National Library of Energy BETA

Sample records for tidal energy plant

  1. MHK Projects/Housatonic Tidal Energy Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 JumpCoos Bay OPTHalf Moon Cove TidalTidalHope

  2. MHK Projects/Rockaway Tidal Energy Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK5 < MHKKembla < MHK Projects JumpRockaway Tidal

  3. MHK Projects/Pennamaquan Tidal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 JumpCoos BayOyster 800 Project < MHKPenichePlant

  4. Tidal Energy Basics

    Broader source: Energy.gov [DOE]

    Some of the oldest ocean energy technologies use tidal power. For tidal differences to be harnessed into electricity, the difference between high and low tides must be more than 16 feet (or at least 5 meters). However, there are only about 40 sites on Earth with tidal ranges of this magnitude.

  5. Clarence Strait Tidal Energy Project, Tenax Energy Tropical Tidal...

    Open Energy Info (EERE)

    Page Edit History Clarence Strait Tidal Energy Project, Tenax Energy Tropical Tidal Test Centre, Jump to: navigation, search 1 Retrieved from "http:en.openei.orgw...

  6. Tidal Energy Research

    SciTech Connect (OSTI)

    Stelzenmuller, Nickolas; Aliseda, Alberto; Palodichuk, Michael; Polagye, Brian; Thomson, James; Chime, Arshiya; Malte, Philip

    2014-03-31

    This technical report contains results on the following topics: 1) Testing and analysis of sub-scale hydro-kinetic turbines in a flume, including the design and fabrication of the instrumented turbines. 2) Field measurements and analysis of the tidal energy resource and at a site in northern Puget Sound, that is being examined for turbine installation. 3) Conceptual design and performance analysis of hydro-kinetic turbines operating at high blockage ratio, for use for power generation and flow control in open channel flows.

  7. Tidal Electric | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)Open Energy Information ThreeTianDi GrowthTibagiTidal

  8. ARRAY OPTIMIZATION FOR TIDAL ENERGY EXTRACTION IN A TIDAL CHANNEL – A NUMERICAL MODELING ANALYSIS

    SciTech Connect (OSTI)

    Yang, Zhaoqing; Wang, Taiping; Copping, Andrea

    2014-04-18

    This paper presents an application of a hydrodynamic model to simulate tidal energy extraction in a tidal dominated estuary in the Pacific Northwest coast. A series of numerical experiments were carried out to simulate tidal energy extraction with different turbine array configurations, including location, spacing and array size. Preliminary model results suggest that array optimization for tidal energy extraction in a real-world site is a very complex process that requires consideration of multiple factors. Numerical models can be used effectively to assist turbine siting and array arrangement in a tidal turbine farm for tidal energy extraction.

  9. Sandia Energy - Tidal & Current Modeling Development and Validation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tidal & Current Modeling Development and Validation Home Stationary Power Energy Conversion Efficiency Water Power Technology Development Tidal & Current Modeling Development and...

  10. Tidal Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)Open Energy Information ThreeTianDi

  11. Tidal Energy Resource Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsState ofSavings for Specific2HeldTidal Energy Resource

  12. Tidal Energy Test Platform | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)Open Energy Information ThreeTianDi GrowthTibagiTidalTest

  13. Assessment of Energy Production Potential from Tidal Streams...

    Broader source: Energy.gov (indexed) [DOE]

    project documented in this report created a national database of tidal stream energy potential, as well as a GIS tool usable by industry in order to accelerate the market for tidal...

  14. Tidal Stream | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)Open Energy Information ThreeTianDiHydraulic

  15. First Commercial, Grid-Connected, Hydrokinetic Tidal Energy Project...

    Office of Science (SC) Website

    First Commercial, Grid-Connected, Hydrokinetic Tidal Energy Project in North America Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) SBIR...

  16. MHK Projects/Highlands Tidal Energy Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 JumpCoos Bay OPTHalf Moon Cove TidalTidal Energy

  17. Numerical and Experimental Investigation of Tidal Current Energy Extraction 

    E-Print Network [OSTI]

    Sun, Xiaojing

    2008-01-01

    Numerical and experimental investigations of tidal current energy extraction have been conducted in this study. A laboratory-scale water flume was simulated using commercial computational fluid dynamics (CFD) code FLUENT. ...

  18. Puget Sound Tidal Energy In-Water Testing and Development Project Final Technical Report

    SciTech Connect (OSTI)

    Craig W. Collar

    2012-11-16

    Tidal energy represents potential for the generation of renewable, emission free, environmentally benign, and cost effective energy from tidal flows. A successful tidal energy demonstration project in Puget Sound, Washington may enable significant commercial development resulting in important benefits for the northwest region and the nation. This project promoted the United States Department of Energy�s Wind and Hydropower Technologies Program�s goals of advancing the commercial viability, cost-competitiveness, and market acceptance of marine hydrokinetic systems. The objective of the Puget Sound Tidal Energy Demonstration Project is to conduct in-water testing and evaluation of tidal energy technology as a first step toward potential construction of a commercial-scale tidal energy power plant. The specific goal of the project phase covered by this award was to conduct all activities necessary to complete engineering design and obtain construction approvals for a pilot demonstration plant in the Admiralty Inlet region of the Puget Sound. Public Utility District No. 1 of Snohomish County (The District) accomplished the objectives of this award through four tasks: Detailed Admiralty Inlet Site Studies, Plant Design and Construction Planning, Environmental and Regulatory Activities, and Management and Reporting. Pre-Installation studies completed under this award provided invaluable data used for site selection, environmental evaluation and permitting, plant design, and construction planning. However, these data gathering efforts are not only important to the Admiralty Inlet pilot project. Lessons learned, in particular environmental data gathering methods, can be applied to future tidal energy projects in the United States and other parts of the world. The District collaborated extensively with project stakeholders to complete the tasks for this award. This included Federal, State, and local government agencies, tribal governments, environmental groups, and others. All required permit and license applications were completed and submitted under this award, including a Final License Application for a pilot hydrokinetic license from the Federal Energy Regulatory Commission. The tasks described above have brought the project through all necessary requirements to construct a tidal pilot project in Admiralty Inlet with the exception of final permit and license approvals, and the selection of a general contractor to perform project construction.

  19. Examining the Impacts of Tidal Energy Capture from an Ecosystem

    E-Print Network [OSTI]

    Leslie, Heather

    ; however, the contribution of alternative fuel sources to overall energy is still small. In the United are under development in the Northeast, includ- ing Roosevelt Island in New York City's East RiverP A P E R Examining the Impacts of Tidal Energy Capture from an Ecosystem Services Perspective A U

  20. MHK Projects/Killisnoo Tidal Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 JumpCoos Bay OPTHalf MoonKillisnoo Tidal Energy <

  1. MHK Projects/Kingsbridge Tidal Energy Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 JumpCoos Bay OPTHalf MoonKillisnoo Tidal Energy

  2. MHK Projects/Salem Tidal Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 JumpCoos BayOysterReliance LightSalem Tidal Energy

  3. Assessment of Energy Production Potential from Tidal Streams in the United States

    SciTech Connect (OSTI)

    Haas, Kevin A.; Fritz, Hermann M.; French, Steven P.; Smith, Brennan T.; Neary, Vincent

    2011-06-29

    The project documented in this report created a national database of tidal stream energy potential, as well as a GIS tool usable by industry in order to accelerate the market for tidal energy conversion technology.

  4. An Estimate of Tidal Energy Lost to Turbulence at the Hawaiian Ridge JODY M. KLYMAK

    E-Print Network [OSTI]

    Balasubramanian, Ravi

    An Estimate of Tidal Energy Lost to Turbulence at the Hawaiian Ridge JODY M. KLYMAK Scripps an estimate of 3 1.5 GW of tidal energy lost to turbulence dissipation within 60 km of the ridge and Toole 1997). Another closely related question is that of where tidal energy gets removed from the ocean

  5. Energy Localization Invariance of Tidal Work in General Relativity

    E-Print Network [OSTI]

    Marc Favata

    2000-08-24

    It is well known that, when an external general relativistic (electric-type) tidal field E(t) interacts with the evolving quadrupole moment I(t) of an isolated body, the tidal field does work on the body (``tidal work'') -- i.e., it transfers energy to the body -- at a rate given by the same formula as in Newtonian theory: dW/dt = -1/2 E dI/dt. Thorne has posed the following question: In view of the fact that the gravitational interaction energy between the tidal field and the body is ambiguous by an amount of order E(t)I(t), is the tidal work also ambiguous by this amount, and therefore is the formula dW/dt = -1/2 E dI/dt only valid unambiguously when integrated over timescales long compared to that for I(t) to change substantially? This paper completes a demonstration that the answer is no; dW/dt is not ambiguous in this way. More specifically, this paper shows that dW/dt is unambiguously given by -1/2 E dI/dt independently of one's choice of how to localize gravitational energy in general relativity. This is proved by explicitly computing dW/dt using various gravitational stress-energy pseudotensors (Einstein, Landau-Lifshitz, Moller) as well as Bergmann's conserved quantities which generalize many of the pseudotensors to include an arbitrary function of position. A discussion is also given of the problem of formulating conservation laws in general relativity and the role played by the various pseudotensors.

  6. Modeling In-stream Tidal Energy Extraction and Its Potential Environmental Impacts

    SciTech Connect (OSTI)

    Yang, Zhaoqing; Wang, Taiping; Copping, Andrea; Geerlofs, Simon H.

    2014-09-30

    In recent years, there has been growing interest in harnessing in-stream tidal energy in response to concerns of increasing energy demand and to mitigate climate change impacts. While many studies have been conducted to assess and map tidal energy resources, efforts for quantifying the associated potential environmental impacts have been limited. This paper presents the development of a tidal turbine module within a three-dimensional unstructured-grid coastal ocean model and its application for assessing the potential environmental impacts associated with tidal energy extraction. The model is used to investigate in-stream tidal energy extraction and associated impacts on estuarine hydrodynamic and biological processes in a tidally dominant estuary. A series of numerical experiments with varying numbers and configurations of turbines installed in an idealized estuary were carried out to assess the changes in the hydrodynamics and biological processes due to tidal energy extraction. Model results indicated that a large number of turbines are required to extract the maximum tidal energy and cause significant reduction of the volume flux. Preliminary model results also indicate that extraction of tidal energy increases vertical mixing and decreases flushing rate in a stratified estuary. The tidal turbine model was applied to simulate tidal energy extraction in Puget Sound, a large fjord-like estuary in the Pacific Northwest coast.

  7. Severn Tidal Power Group STpg | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity for Low Emission DevelopmentLakes, North Carolina:Severn Tidal

  8. TIDAL ENERGY SITE RESOURCE ASSESSMENT: TECHNICAL SPECIFICATIONS...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Marine Renewable Energy Center, University of Washington, Seattle, WA 3 Civil and Environmental Engineering, Georgia Institute of Technology, USA 98195-2600, USA...

  9. Tidal Hydraulic Generators Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)Open Energy Information ThreeTianDiHydraulic Generators Ltd

  10. Tidal Sails AS | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)Open Energy Information ThreeTianDiHydraulic Generators

  11. Pennamaquan Tidal Power LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly Smart GridNorth Carolina:ParamountEnergySmall Water TunnelLLC Jump

  12. Sandia Energy - Tidal Energy Resource Assessment in the East River Tidal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)GeothermalFuel Magnetization andStochasticunique wind(CREW)Tidal

  13. HAWAIIAN OCEAN MIXING EXPERIMENT (HOME): FARFIELD PROGRAM HAWAIIAN TIDAL ENERGY BUDGET

    E-Print Network [OSTI]

    Dushaw, Brian

    HAWAIIAN OCEAN MIXING EXPERIMENT (HOME): FARFIELD PROGRAM HAWAIIAN TIDAL ENERGY BUDGET Principal). This tidal energy budget will determine limits on the energy dissipated in the nearfield of the Hawaiian and ocean acoustic tomography have brought a new dimension to the subject. We propose to measure the energy

  14. MHK Projects/Margate Tidal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 JumpCoos Bay OPTHalf| Open EnergyMaineMargate Tidal

  15. Modeling the Effects of Tidal Energy Extraction on Estuarine Hydrodynamics in a Stratified Estuary

    SciTech Connect (OSTI)

    Yang, Zhaoqing; Wang, Taiping

    2013-08-15

    A three-dimensional coastal ocean model with a tidal turbine module was used in this paper to study the effects of tidal energy extraction on temperature and salinity stratification and density driven two-layer estuarine circulation. Numerical experiments with various turbine array configurations were carried out to investigate the changes in tidally mean temperature, salinity and velocity profiles in an idealized stratified estuary that connects to coastal water through a narrow tidal channel. The model was driven by tides, river inflow and sea surface heat flux. To represent the realistic size of commercial tidal farms, model simulations were conducted based on a small percentage of the total number of turbines that would generate the maximum extractable energy in the system. Model results indicated that extraction of tidal energy will increase the vertical mixing and decrease the stratification in the estuary. Extraction of tidal energy has stronger impact on the tidally-averaged salinity, temperature and velocity in the surface layer than the bottom. Energy extraction also weakens the two-layer estuarine circulation, especially during neap tides when tidal mixing the weakest and energy extraction is the smallest. Model results also show that energy generation can be much more efficient with higher hub height with relatively small changes in stratification and two-layer estuarine circulation.

  16. JULY 2005 1 An estimate of tidal energy lost to turbulence at the Hawaiian Ridge

    E-Print Network [OSTI]

    Klymak, Jody M.

    JULY 2005 1 An estimate of tidal energy lost to turbulence at the Hawaiian Ridge JODY M. KLYMAK1 of the ridge, giving an estimate of 3±1.5 GW of tidal energy lost to turbulence dissipation within 60 km relation- ship between the energy in the semi-diurnal internal tide (E) and the depth

  17. Maine Deploys First U.S. Commercial, Grid-Connected Tidal Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of President Obama's all-of-the-above energy strategy to create jobs and strengthen U.S. global competitiveness," said Energy Secretary Steven Chu. "The Eastport tidal energy...

  18. DOE'S ENERGY DATA BASE (EDB) VERSUS OTHER ENERGY-RELATED DATA BASES: A COMPARATIVE ANALYSIS

    E-Print Network [OSTI]

    Robinson, J.

    2010-01-01

    solar energy, geothermal energy, tidal power, wind energy; energy storage, conversion, consumption, conservation, management; nuclear power plants

  19. Tidal Energy System for On-Shore Power Generation

    SciTech Connect (OSTI)

    Bruce, Allan J

    2012-06-26

    Addressing the urgent need to develop LCOE competitive renewable energy solutions for US energy security and to replace fossil-fuel generation with the associated benefits to environment impacts including a reduction in CO2 emissions, this Project focused on the advantages of using hydraulic energy transfer (HET) in large-scale Marine Hydrokinetic (MHK) systems for harvesting off-shore tidal energy in US waters. A recent DOE resource assessment, identifies water power resources have a potential to meet 15% of the US electric supply by 2030, with MHK technologies being a major component. The work covered a TRL-4 laboratory proof-in-concept demonstration plus modeling of a 15MW full scale system based on an approach patented by NASA-JPL, in which submerged high-ratio gearboxes and electrical generators in conventional MHK turbine systems are replaced by a submerged hydraulic radial pump coupled to on-shore hydraulic motors driving a generator. The advantages are; first, the mean-time-between-failure (MTBF), or maintenance, can be extended from approximately 1 to 5 years and second, the range of tidal flow speeds which can be efficiently harvested can be extended beyond that of a conventional submerged generator. The approach uses scalable, commercial-off-the-shelf (COTS) components, facilitating scale-up and commercialization. All the objectives of the Project have been successfully met (1) A TRL4 system was designed, constructed and tested. It simulates a tidal energy turbine, with a 2-m diameter blade in up to a 2.9 m/sec flow. The system consists of a drive motor assembly providing appropriate torque and RPM, attached to a radial piston pump. The pump circulates pressurized, environmentally-friendly, HEES hydraulic fluid in a closed loop to an axial piston motor which drives an electrical generator, with a resistive load. The performance of the components, subsystems and system were evaluated during simulated tidal cycles. The pump is contained in a tank for immersion testing. The COTS pump and motor were selected to scale to MW size and were oversized for the TRL-4 demonstration, operating at only 1-6% of rated values. Nevertheless, in for 2-18 kW drive power, in agreement with manufacturer performance data, we measured efficiencies of 85-90% and 75-80% for the pump and motor, respectively. These efficiencies being 95-96% at higher operating powers. (2) Two follow-on paths were identified. In both cases conventional turbine systems can be modified, replacing existing gear box and generator with a hydraulic pump and on-shore components. On a conventional path, a TRL5/6 15kW turbine system can be engineered and tested on a barge at an existing site in Maine. Alternatively, on an accelerated path, a TRL-8 100kW system can be engineered and tested by modifying a team member's existing MHK turbines, with barge and grid-connected test sites in-place. On both paths the work can be expedited and cost effective by reusing TRL-4 components, modifying existing turbines and using established test sites. (3) Sizing, performance modeling and costing of a scaled 15MW system, suitable for operation in Maine's Western Passage, was performed. COTS components are identified and the performance projections are favorable. The estimated LCOE is comparable to wind generation with peak production at high demand times. (4) We determined that a similar HET approach can be extended to on-shore and off-shore wind turbine systems. These are very large energy resources which can be addressed in parallel for even great National benefit. (5) Preliminary results on this project were presented at two International Conferences on renewable energy in 2012, providing a timely dissemination of information. We have thus demonstrated a proof-in-concept of a novel, tidal HET system that eliminates all submerged gears and electronics to improve reliability. Hydraulic pump efficiencies of 90% have been confirmed in simulated tidal flows between 1 and 3 m/s, and at only 1-6% of rated power. Total system efficiencies have also been modeled, up to MW-scale, for ti

  20. Reference Model #1 - Tidal Energy: Resource Dr. Brian Polagye

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    constituents, as well as the aharmonic response to these currents induced by local topography and bathymetry. Aharmonic currents are not described by tidal constituents, but are...

  1. List of Tidal Energy Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWindsCompressedList of RefuelingRoomList ofSolarTidal

  2. MHK Projects/Cape May Tidal Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 Jump to:Projects/Alaska 31BondurantCETO3May Tidal

  3. Tidal Charged Black Holes as Particle Accelerators to Arbitrarily High Energy

    E-Print Network [OSTI]

    Pradhan, Parthapratim

    2014-01-01

    We show that Randall Sundrum tidal charged spherically symmetric vacuum brane black holes could be act as a particle accelerator with ultrahigh center-of-mass energy in the limiting case of \\emph{ maximal black hole tidal charge}. For non-extremal Randall Sundrum tidal charged black hole, the center-of-mass energy is finite. While for maximally Randall Sundrum tidal charged black hole, the center-of-mass energy is \\emph{infinite}. We have also derived the center-of-mass energy at ISCO(Innermost Stable Circular Orbit) or LSCO(Last Stable Circular Orbit) or MSCO(Marginally Stable Circular Orbit) and MBCO (Marginally Bound Circular Orbit) for maximally Randall Sundrum tidal charged black hole. We show visually the differences between Reissner-Nordstr{\\o}m black hole and Randall Sundrum tidal charged BH. We have found that for maximally Randall Sundrum tidal charged black hole the center-of-mass energy is satisfied the following inequality: $E_{cm}\\mid_{r_{+}}>E_{cm}\\mid_{r_{mb}}>E_{cm}\\mid_{r_{ISCO}}$ i.e. $E_{c...

  4. Tidal Charged Black Holes as Particle Accelerators to Arbitrarily High Energy

    E-Print Network [OSTI]

    Parthapratim Pradhan

    2014-12-28

    We show that Randall Sundrum tidal charged spherically symmetric vacuum brane black holes could be act as a particle accelerator with ultrahigh center-of-mass energy in the limiting case of \\emph{ maximal black hole tidal charge}. For non-extremal Randall Sundrum tidal charged black hole, the center-of-mass energy is finite. While for maximally Randall Sundrum tidal charged black hole, the center-of-mass energy is \\emph{infinite}. We have also derived the center-of-mass energy at ISCO(Innermost Stable Circular Orbit) or LSCO(Last Stable Circular Orbit) or MSCO(Marginally Stable Circular Orbit) and MBCO (Marginally Bound Circular Orbit) for maximally Randall Sundrum tidal charged black hole. We show visually the differences between Reissner-Nordstr{\\o}m black hole and Randall Sundrum tidal charged BH. We have found that for maximally Randall Sundrum tidal charged black hole the center-of-mass energy is satisfied the following inequality: $E_{cm}\\mid_{r_{+}}>E_{cm}\\mid_{r_{mb}}>E_{cm}\\mid_{r_{ISCO}}$ i.e. $E_{cm}\\mid_{r_{+} = \\frac{M}{M_{p}^2}}: E_{cm}\\mid_{r_{mb} = \\left(\\frac{3+\\sqrt{5}}{2}\\right)\\frac{M}{M_{p}^2}}:E_{cm}\\mid_{r_{ISCO} = 4\\frac{M}{M_{p}^2}} = \\infty: 3.23 : 2.6$. Which is exactly \\emph{similar} to the spherically symmetric extreme Reissner-Nordstr\\"{o}m black hole.}

  5. A Synthesis of Environmental and Plant Community Data for Tidal Wetland Restoration Planning in the Lower Columbia River and Estuary

    SciTech Connect (OSTI)

    Diefenderfer, Heida L.; Borde, Amy B.; Cullinan, Valerie I.

    2013-12-01

    This report reanalyzes and synthesizes previously existing environmental and plant community data collected by PNNL at 55 tidal wetlands and 3 newly restored sites in the lower Columbia River and estuary (LCRE) between 2005 and 2011. Whereas data were originally collected for various research or monitoring objectives of five studies, the intent of this report is to provide only information that will have direct utility in planning tidal wetland restoration projects. Therefore, for this report, all tidal wetland data on plants and the physical environment, which were originally developed and reported by separate studies, were tabulated and reanalyzed as a whole. The geographic scope of the data collected in this report is from Bonneville Lock and Dam to the mouth of the Columbia River

  6. Maine Project Takes Historic Step Forward in U.S. Tidal Energy...

    Energy Savers [EERE]

    contracts will be in place for 20 years -- making them the first long-term tidal energy power purchase agreements in the United States. The implications of these agreements are...

  7. A Modeling Study of the Potential Water Quality Impacts from In-Stream Tidal Energy Extraction

    SciTech Connect (OSTI)

    Wang, Taiping; Yang, Zhaoqing; Copping, Andrea E.

    2013-11-09

    To assess the effects of tidal energy extraction on water quality in a simplified estuarine system, which consists of a tidal bay connected to the coastal ocean through a narrow channel where energy is extracted using in-stream tidal turbines, a three-dimensional coastal ocean model with built-in tidal turbine and water quality modules was applied. The effects of tidal energy extraction on water quality were examined for two energy extraction scenarios as compared with the baseline condition. It was found, in general, that the environmental impacts associated with energy extraction depend highly on the amount of power extracted from the system. Model results indicate that, as a result of energy extraction from the channel, the competition between decreased flushing rates in the bay and increased vertical mixing in the channel directly affects water quality responses in the bay. The decreased flushing rates tend to cause a stronger but negative impact on water quality. On the other hand, the increase of vertical mixing could lead to higher bottom dissolved oxygen at times. As the first modeling effort directly aimed at examining the impacts of tidal energy extraction on estuarine water quality, this study demonstrates that numerical models can serve as a very useful tool for this purpose. However, more careful efforts are warranted to address system-specific environmental issues in real-world, complex estuarine systems.

  8. HYDROCARBONS & ENERGY FROM PLANTS

    E-Print Network [OSTI]

    Nemethy, E.K.

    2011-01-01

    LBL-8596 itr-t C,d.. HYDROCARBONS & ENERGY FROM PLANTS jmethods of isolating the hydrocarbon-like material from I.privatelyownedrights. HYDROCARBONS AND ENERGY FROM PLANTS

  9. Modeling Tidal Stream Energy Extraction and its Effects on Transport Processes in a Tidal Channel and Bay System Using a Three-dimensional Coastal Ocean Model

    SciTech Connect (OSTI)

    Yang, Zhaoqing; Wang, Taiping; Copping, Andrea E.

    2013-02-28

    This paper presents a numerical modeling study for simulating in-stream tidal energy extraction and assessing its effects on the hydrodynamics and transport processes in a tidal channel and bay system connecting to coastal ocean. A marine and hydrokinetic (MHK) module was implemented in a three-dimensional (3-D) coastal ocean model using the momentum sink approach. The MHK model was validated with the analytical solutions for tidal channels under one-dimensional (1-D) conditions. Model simulations were further carried out to compare the momentum sink approach with the quadratic bottom friction approach. The effects of 3-D simulations on the vertical velocity profile, maximum extractable energy, and volume flux reduction across the channel were investigated through a series of numerical experiments. 3-D model results indicate that the volume flux reduction at the maximum extractable power predicted by the 1-D analytical model or two-dimensional (2-D) depth-averaged numerical model may be overestimated. Maximum extractable energy strongly depends on the turbine hub height in the water column, and which reaches a maximum when turbine hub height is located at mid-water depth. Far-field effects of tidal turbines on the flushing time of the tidal bay were also investigated. Model results demonstrate that tidal energy extraction has a greater effect on the flushing time than volume flux reduction, which could negatively affect the biogeochemical processes in estuarine and coastal waters that support primary productivity and higher forms of marine life.

  10. Tidal energy effects of dark matter halos on early-type galaxies

    E-Print Network [OSTI]

    Valentinuzzi, T; D'Onofrio, M

    2010-01-01

    Tidal interactions between neighboring objects span across the whole admissible range of lengths in nature: from, say, atoms to clusters of galaxies i.e. from micro to macrocosms. According to current cosmological theories, galaxies are embedded within massive non-baryonic dark matter (DM) halos, which affects their formation and evolution. It is therefore highly rewarding to understand the role of tidal interaction between the dark and luminous matter in galaxies. The current investigation is devoted to Early-Type Galaxies (ETGs), looking in particular at the possibility of establishing whether the tidal interaction of the DM halo with the luminous baryonic component may be at the origin of the so-called "tilt" of the Fundamental Plane (FP). The extension of the tensor virial theorem to two-component matter distributions implies the calculation of the self potential energy due to a selected subsystem, and the tidal potential energy induced by the other one. The additional assumption of homeoidally striated d...

  11. Temperature and Tidal Dynamics in a Branching Estuarine System

    E-Print Network [OSTI]

    Wagner, Richard Wayne

    2012-01-01

    distribution of tidal energy. When specific locations ordissipation which may alter tidal energy in other parts ofAdditionally, changes to tidal energy reflection within a

  12. Subtropical catastrophe: Significant loss of low-mode tidal energy at J. A. MacKinnon and K. B. Winters

    E-Print Network [OSTI]

    MacKinnon, Jennifer

    Subtropical catastrophe: Significant loss of low-mode tidal energy at 28.9°° J. A. MacKinnon and K with a northward baroclinic tidal flux of approximately 1.7 kW/m. After an initial spinup period, energy is quickly of low-mode tidal energy at 28.9°, Geophys. Res. Lett., 32, L15605, doi:10.1029/ 2005GL023376. 1

  13. Hydra Tidal Energy Technology AS | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNewTexas: EnergyHunterdonHutto,Fuel Cell Corporation Jump

  14. Modeling of In-stream Tidal Energy Development and its Potential Effects in Tacoma Narrows, Washington, USA

    SciTech Connect (OSTI)

    Yang, Zhaoqing; Wang, Taiping; Copping, Andrea E.; Geerlofs, Simon H.

    2014-10-01

    Understanding and providing proactive information on the potential for tidal energy projects to cause changes to the physical system and to key water quality constituents in tidal waters is a necessary and cost-effective means to avoid costly regulatory involvement and late stage surprises in the permitting process. This paper presents a modeling study for evaluating the tidal energy extraction and its potential impacts on the marine environment in a real world site - Tacoma Narrows of Puget Sound, Washington State, USA. An unstructured-grid coastal ocean model, fitted with a module that simulates tidal energy devices, was applied to simulate the tidal energy extracted by different turbine array configurations and the potential effects of the extraction at local and system-wide scales in Tacoma Narrows and South Puget Sound. Model results demonstrated the advantage of an unstructured-grid model for simulating the far-field effects of tidal energy extraction in a large model domain, as well as assessing the near-field effect using a fine grid resolution near the tidal turbines. The outcome shows that a realistic near-term deployment scenario extracts a very small fraction of the total tidal energy in the system and that system wide environmental effects are not likely; however, near-field effects on the flow field and bed shear stress in the area of tidal turbine farm are more likely. Model results also indicate that from a practical standpoint, hydrodynamic or water quality effects are not likely to be the limiting factor for development of large commercial-scale tidal farms. Results indicate that very high numbers of turbines are required to significantly alter the tidal system; limitations on marine space or other environmental concerns are likely to be reached before reaching these deployment levels. These findings show that important information obtained from numerical modeling can be used to inform regulatory and policy processes for tidal energy development.

  15. Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska FINAL REPORT

    SciTech Connect (OSTI)

    Wright, Bruce Albert

    2014-05-07

    The Aleutian Pribilof Islands Association was awarded a U.S. Department of Energy Tribal Energy Program grant (DE-EE0005624) for the Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska (Project). The goal of the Project was to perform a feasibility study to determine if a tidal energy project would be a viable means to generate electricity and heat to meet long-term fossil fuel use reduction goals, specifically to produce at least 30% of the electrical and heating needs of the tribally-owned buildings in False Pass. The Project Team included the Aleut Region organizations comprised of the Aleutian Pribilof Island Association (APIA), and Aleutian Pribilof Island Community Development Association (APICDA); the University of Alaska Anchorage, ORPC Alaska a wholly-owned subsidiary of Ocean Renewable Power Company (ORPC), City of False Pass, Benthic GeoScience, and the National Renewable Energy Laboratory (NREL). The following Project objectives were completed: collected existing bathymetric, tidal, and ocean current data to develop a basic model of current circulation at False Pass, measured current velocities at two sites for a full lunar cycle to establish the viability of the current resource, collected data on transmission infrastructure, electrical loads, and electrical generation at False Pass, performed economic analysis based on current costs of energy and amount of energy anticipated from and costs associated with the tidal energy project conceptual design and scoped environmental issues. Utilizing circulation modeling, the Project Team identified two target sites with strong potential for robust tidal energy resources in Isanotski Strait and another nearer the City of False Pass. In addition, the Project Team completed a survey of the electrical infrastructure, which identified likely sites of interconnection and clarified required transmission distances from the tidal energy resources. Based on resource and electrical data, the Project Team developed a conceptual tidal energy project design utilizing ORPC’s TidGen® Power System. While the Project Team has not committed to ORPC technology for future development of a False Pass project, this conceptual design was critical to informing the Project’s economic analysis. The results showed that power from a tidal energy project could be provided to the City of False at a rate at or below the cost of diesel generated electricity and sold to commercial customers at rates competitive with current market rates, providing a stable, flat priced, environmentally sound alternative to the diesel generation currently utilized for energy in the community. The Project Team concluded that with additional grants and private investment a tidal energy project at False Pass is well-positioned to be the first tidal energy project to be developed in Alaska, and the first tidal energy project to be interconnected to an isolated micro grid in the world. A viable project will be a model for similar projects in coastal Alaska.

  16. Assessment of Energy Production Potential from Tidal Streams...

    Broader source: Energy.gov (indexed) [DOE]

    Skip to main content Menu Energy.gov Office of Energy Efficiency & Renewable Energy Search Search form Search Office of Energy Efficiency & Renewable Energy Office of Energy...

  17. MHK Projects/Angoon Tidal Energy Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 Jump to:Projects/Alaska 31 < MHK

  18. MHK Projects/Cuttyhunk Tidal Energy Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 JumpCoos Bay OPT Wave Park < MHKIsland Bend

  19. MHK Projects/Nantucket Tidal Energy Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 JumpCoos Bay OPTHalf|Myette Point <

  20. MHK Projects/Wiscasset Tidal Energy Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 JumpCoosSlough BendVidal

  1. The Wash Tidal Barrier Corporation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeterInformation Policy andInstitute JumpWash Tidal Barrier

  2. MHK Projects/Avalon Tidal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 Jump to:Projects/Alaska 31 <Avalon Tidal < MHK

  3. MHK Projects/BW2 Tidal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 Jump to:Projects/Alaska 31 <Avalon Tidal <BW2

  4. MHK Projects/Maurice River Tidal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 JumpCoos Bay OPTHalf| OpenMaurice River Tidal <

  5. MHK Technologies/Sabella subsea tidal turbine | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050Enermar <OMIS D E < MHKSPERBOY <subsea tidal

  6. Hydropower, Wave and Tidal Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy, Ph.D.FoodHydropower, Wave and Tidal » Technology

  7. Sandia Energy - Tidal & Current Modeling Development and Validation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)GeothermalFuel Magnetization andStochasticunique wind(CREW)Tidal &

  8. The Cascade of Tidal Energy from Low to High Modes on a Continental Slope SAMUEL M. KELLY* AND JONATHAN D. NASH

    E-Print Network [OSTI]

    The Cascade of Tidal Energy from Low to High Modes on a Continental Slope SAMUEL M. KELLY 25 March 2012) ABSTRACT The linear transfer of tidal energy from large to small scales is quantified. Observed transfer of tidal energy into high-mode internal tides is quantitatively consistent with observed

  9. TIDAL ENERGY SITE RESOURCE ASSESSMENT: TECHNICAL SPECIFICATIONS, BEST PRACTICES AND CASE STUDIES

    E-Print Network [OSTI]

    Siefert, Chris

    , Wind and Water Power Technologies, Environmental Sciences Division, Oak Ridge National Laboratory, Oak fashion, we can develop tidal energy site classes that map to standard TEC designs, similar to the wind over a representative period of record, to design the structural loading and power capacity of the TEC

  10. MHK Projects/Fishers Island Tidal Energy Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 JumpCoos Bay OPT WaveFishers Island Tidal Energy

  11. Acoustic Monitoring of Beluga Whale Interactions with Cook Inlet Tidal Energy Project

    SciTech Connect (OSTI)

    Worthington, Monty

    2014-02-05

    Cook Inlet, Alaska is home to some of the greatest tidal energy resources in the U.S., as well as an endangered population of beluga whales (Delphinapterus leucas). Successfully permitting and operating a tidal power project in Cook Inlet requires a biological assessment of the potential and realized effects of the physical presence and sound footprint of tidal turbines on the distribution, relative abundance, and behavior of Cook Inlet beluga whales. ORPC Alaska, working with the Project Team—LGL Alaska Research Associates, University of Alaska Anchorage, TerraSond, and Greeneridge Science—undertook the following U.S. Department of Energy (DOE) study to characterize beluga whales in Cook Inlet – Acoustic Monitoring of Beluga Whale Interactions with the Cook Inlet Tidal Energy Project (Project). ORPC Alaska, LLC, is a wholly-owned subsidiary of Ocean Renewable Power Company, LLC, (collectively, ORPC). ORPC is a global leader in the development of hydrokinetic power systems and eco-conscious projects that harness the power of ocean and river currents to create clean, predictable renewable energy. ORPC is developing a tidal energy demonstration project in Cook Inlet at East Foreland where ORPC has a Federal Energy Regulatory Commission (FERC) preliminary permit (P-13821). The Project collected baseline data to characterize pre-deployment patterns of marine mammal distribution, relative abundance, and behavior in ORPC’s proposed deployment area at East Foreland. ORPC also completed work near Fire Island where ORPC held a FERC preliminary permit (P-12679) until March 6, 2013. Passive hydroacoustic devices (previously utilized with bowhead whales in the Beaufort Sea) were adapted for study of beluga whales to determine the relative abundance of beluga whale vocalizations within the proposed deployment areas. Hydroacoustic data collected during the Project were used to characterize the ambient acoustic environment of the project site pre-deployment to inform the FERC pilot project process. The Project compared results obtained from this method to results obtained from other passive hydrophone technologies and to visual observation techniques performed simultaneously. This Final Report makes recommendations on the best practice for future data collection, for ORPC’s work in Cook Inlet specifically, and for tidal power projects in general. This Project developed a marine mammal study design and compared technologies for hydroacoustic and visual data collection with potential for broad application to future tidal and hydrokinetic projects in other geographic areas. The data collected for this Project will support the environmental assessment of future Cook Inlet tidal energy projects, including ORPC’s East Foreland Tidal Energy Project and any tidal energy developments at Fire Island. The Project’s rigorous assessment of technology and methodologies will be invaluable to the hydrokinetic industry for developing projects in an environmentally sound and sustainable way for areas with high marine mammal activity or endangered populations. By combining several different sampling methods this Project will also contribute to the future preparation of a comprehensive biological assessment of ORPC’s projects in Cook Inlet.

  12. Distribution of Energy Spectra, Reynolds Stresses, Turbulence Production, and Dissipation in a Tidally Driven Bottom Boundary Layer

    E-Print Network [OSTI]

    Distribution of Energy Spectra, Reynolds Stresses, Turbulence Production, and Dissipation in a Tidally Driven Bottom Boundary Layer L. LUZNIK,* R. GURKA,*, W. A. M. NIMMO SMITH,# W. ZHU,* J. KATZ) site] are examined, covering the accelerating and decelerating phases of a single tidal cycle

  13. Overview of Ocean Wave and Tidal Energy Lingchuan Mei

    E-Print Network [OSTI]

    Lavaei, Javad

    ) Avoiding the damage that may be caused by other energy tecnology: explosion and lethal radiation of nuclear

  14. Energy Department Invests $16 Million to Harness Wave and Tidal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    wave conditions and adjust system settings to maximize power output. Responsible and Sustainable Energy Development As part of the Administration's commitment to developing...

  15. Tidal Disruption Flares as the Source of Ultra-high Energy Cosmic Rays

    E-Print Network [OSTI]

    Glennys R. Farrar

    2012-10-03

    The optical spectral energy distributions of two tidal disruption flares identified by van Velzen et al. (2011) in archival SDSS data, are found to be well-fit by a thin-accretion-disk model. Furthermore, the inferred Supermassive Black Hole mass values agree well with the SMBH masses estimated from the host galaxy properties. Integrating the model SEDs to include shorter wavelength contributions provides an estimate of the bolometric luminosities of the accretion disks. The resultant bolometric luminosities are well in excess of the minimum required for accelerating UHECR protons. In combination with the recent observational estimate of the TDF rate (van Velzen and Farrar, these Proceedings), the results presented here strengthen the case that transient jets formed in tidal disruption events may be responsible for accelerating all or most UHECRs.

  16. Tidal Disruption Flares as the Source of Ultra-high Energy Cosmic Rays

    E-Print Network [OSTI]

    Farrar, Glennys R

    2012-01-01

    The optical spectral energy distributions of two tidal disruption flares identified by van Velzen et al. (2011) in archival SDSS data, are found to be well-fit by a thin-accretion-disk model. Furthermore, the inferred Supermassive Black Hole mass values agree well with the SMBH masses estimated from the host galaxy properties. Integrating the model SEDs to include shorter wavelength contributions provides an estimate of the bolometric luminosities of the accretion disks. The resultant bolometric luminosities are well in excess of the minimum required for accelerating UHECR protons. In combination with the recent observational estimate of the TDF rate (van Velzen and Farrar, these Proceedings), the results presented here strengthen the case that transient jets formed in tidal disruption events may be responsible for accelerating all or most UHECRs.

  17. Environmental Effects of Sediment Transport Alteration and Impacts on Protected Species: Edgartown Tidal Energy Project

    SciTech Connect (OSTI)

    Barrett, Stephen B.; Schlezinger, David, Ph.D; Cowles, Geoff, Ph.D; Hughes, Patricia; Samimy; Roland, I.; and Terray, E, Ph.D.

    2012-12-29

    The Islands of Martha�¢����s Vineyard and Nantucket are separated from the Massachusetts mainland by Vineyard and Nantucket Sounds; water between the two islands flows through Muskeget Channel. The towns of Edgartown (on Martha�¢����s Vineyard) and Nantucket recognize that they are vulnerable to power supply interruptions due to their position at the end of the power grid, and due to sea level rise and other consequences of climate change. The tidal energy flowing through Muskeget Channel has been identified by the Electric Power Research Institute as the strongest tidal resource in Massachusetts waters. The Town of Edgartown proposes to develop an initial 5 MW (nameplate) tidal energy project in Muskeget Channel. The project will consist of 14 tidal turbines with 13 providing electricity to Edgartown and one operated by the University of Massachusetts at Dartmouth for research and development. Each turbine will be 90 feet long and 50 feet high. The electricity will be brought to shore by a submarine cable buried 8 feet below the seabed surface which will landfall in Edgartown either on Chappaquiddack or at Katama. Muskeget Channel is located between Martha�¢����s Vineyard and Nantucket. Its depth ranges between 40 and 160 feet in the deepest portion. It has strong currents where water is transferred between Nantucket Sound and the Atlantic Ocean continental shelf to the south. This makes it a treacherous passage for navigation. Current users of the channel are commercial and recreational fishing, and cruising boats. The US Coast Guard has indicated that the largest vessel passing through the channel is a commercial scallop dragger with a draft of about 10 feet. The tidal resource in the channel has been measured by the University of Massachusetts-Dartmouth and the peak velocity flow is approximately 5 knots. The technology proposed is the helical Gorlov-type turbine positioned with a horizontal axis that is positively buoyant in the water column and held down by anchors. This is the same technology proposed by Ocean Renewable Power Company in the Western Passage and Cobscook Bay near Eastport Maine. The blades rotate in two directions capturing the tides energy both during flood and ebb tides. The turbines will be anchored to the bottom and suspended in the water column. Initial depth of the turbines is expected to be about 25 feet below the surface to avoid impacting navigation while also capturing the strongest currents. The Town of Edgartown was initially granted a Preliminary Permit by the Federal Energy Regulatory Commission (FERC) on March 1, 2008, and has recently received a second permit valid through August 2014. The Preliminary Permit gives Edgartown the exclusive right to apply for a power generation license for power generated from the hydrokinetic energy in the water flowing in this area. Edgartown filed a Draft Pilot License Application with FERC on February 1, 2010 and an Expanded Environmental Notification Form with the Massachusetts Environmental Policy Act (MEPA) Office at the same time. It expects to file a Final License Application in late 2013. Harris Miller Miller & Hanson (HMMH) of Burlington Massachusetts is acting as the Project Manager for the Town of Edgartown and collaborating with other partners of the project including the University of Massachusetts - Dartmouth's Marine Renewable Energy Center and the Massachusetts Clean Energy Center. HMMH was awarded a grant under the Department of Energy's Advanced Water Program to conduct marine science and hydrokinetic site-specific environmental studies for projects actively seeking a FERC License. HMMH, on behalf of the Town, is managing this comprehensive study of the marine environment in Muskeget Channel and potential impacts of the tidal project on indicator species and habitats. The University of Massachusetts School of Marine Science and Technology (SMAST) conducted oceanographic studies of tidal currents, tide level, benthic habit

  18. Tidal Stream Power Web GIS Tool | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)Open Energy Information ThreeTianDiHydraulic GeneratorsPower

  19. Reservoir response to tidal and barometric effects | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewable Energy RFPsLtdEnergy PlcWorldInformation

  20. Tidal disruption jets as the source of Ultra-High Energy Cosmic Rays

    E-Print Network [OSTI]

    Farrar, Glennys R

    2014-01-01

    Observations of the spectacular, blazar-like tidal disruption event (TDE) candidates Swift J1644+57 and J2058+05 show that the conditions required for accelerating protons to 10^{20} eV appear to be realized in the outer jet, and possibly in the inner jet as well. Direct and indirect estimates of the rate of jetted-TDEs, and of the energy they inject, are compatible with the observed flux of ultra-high energy cosmic rays (UHECRs) and the abundance of presently contributing sources. Thus TDE-jets can be a major source of UHECRs, even compabile with a pure proton composition.

  1. Pulse Tidal formerly Pulse Generation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLCALLETE Inc dEAPrysmian JumpOpenformerly Pulse

  2. MHK Projects/Deception Pass Tidal Energy Hydroelectric Project | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 JumpCoos Bay OPT Wave Park <Energy

  3. Sandia Energy - High Fidelity Evaluation of Tidal Turbine Performance for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal Energy & Drilling TechnologyHeavy Duty HomeHeavyIndustry

  4. Assessment of Energy Production Potential from Tidal Streams in the United States

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u tCorporationIt's Potential from Tidal Streams in the United

  5. Turbulence and internal waves in tidal flow over topography

    E-Print Network [OSTI]

    Gayen, Bishakhdatta

    2012-01-01

    M. C. 2006 An estimate of tidal energy lost to turbulence atcant loss of low-mode tidal energy at 28.9 ? . Geophys. Res.of turbulent kinetic energy over a tidal cycle. Maximum T KE

  6. Dispersion and Tidal Dynamics of Channel-Shoal Estuaries

    E-Print Network [OSTI]

    Holleman, Christopher Dean

    2013-01-01

    San Pablo Bay: ? M 2 and tidal energy flux for the hNS0? M 2 and tidal energy flux for hNS0. . . . . . . . . . .areas dissipate incident tidal energy, countering the added

  7. Probing the tidal disruption flares of massive black holes with high-energy neutrinos

    E-Print Network [OSTI]

    Wang, Xiang-Yu; Dai, Zi-Gao; Cheng, K S

    2011-01-01

    The recently discovered high-energy transient Swift J164449.3+573451 (Sw J1644+57) is thought to arise from the tidal disruption of a passing star by a dormant massive black hole. Modeling of the broadband emission suggests the presence of a powerful relativistic jet, which contributes dominantly to the observed X-ray emission. Here we suggest that high energy protons accelerated by internal shocks in the jets produce ~0.1-10 PeV neutrinos through photomeson interactions with X-ray photons. The large X-ray fluence (7*10^{-4} erg cm^{-2}) and high photopion efficiency, together with the insignificant cooling of secondary mesons, result in bright neutrino emission expected from Sw J1644+57 if the jet composition is matter-dominated. One to several neutrinos may be detected by a Km^3-scale detector from one tidal disruption event similar to Sw J1644+57, thereby providing a powerful probe of the composition of the jets.

  8. Microscopic unitary description of tidal excitations in high-energy string-brane collisions

    E-Print Network [OSTI]

    Giuseppe D'Appollonio; Paolo Di Vecchia; Rodolfo Russo; Gabriele Veneziano

    2013-11-15

    The eikonal operator was originally introduced to describe the effect of tidal excitations on higher-genus elastic string amplitudes at high energy. In this paper we provide a precise interpretation for this operator through the explicit tree-level calculation of generic inelastic transitions between closed strings as they scatter off a stack of parallel Dp-branes. We perform this analysis both in the light-cone gauge, using the Green-Schwarz vertex, and in the covariant formalism, using the Reggeon vertex operator. We also present a detailed discussion of the high energy behaviour of the covariant string amplitudes, showing how to take into account the energy factors that enhance the contribution of the longitudinally polarized massive states in a simple way.

  9. Microscopic unitary description of tidal excitations in high-energy string-brane collisions

    E-Print Network [OSTI]

    D'Appollonio, Giuseppe; Vecchia, Paolo; Veneziano, Gabriele

    2013-01-01

    The eikonal operator was originally introduced to describe the effect of tidal excitations on higher-genus elastic string amplitudes at high energy. In this paper we provide a precise interpretation for this operator through the explicit tree-level calculation of generic inelastic transitions between closed strings as they scatter off a stack of parallel Dp-branes. We perform this analysis both in the light-cone gauge, using the Green-Schwarz vertex, and in the covariant formalism, using the Reggeon vertex operator. We also present a detailed discussion of the high energy behaviour of the covariant string amplitudes, showing how to take into account the energy factors that enhance the contribution of the longitudinally polarized massive states in a simple way.

  10. Better Plants | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Partners and welcomed more than 20 manufacturers into the program at the World Energy Engineering Congress on October 2, 2014. Read more Better Plants Program Logo Leading...

  11. EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine

    Broader source: Energy.gov [DOE]

    Draft Environmental AssessmentThis EA evaluates the environmental impacts of a project that would use the tidal currents of Cobscook Bay to generate electricity via cross-flow Kinetic System turbine generator units (TGU) mounted on the seafloor. The TGUs would capture energy from the flow in both ebb and flood directions.

  12. HYDROCARBONS & ENERGY FROM PLANTS

    E-Print Network [OSTI]

    Nemethy, E.K.

    2011-01-01

    17 harvest was 19 rainfall contributed 5.6" water. Harvest.harvest 29 Aug~st, when plants began to flower, approximately 15 irrigation water

  13. A neighborhood alternative energy plant

    E-Print Network [OSTI]

    Brooks, Douglas James

    1982-01-01

    A design that proposes the redefinition of the role of a power plant facility within a community by creating a humane environment for recreation, education, community gathering, living, and energy production; rather than ...

  14. Morris Plant Energy Efficiency Program 

    E-Print Network [OSTI]

    Betczynski, M. T.

    2004-01-01

    to existing operating practices. Plant management also takes an active role in recognizing accomplishments and holding personnel accountable for continued improvement in energy efficiency. The control systems group at Equistar has integrated an Aspen...

  15. HYDROCARBONS & ENERGY FROM PLANTS

    E-Print Network [OSTI]

    Nemethy, E.K.

    2011-01-01

    categories: I. Methods of extraction of the dried plants.d) Processing methods: optimum extraction procedures;is the traditional method of extraction for rUbber-pr~duci

  16. Field Measurements at River and Tidal Current Sites for Hydrokinetic Energy Development: Best Practices Manual

    SciTech Connect (OSTI)

    Neary, Vincent S; Gunawan, Budi

    2011-09-01

    In this report, existing data collection techniques and protocols for characterizing open channel flows are reviewed and refined to further address the needs of the MHK industry. The report provides an overview of the hydrodynamics of river and tidal channels, and the working principles of modern acoustic instrumentation, including best practices in remote sensing methods that can be applied to hydrokinetic energy site characterization. Emphasis is placed upon acoustic Doppler velocimeter (ADV) and acoustic-Doppler current profiler (ADCP) instruments, as these represent the most practical and economical tools for use in the MHK industry. Incorporating the best practices as found in the literature, including the parameters to be measured, the instruments to be deployed, the instrument deployment strategy, and data post-processing techniques. The data collected from this procedure aims to inform the hydro-mechanical design of MHK systems with respect to energy generation and structural loading, as well as provide reference hydrodynamics for environmental impact studies. The standard metrics and protocols defined herein can be utilized to guide field experiments with MHK systems.

  17. Effects of Tidal Turbine Noise on Fish Hearing and Tissues - Draft Final Report - Environmental Effects of Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    Halvorsen, Michele B.; Carlson, Thomas J.; Copping, Andrea E.

    2011-09-30

    Snohomish Public Utility District No.1 plans to deploy two 6 meter OpenHydro tidal turbines in Admiralty Inlet in Puget Sound, under a FERC pilot permitting process. Regulators and stakeholders have raised questions about the potential effect of noise from the turbines on marine life. Noise in the aquatic environment is known to be a stressor to many types of aquatic life, including marine mammals, fish and birds. Marine mammals and birds are exceptionally difficult to work with for technical and regulatory reasons. Fish have been used as surrogates for other aquatic organisms as they have similar auditory structures. This project was funded under the FY09 Funding Opportunity Announcement (FOA) to Snohomish PUD, in partnership with the University of Washington - Northwest National Marine Renewable Energy Center, the Sea Mammal Research Unit, and Pacific Northwest National Laboratory. The results of this study will inform the larger research project outcomes. Proposed tidal turbine deployments in coastal waters are likely to propagate noise into nearby waters, potentially causing stress to native organisms. For this set of experiments, juvenile Chinook salmon (Oncorhynchus tshawytscha) were used as the experimental model. Plans exist for prototype tidal turbines to be deployed into their habitat. Noise is known to affect fish in many ways, such as causing a threshold shift in auditory sensitivity or tissue damage. The characteristics of noise, its spectra and level, are important factors that influence the potential for the noise to injure fish. For example, the frequency range of the tidal turbine noise includes the audiogram (frequency range of hearing) of most fish. This study was performed during FY 2011 to determine if noise generated by a 6-m diameter OpenHydro turbine might affect juvenile Chinook salmon hearing or cause barotrauma. Naturally spawning stocks of Chinook salmon that utilize Puget Sound are listed as threatened (http://www.nwr.noaa.gov/ESA-Salmon-Listings/Salmon-Populations/Chinook/CKPUG.cfm); the fish used in this experiment were hatchery raised and their populations are not in danger of depletion. After they were exposed to simulated tidal turbine noise, the hearing of juvenile Chinook salmon was measured and necropsies performed to check for tissue damage. Experimental groups were (1) noise exposed, (2) control (the same handling as treatment fish but without exposure to tidal turbine noise), and (3) baseline (never handled). Experimental results indicate that non-lethal, low levels of tissue damage may have occurred but that there were no effects of noise exposure on the auditory systems of the test fish.

  18. Plant Energy Cost Optimization Program (PECOP) 

    E-Print Network [OSTI]

    Robinson, A. M.

    1980-01-01

    The Plant Energy Cost Optimization Program (PECOP) is a Management System designed to reduce operating cost in a continuous operating multi product plant by reviewing all cost factors and selecting plant wide production schedules which are most...

  19. Constraining the High-Density Behavior of Nuclear Symmetry Energy with the Tidal Polarizability of Neutron Stars

    E-Print Network [OSTI]

    F. J. Fattoyev; J. Carvajal; W. G. Newton; Bao-An Li

    2012-10-12

    Using a set of model equations of state satisfying the latest constraints from both terrestrial nuclear experiments and astrophysical observations as well as state-of-the-art nuclear many-body calculations of the pure neutron matter equation of state, the tidal polarizability of canonical neutron stars in coalescing binaries is found to be a very sensitive probe of the high-density behavior of nuclear symmetry energy which is among the most uncertain properties of dense neutron-rich nucleonic matter. Moreover, it changes less than $\\pm 10%$ by varying various properties of symmetric nuclear matter and symmetry energy around the saturation density within their respective ranges of remaining uncertainty.

  20. Constraining the High-Density Behavior of Nuclear Symmetry Energy with the Tidal Polarizability of Neutron Stars

    E-Print Network [OSTI]

    Fattoyev, F J; Newton, W G; Li, Bao-An

    2012-01-01

    Using a set of model equations of state satisfying the latest constraints from both terrestrial nuclear experiments and astrophysical observations as well as state-of-the-art nuclear many-body calculations of the pure neutron matter equation of state, the tidal polarizability of canonical neutron stars in coalescing binaries is found to be a very sensitive probe of the high-density behavior of nuclear symmetry energy which is among the most uncertain properties of dense neutron-rich nucleonic matter. Moreover, it changes less than $\\pm 10%$ by varying various properties of symmetric nuclear matter and symmetry energy around the saturation density within their respective ranges of remaining uncertainty.

  1. MHK Projects/Homeowner Tidal Power Elec Gen | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 JumpCoos Bay OPTHalf Moon Cove TidalTidal

  2. Wind and tidal response of a semi-enclosed bay, Bahía Concepción, Baja California

    E-Print Network [OSTI]

    Ponte, Aurélien L. S.

    2009-01-01

    J. H. , 1973: Tidal patterns and energy balance in the GulfTable 4.1). Because the tidal energy is similar between boththe mouth. Some energy is captured by the tidal analysis at

  3. Ocean Tidal Dissipation and its Role in Solar System Satellite Evolution

    E-Print Network [OSTI]

    Chen, Erinna

    2013-01-01

    Significant dissipation of tidal energy in the deep ocean2001. Estimates of M 2 tidal energy dissipation from TOPEX/e.g. the ocean kinetic energy and tidal dissipation, using a

  4. Snacktime for Hungry Black Holes: Theoretical Studies of the Tidal Disruption of Stars

    E-Print Network [OSTI]

    Strubbe, Linda Elisabeth

    2011-01-01

    tidal disruption rate as a function of pericenter distance at various energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Tidal disruption rate as a function of pericenter distance at various energies2.5: Spectral energy distributions for tidal flares around a

  5. Healthcare Energy: Spotlight on Chiller Plants

    Broader source: Energy.gov [DOE]

    The Building Technologies Office conducted a healthcare energy end-use monitoring project for two sites. Read details about the chiller plant energy results.

  6. General relativistic tidal heating for Moller pseudotensor

    E-Print Network [OSTI]

    Lau Loi So

    2015-09-30

    Thorne elucidated that the relativistic tidal heating is the same as the Newtonian theory. Moreover, Thorne also claimed that the tidal heating is independent of how one localizes gravitational energy and is unambiguously given by a certain formula. Purdue and Favata calculated the tidal heating for different classical pseudotensors including Moller and obtained the results all matched with the Newtonian perspective. After re-examined this Moller pseudotensor, we find that there does not exist any tidal heating value. Thus we claim that the relativistic tidal heating is pseudotensor independent under the condition that if the peusdotensor is a Freud typed superpotential.

  7. General relativistic tidal heating for Moller pseudotensor

    E-Print Network [OSTI]

    So, Lau Loi

    2015-01-01

    Thorne elucidated that the relativistic tidal heating is the same as the Newtonian theory. Moreover, Thorne also claimed that the tidal heating is independent of how one localizes gravitational energy and is unambiguously given by a certain formula. Purdue and Favata calculated the tidal heating for different classical pseudotensors including Moller and obtained the results all matched with the Newtonian perspective. After re-examined this Moller pseudotensor, we find that there does not exist any tidal heating value. Thus we claim that the relativistic tidal heating is pseudotensor independent under the condition that if the peusdotensor is a Freud typed superpotential.

  8. Acoustic Effects of Hydrokinetic Tidal Turbines

    SciTech Connect (OSTI)

    Polagye, Brian

    2011-11-01

    This presentation from the Water Peer Review highlights one of the program's marine and hyrokinetics environmental projects to determine the likely acoustic effects from a tidal energy device.

  9. Characterization of mean velocity and flow structures in rivers and tidal flow is crucial for the annual energy production estimation and

    E-Print Network [OSTI]

    Siefert, Chris

    · Characterization of mean velocity and flow structures in rivers and tidal flow is crucial for the annual energy production estimation and structural design of MHK devices. · ADCP moving vessel. FV data This research was funded by the U.S. Department of Energy under Contract DE-AC05-00OR22725. 5

  10. On the implications of incompressibility of the quantum mechanical wavefunction in the presence of tidal gravitational fields

    E-Print Network [OSTI]

    Minter, Stephen

    2010-01-01

    of being the tidal gravitational potential energy operator,the energy shift is negative, the tidal gravitational …eldtidal gravitational …eld is treated as a perturbation to the energy

  11. MHK Projects/Half Moon Cove Tidal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 JumpCoos Bay OPTHalf Moon Cove Tidal Project <

  12. MHK Projects/Hammerfest Strom UK Tidal Stream | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 JumpCoos Bay OPTHalf Moon Cove Tidal Project

  13. Energy Department Invests $16 Million to Harness Wave and Tidal Energy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015 Infographic courtesy of theSolarDepartmentEnergyFunding

  14. Illuminating Massive Black Holes With White Dwarfs: Orbital Dynamics and High Energy Transients from Tidal Interactions

    E-Print Network [OSTI]

    MacLeod, Morgan; Ramirez-Ruiz, Enrico; Guillochon, James; Samsing, Johan

    2014-01-01

    White dwarfs (WDs) can be tidally disrupted only by massive black holes (MBHs) with masses less than approximately $10^5 M_\\odot$. These tidal interactions feed material to the MBH well above its Eddington limit, with the potential to launch a relativistic jet. The corresponding beamed emission is a promising signpost to an otherwise quiescent MBH of relatively low mass. We show that the mass transfer history, and thus the lightcurve, are quite different when the disruptive orbit is parabolic, eccentric, or circular. The mass lost each orbit exponentiates in the eccentric-orbit case leading to the destruction of the WD after several tens of orbits and making it difficult to produce a Swift J1644+57-like lightcurve via this channel. We then examine the stellar dynamics of clusters surrounding these MBHs to show that single-passage WD disruptions are substantially more common than repeating encounters in eccentric orbits. The $10^{49}$ erg s$^{-1}$ peak luminosity of these events makes them visible to cosmologi...

  15. Binary asteroid systems: Tidal end states and estimates of material properties

    E-Print Network [OSTI]

    Taylor, PA; Margot, JL

    2011-01-01

    tidal evolution and then discuss stability limits and energyon tidal evolution. Angular momentum and energy content Theenergy can be dissipated as heat as a result of internal friction due to tidal ?

  16. Managing Your Energy: An ENERGY STAR(R) Guide for Identifying Energy Savings in Manufacturing Plants

    E-Print Network [OSTI]

    Worrell, Ernst

    2010-01-01

    Administration. 2002. Manufacturing Energy ConsumptionEnergy Savings in Manufacturing Plants Ernst Worrell TanaEnergy Savings in Manufacturing Plants Ernst Worrell, Tana

  17. Nevada's Beowawe Geothermal Plant Begins Generating Clean Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nevada's Beowawe Geothermal Plant Begins Generating Clean Energy Nevada's Beowawe Geothermal Plant Begins Generating Clean Energy April 20, 2011 - 1:45pm Addthis U.S. Energy...

  18. Energy Efficiency of Phthalic Anhydride Plants 

    E-Print Network [OSTI]

    Keunecke, G.; Mitchem, C.

    1982-01-01

    Developments in catalyst technology have played a major role implementing phthalic anhydride process improvements. Steam turbines yield large energy savings, and are flexible in achieving a process heat/energy balance. Modern plants are major...

  19. Avoiding a Train Wreck: Replacing Old Coal Plants with Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Avoiding a Train Wreck: Replacing Old Coal Plants with Energy Efficiency, August 2011 Avoiding a Train Wreck: Replacing Old Coal Plants with Energy Efficiency, August 2011 This...

  20. Enhancing Electrical Supply by Pumped Storage in Tidal Lagoons

    E-Print Network [OSTI]

    MacKay, David J.C.

    to demand into high­value demand­following power; and second, it can simultaneously serve as a tidal powerEnhancing Electrical Supply by Pumped Storage in Tidal Lagoons David J.C. MacKay Cavendish/3/07 Summary The principle that the net energy delivered by a tidal pool can be increased by pumping extra

  1. Research papers Tidal characteristics of the gulf of Tonkin

    E-Print Network [OSTI]

    calibration derived from a set of sensitivity experiments to model parameters. The tidal energy budgetResearch papers Tidal characteristics of the gulf of Tonkin Nguyen Nguyet Minh a,c , Marchesiello of this study is to revisit the dominant physical processes that characterize tidal dynamics in the Gulf

  2. Electrical Energy Monitoring in an Industrial Plant 

    E-Print Network [OSTI]

    Dorhofer, F. J.; Heffington, W. M.

    1994-01-01

    INDUSTRIAL ENERGY TECHNOLOGY CONFERENCE 1994 ESL-PA-94/04-04 REPRINTED WITH PERMISSION ELECTRICAL ENERGY MONITORING IN AN INDUSTRIAL PLANT Frank J. Dorhofer and Warren M. Heffington Energy Systems Laboratory Department of Mechanical Engineering Texas A...&M University College Station, Texas ABSTRACT The Energy Systems Laboratory (ESL) at Texas A&M University is currently monitoring the electrical energy use of a metal fabrication facility in Houston, Texas. This paper deals with the installation of the data...

  3. Electrical energy monitoring in an industrial plant 

    E-Print Network [OSTI]

    Dorhofer, Frank Joseph

    1994-01-01

    This thesis presents an investigation into the actual electrical energy and demand use of a large metal fabrication facility located in Houston, Texas. Plant selection and the monitoring system are covered. The influence of a low power factor...

  4. Integrating Process Unit Energy Metrics into Plant Energy Management Systems 

    E-Print Network [OSTI]

    Davis, J. L.; Knight, N.

    2005-01-01

    As energy costs continue to rise across the process industry, many plants have responded by developing improved energy monitoring and reporting programs. At the center of such programs are typically spreadsheet or database applications that pull...

  5. A Boiler Plant Energy Efficiency and Load Balancing Survey 

    E-Print Network [OSTI]

    Nutter, D. W.; Murphy, D. R.

    1997-01-01

    Daily energy use data was used to perform an energy efficiency survey of a medium-sized university boiler plant. The physical plant operates centralized mechanical plants to provide both chilled water and steam for building conditioning. Steam...

  6. Note on the redistribution and dissipation of tidal energy over mid-ocean ridges

    E-Print Network [OSTI]

    Liang, Xinfeng

    The redistribution and dissipation of internal wave energy arising from the conversion at mid-ocean ridges of the barotropic tide is studied in a set of numerical experiments. A two-dimensional non-hydrostatic model with ...

  7. MOWII Webinar: OCGen Prototype Testing: Evaluating Buoyancy Pod/Tension Leg Platforms for Tidal Energy Development

    Broader source: Energy.gov [DOE]

    Ocean Renewable Power Company (ORPC) will present the results of the company's design, permitting, and testing of a mooring system for ocean energy devices in partnership with the U.S. Department...

  8. Plant Level Energy Performance Benchmarking 

    E-Print Network [OSTI]

    Hicks, T. W.

    2001-01-01

    Since the early 1990's, the U.S. Environmental Protection Agency (EPA) has worked with U.S. corporations to reduce their energy requirements in buildings and office space through voluntary programs such as ENERGY STAR®. Corporate partners within...

  9. 12th Annual Wave & Tidal 2015

    Broader source: Energy.gov [DOE]

    The UK is currently the undisputed global leader in marine energy, with more wave and tidal stream devices installed than the rest of the world combined. This leading position is built on an...

  10. Tidal sampler

    DOE Patents [OSTI]

    Hayes, David W. (Aiken, SC)

    1978-01-01

    An apparatus for pumping a sample of water or other liquid that uses the energy generated from the rise and fall of the liquid level to force a sample of the liquid into a collection vessel. A suction vessel and booster vessel with interconnecting tubing and check valves are responsive to an oscillating liquid level to pump a portion of said liquid into a collection vessel.

  11. New Interactive Map Reveals U.S. Tidal Energy Resources | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment ofProgramImportsEnergyForecastingNewInsights

  12. Under consideration for publication in J. Fluid Mech. 1 Reflecting tidal wave beams and local

    E-Print Network [OSTI]

    were generated locally by a propagating beam of internal tidal energy which had originatedUnder consideration for publication in J. Fluid Mech. 1 Reflecting tidal wave beams and local generation mecha- nism: tidal flow over steep topography forces a propagating beam of internal tidal wave

  13. 1 | September 2013 | des courantsWave energyTidal turbines

    E-Print Network [OSTI]

    element in making OTEC a turnkey industrial reality. Energy production depends on both instantaneous and titanium tubes heat exchangers - Turbo expander ammonia with asynchronous generator - Not submerged centrifugal chopper seawater pumps with low speed (about 300 rpm) - Efficient system against biofouling OTEC

  14. Cogeneration Plant is Designed for Total Energy 

    E-Print Network [OSTI]

    Howell, H. D.; Vera, R. L.

    1987-01-01

    stream_source_info ESL-IE-87-09-45.pdf.txt stream_content_type text/plain stream_size 19371 Content-Encoding ISO-8859-1 stream_name ESL-IE-87-09-45.pdf.txt Content-Type text/plain; charset=ISO-8859-1 COGENERATION PLANT... of a 200 MW combined cycle cogeneration plant located at Occidental Chemical Corporation's Battleground chlorine-caustic plant at La Porte, Texas. This successful application of a total energy management concept utilizing combined cycle...

  15. Pantex Plant | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuilding energy codes havePUBLICof Energy PanelPantex

  16. Snohomish PUD No 1 (TRL 7 8 System) - Puget Sound Pilot Tidal Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4Energy Smooth Brome Monitoring at RockyProject |

  17. MHK Technologies/Sihwa tidal barrage power plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050Enermar <OMIS D E <Seabased <Severn

  18. MHK Technologies/Uldolmok Pilot Tidal Current Power Plant | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050Enermar <OMIS DTocardo < MHKTunkeyUFCAP

  19. Thermodynamics -2 A cogeneration plant (plant which provides both electricity and thermal energy) executes a cycle

    E-Print Network [OSTI]

    Virginia Tech

    Thermodynamics - 2 A cogeneration plant (plant which provides both electricity and thermal energy] Determine the rate of heat addition in the steam generator. Now consider an ideal, reversible cogeneration 1 2 3 45 6 Cogeneration Plant Boundary #12;

  20. Better Plants | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle ReplacementStatesA Case Study fromWorkingBetterPlants

  1. Renewable Energy Plants in Your Gas Tank: From Photosynthesis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plants in Your Gas Tank: From Photosynthesis to Ethanol (4 Activities) Renewable Energy Plants in Your Gas Tank: From Photosynthesis to Ethanol (4 Activities) Below is information...

  2. TIDAL ENERGY SITE RESOURCE ASSESSMENT: TECHNICAL SPECIFICATIONS, BEST PRACTICES AND CASE STUDIES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainableDEPARTMENT OF ENERGY Officeb

  3. All Eyes on Eastport: Tidal Energy Project Brings Change, Opportunity to

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment of EnergyResearchers atDay 12:wasProjects | DepartmentAliMarkovitz

  4. Assessment of Energy Production Potential from Tidal Streams in the United

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I Due DateOpportunity |MarketWindStates | Department of

  5. Renewables for Energy Conservation

    E-Print Network [OSTI]

    Banerjee, Rangan

    & SYSTEMS USEFUL ENERGY END USE ACTIVITIES (ENERGY SERVICES) COAL, OIL, SOLAR, GAS POWER PLANT, REFINERIES;Renewable Energy Options Wind Solar Small Hydro Biomass Tidal Energy Wave Energy Ocean Thermal Energy Solar Commercial Residential #12;Industry Process Heating Energy from Waste Cogeneration Solar Water Heater Solar

  6. 'People Power' Saves Plant Energy 

    E-Print Network [OSTI]

    Davidson, B. G., Jr.; Kanewske, F. J.

    1981-01-01

    -stream exchanger tube cleaning systems. These systems result in keeping exchanger heat transfer coefficients at a maximum, thus producing sizable energy savings. Process engineers also have a unique opportunity to improve energy savings by keeping this goal... and reboiler loads, excessive pressure drop across control valves and unnecessary cooling/heating of product streams. Also, exchanger cleaning inter vals should be considered closely. Often, the cost of taking a unit or fractionating column off stream...

  7. Virtual Seafloor Reduces Internal Wave Generation by Tidal Flow Likun Zhang*

    E-Print Network [OSTI]

    the applicability of linear theory to global predictions of the conversion of tidal energy into internal wave energy of the energy budget of the oceans requires a determination of the efficiency of conversion of tidal energyVirtual Seafloor Reduces Internal Wave Generation by Tidal Flow Likun Zhang* and Harry L. Swinney

  8. A Novel Excitation Scheme for an Ocean Wave Energy Converter

    E-Print Network [OSTI]

    Orazov, Bayram

    2011-01-01

    1.4 Tidal Energy . . . . . . .7th European Wave and Tidal Energy Conference. Porto (for such application. 1.4 Tidal Energy Often mistakenly

  9. Energy Conservation in Existing Olefins Plants 

    E-Print Network [OSTI]

    DeHaan, S.

    1983-01-01

    The manufacture of olefins in a modern steam cracking plant consumes a great deal of energy. Depending upon the feedstock, between 6000 and 12000 BTU per pound of ethylene produced is required. In older designs, those designed prior to the first...

  10. The Politically Correct Nuclear Energy Plant

    E-Print Network [OSTI]

    is Sustainable - Coal, Oil and Natural Gas · Natural Gas is a Clean Fuel - relative to what - coal? · RenewablesThe Politically Correct Nuclear Energy Plant Andrew C. Kadak Massachusetts Institute of Technology are "clean and free"... · Conservation with sacrifice will work · There is no solution to nuclear waste

  11. Plant Phenotype Characterization System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plant Phenotype Characterization System Plant Phenotype Characterization System New X-Ray Technology Accelerates Plant Research The ability to analyze plant root structure and...

  12. Energy Efficiency in Chilling Plants 

    E-Print Network [OSTI]

    Wang, X.

    2006-01-01

    temperature ? Reduce energy use of pumps ? Avoid unexpected bypass flow? Keep Working on higher efficiency point? Optimized VFD control Report of On-site Survey, 2005, 20063 1.1 Improve load ratio ? Characteristic of the centrifugal chillers Decrease....10.20.30.40.50.60.79:0010:0011:0011:4012:4014:4016:00?? ??? 12345 CO ??? COP 7?12???3#?????????COP00.10.20.30.40.50.60.79:0010:0011:0011:4012:4014:4016:00?? ??? 12345 CO ??? COP ?????????0500100015002000250010:5011:3012:1012:5013:3014:10?? ????k 0123456 ??? COP COP: 4.6#0;?#0;?5.0Saved power of a CHW pump and a...

  13. Plant Energy Profiler | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1,an R7-Compatible CumulativeSavings PerformanceofPlant

  14. Maine Tidal Power Initiative: Environmental Impact Protocols For Tidal Power

    SciTech Connect (OSTI)

    Peterson, Michael Leroy; Zydlewski, Gayle Barbin; Xue, Huijie; Johnson, Teresa R.

    2014-02-02

    The Maine Tidal Power Initiative (MTPI), an interdisciplinary group of engineers, biologists, oceanographers, and social scientists, has been conducting research to evaluate tidal energy resources and better understand the potential effects and impacts of marine hydro-kinetic (MHK) development on the environment and local community. Project efforts include: 1) resource assessment, 2) development of initial device design parameters using scale model tests, 3) baseline environmental studies and monitoring, and 4) human and community responses. This work included in-situ measurement of the environmental and social response to the pre-commercial Turbine Generator Unit (TGU®) developed by Ocean Renewable Power Company (ORPC) as well as considering the path forward for smaller community scale projects.

  15. DOE/OIT Plant-Wide Energy Assessment Experience Summary 

    E-Print Network [OSTI]

    Olszewski, M.; Leach, R.; McElhaney, K.

    2001-01-01

    The Department of Energy (DOE) Office of Industrial Technologies (OIT) is sponsoring cost-shared, plant-wide energy assessments of industrial facilities through its BestPractices Program. The purpose of these assessments is to examine plant utility...

  16. An Energy Awareness Program at the Plant Level 

    E-Print Network [OSTI]

    Korich, R. D.

    1981-01-01

    An energy awareness program was conceived and developed locally at the Union Carbide Seadrift, Texas petrochemical plant. It is a multi-element, sophisticated program to vigorously create and sustain energy awareness in the plant. It was designed...

  17. MARCH 2007 1 Tidal mixing hotspots governed by rapid parametric subharmonic instability

    E-Print Network [OSTI]

    MacKinnon, Jennifer

    at 21S demonstrate a rapid transfer of energy (over only a few days) to waves of half the tidal the generation site; overall 40 % of the tidal energy is dissipated locally. Further simulations indicate.9nearly 80 % of tidal energy is dissipated locally. Poleward of the critical latitude, M2/2

  18. China Energy Databook -- User Guide and Documentation, Version 7.0

    E-Print Network [OSTI]

    Fridley, Ed., David

    2008-01-01

    use of geothermal heat Tidal power stations Units million mHydropower Plant Jiangxia Tidal Power Station Hangzhou

  19. Sinem Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity forSilicium de Provence SASSinem Geothermal Power Plant Jump to:

  20. Tilted Baroclinic Tidal Vortices MIGUEL CANALS AND GENO PAWLAK

    E-Print Network [OSTI]

    MacCready, Parker

    Tilted Baroclinic Tidal Vortices MIGUEL CANALS AND GENO PAWLAK Department of Ocean and Resources coherence. It is suggested that this may lead to a conversion of potential energy into kinetic energy. 1 mixing of coastal waters (Mul- ler and Garrett 2003). Of particular importance is the tidally driven case

  1. Tidal Conversion at a Submarine Ridge FRANOIS PTRLIS

    E-Print Network [OSTI]

    Young, William R.

    ). Satellite altimetry has shown deep-sea tidal energy losses concentrated at submarine ridges and island arcsTidal Conversion at a Submarine Ridge FRANÇOIS PÉTRÉLIS Laboratoire de Physique Statistique, Ecole received 30 July 2003, in final form 20 January 2004) ABSTRACT The radiative flux of internal wave energy

  2. Snacktime for Hungry Black Holes: Theoretical Studies of the Tidal Disruption of Stars

    E-Print Network [OSTI]

    Strubbe, Linda Elisabeth

    2011-01-01

    bound gas onto the BH powers the tidal disruption flare, andof an X-ray Power-law The candidate tidal disruption eventstidal disruption spectra will contain a high-energy power-

  3. Internal hydraulic jumps and overturning generated by tidal flow over a tall steep ridge

    E-Print Network [OSTI]

    Klymak, Jody M.

    that tidal energy is both converted into internal waves, which radiate away from the topography, and used of tidal mixing for global climate models, the physical processes governing the transfer of energy fromInternal hydraulic jumps and overturning generated by tidal flow over a tall steep ridge Sonya Legg

  4. Europa: Tidal heating of upwelling thermal plumes and the origin of lenticulae and chaos melting

    E-Print Network [OSTI]

    Head III, James William

    ; Pappalardo and Head, 2001], and 3) a seafloor plume model in which tidal energy focused in the silicate ice in the shallow crust of Europa. We show that tidal energy can be preferentially focused in risingEuropa: Tidal heating of upwelling thermal plumes and the origin of lenticulae and chaos melting

  5. The 2010 ERC Directory of Waste-to-Energy Plants

    E-Print Network [OSTI]

    Columbia University

    the U.S. Mayors Climate Pro- tection Agreement, which identifies waste-to-energy as a clean, alternative1 The 2010 ERC Directory of Waste-to-Energy Plants By Ted Michaels The 2010 ERC Directory of Waste-to-Energy Plants provides current information about the waste-to-energy sector in the United States. Since

  6. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01

    ENERGY STORAGE FOR CONCENTRATING SOLAR POWER PLANTS,”Energy Storage in Concentrated Solar Thermal Power Plants AEnergy Storage in Concentrated Solar Thermal Power Plants by

  7. Celanese Chemicals Clear Lake Plant Energy Projects Assessment and Implementation 

    E-Print Network [OSTI]

    Weber, J.

    2000-01-01

    The Clear Lake Plant of Celanese Chemicals has implemented a strategy to reduce energy consumption. The plant identified, designed, and completed several projects to improve its chemical production processes. These projects reduce steam use, fuel...

  8. Germencik Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky:BoreOpen EnergyGermencik Geothermal Power Plant Jump to:

  9. Mecca Plant Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy Resources Jump to:Electric Coop, IncSouth Dakota:Mebane, NorthPlant

  10. Irem Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8, 13RenewableIrem Geothermal Power Plant Jump to:

  11. Niigata Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNew Hampshire: Energy ResourcesNiigata Geothermal Power Plant Jump

  12. Plant Optimization Technologies | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergyPresidential PermitDAYS - WE NEED ADr. PeterPV),Year 2016is aPlant

  13. Better Plants Overview SGH | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p uBUSEnergy|| Department ofBuildings, BetterBetter Plants

  14. Pantex Plant Wind Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly Smart GridNorth Carolina: EnergyIncPan AfricanHomePantex Plant

  15. Energy Consumption and Conservation Potential at a Georgia Textile Plant 

    E-Print Network [OSTI]

    Gurta, M. E.; Brown, M. L.

    1994-01-01

    is air-conditioned, the plant is an intensive user of electricity, fossil fuel, and water. Following completion of the energy analysis, recommendations to conserve energy and water resources were developed. Potential energy savings of approximately thirty...

  16. CONTROL ID: 1187959 TITLE: Climate destabilization on tidally locked exoplanets

    E-Print Network [OSTI]

    CONTROL ID: 1187959 TITLE: Climate destabilization on tidally locked exoplanets PRESENTATION TYPE-zone rocky planets, should be tidally locked. We will discuss two different feedbacks that can destabilize cause a runaway climate shift. We use an idealized energy balance model to illustrate the scope

  17. Hydrodynamic analysis of a vertical axis tidal current turbine 

    E-Print Network [OSTI]

    Gretton, Gareth I.

    2009-01-01

    Tidal currents can be used as a predictable source of sustainable energy, and have the potential to make a useful contribution to the energy needs of the UK and other countries with such a resource. One of the technologies ...

  18. AVESTAR Center for Operational Excellence of Clean Energy Plants

    SciTech Connect (OSTI)

    Zitney, S.E.

    2012-05-01

    To address challenges in attaining operational excellence for clean energy plants, the U.S.Department of Energy’s National Energy Technology Laboratory has launched a world-class facility for Advanced Virtual Energy Simulation Training and Research (AVESTAR™). The AVESTAR Center brings together state-of-the-art, real time,high-fidelity dynamic simulators with operator training systems and 3D virtual immersive training systems into an integrated energy plant and control room environment. This presentation will highlight the AVESTAR Center simulators, facilities, and comprehensive training, education, and research programs focused on the operation and control of high-efficiency, near-zero-emission energy plants.

  19. Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030...

    Broader source: Energy.gov (indexed) [DOE]

    Office What are the key documents? Mapping and Assessment of the United States Ocean Wave Energy Resource pdf here Assessment of Energy Production Potential from Tidal Streams...

  20. Goodyear Tire Plant Gains Traction on Energy Savings After Completing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Terra Nitrogen Company, L.P.: Ammonia Plant Greatly Reduces Natural Gas Consumption After Energy Assessment Steam System Efficiency Optimized After J.R....

  1. Better Buildings, Better Plants: Volvo Boosting Energy Efficiency...

    Office of Environmental Management (EM)

    of the total U.S. manufacturing energy footprint, the savings are adding up. One Better Buildings, Better Plants partner, Volvo Group North America, has achieved 16% savings...

  2. Underestimation of the UK Tidal David J.C. MacKay

    E-Print Network [OSTI]

    MacKay, David J.C.

    there and would deliver up to 40 GW (peak). In this note, I present back­of­envelope models of tidal power special cases) the power in tidal waves is not equal to the kinetic energy flux across a plane. These backUnder­estimation of the UK Tidal Resource David J.C. MacKay Cavendish Laboratory, University

  3. Under-estimation of the UK Tidal David J.C. MacKay

    E-Print Network [OSTI]

    MacKay, David J.C.

    there and would deliver up to 40 GW (peak). In this note, I present back-of-envelope models of tidal power special cases) the power in tidal waves is not equal to the kinetic energy flux across a plane. These backUnder-estimation of the UK Tidal Resource David J.C. MacKay Cavendish Laboratory, University

  4. Tidal mixing around the Maritime continent: implications for1 paleoclimate simulations2

    E-Print Network [OSTI]

    into state-of-the-art climate models. Calculation of the tidal energy flux depends on 7 1 Tidal mixing around the Maritime continent: implications for1 paleoclimate simulations2, New Haven, CT, 06511 4 Abstract 5 Tidal mixing provides an important source

  5. Seasonal variations of semidiurnal tidal perturbations in mesopause region temperature and zonal and meridional winds above

    E-Print Network [OSTI]

    to conserve wave energy. When propagating into the MLT region, the horizontal wind tidal amplitude can reachSeasonal variations of semidiurnal tidal perturbations in mesopause region temperature and zonal, Colorado (40.6°N, 105.1°W). The observed monthly results are in good agreement with MF radar tidal

  6. Spatial variability within a single parautochthonous Paratethyan tidal flat deposit (Karpatian, Lower Miocene Kleinebersdorf, Lower Austria)

    E-Print Network [OSTI]

    Zuschin, Martin

    Spatial variability within a single parautochthonous Paratethyan tidal flat deposit (Karpatian and Diplodonta rotundata points to a low-energy coastal setting with at least partly nutrient-rich sediment the interpretation of a parautochthonous to slightly transported tidal flat deposit. Key words: tidal flat, diversity

  7. Modeling Tidal Freshwater Marsh Sustainability in the Sacramento–San Joaquin Delta Under a Broad Suite of Potential Future Scenarios

    E-Print Network [OSTI]

    Swanson, Kathleen M.; Drexler, Judith Z.; Fuller, Christopher C.; Schoellhamer, David H.

    2015-01-01

    tidal freshwater marsh sites in the Delta Site name Coordinates Area (ha) Elevation above MSL (cm) Salinity regime Energy

  8. AVESTAR Center for Operational Excellence of Clean Energy Plants

    SciTech Connect (OSTI)

    Zitney, Stephen

    2012-01-01

    To address challenges in attaining operational excellence for clean energy plants, the U.S. Department of Energy's National Energy Technology Laboratory has launched a world-class facility for Advanced Virtual Energy Simulation Training and Research (AVESTAR{trademark}). The AVESTAR Center brings together state-of-the-art, real time,high-fidelity dynamic simulators with operator training systems and 3D virtual immersive training systems into an integrated energy plant and control room environment. This presentation will highlight the AVESTAR Center simulators, facilities, and comprehensive training, education, and research programs focused on the operation and control of high-efficiency, near-zero-emission energy plants.

  9. SPECIAL ISSUE: Quantitative Models for Energy Systems SPECIAL EDITORS: Chung-Li Tseng

    E-Print Network [OSTI]

    Tseng, Chung-Li

    Firestone, Srijay Ghosh, and Michael Stadler 26 Optimal Self-Scheduling of a Tidal Power Plant Sebastián de, and Mohammad Shahidehpour 72 Neural Approximation for the Optimal Control of a Hydroplant with Random Inflows technologies and new energy resources. The following paper, entitled "Optimal Self­Scheduling of a Tidal Power

  10. Superior Energy Performance: Better Plants Webinar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergyPlan | Department of EnergySummary:PerformancePlants | Department

  11. TIDAL TURBULENCE SPECTRA FROM A COMPLIANT MOORING

    SciTech Connect (OSTI)

    Thomson, Jim; Kilcher, Levi; Richmond, Marshall C.; Talbert, Joe; deKlerk, Alex; Polagye, Brian; Guerra, Maricarmen; Cienfuegos, Rodrigo

    2013-06-13

    A compliant mooring to collect high frequency turbulence data at a tidal energy site is evaluated in a series of short demon- stration deployments. The Tidal Turbulence Mooring (TTM) improves upon recent bottom-mounted approaches by suspend- ing Acoustic Doppler Velocimeters (ADVs) at mid-water depths (which are more relevant to tidal turbines). The ADV turbulence data are superior to Acoustic Doppler Current Profiler (ADCP) data, but are subject to motion contamination when suspended on a mooring in strong currents. In this demonstration, passive stabilization is shown to be sufficient for acquiring bulk statistics of the turbulence, without motion correction. With motion cor- rection (post-processing), data quality is further improved; the relative merits of direct and spectral motion correction are dis- cussed.

  12. Analysis of a flapping foil system for energy harvesting at low Reynolds number

    E-Print Network [OSTI]

    Cho, Hunkee

    2011-01-01

    Ocean power wave and tidal energy review”, Refocis 5, 50,fields of wind and tidal energy. The flapping foil systems

  13. Recharging U.S. Energy Policy: Advocating for a National Renewable Portfolio Standard

    E-Print Network [OSTI]

    Lunt, Robin J.

    2007-01-01

    small hydroelectric, tidal energy, wave energy, oceanenergy generated from solar, wind, biomass. landfill gas, ocean (including tidal,

  14. Energy Accounting for District Heating and Cooling Plants 

    E-Print Network [OSTI]

    Barrett, J. A.

    1979-01-01

    FOR DISTRICT HEATING AND COOLING PLANTS John A. Barrett, P.E. Manager, Central Plant Utilities University of Houston Houston, Texas Introduction Energy accounting combines engineering science with the insights of cost accoupting theory. It requires...-25, 1979 The Science of Plant Utilities Control While the Weiss papers are not as specific to district heating and cooling plants as the preceding papers, they do treat other problem areas of interest. Undoubtedly the northeastern United States, which...

  15. Motor Energy Saving Opportunities in an Industrial Plant 

    E-Print Network [OSTI]

    Kumar, B.; Elwell, A.

    1999-01-01

    Industrial plants have enormous energy saving opportunities with electric motors. Improving motor efficiency is a conventional wisdom to save energy. Re-engineering affords far greater savings opportunities than motor efficiency improvement. Motor...

  16. Energy Saving in Ammonia Plant by Using Gas Turbine 

    E-Print Network [OSTI]

    Uji, S.; Ikeda, M.

    1981-01-01

    An ammonia plant, in which the IHI-SULZER Type 57 Gas Turbine is integrated in order to achieve energy saving, has started successful operation. Tile exhaust gas of the gas turbine has thermal energy of relatively high temperature, therefore...

  17. Further Findings Concerning Electrical Energy Monitoring in an Industrial Plant 

    E-Print Network [OSTI]

    Lewis, D. R.; Dorhofer, F. J.; Heffington, W. M.

    1995-01-01

    The Energy Systems Laboratory (ESL) at Texas A&M University has monitored the real-time electrical energy consumption, demand, and power factor of a large metal fabrication plant in Houston, Texas for twelve months. Monthly reports that present...

  18. Optimal Scheduling of Continuous Plants with Energy Constraints

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    multiproduct plants with parallel units and shared storage tanks. Processing tasks are energy intensive and we. Scheduling has been receiving considerable attention by the Process Systems Engineering (PSE) community1 Optimal Scheduling of Continuous Plants with Energy Constraints Pedro M. Castro,*,, , Iiro

  19. Area Solar energy production BACKGROUND -All renewable energies, except for geothermal and tidal, derive their energy from the sun. By harnessing the power of

    E-Print Network [OSTI]

    Keinan, Alon

    Area Solar energy production ­ BACKGROUND - All renewable energies. By harnessing the power of the sun, a solar solution can be a zero emissions energy. · Solar energy provides us with a source that moves us more toward energy

  20. Pioneering Gasification Plants | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    to the electric grid - the power plant is one of the world's cleanest. The plant's gas cleaning technology removes more than 98 percent of the sulfur in coal, converting it...

  1. DISTRIBUTED ENERGY SYSTEMS IN CALIFORNIA'S FUTURE: A PRELIMINARY REPORT, VOLUME I

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    Potential Ocean Sources Tidal Energy 1I0 o v Table ofmust also S.6.l Tidal Energy Only two tidal powerlarger bays concentrate tidal energy. Favorable sites have a

  2. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01

    plants with specific energy and cost savings data, when suchpartners. Typically, energy and cost savings are around 5%budgeted. In addition to energy and cost savings, proper

  3. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01

    23 5.1 Energy Management Systems andmelting 5.1 Energy Management Systems and Programs Althoughof a strategic energy management system vary from plant to

  4. The ENERGY STAR® Plant Label: A Valuable Component of Strategic Corporate Energy Management 

    E-Print Network [OSTI]

    Tunnessen, W.

    2008-01-01

    by awarding the first ENERGY STAR labels to plants that had demonstrated energy performance in the top quartile of energy efficiency using a sector-specific energy benchmarking and rating tool. Currently, four plant types are eligible to earn the ENERGY STAR...

  5. Environmental impact assessment and process simulation of the tidal current energy resource in the Strait of Messina 

    E-Print Network [OSTI]

    El-Geziry, Tarek Mohamed Ahmed

    2010-01-01

    Interest in exploring renewable energy resources has increased globally, especially with recent worldwide intentions to maintain the global climate. Looking at the oceans as a vast sustainable clean energy resource to ...

  6. Smyrna Paint Plant: Energy Reduction Strategy

    SciTech Connect (OSTI)

    2010-04-19

    Presentation from the Save Energy Now LEADER Industrial Sustainability and Energy Management Showcase.

  7. Solana Generating Plant Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo New Energy Equipment Co LtdSimranSkykon ASohamSolana

  8. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Neelis, Maarten

    2008-01-01

    V. (2001). Optimize energy efficiency of HRSG. HydrocarbonS.K. (1997). Conserve Energy in Distillation. Chemicalreduces ethylene plant’s energy needs. Oil and gas journal,

  9. The importance of tidal creek ecosystems Keywords: Estuary; Tidal creek; Pollution

    E-Print Network [OSTI]

    Mallin, Michael

    . They are most abundant along the Atlantic Seaboard from New Jersey to Florida, and along the Gulf Coast). Tidal creeks are especially abundant in low-energy systems such as protected areas behind barrier. As an example, the four southernmost coastal counties in North Carolina (Onslow, Pender, New Hanover

  10. Assessment of Tidal Energy Removal Impacts on Physical Systems: Development of MHK Module and Analysis of Effects on Hydrodynamics

    SciTech Connect (OSTI)

    Yang, Zhaoqing; Wang, Taiping

    2011-09-01

    In this report we describe (1) the development, test, and validation of the marine hydrokinetic energy scheme in a three-dimensional coastal ocean model (FVCOM); and (2) the sensitivity analysis of effects of marine hydrokinetic energy configurations on power extraction and volume flux in a coastal bay. Submittal of this report completes the work on Task 2.1.2, Effects of Physical Systems, Subtask 2.1.2.1, Hydrodynamics and Subtask 2.1.2.3, Screening Analysis, for fiscal year 2011 of the Environmental Effects of Marine and Hydrokinetic Energy project.

  11. An Energy Conservation Program at a Large Cable Manufacturing Plant 

    E-Print Network [OSTI]

    Reale, P. J.

    1983-01-01

    The Atlanta Works is the largest telephone cable manufacturing plant in the world plus the manufacturing center for fiber optic cable for the Western Electric Company and exemplifies how an effective energy conservation program can work...

  12. Taunton Municipal Lighting Plant- Residential Energy Star Appliance Rebate Program

    Broader source: Energy.gov [DOE]

    Customers of Taunton Municipal Lighting Plant (TMLP) are eligible for rebates on energy efficient appliances for the home. Clothes washers, dishwashers, refrigerators and room AC units are eligible...

  13. Renewable Energy: Plants in Your Gas Tank

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plants in Your Gas Tank: From Photosynthesis to Ethanol Grades: 5-8, 9-12 Topic: Biomass Authors: Chris Ederer, Eric Benson, Loren Lykins Owner: ACTS This educational material is...

  14. Utica Corporation Plant-Wide Energy Assessment Report Final Summary (Entrance to Utica Corporation's Whitesboro Plant)

    SciTech Connect (OSTI)

    2002-03-01

    Utica Corporation conducted a plant-wide energy assessment of the manufacturing processes and utilities at its facility in Whiteboro, NY. As a result of the assessment, the company is now implementing six energy conservation projects that will result in significant cost savings and efficiency improvements.

  15. Energy Productivity Improvement in Petrochemical Plants 

    E-Print Network [OSTI]

    Robinson, A. M.

    1984-01-01

    planning economics, open loop computer control of multi-department energy variables, and closed loop computer optimization of plantwide energy variables. Results indicate a ten to fifteen percent energy productivity improvement can be expected....

  16. Internal wave and boundary current generation by tidal flow over topography Amadeus Dettner, Harry L. Swinney, and M. S. Paoletti

    E-Print Network [OSTI]

    to characterize the conversion of tidal energy to radiated internal wave power. Whether the hydrostatic ( , shape)/SIW, where Ptide is the effective tidal power that interacts with the topography, and /8 of the oceans. Therefore, it is useful to measure the total power PIW converted from barotropic tidal motions

  17. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Neelis, Maarten

    2008-01-01

    electricity are used, cogeneration plants are significantlyon Heat Recovery and Cogeneration during Plant-Wide Energy-PE plants. Using power and steam from cogeneration where

  18. Renewables in Alaska Native Villages: Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct.7, 2015 ThermochemEnergy Renewables PortfolioFunding:

  19. Geothermal/Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New Pages RecentPlant < Geothermal(Redirected from Power Plant)

  20. Plant-Wide Energy Efficiency Assessment at the Arizona Portland Cement Plant in Rillito, Arizona

    SciTech Connect (OSTI)

    Stephen J. Coppinger, P.E.; Bruce Colburn, Ph.D., P.E., CEM

    2007-05-17

    A Department of Energy Plant-wide Assessment was undertaken by Arizona Portland Cement (APC) beginning in May 2005. The assessment was performed at APC’s cement production facility in Rillito, Arizona. The assessment included a compressed air evaluation along with a detailed process audit of plant operations and equipment. The purpose of this Energy Survey was to identify a series of energy cost savings opportunities at the Plant, and provide preliminary cost and savings estimates for the work. The assessment was successful in identifying projects that could provide annual savings of over $2.7 million at an estimated capital cost of $4.3 million. If implemented, these projects could amount to a savings of over 4.9 million kWh/yr and 384,420 MMBtu/year.

  1. Tools for Assessing Building Energy Use in Industrial Plants 

    E-Print Network [OSTI]

    Martin, M.; MacDonald, M.

    2007-01-01

    . The nature and extent of building energy assessment tools will then be profiled, and the beneficial use of an appropriate subset of these tools for assessing energy savings in buildings at industrial plants will be described. Possible future tools that may...

  2. ENERGY AND WATER OPTIMIZATION IN BIOFUEL PLANTS Ignacio E. Grossmann*

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    1 ENERGY AND WATER OPTIMIZATION IN BIOFUEL PLANTS Ignacio E. Grossmann* , Mariano Martín Center, PA 15213, USA Abstract In this paper we address the topic of energy and water optimization, we propose a strategy based on mathematical programming techniques to model and optimize

  3. Energy Savings for CO2 Removal in Ammonia Plants 

    E-Print Network [OSTI]

    Pouilliart, R.; Van Hecke, F. C.

    1981-01-01

    An exergy analysis of carbonate solution C02 removal systems which use solution flashing shows that there is no energy saving by using a mechanical thermocompressor instead of a steam-jet ejector. In a 1000 ShT/D ammonia plant an energy saving...

  4. Waste Energy Analysis Recovery for a Typical Food Processing Plant 

    E-Print Network [OSTI]

    Miller, P. H.; Mann, L., Jr.

    1980-01-01

    An energy analysis made for the Joan of Arc Food Processing Plant in St. Francisville, Louisiana indicated that a significant quantity of waste heat energy was being released to the atmosphere in the forms of low quality steam and hot flue gases...

  5. Energy Efficiency in Process Plant Utilities 

    E-Print Network [OSTI]

    Aggarwal, S.

    2001-01-01

    This article highlights some aspects of utility systems design and operations for energy efficiency. After years of relative stability, the energy costs have risen substantially. Electricity rates vary by the hour and in ...

  6. Managing Your Energy: An ENERGY STAR(R) Guide for Identifying Energy Savings in Manufacturing Plants

    SciTech Connect (OSTI)

    Worrell, Ernst; Angelini, Tana; Masanet, Eric

    2010-07-27

    In the United States, industry spends over $100 billion annually to power its manufacturing plants. Companies also spend on maintenance, capital outlay, and energy services. Improving energy efficiency is vital to reduce these costs and increase earnings. Many cost-effective opportunities to reduce energy consumption are available, and this Energy Guide discusses energy-efficiency practices and energy-efficient technologies that can be applied over a broad spectrum of companies. Strategies in the guide address hot water and steam, compressed air, pumps, motors, fans, lighting, refrigeration, and heating, ventilation, and air conditioning. This guide includes descriptions of expected energy and cost savings, based on real-world applications, typical payback periods, and references to more detailed information. The information in this Energy Guide is intended to help energy and plant managers achieve cost-effective energy reductions while maintaining product quality. Further research on the economics of all measures--as well as on their applicability to different production practices?is needed to assess their cost effectiveness at individual plants.

  7. Monitoring Energy Efficiency in Sophisticated Process Plants 

    E-Print Network [OSTI]

    Kenney, W. F.

    1981-01-01

    into the monitoring system particular to that plant. Rapid Pay Offs Are The Rule Figure 3 lists the sources of benefits that have been observed from the target program. Bene fits from the use of the grass-roots guidelines are generally longer range since... fitted to existing distillation towers, heat pumps to eliminate the condenser heat waste altogether, and the addition of intermediate reboilers to save an expensive utility at the cost of waste heat or a similarly inexpensive one. Projects including...

  8. Numerical and Analytical Estimates of M2 Tidal Conversion at Steep Oceanic Ridges EMANUELE DI LORENZO

    E-Print Network [OSTI]

    Young, William R.

    of mechanical energy required to mix the global ocean (Garrett and St. Laurent 2002). Tidal forces perform aboutNumerical and Analytical Estimates of M2 Tidal Conversion at Steep Oceanic Ridges EMANUELE DI) ABSTRACT Numerical calculations of the rate at which energy is converted from the external to internal

  9. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Test Plan - DOE Tidal And River Reference Turbines (40) Field Measurements at River and Tidal Current Sites for Hydrokinetic Energy Development: Best Practices Manual (40)...

  10. Bayer Polymers: Plant Identifies Numerous Projects Following Plant-Wide Energy-Efficient Assessment

    SciTech Connect (OSTI)

    2003-08-01

    The Bayer Corporation undertook a plant-wide energy efficiency assessment of its New Martinsville, West Virginia, plant in 2001. The objectives were to identify energy saving projects in the utilities area. The projects, when complete, will save the company the loss of an estimated 236,000 MMBtu ($1.16 million) annually in energy from burning and leaking fossil fuels. Certain other projects will save the company 6,300,000 kWh ($219,000) of electrical energy each year. All of the projects could be duplicated in other chemical manufacturing facilities and most of the projects could be duplicated in other industries utilizing steam, pumps, and/or compressed air.

  11. Wind Plant Cost of Energy: Past and Future (Presentation)

    SciTech Connect (OSTI)

    Hand, M.

    2013-03-01

    This presentation examines trends in wind plant cost of energy over the last several decades and discusses methods and examples of projections for future cost trends. First, the presentation explores cost trends for wind energy from the 1980s, where there had been an overall downward trend in wind plant energy costs. Underlying factors that influenced these trends, including turbine technology innovation for lower wind speed sites, are explored. Next, the presentation looks at projections for the future development of wind energy costs and discusses a variety of methods for establishing these projections including the use of learning curves, qualitative assessment using expert elicitation, and engineering-based analysis. A comparison of the methods is provided to explore their relative merits. Finally, a brief introduction is provided for the U.S. Department of Energy program-wide shift towards an integrative use of qualitative and quantitative methods for assessing the potential impacts of wind plant technology innovations on reducing the wind plant cost of energy.

  12. Clarence Strait Tidal Energy Project, Tenax Energy Tropical Tidal Test

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla,ThermalCubaParker,Georgia (UtilityWilliams -Centre, | Open

  13. Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01

    M. , 1990. “Waste Gas Heat Recovery in Cement PlantsEnergyAdvanced Concepts of Waste Heat Recovery in Cement Plants”grate cooler Refractories Heat recovery for power generation

  14. Ndunga Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to:InformationNdunga Geothermal Power Plant Jump to:

  15. Plant-wide Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1,an R7-Compatible CumulativeSavingsPlant-wide Systems

  16. Coal Power Plant Database | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures Jump to: navigation, searchClover Hill HighPower Plant Database

  17. Cemex River Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla,Thermal Gradient Holes JumpHills WindBlack MountainRiver Plant

  18. Waste Isolation Pilot Plant | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'S FUTURE. regulators consumerWaste Isolation Pilot PlantWaste Isolation

  19. Energy Management of Chiller Plant for Improved Efficiency and Operation 

    E-Print Network [OSTI]

    Alexander, D. P.; Rice, L. S.

    1987-01-01

    stream_source_info ESL-IE-87-09-28.pdf.txt stream_content_type text/plain stream_size 27133 Content-Encoding ISO-8859-1 stream_name ESL-IE-87-09-28.pdf.txt Content-Type text/plain; charset=ISO-8859-1 ENERGY MANAGEMENT... Physical Plant Division Georgia Institute of Technology Atlanta, GA ABSTRACT This paper describes a success story on energy man agement of the chiller plant at Georgia Tech. A multilevel control and optimization method is implemented by using...

  20. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01

    ENERGY STORAGE FOR CONCENTRATING SOLAR POWER PLANTS,”Thermal Energy Storage in Concentrated Solar Thermal PowerThermal Energy Storage in Concentrated Solar Thermal Power

  1. Conservation, An In-Plant Energy Resource 

    E-Print Network [OSTI]

    Skudneski, L. A.

    1980-01-01

    Potential energy savings of 90 billion cubic feet of natural gas per year on existing facilities in basic steel alone are attainable through retrofitting and improvement in operations. Areas covered include reheat furnaces, soaking pits, cover...

  2. Wairakei Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,Village ofWaialua, Hawaii: Energy

  3. Tuzla Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York: Energy Resources JumpTuscaloosaITustin,Tuzla

  4. Mutnovskaya Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: EnergyInformationOliver,Minnesota: EnergyMustang, Oklahoma:Mutnovskaya

  5. Portsmouth Gaseous Diffusion Plant | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuilding energy codesPhiladelhiaPolicyTechnologies |Department

  6. 3M: Hutchinson Plant Focuses on Heat Recovery and Cogeneration During Plant-Wide Energy-Efficiency Assessment

    SciTech Connect (OSTI)

    Not Available

    2003-06-01

    3M performed a plant-wide energy efficiency assessment at its Hutchinson, Minnesota, plant to identify energy- and cost-saving opportunities. Assessment staff developed four separate implementation packages that represented various combinations of energy-efficiency projects involving chiller consolidation, air compressor cooling improvements, a steam turbine used for cogeneration, and a heat recovery boiler for two of the plant's thermal oxidizers. Staff estimated that the plant could save 6 million kWh/yr in electricity and more than 200,000 MMBtu/yr in natural gas and fuel oil, and avoid energy costs of more than$1 million during the first year.

  7. Uenotai Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York: EnergyU.S. EPA RegionforUStoNRCS

  8. Ulumbu Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York: EnergyU.S. EPAEnergyUltra HighUlubelu2 Jump

  9. Mohave Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec(Pritchett, 2004) | OpenMohave County, Arizona: EnergySolar

  10. Mori Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: EnergyInformation MontanaOhio:Hill, California: EnergyMori Geothermal

  11. Kawasaki Plant Systems Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder atHills,New York:JustKandiyohiCounty,Kawar Energy Jump

  12. Energy Efficiency in BP's PTA Manufacturing Plants 

    E-Print Network [OSTI]

    Clark, F.

    2010-01-01

    BP is a leading producer of purified terephthalic acid, or PTA, a commodity chemical used in the production of polyester. Through both self-help initiatives and innovations in our state-of-art process technology, the energy efficiency of our PTA...

  13. Microsoft Word - RM1_Tidal Turbine_UW Tidal Resource-Abstract...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    turbine operating in a narrow, tidal channel. The site is a generalized version of Tacoma Narrows, Puget Sound, Washington. The resource is a mixed, mainly semidiurnal tidal...

  14. West Point Treatment Plant Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia: Energy Resources JumpChicago,Islip,Point Treatment Plant Biomass

  15. Application of Energy Saving Concepts to LPG Recovery Plants 

    E-Print Network [OSTI]

    Carpenter, M. J.; Barnwell, J.

    1982-01-01

    inefficient compared to current standards. This paper deals with energy savings that may be effected for one such plant. Three basic ideas are evaluated:- o Use of Multi-Component Chilling (MCC). o Addition of an Expander. o Heat Recovery from Gas Turbine...

  16. FAQs Manhattanville Campus Central Energy Plant Boiler Stacks

    E-Print Network [OSTI]

    Kim, Philip

    FAQs Manhattanville Campus Central Energy Plant Boiler Stacks Installation Frequently Asked Questions What is happening? Columbia University is installing two (2) boiler stacks on top of the Jerome L, a below-grade facility which will consist four (4) 45,000 lbs/hr steam boilers and related equipment

  17. Optimization of Energy and Water Consumption in Cornbased Ethanol Plants

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    and waste water discharge. We consider the corn-based ethanol plant reported in Karuppiah et al. (2008 industrial operation and waste water is no longer discharged. Keywords: Energy, Biofuels, Alternative fuels, including the treatment and recycling of waste water (Petrakis, 2008) as shown later in this paper. The task

  18. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01

    CIPEC). (2001a). Boilers and Heaters, Improving EnergySteam Conservation and Boiler Plant Efficiency Advancements.Council of Industrial Boiler Owners, Burke, Virginia. 9.

  19. A preliminary review of energy savings from EADC plant audits

    SciTech Connect (OSTI)

    Wilfert, G.L.; Kinzey, B.R.; Kaae, P.S.

    1993-03-01

    This paper reviews the long-term energy savings attributed to industrial plant energy audits conducted under the US Department of Energy`s (DOE`s) Energy Analysis and Diagnostic Center (EADC) Program. By the end of FY91, this program is expected to have performed over 3600 plant energy audits since it began in late 1976. During FY91, 500 of the 3600 are expected to be completed. Currently, 18 universities participate in the program. DOE`s expansion plan, as specified in the National Energy Strategy, calls for adding three universities to the program during FY92. This review, requested by the OIT as part of their program planning effort, is preliminary and limited in scope. The primary purpose of this paper is to independently assess the accuracy of past energy savings reporting, specifically: whether a 2-year assessment horizon for identifying implemented ECOs captures all the ECOs implemented under the program whether the number of implemented ECOs and thus, the energy savings associated with program audits, significantly decrease in years 3 through 7 after the audit.

  20. Yamagawa Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois:Wizard PowerWyandanch, New1991)Yalesville,YamagawaYamagawa

  1. Yangbajain Geothrmal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois:Wizard PowerWyandanch,Yamhill,

  2. Sumikawa Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)Model for the Entire CountryPennsylvania:SulphurSumikawa

  3. Hatchobaru Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynnMassachusetts:Ohio: Energy

  4. Heber Plant Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources Jump to: navigation, search

  5. Flash Steam Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban Transport Jump to:Flanders, New York: Energy Resources Jump

  6. Rotokawa Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, NewMichigan: EnergyRocklinRohmRoshniRotokawa Geothermal Power

  7. Sibayak Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity for LowInformationShoshone County,Si Brilliant

  8. Mendeleevskaya Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy Resources Jump to:ElectricCoordination in

  9. Momotombo Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec(Pritchett, 2004) |

  10. Mataloko Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,InformationIllinois:Martin,Open Energy InformationMastic,Mataloko

  11. Matsukawa Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,InformationIllinois:Martin,Open EnergyMathews County,Matla

  12. Ngatamariki Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNew Hampshire: Energy Resources Jump

  13. Ogiri Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNewSt. Louis,EnergyOctillion Corporation

  14. Otake Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio Program | OpenWisconsin:New York: EnergyOssian,

  15. Draft environmental assessment: Ocean Thermal Energy Conversion (OTEC) Pilot Plants

    SciTech Connect (OSTI)

    Sullivan, S.M.; Sands, M.D.; Donat, J.R.; Jepsen, P.; Smookler, M.; Villa, J.F.

    1981-02-01

    This Environmental Assessment (EA) has been prepared, in accordance with the National Environmental Policy Act of 1969, for the deployment and operation of a commercial 40-Megawatt (MW) Ocean Thermal Energy Conversion (OTEC) Pilot Plant (hereafter called the Pilot Plant). A description of the proposed action is presented, and a generic environment typical of the candidate Pilot Plant siting regions is described. An assessment of the potential environmental impacts associated with the proposed action is given, and the risk of credible accidents and mitigating measures to reduce these risks are considered. The Federal and State plans and policies the proposed action will encompass are described. Alternatives to the proposed action are presented. Appendix A presents the navigation and environmental information contained in the US Coast Pilot for each of the candidate sites; Appendix B provides a brief description of the methods and calculations used in the EA. It is concluded that environmental disturbances associated with Pilot Plant activities could potentially cause significant environmental impacts; however, the magnitude of these potential impacts cannot presently be assessed, due to insufficient engineering and environmental information. A site- and design-specific OTEC Pilot Plant Environmental Impact Statement (EIS) is required to resolve the potentially significant environmental effects associated with Pilot Plant deployment and operation. (WHK)

  16. Identifying two steps in the internal wave energy cascade

    E-Print Network [OSTI]

    Sun, Oliver Ming-Teh

    2010-01-01

    M. Gregg. An estimate of tidal energy lost to turbulence atloss of low-mode tidal energy at 28.9. Geophysical ResearchSignificant dissipation of tidal energy in the deep ocean

  17. Zunil Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois:WizardYates County,Zena, NewZhuluZipZoneZoloZuniZunil

  18. Takigami Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)Model forTechnologies95Symerton,EEconomies inTakigami

  19. Flash Steam Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban Transport Jump to:Flanders, New York: Energy Resources JumpFlash

  20. Darajat Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstruments Inc JumpIowa: Energy ResourcesDanvilleDarajat Geothermal

  1. Los Azufres Geothermal Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona:Oregon: EnergyLloyd, NewBranchLongweiLos AlamosPowerAngeles)Los

  2. Kamojang Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder atHills,New York:Just HotKahaluu,CompositesKamiah,Kamojang

  3. Kemaliye Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder atHills,NewKeith County, Nebraska:Kelsey NorthKemaliye

  4. Lihir Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona: EnergyLebanonTexas:Hill,Photovoltaic Jump to: navigation,Lihir

  5. Kakkonda Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder atHills,New York:Just HotKahaluu,Composites Pvt Ltd Jump

  6. Okeanskaya Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNewSt. Louis,EnergyOctillionEdison Co JumpOhio,Okeanskaya Geothermal

  7. Pioneering Gasification Plants | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergyPresidential PermitDAYS - WE NEED ADr. PeterPV), or1800s, lamplighters

  8. Stress Tolerant Plants Expressing Mannosylglcerate Enzymes - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541C.3X-rays3Energy U.S. Leadership inthe Loan

  9. SC Johnson Waxdale Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewable Energy|GasRugbyRuthton WindSAR Jump

  10. Stateline Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbHSoloPage EditStamford,EnergyFarmStateline

  11. Wave Power Plant Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland:Energy InformationWausau High SchoolInc Jump

  12. Ahuachapan Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolar EnergyAerodynallIndustrias do ValeAhtanum,Ahuachapan

  13. Alasehir Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen EnergyFebruaryInformationAlamedaCounty,Alasehir

  14. Amatitlan Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5AllEnergy Information AmanaAmatitlan

  15. Binary Cycle Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation BeaufortBentMichigan:Greece)Daddy sEnergyJump

  16. Bjarnaflag Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformationBio-Gas Technologies, LLCMichigan: EnergyBixby,Bjarnaflag

  17. Cibuni Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIRChurch Point, Louisiana: Energy Resources JumpCibuni Geothermal

  18. Advanced Plant Pharmaceuticals Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: Energy Resources JumpAdelan UK

  19. Bieber Plant Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYorkColoradoBelcher HomesBeverly, Massachusetts:BiBBBieber

  20. Binary Cycle Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYorkColoradoBelcherCarbon SequestrationTreeIIIBinary Cycle

  1. Binary Cycle Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYorkColoradoBelcherCarbon SequestrationTreeIIIBinary

  2. Better Plants Program Partners | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment of EnergyResearchers atDayWhenBethany Sparn, M.S.Logo.jpg This

  3. ORNL/TM-2012/301 Experimental Test Plan DOE Tidal

    E-Print Network [OSTI]

    Siefert, Chris

    ORNL/TM-2012/301 Experimental Test Plan ­ DOE Tidal And River Reference Turbines August 2012 Test Plan ­ DOE Tidal and River Reference Turbines Vincent S. Neary1 Craig Hill2 Leonardo P. Chamorro 2 16, 2012 Prepared for: Wind and Water Power Technologies Program Office of Energy Efficiency

  4. Can Earth's rotation and tidal despinning drive plate tectonics? Federica Riguzzi a,c,

    E-Print Network [OSTI]

    Can Earth's rotation and tidal despinning drive plate tectonics? Federica Riguzzi a,c, , Giuliano January 2009 Accepted 10 June 2009 Available online xxxx Keywords: Plate tectonics Earth's rotation Tidal despinning Earth's energy budget We re-evaluate the possibility that Earth's rotation contributes to plate

  5. Vibrio litoralis sp. nov., isolated from a Yellow Sea tidal flat in Korea

    E-Print Network [OSTI]

    Bae, Jin-Woo

    Vibrio litoralis sp. nov., isolated from a Yellow Sea tidal flat in Korea Young-Do Nam,1,2 Ho-negative, facultatively anaerobic bacterial strains, MANO22DT and MANO22P, were isolated from a tidal flat area of Dae and energy sources. A phylogenetic analysis based on 16S rRNA gene sequences revealed that the strains belong

  6. Expressions for Tidal Conversion at Seafloor Topography using Physical-Space Integrals

    E-Print Network [OSTI]

    Schörghofer, Norbert

    Expressions for Tidal Conversion at Seafloor Topography using Physical-Space Integrals Norbert and a potential source of the required mechanical energy is the generation and breaking of internal gravity waves (Egbert and Ray, 2000; Ledwell et al., 2000). Tidal dissipation has long been recognized as important

  7. A preliminary review of energy savings from EADC plant audits

    SciTech Connect (OSTI)

    Wilfert, G.L.; Kinzey, B.R.; Kaae, P.S.

    1993-01-01

    This paper reviews the long-term energy savings attributed to industrial plant energy audits conducted under the US Department of Energy's (DOE's) Energy Analysis and Diagnostic Center (EADC) Program. By the end of FY91, this program is expected to have performed over 3600 plant energy audits since it began in late 1976. During FY91, 500 of the 3600 are expected to be completed. Currently, 18 universities participate in the program. DOE's expansion plan, as specified in the National Energy Strategy, calls for adding three universities to the program during FY92. This review, requested by the OIT as part of their program planning effort, is preliminary and limited in scope. The primary purpose of this paper is to independently assess the accuracy of past energy savings reporting, specifically: whether a 2-year assessment horizon for identifying implemented ECOs captures all the ECOs implemented under the program whether the number of implemented ECOs and thus, the energy savings associated with program audits, significantly decrease in years 3 through 7 after the audit.

  8. How does vegetation affect sedimentation on tidal marshes? Investigating particle capture and hydrodynamic controls

    E-Print Network [OSTI]

    Mudd, Simon Marius

    How does vegetation affect sedimentation on tidal marshes? Investigating particle capture stems, or enhanced settling due to a reduction in turbulent kinetic energy within flows through kinetic energy in the fertilized canopy. Our newly developed models of biologically mediated sedimentation

  9. Status of Wave and Tidal Power Technologies for the United States

    SciTech Connect (OSTI)

    Musial, W.

    2008-08-01

    This paper presents the status of marine applications for renewable energy as of 2008 from a U.S. perspective. Technologies examined include wave, tidal, and ocean current energy extraction devices.

  10. 30 DIRECT ENERGY CONVERSION; 20 FOSSIL-FUELED POWER PLANTS; 32...

    Office of Scientific and Technical Information (OSTI)

    Lee, G.T.; Sudhoff, F.A. 30 DIRECT ENERGY CONVERSION; 20 FOSSIL-FUELED POWER PLANTS; 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; FUEL CELL POWER PLANTS; GAS TURBINE...

  11. A Pilot Plant: The Fastest Path to Commercial Fusion Energy

    SciTech Connect (OSTI)

    Robert J. Goldston

    2010-03-03

    Considerable effort has been dedicated to determining the possible properties of a magneticconfinement fusion power plant, particularly in the U.S.1, Europe2 and Japan3. There has also been some effort to detail the development path to fusion energy, particularly in the U.S.4 Only limited attention has been given, in Japan5 and in China6, to the options for a specific device to form the bridge from the International Thermonuclear Experimental Reactor, ITER, to commercial fusion energy. Nor has much attention been paid, since 2003, to the synergies between magnetic and inertial fusion energy development. Here we consider, at a very high level, the possibility of a Qeng ? 1 Pilot Plant, with linear dimensions ~ 2/3 the linear dimensions of a commercial fusion power plant, as the needed bridge. As we examine the R&D needs for such a system we find significant synergies between the needs for the development of magnetic and inertial fusion energy.

  12. Tidal evolution of close binary asteroid systems

    E-Print Network [OSTI]

    Taylor, PA; Margot, JL

    2010-01-01

    a positive fractional power of the tidal frequency (at leasttidal bulges of the components as these will depend on the square (or higher powers)power, natural deviations from a spherical shape may exceed the amplitude of the tidal

  13. JOURNAL OF GEOPHYSICAL RESEARCH, VOL. ???, XXXX, DOI:10.1029/, Dissipation at tidal and seismic frequencies in a melt-free,

    E-Print Network [OSTI]

    Nimmo, Francis

    be readily detectable with future seismological observations. 1. Introduction The rate at which tidal energyJOURNAL OF GEOPHYSICAL RESEARCH, VOL. ???, XXXX, DOI:10.1029/, Dissipation at tidal and seismic of Phobos provides a constraint on the tidal dissipation factor, Q, within Mars. We model viscoelastic

  14. ,"Plant","Primary Energy Source","Operating Company","Net Summer...

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" ,"Plant","Primary Energy Source","Operating Company","Net Summer Capacity (MW)" 1,"PPL Susquehanna","Nuclear","PPL Susquehanna LLC",2520 2,"FirstEnergy Bruce...

  15. General relativistic tidal work for Papapetrou, Weinberg and Goldberg pseudotensors

    E-Print Network [OSTI]

    Lau Loi So

    2015-05-18

    In 1998 Thorne claimed that all pseudotensors give the same tidal work as the Newtonian theory. In 1999, Purdue used the Landau-Lifshitz pseudotensor to calculate the tidal heating and the result matched with the Newtonian gravity. Soon after in 2001, Favata employed the same method to examine the Einstein, Bergmann-Thomson and M{\\o}ller pseudotensors, all of them give the same result as Purdue did. Inspired by the work of Purdue and Favata, for the completeness, here we manipulate the tidal work for Papapetrou, Weinberg and Goldberg pseudotensors. We obtained the same tidal work as Purdue achieved. In addition, we emphasize that a suitable gravitational energy-momentum pseudotensor requires fulfill the inside matter condition and all of the classical pseudotensors pass this test except M$\\o$ller. Moreover, we constructed a general pseudotesnor which is modified by 13 linear artificial higher order terms combination with Einstein pseudotensor. We find that the result agrees with Thorne's prediction, i.e., relativistic tidal work is pseudotensor independent.

  16. Dissecting the pressure field in tidal flow

    E-Print Network [OSTI]

    amplitude [N x 107 ] phase relative to the velocity [deg] power [W x107 ] 1 2 3 4 tidal excursion parameterDissecting the pressure field in tidal flow past a headland: When is form drag "real?" Sally Warner waves eddies H L LHH H L L LH #12;Numerical model Gaussian-shaped headland Barotropic tidal velocity D L

  17. Martinez Refinery Completes Plant-Wide Energy Assessment

    SciTech Connect (OSTI)

    2002-11-01

    This OIT BestPractices Case Study describes how the Equilon Enterprises oil refinery in Martinez, California undertook a plant-wide energy assessment that focused on three key areas: waste minimization, process debottlenecking, and operations optimization. The assessment yielded recommendations, which, if implemented, can save more than 6,000,000 MMBtu per year and an estimated $52,000,000 per year, plus improve process control and reduce waste.

  18. Poly Plant Project Inc PPP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975) |Texas: Energy ResourcesArkansas:Wisconsin: EnergydePlant

  19. CEWEP -Confederation of European Waste-to-Energy Plants Boulevard Clovis 12A

    E-Print Network [OSTI]

    Columbia University

    CEWEP - Confederation of European Waste-to- Energy Plants Boulevard Clovis 12A B-1000 Brussels Tel recovery CEWEP welcomes that `energy recovery' should cover the use of waste for generating energy through incineration. That means that Waste-to-Energy (WtE) plants would be considered as performing energy recovery

  20. Miravalles II Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec 2005Minnehaha County,EnergyII Geothermal Power Plant Jump

  1. Miravalles III Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec 2005Minnehaha County,EnergyII Geothermal Power Plant

  2. Miravalles V Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec 2005Minnehaha County,EnergyII Geothermal Power PlantIV

  3. North Brawley Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to:Information 3rd| Open EnergyAndover, Massachusetts: EnergyPlant Jump

  4. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01

    plants with specific energy and cost savings data whenbudgeted. In addition to energy and cost savings, propera significant reduction in energy and costs. Generally, two

  5. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2011-01-01

    audits in an energy management system helps to guaranteemodule in the energy management system of a plant inoptimum. New energy management systems that use artificial

  6. Investigation of the 2-body system with a rotating central body (e. g. earth-moon system) within the Projective Unified Field theory: the transfer of rotational angular momentum and energy from the central body to the orbital 2-body system, the tidal and the non-tidal influences (mechanical, general-relativistic Lense-Thirring effect and cosmological PUFT-contributions)

    E-Print Network [OSTI]

    E. Schmutzer

    2005-02-25

    In this treatise the well-known 2-body problem with a rotating central body is systematically reinvestigated on the basis of the Projective Unified Field Theory (PUFT) under the following aspects (including the special case of the Newton mechanics): First, equation of motion with abstract additional terms being appropriate for the interpretation of the various effects under discussion: tidal friction effect as well as non-tidal effects (e.g. rebound effect as temporal variation of the moment of inertia of the rotating body, general-relativistic Lense-Thirring effect, new scalaric effects of cosmological origin, being an outcome of the scalarity phenomenon of matter (PUFT). Second, numerical evaluation of the theory. Key words: two-body problem with rotating central body -- tidal and non-tidal effects -- scalaric-cosmological influence of the expanding cosmos on the 2-body system.

  7. Plant City, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975) | OpenBethlehemPlainsboro Center,Planned GeothermalPlant City,

  8. Scaling laws to quantify tidal dissipation in star-planet systems

    E-Print Network [OSTI]

    Auclair-Desrotour, Pierre; Poncin-Lafitte, Christophe Le

    2015-01-01

    Planetary systems evolve over secular time scales. One of the key mechanisms that drive this evolution is tidal dissipation. Submitted to tides, stellar and planetary fluid layers do not behave like rocky ones. Indeed, they are the place of resonant gravito-inertial waves. Therefore, tidal dissipation in fluid bodies strongly depends on the excitation frequency while this dependence is smooth in solid ones. Thus, the impact of the internal structure of celestial bodies must be taken into account when studying tidal dynamics. The purpose of this work is to present a local model of tidal gravito-inertial waves allowing us to quantify analytically the internal dissipation due to viscous friction and thermal diffusion, and to study the properties of the resonant frequency spectrum of the dissipated energy. We derive from this model scaling laws characterizing tidal dissipation as a function of fluid parameters (rotation, stratification, diffusivities) and discuss them in the context of star-planet systems.

  9. Managing Your Energy: An ENERGY STAR(R) Guide for Identifying Energy Savings in Manufacturing Plants

    E-Print Network [OSTI]

    Worrell, Ernst

    2010-01-01

    energy-efficiency measures Energy Management Programs and Systems Energy management programs Energy teams Energy monitoring

  10. Women @ Energy: Robyn Madrak Plant | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyThe U.S.Lacledeutilities.EnergyKirstin Alberi isSpringmeyer

  11. First-post-Newtonian quadrupole tidal interactions in binary systems

    E-Print Network [OSTI]

    Justin Vines; Éanna É. Flanagan

    2014-10-09

    We consider tidal coupling in a binary stellar system to first-post-Newtonian order. We derive the orbital equations of motion for bodies with spins and mass quadrupole moments and show that they conserve the total linear momentum of the binary. We note that spin-orbit coupling must be included in a 1PN treatment of tidal interactions in order to maintain consistency (except in the special case of adiabatically induced quadrupoles); inclusion of 1PN quadrupolar tidal effects while omitting spin effects would lead to a failure of momentum conservation for generic evolution of the quadrupoles. We use momentum conservation to specialize our analysis to the system's center-of-mass-energy frame; we find the binary's relative equation of motion in this frame and also present a generalized Lagrangian from which it can be derived. We then specialize to the case in which the quadrupole moment is adiabatically induced by the tidal field (in which case it is consistent to ignore spin effects). We show how the adiabatic dynamics for the quadrupole can be incorporated into our action principle and present the simplified orbital equations of motion and conserved energy for the adiabatic case. These results are relevant to gravitational wave signals from inspiralling binary neutron stars.

  12. Dynamical modeling of tidal streams

    SciTech Connect (OSTI)

    Bovy, Jo, E-mail: bovy@ias.edu [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States)

    2014-11-01

    I present a new framework for modeling the dynamics of tidal streams. The framework consists of simple models for the initial action-angle distribution of tidal debris, which can be straightforwardly evolved forward in time. Taking advantage of the essentially one-dimensional nature of tidal streams, the transformation to position-velocity coordinates can be linearized and interpolated near a small number of points along the stream, thus allowing for efficient computations of a stream's properties in observable quantities. I illustrate how to calculate the stream's average location (its 'track') in different coordinate systems, how to quickly estimate the dispersion around its track, and how to draw mock stream data. As a generative model, this framework allows one to compute the full probability distribution function and marginalize over or condition it on certain phase-space dimensions as well as convolve it with observational uncertainties. This will be instrumental in proper data analysis of stream data. In addition to providing a computationally efficient practical tool for modeling the dynamics of tidal streams, the action-angle nature of the framework helps elucidate how the observed width of the stream relates to the velocity dispersion or mass of the progenitor, and how the progenitors of 'orphan' streams could be located. The practical usefulness of the proposed framework crucially depends on the ability to calculate action-angle variables for any orbit in any gravitational potential. A novel method for calculating actions, frequencies, and angles in any static potential using a single orbit integration is described in the Appendix.

  13. Tidally-induced thermonuclear Supernovae

    E-Print Network [OSTI]

    S. Rosswog; E. Ramirez-Ruiz; W. R. Hix

    2008-11-13

    We discuss the results of 3D simulations of tidal disruptions of white dwarfs by moderate-mass black holes as they may exist in the cores of globular clusters or dwarf galaxies. Our simulations follow self-consistently the hydrodynamic and nuclear evolution from the initial parabolic orbit over the disruption to the build-up of an accretion disk around the black hole. For strong enough encounters (pericentre distances smaller than about 1/3 of the tidal radius) the tidal compression is reversed by a shock and finally results in a thermonuclear explosion. These explosions are not restricted to progenitor masses close to the Chandrasekhar limit, we find exploding examples throughout the whole white dwarf mass range. There is, however, a restriction on the masses of the involved black holes: black holes more massive than $2\\times 10^5$ M$_\\odot$ swallow a typical 0.6 M$_\\odot$ dwarf before their tidal forces can overwhelm the star's self-gravity. Therefore, this mechanism is characteristic for black holes of moderate masses. The material that remains bound to the black hole settles into an accretion disk and produces an X-ray flare close to the Eddington limit of $L_{\\rm Edd} \\simeq 10^{41} {\\rm erg/s} M_{\\rm bh}/1000 M$_\\odot$), typically lasting for a few months. The combination of a peculiar thermonuclear supernova together with an X-ray flare thus whistle-blows the existence of such moderate-mass black holes. The next generation of wide field space-based instruments should be able to detect such events.

  14. Kizildere I Geothermal Pwer Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrderInformationKizildere I Geothermal Pwer Plant Jump to:

  15. Kizildere II Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrderInformationKizildere I Geothermal Pwer Plant Jump to:II

  16. Industrial Plant Services Australia Pty Ltd IPS | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8, 13 (Vt. WaterInformationPlant Services Australia Pty

  17. Niland Solar Farm LLC Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNew Hampshire: Energy ResourcesNiigata Geothermal Power PlantNiland

  18. City of Mayfield Plant Board, Kentucky (Utility Company) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar EnergyLawler, Iowa (Utility Company) JumpCityInformation Mayfield Plant

  19. Independent Activity Report, Pantex Plant - May 2013 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide toIMPROVEMENT OF DESIGN CODES TOSummaryPlant and Tank

  20. Blue Lake Plant Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin:Pontiac Biomass Facility JumpIICalifornia: EnergyCHillPlant

  1. Gravitational self-force corrections to two-body tidal interactions and the effective one-body formalism

    E-Print Network [OSTI]

    Donato Bini; Thibault Damour

    2014-09-24

    Tidal interactions have a significant influence on the late dynamics of compact binary systems, which constitute the prime targets of the upcoming network of gravitational-wave detectors. We refine the theoretical description of tidal interactions (hitherto known only to the second post-Newtonian level) by extending our recently developed analytic self-force formalism, for extreme mass-ratio binary systems, to the computation of several tidal invariants. Specifically, we compute, to linear order in the mass ratio and to the 7.5$^{\\rm th}$ post-Newtonian order, the following tidal invariants: the square and the cube of the gravitoelectric quadrupolar tidal tensor, the square of the gravitomagnetic quadrupolar tidal tensor, and the square of the gravitoelectric octupolar tidal tensor. Our high-accuracy analytic results are compared to recent numerical self-force tidal data by Dolan et al. \\cite{Dolan:2014pja}, and, notably, provide an analytic understanding of the light ring asymptotic behavior found by them. We transcribe our kinematical tidal-invariant results in the more dynamically significant effective one-body description of the tidal interaction energy. By combining, in a synergetic manner, analytical and numerical results, we provide simple, accurate analytic representations of the global, strong-field behavior of the gravitoelectric quadrupolar tidal factor. A striking finding is that the linear-in-mass-ratio piece in the latter tidal factor changes sign in the strong-field domain, to become negative (while its previously known second post-Newtonian approximant was always positive). We, however, argue that this will be more than compensated by a probable fast growth, in the strong-field domain, of the nonlinear-in-mass-ratio contributions in the tidal factor.

  2. Scaling laws to understand tidal dissipation in fluid planetary regions and stars I - Rotation, stratification and thermal diffusivity

    E-Print Network [OSTI]

    Auclair-Desrotour, P; Poncin-Lafitte, C Le

    2015-01-01

    Tidal dissipation in planets and stars is one of the key physical mechanisms driving the evolution of star-planet and planet-moon systems. Several signatures of its action are observed in planetary systems thanks to their orbital architecture and the rotational state of their components. Tidal dissipation inside the fluid layers of celestial bodies are intrinsically linked to the dynamics and the physical properties of the latter. This complex dependence must be characterized. We compute the tidal kinetic energy dissipated by viscous friction and thermal diffusion in a rotating local fluid Cartesian section of a star/planet/moon submitted to a periodic tidal forcing. The properties of tidal gravito-inertial waves excited by the perturbation are derived analytically as explicit functions of the tidal frequency and local fluid parameters (i.e. the rotation, the buoyancy frequency characterizing the entropy stratification, viscous and thermal diffusivities) for periodic normal modes. The sensitivity of the resul...

  3. Hachijojima Geothermal Energy Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County,SolarFERCInformation 3.1 -Hachijojima Geothermal Energy

  4. Dora-1 Geothermal Energy Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstrumentsArea (DOEDixmont, Maine: EnergyOpenDomeOpenOpenDoolyDora-1

  5. Nvision.Energy - Pernik Solar PV plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNewSt. Louis, Minnesota:Nulato, Alaska:RadicondoliNuovaCellsEnergy -

  6. Beacon Solar Energy Project Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYorkColorado StateWindInc Jump to:Baywood-Los Osos,Solar

  7. ENERGY STAR Labeled Buildings and Plants | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9)askDoubleEERE - Energy DataEIQENEL Salt

  8. TIDAL NOVAE IN COMPACT BINARY WHITE DWARFS

    SciTech Connect (OSTI)

    Fuller, Jim; Lai Dong [Department of Astronomy, Cornell University, Ithaca, NY 14850 (United States)

    2012-09-01

    Compact binary white dwarfs (WDs) undergoing orbital decay due to gravitational radiation can experience significant tidal heating prior to merger. In these WDs, the dominant tidal effect involves the excitation of outgoing gravity waves in the inner stellar envelope and the dissipation of these waves in the outer envelope. As the binary orbit decays, the WDs are synchronized from outside in (with the envelope synchronized first, followed by the core). We examine the deposition of tidal heat in the envelope of a carbon-oxygen WD and study how such tidal heating affects the structure and evolution of the WD. We show that significant tidal heating can occur in the star's degenerate hydrogen layer. This layer heats up faster than it cools, triggering runaway nuclear fusion. Such 'tidal novae' may occur in all WD binaries containing a CO WD, at orbital periods between 5 minutes and 20 minutes, and precede the final merger by 10{sup 5}-10{sup 6} years.

  9. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Galitsky, Christina; Galitsky, Christina; Chang, Sheng-chieh; Worrell, Ernst; Masanet, Eric

    2008-03-01

    The U.S. pharmaceutical industry consumes almost $1 billion in energy annually. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. pharmaceutical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. pharmaceutical industry is provided along with a description of the major process steps in the pharmaceutical manufacturing process. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in pharmaceutical and related facilities worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers reduce energy consumption in a cost-effective manner while meeting regulatory requirements and maintaining the quality of products manufactured. At individual plants, further research on the economics of the measures?as well as their applicability to different production practices?is needed to assess potential implementation of selected technologies.

  10. New Nissan Paint Plant Achieves 30% Energy Savings

    Broader source: Energy.gov [DOE]

    The new paint plant, which is Nissan North America’s showcase project under the Better Plants Challenge, is expected to be about 30% more efficient than the plant it is replacing.

  11. Disc formation from stellar tidal disruptions

    E-Print Network [OSTI]

    Bonnerot, Clément; Lodato, Giuseppe; Price, Daniel J

    2015-01-01

    The potential of tidal disruption of stars to probe otherwise quiescent supermassive black holes cannot be exploited, if their dynamics is not fully understood. So far, the observational appearance of these events has been commonly derived from analytical extrapolations of the debris dynamical properties just after the stellar disruption. In this paper, we perform hydrodynamical simulations of stars in highly eccentric orbits, that follow the stellar debris after disruption and investigate their ultimate fate. We demonstrate that gas debris circularize on an orbital timescale because relativistic apsidal precession causes the stream to self-cross. The higher the eccentricity and/or the deeper the encounter, the faster is the circularization. If the internal energy deposited by shocks during stream self-interaction is readily radiated, the gas forms a narrow ring at the circularization radius. It will then proceed to accrete viscously at a super-Eddington rate, puffing up under radiation pressure. If instead c...

  12. CEWEP -Confederation of European Waste-to-Energy Plants Boulevard Clovis 12A

    E-Print Network [OSTI]

    processing is already a significant source of renewable energy in many countries and there is major potential Recovered Fuel) as a fuel in both cement kilns and power plants, dedicated Biomass Energy Plants (BEP . We estimate that about 95 TWh of this gap could potentially be provided by Energy from Waste (using

  13. Optimizing a Hybrid Energy Storage System for a Virtual Power Plant for Improved Wind Power

    E-Print Network [OSTI]

    Teodorescu, Remus

    Optimizing a Hybrid Energy Storage System for a Virtual Power Plant for Improved Wind Power approach to find two optimum energy storages (ESs) to build a hybrid system which is part of a virtual power plant. In this paper it means the combination of the hybrid energy storage system and wind power

  14. A central integrator of transcription networks in plant stress and energy signalling

    E-Print Network [OSTI]

    Sheen, Jen

    LETTERS A central integrator of transcription networks in plant stress and energy signalling Elena are the principal solar energy converter sustaining life on Earth. Despite its fundamental importance, little to globally regulate plant metabolism, energy balance, growth and survival. In con- trast to the prevailing

  15. Energy-saving through remote control of a wastewater treatment plant

    E-Print Network [OSTI]

    Energy-saving through remote control of a wastewater treatment plant S. Marsili-Libelli *, G an energy-saving project being implemented on a conventional wastewater treatment plant, where several controllers. The main energy-saving target is the control of dissolved oxygen in the context of nitrogen

  16. Waste Isolation Pilot Plant Update | Department of Energy

    Office of Environmental Management (EM)

    Update Waste Isolation Pilot Plant Update Waste Isolation Pilot Plant Update More Documents & Publications Transuranic Package Transporter (TRUPACT-III) Content Codes (TRUCON-III)...

  17. General relativistic tidal work for Papapetrou, Weinberg and Goldberg pseudotensors

    E-Print Network [OSTI]

    So, Lau Loi

    2015-01-01

    In 1998 Thorne claimed that all pseudotensors give the same tidal work as the Newtonian theory. In 1999, Purdue used the Landau-Lifshitz pseudotensor to calculate the tidal heating and the result matched with the Newtonian gravity. Soon after in 2001, Favata employed the same method to examine the Einstein, Bergmann-Thomson and M{\\o}ller pseudotensors, all of them give the same result as Purdue did. Inspired by the work of Purdue and Favata, for the completeness, here we manipulate the tidal work for Papapetrou, Weinberg and Goldberg pseudotensors. We obtained the same tidal work as Purdue achieved. In addition, we emphasize that a suitable gravitational energy-momentum pseudotensor requires fulfill the inside matter condition and all of the classical pseudotensors pass this test except M$\\o$ller. Moreover, we constructed a general pseudotesnor which is modified by 13 linear artificial higher order terms combination with Einstein pseudotensor. We find that the result agrees with Thorne's prediction, i.e., rel...

  18. ,"Plant","Primary Energy Source","Operating Company","Net Summer...

    U.S. Energy Information Administration (EIA) Indexed Site

    Station","Coal","Wisconsin Electric Power Co",1268 2,"Point Beach Nuclear Plant","Nuclear","NextEra Energy Point Beach LLC",1197 3,"Pleasant Prairie","Coal","Wisconsin...

  19. ,"Plant","Primary Energy Source","Operating Company","Net Summer...

    U.S. Energy Information Administration (EIA) Indexed Site

    United States" ,"Plant","Primary Energy Source","Operating Company","Net Summer Capacity (MW)" 1,"Grand Coulee","Hydroelectric","U S Bureau of Reclamation",7079 2,"Palo...

  20. Department of Energy National Laboratories and Plants: Leadership in Cloud Computing (Book)

    SciTech Connect (OSTI)

    Not Available

    2012-12-01

    A status report on the cloud computing strategy for each Department of Energy laboratory and plant, showing the movement toward a cloud first IT strategy.

  1. Coal-fired open cycle magnetohydrodynamic power plant emissions and energy efficiences

    E-Print Network [OSTI]

    Gruhl, Jim

    This study is a review of projected emissions and energy efficiencies of coal-fired open cycle MHD power plants. Ideally one

  2. Aggradation of gravels in tidally influenced fluvial systems: upper Albian (Lower Cretaceous) on the cratonic margin of the North

    E-Print Network [OSTI]

    González, Luis A.

    Aggradation of gravels in tidally influenced fluvial systems: upper Albian (Lower Cretaceous for the required water supply flux. Regardless of temporal scale, gravels were transported during `high-energy at the mouths of the river system, and tidal effects were transmitted at least 200 km inland from

  3. will appear in Journal of Geophysical Research, 2001. Observations of turbulence in a tidal beam and across a coastal ridge

    E-Print Network [OSTI]

    Lien, Ren-Chieh

    1 will appear in Journal of Geophysical Research, 2001. Observations of turbulence in a tidal beam the turbulence kinetic energy dissipation rate exceeded 10-6 W kg-1 , and the diapycnal eddy diffusivity K varied by a factor of 100 with a semidiurnal tidal periodicity; the isopycnal displacement confirmed

  4. Tidal Energy Limited | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin Film Solar Technologies JumpTiSol Jump to: navigation,

  5. Tidal Energy Pty Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin Film Solar Technologies JumpTiSol Jump to: navigation,Pty Ltd

  6. Tocardo Tidal Energy Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin Film Solar TechnologiesCFR 1201

  7. CONSOL Energy invests in West Virginia CTL plant

    SciTech Connect (OSTI)

    NONE

    2008-10-15

    Working with Synthesis Energy Systems (SES), America's leading bituminous coal producer assists with the engineering design package for a coal gasification and liquefaction plant to be located near Benwood in West Virginia. Coal will be converted to syngas using SES's proprietary U-GAS technology. The syngas is expected to be used to produce about 720,000 metric tons per year of methanol. The U-GAS technology is licensed from the Gas Technology Institute (GTI). The article explains how the GTI gasification process works. It is based on a surge-stage fluidised bed for production of low-to-medium calorific value synthesis gas from a variety of feedstocks, including coal. 2 figs.

  8. T:\\013.ffentlichkeitsarbeit\\05.Vortrge\\32.NAWTEC 11 Florida 2003\\A_Ways to Improve the Efficiency of Waste to Energy Plants.doc Ways to Improve the Efficiency of Waste to Energy Plants

    E-Print Network [OSTI]

    Columbia University

    of Waste to Energy Plants.doc Ways to Improve the Efficiency of Waste to Energy Plants for the Production energy in the production process, which could cause contamination of the environment. And it should also Available Technology'. The Waste to Energy plant MVR at Rugenberger Damm in Hamburg, Germany, is one

  9. EA-1949: Admiralty Inlet Pilot Tidal Project, Puget Sound, WA

    Broader source: Energy.gov [DOE]

    This EA analyzes the potential environmental effects of a proposal by the Public Utility District No. 1 of Snohomish County, Washington to construct and operate the Admiralty Inlet Tidal Project. The proposed 680-kilowatt project would be located on the east side of Admiralty Inlet in Puget Sound, Washington, about 1 kilometer west of Whidbey Island, entirely within Island County, Washington. The Federal Energy Regulatory Commission (FERC) is the lead agency. The DOE NEPA process for this project has been canceled.

  10. Significant Improvement in Energy Efficiency in Manufacturing at Rohm and Haas’ Kankakee, Illinois, Plant 

    E-Print Network [OSTI]

    Brinkley, T.

    2007-01-01

    Significant improvement in energy efficiency was achieved at Rohm and Haas’ Kankakee, Illinois facility last year through the combined efforts of all plant personnel. In total, a 24% reduction in energy requirements per pound of product produced...

  11. Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy Assessments at Two Aluminum Sheet Production Operations

    Broader source: Energy.gov [DOE]

    This case study describes how Commonwealth Industries (now Aleris Rolled Products) conducted plant-wide energy assessments at its aluminum sheet rolling mills in Lewisport, Kentucky, and Uhrichsville, Ohio, to improve process and energy efficiency.

  12. Tidal deformations of a spinning compact object

    E-Print Network [OSTI]

    Pani, Paolo; Maselli, Andrea; Ferrari, Valeria

    2015-01-01

    The deformability of a compact object induced by a perturbing tidal field is encoded in the tidal Love numbers, which depend sensibly on the object's internal structure. These numbers are known only for static, spherically-symmetric objects. As a first step to compute the tidal Love numbers of a spinning compact star, here we extend powerful perturbative techniques to compute the exterior geometry of a spinning object distorted by an axisymmetric tidal field to second order in the angular momentum. The spin of the object introduces couplings between electric and magnetic deformations and new classes of induced Love numbers emerge. For example, a spinning object immersed in a quadrupolar, electric tidal field can acquire some induced mass, spin, quadrupole, octupole and hexadecapole moments to second order in the spin. The deformations are encoded in a set of inhomogeneous differential equations which, remarkably, can be solved analytically in vacuum. We discuss certain subtleties in defining the multipole mom...

  13. Ford Van Dyke: Compressed Air Management Program Leads to Improvements that Reduce Energy Consumption at an Automotive Transmission Plant

    SciTech Connect (OSTI)

    2010-06-25

    Staff at the Ford Van Dyke Transmission Plant in Sterling Heights, Michigan, have increased the efficiency of the plant’s compressed air system to enhance its performance while saving energy and improving production.

  14. Evaluation of Impacts on Energy and Plant Profitability of Responses to Water Curtailment 

    E-Print Network [OSTI]

    Ferland, K.

    2015-01-01

    Curtailment on Energy Use and Plant Net Profitability June 4, 2015 Industrial Energy Technology Conference Kathey Ferland Texas Industries of the Future The University of Texas at Austin Peter Phelps Phelps Engineering ESL-IE-15-06-24 Proceedings... of the Thrity-Seventh Industrial Energy Technology Conference New Orleans, LA. June 2-4, 2015 Topics • Background • Water/energy Nexus in Process Industries • Reference Plant and Methodology • Curtailment Scenarios • Modeling Results • Conclusions • Next Steps...

  15. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina; Masanet, Eric; Graus, Wina

    2008-03-01

    The U.S. glass industry is comprised of four primary industry segments--flat glass, container glass, specialty glass, and fiberglass--which together consume $1.6 billion in energy annually. On average, energy costs in the U.S. glass industry account for around 14 percent of total glass production costs. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There is a variety of opportunities available at individual plants in the U.S. glass industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. glass industry is provided along with a description of the major process steps in glass manufacturing. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in glass production facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. glass industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of the measures--as well on as their applicability to different production practices--is needed to assess potential implementation of selected technologies at individual plants.

  16. Power Plant and Industrial Fuel Use Act | Department of Energy

    Office of Environmental Management (EM)

    Power Plant and Industrial Fuel Use Act Power Plant and Industrial Fuel Use Act Self Certifications Title II of the Powerplant and Industrial Fuel Use Act of 1978 (FUA), as amended...

  17. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry: An ENERGY STAR? Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Brush, Adrian

    2014-01-01

    significant source of water and energy use in a dairy plant.reduce the amount of water and energy used. Using reuse oruse copious quantities of water and energy in the cleaning

  18. Accelerating progress toward operational excellence of fossil energy plants with CO2 capture

    SciTech Connect (OSTI)

    Zitney, S.; Liese, E.; Mahapatra, P.; Turton, R. Bhattacharyya, D.

    2012-01-01

    To address challenges in attaining operational excellence for clean energy plants, the National Energy Technology Laboratory has launched a world-class facility for Advanced Virtual Energy Simulation Training And Research (AVESTARTM). The AVESTAR Center brings together state-of-the-art, real-time, high-fidelity dynamic simulators with operator training systems and 3D virtual immersive training systems into an integrated energy plant and control room environment. This paper will highlight the AVESTAR Center simulators, facilities, and comprehensive training, education, and research programs focused on the operation and control of an integrated gasification combined cycle power plant (IGCC) with carbon dioxide capture.

  19. Tidal deformations of a spinning compact object

    E-Print Network [OSTI]

    Paolo Pani; Leonardo Gualtieri; Andrea Maselli; Valeria Ferrari

    2015-06-30

    The deformability of a compact object induced by a perturbing tidal field is encoded in the tidal Love numbers, which depend sensibly on the object's internal structure. These numbers are known only for static, spherically-symmetric objects. As a first step to compute the tidal Love numbers of a spinning compact star, here we extend powerful perturbative techniques to compute the exterior geometry of a spinning object distorted by an axisymmetric tidal field to second order in the angular momentum. The spin of the object introduces couplings between electric and magnetic deformations and new classes of induced Love numbers emerge. For example, a spinning object immersed in a quadrupolar, electric tidal field can acquire some induced mass, spin, quadrupole, octupole and hexadecapole moments to second order in the spin. The deformations are encoded in a set of inhomogeneous differential equations which, remarkably, can be solved analytically in vacuum. We discuss certain subtleties in defining the multipole moments of the central object, which are due to the difficulty in separating the tidal field from the linear response of the object in the solution. By extending the standard procedure to identify the linear response in the static case, we prove analytically that the Love numbers of a Kerr black hole remain zero to second order in the spin. As a by-product, we provide the explicit form for a slowly-rotating, tidally-deformed Kerr black hole to quadratic order in the spin, and discuss its geodesic and geometrical properties.

  20. ORNL/TM-2011/419 Field Measurements at River and Tidal

    E-Print Network [OSTI]

    Siefert, Chris

    National Laboratory 3 Northwest National Marine Renewable Energy Center, University of Washington 4 IIHRORNL/TM-2011/419 Field Measurements at River and Tidal Current Sites for Hydrokinetic Energy Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy

  1. Slovak Centre of Biomass Use for Energy Wood Fired Heating Plant in Slovakia

    E-Print Network [OSTI]

    Slovak Centre of Biomass Use for Energy Slovakia 1 Wood Fired Heating Plant in Slovakia Energy energy User behaviour ESCOs Biomass Education Architects and engineers Wind Other Financial institutions;Slovak Centre of Biomass Use for Energy Slovakia 2 Biomass is considered as the most perspective

  2. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Tidal, Wave, Wind (Small), Hydroelectric (Small) Alternative Energy and Energy...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Tidal, Wave, Wind (Small), Hydroelectric (Small) Alternative Energy and Energy Conservation...

  4. Efficient CO2 Fixation Pathways: Energy Plant: High Efficiency Photosynthetic Organisms

    SciTech Connect (OSTI)

    2012-01-01

    PETRO Project: UCLA is redesigning the carbon fixation pathways of plants to make them more efficient at capturing the energy in sunlight. Carbon fixation is the key process that plants use to convert carbon dioxide (CO2) from the atmosphere into higher energy molecules (such as sugars) using energy from the sun. UCLA is addressing the inefficiency of the process through an alternative biochemical pathway that uses 50% less energy than the pathway used by all land plants. In addition, instead of producing sugars, UCLA’s designer pathway will produce pyruvate, the precursor of choice for a wide variety of liquid fuels. Theoretically, the new biochemical pathway will allow a plant to capture 200% as much CO2 using the same amount of light. The pathways will first be tested on model photosynthetic organisms and later incorporated into other plants, thus dramatically improving the productivity of both food and fuel crops.

  5. Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters

    Broader source: Energy.gov [DOE]

    Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters

  6. DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01

    fauna associated with offshore platforms in Mexico. Fish.aspects of siting OTEC plants offshore the United States onthe high seas, and offshore other countries. In G. L.

  7. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01

    fauna associated with offshore platforms in the northeasternaspects of siting OTEC plants offshore the United States onthe high seas, and offshore other countries. In G. L.

  8. Macroscopic traversable wormholes with zero tidal forces inspired by noncommutative geometry

    E-Print Network [OSTI]

    Peter K. F. Kuhfittig

    2015-01-08

    This paper addresses the following issues: (1) the possible existence of macroscopic traversable wormholes, given a noncommutative-geometry background, and (2) the possibility of allowing zero tidal forces, given a known density. It is shown that whenever the energy density describes a classical wormhole, the resulting solution is incompatible with quantum field theory. If the energy density originates from noncommutative geometry, then zero tidal forces are allowed. Also attributable to the noncommutative geometry is the violation of the null energy condition. The wormhole geometry satisfies the usual requirements, including asymptotic flatness.

  9. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Neelis, Maarten

    2008-01-01

    on Heat Recovery and Cogeneration during Plant-Wide Energy-alone boilers or via cogeneration of electricity and heat.generation (including cogeneration), compressors, as well as

  10. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2011-01-01

    the Development of Strip Casting Technology. Energy Policythe Implementation of Continuous Casting of Steel,” StahlundSteel’s commercial strip casting plant. Metallurgist 52, pp.

  11. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01

    the Future Program for Metal Casting. Information availablein engine plants. Metal casting is an energy-intensiveeffort focusing on the metal casting industry through its

  12. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01

    Borras, T. (1998). Improving Boilers and Furnaces. ChemicalSteam Conservation and Boiler Plant Efficiency Advancements.CIPEC). (2001a). Boilers and Heaters, Improving Energy

  13. Managing Your Energy: An ENERGY STAR(R) Guide for Identifying Energy Savings in Manufacturing Plants

    E-Print Network [OSTI]

    Worrell, Ernst

    2010-01-01

    continuity established. Energy efficiency integrated intoof your organization’s energy performance attained.$200,000 per Year with Energy-Efficient Motors. New York,

  14. Forced libration of tidally synchronized planets and moons

    E-Print Network [OSTI]

    Makarov, Valeri V; Dorland, Bryan

    2015-01-01

    Tidal dissipation of kinetic energy, when it is strong enough, tends to synchronize the rotation of planets and moons with the mean orbital motion, or drive it into long-term stable spin-orbit resonances. As the orbital motion undergoes periodic acceleration due to a finite orbital eccentricity, the spin rate oscillates around the equilibrium mean value too, giving rise to the forced, or eccentricity-driven, librations. Both the shape and amplitude of forced librations of synchronous viscoelastic planets and moons are defined by a combination of two different types of perturbative torque, the tidal torque and the triaxial torque. Consequently, forced librations can be tidally dominated (e.g., Io and possibly Titan) or deformation-dominated (e.g., the Moon) depending on a set of orbital, rheological, and other physical parameters. With small eccentricities, for the former kind, the largest term in the libration angle can be minus cosine of the mean anomaly, whereas for the latter kind, it is minus sine of the ...

  15. DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01

    1979. Commercial ocean thermal energy conversion ( OTEC)field of ocean thermal energy conversion discharges. I~. L.II of the Sixth Ocean Thermal Energy conversion Conference.

  16. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01

    1979. Commercial ocean thermal energy conversion (OTEC)of the Fifth Ocean Thermal Energy Conversion Conference,Sands. 1980. Ocean thermal energy conversion (OTEC) pilot

  17. Energy Department's Texas Pantex Plant to Save Over $2 Million...

    Energy Savers [EERE]

    please see: http:www.pantex.com. Addthis Related Articles DOE Distributes Energy-Saving Tools to Help Manufacturers Save Energy Department of Energy Announces More...

  18. A Bright Year for Tidal Disruptions?

    E-Print Network [OSTI]

    Metzger, Brian D

    2015-01-01

    When a star is tidally disrupted by a supermassive black hole (BH), roughly half of its mass falls back to the BH at super-Eddington rates. Being tenuously gravitationally bound and unable to cool radiatively, only a small fraction f_in few 1e4 K, converting the emission to optical/near-UV wavelengths where photons more readily escape due to the lower opacity. This can explain the unexpectedly low and temporally constant effective temperatures of optically-discovered TDE flares. For BHs with relatively high masses M_BH > 1e7 M_sun the ejecta can become ionized at an earlier stage, or for a wider range of viewing angles, producing a TDE flare which is instead dominated by thermal X-ray emission. We predict total radiated energies consistent with those of observed TDE flares, and ejecta velocities that agree with the measured emission line widths. The peak optical luminosity for M_BH wind, possibly contributing to the unexpected dearth of o...

  19. Models for Optimization of Energy Consumption of Pumps in a Wastewater Processing Plant

    E-Print Network [OSTI]

    Kusiak, Andrew

    ; Energy consumption; Data collection; Neural networks; Dynamic models; Statics; Water treatment plants in wastewater processing plants usually follow two strategies. One is to upgrade the current sewage sludge treatment process and produce higher quality efflu- ent. The other is to modify or redesign the sludge

  20. Aalborg Universitet CFD modeling and experience of waste-to-energy plant burning waste wood

    E-Print Network [OSTI]

    Yin, Chungen

    -to-Energy (WtE) plants for CHP (combined heat and power) production from waste combustion/incineration. However-depth understanding of the fundamental mixing, combustion, heat transfer and pollutant formation in combustion (Computation Fluid Dynamics) is a powerful tool to aid in optimization of WtE plants to achieve higher

  1. Institute for Renewable Energy Ltd Preparation of a pilot biogas CHP plant integrated with

    E-Print Network [OSTI]

    Institute for Renewable Energy Ltd Poland 1 Preparation of a pilot biogas CHP plant integrated Planning issues Transport companies District Heating Sustainable communities Utilities Solar energy User with a wood-chip fired DHP system Institute for Renewable Energy Ltd, Poland Summary The project focused

  2. Energy Conservation Through Improved Industrial Ventilation in Small and Medium-Sized Industrial Plants 

    E-Print Network [OSTI]

    Saman, N. F.; Nutter, D. W.

    1994-01-01

    INDUSTRIAL ENERGY TECHNOLOGY CONFERENCE 1994 ESL-PA-94/04-03 REPRINTED WITH PERMISSION ENERGY CONSERVATION THROUGH IMPROVED INDUSTRIAL VENTILATION IN SMALL AND MEDIUM-SIZED INDUSTRIAL PLANTS Namir Saman, Ph.D., P.E. Visiting Assistant Professor Energy System... Laboratory Texas A&M University ABSTRACT This paper discusses energy conservation projects in the area of industrial ventilation that have been recommended by the Texas A&M University Energy Analysis and Diagnostic Center (EADQ to small and medium...

  3. Allen, C.A. 15 GEOTHERMAL ENERGY; 20 FOSSIL-FUELED POWER PLANTS...

    Office of Scientific and Technical Information (OSTI)

    Liquid-fluidized-bed heat exchanger flow distribution models Cole, L.T.; Allen, C.A. 15 GEOTHERMAL ENERGY; 20 FOSSIL-FUELED POWER PLANTS; FLUIDIZED BED HEAT EXCHANGERS; DESIGN;...

  4. Using auxiliary gas power for CCS energy needs in retrofitted coal power plants

    E-Print Network [OSTI]

    Bashadi, Sarah O.

    Adding post-combustion capture technology to existing coal-fired power plants is being considered as a near-term option for mitigating CO[subscript 2] emissions. To supply the thermal energy needed for CO[subscript 2] ...

  5. ,"Plant","Primary Energy Source","Operating Company","Net Summer...

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" ,"Plant","Primary Energy Source","Operating Company","Net Summer Capacity (MW)" 1,"Palo Verde","Nuclear","Arizona Public Service Co",3937 2,"Navajo","Coal","Salt River...

  6. ,"Plant","Primary Energy Source","Operating Company","Net Summer...

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" ,"Plant","Primary Energy Source","Operating Company","Net Summer Capacity (MW)" 1,"Millstone","Nuclear","Dominion Nuclear Conn Inc",2102.5 2,"Middletown","Petroleum","...

  7. ,"Plant","Primary Energy Source","Operating Company","Net Summer...

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey" ,"Plant","Primary Energy Source","Operating Company","Net Summer Capacity (MW)" 1,"PSEG Salem Generating Station","Nuclear","PSEG Nuclear LLC",2365.7 2,"PSEG Linden...

  8. Computers and Chemical Engineering 26 (2002) 5979 Energy efficient water utilization systems in process plants

    E-Print Network [OSTI]

    Savelski, Mariano J.

    2002-01-01

    a primary concern in most industrial sites. Wastewater treatment has al- ways focused on end deliver wastewater, which may contain several contaminants. Therefore, wastewater treatment constitutes. Keywords: Water utilization networks; Process plants; Energy minimization; Wastewater minimization

  9. The Energy-Water Nexus: State and Local Roles in Efficiency & Water and Wastewater Treatment Plants

    Broader source: Energy.gov [DOE]

    This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on the Energy-Water Nexus: State and Local Roles in Efficiency & Water and Wastewater Treatment Plants.

  10. Innovation that Improves Safety, Efficiency of Energy Plant Operations...

    Energy Savers [EERE]

    with an unprecedented high-tech look inside the operation of power plants, helping to lower costs and increase safety and efficiency. The R&D 100 awards, given annually by R&D...

  11. ICI's Approach to Total Energy Savings on Ethylene Plants 

    E-Print Network [OSTI]

    Hindmarsh, E.; Boland, D.

    1987-01-01

    ) and the other is for the below ambient section (all streams operating at temperatures below ambient) of the plant. Ambient temperature represents a natural division between those process duties that require utility cooling through refrigeration and those... that do not. The hot and cold composite curves for the above and below ambient sections of a typical ethylene plant are shown together in Figure 2. These represent the sums of the cooling and heating duties, respectively of all the streams...

  12. Managing Your Energy: An ENERGY STAR(R) Guide for Identifying Energy Savings in Manufacturing Plants

    E-Print Network [OSTI]

    Worrell, Ernst

    2010-01-01

    U.S. EPA]), Greg Harrell (Energy Management Services), DonNo Date. Guidelines for Energy Management Overview. Website.STAR Guidelines for Energy Management. 4. Identify the steps

  13. Effects of Tidal Turbine Noise on Fish Task 2.1.3.2: Effects on Aquatic Organisms: Acoustics/Noise - Fiscal Year 2011 - Progress Report - Environmental Effects of Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    Halvorsen, Michele B.; Carlson, Thomas J.; Copping, Andrea E.

    2011-09-30

    Naturally spawning stocks of Chinook salmon (Oncorhynchus tshawytscha) that utilize Puget Sound are listed as threatened (http://www.nwr.noaa.gov/ESA-Salmon-Listings/Salmon-Populations/ Chinook/CKPUG.cfm). Plans exist for prototype tidal turbines to be deployed into their habitat. Noise is known to affect fish in many ways, such as causing a threshold shift in auditory sensitivity or tissue damage. The characteristics of noise, its spectra and level, are important factors that influence the potential for the noise to injure fish. For example, the frequency range of the tidal turbine noise includes the audiogram (frequency range of hearing) of most fish. This study (Effects on Aquatic Organisms, Subtask 2.1.3.2: Acoustics) was performed during FY 2011 to determine if noise generated by a 6-m-diameter open-hydro turbine might affect juvenile Chinook salmon hearing or cause barotrauma. After they were exposed to simulated tidal turbine noise, the hearing of juvenile Chinook salmon was measured and necropsies performed to check for tissue damage. Experimental groups were (1) noise exposed, (2) control (the same handling as treatment fish but without exposure to tidal turbine noise), and (3) baseline (never handled). Preliminary results indicate that low levels of tissue damage may have occurred but that there were no effects of noise exposure on the auditory systems of the test fish.

  14. Managing Your Energy: An ENERGY STAR(R) Guide for Identifying Energy Savings in Manufacturing Plants

    E-Print Network [OSTI]

    Worrell, Ernst

    2010-01-01

    Hydraulic Institute/Europump/ United States Department of Energy.Hydraulic Institute standards and motor performance data from the MotorMaster+ database to calculate potential energy and

  15. DOE's New Checklist Helps Plants Assess Energy Management Activities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assess Energy Management Activities May 14, 2014 - 11:40am Addthis DOE developed the Strategic Energy Management Checklist to help manufacturing facilities conduct a...

  16. Manufacturers in U.S. Energy Department's Better Plants Program...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    consumption. "When companies save energy, they also save money and reduce harmful carbon pollution," said Secretary of Energy Ernest Moniz. "This is especially true in the...

  17. Pennsylvania Manufacturing Plants Recognized as Leaders in Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Curtiss-Wright, General Dynamics, Land O'Lakes, and Mack Trucks for their leadership in energy management by earning certification to Superior Energy Performance (SEPTM). The...

  18. Energy Efficiency Improvement and Cost Saving Opportunities for Breweries: An ENERGY STAR(R) Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Galitsky, Christina; Martin, Nathan; Worrell, Ernst; Lehman, Bryan

    2003-09-01

    Annually, breweries in the United States spend over $200 million on energy. Energy consumption is equal to 38 percent of the production costs of beer, making energy efficiency improvement an important way to reduce costs, especially in times of high energy price volatility. After a summary of the beer making process and energy use, we examine energy efficiency opportunities available for breweries. We provide specific primary energy savings for each energy efficiency measure based on case studies that have implemented the measures, as well as references to technical literature. If available, we have also listed typical payback periods. Our findings suggest that given available technology, there are still opportunities to reduce energy consumption cost-effectively in the brewing industry. Brewers value highly the quality, taste and drinkability of their beer. Brewing companies have and are expected to continue to spend capital on cost-effective energy conservation measures that meet these quality, taste and drinkability requirements. For individual plants, further research on the economics of the measures, as well as their applicability to different brewing practices, is needed to assess implementation of selected technologies.

  19. An unstructured C-grid based method for 3-D global ocean dynamics: Free-surface formulations and tidal test cases

    E-Print Network [OSTI]

    Peltier, W. Richard

    and tidal test cases G.R. Stuhne *, W.R. Peltier Department of Physics, University of Toronto, 60 St. George numerical framework based on an energy-con- serving Arakawa C-grid discretization could be applied to ocean models. Tidal simulations are much more manageable that full-fledged OGCM climate simulations, being

  20. Managing Your Energy: An ENERGY STAR(R) Guide for Identifying Energy Savings in Manufacturing Plants

    E-Print Network [OSTI]

    Worrell, Ernst

    2010-01-01

    energy consumption. with a compressor upgrade at a Sara Keep motors and compressors properly Lee bakery

  1. Certifying U.S. Manufacturing Plants for Energy Efficiency 

    E-Print Network [OSTI]

    Scheihing, P.; Schultz, S.; Almaguer, J.

    2008-01-01

    U.S. industry has the capacity to significantly improve its overall energy performance and help meet both private-sector and national goals for energy and the environment. The U.S. Department of Energy’s (DOE) Industrial Technologies Program (ITP...

  2. Correlation between the precipitation and energy production at hydropower plants to mitigate flooding in the Missouri River Basin

    E-Print Network [OSTI]

    Foley, Rachel (Rachel L.)

    2013-01-01

    Currently, hydropower plants serve as one source of green energy for power companies. These plants are located in various geographical regions throughout the United States and can be split into three main classifications: ...

  3. Tidal Forces in Naked Singularity Backgrounds

    E-Print Network [OSTI]

    Goel, Akash; Roy, Pratim; Sarkar, Tapobrata

    2015-01-01

    The end stage of a gravitational collapse process can generically result in a black hole or a naked singularity. Here we undertake a comparative analysis of the nature of tidal forces in these backgrounds. The effect of such forces is generically exemplified by the Roche limit, which predicts the distance within which a celestial object disintegrates due to the tidal effects of a second more massive object. In this paper, using Fermi normal coordinates, we numerically compute the Roche limit for a class of non-rotating naked singularity backgrounds, and compare them with known results for Schwarzschild black holes. Our analysis indicates that there might be substantially large deviations in the magnitudes of tidal forces in naked singularity backgrounds, compared to the black hole cases. If observationally established, these can prove to be an effective indicator of the nature of the singularity at a galactic centre.

  4. Tidal analysis of water level in continental boreholes Version 2.2

    E-Print Network [OSTI]

    Brodsky, Emily

    tidal analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.3.1 The "credo

  5. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Galitsky, Christina; Galitsky, Christina; Worrell, Ernst

    2008-01-01

    The motor vehicle industry in the U.S. spends about $3.6 billion on energy annually. In this report, we focus on auto assembly plants. In the U.S., over 70 assembly plants currently produce 13 million cars and trucks each year. In assembly plants, energy expenditures is a relatively small cost factor in the total production process. Still, as manufacturers face an increasingly competitive environment, energy efficiency improvements can provide a means to reduce costs without negatively affecting the yield or the quality of the product. In addition, reducing energy costs reduces the unpredictability associated with variable energy prices in today?s marketplace, which could negatively affect predictable earnings, an important element for publicly-traded companies such as those in the motor vehicle industry. In this report, we first present a summary of the motor vehicle assembly process and energy use. This is followed by a discussion of energy efficiency opportunities available for assembly plants. Where available, we provide specific primary energy savings for each energy efficiency measure based on case studies, as well as references to technical literature. If available, we have listed costs and typical payback periods. We include experiences of assembly plants worldwide with energy efficiency measures reviewed in the report. Our findings suggest that although most motor vehicle companies in the U.S. have energy management teams or programs, there are still opportunities available at individual plants to reduce energy consumption cost effectively. Further research on the economics of the measures for individual assembly plants, as part of an energy management program, is needed to assess the potential impact of selected technologies at these plants.

  6. Chemical Plant Energy Efficiency Through Computer Aided Technology 

    E-Print Network [OSTI]

    Grassi, V. G.

    1998-01-01

    The Chemicals Group at Air Products is seeking ways to reduce operating costs by taking advantage of rigorous process models for on-line plant control systems. We are executing development projects to find ways in which real-time optimization can...

  7. GEOPHYSICAL RESEARCH LETTERS, VOL. 28, NO. 5, PAGES 811-814, MARCH 1, 2001 Parameterizing Tidal Dissipation over Rough

    E-Print Network [OSTI]

    Jayne, Steven

    of barotropic tidal energy. The first line of evidence comes from observations of mix- ing in the abyssal Brazil ocean, the energy flux carried by internal waves generated over rough topog- raphy dominates the energy issues. The first is whether including a parameterization for internal wave energy-flux in a model

  8. Managing Your Energy: An ENERGY STAR(R) Guide for Identifying Energy Savings in Manufacturing Plants

    E-Print Network [OSTI]

    Worrell, Ernst

    2010-01-01

    Industrial refrigeration systems are another important user of motors (for compressors). For a more detailed description of energy-

  9. Evaluating Energy and Water Saving Opportunities in SAGD Oil Sands Plants via Process Integration

    E-Print Network [OSTI]

    Ahrendt, Wolfgang

    Evaluating Energy and Water Saving Opportunities in SAGD Oil Sands Plants via Process Integration Alberta, Canada are produced as a mix of hydrocarbons (bitumen), clay, sand and water. The resource barrel of bitumen produced which presents water/energy tradeoffs in the design and operation

  10. Don't trash waste-to-energy plants By NICKOLAS THEMELIS

    E-Print Network [OSTI]

    Columbia University

    Don't trash waste-to-energy plants By NICKOLAS THEMELIS October 21, 2009 2:00 AM Some on waste-to-energy (WTE) facilities to achieve that goal. As director of the Earth Engineering Center a house in East Sandwich that is now my permanent home. Both of us were absolutely delighted 15 years ago

  11. Life-cycle energy and greenhouse gas emission impacts of different corn ethanol plant types.

    SciTech Connect (OSTI)

    Wang, M.; Wu, M.; Huo, H.; Energy Systems

    2007-04-01

    Since the United States began a program to develop ethanol as a transportation fuel, its use has increased from 175 million gallons in 1980 to 4.9 billion gallons in 2006. Virtually all of the ethanol used for transportation has been produced from corn. During the period of fuel ethanol growth, corn farming productivity has increased dramatically, and energy use in ethanol plants has been reduced by almost by half. The majority of corn ethanol plants are powered by natural gas. However, as natural gas prices have skyrocketed over the last several years, efforts have been made to further reduce the energy used in ethanol plants or to switch from natural gas to other fuels, such as coal and wood chips. In this paper, we examine nine corn ethanol plant types--categorized according to the type of process fuels employed, use of combined heat and power, and production of wet distiller grains and solubles. We found that these ethanol plant types can have distinctly different energy and greenhouse gas emission effects on a full fuel-cycle basis. In particular, greenhouse gas emission impacts can vary significantly--from a 3% increase if coal is the process fuel to a 52% reduction if wood chips are used. Our results show that, in order to achieve energy and greenhouse gas emission benefits, researchers need to closely examine and differentiate among the types of plants used to produce corn ethanol so that corn ethanol production would move towards a more sustainable path.

  12. The rotation and fracture history of Europa from modeling of tidal-tectonic processes

    E-Print Network [OSTI]

    Rhoden, Alyssa Rose

    2011-01-01

    the tidal stresses. They adopted a power-law viscoelasticpower of the model. However, the mechanics of tidal walking

  13. Energy Department's Texas Pantex Plant to Save Over $2 Million...

    Broader source: Energy.gov (indexed) [DOE]

    is part of the nation's nuclear weapons complex, meet a two percent reduction in overall energy usage each year as required by the energy legislation signed by President George W....

  14. GEOTHERMAL ENERGY; 20 FOSSIL-FUELED POWER PLANTS; MECHANICAL...

    Office of Scientific and Technical Information (OSTI)

    DRAFT COOLING TOWERS; PERFORMANCE; SIMULATION; COST; DESIGN; HEAT TRANSFER; OPERATION; WATER REQUIREMENTS; COOLING TOWERS; ENERGY TRANSFER; MECHANICAL STRUCTURES; TOWERS...

  15. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01

    reduce pollution. Cogeneration plants are significantly morethe plant. As Chapter 4 showed, the use of cogeneration in

  16. General Relativistic Hydrodynamic Simulation of Accretion Flow from a Stellar Tidal Disruption

    E-Print Network [OSTI]

    Shiokawa, Hotaka; Cheng, Roseanne M; Piran, Tsvi; Noble, Scott C

    2015-01-01

    We study how the matter dispersed when a supermassive black hole tidally disrupts a star joins an accretion flow. Combining a relativistic hydrodynamic simulation of the stellar disruption with a relativistic hydrodynamics simulation of the tidal debris motion, we track such a system until ~80% of the stellar mass bound to the black hole has settled into an accretion flow. Shocks near the stellar pericenter and also near the apocenter of the most tightly-bound debris dissipate orbital energy, but only enough to make the characteristic radius comparable to the semi-major axis of the most-bound material, not the tidal radius as previously thought. The outer shocks are caused by post-Newtonian effects, both on the stellar orbit during its disruption and on the tidal forces. Accumulation of mass into the accretion flow is non-monotonic and slow, requiring ~3--10x the orbital period of the most tightly-bound tidal streams, while the inflow time for most of the mass may be comparable to or longer than the mass accu...

  17. Best Energy Savings Measurement at Texas City Monsanto Plant 

    E-Print Network [OSTI]

    Repschleger, W. E.

    1979-01-01

    "BTU KWH MMBTU MGAL TEXAS CITY PLANT S1725 DEPT 89972 UTILI TY DESCRIPTION STEAM MMBT ELECTRICITY FIL _TR MGAL MAKE UP WTR. C T WATER UNITS MMBTU KWH HGAL "GAL. MGAL HGAL PLANT N02 UNIT -------ACTUAL THIS MO 65,289 11,160. 56... FACTOR DESCRIPTION UNITS 38.521 3.881 30.423 01.3C188~ 5.079 STEAM MM3TU MM8TU 56.789 n2.6~7 S.679.31Cl ClO.OIOClCl 1.32' ElECTRI CIT Y KW H - ---_._.--- -_. 39 1.741 00.02699 5 FIl WH MGAl MGAl 222 6.989 98,332 ..... 678.711 OCl.ClIl9C1 1...

  18. Inductrack configuration - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar...

  19. Financial Opportunities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6, 2015 Energy Department Awards 7.4 Million to Develop Advanced Components for Wave and Tidal Energy Systems The Energy Department today announced four entities selected to...

  20. TidalStream | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeterInformation Policy andInstituteTedaTianquan

  1. Tidal Generation Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin Film Solar Technologies JumpTiSol Jump to: navigation,Pty

  2. Earth Tidal Analysis | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9)askDoubleEERE -ESolar IncEagleAnalysis Jump to:

  3. Tidal networks 2. Watershed delineation and comparative network morphology

    E-Print Network [OSTI]

    Fagherazzi, Sergio

    of three, we quantify various tidal network properties including common power law relationships which have common power law relationships quantified for terrestrial systems to tidal systems and use these analysesTidal networks 2. Watershed delineation and comparative network morphology Andrea Rinaldo,1 Sergio

  4. Tidal networks 3. Landscape-forming discharges and studies

    E-Print Network [OSTI]

    Fagherazzi, Sergio

    Tidal networks 3. Landscape-forming discharges and studies in empirical geomorphic relationships peak ebb and flood discharges throughout a tidal network and use this model to investigate scaling flows are driven by spring (astronomical) tidal fluctuations (rather than precipitation- induced runoff

  5. Rotational stability of tidally deformed planetary I. Matsuyama1

    E-Print Network [OSTI]

    Nimmo, Francis

    Rotational stability of tidally deformed planetary bodies I. Matsuyama1 and F. Nimmo2 Received 11 consider the true polar wander (rotational variations driven by mass redistribution) of tidally deformed planetary bodies. The rotation pole of bodies without tidal deformation is stabilized by the component

  6. TIDAL FRESHWATER WETLANDS OF THE MID-ATLANTIC AND

    E-Print Network [OSTI]

    Fabrizio, Mary C.

    Chapter 14 TIDAL FRESHWATER WETLANDS OF THE MID-ATLANTIC AND SOUTHEASTERN UNITED STATES James E Jensen& Aat Barendregt 7. Animal communities in North American tidal fresh- water wetlands Christopher W Struyf, Tom Maris, Tom Cox & Patrick Meire 12. Carbon flows, nutrient cycling, and food webs in tidal

  7. Quiz: Know Your Power Plants | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report Appendices |ProjectKnow Your Power Plants Quiz: Know Your Power

  8. Three-dimensional Numerical Analysis on Blade Response of Vertical Axis Tidal Current Turbine Under Operational Condition

    SciTech Connect (OSTI)

    Li, Ye; Karri, Naveen K.; Wang, Qi

    2014-04-30

    Tidal power as a large-scale renewable source of energy has been receiving significant attention recently because of its advantages over the wind and other renewal energy sources. The technology used to harvest energy from tidal current is called a tidal current turbine. Though some of the principles of wind turbine design are applicable to tidal current turbines, the design of latter ones need additional considerations like cavitation damage, corrosion etc. for the long-term reliability of such turbines. Depending up on the orientation of axis, tidal current turbines can be classified as vertical axis turbines or horizontal axis turbines. Existing studies on the vertical axis tidal current turbine focus more on the hydrodynamic aspects of the turbine rather than the structural aspects. This paper summarizes our recent efforts to study the integrated hydrodynamic and structural aspects of the vertical axis tidal current turbines. After reviewing existing methods in modeling tidal current turbines, we developed a hybrid approach that combines discrete vortex method -finite element method that can simulate the integrated hydrodynamic and structural response of a vertical axis turbine. This hybrid method was initially employed to analyze a typical three-blade vertical axis turbine. The power coefficient was used to evaluate the hydrodynamic performance, and critical deflection was considered to evaluate the structural reliability. A sensitivity analysis was also conducted with various turbine height-to-radius ratios. The results indicate that both the power output and failure probability increase with the turbine height, suggesting a necessity for optimal design. An attempt to optimize a 3-blade vertical axis turbine design with hybrid method yielded a ratio of turbine height to radius (H/R) about 3.0 for reliable maximum power output.

  9. Basewide energy systems plan, Hawthorne Army Ammunition Plant, Hawthorne, Nevada; executive summary. Final report

    SciTech Connect (OSTI)

    NONE

    1983-03-25

    This document is the Executive Summary of the Basewide Energy Systems Plan for the Hawthorne Army Ammunition Plant (HWAAP) at Hawthorne, Nevada. This project has been executed as a part of the Department of the Army`s Energy Engineering Analysis Program (EEAP). The overall objective of the project is to develop a systematic plan of projects that will result in the reduction of energy consumption in compliance with the objectives set forth in the Army Facilities Energy Plan (AFEP), without decreasing the readiness posture of the Army. The Hawthorne Army Ammunition Plant is a Government Owned and Contractor Operator (GOCO) Army facility. Consequently, any reference made in this document to the Energy Conservation Investment Program (ECIP) is directly analagous to Energy Conservation and Management (ECAM). The ECAM designation pertains specifically to GOCO Army installations. All Programming Documents for projects developed from this study reference ECAM wherever ECIP is called for.

  10. Optimising energy recovery and use of chemicals, resources and materials in modern waste-to-energy plants

    SciTech Connect (OSTI)

    De Greef, J.; Villani, K.; Goethals, J.; Van Belle, H.; Van Caneghem, J.; Vandecasteele, C.

    2013-11-15

    Highlights: • WtE plants are to be optimized beyond current acceptance levels. • Emission and consumption data before and after 5 technical improvements are discussed. • Plant performance can be increased without introduction of new techniques or re-design. • Diagnostic skills and a thorough understanding of processes and operation are essential. - Abstract: Due to ongoing developments in the EU waste policy, Waste-to-Energy (WtE) plants are to be optimized beyond current acceptance levels. In this paper, a non-exhaustive overview of advanced technical improvements is presented and illustrated with facts and figures from state-of-the-art combustion plants for municipal solid waste (MSW). Some of the data included originate from regular WtE plant operation – before and after optimisation – as well as from defined plant-scale research. Aspects of energy efficiency and (re-)use of chemicals, resources and materials are discussed and support, in light of best available techniques (BAT), the idea that WtE plant performance still can be improved significantly, without direct need for expensive techniques, tools or re-design. In first instance, diagnostic skills and a thorough understanding of processes and operations allow for reclaiming the silent optimisation potential.

  11. Managing Your Energy: An ENERGY STAR(R) Guide for Identifying Energy Savings in Manufacturing Plants

    E-Print Network [OSTI]

    Worrell, Ernst

    2010-01-01

    performance. LED=light-emitting diode. The ENERGY STARincandescent lamps to light-emitting diodes (LEDs) or radiumhour Life cycle costing Light emitting diode Million British

  12. Managing Your Energy: An ENERGY STAR(R) Guide for Identifying Energy Savings in Manufacturing Plants

    E-Print Network [OSTI]

    Worrell, Ernst

    2010-01-01

    See Section 4.3 for more information. Consider heat recoverysystems Heat recovery systems reduce the energy required tothe exhaust air. Common heat recovery systems include heat

  13. Dissecting the pressure field in tidal flow

    E-Print Network [OSTI]

    Dissecting the pressure field in tidal flow past a headland: When is form drag "real?" Sally Warner of oscillating flow H L HL velocity form drag power average power floodslack work done on system #12;0 0 0 0 90 180 270 360 90 180 270 360 0 degrees Drag of oscillating flow H L HL velocity form drag power average

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Tidal, Wave, Wind (Small), Hydroelectric (Small) Renewable Energy Systems Exemption...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Biomass, Hydroelectric, Municipal Solid Waste, Combined Heat & Power, Landfill Gas, Tidal, Wave, Anaerobic Digestion, Microturbines Energy Conversion and Thermal Efficiency...

  16. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    tidal and river tur- bines Enhanced geothermal systems (EGS) Table 4B. Summary of technology readiness for renewable energy

  17. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Tidal, Wave, Wind (Small), Other Distributed Generation Technologies Municipal Energy Reduction...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Tidal, Wave, Wind (Small), Hydroelectric (Small) Renewable Energy Systems Exemption Recognized...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Tidal, Wave, Ocean Thermal, Wind (Small), Anaerobic Digestion Property Tax Abatement for Production and Manufacturing Facilities Qualifying renewable energy manufacturing...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind (All), Biomass, Hydroelectric, Geothermal Heat Pumps, Landfill Gas, Tidal, Wave, Ocean Thermal, Wind (Small) Alternative Energy Portfolio Standard Eligible...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Geothermal Electric, Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Landfill Gas, Tidal, Wave, Anaerobic Digestion Renewable Energy...

  2. Cost and Performance Baseline for Fossil Energy Plants; Volume...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cases) X LIST OF ACRONYMS AND ABBREVIATIONS AACE Association for the Advancement of Cost Engineering acfm Actual cubic feet per minute AEO Annual Energy Outlook BACT Best...

  3. Better Plants Supply Chain Pilot - Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    their supply chains. Around 40 to 60 percent of a manufacturing company's energy and carbon footprint can reside upstream in its supply chain-from raw materials, transport,...

  4. Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Costs by Increasing Energy Efficiency in Process Heating Systems ITP Aluminum: Aluminum Industry Roadmap for the Automotive Market (May 1999) Improving Process Heating System...

  5. The 2001 Power Plant Improvement Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    transferred 95 million from previously appropriated funding for the 1986-93 Clean Coal Technology Program. On February 6, 2001, the Energy Department issued a solicitation...

  6. Cost and Performance Comparison Baseline for Fossil Energy Plants...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy security. A broad portfolio of technologies is being developed within the Clean Coal Program to accomplish this objective. Ever increasing technological enhancements...

  7. Managing Your Energy: An ENERGY STAR(R) Guide for Identifying Energy Savings in Manufacturing Plants

    E-Print Network [OSTI]

    Worrell, Ernst

    2010-01-01

    industry/bestpractices/software.html Pump System Assessmentup to 16% of pumps in use in U.S. industry are more than 20pump user Format: Downloadable software Contact: U.S. Department of Energy URL: http://www1.eere.energy.gov/industry/

  8. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    --Tidal Energy: ResourceTara Camacho-Lopez2015-04-06T22:15:34+00:00 Placeholder Download Filename RM1Tidal-TurbineUW-Tidal-Resource.pdf filesize 629.2 kB Version 1 Date added...

  9. 3M: Hutchinson Plant Focuses on Heat Recovery and Cogeneration during Plan-Wide Energy-Efficiency Assessment

    SciTech Connect (OSTI)

    2003-06-01

    3M performed a plant-wide energy efficiency assessment at its Hutchinson, Minnesota, plant to identify energy- and cost-saving opportunities. Assessment staff developed four separate implementation packages that represented various combinations of energy-efficiency projects involving chiller consolidation, air compressor cooling improvements, a steam turbine used for cogeneration, and a heat recovery boiler for two of the plant's thermal oxidizers. Staff estimated that the plant could save 6 million kWh/yr in electricity and more than 200,000 MMBtu/yr in natural gas and fuel oil, and avoid energy costs of more than $1 million during the first year.

  10. Case History - Energy Reduction at the Abilene Texas Instruments Plant 

    E-Print Network [OSTI]

    Reed, J. C.

    1983-01-01

    In 1977, TI purchased a 158,000 SF, single story building which was designed and built prior to the 1973 energy crises and, hence, has no built in energy conservation. This paper addresses the principal retrofit measures taken at this calculator...

  11. Plant View On Reducing Steam Trap Energy Loss 

    E-Print Network [OSTI]

    Vallery, S. J.

    1982-01-01

    's total energy consumption is used by industry in producing the goods which are consumed around the world. Steam is the most commonly used energy source for the petrochemical industry. Most of this steam is used for heating and evaporating the many...

  12. Plant No 2 Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975) | OpenBethlehemPlainsboro Center,Planned GeothermalPlant

  13. Property:Plants with Unknown Planned Capacity | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2FlatDemandMonth3 Jump to: navigation, searchPhone Jump to:Plants with

  14. Neal Hot Springs Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to:InformationNdunga Geothermal Power Plant JumpNeal

  15. Olinda Landfill Gas Recovery Plant Biomass Facility | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNewSt.Information Olinda Landfill Gas Recovery Plant Biomass

  16. Olkaria I Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNewSt.Information Olinda Landfill GasI Geothermal Power Plant

  17. Olkaria II Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNewSt.Information Olinda Landfill GasI Geothermal Power PlantII

  18. Zhangjiajie Tumuxi Hydropower Plant Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan) JumpZhuyuan ElectricTumuxi Hydropower Plant Co Ltd Jump

  19. Fuel Cell Power Plant Experience Naval Applications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy Loftus GlobalEfficient Fuel CellsPlant

  20. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01

    Technologies, Energy Efficiency and Renewable Energy.Technologies, Energy Efficiency and Renewable Energy.Technologies, Energy Efficiency and Renewable Energy,

  1. Tidal Conversion by Supercritical Topography

    E-Print Network [OSTI]

    Balmforth, Neil J.

    Calculations are presented of the rate of energy conversion of the barotropic tide into internal gravity waves above topography on the ocean floor. The ocean is treated as infinitely deep, and the topography consists of ...

  2. Land-Use Analysis of Croplands for Sustainable Food and Energy Production in the United States

    E-Print Network [OSTI]

    Zumkehr, Andrew Lee

    2013-01-01

    include pumped hydro storage, thermal energy storage,such as hydro-electric and tidal energy, for example. After

  3. Concord Municipal Light Plant - Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p aDepartment ofCommercialEnergyDepartment of EnergyOil, and|

  4. Concord Municipal Light Plant - Residential Energy Efficiency Rebate

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p aDepartment ofCommercialEnergyDepartment of EnergyOil,

  5. Waste Isolation Pilot Plant EMHQ Statement | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyThe U.S.Lacledeutilities. TheEnergyEnergyMedia1, in Washington,Department

  6. Waste Isolation Pilot Plant Recovery Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyThe U.S.Lacledeutilities. TheEnergyEnergyMedia1, in Washington,DepartmentThis

  7. Project Profile: Nanomaterials for Thermal Energy Storage in CSP Plants

    Broader source: Energy.gov [DOE]

    The National Renewable Energy Laboratory (NREL), under an ARRA CSP Award, is extending previous work on nanoscale phase change materials to develop materials with technologically relevant temperature ranges and encapsulation structures.

  8. Achieving Superior Plant Energy Performance Utilizing Real-time Data 

    E-Print Network [OSTI]

    Subramanya, S.

    2010-01-01

    . With the right Best Practices, however, using new methodologies and technologies unavailable only a few years ago, enterprises can achieve dramatic energy reductions and their resulting cost savings. These Best Practices are founded on 1) application of a...

  9. Economics of Plant Energy Savings Projects in a Changing Market 

    E-Print Network [OSTI]

    White, D. C.

    2011-01-01

    ; and external in terms of demand, material and labor costs, financing costs and energy prices. Of these, prices are typically the largest risk factor and are the subject of this paper. To perform an analysis it is necessary to quantify the risk... of the investment. In this paper, appropriate techniques to evaluate such investments are presented along with case studies illustrating the approach. Keywords Energy Saving Project Investment Analysis; Risk; Uncertainty; Monte Carlo Analysis Introduction...

  10. Stowe Power Production Plant Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren) JumpandStereoNew York:Wisconsin: Energy Resources

  11. Suginoi Hotel Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)Model for the Entire Country |Illinois: EnergyHill,Suginoi

  12. Imperial Valley Resource Recovery Plant Biomass Facility | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNewTexas:HydrothermallyIFBIdeaEnergyFacility | Open

  13. Miravalles I Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec 2005Minnehaha County,Energy

  14. Marsh Road Power Plant Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,InformationIllinois: EnergyWisconsin: Energy Resources Jump

  15. Energy At Work: Plant Expansion Creates Job Opportunities in Ohio |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofAprilofEnergyEnSysEnergy

  16. Secretary Chu Visits Vogtle Nuclear Power Plant | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterestedReplacement-2-AA-1Research and FuelingEnergyRecoverySecretary Chu

  17. Mapping Geothermal Heat Flow and Existing Plants | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014 |Department of Energy MA3TMaking|Chicagoof

  18. Paducah Gaseous Diffusion Plant Transition | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergy EEREPlateauFolsomProgress

  19. Plant Products a Growing Research Area | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergyPartnership forHydrogen StoragePlanning,

  20. Power Plant and Industrial Fuel Use Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergyPartnershipSitePost-Closure