Powered by Deep Web Technologies
Note: This page contains sample records for the topic "tidal energy project-ferc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Clarence Strait Tidal Energy Project, Tenax Energy Tropical Tidal...  

Open Energy Info (EERE)

Test Centre, Jump to: navigation, search 1 Retrieved from "http:en.openei.orgwindex.php?titleClarenceStraitTidalEnergyProject,TenaxEnergyTropicalTidalTestCentre,&o...

2

Tidal Energy Research  

SciTech Connect (OSTI)

This technical report contains results on the following topics: 1) Testing and analysis of sub-scale hydro-kinetic turbines in a flume, including the design and fabrication of the instrumented turbines. 2) Field measurements and analysis of the tidal energy resource and at a site in northern Puget Sound, that is being examined for turbine installation. 3) Conceptual design and performance analysis of hydro-kinetic turbines operating at high blockage ratio, for use for power generation and flow control in open channel flows.

Stelzenmuller, Nickolas [Univ of Washington; Aliseda, Alberto [Univ of Washington; Palodichuk, Michael [Univ of Washington; Polagye, Brian [Univ of Washington; Thomson, James [Univ of Washington; Chime, Arshiya [Univ of Washington; Malte, Philip [Univ of washington

2014-03-31T23:59:59.000Z

3

European Wave and Tidal Energy Conference  

Broader source: Energy.gov [DOE]

The European Wave and Tidal Energy Conference (EWTEC) series are international, technical and scientific conferences, focussed on ocean renewable energy and widely respected for their commitment to...

4

Tidal Energy Resource Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyThe Sun and Its EnergyMetalofAgreement forTidal Energy

5

Tidal Electric | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump JumpAl., 1978) |Thrall,Tibagi Energetica Jump to:Tidal

6

Clarence Strait Tidal Energy Project, Tenax Energy Tropical Tidal Test  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanic NationalElectric) JumpRupert,TacomaCivitasCentre,

7

Regulation of Tidal and Wave Energy Projects (Maine)  

Broader source: Energy.gov [DOE]

State regulation of tidal and wave energy projects is covered under the Maine Waterway Development and Conservation Act (MWDCA), and complements regulation by the Federal Energy Regulation...

8

Assessment of Energy Production Potential from Tidal Streams...  

Office of Environmental Management (EM)

technology. 1023527.pdf More Documents & Publications EA-1949: FERC Draft Environmental Assessment EA-1949: FERC Final Environmental Assessment Tidal Energy Resource Assessment...

9

Tocardo Tidal Energy Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective: Terminology andInformationTocardo Tidal

10

Tidal Energy Test Platform | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump JumpAl., 1978) |Thrall,Tibagi Energetica Jump to:TidalTest

11

Tidal Energy Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment7 th , 2007 AnthonyDepartment ofits

12

Hydra Tidal Energy Technology AS | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia: Energy ResourcesPark,is aHy9Hydesville,Hydra Tidal

13

Modeling In-stream Tidal Energy Extraction and Its Potential Environmental Impacts  

SciTech Connect (OSTI)

In recent years, there has been growing interest in harnessing in-stream tidal energy in response to concerns of increasing energy demand and to mitigate climate change impacts. While many studies have been conducted to assess and map tidal energy resources, efforts for quantifying the associated potential environmental impacts have been limited. This paper presents the development of a tidal turbine module within a three-dimensional unstructured-grid coastal ocean model and its application for assessing the potential environmental impacts associated with tidal energy extraction. The model is used to investigate in-stream tidal energy extraction and associated impacts on estuarine hydrodynamic and biological processes in a tidally dominant estuary. A series of numerical experiments with varying numbers and configurations of turbines installed in an idealized estuary were carried out to assess the changes in the hydrodynamics and biological processes due to tidal energy extraction. Model results indicated that a large number of turbines are required to extract the maximum tidal energy and cause significant reduction of the volume flux. Preliminary model results also indicate that extraction of tidal energy increases vertical mixing and decreases flushing rate in a stratified estuary. The tidal turbine model was applied to simulate tidal energy extraction in Puget Sound, a large fjord-like estuary in the Pacific Northwest coast.

Yang, Zhaoqing; Wang, Taiping; Copping, Andrea; Geerlofs, Simon H.

2014-09-30T23:59:59.000Z

14

Sandia National Laboratories: tidal energy converters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-activeNational SolartSSLPV materials (Si

15

Sandia National Laboratories: tidal energy resource assessment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-activeNational SolartSSLPV materials (Siresource assessment

16

MHK Projects/Cohansey River Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAK Technologies Jump to:BW2 Tidal <CETOCohansey River Tidal

17

Modeling the Effects of Tidal Energy Extraction on Estuarine Hydrodynamics in a Stratified Estuary  

SciTech Connect (OSTI)

A three-dimensional coastal ocean model with a tidal turbine module was used in this paper to study the effects of tidal energy extraction on temperature and salinity stratification and density driven two-layer estuarine circulation. Numerical experiments with various turbine array configurations were carried out to investigate the changes in tidally mean temperature, salinity and velocity profiles in an idealized stratified estuary that connects to coastal water through a narrow tidal channel. The model was driven by tides, river inflow and sea surface heat flux. To represent the realistic size of commercial tidal farms, model simulations were conducted based on a small percentage of the total number of turbines that would generate the maximum extractable energy in the system. Model results indicated that extraction of tidal energy will increase the vertical mixing and decrease the stratification in the estuary. Extraction of tidal energy has stronger impact on the tidally-averaged salinity, temperature and velocity in the surface layer than the bottom. Energy extraction also weakens the two-layer estuarine circulation, especially during neap tides when tidal mixing the weakest and energy extraction is the smallest. Model results also show that energy generation can be much more efficient with higher hub height with relatively small changes in stratification and two-layer estuarine circulation.

Yang, Zhaoqing; Wang, Taiping

2013-08-15T23:59:59.000Z

18

MHK Projects/Cape May Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAK Technologies Jump to:BW2 Tidal <CETO La ReunionCape

19

MHK Projects/Cuttyhunk Tidal Energy Plant | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAK Technologies Jump to:BW2 Tidal <CETOCohanseyHub <

20

MHK Projects/East Foreland Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAK Technologies Jump to:BW2 TidalMar Landing <DouglasForeland

Note: This page contains sample records for the topic "tidal energy project-ferc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

MHK Projects/Wiscasset Tidal Energy Plant | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IE < MHKInformation BretonMOWiscasset Tidal

22

Tidal Energy System for On-Shore Power Generation  

SciTech Connect (OSTI)

Addressing the urgent need to develop LCOE competitive renewable energy solutions for US energy security and to replace fossil-fuel generation with the associated benefits to environment impacts including a reduction in CO2 emissions, this Project focused on the advantages of using hydraulic energy transfer (HET) in large-scale Marine Hydrokinetic (MHK) systems for harvesting off-shore tidal energy in US waters. A recent DOE resource assessment, identifies water power resources have a potential to meet 15% of the US electric supply by 2030, with MHK technologies being a major component. The work covered a TRL-4 laboratory proof-in-concept demonstration plus modeling of a 15MW full scale system based on an approach patented by NASA-JPL, in which submerged high-ratio gearboxes and electrical generators in conventional MHK turbine systems are replaced by a submerged hydraulic radial pump coupled to on-shore hydraulic motors driving a generator. The advantages are; first, the mean-time-between-failure (MTBF), or maintenance, can be extended from approximately 1 to 5 years and second, the range of tidal flow speeds which can be efficiently harvested can be extended beyond that of a conventional submerged generator. The approach uses scalable, commercial-off-the-shelf (COTS) components, facilitating scale-up and commercialization. All the objectives of the Project have been successfully met (1) A TRL4 system was designed, constructed and tested. It simulates a tidal energy turbine, with a 2-m diameter blade in up to a 2.9 m/sec flow. The system consists of a drive motor assembly providing appropriate torque and RPM, attached to a radial piston pump. The pump circulates pressurized, environmentally-friendly, HEES hydraulic fluid in a closed loop to an axial piston motor which drives an electrical generator, with a resistive load. The performance of the components, subsystems and system were evaluated during simulated tidal cycles. The pump is contained in a tank for immersion testing. The COTS pump and motor were selected to scale to MW size and were oversized for the TRL-4 demonstration, operating at only 1-6% of rated values. Nevertheless, in for 2-18 kW drive power, in agreement with manufacturer performance data, we measured efficiencies of 85-90% and 75-80% for the pump and motor, respectively. These efficiencies being 95-96% at higher operating powers. (2) Two follow-on paths were identified. In both cases conventional turbine systems can be modified, replacing existing gear box and generator with a hydraulic pump and on-shore components. On a conventional path, a TRL5/6 15kW turbine system can be engineered and tested on a barge at an existing site in Maine. Alternatively, on an accelerated path, a TRL-8 100kW system can be engineered and tested by modifying a team member's existing MHK turbines, with barge and grid-connected test sites in-place. On both paths the work can be expedited and cost effective by reusing TRL-4 components, modifying existing turbines and using established test sites. (3) Sizing, performance modeling and costing of a scaled 15MW system, suitable for operation in Maine's Western Passage, was performed. COTS components are identified and the performance projections are favorable. The estimated LCOE is comparable to wind generation with peak production at high demand times. (4) We determined that a similar HET approach can be extended to on-shore and off-shore wind turbine systems. These are very large energy resources which can be addressed in parallel for even great National benefit. (5) Preliminary results on this project were presented at two International Conferences on renewable energy in 2012, providing a timely dissemination of information. We have thus demonstrated a proof-in-concept of a novel, tidal HET system that eliminates all submerged gears and electronics to improve reliability. Hydraulic pump efficiencies of 90% have been confirmed in simulated tidal flows between 1 and 3 m/s, and at only 1-6% of rated power. Total system efficiencies have also been modeled, up to MW-scale, for ti

Bruce, Allan J

2012-06-26T23:59:59.000Z

23

All Eyes on Eastport: Tidal Energy Project Brings Change, Opportunity...  

Office of Environmental Management (EM)

Ocean Renewable Power Company will unveil its first commercial-scale tidal turbine before it is deployed underwater to generate power. The pilot project -- supported by...

24

Modeling the Energy Output from an In-Stream Tidal Turbine Farm  

E-Print Network [OSTI]

Abstract—This paper is based on a recent paper presented in the 2007 IEEE SMC conference by the same authors [1], discussing an approach to predicting energy output from an instream tidal turbine farm. An in-stream tidal turbine is a device for harnessing energy from tidal currents in channels, and functions in a manner similar to a wind turbine. A group of such turbines distributed in a site is called an in-stream tidal turbine farm which is similar to a wind farm. Approaches to estimating energy output from wind farms cannot be fully transferred to study tidal farms, however, because of the complexities involved in modeling turbines underwater. In this paper, we intend to develop an approach for predicting energy output of an in-stream tidal turbine farm. The mathematical formulation and basic procedure for predicting power output of a stand-alone turbine 1 is presented, which includes several highly nonlinear terms. In order to facilitate the computation and utilize the formulation for predicting power output from a turbine farm, a simplified relationship between turbine distribution and turbine farm energy output is derived. A case study is then conducted by applying the numerical procedure to predict the energy output of the farms. Various scenarios are implemented according to the environmental conditions in Seymour Narrows, British Columbia, Canada. Additionally, energy cost results are presented as an extension. Index Terms—renewable energy, in-stream turbine, tidal current, tidal power, vertical axis turbine, farm system modeling, in-stream tidal turbine farm 1 A stand-alone turbine refers to a turbine around which there is no other turbine that might potentially affect the performance of this turbine.

Ye Li; Barbara J. Lence; Sander M. Calisal

25

A Modeling Study of the Potential Water Quality Impacts from In-Stream Tidal Energy Extraction  

SciTech Connect (OSTI)

To assess the effects of tidal energy extraction on water quality in a simplified estuarine system, which consists of a tidal bay connected to the coastal ocean through a narrow channel where energy is extracted using in-stream tidal turbines, a three-dimensional coastal ocean model with built-in tidal turbine and water quality modules was applied. The effects of tidal energy extraction on water quality were examined for two energy extraction scenarios as compared with the baseline condition. It was found, in general, that the environmental impacts associated with energy extraction depend highly on the amount of power extracted from the system. Model results indicate that, as a result of energy extraction from the channel, the competition between decreased flushing rates in the bay and increased vertical mixing in the channel directly affects water quality responses in the bay. The decreased flushing rates tend to cause a stronger but negative impact on water quality. On the other hand, the increase of vertical mixing could lead to higher bottom dissolved oxygen at times. As the first modeling effort directly aimed at examining the impacts of tidal energy extraction on estuarine water quality, this study demonstrates that numerical models can serve as a very useful tool for this purpose. However, more careful efforts are warranted to address system-specific environmental issues in real-world, complex estuarine systems.

Wang, Taiping; Yang, Zhaoqing; Copping, Andrea E.

2013-11-09T23:59:59.000Z

26

MHK Projects/Piscataqua Tidal Hydrokinetic Energy Project | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska:LuzClick hereInformationPaimpol

27

MHK Projects/Seaflow Tidal Energy System | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska:LuzClickKembla < MHKSEAREV Pays

28

MHK Projects/Cook Inlet Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska:Luz IILynnM Setek8512 Project City Nikiski,

29

MHK Projects/Rockaway Tidal Energy Plant | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska:LuzClickKembla < MHK ProjectsRockaway

30

European Wave and Tidal Energy Conference | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review:Department of Energy Environmental RestorationErik HyrkasMarketsSeeking

31

Modeling Tidal Stream Energy Extraction and its Effects on Transport Processes in a Tidal Channel and Bay System Using a Three-dimensional Coastal Ocean Model  

SciTech Connect (OSTI)

This paper presents a numerical modeling study for simulating in-stream tidal energy extraction and assessing its effects on the hydrodynamics and transport processes in a tidal channel and bay system connecting to coastal ocean. A marine and hydrokinetic (MHK) module was implemented in a three-dimensional (3-D) coastal ocean model using the momentum sink approach. The MHK model was validated with the analytical solutions for tidal channels under one-dimensional (1-D) conditions. Model simulations were further carried out to compare the momentum sink approach with the quadratic bottom friction approach. The effects of 3-D simulations on the vertical velocity profile, maximum extractable energy, and volume flux reduction across the channel were investigated through a series of numerical experiments. 3-D model results indicate that the volume flux reduction at the maximum extractable power predicted by the 1-D analytical model or two-dimensional (2-D) depth-averaged numerical model may be overestimated. Maximum extractable energy strongly depends on the turbine hub height in the water column, and which reaches a maximum when turbine hub height is located at mid-water depth. Far-field effects of tidal turbines on the flushing time of the tidal bay were also investigated. Model results demonstrate that tidal energy extraction has a greater effect on the flushing time than volume flux reduction, which could negatively affect the biogeochemical processes in estuarine and coastal waters that support primary productivity and higher forms of marine life.

Yang, Zhaoqing; Wang, Taiping; Copping, Andrea E.

2013-02-28T23:59:59.000Z

32

PRELIMINARY ASSESSMENT OF ENERGY ISSUES  

E-Print Network [OSTI]

PRELIMINARY ASSESSMENT OF ENERGY ISSUES ASSOCIATED WITH THE KLAMATH HYDROELECTRIC PROJECT Kevin OF ENERGY ISSUES ASSOCIATED WITH THE KLAMATH HYDROELECTRIC PROJECT Summary As requested by the California Hydroelectric Project (FERC No. 2082). Staff's assessment indicates that, from the perspective of potential

33

Modeling of In-stream Tidal Energy Development and its Potential Effects in Tacoma Narrows, Washington, USA  

SciTech Connect (OSTI)

Understanding and providing proactive information on the potential for tidal energy projects to cause changes to the physical system and to key water quality constituents in tidal waters is a necessary and cost-effective means to avoid costly regulatory involvement and late stage surprises in the permitting process. This paper presents a modeling study for evaluating the tidal energy extraction and its potential impacts on the marine environment in a real world site - Tacoma Narrows of Puget Sound, Washington State, USA. An unstructured-grid coastal ocean model, fitted with a module that simulates tidal energy devices, was applied to simulate the tidal energy extracted by different turbine array configurations and the potential effects of the extraction at local and system-wide scales in Tacoma Narrows and South Puget Sound. Model results demonstrated the advantage of an unstructured-grid model for simulating the far-field effects of tidal energy extraction in a large model domain, as well as assessing the near-field effect using a fine grid resolution near the tidal turbines. The outcome shows that a realistic near-term deployment scenario extracts a very small fraction of the total tidal energy in the system and that system wide environmental effects are not likely; however, near-field effects on the flow field and bed shear stress in the area of tidal turbine farm are more likely. Model results also indicate that from a practical standpoint, hydrodynamic or water quality effects are not likely to be the limiting factor for development of large commercial-scale tidal farms. Results indicate that very high numbers of turbines are required to significantly alter the tidal system; limitations on marine space or other environmental concerns are likely to be reached before reaching these deployment levels. These findings show that important information obtained from numerical modeling can be used to inform regulatory and policy processes for tidal energy development.

Yang, Zhaoqing; Wang, Taiping; Copping, Andrea E.; Geerlofs, Simon H.

2014-10-01T23:59:59.000Z

34

Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska FINAL REPORT  

SciTech Connect (OSTI)

The Aleutian Pribilof Islands Association was awarded a U.S. Department of Energy Tribal Energy Program grant (DE-EE0005624) for the Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska (Project). The goal of the Project was to perform a feasibility study to determine if a tidal energy project would be a viable means to generate electricity and heat to meet long-term fossil fuel use reduction goals, specifically to produce at least 30% of the electrical and heating needs of the tribally-owned buildings in False Pass. The Project Team included the Aleut Region organizations comprised of the Aleutian Pribilof Island Association (APIA), and Aleutian Pribilof Island Community Development Association (APICDA); the University of Alaska Anchorage, ORPC Alaska a wholly-owned subsidiary of Ocean Renewable Power Company (ORPC), City of False Pass, Benthic GeoScience, and the National Renewable Energy Laboratory (NREL). The following Project objectives were completed: collected existing bathymetric, tidal, and ocean current data to develop a basic model of current circulation at False Pass, measured current velocities at two sites for a full lunar cycle to establish the viability of the current resource, collected data on transmission infrastructure, electrical loads, and electrical generation at False Pass, performed economic analysis based on current costs of energy and amount of energy anticipated from and costs associated with the tidal energy project conceptual design and scoped environmental issues. Utilizing circulation modeling, the Project Team identified two target sites with strong potential for robust tidal energy resources in Isanotski Strait and another nearer the City of False Pass. In addition, the Project Team completed a survey of the electrical infrastructure, which identified likely sites of interconnection and clarified required transmission distances from the tidal energy resources. Based on resource and electrical data, the Project Team developed a conceptual tidal energy project design utilizing ORPC’s TidGen® Power System. While the Project Team has not committed to ORPC technology for future development of a False Pass project, this conceptual design was critical to informing the Project’s economic analysis. The results showed that power from a tidal energy project could be provided to the City of False at a rate at or below the cost of diesel generated electricity and sold to commercial customers at rates competitive with current market rates, providing a stable, flat priced, environmentally sound alternative to the diesel generation currently utilized for energy in the community. The Project Team concluded that with additional grants and private investment a tidal energy project at False Pass is well-positioned to be the first tidal energy project to be developed in Alaska, and the first tidal energy project to be interconnected to an isolated micro grid in the world. A viable project will be a model for similar projects in coastal Alaska.

Wright, Bruce Albert [Aleutian Pribilof Islands Association] [Aleutian Pribilof Islands Association

2014-05-07T23:59:59.000Z

35

Puget Sound Tidal Energy In-Water Testing and Development Project Final Technical Report  

SciTech Connect (OSTI)

Tidal energy represents potential for the generation of renewable, emission free, environmentally benign, and cost effective energy from tidal flows. A successful tidal energy demonstration project in Puget Sound, Washington may enable significant commercial development resulting in important benefits for the northwest region and the nation. This project promoted the United States Department of Energy�s Wind and Hydropower Technologies Program�s goals of advancing the commercial viability, cost-competitiveness, and market acceptance of marine hydrokinetic systems. The objective of the Puget Sound Tidal Energy Demonstration Project is to conduct in-water testing and evaluation of tidal energy technology as a first step toward potential construction of a commercial-scale tidal energy power plant. The specific goal of the project phase covered by this award was to conduct all activities necessary to complete engineering design and obtain construction approvals for a pilot demonstration plant in the Admiralty Inlet region of the Puget Sound. Public Utility District No. 1 of Snohomish County (The District) accomplished the objectives of this award through four tasks: Detailed Admiralty Inlet Site Studies, Plant Design and Construction Planning, Environmental and Regulatory Activities, and Management and Reporting. Pre-Installation studies completed under this award provided invaluable data used for site selection, environmental evaluation and permitting, plant design, and construction planning. However, these data gathering efforts are not only important to the Admiralty Inlet pilot project. Lessons learned, in particular environmental data gathering methods, can be applied to future tidal energy projects in the United States and other parts of the world. The District collaborated extensively with project stakeholders to complete the tasks for this award. This included Federal, State, and local government agencies, tribal governments, environmental groups, and others. All required permit and license applications were completed and submitted under this award, including a Final License Application for a pilot hydrokinetic license from the Federal Energy Regulatory Commission. The tasks described above have brought the project through all necessary requirements to construct a tidal pilot project in Admiralty Inlet with the exception of final permit and license approvals, and the selection of a general contractor to perform project construction.

Craig W. Collar

2012-11-16T23:59:59.000Z

36

MHK Projects/BW2 Tidal | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAK Technologies Jump to:BW2 Tidal < MHK Projects Jump to:

37

MHK Projects/Deception Pass Tidal Energy Hydroelectric Project | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAK Technologies Jump to:BW2 Tidal

38

MHK Projects/Dorchester Maurice Tidal | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAK Technologies Jump to:BW2 TidalMar Landing <

39

MHK Projects/Gastineau Channel Tidal | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAK Technologies Jump to:BW2 TidalMarFalmouthVinalhaven ME

40

MHK Technologies/Deep Gen Tidal Turbines | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IE <AirWEC < MHK<Tidal Turbines < MHK

Note: This page contains sample records for the topic "tidal energy project-ferc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

MHK Technologies/KESC Tidal Generator | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IE <AirWECHelix <IWAVE < MHKKESC Tidal

42

MHK Technologies/Rotech Tidal Turbine RTT | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IEOWC < MHKPulse-Stream 120 < MHKRotech Tidal

43

MHK Technologies/Tidal Barrage | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IEOWC <SurgeWEC <Generator.jpgTheTidal

44

MHK Technologies/Tidal Delay | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IEOWC <SurgeWEC <Generator.jpgTheTidalDelay

45

MHK Technologies/Tidal Hydraulic Generators THG | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IEOWC <SurgeWEC <Generator.jpgTheTidalDelayTHG

46

MHK Projects/Indian River Tidal Hydrokinetic Energy Project | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska:LuzClick here Current /TidalITRI WEC

47

Acoustic Monitoring of Beluga Whale Interactions with Cook Inlet Tidal Energy Project  

SciTech Connect (OSTI)

Cook Inlet, Alaska is home to some of the greatest tidal energy resources in the U.S., as well as an endangered population of beluga whales (Delphinapterus leucas). Successfully permitting and operating a tidal power project in Cook Inlet requires a biological assessment of the potential and realized effects of the physical presence and sound footprint of tidal turbines on the distribution, relative abundance, and behavior of Cook Inlet beluga whales. ORPC Alaska, working with the Project Team—LGL Alaska Research Associates, University of Alaska Anchorage, TerraSond, and Greeneridge Science—undertook the following U.S. Department of Energy (DOE) study to characterize beluga whales in Cook Inlet – Acoustic Monitoring of Beluga Whale Interactions with the Cook Inlet Tidal Energy Project (Project). ORPC Alaska, LLC, is a wholly-owned subsidiary of Ocean Renewable Power Company, LLC, (collectively, ORPC). ORPC is a global leader in the development of hydrokinetic power systems and eco-conscious projects that harness the power of ocean and river currents to create clean, predictable renewable energy. ORPC is developing a tidal energy demonstration project in Cook Inlet at East Foreland where ORPC has a Federal Energy Regulatory Commission (FERC) preliminary permit (P-13821). The Project collected baseline data to characterize pre-deployment patterns of marine mammal distribution, relative abundance, and behavior in ORPC’s proposed deployment area at East Foreland. ORPC also completed work near Fire Island where ORPC held a FERC preliminary permit (P-12679) until March 6, 2013. Passive hydroacoustic devices (previously utilized with bowhead whales in the Beaufort Sea) were adapted for study of beluga whales to determine the relative abundance of beluga whale vocalizations within the proposed deployment areas. Hydroacoustic data collected during the Project were used to characterize the ambient acoustic environment of the project site pre-deployment to inform the FERC pilot project process. The Project compared results obtained from this method to results obtained from other passive hydrophone technologies and to visual observation techniques performed simultaneously. This Final Report makes recommendations on the best practice for future data collection, for ORPC’s work in Cook Inlet specifically, and for tidal power projects in general. This Project developed a marine mammal study design and compared technologies for hydroacoustic and visual data collection with potential for broad application to future tidal and hydrokinetic projects in other geographic areas. The data collected for this Project will support the environmental assessment of future Cook Inlet tidal energy projects, including ORPC’s East Foreland Tidal Energy Project and any tidal energy developments at Fire Island. The Project’s rigorous assessment of technology and methodologies will be invaluable to the hydrokinetic industry for developing projects in an environmentally sound and sustainable way for areas with high marine mammal activity or endangered populations. By combining several different sampling methods this Project will also contribute to the future preparation of a comprehensive biological assessment of ORPC’s projects in Cook Inlet.

Worthington, Monty [Project Director - AK] [Project Director - AK

2014-02-05T23:59:59.000Z

48

Overview of Ocean Wave and Tidal Energy Lingchuan Mei  

E-Print Network [OSTI]

resources such as solar and wind energy, waves and tides have the advantages of having much higher power stronger energy conversion devices lower in capital cost than for other renewable technologies and creating more job opportunities. For these major benefits the marine energy can provide us with, a great

Lavaei, Javad

49

Environmental Effects of Sediment Transport Alteration and Impacts on Protected Species: Edgartown Tidal Energy Project  

SciTech Connect (OSTI)

The Islands of Martha�¢����s Vineyard and Nantucket are separated from the Massachusetts mainland by Vineyard and Nantucket Sounds; water between the two islands flows through Muskeget Channel. The towns of Edgartown (on Martha�¢����s Vineyard) and Nantucket recognize that they are vulnerable to power supply interruptions due to their position at the end of the power grid, and due to sea level rise and other consequences of climate change. The tidal energy flowing through Muskeget Channel has been identified by the Electric Power Research Institute as the strongest tidal resource in Massachusetts waters. The Town of Edgartown proposes to develop an initial 5 MW (nameplate) tidal energy project in Muskeget Channel. The project will consist of 14 tidal turbines with 13 providing electricity to Edgartown and one operated by the University of Massachusetts at Dartmouth for research and development. Each turbine will be 90 feet long and 50 feet high. The electricity will be brought to shore by a submarine cable buried 8 feet below the seabed surface which will landfall in Edgartown either on Chappaquiddack or at Katama. Muskeget Channel is located between Martha�¢����s Vineyard and Nantucket. Its depth ranges between 40 and 160 feet in the deepest portion. It has strong currents where water is transferred between Nantucket Sound and the Atlantic Ocean continental shelf to the south. This makes it a treacherous passage for navigation. Current users of the channel are commercial and recreational fishing, and cruising boats. The US Coast Guard has indicated that the largest vessel passing through the channel is a commercial scallop dragger with a draft of about 10 feet. The tidal resource in the channel has been measured by the University of Massachusetts-Dartmouth and the peak velocity flow is approximately 5 knots. The technology proposed is the helical Gorlov-type turbine positioned with a horizontal axis that is positively buoyant in the water column and held down by anchors. This is the same technology proposed by Ocean Renewable Power Company in the Western Passage and Cobscook Bay near Eastport Maine. The blades rotate in two directions capturing the tides energy both during flood and ebb tides. The turbines will be anchored to the bottom and suspended in the water column. Initial depth of the turbines is expected to be about 25 feet below the surface to avoid impacting navigation while also capturing the strongest currents. The Town of Edgartown was initially granted a Preliminary Permit by the Federal Energy Regulatory Commission (FERC) on March 1, 2008, and has recently received a second permit valid through August 2014. The Preliminary Permit gives Edgartown the exclusive right to apply for a power generation license for power generated from the hydrokinetic energy in the water flowing in this area. Edgartown filed a Draft Pilot License Application with FERC on February 1, 2010 and an Expanded Environmental Notification Form with the Massachusetts Environmental Policy Act (MEPA) Office at the same time. It expects to file a Final License Application in late 2013. Harris Miller Miller & Hanson (HMMH) of Burlington Massachusetts is acting as the Project Manager for the Town of Edgartown and collaborating with other partners of the project including the University of Massachusetts - Dartmouth's Marine Renewable Energy Center and the Massachusetts Clean Energy Center. HMMH was awarded a grant under the Department of Energy's Advanced Water Program to conduct marine science and hydrokinetic site-specific environmental studies for projects actively seeking a FERC License. HMMH, on behalf of the Town, is managing this comprehensive study of the marine environment in Muskeget Channel and potential impacts of the tidal project on indicator species and habitats. The University of Massachusetts School of Marine Science and Technology (SMAST) conducted oceanographic studies of tidal currents, tide level, benthic habit

Barrett, Stephen B.; Schlezinger, David, Ph.D; Cowles, Geoff, Ph.D; Hughes, Patricia; Samimy; Roland, I.; and Terray, E, Ph.D.

2012-12-29T23:59:59.000Z

50

STATE OF CALIFORNIA THE RESOURCES AGENCY ARNOLD SCHWARZENEGGER, Governor CALIFORNIA ENERGY COMMISSION  

E-Print Network [OSTI]

Via E-Filing RE: Klamath Hydroelectric Project (FERC Project No. 2082). California Energy Commission of Relicensing and Decommissioning Options for the Klamath Basin Hydroelectric Project1 (Klamath Consultant Economic Modeling of Relicensing and Decommissioning Options for the Klamath Basin Hydroelectric Project

51

MHK Projects/Treat Island Tidal | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska:LuzClickKembla < MHKSEAREVMessinaTreat

52

Sandia National Laboratories: Tidal Energy Resource Assessment in the East  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for USMaterials ProgramProtected: Tech

53

Hydropower, Wave and Tidal Technologies - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLCBasics Hydropower Basics ContentHydropower, Wave

54

First Commercial, Grid-Connected, Hydrokinetic Tidal Energy Project in  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticles News(SC) CCIScatteringFacilitiesU.S. DOEFieldNorth

55

Severn Tidal Power Group STpg | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to: navigation, search| Open EnergySermatecMile, Ohio:STpg Jump to:

56

MHK Projects/Paimpol Brehat tidal farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska:LuzClick hereInformationPaimpol Brehat

57

Hydropower, Wave and Tidal Technologies Available for Licensing - Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area.Portal SolarAboutSeparationsRelevantHydropower

58

Sandia National Laboratories: Roosevelt Island Tidal Energy site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik SpoerkeSolarCybernetics: DynamicCybernetics: Weigh &

59

Category:Earth Tidal Analysis | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacilityCascade SierraStatus Statuspage? ForEZFeed Policies

60

Tidal inlet processes and deposits along a low energy coastline: easter Barataria Bight, Louisiana  

SciTech Connect (OSTI)

Historical, seismic and vibracore data were used to determine the geologic framework of sand deposits along the predominantly muddy coastline of eastern Barataria Bight, Louisiana. Three inlet types with distinct sand body geometries and morphologies were identified and are found 1) at flanking barrier island systems spread laterally across the front of interdistributary bays; 2) in old distributary channels; 3) at overwash breaches; or 4) combination of these. Barataria Bight, a sheltered barrier island shoreline embayment with limited sand supply, minimal tidal range (36 cm) and low wave energies (30 cm) can be used to show examples of each inlet type. Barataria Pass and Quatre Bayou Pass are inlets located in old distributary channels. However, Barataria Pass has also been affected by construction between barrier islands. Pass Ronquille is located where the coastline has transgressed a low area in the delta plain. This breach is situated in a hydraulically efficient avenue between the Gulf and Bay Long behind it. Pass Abel is a combination of a low-profile barrier breach and the reoccupation of an old distributary channel. Shelf and shoreline sands are reworked from abandoned deltaic distributaries and headlands. Inner shelf sands are concentrated in thick (10 m) shore-normal relict distributary channels with fine grained cross-bedded and ripple laminated sand overlain by burrowed shelf muds. Shoreface sand deposits occur as 2-3 m thick, fine-grained, coarsening upward and burrowed ebb-tidal delta sequences and shore-parallel relict tidal inlet channels filled through lateral accretion.

Moslow, T.F.; Levin, D.R.

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "tidal energy project-ferc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine  

Broader source: Energy.gov [DOE]

Draft Environmental AssessmentThis EA evaluates the environmental impacts of a project that would use the tidal currents of Cobscook Bay to generate electricity via cross-flow Kinetic System turbine generator units (TGU) mounted on the seafloor. The TGUs would capture energy from the flow in both ebb and flood directions.

62

MHK Projects/Cape Cod Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAK Technologies Jump to:BW2 Tidal <CETO La Reunion

63

MHK Projects/Cape Islands Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAK Technologies Jump to:BW2 Tidal <CETO La ReunionCape Islands

64

MHK Projects/Central Cook Inlet Alaska Tidal Energy Project | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAK Technologies Jump to:BW2 Tidal <CETO LaCat Island

65

MHK Projects/Central Cook Inlet Tidal Energy Project | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAK Technologies Jump to:BW2 Tidal <CETO LaCat

66

MHK Projects/Edgar Town Nantucket Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAK Technologies Jump to:BW2 TidalMar Landing

67

MHK Projects/Fishers Island Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAK Technologies Jump to:BW2 TidalMarFalmouth < MHKFigueira

68

Field Measurements at River and Tidal Current Sites for Hydrokinetic Energy Development: Best Practices Manual  

SciTech Connect (OSTI)

In this report, existing data collection techniques and protocols for characterizing open channel flows are reviewed and refined to further address the needs of the MHK industry. The report provides an overview of the hydrodynamics of river and tidal channels, and the working principles of modern acoustic instrumentation, including best practices in remote sensing methods that can be applied to hydrokinetic energy site characterization. Emphasis is placed upon acoustic Doppler velocimeter (ADV) and acoustic-Doppler current profiler (ADCP) instruments, as these represent the most practical and economical tools for use in the MHK industry. Incorporating the best practices as found in the literature, including the parameters to be measured, the instruments to be deployed, the instrument deployment strategy, and data post-processing techniques. The data collected from this procedure aims to inform the hydro-mechanical design of MHK systems with respect to energy generation and structural loading, as well as provide reference hydrodynamics for environmental impact studies. The standard metrics and protocols defined herein can be utilized to guide field experiments with MHK systems.

Neary, Vincent S [ORNL; Gunawan, Budi [Oak Ridge National Laboratory (ORNL)

2011-09-01T23:59:59.000Z

69

Effects of Tidal Turbine Noise on Fish Hearing and Tissues - Draft Final Report - Environmental Effects of Marine and Hydrokinetic Energy  

SciTech Connect (OSTI)

Snohomish Public Utility District No.1 plans to deploy two 6 meter OpenHydro tidal turbines in Admiralty Inlet in Puget Sound, under a FERC pilot permitting process. Regulators and stakeholders have raised questions about the potential effect of noise from the turbines on marine life. Noise in the aquatic environment is known to be a stressor to many types of aquatic life, including marine mammals, fish and birds. Marine mammals and birds are exceptionally difficult to work with for technical and regulatory reasons. Fish have been used as surrogates for other aquatic organisms as they have similar auditory structures. This project was funded under the FY09 Funding Opportunity Announcement (FOA) to Snohomish PUD, in partnership with the University of Washington - Northwest National Marine Renewable Energy Center, the Sea Mammal Research Unit, and Pacific Northwest National Laboratory. The results of this study will inform the larger research project outcomes. Proposed tidal turbine deployments in coastal waters are likely to propagate noise into nearby waters, potentially causing stress to native organisms. For this set of experiments, juvenile Chinook salmon (Oncorhynchus tshawytscha) were used as the experimental model. Plans exist for prototype tidal turbines to be deployed into their habitat. Noise is known to affect fish in many ways, such as causing a threshold shift in auditory sensitivity or tissue damage. The characteristics of noise, its spectra and level, are important factors that influence the potential for the noise to injure fish. For example, the frequency range of the tidal turbine noise includes the audiogram (frequency range of hearing) of most fish. This study was performed during FY 2011 to determine if noise generated by a 6-m diameter OpenHydro turbine might affect juvenile Chinook salmon hearing or cause barotrauma. Naturally spawning stocks of Chinook salmon that utilize Puget Sound are listed as threatened (http://www.nwr.noaa.gov/ESA-Salmon-Listings/Salmon-Populations/Chinook/CKPUG.cfm); the fish used in this experiment were hatchery raised and their populations are not in danger of depletion. After they were exposed to simulated tidal turbine noise, the hearing of juvenile Chinook salmon was measured and necropsies performed to check for tissue damage. Experimental groups were (1) noise exposed, (2) control (the same handling as treatment fish but without exposure to tidal turbine noise), and (3) baseline (never handled). Experimental results indicate that non-lethal, low levels of tissue damage may have occurred but that there were no effects of noise exposure on the auditory systems of the test fish.

Halvorsen, Michele B.; Carlson, Thomas J.; Copping, Andrea E.

2011-09-30T23:59:59.000Z

70

Energy Department Invests $16 Million to Harness Wave and Tidal Energy |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusiness Competition |StorageAbengoaEnergyFunding

71

DOE Science Showcase - Tidal Energy | OSTI, US Dept of Energy, Office of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOffice of Scientific andEnergy,of Scientific

72

MHK Projects/Roosevelt Island Tidal Energy RITE | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska:LuzClickKembla < MHK

73

MHK Projects/Tidal Energy Device Evaluation Center TIDEC | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska:LuzClickKembla < MHKSEAREVMessina

74

MHK Technologies/Tidal Defense and Energy System TIDES | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point,ECO Auger < MHK TechnologiesMonofloat

75

MHK Projects/Clarence Strait Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska:Luz IILynnM Setek85 <Convent,Strait

76

Maine Deploys First U.S. Commercial, Grid-Connected Tidal Energy Project |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJared Temanson -of EnergyEqualA newMail

77

Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJared Temanson -of EnergyEqualA newMailDepartment of

78

The Cascade of Tidal Energy from Low to High Modes on a Continental Slope SAMUEL M. KELLY* AND JONATHAN D. NASH  

E-Print Network [OSTI]

The Cascade of Tidal Energy from Low to High Modes on a Continental Slope SAMUEL M. KELLY. Kelly, University of Western Australia, M015 SESE, 35 Stirling Hwy., Crawley, WA 6009, Australia. E-mail: samuel.kelly@uwa.edu.au JULY 2012 K E L L Y E T A L . 1217 DOI: 10.1175/JPO-D-11-0231.1 Ă? 2012 American

79

All Eyes on Eastport: Tidal Energy Project Brings Change, Opportunity to  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2 (April 2012) 1 Documentation and Approval ofAll Active DOE

80

MOWII Webinar: OCGen Prototype Testing: Evaluating Buoyancy Pod/Tension Leg Platforms for Tidal Energy Development  

Broader source: Energy.gov [DOE]

Ocean Renewable Power Company (ORPC) will present the results of the company's design, permitting, and testing of a mooring system for ocean energy devices in partnership with the U.S. Department...

Note: This page contains sample records for the topic "tidal energy project-ferc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

1 | September 2013 | des courantsWave energyTidal turbines  

E-Print Network [OSTI]

performance and the ability to maintain this performance through the lifetime of the power plant, at a high Symposium Honolulu ­ Hawaï sept 2013 Floating offshore wind Ocean thermal energy conversion DCNS - Ocean of the adopted technical solutions using both numerical simulations and representative trials. From their adpoted

82

All Eyes on Eastport: Tidal Energy Project Brings Change, Opportunity to  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEF HISTORYAgencyLocal Community | Department of

83

Marine & Hydrokinetic Technology Readiness Initiative TIDAL ENERGY SYSTEM FOR ON-SHORE POWER GENERATION  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite--FORRemarksHEATINGI _

84

New Interactive Map Reveals U.S. Tidal Energy Resources | Department of  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32DepartmentWells | Department ofEnergy New

85

Assessment of Energy Production Potential from Tidal Streams in the United States  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchTheMarketing, Inc. | Department TrainingAugust 13, 2014 AssessmentAssessment

86

Tidal heating and tidal evolution in the solar system  

E-Print Network [OSTI]

In this thesis, we examine the effects of tidal dissipation on solid bodies in application and in theory. First, we study the effects of tidal heating and tidal evolution in the Saturnian satellite system. We constrain the ...

Meyer, Jennifer Ann

2011-01-01T23:59:59.000Z

87

Tidal Wetlands Regulations (Connecticut)  

Broader source: Energy.gov [DOE]

Most activities occurring in or near tidal wetlands are regulated, and this section contains information on such activities and required permit applications for proposed activities. Applications...

88

Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump JumpAl., 1978) |Thrall,Tibagi Energetica Jump

89

Chaos and Tidal Capture  

E-Print Network [OSTI]

We review the tidal capture mechanism for binary formation, an important process in globular cluster cores and perhaps open cluster cores. Tidal capture binaries may be the precursors for some of the low-mass X-ray binaries observed in abundance in globular clusters. They may also play an important role in globular cluster dynamics. We summarize the chaos model for tidal interaction (Mardling 1995, ApJ, 450, 722, 732), and discuss how this affects our understanding of the circularization process which follows capture.

Rosemary A. Mardling

1995-12-07T23:59:59.000Z

90

Area Solar energy production BACKGROUND -All renewable energies, except for geothermal and tidal, derive their energy from the sun. By harnessing the power of  

E-Print Network [OSTI]

Area Solar energy production ­ BACKGROUND - All renewable energies. By harnessing the power of the sun, a solar solution can be a zero emissions energy. · Solar energy provides us with a source that moves us more toward energy

Keinan, Alon

91

Hydrodynamic analysis of a vertical axis tidal current turbine   

E-Print Network [OSTI]

Tidal currents can be used as a predictable source of sustainable energy, and have the potential to make a useful contribution to the energy needs of the UK and other countries with such a resource. One of the technologies ...

Gretton, Gareth I.

2009-01-01T23:59:59.000Z

92

Environmental impact assessment and process simulation of the tidal current energy resource in the Strait of Messina   

E-Print Network [OSTI]

Interest in exploring renewable energy resources has increased globally, especially with recent worldwide intentions to maintain the global climate. Looking at the oceans as a vast sustainable clean energy resource to ...

El-Geziry, Tarek Mohamed Ahmed

2010-01-01T23:59:59.000Z

93

TIDAL TURBULENCE SPECTRA FROM A COMPLIANT MOORING  

SciTech Connect (OSTI)

A compliant mooring to collect high frequency turbulence data at a tidal energy site is evaluated in a series of short demon- stration deployments. The Tidal Turbulence Mooring (TTM) improves upon recent bottom-mounted approaches by suspend- ing Acoustic Doppler Velocimeters (ADVs) at mid-water depths (which are more relevant to tidal turbines). The ADV turbulence data are superior to Acoustic Doppler Current Profiler (ADCP) data, but are subject to motion contamination when suspended on a mooring in strong currents. In this demonstration, passive stabilization is shown to be sufficient for acquiring bulk statistics of the turbulence, without motion correction. With motion cor- rection (post-processing), data quality is further improved; the relative merits of direct and spectral motion correction are dis- cussed.

Thomson, Jim; Kilcher, Levi; Richmond, Marshall C.; Talbert, Joe; deKlerk, Alex; Polagye, Brian; Guerra, Maricarmen; Cienfuegos, Rodrigo

2013-06-13T23:59:59.000Z

94

Assessment of Tidal Energy Removal Impacts on Physical Systems: Development of MHK Module and Analysis of Effects on Hydrodynamics  

SciTech Connect (OSTI)

In this report we describe (1) the development, test, and validation of the marine hydrokinetic energy scheme in a three-dimensional coastal ocean model (FVCOM); and (2) the sensitivity analysis of effects of marine hydrokinetic energy configurations on power extraction and volume flux in a coastal bay. Submittal of this report completes the work on Task 2.1.2, Effects of Physical Systems, Subtask 2.1.2.1, Hydrodynamics and Subtask 2.1.2.3, Screening Analysis, for fiscal year 2011 of the Environmental Effects of Marine and Hydrokinetic Energy project.

Yang, Zhaoqing; Wang, Taiping

2011-09-01T23:59:59.000Z

95

Alternative Energy Sources – Myths and Realities  

E-Print Network [OSTI]

Tidal power Fusion Ocean thermal energy conversion Need Forelectricity. Ocean Thermal energy Conversion (OTEC) Within

Youngquist, Walter

1998-01-01T23:59:59.000Z

96

Tidal Stream | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump JumpAl., 1978) |Thrall,Tibagi Energetica

97

A survey of state clean energy fund support for biomass  

E-Print Network [OSTI]

ocean thermal energy, wave or tidal energy, fuel cells, landfill gas, hydrogen production and hydrogen conversion

Fitzgerald, Garrett; Bolinger, Mark; Wiser, Ryan

2004-01-01T23:59:59.000Z

98

Tidal interactions in multi-planet systems  

E-Print Network [OSTI]

We study systems of close orbiting planets evolving under the influence of tidal circularization. It is supposed that a commensurability forms through the action of disk induced migration and orbital circularization. After the system enters an inner cavity or the disk disperses the evolution continues under the influence of tides due to the central star which induce orbital circularization. We derive approximate analytic models that describe the evolution away from a general first order resonance that results from tidal circularization in a two planet system and which can be shown to be a direct consequence of the conservation of energy and angular momentum. We consider the situation when the system is initially very close to resonance and also when the system is between resonances. We also perform numerical simulations which confirm these models and then apply them to two and four planet systems chosen to have parameters related to the GJ581 and HD10180 systems. We also estimate the tidal dissipation rates t...

Papaloizou, J C B

2011-01-01T23:59:59.000Z

99

Fitting orbits to tidal streams  

E-Print Network [OSTI]

Recent years have seen the discovery of many tidal streams through the Galaxy. Relatively straightforward observations of a stream allow one to deduce three phase-space coordinates of an orbit. An algorithm is presented that reconstructs the missing phase-space coordinates from these data. The reconstruction starts from assumed values of the Galactic potential and a distance to one point on the orbit, but with noise-free data the condition that energy be conserved on the orbit enables one to reject incorrect assumptions. The performance of the algorithm is investigated when errors are added to the input data that are comparable to those in published data for the streams of Pal 5. It is found that the algorithm returns distances and proper motions that are accurate to of order one percent, and enables one to reject quite reasonable but incorrect trial potentials. In practical applications it will be important to minimize errors in the input data, and there is considerable scope for doing this.

James Binney

2008-02-11T23:59:59.000Z

100

Status of Wave and Tidal Power Technologies for the United States  

SciTech Connect (OSTI)

This paper presents the status of marine applications for renewable energy as of 2008 from a U.S. perspective. Technologies examined include wave, tidal, and ocean current energy extraction devices.

Musial, W.

2008-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "tidal energy project-ferc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Integration of Wave and Tidal Power into the Haida Gwaii Electrical Grid  

E-Print Network [OSTI]

Integration of Wave and Tidal Power into the Haida Gwaii Electrical Grid by Susan Margot Boronowski Committee Integration of Wave and Tidal Power into the Haida Gwaii Electrical Grid by Susan Margot, Canada that relies heavily on diesel fuel for energy generation. An investigation is done

Victoria, University of

102

Energy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Recovery Act. January 27, 2012 A map generated by Georgia Tech's tidal energy resource database shows mean current speed of tidal streams. The East Coast, as shown above, has...

103

Marine Tidal Current Electric Power Generation Technology: State of the Art and Current Status  

E-Print Network [OSTI]

resurgence in development of renewable ocean energy technology. Therefore, several demonstration projects appreciated as a vast renewable energy source. The energy is stored in oceans partly as thermal energy, partly categories: wave energy, marine and tidal current energy, ocean thermal energy, energy from salinity

Paris-Sud XI, Université de

104

Resonant Oscillations and Tidal Heating in Coalescing Binary Neutron Stars  

E-Print Network [OSTI]

Tidal interaction in a coalescing neutron star binary can resonantly excite the g-mode oscillations of the neutron star when the frequency of the tidal driving force equals the intrinsic g-mode frequencies. We study the g-mode oscillations of cold neutron stars using recent microscopic nuclear equations of state, where we determine self-consistently the sound speed and Brunt-V\\"ais\\"al\\"a frequency in the nuclear liquid core. The properties of the g-modes associated with the stable stratification of the core depend sensitively on the pressure-density relation as well as the symmetry energy of the dense nuclear matter. The frequencies of the first ten g-modes lie approximately in the range of $10-100$ Hz. Resonant excitations of these g-modes during the last few minutes of the binary coalescence result in energy transfer and angular momentum transfer from the binary orbit to the neutron star. The angular momentum transfer is possible because a dynamical tidal lag develops even in the absence of fluid viscosity. However, since the coupling between the g-mode and the tidal potential is rather weak, the amount of energy transfer during a resonance and the induced orbital phase error are very small. Resonant excitations of the g-modes play an important role in tidal heating of binary neutron stars. Without the resonances, viscous dissipation is effective only when the stars are close to contact. The resonant oscillations result in dissipation at much larger orbital separation. The actual amount of tidal heating depends on the viscosity of the neutron star. Using the microscopic viscosity, we find that the binary neutron stars are heated to a temperature $\\sim 10^8$ K before they come into contact.

Dong Lai

1994-04-25T23:59:59.000Z

105

Using Tidal Tails to Probe Dark Matter Halos  

E-Print Network [OSTI]

We use simulations of merging galaxies to explore the sensitivity of the morphology of tidal tails to variations of the halo mass distributions in the parent galaxies. Our goal is to constrain the mass of dark halos in well-known merging pairs. We concentrate on prograde encounters between equal mass galaxies which represent the best cases for creating tidal tails, but also look at systems with different relative orientations, orbital energies and mass ratios. As the mass and extent of the dark halo increase in the model galaxies, the resulting tidal tails become shorter and less massive, even under the most favorable conditions for producing these features. Our simulations imply that the observed merging galaxies with long tidal tails ($\\sim 50-100$ kpc) such as NGC 4038/39 (the Antennae) and NGC 7252 probably have halo:disk+bulge mass ratios less than 10:1. These results conflict with the favored values of the dark halo mass of the Milky Way derived from satellite kinematics and the timing argument which give a halo:disk+bulge mass ratio of $\\sim 30:1$. However, the lower bound of the estimated dark halo mass in the Milky Way (mass ratio $\\sim 10:1$) is still consistent with the inferred tidal tail galaxy masses. Our results also conflict with the expectations of $\\Omega=1$ cosmologies such as CDM which predict much more massive and extended dark halos.

John Dubinski; J. Christopher Mihos; Lars Hernquist

1995-09-04T23:59:59.000Z

106

GLOBAL CHANGE AND TIDAL FRESHWATER WETLANDS  

E-Print Network [OSTI]

Chapter 23 GLOBAL CHANGE AND TIDAL FRESHWATER WETLANDS: SCENARIOS AND IMPACTS Scott C. Neubauer Tidal Freshwater Wetlands, edited by Aat Barendregt, Dennis Whigham & Andrew Baldwin 2009, viii + 320pp Publishers GmbH This chapter was originally published in the book ,,Tidal Freshwater Wetlands". The copy

Neubauer, Scott C.

107

Tidal waves as yrast states in transitional nuclei  

E-Print Network [OSTI]

The yrast states of transitional nuclei are described as quadrupole waves running over the nuclear surface, which we call tidal waves. In contrast to a rotor, which generates angular momentum by increasing the angular velocity at approximately constant deformation, a tidal wave generates angular momentum by increasing the deformation at approximately constant angular velocity. The properties of the tidal waves are calculated by means of the cranking model in a microscopic way. The calculated energies and E2 transition probabilities of the yrast states in the transitional nuclides with $Z$= 44, 46, 48 and $N=56, 58, ..., 66$ reproduce the experiment in detail. The nonlinear response of the nucleonic orbitals results in a strong coupling between shape and single particle degrees of freedom.

S. Frauendorf; Y. Gu; J. Sun

2010-02-16T23:59:59.000Z

108

Tidal Energy Limited | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective JumpInc., 2010)

109

Tidal Energy Pty Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective JumpInc., 2010)Pty Ltd Region: Australia

110

Tidally-induced thermonuclear Supernovae  

E-Print Network [OSTI]

We discuss the results of 3D simulations of tidal disruptions of white dwarfs by moderate-mass black holes as they may exist in the cores of globular clusters or dwarf galaxies. Our simulations follow self-consistently the hydrodynamic and nuclear evolution from the initial parabolic orbit over the disruption to the build-up of an accretion disk around the black hole. For strong enough encounters (pericentre distances smaller than about 1/3 of the tidal radius) the tidal compression is reversed by a shock and finally results in a thermonuclear explosion. These explosions are not restricted to progenitor masses close to the Chandrasekhar limit, we find exploding examples throughout the whole white dwarf mass range. There is, however, a restriction on the masses of the involved black holes: black holes more massive than 2 × 10 5 M? swallow a typical 0.6 M ? white dwarf before their tidal forces can overwhelm the star’s selfgravity. Therefore, this mechanism is characteristic for black holes of moderate masses. The material that remains bound to the black hole settles into an accretion disk and produces an X-ray flare close to the Eddington limit of LEdd ? 10 41 erg/s (Mbh/1000M?), typically lasting for a few months. The combination of a peculiar thermonuclear supernova together with an X-ray flare thus whistle-blows the existence of such moderate-mass black holes. The next generation of wide field space-based instruments should be able to detect such events. 1.

Stephan Rosswog; Enrico Ramirez-ruiz; W. Raphael Hix

111

Tidally-induced thermonuclear Supernovae  

E-Print Network [OSTI]

We discuss the results of 3D simulations of tidal disruptions of white dwarfs by moderate-mass black holes as they may exist in the cores of globular clusters or dwarf galaxies. Our simulations follow self-consistently the hydrodynamic and nuclear evolution from the initial parabolic orbit over the disruption to the build-up of an accretion disk around the black hole. For strong enough encounters (pericentre distances smaller than about 1/3 of the tidal radius) the tidal compression is reversed by a shock and finally results in a thermonuclear explosion. These explosions are not restricted to progenitor masses close to the Chandrasekhar limit, we find exploding examples throughout the whole white dwarf mass range. There is, however, a restriction on the masses of the involved black holes: black holes more massive than $2\\times 10^5$ M$_\\odot$ swallow a typical 0.6 M$_\\odot$ dwarf before their tidal forces can overwhelm the star's self-gravity. Therefore, this mechanism is characteristic for black holes of moderate masses. The material that remains bound to the black hole settles into an accretion disk and produces an X-ray flare close to the Eddington limit of $L_{\\rm Edd} \\simeq 10^{41} {\\rm erg/s} M_{\\rm bh}/1000 M$_\\odot$), typically lasting for a few months. The combination of a peculiar thermonuclear supernova together with an X-ray flare thus whistle-blows the existence of such moderate-mass black holes. The next generation of wide field space-based instruments should be able to detect such events.

S. Rosswog; E. Ramirez-Ruiz; W. R. Hix

2008-11-13T23:59:59.000Z

112

Structures With Negative Index Of Refraction - Energy Innovation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar...

113

Process for the conversion of cyclic amines into lactams - Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar...

114

Structures with negative index of refraction - Energy Innovation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar...

115

Gravitational self-force corrections to two-body tidal interactions and the effective one-body formalism  

E-Print Network [OSTI]

Tidal interactions have a significant influence on the late dynamics of compact binary systems, which constitute the prime targets of the upcoming network of gravitational-wave detectors. We refine the theoretical description of tidal interactions (hitherto known only to the second post-Newtonian level) by extending our recently developed analytic self-force formalism, for extreme mass-ratio binary systems, to the computation of several tidal invariants. Specifically, we compute, to linear order in the mass ratio and to the 7.5$^{\\rm th}$ post-Newtonian order, the following tidal invariants: the square and the cube of the gravitoelectric quadrupolar tidal tensor, the square of the gravitomagnetic quadrupolar tidal tensor, and the square of the gravitoelectric octupolar tidal tensor. Our high-accuracy analytic results are compared to recent numerical self-force tidal data by Dolan et al. \\cite{Dolan:2014pja}, and, notably, provide an analytic understanding of the light ring asymptotic behavior found by them. We transcribe our kinematical tidal-invariant results in the more dynamically significant effective one-body description of the tidal interaction energy. By combining, in a synergetic manner, analytical and numerical results, we provide simple, accurate analytic representations of the global, strong-field behavior of the gravitoelectric quadrupolar tidal factor. A striking finding is that the linear-in-mass-ratio piece in the latter tidal factor changes sign in the strong-field domain, to become negative (while its previously known second post-Newtonian approximant was always positive). We, however, argue that this will be more than compensated by a probable fast growth, in the strong-field domain, of the nonlinear-in-mass-ratio contributions in the tidal factor.

Donato Bini; Thibault Damour

2014-09-24T23:59:59.000Z

116

TIDAL FRICTION AND TIDAL LAGGING. APPLICABILITY LIMITATIONS OF A POPULAR FORMULA FOR THE TIDAL TORQUE  

SciTech Connect (OSTI)

Tidal torques play a key role in rotational dynamics of celestial bodies. They govern these bodies' tidal despinning and also participate in the subtle process of entrapment of these bodies into spin-orbit resonances. This makes tidal torques directly relevant to the studies of habitability of planets and their moons. Our work begins with an explanation of how friction and lagging should be built into the theory of bodily tides. Although much of this material can be found in various publications, a short but self-consistent summary on the topic has been lacking in the hitherto literature, and we are filling the gap. After these preparations, we address a popular concise formula for the tidal torque, which is often used in the literature, for planets or stars. We explain why the derivation of this expression, offered in the paper by Goldreich and in the books by Kaula (Equation (4.5.29)) and Murray and Dermott (Equation (4.159)), implicitly sets the time lag to be frequency independent. Accordingly, the ensuing expression for the torque can be applied only to bodies having a very special (and very hypothetical) rheology which makes the time lag frequency independent, i.e., the same for all Fourier modes in the spectrum of tide. This expression for the torque should not be used for bodies of other rheologies. Specifically, the expression cannot be combined with an extra assertion of the geometric lag being constant, because at finite eccentricities the said assumption is incompatible with the constant-time-lag condition.

Efroimsky, Michael; Makarov, Valeri V., E-mail: michael.efroimsky@usno.navy.mil, E-mail: vvm@usno.navy.mil [US Naval Observatory, Washington, DC 20392 (United States)

2013-02-10T23:59:59.000Z

117

Disc formation from stellar tidal disruptions  

E-Print Network [OSTI]

The potential of tidal disruption of stars to probe otherwise quiescent supermassive black holes cannot be exploited, if their dynamics is not fully understood. So far, the observational appearance of these events has been commonly derived from analytical extrapolations of the debris dynamical properties just after the stellar disruption. In this paper, we perform hydrodynamical simulations of stars in highly eccentric orbits, that follow the stellar debris after disruption and investigate their ultimate fate. We demonstrate that gas debris circularize on an orbital timescale because relativistic apsidal precession causes the stream to self-cross. The higher the eccentricity and/or the deeper the encounter, the faster is the circularization. If the internal energy deposited by shocks during stream self-interaction is readily radiated, the gas forms a narrow ring at the circularization radius. It will then proceed to accrete viscously at a super-Eddington rate, puffing up under radiation pressure. If instead c...

Bonnerot, Clément; Lodato, Giuseppe; Price, Daniel J

2015-01-01T23:59:59.000Z

118

Atmospheric heat redistribution and collapse on tidally locked rocky planets  

E-Print Network [OSTI]

Atmospheric collapse is likely to be of fundamental importance to tidally locked rocky exoplanets but remains understudied. Here, general results on the heat transport and stability of tidally locked terrestrial-type atmospheres are reported. First, the problem is modeled with an idealized 3D general circulation model (GCM) with gray gas radiative transfer. It is shown that over a wide range of parameters the atmospheric boundary layer, rather than the large-scale circulation, is the key to understanding the planetary energy balance. Through a scaling analysis of the interhemispheric energy transfer, theoretical expressions for the day-night temperature difference and surface wind speed are created that reproduce the GCM results without tuning. Next, the GCM is used with correlated-k radiative transfer to study heat transport for two real gases (CO2 and CO). For CO2, empirical formulae for the collapse pressure as a function of planetary mass and stellar flux are produced, and critical pressures for atmospher...

Wordsworth, Robin

2014-01-01T23:59:59.000Z

119

EA-1949: Admiralty Inlet Pilot Tidal Project, Puget Sound, WA  

Broader source: Energy.gov [DOE]

This EA analyzes the potential environmental effects of a proposal by the Public Utility District No. 1 of Snohomish County, Washington to construct and operate the Admiralty Inlet Tidal Project. The proposed 680-kilowatt project would be located on the east side of Admiralty Inlet in Puget Sound, Washington, about 1 kilometer west of Whidbey Island, entirely within Island County, Washington. The Federal Energy Regulatory Commission (FERC) is the lead agency. The DOE NEPA process for this project has been canceled.

120

Resonant oscillations and tidal heating in coalescing binary neutron stars  

E-Print Network [OSTI]

Tidal interaction in a coalescing neutron star binary can resonantly excite the g-mode oscillations of the neutron star when the frequency of the tidal driving force equals the intrinsic g-mode frequencies. We study the g-mode oscillations of cold neutron stars using recent microscopic nuclear equations of state, where we determine self-consistently the sound speed and Brunt-V\\"ais\\"al\\"a frequency in the nuclear liquid core. The properties of the g-modes associated with the stable stratification of the core depend sensitively on the pressure-density relation as well as the symmetry energy of the dense nuclear matter. The frequencies of the first ten g-modes lie approximately in the range of 10-100 Hz. Resonant excitations of these g-modes during the last few minutes of the binary coalescence result in energy transfer and angular momentum transfer from the binary orbit to the neutron star. The angular momentum transfer is possible because a dynamical tidal lag develops even in the absence of fluid viscosity. ...

Lai, D

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "tidal energy project-ferc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Tidal Heating of Extra-Solar Planets  

E-Print Network [OSTI]

Extra-solar planets close to their host stars have likely undergone significant tidal evolution since the time of their formation. Tides probably dominated their orbital evolution once the dust and gas had cleared away, and as the orbits evolved there was substantial tidal heating within the planets. The tidal heating history of each planet may have contributed significantly to the thermal budget that governed the planet's physical properties, including its radius, which in many cases may be measured by observing transit events. Typically, tidal heating increases as a planet moves inward toward its star and then decreases as its orbit circularizes. Here we compute the plausible heating histories for several planets with measured radii, using the same tidal parameters for the star and planet that had been shown to reconcile the eccentricity distribution of close-in planets with other extra-solar planets. Several planets are discussed, including for example HD 209458 b, which may have undergone substantial tidal heating during the past billion years, perhaps enough to explain its large measured radius. Our models also show that GJ 876 d may have experienced tremendous heating and is probably not a solid, rocky planet. Theoretical models should include the role of tidal heating, which is large, but time-varying.

Brian Jackson; Richard Greenberg; Rory Barnes

2008-02-29T23:59:59.000Z

122

Energy Department Releases New Energy 101 Video on Ocean Power...  

Broader source: Energy.gov (indexed) [DOE]

and Renewable Energy FIND OUT MORE Read about the Energy Department's assessments of wave and tidal energy resources. You've probably seen water at work generating electricity...

123

Effects of Tidal Turbine Noise on Fish Task 2.1.3.2: Effects on Aquatic Organisms: Acoustics/Noise - Fiscal Year 2011 - Progress Report - Environmental Effects of Marine and Hydrokinetic Energy  

SciTech Connect (OSTI)

Naturally spawning stocks of Chinook salmon (Oncorhynchus tshawytscha) that utilize Puget Sound are listed as threatened (http://www.nwr.noaa.gov/ESA-Salmon-Listings/Salmon-Populations/ Chinook/CKPUG.cfm). Plans exist for prototype tidal turbines to be deployed into their habitat. Noise is known to affect fish in many ways, such as causing a threshold shift in auditory sensitivity or tissue damage. The characteristics of noise, its spectra and level, are important factors that influence the potential for the noise to injure fish. For example, the frequency range of the tidal turbine noise includes the audiogram (frequency range of hearing) of most fish. This study (Effects on Aquatic Organisms, Subtask 2.1.3.2: Acoustics) was performed during FY 2011 to determine if noise generated by a 6-m-diameter open-hydro turbine might affect juvenile Chinook salmon hearing or cause barotrauma. After they were exposed to simulated tidal turbine noise, the hearing of juvenile Chinook salmon was measured and necropsies performed to check for tissue damage. Experimental groups were (1) noise exposed, (2) control (the same handling as treatment fish but without exposure to tidal turbine noise), and (3) baseline (never handled). Preliminary results indicate that low levels of tissue damage may have occurred but that there were no effects of noise exposure on the auditory systems of the test fish.

Halvorsen, Michele B.; Carlson, Thomas J.; Copping, Andrea E.

2011-09-30T23:59:59.000Z

124

A Conceptual Restoration Plan and Tidal Hydrology Assessment for Reconnecting Spring Branch Creek to Suisun Marsh, Solano County, California  

E-Print Network [OSTI]

tidal wetland below MHLW Table 4.19. Performance IndicatorsPerformance Indicator All Tidal wetlands Tidal wetlands All

Olson, Jessica J.

2012-01-01T23:59:59.000Z

125

Modeling Tidal Streams in evolving dark matter halos  

E-Print Network [OSTI]

We explore whether stellar tidal streams can provide information on the secular, cosmological evolution of the Milky Way's gravitational potential and on the presence of subhalos. We carry out long-term (~t_hubble) N-body simulations of disrupting satellite galaxies in a semi-analytic Galaxy potential where the dark matter halo and the subhalos evolve according to a LCDM cosmogony. All simulations are constrained to end up with the same position and velocity at present. Our simulations account for: (i) the secular evolution of the host halo's mass, size and shape, (ii) the presence of subhalos and (iii) dynamical friction. We find that tidal stream particles respond adiabatically to the Galaxy growth so that, at present, the energy and angular momentum distribution is exclusively determined by the present Galaxy potential. In other words, all present-day observables can only constrain the present mass distribution of the Galaxy independent of its past evolution. We also show that, if the full phase-space distribution of a tidal stream is available, we can accurately determine (i) the present Galaxy's shape and (ii) the amount of mass loss from the stream's progenitor, even if this evolution spanned a cosmologically significant epoch.

Jorge Penarrubia; Andrew J. Benson; David Martinez-Delgado; Hans-Walter Rix

2005-12-20T23:59:59.000Z

126

Half Moon Cove Tidal Project. Feasibility report  

SciTech Connect (OSTI)

The proposed Half Moon Cove Tidal Power Project would be located in a small cove in the northern part of Cobscook Bay in the vicinity of Eastport, Maine. The project would be the first tidal electric power generating plant in the United States of America. The basin impounded by the barrier when full will approximate 1.2 square miles. The average tidal range at Eastport is 18.2 feet. The maximum spring tidal range will be 26.2 feet and the neap tidal range 12.8 feet. The project will be of the single pool-type single effect in which generation takes place on the ebb tide only. Utilizing an average mean tidal range of 18.2 feet the mode of operation enables generation for approximately ten and one-half (10-1/2) hours per day or slightly in excess of five (5) hours per tide. The installed capacity will be 12 MW utilizing 2 to 6 MW units. An axial flow, or Bulb type of turbine was selected for this study.

Not Available

1980-11-01T23:59:59.000Z

127

Viscoelastic Models of Tidally Heated Exomoons  

E-Print Network [OSTI]

Tidal heating of exomoons may play a key role in their habitability, since the elevated temperature can melt the ice on the body even without significant solar radiation. The possibility of life is intensely studied on Solar System moons such as Europa or Enceladus, where the surface ice layer covers tidally heated water ocean. Tidal forces may be even stronger in extrasolar systems, depending on the properties of the moon and its orbit. For studying the tidally heated surface temperature of exomoons, we used a viscoelastic model for the first time. This model is more realistic than the widely used, so-called fixed Q models, because it takes into account the temperature dependency of the tidal heat flux, and the melting of the inner material. With the use of this model we introduced the circumplanetary Tidal Temperate Zone (TTZ), that strongly depends on the orbital period of the moon, and less on its radius. We compared the results with the fixed Q model and investigated the statistical volume of the TTZ usi...

Dobos, Vera

2015-01-01T23:59:59.000Z

128

Tidal Generation Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective JumpInc., 2010)Pty Ltd Region:

129

Pennamaquan Tidal Power LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrange County isParadise,Large Water TunnelWater

130

Earth Tidal Analysis | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revision hasESE Alcohol Jump to:EXARGeothermalAnalysis

131

Tidal Hydraulic Generators Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump JumpAl., 1978) |Thrall,Tibagi Energetica JumpGenerators Ltd

132

Tidal Sails AS | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump JumpAl., 1978) |Thrall,Tibagi Energetica JumpGenerators

133

Tidal mixing around the Maritime continent: implications for1 paleoclimate simulations2  

E-Print Network [OSTI]

of mechanical energy for the ocean circulation and as such is 6 being incorporated changes in the ocean thermal structure, including 12 a ~1o C warming into state-of-the-art climate models. Calculation of the tidal energy flux depends on 7

134

Measuring the Impact of Tidal Power Installations on Endangered...  

Energy Savers [EERE]

Renewable Power Company (ORPC) is conducting a two-year study on the effects of tidal turbines on endangered beluga whales in Cook Inlet, Alaska-home to some of the greatest tidal...

135

General Relativistic Hydrodynamic Simulation of Accretion Flow from a Stellar Tidal Disruption  

E-Print Network [OSTI]

We study how the matter dispersed when a supermassive black hole tidally disrupts a star joins an accretion flow. Combining a relativistic hydrodynamic simulation of the stellar disruption with a relativistic hydrodynamics simulation of the tidal debris motion, we track such a system until ~80% of the stellar mass bound to the black hole has settled into an accretion flow. Shocks near the stellar pericenter and also near the apocenter of the most tightly-bound debris dissipate orbital energy, but only enough to make the characteristic radius comparable to the semi-major axis of the most-bound material, not the tidal radius as previously thought. The outer shocks are caused by post-Newtonian effects, both on the stellar orbit during its disruption and on the tidal forces. Accumulation of mass into the accretion flow is non-monotonic and slow, requiring ~3--10x the orbital period of the most tightly-bound tidal streams, while the inflow time for most of the mass may be comparable to or longer than the mass accu...

Shiokawa, Hotaka; Cheng, Roseanne M; Piran, Tsvi; Noble, Scott C

2015-01-01T23:59:59.000Z

136

Three-dimensional Numerical Analysis on Blade Response of Vertical Axis Tidal Current Turbine Under Operational Condition  

SciTech Connect (OSTI)

Tidal power as a large-scale renewable source of energy has been receiving significant attention recently because of its advantages over the wind and other renewal energy sources. The technology used to harvest energy from tidal current is called a tidal current turbine. Though some of the principles of wind turbine design are applicable to tidal current turbines, the design of latter ones need additional considerations like cavitation damage, corrosion etc. for the long-term reliability of such turbines. Depending up on the orientation of axis, tidal current turbines can be classified as vertical axis turbines or horizontal axis turbines. Existing studies on the vertical axis tidal current turbine focus more on the hydrodynamic aspects of the turbine rather than the structural aspects. This paper summarizes our recent efforts to study the integrated hydrodynamic and structural aspects of the vertical axis tidal current turbines. After reviewing existing methods in modeling tidal current turbines, we developed a hybrid approach that combines discrete vortex method -finite element method that can simulate the integrated hydrodynamic and structural response of a vertical axis turbine. This hybrid method was initially employed to analyze a typical three-blade vertical axis turbine. The power coefficient was used to evaluate the hydrodynamic performance, and critical deflection was considered to evaluate the structural reliability. A sensitivity analysis was also conducted with various turbine height-to-radius ratios. The results indicate that both the power output and failure probability increase with the turbine height, suggesting a necessity for optimal design. An attempt to optimize a 3-blade vertical axis turbine design with hybrid method yielded a ratio of turbine height to radius (H/R) about 3.0 for reliable maximum power output.

Li, Ye; Karri, Naveen K.; Wang, Qi

2014-04-30T23:59:59.000Z

137

TIDAL FRESHWATER WETLANDS OF THE MID-ATLANTIC AND  

E-Print Network [OSTI]

Chapter 14 TIDAL FRESHWATER WETLANDS OF THE MID-ATLANTIC AND SOUTHEASTERN UNITED STATES James E Publishers, Weikersheim, 2009 Tidal Freshwater Wetlands, edited by Aat Barendregt in the book ,,Tidal Freshwater Wetlands". The copy attached is provided by Margraf Publishers Gmb

Newman, Michael C.

138

Seasonal variations of semidiurnal tidal perturbations in mesopause region temperature and zonal and meridional winds above  

E-Print Network [OSTI]

.1029/2007JD009687. 1. Introduction [2] Solar thermal tides are global-scale waves that dom- inate to conserve wave energy. When propagating into the MLT region, the horizontal wind tidal amplitude can reach with fluorescence lidar's advantages of high temporal and spatial resolution and the capability of full diurnal

139

Circularization of Tidally Disrupted Stars around Spinning Supermassive Black Holes  

E-Print Network [OSTI]

We study the circularization of tidally disrupted stars on bound orbits around spinning supermassive black holes by performing three-dimensional smoothed particle hydrodynamic simulations with Post-Newtonian corrections. Our simulations reveal that debris circularization depends sensitively on the efficiency of radiative cooling. There are two stages in debris circularization if radiative cooling is inefficient: first, the stellar debris streams self-intersect due to relativistic apsidal precession; shocks at the intersection points thermalize orbital energy and the debris forms a geometrically thick, ring-like structure around the black hole. The ring rapidly spreads via viscous diffusion, leading to the formation of a geometrically thick accretion disk. In contrast, if radiative cooling is efficient, the stellar debris circularizes due to self-intersection shocks and forms a geometrically thin ring-like structure. In this case, the dissipated energy can be emitted during debris circularization as a precurso...

Hayasaki, Kimitake; Loeb, Abraham

2015-01-01T23:59:59.000Z

140

Crosstalk compensation in analysis of energy storage devices...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial...

Note: This page contains sample records for the topic "tidal energy project-ferc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Tidal Interactions and Disruptions of Giant Planets on Highly Eccentric Orbits  

E-Print Network [OSTI]

We calculate the evolution of planets undergoing a strong tidal encounter using smoothed particle hydrodynamics (SPH), for a range of periastron separations. We find that outside the Roche limit, the evolution of the planet is well-described by the standard model of linear, non-radial, adiabatic oscillations. If the planet passes within the Roche limit at periastron, however, mass can be stripped from it, but in no case do we find enough energy transferred to the planet to lead to complete disruption. In light of the three new extrasolar planets discovered with periods shorter than two days, we argue that the shortest-period cases observed in the period-mass relation may be explained by a model whereby planets undergo strong tidal encounters with stars, after either being scattered by dynamical interactions into highly eccentric orbits, or tidally captured from nearly parabolic orbits. Although this scenario does provide a natural explanation for the edge found for planets at twice the Roche limit, it does not explain how such planets will survive the inevitable expansion that results from energy injection during tidal circularization.

Joshua A. Faber; Frederic A. Rasio; Bart Willems

2004-11-15T23:59:59.000Z

142

Active Flow Control on Bidirectional Rotors for Tidal MHK Applications  

SciTech Connect (OSTI)

A marine and hydrokinetic (MHK) tidal turbine extracts energy from tidal currents, providing clean, sustainable electricity generation. In general, all MHK conversion technologies are confronted with significant operational hurdles, resulting in both increased capital and operations and maintenance (O&M) costs. To counter these high costs while maintaining reliability, MHK turbine designs can be simplified. Prior study found that a tidal turbine could be cost-effectively simplified by removing blade pitch and rotor/nacelle yaw. Its rotor would run in one direction during ebb and then reverse direction when the current switched to flood. We dubbed such a turbine a bidirectional rotor tidal turbine (BRTT). The bidirectional hydrofoils of a BRTT are less efficient than conventional hydrofoils and capture less energy, but the elimination of the pitch and yaw systems were estimated to reduce levelized cost of energy by 7.8%-9.6%. In this study, we investigated two mechanisms for recapturing some of the performance shortfall of the BRTT. First, we developed a novel set of hydrofoils, designated the yy series, for BRTT application. Second, we investigated the use of active flow control via microtabs. Microtabs are small deployable/retractable tabs, typically located near the leading or trailing edge of an air/hydrofoil with height on the order of the boundary layer thickness (1% - 2% of chord). They deploy approximately perpendicularly to the foil surface and, like gurney flaps and plain flaps, globally affect the aerodynamics of the airfoil. By strategically placing microtabs and selectively deploying them based on the direction of the inflow, performance of a BRTT rotor can be improved while retaining bidirectional operation. The yy foils were computationally designed and analyzed. They exhibited better performance than the baseline bidirectional foil, the ellipse. For example, the yyb07cn-180 had 14.7% higher (l/d)max than an ellipse of equal thickness. The yyb07cn family also had higher c{sub p,min} than equivalently thick ellipses, indicating less susceptibility to cavitation. Microtabs applied on yy foils demonstrated improved energy capture. A series of variable speed and constant speed rotors were developed with the yyb07cn family of hydrofoils. The constant speed yyb07cn rotor (yy-B02-Rcs,opt) captured 0.45% more energy than the equivalent rotor with ellipses (e-B02-Rcs,opt). With microtabs deployed (yy?t-B02-Rcs,opt), the energy capture increase over the rotor with ellipses was 1.05%. Note, however, that microtabs must be applied judiciously to bidirectional foils. On the 18% thick ellipse, performance decreased with the addition of microtabs. Details of hydrofoil performance, microtab sizing and positioning, rotor configurations, and revenue impacts are presented herein.

Shiu, Henry [Research Engineer; van Dam, Cornelis P. [Professor

2013-08-22T23:59:59.000Z

143

China Energy Databook - Rev. 4  

E-Print Network [OSTI]

Petroleum, 1995. China's biomass, solar, wind, tidal, anda focus of China's rural power development, with solar waterPassive solar design has been incor- II-6 China Energy

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

144

Modeling the dynamics of tidally-interacting binary neutron stars up to merger  

E-Print Network [OSTI]

We propose an effective-one-body (EOB) model that describes the general relativistic dynamics of neutron star binaries from the early inspiral up to merger. Our EOB model incorporates an enhanced attractive tidal potential motivated by recent analytical advances in the post-Newtonian and gravitational self-force description of relativistic tidal interactions. No fitting parameters are introduced for the description of tidal interaction in the late, strong-field dynamics. We compare the model dynamics (described by the gauge invariant relation between binding energy and orbital angular momentum), and the gravitational wave phasing, with new high-resolution multi-orbit numerical relativity simulations of equal-mass configurations with different equations of state. We find agreement essentially within the uncertainty of the numerical data for all the configurations. Our model is the first semi-analytical model which captures the tidal amplification effects close to merger. It thereby provides the most accurate analytical representation of binary neutron star dynamics and waveforms currently available.

Sebastiano Bernuzzi; Alessandro Nagar; Tim Dietrich; Thibault Damour

2014-12-15T23:59:59.000Z

145

Temperature and Tidal Dynamics in a Branching Estuarine System  

E-Print Network [OSTI]

Importance of the Interconnectivity of Branching ChannelsImportance of the Interconnectivity of Branching Channels Inquestions about tidal interconnectivity in the Sacramento-

Wagner, Richard Wayne

2012-01-01T23:59:59.000Z

146

Study of the Acoustic Effects of Hydrokinetic Tidal Turbines in Admiralty Inlet, Puget Sound  

SciTech Connect (OSTI)

Hydrokinetic turbines will be a source of noise in the marine environment - both during operation and during installation/removal. High intensity sound can cause injury or behavioral changes in marine mammals and may also affect fish and invertebrates. These noise effects are, however, highly dependent on the individual marine animals; the intensity, frequency, and duration of the sound; and context in which the sound is received. In other words, production of sound is a necessary, but not sufficient, condition for an environmental impact. At a workshop on the environmental effects of tidal energy development, experts identified sound produced by turbines as an area of potentially significant impact, but also high uncertainty. The overall objectives of this project are to improve our understanding of the potential acoustic effects of tidal turbines by: (1) Characterizing sources of existing underwater noise; (2) Assessing the effectiveness of monitoring technologies to characterize underwater noise and marine mammal responsiveness to noise; (3) Evaluating the sound profile of an operating tidal turbine; and (4) Studying the effect of turbine sound on surrogate species in a laboratory environment. This study focuses on a specific case study for tidal energy development in Admiralty Inlet, Puget Sound, Washington (USA), but the methodologies and results are applicable to other turbine technologies and geographic locations. The project succeeded in achieving the above objectives and, in doing so, substantially contributed to the body of knowledge around the acoustic effects of tidal energy development in several ways: (1) Through collection of data from Admiralty Inlet, established the sources of sound generated by strong currents (mobilizations of sediment and gravel) and determined that low-frequency sound recorded during periods of strong currents is non-propagating pseudo-sound. This helped to advance the debate within the marine and hydrokinetics acoustic community as to whether strong currents produce propagating sound. (2) Analyzed data collected from a tidal turbine operating at the European Marine Energy Center to develop a profile of turbine sound and developed a framework to evaluate the acoustic effects of deploying similar devices in other locations. This framework has been applied to Public Utility District No. 1 of Snohomish Country's demonstration project in Admiralty Inlet to inform postinstallation acoustic and marine mammal monitoring plans. (3) Demonstrated passive acoustic techniques to characterize the ambient noise environment at tidal energy sites (fixed, long-term observations recommended) and characterize the sound from anthropogenic sources (drifting, short-term observations recommended). (4) Demonstrated the utility and limitations of instrumentation, including bottom mounted instrumentation packages, infrared cameras, and vessel monitoring systems. In doing so, also demonstrated how this type of comprehensive information is needed to interpret observations from each instrument (e.g., hydrophone data can be combined with vessel tracking data to evaluate the contribution of vessel sound to ambient noise). (5) Conducted a study that suggests harbor porpoise in Admiralty Inlet may be habituated to high levels of ambient noise due to omnipresent vessel traffic. The inability to detect behavioral changes associated with a high intensity source of opportunity (passenger ferry) has informed the approach for post-installation marine mammal monitoring. (6) Conducted laboratory exposure experiments of juvenile Chinook salmon and showed that exposure to a worse than worst case acoustic dose of turbine sound does not result in changes to hearing thresholds or biologically significant tissue damage. Collectively, this means that Chinook salmon may be at a relatively low risk of injury from sound produced by tidal turbines located in or near their migration path. In achieving these accomplishments, the project has significantly advanced the District's goals of developing a demonstration-scale tidal energy proj

Brian Polagye; Jim Thomson; Chris Bassett; Jason Wood; Dom Tollit; Robert Cavagnaro; Andrea Copping

2012-03-30T23:59:59.000Z

147

Mon. Not. R. Astron. Soc. 391, 237245 (2008) doi:10.1111/j.1365-2966.2008.13868.x Tidal heating of terrestrial extrasolar planets and implications for their  

E-Print Network [OSTI]

these issues, we model the tidal heating and evolution of hypothetical extrasolar terrestrial planets, Greenberg & Barnes 2008b). If such a planet is on an eccentric orbit, the dissipation of tidal energy within extrasolar planets are observed to be larger than theoretical modelling predicts (e.g. Bodenheimer, E

Barnes, Rory

148

THE EFFECT OF MASS LOSS ON THE TIDAL EVOLUTION OF EXTRASOLAR PLANET  

E-Print Network [OSTI]

By combining mass loss and tidal evolution of close-in planets, we present a qualitative study on their tidal migrations. We incorporate mass loss in tidal evolution for planets with different masses and find that mass ...

Guo, Jianheng

149

Renewables for Energy Conservation  

E-Print Network [OSTI]

;Renewable Energy Options Wind Solar Small Hydro Biomass Tidal Energy Wave Energy Ocean Thermal Energy SolarRenewables for Energy Conservation Rangan Banerjee Energy Systems Engineering IIT Bombay National Conference on "Energy Efficiency", Pune , 28th June2005 #12;ENERGY FLOW DIAGRAM PRIMARY ENERGY ENERGY

Banerjee, Rangan

150

List of Tidal Energy Incentives | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolarList ofPassive SolarRoofsIncentivesIncentives

151

MHK Projects/Admirality Inlet Tidal Energy Project | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAK Technologies Jump to: navigation, searchOnshore, NULL<

152

MHK Projects/Angoon Tidal Energy Plant | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAK Technologies Jump to: navigation,5.59° ProjectAnconia

153

MHK Projects/Astoria Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAK Technologies Jump to: navigation,5.59°

154

MHK Projects/Highlands Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAK Technologies Jump to:BW2Greenville Bend ProjectHannibalhere

155

MHK Projects/Housatonic Tidal Energy Plant | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAK Technologies Jump to:BW2Greenville BendHope Field

156

MHK Projects/Kendall Head Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAK Technologies Jump to:BW2GreenvilleKempe Bend Project < MHK

157

MHK Projects/Killisnoo Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAK Technologies Jump to:BW2GreenvilleKempe Bend ProjectKillisnoo

158

MHK Projects/Kingsbridge Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAK Technologies Jump to:BW2GreenvilleKempe Bend

159

MHK Projects/Muskeget Channel Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAK Technologies JumpLuangwa Zambia5.1719°,Crossing

160

MHK Projects/Nantucket Tidal Energy Plant | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAK Technologies JumpLuangwaoldid=676597"

Note: This page contains sample records for the topic "tidal energy project-ferc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

MHK Projects/Penobscot Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IE < MHK Projects3.362° ProjectVerona Island, ME

162

MHK Projects/Salem Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IE < MHK Project City Tunica0,LA Project Country

163

MHK Projects/Tidal Energy Project Portugal | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IE < MHK ProjectRose BendReach District

164

MHK Projects/Wrangell Narrows Tidal Energy Project | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IE < MHKInformation

165

Verdant-Roosevelt Island Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City, Utah Zip:ScaleVegetation JumpVerband

166

"Circularization" vs. Accretion -- What Powers Tidal Disruption Events?  

E-Print Network [OSTI]

A tidal disruption event (TDE) takes place when a star passes near enough to a massive black hole to be disrupted. About half the star's matter is given elliptical trajectories with large apocenter distances, the other half is unbound. To "circularize", i.e., to form an accretion flow, the bound matter must lose a significant amount of energy, with the actual amount depending on the characteristic scale of the flow measured in units of the black hole's gravitational radius (~ 10^{51} (R/1000R_g)^{-1} erg). Recent numerical simulations (Shiokawa et al., 2015) have revealed that the circularization scale is close to the scale of the most-bound initial orbits, ~ 10^3 M_{BH,6.5}^{-2/3} R_g ~ 10^{15} M_{BH,6.5}^{1/3} cm from the black hole, and the corresponding circularization energy dissipation rate is $\\sim 10^{44} M_{BH,6.5}^{-1/6}$~erg/s. We suggest that the energy liberated during circularization, rather then energy liberated by accretion onto the black hole, powers the observed optical TDE candidates (e.g.A...

Piran, Tsvi; Krolik, Julian; Cheng, Roseanne M; Shiokawa, Hotaka

2015-01-01T23:59:59.000Z

167

On tidal capture of primordial black holes by neutron stars  

E-Print Network [OSTI]

The fraction of primordial black holes (PBHs) of masses $10^{17} - 10^{26}$ g in the total amount of dark matter may be constrained by considering their capture by neutron stars (NSs), which leads to the rapid destruction of the latter. The constraints depend crucially on the capture rate which, in turn, is determined by the energy loss by a PBH passing through a NS. Two alternative approaches to estimate the energy loss have been used in the literature: the one based on the dynamical friction mechanism, and another on tidal deformations of the NS by the PBH. The second mechanism was claimed to be more efficient by several orders of magnitude due to the excitation of particular oscillation modes reminiscent of the surface waves. We address this disagreement by considering a simple analytically solvable model that consists of a flat incompressible fluid in an external gravitational field. In this model, we calculate the energy loss by a PBH traversing the fluid surface. We find that the excitation of modes with the propagation velocity smaller than that of PBH is suppressed, which implies that in a realistic situation of a supersonic PBH the large contributions from the surface waves are absent and the above two approaches lead to consistent expressions for the energy loss.

Guillaume Defillon; Etienne Granet; Petr Tinyakov; Michel H. G. Tytgat

2014-09-01T23:59:59.000Z

168

SPH simulations of tidally unstable accretion disks in cataclysmic variables  

E-Print Network [OSTI]

We numerically study the precessing disk model for superhump in the SU~UMa subclass of cataclysmic variables, using a two dimensional SPH code specifically designed for thin disk problems. Two disk simulations for a binary with mass ratio $q=\\frac{3}{17}$ (similar to OY~Car) are performed, in order to investigate the Lubow (1991 a,b) tidal resonance instability mechanism. In the first calculation, a disk evolves under steady mass transfer from $L_1$. In the second simulation, mass is added in Keplerian orbit to the inner disk. The two disks follow similar evolutionary paths. However the $L_1$ stream-disk interaction is found to slow the disk's radial expansion and to circularise gas orbits. The initial eccentricity growth in our simulations is exponential at a rate slightly less than predicted by Lubow (1991a). We do not observe a clearing of material from the resonance region via the disk's tidal response to the $m=2$ component of the binary potential as was described in Lubow (1992). Instead the $m=2$ response weakens as the disk eccentricty increases. Both disks reach an eccentric equilibrium state, in which they undergo prograde precession. The rate of viscous energy dissipation in the disks has a periodic excess with a period matching the disk's rotation. The source is identified as a large region in the outer disk, and the mechanism by which it is produced is identified. The time taken for the periodic excess to develop is consistent with the first appearance of superhumps in a superoutburst.

James R. Murray

1995-11-08T23:59:59.000Z

169

METHOD AND APPARATUS FOR IN-SITU CHARACTERIZATION OF ENERGY STORAGE...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial...

170

Method and apparatus for in-situ characterization of energy storage...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial...

171

Establishing a Testing Center for Ocean Energy Technologies in...  

Broader source: Energy.gov (indexed) [DOE]

range of capabilities to support wave and tidal energy development for the United States. Ocean energy, generated from waves, tides, and currents, can be harnessed wherever...

172

Clean energy funds: An overview of state support for renewable energy  

E-Print Network [OSTI]

ocean thermal, wave, or tidal energy; fuel cells; landfill gas; naturally flowing water and hydroelectric; low emission, advanced biomass power conversion

Bolinger, Mark; Wiser, Ryan; Milford, Lew; Stoddard, Michael; Porter, Kevin

2001-01-01T23:59:59.000Z

173

analysing tidally induced: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Tidally-induced thermonuclear Supernovae Astrophysics (arXiv) Summary: We discuss the results of 3D simulations...

174

Geomorphic structure of tidal hydrodynamics in salt marsh creeks  

E-Print Network [OSTI]

of the tidal signal within the marsh area. Citation: Fagherazzi, S., M. Hannion, and P. D'Odorico (2008 by elegant hydrological and geomorphological theories [Gupta et al., 1980; Rodriguez-Iturbe and Valdes, 1979

Fagherazzi, Sergio

175

Interactions Between Tidal Flows and Ooid Shoals, Northern Bahamas  

E-Print Network [OSTI]

active sand waves and ripples. Towards the platform margin, tidal currents pass through narrow inlets. The main inlet opening oceanward (NW) of the shoal stretches between two Pleistocene bedrock islands, connected by a bedrock high that extends... include both flood and ebb tidal deltas, with generally lobate forms, convex away from the islands, and with endpoints at the inlets. Although the inner portions of these lobes are mainly seagrass-stabilized muddy peloidal and skeletal sands with local...

Reeder, Stacy Lynn; Rankey, Gene C.

2008-03-01T23:59:59.000Z

176

Nonrotating black hole in a post-Newtonian tidal environment  

E-Print Network [OSTI]

We examine the motion and tidal dynamics of a nonrotating black hole placed within a post-Newtonian external spacetime. The tidal perturbation created by the external environment is treated as a small perturbation. At a large distance from the black hole, the gravitational field of the external distribution of matter is assumed to be sufficiently weak to be adequately described by the (first) post-Newtonian approximation to general relativity. There, the black hole is treated as a monopole contribution to the total gravitational field. There exists an overlap in the domains of validity of each description, and the black-hole and post-Newtonian metrics are matched in the overlap. The matching procedure produces the equations of motion for the black hole and the gravito-electric and gravito-magnetic tidal fields acting on the black hole. We first calculate the equations of motion and tidal fields by making no assumptions regarding the nature of the post-Newtonian environment; this could contain a continuous distribution of matter or any number of condensed bodies. We next specialize our discussion to a situation in which the black hole is a member of a post-Newtonian two-body system. As an application of our results, we examine the geometry of the deformed event horizon and calculate the tidal heating of the black hole, the rate at which it acquires mass as a result of its tidal interaction with the companion body.

Stephanne Taylor; Eric Poisson

2008-09-11T23:59:59.000Z

177

Revealing the escape mechanism of three-dimensional orbits in a tidally limited star cluster  

E-Print Network [OSTI]

The aim of this work is to explore the escape process of three-dimensional orbits in a star cluster rotating around its parent galaxy in a circular orbit. The gravitational field of the cluster is represented by a smooth, spherically symmetric Plummer potential, while the tidal approximation was used to model the steady tidal field of the galaxy. We conduct a thorough numerical analysis distinguishing between regular and chaotic orbits as well as between trapped and escaping orbits, considering only unbounded motion for several energy levels. It is of particular interest to locate the escape basins towards the two exit channels and relate them with the corresponding escape times of the orbits. For this purpose, we split our investigation into three cases depending on the initial value of the $z$ coordinate which was used for launching the stars. The most noticeable finding is that the majority of stars initiated very close to the primary $(x,y)$ plane move in chaotic orbits and they remain trapped for vast time intervals, while orbits with relatively high values of $z_0$ on the other hand, form well-defined basins of escape. It was also observed, that for energy levels close to the critical escape energy the escape rates of orbits are large, while for much higher values of energy most of the orbits have low escape periods or they escape immediately to infinity. We hope our outcomes to be useful for a further understanding of the dissolution process and the escape mechanism in open star clusters.

Euaggelos E. Zotos

2014-11-18T23:59:59.000Z

178

TIDAL DISRUPTION FLARES: THE ACCRETION DISK PHASE  

SciTech Connect (OSTI)

The evolution of an accretion disk, formed as a consequence of the disruption of a star by a black hole, is followed by solving numerically hydrodynamic equations. The present investigation aims to study the dependence of resulting light curves on dynamical and physical properties of such a transient disk during its existence. One of the main results derived from our simulations is that blackbody fits of X-ray data tend to overestimate the true mean disk temperature. In fact, the temperature derived from blackbody fits should be identified with the color X-ray temperature rather than the average value derived from the true temperature distribution along the disk. The time interval between the beginning of the circularization of the bound debris and the beginning of the accretion process by the black hole is determined by the viscous (or accretion) timescale, which also fixes the rising part of the resulting light curve. The luminosity peak coincides with the beginning of matter accretion by the black hole and the late evolution of the light curve depends on the evolution of the debris fallback rate. Peak bolometric luminosities are in the range 10{sup 45}-10{sup 46} erg s{sup -1}, whereas peak luminosities in soft X-rays (0.2-2.0 keV) are typically one order of magnitude lower. The typical timescale derived from our preferred models for the flare luminosity to decay by two orders of magnitude is about 3-4 yr. Predicted soft X-ray light curves reproduce quite well data on galaxies in which a variable X-ray emission possibly related to a tidal event was detected. In the cases of NGC 3599 and IC 3599, data are reproduced well by models defined by a black hole with mass {approx}10{sup 7} M{sub sun} and a disrupted star of about 1 solar mass. The X-ray variation observed in XMMSL1 is consistent with a model defined by a black hole with mass {approx}3 x 10{sup 6} M{sub sun} and a disrupted star of 1 solar mass, while that observed in the galaxy situated in the cluster A1689 is consistent with a model including a black hole of {approx}10{sup 7} M{sub sun} and a disrupted star of {approx}0.5 M{sub sun}.

Montesinos Armijo, Matias; De Freitas Pacheco, Jose A. [Observatoire de la Cote d'Azur, Laboratoire Cassiopee, Universite de Nice Sophia-Antipolis Bd de l'Observatoire, BP 4229, 06304 Nice Cedex 4 (France)

2011-08-01T23:59:59.000Z

179

A Conceptual Restoration Plan and Tidal Hydrology Assessment for Reconnecting Spring Branch Creek to Suisun Marsh, Solano County, California  

E-Print Network [OSTI]

Marsh. UC Berkeley LA 222 Hydrology Term Paper. Orr, M. , S.Restoration Plan and Tidal Hydrology Assessment forthree consists of a tidal hydrology analysis before and

Olson, Jessica J.

2012-01-01T23:59:59.000Z

180

Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current,...

Note: This page contains sample records for the topic "tidal energy project-ferc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

TIDAL HEATING OF EXTRASOLAR PLANETS Brian Jackson, Richard Greenberg, and Rory Barnes  

E-Print Network [OSTI]

TIDAL HEATING OF EXTRASOLAR PLANETS Brian Jackson, Richard Greenberg, and Rory Barnes Lunar and gas cleared away, and as the orbits evolved there was substantial tidal heating within the planets. The tidal heating history of each planet may have contributed significantly to the thermal budget governing

Barnes, Rory

182

MHK Projects/Avalon Tidal | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAK Technologies Jump to: navigation,5.59°InformationJersey

183

MHK Projects/Lubec Narrows Tidal | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAK Technologies JumpLuangwa Zambia Project < MHK Projects

184

MHK Projects/Margate Tidal | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAK Technologies JumpLuangwa Zambia ProjectManchac PointThorofare

185

MHK Projects/Maurice River Tidal | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAK Technologies JumpLuangwa Zambia ProjectManchacMarmet

186

MHK Projects/Orient Point Tidal | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IE < MHK Projects JumpInformationWave

187

MHK Projects/Pennamaquan Tidal Power Plant | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IE < MHK Projects3.362° Project

188

MHK Projects/Tidal Generation Ltd EMEC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IE < MHK ProjectRose BendReach DistrictLtd. is

189

MHK Projects/Turnagain Arm Tidal | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IE < MHK ProjectRose BendReach

190

MHK Technologies/Jiangxia Tidal Power Station | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IE <AirWECHelix <IWAVE < MHK

191

MHK Technologies/Sabella subsea tidal turbine | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IEOWC < MHKPulse-Stream 120Sabella Riversubsea

192

MHK Technologies/Scotrenewables Tidal Turbine SRTT | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IEOWC < MHKPulse-Stream 120SabellaInformation

193

MHK Technologies/Tidal Lagoons | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IEOWC <SurgeWEC

194

MHK Technologies/Tidal Sails | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IEOWC <SurgeWECSails < MHK Technologies Jump

195

MHK Technologies/Tidal Stream Turbine | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IEOWC <SurgeWECSails < MHK Technologies

196

MHK Technologies/Tidal Stream | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IEOWC <SurgeWECSails < MHK

197

MHK Technologies/Tidal Turbine | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IEOWC <SurgeWECSails < MHKAquascientific

198

MHK Technologies/TidalStar | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IEOWC <SurgeWECSails <

199

New methodologies and scenarios for evaluating tidal current energy potential   

E-Print Network [OSTI]

Transition towards a low carbon economy raises concerns of loss of security of supply with high penetrations of renewable generation displacing traditional fossil fuel based generation. While wind and wave resources are ...

Sankaran Iyer, Abhinaya

2012-06-25T23:59:59.000Z

200

Reservoir response to tidal and barometric effects | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access(CaliforniaProduction (RECP) in

Note: This page contains sample records for the topic "tidal energy project-ferc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

12th Annual Wave & Tidal 2015 | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE Blog Posts of 2014 Year in Review:Summer-0 Resources Daysof12th

202

Tidal Stream Power Web GIS Tool | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump JumpAl., 1978) |Thrall,Tibagi Energetica JumpGeneratorsWeb

203

LOFT as a discovery machine for jetted Tidal Disruption Events  

E-Print Network [OSTI]

This is a White Paper in support of the mission concept of the Large Observatory for X-ray Timing (LOFT), proposed as a medium-sized ESA mission. We discuss the potential of LOFT for the study of jetted tidal disruption events. For a summary, we refer to the paper.

Rossi, E M; Fender, R; Jonker, P; Komossa, S; Paragi, Z; Prandoni, I; Zampieri, L

2015-01-01T23:59:59.000Z

204

Heartbeat Stars and the Ringing of Tidal Pulsations Kelly Hambleton  

E-Print Network [OSTI]

Heartbeat Stars and the Ringing of Tidal Pulsations Kelly Hambleton Andrej Prsa, Don Kurtz, Jim Fuller, Susan Thompson University of Central Lancashire kmhambleton@uclan.ac.uk March 27, 2014 Kelly 3 Summary Conclusions Future Work Kelly Hambleton (UCLan) Heartbeat Stars March 27, 2014 2 / 33 #12

Â?umer, Slobodan

205

Tidal Stage Variability of Fecal Coliform and Chlorophyll a  

E-Print Network [OSTI]

leachates, leaking sewer mains, wild and do- mestic animal wastes, and runo. However, the inter- action environmental hazards, to enter an estuarine environment characterized by high variability regarding temperature to understanding both the basic ecology of tidal creeks and the applied aspects of sampling protocols and pollutant

Mallin, Michael

206

UBC Social Ecological Economic Development Studies (SEEDS) Student Report An Investigation into Renewable Energy Sources For Use in the New SUB  

E-Print Network [OSTI]

in the new Student Union Building. The types of energy that were examined are wind energy, biogas, tidal......................................................................................2 2.2 Biogas

207

Sandia National Laboratories: East River Tidal Strait  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandiaConsortium for AdvancedEnergy StorageEarth

208

Renewable Energy Sales and Use Tax Exemption  

Broader source: Energy.gov [DOE]

In Washington State, there is a 75% exemption from tax for the sales of equipment used to generate electricity using fuel cells, wind, sun, biomass energy, tidal or wave energy, geothermal,...

209

Tapping the Earth's geothermal energy  

Broader source: Energy.gov [DOE]

During this oil crisis, we've been searching for alternatives like wind, solar and even tidal power. But on Tuesday, officials from the federal government were in Lake County checking out a natural wonder -- an underground source of energy.

210

U.S. DEPARTMENT OF ENERGY EERE PROJECT M~"AGEMENT ...  

Broader source: Energy.gov (indexed) [DOE]

Miller Miller & Hanson Page 1 of2 STATE: MA PROJECT TITLE: Environmental Effects of Sediment Transport Alteration and Impacts on Protected Species: Edgartown Tidal Energy Project...

211

ULTRAVIOLET/OPTICAL/INFRARED COLOR SEQUENCES ALONG THE TIDAL RING/ARM OF Arp 107  

SciTech Connect (OSTI)

We construct UV/optical/IR spectral energy distributions for 29 star forming regions in the interacting galaxy Arp 107, using GALEX UV, Sloan Digitized Sky Survey optical, and Spitzer infrared images. In an earlier study utilizing only the Spitzer data, we found a sequence in the mid-infrared colors of star-forming knots along the strong tidal arm in this system. In the current study, we find sequences in the UV/optical colors along the tidal arm that mirror those in the mid-infrared, with blue UV/optical colors found for regions that are red in the mid-infrared, and vice versa. With single-burst stellar population synthesis models, we find a sequence in the average stellar age along this arm, with younger stars preferentially located further out in the arm. Models that allow two populations of different ages and dust attenuations suggest that there may be both a young component and an older population present in these regions. Thus the observed color sequences may be better interpreted as a sequence in the relative proportion of young and old stars along the arm, with a larger fraction of young stars near the end. Comparison with star forming regions in other interacting galaxies shows that the Arp 107 regions are relatively quiescent, with less intense star formation than in many other systems.

Lapham, Ryen C.; Smith, Beverly J. [Department of Physics and Astronomy, East Tennessee State University, Johnson City, TN 37614 (United States); Struck, Curtis, E-mail: rlapham@nmt.edu, E-mail: smithbj@etsu.edu, E-mail: curt@iastate.edu [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States)

2013-05-15T23:59:59.000Z

212

A Dark Year for Tidal Disruption Events  

E-Print Network [OSTI]

The disruption of a main-sequence star by a supermassive black hole results in the initial production of an extended debris stream that winds repeatedly around the black hole, producing a complex three-dimensional figure that may self-intersect. Both analytical work and simulations have shown that typical encounters generate streams that are extremely thin. In this paper we show that this implies that even small relativistic precessions attributed to black hole spin can induce deflections that prevent the stream from self-intersecting even after many windings. Additionally, hydrodynamical simulations have demonstrated that energy is deposited very slowly via hydrodynamic processes alone, resulting in the liberation of very little gravitational binding energy in the absence of stream-stream collisions. This naturally leads to a "dark period" in which the flare is not observable for some time, persisting for up to a dozen orbital periods of the most bound material, which translates to years for disruptions arou...

Guillochon, James

2015-01-01T23:59:59.000Z

213

Tides and Tidal Capture in post-Main Sequence Binaries: A Period Gap for Planets Around White Dwarfs  

E-Print Network [OSTI]

The presence of a close, low-mass companion is thought to play a substantial and perhaps necessary role in shaping post-Asymptotic Giant Branch and Planetary Nebula outflows. During post-main-sequence evolution, radial expansion of the primary star, accompanied by intense winds, can significantly alter the binary orbit via tidal dissipation and mass loss. To investigate this, we couple stellar evolution models (from the zero-age main-sequence through the end of the post-main sequence) to a tidal evolution code. The binary's fate is determined by the initial masses of the primary and the companion, the initial orbit (taken to be circular), and the Reimer's mass-loss parameter. For a range of these parameters, we determine whether the orbit expands due to mass loss or decays due to tidal torques. Where a common envelope phase (CEP) ensues, we estimate the final orbital separation based on the energy required to unbind the envelope. These calculations predict a period gap for planetary companions to white dwarfs...

Nordhaus, J; Ibgui, L; Goodman, J; Burrows, A

2010-01-01T23:59:59.000Z

214

Spatial motion of the Magellanic Clouds. Tidal models ruled out?  

E-Print Network [OSTI]

Recently, Kallivayalil et al. derived new values of the proper motion for the Large and Small Magellanic Clouds (LMC and SMC, respectively). The spatial velocities of both Clouds are unexpectedly higher than their previous values resulting from agreement between the available theoretical models of the Magellanic System and the observations of neutral hydrogen (HI) associated with the LMC and the SMC. Such proper motion estimates are likely to be at odds with the scenarios for creation of the large-scale structures in the Magellanic System suggested so far. We investigated this hypothesis for the pure tidal models, as they were the first ones devised to explain the evolution of the Magellanic System, and the tidal stripping is intrinsically involved in every model assuming the gravitational interaction. The parameter space for the Milky Way (MW)-LMC-SMC interaction was analyzed by a robust search algorithm (genetic algorithm) combined with a fast restricted N-body model of the interaction. Our method extended ...

Ruzicka, Adam; Palous, Jan

2008-01-01T23:59:59.000Z

215

Investigation of tidal power, Cobscook Bay, Maine. Environmental Appendix  

SciTech Connect (OSTI)

This report presents information regarding existing terrestrial and marine resources and water quality conditions in the Cobscook Bay area. A preliminary assessment of impacts from a tidal power project is also presented and data gaps are identified. Reports contained in the appendix were prepared by the U.S. Fish and Wildlife Service, the National Marine Fisheries Service, the University of Maine at Orino, School of Forestry Resources and the U.S. Army Corps of Engineers.

Not Available

1980-08-01T23:59:59.000Z

216

Extremely Close-In Giant Planets from Tidal Capture  

E-Print Network [OSTI]

Planets that form around stars born in dense stellar environments are subject to dynamical perturbations from other stars in the system. These perturbations will strip outer planets, forming a population of free-floating planets, some of which will be tidally captured before they evaporate from the system. For systems with velocity dispersion of 1 km/s, Jupiter-mass planets can be captured into orbits with periods of 0.1-0.4 days, which are generally stable over a Gyr, assuming quadratic suppression of eddy viscosity in the convective zones of the host stars. Under this assumption, and that most stars form several massive planets at separations 5-50 AU, about 0.03% of stars in rich, mature open clusters should have extremely close-in tidally captured planets. Approximately 0.005% of field stars should also have such planets, which may be found in field searches for transiting planets. Detection of a population of tidally-captured planets would indicate that most stars formed in stellar clusters. In globular clusters, the fraction of stars with tidally-captured planets rises to 0.1% -- in conflict with the null result of the transit search in 47 Tuc. This implies that, if the quadratic prescription for viscosity suppression is correct, planetary formation was inhibited in 47 Tuc: less than one planet of Jupiter-mass or greater (bound or free-floating) formed per cluster star. Less than half of the stars formed solar-system analogs. Brown dwarfs can also be captured in tight orbits; the lack of such companions in 47 Tuc in turn implies an upper limit on the initial frequency of brown dwarfs in this cluster. However, this upper limit is extremely sensitive to the highly uncertain timescale for orbital decay, and thus it is difficult to draw robust conclusions about the low-mass end of the mass function in 47 Tuc.

B. Scott Gaudi

2003-07-15T23:59:59.000Z

217

Tidal Capture of Stars by Intermediate-Mass Black Holes  

E-Print Network [OSTI]

Recent X-ray observations and theoretical modelling have made it plausible that some ultraluminous X-ray sources (ULX) are powered by intermediate-mass black holes (IMBHs). N-body simulations have also shown that runaway merging of stars in dense star clusters is a way to form IMBHs. In the present paper we have performed N-body simulations of young clusters such as MGG-11 of M82 in which IMBHs form through runaway merging. We took into account the effect of tidal heating of stars by the IMBH to study the tidal capture and disruption of stars by IMBHs. Our results show that the IMBHs have a high chance of capturing stars through tidal heating within a few core relaxation times and we find that 1/3 of all runs contain a ULX within the age limits of MGG-11, a result consistent with the fact that a ULX is found in this galaxy. Our results strengthen the case for some ULX being powered by intermediate-mass black holes.

H. Baumgardt; C. Hopman; S. Portegies Zwart; J. Makino

2005-11-27T23:59:59.000Z

218

On the tidal interaction of massive extra-solar planets on highly eccentric orbit  

E-Print Network [OSTI]

In this paper we develop a theory of disturbances induced by the stellar tidal field in a fully convective slowly rotating planet orbiting on a highly eccentric orbit around a central star. We show that there are two contributions to the mode energy and angular momentum gain due to impulsive tidal interaction: a) 'the quasi-static' contribution which requires dissipative processes operating in the planet; b) the dynamical contribution associated with excitation of modes of oscillation. These contributions are obtained self-consistently from a single set of the governing equations. We calculate a critical 'equilibrium' value of angular velocity of the planet \\Omega_{crit} determined by the condition that action of the dynamical tides does not alter the angular velocity at that rotation rate. We show that this can be much larger than the corresponding rate associated with quasi-static tides and that at this angular velocity, the rate of energy exchange is minimised. We also investigate the conditions for the stochastic increase in oscillation energy that may occur if many periastron passages are considered. We make some simple estimates of time scale of circularization of initially eccentric orbit due to tides, using a realistic model of the planet, for orbits withperiods after circularization typical of those observed for extra-solar planets P_{obs} > 3days. We find that dynamic tides could have produced a very large decrease of the semi-major axis of a planet with mass of the order of the Jupiter mass M_{J} and final periods P_{obs} < 4.5days on a time-scale < a few Gyrs. We also discuss several unresolved issues in the context of the scenario of the orbit circularization due to dynamic tides.

P. B. Ivanov; J. C. B. Papaloizou

2003-10-09T23:59:59.000Z

219

Tidal Heating of Terrestrial Extra-Solar Planets and Implications for their Habitability  

E-Print Network [OSTI]

The tidal heating of hypothetical rocky (or terrestrial) extra-solar planets spans a wide range of values depending on stellar masses and initial orbits. Tidal heating may be sufficiently large (in many cases, in excess of radiogenic heating) and long-lived to drive plate tectonics, similar to the Earth's, which may enhance the planet's habitability. In other cases, excessive tidal heating may result in Io-like planets with violent volcanism, probably rendering them unsuitable for life. On water-rich planets, tidal heating may generate sub-surface oceans analogous to Europa's with similar prospects for habitability. Tidal heating may enhance the outgassing of volatiles, contributing to the formation and replenishment of a planet's atmosphere. To address these issues, we model the tidal heating and evolution of hypothetical extra-solar terrestrial planets. The results presented here constrain the orbital and physical properties required for planets to be habitable.

Brian Jackson; Rory Barnes; Richard Greenberg

2008-08-20T23:59:59.000Z

220

Assessment of Strike of Adult Killer Whales by an OpenHydro Tidal Turbine Blade  

SciTech Connect (OSTI)

Report to DOE on an analysis to determine the effects of a potential impact to an endangered whale from tidal turbines proposed for deployment in Puget Sound.

Carlson, Thomas J.; Elster, Jennifer L.; Jones, Mark E.; Watson, Bruce E.; Copping, Andrea E.; Watkins, Michael L.; Jepsen, Richard A.; Metzinger, Kurt

2012-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "tidal energy project-ferc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

The Effect of Tidal Inflation Instability on the Mass and Dynamical Evolution of Extrasolar Planets with Ultra-Short Periods  

E-Print Network [OSTI]

We investigate the possibility of substantial inflation of short-period Jupiter-mass planets, as a result of their internal tidal dissipation associated with the synchronization and circularization of their orbits. We employ the simplest prescription based on an equilibrium model with a constant lag angle for all components of the tide. We show that for young Jupiter-mass planets, with a period less than 3 days, an initial radius about 2 Jupiter radii, and an orbital eccentricity greater than 0.2, the energy dissipated during the circularization of their orbits is sufficiently intense and protracted to inflate their sizes up to their Roche radii.

Pin-Gao Gu; Doug Lin; Peter Bodenheimer

2003-03-17T23:59:59.000Z

222

Tidal Waves -- a non-adiabatic microscopic description of the yrast states in near-spherical nuclei  

E-Print Network [OSTI]

The yrast states of nuclei that are spherical or weakly deformed in their ground states are described as quadrupole waves running over the nuclear surface, which we call "tidal waves". The energies and E2 transition probabilities of the yrast states in nuclides with $Z$= 44, 46, 48 and $N=56, ~58,..., 66$ are calculated by means of the cranking model in a microscopic way. The nonlinear response of the nucleonic orbitals results in a strong coupling between shape and single particle degrees of freedom.

S. Frauendorf; Y. Gu; J. Sun

2011-09-08T23:59:59.000Z

223

Protocols for the Equitable Assessment of Marine Energy Converters   

E-Print Network [OSTI]

This book contains the suite of protocols for the equitable evaluation of marine energy converters (based on either tidal or wave energy) produced by the EquiMar consortium led by the University of Edinburgh. These protocols ...

Ingram, David; Smith, George; Bittencourt-Ferreira, Claudio; Smith, Helen

224

Distribution and movement of domestic rainbow trout, Oncorhynchus mykiss, during pulsed flows in the South Fork American River, California  

E-Print Network [OSTI]

Upper American River Hydroelectric Project, FERC Project No.California, Chili Bar Hydroelectric Project, FERC Projectthe night, as part of hydroelectric power generation by the

2010-01-01T23:59:59.000Z

225

Updated flood frequencies and a canal breach on the upper Klamath River  

E-Print Network [OSTI]

2004. “Klamath Hydroelectric Project (FERC Project No.Agencies at the Klamath Hydroelectric Project, FERC Project2005) Figure 2. The Klamath Hydroelectric Project Source:

Fahey, Dan

2006-01-01T23:59:59.000Z

226

A Tidal Hydrology Assessment for Reconnecting Spring Branch Creek to Suisun Marsh, Solano County CA: Predicting the Impact to the Federally Listed Plant Soft Bird's Beak  

E-Print Network [OSTI]

this study. Changes in hydrology are not the only potentialA Tidal Hydrology Assessment for Reconnecting Spring Branchmay change the tidal hydrology and impact the area occupied

Olson, Jessica J.

2011-01-01T23:59:59.000Z

227

Cross-shore sediment transport and the equilibrium morphology of mudflats under tidal currents  

E-Print Network [OSTI]

Cross-shore sediment transport and the equilibrium morphology of mudflats under tidal currents D of suspended sediment transport under cross-shore tidal currents on an intertidal mudflat. We employ a Lagrangian formulation to obtain periodic solutions for the sediment transport over idealized bathymetries

Hogg, Andrew

228

Intracranial Pressure Variation Associated with Changes in End-Tidal CO2  

E-Print Network [OSTI]

Intracranial Pressure Variation Associated with Changes in End-Tidal CO2 Sunghan Kim, James Mc that the partial pressure of arterial CO2 (PaCO2) can affect cerebral blood flow, cerebral blood volume, and therefore ICP. The end-tidal CO2 (ETCO2) is usually monitored by clinicians as a proxy for PaCO2. We show

229

Mercury Dynamics in a San Francisco Estuary Tidal Wetland: Assessing Dynamics Using In Situ Measurements  

E-Print Network [OSTI]

Mercury Dynamics in a San Francisco Estuary Tidal Wetland: Assessing Dynamics Using In Situ the tidally driven exchange of mercury (Hg) between the waters of the San Francisco estuary and Browns Island, respectively--together predicted 94 % of the observed variability in measured total mercury concentra- tion

Boss, Emmanuel S.

230

The Magellanic Bridge: The Nearest Purely Tidal Stellar Population  

E-Print Network [OSTI]

We report on observations of the stellar populations in twelve fields spanning the region between the Magellanic Clouds, made with the Mosaic-II camera on the 4-meter telescope at the Cerro-Tololo Inter-American Observatory. The two main goals of the observations are to characterize the young stellar population (which presumably formed in situ in the Bridge and therefore represents the nearest stellar population formed from tidal debris), and to search for an older stellar component (which would have been stripped from either Cloud as stars, by the same tidal forces which formed the gaseous Bridge). We determine the star-formation history of the young inter-Cloud population, which provides a constraint on the timing of the gravitational interaction which formed the Bridge. We do not detect an older stellar population belonging to the Bridge in any of our fields, implying that the material that was stripped from the Clouds to form the Magellanic Bridge was very nearly a pure gas.

Jason Harris

2006-12-04T23:59:59.000Z

231

Dynamical resonance locking in tidally interacting binary systems  

E-Print Network [OSTI]

We examine the dynamics of resonance locking in detached, tidally interacting binary systems. In a resonance lock, a given stellar or planetary mode is trapped in a highly resonant state for an extended period of time, during which the spin and orbital frequencies vary in concert to maintain the resonance. This phenomenon is qualitatively similar to resonance capture in planetary dynamics. We show that resonance locks can accelerate the course of tidal evolution in eccentric systems and also efficiently couple spin and orbital evolution in circular binaries. Previous analyses of resonance locking have not treated the mode amplitude as a fully dynamical variable, but rather assumed the adiabatic (i.e. Lorentzian) approximation valid only in the limit of relatively strong mode damping. We relax this approximation, analytically derive conditions under which the fixed point associated with resonance locking is stable, and further check these analytic results using numerical integrations of the coupled mode, spin, and orbital evolution equations. These show that resonance locking can sometimes take the form of complex limit cycles or even chaotic trajectories. We provide simple analytic formulae that define the binary and mode parameter regimes in which resonance locks of some kind occur (stable, limit cycle, or chaotic). We briefly discuss the astrophysical implications of our results for white dwarf and neutron star binaries as well as eccentric stellar binaries.

Joshua Burkart; Eliot Quataert; Phil Arras

2014-10-25T23:59:59.000Z

232

Tidal deformation of a slowly rotating material body. I. External metric  

E-Print Network [OSTI]

We construct the external metric of a slowly rotating, tidally deformed material body in general relativity. The tidal forces acting on the body are assumed to be weak and to vary slowly with time, and the metric is obtained as a perturbation of a background metric that describes the external geometry of an isolated, slowly rotating body. The tidal environment is generic and characterized by two symmetric-tracefree tidal moments E_{ab} and B_{ab}, and the body is characterized by its mass M, its radius R, and a dimensionless angular-momentum vector \\chi^a environment requires the introduction of four new quantities, which we designate as rotational-tidal Love numbers. All these Love numbers are gauge ...

Landry, Philippe

2015-01-01T23:59:59.000Z

233

Tidal Residual Eddies and their Effect on Water Exchange in Puget Sound  

SciTech Connect (OSTI)

Tidal residual eddies are one of the important hydrodynamic features in tidally dominant estuaries and coastal bays, and they could have significant effects on water exchange in a tidal system. This paper presents a modeling study of tides and tidal residual eddies in Puget Sound, a tidally dominant fjord-like estuary in the Pacific Northwest coast, using a three-dimensional finite-volume coastal ocean model. Mechanisms of vorticity generation and asymmetric distribution patterns around an island/headland were analyzed using the dynamic vorticity transfer approach and numerical experiments. Model results of Puget Sound show that a number of large twin tidal residual eddies exist in the Admiralty Inlet because of the presence of major headlands in the inlet. Simulated residual vorticities near the major headlands indicate that the clockwise tidal residual eddy (negative vorticity) is generally stronger than the anticlockwise eddy (positive vorticity) because of the effect of Coriolis force. The effect of tidal residual eddies on water exchange in Puget Sound and its sub-basins were evaluated by simulations of dye transport. It was found that the strong transverse variability of residual currents in the Admiralty Inlet results in a dominant seaward transport along the eastern shore and a dominant landward transport along the western shore of the Inlet. A similar transport pattern in Hood Canal is caused by the presence of tidal residual eddies near the entrance of the canal. Model results show that tidal residual currents in Whidbey Basin are small in comparison to other sub-basins. A large clockwise residual circulation is formed around Vashon Island near entrance of South Sound, which can potentially constrain the water exchange between the Central Basin and South Sound.

Yang, Zhaoqing; Wang, Taiping

2013-08-30T23:59:59.000Z

234

ECE 465: Realistic Sustainable Energy -Energy use in transportation,  

E-Print Network [OSTI]

- Wave and tidal power generation possibilities - Role of heat pipes in modern HVAC systems - RecyclingECE 465: Realistic Sustainable Energy - Energy use in transportation, HVAC and electric generation is detailed in units of kW-Hr - Alternative Energy sources for fuels and electric generation are covered

Schumacher, Russ

235

Renewable Energy in Rangan Banerjee  

E-Print Network [OSTI]

#12;Renewable Energy Options Wind Solar Small Hydro Biomass Tidal Energy Wave Energy Ocean Thermal Power 376 70% 2306 Biomass Gasifier 69 70% 423 Bagasse Cogeneration 540 60% 2838 Small Hydro 1826 50 #12;2005 data : 2006 Update Martinot #12;Source:Martinot(2006) #12;#12;#12;Small Hydro Power

Banerjee, Rangan

236

Tidal Downsizing model. II. Planet-metallicity correlations  

E-Print Network [OSTI]

Core Accretion (CA), the de-facto accepted theory of planet formation, requires formation of massive solid cores as a prerequisite for assembly of gas giant planets. The observed metallicity correlations of exoplanets are puzzling in the context of CA. While gas giant planets are found preferentially around metal-rich host stars, planets smaller than Neptune orbit hosts with a wide range of metallicities. We propose an alternative interpretation of these observations in the framework of a recently developed planet formation hypothesis called Tidal Downsizing (TD). We perform population synthesis calculations based on TD, and find that the connection between the populations of the gas giant and the smaller solid-core dominated planets is non linear and not even monotonic. While gas giant planets formed in the simulations in the inner few AU region follow a strong positive correlation with the host star metallicity, the smaller planets do not. The simulated population of these smaller planets shows a shallow pe...

Nayakshin, Sergei

2015-01-01T23:59:59.000Z

237

TIDAL DISSIPATION COMPARED TO SEISMIC DISSIPATION: IN SMALL BODIES, EARTHS, AND SUPER-EARTHS  

SciTech Connect (OSTI)

While the seismic quality factor and phase lag are defined solely by the bulk properties of the mantle, their tidal counterparts are determined by both the bulk properties and the size effect (self-gravitation of a body as a whole). For a qualitative estimate, we model the body with a homogeneous sphere, and express the tidal phase lag through the lag in a sample of material. Although simplistic, our model is sufficient to understand that the lags are not identical. The difference emerges because self-gravitation pulls the tidal bulge down. At low frequencies, this reduces strain and the damping rate, making tidal damping less efficient in larger objects. At higher frequencies, competition between self-gravitation and rheology becomes more complex, though for sufficiently large super-Earths the same rule applies: the larger the planet, the weaker the tidal dissipation in it. Being negligible for small terrestrial planets and moons, the difference between the seismic and tidal lagging (and likewise between the seismic and tidal damping) becomes very considerable for large exoplanets (super-Earths). In those, it is much lower than what one might expect from using a seismic quality factor. The tidal damping rate deviates from the seismic damping rate, especially in the zero-frequency limit, and this difference takes place for bodies of any size. So the equal in magnitude but opposite in sign tidal torques, exerted on one another by the primary and the secondary, have their orbital averages going smoothly through zero as the secondary crosses the synchronous orbit. We describe the mantle rheology with the Andrade model, allowing it to lean toward the Maxwell model at the lowest frequencies. To implement this additional flexibility, we reformulate the Andrade model by endowing it with a free parameter {zeta} which is the ratio of the anelastic timescale to the viscoelastic Maxwell time of the mantle. Some uncertainty in this parameter's frequency dependence does not influence our principal conclusions.

Efroimsky, Michael, E-mail: michael.efroimsky@usno.navy.mil [U.S. Naval Observatory, Washington, DC 20392 (United States)

2012-02-20T23:59:59.000Z

238

Multiscale heterogeneity characterization of tidal channel, tidal delta and foreshore facies, Almond Formation outcrops, Rock Springs uplift, Wyoming  

SciTech Connect (OSTI)

In order to accurately predict fluid flow within a reservoir, variability in the rock properties at all scales relevant to the specific depositional environment needs to be taken into account. The present work describes rock variability at scales from hundreds of meters (facies level) to millimeters (laminae) based on outcrop studies of the Almond Formation. Tidal channel, tidal delta and foreshore facies were sampled on the eastern flank of the Rock Springs uplift, southeast of Rock Springs, Wyoming. The Almond Fm. was deposited as part of a mesotidal Upper Cretaceous transgressive systems tract within the greater Green River Basin. Bedding style, lithology, lateral extent of beds of bedsets, bed thickness, amount and distribution of depositional clay matrix, bioturbation and grain sorting provide controls on sandstone properties that may vary more than an order of magnitude within and between depositional facies in outcrops of the Almond Formation. These features can be mapped on the scale of an outcrop. The products of diagenesis such as the relative timing of carbonate cement, scale of cemented zones, continuity of cemented zones, selectively leached framework grains, lateral variability of compaction of sedimentary rock fragments, and the resultant pore structure play an equally important, although less predictable role in determining rock property heterogeneity. A knowledge of the spatial distribution of the products of diagenesis such as calcite cement or compaction is critical to modeling variation even within a single facies in the Almond Fin. because diagenesis can enhance or reduce primary (depositional) rock property heterogeneity. Application of outcrop heterogeneity models to the subsurface is greatly hindered by differences in diagenesis between the two settings. The measurements upon which this study is based were performed both on drilled outcrop plugs and on blocks.

Schatzinger, R.A.; Tomutsa, L. [BDM Petroleum Technologies, Bartlesville, OK (United States)

1997-08-01T23:59:59.000Z

239

Second Proof Work, Power, and Energy  

E-Print Network [OSTI]

) energy sources, such as solar energy, wind, water flows, ocean and tidal waves, and biomassSecond Proof Work, Power, and Energy M. KOSTIC Northern Illinois University DeKalb, Illinois, United States 1. Basic Concepts 2. Forms, Classifications, and Conservation of Energy 3. Work

Kostic, Milivoje M.

240

Analytical Model of Tidal Distortion and Dissipation for a Giant Planet with a Viscoelastic Core  

E-Print Network [OSTI]

We present analytical expressions for the tidal Love numbers of a giant planet with a solid core and a fluid envelope. We model the core as a uniform, incompressible, elastic solid, and the envelope as a non-viscous fluid satisfying the $n=1$ polytropic equation of state. We discuss how the Love numbers depend on the size, density, and shear modulus of the core. We then model the core as a viscoelastic Maxwell solid and compute the tidal dissipation rate in the planet as characterized by the imaginary part of the Love number $k_2$. Our results improve upon existing calculations based on planetary models with a solid core and a uniform ($n=0$) envelope. Our analytical expressions for the Love numbers can be applied to study tidal distortion and viscoelastic dissipation of giant planets with solid cores of various rheological properties, and our general method can be extended to study tidal distortion/dissipation of super-earths.

Storch, Natalia I

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "tidal energy project-ferc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Division of Water, Parts 660-661: Tidal Wetlands (New York)  

Broader source: Energy.gov [DOE]

These regulations require permits for any activity which directly or indirectly may have a significant adverse effect on the existing condition of any tidal wetland, including but not limited to...

242

E-Print Network 3.0 - arterial-end tidal carbon Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

kWh range. Typical cost ranges include: Tidal generation - between 16 and 38pkWh Offshore wind - between 15... account of multiple factors for each generation type...

243

Groundwater response to dual tidal fluctuations in a peninsula or an elongated island  

E-Print Network [OSTI]

1 , Hongbin Zhan2,3, *, and Zhonghua Tang1 1 School of Environmental Studies, China University of the tidal fluctuations. This is called quasi-steady state condition *Correspondence to: Hongbin Zhan

Zhan, Hongbin

244

Hydraulic properties of an artificial tidal inlet through a Texas barrier beach  

E-Print Network [OSTI]

. These littoral barriers are depositional structures continually changed by waves, tidal currents, and winds. Often the only connections between the open ocean and the bays are small restricted channels through the barrier beaches. These chan- nels, or tidal... too large on wide barrier beaches to permit sufficient scour. Breakthroughs also have been found to be caused by gradual buildups of water in the bays, followed by wind shifts to an off. ? shore direction (27). This tends to be supported by Price...

Prather, Stanley Harold

1972-01-01T23:59:59.000Z

245

Long Term Spectral Evolution of Tidal Disruption Candidates Selected by Strong Coronal Lines  

E-Print Network [OSTI]

We present results of follow-up optical spectroscopic observations of seven rare, extreme coronal line emitting galaxies reported by Wang et al. (2012) with Multi-Mirror Telescope (MMT). Large variations in coronal lines are found in four objects, making them strong candidates of tidal disruption events (TDE). For the four TDE candidates, all the coronal lines with ionization status higher than [Fe VII] disappear within 5-9 years. The [Fe VII] faded by a factor of about five in one object (J0952+2143) within 4 years, whereas emerged in other two without them previously. A strong increment in the [O III] flux is observed, shifting the line ratios towards the loci of active galactic nucleus on the BPT diagrams. Surprisingly, we detect a non-canonical [O III]5007/[O III]4959 2 in two objects, indicating a large column density of O$^{2+}$ and thus probably optical thick gas. This also requires a very large ionization parameter and relatively soft ionizing spectral energy distribution (e.g. blackbody with $T < ...

Yang, Chenwei; Ferland, Gary; Yuan, Weimin; Zhou, Hongyan; Jiang, Peng

2013-01-01T23:59:59.000Z

246

Water gate array for current flow or tidal movement pneumatic harnessing system  

DOE Patents [OSTI]

The invention, which provides a system for harnessing power from current flow or tidal movement in a body of water, comprises first and second hydro-pneumatic chambers each having ingress and egress below the water surface near the river or ocean floor and water gates operative to open or seal the ports to the passage of water. In an exemplary embodiment, the gates are sychronized by shafts so that the ingress ports of each chamber are connected to the egress ports of each other chamber. Thus, one set of gates is closed, while the other is open, thereby allowing water to flow into one chamber and build air pressure therein and allowing water to flow out of the other chamber and create a partial vacuum therein. A pipe connects the chambers, and an air turbine harnesses the air movement within the pipe. When water levels are equilibrated, the open set of gates is closed by a counterweight, and the other set is allowed to open by natural force of the water differential. The water gates may be comprised of a plurality of louvers which are ganged for simultaneous opening and closing. The system is designed to operate with air turbines or other pneumatic devices. Its design minimizes construction cost and environmental impact, yet provides a clean renewable energy source.

Gorlov, Alexander M. (Brookline, MA)

1991-01-01T23:59:59.000Z

247

SKA as a powerful hunter of jetted Tidal Disruption Events  

E-Print Network [OSTI]

Observational consequences of the tidal disruption of stars by supermassive black holes (SMBHs) can enable us to discover quiescent SMBHs and constrain their mass function. Moreover, observing jetted TDEs (from previously non-active galaxies) provides us with a new means of studying the early phases of jet formation and evolution in an otherwise "pristine" environment. Although several (tens) TDEs have been discovered since 1999, only two jetted TDEs have been recently discovered in hard X-rays, and only one, Swift J1644+57, has a precise localization which further supports the TDE interpretation. These events alone are not sufficient to address those science issues, which require a substantial increase of the current sample. Despite the way they were discovered, the highest discovery potential for {\\em jetted} TDEs is not held by current and up-coming X-ray instruments, which will yield only a few to a few tens events per year. In fact, the best strategy is to use the Square Kilometer Array to detect TDEs an...

Donnarumma, I; Fender, R; Komossa, S; Paragi, Z; Van Velzen, S; Prandoni, I

2015-01-01T23:59:59.000Z

248

Arctic energy resources  

SciTech Connect (OSTI)

The Arctic is a vulnerable region with immense resources. These range from the replenishable (tidal energy, hydroelectricity, wood, biomass, fish, game, and geothermal energy) to the non-replenishable (coal, minerals, natural gas, hydrocarbon deposits). But the problems of exploiting such resources without damaging the environment of the Arctic are formidable. In this book all aspects are considered: occurrence of energy resources; the technological and economic aspects of exploration and exploitation; the environmental and social impact of technological development.

Rey, L.

1983-01-01T23:59:59.000Z

249

MHK Projects/Guemes Channel Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAK Technologies Jump to:BW2Greenville Bend Project < MHKGuemes

250

MHK Projects/Icy Passage Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAK Technologies Jump to:BW2Greenville BendHope FieldHuffmanGenIcy

251

MHK Projects/Kachemak Bay Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAK Technologies Jump to:BW2Greenville

252

MHK Projects/Long Island Sound Tidal Energy Project | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAK Technologies Jump

253

MHK Projects/Portsmouth Area Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IE < MHK Projects3.362°du Bois <

254

MHK Projects/San Francisco Bay Tidal Energy Project | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IE < MHK Project City Tunica0,LA

255

MHK Projects/San Juan Channel Tidal Energy Project | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IE < MHK Project City Tunica0,LAInformation

256

MHK Projects/Shelter Island Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IE < MHK Project CitySantona WaveSeatricityCity

257

MHK Projects/Spieden Channel Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IE < MHK Project CitySantonaSimmesport

258

MHK Projects/Tacoma Narrows Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IE < MHK ProjectRose Bend <TWEC Project

259

Predictive Power Control of Doubly-Fed Induction Generator for Wave Energy Converters  

E-Print Network [OSTI]

energy resource plan. An extremely abundant and promising source of energy exists in oceans of the following categories: wave energy, marine and tidal current energy, ocean thermal energy, energy fromPredictive Power Control of Doubly-Fed Induction Generator for Wave Energy Converters M.S. Lagoun1

Paris-Sud XI, Université de

260

THE INFLUENCE OF ORBITAL ECCENTRICITY ON TIDAL RADII OF STAR CLUSTERS  

SciTech Connect (OSTI)

We have performed N-body simulations of star clusters orbiting in a spherically symmetric smooth galactic potential. The model clusters cover a range of initial half-mass radii and orbital eccentricities in order to test the historical assumption that the tidal radius of a cluster is imposed at perigalacticon. The traditional assumption for globular clusters is that since the internal relaxation time is larger than its orbital period, the cluster is tidally stripped at perigalacticon. Instead, our simulations show that a cluster with an eccentric orbit does not need to fully relax in order to expand. After a perigalactic pass, a cluster recaptures previously unbound stars, and the tidal shock at perigalacticon has the effect of energizing inner region stars to larger orbits. Therefore, instead of the limiting radius being imposed at perigalacticon, it more nearly traces the instantaneous tidal radius of the cluster at any point in the orbit. We present a numerical correction factor to theoretical tidal radii calculated at perigalacticon which takes into consideration both the orbital eccentricity and current orbital phase of the cluster.

Webb, Jeremy J.; Harris, William E.; Sills, Alison [Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1 (Canada)] [Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1 (Canada); Hurley, Jarrod R., E-mail: webbjj@mcmaster.ca [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218, VIC 3122 (Australia)

2013-02-20T23:59:59.000Z

Note: This page contains sample records for the topic "tidal energy project-ferc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

CONSTRAINTS ON THE LIFETIMES OF DISKS RESULTING FROM TIDALLY DESTROYED ROCKY PLANETARY BODIES  

SciTech Connect (OSTI)

Spitzer IRAC observations of 15 metal-polluted white dwarfs reveal infrared excesses in the spectral energy distributions of HE 0110-5630, GD 61, and HE 1349-2305. All three of these stars have helium-dominated atmospheres, and their infrared emissions are consistent with warm dust produced by the tidal destruction of (minor) planetary bodies. This study brings the number of metal-polluted, helium and hydrogen atmosphere white dwarfs surveyed with IRAC to 53 and 38, respectively. It also nearly doubles the number of metal-polluted helium-rich white dwarfs found to have closely orbiting dust by Spitzer. From the increased statistics for both atmospheric types with circumstellar dust, we derive a typical disk lifetime of log [t{sub disk}(yr)] = 5.6 {+-} 1.1 (ranging from 3 Multiplication-Sign 10{sup 4} to 5 Multiplication-Sign 10{sup 6} yr). This assumes a relatively constant rate of accretion over the timescale where dust persists, which is uncertain. We find that the fraction of highly metal-polluted helium-rich white dwarfs that have an infrared excess detected by Spitzer is only 23%, compared to 48% for metal-polluted hydrogen-rich white dwarfs, and we conclude from this difference that the typical lifetime of dusty disks is somewhat shorter than the diffusion timescales of helium-rich white dwarf. We also find evidence for higher time-averaged accretion rates onto helium-rich stars compared to the instantaneous accretion rates onto hydrogen-rich stars; this is an indication that our picture of evolved star-planetary system interactions is incomplete. We discuss some speculative scenarios that can explain the observations.

Girven, J.; Gaensicke, B. T.; Marsh, T. R. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Brinkworth, C. S.; Hoard, D. W. [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Farihi, J. [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom); Koester, D., E-mail: j.m.girven@warwick.ac.uk [Institut fuer Theoretische Physik und Astrophysik, University of Kiel, 24098 Kiel (Germany)

2012-04-20T23:59:59.000Z

262

A model-dye comparison experiment in the tidal mixing front zone on the southern flank of Georges Bank  

E-Print Network [OSTI]

A model-dye comparison experiment in the tidal mixing front zone on the southern flank of Georges; revised 8 June 2007; accepted 30 October 2007; published 9 February 2008. [1] A process-oriented model-dye the observed movement of dye across the tidal mixing front on the southern flank of Georges Bank during 22

Chen, Changsheng

263

A comparison of measured and modeled tidal currents in the Gulf of Maine  

E-Print Network [OSTI]

to the persistence of the clockwise circulation around the Bank (Garrett er al. , 1978). Loder (1980) has shown theoretically that rectification of the strong semidiurnal tidal current across the steeply sloping northern edge of Georges Bank can produce a... astronomical forcing (Garrett, 1972; Brown and Moody, 1987). Garrett (1972) estimated the natural period of the Gulf of Maine-Bay of Fundy basin to be 13. 3M. 4 hours, which is near the frequency of the semidiurnal tidal constituents. Since the M2 semidiurnal...

Cook, Michael S

1990-01-01T23:59:59.000Z

264

Tidal hydraulics of San Luis Pass, Texas: a field and numerical investigation  

E-Print Network [OSTI]

TIDAL HYDPAULICS OF SAN LUIS PASS, TEXAS: A FIELD AND VBKRICAL INSTIGATION A Thesis by SCOTT JEROME MORTON Submitted to the Graduate College of Texas A(II University in partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE August 1980 i&Iajor Subject: Ocean Engineering TIDAL HyDRAULICS OF SAN LUIS PASS, TEXAS: A FIELD AND M&IERICAL INVESTIGATION A Thesis by SCOTI' JEROIIE MORTON Approved as to style and content by: (C?airman of Committee) (Member) /member...

Morton, Scott Jerome

1980-01-01T23:59:59.000Z

265

M. Fakoor-Pakdaman Laboratory for Alternative Energy  

E-Print Network [OSTI]

transient in sustainable energy applications include the variable thermal load on (i) ther- mal solar panels in thermal energy storage (TES) systems; (ii) power electronics of solar/wind/tidal energy conversion systems and environmental conditions, the power electronics of the sustainable energy conversion systems, TES systems

Bahrami, Majid

266

www.kostic.niu.edu Energy Future Outlook  

E-Print Network [OSTI]

Population in millions Time in history #12;3 www.kostic.niu.edu Earth Energy Balance: · All energy to Earth surface is 99.98 % solar, 0.02% geothermal, and 0.002% tidal-gravitational. · About 13 TW world energy/EIA, International Petroleum Statistics Reports, April 1999; DOE/EIA 0520, International Energy Annual 1997, DOE

Kostic, Milivoje M.

267

Parameterizing energy conversion on rough topography  

E-Print Network [OSTI]

Parameterizing energy conversion on rough topography using bottom pressure sensors to measure form and mixing U0 Form drag pressure Tidal energy conversion Form drag causes: - internal wave generation - eddy Sound, WA Point Three Tree Previous work McCabe et al., 2006 > Measured the internal form drag

Warner, Sally

268

A numerical study of horizontal dispersion in a macro tidal basin  

E-Print Network [OSTI]

in Cobscook Bay, a macro tidal basin, is simulated using the three-dimensional, nonlinear, finite element regimes in different parts of Cobscook Bay. It is found that the effective Lagrangian dispersion ocean model, QUODDY_dry. Numerical particles are released from various transects in the bay at different

Maine, University of

269

Numerical study of the diapycnal flow through a tidal front with passive tracers  

E-Print Network [OSTI]

. This qualitatively agrees with a recent field experiment using a dye tracer on Georges Bank. Additional experiments are performed to investigate the sensitivity of the tracer dispersion to the tidal phase and the location, the previous studies indicated Eulerian cross-front mean circu- lation maybe is in a multiple-cell structure

Dong, Changming "Charles"

270

Role of ocean heat transport in climates of tidally locked exoplanets around M dwarf stars  

E-Print Network [OSTI]

stellar radiation, ocean heat transport can even lead to complete deglaciation of the nightside. OurRole of ocean heat transport in climates of tidally locked exoplanets around M dwarf stars Yongyun Hu1 and Jun Yang Laboratory for Climate and Atmosphere­Ocean Studies, Department of Atmospheric

Hu, Yongyun

271

PHYSIOLOGICAL PERFORMANCE OF INTERTIDAL CORALLINE ALGAE DURING A SIMULATED TIDAL CYCLE1  

E-Print Network [OSTI]

PHYSIOLOGICAL PERFORMANCE OF INTERTIDAL CORALLINE ALGAE DURING A SIMULATED TIDAL CYCLE1 Rebecca J, Lobban and Harrison 1997, Helmuth and Hofmann 2001). During high tide, intertidal algae are underwater algae may be emerged and exposed to increased light stress, elevated air tem- peratures, and increased

Martone, Patrick T.

272

Gravity and tectonic patterns of Mercury: Effect of tidal deformation, spin-orbit resonance, nonzero  

E-Print Network [OSTI]

Gravity and tectonic patterns of Mercury: Effect of tidal deformation, spin-orbit resonance of spin-orbit resonance, nonzero eccentricity, despinning, and reorientation on Mercury's gravity and tectonic pattern. Large variations of the gravity and shape coefficients from the synchronous rotation

Nimmo, Francis

273

Covariation of coastal water temperature and microbial pollution at interannual to tidal periods  

E-Print Network [OSTI]

Covariation of coastal water temperature and microbial pollution at interannual to tidal periods, California, USA Daniel B. Lluch-Cota Centro de Investigaciones Biologicas del Noroeste, La Paz, Mexico-period cooling are coincident with elevated levels of microbial pollution in the surf zone. This relationship can

Winant, Clinton D.

274

Nitrogen Cycling and Ecosystem Exchanges in a Virginia Tidal Freshwater Marsh  

E-Print Network [OSTI]

loading due to watershed development and urbanization. We present a process-based mass balance model of N habitats for juvenile fishes, and buffering storm and flood waters (Odum et al. 1984; Mitsch and Gosselink dominated tidal freshwater marsh in the York River estuary, Virginia. The model, which was based

Neubauer, Scott C.

275

Final Report for Sea-level Rise Response Modeling for San Francisco Bay Estuary Tidal  

E-Print Network [OSTI]

i Final Report for Sea-level Rise Response Modeling for San Francisco Bay Estuary Tidal Marshes Refuge in northern San Francisco Bay, California. #12;iii Final Report for Sea-level Rise Response)................................................................... 7 Sea-level rise scenario model inputs

Fleskes, Joe

276

A CLASS OF ECCENTRIC BINARIES WITH DYNAMIC TIDAL DISTORTIONS DISCOVERED WITH KEPLER  

SciTech Connect (OSTI)

We have discovered a class of eccentric binary systems within the Kepler data archive that have dynamic tidal distortions and tidally induced pulsations. Each has a uniquely shaped light curve that is characterized by periodic brightening or variability at timescales of 4-20 days, frequently accompanied by shorter period oscillations. We can explain the dominant features of the entire class with orbitally varying tidal forces that occur in close, eccentric binary systems. The large variety of light curve shapes arises from viewing systems at different angles. This hypothesis is supported by spectroscopic radial velocity measurements for five systems, each showing evidence of being in an eccentric binary system. Prior to the discovery of these 17 new systems, only four stars, where KOI-54 is the best example, were known to have evidence of these dynamic tides and tidally induced oscillations. We perform preliminary fits to the light curves and radial velocity data, present the overall properties of this class, and discuss the work required to accurately model these systems.

Thompson, Susan E.; Barclay, Thomas; Howell, Steve B.; Still, Martin; Ibrahim, Khadeejah A. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Everett, Mark [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Mullally, Fergal; Rowe, Jason; Christiansen, Jessie L.; Twicken, Joseph D.; Clarke, Bruce D. [SETI Institute, 189 Bernardo Avenue, Suite 100, Mountain View, CA 94043 (United States); Kurtz, Donald W.; Hambleton, Kelly, E-mail: susan.e.thompson@nasa.gov [Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE (United Kingdom)

2012-07-01T23:59:59.000Z

277

Dissolved oxygen stratification in two micro-tidal partially-mixed estuaries  

E-Print Network [OSTI]

Dissolved oxygen stratification in two micro-tidal partially-mixed estuaries Jing Lin a,*, Lian Xie online 21 August 2006 Abstract The controlling physical factors for vertical oxygen stratification that vertical stratification of dissolved oxygen (DO) concentration can be explained by the extended Hansen

Mallin, Michael

278

Modeling the dynamics of tidally-interacting binary neutron stars up to merger  

E-Print Network [OSTI]

The data analysis of the gravitational wave signals emitted by coalescing neutron star binaries requires the availability of an accurate analytical representation of the dynamics and waveforms of these systems. We propose an effective-one-body (EOB) model that describes the general relativistic dynamics of neutron star binaries from the early inspiral up to merger. Our EOB model incorporates an enhanced attractive tidal potential motivated by recent analytical advances in the post-Newtonian and gravitational self-force description of relativistic tidal interactions. No fitting parameters are introduced for the description of tidal interaction in the late, strong-field dynamics. We compare the model energetics and the gravitational wave phasing with new high-resolution multi-orbit numerical relativity simulations of equal-mass configurations with different equations of state. We find agreement within the uncertainty of the numerical data for all configurations. Our model is the first semi-analytical model which captures the tidal amplification effects close to merger. It thereby provides the most accurate analytical representation of binary neutron star dynamics and waveforms currently available.

Sebastiano Bernuzzi; Alessandro Nagar; Tim Dietrich; Thibault Damour

2015-02-18T23:59:59.000Z

279

Asymmetry of Tidal Plume Fronts in an Eastern Boundary Current Regime  

E-Print Network [OSTI]

water mass. This vorticity controls the transition of the tidal plume 2 #12;front to a subcritical state bulge, which in turn is embedded in far-field plume and coastal waters. Because of the mixing caused on its upwind or northern side) and marks a transition from supercritical to subcritical flow for 6

Jay, David

280

Asymmetry of Columbia River tidal plume fronts David A. Jay a,  

E-Print Network [OSTI]

or northern side and mark a transition from supercritical to subcritical flow for up to 12 h after high water plume water mass. This vorticitycontrols the transition of the tidal plume front to a subcritical state plume may overlie newly upwelled waters, these fronts can mix nutrients into the plume. Symmetry would

Hickey, Barbara

Note: This page contains sample records for the topic "tidal energy project-ferc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Hydrodynamic Modeling, Optimization and Performance Assessment for Ducted and Non-ducted Tidal Turbines  

E-Print Network [OSTI]

Turbines by Michael Robert Shives B.Eng., Carleton University, 2008 A Thesis Submitted in Partial Hydrodynamic Modeling, Optimization and Performance Assessment for Ducted and Non-ducted Tidal Turbines examines methods for designing and analyzing kinetic turbines based on blade element momentum (BEM) theory

Victoria, University of

282

Hydrodynamic Modeling, Optimization and Performance Assessment for Ducted and Non-ducted Tidal Turbines  

E-Print Network [OSTI]

Turbines by Michael Robert Shives B.Eng., Carleton University, 2008 A Dissertation Submitted in Partial Hydrodynamic Modeling, Optimization and Performance Assessment for Ducted and Non-ducted Tidal Turbines) #12;iii ABSTRACT This thesis examines methods for designing and analyzing kinetic turbines based

Pedersen, Tom

283

An analytical solution of groundwater response to tidal fluctuation in a leaky confined aquifer  

E-Print Network [OSTI]

of China. 1. Introduction In most coastal areas, groundwater and seawater are in con- stant communicationAn analytical solution of groundwater response to tidal fluctuation in a leaky confined aquifer Jiu of the solution presented in this paper. This solution is based on a conceptual model under the assumption

Jiao, Jiu Jimmy

284

Assessing Soil and Hydrologic Properties for the Successful Creation of Non-Tidal Wetlands  

E-Print Network [OSTI]

1 Assessing Soil and Hydrologic Properties for the Successful Creation of Non-Tidal Wetlands W. Lee, VA 23529-0276 rwhittec@odu.edu Introduction Federal and state wetlands protection regulations require the mitigation of impacts to jurisdictional wetlands via avoidance and minimization of damage whenever possible

Darby, Dennis

285

Refinement and validation of a multi-level assessment method for Mid-Atlantic tidal wetlands  

E-Print Network [OSTI]

Refinement and validation of a multi-level assessment method for Mid-Atlantic tidal wetlands (EPA of wetland resources across the Mid-Atlantic physiographic region, efforts are currently underway in a number of states, most notably Delaware, Maryland, Pennsylvania and Virginia, to develop and implement wetland

286

Inventory and Ventilation Efficiency of Nonnative and Native Phragmites australis (Common Reed) in Tidal  

E-Print Network [OSTI]

NOTE Inventory and Ventilation Efficiency of Nonnative and Native Phragmites australis (Common Reed: 3 July 2012 # Coastal and Estuarine Research Federation 2012 Abstract Nonnative Phragmites is among the most in- vasive plants in the U.S. Atlantic coast tidal wetlands, whereas the native Phragmites has

287

Pool spacing, channel morphology, and the restoration of tidal forested wetlands of the Columbia River, U.S.A.  

SciTech Connect (OSTI)

Tidal forested wetlands have sustained substantial areal losses, and restoration practitioners lack a description of many ecosystem structures associated with these late-successional systems in which surface water is a significant controlling factor on the flora and fauna. The roles of large woody debris in terrestrial and riverine ecosystems have been well described compared to functions in tidal areas. This study documents the role of large wood in forcing channel morphology in Picea-sitchensis (Sitka spruce) dominated freshwater tidal wetlands in the floodplain of the Columbia River, U.S.A. near the Pacific coast. The average pool spacing documented in channel surveys of three freshwater tidal forested wetlands near Grays Bay were 2.2 ± 1.3, 2.3 ± 1.2, and 2.5 ± 1.5. There were significantly greater numbers of pools on tidal forested wetland channels than on a nearby restoration site. On the basis of pool spacing and the observed sequences of log jams and pools, the tidal forested wetland channels were classified consistent with a forced step-pool class. Tidal systems, with bidirectional flow, have not previously been classified in this way. The classification provides a useful basis for restoration project design and planning in historically forested tidal freshwater areas, particularly in regard to the use of large wood in restoration actions and the development of pool habitats for aquatic species. Significant modifications by beaver on these sites warrant further investigation to explore the interactions between these animals and restoration actions affecting hydraulics and channel structure in tidal areas.

Diefenderfer, Heida L.; Montgomery, David R.

2008-10-09T23:59:59.000Z

288

A Predictive power control of Doubly Fed Induction Generator for Wave Energy Converter  

E-Print Network [OSTI]

's excessive energy demand. An extremely abundant and promising source of energy exists in oceans. Currently be included in one of the following categories: wave energy, marine and tidal current energy, ocean thermalA Predictive power control of Doubly Fed Induction Generator for Wave Energy Converter in Irregular

Brest, Université de

289

1. Department, Course Number, Title ORE 677, Marine Renewable Energy  

E-Print Network [OSTI]

1. Department, Course Number, Title ORE 677, Marine Renewable Energy 2. Designation as a Required. Renewable Energy from the Ocean ­ a Guide to OTEC, W.H. Avery and C. Wu, Oxford University Press, 1994. 2 and tidal resources. 3. An understanding of the role of ocean renewable energy within the current worldwide

Frandsen, Jannette B.

290

Assessing the Effects of Marine and Hydrokinetic Energy Development on Marine and Estuarine Resources  

SciTech Connect (OSTI)

The world’s oceans and estuaries offer an enormous potential to meet the nation’s growing demand for energy. The use of marine and hydrokinetic (MHK) devices to harness the power of wave and tidal energy could contribute significantly toward meeting federal- and state-mandated renewable energy goals while supplying a substantial amount of clean energy to coastal communities. Locations along the eastern and western coasts of the United States between 40° and 70° north latitude are ideal for MHK deployment, and recent estimates of energy potential for the coasts of Washington, Oregon, and California suggest that up to 25 gigawatts could be generated from wave and tidal devices in these areas. Because energy derived from wave and tidal devices is highly predictable, their inclusion in our energy portfolio could help balance available sources of energy production, including hydroelectric, coal, nuclear, wind, solar, geothermal, and others.

Ward, Jeffrey A.; Schultz, Irvin R.; Woodruff, Dana L.; Roesijadi, Guritno; Copping, Andrea E.

2010-07-30T23:59:59.000Z

291

Solar Energy Education. Renewable energy: a background text. [Includes glossary  

SciTech Connect (OSTI)

Some of the most common forms of renewable energy are presented in this textbook for students. The topics include solar energy, wind power hydroelectric power, biomass ocean thermal energy, and tidal and geothermal energy. The main emphasis of the text is on the sun and the solar energy that it yields. Discussions on the sun's composition and the relationship between the earth, sun and atmosphere are provided. Insolation, active and passive solar systems, and solar collectors are the subtopics included under solar energy. (BCS)

Not Available

1985-01-01T23:59:59.000Z

292

NREL Uses Computing Power to Investigate Tidal Power (Fact Sheet)  

SciTech Connect (OSTI)

Until now, wind turbine controls that reduce the impacts of wind gusts and turbulence were always reactive - responding to the wind rather than anticipating it. But with today's laser-based sensors that measure wind speed ahead of the turbine, researchers at the National Renewable Energy Laboratory (NREL) and their industry partners are developing more intelligent controls. The world's first field tests of these controls are currently underway at the National Wind Technology Center (NWTC) at NREL, with plans for future commercialization.

Not Available

2012-10-01T23:59:59.000Z

293

EVOLUTION OF PLANETARY ORBITS WITH STELLAR MASS LOSS AND TIDAL DISSIPATION  

SciTech Connect (OSTI)

Intermediate mass stars and stellar remnants often host planets, and these dynamical systems evolve because of mass loss and tides. This paper considers the combined action of stellar mass loss and tidal dissipation on planetary orbits in order to determine the conditions required for planetary survival. Stellar mass loss is included using a so-called Jeans model, described by a dimensionless mass loss rate ? and an index ?. We use an analogous prescription to model tidal effects, described here by a dimensionless dissipation rate ? and two indices (q, p). The initial conditions are determined by the starting value of angular momentum parameter ?{sub 0} (equivalently, the initial eccentricity) and the phase ? of the orbit. Within the context of this model, we derive an analytic formula for the critical dissipation rate ?, which marks the boundary between orbits that spiral outward due to stellar mass loss and those that spiral inward due to tidal dissipation. This analytic result ? = ?(?, ?, q, p, ?{sub 0}, ?) is essentially exact for initially circular orbits and holds to within an accuracy of ?50% over the entire multi-dimensional parameter space, where the individual parameters vary by several orders of magnitude. For stars that experience mass loss, the stellar radius often displays quasi-periodic variations, which produce corresponding variations in tidal forcing; we generalize the calculation to include such pulsations using a semi-analytic treatment that holds to the same accuracy as the non-pulsating case. These results can be used in many applications, e.g., to predict/constrain properties of planetary systems orbiting white dwarfs.

Adams, Fred C. [Physics Department, University of Michigan, Ann Arbor, MI 48109 (United States)] [Physics Department, University of Michigan, Ann Arbor, MI 48109 (United States); Bloch, Anthony M. [Math Department, University of Michigan, Ann Arbor, MI 48109 (United States)] [Math Department, University of Michigan, Ann Arbor, MI 48109 (United States)

2013-11-10T23:59:59.000Z

294

Structural Design of a Horizontal-Axis Tidal Current Turbine Composite Blade  

SciTech Connect (OSTI)

This paper describes the structural design of a tidal composite blade. The structural design is preceded by two steps: hydrodynamic design and determination of extreme loads. The hydrodynamic design provides the chord and twist distributions along the blade length that result in optimal performance of the tidal turbine over its lifetime. The extreme loads, i.e. the extreme flap and edgewise loads that the blade would likely encounter over its lifetime, are associated with extreme tidal flow conditions and are obtained using a computational fluid dynamics (CFD) software. Given the blade external shape and the extreme loads, we use a laminate-theory-based structural design to determine the optimal layout of composite laminas such that the ultimate-strength and buckling-resistance criteria are satisfied at all points in the blade. The structural design approach allows for arbitrary specification of the chord, twist, and airfoil geometry along the blade and an arbitrary number of shear webs. In addition, certain fabrication criteria are imposed, for example, each composite laminate must be an integral multiple of its constituent ply thickness. In the present effort, the structural design uses only static extreme loads; dynamic-loads-based fatigue design will be addressed in the future. Following the blade design, we compute the distributed structural properties, i.e. flap stiffness, edgewise stiffness, torsion stiffness, mass, moments of inertia, elastic-axis offset, and center-of-mass offset along the blade. Such properties are required by hydro-elastic codes to model the tidal current turbine and to perform modal, stability, loads, and response analyses.

Bir, G. S.; Lawson, M. J.; Li, Y.

2011-10-01T23:59:59.000Z

295

Tidal salt marshes of the southeast Atlantic Coast: A community profile  

SciTech Connect (OSTI)

This report is part of a series of community profiles on the ecology of wetland and marine communities. This particular profile considers tidal marshes of the southeastern Atlantic coast, from North Carolina south to northern Florida. Alone among the earth's ecosystems, coastal communities are subjected to a bidirectional flooding sometimes occurring twice each day; this flooding affects successional development, species composition, stability, and productivity. In the tidally influenced salt marsh, salinity ranges from less than 1 ppt to that of seawater. Dominant plant species include cordgrasses (Spartina alterniflora and S. cynosuroides), black needlerush (Juncus romerianus), and salt marsh bulrush (Scirpus robustus). Both terrestrail and aquatic animals occur in salt marshes and include herons, egrets ospreys (Pandion haliaetus), bald eagles (Haliaeetus leucocephalus), alligators (Alligator Mississippiensis), manatees (Trichecus manatus), oysters, mussels, and fiddler crabs. Currently, the only significant direct commercial use of the tidal salt marshes is by crabbers seeking the blue crab Callinectes sapidus, but the marshes are quite important recreationally, aesthetically, and educationally. 151 refs., 45 figs., 6 tabs.

Wiegert, R.G.; Freeman, B.J.

1990-09-01T23:59:59.000Z

296

Formation of Hot Planets by a combination of planet scattering, tidal circularization, and Kozai mechanism  

E-Print Network [OSTI]

We have investigated the formation of close-in extrasolar giant planets through a coupling effect of mutual scattering, Kozai mechanism, and tidal circularization, by orbital integrations. We have carried out orbital integrations of three planets with Jupiter-mass, directly including the effect of tidal circularization. We have found that in about 30% runs close-in planets are formed, which is much higher than suggested by previous studies. We have found that Kozai mechanism by outer planets is responsible for the formation of close-in planets. During the three-planet orbital crossing, the Kozai excitation is repeated and the eccentricity is often increased secularly to values close enough to unity for tidal circularization to transform the inner planet to a close-in planet. Since a moderate eccentricity can remain for the close-in planet, this mechanism may account for the observed close-in planets with moderate eccentricities and without nearby secondary planets. Since these planets also remain a broad range of orbital inclinations (even retrograde ones), the contribution of this process would be clarified by more observations of Rossiter-McLaughlin effects for transiting planets.

M. Nagasawa; S. Ida; T. Bessho

2008-01-09T23:59:59.000Z

297

A Low-order Model of Water Vapor, Clouds, and Thermal Emission for Tidally Locked Terrestrial Planets  

E-Print Network [OSTI]

In the spirit of minimal modeling of complex systems, we develop an idealized two-column model to investigate the climate of tidally locked terrestrial planets with Earth-like atmospheres in the habitable zone of M-dwarf stars. The model is able to approximate the fundamental features of the climate obtained from three-dimensional (3D) atmospheric general circulation model (GCM) simulations. One important reason for the two-column model's success is that it reproduces the high cloud albedo of the GCM simulations, which reduces the planet's temperature and delays the onset of a runaway greenhouse state. The two-column model also clearly illustrates a secondary mechanism for determining the climate: the nightside acts as a ``radiator fin'' through which infrared energy can be lost to space easily. This radiator fin is maintained by a temperature inversion and dry air on the nightside, and plays a similar role to the subtropics on modern Earth. Since 1D radiative-convective models cannot capture the effects of t...

Yang, Jun

2014-01-01T23:59:59.000Z

298

Water Power Events | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

HydroVision International July 14, 2015 8:00AM PDT to July 17, 2015 5:00PM PDT European Wave and Tidal Energy Conference September 6, 2015 8:00AM CEST to September 11, 2015 5:00PM...

299

JULY 2005 1 An estimate of tidal energy lost to turbulence at the Hawaiian Ridge  

E-Print Network [OSTI]

of 2) spring-neap variation in dissipation was observed. The observations also suggest a kinematic-integrated dissipation (D), such that D E1±0.5 at sites along the ridge. This kinematic relationship is supported by combining a simple knife-edge model to estimate internal tide generation with wave-wave interaction time

Klymak, Jody M.

300

MHK Projects/Half Moon Cove Tidal Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAK Technologies Jump to:BW2Greenville Bend Project <Nearest

Note: This page contains sample records for the topic "tidal energy project-ferc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

MHK Projects/Hammerfest Strom UK Tidal Stream | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAK Technologies Jump to:BW2Greenville Bend Project

302

MHK Projects/Homeowner Tidal Power Elec Gen | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAK Technologies Jump to:BW2Greenville Bend

303

MHK Projects/Town of Wiscasset Tidal Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IE < MHK ProjectRose BendReach DistrictLtd. is9

304

MHK Projects/Ward s Island Tidal Power Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IE < MHK ProjectRoseInformationWEC 1 <s

305

MHK Projects/Willapa Bay Tidal Power Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IE < MHKInformation Breton

306

MHK Technologies/MORILD 2 Floating Tidal Power System | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IE <AirWECHelix <IWAVE

307

MHK Technologies/Sihwa tidal barrage power plant | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IEOWC < MHKPulse-StreamwaveBarrage < MHKSihwa

308

MHK Technologies/Uldolmok Pilot Tidal Current Power Plant | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IEOWC <SurgeWECSailsOWC.png TechnologyUFCAP

309

Assessment of Energy Production Potential from Tidal Streams in the United  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombinedDepartment2015Services »of(BENEFIT)Wind ProgramArubaBStates |

310

Earth Tidal Analysis At Raft River Geothermal Area (1980) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It is classified asThis article is a stub. You canAdvantageOregon

311

Earth Tidal Analysis At Raft River Geothermal Area (1982) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It is classified asThis article is a stub. You

312

Earth Tidal Analysis At Raft River Geothermal Area (1984) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It is classified asThis article is a stub. YouInformation 4) Jump to:

313

Earth Tidal Analysis At Salton Sea Geothermal Area (1980) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It is classified asThis article is a stub. YouInformation 4) Jump

314

Earth Tidal Analysis At East Mesa Geothermal Area (1984) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revision hasESE Alcohol Jump to:EXARGeothermal

315

24 DTU International Energy Report 2013 Stochastic power generation  

E-Print Network [OSTI]

that their power output can be curtailed if necessary. Renewable energy sources such as wind, solar, wave and tidal are not dispatchable. Indeed, wind farms and solar power plants can be scheduled and controlled only to the extent of energy storage, which can compen- sate for the limited predictability of wind and solar power. Changing

Paris-Sud XI, Université de

316

TIDAL TAIL EJECTION AS A SIGNATURE OF TYPE Ia SUPERNOVAE FROM WHITE DWARF MERGERS  

SciTech Connect (OSTI)

The merger of two white dwarfs may be preceded by the ejection of some mass in ''tidal tails,'' creating a circumstellar medium around the system. We consider the variety of observational signatures from this material, which depend on the lag time between the start of the merger and the ultimate explosion (assuming one occurs) of the system in a Type Ia supernova (SN Ia). If the time lag is fairly short, then the interaction of the supernova ejecta with the tails could lead to detectable shock emission at radio, optical, and/or X-ray wavelengths. At somewhat later times, the tails produce relatively broad NaID absorption lines with velocity widths of the order of the white dwarf escape speed ({approx}1000 km s{sup -1}). That none of these signatures have been detected in normal SNe Ia constrains the lag time to be either very short ({approx}< 100 s) or fairly long ({approx}> 100 yr). If the tails have expanded and cooled over timescales {approx}10{sup 4} yr, then they could be observable through narrow NaID and Ca II H and K absorption lines in the spectra, which are seen in some fraction of SNe Ia. Using a combination of three-dimensional and one-dimensional hydrodynamical codes, we model the mass loss from tidal interactions in binary systems, and the subsequent interactions with the interstellar medium, which produce a slow-moving, dense shell of gas. We synthesize NaID line profiles by ray casting through this shell, and show that in some circumstances tidal tails could be responsible for narrow absorptions similar to those observed.

Raskin, Cody; Kasen, Daniel [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

2013-07-20T23:59:59.000Z

317

Nuclear Fusion (Nuclear Fusion ( )) as Clean Energy Source for Mankindas Clean Energy Source for Mankind  

E-Print Network [OSTI]

from renewables (wind power, solar power, hydropower, geothermal, ocean wave & tidal power, biomass energy resources (coal 43%, natural gas 19%, oil 6%, cogeneration 7%); ~21% by nuclear fission power the Moon. #12;ADVANTAGES OF FUSION · Abundant Supply of Fuel (deuterium and tritium) · No Risk of Nuclear

Chen, Yang-Yuan

318

Do flares in Sagittarius A* reflect the last stage of tidal capture?  

E-Print Network [OSTI]

In recent years the case for the presence of 3-4 10^6 M_sun black hole in our Galactic Center has gained strength from results of stellar dynamics observations and from the detection of several rapid X-ray and IR flares observed in the Sagittarius A* from 2000 to 2004. Here we explore the idea that such flares are produced when the central black hole tidally captures and disrupts a small body - e.g. a comet or an asteroid.

A. Cadez; M. Calvani; A. Gomboc; U. Kostic

2007-09-03T23:59:59.000Z

319

Analysis of tidal current observations over the northeastern shelf of the Gulf of Mexico  

E-Print Network [OSTI]

ANALYSIS OF TIDAL CURRENT OBSERVATIONS OVER THE NORTHEASTERN SHELF OF THE GULF OF MEXICO A Thesis By DONALD LEE DURHAM Submitted to the Graduate College of the Texas A&M University in partial fulfillment of the requirements for the degree... by Project 286 of the Texas A&M Research Foundation; this project is sponsored by the Office of Naval Research under Contract Nonr 2119(04). The Texas State Fellowship which was granted to me by the Graduate College of Texas A&M University...

Durham, Donald L

1967-01-01T23:59:59.000Z

320

Energy  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$ EGcG ENERGY MEASUREMENTS;/:4,4 (; . 1.;Suire

Note: This page contains sample records for the topic "tidal energy project-ferc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Renewable Energy Law, Regulation and the Environment, MAST 667016, Fall 2013 Now known as  

E-Print Network [OSTI]

and marine renewable (wave, current and tidal). The respective roles of federal government agencies is an introduction to the regulation of renewable energy electricity generation, transmission and integration such as the Federal Energy Regulatory Commission (FERC) and the Bureau of Ocean Energy Management (BOEM), the state

Delaware, University of

322

A Synthesis of Environmental and Plant Community Data for Tidal Wetland Restoration Planning in the Lower Columbia River and Estuary  

SciTech Connect (OSTI)

This report reanalyzes and synthesizes previously existing environmental and plant community data collected by PNNL at 55 tidal wetlands and 3 newly restored sites in the lower Columbia River and estuary (LCRE) between 2005 and 2011. Whereas data were originally collected for various research or monitoring objectives of five studies, the intent of this report is to provide only information that will have direct utility in planning tidal wetland restoration projects. Therefore, for this report, all tidal wetland data on plants and the physical environment, which were originally developed and reported by separate studies, were tabulated and reanalyzed as a whole. The geographic scope of the data collected in this report is from Bonneville Lock and Dam to the mouth of the Columbia River

Diefenderfer, Heida L.; Borde, Amy B.; Cullinan, Valerie I.

2013-12-01T23:59:59.000Z

323

GRB060218 AS A TIDAL DISRUPTION OF A WHITE DWARF BY AN INTERMEDIATE-MASS BLACK HOLE  

SciTech Connect (OSTI)

The highly unusual pair of a gamma-ray burst (GRB) GRB060218 and an associated supernova, SN2006aj, has puzzled theorists for years. A supernova shock breakout and a jet from a newborn stellar mass compact object have been proposed to explain this pair's multiwavelength signature. Alternatively, we propose that the source is naturally explained by another channel: the tidal disruption of a white dwarf (WD) by an intermediate-mass black hole (IMBH). This tidal disruption is accompanied by a tidal pinching, which leads to the ignition of a WD and a supernova. Some debris falls back onto the IMBH, forms a disk, which quickly amplifies the magnetic field, and launches a jet. We successfully fit soft X-ray spectra with the Comptonized blackbody emission from a jet photosphere. The optical/UV emission is consistent with self-absorbed synchrotron emission from the expanding jet front. The temporal dependence of the accretion rate M-dot (t) in a tidal disruption provides a good fit to the soft X-ray light curve. The IMBH mass is found to be about 10{sup 4} M{sub Sun} in three independent estimates: (1) fitting the tidal disruption M-dot (t) to the soft X-ray light curve, (2) computing the jet base radius in a jet photospheric emission model, and (3) inferring the mass of the central black hole based on the host dwarf galaxy's stellar mass. The position of the supernova is consistent with the center of the host galaxy, while the low supernova ejecta mass is consistent with that of a WD. The high expected rate of tidal disruptions in dwarf galaxies is consistent with one source observed by the Swift satellite over several years at a distance of 150 Mpc measured for GRB060218. Encounters with WDs provide much fuel for the growth of IMBHs.

Shcherbakov, Roman V.; Reynolds, Christopher S. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Pe'er, Asaf [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Haas, Roland [Theoretical AstroPhysics Including Relativity, California Institute of Technology, Pasadena, CA 91125 (United States); Bode, Tanja; Laguna, Pablo [Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

2013-06-01T23:59:59.000Z

324

Hydraulic Geometry and Microtopography of Tidal Freshwater Forested Wetlands and Implications for Restoration, Columbia River, U.S.A.  

SciTech Connect (OSTI)

The hydrologic reconnection of tidal channels, riverine floodplains, and main stem channels are among responses by ecological restoration practitioners to the increasing fragmentation and land conversion occurring in coastal and riparian zones. Design standards and monitoring of such ecological restoration depend upon the characterization of reference sites that vary within and among regions. Few locales, such as the 235 km tidal portion of the Columbia River on the West Coast U.S.A., remain in which the reference conditions and restoration responses of tidal freshwater forested wetlands on temperate zone large river floodplains can be compared. This study developed hydraulic geometry relationships for Picea sitchensis (Sitka spruce) dominated tidal forests (swamps) in the vicinity of Grays Bay on the Columbia River some 37 km from the Pacific Coast using field surveys and Light Detection and Ranging (LiDAR) data. Scaling relationships between catchment area and the parameters of channel cross-sectional area at outlet and total channel length were comparable to tidally influenced systems of San Francisco Bay and the United Kingdom. Dike breaching, culvert replacement, and tide gate replacement all affected channel cross-sectional geometry through changes in the frequency of over-marsh flows. Radiocarbon dating of buried wood provided evidence of changes in sedimentation rates associated with diking, and restoration trajectories may be confounded by historical subsidence behind dikes rendering topographical relationships with water level incomparable to reference conditions. At the same time, buried wood is influencing the development of channel morphology toward characteristics resembling reference conditions. Ecological restoration goals and practices in tidal forested wetland regions of large river floodplains should reflect the interactions of these controlling factors.

Diefenderfer, Heida L.; Coleman, Andre M.; Borde, Amy B.; Sinks, Ian A.

2008-01-01T23:59:59.000Z

325

Ecology of Juvenile Salmon in Shallow Tidal Freshwater Habitats of the Lower Columbia River, 2007–2010  

SciTech Connect (OSTI)

The TFM study was designed to investigate the ecology and early life history of juvenile salmonids within shallow (<5 m) tidal freshwater habitats of the LCRE. We started collecting field data in June 2007. Since then, monthly sampling has occurred in the vicinity of the Sandy River delta (rkm 192–208) and at other sites and times in lower river reaches of tidal freshwater (rkm 110 to 141). This report provides a comprehensive synthesis of data covering the field period from June 2007 through April 2010.

Johnson, Gary E.; Storch, Adam; Skalski, J. R.; Bryson, Amanda J.; Mallette, Christine; Borde, Amy B.; Van Dyke, E.; Sobocinski, Kathryn L.; Sather, Nichole K.; Teel, David; Dawley, Earl M.; Ploskey, Gene R.; Jones, Tucker A.; Zimmerman, Shon A.; Kuligowski, D. R.

2011-03-01T23:59:59.000Z

326

OBLIQUITIES OF HOT JUPITER HOST STARS: EVIDENCE FOR TIDAL INTERACTIONS AND PRIMORDIAL MISALIGNMENTS  

SciTech Connect (OSTI)

We provide evidence that the obliquities of stars with close-in giant planets were initially nearly random, and that the low obliquities that are often observed are a consequence of star-planet tidal interactions. The evidence is based on 14 new measurements of the Rossiter-McLaughlin effect (for the systems HAT-P-6, HAT-P-7, HAT-P-16, HAT-P-24, HAT-P-32, HAT-P-34, WASP-12, WASP-16, WASP-18, WASP-19, WASP-26, WASP-31, Gl 436, and Kepler-8), as well as a critical review of previous observations. The low-obliquity (well-aligned) systems are those for which the expected tidal timescale is short, and likewise the high-obliquity (misaligned and retrograde) systems are those for which the expected timescale is long. At face value, this finding indicates that the origin of hot Jupiters involves dynamical interactions like planet-planet interactions or the Kozai effect that tilt their orbits rather than inspiraling due to interaction with a protoplanetary disk. We discuss the status of this hypothesis and the observations that are needed for a more definitive conclusion.

Albrecht, Simon; Winn, Joshua N. [Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Johnson, John A. [Department of Astrophysics, California Institute of Technology, MC249-17, Pasadena, CA 91125 (United States); Howard, Andrew W.; Marcy, Geoffrey W. [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Butler, R. Paul [Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road NW, Washington, DC 20015 (United States); Arriagada, Pamela [Department of Astronomy, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile); Crane, Jeffrey D.; Shectman, Stephen A.; Thompson, Ian B. [The Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Hirano, Teruyuki [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan); Bakos, Gaspar; Hartman, Joel D. [Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544 (United States)

2012-09-20T23:59:59.000Z

327

Conformally curved binary black hole initial data including tidal deformations and outgoing radiation  

E-Print Network [OSTI]

(Abridged) By asymptotically matching a post-Newtonian (PN) metric to two tidally perturbed Schwarzschild metrics, we generate approximate initial data (in the form of a 4-metric) for a nonspinning black hole binary in a circular orbit. We carry out this matching through O(v^4) in the binary's orbital velocity v, so the resulting data are conformally curved. Far from the holes, we use the appropriate PN metric that accounts for retardation, which we construct using the highest-order PN expressions available to compute the binary's past history. The data set's uncontrolled remainders are thus O(v^5) throughout the timeslice; we also generate an extension to the data set that has uncontrolled remainders of O(v^6) in the purely PN portion of the timeslice (i.e., not too close to the holes). The resulting data are smooth, since we join all the metrics together by smoothly interpolating between them. We perform this interpolation using transition functions constructed to avoid introducing excessive additional constraint violations. Due to their inclusion of tidal deformations and outgoing radiation, these data should substantially reduce the initial spurious ("junk") radiation observed in current simulations that use conformally flat initial data. Such reductions in the nonphysical components of the initial data will be necessary for simulations to achieve the accuracy required to supply Advanced LIGO and LISA with the templates necessary for parameter estimation.

Nathan K. Johnson-McDaniel; Nicolas Yunes; Wolfgang Tichy; Benjamin J. Owen

2009-07-06T23:59:59.000Z

328

The flattenings of the layers of rotating planets and satellites deformed by a tidal potential  

E-Print Network [OSTI]

We consider the Clairaut theory of the equilibrium ellipsoidal figures for differentiated non-homogeneous bodies in non-synchronous rotation adding to it a tidal deformation due to the presence of an external gravitational force. We assume that the body is a fluid formed by $n$ homogeneous layers of ellipsoidal shape and we calculate the external polar flattenings and the mean radius of each layer, or, equivalently, their semiaxes. To first order in the flattenings, the general solution can be written as $\\epsilon_k={\\cal H}_k*\\epsilon_h$ and $\\mu_k={\\cal H}_k*\\mu_h$, where $\\cal{H}_k$ is a characteristic coefficient for each layer which only depends on the internal structure of the body and $\\epsilon_h, \\mu_h$ are the flattenings of the equivalent homogeneous problem. For the continuous case, we study the Clairaut differential equation for the flattening profile, using the Radau transformation to find the boundary conditions when the tidal potential is added. Finally, the theory is applied to several example...

Folonier, Hugo; Kholshevnikov, Konstantin V

2015-01-01T23:59:59.000Z

329

Exploration applications of a transgressive tidal flats model to Mississippian Midale carbonates, eastern Williston Basin  

SciTech Connect (OSTI)

Midale (Mississippian) production was first established in 1953 in Saskatchewan, Canada. The unit was initially defined in the subsurface as the carbonate interval between the top of the Frobisher Anhydrite and the base of the Midale Anhydrite. That nomenclature is used in this report. During 1953, Midale production was found in the United States portion of the Williston basin in Bottineau County, North Dakota. Later exploration extended Midale production westward into Burke County, North Dakota. Cumulative production from the Midale is approximately 660 million bbl, of which 640 million bbl are from Canadian fields. Initially, hydrocarbon entrapment in the Midale was believed to be controlled by the Mississippian subcrop, with the Burke County production controlled by low-relief structural closure. Petrographic examination of cores and cuttings from the Midale in both Saskatchewan, Canada, and Burke and Bottineau Counties, North Dakota, indicates that production is controlled by facies changes within the unit. Stratigraphic traps are formed by the lateral and vertical changes from grain-supported facies deposited in tidal channel, subtidal bar, or beach settings; seals are formed by mud-rich sediments. Use of a transgressive carbonate tidal flats model best explains current production patterns and indicates substantial potential for additional production in eastern North Dakota and South Dakota.

Porter, L.A.; Reid, R.S.R.

1985-05-01T23:59:59.000Z

330

Exploration applications of a transgressive tidal-flats model to Mississippian Midale carbonates, eastern Williston Basin  

SciTech Connect (OSTI)

Midale (Mississippian) production was first indicated in 1953 in Saskatchewan, Canada. The unit was initially defined in the subsurface as the carbonate interval between the top of the Frobisher Anhydrite and the base of the Midale Anhydrite. This same nomenclature is used in this paper. In 1953, Midale production was found on the US side of the Williston basin in Bottineau County, North Dakota. Later exploration extended Midale production westward into Burke County, North Dakota, in 1955. Cumulative production from the Midale is approximately 660 million bbl with 640 million from the Canadian side of the Williston basin. Initially, hydrocarbon entrapment in the Midale was believed to be controlled by the Mississippian subcrop, with the Burke County production controlled by low-relief structural closure. Petrographic examination of cores and cuttings from the Midale in both Saskatchewan, Canada, and Burke and Bottineau Counties, North Dakota, indicates that production is controlled by facies changes within the unit. Stratigraphic traps are formed by the lateral and vertical changes from grain-supported facies deposited in tidal-channel, subtidal-bar, or beach settings; seals are formed by mud-rich sediments. Use of a transgressive carbonate tidal-flats model best explains current production patterns and indicates substantial potential for additional production in eastern North Dakota and South Dakota.

Porter, L.A.; Reid, F.S.

1985-02-01T23:59:59.000Z

331

Formation of planetary debris discs around white dwarfs I: Tidal disruption of an extremely eccentric asteroid  

E-Print Network [OSTI]

25%-50% of all white dwarfs (WDs) host observable and dynamically active remnant planetary systems based on the presence of close-in circumstellar dust and gas and photospheric metal pollution. Currently-accepted theoretical explanations for the origin of this matter include asteroids that survive the star's giant branch evolution at au-scale distances and are subsequently perturbed onto WD-grazing orbits following stellar mass loss. In this work we investigate the tidal disruption of these highly-eccentric (e > 0.98) asteroids as they approach and tidally disrupt around the WD. We analytically compute the disruption timescale and compare the result with fully self-consistent numerical simulations of rubble piles by using the N-body code PKDGRAV. We find that this timescale is highly dependent on the orbit's pericentre and largely independent of its semimajor axis. We establish that spherical asteroids readily break up and form highly eccentric collisionless rings, which do not accrete onto the WD without add...

Veras, Dimitri; Bonsor, Amy; Gaensicke, Boris T

2014-01-01T23:59:59.000Z

332

UK Renewable Energy Policy Since Privatisation  

E-Print Network [OSTI]

-Calle (2008) and Junginger et al. (2008). 10 Section 2: Potential for Renewable energy in the UK A defining feature of the UK is the considerable potential it has for renewable energy relative to its demand. The UK has some of the best wind, tidal... supplied in 2008 was 380 TWh17. Table 1: Estimates of the potentials for different renewable technologies in UK Technology Category Technology Detail Annual Potential Wind power Onshore 50 TWh Offshore 100 TWh Bioenergy Biomass 41 TWh...

Pollitt, Michael G.

333

Environmental links to interannual variability in shellfish toxicity in Cobscook Bay and eastern Maine, a strongly tidally mixed coastal region  

E-Print Network [OSTI]

Environmental links to interannual variability in shellfish toxicity in Cobscook Bay and eastern e i n f o Keywords: Harmful algal blooms Gulf of Maine Cobscook Bay Shellfish toxicity a b s t r a c of Cobscook Bay, where strong tidal mixing tends to reduce seasonal variability in oceanographic properties

Townsend, David W.

334

NAME: Sears Point Tidal Restoration Project LOCATION: Near Petaluma, CA, in the San Pablo Bay and Tolay Creek Watersheds  

E-Print Network [OSTI]

of estuarine habitat comprised of deep and shallow water habitat, mudflats, salt marsh, and wetlandNAME: Sears Point Tidal Restoration Project LOCATION: Near Petaluma, CA, in the San Pablo Bay PROJECT DESCRIPTION: Sears Point, the proposed project site, consists of approximately 960 acres of diked

US Army Corps of Engineers

335

On the statistical stability of the M2 barotropic and baroclinic tidal characteristics from along-track TOPEX//Poseidon  

E-Print Network [OSTI]

with internal tidal wave activity and for those who assimilate altimetric data in their models by giving-track TOPEX//Poseidon satellite altimetry analysis Loren Carre`re, Christian Le Provost, and Florent Lyard. [1] An along-track analysis of 7 years of TOPEX/Poseidon (T/P) data has been performed on the global

336

Tidally-induced thermonuclear Supernovae Stephan Rosswog1, Enrico Ramirez-Ruiz2, W. Raphael Hix3  

E-Print Network [OSTI]

Tidally-induced thermonuclear Supernovae Stephan Rosswog1, Enrico Ramirez-Ruiz2, W. Raphael Hix3 1 in a thermonuclear explosion. These explosions are not restricted to progenitor masses close to the Chandrasekhar thermonuclear supernova together with an X-ray flare thus whistle-blows the existence of such moderate

Rosswog, Stephan

337

Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4: Networking for37 East and WestLydiaEnabling timeEnergeticsEnergy

338

Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It is the|ResourcesCareersEmploymentEnergy

339

A Tidally-Disrupted Asteroid Around the White Dwarf G29-38  

E-Print Network [OSTI]

The infrared excess around the white dwarf G29-38 can be explained by emission from an opaque flat ring of dust with an inner radius 0.14 of the radius of the Sun and an outer radius approximately equal to the Sun's. This ring lies within the Roche region of the white dwarf where an asteroid could have been tidally destroyed, producing a system reminiscent of Saturn's rings. Accretion onto the white dwarf from this circumstellar dust can explain the observed calcium abundance in the atmosphere of G29-38. Either as a bombardment by a series of asteroids or because of one large disruption, the total amount of matter accreted onto the white dwarf may have been comparable to the total mass of asteroids in the Solar System, or, equivalently, about 1% of the mass in the asteroid belt around the main sequence star zeta Lep.

M. Jura

2003-01-21T23:59:59.000Z

340

Evidence for tidal interaction and merger as the origin of galaxy morphology evolution in compact groups  

E-Print Network [OSTI]

We present the results of a morphological study based on NIR images of 25 galaxies, with different levels of nuclear activity, in 8 Compact Groups of Galaxies (CGs). We perform independently two different analysis: a isophotal study and a study of morphological asymmetries. The results yielded by the two analysis are highly consistent. For the first time, it is possible to show that deviations from pure ellipses are produced by inhomogeneous stellar mass distributions related to galaxy interactions and mergers. We find evidence of mass asymmetries in 74% of the galaxies in our sample. In 59% of these cases, the asymmetries come in pairs, and are consistent with tidal effects produced by the proximity of companion galaxies. The symmetric galaxies are generally small in size or mass, inactive, and have an early-type morphology. In 20% of the galaxies we find evidence for cannibalism. In 36% of the early-type galaxies the color gradient is positive (blue nucleus) or flat. Summing up these results, as much as 52% of the galaxies in our sample could show evidence of an on going or past mergers. Our observations suggest that galaxies in CGs merge more frequently under ``dry'' conditions. The high frequency of interacting and merging galaxies observed in our study is consistent with the bias of our sample towards CGs of type B, which represents the most active phase in the evolution of the groups. In these groups we also find a strong correlation between asymmetries and nuclear activity in early-type galaxies. This correlation allows us to identify tidal interactions and mergers as the cause of galaxy morphology transformation in CGs.[abridge

R. Coziol; I. Plauchu-Frayn

2007-02-10T23:59:59.000Z

Note: This page contains sample records for the topic "tidal energy project-ferc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Energy  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment > Voluntary826Industry forEmergingM

342

ENERGY  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program - LibbyofThisStatement ||More EmphasisofEMABTank WasteEnvironmental

343

Tim Unruh | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyThe Sun and Its EnergyMetalofAgreement forTidalTim

344

An unstructured C-grid based method for 3-D global ocean dynamics: Free-surface formulations and tidal test cases  

E-Print Network [OSTI]

and tidal test cases G.R. Stuhne *, W.R. Peltier Department of Physics, University of Toronto, 60 St. George rights reserved. 1. Introduction In a previous paper (Stuhne and Peltier, 2006, hereafter SP), we

Peltier, W. Richard

345

Framework for Identifying Key Environmental Concerns in Marine Renewable Energy Projects- Appendices  

SciTech Connect (OSTI)

Marine wave and tidal energy technology could interact with marine resources in ways that are not well understood. As wave and tidal energy conversion projects are planned, tested, and deployed, a wide range of stakeholders will be engaged; these include developers, state and federal regulatory agencies, environmental groups, tribal governments, recreational and commercial fishermen, and local communities. Identifying stakeholders’ environmental concerns in the early stages of the industry’s development will help developers address and minimize potential environmental effects. Identifying important concerns will also assist with streamlining siting and associated permitting processes, which are considered key hurdles by the industry in the U.S. today. In September 2008, RE Vision consulting, LLC was selected by the Department of Energy (DoE) to conduct a scenario-based evaluation of emerging hydrokinetic technologies. The purpose of this evaluation is to identify and characterize environmental impacts that are likely to occur, demonstrate a process for analyzing these impacts, identify the “key” environmental concerns for each scenario, identify areas of uncertainty, and describe studies that could address that uncertainty. This process is intended to provide an objective and transparent tool to assist in decision-making for siting and selection of technology for wave and tidal energy development. RE Vision worked with H. T. Harvey & Associates, to develop a framework for identifying key environmental concerns with marine renewable technology. This report describes the results of this study. This framework was applied to varying wave and tidal power conversion technologies, scales, and locations. The following wave and tidal energy scenarios were considered: ? 4 wave energy generation technologies ? 3 tidal energy generation technologies ? 3 sites: Humboldt coast, California (wave); Makapu’u Point, Oahu, Hawaii (wave); and the Tacoma Narrows, Washington (tidal) ? 3 project sizes: pilot, small commercial, and large commercial The possible combinations total 24 wave technology scenarios and 9 tidal technology scenarios. We evaluated 3 of the 33 scenarios in detail: 1. A small commercial OPT Power Buoy project off the Humboldt County, California coast 2. A small commercial Pelamis Wave Power P-2 project off Makapu’u Point, Oahu, Hawaii 3. A pilot MCT SeaGen tidal project, sited in the Tacoma Narrows, Washington This framework document used information available from permitting documents that were written to support actual wave or tidal energy projects, but the results obtained here should not be confused with those of the permitting documents1. The main difference between this framework document and permitting documents of currently proposed pilot projects is that this framework identifies key environmental concerns and describes the next steps in addressing those concerns; permitting documents must identify effects, find or declare thresholds of significance, evaluate the effects against the thresholds, and find mitigation measures that will minimize or avoid the effects so they can be considered less-than-significant. Two methodologies, 1) an environmental effects analysis and 2) Raptools, were developed and tested to identify potential environmental effects associated with wave or tidal energy conversion projects. For the environmental effects analysis, we developed a framework based on standard risk assessment techniques. The framework was applied to the three scenarios listed above. The environmental effects analysis addressed questions such as: ? What is the temporal and spatial exposure of a species at a site? ? What are the specific potential project effects on that species? ? What measures could minimize, mitigate, or eliminate negative effects? ? Are there potential effects of the project, or species’ response to the effect, that are highly uncertain and warrant additional study? The second methodology, Raptools, is a collaborative approach useful for evaluating multiple characteristi

Sharon Kramer; Mirko Previsic; Peter Nelson; Sheri Woo

2010-06-17T23:59:59.000Z

346

Shrinking binary and planetary orbits by Kozai cycles with tidal friction  

E-Print Network [OSTI]

At least two arguments suggest that the orbits of a large fraction of binary stars and extrasolar planets shrank by 1-2 orders of magnitude after formation: (i) the physical radius of a star shrinks by a large factor from birth to the main sequence, yet many main-sequence stars have companions orbiting only a few stellar radii away, and (ii) in current theories of planet formation, the region within ~0.1 AU of a protostar is too hot and rarefied for a Jupiter-mass planet to form, yet many "hot Jupiters" are observed at such distances. We investigate orbital shrinkage by the combined effects of secular perturbations from a distant companion star (Kozai oscillations) and tidal friction. We integrate the relevant equations of motion to predict the distribution of orbital elements produced by this process. Binary stars with orbital periods of 0.1 to 10 days, with a median of ~2 d, are produced from binaries with much longer periods (10 d to 10^5 d), consistent with observations indicating that most or all short-period binaries have distant companions (tertiaries). We also make two new testable predictions: (1) For periods between 3 and 10 d, the distribution of the mutual inclination between the inner binary and the tertiary orbit should peak strongly near 40 deg and 140 deg. (2) Extrasolar planets whose host stars have a distant binary companion may also undergo this process, in which case the orbit of the resulting hot Jupiter will typically be misaligned with the equator of its host star.

Daniel Fabrycky; Scott Tremaine

2007-05-30T23:59:59.000Z

347

1540-7977/10/$26.002010 IEEE22 IEEE power & energy magazine september/october 2010 THE NEED TO DIVERSIFY AWAY  

E-Print Network [OSTI]

, Germany, and Latin America footing as other generation technologies. Table 1 compares investment levels, and the climate challenge is driving the deployment of nonconventional renewable (wind, small hydro, solar, tidal "renewable energy"). Developed countries have seen renewable energy as a key tool for emission reduction

Catholic University of Chile (Universidad CatĂłlica de Chile)

348

Deployment Effects of Marin Renewable Energy Technologies  

SciTech Connect (OSTI)

Given proper care in siting, design, deployment, operation and maintenance, marine and hydrokinetic technologies could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood, due to a lack of technical certainty. In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based approach to the emerging wave and tidal technology sectors in order to evaluate the impact of these technologies on the marine environment and potentially conflicting uses. The project’s scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios will capture variations in technical approaches and deployment scales to properly identify and characterize environmental impacts and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential effects of these emerging technologies and focus all stakeholders onto the critical issues that need to be addressed. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industry’s development in the U.S. today. Re vision is coordinating its efforts with two other project teams funded by DoE which are focused on regulatory and navigational issues. The results of this study are structured into three reports: 1. Wave power scenario description 2. Tidal power scenario description 3. Framework for Identifying Key Environmental Concerns This is the second report in the sequence and describes the results of conceptual feasibility studies of tidal power plants deployed in Tacoma Narrows, Washington. The Narrows contain many of the same competing stakeholder interactions identified at other tidal power sites and serves as a representative case study. Tidal power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize impacts, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informs the process of selecting representative tidal power devices. The selection criteria is that such devices are at an advanced stage of development to reduce technical uncertainties and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. A number of other developers are also at an advanced stage of development including Verdant Power, which has demonstrated an array of turbines in the East River of New York, Clean Current, which has demonstrated a device off Race Rocks, BC, and OpenHydro, which has demonstrated a device at the European Marine Energy Test Center and is on the verge of deploying a larger device in the Bay of Fundy. MCT demonstrated their device both at Devon (UK) and Strangford Narrows (Northern Ireland). Furthermore OpenHydro, CleanCurrent, and MCT are the three devices being installed at the Minas Passage (Canada). Environmental effects will largely scale with the size of tidal power development. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments. In order to characterize these effects, scenarios are established at three deployment scales which nom

Brian Polagye; Mirko Previsic

2010-06-17T23:59:59.000Z

349

Thermal properties of an upper tidal flat sediment on the Texas Gulf Coast  

E-Print Network [OSTI]

Increased land use change near fragile ecosystems can affect the ecosystem energy balance leading to increased global warming. One component of surface energy balance is soil storage heat flux. In past work, a complex thermal behavior was noticed...

Cramer, Nicholas C.

2007-04-25T23:59:59.000Z

350

DOE in the News: Tidal Power in Maine on PBS Newshour | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S. Department ofThe U.S.D.C.Energy The Water Power Program

351

MHK Projects/Helena Reach Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska:LuzClick here Current /Tidal Project

352

MHK Projects/Linwood Bend | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska:LuzClick here Current /TidalITRI

353

A new generation of marine turbine that can harness energy from the sea is being developed by Nautricity,  

E-Print Network [OSTI]

A new generation of marine turbine that can harness energy from the sea is being developed to develop the concept of this unique contra rotating tidal turbine (CoRMaT). The first fully functional conventional turbines, the CoRMaT design uses two rotors which turn in opposite directions, making it extremely

Mottram, Nigel

354

Tidal-Fluvial and Estuarine Processes in the Lower Columbia River: I. Along-channel Water Level Variations, Pacific Ocean to Bonneville Dam  

SciTech Connect (OSTI)

This two-part paper provides comprehensive time and frequency domain analyses and models of along-channel water level variations in the 234km-long Lower Columbia River and Estuary (LCRE) and documents the response of floodplain wetlands thereto. In Part I, power spectra, continuous wavelet transforms, and harmonic analyses are used to understand the influences of tides, river flow, upwelling and downwelling, and hydropower operations ("power-peaking") on the water level regime. Estuarine water levels are influenced primarily by astronomical tides and coastal processes, and secondarily by river flow. The importance of coastal and tidal influences decreases in the landward direction, and water levels are increasingly controlled by river flow variations at periods from ?1day to years. Water level records are only slightly non-stationary near the ocean, but become increasingly irregular upriver. Although astronomically forced tidal constituents decrease above the estuary, tidal fortnightly and overtide variations increase for 80-200km landward, both relative to major tidal constituents and in absolute terms.

Jay, D. A.; Leffler, K.; Diefenderfer, Heida L.; Borde, Amy B.

2014-06-07T23:59:59.000Z

355

Seasonal patterns of coarse sediment transport on a mixed sand and gravel beach due to vessel wakes, wind waves, and tidal currents  

E-Print Network [OSTI]

Seasonal patterns of coarse sediment transport on a mixed sand and gravel beach due to vessel wakes, wind waves, and tidal currents Gregory M. Curtiss a, , Philip D. Osborne b,1 , Alexander R. Horner December 2008 Accepted 29 December 2008 Keywords: mixed sand and gravel beach ferry wake wash beach

Talke, Stefan

356

Development and Verification of a Computational Fluid Dynamics Model of a Horizontal-Axis Tidal Current Turbine  

SciTech Connect (OSTI)

This paper describes the development of a computational fluid dynamics (CFD) methodology to simulate the hydrodynamics of horizontal-axis tidal current turbines. Qualitative measures of the CFD solutions were independent of the grid resolution. Conversely, quantitative comparisons of the results indicated that the use of coarse computational grids results in an under prediction of the hydrodynamic forces on the turbine blade in comparison to the forces predicted using more resolved grids. For the turbine operating conditions considered in this study, the effect of the computational timestep on the CFD solution was found to be minimal, and the results from steady and transient simulations were in good agreement. Additionally, the CFD results were compared to corresponding blade element momentum method calculations and reasonable agreement was shown. Nevertheless, we expect that for other turbine operating conditions, where the flow over the blade is separated, transient simulations will be required.

Lawson, M. J.; Li, Y.; Sale, D. C.

2011-10-01T23:59:59.000Z

357

Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030 |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClient updateTRI-STATE GENERATION

358

The giant star of the symbiotic system YY Her: Rotation, Tidal wave, Solar-type cycle and Spots  

E-Print Network [OSTI]

We analyze the historical light curve of the symbiotic star YY Her, from 1890 up to December 2005. A secular declining trend is detected, at a rate of ~.01 magn in 1000 d, suggesting that the system could belong to the sub-class of symbiotic novae. Several outburst events are superposed on this slow decline. Three independent periodicities are identified in the light curve. A quasi-periodicity of 4650.7 d is detected for the outburst occurrence. We suggest that it is a signature of a solar-type magnetic dynamo cycle in the giant component. A period of 593.2 d modulates the quiescent light curve and it is identified as the binary period of the system. During outburst events the system shows a stable periodic oscillation of 551.4 d. We suggest that it is the rotation period of the giant.The secondary minima detected at some epochs of quiescence are probably due to dark spots on the surface of the rotating giant. The difference between the frequencies of these two last periods is the frequency of a tidal wave in the outer layers of the giant. A period which is a beat between the magnetic cycle and the tidal wave period is also apparent in the light curve. YY Her is a third symbiotic system exhibiting these cycles in their light curve, suggesting that a magnetic dynamo process is prevalent in the giant components of symbiotic stars, playing an important role in the outburst mechanism of some of these systems.

Liliana Formiggini; Elia M. Leibowitz

2006-09-17T23:59:59.000Z

359

Ris National Laboratory Technical University of Denmark November 2007 Ris Energy Report 6  

E-Print Network [OSTI]

CLEaR ENERgy 58 7.8 FuSIoN ENERgy 63 7.9 gEotHERmaL ENERgy 67 7.10 HyDRo, oCEaN, WaVE aND tIDaL 69 8 INNoRisø National Laboratory · Technical University of Denmark November 2007 Risø Energy Report 6 Future options for energy technologies Edited by Hans Larsen and Leif Sønderberg Petersen Risø-R-1612(EN

360

EIS-0456: EPA Notice of Availability of the Final Environmental...  

Broader source: Energy.gov (indexed) [DOE]

EPA Notice of Availability of the Final Environmental Impact Statement Cushman Hydroelectric Project (FERC No. 0456) Notice of Availability for the Final Environmental Impact...

Note: This page contains sample records for the topic "tidal energy project-ferc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Modeling Tidal Freshwater Marsh Sustainability in the Sacramento–San Joaquin Delta Under a Broad Suite of Potential Future Scenarios  

E-Print Network [OSTI]

century than their downstream and low-energy counterparts.sustain- able than their downstream and low-energy coun-

Swanson, Kathleen M.; Drexler, Judith Z.; Fuller, Christopher C.; Schoellhamer, David H.

2015-01-01T23:59:59.000Z

362

Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2007  

SciTech Connect (OSTI)

This document is the first annual report for the study titled “Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta in the Lower Columbia River.” Hereafter, we refer to this research as the Tidal Freshwater Monitoring (TFM) Study. The study is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, U.S. Army Corps of Engineers, U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act as a result of operation of the Federal Columbia River Power System (FCRPS). The project is performed under the auspices of the Northwest Power and Conservation Council’s Columbia Basin Fish and Wildlife Program.

Sobocinski, Kathryn L.; Johnson, Gary E.; Sather, Nichole K.; Storch, Adam; Jones, Tucker A.; Mallette, Christine; Dawley, Earl M.; Skalski, John R.; Teel, David; Moran, Paul

2008-03-18T23:59:59.000Z

363

Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2007 Annual Report.  

SciTech Connect (OSTI)

This document is the first annual report for the study titled 'Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta in the Lower Columbia River'. Hereafter, we refer to this research as the Tidal Freshwater Monitoring (TFM) Study. The study is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, U.S. Army Corps of Engineers, U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act as a result of operation of the Federal Columbia River Power System (FCRPS). The project is performed under the auspices of the Northwest Power and Conservation Council's Columbia Basin Fish and Wildlife Program. The goal of the 2007-2009 Tidal Freshwater Monitoring Study is to answer the following questions: In what types of habitats within the tidal freshwater area of the lower Columbia River and estuary (LCRE; Figure 1) are yearling and subyearling salmonids found, when are they present, and under what environmental conditions?1 And, what is the ecological importance2 of shallow (0-5 m) tidal freshwater habitats to the recovery of Upper Columbia River spring Chinook salmon and steelhead and Snake River fall Chinook salmon? Research in 2007 focused mainly on the first question, with fish stock identification data providing some indication of Chinook salmon presence at the variety of habitat types sampled. The objectives and sub-objectives for the 2007 study were as follows: (1) Habitat and Fish Community Characteristics-Provide basic data on habitat and fish community characteristics for yearling and subyearling salmonids at selected sites in the tidal freshwater reach in the vicinity of the Sandy River delta. (1a) Characterize vegetation assemblage percent cover, conventional water quality, substrate composition, and beach slope at each of six sampling sites in various tidal freshwater habitat types. (1b) Determine fish community characteristics, including species composition, abundance, and temporal and spatial distributions. (1c) Estimate the stock of origin for the yearling and subyearling Chinook salmon captured at the sampling sites using genetic analysis. (1d) Statistically assess the relationship between salmonid abundance and habitat parameters, including ancillary variables such as temperature and river stage. (2) Acoustic Telemetry Monitoring-Assess feasibility of applying Juvenile Salmon Acoustic Telemetry System (JSATS) technology to determine migration characteristics from upriver of Bonneville Dam through the study area (vicinity of the Sandy River delta/Washougal River confluence). (2a) Determine species composition, release locations, and distributions of JSATS-tagged fish. (2b) Estimate run timing, residence times, and migration pathways for these fish. Additionally, both objectives serve the purpose of baseline research for a potential tidal rechannelization project on the Sandy River. The U.S. Forest Service, in partnership with the Bonneville Power Administration and the U.S. Army Corps of Engineers, is currently pursuing reconnection of the east (relict) Sandy River channel with the current channel to improve fish and wildlife habitat in the Sandy River delta. Our study design and the location of sampling sites in this reach provide baseline data to evaluate the potential restoration.

Sobocinski, Kathryn; Johnson, Gary; Sather, Nichole [Pacific Northwest National Laboratory

2008-03-17T23:59:59.000Z

364

Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current,  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope Change #1Impacts | Department of Energyof Contractand

365

Tina Kaarsberg, Ph.D. | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyThe Sun and Its EnergyMetalofAgreement forTidalTimTina

366

Accelerating Ocean Energy to the Marketplace – Environmental Research at the U.S. Department of Energy National Laboratories  

SciTech Connect (OSTI)

The U.S. Department of Energy (US DOE) has mobilized its National Laboratories to address the broad range of environmental effects of ocean and river energy development. The National Laboratories are using a risk-based approach to set priorities among environmental effects, and to direct research activities. Case studies will be constructed to determine the most significant environmental effects of ocean energy harvest for tidal systems in temperate estuaries, for wave energy installations in temperate coastal areas, wave installations in sub-tropical waters, and riverine energy installations in large rivers. In addition, the National Laboratories are investigating the effects of energy removal from waves, tides and river currents using numerical modeling studies. Laboratory and field research is also underway to understand the effects of electromagnetic fields (EMF), acoustic noise, toxicity from anti-biofouling coatings, effects on benthic habitats, and physical interactions with tidal and wave devices on marine and freshwater organisms and ecosystems. Outreach and interactions with stakeholders allow the National Laboratories to understand and mitigate for use conflicts and to provide useful information for marine spatial planning at the national and regional level.

Copping, Andrea E.; Cada, G. F.; Roberts, Jesse; Bevelhimer, Mark

2010-10-06T23:59:59.000Z

367

MHK Projects/Humboldt County WaveConnect | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska:LuzClick here Current /Tidal

368

Connecting the Physical Properties of Galaxies with the Overdensity and Tidal Shear of the Large-Scale Environment  

E-Print Network [OSTI]

We have examined the correlations between the large-scale environment of galaxies and their physical properties, using a sample of 28,354 nearby galaxies drawn from the Sloan Digital Sky Survey, and the large-scale tidal field reconstructed in real space from the 2Mass Redshift Survey and smoothed over a radius of $\\sim 6 h^{-1}$Mpc. The large-scale environment is expressed in terms of the overdensity, the ellipticity of the shear and the type of the large-scale structure. The physical properties analyzed include $r$-band absolute magnitude $M_{^{0.1}r}$, stellar mass $M_\\ast$, $g-r$ colour, concentration parameter $R_{90}/R_{50}$ and surface stellar mass density $\\mu_\\ast$. Both luminosity and stellar mass are found to be statistically linked to the large-scale environment, regardless of how the environment is quantified. More luminous (massive) galaxies reside preferentially in the regions with higher densities, lower ellipticities and halo-like structures. At fixed luminosity, the large-scale overdensity depends strongly on parameters related to the recent star formation history, that is colour and D(4000), but is almost independent of the structural parameters $R_{90}/R_{50}$ and $\\mu_\\ast$. All the physical properties are statistically linked to the shear of the large-scale environment even when the large-scale density is constrained to a narrow range. This statistical link has been found to be most significant in the quasi-linear regions where the large-scale density approximates to an order of unity, but no longer significant in highly nonlinear regimes with $\\delta_{\\rm LS}\\gg 1$.

Jounghun Lee; Cheng Li

2008-03-12T23:59:59.000Z

369

Miocene fluvial-tidal sedimentation in a residual forearc basin of the Northeastern Pacific Rim: Cook Inlet, Alaska case study  

SciTech Connect (OSTI)

Cook Inlet in southern Alaska represents a Cenozoic residual forearc basin in a convergent continental margin, where the Pacific Plate is being subducted beneath the North American Plate. This basin accumulated the >6,700-m-thick, mainly nonmarine, Eocene-Pliocene Kenai Group. These rocks contain biogenic coal-bed methane estimated to be as high as 245 TCF. Lignites to subbituminous coals with subsurface R{sub o} ranging from 0.38 to 0.73 percent and the stage of clay-mineral diagenesis and expandibility indicate a thermally {open_quotes}cool{close_quotes} basin. Miocene Tyonek and Beluga Formations compose 65 percent (>4,300 m thick) of the Kenai Group. The Tyonek includes conglomeratic sandstones, siltstones, mudstones, coals, and carbonaceous shales, interpreted as braided- stream deposits. These fluvial deposits are interbecided with burrowed, lenticular, and flaser-bedded sandstones, siltstones, and mudstones, interpreted as tidal deposits. Tyonek framework conglomerates formed in wet alluvial fans incised on paleovalleys of the Chugach terrane. Coal-forming mires are well developed on abandoned braided-stream deposits. Tyonek drainages formed in high-gradient alluvial plains inundated by tides similar to environments in the modern upper Cook Inlet. The upper Miocene Beluga consists of sandstones, siltstones, mudstones, carbonaceous shales, and coals deposited in meandering (low sinuosity) and anastomosed fluvial systems. These fluvial deposits alternated vertically with deposits of coal-forming mires. The Beluga drainages formed in low-gradient alluvial plains. The high-gradient Tyonek alluvial plain was probably controlled by provenance uplift and eustatic change, whereas the low-gradient Beluga alluvial plain was influenced by subdued provenance uplift and rapid basin subsidence. Rapid sedimentation on both these low- and high-gradient alluvial plains, which kept up with subsidence, produced a thermally {open_quotes}cool{close_quotes} basin.

Stricker, G.D.; Flores, R.M. [Geological Survey, Denver, CO (United States)

1996-12-31T23:59:59.000Z

370

Miocene fluvial-tidal sedimentation in a residual forearc basin of the Northeastern Pacific Rim: Cook Inlet, Alaska case study  

SciTech Connect (OSTI)

Cook Inlet in southern Alaska represents a Cenozoic residual forearc basin in a convergent continental margin, where the Pacific Plate is being subducted beneath the North American Plate. This basin accumulated the >6,700-m-thick, mainly nonmarine, Eocene-Pliocene Kenai Group. These rocks contain biogenic coal-bed methane estimated to be as high as 245 TCF. Lignites to subbituminous coals with subsurface R[sub o] ranging from 0.38 to 0.73 percent and the stage of clay-mineral diagenesis and expandibility indicate a thermally [open quotes]cool[close quotes] basin. Miocene Tyonek and Beluga Formations compose 65 percent (>4,300 m thick) of the Kenai Group. The Tyonek includes conglomeratic sandstones, siltstones, mudstones, coals, and carbonaceous shales, interpreted as braided- stream deposits. These fluvial deposits are interbecided with burrowed, lenticular, and flaser-bedded sandstones, siltstones, and mudstones, interpreted as tidal deposits. Tyonek framework conglomerates formed in wet alluvial fans incised on paleovalleys of the Chugach terrane. Coal-forming mires are well developed on abandoned braided-stream deposits. Tyonek drainages formed in high-gradient alluvial plains inundated by tides similar to environments in the modern upper Cook Inlet. The upper Miocene Beluga consists of sandstones, siltstones, mudstones, carbonaceous shales, and coals deposited in meandering (low sinuosity) and anastomosed fluvial systems. These fluvial deposits alternated vertically with deposits of coal-forming mires. The Beluga drainages formed in low-gradient alluvial plains. The high-gradient Tyonek alluvial plain was probably controlled by provenance uplift and eustatic change, whereas the low-gradient Beluga alluvial plain was influenced by subdued provenance uplift and rapid basin subsidence. Rapid sedimentation on both these low- and high-gradient alluvial plains, which kept up with subsidence, produced a thermally [open quotes]cool[close quotes] basin.

Stricker, G.D.; Flores, R.M. (Geological Survey, Denver, CO (United States))

1996-01-01T23:59:59.000Z

371

Estuarine Habitats for Juvenile Salmon in the Tidally-Influenced Lower Columbia River and Estuary : Reporting Period September 15, 2008 through May 31, 2009.  

SciTech Connect (OSTI)

This work focuses on the numerical modeling of Columbia River estuarine circulation and associated modeling-supported analyses conducted as an integral part of a multi-disciplinary and multi-institutional effort led by NOAA's Northwest Fisheries Science Center. The overall effort is aimed at: (1) retrospective analyses to reconstruct historic bathymetric features and assess effects of climate and river flow on the extent and distribution of shallow water, wetland and tidal-floodplain habitats; (2) computer simulations using a 3-dimensional numerical model to evaluate the sensitivity of salmon rearing opportunities to various historical modifications affecting the estuary (including channel changes, flow regulation, and diking of tidal wetlands and floodplains); (3) observational studies of present and historic food web sources supporting selected life histories of juvenile salmon as determined by stable isotope, microchemistry, and parasitology techniques; and (4) experimental studies in Grays River in collaboration with Columbia River Estuary Study Taskforce (CREST) and the Columbia Land Trust (CLT) to assess effects of multiple tidal wetland restoration projects on various life histories of juvenile salmon and to compare responses to observed habitat-use patterns in the mainstem estuary. From the above observations, experiments, and additional modeling simulations, the effort will also (5) examine effects of alternative flow-management and habitat-restoration scenarios on habitat opportunity and the estuary's productive capacity for juvenile salmon. The underlying modeling system is part of the SATURN1coastal-margin observatory [1]. SATURN relies on 3D numerical models [2, 3] to systematically simulate and understand baroclinic circulation in the Columbia River estuary-plume-shelf system [4-7] (Fig. 1). Multi-year simulation databases of circulation are produced as an integral part of SATURN, and have multiple applications in understanding estuary/plume variability, the role of the estuary and plume on salmon survival, and functional changes in the estuary-plume system in response to climate and human activities.

Baptista, António M. [Oregon Health & Science University, Science and Technology Center for Coastal Margin Observation and Prediction

2009-08-02T23:59:59.000Z

372

Experimental Wave Tank Test for Reference Model 3 Floating-Point Absorber Wave Energy Converter Project  

SciTech Connect (OSTI)

The U.S. Department of Energy established a reference model project to benchmark a set of marine and hydrokinetic technologies including current (tidal, open-ocean, and river) turbines and wave energy converters. The objectives of the project were to first evaluate the status of these technologies and their readiness for commercial applications. Second, to evaluate the potential cost of energy and identify cost-reduction pathways and areas where additional research could be best applied to accelerate technology development to market readiness.

Yu, Y. H.; Lawson, M.; Li, Y.; Previsic, M.; Epler, J.; Lou, J.

2015-01-01T23:59:59.000Z

373

Renewable Energy | Department of Energy  

Office of Environmental Management (EM)

Technologies Renewable Energy Renewable Energy Renewable energy increases energy security, creates jobs, and powers our clean energy economy. Renewable energy increases energy...

374

MHK Projects/Humboldt County Wave Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska:LuzClick here Current /Tidal ProjectCA

375

MHK Projects/ITRI WEC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska:LuzClick here Current /TidalITRI WEC <

376

MHK Projects/Island 35 Bend | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska:LuzClick here Current /TidalITRI WECBend

377

Consolidation of geologic studies of geopressured-geothermal resources in Texas: Barrier-bar tidal-channel reservoir facies architecture, Jackson Group, Prado field, South Texas; Final report  

SciTech Connect (OSTI)

Sandstone reservoirs in the Jackson barrier/strandplain play are characterized by low recovery efficiencies and thus contain a large hydrocarbon resource target potentially amenable to advanced recovery techniques. Prado field, Jim Hogg County, South Texas, has produced over 23 million bbl of oil and over 32 million mcf gas from combination structural-stratigraphic traps in the Eocene lower Jackson Group. Hydrocarbon entrapment at Prado field is a result of anticlinal nosing by differential compaction and updip pinch-out of barrier bar sandstone. Relative base-level lowering resulted in forced regression that established lower Jackson shoreline sandstones in a relatively distal location in central Jim Hogg County. Reservoir sand bodies at Prado field comprise complex assemblages of barrier-bar, tidal-inlet fill, back-barrier bar, and shoreface environments. Subsequent progradation built the barrier-bar system seaward 1 to 2 mi. Within the barrier-bar system, favorable targets for hydrocarbon reexploration are concentrated in tidal-inlet facies because they possess the greatest degree of depositional heterogeneity. The purpose of this report is (1) to describe and analyze the sand-body architecture, depositional facies variations, and structure of Prado field, (2) to determine controls on distribution of hydrocarbons pertinent to reexploration for bypassed hydrocarbons, (3) to describe reservoir models at Prado field, and (4) to develop new data affecting the suitability of Jackson oil fields as possible candidates for thermally enhanced recovery of medium to heavy oil.

Seni, S.J.; Choh, S.J.

1994-01-01T23:59:59.000Z

378

Indiana Energy Energy Challenges  

E-Print Network [OSTI]

Indiana Energy Conference Energy Challenges And Opportunities November 5, 2013 ­ 9:00 a.m. ­ 5:00 p spectrum of business sectors including: Energy Community Manufacturing Policymakers Finance Engineering of Energy & Water: A Well of Opportunity Our water and energy systems are inextricably linked. Energy

Ginzel, Matthew

379

Matter & Energy Wind Energy  

E-Print Network [OSTI]

See Also: Matter & Energy Wind Energy Energy Technology Physics Nuclear Energy Petroleum 27, 2012) -- Energy flowing from large-scale to small-scale places may be prevented from flowing, indicating that there are energy flows from large to small scale in confined space. Indeed, under a specific

Shepelyansky, Dima

380

Ecology of Juvenile Salmon in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2008 Annual Report.  

SciTech Connect (OSTI)

The tidal freshwater monitoring (TFM) project reported herein is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, the U.S. Army Corps of Engineers [USACE], and the U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act (ESA) as a result of operation of the Federal Columbia River Power System. The project is being performed under the auspices of the Northwest Power and Conservation Council's Columbia Basin Fish and Wildlife Program (Project No. 2005-001-00). The research is a collaborative effort among the Pacific Northwest National Laboratory, the Oregon Department of Fish and Wildlife, the National Marine Fisheries Service, and the University of Washington. The overarching goal of the TFM project is to bridge the gap in knowledge between tidal freshwater habitats and the early life history attributes of migrating salmon. The research questions include: In what types of habitats within the tidal freshwater area of the Columbia River are juvenile salmon found, when are they present, and under what environmental conditions? What is the ecological contribution of shallow (0-5 m) tidal freshwater habitats to the recovery of ESA-listed salmon in the Columbia River basin? Field data collection for the TFM project commenced in June 2007 and since then has continued monthly at six to nine sites in the vicinity of the Sandy River delta (river kilometer 192-208). While this report includes summary data spanning the 19-month period of study from June 2007 through December 2008, it highlights sampling conducted during calendar year 2008. Detailed data for calendar year 2007 were reported previously. The 2008 research objectives were as follows: (1) Characterize the vegetation composition and percent cover, conventional water quality, water surface elevation, substrate composition, bathymetry, and beach slope at the study sites within the vicinity of the Sandy River delta. (2) Characterize the fish community and juvenile salmon migration, including species composition, length-frequency distribution, density (number/m{sup 2}), and temporal and spatial distributions in the vicinity of the Sandy River delta in the lower Columbia River and estuary (LCRE). (3) Determine the stock of origin for juvenile Chinook salmon (Oncorhynchus tshawytscha) captured at sampling sites through genetic identification. (4) Characterize the diets of juvenile Chinook and coho (O. kisutch) salmon captured within the study area. (5) Estimate run timing, residence times, and migration pathways for acoustic-tagged fish in the study area. (6) Conduct a baseline evaluation of the potential restoration to reconnect the old Sandy River channel with the delta. (7) Apply fish density data to initiate a design for a juvenile salmon monitoring program for beach habitats within the tidal freshwater segment of the LCRE (river kilometer 56-234).

Sather, NK; Johnson, GE; Storch, AJ [Pacific Northwest National Laboratory

2009-07-06T23:59:59.000Z

Note: This page contains sample records for the topic "tidal energy project-ferc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Matter & Energy Solar Energy  

E-Print Network [OSTI]

See Also: Matter & Energy Solar Energy· Electronics· Materials Science· Earth & Climate Energy and the Environment · Renewable Energy· Environmental Science · Reference Chemical compound· Semiconductor· Gallium at the University of Illinois, the future of solar energy just got brighter. Although silicon is the industry

Rogers, John A.

382

Energy Information Administration - Energy Efficiency, energy...  

U.S. Energy Information Administration (EIA) Indexed Site

Efficiency Energy Efficiency energy consumption savings households, buildings, industry & vehicles The Energy Efficiency Page reflects EIA's information on energy efficiency and...

383

Ecology of Juvenile Salmon in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2008  

SciTech Connect (OSTI)

The tidal freshwater monitoring (TFM) project reported herein is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, the U.S. Army Corps of Engineers [USACE], and the U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act (ESA) as a result of operation of the Federal Columbia River Power System. The project is being performed under the auspices of the Northwest Power and Conservation Council’s Columbia Basin Fish and Wildlife Program (Project No. 2005-001-00). The research is a collaborative effort among the Pacific Northwest National Laboratory, the Oregon Department of Fish and Wildlife, the National Marine Fisheries Service, and the University of Washington.

Sather, Nichole K.; Johnson, Gary E.; Storch, Adam; Teel, David; Skalski, John R.; Jones, Tucker A.; Dawley, Earl M.; Zimmerman, Shon A.; Borde, Amy B.; Mallette, Christine; Farr, R.

2009-05-29T23:59:59.000Z

384

Renewable Energy | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Research Topics Renewable Energy Renewable Energy he Office of Energy Efficiency and Renewable Energy (EERE) 2014 Postdoctoral Research Awards are sponsored by: Solar Energy...

385

Energy 101 | Department of Energy  

Energy Savers [EERE]

Literacy Energy 101 Energy 101 What is the Energy 101 Initiative? The Energy 101 Dialogue Series: Dialogue 1: Energy in the Classroom Webinar Slides Increasing opportunities...

386

Energy Efficiency & Renewable Energy  

E-Print Network [OSTI]

Energy Efficiency & Renewable Energy DOE Hydrogen & Fuel Cell Overview Dr. Sunita Satyapal Program Manager U.S. Department of Energy Fuel Cell Technologies Program DOE/CESA/TTC Hydrogen and Fuel Cells: Addressing Energy Challenges #12;4 Fuel Cells -- Where are we today? Fuel Cells for Transportation

387

Energy Efficiency & Renewable Energy  

E-Print Network [OSTI]

Energy Efficiency & Renewable Energy Source: US DOE 10/2010 Hydrogen and Fuel Cell Technologies ­ Upcoming Workshops & Solicitations Source: US DOE 10/2010 2 #12; Double Renewable Energy Capacity by 2012 Update Dr. Sunita Satyapal Program Manager U.S. Department of Energy Fuel Cell Technologies Program Fuel

388

Energy Efficiency & Renewable Energy  

E-Print Network [OSTI]

Energy Efficiency & Renewable Energy Overview of Hydrogen and Fuel Cell Activities Richard Farmer Hydrogen Business Council September 14, 2010 #12; Double Renewable Energy Capacity by 2012 Invest $150 Deputy Program Manager Fuel Cell Technologies Program United States Department of Energy Mountain States

389

Energy Conservation Renewable Energy  

E-Print Network [OSTI]

Energy Conservation Renewable Energy The Future at Rutgers University Facilities & Capital Planning Operations & Services Utilities Operations 6 Berrue Circle Piscataway, NJ 08854 #12;Energy Conservation Wh C ti ? R bl EWhy Conservation? Renewable Energy · Climate control reduces green house gases · Reduces

Delgado, Mauricio

390

Energy Efficiency & Renewable Energy  

E-Print Network [OSTI]

Energy Efficiency & Renewable Energy 2009 FUEL CELL MARKET REPORT NOVEMBER 2010 #12;Authors of Energy's Fuel Cell Technologies Program for their support and guidance in the preparation of this report-Jerram of Fuel Cell Today Consulting, Rachel Gelman of the National Renewable Energy Laboratory, Jennifer Gangi

391

Energy Efficiency & Renewable Energy  

E-Print Network [OSTI]

Energy Efficiency & Renewable Energy AUGUST 2010 2009 WIND TECHNOLOGIES MARKET REPORT EXECUTIVE (Berkeley Lab) Kevin Porter and Sari Fink (Exeter Associates) Suzanne Tegen (National Renewable Energy relatively high levels of wind energy penetration in their electricity grids: end-of-2009 wind power capacity

392

The Contribution of Environmental Siting and Permitting Requirements to the Cost of Energy for Wave Energy Devices  

SciTech Connect (OSTI)

Responsible deployment of marine and hydrokinetic (MHK) devices in estuaries, coastal areas, and major rivers requires that biological resources and ecosystems be protected through siting and permitting (consenting) processes. Scoping appropriate deployment locations, collecting pre-installation (baseline) and post-installation data all add to the cost of developing MHK projects, and hence to the cost of energy. Under the direction of the U.S. Department of Energy, Pacific Northwest National Laboratory scientists have developed logic models that describe studies and processes for environmental siting and permitting. Each study and environmental permitting process has been assigned a cost derived from existing and proposed tidal, wave, and riverine MHK projects. Costs have been developed at the pilot scale and for commercial arrays for a surge wave energy converter

Copping, Andrea E.; Geerlofs, Simon H.; Hanna, Luke A.

2014-06-30T23:59:59.000Z

393

Aleutian Pribilof Islands Wind Energy Feasibility Study  

SciTech Connect (OSTI)

Under this project, the Aleutian Pribilof Islands Association (APIA) conducted wind feasibility studies for Adak, False Pass, Nikolski, Sand Point and St. George. The DOE funds were also be used to continue APIA's role as project coordinator, to expand the communication network quality between all participants and with other wind interest groups in the state and to provide continued education and training opportunities for regional participants. This DOE project began 09/01/2005. We completed the economic and technical feasibility studies for Adak. These were funded by the Alaska Energy Authority. Both wind and hydro appear to be viable renewable energy options for Adak. In False Pass the wind resource is generally good but the site has high turbulence. This would require special care with turbine selection and operations. False Pass may be more suitable for a tidal project. APIA is funded to complete a False Pass tidal feasibility study in 2012. Nikolski has superb potential for wind power development with Class 7 wind power density, moderate wind shear, bi-directional winds and low turbulence. APIA secured nearly $1M from the United States Department of Agriculture Rural Utilities Service Assistance to Rural Communities with Extremely High Energy Costs to install a 65kW wind turbine. The measured average power density and wind speed at Sand Point measured at 20m (66ft), are 424 W/m2 and 6.7 m/s (14.9 mph) respectively. Two 500kW Vestas turbines were installed and when fully integrated in 2012 are expected to provide a cost effective and clean source of electricity, reduce overall diesel fuel consumption estimated at 130,000 gallons/year and decrease air emissions associated with the consumption of diesel fuel. St. George Island has a Class 7 wind resource, which is superior for wind power development. The current strategy, led by Alaska Energy Authority, is to upgrade the St. George electrical distribution system and power plant. Avian studies in Nikolski and Sand Point have allowed for proper wind turbine siting without killing birds, especially endangered species and bald eagles. APIA continues coordinating and looking for funding opportunities for regional renewable energy projects. An important goal for APIA has been, and will continue to be, to involve community members with renewable energy projects and energy conservation efforts.

Bruce A. Wright

2012-03-27T23:59:59.000Z

394

Internal wave and boundary current generation by tidal flow over topography Amadeus Dettner, Harry L. Swinney, and M. S. Paoletti  

E-Print Network [OSTI]

.1063/1.4808163 Negative turbulent production during flow reversal in a stratified oscillating boundary layer on a sloping of Texas at Austin, Austin, Texas 78712, USA (Received 31 May 2013; accepted 10 October 2013; published of a uniformly stratified fluid. The radiated power PIW and kinetic energy density of the boundary currents

Texas at Austin. University of

395

Energy Efficiency & Renewable Energy  

E-Print Network [OSTI]

& Acceptance Hydrogen Supply & Delivery Infrastructure Hydrogen Cost Target*: $2 ­ 3 /gge, (dispensedEnergy Efficiency & Renewable Energy Overview of DOE Hydrogen and Fuel Cell Activities Dr. Sunita, domestic resources. Stationary Power (including CHP & backup power) Auxiliary & Portable Power

396

Energy Efficiency & Renewable Energy  

E-Print Network [OSTI]

& Delivery Infrastructure Hydrogen Cost Target: $2 ­ 3 /gge, delivered Key Challenges Technology ValidationEnergy Efficiency & Renewable Energy Overview of Hydrogen and Fuel Cell Activities Dr. Sunita. Stationary Power (including CHP & backup power) Auxiliary & Portable Power Transportation Benefits

397

Energy Efficiency & Renewable Energy  

E-Print Network [OSTI]

National Harbor #12;U.S. Energy Consumption U.S. Primary Energy Consumption by Source and Sector 2 #12 · Efficiencies can be 60% (electrical) and 85% (with CHP) · > 90% reduction in criteria pollutants U.S. Department of Energy #12;7 Market Transformation Government acquisitions could significantly reduce the cost

398

Energy Efficiency & Renewable Energy  

E-Print Network [OSTI]

emissions 20 Percent below 1990 levels by 2020by 2020 · Enhance Energy Security: Save More Oil than the U security, and environmental challenges concurrently. Energy Security Economic · Deploy the cheapest.S. DOE #12;President's National Objectives for DOE-- Energy to Secure America's Future · Quickly

399

Low-Order Modelling of Blade-Induced Turbulence for RANS Actuator Disk Computations of Wind and Tidal Turbines  

E-Print Network [OSTI]

Modelling of turbine blade-induced turbulence (BIT) is discussed within the framework of three-dimensional Reynolds-averaged Navier-Stokes (RANS) actuator disk computations. We first propose a generic (baseline) BIT model, which is applied only to the actuator disk surface, does not include any model coefficients (other than those used in the original RANS turbulence model) and is expected to be valid in the limiting case where BIT is fully isotropic and in energy equilibrium. The baseline model is then combined with correction functions applied to the region behind the disk to account for the effect of rotor tip vortices causing a mismatch of Reynolds shear stress between short- and long-time averaged flow fields. Results are compared with wake measurements of a two-bladed wind turbine model of Medici and Alfredsson [Wind Energy, Vol. 9, 2006, pp. 219-236] to demonstrate the capability of the new model.

Nishino, Takafumi

2012-01-01T23:59:59.000Z

400

Energy Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Technologies Energy Technologies State, local, and tribal governments can use clean energy technologies to address increasing energy use and costs, economic investment and...

Note: This page contains sample records for the topic "tidal energy project-ferc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

RENEWABLE ENERGY RESOURCES PROCUREMENT PLAN This Renewable Energy Resources Procurement Plan ("RPS Procurement Plan" or  

E-Print Network [OSTI]

, and tidal current Biogas Geothermal Photovoltaic Biomass Hydroelectric incremental generation from efficiency improvements Small hydroelectric (30 megawatts or less) Conduit hydroelectric Landfill gas Solar

402

The Contribution of Environmental Siting and Permitting Requirements to the Cost of Energy for Oscillating Water Column Wave Energy Devices  

SciTech Connect (OSTI)

Responsible deployment of marine and hydrokinetic (MHK) devices in estuaries, coastal areas, and major rivers requires that biological resources and ecosystems be protected through siting and permitting (consenting) processes. Scoping appropriate deployment locations, collecting pre-installation (baseline) and post-installation data all add to the cost of developing MHK projects, and hence to the cost of energy. Under the direction of the U.S. Department of Energy, Pacific Northwest National Laboratory scientists have developed logic models that describe studies and processes for environmental siting and permitting. Each study and environmental permitting process has been assigned a cost derived from existing and proposed tidal, wave, and riverine MHK projects, as well as expert opinion of marine environmental research professionals. Cost estimates have been developed at the pilot and commercial scale. The reference model described in this document is an oscillating water column device deployed in Northern California at approximately 50 meters water depth.

Copping, Andrea E.; Geerlofs, Simon H.; Hanna, Luke A.

2013-09-30T23:59:59.000Z

403

Energy Saver | Department of Energy  

Energy Savers [EERE]

Save Energy, Save Money Start 2015 with an EnergyResolution to Save Money and Energy All Year Long Start 2015 with an EnergyResolution to Save Money and Energy All Year Long...

404

Energy Efficiency & Renewable Energy  

E-Print Network [OSTI]

Energy Efficiency & Renewable Energy Summary of Input to DOE Request for Information DE FOA, stationary, portable power, and early market applications. Comments on the existing DOE targets and justification for any proposed modifications. Topics to be included in the potential workshop / pre

405

Energy 101: Geothermal Energy  

ScienceCinema (OSTI)

See how we can generate clean, renewable energy from hot water sources deep beneath the Earth's surface. The video highlights the basic principles at work in geothermal energy production, and illustrates three different ways the Earth's heat can be converted into electricity.

None

2014-06-23T23:59:59.000Z

406

Energy 101: Geothermal Energy  

SciTech Connect (OSTI)

See how we can generate clean, renewable energy from hot water sources deep beneath the Earth's surface. The video highlights the basic principles at work in geothermal energy production, and illustrates three different ways the Earth's heat can be converted into electricity.

None

2014-05-27T23:59:59.000Z

407

Nuclear Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Energy Idaho National Laboratory is the Department of Energy's lead nuclear energy research and development facility. Building upon its legacy responsibilities,...

408

Energy Policy  

Broader source: Energy.gov [DOE]

The Energy Department is focusing on an all-of-the-above energy policy, investing in all sources of American energy.

409

Deployment Effects of Marine Renewable Energy Technologies: Wave Energy Scenarios  

SciTech Connect (OSTI)

Given proper care in siting, design, deployment, operation and maintenance, wave energy conversion could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that, due to a lack of technical certainty, many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood,. In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based assessment to the emerging hydrokinetic technology sector in order to evaluate the potential impact of these technologies on the marine environment and navigation constraints. The project’s scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios capture variations in technical approaches and deployment scales to properly identify and characterize environmental effects and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential range of technical attributes and potential effects of these emerging technologies and focus all stakeholders on the critical issues that need to be addressed. By identifying and addressing navigational and environmental concerns in the early stages of the industry’s development, serious mistakes that could potentially derail industry-wide development can be avoided. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industry’s development in the U.S. today. Re vision is coordinating its efforts with two other project teams funded by DoE which are focused on regulatory issues (Pacific Energy Ventures) and navigational issues (PCCI). The results of this study are structured into three reports: (1) Wave power scenario description (2) Tidal power scenario description (3) Framework for Identifying Key Environmental Concerns This is the first report in the sequence and describes the results of conceptual feasibility studies of wave power plants deployed in Humboldt County, California and Oahu, Hawaii. These two sites contain many of the same competing stakeholder interactions identified at other wave power sites in the U.S. and serve as representative case studies. Wave power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize potential effects, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informed the process of selecting representative wave power devices. The selection criteria requires that devices are at an advanced stage of development to reduce technical uncertainties, and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. Table 1 summarizes the selected wave power technologies. A number of other developers are also at an advanced stage of development, but are not directly mentioned here. Many environmental effects will largely scale with the size of the wave power plant. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments. In order to characterize these effects, scenarios are established at three deployment scales which nominally represent (1) a small pilot deployment, (2) a small commercial deployment, and (3) a large commercial sc

Mirko Previsic

2010-06-17T23:59:59.000Z

410

Energy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Future On Monday, the Energy Information Administration (EIA) issued the Annual Energy Outlook 2012 Early Release. This preview report provides updated projections for U.S....

411

Energy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

a piece which gave criticism to wide-scale energy efficiency measures. Yesterday, Henry Kelly, the Acting Assistant Secretary for Energy Efficiency and Renewable Energy, published...

412

Energy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

18, 2008 Energy Resources for Students and Teachers The Office of Energy Efficiency and Renewable Energy has resources to help students research that report or teachers set up...

413

Energy Sources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

has launched the Energy Data Initiative (EDI). May 17, 2012 The Energy Department's digital team tested out Apps for Energy submissions in preparation for public voting. |...

414

Energy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

to Mainstream: The Growth of the Global Clean Energy Marketplace Analyzing the past, present and future of the global clean energy marketplace. January 17, 2013 The Energy...

415

Department of Energy - Energy Sources  

Broader source: Energy.gov (indexed) [DOE]

295 en Using Passive Solar Design to Save Money and Energy http:energy.govenergysaverarticlesusing-passive-solar-design-save-money-and-energy

416

Energy Sources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

September 13, 2013 Energy Analysis Energy analysis informs EERE decision-making by delivering analytical products in four main areas: Data Resources, Market Intelligence, Energy...

417

Energy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

challenge to help reduce commercial energy use and an "Energy Specialist" program that trains college students on ENERGY STAR portfolio manager. | Photo courtesy of CFEEA College...

418

Energy Conservation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Goal 1: Energy Conservation LANL strives to reduce greenhouse gas emissions to meet and surpass Department of Energy goals. The Lab's goal is to reduce emissions from energy...

419

Symmetry Energy  

E-Print Network [OSTI]

Examination of symmetry energy is carried out on the basis of an elementary binding-energy formula. Constraints are obtained on the energy value at the normal nuclear density and on the density dependence of the energy at subnormal densities.

P. Danielewicz

2006-07-15T23:59:59.000Z

420

Symmetry Energy  

E-Print Network [OSTI]

Examination of symmetry energy is carried out on the basis of an elementary binding-energy formula. Constraints are obtained on the energy value at the normal nuclear density and on the density dependence of the energy at subnormal densities.

Danielewicz, P

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "tidal energy project-ferc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

An Evidence-Based Evaluation of the Cumulative Effects of Tidal Freshwater and Estuarine Ecosystem Restoration on Endangered Juvenile Salmon in the Columbia River: Final Report  

SciTech Connect (OSTI)

The listing of 13 salmon and steelhead stocks in the Columbia River basin (hereafter collectively referred to as “salmon”) under the Endangered Species Act of 1973, as amended, has stimulated tidal wetland restoration in the lower 235 kilometers of the Columbia River and estuary for juvenile salmon habitat functions. The purpose of the research reported herein was to evaluate the effect on listed salmon of the restoration effort currently being conducted under the auspices of the federal Columbia Estuary Ecosystem Restoration Program (CEERP). Linking changes in the quality and landscape pattern of tidal wetlands in the lower Columbia River and estuary (LCRE) to salmon recovery is a complex problem because of the characteristics of the ecosystem, the salmon, the restoration actions, and available sampling technologies. Therefore, we designed an evidence-based approach to develop, synthesize, and evaluate information to determine early-stage (~10 years) outcomes of the CEERP. We developed an ecosystem conceptual model and from that, a primary hypothesis that habitat restoration activities in the LCRE have a cumulative beneficial effect on juvenile salmon. There are two necessary conditions of the hypothesis: • habitat-based indicators of ecosystem controlling factors, processes, and structures show positive effects from restoration actions, and • fish-based indicators of ecosystem processes and functions show positive effects from restoration actions and habitats undergoing restoration. Our evidence-based approach to evaluate the primary hypothesis incorporated seven lines of evidence, most of which are drawn from the LCRE. The lines of evidence are spatial and temporal synergies, cumulative net ecosystem improvement, estuary-wide meta-analysis, offsite benefits to juvenile salmon, landscape condition evaluation, and evidence-based scoring of global literature. The general methods we used to develop information for the lines of evidence included field measurements, data analyses, modeling, meta-analysis, and reanalysis of previously collected data sets. We identified a set of 12 ancillary hypotheses regarding habitat and salmon response. Each ancillary hypothesis states that the response metric will trend toward conditions at relatively undisturbed reference sites. We synthesized the evidence for and against the two necessary conditions by using eleven causal criteria: strength, consistency, specificity, temporality, biological gradient, plausibility, coherence, experiment, analogy, complete exposure pathway, and predictive performance. Our final evaluation included cumulative effects assessment because restoration is occurring at multiple sites and the collective effect is important to salmon recovery. We concluded that all five lines of evidence from the LCRE indicated positive habitat-based and fish-based responses to the restoration performed under the CEERP, although tide gate replacements on small sloughs were an exception. Our analyses suggested that hydrologic reconnections restore access for fish to move into a site to find prey produced there. Reconnections also restore the potential for the flux of prey from the site to the main stem river, where our data show that they are consumed by salmon. We infer that LCRE ecosystem restoration supports increased juvenile salmon growth and enhanced fitness (condition), thereby potentially improving survival rates during the early ocean stage.

Diefenderfer, Heida L.; Johnson, Gary E.; Thom, Ronald M.; Borde, Amy B.; Woodley, Christa M.; Weitkamp, Laurie A.; Buenau, Kate E.; Kropp, Roy K.

2013-12-01T23:59:59.000Z

422

Directed Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Directed Energy The Directed Energy Program provides laser systems design, engineering and production for specific applications and missions, experimentally validated...

423

California Energy Commission STATE ENERGY  

E-Print Network [OSTI]

California Energy Commission CALIFORNIA STATE ENERGY EFFICIENT APPLIANCE REBATE PROGRAM GUIDELINES FOURTH EDITION ADOPTED BY THE CALIFORNIA ENERGY COMMISSION DECEMBER 16, 2009 AMENDED MARCH 24 Recovery and Reinvestment Act 2009 #12; i CALIFORNIA ENERGY COMMISSION Karen Douglas

424

California Energy Commission STATE ENERGY  

E-Print Network [OSTI]

California Energy Commission CALIFORNIA STATE ENERGY EFFICIENT APPLIANCE REBATE PROGRAM GUIDELINES SECOND THIRD EDITION ADOPTED BY THE CALIFORNIA ENERGY COMMISSION DECEMBER 16, 2009 AMENDED MARCH and Reinvestment Act 2009 #12; i CALIFORNIA ENERGY COMMISSION Karen Douglas Chairman James D

425

Energy Consumption Profile for Energy  

E-Print Network [OSTI]

317 Chapter 12 Energy Consumption Profile for Energy Harvested WSNs T. V. Prabhakar, R Venkatesha.............................................................................................318 12.2 Energy Harvesting ...................................................................................318 12.2.1 Motivations for Energy Harvesting...............................................319 12

Langendoen, Koen

426

Energy-momentum and asymptotic geometry  

E-Print Network [OSTI]

I show that radiative space-times are not asymptotically flat; rather, the radiation field gives rise to holonomy at null infinity. (This was noted earlier, by Bramson.) This means that, when gravitational radiation is present, asymptotically covariantly constant vector fields do not exist. On the other hand, according to the Bondi-Sachs construction, a weaker class of asymptotically constant vectors does exist. Reconciling these concepts leads to a measure of the scattering of matter by gravitational waves, that is, bulk exchanges of energy-momentum between the waves and matter. Because these bulk effects are potentially larger than the tidal ones which have usually been studied, they may affect the waves' propagation more significantly, and the question of matter's transparency to gravitational radiation should be revisited. While in many cases there is reason to think the waves will be only slightly affected, some situations are identified in which the energy-momentum exchanges can be substantial enough that a closer investigation should be made. In particular, the work here suggests that gravitational waves produced when relativistic jets are formed might be substantially affected by passing through an inhomogeneous medium.

Adam D. Helfer

2014-07-10T23:59:59.000Z

427

Offshore Renewable Energy R&D (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes the offshore renewable energy R&D efforts at NREL's NWTC. As the United States increases its efforts to tap the domestic energy sources needed to diversify its energy portfolio and secure its energy supply, more attention is being focused on the rich renewable resources located offshore. Offshore renewable energy sources include offshore wind, waves, tidal currents, ocean and river currents, and ocean thermal gradients. According to a report published by the National Renewable Energy Laboratory (NREL) in 2010,1 U.S. offshore wind resources have a gross potential generating capacity four times greater than the nation's present electric capacity, and the Electric Power Research Institute estimates that the nation's ocean energy resources could ultimately supply at least 10% of its electric supply. For more than 30 years, NREL has advanced the science of renewable energy while building the capabilities to guide rapid deployment of commercial applications. Since 1993, NREL's National Wind Technology Center (NWTC) has been the nation's premier wind energy research facility, specializing in the advancement of wind technologies that range in size from a kilowatt to several megawatts. For more than 8 years, the NWTC has been an international leader in the field of offshore floating wind system analysis. Today, researchers at the NWTC are taking their decades of experience and extensive capabilities and applying them to help industry develop cost-effective hydrokinetic systems that convert the kinetic energy in water to provide power for our nation's heavily populated coastal regions. The center's capabilities and experience cover a wide spectrum of wind and water energy engineering disciplines, including atmospheric and ocean fluid mechanics, aerodynamics; aeroacoustics, hydrodynamics, structural dynamics, control systems, electrical systems, and testing.

Not Available

2011-10-01T23:59:59.000Z

428

Gravitational energy  

E-Print Network [OSTI]

Observers at rest in a stationary spacetime flat at infinity can measure small amounts of rest-mass+internal energies+kinetic energies+pressure energy in a small volume of fluid attached to a local inertial frame. The sum of these small amounts is the total "matter energy" for those observers. The total mass-energy minus the matter energy is the binding gravitational energy. Misner, Thorne and Wheeler evaluated the gravitational energy of a spherically symmetric static spacetime. Here we show how to calculate gravitational energy in any static and stationary spacetime for isolated sources with a set of observers at rest. The result of MTW is recovered and we find that electromagnetic and gravitational 3-covariant energy densities in conformastatic spacetimes are of opposite signs. Various examples suggest that gravitational energy is negative in spacetimes with special symmetries or when the energy-momentum tensor satisfies usual energy conditions.

Joseph Katz

2005-10-20T23:59:59.000Z

429

Renewable Energy Optimization Report for Naval Station Newport  

SciTech Connect (OSTI)

In 2008, the U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative to encourage the development of renewable energy (RE) on potentially contaminated land and mine sites. As part of this effort, EPA is collaborating with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to evaluate RE options at Naval Station (NAVSTA) Newport in Newport, Rhode Island. NREL's Renewable Energy Optimization (REO) tool was utilized to identify RE technologies that present the best opportunity for life-cycle cost-effective implementation while also serving to reduce energy-related carbon dioxide emissions and increase the percentage of RE used at NAVSTA Newport. The technologies included in REO are daylighting, wind, solar ventilation preheating (SVP), solar water heating, photovoltaics (PV), solar thermal (heating and electric), and biomass (gasification and cogeneration). The optimal mix of RE technologies depends on several factors including RE resources; technology cost and performance; state, utility, and federal incentives; and economic parameters (discount and inflation rates). Each of these factors was considered in this analysis. Technologies not included in REO that were investigated separately per NAVSTA Newport request include biofuels from algae, tidal power, and ground source heat pumps (GSHP).

Robichaud, R.; Mosey, G.; Olis, D.

2012-02-01T23:59:59.000Z

430

Accelerate Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Accelerate Energy Productivity 2030 Over the next year, the U.S. Department of Energy, the Council on Competitiveness and the Alliance to Save Energy will join forces to undertake...

431

ACCELERATE ENERGY  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ACCELERATE ENERGY PRODUCTIVITY 2030 A Partnership To Double U.S. Energy Productivity By 2030 LEARN MORE AT: www.energy2030.org "I'm issuing a new goal for America: let's cut in...

432

PROPULSION AND ENERGY Terrestrial energy  

E-Print Network [OSTI]

PROPULSION AND ENERGY Terrestrial energy On the morning of Monday, August 29, Hurri- cane Katrina dependence we all have on power and energy systems. Nine major oil re- fineries in Louisiana and Mississippi- trial energy community is the question of why alternative energy sources, such as coal, solar, wind

Aggarwal, Suresh K.

433

Water Power for a Clean Energy Future (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides an overview of the U.S. Department of Energy's Wind and Water Power Program's water power research activities. Water power is the nation's largest source of clean, domestic, renewable energy. Harnessing energy from rivers, manmade waterways, and oceans to generate electricity for the nation's homes and businesses can help secure America's energy future. Water power technologies fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower facilities include run-of-the-river, storage, and pumped storage. Most conventional hydropower plants use a diversion structure, such as a dam, to capture water's potential energy via a turbine for electricity generation. Marine and hydrokinetic technologies obtain energy from waves, tides, ocean currents, free-flowing rivers, streams and ocean thermal gradients to generate electricity. The United States has abundant water power resources, enough to meet a large portion of the nation's electricity demand. Conventional hydropower generated 257 million megawatt-hours (MWh) of electricity in 2010 and provides 6-7% of all electricity in the United States. According to preliminary estimates from the Electric Power Resource Institute (EPRI), the United States has additional water power resource potential of more than 85,000 megawatts (MW). This resource potential includes making efficiency upgrades to existing hydroelectric facilities, developing new low-impact facilities, and using abundant marine and hydrokinetic energy resources. EPRI research suggests that ocean wave and in-stream tidal energy production potential is equal to about 10% of present U.S. electricity consumption (about 400 terrawatt-hours per year). The greatest of these resources is wave energy, with the most potential in Hawaii, Alaska, and the Pacific Northwest. The Department of Energy's (DOE's) Water Power Program works with industry, universities, other federal agencies, and DOE's national laboratories to promote the development and deployment of technologies capable of generating environmentally sustainable and cost-effective electricity from the nation's water resources.

Not Available

2012-03-01T23:59:59.000Z

434

Energy Policy ] (  

E-Print Network [OSTI]

energy consumption on a per capita or per productivity basis (e.g. kWh/capita, kWh/GDP), are widely usedEnergy Policy ] (

Jacobson, Arne

435

Materializing Energy  

E-Print Network [OSTI]

Motivated and informed by perspectives on sustainability and design, this paper draws on a diverse body of scholarly works related to energy and materiality to articulate a perspective on energy-as-materiality and propose a design approach of materializing energy. Three critical themes are presented: the intangibility of energy, the undifferentiatedness of energy, and the availability of energy. Each theme is developed through combination of critical investigation and design exploration, including the development and deployment of several novel design artifacts: Energy Mementos and The Local Energy Lamp. A framework for interacting with energy-as-materiality is proposed involving collecting, keeping, sharing, and activating energy. A number of additional concepts are also introduced, such as energy attachment, energy engagement, energy attunement, local energy and energy meta-data. Our work contributes both a broader, more integrative design perspective on energy and materiality as well as a diversity of more specific concepts and artifacts that may be of service to designers and researchers of interactive systems concerned with sustainability and energy. Author Keywords Sustainability, energy, materiality, design, design theory

James Pierce; Eric Paulos

436

Energy Efficiency & Renewable Energy  

E-Print Network [OSTI]

Residential and Small Commercial CHP $4.9M Specialty Vehicles $10.8M $2.4M $3.4M Portable Power Backup Power $20.4M Auxiliary Power Residential and Small Commercial CHP $4.9M Specialty Vehicles $10.8M $2.4M $3 CHP & backup power) Auxiliary & Portable Power Transportation Total Market Energy Use Potential Size

437

HLT Energies 2006 Inc formerly HLT Energies Inc Heliotech Energies...  

Open Energy Info (EERE)

HLT Energies 2006 Inc formerly HLT Energies Inc Heliotech Energies Inc Canada Inc Jump to: navigation, search Name: HLT Energies 2006 Inc (formerly HLT Energies Inc, Heliotech...

438

National Renewable Energy Laboratory's Energy Systems Integration...  

Broader source: Energy.gov (indexed) [DOE]

National Renewable Energy Laboratory's Energy Systems Integration Facility Overview National Renewable Energy Laboratory's Energy Systems Integration Facility Overview This...

439

Energy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

April 9, 2009 Question of the Week: How Will You Landscape for Energy Efficiency? How will you landscape for energy efficiency? April 7, 2009 Landscaping with an Eye To Energy...

440

Energy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

4, 2011 I Love Saving Money and Energy Valentine's Day is all about love-and I love all the quick and easy ways to save money and energy at home How much do I love saving energy...

Note: This page contains sample records for the topic "tidal energy project-ferc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Energy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Go for the Gold and Save Energy at Home One woman's quest to reduce her energy bill, train into good habits and set goals toward energy savings - and her life. August 15, 2012...

442

Tidal | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, Inc Place:InnovationFunds-BusinessOhioEnvironmentalism (E3G) Home

443

OpenEI Community - Tidal  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/Geothermal < Oklahoma

444

Energy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

in the Rio Grande Valley on energy efficiency ideas for the home, recycling, energy production and consumption, wind and solar power and groundwater runoff. Texas...

445

Energy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

University (NAU), the top recruiter of Native American engineering students in their area. November 18, 2011 Energy Matters: Industrial Energy Efficiency On Wednesday,...

446

Energy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

| Image courtesy of UD. Chrome Deposit Corporation and the University of Delaware IAC: Another Energy Efficiency Success Story Following an Energy Savings Assessment...

447

Energy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

More Resilient Communities The Energy Department continues to take actions to protect our energy infrastructure, adapt to climate change and build partnerships to make communities...

448

Energy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

readers are interested in broader energy efficiency and renewable energy information. That's where the EERE site comes in, with its information on the latest research,...

449

Energy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar Challenge, aimed at making it easier, faster and cheaper for more American's to go solar. November 5, 2013 Researchers at the Energy Department's National Renewable Energy...

450

Energy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

MI plant. The plant will develop and manufacture advanced batteries systems for electric vehicles. | Department of Energy Photo | Revitalizing American Manufacturing Energy...

452

Energy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Thanks, George Washington, for the Energy Efficient Washing Machine A quick internet search will provide you a list of retailers who are cutting down their prices on ENERGY...

453

Energy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Blog Energy Blog RSS July 29, 2012 Outdoor solar lights use solar cells, which convert sunlight into electricity, and are easy to install and virtually maintenance free. |...

454

Energy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

questions surrounding atoms. August 16, 2010 New energy recovery systems and occupancy sensors are greatly reducing energy costs at Woonsocket Middle School at Hamlet. | Photo...

455

Energy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

taking advanced battery technologies from the lab to the marketplace. February 14, 2011 Home-energy display mobile phone application that shows how much energy an appliance is...

456

Energy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Rob Guglielmetti helped leverage daylighting (i.e. sun and sunlight) to help the National Renewable Energy Laboratory's (NREL) Research Support Facility meet its energy efficiency...

457

Energy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Blog Energy Blog RSS June 26, 2012 Lab Breakthrough: Fusion Research Leads to Antiterrorism Device Princeton Plasma has extended its fusion research to detecting and...

458

Energy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

very hot temperatures. Here, the insulation is held over a flame. | Courtesy of Aspen Aerogels. Saving Energy and Money with Aerogel Insulation The Energy Department is investing...

459

Energy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

of Energy's State Energy Program and the Recovery Act to purchase equipment for manufacturing commercial-sized wind turbine systems for a strategic partner who owns the...

460

Energy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

makers here at the Department of Energy. July 29, 2010 Saving Energy at 247 Wastewater Treatment Plant When the wastewater treatment plant uses more electricity than any...

Note: This page contains sample records for the topic "tidal energy project-ferc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Energy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

October 17, 2012 Utilities demonstrating the latest Green Button features at the Energy Datapalooza on October 1st. | Photo by Sarah Gerrity Green Button Energy Data Access...

462

Energy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

the Energy Department's Clean Cities is helping National Parks across the country reduce air pollution and lower fuel costs. March 27, 2013 The America's Next Top Energy Innovator...

463

Energy Sources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

-- that are achieving commercial and technical success across the energy landscape. March 24, 2014 Sun Rises on Tribal Energy Future in Nevada The Moapa Band of Paiute...

464

Energy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Administration has made a point of supporting game-changing innovations - including the Energy Department's Advance Research Programs Agency for Energy (ARPA-E). August 29, 2011...

465

Energy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

bills for their tribal headquarters up to 50% cheaper. July 27, 2010 Software Helps Kentucky County Gauge Energy Use Grant money helps purchase software that will track energy...

466

Energy Sources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

July 17, 2012 Blades of Glory: Wind Technology Bringing Us Closer To a Clean Energy Future Making sure the best, most efficient wind energy technologies are developed and...

467

Energy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Paonia, CO, in the summer of 2010. | Photo courtesy of Solar Energy International Who Trains the Solar Energy Trainers? The Rocky Mountain Solar Training Program offers solar...

468

Energy Star  

E-Print Network [OSTI]

is a joint program of: ? U.S. Environmental Protection Agency (EPA) ? U.S. Department of Energy (DOE) ? Mission: ? ?Help us all save money and protect the environment through energy efficient products and practices.? ? History: ? 1992 ? Energy... Star Label introduced for energy-efficient products ? Expanded to include technical information & tools ? Website: www.energystar.gov ESL-KT-12-10-08 CATEE 2012: Clean Air Through Energy Efficiency Conference, Galveston, TX, October 9-11, 2012...

Reihl, K.; Tullos, A.

2012-01-01T23:59:59.000Z

469

Simulating environmental changes due to marine hydrokinetic energy installations.  

SciTech Connect (OSTI)

Marine hydrokinetic (MHK) projects will extract energy from ocean currents and tides, thereby altering water velocities and currents in the site's waterway. These hydrodynamics changes can potentially affect the ecosystem, both near the MHK installation and in surrounding (i.e., far field) regions. In both marine and freshwater environments, devices will remove energy (momentum) from the system, potentially altering water quality and sediment dynamics. In estuaries, tidal ranges and residence times could change (either increasing or decreasing depending on system flow properties and where the effects are being measured). Effects will be proportional to the number and size of structures installed, with large MHK projects having the greatest potential effects and requiring the most in-depth analyses. This work implements modification to an existing flow, sediment dynamics, and water-quality code (SNL-EFDC) to qualify, quantify, and visualize the influence of MHK-device momentum/energy extraction at a representative site. New algorithms simulate changes to system fluid dynamics due to removal of momentum and reflect commensurate changes in turbulent kinetic energy and its dissipation rate. A generic model is developed to demonstrate corresponding changes to erosion, sediment dynamics, and water quality. Also, bed-slope effects on sediment erosion and bedload velocity are incorporated to better understand scour potential.

Jones, Craig A. (Sea Engineering Inc., Santa Cruz, CA); James, Scott Carlton; Roberts, Jesse Daniel (Sandia National Laboratories, Albuquerque, NM); Seetho, Eddy

2010-08-01T23:59:59.000Z

470

Tribal Renewable Energy Foundational Course: Strategic Energy...  

Broader source: Energy.gov (indexed) [DOE]

Strategic Energy Planning Tribal Renewable Energy Foundational Course: Strategic Energy Planning Watch the U.S. Department of Energy Office of Indian Energy foundational course...

471

Strategic Energy Planning | Department of Energy  

Office of Environmental Management (EM)

Resources Energy Resource Library Strategic Energy Planning Strategic Energy Planning Below are resources for Tribes on strategic energy planning. Alaska Strategic Energy...

472

CALIFORNIA ENERGY CALIFORNIA'S STATE ENERGY  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION CALIFORNIA'S STATE ENERGY EFFICIENT APPLIANCE REBATE PROGRAM INITIAL November 2009 CEC-400-2009-026-CMD Arnold Schwarzenegger, Governor #12;#12;CALIFORNIA ENERGY COMMISSION Program Manager Paula David Supervisor Appliance and Process Energy Office Valerie T. Hall Deputy Director

473

Energy Speeches  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Ownedof Energy The EnergySeptember 9, 20139/Energy Speeches 1000 Independence

474

Geothermal Energy  

SciTech Connect (OSTI)

Geothermal Energy Technology (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production.

Steele, B.C.; Harman, G.; Pitsenbarger, J. [eds.] [eds.

1996-02-01T23:59:59.000Z

475

Energy deskbook  

SciTech Connect (OSTI)

This book explains recent energy-related terms and principles. It defines and outlines over 400 topics. The subjects covered include: alcohol and diesel fuels; atomic, biomass, and fusion energy; desulfurization; electric vehicles; geothermal resources development; laser fusion; ocean thermal energy conversion; steam generation; wind energy conversion. Scientists, engineers, administrators, government officials, and conservationists will want this authoritative reference close at hand for the invaluable assistance it can provide in their work.

Glasstone, S.

1983-01-01T23:59:59.000Z

476

Wind Energy  

Broader source: Energy.gov [DOE]

Presentation covers wind energy at the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

477

Fabrication of layer-by-layer photonic crystals using two polymer...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar...

478

Selective oxidation of organic substrates to partially oxidized...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar...

479

Energy Efficiency and Energy Policy  

E-Print Network [OSTI]

Energy Efficiency and Energy Policy David E. Claridge, Director Energy Systems Laboratory November 19, 2014 ESL-KT-14-11-17 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 50 Years of Automobile Improvements ? 1960s...: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 Impact of Auto/Truck Efficiency Increases ? Autos/light trucks used energy = Energy Imports in 2012 ? AUTO/TRUCK EFFICIENCY IMPROVEMENTS have CUT U.S. ENERGY IMPORTS IN HALF ESL...

Claridge, D.

2014-01-01T23:59:59.000Z

480

Energy News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Ownedof Energy The EnergySeptember 9, 2013 WEDNESDAY:January 30, 2015 Energy

Note: This page contains sample records for the topic "tidal energy project-ferc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Energy Speeches | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Ownedof Energy The EnergySeptember 9, 20139/Energy Speeches 1000

482

Energy Speeches | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Ownedof Energy The EnergySeptember 9, 20139/Energy Speeches 1000June 25, 2014

483

Energy Speeches | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Ownedof Energy The EnergySeptember 9, 20139/Energy Speeches 1000June 25,

484

Energy Speeches | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Ownedof Energy The EnergySeptember 9, 20139/Energy Speeches 1000June

485

Energy Speeches | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Ownedof Energy The EnergySeptember 9, 20139/Energy Speeches 1000JuneApril 25,

486

Energy Speeches | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Ownedof Energy The EnergySeptember 9, 20139/Energy Speeches 1000JuneApril

487

Energy Speeches | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Ownedof Energy The EnergySeptember 9, 20139/Energy Speeches 1000JuneAprilJuly

488

Energy Speeches | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Ownedof Energy The EnergySeptember 9, 20139/Energy Speeches

489

Energy Matters: Our Energy Independence | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Matters: Our Energy Independence Energy Matters: Our Energy Independence Addthis Description In this installment of the livechat series "Energy Matters," Dr. Arun Majumdar takes...

490

Geothermal Energy  

SciTech Connect (OSTI)

Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

Steele, B.C.; Pichiarella, L.S. [eds.; Kane, L.S.; Henline, D.M.

1995-01-01T23:59:59.000Z

491

NUCLEAR ENERGY  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2 to:DieselEnergy Auditor NRELhilTon Knoxville Knoxville,

492

Energy Blog  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Ownedof Energy The Energy DepartmentCERFEllen O'Kane Tauscher -Officearchive

493

Energy News  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Ownedof Energy The EnergySeptember 9, 2013 WEDNESDAY: Energynews-archive 1000

494

Energy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Schaefer recently had an energy audit done on his 80-year-old home and is saving money on energy bills by putting some of the auditor's recommendations to work. May 28, 2010...

495

Energy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

January 4, 2011 Energy 101: Geothermal Heat Pumps How do geothermal heat pumps work? January 4, 2011 10 Ways to Save Money and Energy in the New Year Want some easy ways to save...

496

Energy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

energy technologies to produce as much energy as they consume. Credit: Kenneth Kelly, NREL. Ultra-Efficient Home Design An ultra-efficient home can be designed and built...

497

Energy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Engineering Check out our favorite energy-related photos March 1, 2013 Elon Musk, CEO of Tesla Motors, and Secretary Chu during a fireside chat at the 2013 ARPA-E Energy...

498

Energy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

renewable projects A public-private partnership has helped one Air Force base reduce its energy costs and convert to 25 percent renewable energy. Nellis Air Force Base, just north...

499

Energy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

in a city like Altoona, Pa., where 169 new LED units are expected to save 4,078 in energy costs annually. But there are also other benefits to such energy efficiency...

500

Energy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

installation of solar panels and wind turbines on a number of city facilities to reduce energy costs and promote renewable energy technologies. May 12, 2011 A model of the...