Powered by Deep Web Technologies
Note: This page contains sample records for the topic "tidal energy wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Ocean Tidal and Wave Energy  

Science Conference Proceedings (OSTI)

First published in 2000, the annual Renewable Energy Technical Assessment Guide (TAG-RE) provides a consistent basis for evaluating the economic feasibility of renewable generation technologies. This excerpt from the 2005 TAG-RE addresses ocean tidal and wave energy conversion technologies, which offer promise for converting the significant energy potential available in ocean tidal currents and waves to electricity in the future.

2005-12-19T23:59:59.000Z

2

Tidal Energy  

Office of Scientific and Technical Information (OSTI)

into Wave and Tidal Ocean Power: 15% Water Power by 2030, Energy.gov News Assessment of Energy Production Potential from Tidal Streams in the United States, Energy Citations...

3

Energy Basics: Tidal Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

4

The environmental interactions of tidal and wave energy generation devices  

Science Conference Proceedings (OSTI)

Global energy demand continues to grow and tidal and wave energy generation devices can provide a significant source of renewable energy. Technological developments in offshore engineering and the rising cost of traditional energy means that offshore energy resources will be economic in the next few years. While there is now a growing body of data on the ecological impacts of offshore wind farms, the scientific basis on which to make informed decisions about the environmental effects of other offshore energy developments is lacking. Tidal barrages have the potential to cause significant ecological impacts particularly on bird feeding areas when they are constructed at coastal estuaries or bays. Offshore tidal stream energy and wave energy collectors offer the scope for developments at varying scales. They also have the potential to alter habitats. A diversity of designs exist, including floating, mid-water column and seabed mounted devices, with a variety of moving-part configurations resulting in a unique complex of potential environmental effects for each device type, which are discussed to the extent possible. - Highlights: Black-Right-Pointing-Pointer We review the environmental impacts of tidal barrages and fences, tidal stream farms and wave energy capture devices. Black-Right-Pointing-Pointer Impacts on habitats, species and the water column, and effects of noise and electromagnetic fields are considered. Black-Right-Pointing-Pointer Tidal barrages can cause significant impacts on bird feeding areas when constructed at coastal estuaries or bays. Black-Right-Pointing-Pointer Wave energy collectors can alter water column and sea bed habitats locally and over large distances.

Frid, Chris, E-mail: c.l.j.frid@liv.ac.uk [School of Environmental Sciences, University of Liverpool, Crown Street, Liverpool, L69 7ZB (United Kingdom); Andonegi, Eider, E-mail: eandonegi@azti.es [AZTI-Tecnalia, Txatxarramendi ugartea, z/g E-48395 Sukarrieta (Bizkaia) (Spain); Depestele, Jochen, E-mail: jochen.depestele@ilvo.vlaanderen.be [Institute for Agricultural and Fisheries Research, Ankerstraat 1, B-8400 Oostende (Belgium); Judd, Adrian, E-mail: Adrian.Judd@cefas.co.uk [Centre for Environment, Fisheries and Aquaculture Science , Lowestoft Laboratory, Pakefield Road, Lowestoft NR33 0HT United Kingdom (United Kingdom); Rihan, Dominic, E-mail: Dominic.RIHAN@ec.europa.eu [Irish Sea Fisheries Board, P.O. Box 12 Dun Laoghaire, Co. Dublin (Ireland); Rogers, Stuart I., E-mail: stuart.rogers@cefas.co.uk [Centre for Environment, Fisheries and Aquaculture Science , Lowestoft Laboratory, Pakefield Road, Lowestoft NR33 0HT United Kingdom (United Kingdom); Kenchington, Ellen, E-mail: Ellen.Kenchington@dfo-mpo.gc.ca [Fisheries and Oceans Canada, Bedford Institute of Oceanography, P.O. Box 1006, Dartmouth Canada, NS B2Y 4A2 (Canada)

2012-01-15T23:59:59.000Z

5

Energy Department Invests $16 Million to Harness Wave and Tidal Energy |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 Million to Harness Wave and Tidal 6 Million to Harness Wave and Tidal Energy Energy Department Invests $16 Million to Harness Wave and Tidal Energy August 29, 2013 - 2:35pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's all-of-the-above strategy to deploy every available source of American energy, the Energy Department today announced $16 million for seventeen projects to help sustainably and efficiently capture energy from waves, tides and currents. Together, these projects will increase the power production and reliability of wave and tidal devices and help gather valuable data on how deployed devices interact with the surrounding environment. "Wave and tidal energy represent a large, untapped resource for the United States and responsible development of this clean, renewable energy

6

Energy Department Invests $16 Million to Develop Wave and Tidal Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 Million to Develop Wave and Tidal 6 Million to Develop Wave and Tidal Energy Technologies Energy Department Invests $16 Million to Develop Wave and Tidal Energy Technologies August 29, 2013 - 12:00pm Addthis Image of machinery to generate energy using tides. As part of the Obama Administration's all-of-the-above strategy to deploy every available source of American energy, the Energy Department today announced $16 million for seventeen projects to help sustainably and efficiently capture energy from waves, tides, and currents. Together, these projects will increase the power production and reliability of wave and tidal devices and help gather valuable data on how deployed devices interact with the surrounding environment. "Wave and tidal energy represent a large, untapped resource for the United

7

Hydropower, Wave and Tidal Technologies - Energy Innovation Portal  

Biomass and Biofuels Hydropower, Wave and Tidal Industrial ... raw materials suggests the need for elimination of these materials from electric motors ...

8

Regulation of Tidal and Wave Energy Projects (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tidal and Wave Energy Projects (Maine) Tidal and Wave Energy Projects (Maine) Regulation of Tidal and Wave Energy Projects (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Water Buying & Making Electricity Program Info State Maine Program Type Siting and Permitting Provider Department of Environmental Protection State regulation of tidal and wave energy projects is covered under the Maine Waterway Development and Conservation Act (MWDCA), and complements

9

Tidal Energy  

Energy.gov (U.S. Department of Energy (DOE))

Some of the oldest ocean energy technologies use tidal power. All coastal areas experience two high tides and two low tides over a period of slightly more than 24 hours. For those tidal differences to be harnessed into electricity, the difference between high and low tides must be more than 16 feet (or at least 5 meters). However, there are only about 40 sites on Earth with tidal ranges of this magnitude.

10

Spectral Estimates of Gravity Wave Energy and Momentum Fluxes. Part III: Gravity Wave-Tidal Interactions  

Science Conference Proceedings (OSTI)

An application of the gravity wave parameterization scheme developed in the companion papers by Fritts and VanZandt and Fritts and Lu to the mutual interaction of gravity waves and tidal motions is presented. The results suggest that interaction ...

Wentong Lu; David C. Fritts

1993-11-01T23:59:59.000Z

11

Hydropower, Wave and Tidal Technologies Available for ...  

Site Map; Printable Version; Share this resource. Send a link to Hydropower, Wave and Tidal Technologies Available for Licensing - Energy Innovation Portalto someone ...

12

Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Add description List of Tidal Energy Incentives Retrieved from "http:en.openei.orgwindex.php?titleTidalEnergy&oldid267201" Category: Articles with outstanding TODO tasks...

13

Energy Basics: Tidal Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the cost per kilowatt-hour of tidal power is not competitive with conventional fossil fuel power. Contacts | Web Site Policies | U.S. Department of Energy | USA.gov Content Last...

14

Energy Basics: Wave Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

15

Tidal Energy Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tidal Energy Basics Tidal Energy Basics Tidal Energy Basics August 16, 2013 - 4:26pm Addthis Photo of the ocean rising along the beach. Some of the oldest ocean energy technologies use tidal power. All coastal areas experience two high tides and two low tides over a period of slightly more than 24 hours. For those tidal differences to be harnessed into electricity, the difference between high and low tides must be more than 16 feet (or at least 5 meters). However, there are only about 40 sites on Earth with tidal ranges of this magnitude. Currently, there are no tidal power plants in the United States, but conditions are good for tidal power generation in the Pacific Northwest and the Atlantic Northeast regions. Tidal Energy Technologies Tidal energy technologies include barrages or dams, tidal fences, and tidal

16

Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030 Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030 Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030 January 27, 2012 - 11:30am Addthis A map generated by Georgia Tech's tidal energy resource database shows mean current speed of tidal streams. The East Coast, as shown above, has strong tides that could be tapped to produce energy. | Photo courtesy of Georgia Institute of Technology A map generated by Georgia Tech's tidal energy resource database shows mean current speed of tidal streams. The East Coast, as shown above, has strong tides that could be tapped to produce energy. | Photo courtesy of Georgia Institute of Technology Hoyt Battey Water Power Market Acceleration and Deployment Team Lead, Wind and Water Power Program

17

Status of Wave and Tidal Power Technologies for the United States  

DOE Green Energy (OSTI)

This paper presents the status of marine applications for renewable energy as of 2008 from a U.S. perspective. Technologies examined include wave, tidal, and ocean current energy extraction devices.

Musial, W.

2008-08-01T23:59:59.000Z

18

DOE Science Showcase - Tidal Energy | OSTI, US Dept of Energy, Office of  

Office of Scientific and Technical Information (OSTI)

DOE Science Showcase - Tidal Energy DOE Science Showcase - Tidal Energy Point absorbers generate electricity by converting the energy in waves using a float that rides the waves and is attached to a moored conversion device. The Department of Energy's Water Power Program Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030, Energy.gov News Assessment of Energy Production Potential from Tidal Streams in the United States, Energy Citations Database Georgia Tech's Tidal Energy Resources Database U.S. Renewable Resources Atlas , NREL Tidal energy research in WorldWideScience.org OSTI Homepage Mobile Gallery Subscribe to RSS OSTI Blog Get Widgets Get Alert Services OSTI Facebook OSTI Twitter OSTI Google+ Bookmark and Share (Link will open in a new window) Go to Videos Loading...

19

Tidal Energy Limited | Open Energy Information  

Open Energy Info (EERE)

Tidal Energy Limited (TEL) Tidal Energy Limited (TEL) Place Cardiff, Wales, United Kingdom Zip CF23 8RS Product Tidal stream device developer. Coordinates 51.48125°, -3.180734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.48125,"lon":-3.180734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

20

Tidal Energy Test Platform | Open Energy Information  

Open Energy Info (EERE)

Test Platform Test Platform Jump to: navigation, search Basic Specifications Facility Name Tidal Energy Test Platform Overseeing Organization University of New Hampshire Hydrodynamics Hydrodynamic Testing Facility Type Offshore Berth Water Type Saltwater Cost(per day) Contact POC Special Physical Features The Tidal Testing Platform is presently a 10.7m long x 3m wide pontoon barge with a derrick and an opening for deploying tidal energy devices. The platform is intentionally configured to be adaptive for the changing needs of different devices. Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition Cameras None

Note: This page contains sample records for the topic "tidal energy wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Tidal Electric | Open Energy Information  

Open Energy Info (EERE)

Electric Electric Jump to: navigation, search Name Tidal Electric Place London, Greater London, United Kingdom Zip SW19 8UY Product Developed a technology named 'tidal lagoons' to build tidal electric projects. Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

22

All Eyes on Eastport: Tidal Energy Project Brings Change, Opportunity...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tidal Energy Project Brings Change, Opportunity to Local Community All Eyes on Eastport: Tidal Energy Project Brings Change, Opportunity to Local Community July 24, 2012 - 2:40pm...

23

MHK Technologies/Tidal Defense and Energy System TIDES | Open Energy  

Open Energy Info (EERE)

MHK Technologies/Tidal Defense and Energy System TIDES MHK Technologies/Tidal Defense and Energy System TIDES < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Defense and Energy System TIDES.jpg Technology Profile Primary Organization Oceana Energy Company Project(s) where this technology is utilized *MHK Projects/Astoria Tidal Energy *MHK Projects/Cape Islands Tidal Energy Project *MHK Projects/Central Cook Inlet Tidal Energy Project *MHK Projects/Icy Passage Tidal Energy Project *MHK Projects/Kachemak Bay Tidal Energy Project *MHK Projects/Kendall Head Tidal Energy *MHK Projects/Kennebec *MHK Projects/Penobscot Tidal Energy Project *MHK Projects/Portsmouth Area Tidal Energy Project *MHK Projects/Wrangell Narrows Tidal Energy Project Technology Resource Click here Current/Tidal

24

EERE News: Energy Department Invests $16 Million to Develop Wave...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Invests 16 Million to Develop Wave and Tidal Energy Technologies August 29, 2013 Image of machinery to generate energy using tides. As part of the Obama Administration's...

25

Tidal Sails AS | Open Energy Information  

Open Energy Info (EERE)

Sails AS Sails AS Jump to: navigation, search Name Tidal Sails AS Address Standgaten 130 Place Haugesund Zip 5531 Sector Marine and Hydrokinetic Phone number +32 474 98 06 16 Website http://www.tidalsails.com Region Norway LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Technologies: Tidal Sails This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Tidal_Sails_AS&oldid=678479" Categories: Clean Energy Organizations Companies Organizations Stubs MHK Companies What links here Related changes Special pages Printable version Permanent link Browse properties

26

Wave Energy  

Energy.gov (U.S. Department of Energy (DOE))

Wave energy technologies extract energy directly from surface waves or from pressure fluctuations below the surface. Renewable energy analysts believe there is enough energy in ocean waves to provide up to 2 terawatts of electricity. (A terawatt is equal to a trillion watts.)

27

Hydra Tidal Energy Technology AS | Open Energy Information  

Open Energy Info (EERE)

Tidal Energy Technology AS Tidal Energy Technology AS Jump to: navigation, search Name Hydra Tidal Energy Technology AS Address PO Box 399 Place Harstad Zip 9484 Sector Marine and Hydrokinetic Year founded 2001 Phone number (+47) 77 06 08 08 Website http://http://www.hydratidal.i Region Norway LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: MORILD Demonstration Plant Morild 2 This company is involved in the following MHK Technologies: MORILD 2 Floating Tidal Power System Morild Power Plant This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Hydra_Tidal_Energy_Technology_AS&oldid=678333

28

MHK Technologies/Deep Gen Tidal Turbines | Open Energy Information  

Open Energy Info (EERE)

Deep Gen Tidal Turbines Deep Gen Tidal Turbines < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Deep Gen Tidal Turbines.jpg Technology Profile Primary Organization Tidal Generation Ltd Project(s) where this technology is utilized *MHK Projects/Tidal Generation Ltd EMEC Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The DEEP Gen 1 MW fully submerged tidal turbine best exploits resources in depths 30m The horizontal axis turbine is inexpensive to construct and easy to install due to the lightweight 80 tons MW support structure allows rapid removal and replacement of powertrains enabling safe maintenance in a dry environment and is located out of the wave zone for improved survivability

29

Earth Tidal Analysis | Open Energy Information  

Open Energy Info (EERE)

Earth Tidal Analysis Earth Tidal Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Earth Tidal Analysis Details Activities (6) Areas (4) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Well Testing Techniques Information Provided by Technique Lithology: Enables estimation of in-situ reservoir elastic parameters. Stratigraphic/Structural: Hydrological: Enables estimation of in-situ reservoir hydraulic parameters. Thermal: Dictionary.png Earth Tidal Analysis: Earth tidal analysis is the measurement of the impact of tidal and barometric fluctuations on effective pore volume in a porous reservoir. Other definitions:Wikipedia Reegle

30

MHK Technologies/Tidal Sails | Open Energy Information  

Open Energy Info (EERE)

Sails Sails < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Sails.jpg Technology Profile Primary Organization Tidal Sails AS Technology Resource Click here Current Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Tidal Sails device is a series of underwater sails affixed to wires strung across the tidal stream at an angle The sails are driven back and forth by the tidal flow between two stations at one of which the generator is installed Technology Dimensions Device Testing Date Submitted 26:04.6 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Tidal_Sails&oldid=681675

31

Some new conceptions in the approach to harnessing tidal energy  

Science Conference Proceedings (OSTI)

This paper outlines a method of converting the energy of ocean tides into electrical and other forms of industrial energy. The main disadvantage of extracting tidal power arises from the low density of tidal power per unit area of the ocean. This leads to the high cost of required investment for the production of a substantial volume of the energy. 10 refs.

Gorlov, A.M.

1981-01-01T23:59:59.000Z

32

MHK Projects/Kendall Head Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Kendall Head Tidal Energy Kendall Head Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

33

Tidal Hydraulic Generators Ltd | Open Energy Information  

Open Energy Info (EERE)

Hydraulic Generators Ltd Jump to: navigation, search Name Tidal Hydraulic Generators Ltd Address 14 Thislesboon Drive Place Mumbles Zip SA3 4HY Sector Marine and Hydrokinetic Phone...

34

Numerical simulation and analysis to tidal currents and wave field of pearl river  

Science Conference Proceedings (OSTI)

A hydrodynamic model (MOCOE) is used in tidal current and wave calculation in Yamen river, which is one of the eight estuaries of Pearl River. The method of combining curvilinear orthogonal coordinates in the horizontal direction with Sigma mapping coordinates ... Keywords: curvilinear orthogonal, numerical simulation, tidal currents

Wu Hongxu

2009-11-01T23:59:59.000Z

35

The Signature of Inertial and Tidal Currents in Offshore Wave Records  

Science Conference Proceedings (OSTI)

The roughness of the sea surface can be affected by strong currents. Here, long records of surface wave heights from buoy observations in the northeastern Pacific Ocean are examined. The data show the influence of tidal currents, but the first ...

Johannes Gemmrich; Chris Garrett

2012-06-01T23:59:59.000Z

36

MHK Technologies/TidalStar | Open Energy Information  

Open Energy Info (EERE)

TidalStar TidalStar < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage TidalStar.jpg Technology Profile Primary Organization Bourne Energy Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The horizontal axis TidalStar device uses a bidirectional twin rotor turbine to produce approximately 50 kW at peak capacity in both ebb and flood tides Technology Dimensions Length (m) 6 Width (m) 6 Freeboard (m) 1 Technology Nameplate Capacity (MW) 5 Device Testing Date Submitted 46:38.3 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/TidalStar&oldid=681677

37

MHK Projects/East Foreland Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

East Foreland Tidal Energy East Foreland Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.2223,"lon":-151.905,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

38

MHK Projects/Cuttyhunk Tidal Energy Plant | Open Energy Information  

Open Energy Info (EERE)

Cuttyhunk Tidal Energy Plant Cuttyhunk Tidal Energy Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7778,"lon":-70.8489,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

39

MHK Projects/Wrangell Narrows Tidal Energy Project | Open Energy  

Open Energy Info (EERE)

Wrangell Narrows Tidal Energy Project Wrangell Narrows Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":56.6324,"lon":-132.936,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

40

MHK Projects/Astoria Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Astoria Tidal Energy Astoria Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7172,"lon":-73.9703,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "tidal energy wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

MHK Projects/Cohansey River Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Cohansey River Tidal Energy Cohansey River Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3829,"lon":-75.2995,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

42

MHK Projects/Highlands Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Tidal Energy Project Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.3432,"lon":-73.9977,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

43

MHK Projects/Piscataqua Tidal Hydrokinetic Energy Project | Open Energy  

Open Energy Info (EERE)

Piscataqua Tidal Hydrokinetic Energy Project Piscataqua Tidal Hydrokinetic Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.1055,"lon":-70.7912,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

44

MHK Projects/Wiscasset Tidal Energy Plant | Open Energy Information  

Open Energy Info (EERE)

Wiscasset Tidal Energy Plant Wiscasset Tidal Energy Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.8146,"lon":-69.8697,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

45

MHK Projects/Nantucket Tidal Energy Plant | Open Energy Information  

Open Energy Info (EERE)

Nantucket Tidal Energy Plant Nantucket Tidal Energy Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.389,"lon":-70.5134,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

46

MHK Projects/Kingsbridge Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Kingsbridge Tidal Energy Project Kingsbridge Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.1008,"lon":-74.0495,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

47

MHK Projects/Rockaway Tidal Energy Plant | Open Energy Information  

Open Energy Info (EERE)

Rockaway Tidal Energy Plant Rockaway Tidal Energy Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.5667,"lon":-73.922,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

48

MHK Projects/Muskeget Channel Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Muskeget Channel Tidal Energy Muskeget Channel Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.3501,"lon":-70.3995,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

49

MHK Projects/Killisnoo Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Killisnoo Tidal Energy Killisnoo Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":57.4724,"lon":-134.56,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

50

MHK Projects/Housatonic Tidal Energy Plant | Open Energy Information  

Open Energy Info (EERE)

Housatonic Tidal Energy Plant Housatonic Tidal Energy Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.2713,"lon":-73.0883,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

51

MHK Projects/Tidal Energy Project Portugal | Open Energy Information  

Open Energy Info (EERE)

Tidal Energy Project Portugal Tidal Energy Project Portugal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.702,"lon":-9.13445,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

52

MHK Projects/Penobscot Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Penobscot Tidal Energy Project Penobscot Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.5404,"lon":-68.7838,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

53

MHK Projects/Cape May Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Cape May Tidal Energy Cape May Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9668,"lon":-74.963,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

54

MHK Projects/Salem Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Salem Tidal Energy Salem Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.5739,"lon":-75.5438,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

55

MHK Projects/Angoon Tidal Energy Plant | Open Energy Information  

Open Energy Info (EERE)

Angoon Tidal Energy Plant Angoon Tidal Energy Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":57.5034,"lon":-134.58,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

56

MHK Projects/Seaflow Tidal Energy System | Open Energy Information  

Open Energy Info (EERE)

Seaflow Tidal Energy System Seaflow Tidal Energy System < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.2353,"lon":-3.8356,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

57

MHK Projects/Cook Inlet Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Cook Inlet Tidal Energy Cook Inlet Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.6893,"lon":-151.437,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

58

MHK Projects/Admirality Inlet Tidal Energy Project | Open Energy  

Open Energy Info (EERE)

Admirality Inlet Tidal Energy Project Admirality Inlet Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.1169,"lon":-122.76,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

59

Tidal Generation Ltd | Open Energy Information  

Open Energy Info (EERE)

Ltd Ltd Jump to: navigation, search Name Tidal Generation Ltd Address University Gate East Park Row Place Bristol, United Kingdom Zip BS1 5UB Sector Marine and Hydrokinetic Product Tidal Generation is developing a 1MW fully submerged tidal turbine to generate electricity from tidal currents in water depths up to 50m. Phone number 4.41E+11 Website http://www.tidalgeneration.co. Coordinates 42.55678°, -88.050449° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.55678,"lon":-88.050449,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

60

MHK Technologies/Rotech Tidal Turbine RTT | Open Energy Information  

Open Energy Info (EERE)

Rotech Tidal Turbine RTT Rotech Tidal Turbine RTT < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Rotech Tidal Turbine RTT.jpg Technology Profile Primary Organization Lunar Energy Project(s) where this technology is utilized *MHK Projects/Lunar Energy St David s Peninsula Pembrokeshire South Wales UK *MHK Projects/Lunar Energy Wando Hoenggan Waterway South Korea Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description he Rotech Tidal Turbine (RTT) is a bi-directional horizontal axis turbine housed in a symmetrical venturi duct. The Venturi duct draws the existing ocean currents into the RTT in order to capture and convert energy into electricity. Use of a gravity foundation will allow the RTT to be deployed quickly with little or no seabed preparation at depths in excess of 40 meters. This gives the RTT a distinct advantage over most of its competitors and opens up a potential energy resource that is five times the size of that available to companies using pile foundations.

Note: This page contains sample records for the topic "tidal energy wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

MHK Technologies/Scotrenewables Tidal Turbine SRTT | Open Energy  

Open Energy Info (EERE)

Scotrenewables Tidal Turbine SRTT Scotrenewables Tidal Turbine SRTT < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Scotrenewables Tidal Turbine SRTT.jpg Technology Profile Primary Organization Scotrenewables Project(s) where this technology is utilized *MHK Projects/Scotrenewables EMEC Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description The Scotrenewables Tidal Turbine (SRTT) system is a free-floating rotor-based tidal current energy converter. The concept in its present configuration involves dual counter-rotating horizontal axis rotors driving generators within sub-surface nacelles, each suspended from separate keel and rotor arm sections attached to a single surface-piercing cylindrical buoyancy tube. The device is anchored to the seabed via a yoke arrangement. A separate flexible power and control umbilical line connects the device to a subsea junction box. The rotor arm sections are hinged to allow each two-bladed rotor to be retracted so as to be parallel with the longitudinal axis of the buoyancy tube, giving the system a transport draught of less than 4.5m at full-scale to facilitate towing the device into harbors for maintenance.

62

MHK Technologies/Tidal Stream | Open Energy Information  

Open Energy Info (EERE)

Stream Stream < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Stream.jpg Technology Profile Primary Organization Tidal Stream Project(s) where this technology is utilized *MHK Projects/Thames at Chiswick Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The TidalStream SST (Semi-Submersible Turbine) is designed for deep water, typically 60m+ (e.g., Pentland Firth) where it is too deep to mount turbines rigidly to the seabed and too rough for surface floaters to survive. Tidal Stream SST consists of turbines connected to unique semi-submersible spar buoys that are moored to the seabed using anchors through swing-arms. This ensures automatic alignment to the tidal flow to maximize energy capture. By blowing the water ballast, the device will rise, rotate, and float to the surface still tethered to the base to allow for on- or off-site maintenance. By releasing the tether arm the device can be towed to a harbor at the end of its life or for major repair or exchange.

63

List of Tidal Energy Incentives | Open Energy Information  

Open Energy Info (EERE)

Incentives Incentives Jump to: navigation, search The following contains the list of 538 Tidal Energy Incentives. CSV (rows 1-500) CSV (rows 501-538) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Abatement of Air Pollution: Control of Carbon Dioxide Emissions/Carbon Dioxide Budget Trading Program (Connecticut) Environmental Regulations Connecticut Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Biomass/Biogas

64

New Interactive Map Reveals U.S. Tidal Energy Resources | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Interactive Map Reveals U.S. Tidal Energy Resources Interactive Map Reveals U.S. Tidal Energy Resources New Interactive Map Reveals U.S. Tidal Energy Resources July 7, 2011 - 10:50am Addthis A map generated by Georgia Tech's tidal energy resource database shows mean current speed of tidal streams | Source: Georgia Institute of Technology A map generated by Georgia Tech's tidal energy resource database shows mean current speed of tidal streams | Source: Georgia Institute of Technology Mike Reed Water Power Program Manager, Water Power Program Tidal energy -- a renewable, predictable resource available up and down America's coastlines -- holds great promise for clean energy generation. And now, a first of its kind database gives researchers deeper insight into the potential of this energy resource for the United States.

65

The Cascade of Tidal Energy from Low to High Modes on a Continental Slope  

Science Conference Proceedings (OSTI)

The linear transfer of tidal energy from large to small scales is quantified for small tidal excursion over a near-critical continental slope. A theoretical framework for low-wavenumber energy transfer is derived from flat bottom vertical modes ...

Samuel M. Kelly; Jonathan D. Nash; Kim I. Martini; Matthew H. Alford; Eric Kunze

2012-07-01T23:59:59.000Z

66

Wave Energy | Open Energy Information  

Open Energy Info (EERE)

TODO: Add description List of Wave Energy Incentives Retrieved from "http:en.openei.orgwindex.php?titleWaveEnergy&oldid267203" Category: Articles with outstanding TODO tasks...

67

MHK Technologies/KESC Tidal Generator | Open Energy Information  

Open Energy Info (EERE)

KESC Tidal Generator KESC Tidal Generator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage KESC Tidal Generator.jpg Technology Profile Primary Organization Kinetic Energy Systems Project(s) where this technology is utilized *MHK Projects/Newfound Harbor Project Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The Tidal Generator is based on free flow hydrodynamics for regions that have flood and ebb tides. Strategically attached to bridges, pilings, river, channel, or sea bottoms, this multi-directional generator contains two sets of turbine blades. As the tide flows inward the inward turbine blades opens to maximum rotor diameter while the outward turbine closes into the outward cone-shaped hub to create a hydro dynamically clean surface for water to flow without drag. The center diameter is 75% of the diameter of the turbine blades at full rotor extension for stability.

68

MHK Technologies/Tidal Turbine | Open Energy Information  

Open Energy Info (EERE)

Turbine Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Turbine.jpg Technology Profile Primary Organization Aquascientific Project(s) where this technology is utilized *MHK Projects/Race Rocks Demonstration Technology Resource Click here Current/Tidal Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description Turbine is positioned by anchoring and cabling Energy extraction from flow that is transverse to the rotation axis Turbines utilize both lift and drag Mooring Configuration Gravity base although other options are currently being explored Technology Dimensions Device Testing Date Submitted 10/8/2010

69

MHK Technologies/Tidal Delay | Open Energy Information  

Open Energy Info (EERE)

Delay Delay < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Delay.png Technology Profile Primary Organization Woodshed Technologies Ltd Technology Resource Click here Current Technology Type Click here Overtopping Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Tidal Delay utilizes an existing natural land formation such as a peninsula or isthmus that creates a natural tidal barrier separating moving rising and falling bodies of seawater As the seawater on each side of the natural barrier rises and falls the device captures the energy resulting from the difference in water levels across the barrier using proven hydroelectric technology The device utilizes a standard impulse turbine installed in siphon pipe over under the natural barrier

70

MHK Technologies/Tidal Hydraulic Generators THG | Open Energy Information  

Open Energy Info (EERE)

Generators THG Generators THG < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Hydraulic Generators THG.jpg Technology Profile Primary Organization Tidal Hydraulic Generators Ltd Project(s) where this technology is utilized *MHK Projects/Ramsey Sound Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The concept of generating energy in this way is made unique by our novel design feature. The generator, devised in 1998, is a hydraulic accumulator system, involving relatively small revolving blades which gather power to a central collector, where electricity is generated. The generator, which is situated under water, is 80 metres square, stands at 15 metres high, and is designed to run for a minimum of ten years without service.

71

A Case Study of WaveCurrent Interaction in a Strong Tidal Current  

Science Conference Proceedings (OSTI)

During August 1991, a field program was carried out in the vicinity of Cape St. James, off the British Columbia coast, where a strong tidally driven flow interacts with an active wave climate. Surface current maps were obtained from a CODAR-type ...

Diane Masson

1996-03-01T23:59:59.000Z

72

Tidally Forced Internal Wave Mixing in a k? Model Framework Applied to Fjord Basins  

Science Conference Proceedings (OSTI)

A simple method for including tidally forced internal wave mixing in a two-equation turbulence closure framework, the k? model, is presented. The purpose is to model the vertical mixing in the basin waters of stagnant sill fjords. An internal ...

Olof Liungman

2000-02-01T23:59:59.000Z

73

Energy Flux and Generation of Diurnal Shelf Waves along Vancouver Island  

Science Conference Proceedings (OSTI)

Recent observations along the west coast of Vancouver Island reveal among diurnal-period currents due to a tidally driven continental shelf wave superimposed upon a Kelvin wave. The energy flux of this system is investigated here. It is shown ...

William R. Crawford

1984-10-01T23:59:59.000Z

74

Wave Energy  

E-Print Network (OSTI)

Promoting the sustainable supply and use of energy for the greatest benefit of all. Publication details The compilation of the Survey of Energy Resources 2001 is the work of the editors and, while all reasonable endeavours have been used to ensure the accuracy of the data, neither the editors nor the World Energy Council can accept responsibility for any errors.

The World; Energy Council; Wb Lt; K. Yokobori (japan; A. W. Clarke (united Kingdom; J. A. Trinnaman (united Kingdom; Nuclear Energy; N. Alazard-toux; B. Bensad; W. Youngquist

2001-01-01T23:59:59.000Z

75

Wave Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

turn, rotates a turbine. Specially built seagoing vessels can also capture the energy of offshore waves. These floating platforms create electricity by funneling waves through...

76

MHK Projects/Deception Pass Tidal Energy Hydroelectric Project | Open  

Open Energy Info (EERE)

Deception Pass Tidal Energy Hydroelectric Project Deception Pass Tidal Energy Hydroelectric Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.4072,"lon":-122.643,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

77

Definition: Earth Tidal Analysis | Open Energy Information  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View...

78

Tidal Stream Power Web GIS Tool | Open Energy Information  

Open Energy Info (EERE)

Tidal Stream Power Web GIS Tool Tidal Stream Power Web GIS Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Tidal Stream Power Web GIS Tool Agency/Company /Organization: Georgia Tech Savannah Sector: Energy Focus Area: Renewable Energy Resource Type: Software/modeling tools User Interface: Website Website: www.tidalstreampower.gatech.edu/ Country: United States Web Application Link: www.tidalstreampower.gatech.edu/ Cost: Free UN Region: Northern America Coordinates: 32.167482°, -81.212405° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.167482,"lon":-81.212405,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

79

Maine Deploys First U.S. Commercial, Grid-Connected Tidal Energy Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine Deploys First U.S. Commercial, Grid-Connected Tidal Energy Maine Deploys First U.S. Commercial, Grid-Connected Tidal Energy Project Maine Deploys First U.S. Commercial, Grid-Connected Tidal Energy Project July 24, 2012 - 1:12pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON -- Today, Energy Secretary Steven Chu recognized the nation's first commercial, grid-connected tidal energy project off the coast of Eastport, Maine. Leveraging a $10 million investment from the Energy Department, Ocean Renewable Power Company (ORPC) will deploy its first commercial tidal energy device into Cobscook Bay this summer. The project, which injected $14 million into the local economy and has supported more than 100 local and supply chain jobs, represents the first tidal energy project in the United States with long-term contracts to sell electricity

80

Single ion conductor cross-linked polymeric networks - Energy ...  

Building Energy Efficiency; Electricity Transmission; ... Hydropower, Wave and Tidal; Industrial Technologies; Solar Photovoltaic; Solar Thermal; ...

Note: This page contains sample records for the topic "tidal energy wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

MHK Technologies/Uldolmok Pilot Tidal Current Power Plant | Open Energy  

Open Energy Info (EERE)

Uldolmok Pilot Tidal Current Power Plant Uldolmok Pilot Tidal Current Power Plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Uldolmok Pilot Tidal Current Power Plant.jpg Technology Profile Primary Organization Korea East West Power Co LTD Technology Resource Click here Current Technology Type Click here Overtopping Technology Readiness Level Click here TRL 9 Commercial Scale Production Application Technology Description The tidal current power plant uses current energy that can be differentiated from a typical tidal power plant using marine energy The latter confines water in a dam and when released it gets processed in a turbine to produce electric power The tidal current power plant on the other hand does not need a dam thus concerns of social dislocations and degradation of ecosystems primarily endangering marine life can be avoided

82

Tunable surface plasmon devices - Energy Innovation Portal  

Energy Innovation Portal Technologies. ... Energy Analysis; Energy Storage; Geothermal; Hydrogen and Fuel Cell; Hydropower, Wave and Tidal; Industrial ...

83

Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine Project Takes Historic Step Forward in U.S. Tidal Energy Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment May 4, 2012 - 12:11pm Addthis Cobscook Bay, Maine, is the site of a tidal energy pilot project led by Ocean Renewable Power Company. | Photo courtesy of Ocean Renewable Power Company. Cobscook Bay, Maine, is the site of a tidal energy pilot project led by Ocean Renewable Power Company. | Photo courtesy of Ocean Renewable Power Company. Hoyt Battey Water Power Market Acceleration and Deployment Team Lead, Wind and Water Power Program What does this project do? ORPC will deploy cross flow turbine devices in Cobscook Bay, at the mouth of the Bay of Fundy. These devices are designed to generate electricity over a range of

84

Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine Project Takes Historic Step Forward in U.S. Tidal Energy Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment May 4, 2012 - 12:11pm Addthis Cobscook Bay, Maine, is the site of a tidal energy pilot project led by Ocean Renewable Power Company. | Photo courtesy of Ocean Renewable Power Company. Cobscook Bay, Maine, is the site of a tidal energy pilot project led by Ocean Renewable Power Company. | Photo courtesy of Ocean Renewable Power Company. Hoyt Battey Water Power Market Acceleration and Deployment Team Lead, Wind and Water Power Program What does this project do? ORPC will deploy cross flow turbine devices in Cobscook Bay, at the mouth of the Bay of Fundy. These devices are designed to generate electricity over a range of

85

Tidal Energy System for On-Shore Power Generation  

DOE Green Energy (OSTI)

Addressing the urgent need to develop LCOE competitive renewable energy solutions for US energy security and to replace fossil-fuel generation with the associated benefits to environment impacts including a reduction in CO2 emissions, this Project focused on the advantages of using hydraulic energy transfer (HET) in large-scale Marine Hydrokinetic (MHK) systems for harvesting off-shore tidal energy in US waters. A recent DOE resource assessment, identifies water power resources have a potential to meet 15% of the US electric supply by 2030, with MHK technologies being a major component. The work covered a TRL-4 laboratory proof-in-concept demonstration plus modeling of a 15MW full scale system based on an approach patented by NASA-JPL, in which submerged high-ratio gearboxes and electrical generators in conventional MHK turbine systems are replaced by a submerged hydraulic radial pump coupled to on-shore hydraulic motors driving a generator. The advantages are; first, the mean-time-between-failure (MTBF), or maintenance, can be extended from approximately 1 to 5 years and second, the range of tidal flow speeds which can be efficiently harvested can be extended beyond that of a conventional submerged generator. The approach uses scalable, commercial-off-the-shelf (COTS) components, facilitating scale-up and commercialization. All the objectives of the Project have been successfully met (1) A TRL4 system was designed, constructed and tested. It simulates a tidal energy turbine, with a 2-m diameter blade in up to a 2.9 m/sec flow. The system consists of a drive motor assembly providing appropriate torque and RPM, attached to a radial piston pump. The pump circulates pressurized, environmentally-friendly, HEES hydraulic fluid in a closed loop to an axial piston motor which drives an electrical generator, with a resistive load. The performance of the components, subsystems and system were evaluated during simulated tidal cycles. The pump is contained in a tank for immersion testing. The COTS pump and motor were selected to scale to MW size and were oversized for the TRL-4 demonstration, operating at only 1-6% of rated values. Nevertheless, in for 2-18 kW drive power, in agreement with manufacturer performance data, we measured efficiencies of 85-90% and 75-80% for the pump and motor, respectively. These efficiencies being 95-96% at higher operating powers. (2) Two follow-on paths were identified. In both cases conventional turbine systems can be modified, replacing existing gear box and generator with a hydraulic pump and on-shore components. On a conventional path, a TRL5/6 15kW turbine system can be engineered and tested on a barge at an existing site in Maine. Alternatively, on an accelerated path, a TRL-8 100kW system can be engineered and tested by modifying a team member's existing MHK turbines, with barge and grid-connected test sites in-place. On both paths the work can be expedited and cost effective by reusing TRL-4 components, modifying existing turbines and using established test sites. (3) Sizing, performance modeling and costing of a scaled 15MW system, suitable for operation in Maine's Western Passage, was performed. COTS components are identified and the performance projections are favorable. The estimated LCOE is comparable to wind generation with peak production at high demand times. (4) We determined that a similar HET approach can be extended to on-shore and off-shore wind turbine systems. These are very large energy resources which can be addressed in parallel for even great National benefit. (5) Preliminary results on this project were presented at two International Conferences on renewable energy in 2012, providing a timely dissemination of information. We have thus demonstrated a proof-in-concept of a novel, tidal HET system that eliminates all submerged gears and electronics to improve reliability. Hydraulic pump efficiencies of 90% have been confirmed in simulated tidal flows between 1 and 3 m/s, and at only 1-6% of rated power. Total system efficiencies have also been modeled, up to MW-scale, for ti

Bruce, Allan J

2012-06-26T23:59:59.000Z

86

Tidal Energy System for On-Shore Power Generation  

SciTech Connect

Addressing the urgent need to develop LCOE competitive renewable energy solutions for US energy security and to replace fossil-fuel generation with the associated benefits to environment impacts including a reduction in CO2 emissions, this Project focused on the advantages of using hydraulic energy transfer (HET) in large-scale Marine Hydrokinetic (MHK) systems for harvesting off-shore tidal energy in US waters. A recent DOE resource assessment, identifies water power resources have a potential to meet 15% of the US electric supply by 2030, with MHK technologies being a major component. The work covered a TRL-4 laboratory proof-in-concept demonstration plus modeling of a 15MW full scale system based on an approach patented by NASA-JPL, in which submerged high-ratio gearboxes and electrical generators in conventional MHK turbine systems are replaced by a submerged hydraulic radial pump coupled to on-shore hydraulic motors driving a generator. The advantages are; first, the mean-time-between-failure (MTBF), or maintenance, can be extended from approximately 1 to 5 years and second, the range of tidal flow speeds which can be efficiently harvested can be extended beyond that of a conventional submerged generator. The approach uses scalable, commercial-off-the-shelf (COTS) components, facilitating scale-up and commercialization. All the objectives of the Project have been successfully met (1) A TRL4 system was designed, constructed and tested. It simulates a tidal energy turbine, with a 2-m diameter blade in up to a 2.9 m/sec flow. The system consists of a drive motor assembly providing appropriate torque and RPM, attached to a radial piston pump. The pump circulates pressurized, environmentally-friendly, HEES hydraulic fluid in a closed loop to an axial piston motor which drives an electrical generator, with a resistive load. The performance of the components, subsystems and system were evaluated during simulated tidal cycles. The pump is contained in a tank for immersion testing. The COTS pump and motor were selected to scale to MW size and were oversized for the TRL-4 demonstration, operating at only 1-6% of rated values. Nevertheless, in for 2-18 kW drive power, in agreement with manufacturer performance data, we measured efficiencies of 85-90% and 75-80% for the pump and motor, respectively. These efficiencies being 95-96% at higher operating powers. (2) Two follow-on paths were identified. In both cases conventional turbine systems can be modified, replacing existing gear box and generator with a hydraulic pump and on-shore components. On a conventional path, a TRL5/6 15kW turbine system can be engineered and tested on a barge at an existing site in Maine. Alternatively, on an accelerated path, a TRL-8 100kW system can be engineered and tested by modifying a team member's existing MHK turbines, with barge and grid-connected test sites in-place. On both paths the work can be expedited and cost effective by reusing TRL-4 components, modifying existing turbines and using established test sites. (3) Sizing, performance modeling and costing of a scaled 15MW system, suitable for operation in Maine's Western Passage, was performed. COTS components are identified and the performance projections are favorable. The estimated LCOE is comparable to wind generation with peak production at high demand times. (4) We determined that a similar HET approach can be extended to on-shore and off-shore wind turbine systems. These are very large energy resources which can be addressed in parallel for even great National benefit. (5) Preliminary results on this project were presented at two International Conferences on renewable energy in 2012, providing a timely dissemination of information. We have thus demonstrated a proof-in-concept of a novel, tidal HET system that eliminates all submerged gears and electronics to improve reliability. Hydraulic pump efficiencies of 90% have been confirmed in simulated tidal flows between 1 and 3 m/s, and at only 1-6% of rated power. Total system efficiencies have also been modeled, up to MW-sca

Bruce, Allan J

2012-06-26T23:59:59.000Z

87

Wave Energy Conversion Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Wave Energy Conversion Technology Wave Energy Conversion Technology Speaker(s): Mirko Previsic Date: August 2, 2001 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Julie Osborn Scientists have been working on wave power conversion for the past twenty years, but recent advances in offshore and IT technologies have made it economically competitive. Sea Power & Associates is a Berkeley-based renewable energy technology company. We have developed patented technology to generate electricity from ocean wave energy using a system of concrete buoys and highly efficient hydraulic pumps. Our mission is to provide competitively priced, non-polluting, renewable energy for coastal regions worldwide. Mirko Previsic, founder and CEO, of Sea Power & Associates will discuss ocean wave power, existing technologies for its conversion into

88

MHK Technologies/Tidal Lagoons | Open Energy Information  

Open Energy Info (EERE)

Tidal Lagoons Tidal Lagoons < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Lagoons.jpg Technology Profile Primary Organization Tidal Electric Project(s) where this technology is utilized *MHK Projects/Dandong City *MHK Projects/Swansea Bay Technology Resource Click here Current/Tidal Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description idal Lagoons are situated a mile or more offshore in high tidal range areas, and use a rubble mound impoundment structure and low-head hydroelectric bulb turbines. Shallow tidal flats provide the most economical sites. Multi-cell Tidal Lagoons provide higher load factors (about 62%) and have the flexibility to shape the output curve in order to dispatch power in response to demand price signals. The impoundment structure is a conventional rubble mound breakwater (loose rock, concrete, and marine sheetpiles are among the types of appropriate materials for the impoundment structure), with ordinary performance specifications and is built from the most economical materials. The barrage is much shorter than an impoundment structure with the same output capacity, but the barrage is a much larger structure. The offshore tidal generator uses conventional low-head hydroelectric generation equipment and control systems. The equipment consists of a mixed-flow reversible bulb turbine, a generator, and the control system. Manufacturers/suppliers include Alstom, GE, Kvaerner, Siemens, Voith, Sulzer, and others.

89

Tidal Conversion at a Submarine Ridge  

Science Conference Proceedings (OSTI)

The radiative flux of internal wave energy (the tidal conversion) powered by the oscillating flow of a uniformly stratified fluid over a two-dimensional submarine ridge is computed using an integral-equation method. The problem is characterized ...

Franois Ptrlis; Stefan Llewellyn Smith; W. R. Young

2006-06-01T23:59:59.000Z

90

Energy Basics: Ocean Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

91

Power system - Energy Innovation Portal  

Electricity Transmission; Energy Analysis; Energy Storage; Geothermal; Hydrogen and Fuel Cell; Hydropower, Wave and Tidal; Industrial Technologies; Solar Photovoltaic;

92

Tidal Energy Dissipation at the Sill of Sechelt Inlet, British Columbia  

Science Conference Proceedings (OSTI)

The energy budget of a tidally active, shallow silled fjord is discussed. Constriction of the flow over the shallow sill causes a reduction in tidal amplitude and a phase lag across the sill. A generalized expression for the total power extracted ...

Scott W. Tinis; Stephen Pond

2001-12-01T23:59:59.000Z

93

Reynolds Stress and Turbulent Energy Production in a Tidal Channel  

Science Conference Proceedings (OSTI)

A high-frequency (1.2 MHz) acoustic Doppler current profiler (ADCP) moored on the seabed has been used to observe the mean and turbulent flow components in a narrow tidally energetic channel over six tidal cycles at neap and spring tides. The ...

Tom P. Rippeth; Eirwen Williams; John H. Simpson

2002-04-01T23:59:59.000Z

94

Cycloidal Wave Energy Converter  

SciTech Connect

This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will exceed this initial performance estimates. In advancing the Technology Readiness Level (TRL) of this type of wave energy converter from 3 to 4, we find the CycWEC to exceed our initial estimates in terms of hydrodynamic performance. Once fully developed and optimized, it has the potential to not just outperform all other WEC technologies, but to also deliver power at a lower LCOE than competing conventional renewables like wind and solar. Given the large wave power resource both domestically and internationally, this technology has the potential to lead to a large improvement in our ability to produce clean electricity at affordable cost.

Stefan G. Siegel, Ph.D.

2012-11-30T23:59:59.000Z

95

MHK Technologies/MORILD 2 Floating Tidal Power System | Open Energy  

Open Energy Info (EERE)

MORILD 2 Floating Tidal Power System MORILD 2 Floating Tidal Power System < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage MORILD 2 Floating Tidal Power System.jpg Technology Profile Primary Organization Hydra Tidal Energy Technology AS Project(s) where this technology is utilized *MHK Projects/Morild 2 Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 7/8: Open Water System Testing & Demonstration & Operation Technology Description Hydra Tidal´s Morild II tidal power plant technology at-a-glance: - A unique and patented floating tidal power plant - Prototype has an installed effect of 1,5 MW - Turbine diameter of 23 meters - Each turbine is pitchable - 4 turbines with a total of 8 turbine blades - Unique wooden turbine blades - The MORILD II can be anchored at different depths, thus it can be positioned in spots with ideal tidal stream conditions - The plant carries a sea vessel verification, and is both towable and dockable - The floating installation enables maintenance in surface position, and on site - The MORILD II will be remotely operated, and has on-shore surveillance systems - Technology patented for all relevant territories The Morild power plant is a floating, moored construction based on the same principle as horizontal axis wind turbines. The plant has 4 two-blade underwater turbines and can utilize the energy potential in tidal and ocean currents. The 4 turbines transmit power via hydraulic transmission to 2 synchronous generators. Can be pitched 180 degrees to utilize energy in both directions. A cable from the transformer on the prototype to shore transfers energy.

96

Thermoelectric power source utilizing ambient energy ...  

Electricity Transmission; Energy Analysis; Energy Storage; Geothermal; Hydrogen and Fuel Cell; Hydropower, Wave and Tidal; Industrial Technologies; Solar Photovoltaic;

97

Torque shudder protection device and method - Energy ...  

Electricity Transmission; Energy Analysis; Energy Storage; Geothermal; Hydrogen and Fuel Cell; Hydropower, Wave and Tidal; Industrial Technologies; Solar Photovoltaic;

98

Full Size Image - Energy Innovation Portal  

Electricity Transmission; Energy Analysis; Energy Storage; Geothermal; Hydrogen and Fuel Cell; Hydropower, Wave and Tidal; Industrial Technologies; Solar Photovoltaic;

99

Full Size Image - Energy Innovation Portal  

Electricity Transmission; Energy Analysis; Energy Storage; Geothermal; Hydrogen and Fuel Cell; Hydropower, Wave and Tidal; Industrial Technologies; ...

100

MHK Technologies/Jiangxia Tidal Power Station | Open Energy Information  

Open Energy Info (EERE)

Jiangxia Tidal Power Station Jiangxia Tidal Power Station < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Jiangxia Tidal Power Station.jpg Technology Profile Primary Organization China Guodian Corporation Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 9 Commercial Scale Production Application Technology Description There are 6 bulb turbine generator units operating in both ebb and flood tides with a total installed capacity up to 3 9 MW Technology Dimensions Technology Nameplate Capacity (MW) 3 9 Device Testing Date Submitted 14:15.7 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Jiangxia_Tidal_Power_Station&oldid=681601

Note: This page contains sample records for the topic "tidal energy wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Reservoir response to tidal and barometric effects | Open Energy  

Open Energy Info (EERE)

to tidal and barometric effects to tidal and barometric effects Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Reservoir response to tidal and barometric effects Details Activities (2) Areas (2) Regions (0) Abstract: Solid earth tidal strain and surface loading due to fluctuations in barometric pressure have the effect, although extremely minute, of dilating or contracting the effective pore volume in a porous reservoir. If a well intersects the formation, the change in pore pressure can be measured with sensitive quartz pressure gauges. Mathematical models of the relevant fluid dynamics of the well-reservoir system have been generated and tested against conventional well pumping results or core data at the Salton Sea Geothermal Field (SSGF), California and at the Raft River,

102

MHK Technologies/Sabella subsea tidal turbine | Open Energy Information  

Open Energy Info (EERE)

subsea tidal turbine subsea tidal turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Description It is characterised by a turbine configuration on the seafloor, without impinging on the surface. These turbines are stabilised by gravity and/or are anchored according to the nature of the seafloor. They are pre-orientated in the direction of the tidal currents, and the profile of their symmetrical blades helps to capture the ebb and flow. The rotor activated, at slow speeds (10 to 15 rpm), by the tides powers a generator, which exports the electricity produced to the coast via a submarine cable anchored and embedded at its landfall.

103

MHK Technologies/Tidal Stream Turbine | Open Energy Information  

Open Energy Info (EERE)

Stream Turbine Stream Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Stream Turbine.jpg Technology Profile Primary Organization StatoilHydro co owned by Hammerfest Strong Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description A fully operational 300kW prototype tidal turbine has been running in Norway since 2003 and has achieved good results It s the world s first tidal turbine to supply electricity directly to the onshore grid In the autumn of 2008 Hammerfest Str�m signed an intention agreement with Scottish Power to further develop tidal technology in the UK A 1 MW turbine is currently under development

104

EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16: Ocean Renewable Power Company Maine, LLC Cobscook Bay 16: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine Summary This EA evaluates the environmental impacts of a project that would use the tidal currents of Cobscook Bay to generate electricity via cross-flow Kinetic System turbine generator units (TGU) mounted on the seafloor. The TGUs would capture energy from the flow in both ebb and flood directions. Public Comment Opportunities None available at this time. Documents Available for Download March 19, 2012 EA-1916: Finding of No Significant Impact Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot

105

A Study of Tidal Energy Dissipation and Bottom Stress in an Estuary  

Science Conference Proceedings (OSTI)

A Method for inferring an area-averaged bottom stress and energy dissipation rate in a tidal estuarine channel is presented. The one-dimensional continuity and momentum relations are developed using simplifying assumptions appropriate for a well-...

Wendell S. Brown; Richard P. Trask

1980-11-01T23:59:59.000Z

106

Abyssal Penetration and Bottom Reflection of Internal Tidal Energy in the Bay of Biscay  

Science Conference Proceedings (OSTI)

This paper describes field observations in the Bay of Biscay, and presents convincing evidence for the existence of a broad beam of internal tidal energy propagating downward from a source region on the upper continental slopes, which, after ...

R. D. Pingree; A. L. New

1991-01-01T23:59:59.000Z

107

EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay 1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine Summary This EA evaluates the environmental impacts of a project that would use the tidal currents of Cobscook Bay to generate electricity via cross-flow Kinetic System turbine generator units (TGU) mounted on the seafloor. The TGUs would capture energy from the flow in both ebb and flood directions. Public Comment Opportunities None available at this time. Documents Available for Download March 19, 2012 EA-1916: Finding of No Significant Impact Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot

108

Green Ocean Wave Energy | Open Energy Information  

Open Energy Info (EERE)

Ocean Wave Energy Jump to: navigation, search Name Green Ocean Wave Energy Sector Marine and Hydrokinetic Website http:http:www.greenoceanwa Region United States LinkedIn...

109

Energy Basics: Ocean Thermal Energy Conversion  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

110

Energy Basics: Wave Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

niche markets. Once built, they have low operation and maintenance costs because their fuel-seawater-is free. Contacts | Web Site Policies | U.S. Department of Energy | USA.gov...

111

Resistance to Barotropic Tidal Flow in Straits by Baroclinic Wave Drag  

Science Conference Proceedings (OSTI)

Energy transfer from barotropic tides to baroclinic motions may take place at the ends of straits connecting stratified basins, implying generation of internal waves propagating into the basins. Different aspects of this have been described in ...

Anders Stigebrandt

1999-02-01T23:59:59.000Z

112

Wave Energy Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wave Energy Basics Wave Energy Basics Wave Energy Basics August 16, 2013 - 4:30pm Addthis Photo of a large wave. Wave energy technologies extract energy directly from surface waves or from pressure fluctuations below the surface. Renewable energy analysts believe there is enough energy in ocean waves to provide up to 2 terawatts of electricity. (A terawatt is equal to a trillion watts.) However, wave energy cannot be harnessed everywhere. Wave power-rich areas of the world include the western coasts of Scotland, northern Canada, southern Africa, and Australia as well as the northeastern and northwestern coasts of the United States. In the Pacific Northwest alone, it is feasible that wave energy could produce 40-70 kilowatts (kW) per 3.3 feet (1 meter) of western coastline. Wave Energy Technologies

113

Energy Basics: Ocean Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

114

Assessment of Energy Production Potential from Tidal Streams in the United States  

DOE Green Energy (OSTI)

Tidal stream energy is one of the alternative energy sources that are renewable and clean. With the constantly increasing effort in promoting alternative energy, tidal streams have become one of the more promising energy sources due to their continuous, predictable and spatially-concentrated characteristics. However, the present lack of a full spatial-temporal assessment of tidal currents for the U.S. coastline down to the scale of individual devices is a barrier to the comprehensive development of tidal current energy technology. This project created a national database of tidal stream energy potential, as well as a GIS tool usable by industry in order to accelerate the market for tidal energy conversion technology. Tidal currents are numerically modeled with the Regional Ocean Modeling System and calibrated with the available measurements of tidal current speed and water level surface. The performance of the model in predicting the tidal currents and water levels is assessed with an independent validation. The geodatabase is published at a public domain via a spatial database engine and interactive tools to select, query and download the data are provided. Regions with the maximum of the average kinetic power density larger than 500 W/m2 (corresponding to a current speed of ~1 m/s), surface area larger than 0.5 km2 and depth larger than 5 m are defined as hotspots and list of hotspots along the USA coast is documented. The results of the regional assessment show that the state of Alaska (AK) contains the largest number of locations with considerably high kinetic power density, and is followed by, Maine (ME), Washington (WA), Oregon (OR), California (CA), New Hampshire (NH), Massachusetts (MA), New York (NY), New Jersey (NJ), North and South Carolina (NC, SC), Georgia (GA), and Florida (FL). The average tidal stream power density at some of these locations can be larger than 8 kW/m2 with surface areas on the order of few hundred kilometers squared, and depths larger than 100 meters. The Cook Inlet in AK is found to have a substantially large tidal stream power density sustained over a very large area.

Haas, Kevin A.

2011-06-29T23:59:59.000Z

115

Single ion conductor cross-linked polymeric networks - Energy ...  

Electricity Transmission; Energy Analysis; Energy Storage; Geothermal; Hydrogen and Fuel Cell; Hydropower, Wave and Tidal; Industrial Technologies; ...

116

INORGANIC SALT HEAT TRANSFER FLUID - Energy Innovation Portal  

Electricity Transmission; Energy Analysis; Energy Storage; Geothermal; Hydrogen and Fuel Cell; Hydropower, Wave and Tidal; Industrial Technologies; Solar Photovoltaic;

117

COMBINED FUEL AND AIR STAGED POWER GENERATION SYSTEM - Energy ...  

Electricity Transmission; Energy Analysis; Energy Storage; Geothermal; Hydrogen and Fuel Cell; Hydropower, Wave and Tidal; Industrial Technologies; Solar Photovoltaic;

118

MHK Technologies/Tidal Barrage | Open Energy Information  

Open Energy Info (EERE)

Barrage Barrage < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Barrage.jpg Technology Profile Technology Resource Click here Current Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description No information provided Technology Dimensions Device Testing Date Submitted 01:04.7 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Tidal_Barrage&oldid=681672" Category: Marine and Hydrokinetic Technologies What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

119

MHK Projects/Guemes Channel Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Guemes Channel Tidal Energy Project Guemes Channel Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.5343,"lon":-123.017,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

120

MHK Projects/Icy Passage Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Icy Passage Tidal Energy Project Icy Passage Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":58.4133,"lon":-135.737,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "tidal energy wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

MHK Projects/Roosevelt Island Tidal Energy RITE | Open Energy Information  

Open Energy Info (EERE)

Roosevelt Island Tidal Energy RITE Roosevelt Island Tidal Energy RITE < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7639,"lon":-73.9466,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

122

MHK Projects/Indian River Tidal Hydrokinetic Energy Project | Open Energy  

Open Energy Info (EERE)

Tidal Hydrokinetic Energy Project Tidal Hydrokinetic Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.6853,"lon":-75.0694,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

123

MHK Projects/Tacoma Narrows Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Narrows Tidal Energy Project Narrows Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.2591,"lon":-122.445,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

124

MHK Projects/Cape Islands Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Islands Tidal Energy Project Islands Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4833,"lon":-70.7578,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

125

MHK Projects/Central Cook Inlet Alaska Tidal Energy Project | Open Energy  

Open Energy Info (EERE)

Tidal Energy Project Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.3378,"lon":-151.875,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

126

MHK Projects/Portsmouth Area Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Portsmouth Area Tidal Energy Project Portsmouth Area Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.1081,"lon":-70.7776,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

127

MHK Projects/San Juan Channel Tidal Energy Project | Open Energy  

Open Energy Info (EERE)

San Juan Channel Tidal Energy Project San Juan Channel Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.5896,"lon":-123.012,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

128

MHK Projects/Fishers Island Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Fishers Island Tidal Energy Project Fishers Island Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.2379,"lon":-72.0599,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

129

MHK Projects/Spieden Channel Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Spieden Channel Tidal Energy Project Spieden Channel Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.5341,"lon":-123.013,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

130

MHK Projects/Kachemak Bay Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Kachemak Bay Tidal Energy Project Kachemak Bay Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.3378,"lon":-151.875,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

131

MHK Projects/Edgar Town Nantucket Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Edgar Town Nantucket Tidal Energy Edgar Town Nantucket Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.3638,"lon":-70.2766,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

132

MHK Projects/San Francisco Bay Tidal Energy Project | Open Energy  

Open Energy Info (EERE)

Francisco Bay Tidal Energy Project Francisco Bay Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.691,"lon":-122.311,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

133

MHK Projects/Cape Cod Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Cape Cod Tidal Energy Project Cape Cod Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7686,"lon":-70.5651,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

134

MHK Projects/Shelter Island Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Shelter Island Tidal Energy Project Shelter Island Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.0453,"lon":-72.3748,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

135

MHK Projects/Long Island Sound Tidal Energy Project | Open Energy  

Open Energy Info (EERE)

Long Island Sound Tidal Energy Project Long Island Sound Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.1674,"lon":-72.218,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

136

Effects of Localized Energy Extraction in an Idealized, Energetically Complete Numerical Model of an Ocean-Estuary Tidal System  

NLE Websites -- All DOE Office Websites (Extended Search)

localized energy extraction in an localized energy extraction in an idealized, energetically complete numerical model of an ocean-estuary tidal system MHK Instrumentation, Measurement & Computer Modeling Workshop, Broomfield CO, July 10 2012 Mitsuhiro Kawase and Marisa Gedney Northwest National Marine Renewable Energy Center / School of Oceanography University of Washington Seattle WA 98195 United States * Far-field (Estuary-wide) - Changes in the tidal range - Changes in tidal currents  Near-field (Vicinity of the Device)  Flow redirection  Interaction with marine life  Impact on bottom sediments and benthos Environmental Effects of Tidal Energy Extraction * Reduction in tidal range can permanently expose/submerge tidal flats, altering nearshore habitats * Reduction in kinetic energy of

137

MHK Technologies/Wave Rotor | Open Energy Information  

Open Energy Info (EERE)

Rotor Rotor < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Rotor.jpg Technology Profile Primary Organization Ecofys Subsidiary of Econcern Project(s) where this technology is utilized *MHK Projects/C Energy Technology Resource Click here Wave Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description The Wave Rotor uses a combined Darrieus-Wells rotor, which is contained on the same vertical axis of rotation. These are respectively omni- and bi-directional rotors that can operate in currents of changing directions. The Wave Rotor is mounted on a platform to allow for the capture of wave energy from circulating water particles created by local currents. Since it uses two types of rotor on a single axis of rotation it is able to convert not only tidal currents, but also waves into electricity.

138

MHK Projects/Margate Tidal | Open Energy Information  

Open Energy Info (EERE)

Margate Tidal Margate Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3793,"lon":-74.4384,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

139

MHK Projects/Dorchester Maurice Tidal | Open Energy Information  

Open Energy Info (EERE)

Dorchester Maurice Tidal Dorchester Maurice Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3262,"lon":-74.938,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

140

MHK Projects/Orient Point Tidal | Open Energy Information  

Open Energy Info (EERE)

Orient Point Tidal Orient Point Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.0748,"lon":-72.9461,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "tidal energy wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

MHK Projects/Gastineau Channel Tidal | Open Energy Information  

Open Energy Info (EERE)

Gastineau Channel Tidal Gastineau Channel Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":58.295,"lon":-134.407,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

142

MHK Projects/Paimpol Brehat tidal farm | Open Energy Information  

Open Energy Info (EERE)

Paimpol Brehat tidal farm Paimpol Brehat tidal farm < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.869,"lon":-2.98546,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

143

MHK Projects/Turnagain Arm Tidal | Open Energy Information  

Open Energy Info (EERE)

Turnagain Arm Tidal Turnagain Arm Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.3378,"lon":-151.875,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

144

MHK Projects/Lubec Narrows Tidal | Open Energy Information  

Open Energy Info (EERE)

Lubec Narrows Tidal Lubec Narrows Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.8652,"lon":-66.9828,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

145

MHK Projects/Treat Island Tidal | Open Energy Information  

Open Energy Info (EERE)

Treat Island Tidal Treat Island Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.0234,"lon":-67.0672,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

146

MHK Projects/Maurice River Tidal | Open Energy Information  

Open Energy Info (EERE)

Maurice River Tidal Maurice River Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3261,"lon":-74.9379,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

147

MHK Projects/BW2 Tidal | Open Energy Information  

Open Energy Info (EERE)

BW2 Tidal BW2 Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3264,"lon":-74.9336,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

148

MHK Projects/Avalon Tidal | Open Energy Information  

Open Energy Info (EERE)

Avalon Tidal Avalon Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.1068,"lon":-74.7463,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

149

All Eyes on Eastport: Tidal Energy Project Brings Change, Opportunity to  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

All Eyes on Eastport: Tidal Energy Project Brings Change, All Eyes on Eastport: Tidal Energy Project Brings Change, Opportunity to Local Community All Eyes on Eastport: Tidal Energy Project Brings Change, Opportunity to Local Community July 24, 2012 - 2:40pm Addthis Captain Gerald "Gerry" Morrison, Vice President of Perry Marine & Consctruction. | Photo Courtesy of Ocean Renewable Power Company. Captain Gerald "Gerry" Morrison, Vice President of Perry Marine & Consctruction. | Photo Courtesy of Ocean Renewable Power Company. Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs Today in Eastport, Maine, people are gathering to celebrate a project that will harness the power of the massive tides of Cobscook Bay to generate clean electricity. At a public dedication event this afternoon, Portland-based Ocean Renewable

150

Wave Star Energy | Open Energy Information  

Open Energy Info (EERE)

Star Energy Star Energy Jump to: navigation, search Name Wave Star Energy Place Denmark Zip DK-2920 Product Denmark-based private wave device developer. References Wave Star Energy[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Wave Star Energy 1 10 Scale Model Test This company is involved in the following MHK Technologies: C5 WaveStar This article is a stub. You can help OpenEI by expanding it. Wave Star Energy is a company located in Denmark . References ↑ "Wave Star Energy" Retrieved from "http://en.openei.org/w/index.php?title=Wave_Star_Energy&oldid=678928" Categories: Clean Energy Organizations

151

Puget Sound Tidal Energy In-Water Testing and Development Project Final Technical Report  

Science Conference Proceedings (OSTI)

Tidal energy represents potential for the generation of renewable, emission free, environmentally benign, and cost effective energy from tidal flows. A successful tidal energy demonstration project in Puget Sound, Washington may enable significant commercial development resulting in important benefits for the northwest region and the nation. This project promoted the United States Department of Energyâ??s Wind and Hydropower Technologies Programâ??s goals of advancing the commercial viability, cost-competitiveness, and market acceptance of marine hydrokinetic systems. The objective of the Puget Sound Tidal Energy Demonstration Project is to conduct in-water testing and evaluation of tidal energy technology as a first step toward potential construction of a commercial-scale tidal energy power plant. The specific goal of the project phase covered by this award was to conduct all activities necessary to complete engineering design and obtain construction approvals for a pilot demonstration plant in the Admiralty Inlet region of the Puget Sound. Public Utility District No. 1 of Snohomish County (The District) accomplished the objectives of this award through four tasks: Detailed Admiralty Inlet Site Studies, Plant Design and Construction Planning, Environmental and Regulatory Activities, and Management and Reporting. Pre-Installation studies completed under this award provided invaluable data used for site selection, environmental evaluation and permitting, plant design, and construction planning. However, these data gathering efforts are not only important to the Admiralty Inlet pilot project. Lessons learned, in particular environmental data gathering methods, can be applied to future tidal energy projects in the United States and other parts of the world. The District collaborated extensively with project stakeholders to complete the tasks for this award. This included Federal, State, and local government agencies, tribal governments, environmental groups, and others. All required permit and license applications were completed and submitted under this award, including a Final License Application for a pilot hydrokinetic license from the Federal Energy Regulatory Commission. The tasks described above have brought the project through all necessary requirements to construct a tidal pilot project in Admiralty Inlet with the exception of final permit and license approvals, and the selection of a general contractor to perform project construction.

Craig W. Collar

2012-11-16T23:59:59.000Z

152

Tidally Forced Internal Waves and Overturns Observed on a Slope: Results from HOME  

Science Conference Proceedings (OSTI)

Tidal mixing over a slope was explored using moored time series observations on Kaena Ridge extending northwest from Oahu, Hawaii, during the Survey component of the Hawaii Ocean Mixing Experiment (HOME). A mooring was instrumented to sample the ...

Murray D. Levine; Timothy J. Boyd

2006-06-01T23:59:59.000Z

153

Area Solar energy production BACKGROUND -All renewable energies, except for geothermal and tidal, derive their energy from the sun. By harnessing the power of  

E-Print Network (OSTI)

Area Solar energy production ­ BACKGROUND - All renewable energies installations. Advantages: · A renewable form of energy - "Locks up" carbon, except for geothermal and tidal, derive their energy from the sun

Keinan, Alon

154

Wave Energy Centre | Open Energy Information  

Open Energy Info (EERE)

search Name Wave Energy Centre Address Wave Energy Centre Av Manuela da Maia 36 R C Dto Place Lisboa Zip 1000-201 Sector Marine and Hydrokinetic Phone number (+351) 21...

155

Measurements of Turbulence at Two Tidal Energy Sites in Puget Sound, WA  

SciTech Connect

Field measurements of turbulence are pre- sented from two sites in Puget Sound, WA (USA) that are proposed for electrical power generation using tidal current turbines. Rapidly sampled data from multiple acoustic Doppler instruments are analyzed to obtain statistical mea- sures of fluctuations in both the magnitude and direction of the tidal currents. The resulting turbulence intensities (i.e., the turbulent velocity fluctuations normalized by the harmonic tidal currents) are typically 10% at the hub- heights (i.e., the relevant depth bin) of the proposed turbines. Length and time scales of the turbulence are also analyzed. Large-scale, anisotropic eddies dominate the energy spectra, which may be the result of proximity to headlands at each site. At small scales, an isotropic turbulent cascade is observed and used to estimate the dissipation rate of turbulent kinetic energy. Data quality and sampling parameters are discussed, with an emphasis on the removal of Doppler noise from turbulence statistics.

Thomson, Jim; Polagye, Brian; Durgesh, Vibhav; Richmond, Marshall C.

2012-06-05T23:59:59.000Z

156

Energy Loss by Breaking waves  

Science Conference Proceedings (OSTI)

Observations of the frequency of wind wave breaking in deep water are combined with laboratory estimates of the rate of energy loss a from single breaking wave to infer the net rate of energy transfer to the mixed layer from breaking waves, as a ...

S. A. Thorpe

1993-11-01T23:59:59.000Z

157

Efficient, Low-cost Microchannel Heat Exchanger - Energy ...  

Hydrogen and Fuel Cell; Hydropower, Wave and Tidal; Industrial Technologies; Solar ... Renewable energy (concentrated solar power, residential solar h ...

158

Sulfur oxide adsorbents and emissions control - Energy Innovation ...  

Energy Innovation Portal Technologies. ... Hydropower, Wave and Tidal; Industrial Technologies; Solar Photovoltaic; Solar Thermal; Startup America; Vehicles and Fuels;

159

Internal/External Split Field Generator - Energy Innovation Portal  

Wind Energy Vehicles and Fuels Industrial Technologies Hydropower, Wave and Tidal Geothermal Internal/External Split Field Generator Oak Ridge ...

160

Net Metering (New Jersey) | Open Energy Information  

Open Energy Info (EERE)

Electric, Tidal Energy, Wave Energy, Wind Active Incentive Yes Implementing Sector StateTerritory Energy Category Renewable Energy Incentive Programs Aggregate Capacity...

Note: This page contains sample records for the topic "tidal energy wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The Effect of Wave Breaking on the Wave Energy Spectrum  

Science Conference Proceedings (OSTI)

The effect of wave breaking on the wave energy spectral shape is examined. The Stokes wave-breaking criterion is first extended to random waves and a breaking wave model is established in which the elevation of breaking waves is expressed in ...

C. C. Tung; N. E. Huang

1987-08-01T23:59:59.000Z

162

Property:Project Resource | Open Energy Information  

Open Energy Info (EERE)

Project Resource Project Resource Jump to: navigation, search Property Name Project Resource Property Type Text Pages using the property "Project Resource" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + Wave MHK Projects/ADM 3 + Wave MHK Projects/ADM 4 + Wave MHK Projects/ADM 5 + Wave MHK Projects/AWS II + Wave MHK Projects/Agucadoura + Wave MHK Projects/Alaska 13 + Current /Tidal MHK Projects/Alaska 35 + Current /Tidal MHK Projects/Algiers Light Project + Current /Tidal MHK Projects/Anconia Point Project + Current /Tidal MHK Projects/Ashley Point Project + Current /Tidal MHK Projects/Astoria Tidal Energy + Current /Tidal MHK Projects/Atchafalaya River Hydrokinetic Project II + Current /Tidal MHK Projects/Avalon Tidal + Current /Tidal

163

Southern/Northern California Coastal Processes Annotated Bibliography: Coast of California Storm and Tidal Waves Study  

E-Print Network (OSTI)

and Location in the Aleutian Trench on Tsunami Amplitudeearthquakes along the Aleutian Trench on resulting tsunamiCalifornia waves from: Aleutian Island storms, west waves,

US Army Corps of Engineers, Los Angeles District, Planning Division, Coastal Resources Branch

1987-01-01T23:59:59.000Z

164

Renewable Energy and Energy Efficiency Portfolio Standard (North...  

Open Energy Info (EERE)

Water Heat, Tidal Energy, Wave Energy, Wind, Natural Gas, Unspecified technologies, Electricity Demand Reduction* Active Incentive Yes Implementing Sector StateTerritory Energy...

165

Carnegie Wave Energy Limited | Open Energy Information  

Open Energy Info (EERE)

Carnegie Wave Energy Limited Carnegie Wave Energy Limited Jump to: navigation, search Name Carnegie Wave Energy Limited Address 1 124 Stirling Highway Place North Fremantle Zip 6159 Sector Marine and Hydrokinetic Year founded 1993 Number of employees 25 Website http://www.carnegiewave.com Region Australia LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: CETO La Reunion CETO3 Garden Island Perth Wave Energy Project PWEP This company is involved in the following MHK Technologies: CETO Wave Energy Technology This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Carnegie_Wave_Energy_Limited&oldid=678263

166

Hydropower, Wave and Tidal Technologies - Energy Innovation Portal  

This enables the oil to persist on the surface of the coating without significantly reducing the coated surfaces coefficient of friction. Oak Ridge National ...

167

Hydropower, Wave and Tidal Technologies - Energy Innovation Portal  

The pinning action keeps the oil from leeching out of the coating, ... field weakening, and power factor improvement and novel locks for higher peak s ...

168

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

energy from waves, tides, and currents. Together, these projects will increase the power production and reliability of wave and tidal devices and help gather valuable data...

169

Free-Wave Energy Dissipation in Experimental Breaking Waves  

Science Conference Proceedings (OSTI)

Several transient wave trains containing an isolated plunging or spilling breaker at a prescribed location were generated in a two-dimensional wave flume using an energy focusing technique. Surface elevation measurements of each transient wave ...

Eustorgio Meza; Jun Zhang; Richard J. Seymour

2000-09-01T23:59:59.000Z

170

Feed-in Tariff (Hawaii) | Open Energy Information  

Open Energy Info (EERE)

Electric, Tidal Energy, Wave Energy, Wind Active Incentive Yes Implementing Sector StateTerritory Energy Category Renewable Energy Incentive Programs Amount Rates for Tier...

171

A Comparison of Tidal Conversion Parameterizations for Tidal Models  

Science Conference Proceedings (OSTI)

The conversion of barotropic to baroclinic tidal energy in the global abyssal ocean is calculated using three different formulations. The calculations are done both offline, that is, using externally given tidal currents to estimate the energy ...

J. A. Mattias Green; Jonas Nycander

2013-01-01T23:59:59.000Z

172

Environmental Assessment (Nova Scotia, Canada) | Open Energy...  

Open Energy Info (EERE)

Fuel Cells, Geothermal Electric, Hydroelectric, Hydroelectric (Small), Natural Gas, Nuclear, Solar Photovoltaics, Tidal Energy, Wave Energy, Wind energy Active Policy Yes...

173

Connecticut/EZFeed Policies | Open Energy Information  

Open Energy Info (EERE)

Gas Nuclear Photovoltaics Tidal Energy Wave Energy Wind energy StateProvince The EXP Job Creation Incentive Program provides loans towards expenditures related to training,...

174

Virginia/EZFeed Policies | Open Energy Information  

Open Energy Info (EERE)

Tidal Energy Wave Energy Wind energy StateProvince The Virginia Enterprise Zone Job Creation Grant provides cash grants to businesses located in Enterprise zones that...

175

wave energy | OpenEI  

Open Energy Info (EERE)

99 99 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142281099 Varnish cache server wave energy Dataset Summary Description Source The Wave Energy Resource Assessment project is a joint venture between NREL, EPRI, and Virginia Tech. EPRI is the prime contractor, Virginia Tech is responsible for development of the models and estimating the wave resource, and NREL serves as an independent validator and also develops the final GIS-based display of the data. Source National Renewable Energy Laboratory (NREL) Date Released September 27th, 2011 (3 years ago) Date Updated October 20th, 2011 (3 years ago) Keywords EPRI GIS NREL Puerto Rico shapefile United States Virginia Tech wave energy

176

Wave Energy Extraction from buoys  

E-Print Network (OSTI)

Different types of Wave Energy Converters currently tested or under development are using the vertical movement of floating bodies to generate electricity. For commercial applications, arrays have to be considered in order ...

Garnaud, Xavier

2009-01-01T23:59:59.000Z

177

Environmental Effects of Sediment Transport Alteration and Impacts on Protected Species: Edgartown Tidal Energy Project  

DOE Green Energy (OSTI)

The Islands of Martha?¢????s Vineyard and Nantucket are separated from the Massachusetts mainland by Vineyard and Nantucket Sounds; water between the two islands flows through Muskeget Channel. The towns of Edgartown (on Martha?¢????s Vineyard) and Nantucket recognize that they are vulnerable to power supply interruptions due to their position at the end of the power grid, and due to sea level rise and other consequences of climate change. The tidal energy flowing through Muskeget Channel has been identified by the Electric Power Research Institute as the strongest tidal resource in Massachusetts waters. The Town of Edgartown proposes to develop an initial 5 MW (nameplate) tidal energy project in Muskeget Channel. The project will consist of 14 tidal turbines with 13 providing electricity to Edgartown and one operated by the University of Massachusetts at Dartmouth for research and development. Each turbine will be 90 feet long and 50 feet high. The electricity will be brought to shore by a submarine cable buried 8 feet below the seabed surface which will landfall in Edgartown either on Chappaquiddack or at Katama. Muskeget Channel is located between Martha?¢????s Vineyard and Nantucket. Its depth ranges between 40 and 160 feet in the deepest portion. It has strong currents where water is transferred between Nantucket Sound and the Atlantic Ocean continental shelf to the south. This makes it a treacherous passage for navigation. Current users of the channel are commercial and recreational fishing, and cruising boats. The US Coast Guard has indicated that the largest vessel passing through the channel is a commercial scallop dragger with a draft of about 10 feet. The tidal resource in the channel has been measured by the University of Massachusetts-Dartmouth and the peak velocity flow is approximately 5 knots. The technology proposed is the helical Gorlov-type turbine positioned with a horizontal axis that is positively buoyant in the water column and held down by anchors. This is the same technology proposed by Ocean Renewable Power Company in the Western Passage and Cobscook Bay near Eastport Maine. The blades rotate in two directions capturing the tides energy both during flood and ebb tides. The turbines will be anchored to the bottom and suspended in the water column. Initial depth of the turbines is expected to be about 25 feet below the surface to avoid impacting navigation while also capturing the strongest currents. The Town of Edgartown was initially granted a Preliminary Permit by the Federal Energy Regulatory Commission (FERC) on March 1, 2008, and has recently received a second permit valid through August 2014. The Preliminary Permit gives Edgartown the exclusive right to apply for a power generation license for power generated from the hydrokinetic energy in the water flowing in this area. Edgartown filed a Draft Pilot License Application with FERC on February 1, 2010 and an Expanded Environmental Notification Form with the Massachusetts Environmental Policy Act (MEPA) Office at the same time. It expects to file a Final License Application in late 2013. Harris Miller Miller & Hanson (HMMH) of Burlington Massachusetts is acting as the Project Manager for the Town of Edgartown and collaborating with other partners of the project including the University of Massachusetts - Dartmouth's Marine Renewable Energy Center and the Massachusetts Clean Energy Center. HMMH was awarded a grant under the Department of Energy's Advanced Water Program to conduct marine science and hydrokinetic site-specific environmental studies for projects actively seeking a FERC License. HMMH, on behalf of the Town, is managing this comprehensive study of the marine environment in Muskeget Channel and potential impacts of the tidal project on indicator species and habitats. The University of Massachusetts School of Marine Science and Technology (SMAST) conducted oceanographic studies of tidal currents, tide level, benthic habit

Barrett, Stephen B.; Schlezinger, David, Ph.D; Cowles, Geoff, Ph.D; Hughes, Patricia; Samimy; Roland, I.; and Terray, E, Ph.D.

2012-12-29T23:59:59.000Z

178

Southern/Northern California Coastal Processes Annotated Bibliography: Coast of California Storm and Tidal Waves Study  

E-Print Network (OSTI)

April l978; tides, offshore winds, high storm waves, andand oceanography; offshore wind and fog climatology; onshoretransport, offshore/onshore transport, wind transport

US Army Corps of Engineers, Los Angeles District, Planning Division, Coastal Resources Branch

1987-01-01T23:59:59.000Z

179

NREL Uses Computing Power to Investigate Tidal Power (Fact Sheet), Innovation: The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Uses Computing Power to Uses Computing Power to Investigate Tidal Power Researchers at the National Renewable Energy Laboratory (NREL) have applied their knowledge of wind flow and turbulence to simulations of underwater tidal turbines. Inspired by similar simulations of wind turbine arrays, NREL researchers used their wind expertise, a supercomputer, and large-eddy simulation to study how the placement of turbines affects the power production of an underwater tidal turbine array. As tides ebb and flow, they create water currents that carry a significant amount of kinetic energy. To capture this energy, several companies are developing and deploying devices known as horizontal-axis tidal turbines, which resemble small wind turbines. These devices can be arranged in an array of multiple turbines to maximize the energy extracted in tidal

180

Deployment Effects of Marine Renewable Energy Technologies: Wave Energy Scenarios  

SciTech Connect

Given proper care in siting, design, deployment, operation and maintenance, wave energy conversion could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that, due to a lack of technical certainty, many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood,. In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based assessment to the emerging hydrokinetic technology sector in order to evaluate the potential impact of these technologies on the marine environment and navigation constraints. The projects scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios capture variations in technical approaches and deployment scales to properly identify and characterize environmental effects and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential range of technical attributes and potential effects of these emerging technologies and focus all stakeholders on the critical issues that need to be addressed. By identifying and addressing navigational and environmental concerns in the early stages of the industrys development, serious mistakes that could potentially derail industry-wide development can be avoided. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industrys development in the U.S. today. Re vision is coordinating its efforts with two other project teams funded by DoE which are focused on regulatory issues (Pacific Energy Ventures) and navigational issues (PCCI). The results of this study are structured into three reports: (1) Wave power scenario description (2) Tidal power scenario description (3) Framework for Identifying Key Environmental Concerns This is the first report in the sequence and describes the results of conceptual feasibility studies of wave power plants deployed in Humboldt County, California and Oahu, Hawaii. These two sites contain many of the same competing stakeholder interactions identified at other wave power sites in the U.S. and serve as representative case studies. Wave power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize potential effects, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informed the process of selecting representative wave power devices. The selection criteria requires that devices are at an advanced stage of development to reduce technical uncertainties, and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. Table 1 summarizes the selected wave power technologies. A number of other developers are also at an advanced stage of development, but are not directly mentioned here. Many environmental effects will largely scale with the size of the wave power plant. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments. In order to characterize these effects, scenarios are established at three deployment scales which nominally represent (1) a small pilot deployment, (2) a small commercial deployment, and (3) a large commercial sc

Mirko Previsic

2010-06-17T23:59:59.000Z

Note: This page contains sample records for the topic "tidal energy wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

The Hybrid KelvinEdge Wave and Its Role in Tidal Dynamics  

Science Conference Proceedings (OSTI)

A full set of long waves trapped in the coastal ocean over a variable topography includes a zero (fundamental) mode propagating with the coast on its right (left) in the Northern (Southern) Hemisphere. This zero mode resembles a Kelvin wave at ...

Ziming Ke; Alexander E. Yankovsky

2010-12-01T23:59:59.000Z

182

Marin Clean Energy - Feed-In Tariff (California) | Open Energy...  

Open Energy Info (EERE)

Landfill Gas, Municipal Solid Waste, Ocean Thermal, Photovoltaics, Small Hydroelectric, Solar Thermal Electric, Tidal Energy, Wave Energy, Wind Active Incentive Yes Implementing...

183

Broadband Acoustic Environment at a Tidal Energy Site in Puget Sound  

SciTech Connect

Admiralty Inlet has been selected as a potential tidal energy site. It is located near shipping lanes, is a highly variable acoustic environment, and is frequented by the endangered southern resident killer whale (SRKW). Resolving environmental impacts is the first step to receiving approval to deploy tidal turbines. Several monitoring technologies are being considered to determine the presence of SRKW near the turbines. Broadband noise level measurements are critical for determining design and operational specifications of these technologies. Acoustic environment data at the proposed site was acquired at different depths using a cabled vertical line array from three different cruises during high tidal period in February, May, and June 2011. The ambient noise level decreases approximately 25 dB re 1 ?Pa per octave from frequency ranges of 1 kHz to 70 kHz, and increases approximately 20 dB re 1 ?Pa per octave for the frequency from 70 kHz to 200 kHz. The difference of noise pressure levels in different months varies from 10 to 30 dB re 1 ?Pa for the frequency range below 70 kHz. Commercial shipping and ferry vessel traffic were found to be the most significant contributors to sound pressure levels for the frequency range from 100 Hz to 70 kHz, and the variation could be as high as 30 dB re 1 ?Pa. These noise level measurements provide the basic information for designing and evaluating both active and passive monitoring systems proposed for deploying and operating for tidal power generation alert system.

Xu, Jinshan; Deng, Zhiqun; Martinez, Jayson J.; Carlson, Thomas J.; Myers, Joshua R.; Weiland, Mark A.

2012-04-04T23:59:59.000Z

184

Southern/Northern California Coastal Processes Annotated Bibliography: Coast of California Storm and Tidal Waves Study  

E-Print Network (OSTI)

Mendocino Thermal Power Plant on the Marine Environmentmarine environmental problems connected with the construction and operation of nuclear powerpower of sea and swell, calculated from hindcast wave data as compiled by National Marine

US Army Corps of Engineers, Los Angeles District, Planning Division, Coastal Resources Branch

1987-01-01T23:59:59.000Z

185

Wave Energy Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Jump to: navigation, search Name Wave Energy Technologies Inc Address 270 Sandy Cove Rd Place Ketch Harbour Zip B3V 1K9 Sector Marine and Hydrokinetic Website http:...

186

Climate Action Plan (Nova Scotia, Canada) | Open Energy Information  

Open Energy Info (EERE)

Fuel Cells, Geothermal Electric, Hydroelectric, Hydroelectric (Small), Natural Gas, Nuclear, Solar Photovoltaics, Tidal Energy, Wave Energy, Wind energy Active Policy Yes...

187

Climate Action Plan (New Hampshire) | Open Energy Information  

Open Energy Info (EERE)

Fuel Cells, Geothermal Electric, Hydroelectric, Hydroelectric (Small), Natural Gas, Nuclear, Solar Photovoltaics, Tidal Energy, Wave Energy, Wind energy Active Policy Yes...

188

Power Technologies Energy Data Book: Fourth Edition, Chapter...  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Hydro, Tidal Energy, Wave Energy, Ocean Thermal None Purchased by utility at spot- market energy rate Yes Investor- owned utilities only Delaware 25 kW Commercial,...

189

Rhode Island/EZFeed Policies | Open Energy Information  

Open Energy Info (EERE)

Gas Nuclear Photovoltaics Tidal Energy Wave Energy Wind energy StateProvince RIEDC's Job Creation Guaranty Program provides businesses looking to expand or relocate in Rhode...

190

Direct Drive Wave Energy Buoy  

SciTech Connect

The most prudent path to a full-scale design, build and deployment of a wave energy conversion (WEC) system involves establishment of validated numerical models using physical experiments in a methodical scaling program. This Project provides essential additional rounds of wave tank testing at 1:33 scale and ocean/bay testing at a 1:7 scale, necessary to validate numerical modeling that is essential to a utility-scale WEC design and associated certification.

Rhinefrank, Kenneth E. [Columbia Power Technologies, Inc.; Lenee-Bluhm, Pukha [Columbia Power Technologies, Inc.; Prudell, Joseph H. [Columbia Power Technologies, Inc.; Schacher, Alphonse A. [Columbia Power Technologies, Inc.; Hammagren, Erik J. [Columbia Power Technologies, Inc.; Zhang, Zhe [Columbia Power Technologies, Inc.

2013-07-29T23:59:59.000Z

191

Earth Tidal Analysis At Raft River Geothermal Area (1980) | Open Energy  

Open Energy Info (EERE)

Earth Tidal Analysis At Raft River Geothermal Earth Tidal Analysis At Raft River Geothermal Area(1980) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Earth Tidal Analysis Activity Date 1980 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the reservoir response to tidal and barometric effects Notes Porosity-total compressibility product evaluation based on tidal strain response compares favorably with results based on conventional pumping techniques. Analysis of reservoir response to barometric loading using Auto Regressive Integrated Moving Average (ARIMA) stochastic modeling appears also to have potential use for the evaluation of reservoir parameters. References Hanson, J. M. (29 May 1980) Reservoir response to tidal and barometric effects

192

Wave Wind LLC | Open Energy Information  

Open Energy Info (EERE)

Wave Wind LLC Place Sun Prairie, Wisconsin Zip 53590 Sector Services, Wind energy Product Wisconsin-based wind developer and construction services provider. References Wave Wind...

193

Puget Sound Tidal Energy In-Water Testing and Development Project Final Technical Report  

DOE Green Energy (OSTI)

The District collaborated extensively with project stakeholders to complete the tasks for this award. This included Federal, State, and local government agencies, tribal governments, environmental groups, and others. All required permit and license applications were completed and submitted under this award, including a Final License Application for a pilot hydrokinetic license from the Federal Energy Regulatory Commission. The tasks described above have brought the project through all necessary requirements to construct a tidal pilot project in Admiralty Inlet with the exception of final permit and license approvals, and the selection of a general contractor to perform project construction.

Craig W. Collar

2012-11-16T23:59:59.000Z

194

Novel approach to the exploitation of tidal energy. Volume I. Summary and discussion, Final report  

Science Conference Proceedings (OSTI)

The objective of this program is the development of the hydropneumatic concept in the approach to harnessing low-head tidal hydropower. The approach is based on converting the energy of water flow into the energy of an air jet by means of a specialized air chamber which is placed on the ocean floor across a flowing watercourse. Water passes through the chamber where it works as a natural piston compressing air in the upper part of the closure. Then, compressed air is used as a new working plenum to drive air turbines. The kinetic energy of an air jet provided by the air chamber is sufficient for stable operation of industrial air turbines. Also, because of the absence of the power turbogenerators in the dam body and because of decreased water pressure (two-meter head, or even less) it becomes possible to use light plastic barriers instead of conventional rigid dams (the water sail concept). Figures presented confirmed that the proposed concept can result in a less expensive and more effective tidal power plant project than the conventional hydroturbine approach. The scale of the power installation actually does not affect the economic characteristics.

Gorlov, A.M.

1981-12-01T23:59:59.000Z

195

Green Wave Energy Corp GWEC | Open Energy Information  

Open Energy Info (EERE)

Green Wave Energy Corp GWEC Jump to: navigation, search Name Green Wave Energy Corp GWEC Sector Marine and Hydrokinetic Website http:http:greenwaveenergyc Region United States...

196

California Wave Energy Partners LLC | Open Energy Information  

Open Energy Info (EERE)

California Wave Energy Partners LLC Jump to: navigation, search Name California Wave Energy Partners LLC Address 1590 Reed Road Place Pennington Zip 8534 Sector Marine and...

197

Slide19 | OSTI, US Dept of Energy, Office of Scientific and Technical...  

Office of Scientific and Technical Information (OSTI)

reports and 2,200 patents. * New Semantic Search. * Some subject area examples: hydrogen, solar energy, tidal and wave power, energy storage and direct energy conversion. Add new...

198

Reply to comment | OSTI, US Dept of Energy, Office of Scientific...  

Office of Scientific and Technical Information (OSTI)

and 2,200 patents. * New Semantic Search. * Some subject area examples: hydrogen, solar energy, tidal and wave power, energy storage and direct energy conversion. Add new...

199

Riding the Waves: Harnessing Ocean Wave Energy through ...  

Science Conference Proceedings (OSTI)

... The opportunities for ocean wave power to become a new, reliable and clean source of renewable energy will be discussed, as well as activities of ...

2012-04-04T23:59:59.000Z

200

Mesoscale Energy Spectra of Moist Baroclinic Waves  

Science Conference Proceedings (OSTI)

The role of moist processes in the development of the mesoscale kinetic energy spectrum is investigated with numerical simulations of idealized moist baroclinic waves. Dry baroclinic waves yield upper-tropospheric kinetic energy spectra that ...

Michael L. Waite; Chris Snyder

2013-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "tidal energy wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Tidal flow over threedimensional topography generates outofforcingplane harmonics  

E-Print Network (OSTI)

energy conversion from the barotropic to the baroclinic tide. The generation of internal waves by tidal, a significant amount of the energy converted from barotropic to baroclinic tides can be generated perpendicular of a sphere, J. Fluid Mech., 183, 439­450. Baines, P. G. (2007), Internal tide generation by seamounts, Deep

Texas at Austin. University of

202

Method for Reducing Background Clutter in a Camera Image - Energy ...  

Energy Analysis; Energy Storage; Geothermal; Hydrogen and Fuel Cell; Hydropower, Wave and Tidal; ... and any other scenario which requires accurate 3D mapping. ...

203

Browse Error - Energy Innovation Portal  

Hydropower, Wave and Tidal; Industrial Technologies; Solar Photovoltaic; Solar Thermal; Startup America; Vehicles and Fuels; Wind Energy; Partners (27) Visual Patent ...

204

Wave Power: Destroyer of Rocks; Creator of Clean Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

E E PG&E Wave Energy Wave Energy Federal Utility Partnership Federal Utility Partnership Working Group Meeting Working Group Meeting Wave Energy Wave Energy Development Development Ontario, CA Ontario, CA November 18 November 18- -19, 200 19, 2009 9 Donald G. Price Donald G. Price Senior Consulting Scientist, PG&E Senior Consulting Scientist, PG&E Wave Power Overview Wave Power Overview * * What is Wave Power? What is Wave Power? o o Wave power or wave energy is the energy contained in ocean Wave power or wave energy is the energy contained in ocean o o Wave power or wave energy is the energy contained in ocean Wave power or wave energy is the energy contained in ocean waves that is converted into electricity by various means. waves that is converted into electricity by various means. o o It is a clean, renewable energy resource capable of being utilized

205

Modeling the Limits and Effects of Energy?Extraction from Tidal...  

NLE Websites -- All DOE Office Websites (Extended Search)

agree well with analytical solution by Garrett & Cummins (2004, 2005) Extractable Max Power Function of (tidal amplitude, volume flux) P model 2,154 MW; P analytical ...

206

Earth Tidal Analysis At Salton Sea Geothermal Area (1980) | Open Energy  

Open Energy Info (EERE)

80) 80) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Earth Tidal Analysis At Salton Sea Geothermal Area (1980) Exploration Activity Details Location Salton Sea Geothermal Area Exploration Technique Earth Tidal Analysis Activity Date 1980 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the reservoir response to tidal and barometric effects Notes Porosity-total compressibility product evaluation based on tidal strain response compares favorably with results based on conventional pumping techniques. Analysis of reservoir response to barometric loading using Auto Regressive Integrated Moving Average (ARIMA) stochastic modeling appears also to have potential use for the evaluation of reservoir parameters.

207

MHK Technologies/The Crestwing Wave Energy Converter | Open Energy  

Open Energy Info (EERE)

Crestwing Wave Energy Converter Crestwing Wave Energy Converter < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage The Crestwing Wave Energy Converter.jpg Technology Profile Primary Organization Waveenergyfyn Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 7 8 Open Water System Testing Demonstration and Operation Technology Description The connected pontoons swing around the hinge when the top of the waves passes under the floats The pontoons relative motion is converted into usable energy through a linear PTO system The pontoons are pushed upwards from the below passing wave and again dragged down by the same passing wave Complex hydrodynamic conditions occur under the pontoons when the wave formation pushes the unit up and down simultaneously The energy from waves can be divided into fifty percent potential energy and fifty percent kinetic energy Crestwing absorbs both the potential energy as the kinetic energy which is the back ground for the high efficiency

208

Energy Transmission by Barotropic Rossby Waves Revisited  

Science Conference Proceedings (OSTI)

This article presents a semianalytic method to investigate the properties of energy transmission across bottom topography by barotropic Rossby waves. The method is first used to revisit the analytical estimates derived from wave-matching ...

R. P. Matano; E. D. Palma

2005-11-01T23:59:59.000Z

209

Earth Tidal Analysis At Raft River Geothermal Area (1982) | Open Energy  

Open Energy Info (EERE)

Tidal Analysis At Raft River Geothermal Area Tidal Analysis At Raft River Geothermal Area (1982) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Earth Tidal Analysis Activity Date 1982 Usefulness not indicated DOE-funding Unknown Exploration Basis To estimate subsurface fracture orientation based on an analysis of solid earth tidal strains. Notes A new practical method has been developed. The tidal strain fracture orientation technique is a passive method which has no depth limitation. The orientation of either natural or hydraulically stimulated fractures can be measured using either new or old static observation wells. Estimates for total compressibility and areal interconnected porosity can also be developed for reservoirs with matrix permeability using a combination of

210

LADWP - Feed-in Tariff (FiT) Program (California) | Open Energy...  

Open Energy Info (EERE)

Geothermal Electric, Landfill Gas, Ocean Thermal, Photovoltaics, Small Hydroelectric, Solar Thermal Electric, Tidal Energy, Wave Energy, Wind Active Incentive Yes Implementing...

211

Full Size Image - Energy Innovation Portal  

Hydropower, Wave and Tidal; Industrial Technologies; Solar Photovoltaic; Solar Thermal; Startup America; Vehicles and Fuels; Wind Energy; Partners (27) Visual Patent ...

212

Full Size Image - Energy Innovation Portal  

Share Full Size Image - Energy Innovation Portal on Facebook; ... Hydropower, Wave and Tidal; Industrial Technologies; Solar Photovoltaic; Solar Thermal; Startup America;

213

Field Measurements at River and Tidal Current Sites for Hydrokinetic Energy Development: Best Practices Manual  

SciTech Connect

In this report, existing data collection techniques and protocols for characterizing open channel flows are reviewed and refined to further address the needs of the MHK industry. The report provides an overview of the hydrodynamics of river and tidal channels, and the working principles of modern acoustic instrumentation, including best practices in remote sensing methods that can be applied to hydrokinetic energy site characterization. Emphasis is placed upon acoustic Doppler velocimeter (ADV) and acoustic-Doppler current profiler (ADCP) instruments, as these represent the most practical and economical tools for use in the MHK industry. Incorporating the best practices as found in the literature, including the parameters to be measured, the instruments to be deployed, the instrument deployment strategy, and data post-processing techniques. The data collected from this procedure aims to inform the hydro-mechanical design of MHK systems with respect to energy generation and structural loading, as well as provide reference hydrodynamics for environmental impact studies. The standard metrics and protocols defined herein can be utilized to guide field experiments with MHK systems.

Neary, Vincent S [ORNL; Gunawan, Budi [Oak Ridge National Laboratory (ORNL)

2011-09-01T23:59:59.000Z

214

Millimeter Wave Sensors for Clean Energy  

Science Conference Proceedings (OSTI)

Millimeter wave sensor data on refractory used for clean coal gasification will also be presented. Future applications in the area of clean energy will be...

215

MHK Technologies/Sihwa tidal barrage power plant | Open Energy Information  

Open Energy Info (EERE)

Sihwa tidal barrage power plant Sihwa tidal barrage power plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Sihwa tidal barrage power plant.jpg Technology Profile Technology Type Click here Overtopping Technology Readiness Level Click here TRL 9 Commercial Scale Production Application Technology Description Sihwa TBPP operates only on flood tide generation which produces electrical power during the flood tide the water is discharged back from basin to sea during ebb tide Technology Dimensions Technology Nameplate Capacity (MW) 254 Device Testing Date Submitted 59:41.3 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Sihwa_tidal_barrage_power_plant&oldid=681654

216

Overland Tidal Power Generation Using Modular Tidal Prism  

SciTech Connect

Naturally occurring sites with sufficient kinetic energy suitable for tidal power generation with sustained currents > 1 to 2 m/s are relatively rare. Yet sites with greater than 3 to 4 m of tidal range are relatively common around the U.S. coastline. Tidal potential does exist along the shoreline but is mostly distributed, and requires an approach which allows trapping and collection to also be conducted in a distributed manner. In this paper we examine the feasibility of generating sustainable tidal power using multiple nearshore tidal energy collection units and present the Modular Tidal Prism (MTP) basin concept. The proposed approach utilizes available tidal potential by conversion into tidal kinetic energy through cyclic expansion and drainage from shallow modular manufactured overland tidal prisms. A preliminary design and configuration of the modular tidal prism basin including inlet channel configuration and basin dimensions was developed. The unique design was shown to sustain momentum in the penstocks during flooding as well as ebbing tidal cycles. The unstructured-grid finite volume coastal ocean model (FVCOM) was used to subject the proposed design to a number of sensitivity tests and to optimize the size, shape and configuration of MTP basin for peak power generation capacity. The results show that an artificial modular basin with a reasonable footprint (? 300 acres) has the potential to generate 10 to 20 kw average energy through the operation of a small turbine located near the basin outlet. The potential of generating a total of 500 kw to 1 MW of power through a 20 to 40 MTP basin tidal power farms distributed along the coastline of Puget Sound, Washington, is explored.

Khangaonkar, Tarang; Yang, Zhaoqing; Geerlofs, Simon H.; Copping, Andrea

2010-03-01T23:59:59.000Z

217

The Effects of Wave Energy Converters on a Monochromatic Wave Climate  

E-Print Network (OSTI)

in wave energy converters as a possible means of providing renewable energy, the effects of a wave energy The interest in renewable energies is currently increasing due to the reported rise in global temperature is that of wave energy. The research is multifaceted and includes research on the efficiency of wave energy

Fox-Kemper, Baylor

218

Effects of Tidal Turbine Noise on Fish Hearing and Tissues - Draft Final Report - Environmental Effects of Marine and Hydrokinetic Energy  

Science Conference Proceedings (OSTI)

Snohomish Public Utility District No.1 plans to deploy two 6 meter OpenHydro tidal turbines in Admiralty Inlet in Puget Sound, under a FERC pilot permitting process. Regulators and stakeholders have raised questions about the potential effect of noise from the turbines on marine life. Noise in the aquatic environment is known to be a stressor to many types of aquatic life, including marine mammals, fish and birds. Marine mammals and birds are exceptionally difficult to work with for technical and regulatory reasons. Fish have been used as surrogates for other aquatic organisms as they have similar auditory structures. This project was funded under the FY09 Funding Opportunity Announcement (FOA) to Snohomish PUD, in partnership with the University of Washington - Northwest National Marine Renewable Energy Center, the Sea Mammal Research Unit, and Pacific Northwest National Laboratory. The results of this study will inform the larger research project outcomes. Proposed tidal turbine deployments in coastal waters are likely to propagate noise into nearby waters, potentially causing stress to native organisms. For this set of experiments, juvenile Chinook salmon (Oncorhynchus tshawytscha) were used as the experimental model. Plans exist for prototype tidal turbines to be deployed into their habitat. Noise is known to affect fish in many ways, such as causing a threshold shift in auditory sensitivity or tissue damage. The characteristics of noise, its spectra and level, are important factors that influence the potential for the noise to injure fish. For example, the frequency range of the tidal turbine noise includes the audiogram (frequency range of hearing) of most fish. This study was performed during FY 2011 to determine if noise generated by a 6-m diameter OpenHydro turbine might affect juvenile Chinook salmon hearing or cause barotrauma. Naturally spawning stocks of Chinook salmon that utilize Puget Sound are listed as threatened (http://www.nwr.noaa.gov/ESA-Salmon-Listings/Salmon-Populations/Chinook/CKPUG.cfm); the fish used in this experiment were hatchery raised and their populations are not in danger of depletion. After they were exposed to simulated tidal turbine noise, the hearing of juvenile Chinook salmon was measured and necropsies performed to check for tissue damage. Experimental groups were (1) noise exposed, (2) control (the same handling as treatment fish but without exposure to tidal turbine noise), and (3) baseline (never handled). Experimental results indicate that non-lethal, low levels of tissue damage may have occurred but that there were no effects of noise exposure on the auditory systems of the test fish.

Halvorsen, Michele B.; Carlson, Thomas J.; Copping, Andrea E.

2011-09-30T23:59:59.000Z

219

Earth Tidal Analysis At Raft River Geothermal Area (1984) | Open Energy  

Open Energy Info (EERE)

Earth Tidal Analysis At Raft River Geothermal Area Earth Tidal Analysis At Raft River Geothermal Area (1984) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Earth Tidal Analysis Activity Date 1984 Usefulness useful DOE-funding Unknown Exploration Basis Determine porosity of the reservoir Notes The response of a confined, areally infinite aquifer to external loads imposed by earth tides is examined. Because the gravitational influence of celestial objects occurs over large areas of the earth, the confined aquifer is assumed to respond in an undrained fashion. Since undrained response is controlled by water compressibility, earth tide response can be directly used only to evaluate porous medium compressibility if porosity is known. In the present work, change in external stress is estimated from

220

Energy-momentum relation for solitary waves of relativistic wave equations  

E-Print Network (OSTI)

Solitary waves of relativistic invariant nonlinear wave equation with symmetry group U(1) are considered. We prove that the energy-momentum relation for spherically symmetric solitary waves coincides with the Einstein energy-momentum relation for point particles.

T. V. Dudnikova; A. I. Komech; H. Spohn

2005-08-23T23:59:59.000Z

Note: This page contains sample records for the topic "tidal energy wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Direct Simulation of Internal Wave Energy Transfer  

Science Conference Proceedings (OSTI)

A three-dimensional nonhydrostatic numerical model is used to calculate nonlinear energy transfers within decaying GarrettMunk internal wavefields. Inviscid wave interactions are calculated over horizontal scales from about 1 to 80 km and for ...

Kraig B. Winters; Eric A. DAsaro

1997-09-01T23:59:59.000Z

222

Energy Dispersion in African Easterly Waves  

Science Conference Proceedings (OSTI)

The existence of an upstream (eastward) group velocity for African easterly waves (AEWs) is shown based on single-point lag regressions using gridded reanalysis data from 1990 to 2010. The eastward energy dispersion is consistent with the ...

Michael Diaz; Anantha Aiyyer

2013-01-01T23:59:59.000Z

223

A Note on the Effect of Wind Waves on Vertical Mixing in Franks Tract, Sacramento-San Joaquin Delta, California  

E-Print Network (OSTI)

Wang W, Huang RX. 2004. Wind energy input to the surfacecoefficient variability under wind waves in a tidal estuary.2008. A Note on the Effect of Wind Waves on Vertical Mixing

Jones, Nicole L; Thompson, Janet K; Monismith, Stephen G

2008-01-01T23:59:59.000Z

224

Consequences of Strong Compression in Tidal Disruption Events  

E-Print Network (OSTI)

The tidal disruption of a star by a supermassive black hole (SMBH) is a highly energetic event with consequences dependent on the degree to which the star plunges inside the SMBH's tidal sphere. We introduce a new analytic model for tidal disruption events (TDEs) to analyze the dependence of these events on beta, the ratio of the tidal radius to the orbital pericenter. We find, contrary to most previous work, that the spread in debris energy for a TDE is largely constant for all beta. This result has important consequences for optical transient searches targeting TDEs, which we discuss. We quantify leading-order general relativistic corrections to this spread in energy and find that they are small. We also examine the role of stellar spin, and find that a combination of spin-orbit misalignment, rapid rotation, and high beta may increase the spread in debris energy. Finally, we quantify for the first time the gravitational wave emission due to the strong compression of a star in a high-beta TDE. Although this signal is unlikely to be detectable for disruptions of main sequence stars, the tidal disruption of a white dwarf by an intermediate mass black hole can produce a strong signal visible to Advanced LIGO at tens of megaparsecs.

Nicholas Stone; Re'em Sari; Abraham Loeb

2012-10-11T23:59:59.000Z

225

Can dark energy be gravitational waves?  

E-Print Network (OSTI)

The idea that dark energy is gravitational waves may explain its strength and its time-evolution. A possible concept is that dark energy is the ensemble of coherent bursts (solitons) of gravitational waves originally produced when the first generation of super-massive black holes was formed. These solitons get their initial energy as well as keep up their energy density throughout the evolution of the universe by stimulating emission from a background, a process which we model by working out this energy transfer in a Boltzmann equation approach. New Planck data suggest that dark energy has increased in strength over cosmic time, supporting the concept here. The transit of these gravitational wave solitons may be detectable. Key tests include pulsar timing, clock jitter and the radio background.

Biermann, Peter L

2013-01-01T23:59:59.000Z

226

MHK Technologies/Tunneled Wave Energy Converter TWEC | Open Energy  

Open Energy Info (EERE)

Tunneled Wave Energy Converter TWEC Tunneled Wave Energy Converter TWEC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tunneled Wave Energy Converter TWEC.jpg Technology Profile Primary Organization SeWave Ltd Project(s) where this technology is utilized *MHK Projects/TWEC Project Technology Resource Click here Wave Technology Type Click here Oscillating Water Column Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The Tunneled Wave Energy Converter TWEC utilizes the OWC principle through its use of a proposed bored out tunnel within a cliff side of the Faroe Islands Technology Dimensions Device Testing Date Submitted 10/8/2010 << Return to the MHK database homepage

227

MHK Technologies/WEGA wave energy gravitational absorber | Open Energy  

Open Energy Info (EERE)

WEGA wave energy gravitational absorber WEGA wave energy gravitational absorber < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage WEGA wave energy gravitational absorber.jpg Technology Profile Primary Organization Sea for Life Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The WEGA device is an articulated suspended body semi submerged attached to a mount structure that oscillates in an elliptical orbit with the passage of the waves The movement of the body drives an hydraulic cylinder which pushes high pressure fluid through an accumulator and an hydraulic motor driving the generator that produces energy The articulated body attaches to the mount structure through a rotary head which allows it to adapt to the direction wave propagation Multiple devices can be placed on a single mount structure according to the size and place of the structure

228

Earth Tidal Analysis At East Mesa Geothermal Area (1984) | Open Energy  

Open Energy Info (EERE)

Geothermal Area (1984) Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Earth Tidal Analysis At East Mesa Geothermal Area (1984) Exploration Activity Details Location East Mesa Geothermal Area Exploration Technique Earth Tidal Analysis Activity Date 1984 Usefulness useful DOE-funding Unknown Exploration Basis Determine porosity of the reservoir Notes The response of a confined, areally infinite aquifer to external loads imposed by earth tides is examined. Because the gravitational influence of celestial objects occurs over large areas of the earth, the confined aquifer is assumed to respond in an undrained fashion. Since undrained response is controlled by water compressibility, earth tide response can be directly used only to evaluate porous medium compressibility if porosity is

229

MHK Projects/Town of Wiscasset Tidal Resources | Open Energy Information  

Open Energy Info (EERE)

Town of Wiscasset Tidal Resources Town of Wiscasset Tidal Resources < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.8028,"lon":-69.7833,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

230

MHK Projects/Homeowner Tidal Power Elec Gen | Open Energy Information  

Open Energy Info (EERE)

Homeowner Tidal Power Elec Gen Homeowner Tidal Power Elec Gen < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.4468,"lon":-69.6933,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

231

MHK Projects/Hammerfest Strom UK Tidal Stream | Open Energy Information  

Open Energy Info (EERE)

Hammerfest Strom UK Tidal Stream Hammerfest Strom UK Tidal Stream < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.3781,"lon":-3.43597,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

232

MHK Projects/Ward s Island Tidal Power Project | Open Energy Information  

Open Energy Info (EERE)

Ward s Island Tidal Power Project Ward s Island Tidal Power Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7818,"lon":-73.9316,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

233

MHK Projects/Willapa Bay Tidal Power Project | Open Energy Information  

Open Energy Info (EERE)

Willapa Bay Tidal Power Project Willapa Bay Tidal Power Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.7161,"lon":-124.038,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

234

MHK Projects/Half Moon Cove Tidal Project | Open Energy Information  

Open Energy Info (EERE)

Half Moon Cove Tidal Project Half Moon Cove Tidal Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.9062,"lon":-66.99,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

235

Ocean Wave Wind Energy Ltd OWWE | Open Energy Information  

Open Energy Info (EERE)

Wind Energy Ltd OWWE Jump to: navigation, search Name Ocean Wave Wind Energy Ltd OWWE Sector Marine and Hydrokinetic Website http:www.owwe.net Region Norway LinkedIn Connections...

236

Soft Capacitors for Wave Energy Harvesting  

E-Print Network (OSTI)

Wave energy harvesting could be a substantial renewable energy source without impact on the global climate and ecology, yet practical attempts have struggle d with problems of wear and catastrophic failure. An innovative technology for ocean wave energy harvesting was recently proposed, based on the use of soft capacitors. This study presents a realistic theoretical and numerical model for the quantitative characterization of this harvesting method. Parameter regio ns with optimal behavior are found, and novel material descriptors are determined which simplify analysis dramatically. The characteristics of currently ava ilable material are evaluated, and found to merit a very conservative estimate of 10 years for raw material cost recovery.

Karsten Ahnert; Markus Abel; Matthias Kollosche; Per Jrgen Jrgensen; Guggi Kofod

2011-04-21T23:59:59.000Z

237

Wind Energy Input to the Surface Waves  

Science Conference Proceedings (OSTI)

Wind energy input into the ocean is primarily produced through surface waves. The total rate of this energy source, integrated over the World Ocean, is estimated at 60 TW, based on empirical formulas and results from a numerical model of surface ...

Wei Wang; Rui Xin Huang

2004-05-01T23:59:59.000Z

238

MHK Technologies/The DEXAWAVE wave energy converter | Open Energy  

Open Energy Info (EERE)

DEXAWAVE wave energy converter DEXAWAVE wave energy converter < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage The DEXAWAVE wave energy converter.jpg Technology Profile Primary Organization Dexawave Technology Readiness Level Click here TRL 7 8 Open Water System Testing Demonstration and Operation Technology Description The DEXAWAVE wave energy converter has a simple construction It consists of two rigid pontoons hinged together using a patented hinge The one pontoon can pivot relative to the other There is a hydraulic power take off system on top of the converter generating up to 250 kW Technology Dimensions Technology Nameplate Capacity (MW) 25 Device Testing Scale Test *At present our 1 to 5 scale model is working the waters outside the Danish port of Hanstholm collecting valuable data about the waves and currents that are constantly pounding the structure

239

MHK Technologies/Wave Energy Conversion Activator WECA | Open Energy  

Open Energy Info (EERE)

Activator WECA Activator WECA < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Energy Conversion Activator WECA.jpg Technology Profile Primary Organization Daedalus Informatics Ltd Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The full scale WECA design is ideally fabricated with steel so as to be suitable for mounting on the run up wall of breakwaters or other rigid or floating structures The oscillating wave surge converter absorbs most of the energy of the impacting waves and turn it into compressed air which is subsequently converted into electric power or other forms of energy The device utilizes the Critical Momentum Wedge principle where the water rushing into the device resembles a virtual Wedge of kinetic energy

240

Internal WaveWave Interactions. Part II: Spectral Energy Transfer and Turbulence Production  

Science Conference Proceedings (OSTI)

The spectral transfer of internal wave energy toward high vertical wavenumber kz and turbulence production ? is examined by ray tracing small-scale test waves in a canonical Garrett and Munk background wave field. Unlike previous ray-tracing ...

Haili Sun; Eric Kunze

1999-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "tidal energy wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Tidal Eulerian Residual Currents over a Slope: Analytical and Numerical Frictionless Models  

Science Conference Proceedings (OSTI)

The Eulerian residual tidal currents generated over a continental slope are examined. Using the assumption of a Poincar wave, the linear frictionless solution of a semidiurnal tidal wave propagating from the deep ocean to a constant depth ...

Robert Maz; Gilbert Langlois; Franois Grosjean

1998-07-01T23:59:59.000Z

242

Wave polarizations for a beam-like gravitational wave in quadratic curvature gravity  

E-Print Network (OSTI)

We compute analytically the tidal field and polarizations of an exact gravitational wave generated by a cylindrical beam of null matter of finite width and length in quadratic curvature gravity. We propose that this wave can represent the gravitational wave that keep up with the high energy photons produced in a gamma ray burst (GRB) source.

E. C. de Rey Neto; J. C. N. de Araujo; O. D. Aguiar

2003-11-14T23:59:59.000Z

243

MHK Technologies/DEXA Wave Converter | Open Energy Information  

Open Energy Info (EERE)

Wave Technology Type Click here Attenuator Technology Description The wave energy conversion is similar to other devices There is no data publicly available currently on the...

244

MHK Technologies/OCEANTEC Wave Energy Converter | Open Energy Information  

Open Energy Info (EERE)

Wave Energy Converter Wave Energy Converter < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage OCEANTEC Wave Energy Converter.jpg Technology Profile Primary Organization OCEANTEC Energias Marinas S L Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description OCEANTEC Marine Energy Company Ltd owned by Iberdrola and TECNALIA is developing a sensor for wave energy technology type Spanish attenuator Floating body oscillates due to wave excitation in its main DOF pitch Mooring system allows the body to weathervane so that it is faced to the predominant wave propagation direction Main advantage capture system completely encapsulated free of contact with sea water A flywheel continuously spins under the action of an electric motor Z The pitching motion of the WEC caused by wave action is transformed into an alternating precession in the longitudinal hull axis X A coupling device transforms this precession into an unidirectional rotation of higher frequency that is used to feed a conventional electric generator

245

Maryland/EZFeed Policies | Open Energy Information  

Open Energy Info (EERE)

Gas Nuclear Photovoltaics Tidal Energy Wave Energy Wind energy StateProvince The Job Creation Tax Credit provides a 1000 tax credit to businesses that create new jobs; the...

246

On the Energy Input from Wind to Surface Waves  

Science Conference Proceedings (OSTI)

A basic model relating the energy dissipation in the ocean mixed layer to the energy input into the surface wave field is combined with recent measurements of turbulent kinetic energy dissipation to determine the average phase speed of the waves ...

J. R. Gemmrich; T. D. Mudge; V. D. Polonichko

1994-11-01T23:59:59.000Z

247

List of Wave Energy Incentives | Open Energy Information  

Open Energy Info (EERE)

Wave Energy Incentives Wave Energy Incentives Jump to: navigation, search The following contains the list of 652 Wave Energy Incentives. CSV (rows 1-500) CSV (rows 501-652) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Abatement of Air Pollution: Control of Carbon Dioxide Emissions/Carbon Dioxide Budget Trading Program (Connecticut) Environmental Regulations Connecticut Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government

248

MHK Technologies/Wave Energy Propulsion | Open Energy Information  

Open Energy Info (EERE)

< MHK Technologies < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Energy Propulsion.jpg Technology Profile Primary Organization Kneider Innovations Technology Resource Click here Wave Technology Type Click here Attenuator Technology Description The device concept is a converter of the vertical potential energy moving wave to push the boat on horizontal kinetic motion Optimum Marine/Riverline Conditions The device is compliant for boat navigating on sea and oceans or lakes when water levels are changing cyclicly waves Technology Dimensions Device Testing Date Submitted 18:32.0 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Wave_Energy_Propulsion&oldid=681483"

249

MHK Technologies/Seatricity wave energy converter | Open Energy Information  

Open Energy Info (EERE)

Seatricity wave energy converter Seatricity wave energy converter < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Seatricity wave energy converter.jpg Technology Profile Primary Organization Seatricity Project(s) where this technology is utilized *MHK Projects/Seatricity Antigua *MHK Projects/Seatricity Orkney Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 7/8: Open Water System Testing & Demonstration & Operation Technology Description In the simplest terms, a float travels up and down with the waves and operates a pump to pressurise sea water which is piped ashore. Many individual pumps are connected together to produce substantial amounts of pressurized water. Once ashore the pressurized sea water is used to drive a standard hydroelectric turbine to produce electricity.

250

WaveCatcher Inc | Open Energy Information  

Open Energy Info (EERE)

WaveCatcher Inc WaveCatcher Inc Jump to: navigation, search Name WaveCatcher Inc Address 2307 Robincrest Ln Sector Marine and Hydrokinetic Year founded 2006 Phone number 1-847-764-9106 LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=WaveCatcher_Inc&oldid=678511" Categories: Clean Energy Organizations Companies Organizations Stubs MHK Companies What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 1863326429 Varnish cache server

251

Energy Dissipation of Unsteady Wave Breaking on Currents  

Science Conference Proceedings (OSTI)

Energy dissipation for unsteady deep-water breaking in wave groups on following and opposing currents, including partial wave-blocking conditions, was investigated by detailed laboratory measurements. A range of focusing wave conditions, ...

Aifeng Yao; Chin H. Wu

2004-10-01T23:59:59.000Z

252

Kinetic Energy Transfer between Internal Gravity Waves and Turbulence  

Science Conference Proceedings (OSTI)

We describe a reliable method for distinguishing the mean, wave and turbulence fields when internal waves with changing amplitude perturb the turbulent boundary layer. By integrating the component wave and turbulence kinetic energy budgets ...

J. J. Finnigan

1988-02-01T23:59:59.000Z

253

Ocean Energy Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ocean Energy Technology Basics Ocean Energy Technology Basics Ocean Energy Technology Basics August 16, 2013 - 4:18pm Addthis Text Version Photo of low waves in the ocean. A dock is visible in the background. Oceans cover more than 70% of the Earth's surface. As the world's largest solar collectors, oceans contain thermal energy from the sun and produce mechanical energy from tides and waves. Even though the sun affects all ocean activity, the gravitational pull of the moon primarily drives tides, and wind powers ocean waves. Learn more about: Ocean Thermal Energy Conversion Tidal Energy Wave Energy Ocean Resources Addthis Related Articles Energy Department Releases New Energy 101 Video on Ocean Power A map generated by Georgia Tech's tidal energy resource database shows mean current speed of tidal streams. The East Coast, as shown above, has strong tides that could be tapped to produce energy. | Photo courtesy of Georgia Institute of Technology

254

WaveDyn: A Design Tool for Performance & Operational Loads Modeling of WECs  

NLE Websites -- All DOE Office Websites (Extended Search)

Experience with Validating MHK Tools Experience with Validating MHK Tools National Renewable Energy Laboratory - Broomfield, CO - July 9 th 2012 Contents * Overview of GL Garrad Hassan * List of Tools/Core Expertise: Dedicated Software * Waves: Resource assessment and site data analysis * WaveDyn: WEC performance and loads calculation (time-domain) * WaveFarmer: Planning and optimization of a WEC array * Tides: Resource assessment and site data analysis * Tidal Bladed: Tidal Turbine performance and loads calculation (time-domain) * TidalFarmer: Planning and optimization of a tidal turbine array * Validation Experience * Tidal Bladed * ReDAPT * PerAWaT * WaveDyn Who are GL Garrad Hassan? * Industry-leading independent renewable energy consultancy * Established in 1984 * Over 950 full time staff, in 42 locations, across 24 countries worldwide

255

Measurement of the Rates of Production and Dissipation of Turbulent Kinetic Energy in an Energetic Tidal Flow: Red Wharf Bay Revisited  

Science Conference Proceedings (OSTI)

Simultaneous measurements of the rates of turbulent kinetic energy (TKE) dissipation (?) and production (P) have been made over a period of 24 h at a tidally energetic site in the northern Irish Sea in water of 25-m depth. Some ? profiles from 5 ...

Tom P. Rippeth; John H. Simpson; Eirwen Williams; Mark E. Inall

2003-09-01T23:59:59.000Z

256

MHK Technologies/CETO Wave Energy Technology | Open Energy Information  

Open Energy Info (EERE)

Wave Energy Technology Wave Energy Technology < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage CETO Wave Energy Technology.png Technology Profile Primary Organization Carnegie Wave Energy Limited Project(s) where this technology is utilized *MHK Projects/CETO La Reunion *MHK Projects/CETO3 Garden Island *MHK Projects/Perth Wave Energy Project PWEP Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 7/8: Open Water System Testing & Demonstration & Operation Technology Description The CETO system distinguishes itself from other wave energy devices by operating out of sight and being anchored to the ocean floor. Each CETO unit consists of a pump unit moored to the ocean floor and connected to a submerged Buoyant Actuator via a tether. The Buoyant Actuator moves in an orbital motion, in harmony with the wave, capturing the power of the passing waves. The Buoyant Actuator is connected to a tether (marine rope) that creates a vertical upward force which actuates the seabed mounted piston pump. This force pressurises fluid in the CETO system. The high pressure fluid is then sent ashore via a subsea pipeline. Onshore the fluid passes through a standard hydroelectric turbine to generate zero-emission electricity and/or through a reverse osmosis plant to directly create zero-emission desalinated water (replacing greenhouse gas emitting electrically driven pumps usually required for such plants). The fluid is then re-circulated at low-pressure to the CETO units offshore creating a closed-loop system. The generation capacity of CETO projects is scalable. To increase the project capacity additional units can be added offshore and connected back to a larger power house onshore.

257

MHK Technologies/Hybrid wave Wind Wave pumps and turbins | Open Energy  

Open Energy Info (EERE)

Wind Wave pumps and turbins Wind Wave pumps and turbins < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Hybrid wave Wind Wave pumps and turbins.jpg Technology Profile Primary Organization Ocean Wave Wind Energy Ltd OWWE Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description 2Wave1Wind The hybrid wave power rig uses two wave converting technologies in addition to wind mills The main system is a pneumatic float in the category of overtopping as Wave Dragon In addition the pneumatic float can house point absorbers The hybrid wave power rig is based on the patented wave energy converter from 2005

258

Open Ocean Aquaculture & Wave Energy Site | Open Energy Information  

Open Energy Info (EERE)

Aquaculture & Wave Energy Site Aquaculture & Wave Energy Site Jump to: navigation, search Basic Specifications Facility Name Open Ocean Aquaculture & Wave Energy Site Overseeing Organization University of New Hampshire Hydrodynamics Hydrodynamic Testing Facility Type Offshore Berth Depth(m) 52.0 Cost(per day) Contact POC Special Physical Features The Offshore Mooring System is placed in 52m water depth with a subsurface attachment grid at 20m. The entire mooring system covers 36 acres of bottom. There are four 'bays' into which devices can be attached. Each bay is approximately 130m on a side. There is a database with ~10 years of wave data and other environmental parameters available. Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes

259

Estimating Internal Wave Energy Fluxes in the Ocean  

Science Conference Proceedings (OSTI)

Energy flux is a fundamental quantity for understanding internal wave generation, propagation, and dissipation. In this paper, the estimation of internal wave energy fluxes u?p? from ocean observations that may be sparse in either time or depth ...

Jonathan D. Nash; Matthew H. Alford; Eric Kunze

2005-10-01T23:59:59.000Z

260

Scotrenewables Wind Power and Marine Power Ltd | Open Energy...  

Open Energy Info (EERE)

Zip KW16 3AW Sector Renewable Energy, Wind energy Product Scotrenewables is involved in R&D activities in the wind, wave and tidal energy sectors. Coordinates 34.7519,...

Note: This page contains sample records for the topic "tidal energy wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

MHK Technologies/Wave Energy Seawater Transmission WEST | Open Energy  

Open Energy Info (EERE)

Wave Energy Seawater Transmission WEST Wave Energy Seawater Transmission WEST < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Energy Seawater Transmission WEST.jpg Technology Profile Primary Organization Atmocean Inc Project(s) where this technology is utilized *MHK Projects/WEST Testing Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description Atmocean WEST efficiently captures wave energy by deploying many inexpensive devices across large ocean regions. By using hydraulic transmission, WEST avoids the high cost of seafloor power lines, generating electricity onshore to achieve higher reliability at lower cost. When WEST is combined with Bright Energy Storage Technologies seafloor compressed air energy storage (CAES) system, the two enable base load renewable power (eliminating the need for backup fossil-fuel power) at a projected levelized cost of electricity (LCOE) of $.08/kWh to $.12/kWh.

262

Tidal | OpenEI Community  

Open Energy Info (EERE)

Tidal Tidal Home Ocop's picture Submitted by Ocop(5) Member 18 April, 2013 - 13:41 MHK LCOE Reporting Guidance Draft Cost Current DOE LCOE numerical modeling Performance Tidal Wave To normalize competing claims of LCOE, DOE has developed-for its own use-a standardized cost and performance data reporting process to facilitate uniform calculation of LCOE from MHK device developers. This standardization framework is only the first version in what is anticipated to be an iterative process that involves industry and the broader DOE stakeholder community. Multiple files are attached here for review and comment.Upload Files: application/vnd.openxmlformats-officedocument.wordprocessingml.document icon device_performance_validation_data_request.docx application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon

263

MHK Technologies/WaveStar | Open Energy Information  

Open Energy Info (EERE)

WaveStar WaveStar < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage WaveStar.jpg Technology Profile Primary Organization Wave Star Energy Project(s) where this technology is utilized *MHK Projects/Wave Star Energy 1 10 Scale Model Test Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description The Wave Star machine does not form a barrier against the waves - with a view to harnessing all their energy - but instead cuts in at right angles to the direction of the wave. In this way, the waves run through the length of the machine and the energy is utilized in a continuous process, which produces a smooth output. On each side of the oblong Wave Star machine, there are a number of hemisphere-shaped floats, which are half submerged in the water. When a wave rolls in, the floats are pressed up - one after the other - until the wave subsides. Each float is positioned at the end of an arm and pumps energy by the vertical movement of the waves up and down. Every time a float is raised or lowered, a piston presses oil into the machine's common transmission system. The pressure drives a hydraulic motor, which drives a generator, which produces electricity. As the machine is several wave lengths long, the floats will work continuously to harness the energy and produce a smooth output.

264

E2I EPRI Assessment Offshore Wave Energy Conversion Devices  

E-Print Network (OSTI)

of offshore wave power to provide efficient, reliable, cost-effective, and environmentally friendly electrical definition study in CY 2004. This study will produce system designs for wave energy conversion device power plants, performance estimate and economic assessments for one site ­ wave energy conversion device per

265

Slide17 | OSTI, US Dept of Energy, Office of Scientific and Technical...  

Office of Scientific and Technical Information (OSTI)

Over 34,000 technical reports and 2,200 patents. * Some subject area examples: hydrogen, solar energy, tidal and wave power, energy storage and direct energy conversion. Add new...

266

Energy Conservation in Coastal-Trapped Wave Calculations  

Science Conference Proceedings (OSTI)

A consideration of energy conservation for coastal-trapped waves shows that, for a slowly varying medium, the normalization of the wave modes is not arbitrary. Errors related to incorrect normalization are demonstrated for a simple analytic ...

K. H. Brink

1989-07-01T23:59:59.000Z

267

Hinsdale Wave Basin 1 | Open Energy Information  

Open Energy Info (EERE)

Hinsdale Wave Basin 1 Hinsdale Wave Basin 1 Jump to: navigation, search Basic Specifications Facility Name Hinsdale Wave Basin 1 Overseeing Organization Oregon State University Hydrodynamics Hydrodynamic Testing Facility Type Wave Basin Length(m) 104.0 Beam(m) 3.7 Depth(m) 4.6 Cost(per day) $3500 Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 1.8 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 10.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Monochromatic waves (cnoidal, Stokes, Airy), solitary waves, user-defined free surface timeseries or board displacement timeseries for random waves Wave Direction Uni-Directional Simulated Beach Yes Description of Beach 12' by 12' concrete slabs anchored to flume walls

268

Probing Nuclear Symmetry Energy and its Imprints on Properties of Nuclei, Nuclear Reactions, Neutron Stars and Gravitational Waves  

E-Print Network (OSTI)

Significant progress has been made in recent years in constraining nuclear symmetry energy at and below the saturation density of nuclear matter using data from both terrestrial nuclear experiments and astrophysical observations. However, many interesting questions remain to be studied especially at supra-saturation densities. In this lecture note, after a brief summary of the currently available constraints on nuclear symmetry energy near the saturation density we first discuss the relationship between the symmetry energy and the isopin and momentum dependence of the single-nucleon potential in isospin-asymmetric nuclear medium. We then discuss several open issues regarding effects of the tensor force induced neutron-proton short-range correlation (SRC) on nuclear symmetry energy. Finally, as an example of the impacts of nuclear symmetry energy on properties of neutron stars and gravitational waves, we illustrate effects of the high-density symmetry energy on the tidal polarizability of neutron stars in coal...

Li, Bao-An; Fattoyev, Farrukh J; Newton, William G; Xu, Chang

2012-01-01T23:59:59.000Z

269

Ocean Wave Energy Company OWECO | Open Energy Information  

Open Energy Info (EERE)

Energy Company OWECO Energy Company OWECO Jump to: navigation, search Name Ocean Wave Energy Company (OWECO) Place Bristol, Rhode Island Sector Ocean Product Wave energy device developer. The company has patented the OWEC Ocean Wave Energy Converter®., a device consisting of a submerged array, suspended at depths permitting full reciprocation of buoys and respective driveshafts. Coordinates 42.55678°, -88.050449° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.55678,"lon":-88.050449,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

270

Hinsdale Wave Basin 2 | Open Energy Information  

Open Energy Info (EERE)

Wave Basin 2 Wave Basin 2 Jump to: navigation, search Basic Specifications Facility Name Hinsdale Wave Basin 2 Overseeing Organization Oregon State University Hydrodynamics Length(m) 48.8 Beam(m) 26.5 Depth(m) 2.1 Water Type Freshwater Cost(per day) $3500 Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.8 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 10.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Monochromatic waves (cnoidal, Stokes, Airy), solitary waves, user-defined free surface timeseries or board displacement timeseries for random waves Wave Direction Both Simulated Beach Yes Description of Beach Built to client specifications, currently rigid concrete over gravel fill

271

Sheets Wave Basin | Open Energy Information  

Open Energy Info (EERE)

Sheets Wave Basin Sheets Wave Basin Jump to: navigation, search Basic Specifications Facility Name Sheets Wave Basin Overseeing Organization University of Rhode Island Hydrodynamic Testing Facility Type Wave Basin Length(m) 30.0 Beam(m) 3.6 Depth(m) 1.8 Cost(per day) $750(+ Labor/Materials) Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 2.0 Length of Effective Tow(m) 25.0 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.3 Maximum Wave Height(m) at Wave Period(s) 3.0 Maximum Wave Length(m) 10 Wave Period Range(s) 3.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Pre-programmed for regular and irregular waves, but wavemaker is capable of any input motion. Wave Direction Uni-Directional

272

Haynes Wave Basin | Open Energy Information  

Open Energy Info (EERE)

Wave Basin Wave Basin Jump to: navigation, search Basic Specifications Facility Name Haynes Wave Basin Overseeing Organization Texas A&M (Haynes) Hydrodynamic Testing Facility Type Wave Basin Length(m) 38.1 Beam(m) 22.9 Depth(m) 1.5 Water Type Freshwater Cost(per day) $150/hour (excluding labor) Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.6 Maximum Wave Height(m) at Wave Period(s) 3.3 Maximum Wave Length(m) 10.7 Wave Period Range(s) 3.3 Current Velocity Range(m/s) 0.2 Programmable Wavemaking Yes Wavemaking Description Directional, irregular, any spectrum, cnoidal or solitary wave Wave Direction Both Simulated Beach Yes Description of Beach Stone Channel/Tunnel/Flume Channel/Tunnel/Flume None

273

MHK Technologies/Magnetohydrodynamic MHD Wave Energy Converter MWEC | Open  

Open Energy Info (EERE)

Magnetohydrodynamic MHD Wave Energy Converter MWEC Magnetohydrodynamic MHD Wave Energy Converter MWEC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Magnetohydrodynamic MHD Wave Energy Converter MWEC.jpg Technology Profile Primary Organization Scientific Applications Research Associates Inc SARA Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The Magnetohydrodynamic MHD Wave Energy Converter couples the up down motion of heave based systems A shaft transfers wave motion to the MHD generator which is deep underwater The shaft forces the conducting fluid through a set of powerful permanent magnets creating a low voltage high current electrical energy An electrical inverter converts the electrical energy to commercial quality 60 Hz AC power

274

Available Technologies: Green Wave: Energy-Efficient HPC ...  

A Berkeley Lab team led by John Shalf and David Donofrio developed Green Wave, a energy-efficient computing platform that can perform critical Reverse Time Migration ...

275

Mapping and Assessment of the United States Ocean Wave Energy...  

Open Energy Info (EERE)

Resource This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed...

276

Traveling Wave Thermoacoustic-Piezoelectric Energy Harvester: Theory and Experiment.  

E-Print Network (OSTI)

??This thesis presents a theoretical and experimental investigation of a piezoelec- tric energy harvester coupled to a traveling wave thermoacoustic engine (TWTAE). By simplifying the (more)

Roshwalb, Andrew Zvi

2011-01-01T23:59:59.000Z

277

Alden Wave Basin | Open Energy Information  

Open Energy Info (EERE)

Wave Basin Wave Basin Jump to: navigation, search Basic Specifications Facility Name Alden Wave Basin Overseeing Organization Alden Research Laboratory, Inc Hydrodynamic Testing Facility Type Wave Basin Length(m) 33.5 Beam(m) 21.3 Depth(m) 1.2 Water Type Freshwater Cost(per day) Depends on study Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.3 Maximum Wave Height(m) at Wave Period(s) 1.0 Maximum Wave Length(m) 1.8 Wave Period Range(s) 1.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Period adjustable electronically, height adjustable mechanically Wave Direction Both Simulated Beach Yes Description of Beach Designed as needed using commercially available sand/sediment

278

MHK Projects/Santona Wave Energy Park | Open Energy Information  

Open Energy Info (EERE)

Santona Wave Energy Park Santona Wave Energy Park < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.4421,"lon":-3.45319,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

279

MHK Projects/Oregon Coastal Wave Energy | Open Energy Information  

Open Energy Info (EERE)

Coastal Wave Energy Coastal Wave Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.5146,"lon":-123.913,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

280

MHK Technologies/bioWave | Open Energy Information  

Open Energy Info (EERE)

bioWave bioWave < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage BioWave.jpg Technology Profile Primary Organization BioPower Systems Pty Ltd Project(s) where this technology is utilized *MHK Projects/bioWAVE Pilot Plant Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description TThe bioWAVE is based on the swaying motion of sea plants in the presence of ocean waves. The hydrodynamic interaction of the buoyant blades with the oscillating flow field is designed for maximum energy absorption. Mooring Configuration Gravity base Optimum Marine/Riverline Conditions 30 to 50M depth 20kW m wave climate or greater

Note: This page contains sample records for the topic "tidal energy wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Preliminary Results of a RANS Simulation for a Floating Point Absorber Wave Energy System Under Extreme Wave Conditions  

SciTech Connect

This paper presents the results of a preliminary study on the hydrodynamics of a moored floating-point absorber (FPA) wave energy system under extreme wave conditions.

Yu, Y.; Li, Y.

2011-10-01T23:59:59.000Z

282

Motor Wave Group | Open Energy Information  

Open Energy Info (EERE)

Wave Group Jump to: navigation, search Name Motor Wave Group Place Hong Kong Sector Marine and Hydrokinetic Website http:www.motorwavegroup.com Region China LinkedIn Connections...

283

Kinetic Wave Power | Open Energy Information  

Open Energy Info (EERE)

Kinetic Wave Power Jump to: navigation, search Name Kinetic Wave Power Address 2861 N Tupelo St Place Midland Zip 48642 Sector Marine and Hydrokinetic Phone number 989-839-9757...

284

Wind Waves and Sun | Open Energy Information  

Open Energy Info (EERE)

Waves and Sun Jump to: navigation, search Name Wind Waves and Sun Sector Marine and Hydrokinetic Website http:www.windwavesandsun.com Region United States LinkedIn Connections...

285

Enhancement of particle-wave energy exchange by resonance sweeping  

SciTech Connect

It is shown that as the resonance condition of the particle-wave interaction is varied adiabatically, that the particles trapped in the wave will form phase space holes or clumps that can enhance the particle-wave energy exchange. This mechanism can cause much larger saturation levels of instabilities, and even allow the free energy associated with instability, to be tapped in a system that is linearly stable due to background dissipation.

Berk, H.L.; Breizman, B.N.

1995-10-01T23:59:59.000Z

286

Turbine speed control for an ocean wave energy conversion system  

Science Conference Proceedings (OSTI)

In this work, a hydraulic turbine speed governor is proposed in view of its application in an isolated electric generation system based on an ocean wave energy converter (WEC). The proposed strategy is based on cascade closed-loop control combined with ... Keywords: Pelton turbine, cascade control, feedforward control, ocean wave energy, speed governor

Paula B. Garcia-Rosa; Jos Paulo V. S. Cunha; Fernando Lizarralde

2009-06-01T23:59:59.000Z

287

Water News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

News News Water News RSS August 29, 2013 Energy Department Invests $16 Million to Harness Wave and Tidal Energy Seventeen Projects to Boost Device Performance, Ensure Sustainable Development. August 29, 2013 Energy Department Invests $16 Million to Develop Wave and Tidal Energy Technologies As part of the Obama Administration's all-of-the-above strategy to deploy every available source of American energy, the Energy Department today announced $16 million for seventeen projects to help sustainably and efficiently capture energy from waves, tides, and currents. Together, these projects will increase the power production and reliability of wave and tidal devices and help gather valuable data on how deployed devices interact with the surrounding environment. April 17, 2012

288

MHK Technologies/C Wave | Open Energy Information  

Open Energy Info (EERE)

Wave Wave < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage C Wave.jpg Technology Profile Primary Organization C Wave Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The C Wave device uses two neutrally buoyant walls approximately half a wave length apart so that while one is moving forward the other is moving back The device works at a broad bandwidth around this half wavelength spacing However to improve annualized energy yield still further a third wall at an unequal spacing can be added in order to extract energy from different wavelengths Technology Dimensions

289

MHK Technologies/Wave Dragon | Open Energy Information  

Open Energy Info (EERE)

Dragon Dragon < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Dragon.jpg Technology Profile Primary Organization Wave Dragon ApS Project(s) where this technology is utilized *MHK Projects/Wave Dragon Nissum Bredning Technology Resource Click here Wave Technology Type Click here Overtopping Device Technology Readiness Level Click here TRL 7/8: Open Water System Testing & Demonstration & Operation Technology Description The Wave Dragon is a floating wave energy converter of the overtopping type. It basically consists of two wave reflectors focusing the waves towards a ramp. Behind the ramp there is a large reservoir where the water that runs up the ramp is collected and temporarily stored. The water leaves the reservoir through hydro turbines that utilize the head between the level of the reservoir and the sea level.

290

MHK Technologies/MotorWave | Open Energy Information  

Open Energy Info (EERE)

MotorWave MotorWave < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage MotorWave.jpg Technology Profile Primary Organization Motor Wave Group Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The MotorWave device is composed of about 70 float modules with each float measuring about 4 m3 Each MotorWave is designed to pump water ashore for onshore applications or energy production Technology Dimensions Device Testing Date Submitted 45:49.5 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/MotorWave&oldid=681609

291

Oregon Wave Energy Trust OWET | Open Energy Information  

Open Energy Info (EERE)

Trust OWET Trust OWET Jump to: navigation, search Name Oregon Wave Energy Trust (OWET) Place Portland, Oregon Zip 97207 Product String representation "The Oregon Wave ... rgy generation." is too long. Coordinates 45.511795°, -122.675629° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.511795,"lon":-122.675629,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

292

OTRC Wave Basin | Open Energy Information  

Open Energy Info (EERE)

OTRC Wave Basin OTRC Wave Basin Jump to: navigation, search Basic Specifications Facility Name OTRC Wave Basin Overseeing Organization Texas A&M (OTRC) Hydrodynamic Testing Facility Type Wave Basin Length(m) 45.7 Beam(m) 30.5 Depth(m) 5.8 Water Type Freshwater Cost(per day) $300/hour (excluding labor) Special Physical Features 4.6m wide x 9.1m long x 16.8m deep pit with adjustable depth floor in test area Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 0.6 Length of Effective Tow(m) 27.4 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.9 Maximum Wave Height(m) at Wave Period(s) 4.0 Maximum Wave Length(m) 25 Wave Period Range(s) 4.0 Current Velocity Range(m/s) 0.6 Programmable Wavemaking Yes Wavemaking Description GEDAP 3D wave generation software, 48 hinged flap wave generator

293

New Wave Power Project In Oregon | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wave Power Project In Oregon Wave Power Project In Oregon New Wave Power Project In Oregon June 17, 2011 - 3:12pm Addthis Mike Reed Water Power Program Manager, Water Power Program What does this project do? Promises to add tremendous value to the wave energy industry, reinforcing utility-scale viability, collecting ground-breaking environmental impact data and exploring avenues for cost reduction. Has issued localized manufacturing contracts for the PB150 to several Oregon companies. If you've ever been surfing, or gone swimming in choppy water, you've experienced first-hand the striking power of waves. In fact, further offshore, wave activity becomes even more powerful, making it an excellent resource for generating clean, renewable energy. That's exactly what the Department of Energy and its partner Ocean Power Technologies (OPT) are

294

Marine and Hydrokinetic Resources | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Resources Marine and Hydrokinetic Resources (Redirected from Wave) Jump to: navigation, search << Return to the MHK database homepage Contents 1 Marine and Hydrokinetic Resource Assessment and Characterization 2 Current/Tidal/Riverine 3 Wave 4 Ocean Thermal Energy Conversion (OTEC) Marine and Hydrokinetic Resource Assessment and Characterization To find out more about Marine and Hydrokinetic Resource Assessment and Characterization click on this link. Current/Tidal/Riverine Tile Current.jpg To find out more about Tidal Energy click on this link and for Current Energy this link. Wave Wave 02.jpg To find out more about Wave Energy click on this link. Ocean Thermal Energy Conversion (OTEC) Ocean Thermo 04.jpg To find out more about OTEC Energy click on this link. << Return to the MHK database homepage

295

Tidal heating and tidal evolution in the solar system  

E-Print Network (OSTI)

In this thesis, we examine the effects of tidal dissipation on solid bodies in application and in theory. First, we study the effects of tidal heating and tidal evolution in the Saturnian satellite system. We constrain the ...

Meyer, Jennifer Ann

2011-01-01T23:59:59.000Z

296

Tidal Wetlands Regulations (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

Most activities occurring in or near tidal wetlands are regulated, and this section contains information on such activities and required permit applications for proposed activities. Applications...

297

SeWave | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » SeWave Jump to: navigation, search Name SeWave Place Denmark Zip FO-110 Product Denmark-based 50:50 JV between UK's Wavegen and Faroese electricity company SEV to to design and build a tunnelled demonstration wave power plant in the Faroes Islands. References SeWave[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This article is a stub. You can help OpenEI by expanding it. SeWave is a company located in Denmark . References ↑ "SeWave"

298

Property:Wave Direction | Open Energy Information  

Open Energy Info (EERE)

Direction Direction Jump to: navigation, search Property Name Wave Direction Property Type String Pages using the property "Wave Direction" Showing 25 pages using this property. (previous 25) (next 25) A Alden Small Flume + Uni-Directional + Alden Wave Basin + Both + C Carderock Maneuvering & Seakeeping Basin + Both + Carderock Tow Tank 2 + Uni-Directional + Carderock Tow Tank 3 + Uni-Directional + Chase Tow Tank + Uni-Directional + Coastal Harbors Modeling Facility + Uni-Directional + Coastal Inlet Model Facility + Uni-Directional + Coastal Structures Modeling Complex + Both + D Davidson Laboratory Tow Tank + Uni-Directional + DeFrees Large Wave Basin + Uni-Directional + DeFrees Small Wave Basin + Uni-Directional + H Haynes Wave Basin + Both +

299

MHK Technologies/WavePlane | Open Energy Information  

Open Energy Info (EERE)

WavePlane WavePlane < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage WavePlane.jpg Technology Profile Primary Organization WavePlane A S Project(s) where this technology is utilized *MHK Projects/WavePlane Prototype 1 Technology Resource Click here Wave Technology Type Click here Overtopping Device Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The WavePlane is a V-shaped design, which is anchored with the head up against the incoming waves. Below the waterline the device is fitted with an artificial beach, which is designed to improve the capture of wave energy. The WavePlane is symmetrical in its construction. Each side captures the water from the waves of various heights. The device splits the oncoming waves with a series of intakes, known as lamellas, which guide the captured water into a 'flywheel tube.' The fast moving vortex that is formed then forces the water across two turbines, which are located at the ends of the two 'V-shaped legs'. Finally the water is discharged back into the ocean.

300

TIDAL INTERACTIONS IN MERGING WHITE DWARF BINARIES  

SciTech Connect

The recently discovered system J0651 is the tightest known detached white dwarf (WD) binary. Since it has not yet initiated Roche-lobe overflow, it provides a relatively clean environment for testing our understanding of tidal interactions. I investigate the tidal heating of each WD, parameterized in terms of its tidal Q parameter. Assuming that the heating can be radiated efficiently, the current luminosities are consistent with Q {sub 1} {approx} 7 x 10{sup 10} and Q {sub 2} {approx} 2 x 10{sup 7}, for the He and C/O WDs, respectively. Conversely, if the observed luminosities are merely from the cooling of the WDs, these estimated values of Q represent the upper limits. A large Q {sub 1} for the He WD means its spin velocity will be slower than that expected if it was tidally locked, which, since the binary is eclipsing, may be measurable via the Rossiter-McLaughlin effect. After one year, gravitational wave emission shifts the time of eclipses by 5.5 s, but tidal interactions cause the orbit to shrink more rapidly, changing the time by up to an additional 0.3 s after a year. Future eclipse timing measurements may therefore infer the degree of tidal locking.

Piro, Anthony L., E-mail: piro@caltech.edu [Theoretical Astrophysics, California Institute of Technology, 1200 East California Boulevard, M/C 350-17, Pasadena, CA 91125 (United States)

2011-10-20T23:59:59.000Z

Note: This page contains sample records for the topic "tidal energy wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

MHK Technologies/Wave Water Pump WWP | Open Energy Information  

Open Energy Info (EERE)

Pump WWP Pump WWP < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Water Pump WWP.gif Technology Profile Primary Organization Renewable Energy Wave Pumps Technology Resource Click here Wave Technology Description The Water Wave Pump WWP is a point absorber that uses a submerged water pump to lift a small quantity of water to a higher head collect it in a piping network and feed it to a hydro turbine to produce power Mooring Configuration Gravity base installed at the sea bed Optimum Marine/Riverline Conditions The REWP can pump water to a hgih head fro waves ranging between 1 2 meters to waves in excess of 4 meters high It self adjusts to varyilng sea levels and wave hights It resists storms safe to navigation as red floats are clearly seen during the day and red flashing lights during the night It does not disturb marine life or shore line scenic view

302

MHK Technologies/Float Wave Electric Power Station | Open Energy  

Open Energy Info (EERE)

Wave Electric Power Station Wave Electric Power Station < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Float Wave Electric Power Station.jpg Technology Profile Primary Organization Applied Technologies Company Ltd Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The module of FWEPS is an oblong axisymmetrical capsule float which is located on the sea surface Inside the capsule there is a mechanical wave energy converter consisting of an oscillatory system and drive and an electric generator and energy accumulator Under the wave effect the capsule float and inner oscillatory system of the mechanical converter are in continuous oscillatory motion while the drive engaged with the system provides a continuous turn for the electric generator

303

ENERGY CONTENT AND PROPAGATION IN TRANSVERSE SOLAR ATMOSPHERIC WAVES  

SciTech Connect

Recently, a significant amount of transverse wave energy has been estimated propagating along solar atmospheric magnetic fields. However, these estimates have been made with the classic bulk Alfven wave model which assumes a homogeneous plasma. In this paper, the kinetic, magnetic, and total energy densities and the flux of energy are computed for transverse MHD waves in one-dimensional cylindrical flux tube models with a piecewise constant or continuous radial density profile. There are fundamental deviations from the properties for classic bulk Alfven waves. (1) There is no local equipartition between kinetic and magnetic energy. (2) The flux of energy and the velocity of energy transfer have, in addition to a component parallel to the magnetic field, components in the planes normal to the magnetic field. (3) The energy densities and the flux of energy vary spatially, contrary to the case of classic bulk Alfven waves. This last property has the important consequence that the energy flux computed with the well known expression for bulk Alfven waves could overestimate the real flux by a factor in the range 10-50, depending on the flux tube equilibrium properties.

Goossens, M.; Van Doorsselaere, T. [Centre for mathematical Plasma Astrophysics, Mathematics Department, Celestijnenlaan 200B bus 2400, B-3001 Heverlee (Belgium); Soler, R. [Solar Physics Group, Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Verth, G., E-mail: tom.vandoorsselaere@wis.kuleuven.be [Solar Physics and Space Plasma Research Centre (SP2RC), School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Hicks Building, Sheffield S3 7RH (United Kingdom)

2013-05-10T23:59:59.000Z

304

Property:Technology Resource | Open Energy Information  

Open Energy Info (EERE)

Resource Resource Jump to: navigation, search Property Name Technology Resource Property Type Text Pages using the property "Technology Resource" Showing 25 pages using this property. (previous 25) (next 25) M MHK Technologies/Anaconda bulge tube drives turbine + Wave MHK Technologies/AquaBuoy + Wave MHK Technologies/Aquanator + Current/Tidal MHK Technologies/Aquantis + Current MHK Technologies/Archimedes Wave Swing + Wave MHK Technologies/Atlantis AN 150 + Current/Tidal MHK Technologies/Atlantis AR 1000 + Current/Tidal MHK Technologies/Atlantis AS 400 + Current/Tidal MHK Technologies/Atlantisstrom + Current MHK Technologies/Benkatina Turbine + Current MHK Technologies/Blue Motion Energy marine turbine + Current MHK Technologies/Bluetec + Current MHK Technologies/Brandl Generator + Wave

305

Long-Wave Infrared | Open Energy Information  

Open Energy Info (EERE)

Long-Wave Infrared Long-Wave Infrared Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Long-Wave Infrared Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Passive Sensors Information Provided by Technique Lithology: Map characteristic minerals associated with hot springs/mineral deposits Stratigraphic/Structural: Hydrological: Thermal: Map surface temperatures Dictionary.png Long-Wave Infrared: Long Wave Infrared (LWIR) refers to multi- and hyperspectral data collected in the 8 to 15 µm wavelength range. LWIR surveys are sometimes referred to as "thermal imaging" and can be used to identify relatively warm features

306

Tidal Response in Estuaries  

Science Conference Proceedings (OSTI)

A new general theory has been developed to determine both the tidal response of estuaries and the effects of cross-channel tidal barriers on this response. The theory is shown to be widely applicable and provides a connecting framework against ...

D. Prandle; M. Rahman

1980-10-01T23:59:59.000Z

307

Preseismic oscillating electric field "strange attractor like" precursor, of T = 6 months, triggered by Ssa tidal wave. Application on large (Ms > 6.0R) EQs in Greece (October 1st, 2006 - December 2nd, 2008)  

E-Print Network (OSTI)

In this work the preseismic "strange attractor like" precursor is studied, in the domain of the Earth's oscillating electric field for T = 6 months. It is assumed that the specific oscillating electric field is generated by the corresponding lithospheric oscillation, triggered by the Ssa tidal wave of the same wave length (6 months) under excess strain load conditions met in the focal area of a future large earthquake. The analysis of the recorded Earth's oscillating electric field by the two distant monitoring sites of PYR and HIO and for a period of time of 26 months (October 1st, 2006 - December 2nd, 2008) suggests that the specific precursor can successfully resolve the predictive time window in terms of months and for a "swarm" of large EQs (Ms > 6.0R), in contrast to the resolution obtained by the use of electric fields of shorter (T = 1, 14 days, single EQ identification) wave length. More over, the fractal character of the "strange attractor like" precursor in the frequency domain is pointed out. Fina...

Thanassoulas, C; Verveniotis, G; Zymaris, N

2009-01-01T23:59:59.000Z

308

Energy of tsunami waves generated by bottom motion  

E-Print Network (OSTI)

generation models. Theoretical and Computational Fluid Dynamics, 21:245­269, 2007. Z. Kowalik, W. Knight, TEnergy of tsunami waves generated by bottom motion By Denys Dutykh, Fr´ed´eric Dias CMLA, ENS investigation on the energy of waves generated by bottom motion is performed here. We start with the full

Paris-Sud XI, Université de

309

Momentum and Energy Transfer in Wind Generation of Waves  

Science Conference Proceedings (OSTI)

Complete expressions for wind momentum and energy transfer to wind-generated waves are derived based on a boundary-layer integral method. The airflow and wave measurements as made by Wu et al. (1977, 1979) are used to provide a first-order ...

Chin-Tsau Hsu; Hong-Ye Wu; En-Yun Hsu; Robert L. Street

1982-09-01T23:59:59.000Z

310

MHK Technologies/Oceanlinx Mark 3 Wave Energy Converter | Open Energy  

Open Energy Info (EERE)

Oceanlinx Mark 3 Wave Energy Converter Oceanlinx Mark 3 Wave Energy Converter < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Oceanlinx Mark 3 Wave Energy Converter.jpg Technology Profile Primary Organization Oceanlinx Project(s) where this technology is utilized *MHK Projects/GPP Namibia *MHK Projects/Greenwave Rhode Island Ocean Wave Energy Project *MHK Projects/Hawaii *MHK Projects/Oceanlinx Maui *MHK Projects/Port Kembla *MHK Projects/Portland Technology Resource Click here Wave Technology Type Click here Oscillating Water Column Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description The Oceanlinx Mark 3 Wave Energy Converter is a floating multi Oscilating Water Chamber Wave Energy Converter. The airflow generated by the OWC passes through a patented Denniss Auld turbine which converts the bidirectional airflow of the OWC to a unidirectional rotation of the axial flow turbine which in turn drives a generator.

311

Energy storage and generation from thermopower waves  

E-Print Network (OSTI)

The nonlinear coupling between an exothermic chemical reaction and a nanowire or nanotube with large axial heat conduction guides a self-propagating thermal wave along the nano-conduit. The thermal conduit accelerates the ...

Abrahamson, Joel T. (Joel Theodore)

2012-01-01T23:59:59.000Z

312

Energy Transport by Nonlinear Internal Waves  

Science Conference Proceedings (OSTI)

Winter stratification on Oregons continental shelf often produces a near-bottom layer of dense fluid that acts as an internal waveguide upon which nonlinear internal waves propagate. Shipboard profiling and bottom lander observations capture ...

J. N. Moum; J. M. Klymak; J. D. Nash; A. Perlin; W. D. Smyth

2007-07-01T23:59:59.000Z

313

MHK Technologies/Wave Roller | Open Energy Information  

Open Energy Info (EERE)

Roller Roller < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Roller.jpg Technology Profile Primary Organization AW Energy Project(s) where this technology is utilized *MHK Projects/Peniche Portugal *MHK Projects/AW Energy EMEC Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description A WaveRoller device is a plate anchored on the sea bottom by its lower part. The back and forth movement of surge moves the plate, and the kinetic energy produced is collected by a piston pump. This energy can be converted to electricity by a closed hydraulic system in combination with a hydraulic motor/generator system. Upgrade to No3 is more powerful hyraulic componets.

314

MITIGATION ACTION PLAN FOR THE OREGON STATE UNIVERSITY WAVE ENERGY...  

NLE Websites -- All DOE Office Websites (Extended Search)

1 | P a g e MITIGATION ACTION PLAN FOR THE OREGON STATE UNIVERSITY WAVE ENERGY TEST PROJECT ENVIRONMENTAL ASSESSMENT AUGUST 15, 2012 PREPARED TO ACCOMPANY DOEEA 1917 U.S....

315

Spectral Energy Dissipation due to Surface Wave Breaking  

Science Conference Proceedings (OSTI)

A semiempirical determination of the spectral dependence of the energy dissipation due to surface wave breaking is presented and then used to propose a model for the spectral dependence of the breaking strength parameter b, defined in the O. M. ...

Leonel Romero; W. Kendall Melville; Jessica M. Kleiss

2012-09-01T23:59:59.000Z

316

Mapping and Assessment of the United States Ocean Wave Energy...  

Open Energy Info (EERE)

TECHNICAL REPORT Mapping and Assessment of the United States Ocean Wave Energy Resource EPRI Project Manager P. Jacobson 3420 Hillview Avenue Palo Alto, CA 94304-1338 USA PO Box...

317

Energy Flux and Wavelet Diagnostics of Secondary Mountain Waves  

Science Conference Proceedings (OSTI)

In recent years, aircraft data from mountain waves have been primarily analyzed using velocity and temperature power spectrum and momentum flux estimation. Herein it is argued that energy flux wavelets (i.e., pressurevelocity wavelet cross-...

Bryan K. Woods; Ronald B. Smith

2010-11-01T23:59:59.000Z

318

Estimates of Kinetic Energy Dissipation under Breaking Waves  

Science Conference Proceedings (OSTI)

The dissipation of kinetic energy at the surface of natural water bodies has important consequences for many Physical and biochemical processes including wave dynamics, gas transfer, mixing of nutrients and pollutants, and photosynthetic ...

E.A. Terray; M.A. Donelan; Y.C. Agrawal; W.M. Drennan; K.K. Kahma; A.J. Williams; P.A. Hwang; S.A. Kitaigorodskii

1996-05-01T23:59:59.000Z

319

MHK Technologies/Neptune Triton Wave | Open Energy Information  

Open Energy Info (EERE)

Triton Wave Triton Wave < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Neptune Triton Wave.jpg Technology Profile Primary Organization Neptune Renewable Energy Ltd Project(s) where this technology is utilized *MHK Projects/Neptune Renewable Energy 1 10 Scale Prototype Pilot Test *MHK Projects/Humber St Andrews Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The Triton operates in the near-shore and consists of an axi-asymmetrical buoy attached to an A-frame piled into the sea bed. The axi-asymmetrical buoy is designed to generate a counter-phase upstream wave and a much reduced downstream wave, which maximizes capture from the wave and improves overall efficiency. In order to tune the buoy to the incident wave regime, the mass can be controlled by pumping sea water into and out of the hollow cavity inside the buoy. Power take-off is achieved via a piston and hydraulic arrangement.

320

MHK Technologies/WaveSurfer | Open Energy Information  

Open Energy Info (EERE)

WaveSurfer WaveSurfer < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage WaveSurfer.jpg Technology Profile Primary Organization Green Energy Industries Inc Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description WaveSurfer s main power conversion and generation systems are either semi submerged protected by the floating pontoons or completely submerged at the depth of around 8 m 27 ft Mooring Configuration 3 point slack Technology Dimensions Device Testing Date Submitted 26:36.3 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/WaveSurfer&oldid=681708

Note: This page contains sample records for the topic "tidal energy wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

MHK Technologies/Green Cat Wave Turbine | Open Energy Information  

Open Energy Info (EERE)

Wave Turbine Wave Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Green Cat Wave Turbine.jpg Technology Profile Primary Organization Green Cat Renewables Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Green Cat Wave Turbine employs an extremely novel yet simple mechanical coupling to drive a multi pole Direct Drive generator Recent advances in permanent magnet materials and power electronic converters have opened up this extremely straightforward conversion route Unlike a number of devices currently being investigated this configuration enables maximum energy capture from both vertical and horizontal sea motions swell and surge respectively

322

MHK Technologies/Multi Absorbing Wave Energy Converter MAWEC | Open Energy  

Open Energy Info (EERE)

Absorbing Wave Energy Converter MAWEC Absorbing Wave Energy Converter MAWEC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Multi Absorbing Wave Energy Converter MAWEC.jpg Technology Profile Primary Organization Leancon Wave Energy Project(s) where this technology is utilized *MHK Projects/Leancon Real Sea Test Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description MAWEC is an OWC wave energy converter that works differently from other OWCs in that it concurrently utilizes pressure and suck. This gives the wanted effect that the vertical force on the WEC is zero when the WEC stretches over more than one wave length. The device is V-shaped and oriented perpendicular to wave direction. The device consists of a number of vertical air tubes, and when a wave passes, air is pushed into a pressure channel that sucks air out of the suck channel. During one wave period each tube (120 in total) goes through a sequence where air is first pushed into a pressure channel when the wave is rising and is later sucked from the pressure channel when the wave is falling. In this situation there is constant pressure in the pressure channel and the air flow through the turbines is constant.

323

Marine and Hydrokinetic Resources | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Resources Marine and Hydrokinetic Resources Jump to: navigation, search << Return to the MHK database homepage Contents 1 Marine and Hydrokinetic Resource Assessment and Characterization 2 Current/Tidal/Riverine 3 Wave 4 Ocean Thermal Energy Conversion (OTEC) Marine and Hydrokinetic Resource Assessment and Characterization To find out more about Marine and Hydrokinetic Resource Assessment and Characterization click on this link. Current/Tidal/Riverine Tile Current.jpg To find out more about Tidal Energy click on this link and for Current Energy this link. Wave Wave 02.jpg To find out more about Wave Energy click on this link. Ocean Thermal Energy Conversion (OTEC) Ocean Thermo 04.jpg To find out more about OTEC Energy click on this link. << Return to the MHK database homepage

324

MHK Technologies/Archimedes Wave Swing | Open Energy Information  

Open Energy Info (EERE)

Archimedes Wave Swing Archimedes Wave Swing < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Archimedes Wave Swing.jpg Technology Profile Primary Organization AWS Ocean Energy formerly Oceanergia Project(s) where this technology is utilized *MHK Projects/AWS II *MHK Projects/Portugal Pre Commercial Pilot Project Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The AWS wave energy converter is a cylindrical chamber moored to the seabed. Passing waves move an air-filled upper casing against a lower fixed cylinder, with up and down movement being converted into electricity. As a wave crest approaches, the water pressure on the top of the cylinder increases, and the upper part or 'floater' compresses the gas within the cylinder to balance the pressures. The reverse happens as the wave trough passes and the cylinder expands. The relative movement between the floater and the lower part or silo is converted to electricity by means of a hydraulic system and motor-generator set.

325

MHK Technologies/Floating wave Generator | Open Energy Information  

Open Energy Info (EERE)

Generator Generator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Floating wave Generator.jpg Technology Profile Primary Organization Green Energy Corp Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Floating Wave Powered Generator is an attenuator that uses three pontoons that pivot on rigid arms as the wave passes driving gears that turn a generator Technology Dimensions Device Testing Date Submitted 45:12.2 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Floating_wave_Generator&oldid=681577"

326

MHK Technologies/Gyroscopic wave power generation system | Open Energy  

Open Energy Info (EERE)

Gyroscopic wave power generation system Gyroscopic wave power generation system < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization Gyrodynamics Corporation Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description This gyroscopic wave power generation system is a pure rotational mechanical system that does not use conventional air turbines and is housed on a unique floating platform float In particular its outstanding feature is that it utilizes the gyroscopic spinning effect A motor is used to turn a 1 meter diameter steel disc flywheel inside the apparatus and when the rolling action of waves against the float tilts it at an angle the gyroscopic effect causes the disc to rotate longitudinally This energy turns a generator producing electricity

327

MHK Technologies/Wave Rider | Open Energy Information  

Open Energy Info (EERE)

Rider Rider < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Rider.jpg Technology Profile Primary Organization Seavolt Technologies Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The company s Wave Rider system uses buoys and hydraulic pumps to convert the movement of ocean waves into electricity Electricity is generated via small turbines powered by hydraulic circuits which captures the energy of the wave and converts it into high pressure hydraulic fluid flow spinning the turbines to generate electricity Technology Dimensions Device Testing Date Submitted 19:42.1 << Return to the MHK database homepage

328

Navy Catching Waves in Hawaii | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Navy Catching Waves in Hawaii Navy Catching Waves in Hawaii Navy Catching Waves in Hawaii June 2, 2010 - 11:56am Addthis This experimental power-generating buoy installed off the coast of Oahu can produce enough energy to power 25 homes under optimal conditions. | Photo courtesy of Ocean Power Technologies, Inc. This experimental power-generating buoy installed off the coast of Oahu can produce enough energy to power 25 homes under optimal conditions. | Photo courtesy of Ocean Power Technologies, Inc. To a casual observer, the buoy off the shore of Marine Corps Base Hawaii (MCBH) might look like nothing more than a bright yellow spot in a blue ocean. But this isn't an ordinary buoy - it's a small electrical generator, creating renewable electricity as it bobs up and down on the waves. It's also a test project by the U.S. Navy to see whether a wider

329

Wave Dragon ApS | Open Energy Information  

Open Energy Info (EERE)

Dragon ApS Dragon ApS Jump to: navigation, search Name Wave Dragon ApS Place Copenhagen, Denmark Zip DK-2200 Country Albania Product Wave energy converter development company. Has patented the Wave Dragon, an offshore floating slack moored wave energy converter. Coordinates 55.6760968°, 12.5683371° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.6760968,"lon":12.5683371,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

330

IEC 61400-25 protocol based monitoring and control protocol for tidal current power plant  

Science Conference Proceedings (OSTI)

Wind energy and tidal current power have a common operation principle. Tidal current power converts kinetic energy of fluid to electric power. The communication infrastructure is very important to control the system and to monitor the working conditions ... Keywords: IEC 61400-25, monitoring, remote control, tidal current power

Jung Woo Kim; Hong Hee Lee

2010-09-01T23:59:59.000Z

331

Clean Wave Ventures | Open Energy Information  

Open Energy Info (EERE)

Clean Wave Ventures Clean Wave Ventures Place Indianapolis, Indiana Zip 46204 Product Midwest-based venture capital firm specializing in high growth Clean Technology investments Coordinates 39.76691°, -86.149964° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.76691,"lon":-86.149964,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

332

MHK Technologies/Syphon Wave Generator | Open Energy Information  

Open Energy Info (EERE)

Syphon Wave Generator Syphon Wave Generator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Syphon Wave Generator.jpg Technology Profile Primary Organization Green Energy Corp Technology Resource Click here Wave Technology Type Click here Oscillating Water Column Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Syphon Wave Generator is composed of a horizontal pipe containing a propeller driven generator mounted above the highest normal wave at high tide and two or more vertical pipes at least one at each end of the horizontal pipe Each vertical pipe must extend below the water surface at all times and have openings below the surface All the air must be removed from the pipe thus filling the unit completely with water When the crest of a wave reaches the first vertical pipe the water level will be higher at that pipe than at the second vertical pipe This causes water to flow up the first pipe and through the horizontal pipe thus turning the propeller and generator to produce electricity and then down the second vertical pipe due to the siphon effect When the crest of the wave moves to the second vertical pipe the water level is higher there than at the first pipe This will cause the water to flow up the second pipe and through the system in the opposite direction again prod

333

MHK Technologies/Indian Wave Energy Device IWAVE | Open Energy Information  

Open Energy Info (EERE)

Wave Energy Device IWAVE Wave Energy Device IWAVE < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Indian Wave Energy Device IWAVE.jpg Technology Profile Primary Organization Nualgi Nanobiotech Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description It is a floating device tethered with chains to piles driven to ocean bottom The wave action raises the heavy partially buoyant piston that drives the overhead crankshaft by half turn The receding wave drops the piston completing the balance half turn One revolution is obtained for every wave Using gear box and generator the current is produced continuously

334

A Case Study of WaveCurrentBathymetry Interactions at the Columbia River Entrance  

Science Conference Proceedings (OSTI)

A unique set of field observations has documented intense wavecurrentbathymetry interactions in a tidal inlet, providing a severe test of existing wave theory. Hourly wave spectral estimates were acquired over ten complete tidal cycles at ...

F. I. Gonazlez

1984-06-01T23:59:59.000Z

335

Total instantaneous energy transport in polychromatic fluid gravity waves at finite depth  

Science Conference Proceedings (OSTI)

The total instantaneous energy transport can be found for polychromatic waves when using the deep water approximation. Expanding this theory to waves in waters of finite depth

J. Engstrm; J. Isberg; M. Eriksson; M. Leijon

2012-01-01T23:59:59.000Z

336

Local full-wave energy in nonuniform plasmas  

SciTech Connect

The subject of local wave energy in plasmas is treated via quasilinear theory from the dual perspectives of the action-angle formalism and gyrokinetics analysis. This work presents an extension to all orders in the gyroradius of the self-consistent wave-propagation/quasilinear-absorption problem using gyrokinetics. Questions of when and under what conditions local energy should be of definite sign are best answered using the action-angle formalism. An important result is that the ''dielectric operators'' of the linearized wave equation and of the local energy are not the same, a fact which is obscured when the eikonal or WKB assumption is invoked. Even though the two dielectrics are very different in character (one operates linearly on electric field for the plasma current, the other operates quadratically for the energy), it is demonstrated that they are nevertheless related by a simple mathematical statement. This study was originally motivated by concern and lively discussion over the questions of local energy for rf-heating of plasmas, where in certain instances, full-wave effects such as refraction, strong absorption, and mode conversion are of primary importance. Fundamentally, the rf-absorption must equate with the energy moment of the quasilinear term to achieve a correct energy balance. This fact governs the derivation (as opposed to postulation) of the local absorption. The troublesome ''kinetic flux'' may then be chosen (it is not unique) to satisfy a wave-energy balance relation with the Poynting flux and local absorption. It is shown that at least one such choice reduces asymptotically to the Stix form away from nonuniformities, thereby demonstrating energy conservation to all orders in Larmor radius. 25 refs.

Smithe, D.N.

1988-10-01T23:59:59.000Z

337

A survey of state clean energy fund support for biomass  

E-Print Network (OSTI)

and other renewable energy projects through three productionrenewable energy as solar energy, wind, ocean thermal energy, wave or tidal energy, fuel cells, landfill gas, hydrogen productionrenewable biomass projects per the State of Illinois definition of the term, which includes dedicated crops grown for energy production

Fitzgerald, Garrett; Bolinger, Mark; Wiser, Ryan

2004-01-01T23:59:59.000Z

338

MHK Technologies/GyroWaveGen | Open Energy Information  

Open Energy Info (EERE)

GyroWaveGen GyroWaveGen < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage GyroWaveGen.jpg Technology Profile Primary Organization Paradyme Systems Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description A gyro wave energy transducer is mounted on the buoyant body for translating the pendulum like motions of the buoyant body into rotational motion The gyro wave energy transducer includes a gimbal comprised of first and second frames with the first frame being pivotally mounted to the second frame and the second frame being pivotally mounted to the buoyant body A gyroscope is mounted to the first frame for rotation about an axis perpendicular to the axes of rotation of the first and second frames A motor generator is coupled to the gyroscope for maintaining a controlled rotational velocity for the gyroscope Transferring members are associated with one of the first and second frames for transferring torque of one of the first and second frames to the gyroscope about an axis that is perpendicular to that of the gyroscope which results in rotation of the other of the first and second frames An electrical generator is responsive to the relative rotational movement of the first and se

339

Hawaii Ocean Current Resources and Tidal Turbine Assessment  

Science Conference Proceedings (OSTI)

Interest in converting the kinetic energy of ocean current and tidal flow into electrical power has increased in recent years. This report focuses on the ocean current resource in Hawaii, which includes tidal flows as well as uni-directional oceanic current flows around the main Hawaiian Islands, with the exception of Kauai, from the shoreline to approximately the 2000-m depth contour.

2008-09-02T23:59:59.000Z

340

Arnold Schwarzenegger DEVELOPING WAVE ENERGY IN  

E-Print Network (OSTI)

Commission EMEC European Marine Energy Test Centre EPRI Electric Power Research Institute FERC Federal Energy penetration at times while maintaining voltage stability of the grid [1]. Autonomous grids with wind, penetration was allowed to reach 60% and showed no adverse effects on system stability. This level

Note: This page contains sample records for the topic "tidal energy wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Natural Currents Energy Services | Open Energy Information  

Open Energy Info (EERE)

Natural Currents Energy Services Natural Currents Energy Services Jump to: navigation, search Name Natural Currents Energy Services Address 24 Roxanne Blvd Place Highland Zip 12528 Sector Marine and Hydrokinetic Phone number 845-691-4008 Website http://www.naturalcurrents.com Region United States LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Angoon Tidal Energy Plant Avalon Tidal BW2 Tidal Cape Cod Tidal Energy Project Cape May Tidal Energy Cohansey River Tidal Energy Cuttyhunk Tidal Energy Plant Dorchester Maurice Tidal Fishers Island Tidal Energy Project Gastineau Channel Tidal Highlands Tidal Energy Project Housatonic Tidal Energy Plant

342

Energy Transfer from High-Shear, Low-Frequency Internal Waves to High-Frequency Waves near Kaena Ridge, Hawaii  

Science Conference Proceedings (OSTI)

Evidence is presented for the transfer of energy from low-frequency inertialdiurnal internal waves to high-frequency waves in the band between 6 cpd and the buoyancy frequency. This transfer links the most energetic waves in the spectrum, those ...

Oliver M. Sun; Robert Pinkel

2012-09-01T23:59:59.000Z

343

BlueWave Capital LLC | Open Energy Information  

Open Energy Info (EERE)

BlueWave Capital LLC BlueWave Capital LLC Jump to: navigation, search Name BlueWave Capital LLC Place Boston, Massachusetts Sector Renewable Energy Product Knowledge-based investment firm focused on early- and expansion-stage environmental and renewable energy-related operating companies. Coordinates 42.358635°, -71.056699° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.358635,"lon":-71.056699,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

344

Rangan Banerjee Energy Systems Engineering  

E-Print Network (OSTI)

¨ © © ¨ ¨ #12; ¡ ¢ £ ¤ ¥ ¤ £ ¢ ¦ § ¨ © ¡ £ ¡ ¡ © § ¦ § ¡ Diesel 0.4% Wind 1.0% Nuclear 2.5% Gas 8.7% Coal, Additional Cost #12;Renewable Energy Options Wind Solar Small Hydro Biomass Tidal Energy Wave Energy Ocean

Banerjee, Rangan

345

Comments on Estimates of Kinetic Energy Dissipation under Breaking Waves  

Science Conference Proceedings (OSTI)

It is noted that the results of recent experiments on the enhancement of turbulent kinetic energy (TKE) dissipation below surface waves can be stated as follows. TKE dissipation is enhanced by a factor 15Hws/z at depths 0.5Hws < z < 20Hws with ...

Gerrit Burgers

1997-10-01T23:59:59.000Z

346

Spectral Energy Balance of Breaking Waves within the Surf Zone  

Science Conference Proceedings (OSTI)

The spectral energy balance of ocean surface waves breaking on a natural beach is examined with field observations from a cross-shore array of pressure sensors deployed between the shoreline and the outer edge of the surf zone near Duck, North ...

T. H. C. Herbers; N. R. Russnogle; Steve Elgar

2000-11-01T23:59:59.000Z

347

Offshore Renewable Energy Solutions  

E-Print Network (OSTI)

and sustainable energy supply. The UK is uniquely placed to harness its natural resources ­ wind, wave and tidalOffshore Renewable Energy Solutions #12;Cefas: meeting complex requirements The Centre science centre, Cefas provides a bridge between government and industry. We have unprecedented links

348

MHK Technologies/Wave Treader fixed | Open Energy Information  

Open Energy Info (EERE)

MHK Technologies/Wave Treader fixed MHK Technologies/Wave Treader fixed < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Treader fixed.jpg Technology Profile Primary Organization Green Ocean Energy Ltd Project(s) where this technology is utilized *MHK Projects/Development of Ocean Treader Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description The Wave Treader concept utilises the arms and sponsons from Ocean Treader and instead of reacting against a floating Spar Buoy, will react through an Interface Structure onto the Foundation of an Offshore Wind Turbine. Between the Arms and the Interface Structure hydraulic cylinders are mounted and as the wave passes the machine first the forward Sponson will lift and fall and then the aft Sponson will lift and fall each stroking their hydraulic cylinder in turn. This pressurises hydraulic fluid which is then smoothed by hydraulic accumulators before driving a hydraulic motor which in turn drives an electricity generator. The electricity is then exported through the cable shared with the Wind Turbine.

349

An alternative method for calculating the energy of gravitational waves  

E-Print Network (OSTI)

In the expansive nondecelerative universe model, creation of matter occurs due to which the Vaidya metrics is applied. This fact allows for localizing gravitational energy and calculating the energy of gravitational waves using an approach alternative to the well established procedure based on quadrupole formula. Rationalization of the gradual increase in entropy of the Universe using relation describing the total curvature of space-time is given too.

Miroslav Sukenik; Jozef Sima

1999-09-21T23:59:59.000Z

350

Turbulence Characteristics in a Tidal Channel  

Science Conference Proceedings (OSTI)

A broadband ADCP and a moored microstructure instrument (TAMI) were deployed in a tidal channel of 30-m depth and with peak speeds of 1 m s?1. The measurements enable us to derive profiles of stress, turbulent kinetic energy (TKE), the rate of ...

Youyu Lu; Rolf G. Lueck; Daiyan Huang

2000-05-01T23:59:59.000Z

351

Tidal Venuses: Triggering a Climate Catastrophe via Tidal Heating  

E-Print Network (OSTI)

Traditionally stellar radiation has been the only heat source considered capable of determining global climate on long timescales. Here we show that terrestrial exoplanets orbiting low-mass stars may be tidally heated at high enough levels to induce a runaway greenhouse for a long enough duration for all the hydrogen to escape. Without hydrogen, the planet no longer has water and cannot support life. We call these planets "Tidal Venuses," and the phenomenon a "tidal greenhouse." Tidal effects also circularize the orbit, which decreases tidal heating. Hence, some planets may form with large eccentricity, with its accompanying large tidal heating, and lose their water, but eventually settle into nearly circular orbits in the habitable zone (HZ). However, these planets are not habitable as past tidal heating desiccated them, and hence should not be ranked highly for detailed follow-up observations aimed at detecting biosignatures. We simulate the evolution of hypothetical planetary systems in a quasi-continuous ...

Barnes, Rory; Goldblatt, Colin; Meadows, Victoria S; Kasting, James F; Heller, Rene

2012-01-01T23:59:59.000Z

352

Deployment Effects of Marine Renewable Energy Technologies: Wave Energy Scenarios  

DOE Green Energy (OSTI)

(3) Framework for Identifying Key Environmental Concerns This is the first report in the sequence and describes the results of conceptual feasibility studies of wave power plants deployed in Humboldt County, California and Oahu, Hawaii. These two sites contain many of the same competing stakeholder interactions identified at other wave power sites in the U.S. and serve as representative case studies. Wave power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize potential effects, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informed the process of selecting representative wave power devices. The selection criteria requires that devices are at an advanced stage of development to reduce technical uncertainties, and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. Table 1 summarizes the selected wave power technologies. A number of other developers are also at an advanced stage of development, but are not directly mentioned here. Many environmental effects will largely scale with the size of the wave power plant. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments. In order to characterize these effects, scenarios are established at three deployment scales which nominally represent (1) a small pilot deployment, (2) a small commercial deployment, and (3) a large commercial sc

Mirko Previsic

2010-06-17T23:59:59.000Z

353

MHK Technologies/Ocean Wave Air Piston | Open Energy Information  

Open Energy Info (EERE)

Piston Piston < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Wave Air Piston.jpg Technology Profile Primary Organization Green Ocean Wave Energy Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The OWAP captures power by continually raising or lowering a float which in turn raises or lowers one side of a lever arm about a stationary pivot point This therby raises or lowers a piston which is attached to the opposite side of the lever arm through a cylinder which in turn causes large volumes of air to move This air is funneled through drive turbines to produce power Mooring Configuration Monopile or platfrom

354

Tidal Conversion by Supercritical Topography  

E-Print Network (OSTI)

Calculations are presented of the rate of energy conversion of the barotropic tide into internal gravity waves above topography on the ocean floor. The ocean is treated as infinitely deep, and the topography consists of ...

Balmforth, Neil J.

355

Tidal Conversion by Subcritical Topography  

Science Conference Proceedings (OSTI)

Analytical estimates of the rate at which energy is extracted from the barotropic tide at topography and converted into internal gravity waves are given. The ocean is idealized as an inviscid, vertically unbounded fluid on the f plane. The ...

N. J. Balmforth; G. R. Ierley; W. R. Young

2002-10-01T23:59:59.000Z

356

Tidal Conversion by Supercritical Topography  

Science Conference Proceedings (OSTI)

Calculations are presented of the rate of energy conversion of the barotropic tide into internal gravity waves above topography on the ocean floor. The ocean is treated as infinitely deep, and the topography consists of periodic obstructions; a ...

Neil J. Balmforth; Thomas Peacock

2009-08-01T23:59:59.000Z

357

A Survey of State Clean Energy Fund Support for Biomass August 2004  

E-Print Network (OSTI)

energy technologies, two of which involved biomass projects: · Tier 1 (biomass, waste tire and solar" and defines renewable energy as "solar energy, wind, ocean thermal energy, wave or tidal energy, fuel cells combustion. Support for Biomass Projects Projects involving biomass (as well as wind or solar energy

358

MHK Technologies/Uppsala Seabased AB Wave Energy Converter | Open Energy  

Open Energy Info (EERE)

AB Wave Energy Converter AB Wave Energy Converter < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Uppsala Seabased AB Wave Energy Converter.jpg Technology Profile Primary Organization Uppsala University Division for Electricity Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The system consists of a linear permanent magnet synchronous generator located on the sea floor The generator is connected directly via a line to a buoy on the surface There are no intermediate energy conversion steps thus the generator motion is the same as the buoy motion Several generators 3 today are connected to a marine substation where the voltage is converted to grid frequency transformed to higher voltage and transmitted to shore All electrical cables throughout the system are fixed i e there are no motions that subject the cables to bending moments

359

Estimating Open-Ocean Barotropic Tidal Dissipation: The Hawaiian Ridge  

Science Conference Proceedings (OSTI)

The generalized inverse of a regional model is used to estimate barotropic tidal dissipation along the Hawaiian Ridge. The model, based on the linear shallow-water equations, incorporates parameterizations for the dissipation of energy via ...

Edward D. Zaron; Gary D. Egbert

2006-06-01T23:59:59.000Z

360

Assessment of Tidal Energy Removal Impacts on Physical Systems: Development of MHK Module and Analysis of Effects on Hydrodynamics  

SciTech Connect

In this report we describe (1) the development, test, and validation of the marine hydrokinetic energy scheme in a three-dimensional coastal ocean model (FVCOM); and (2) the sensitivity analysis of effects of marine hydrokinetic energy configurations on power extraction and volume flux in a coastal bay. Submittal of this report completes the work on Task 2.1.2, Effects of Physical Systems, Subtask 2.1.2.1, Hydrodynamics and Subtask 2.1.2.3, Screening Analysis, for fiscal year 2011 of the Environmental Effects of Marine and Hydrokinetic Energy project.

Yang, Zhaoqing; Wang, Taiping

2011-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "tidal energy wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Assessing the Effects of Marine and Hydrokinetic Energy Development on Marine and Estuarine Resources  

SciTech Connect

The worlds oceans and estuaries offer an enormous potential to meet the nations growing demand for energy. The use of marine and hydrokinetic (MHK) devices to harness the power of wave and tidal energy could contribute significantly toward meeting federal- and state-mandated renewable energy goals while supplying a substantial amount of clean energy to coastal communities. Locations along the eastern and western coasts of the United States between 40 and 70 north latitude are ideal for MHK deployment, and recent estimates of energy potential for the coasts of Washington, Oregon, and California suggest that up to 25 gigawatts could be generated from wave and tidal devices in these areas. Because energy derived from wave and tidal devices is highly predictable, their inclusion in our energy portfolio could help balance available sources of energy production, including hydroelectric, coal, nuclear, wind, solar, geothermal, and others.

Ward, Jeffrey A.; Schultz, Irvin R.; Woodruff, Dana L.; Roesijadi, Guritno; Copping, Andrea E.

2010-07-30T23:59:59.000Z

362

Professor Yehia Khalil Page: 1 ENVE S105 01 (Su13): Introduction to Green Energy  

E-Print Network (OSTI)

of assessment (LCIA) of renewable energy sources, energy storage technologies capable of overcoming-combustion and post combustion), carbon capture and storage (CCS), and role of the hydrogen economy in reducing. Bioenergy. 8. Hydropower. 8. Tidal Power. 9. Wave Energy. 10. Geothermal Energy. 11. Energy Storage. 12

363

AirIceOcean Momentum Exchange. Part 1:Energy Transfer between Waves and Ice Floes  

Science Conference Proceedings (OSTI)

The energy exchange between ocean surface waves and ice floes in the marginal ice zone (MIZ) involves the scattering and attenuation of wave energy and the excitation of oscillation modes of the ice floes, as open ocean waves propagate into the ...

W. Perrie; Y. Hu

1996-09-01T23:59:59.000Z

364

Global Patterns of Low-Mode Internal-Wave Propagation. Part I: Energy and Energy Flux  

Science Conference Proceedings (OSTI)

Extending an earlier attempt to understand long-range propagation of the global internal-wave field, the energy E and horizontal energy flux F are computed for the two gravest baroclinic modes at 80 historical moorings around the globe. With ...

Matthew H. Alford; Zhongxiang Zhao

2007-07-01T23:59:59.000Z

365

Manta Wings: Wave Energy Testing Floats to Puget Sound | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manta Wings: Wave Energy Testing Floats to Puget Sound Manta Wings: Wave Energy Testing Floats to Puget Sound Manta Wings: Wave Energy Testing Floats to Puget Sound August 6, 2010 - 11:27am Addthis The 1:15 scale prototype being lowered into the wave flume at Oregon State University's O.H. Hinsdale Wave Research Laboratory | Photo courtesy of Columbia Power The 1:15 scale prototype being lowered into the wave flume at Oregon State University's O.H. Hinsdale Wave Research Laboratory | Photo courtesy of Columbia Power Lindsay Gsell Columbia Power Technologies plans to test an intermediate-scale version of its wave energy converter device in Puget Sound later this year. After the successful control tests, the company will move testing to open water in Puget Sound this fall. Columbia will test the intermediate 1:7

366

A Cascade-Type Global Energy Conversion Diagram Based on WaveMean Flow Interactions  

Science Conference Proceedings (OSTI)

A cascade-type energy conversion diagram is proposed for the purpose of diagnosing the atmospheric general circulation based on wavemean flow interactions. Mass-weighted isentropic zonal means facilitate the expression of nongeostrophic wave ...

Sachiyo Uno; Toshiki Iwasaki

2006-12-01T23:59:59.000Z

367

Calculating Energy Flux in Internal Solitary Waves with an Application to Reflectance  

Science Conference Proceedings (OSTI)

The energetics of internal solitary waves (ISWs) in continuous, quasi-two-layer stratifications are explored using fully nonlinear, nonhydrostatic numerical simulations. The kinetic energy of an internal solitary wave is always greater than the ...

Kevin G. Lamb; Van T. Nguyen

2009-03-01T23:59:59.000Z

368

Ocean Wave Energy-Driven Desalination Systems for Off-grid Coastal Communities in Developing Countries  

Science Conference Proceedings (OSTI)

Resolute Marine Energy, Inc. (RME) is based in Boston, MA and is developing ocean wave energy converters (WECs) to benefit remote off-grid communities in developing nations. Our two WEC technologies are based on the heaving and surging motion of a buoy ... Keywords: ocean wave energy, renewable energy, desalination, water, coastal communities

Eshwan Ramudu

2011-10-01T23:59:59.000Z

369

Property:Maximum Wave Height(m) at Wave Period(s) | Open Energy Information  

Open Energy Info (EERE)

Wave Height(m) at Wave Period(s) Wave Height(m) at Wave Period(s) Jump to: navigation, search Property Name Maximum Wave Height(m) at Wave Period(s) Property Type String Pages using the property "Maximum Wave Height(m) at Wave Period(s)" Showing 25 pages using this property. (previous 25) (next 25) 1 1.5-ft Wave Flume Facility + 10.0 + 10-ft Wave Flume Facility + 10.0 + 11-ft Wave Flume Facility + 10.0 + 2 2-ft Flume Facility + 10.0 + 3 3-ft Wave Flume Facility + 10.0 + 5 5-ft Wave Flume Facility + 10.0 + 6 6-ft Wave Flume Facility + 10.0 + A Alden Large Flume + 0.0 + Alden Wave Basin + 1.0 + C Chase Tow Tank + 3.1 + Coastal Harbors Modeling Facility + 2.3 + Coastal Inlet Model Facility + 2.3 + D Davidson Laboratory Tow Tank + 4.0 + DeFrees Large Wave Basin + 3.0 + DeFrees Small Wave Basin + 3.0 +

370

DeFrees Large Wave Basin | Open Energy Information  

Open Energy Info (EERE)

Large Wave Basin Large Wave Basin Jump to: navigation, search Basic Specifications Facility Name DeFrees Large Wave Basin Overseeing Organization Cornell University Hydrodynamics Hydrodynamic Testing Facility Type Wave Basin Length(m) 32.0 Beam(m) 0.6 Depth(m) 0.9 Water Type Freshwater Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.5 Maximum Wave Height(m) at Wave Period(s) 3.0 Maximum Wave Length(m) 64 Wave Period Range(s) 3.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Computer controlled 4m hydraulic wave paddle stroke allows a series of solitary waves to be generated; arbitrary wave shape possible Wave Direction Uni-Directional Simulated Beach Yes

371

MHK Technologies/Ocean Wave Energy Converter OWEC | Open Energy Information  

Open Energy Info (EERE)

Converter OWEC Converter OWEC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Wave Energy Converter OWEC.jpg Technology Profile Primary Organization Ocean Wave Energy Company Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description Neutrally suspended and positively buoyant modules are quick connected into open frame networks Submerged portions are stabilized by variable ballast buoyancy chambers and optional damper sheets situated at a relatively calm depth Frame members carry shaft components of linear rotary converters associated with large point absorber buoys Both directions of reciprocal wave motion i e vertical and horizontal motion directly drive components of counter rotating electrical generators Compared to standard generators wherein one is associated with upstroke and another of smaller proportion with downstroke this configuration increases relative speed with fewer parts Electromechanical loads are real time adjustable with respect to wave sensor web resulting in optimal energy conversion from near fully submerged wave following buoys Electrical conductors are series connected and further quick connected with those of other modules via upper frame members Through implementation of rep

372

Advanced, High Power, Next Scale, Wave Energy Conversion Device  

SciTech Connect

The project conducted under DOE contract DE?EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven?stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy? technology to deliver a device with much increased power delivery. Scaling?up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke? unlimited Power Take?Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

Mekhiche, Mike [Principal Investigator] [Principal Investigator; Dufera, Hiz [Project Manager] [Project Manager; Montagna, Deb [Business Point of Contact] [Business Point of Contact

2012-10-29T23:59:59.000Z

373

PARTICLE ENERGY SPECTRA AT TRAVELING INTERPLANETARY SHOCK WAVES  

Science Conference Proceedings (OSTI)

We have searched for evidence of significant shock acceleration of He ions of {approx}1-10 MeV amu{sup -1} in situ at 258 interplanetary traveling shock waves observed by the Wind spacecraft. We find that the probability of observing significant acceleration, and the particle intensity observed, depends strongly upon the shock speed and less strongly upon the shock compression ratio. For most of the 39 fast shocks with significant acceleration, the observed spectral index agrees with either that calculated from the shock compression ratio or with the spectral index of the upstream background, when the latter spectrum is harder, as expected from diffusive shock theory. In many events the spectra are observed to roll downward at higher energies, as expected from Ellison-Ramaty and from Lee shock-acceleration theories. The dearth of acceleration at {approx}85% of the shocks is explained by (1) a low shock speed, (2) a low shock compression ratio, and (3) a low value of the shock-normal angle with the magnetic field, which may cause the energy spectra that roll downward at energies below our observational threshold. Quasi-parallel shock waves are rarely able to produce measurable acceleration at 1 AU. The dependence of intensity on shock speed, seen here at local shocks, mirrors the dependence found previously for the peak intensities in large solar energetic-particle events upon speeds of the associated coronal mass ejections which drive the shocks.

Reames, Donald V., E-mail: dvreames@umd.edu [Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742 (United States)

2012-09-20T23:59:59.000Z

374

Benchmark Modeling of the Near-Field and Far-Field Wave Effects of Wave Energy Arrays  

SciTech Connect

This project is an industry-led partnership between Columbia Power Technologies and Oregon State University that will perform benchmark laboratory experiments and numerical modeling of the near-field and far-field impacts of wave scattering from an array of wave energy devices. These benchmark experimental observations will help to fill a gaping hole in our present knowledge of the near-field effects of multiple, floating wave energy converters and are a critical requirement for estimating the potential far-field environmental effects of wave energy arrays. The experiments will be performed at the Hinsdale Wave Research Laboratory (Oregon State University) and will utilize an array of newly developed Buoys??????? that are realistic, lab-scale floating power converters. The array of Buoys will be subjected to realistic, directional wave forcing (1:33 scale) that will approximate the expected conditions (waves and water depths) to be found off the Central Oregon Coast. Experimental observations will include comprehensive in-situ wave and current measurements as well as a suite of novel optical measurements. These new optical capabilities will include imaging of the 3D wave scattering using a binocular stereo camera system, as well as 3D device motion tracking using a newly acquired LED system. These observing systems will capture the 3D motion history of individual Buoys as well as resolve the 3D scattered wave field; thus resolving the constructive and destructive wave interference patterns produced by the array at high resolution. These data combined with the device motion tracking will provide necessary information for array design in order to balance array performance with the mitigation of far-field impacts. As a benchmark data set, these data will be an important resource for testing of models for wave/buoy interactions, buoy performance, and far-field effects on wave and current patterns due to the presence of arrays. Under the proposed project we will initiate high-resolution (fine scale, very near-field) fluid/structure interaction simulations of buoy motions, as well as array-scale, phase-resolving wave scattering simulations. These modeling efforts will utilize state-of-the-art research quality models, which have not yet been brought to bear on this complex problem of large array wave/structure interaction problem.

Rhinefrank, Kenneth E.; Haller, Merrick C.; Ozkan-Haller, H. Tuba

2013-01-26T23:59:59.000Z

375

Georgia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 7, 2011 A map generated by Georgia Tech's tidal energy resource database shows mean current speed of tidal streams | Source: Georgia Institute of Technology New Interactive...

376

MHK Technologies/Sea wave Slot cone Generator SSG | Open Energy Information  

Open Energy Info (EERE)

Sea wave Slot cone Generator SSG Sea wave Slot cone Generator SSG < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Sea wave Slot cone Generator SSG.jpg Technology Profile Primary Organization Wave Energy AS Project(s) where this technology is utilized *MHK Projects/Wave Energy AS Project 1 Technology Resource Click here Wave Technology Type Click here Overtopping Device Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description The Sea Wave Slot-Cone Generator (SSG) is based on the overtopping principle. It utilizes a total of three reservoirs stacked on top of one other (referred to as a 'multi-stage water turbine') in which the potential energy of the incoming wave will be stored. The water captured in the reservoirs will then run through the multi-stage turbine for highly efficient electricity production.

377

MHK Technologies/RED HAWK | Open Energy Information  

Open Energy Info (EERE)

RED HAWK RED HAWK < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage RED HAWK.jpg Technology Profile Primary Organization Natural Currents Energy Services Project(s) where this technology is utilized *MHK Projects/Avalon Tidal *MHK Projects/BW2 Tidal *MHK Projects/Cape Cod Tidal Energy Project *MHK Projects/Cape May Tidal Energy *MHK Projects/Cohansey River Tidal Energy *MHK Projects/Dorchester Maurice Tidal *MHK Projects/Fishers Island Tidal Energy Project *MHK Projects/Gastineau Channel Tidal *MHK Projects/Highlands Tidal Energy Project *MHK Projects/Killisnoo Tidal Energy *MHK Projects/Margate Tidal *MHK Projects/Maurice River Tidal *MHK Projects/Mohawk MHK Project *MHK Projects/Orient Point Tidal *MHK Projects/Rockaway Tidal Energy Plant

378

DeFrees Small Wave Basin | Open Energy Information  

Open Energy Info (EERE)

Wave Basin Wave Basin Jump to: navigation, search Basic Specifications Facility Name DeFrees Small Wave Basin Overseeing Organization Cornell University Hydrodynamics Hydrodynamic Testing Facility Type Wave Basin Length(m) 15.0 Beam(m) 0.8 Depth(m) 0.9 Water Type Freshwater Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.3 Maximum Wave Height(m) at Wave Period(s) 3.0 Maximum Wave Length(m) 30 Wave Period Range(s) 3.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Computer controlled hydraulic paddle, arbitrary wave shape possible Wave Direction Uni-Directional Simulated Beach Yes Description of Beach 1:10 sloping glass with dissipative horsehair covering if needed

379

Launching the Next Wave of Clean Fossil Energy Innovation | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Launching the Next Wave of Clean Fossil Energy Innovation Launching the Next Wave of Clean Fossil Energy Innovation Launching the Next Wave of Clean Fossil Energy Innovation December 12, 2013 - 1:15pm Addthis The National Energy Technology Laboratory's chemical looping reactor. This promising approach to capturing carbon dioxide will be among the technologies explored as part of the the Loan Program Office's advanced fossil energy solicitation. | Photo courtesy of the National Energy Technology Laboratory. The National Energy Technology Laboratory's chemical looping reactor. This promising approach to capturing carbon dioxide will be among the technologies explored as part of the the Loan Program Office's advanced

380

Free energy in plasmas under wave-induced diffusion Nathaniel J. Fish  

E-Print Network (OSTI)

Free energy in plasmas under wave-induced diffusion Nathaniel J. Fish Princeton Plasma Physics, the "Gardner free energy." Here, the plasma is rearranged incompressibly in the six- dimensional phase space of the plasma kinetic energy. In many cases of interest, the primary effect of the wave is to cause plasma

Note: This page contains sample records for the topic "tidal energy wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Model-predicted distribution of wind-induced internal wave energy in the world's oceans  

E-Print Network (OSTI)

Model-predicted distribution of wind-induced internal wave energy in the world's oceans Naoki 9 July 2008; published 30 September 2008. [1] The distribution of wind-induced internal wave energy-scaled kinetic energy are all consistent with the available observations in the regions of significant wind

Miami, University of

382

Property:Maximum Wave Height(m) | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Maximum Wave Height(m) Jump to: navigation, search Property Name Maximum Wave Height(m) Property Type String Pages using the property "Maximum Wave Height(m)" Showing 25 pages using this property. (previous 25) (next 25) 1 1.5-ft Wave Flume Facility + 0.2 + 10-ft Wave Flume Facility + 0.5 + 11-ft Wave Flume Facility + 0.4 + 2 2-ft Flume Facility + 0.6 + 3 3-ft Wave Flume Facility + 0.2 + 5 5-ft Wave Flume Facility + 0.5 + 6 6-ft Wave Flume Facility + 0.4 + A Alden Large Flume + 0.0 + Alden Small Flume + 0.2 + Alden Wave Basin + 0.3 + B Breakwater Research Facility + 0.0 + C Carderock Maneuvering & Seakeeping Basin + 0.6 + Carderock Tow Tank 2 + 0.6 + Carderock Tow Tank 3 + 0.6 +

383

On the Steady-State Energy Balance of Short Gravity Wave Systems  

Science Conference Proceedings (OSTI)

Steady-state energy balances of short gravity wave systems generated in a wave tank with and without airflow have been measured and compared with the predictions of perturbation theory. Wind-wave spectra were found to fit a JONSWAP form to a good ...

William J. Plant

1980-09-01T23:59:59.000Z

384

Ocean Energy Projects Developing On and Off America's Shores | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ocean Energy Projects Developing On and Off America's Shores Ocean Energy Projects Developing On and Off America's Shores Ocean Energy Projects Developing On and Off America's Shores January 22, 2013 - 1:14pm Addthis Artist rendering of Ocean Power Technologies' proposed wave park off the coast of Oregon. | Photo courtesy of Ocean Power Technologies. Artist rendering of Ocean Power Technologies' proposed wave park off the coast of Oregon. | Photo courtesy of Ocean Power Technologies. Verdant testing its tidal energy device in New York's East River. | Photo courtesy of Verdant Power. Verdant testing its tidal energy device in New York's East River. | Photo courtesy of Verdant Power. Ocean Power Technologies wave energy device. | Photo courtesy of Ocean Power Technologies. Ocean Power Technologies wave energy device. | Photo courtesy of Ocean

385

Ocean Energy Projects Developing On and Off America's Shores | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ocean Energy Projects Developing On and Off America's Shores Ocean Energy Projects Developing On and Off America's Shores Ocean Energy Projects Developing On and Off America's Shores January 22, 2013 - 1:14pm Addthis Artist rendering of Ocean Power Technologies' proposed wave park off the coast of Oregon. | Photo courtesy of Ocean Power Technologies. Artist rendering of Ocean Power Technologies' proposed wave park off the coast of Oregon. | Photo courtesy of Ocean Power Technologies. Verdant testing its tidal energy device in New York's East River. | Photo courtesy of Verdant Power. Verdant testing its tidal energy device in New York's East River. | Photo courtesy of Verdant Power. Ocean Power Technologies wave energy device. | Photo courtesy of Ocean Power Technologies. Ocean Power Technologies wave energy device. | Photo courtesy of Ocean

386

Spectral Distribution of Energy Dissipation of Wind-Generated Waves due to Dominant Wave Breaking  

Science Conference Proceedings (OSTI)

This paper considers an experimental attempt to estimate the spectral distribution of the dissipation due to breaking of dominant waves. A field wave record with an approximately 50% dominant-breaking rate was analyzed. Segments of the record, ...

Ian R. Young; Alexander V. Babanin

2006-03-01T23:59:59.000Z

387

MHK Technologies/WaveBlanket PolymerMembrane | Open Energy Information  

Open Energy Info (EERE)

WaveBlanket PolymerMembrane WaveBlanket PolymerMembrane < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage WaveBlanket PolymerMembrane.jpg Technology Profile Primary Organization Wind Waves and Sun Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description WaveBlanket could be called the accordion of the sea Poetically speaking It is simply a bellows played upon by the swells of the ocean WaveBlanket is a flexible polymer membrane which uses air pressure rather than steel to achieve its lateral strength and as a result produces about 1000 times more energy per unit of mass than rigid green energy designs

388

Direct Drive Wave Energy Buoy Intermediate scale experiment  

SciTech Connect

Columbia Power Technologies deployed a scaled prototype wave energy converter (WEC) in the Puget Sound in February 2011. Other than a brief period (10 days) in which the WEC was removed for repair, it was in the water from Feb. 15, 2011 until Mar. 21, 2012. The SeaRay, as this WEC is known, consists of three rigid bodies which are constrained to move in a total of eight degrees of freedom (DOF). The SeaRay is kept on station with a spread, three-point mooring system. This prototype WEC is heavily instrumented, including but not limited to torque transducers and encoders reporting generator torque applied to and relative pitch of the floats, an inertial measurement unit (IMU) reporting translational acceleration and rotational position of the spar/nacelle, a GPS sensor reporting position, load cells reporting mooring loads at the WEC connection points and a number of strain gauges embedded in the fiberglass reinforced plastic (FRP) hull. Additionally, wave and current data are collected using an Acoustic Wave And Current Profiler (AWAC), allowing performance and design data to be correlated to environmental input conditions. This data quality controlled, processed and analyzed is used to characterize the metocean conditions (i.e. sea states). The WEC response will be correlated to the metocean conditions. These results will primarily be used to validate numerical models. The validated numerical models will be used optimize the commercial scale WEC and inform the design process. This document details the SeaRay experiment, including the quality control, processing and subsequent analysis of the data. Furthermore, the methodology and the results of numerical model validation will be described.

Rhinefrank, Kenneth E. [Columbia Power Technologies, Inc.; Lenee-Bluhm, Pukha [Columbia Power Technologies, Inc.; Prudell, Joseph H.; Schacher, Alphonse A. [Columbia Power Technologies, Inc.; Hammagren, Erik J.; Zhang, Zhe [Columbia Power Technologies, Inc.

2013-07-29T23:59:59.000Z

389

Wave-Energy Company Looks to Test Prototypes in Maine Waters | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wave-Energy Company Looks to Test Prototypes in Maine Waters Wave-Energy Company Looks to Test Prototypes in Maine Waters Wave-Energy Company Looks to Test Prototypes in Maine Waters April 9, 2010 - 4:19pm Addthis Lindsay Gsell Resolute Marine Energy - a Boston-based, wave-energy technology company - hopes to test ocean wave energy conversion prototypes in Maine sometime in the summer of 2011. The company has already completed two of the three testing stages, the first using computer simulation and the second with reduced-scale prototypes in a controlled environment. Now, the company is ready to take the technology offshore to begin ocean testing. Its eyes are set on the waters of its Northern neighbor, Maine. Maine is an ideal location for Resolute Marine Energy to conduct testing for a few reasons, said CEO and President Bill Staby. Working in Maine

390

Ecological safety of tidal-power projects  

SciTech Connect

The operating regime of tidal power plants requires ecological monitoring of their associated water area.

Fedorov, M. P.; Shilin, M. B. [St. Petersburg State Polytechnic University (Russian Federation)

2010-07-15T23:59:59.000Z

391

EERE News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30, 2013 30, 2013 DOE Announces Webinar on Tying Energy Efficiency to Compensation and Performance Reviews, and More EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies to training for the clean energy workforce. Webinars are free; however, advanced registration is typically required. You can also watch archived webinars and browse previously aired videos, slides, and transcripts. August 29, 2013 Energy Department Invests $16 Million to Harness Wave and Tidal Energy Seventeen Projects to Boost Device Performance, Ensure Sustainable Development. August 29, 2013 Energy Department Invests $16 Million to Develop Wave and Tidal Energy Technologies As part of the Obama Administration's all-of-the-above strategy to deploy

392

L-Shaped Flume Wave Basin | Open Energy Information  

Open Energy Info (EERE)

L-Shaped Flume Wave Basin L-Shaped Flume Wave Basin Jump to: navigation, search Basic Specifications Facility Name L-Shaped Flume Wave Basin Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility Type Wave Basin Length(m) 76.2 Beam(m) 15.2 Depth(m) 1.8 Water Type Freshwater Special Physical Features Contact POC Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.6 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 10.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wave Direction Uni-Directional Simulated Beach No Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Automated data acquisition and control sys

393

A New Perspective on the Excitation of Low-Tropospheric Mixed RossbyGravity Waves in Association with Energy Dispersion  

Science Conference Proceedings (OSTI)

This study investigates the synoptic-scale equatorial response to Rossby wave energy dispersion associated with off-equatorial wave activity sources and proposes a new mechanism for triggering low-level mixed Rossbygravity (MRG) waves. A case ...

Guanghua Chen; Chi-Yung Tam

2012-04-01T23:59:59.000Z

394

Interruption of Tidal Disruption Flares By Supermassive Black Hole Binaries  

E-Print Network (OSTI)

Supermassive black hole binaries (SMBHBs) are products of galaxy mergers, and are important in testing Lambda cold dark matter cosmology and locating gravitational-wave-radiation sources. A unique electromagnetic signature of SMBHBs in galactic nuclei is essential in identifying the binaries in observations from the IR band through optical to X-ray. Recently, the flares in optical, UV, and X-ray caused by supermassive black holes (SMBHs) tidally disrupting nearby stars have been successfully used to observationally probe single SMBHs in normal galaxies. In this Letter, we investigate the accretion of the gaseous debris of a tidally disrupted star by a SMBHB. Using both stability analysis of three-body systems and numerical scattering experiments, we show that the accretion of stellar debris gas, which initially decays with time $\\propto t^{-5/3}$, would stop at a time $T_{\\rm tr} \\simeq \\eta T_{\\rm b}$. Here, $\\eta \\sim0.25$ and $T_{\\rm b}$ is the orbital period of the SMBHB. After a period of interruption, the accretion recurs discretely at time $T_{\\rm r} \\simeq \\xi T_b$, where $\\xi \\sim 1$. Both $\\eta$ and $\\xi$ sensitively depend on the orbital parameters of the tidally disrupted star at the tidal radius and the orbit eccentricity of SMBHB. The interrupted accretion of the stellar debris gas gives rise to an interrupted tidal flare, which could be used to identify SMBHBs in non-active galaxies in the upcoming transient surveys.

F. K. Liu; S. Li; Xian Chen

2009-10-21T23:59:59.000Z

395

Computations and Parameterizations of the Nonlinear Energy Transfer in a Gravity-Wave Specturm. Part II: Parameterizations of the Nonlinear Energy Transfer for Application in Wave Models  

Science Conference Proceedings (OSTI)

Four different parameterizations of the nonlinear energy transfer Snl in a surface wave spectrum are in investigated. Two parameterizations are based on a relatively small number of parameters and are useful primarily for application in ...

S. Hasselmann; K. Hasselmann; J. H. Allender; T. P. Barnett

1985-11-01T23:59:59.000Z

396

MHK Technologies/The WaveCatcher System | Open Energy Information  

Open Energy Info (EERE)

System System < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage The WaveCatcher System.png Technology Profile Technology Type Click here Attenuator Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description System captures a wave stores the energy in a large holder containment device resulting in a large potential energy reservoir then that energy is transformed into mechanical kinetic energy in such a way that it is output in a constant output 60 hertz in other words it takes the large pulsed energy of a wave captures the wave and transforms the wave into a constant energy output Technology Dimensions Device Testing Date Submitted 30:33.7 << Return to the MHK database homepage

397

DOE'S ENERGY DATA BASE (EDB) VERSUS OTHER ENERGY-RELATED DATA BASES: A COMPARATIVE ANALYSIS  

E-Print Network (OSTI)

hydrogen, other synthetic and natural fuels, hydro energy, solar energy, geothermal energy, tidal power, wind energy; energy storage,

Robinson, J.

2010-01-01T23:59:59.000Z

398

Optimal numerical realization of the energy balance equation for wind wave models  

Science Conference Proceedings (OSTI)

The optimal numerical realization of the energy balance equation in wind wave models is proposed. The scheme is separated into two parts: the numerical source term integration and the energy propagation numerical realization. The first one is based on ...

Igor V. Lavrenov

2003-06-01T23:59:59.000Z

399

On the Potential Energy of Baroclinic Rossby Waves in the North Pacific  

Science Conference Proceedings (OSTI)

Estimates of baroclinic Rossby wave potential energy spectra for various parts of the North Pacific were calculated from published material containing information about this energy in many different formats, definitions and units. The ...

Lorenz Magaard

1983-01-01T23:59:59.000Z

400

Water Heater Controller - Energy Innovation Portal  

Hydrogen and Fuel Cell; Hydropower, Wave and Tidal; ... The autonomous benefits begin accruing immediately without significantly impacting the ...

Note: This page contains sample records for the topic "tidal energy wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Transpired Solar Collector - Energy Innovation Portal  

Hydrogen and Fuel Cell; Hydropower, Wave and Tidal; Industrial Technologies; Solar Photovoltaic; Solar Thermal; ... including laser perforating or hot ...

402

A Large-Eddy Simulation Study of Wake Propagation and Power Production in an Array of Tidal-Current Turbines: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

Large-Eddy Simulation Study Large-Eddy Simulation Study of Wake Propagation and Power Production in an Array of Tidal- Current Turbines Preprint M.J. Churchfield, Y. Li, and P.J. Moriarty To be presented at the 9 th European Wave and Tidal Energy Conference 2011 Southhampton, England September 4 - 9, 2011 Conference Paper NREL/CP-5000-51765 July 2011 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government.

403

Multimedia from the Northwest National Marine Renewable Energy Center (NNMREC) on YouTube  

DOE Data Explorer (OSTI)

The Northwest National Marine Renewable Energy Center (NNMREC) is a DOE-funded partnership between Oregon State University and the University of Washington. Oregon State focuses on wave energy research and development, while the University of Washington focuses on tidal energy. The NNMREC YouTube channel makes more than sixty short video clips available.

404

EA-1917: Wave Energy Test Facility Project, Newport, OR | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

17: Wave Energy Test Facility Project, Newport, OR 17: Wave Energy Test Facility Project, Newport, OR EA-1917: Wave Energy Test Facility Project, Newport, OR SUMMARY This EA evaluates the potential environmental impacts of a Wave Energy Test Facility that will be located near Newport, Oregon. The testing facility will be located within Oregon territorial waters, near the Hatfield Marine Science Center and close to onshore roads and marine support services. The site will not only allow testing of new wave energy technologies, but will also be used to help study any potential environmental impacts on sediments, invertebrates and fish. The project is being jointly funded by the State of Oregon and DOE. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 15, 2012 EA-1917: Mitigation Action Plan

405

EA-1917: Wave Energy Test Facility Project, Newport, OR | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

17: Wave Energy Test Facility Project, Newport, OR 17: Wave Energy Test Facility Project, Newport, OR EA-1917: Wave Energy Test Facility Project, Newport, OR SUMMARY This EA evaluates the potential environmental impacts of a Wave Energy Test Facility that will be located near Newport, Oregon. The testing facility will be located within Oregon territorial waters, near the Hatfield Marine Science Center and close to onshore roads and marine support services. The site will not only allow testing of new wave energy technologies, but will also be used to help study any potential environmental impacts on sediments, invertebrates and fish. The project is being jointly funded by the State of Oregon and DOE. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 15, 2012 EA-1917: Mitigation Action Plan

406

Property:Wave Period Range(s) | Open Energy Information  

Open Energy Info (EERE)

Wave Period Range(s) Wave Period Range(s) Jump to: navigation, search Property Name Wave Period Range(s) Property Type String Pages using the property "Wave Period Range(s)" Showing 25 pages using this property. (previous 25) (next 25) 1 1.5-ft Wave Flume Facility + 10.0 + 10-ft Wave Flume Facility + 0.0 + 11-ft Wave Flume Facility + 10.0 + 2 2-ft Flume Facility + 10.0 + 3 3-ft Wave Flume Facility + 10.0 + 5 5-ft Wave Flume Facility + 10.0 + 6 6-ft Wave Flume Facility + 10.0 + A Alden Large Flume + 2.1 + Alden Small Flume + 0.0 + Alden Wave Basin + 1.0 + B Breakwater Research Facility + 0.0 + C Carderock Maneuvering & Seakeeping Basin + 0.0 + Carderock Tow Tank 2 + 0.0 + Carderock Tow Tank 3 + 0.0 + Chase Tow Tank + 3.1 + Coastal Harbors Modeling Facility + 2.3 +

407

Property:Maximum Wave Length(m) | Open Energy Information  

Open Energy Info (EERE)

Wave Length(m) Wave Length(m) Jump to: navigation, search Property Name Maximum Wave Length(m) Property Type String Pages using the property "Maximum Wave Length(m)" Showing 18 pages using this property. A Alden Small Flume + Variable + Alden Wave Basin + 1.8 + C Carderock Maneuvering & Seakeeping Basin + 12.2 + Carderock Tow Tank 2 + 12.2 + Carderock Tow Tank 3 + 12.2 + D Davidson Laboratory Tow Tank + 15.2 + DeFrees Large Wave Basin + 64 + DeFrees Small Wave Basin + 30 + H Haynes Wave Basin + 10.7 + L Lakefront Tow Tank + 22 + M MIT Tow Tank + 4.6 + O OTRC Wave Basin + 25 + Ohmsett Tow Tank + 18 + R Richmond Field Station Tow Tank + 2 + S SAFL Channel + 6.6 + Sandia Lake Facility + 4.57 + Sheets Wave Basin + 10 + Ship Towing Tank + 6 + Retrieved from "http://en.openei.org/w/index.php?title=Property:Maximum_Wave_Length(m)&oldid=597351

408

5-ft Wave Flume Facility | Open Energy Information  

Open Energy Info (EERE)

5-ft Wave Flume Facility 5-ft Wave Flume Facility Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility Type Flume Length(m) 63.4 Beam(m) 1.5 Depth(m) 1.5 Water Type Freshwater Cost(per day) Contact POC Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.5 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 10.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Simulated Beach No Channel/Tunnel/Flume Channel/Tunnel/Flume Yes Recirculating No Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Automated data acquisition and control system Cameras None Available Sensors Flow, Pressure Range(psi), Turbulence, Velocity, Wave Probe

409

1.5-ft Wave Flume Facility | Open Energy Information  

Open Energy Info (EERE)

-ft Wave Flume Facility -ft Wave Flume Facility Jump to: navigation, search Basic Specifications Facility Name 1.5-ft Wave Flume Facility Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility Type Flume Length(m) 45.1 Beam(m) 0.5 Depth(m) 0.9 Water Type Freshwater Cost(per day) Contact POC Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.2 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 10.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Simulated Beach No Channel/Tunnel/Flume Channel/Tunnel/Flume Yes Recirculating No Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Automated data acquisition and control system

410

11-ft Wave Flume Facility | Open Energy Information  

Open Energy Info (EERE)

ft Wave Flume Facility ft Wave Flume Facility Jump to: navigation, search Basic Specifications Facility Name Wave Flume Facility Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility Type Flume Length(m) 77.4 Beam(m) 3.4 Depth(m) 1.8 Water Type Freshwater Cost(per day) Contact POC Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.4 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 10.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Simulated Beach No Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities Yes Control and Data Acquisition Description Automated data acquisition and control system Cameras None

411

MHL 2D Wind/Wave | Open Energy Information  

Open Energy Info (EERE)

MHL 2D Wind/Wave MHL 2D Wind/Wave Jump to: navigation, search Basic Specifications Facility Name MHL 2D Wind/Wave Overseeing Organization University of Michigan Hydrodynamics Hydrodynamic Testing Facility Type Tunnel Length(m) 35.1 Beam(m) 0.7 Depth(m) 1.2 Cost(per day) $2000 (+ Labor/Materials) Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.2 Wave Period Range(s) 0.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Regular and irregular wave spectrum Wave Direction Uni-Directional Simulated Beach Yes Description of Beach Removable beach Channel/Tunnel/Flume Channel/Tunnel/Flume Yes Recirculating No Wind Capabilities Wind Capabilities Yes Wind Velocity Range(m/s) 20.4

412

3-ft Wave Flume Facility | Open Energy Information  

Open Energy Info (EERE)

3-ft Wave Flume Facility 3-ft Wave Flume Facility Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility Type Flume Length(m) 45.1 Beam(m) 0.9 Depth(m) 0.9 Water Type Freshwater Cost(per day) Contact POC Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.2 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 10.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Simulated Beach No Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Automated data acquisition and control system Cameras None Available Sensors Flow, Pressure Range(psi), Turbulence, Velocity, Wave Probe

413

10-ft Wave Flume Facility | Open Energy Information  

Open Energy Info (EERE)

ft Wave Flume Facility ft Wave Flume Facility Jump to: navigation, search Basic Specifications Facility Name 10-ft Wave Flume Facility Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility Type Flume Length(m) 63.4 Beam(m) 3.0 Depth(m) 1.5 Water Type Freshwater Cost(per day) Contact POC Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.5 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 0.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Simulated Beach No Channel/Tunnel/Flume Channel/Tunnel/Flume Yes Recirculating No Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Automated data acquisition and control system

414

6-ft Wave Flume Facility | Open Energy Information  

Open Energy Info (EERE)

Wave Flume Facility Wave Flume Facility Jump to: navigation, search Basic Specifications Facility Name 6-ft Wave Flume Facility Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility Type Flume Length(m) 105.2 Beam(m) 1.8 Depth(m) 1.8 Water Type Freshwater Cost(per day) Contact POC Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.4 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 10.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Simulated Beach No Channel/Tunnel/Flume Channel/Tunnel/Flume Yes Recirculating No Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Automated data acquisition and control system

415

University of Iowa Wave Basin | Open Energy Information  

Open Energy Info (EERE)

University of Iowa Wave Basin University of Iowa Wave Basin Overseeing Organization University of Iowa Hydrodynamic Testing Facility Type Wave Basin Length(m) 40.0 Beam(m) 20.0 Depth(m) 3.0 Cost(per day) Contact POC Special Physical Features Towed 3DPIV; contactless motion tracking; free surface measurement mappingv Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 2.5 Length of Effective Tow(m) 25.0 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.6 Wave Period Range(s) 0.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Fully programmable for regular or irregular waves Wave Direction Uni-Directional Simulated Beach Yes Description of Beach Trusses overlaid with lattice and matting Channel/Tunnel/Flume

416

MHK Projects/Douglas County Wave Energy Project | Open Energy Information  

Open Energy Info (EERE)

Douglas County Wave Energy Project Douglas County Wave Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.6825,"lon":-124.187,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

417

MHK Projects/Perth Wave Energy Project PWEP | Open Energy Information  

Open Energy Info (EERE)

Perth Wave Energy Project PWEP Perth Wave Energy Project PWEP < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-32.2509,"lon":115.651,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

418

MHK Projects/Centreville OPT Wave Energy Park | Open Energy Information  

Open Energy Info (EERE)

Centreville OPT Wave Energy Park Centreville OPT Wave Energy Park < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.5761,"lon":-124.264,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

419

MHK Projects/Coos County Offshore Wave Energy Power Plant | Open Energy  

Open Energy Info (EERE)

Coos County Offshore Wave Energy Power Plant Coos County Offshore Wave Energy Power Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0238,"lon":-124.519,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

420

MHK Projects/Greenwave Rhode Island Ocean Wave Energy Project | Open Energy  

Open Energy Info (EERE)

Greenwave Rhode Island Ocean Wave Energy Project Greenwave Rhode Island Ocean Wave Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4501,"lon":-71.4495,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "tidal energy wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Oceana Energy Company | Open Energy Information  

Open Energy Info (EERE)

Oceana Energy Company Oceana Energy Company Jump to: navigation, search Name Oceana Energy Company Place Washington DC, Washington, DC Zip 20036 Sector Ocean, Renewable Energy Product String representation "Oceana Energy C ... ost and impact." is too long. References Oceana Energy Company[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Cape Islands Tidal Energy Project Central Cook Inlet Tidal Energy Project Icy Passage Tidal Energy Project Kachemak Bay Tidal Energy Project Kendall Head Tidal Energy Kennebec Penobscot Tidal Energy Project Portsmouth Area Tidal Energy Project Wrangell Narrows Tidal Energy Project

422

Momentum and Energy Transport by Gravity Waves in Stochastically Driven Stratified Flows. Part II: Radiation of Gravity Waves from a Gaussian Jet  

E-Print Network (OSTI)

Momentum and Energy Transport by Gravity Waves in Stochastically Driven Stratified Flows. Part II: Radiation of Gravity Waves from a Gaussian Jet NIKOLAOS A. BAKAS AND BRIAN F. FARRELL Harvard University Interaction between the midlatitude jet and gravity waves is examined, focusing on the nonnormality

Farrell, Brian F.

423

Growing Energy Biomass crops as a  

E-Print Network (OSTI)

to provide our heat, electricity and liquid transport fuels. It is widely agreed that wind, wave, tidal carbon emissions set by the Kyoto Protocol are to be met. Biomass from crop plants can make an important of research activities aimed at the sustainable production of biomass from energy crops for heat and power

Rambaut, Andrew

424

Concerns in Marine Renewable Energy Projects  

DOE Green Energy (OSTI)

-\tDeployment Scenarios, identifying all the major life-cycle-related impacts Report 3 - Framework for Identifying Key Environmental Concerns This report describes frameworks for identifying key environmental effects and applies them to the wave and tidal energy deployment scenarios described in the first two reports. It highlights critical issues and recommendations for future research

Sharon Kramer, Mirko Previsic, Peter Nelson, Sheri Woo

2010-06-17T23:59:59.000Z

425

MHK Technologies/Wave Catcher | Open Energy Information  

Open Energy Info (EERE)

Wave Catcher.png Wave Catcher.png Technology Profile Primary Organization Offshore Islands Ltd Technology Resource Click here Current Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The Wave Catcher can be orientated to take advantage of the most numerous prevailing waves to generate power It is a long surface buoy cylinder that is lifted by each passing wave As the cylinder is lifted it pulls on its anchor lines which in turn pulls on a support pulley This support pulley turns the generator s rotor and flywheel The generator s flywheel keeps the rotor turning until the next wave lifts up the cylinder and the anchor line once again turns the pulley The cylinder will also be lifted by waves from all directions As a result the anchor cables at each end of the buoy may either pull together or at slightly different times The gears the pulleys the rotor and flywheel are turned when the anchor cable s tension is high The uni direction pulley s re coil spring re winds the anchor cable back around the pulley when the buoy moves down with the trough of the wave and the anchor cable tension is low The wave generator can be in a surface buoy or mounted sub

426

MHK Technologies/Wave Power Desalination | Open Energy Information  

Open Energy Info (EERE)

Desalination < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Power Desalination.gif Technology Profile Primary Organization Delbuoy...

427

Challenges and Instrumentation Solutions to Understanding the Nature of Tidal Flows  

NLE Websites -- All DOE Office Websites (Extended Search)

Approach to Characterization of Full-Spectrum Approach to Characterization of Full-Spectrum Turbulence Near Current Tidal Energy Devices Presented by Brett Prairie of Rockland Scientific at the Marine and Hydrokinetic Technology and Environmental Instrumentation, Measurement & Computer Modeling Workshop Broomfield, Colorado July 9 - 11, 2012 ©2012 Rockland Scientific Inc. Presentation Agenda ©2012 Rockland Scientific Inc. 1. Introduction & Background 2. The importance of full-spectrum turbulence characterization for current tidal energy project development 3. How non-acoustic measurements can characterize small-scale turbulence near current tidal energy devices 4. Development of a continuous monitoring system to measure full-spectrum turbulence for the National Renewable Energy Laboratory

428

Resonant energy conversion of 3-minute intensity oscillations into Alfven waves in the solar atmosphere  

E-Print Network (OSTI)

Nonlinear coupling between 3-minute oscillations and Alfven waves in the solar lower atmosphere is studied. 3-minute oscillations are considered as acoustic waves trapped in a chromospheric cavity and oscillating along transversally inhomogeneous vertical magnetic field. It is shown that under the action of the oscillations the temporal dynamics of Alfven waves is governed by Mathieu equation. Consequently, the harmonics of Alfven waves with twice period and wavelength of 3-minute oscillations grow exponentially in time near the layer where the sound and Alfven speeds equal. Thus the 3-minute oscillations are resonantly absorbed by pure Alfven waves near this resonant layer. The resonant Alfven waves may penetrate into the solar corona taking energy from the chromosphere. Therefore the layer c_s=v_A may play a role of energy channel for otherwise trapped acoustic oscillations.

D. Kuridze; T. V. Zaqarashvili

2007-03-19T23:59:59.000Z

429

Tidal Current Predictions Using Rotary Empirical Orthogonal Functions  

Science Conference Proceedings (OSTI)

In the conventional point tidal analysis approach, a set of tidal harmonic constituents is derived from each time series of currents. These sets of tidal constituents are then used to predict the tidal currents. For a large database of current ...

Betty Ng

1993-12-01T23:59:59.000Z

430

MHK Technologies/Under Bottom Wave Generator | Open Energy Information  

Open Energy Info (EERE)

Under Bottom Wave Generator Under Bottom Wave Generator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Under Bottom Wave Generator.jpg Technology Profile Primary Organization Glen Edward Cook Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description Water will flow up into the pipe from the down stroke and out of the pipe back into the ocean on the up stroke Waves rolling by will push water into the pipe This will mock the ocean swell A propellar is mounted inside the lower portion of the pipe the upward and downward flow of water will spin the propellar in both direcitons The propellar is connected to a generator

431

MHK Technologies/hyWave | Open Energy Information  

Open Energy Info (EERE)

hyWave hyWave < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage HyWave.png Technology Profile Primary Organization Wavegen subsidiary of Voith Siemens Hydro Power Generation Project(s) where this technology is utilized *MHK Projects/Mutriku *MHK Projects/Wavegen Technology Resource Click here Wave Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The hyWave device rests directly on the seabed and is designed to operate in the near-shore environment in a nominal mean water depth of 15m. Optimum performance will be achieved when driven by a long ocean swell. The pneumatic power of the oscillating water column (OWC) is converted to electricity by a Wells generator and specially designed induction generators.

432

On Tidal Damping in Laplace's Global Ocean  

Science Conference Proceedings (OSTI)

Laplace's tidal equations are augmented by dissipation in a bottom boundary layer that is intermediate in character between those of Ekman and Stokes. Laplace's tidal equation for a global ocean remains second-order and self-adjoint, but the ...

John W. Miles

1986-02-01T23:59:59.000Z

433

Tidal Diffusivity: A Mechanism for Frontogenesis  

Science Conference Proceedings (OSTI)

It is hypothesized that tidal mixing may provide a diffusivity mechanism for frontogenesis. It stems from the fact that tidal diffusivity varies in the opposite sense from the water depth, so the vertically integrated diffusivity may exhibit a ...

Hsien-Wang Ou; Chang-Ming Dong; Dake Chen

2003-04-01T23:59:59.000Z

434

Tidal Mixing Signatures in the Indonesian Seas  

Science Conference Proceedings (OSTI)

Expressions of low-frequency tidal periods are found throughout the Indonesian Seas' temperature field, supporting the hypothesis that vertical mixing is enhanced within the Indonesian Seas by the tides. The thermal signatures of tidal mixing ...

Amy Ffield; Arnold L. Gordon

1996-09-01T23:59:59.000Z

435

Mapping and Assessment of the United States Ocean Wave Energy Resource |  

Open Energy Info (EERE)

450 450 Varnish cache server Mapping and Assessment of the United States Ocean Wave Energy Resource Dataset Summary Description This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration's (NOAA's) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. This approach is fully consistent with accepted global practice and includes the resource made available by the lateral transfer of wave energy along wave crests, which enables densities within a few kilometers of a linear array, even for fixed terminator devices.

436

NREL GIS Data: Wave Energy Assessment for the United States and Puerto Rico  

Open Energy Info (EERE)

Wave Energy Assessment for the United States and Puerto Rico Wave Energy Assessment for the United States and Puerto Rico Dataset Summary Description Source The Wave Energy Resource Assessment project is a joint venture between NREL, EPRI, and Virginia Tech. EPRI is the prime contractor, Virginia Tech is responsible for development of the models and estimating the wave resource, and NREL serves as an independent validator and also develops the final GIS-based display of the data. Geographic Range US coastline, including AK, HI and Puerto Rico, out to 50 nautical miles. Grid Properties Grids are derived from WaveWatch III grids. Near the coast of the lower 48 and HI, grids are squares, 4 minutes by 4 minutes (15 per degree). For the Alaska grids AK and BS, the grid is 4 minutes of latitude by 8 minutes of longitude (15 per deg by 7.5 per deg).

437

Nuclear Fusion (Nuclear Fusion ( )) as Clean Energy Source for Mankindas Clean Energy Source for Mankind  

E-Print Network (OSTI)

from renewables (wind power, solar power, hydropower, geothermal, ocean wave & tidal power, biomass energy resources (coal 43%, natural gas 19%, oil 6%, cogeneration 7%); ~21% by nuclear fission power) ~ 5 ~ 7 CO2 Emission (Tons/MW) Current Chinese plants 1.15 Current US plants 1.05 State of the art 0

Chen, Yang-Yuan

438

Energy Flux from Traveling Hurricanes to the Oceanic Internal Wave Field  

Science Conference Proceedings (OSTI)

The generation of long interval waves by traveling hurricanes on an f plane is studied within the context of linear theory. The emphasis of the present work is on the interval wave power, that is, the fraction of the energy input from the ...

Johan Nilsson

1995-04-01T23:59:59.000Z

439

Tidal Flow Turbulence Measurements  

NLE Websites -- All DOE Office Websites (Extended Search)

n still result in some spreading of the corrected , eve case of a unique mean 32. This definition assumes Northwest)Na+onal)Marine) Renewable)Energy)Center)...

440

MHK Technologies/SyncWave Power Resonator | Open Energy Information  

Open Energy Info (EERE)

Power Resonator Power Resonator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage SyncWave Power Resonator.jpg Technology Profile Primary Organization Marinus Power Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The SyncWave Power Resonator makes power by capturing the motion differential due to the phase lag between the two concentric float structures the Float and the Spar each having a very different resonance characteristic in waves The power generated from this phase lag is maximized under varying ocean wave conditions via a proprietary variable inertia tuning system SWELS located inside the central Spar Power is captured by an hydraulic power take off which drives a variable speed generator Power outputs conditioned by modern power electronics from several SyncWave Units in a wave farm will be collected and converted to in farm power in a sea bed mounted collector hub then transmitted ashore by subsea cable for interconnection to a shoreside load

Note: This page contains sample records for the topic "tidal energy wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

MHK Technologies/WaveMaster | Open Energy Information  

Open Energy Info (EERE)

WaveMaster WaveMaster < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage WaveMaster.jpg Technology Profile Primary Organization Ocean Wavemaster Ltd Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The WaveMaster device consists of two pressure chambers connected via a number of turbines The device is located under the waters surface so that it is covered at all times The upper surface of each chamber is an active surface covered with one way valves that control the flow of water through the device The valves on the high pressure chamber allow water to flow into the chamber provided the external pressure is higher than the internal pressure in the chamber This situation typically occurs under wave crests If the external pressure is less than the internal pressure the valves remain closed and water does not flow in Similarly the valves on the low pressure chamber will only allow water to flow out of the chamber if the internal pressure is higher than the external pressure This situation typically occurs under wave troughs If the internal pressure is less than the external pressure the valves remain closed and there is no flow of water

442

Dynamical Energy Analysis - determining wave energy distributions in complex vibro-acoustical structures  

E-Print Network (OSTI)

We propose a new approach towards determining the distribution of mechanical and acoustic wave energy in complex built-up structures. The technique interpolates between standard Statistical Energy Analysis (SEA) and full ray tracing containing both these methods as limiting case. By writing the flow of ray trajectories in terms of linear phase space operators, it is suggested here to reformulate ray-tracing algorithms in terms of boundary operators containing only short ray segments. SEA can now be identified as a low resolution ray tracing algorithm and typical SEA assumptions can be quantified in terms of the properties of the ray dynamics. The new technique presented here enhances the range of applicability of standard SEA considerably by systematically incorporating dynamical correlations wherever necessary. Some of the inefficiencies inherent in typical ray tracing methods can be avoided using only a limited amount of the geometrical ray information. The new dynamical theory - Dynamical Energy Analysis (DEA) - thus provides a universal approach towards determining wave energy distributions in complex structures.

Gregor Tanner

2008-03-12T23:59:59.000Z

443

Tidal indicators in the spacetime of a rotating deformed mass  

E-Print Network (OSTI)

Tidal indicators are commonly associated with the electric and magnetic parts of the Riemann tensor (and its covariant derivatives) with respect to a given family of observers in a given spacetime. Recently, observer-dependent tidal effects have been extensively investigated with respect to a variety of special observers in the equatorial plane of the Kerr spacetime. This analysis is extended here by considering a more general background solution to include the case of matter which is also endowed with an arbitrary mass quadrupole moment. Relation with curvature invariants and Bel-Robinson tensor, i.e., observer-dependent super-energy density and super-Poynting vector, are investigated too.

Donato Bini; Kuantay Boshkayev; Andrea Geralico

2013-06-20T23:59:59.000Z

444

Magneto-radar detector and method - Energy Innovation Portal  

Geothermal; Hydrogen and Fuel Cell; Hydropower, Wave and Tidal; ... is capable of being employed to provide superior materials penetration while ...

445

Preliminary Results of a RANS Simulation for a Floating Point Absorber Wave Energy System Under Extreme Wave Conditions  

NLE Websites -- All DOE Office Websites (Extended Search)

Preliminary Results of a RANS Preliminary Results of a RANS Simulation for a Floating Point Absorber Wave Energy System Under Extreme Wave Conditions Y. Yu and Y. Li Presented at the 30 th International Conference on Ocean, Offshore, and Arctic Engineering Rotterdam, The Netherlands June 19 - 24, 2011 Conference Paper NREL/CP-5000-50967 October 2011 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government.

446

Current-Induced Modulation of the Ocean Wave Spectrum and the Role of Nonlinear Energy Transfer  

Science Conference Proceedings (OSTI)

Numerical simulations were performed to investigate current-induced modulation of the spectral and statistical properties of ocean waves advected by idealized and realistic current fields. In particular, the role of nonlinear energy transfer ...

Hitoshi Tamura; Takuji Waseda; Yasumasa Miyazawa; Kosei Komatsu

2008-12-01T23:59:59.000Z

447

Effective gravitational wave stress-energy tensor in alternative theories of gravity  

E-Print Network (OSTI)

The inspiral of binary systems in vacuum is controlled by the stress-energy of gravitational radiation and any other propagating degrees of freedom. For gravitational waves, the dominant contribution is characterized by ...

Stein, Leo Chaim

448

Enhanced Energy Dissipation by Parasitic Capillaries on Short GravityCapillary Waves  

Science Conference Proceedings (OSTI)

The increased energy dissipation caused by the formation of parasitic capillary wavelets on moderately short, steep gravitycapillary waves is studied numerically. This study focuses on understanding the mechanism leading to dissipation ...

Wu-ting Tsai; Li-ping Hung

2010-11-01T23:59:59.000Z

449

Energy Deposition and Turbulent Dissipation Owing to Gravity Waves in the Mesosphere  

Science Conference Proceedings (OSTI)

An attempt is made to define the thermodynamics of internal gravity waves breaking in the middle atmosphere on the basis of the energy conservation law for finite fluid volumes. Consistent with established turbulence theory, this method ...

Erich Becker; Gerhard Schmitz

2002-01-01T23:59:59.000Z

450

Observations of the Directional Distribution of Ocean-Wave Energy in Fetch-Limited Conditions  

Science Conference Proceedings (OSTI)

Directional energy distributions of wind-generated waves were observed with a relatively high directional resolution in fairly homogeneous and stationary wind fields in fetch-limited conditions using stereophotography of the sea surface. In a ...

L. H. Holthuijsen

1983-02-01T23:59:59.000Z

451

Energy Transmission by Barotropic Rossby Waves across Large-Scale Topography  

Science Conference Proceedings (OSTI)

An analytical study investigates the energy transmission by free, barotropic, linear Rossby waves across a large scale bottom topography when topographic and beta-effects have the same order of magnitude. In open ocean regions which are not ...

Bernard Barnier

1984-02-01T23:59:59.000Z

452

Observation of Wave Energy Evolution in Coastal Areas Using HF Radar  

Science Conference Proceedings (OSTI)

The capability of phased-array HF radar systems to sample the spatial distribution of wave energy is investigated in different storm scenarios and coastal configurations. First, a formulation introduced by D. E. Barrick to extract significant ...

Rafael J. Ramos; Hans C. Graber; Brian K. Haus

2009-09-01T23:59:59.000Z

453

Back to the Future - Waves of Rising Energy Use in Data Centers  

NLE Websites -- All DOE Office Websites (Extended Search)

90-3122 In the last 20 years we have observed three waves of concern about energy consumption of Data Centers and of activities for more efficient solutions: 1985-1995, fast...

454

On the Calculation of Available Potential Energy in Internal Wave Fields  

Science Conference Proceedings (OSTI)

A comparison of three common formulations for calculating the available potential energy (APE) in internal wave fields is presented. The formulations are the perturbation APE (APE1), the exact local APE (APE2), and its approximation for linear ...

Dujuan Kang; Oliver Fringer

2010-11-01T23:59:59.000Z

455

Hydrodynamic Optimisation of point wave-energy converter using laboratory experiments.  

E-Print Network (OSTI)

??Investment in renewable energy technology, such as wave power, is increasingly seen as a beneficial and economically-viable alternative to existing fossil-based power plants. New Zealand (more)

Kelly, Scott John

456

Novel millimeter wave sensor concepts for energy, environment, and national security  

E-Print Network (OSTI)

Millimeter waves are ideally suited for sensing and diagnosing materials, devices, and processes that are broadly important to energy, environment, and national security. Thermal return reflection (TRR) techniques that ...

Sundaram, S. K.

457

The Energy Source for the Coastal-Trapped Waves in the Australian Coastal Experiment Region  

Science Conference Proceedings (OSTI)

The sea level on the southern Australian coast is examined for the source of the coastal-trapped wave energy observed during the Australian Coastal Experiment. Sea level, adjusted for atmospheric pressure, and atmospheric pressure are observed to ...

John A. Church; Howard J. Freeland

1987-03-01T23:59:59.000Z

458

MHK Technologies/Electric Generating Wave Pipe | Open Energy Information  

Open Energy Info (EERE)

Generating Wave Pipe Generating Wave Pipe < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Electric Generating Wave Pipe.jpg Technology Profile Primary Organization Able Technologies Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The EGWAP incorporates a specially designed environmentally sound hollow noncorroding pipe also known as a tube or container whose total height is from the ocean floor to above the highest wave peak The pipe is anchored securely beneath the ocean floor When the water level in the pipe rises due to wave action a float rises and a counterweight descends This action will empower a main drive gear and other gearings to turn a generator to produce electricity The mechanism also insures that either up or down movement of the float will turn the generator drive gear in the same direction Electrical output of the generator is fed into a transmission cable

459

Localized energy estimates for wave equations on high dimensional Schwarzschild space-times  

E-Print Network (OSTI)

The localized energy estimate for the wave equation is known to be a fairly robust measure of dispersion. Recent analogs on the $(1+3)$-dimensional Schwarzschild space-time have played a key role in a number of subsequent results, including a proof of Price's law. In this article, we explore similar localized energy estimates for wave equations on $(1+n)$-dimensional hyperspherical Schwarzschild space-times.

Laul, Parul

2010-01-01T23:59:59.000Z

460

Wind-Wave Nonlinearity Observed at the Sea Floor. Part I: Forced-Wave Energy  

Science Conference Proceedings (OSTI)

This is Part 1 of a study of nonlinear effects on natural wind waves. Array measurements of pressure at the sea floor and middepth, collected 30 km offshore in 13-m depth, are compared to an existing theory for weakly nonlinear surface gravity ...

T. H. C. Herbers; R. T. Guza

1991-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "tidal energy wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

On Energy Flux and Group Velocity of Waves in Baroclinic Flows  

Science Conference Proceedings (OSTI)

A modified energy flux is defined by adding a nondivergent term that involves ? to the traditional energy flux. The resultant flux, when normalized by the total eddy energy, is exactly equal to the group velocity of Rossby waves on a ? plane with ...

Edmund K. M. Chang; Isidoro Orlanski

1994-12-01T23:59:59.000Z

462

Mapping and Assessment of the United States Ocean Wave Energy Resource  

SciTech Connect

This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration?¢????s (NOAA?¢????s) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. This approach is fully consistent with accepted global practice and includes the resource made available by the lateral transfer of wave energy along wave crests, which enables wave diffraction to substantially reestablish wave power densities within a few kilometers of a linear array, even for fixed terminator devices. The total available wave energy resource along the U.S. continental shelf edge, based on accumulating unit circle wave power densities, is estimated to be 2,640 TWh/yr, broken down as follows: 590 TWh/yr for the West Coast, 240 TWh/yr for the East Coast, 80 TWh/yr for the Gulf of Mexico, 1570 TWh/yr for Alaska, 130 TWh/yr for Hawaii, and 30 TWh/yr for Puerto Rico. The total recoverable wave energy resource, as constrained by an array capacity packing density of 15 megawatts per kilometer of coastline, with a 100-fold operating range between threshold and maximum operating conditions in terms of input wave power density available to such arrays, yields a total recoverable resource along the U.S. continental shelf edge of 1,170 TWh/yr, broken down as follows: 250 TWh/yr for the West Coast, 160 TWh/yr for the East Coast, 60 TWh/yr for the Gulf of Mexico, 620 TWh/yr for Alaska, 80 TWh/yr for Hawaii, and 20 TWh/yr for Puerto Rico.

Paul T. Jacobson; George Hagerman; George Scott

2011-12-01T23:59:59.000Z

463

9/18/09 2:43 PM'Big Wave' Theory Offers Alternative to Dark Energy // Current Page 1 of 11http://current.com/items/90718274_big-wave-theory-offers-alternative-to-dark-energy.htm  

E-Print Network (OSTI)

9/18/09 2:43 PM'Big Wave' Theory Offers Alternative to Dark Energy // Current Page 1 of 11http://current.com/items/90718274_big-wave-theory-offers-alternative-to-dark-energy.htm login | register |home tv shows schedule to Dark Energy // Current Page 2 of 11http://current.com/items/90718274_big-wave-theory-offers-alternative-to-dark-energy

Temple, Blake

464

An electron energy loss spectrometer designed for studies of electronic energy losses and spin waves in the large momentum regime  

Science Conference Proceedings (OSTI)

Based on 143 deg. electrostatic deflectors we have realized a new spectrometer for electron energy loss spectroscopy which is particularly suitable for studies on surface spin waves and other low energy electronic energy losses. Contrary to previous designs high resolution is maintained even for diffuse inelastic scattering due to a specific management of the angular aberrations in combination with an angle aperture. The performance of the instrument is demonstrated with high resolution energy loss spectra of surface spin waves on a cobalt film deposited on the Cu(100) surface.

Ibach, H. [Peter Gruenberg Institut PGI-3, Forschungszentrum Juelich, 52425 Juelich (Germany); Juelich Aachen Research Alliance - Fundamentals of Future Information Technologies (JARA-FIT), 52425 Juelich (Germany); Rajeswari, J.; Schneider, C. M. [Peter Gruenberg Institut PGI-6, Forschungszentrum Juelich, 52425 Juelich (Germany); Juelich Aachen Research Alliance - Fundamentals of Future Information Technologies (JARA-FIT), 52425 Juelich (Germany)

2011-12-15T23:59:59.000Z

465

Definition: Long-Wave Infrared | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Long-Wave Infrared Jump to: navigation, search Dictionary.png Long-Wave Infrared Long Wave Infrared (LWIR) refers to multi- and hyperspectral data collected in the 8 to 15 µm wavelength range. LWIR surveys are sometimes referred to as "thermal imaging" and can be used to identify relatively warm features such as hot springs, fumaroles, and snow melt. LWIR can also be used to map the distribution of certain minerals related to hydrothermal alterations.[2] View on Wikipedia Wikipedia Definition References ↑ Katherine Young,Timothy Reber,Kermit Witherbee. 2012. Hydrothermal Exploration Best Practices and Geothermal Knowledge Exchange on Openei. In: Proceedings of the Thirty-Seventh Workshop on Geothermal

466

Framework for Identifying Key Environmental Concerns in Marine Renewable Energy Projects- Appendices  

SciTech Connect

Marine wave and tidal energy technology could interact with marine resources in ways that are not well understood. As wave and tidal energy conversion projects are planned, tested, and deployed, a wide range of stakeholders will be engaged; these include developers, state and federal regulatory agencies, environmental groups, tribal governments, recreational and commercial fishermen, and local communities. Identifying stakeholders environmental concerns in the early stages of the industrys development will help developers address and minimize potential environmental effects. Identifying important concerns will also assist with streamlining siting and associated permitting processes, which are considered key hurdles by the industry in the U.S. today. In September 2008, RE Vision consulting, LLC was selected by the Department of Energy (DoE) to conduct a scenario-based evaluation of emerging hydrokinetic technologies. The purpose of this evaluation is to identify and characterize environmental impacts that are likely to occur, demonstrate a process for analyzing these impacts, identify the key environmental concerns for each scenario, identify areas of uncertainty, and describe studies that could address that uncertainty. This process is intended to provide an objective and transparent tool to assist in decision-making for siting and selection of technology for wave and tidal energy development. RE Vision worked with H. T. Harvey & Associates, to develop a framework for identifying key environmental concerns with marine renewable technology. This report describes the results of this study. This framework was applied to varying wave and tidal power conversion technologies, scales, and locations. The following wave and tidal energy scenarios were considered: ? 4 wave energy generation technologies ? 3 tidal energy generation technologies ? 3 sites: Humboldt coast, California (wave); Makapuu Point, Oahu, Hawaii (wave); and the Tacoma Narrows, Washington (tidal) ? 3 project sizes: pilot, small commercial, and large commercial The possible combinations total 24 wave technology scenarios and 9 tidal technology scenarios. We evaluated 3 of the 33 scenarios in detail: 1. A small commercial OPT Power Buoy project off the Humboldt County, California coast 2. A small commercial Pelamis Wave Power P-2 project off Makapuu Point, Oahu, Hawaii 3. A pilot MCT SeaGen tidal project, sited in the Tacoma Narrows, Washington This framework document used information available from permitting documents that were written to support actual wave or tidal energy projects, but the results obtained here should not be confused with those of the permitting documents1. The main difference between this framework document and permitting documents of currently proposed pilot projects is that this framework identifies key environmental concerns and describes the next steps in addressing those concerns; permitting documents must identify effects, find or declare thresholds of significance, evaluate the effects against the thresholds, and find mitigation measures that will minimize or avoid the effects so they can be considered less-than-significant. Two methodologies, 1) an environmental effects analysis and 2) Raptools, were developed and tested to identify potential environmental effects associated with wave or tidal energy conversion projects. For the environmental effects analysis, we developed a framework based on standard risk assessment techniques. The framework was applied to the three scenarios listed above. The environmental effects analysis addressed questions such as: ? What is the temporal and spatial exposure of a species at a site? ? What are the specific potential project effects on that species? ? What measures could minimize, mitigate, or eliminate negative effects? ? Are there potential effects of the project, or species response to the effect, that are highly uncertain and warrant additional study? The second methodology, Raptools, is a collaborative approach useful for evaluating multiple characteristi

Sharon Kramer; Mirko Previsic; Peter Nelson; Sheri Woo

2010-06-17T23:59:59.000Z

467

The Treatment of Discontinuities in Computing the Nonlinear Energy Transfer for Finite-Depth Gravity Wave Spectra  

Science Conference Proceedings (OSTI)

The calculation of nonlinear energy transfer between interacting waves is one of the most computationally demanding tasks in understanding the dynamics of the growth and transformation of wind-generated surface waves. For shallow water in ...

Richard M. Gorman

2003-01-01T23:59:59.000Z

468