter open-hydro turbine might affect juvenile Chinook salmon hearing or cause barotrauma. After they were exposed to simulated tidal turbine noise, the hearing of juvenile Chinook salmon was measured and necropsies performed to check for tissue damage. Experimental groups were (1) noise exposed, (2) control (the same handling as treatment fish but without exposure to tidal turbine noise), and (3) baseline (never handled). Preliminary results indicate that low levels of tissue damage may have occurred but that there were no effects of noise exposure on the auditory systems of the test fish.

  12. Evaluating Effects of Stressors from Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    Copping, Andrea E.; Blake, Kara M.; Hanna, Luke A.; Brandt, Charles A.; Ward, Jeffrey A.; Brandenberger, Jill M.; Gill, Gary A.; Carlson, Thomas J.; Elster, Jennifer L.; Jones, Mark E.; Watson, Bruce E.; Jepsen, Richard A.; Metzinger, Kurt

    2012-09-30

    Potential environmental effects of marine and hydrokinetic (MHK) energy development are not well understood, yet regulatory agencies are required to make decisions in spite of substantial uncertainty about environmental impacts and their long-term consequences. An understanding of risks associated with interactions between MHK installations and aquatic receptors, including animals, habitats, and ecosystems, can help define key uncertainties and focus regulatory actions and scientific studies on interactions of most concern. During FY 2012, Pacific Northwest National Laboratory (PNNL) continued to follow project developments on the two marine and hydrokinetic projects reviewed for Environmental Risk Evaluation System (ERES) screening analysis in FY 2011: a tidal project in the Gulf of Maine using Ocean Renewable Power Company TidGenTM turbines and a wave project planned for the coast of Oregon using Aquamarine Oyster surge devices. The ERES project in FY 2012 also examined two stressor–receptor interactions previously identified through the screening process as being of high importance: 1) the toxicity effects of antifouling coatings on MHK devices on aquatic resources and 2) the risk of a physical strike encounter between an adult killer whale and an OpenHydro turbine blade. The screening-level assessment of antifouling paints and coatings was conducted for two case studies: the Snohomish County Public Utility District No. 1 (SnoPUD) tidal turbine energy project in Admiralty Inlet, Puget Sound, Washington, and the Ocean Power Technologies (OPT) wave buoy project in Reedsport, Oregon. Results suggest minimal risk to aquatic biota from antifouling coatings used on MHK devices deployed in large estuaries or open ocean environments. For the strike assessment of a Southern Resident Killer Whale (SRKW) encountering an OpenHydro tidal turbine blade, PNNL teamed with colleagues from Sandia National Laboratories (SNL) to carry out an analysis of the mechanics and

  13. Technological cost%3CU%2B2010%3Ereduction pathways for axial%3CU%2B2010%3Eflow turbines in the marine hydrokinetic environment.

    SciTech Connect (OSTI)

    Laird, Daniel L.; Johnson, Erick L.; Ochs, Margaret Ellen; Boren, Blake

    2013-05-01

    This report considers and prioritizes potential technical costreduction pathways for axialflow turbines designed for tidal, river, and ocean current resources. This report focuses on technical research and development costreduction pathways related to the device technology rather than environmental monitoring or permitting opportunities. Three sources of information were utilized to understand current cost drivers and develop a list of potential costreduction pathways: a literature review of technical work related to axialflow turbines, the U.S. Department of Energy Reference Model effort, and informal webinars and other targeted interactions with industry developers. Data from these various information sources were aggregated and prioritized with respect to potential impact on the lifetime levelized cost of energy. The four most promising costreduction pathways include structural design optimization; improved deployment, maintenance, and recovery; system simplicity and reliability; and array optimization.

  14. EA-1965: Florida Atlantic University Southeast National Marine Renewable Energy Center’s Offshore Marine Hydrokinetic Technology Testing Project, Florida

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department of Energy (DOE), through its Wind and Water Power Technologies Office (WWPTO), is proposing to provide federal funding to Florida Atlantic University’s South-East National Marine Renewable Energy Center (FAU SNMREC) to support the at sea testing of FAU SNMREC’s experimental current generation turbine and the deployment and operation of their Small-Scale Ocean Current Turbine Test Berth, sited on the outer continental shelf (OCS) in waters off the coast of Ft Lauderdale, Florida. SNMREC would demonstrate the test berth site readiness by testing their pilot-scale experimental ocean current turbine unit at that location. The Bureau of Ocean Energy Management (BOEM) conducted an Environmental Assessment to analyze the impacts associated with leasing OCS lands to FAU SNMREC, per their jurisdictional responsibilities under the Outer Continental Shelf Lands Act. DOE was a cooperating agency in this process and based on the EA, DOE issued a Finding of No Significant Impact.

  15. Multnomah County Hydrokinetic Feasibility Study: Final Feasibility Study Report

    SciTech Connect (OSTI)

    Spain, Stephen

    2012-03-15

    HDR has completed a study of the technical, regulatory, and economic feasibility of installing hydrokinetic turbines under the Morrison, Broadway, and Sellwood bridges. The primary objective of installing hydrokinetic turbines is a demonstration of in-stream hydrokinetic technologies for public education and outreach. Due to the low gradient of the Lower Willamette and the effects of the tide, velocities in the area in consideration are simply not high enough to economically support a commercial installation. While the velocities in the river may at times provide enough energy for a commercial turbine to reach capacity, the frequency and duration of high flow events which provide suitable velocities is not sufficient to support a commercial hydrokinetic installation. We have observed that over an 11 year period, daily average velocities in the Lower Willamette exceeded a nominal cut-in speed of 0.75 m/s only 20% of the time, leaving net zero power production for the remaining 80% of days. The Sellwood Bridge site was estimated to have the best hydrokinetic resource, with an estimated average annual production of about 9,000 kWh. The estimated production could range from 2,500 kWh to 15,000 kWh. Based on these energy estimates, the amount of revenue generated through either a power purchase agreement (PPA) or recovered through net metering is not sufficient to repay the project costs within the life of the turbine. The hydrokinetic resource at the Morrison and Broadway Bridges is slightly smaller than at the Sellwood Bridge. While the Broadway and Morrison Bridges have existing infrastructure that could be utilized, the project is not expected to generate enough revenue to repay the investment. Despite low velocities and energy production, the sites themselves are favorable for installation of a demonstration or experimental project. With high public interest in renewable energy, the possibility exists to develop a hydrokinetic test site which could provide

  16. Marine & Hydrokinetic Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    This document described the U.S. Department of Energy's Water Power Program efforts to promote the development and deployment of advanced water power devices.

  17. MHK Technologies/HyPEG | Open Energy Information

    Open Energy Info (EERE)

    Profile Primary Organization Hydrokinetic Laboratory Technology Type Click here Axial Flow Turbine Technology Description Their Hydro kinetically Powered Electrical Generators...

  18. Sandia Energy - Biofouling Studies on Sandia's Marine Hydrokinetic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Marine Hydrokinetic Coatings Initiated at PNNL's Sequim Bay Sandia's Materials & Manufacturing Reliability Program has begun testing their novel marine hydrokinetic (MHK)...

  19. Executive Summit on Marine and Hydrokinetic Research and Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Executive Summit on Marine and Hydrokinetic Research and Development Agenda Executive Summit on Marine and Hydrokinetic Research and Development Agenda MHK-Summit-Agenda.jpg PDF ...

  20. University of Illinois uses Sandia Labs' reference hydrokinetic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Illinois uses Sandia Labs' reference hydrokinetic turbine to study potential bed erosion ... University of Illinois uses Sandia Labs' reference hydrokinetic turbine to study potential ...

  1. New Report States That Hydrokinetic Turbines Have Minimal Environmenta...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report States That Hydrokinetic Turbines Have Minimal Environmental Impacts on Fish New Report States That Hydrokinetic Turbines Have Minimal Environmental Impacts on Fish August ...

  2. Environmental Effects of Hydrokinetic Turbines on Fish: Desktop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies This ...

  3. River Hydrokinetic Resource Atlas | Open Energy Information

    Open Energy Info (EERE)

    dress":"","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Language: English River Hydrokinetic Resource Atlas Screenshot References: EPRI1 River Atlas2 The...

  4. Puget Sound Tidal Energy In-Water Testing and Development Project Final Technical Report

    SciTech Connect (OSTI)

    Craig W. Collar

    2012-11-16

    Tidal energy represents potential for the generation of renewable, emission free, environmentally benign, and cost effective energy from tidal flows. A successful tidal energy demonstration project in Puget Sound, Washington may enable significant commercial development resulting in important benefits for the northwest region and the nation. This project promoted the United States Department of Energy’s Wind and Hydropower Technologies Program’s goals of advancing the commercial viability, cost-competitiveness, and market acceptance of marine hydrokinetic systems. The objective of the Puget Sound Tidal Energy Demonstration Project is to conduct in-water testing and evaluation of tidal energy technology as a first step toward potential construction of a commercial-scale tidal energy power plant. The specific goal of the project phase covered by this award was to conduct all activities necessary to complete engineering design and obtain construction approvals for a pilot demonstration plant in the Admiralty Inlet region of the Puget Sound. Public Utility District No. 1 of Snohomish County (The District) accomplished the objectives of this award through four tasks: Detailed Admiralty Inlet Site Studies, Plant Design and Construction Planning, Environmental and Regulatory Activities, and Management and Reporting. Pre-Installation studies completed under this award provided invaluable data used for site selection, environmental evaluation and permitting, plant design, and construction planning. However, these data gathering efforts are not only important to the Admiralty Inlet pilot project. Lessons learned, in particular environmental data gathering methods, can be applied to future tidal energy projects in the United States and other parts of the world. The District collaborated extensively with project stakeholders to complete the tasks for this award. This included Federal, State, and local government agencies, tribal governments, environmental

  5. Marine and Hydrokinetic Renewable Energy Devices, Potential Navigational Hazards and Mitigation Measures

    SciTech Connect (OSTI)

    Cool, Richard, M.; Hudon, Thomas, J.; Basco, David, R.; Rondorf, Neil, E.

    2009-12-01

    On April 15, 2008, the Department of Energy (DOE) issued a Funding Opportunity Announcement for Advanced Water Power Projects which included a Topic Area for Marine and Hydrokinetic Renewable Energy Market Acceleration Projects. Within this Topic Area, DOE identified potential navigational impacts of marine and hydrokinetic renewable energy technologies and measures to prevent adverse impacts on navigation as a sub-topic area. DOE defines marine and hydrokinetic technologies as those capable of utilizing one or more of the following resource categories for energy generation: ocean waves; tides or ocean currents; free flowing water in rivers or streams; and energy generation from the differentials in ocean temperature. PCCI was awarded Cooperative Agreement DE-FC36-08GO18177 from the DOE to identify the potential navigational impacts and mitigation measures for marine hydrokinetic technologies. A technical report addressing our findings is available on this Science and Technology Information site under the Product Title, "Marine and Hydrokinetic Renewable Energy Technologies: Potential Navigational Impacts and Mitigation Measures". This product is a brochure, primarily for project developers, that summarizes important issues in that more comprehensive report, identifies locations where that report can be downloaded, and identifies points of contact for more information.

  6. Acoustic Monitoring of Beluga Whale Interactions with Cook Inlet Tidal Energy Project

    SciTech Connect (OSTI)

    Worthington, Monty

    2014-02-05

    FERC pilot project process. The Project compared results obtained from this method to results obtained from other passive hydrophone technologies and to visual observation techniques performed simultaneously. This Final Report makes recommendations on the best practice for future data collection, for ORPC’s work in Cook Inlet specifically, and for tidal power projects in general. This Project developed a marine mammal study design and compared technologies for hydroacoustic and visual data collection with potential for broad application to future tidal and hydrokinetic projects in other geographic areas. The data collected for this Project will support the environmental assessment of future Cook Inlet tidal energy projects, including ORPC’s East Foreland Tidal Energy Project and any tidal energy developments at Fire Island. The Project’s rigorous assessment of technology and methodologies will be invaluable to the hydrokinetic industry for developing projects in an environmentally sound and sustainable way for areas with high marine mammal activity or endangered populations. By combining several different sampling methods this Project will also contribute to the future preparation of a comprehensive biological assessment of ORPC’s projects in Cook Inlet.

  7. Energy Department Awards More Than $20 Million for Wave and Tidal Energy

    Energy Savers [EERE]

    Projects | Department of Energy More Than $20 Million for Wave and Tidal Energy Projects Energy Department Awards More Than $20 Million for Wave and Tidal Energy Projects August 30, 2016 - 1:15pm Addthis The Energy Department today announced 10 organizations selected to receive more than $20 million in funding for new research, development, and demonstration projects that advance and monitor marine and hydrokinetic (MHK) energy systems, which generate electricity from ocean waves and tidal

  8. Wind and Water Power Technologies Office Position Available: Marine and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrokinetic General Engineer | Department of Energy Wind and Water Power Technologies Office Position Available: Marine and Hydrokinetic General Engineer Wind and Water Power Technologies Office Position Available: Marine and Hydrokinetic General Engineer April 7, 2016 - 5:07pm Addthis The Wind and Water Power Technologies Office is seeking applicants for a new position available within the office. See below for more information. Job title: General Engineer-Marine and Hydrokinetic (MHK)

  9. Maine Tidal Power Initiative: Environmental Impact Protocols For Tidal Power

    SciTech Connect (OSTI)

    Peterson, Michael Leroy; Zydlewski, Gayle Barbin; Xue, Huijie; Johnson, Teresa R.

    2014-02-02

    The Maine Tidal Power Initiative (MTPI), an interdisciplinary group of engineers, biologists, oceanographers, and social scientists, has been conducting research to evaluate tidal energy resources and better understand the potential effects and impacts of marine hydro-kinetic (MHK) development on the environment and local community. Project efforts include: 1) resource assessment, 2) development of initial device design parameters using scale model tests, 3) baseline environmental studies and monitoring, and 4) human and community responses. This work included in-situ measurement of the environmental and social response to the pre-commercial Turbine Generator Unit (TGU®) developed by Ocean Renewable Power Company (ORPC) as well as considering the path forward for smaller community scale projects.

  10. Simulating Collisions for Hydrokinetic Turbines

    SciTech Connect (OSTI)

    Richmond, Marshall C.; Romero Gomez, Pedro DJ; Rakowski, Cynthia L.

    2013-10-01

    Evaluations of blade-strike on an axial-flow Marine Hydrokinetic turbine were conducted using a conventional methodology as well as an alternative modeling approach proposed in the present document. The proposed methodology integrates the following components into a Computa- tional Fluid Dynamics (CFD) model: (i) advanced eddy-resolving flow simulations, (ii) ambient turbulence based on field data, (iii) moving turbine blades in highly transient flows, and (iv) Lagrangian particles to mimic the potential fish pathways. The sensitivity of blade-strike prob- ability to the following conditions was also evaluated: (i) to the turbulent environment, (ii) to fish size and (iii) to mean stream flow velocity. The proposed methodology provided fraction of collisions and offered the capability of analyzing the causal relationships between the flow envi- ronment and resulting strikes on rotating blades. Overall, the conventional methodology largely overestimates the probability of strike, and lacks the ability to produce potential fish and aquatic biota trajectories as they interact with the rotating turbine. By using a set of experimental corre- lations of exposure-response of living fish colliding on moving blades, the occurrence, frequency and intensity of the particle collisions was next used to calculate the survival rate of fish crossing the MHK turbine. This step indicated survival rates always greater than 98%. Although the proposed CFD framework is computationally more expensive, it provides the advantage of evaluating multiple mechanisms of stress and injury of hydrokinetic turbine devices on fish.

  11. Sandia Energy - Marine Hydrokinetics Technology: Technology Developmen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and currenttidal power devices. Areas of focus will be on coatings, composites, and molding processes. System Reliability and Survivability Similar to other early stage...

  12. Assessing the Effects of Marine and Hydrokinetic Energy Development on Marine and Estuarine Resources

    SciTech Connect (OSTI)

    Ward, Jeffrey A.; Schultz, Irvin R.; Woodruff, Dana L.; Roesijadi, Guritno; Copping, Andrea E.

    2010-07-30

    The worlds oceans and estuaries offer an enormous potential to meet the nations growing demand for energy. The use of marine and hydrokinetic (MHK) devices to harness the power of wave and tidal energy could contribute significantly toward meeting federal- and state-mandated renewable energy goals while supplying a substantial amount of clean energy to coastal communities. Locations along the eastern and western coasts of the United States between 40 and 70 north latitude are ideal for MHK deployment, and recent estimates of energy potential for the coasts of Washington, Oregon, and California suggest that up to 25 gigawatts could be generated from wave and tidal devices in these areas. Because energy derived from wave and tidal devices is highly predictable, their inclusion in our energy portfolio could help balance available sources of energy production, including hydroelectric, coal, nuclear, wind, solar, geothermal, and others.

  13. MHK Projects/Tidal Generation Ltd EMEC | Open Energy Information

    Open Energy Info (EERE)

    Overseeing Organization Tidal Generation Ltd Project Technology *MHK TechnologiesDeep Gen Tidal Turbines Project Licensing Environmental Monitoring and Mitigation Efforts See...

  14. Teamwork Technology See Tocardo | Open Energy Information

    Open Energy Info (EERE)

    Teamwork Technology See Tocardo Jump to: navigation, search Name: Teamwork Technology See Tocardo Region: Netherlands Sector: Marine and Hydrokinetic Website: http: This company is...

  15. Triton Sea Wave Technologies | Open Energy Information

    Open Energy Info (EERE)

    Triton Sea Wave Technologies Jump to: navigation, search Name: Triton Sea Wave Technologies Address: 22 A Thrakis Zip: 15669 Region: Greece Sector: Marine and Hydrokinetic Year...

  16. Hawaii Oceanic Technology Inc | Open Energy Information

    Open Energy Info (EERE)

    Oceanic Technology Inc Jump to: navigation, search Name: Hawaii Oceanic Technology Inc Region: United States Sector: Marine and Hydrokinetic Website: www.hioceanictech.com This...

  17. Inflow Characterization for Marine and Hydrokinetic Energy Devices. FY-2011: Annual Progress Report

    SciTech Connect (OSTI)

    Richmond, Marshall C.; Durgesh, Vibhav; Thomson, Jim; Polagye, Brian

    2011-06-09

    The Pacific Northwest National Laboratory (PNNL), in collaboration with the Applied Physics Laboratory at the University of Washington (APL-UW), has carried out a detailed preliminary fluid flow field study at site selected for testing of marine and hydrokinetic turbines using Acoustic Doppler Velocimetry (ADV) measurements, Acoustic Doppler Current Profiler (ADCP) measurements, and Conductivity, Temperature and Depth (CTD) measurements. In FY-2011 these measurements were performed continuously for two weeks, in order to collect data during neap and spring tides, as well as during diurnal tidal variations.

  18. Characterizing large river sounds: Providing context for understanding the environmental effects of noise produced by hydrokinetic turbines

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bevelhimer, Mark S.; Deng, Z. Daniel; Scherelis, Constantin C.

    2016-01-06

    Underwaternoise associated with the installation and operation of hydrokinetic turbines in rivers and tidal zones presents a potential environmental concern for fish and marine mammals. Comparing the spectral quality of sounds emitted by hydrokinetic turbines to natural and other anthropogenic sound sources is an initial step at understanding potential environmental impacts. Underwater recordings were obtained from passing vessels and natural underwater sound sources in static and flowing waters. Static water measurements were taken in a lake with minimal background noise. Flowing water measurements were taken at a previously proposed deployment site for hydrokinetic turbines on the Mississippi River, where soundsmore » created by flowing water are part of all measurements, both natural ambient and anthropogenic sources. Vessel sizes ranged from a small fishing boat with 60 hp outboard motor to an 18-unit barge train being pushed upstream by tugboat. As expected, large vessels with large engines created the highest sound levels, which were, on average, 40 dB greater than the sound created by an operating hydrokinetic turbine. As a result, a comparison of sound levels from the same sources at different distances using both spherical and cylindrical sound attenuation functions suggests that spherical model results more closely approximate observed sound attenuation.« less

  19. EERE Success Story-Free Flow Power Partners to Improve Hydrokinetic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Free Flow Power Partners to Improve Hydrokinetic Turbine Performance and Cost EERE Success Story-Free Flow Power Partners to Improve Hydrokinetic Turbine Performance and Cost April ...

  20. Wind and Water Power Technologies Office Position Available:...

    Energy Savers [EERE]

    Wind and Water Power Technologies Office Position Available: Marine and Hydrokinetic General Engineer Wind and Water Power Technologies Office Position Available: Marine and ...

  1. Upcoming Funding Opportunity for Marine and Hydrokinetic Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    University Consortium | Department of Energy Upcoming Funding Opportunity for Marine and Hydrokinetic Development University Consortium Upcoming Funding Opportunity for Marine and Hydrokinetic Development University Consortium March 21, 2014 - 4:05am Addthis On March 21, 2014, the U.S. Department of Energy (DOE) announced a Notice of Intent to issue a funding opportunity titled "Marine and Hydrokinetic (MHK) Research and Development University Consortium." The goal of this funding

  2. Executive Summit on Marine and Hydrokinetic Research and Development Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Executive Summit on Marine and Hydrokinetic Research and Development Agenda Executive Summit on Marine and Hydrokinetic Research and Development Agenda MHK-Summit-Agenda.jpg Executive Summit on Marine and Hydrokinetic Research and Development 2016 Agenda (746.5 KB) More Documents & Publications Community- and Facility-Scale Tribal Renewable Energy Project Development and Finance Workshop Agenda CX-005184: Categorical Exclusion Determination CX-011388: Categorical

  3. Request for Information Regarding the Testing of Marine and Hydrokinetic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems | Department of Energy Request for Information Regarding the Testing of Marine and Hydrokinetic Systems Request for Information Regarding the Testing of Marine and Hydrokinetic Systems January 14, 2015 - 10:30am Addthis The Energy Department's Water Power Program is seeking information from the marine and hydrokinetic (MHK) industry, academia, research laboratories, government agencies, and other stakeholders on the development details of MHK systems that have the greatest potential

  4. DOE Announces Marine and Hydrokinetic Open Data Effort | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy DOE Announces Marine and Hydrokinetic Open Data Effort DOE Announces Marine and Hydrokinetic Open Data Effort April 10, 2014 - 3:39pm Addthis In an effort to improve future data management and access, DOE's Water Power Program is standing up a Marine and Hydrokinetics (MHK) Data Repository to manage the receipt, protection, and dissemination of scientific and technical data generated by DOE funded awards. Capabilities of the proposed MHK Data Repository include: Secure and intuitive

  5. Woodshed Technologies Ltd | Open Energy Information

    Open Energy Info (EERE)

    Technologies Ltd Address: Level 50 101 Collins St Place: Melbourne Zip: 3000 Region: Australia Sector: Marine and Hydrokinetic Phone Number: +613 96539264 Website:...

  6. Chevron Technology Ventures LLC | Open Energy Information

    Open Energy Info (EERE)

    LLC Jump to: navigation, search Name: Chevron Technology Ventures LLC Address: 3901 Briarpark Drive Place: Houston Zip: 77042 Region: United States Sector: Marine and Hydrokinetic...

  7. Accelerating Climate Technologies: Innovative Market Strategies...

    Open Energy Info (EERE)

    that play a neutral broker role with the private sector. The final marine energy case study proposes a similar approach to accelerate hydrokinetic marine energy technology...

  8. Assessment and Mapping of the Riverine Hydrokinetic Resource...

    Open Energy Info (EERE)

    Resource in the Continental United States Abstract This report describes the methodology and results of the most rigorous assessment to date of the riverine hydrokinetic...

  9. Sandia Energy - Biofouling Studies on Sandia's Marine Hydrokinetic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrokinetic (MHK) Coatings Initiated at PNNL's Sequim Bay Sandia's Materials & Manufacturing Reliability Program has begun testing their novel MHK coatings at Pacific...

  10. Request for Information Regarding the Testing of Marine and Hydrokinet...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Request for Information on Strategy to Advance the Marine and Hydrokinetic Energy Industry Riding the Clean Energy Wave: New Projects Aim to Improve Water Power Devices

  11. Assessment and Mapping of the Riverine Hydrokinetic Resource...

    Broader source: Energy.gov (indexed) [DOE]

    ... Energy Laboratory's validation of the hydrokinetic energy resource values in the GIS database was different from NREL's previous validations of wind and wave power estimates. ...

  12. Free Flow Power Partners to Improve Hydrokinetic Turbine Performance...

    Energy Savers [EERE]

    to evaluate and optimize the technical and environmental performance and cost factors of its hydrokinetic SmarTurbines(tm)-turbines that generate energy from free-flowing rivers. ...

  13. Assessment and Mapping of the Riverine Hydrokinetic Resource...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States Report that describes the methodology and results of the most rigorous assessment to ...

  14. Assessment and Mapping of the Riverine Hydrokinetic Resource...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report that describes the methodology and results of the most rigorous assessment to date ... In-stream hydrokinetic resource assessment NSD Methodology Report An Assessment of Energy ...

  15. MHK Projects/Yukon River Hydrokinetic Turbine Project | Open...

    Open Energy Info (EERE)

    Yukon River Hydrokinetic Turbine Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlem...

  16. Sandia Energy - Sandia Releases Open-Source Hydrokinetic Turbine...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases Open-Source Hydrokinetic Turbine Design Model, CACTUS Home Renewable Energy Energy Water Power News News & Events Computational Modeling & Simulation Sandia Releases...

  17. Sandia Energy - Numerical Simulations of Hydrokinetics in the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Numerical Simulations of Hydrokinetics in the Roza Canal, Yakima Washington Home Renewable Energy Energy Water Power Computational Modeling & Simulation Numerical Simulations of...

  18. Tidal Generation Ltd | Open Energy Information

    Open Energy Info (EERE)

    Generation Ltd EMEC This company is involved in the following MHK Technologies: Deep Gen Tidal Turbines This article is a stub. You can help OpenEI by expanding it. Tidal...

  19. Tidal Energy Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Map Reveals U.S. Tidal Energy Resources Artist rendering of Ocean Power Technologies' proposed wave park off the coast of Oregon. | Photo courtesy of Ocean Power Technologies. ...

  20. Sandia Energy - Marine Hydrokinetics Technology: Reference Model...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing Capabilities FAQ Request for Testing Safety Technical Staff Energy Storage Nuclear Power & Engineering Grid Modernization Resilient Electric Infrastructures Military...

  1. Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... the cost and economics of WEC machines efficiently and accurately g) Development of optimal control strategies for different WEC configurations 44 h) Wave forecasting on the ...

  2. Scientific Solutions (TRL 5 6 Component)- Underwater Active Acoustic Monitoring Network for Marine and Hydrokinetic Energy

    Office of Energy Efficiency and Renewable Energy (EERE)

    Scientific Solutions (TRL 5 6 Component) - Underwater Active Acoustic Monitoring Network for Marine and Hydrokinetic Energy

  3. Marine Current Turbines Ltd | Open Energy Information

    Open Energy Info (EERE)

    United Kingdom Zip: BS34 8PD Sector: Marine and Hydrokinetic Product: Developer of tidal stream turbine technology for exploiting flowing water in general and tidal streams in...

  4. Marine and Hydrokinetic Market Acceleration and Deployment |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    robust portfolio of projects to accelerate wave, tidal and current project deployments and ... Learn more about the Water Power Program's work in the following areas of marine and ...

  5. Energy Department Awards $7.4 Million to Develop Advanced Components for Wave and Tidal Energy Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department today announced four entities selected to receive $7.4 million to spur innovation of next-generation water power component technologies, designed for manufacturability and built specifically for marine and hydrokinetic systems.

  6. Tidal energy site resource assessment in the East River tidal strait, near Roosevelt Island, New York, New York

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gunawan, Budi; Neary, Vincent S.; Colby, Jonathan

    2014-06-22

    This study demonstrates a site resource assessment to examine the temporal variation of the mean current, turbulence intensities, and power densities for a tidal energy site in the East River tidal strait. These variables were derived from two-months of acoustic Doppler velocimeter (ADV) measurements at the design hub height of the Verdant Power Gen5 hydrokinetic turbine. The study site is a tidal strait that exhibits semi-diurnal tidal current characteristics, with a mean horizontal current speed of 1.4 m s-1, and turbulence intensity of 15% at a reference mean current of 2 m s-1. Flood and ebb flow directions are nearlymore » bi-directional, with higher current magnitude during flood tide, which skews the power production towards the flood tide period. The tidal hydrodynamics at the site are highly regular, as indicated by the tidal current time series that resembles a sinusoidal function. This study also shows that the theoretical force and power densities derived from the current measurements can significantly be influenced by the length of the time window used for averaging the current data. Furthermore, the theoretical power density at the site, derived from the current measurements, is one order of magnitude greater than that reported in the U.S. national resource assessment. As a result, this discrepancy highlights the importance of conducting site resource assessments based on measurements at the tidal energy converter device scale.« less

  7. Tidal energy site resource assessment in the East River tidal strait, near Roosevelt Island, New York, New York

    SciTech Connect (OSTI)

    Gunawan, Budi; Neary, Vincent S.; Colby, Jonathan

    2014-06-22

    This study demonstrates a site resource assessment to examine the temporal variation of the mean current, turbulence intensities, and power densities for a tidal energy site in the East River tidal strait. These variables were derived from two-months of acoustic Doppler velocimeter (ADV) measurements at the design hub height of the Verdant Power Gen5 hydrokinetic turbine. The study site is a tidal strait that exhibits semi-diurnal tidal current characteristics, with a mean horizontal current speed of 1.4 m s-1, and turbulence intensity of 15% at a reference mean current of 2 m s-1. Flood and ebb flow directions are nearly bi-directional, with higher current magnitude during flood tide, which skews the power production towards the flood tide period. The tidal hydrodynamics at the site are highly regular, as indicated by the tidal current time series that resembles a sinusoidal function. This study also shows that the theoretical force and power densities derived from the current measurements can significantly be influenced by the length of the time window used for averaging the current data. Furthermore, the theoretical power density at the site, derived from the current measurements, is one order of magnitude greater than that reported in the U.S. national resource assessment. As a result, this discrepancy highlights the importance of conducting site resource assessments based on measurements at the tidal energy converter device scale.

  8. Request for Information for Marine and Hydrokinetic Field Measurements

    Broader source: Energy.gov [DOE]

    The Energy Department’s Water Power Program is seeking feedback from the marine and hydrokinetic (MHK) industry regarding the verification and validation of advanced open source MHK design tools and models.

  9. EERE Success Story-New Report States That Hydrokinetic Turbines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Minimal Environmental Impacts on Fish EERE Success Story-New Report States That Hydrokinetic Turbines Have Minimal Environmental Impacts on Fish August 22, 2013 - 12:00am Addthis ...

  10. Upcoming Funding Opportunity for Competitive Marine and Hydrokinetic (MHK)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstrations at the Navy's Wave Energy Test Site (WETS) | Department of Energy Upcoming Funding Opportunity for Competitive Marine and Hydrokinetic (MHK) Demonstrations at the Navy's Wave Energy Test Site (WETS) Upcoming Funding Opportunity for Competitive Marine and Hydrokinetic (MHK) Demonstrations at the Navy's Wave Energy Test Site (WETS) March 24, 2014 - 12:27pm Addthis On March 24, 2014, the U.S. Department of Energy (DOE) announced a Notice of Intent to issue a funding opportunity

  11. tidal turbines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tidal turbines - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  12. Before the House Science and Technology Subcommittee on Energy and Environment

    Broader source: Energy.gov [DOE]

    Subject: Marine and Hydrokinetic Energy Technology: Finding the Path to Commercialization By: Jacques Beaudry-Losique, Deputy Assistant Secretary for Renewable Energy

  13. New Report States That Hydrokinetic Turbines Have Minimal Environmental Impacts on Fish

    Broader source: Energy.gov [DOE]

    EERE has released a report assessing likelihood of fish injury and mortality from the operation of hydrokinetic turbines.

  14. EERE Success Story—New Report States That Hydrokinetic Turbines Have Minimal Environmental Impacts on Fish

    Broader source: Energy.gov [DOE]

    EERE has released a report assessing likelihood of fish injury and mortality from the operation of hydrokinetic turbines.

  15. Levelized Cost of Energy Analysis of Marine and Hydrokinetic Reference Models: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Levelized Cost of Energy Analysis of Marine and Hydrokinetic Reference Models Preprint D. S. Jenne and Y.-H. Yu National Renewable Energy Laboratory V. Neary Sandia National Laboratories To be presented at the 3 rd Marine Energy Technology Symposium (METS 2015) Washington, D.C. April 27-29, 2015 Conference Paper NREL/CP-5000-64013 April 2015 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government

  16. New Interactive Map Reveals U.S. Tidal Energy Resources | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Interactive Map Reveals U.S. Tidal Energy Resources New Interactive Map Reveals U.S. Tidal Energy Resources July 7, 2011 - 10:50am Addthis A map generated by Georgia Tech's tidal energy resource database shows mean current speed of tidal streams | Source: Georgia Institute of Technology A map generated by Georgia Tech's tidal energy resource database shows mean current speed of tidal streams | Source: Georgia Institute of Technology Michael Reed Michael Reed Director, Technical and

  17. MHK Projects/Tidal Energy Project Portugal | Open Energy Information

    Open Energy Info (EERE)

    Organization Tidal Energy Pty Ltd Project Technology *MHK TechnologiesDavidson Hill Venturi DHV Turbine Project Licensing Environmental Monitoring and Mitigation Efforts See...

  18. Identifying How Marine and Hydrokinetic Devices Affect Aquatic Environments

    SciTech Connect (OSTI)

    Cada, G. F.; Copping, Andrea E.; Roberts, Jesse

    2011-04-24

    Significant research is under way to determine the potential environmental effects of marine and hydrokinetic energy systems. This research, being guided and funded by the U.S. Department of Energy, is intended to address knowledge gaps and facilitate installation and operation of these systems.

  19. Active Flow Control on Bidirectional Rotors for Tidal MHK Applications

    SciTech Connect (OSTI)

    Shiu, Henry; van Dam, Cornelis P.

    2013-08-22

    A marine and hydrokinetic (MHK) tidal turbine extracts energy from tidal currents, providing clean, sustainable electricity generation. In general, all MHK conversion technologies are confronted with significant operational hurdles, resulting in both increased capital and operations and maintenance (O&M) costs. To counter these high costs while maintaining reliability, MHK turbine designs can be simplified. Prior study found that a tidal turbine could be cost-effectively simplified by removing blade pitch and rotor/nacelle yaw. Its rotor would run in one direction during ebb and then reverse direction when the current switched to flood. We dubbed such a turbine a bidirectional rotor tidal turbine (BRTT). The bidirectional hydrofoils of a BRTT are less efficient than conventional hydrofoils and capture less energy, but the elimination of the pitch and yaw systems were estimated to reduce levelized cost of energy by 7.8%-9.6%. In this study, we investigated two mechanisms for recapturing some of the performance shortfall of the BRTT. First, we developed a novel set of hydrofoils, designated the yy series, for BRTT application. Second, we investigated the use of active flow control via microtabs. Microtabs are small deployable/retractable tabs, typically located near the leading or trailing edge of an air/hydrofoil with height on the order of the boundary layer thickness (1% - 2% of chord). They deploy approximately perpendicularly to the foil surface and, like gurney flaps and plain flaps, globally affect the aerodynamics of the airfoil. By strategically placing microtabs and selectively deploying them based on the direction of the inflow, performance of a BRTT rotor can be improved while retaining bidirectional operation. The yy foils were computationally designed and analyzed. They exhibited better performance than the baseline bidirectional foil, the ellipse. For example, the yyb07cn-180 had 14.7% higher (l/d)max than an ellipse of equal thickness. The yyb07cn

  20. Estimation of the Risks of Collision or Strike to Freshwater Aquatic Organisms Resulting from Operation of Instream Hydrokinetic Turbines

    SciTech Connect (OSTI)

    Schweizer, Peter E; Cada, Glenn F; Bevelhimer, Mark S

    2010-05-01

    Hydrokinetic energy technologies have been proposed as renewable, environmentally preferable alternatives to fossil fuels for generation of electricity. Hydrokinetic technologies harness the energy of water in motion, either from waves, tides or from river currents. For energy capture from free-flowing rivers, arrays of rotating devices are most commonly proposed. The placement of hydrokinetic devices in large rivers is expected to increase the underwater structural complexity of river landscapes. Moore and Gregory (1988) found that structural complexity increased local fish populations because fish and other aquatic biota are attracted to structural complexity that provides microhabitats with steep flow velocity gradients (Liao 2007). However, hydrokinetic devices have mechanical parts, blades, wings or bars that move through the water column, posing a potential strike or collision risk to fish and other aquatic biota. Furthermore, in a setting with arrays of hydrokinetic turbines the cumulative effects of multiple encounters may increase the risk of strike. Submerged structures associated with a hydrokinetic (HK) project present a collision risk to aquatic organisms and diving birds (Cada et al. 2007). Collision is physical contact between a device or its pressure field and an organism that may result in an injury to that organism (Wilson et al. 2007). Collisions can occur between animals and fixed submerged structures, mooring equipment, horizontal or vertical axis turbine rotors, and structures that, by their individual design or in combination, may form traps. This report defines strike as a special case of collision where a moving part, such as a rotor blade of a HK turbine intercepts the path of an organism of interest, resulting in physical contact with the organism. The severity of a strike incidence may range from minor physical contact with no adverse effects to the organism to severe strike resulting in injury or death of the organism. Harmful effects

  1. Property:Technology Resource | Open Energy Information

    Open Energy Info (EERE)

    CurrentTidal MHK TechnologiesDeep Water Pipelines + Ocean Thermal Energy Conversion (OTEC) MHK TechnologiesDeltaStream + CurrentTidal MHK TechnologiesDenniss Auld Turbine +...

  2. Environmental Effects of Sediment Transport Alteration and Impacts on Protected Species: Edgartown Tidal Energy Project

    SciTech Connect (OSTI)

    Barrett, Stephen B; Schlezinger, David, Ph.D; Cowles, Geoff, Ph.D; Hughes, Patricia; Samimy,; Roland, I; and Terray, E, Ph.D.

    2012-12-29

    the same technology proposed by Ocean Renewable Power Company in the Western Passage and Cobscook Bay near Eastport Maine. The blades rotate in two directions capturing the tides energy both during flood and ebb tides. The turbines will be anchored to the bottom and suspended in the water column. Initial depth of the turbines is expected to be about 25 feet below the surface to avoid impacting navigation while also capturing the strongest currents. The Town of Edgartown was initially granted a Preliminary Permit by the Federal Energy Regulatory Commission (FERC) on March 1, 2008, and has recently received a second permit valid through August 2014. The Preliminary Permit gives Edgartown the exclusive right to apply for a power generation license for power generated from the hydrokinetic energy in the water flowing in this area. Edgartown filed a Draft Pilot License Application with FERC on February 1, 2010 and an Expanded Environmental Notification Form with the Massachusetts Environmental Policy Act (MEPA) Office at the same time. It expects to file a Final License Application in late 2013. Harris Miller Miller & Hanson (HMMH) of Burlington Massachusetts is acting as the Project Manager for the Town of Edgartown and collaborating with other partners of the project including the University of Massachusetts - Dartmouth's Marine Renewable Energy Center and the Massachusetts Clean Energy Center. HMMH was awarded a grant under the Department of Energy's Advanced Water Program to conduct marine science and hydrokinetic site-specific environmental studies for projects actively seeking a FERC License. HMMH, on behalf of the Town, is managing this comprehensive study of the marine environment in Muskeget Channel and potential impacts of the tidal project on indicator species and habitats. The University of Massachusetts School of Marine Science and Technology (SMAST) conducted oceanographic studies of tidal currents, tide level, benthic habitat, and potential for biofouling

  3. Energy Department Announces $8 Million to Develop Advanced Components for Wave, Tidal, and Current Energy Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department today announced $8 million in available funding to spur innovation in next-generation marine and hydrokinetic control and component technologies. In the United States, waves, tides, and ocean currents represent a largely untapped renewable energy resource that could provide clean, affordable energy to homes and businesses across the country's coastal regions.

  4. University of Illinois uses Sandia Labs' reference hydrokinetic turbine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to study potential bed erosion effects Illinois uses Sandia Labs' reference hydrokinetic turbine to study potential bed erosion effects - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power

  5. JEDI Marine and Hydrokinetic Model: User Reference Guide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JEDI Marine and Hydrokinetic Model: User Reference Guide Marshall Goldberg MRG & Associates Nevada City, California Mirko Previsic RE Vision Consulting Sacramento, California Subcontract Report NREL/SR-6A20-50402 April 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 *

  6. Tidal Energy System for On-Shore Power Generation

    SciTech Connect (OSTI)

    Bruce, Allan J

    2012-06-26

    Addressing the urgent need to develop LCOE competitive renewable energy solutions for US energy security and to replace fossil-fuel generation with the associated benefits to environment impacts including a reduction in CO2 emissions, this Project focused on the advantages of using hydraulic energy transfer (HET) in large-scale Marine Hydrokinetic (MHK) systems for harvesting off-shore tidal energy in US waters. A recent DOE resource assessment, identifies water power resources have a potential to meet 15% of the US electric supply by 2030, with MHK technologies being a major component. The work covered a TRL-4 laboratory proof-in-concept demonstration plus modeling of a 15MW full scale system based on an approach patented by NASA-JPL, in which submerged high-ratio gearboxes and electrical generators in conventional MHK turbine systems are replaced by a submerged hydraulic radial pump coupled to on-shore hydraulic motors driving a generator. The advantages are; first, the mean-time-between-failure (MTBF), or maintenance, can be extended from approximately 1 to 5 years and second, the range of tidal flow speeds which can be efficiently harvested can be extended beyond that of a conventional submerged generator. The approach uses scalable, commercial-off-the-shelf (COTS) components, facilitating scale-up and commercialization. All the objectives of the Project have been successfully met (1) A TRL4 system was designed, constructed and tested. It simulates a tidal energy turbine, with a 2-m diameter blade in up to a 2.9 m/sec flow. The system consists of a drive motor assembly providing appropriate torque and RPM, attached to a radial piston pump. The pump circulates pressurized, environmentally-friendly, HEES hydraulic fluid in a closed loop to an axial piston motor which drives an electrical generator, with a resistive load. The performance of the components, subsystems and system were evaluated during simulated tidal cycles. The pump is contained in a tank for

  7. US Department of Energy National Lab Activities in Marine Hydrokinetics: Machine Performance Testing

    SciTech Connect (OSTI)

    Neary, Vincent S; Chamorro, Leonardo; Hill, Craig; Gunawan, Budi; Sotiropoulos, Fotis

    2012-01-01

    Marine and hydrokinetic (MHK) technology performance testing in the laboratory and field supports the US Department of Energy s MHK program goals to advance the technology readiness levels of MHK machines, to ensure environmentally responsible designs, to identify key cost drivers, and to reduce the cost of energy of MHK technologies. Laboratory testing results from scaled model machine testing at the University of Minnesota s St. Anthony Falls Laboratory (SAFL) main channel flume are presented, including simultaneous machine power and inflow measurements for a 1:10 scale three-bladed axial flow turbine used to assess machine performance in turbulent flows, and detailed measurements of inflow and wake flow velocity and turbulence, including the assessment of the effects of large energetic organized vortex shedding on machine performance and wake turbulence downstream. Scaled laboratory testing provides accurate data sets for near- and far-field hydrodynamic models, and useful information on technology and environmental readiness levels before full-scale testing and demonstration in open water. This study validated turbine performance for a technology in order to advance its technology readiness level. Synchronized ADV measurements to calculate spatio-temporal characteristics of turbulence supported model development of the inflow turbulence model, Hydro-TurbSim, developed by the National Renewable Energy Laboratory (NREL) to evaluate unsteady loading on MHK machines. Wake flow measurements supported model development of the far-field model, SNL-EFDC, developed by Sandia National Laboratory (SNL) to optimize spacing for MHK machine arrays.

  8. Clarence Strait Tidal Energy Project, Tenax Energy Tropical Tidal...

    Open Energy Info (EERE)

    Clarence Strait Tidal Energy Project, Tenax Energy Tropical Tidal Test Centre, Jump to: navigation, search 1 Retrieved from "http:en.openei.orgwindex.php?titleClarenceStrai...

  9. Marine and Hydrokinetic (MHK) Databases and Systems

    SciTech Connect (OSTI)

    2015-01-01

    The online information resources included in this fact sheet were developed with support from the U.S. Department of Energy, and are designed to provide the public access to information pertaining to MHK technologies, projects, and research.

  10. Hydrokinetic canal measurements: inflow velocity, wake flow velocity, and turbulence

    SciTech Connect (OSTI)

    Gunawan, Budi

    2014-06-11

    The dataset consist of acoustic Doppler current profiler (ADCP) velocity measurements in the wake of a 3-meter diameter vertical-axis hydrokinetic turbine deployed in Roza Canal, Yakima, WA, USA. A normalized hub-centerline wake velocity profile and two cross-section velocity contours, 10 meters and 20 meters downstream of the turbine, are presented. Mean velocities and turbulence data, measured using acoustic Doppler velocimeter (ADV) at 50 meters upstream of the turbine, are also presented. Canal dimensions and hydraulic properties, and turbine-related information are also included.

  11. JEDI Marine and Hydrokinetic Model: User Reference Guide

    SciTech Connect (OSTI)

    Goldberg, M.; Previsic, M.

    2011-04-01

    The Jobs and Economic Development Impact Model (JEDI) for Marine and Hydrokinetics (MHK) is a user-friendly spreadsheet-based tool designed to demonstrate the economic impacts associated with developing and operating MHK power systems in the United States. The JEDI MHK User Reference Guide was developed to assist users in using and understanding the model. This guide provides information on the model's underlying methodology, as well as the sources and parameters used to develop the cost data utilized in the model. This guide also provides basic instruction on model add-in features, operation of the model, and a discussion of how the results should be interpreted.

  12. Preliminary Screening Analysis for the Environmental Risk Evaluation System: Task 2.1.1: Evaluating Effects of Stressors – Fiscal Year 2010 Progress Report: Environmental Effects of Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    Anderson, Richard M.; Copping, Andrea E.; Van Cleve, Frances B.

    2010-11-15

    Possible environmental effects of marine and hydrokinetic (MHK) energy development are not well understood, and yet regulatory agencies are required to make decisions in spite of substantial uncertainty about environmental impacts and their long-term effects. An understanding of risk associated with likely interactions between MHK installations and aquatic receptors, including animals, habitats, and ecosystems, can help reduce the level of uncertainty and focus regulatory actions and scientific studies on interactions of most concern. As a first step in developing the Pacific Northwest National Laboratory (PNNL) Environmental Risk Evaluation System (ERES), PNNL scientists conducted a preliminary risk screening analysis on three initial MHK cases - a tidal project in Puget Sound using Open Hydro turbines, a wave project off the coast of Oregon using Ocean Power Technologies point attenuator buoys, and a riverine current project in the Mississippi River using Free Flow turbines. Through an iterative process, the screening analysis revealed that top-tier stressors in all three cases were the effects of the dynamic physical presence of the device (e.g., strike), accidents, and effects of the static physical presence of the device (e.g., habitat alteration). Receptor interactions with these stressors at the four highest tiers of risk were dominated by marine mammals (cetaceans and pinnipeds) and birds (diving and non-diving); only the riverine case (Free Flow) included different receptors in the third tier (fish) and the fourth tier (benthic invertebrates). Although this screening analysis provides a preliminary analysis of vulnerability of environmental receptors to stressors associated with MHK installations, probability analysis, especially of risk associated with chemical toxicity and accidents such as oil spills or lost gear, will be necessary to further understand high-priority risks. Subject matter expert review of this process and results is required and is

  13. Funding Opportunity Announcement for a Marine and Hydrokinetic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This funding opportunity is supporting the advancement of wave and tidal energy ... To learn about funding opportunities available through the Water Power Program, please ...

  14. Deployment Effects of Marin Renewable Energy Technologies

    SciTech Connect (OSTI)

    Brian Polagye; Mirko Previsic

    2010-06-17

    Given proper care in siting, design, deployment, operation and maintenance, marine and hydrokinetic technologies could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood, due to a lack of technical certainty. In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based approach to the emerging wave and tidal technology sectors in order to evaluate the impact of these technologies on the marine environment and potentially conflicting uses. The project’s scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios will capture variations in technical approaches and deployment scales to properly identify and characterize environmental impacts and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential effects of these emerging technologies and focus all stakeholders onto the critical issues that need to be addressed. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industry’s development in the U.S. today. Re vision is coordinating its efforts with two other project teams funded by DoE which are focused on regulatory and navigational issues. The results of this study are structured into three reports: 1. Wave power scenario description 2. Tidal power scenario description 3. Framework for

  15. Assessment of Energy Production Potential from Tidal Streams in the United States

    SciTech Connect (OSTI)

    Haas, Kevin A.; Fritz, Hermann M.; French, Steven P.; Smith, Brennan T.; Neary, Vincent

    2011-06-29

    The project documented in this report created a national database of tidal stream energy potential, as well as a GIS tool usable by industry in order to accelerate the market for tidal energy conversion technology.

  16. Assessment of Energy Production Potential from Tidal Streams in the United States

    Office of Energy Efficiency and Renewable Energy (EERE)

    The project documented in this report created a national database of tidal stream energy potential, as well as a GIS tool usable by industry in order to accelerate the market for tidal energy conversion technology.

  17. Template:Marine and Hydrokinetic Technology Project | Open Energy...

    Open Energy Info (EERE)

    - No field def provided Project Resource - No field def provided Project Nearest Body of Water - No field def provided Coordinates - No field def provided Project Footprint - No...

  18. Marine and Hydrokinetic Technology Database | Open Energy Information

    Open Energy Info (EERE)

    prod-http-80-800498448.us-east-1.elb.amazonaws.comwimagesdd2Red-marker.png","group":"","inlineLabel":"","visitedicon":"","text":"

  19. Marine and Hydrokinetic Technology Glossary | Department of Energy

    Energy Savers [EERE]

    energy from air forced through a turbine by the rising and falling motion of a wave. ... pressurizes and depressurizes the air column, pushing or pulling it through a turbine. ...

  20. Marine and Hydrokinetic Technology Glossary | Open Energy Information

    Open Energy Info (EERE)

    a pressure differential is induced within the device as the wave passes driving a fluid pump to create mechanical energy Oscillating Water Column OscillatingWaterColumn.jpg...

  1. Marine & Hydrokinetic Technologies, Wind and Water Power Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    These centers, one run by Oregon State University and the University of Washington and one by the University of Hawaii, are planned with open-water test berths as well as ...

  2. Marine and Hydrokinetic Technology Glossary | Open Energy Information

    Open Energy Info (EERE)

    and Thresher Point Absorber Pointabsorber.jpg Wave energy capture device, with principal dimension relatively small compared to the wavelength, and is able to capture energy from...

  3. Template:Marine and Hydrokinetic Technology | Open Energy Information

    Open Energy Info (EERE)

    Patents - Field def missing Was This Project DOE Funded? - Field def missing Collaborators - Field def missing Usage It should be invoked using the corresponding form....

  4. Lease Issuance for Marine Hydrokinetic Technology Testing on...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... turtles (3.1.2.4); avian resources (Section 3.1.2.5); bats (Section 3.1.2.6); fish and essential fish habitat (3.1.2.7); cultural resources (Section 3.1.3.1); commercial and ...

  5. Marine and Hydrokinetic (MHK) Technology Development Risk Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0-800-81350 SOUTH AFRICA 080-09-82158 SOUTH KOREA 82-2-6744-1091 00798-14800-7797 SPAIN 34-91-414-21-70 800-300-907 SWEDEN 46-8-503-34-825 0200-899-946 SWITZERLAND...

  6. Marine and Hydrokinetic Technology Readiness Level | Open Energy...

    Open Energy Info (EERE)

    to evaluate, to the largest extent possible, the scientific or technical merit and feasibility of ideas that appear to have commercial potential. * TRL 12: Scientific research...

  7. Category:Marine and Hydrokinetic Technology Projects | Open Energy...

    Open Energy Info (EERE)

    MHK ProjectsMicroturbine River In Stream MHK ProjectsMiette River MHK ProjectsMiller Bend Project MHK ProjectsMilliken Bend Project MHK ProjectsMinas Basin Bay of Fundy...

  8. Marine and Hydrokinetic Technology Glossary | Open Energy Information

    Open Energy Info (EERE)

    1.4 Attentuator 1.5 Oscillating Wave Surge Converter 2 Current Power 2.1 Axial Flow Turbine 2.2 Cross Flow Turbine 2.3 Reciprocating Device 2.3.1 Oscillating Hydrofoil: (Example...

  9. Form:Marine and Hydrokinetic Technology Project Milestone | Open...

    Open Energy Info (EERE)

    source History View New Pages Recent Changes All Special Pages Semantic SearchQuerying Get Involved Help Apps Datasets Community Login | Sign Up Search Form Edit History...

  10. Form:Marine and Hydrokinetic Technology Project | Open Energy...

    Open Energy Info (EERE)

    source History View New Pages Recent Changes All Special Pages Semantic SearchQuerying Get Involved Help Apps Datasets Community Login | Sign Up Search Form Edit History...

  11. Marine and Hydrokinetic Technology Glossary | Open Energy Information

    Open Energy Info (EERE)

    Hydrofoil: (Example of a Reciprocating Device) 3 Ocean Thermal Energy Conversion (OTEC) 3.1 Closed-cycle 3.2 Open-cycle 3.3 Hybrid Wave Power Graphics adapted from Bedard and...

  12. Marine and Hydrokinetic (MHK) Technology Development Risk Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy (DOE) and the National Renewable Energy Laboratory (NREL) developed an MHK ... SYDNEY 61-2-8209-1532 1-800-010717 AUSTRIA 43-1-92-81-451 0800-005-806 BELGIUM ...

  13. Identification and Prioritization of Analysis Cases for Marine and Hydrokinetic Energy Risk Screening

    SciTech Connect (OSTI)

    Anderson, Richard M.; Unwin, Stephen D.; Van Cleve, Frances B.

    2010-06-16

    In this report we describe the development of the Environmental Risk Evaluation System (ERES), a risk-informed analytical process for estimating the environmental risks associated with the construction and operation of marine and hydrokinetic energy generation projects. The development process consists of two main phases of analysis. In the first phase, preliminary risk analyses will take the form of screening studies in which key environmental impacts and the uncertainties that create risk are identified, leading to a better-focused characterization of the relevant environmental effects. Existence of critical data gaps will suggest areas in which specific modeling and/or data collection activities should take place. In the second phase, more detailed quantitative risk analyses will be conducted, with residual uncertainties providing the basis for recommending risk mitigation and monitoring activities. We also describe the process used for selecting three cases for fiscal year 2010 risk screening analysis using the ERES. A case is defined as a specific technology deployed in a particular location involving certain environmental receptors specific to that location. The three cases selected satisfy a number of desirable criteria: 1) they correspond to real projects whose deployment is likely to take place in the foreseeable future; 2) the technology developers are willing to share technology and project-related data; 3) the projects represent a diversity of technology-site-receptor characteristics; 4) the projects are of national interest, and 5) environmental effects data may be available for the projects.

  14. Live Webinar on the Funding Opportunity for Marine and Hydrokinetic Research and Development University Consortium

    Office of Energy Efficiency and Renewable Energy (EERE)

    On April 24, 2014 from 1:00 - 2:30 PM EDT, the Water Power Program will hold a live webinar to provide information to potential applicants for the Marine and Hydrokinetic (MHK) Research and...

  15. Funding Opportunity Announcement for a Marine and Hydrokinetic Development University Consortium

    Broader source: Energy.gov [DOE]

    The Energy Department announced $4 million to engage America’s research universities in the effort to accelerate the development of the emerging marine and hydrokinetic (MHK) energy industry in the United States.

  16. Environmentally Benign and Permanent Modifications to Prevent Biofouling on Marine and Hydrokinetic Devices

    SciTech Connect (OSTI)

    Zheng Zhang

    2012-04-19

    Semprus Biosciences is developing environmentally benign and permanent modifications to prevent biofouling on Marine and Hydrokinetic (MHK) devices. Biofouling, including growth on external surfaces by bacteria, algae, barnacles, mussels, and other marine organisms, accumulate quickly on MHK devices, causing mechanical wear and changes in performance. Biofouling on crucial components of hydrokinetic devices, such as rotors, generators, and turbines, imposes substantial mass and hydrodynamic loading with associated efficiency loss and maintenance costs. Most antifouling coatings leach toxic ingredients, such as copper and tributyltin, through an eroding process, but increasingly stringent regulation of biocides has led to interest in the development of non-biocidal technologies to control fouling. Semprus Biosciences research team is developing modifications to prevent fouling from a broad spectrum of organisms on devices of all shapes, sizes, and materials for the life of the product. The research team designed and developed betaine-based polymers as novel underwater coatings to resist the attachment of marine organisms. Different betaine-based monomers and polymers were synthesized and incorporated within various coating formulations. The formulations and application methods were developed on aluminum panels with required adhesion strength and mechanical properties. The coating polymers were chemically stable under UV, hydrolytic and oxidative environments. The sulfobetaine formulations are applicable as nonleaching and stable underwater coatings. For the first time, coating formulations modified with highly packed sulfobetaine polymers were prepared and demonstrated resistance to a broad spectrum of marine organisms. Assays for comparing nonfouling performance were developed to evaluate protein adsorption and bacteria attachment. Barnacle settlement and removal were evaluated and a 60-day field test was performed. Silicone substrates including a commercial

  17. Marine and Hydrokinetic Energy Development Technical Support and General Environmental Studies Report on Outreach to Stakeholders for Fiscal Year 2009

    SciTech Connect (OSTI)

    Copping, Andrea E.; Geerlofs, Simon H.

    2010-01-22

    Report on activities working with stakeholders in the emerging marine and hydrokinetic energy industry during FY09, for DOE EERE Office of Waterpower.

  18. The Contribution of Environmental Siting and Permitting Requirements to the Cost of Energy for Marine and Hydrokinetic Devices

    SciTech Connect (OSTI)

    Copping, Andrea E.; Geerlofs, Simon H.

    2011-05-09

    Responsible deployment of marine and hydrokinetic (MHK) devices in estuaries, coastal areas, and major rivers requires that biological resources and ecosystems be protected through siting and permitting (consenting) processes. Scoping appropriate deployment locations, collecting pre-installation (baseline) and post-installation data add to the cost of developing MHK projects, and hence to the cost of energy. Under the direction of the U.S. Department of Energy, Pacific Northwest National Laboratory scientists have developed logic models that describe studies and processes for environmental siting and permitting. Each study and environmental permitting process has been assigned a cost derived from existing and proposed tidal, wave, and riverine MHK projects. Costs have been developed at the pilot scale, and for commercial arrays. This work is carried out under the U.S. Department of Energy reference model project, with the costs for engineering, deployment strategies, mooring and anchoring configurations, and maintenance operations, being developed by a consortium of Department of Energy national laboratories and universities. The goal of the reference model is to assist the MHK industry to become a cost-competitive contributor of renewable energy, by identifying those aspects of MHK projects that contribute significantly to the cost of energy, and directing research funding towards lowering those costs.

  19. Simulating Collisions for Hydrokinetic Turbines. FY2010 Annual Progress Report.

    SciTech Connect (OSTI)

    Richmond, Marshall C.; Rakowski, Cynthia L.; Perkins, William A.; Serkowski, John A.

    2010-11-30

    Computational fluid dynamics (CFD) simulations of turbulent flow and particle motion are being conducted to evaluate the frequency and severity of collisions between marine and hydrokinetic (MHK) energy devices and debris or aquatic organisms. The work is part of a collaborative research project between Pacific Northwest National Laboratory (PNNL) and Sandia National Laboratories , funded by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Wind and Water Power Program. During FY2010 a reference design for an axial flow MHK turbine was used to develop a computational geometry for inclusion into a CFD model. Unsteady simulations of turbulent flow and the moving MHK turbine blades are being performed and the results used for simulation of particle trajectories. Preliminary results and plans for future work are presented.

  20. THORs Power Method for Hydrokinetic Devices - Final Report

    SciTech Connect (OSTI)

    J. Turner Hunt; Joel Rumker

    2012-08-08

    Ocean current energy represents a vast untapped source of renewable energy that exists on the outer continental shelf areas of the 5 major continents. Ocean currents are unidirectional in nature and are perpetuated by thermal and salinity sea gradients, as well as coriolis forces imparted from the earth's rotation. This report details THORs Power Method, a breakthrough power control method that can provide dramatic increases to the capacity factor over and above existing marine hydrokinetic (MHK) devices employed in the extraction of energy from ocean currents. THORs Power Method represents a constant speed, variable depth operational method that continually locates the ocean current turbine at a depth at which the rated power of the generator is routinely achieved. Variable depth operation is achieved by using various vertical force effectors, including ballast tanks for variable weight, a hydrodynamic wing for variable lift or down force and drag flaps for variable vehicle drag forces.

  1. Sandia National Laboratories environmental fluid dynamics code. Marine Hydrokinetic Module User's Manual

    SciTech Connect (OSTI)

    James, Scott Carlton; Roberts, Jesse D.

    2014-03-01

    This document describes the marine hydrokinetic (MHK) input file and subroutines for the Sandia National Laboratories Environmental Fluid Dynamics Code (SNL-EFDC), which is a combined hydrodynamic, sediment transport, and water quality model based on the Environmental Fluid Dynamics Code (EFDC) developed by John Hamrick [1], formerly sponsored by the U.S. Environmental Protection Agency, and now maintained by Tetra Tech, Inc. SNL-EFDC has been previously enhanced with the incorporation of the SEDZLJ sediment dynamics model developed by Ziegler, Lick, and Jones [2-4]. SNL-EFDC has also been upgraded to more accurately simulate algae growth with specific application to optimizing biomass in an open-channel raceway for biofuels production [5]. A detailed description of the input file containing data describing the MHK device/array is provided, along with a description of the MHK FORTRAN routine. Both a theoretical description of the MHK dynamics as incorporated into SNL-EFDC and an explanation of the source code are provided. This user manual is meant to be used in conjunction with the original EFDC [6] and sediment dynamics SNL-EFDC manuals [7]. Through this document, the authors provide information for users who wish to model the effects of an MHK device (or array of devices) on a flow system with EFDC and who also seek a clear understanding of the source code, which is available from staff in the Water Power Technologies Department at Sandia National Laboratories, Albuquerque, New Mexico.

  2. DISCRETE ELEMENT MODELING OF BLADE–STRIKE FREQUENCY AND SURVIVAL OF FISH PASSING THROUGH HYDROKINETIC TURBINES

    SciTech Connect (OSTI)

    Romero Gomez, Pedro DJ; Richmond, Marshall C.

    2014-04-17

    Evaluating the consequences from blade-strike of fish on marine hydrokinetic (MHK) turbine blades is essential for incorporating environmental objectives into the integral optimization of machine performance. For instance, experience with conventional hydroelectric turbines has shown that innovative shaping of the blade and other machine components can lead to improved designs that generate more power without increased impacts to fish and other aquatic life. In this work, we used unsteady computational fluid dynamics (CFD) simulations of turbine flow and discrete element modeling (DEM) of particle motion to estimate the frequency and severity of collisions between a horizontal axis MHK tidal energy device and drifting aquatic organisms or debris. Two metrics are determined with the method: the strike frequency and survival rate estimate. To illustrate the procedure step-by-step, an exemplary case of a simple runner model was run and compared against a probabilistic model widely used for strike frequency evaluation. The results for the exemplary case showed a strong correlation between the two approaches. In the application case of the MHK turbine flow, turbulent flow was modeled using detached eddy simulation (DES) in conjunction with a full moving rotor at full scale. The CFD simulated power and thrust were satisfactorily comparable to experimental results conducted in a water tunnel on a reduced scaled (1:8.7) version of the turbine design. A cloud of DEM particles was injected into the domain to simulate fish or debris that were entrained into the turbine flow. The strike frequency was the ratio of the count of colliding particles to the crossing sample size. The fish length and approaching velocity were test conditions in the simulations of the MHK turbine. Comparisons showed that DEM-based frequencies tend to be greater than previous results from Lagrangian particles and probabilistic models, mostly because the DEM scheme accounts for both the geometric

  3. Chapter 4: Advancing Clean Electric Power Technologies | Carbon Dioxide Storage Technologies Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Carbon Dioxide Storage Technologies

  4. Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy into Wave and Tidal Ocean Power: 15% Water Power by 2030 Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030 January 27, 2012 - 11:30am Addthis A map generated by Georgia Tech's tidal energy resource database shows mean current speed of tidal streams. The East Coast, as shown above, has strong tides that could be tapped to produce energy. | Photo courtesy of Georgia Institute of Technology A map generated by Georgia Tech's tidal energy resource database

  5. Tidal | OpenEI Community

    Open Energy Info (EERE)

    Submitted by Ocop(5) Member 15 July, 2014 - 07:07 MHK LCOE Reporting Guidance Draft Cost Current DOE LCOE numerical modeling Performance Tidal Wave To normalize competing...

  6. Siting Study Framework and Survey Methodology for Marine and Hydrokinetic Energy Projects in Offshore Southeast Florida

    SciTech Connect (OSTI)

    Vinick, Charles

    2011-09-26

    Presentation from the 2011 Water Peer Review in which principal investigator discusses project progess to Investigate areas offshore southeast Florida that appeared most suitable for siting of marine and hydrokinetic energy conversion facilities that may be proposed in the Atlantic Ocean offshore of southeast Florida.

  7. Chapter 4: Advancing Clean Electric Power Technologies | Biopower Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gas and Industrial Applications Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial

  8. TidalStream | Open Energy Information

    Open Energy Info (EERE)

    TidalStream Jump to: navigation, search Name: TidalStream Place: Southam, United Kingdom Zip: CV47 0HF Product: UK-based developer of platforms for tidal turbines. Coordinates:...

  9. Live Webinar on the Marine and Hydrokinetic Demonstrations at The Navy's Wave Energy Test Site Funding Opportunity Announcement

    Office of Energy Efficiency and Renewable Energy (EERE)

    On Wednesday, May 7, 2014 from 3:00 PM - 4:30 PM EDT the Water Power Program will hold an informational webinar on the Marine and Hydrokinetic (MHK) Demonstrations at The Navy's Wave Energy Test...

  10. Tidal Energy Limited | Open Energy Information

    Open Energy Info (EERE)

    Limited Jump to: navigation, search Name: Tidal Energy Limited (TEL) Place: Cardiff, Wales, United Kingdom Zip: CF23 8RS Product: Tidal stream device developer. Coordinates:...