National Library of Energy BETA

Sample records for tidal energy industry

  1. Tidal Energy Basics

    Broader source: Energy.gov [DOE]

    Some of the oldest ocean energy technologies use tidal power. For tidal differences to be harnessed into electricity, the difference between high and low tides must be more than 16 feet (or at least 5 meters). However, there are only about 40 sites on Earth with tidal ranges of this magnitude.

  2. Clarence Strait Tidal Energy Project, Tenax Energy Tropical Tidal...

    Open Energy Info (EERE)

    Page Edit History Clarence Strait Tidal Energy Project, Tenax Energy Tropical Tidal Test Centre, Jump to: navigation, search 1 Retrieved from "http:en.openei.orgw...

  3. Assessment of Energy Production Potential from Tidal Streams...

    Broader source: Energy.gov (indexed) [DOE]

    project documented in this report created a national database of tidal stream energy potential, as well as a GIS tool usable by industry in order to accelerate the market for tidal...

  4. Tidal Energy Research

    SciTech Connect (OSTI)

    Stelzenmuller, Nickolas; Aliseda, Alberto; Palodichuk, Michael; Polagye, Brian; Thomson, James; Chime, Arshiya; Malte, Philip

    2014-03-31

    This technical report contains results on the following topics: 1) Testing and analysis of sub-scale hydro-kinetic turbines in a flume, including the design and fabrication of the instrumented turbines. 2) Field measurements and analysis of the tidal energy resource and at a site in northern Puget Sound, that is being examined for turbine installation. 3) Conceptual design and performance analysis of hydro-kinetic turbines operating at high blockage ratio, for use for power generation and flow control in open channel flows.

  5. Assessment of Energy Production Potential from Tidal Streams in the United States

    SciTech Connect (OSTI)

    Haas, Kevin A.; Fritz, Hermann M.; French, Steven P.; Smith, Brennan T.; Neary, Vincent

    2011-06-29

    The project documented in this report created a national database of tidal stream energy potential, as well as a GIS tool usable by industry in order to accelerate the market for tidal energy conversion technology.

  6. Tidal Electric | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)Open Energy Information ThreeTianDi GrowthTibagiTidal

  7. ARRAY OPTIMIZATION FOR TIDAL ENERGY EXTRACTION IN A TIDAL CHANNEL – A NUMERICAL MODELING ANALYSIS

    SciTech Connect (OSTI)

    Yang, Zhaoqing; Wang, Taiping; Copping, Andrea

    2014-04-18

    This paper presents an application of a hydrodynamic model to simulate tidal energy extraction in a tidal dominated estuary in the Pacific Northwest coast. A series of numerical experiments were carried out to simulate tidal energy extraction with different turbine array configurations, including location, spacing and array size. Preliminary model results suggest that array optimization for tidal energy extraction in a real-world site is a very complex process that requires consideration of multiple factors. Numerical models can be used effectively to assist turbine siting and array arrangement in a tidal turbine farm for tidal energy extraction.

  8. Sandia Energy - Tidal & Current Modeling Development and Validation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tidal & Current Modeling Development and Validation Home Stationary Power Energy Conversion Efficiency Water Power Technology Development Tidal & Current Modeling Development and...

  9. Tidal Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)Open Energy Information ThreeTianDi

  10. Tidal Energy Resource Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsState ofSavings for Specific2HeldTidal Energy Resource

  11. Tidal Energy Test Platform | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)Open Energy Information ThreeTianDi GrowthTibagiTidalTest

  12. Tidal Stream | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)Open Energy Information ThreeTianDiHydraulic

  13. First Commercial, Grid-Connected, Hydrokinetic Tidal Energy Project...

    Office of Science (SC) Website

    First Commercial, Grid-Connected, Hydrokinetic Tidal Energy Project in North America Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) SBIR...

  14. MHK Projects/Highlands Tidal Energy Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 JumpCoos Bay OPTHalf Moon Cove TidalTidal Energy

  15. Numerical and Experimental Investigation of Tidal Current Energy Extraction 

    E-Print Network [OSTI]

    Sun, Xiaojing

    2008-01-01

    Numerical and experimental investigations of tidal current energy extraction have been conducted in this study. A laboratory-scale water flume was simulated using commercial computational fluid dynamics (CFD) code FLUENT. ...

  16. Examining the Impacts of Tidal Energy Capture from an Ecosystem

    E-Print Network [OSTI]

    Leslie, Heather

    ; however, the contribution of alternative fuel sources to overall energy is still small. In the United are under development in the Northeast, includ- ing Roosevelt Island in New York City's East RiverP A P E R Examining the Impacts of Tidal Energy Capture from an Ecosystem Services Perspective A U

  17. MHK Projects/Killisnoo Tidal Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 JumpCoos Bay OPTHalf MoonKillisnoo Tidal Energy <

  18. MHK Projects/Kingsbridge Tidal Energy Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 JumpCoos Bay OPTHalf MoonKillisnoo Tidal Energy

  19. MHK Projects/Salem Tidal Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 JumpCoos BayOysterReliance LightSalem Tidal Energy

  20. An Estimate of Tidal Energy Lost to Turbulence at the Hawaiian Ridge JODY M. KLYMAK

    E-Print Network [OSTI]

    Balasubramanian, Ravi

    An Estimate of Tidal Energy Lost to Turbulence at the Hawaiian Ridge JODY M. KLYMAK Scripps an estimate of 3 1.5 GW of tidal energy lost to turbulence dissipation within 60 km of the ridge and Toole 1997). Another closely related question is that of where tidal energy gets removed from the ocean

  1. Energy Localization Invariance of Tidal Work in General Relativity

    E-Print Network [OSTI]

    Marc Favata

    2000-08-24

    It is well known that, when an external general relativistic (electric-type) tidal field E(t) interacts with the evolving quadrupole moment I(t) of an isolated body, the tidal field does work on the body (``tidal work'') -- i.e., it transfers energy to the body -- at a rate given by the same formula as in Newtonian theory: dW/dt = -1/2 E dI/dt. Thorne has posed the following question: In view of the fact that the gravitational interaction energy between the tidal field and the body is ambiguous by an amount of order E(t)I(t), is the tidal work also ambiguous by this amount, and therefore is the formula dW/dt = -1/2 E dI/dt only valid unambiguously when integrated over timescales long compared to that for I(t) to change substantially? This paper completes a demonstration that the answer is no; dW/dt is not ambiguous in this way. More specifically, this paper shows that dW/dt is unambiguously given by -1/2 E dI/dt independently of one's choice of how to localize gravitational energy in general relativity. This is proved by explicitly computing dW/dt using various gravitational stress-energy pseudotensors (Einstein, Landau-Lifshitz, Moller) as well as Bergmann's conserved quantities which generalize many of the pseudotensors to include an arbitrary function of position. A discussion is also given of the problem of formulating conservation laws in general relativity and the role played by the various pseudotensors.

  2. About Industrial Distributed Energy

    Broader source: Energy.gov [DOE]

    The Advanced Manufacturing Office's (AMO's) Industrial Distributed Energy activities build on the success of predecessor DOE programs on distributed energy and combined heat and power (CHP) while...

  3. Industrial energy use indices 

    E-Print Network [OSTI]

    Hanegan, Andrew Aaron

    2009-05-15

    Energy use index (EUI) is an important measure of energy use which normalizes energy use by dividing by building area. Energy use indices and associated coefficients of variation are computed for major industry categories ...

  4. Industrial energy use indices 

    E-Print Network [OSTI]

    Hanegan, Andrew Aaron

    2008-10-10

    Energy use index (EUI) is an important measure of energy use which normalizes energy use by dividing by building area. Energy use indices and associated coefficients of variation are computed for major industry categories ...

  5. Acoustic Monitoring of Beluga Whale Interactions with Cook Inlet Tidal Energy Project

    SciTech Connect (OSTI)

    Worthington, Monty

    2014-02-05

    Cook Inlet, Alaska is home to some of the greatest tidal energy resources in the U.S., as well as an endangered population of beluga whales (Delphinapterus leucas). Successfully permitting and operating a tidal power project in Cook Inlet requires a biological assessment of the potential and realized effects of the physical presence and sound footprint of tidal turbines on the distribution, relative abundance, and behavior of Cook Inlet beluga whales. ORPC Alaska, working with the Project Team—LGL Alaska Research Associates, University of Alaska Anchorage, TerraSond, and Greeneridge Science—undertook the following U.S. Department of Energy (DOE) study to characterize beluga whales in Cook Inlet – Acoustic Monitoring of Beluga Whale Interactions with the Cook Inlet Tidal Energy Project (Project). ORPC Alaska, LLC, is a wholly-owned subsidiary of Ocean Renewable Power Company, LLC, (collectively, ORPC). ORPC is a global leader in the development of hydrokinetic power systems and eco-conscious projects that harness the power of ocean and river currents to create clean, predictable renewable energy. ORPC is developing a tidal energy demonstration project in Cook Inlet at East Foreland where ORPC has a Federal Energy Regulatory Commission (FERC) preliminary permit (P-13821). The Project collected baseline data to characterize pre-deployment patterns of marine mammal distribution, relative abundance, and behavior in ORPC’s proposed deployment area at East Foreland. ORPC also completed work near Fire Island where ORPC held a FERC preliminary permit (P-12679) until March 6, 2013. Passive hydroacoustic devices (previously utilized with bowhead whales in the Beaufort Sea) were adapted for study of beluga whales to determine the relative abundance of beluga whale vocalizations within the proposed deployment areas. Hydroacoustic data collected during the Project were used to characterize the ambient acoustic environment of the project site pre-deployment to inform the FERC pilot project process. The Project compared results obtained from this method to results obtained from other passive hydrophone technologies and to visual observation techniques performed simultaneously. This Final Report makes recommendations on the best practice for future data collection, for ORPC’s work in Cook Inlet specifically, and for tidal power projects in general. This Project developed a marine mammal study design and compared technologies for hydroacoustic and visual data collection with potential for broad application to future tidal and hydrokinetic projects in other geographic areas. The data collected for this Project will support the environmental assessment of future Cook Inlet tidal energy projects, including ORPC’s East Foreland Tidal Energy Project and any tidal energy developments at Fire Island. The Project’s rigorous assessment of technology and methodologies will be invaluable to the hydrokinetic industry for developing projects in an environmentally sound and sustainable way for areas with high marine mammal activity or endangered populations. By combining several different sampling methods this Project will also contribute to the future preparation of a comprehensive biological assessment of ORPC’s projects in Cook Inlet.

  6. Modeling In-stream Tidal Energy Extraction and Its Potential Environmental Impacts

    SciTech Connect (OSTI)

    Yang, Zhaoqing; Wang, Taiping; Copping, Andrea; Geerlofs, Simon H.

    2014-09-30

    In recent years, there has been growing interest in harnessing in-stream tidal energy in response to concerns of increasing energy demand and to mitigate climate change impacts. While many studies have been conducted to assess and map tidal energy resources, efforts for quantifying the associated potential environmental impacts have been limited. This paper presents the development of a tidal turbine module within a three-dimensional unstructured-grid coastal ocean model and its application for assessing the potential environmental impacts associated with tidal energy extraction. The model is used to investigate in-stream tidal energy extraction and associated impacts on estuarine hydrodynamic and biological processes in a tidally dominant estuary. A series of numerical experiments with varying numbers and configurations of turbines installed in an idealized estuary were carried out to assess the changes in the hydrodynamics and biological processes due to tidal energy extraction. Model results indicated that a large number of turbines are required to extract the maximum tidal energy and cause significant reduction of the volume flux. Preliminary model results also indicate that extraction of tidal energy increases vertical mixing and decreases flushing rate in a stratified estuary. The tidal turbine model was applied to simulate tidal energy extraction in Puget Sound, a large fjord-like estuary in the Pacific Northwest coast.

  7. Severn Tidal Power Group STpg | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity for Low Emission DevelopmentLakes, North Carolina:Severn Tidal

  8. TIDAL ENERGY SITE RESOURCE ASSESSMENT: TECHNICAL SPECIFICATIONS...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Marine Renewable Energy Center, University of Washington, Seattle, WA 3 Civil and Environmental Engineering, Georgia Institute of Technology, USA 98195-2600, USA...

  9. Tidal Hydraulic Generators Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)Open Energy Information ThreeTianDiHydraulic Generators Ltd

  10. Tidal Sails AS | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)Open Energy Information ThreeTianDiHydraulic Generators

  11. Pennamaquan Tidal Power LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly Smart GridNorth Carolina:ParamountEnergySmall Water TunnelLLC Jump

  12. Sandia Energy - Tidal Energy Resource Assessment in the East River Tidal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)GeothermalFuel Magnetization andStochasticunique wind(CREW)Tidal

  13. HAWAIIAN OCEAN MIXING EXPERIMENT (HOME): FARFIELD PROGRAM HAWAIIAN TIDAL ENERGY BUDGET

    E-Print Network [OSTI]

    Dushaw, Brian

    HAWAIIAN OCEAN MIXING EXPERIMENT (HOME): FARFIELD PROGRAM HAWAIIAN TIDAL ENERGY BUDGET Principal). This tidal energy budget will determine limits on the energy dissipated in the nearfield of the Hawaiian and ocean acoustic tomography have brought a new dimension to the subject. We propose to measure the energy

  14. Caraustar Industries Energy Assessment

    SciTech Connect (OSTI)

    2010-06-25

    This plant-wide assessment case study is about commissioned energy assessments by the U.S. Department of Energy Industrial Technologies Program at two of Caraustar's recycled paperboard mills.

  15. Oklahoma Industrial Energy Management Program 

    E-Print Network [OSTI]

    Turner, W. C.; Webb, R. E.; Phillips, J. M.; Viljoen, T. A.

    1979-01-01

    series of tuition free Industrial Energy Management Conferences (over 20 given to date involving many Oklahoma industries). 2. A free energy newsletter entitled "Energy Channel" mailed to all participating Oklahoma industries. 3. A series of Energy...

  16. Midwest Industrial Energy Efficiency Handbook

    SciTech Connect (OSTI)

    2010-06-25

    This Industrial Technologies Program handbook connects industry with the various energy efficiency resources available in the midwest.

  17. MHK Projects/Margate Tidal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 JumpCoos Bay OPTHalf| Open EnergyMaineMargate Tidal

  18. Modeling the Effects of Tidal Energy Extraction on Estuarine Hydrodynamics in a Stratified Estuary

    SciTech Connect (OSTI)

    Yang, Zhaoqing; Wang, Taiping

    2013-08-15

    A three-dimensional coastal ocean model with a tidal turbine module was used in this paper to study the effects of tidal energy extraction on temperature and salinity stratification and density driven two-layer estuarine circulation. Numerical experiments with various turbine array configurations were carried out to investigate the changes in tidally mean temperature, salinity and velocity profiles in an idealized stratified estuary that connects to coastal water through a narrow tidal channel. The model was driven by tides, river inflow and sea surface heat flux. To represent the realistic size of commercial tidal farms, model simulations were conducted based on a small percentage of the total number of turbines that would generate the maximum extractable energy in the system. Model results indicated that extraction of tidal energy will increase the vertical mixing and decrease the stratification in the estuary. Extraction of tidal energy has stronger impact on the tidally-averaged salinity, temperature and velocity in the surface layer than the bottom. Energy extraction also weakens the two-layer estuarine circulation, especially during neap tides when tidal mixing the weakest and energy extraction is the smallest. Model results also show that energy generation can be much more efficient with higher hub height with relatively small changes in stratification and two-layer estuarine circulation.

  19. JULY 2005 1 An estimate of tidal energy lost to turbulence at the Hawaiian Ridge

    E-Print Network [OSTI]

    Klymak, Jody M.

    JULY 2005 1 An estimate of tidal energy lost to turbulence at the Hawaiian Ridge JODY M. KLYMAK1 of the ridge, giving an estimate of 3±1.5 GW of tidal energy lost to turbulence dissipation within 60 km relation- ship between the energy in the semi-diurnal internal tide (E) and the depth

  20. MHK Projects/Housatonic Tidal Energy Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 JumpCoos Bay OPTHalf Moon Cove TidalTidalHope

  1. Industrial energy savers

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    This is a series of technical bulletins developed as a quick reference to various energy-saving technologies. Each bulletin provides information on economics, benefits, and applications. Topics are chiller optimization and energy-efficient chillers, evaporative cooling, economizer cycles, thermal energy storage for cooling systems, boiler room energy conservation, cogeneration, industrial heat pumps, steam trap maintenance, energy-efficient motors, and variable speed drive motors.

  2. Maine Deploys First U.S. Commercial, Grid-Connected Tidal Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of President Obama's all-of-the-above energy strategy to create jobs and strengthen U.S. global competitiveness," said Energy Secretary Steven Chu. "The Eastport tidal energy...

  3. Tidal Energy System for On-Shore Power Generation

    SciTech Connect (OSTI)

    Bruce, Allan J

    2012-06-26

    Addressing the urgent need to develop LCOE competitive renewable energy solutions for US energy security and to replace fossil-fuel generation with the associated benefits to environment impacts including a reduction in CO2 emissions, this Project focused on the advantages of using hydraulic energy transfer (HET) in large-scale Marine Hydrokinetic (MHK) systems for harvesting off-shore tidal energy in US waters. A recent DOE resource assessment, identifies water power resources have a potential to meet 15% of the US electric supply by 2030, with MHK technologies being a major component. The work covered a TRL-4 laboratory proof-in-concept demonstration plus modeling of a 15MW full scale system based on an approach patented by NASA-JPL, in which submerged high-ratio gearboxes and electrical generators in conventional MHK turbine systems are replaced by a submerged hydraulic radial pump coupled to on-shore hydraulic motors driving a generator. The advantages are; first, the mean-time-between-failure (MTBF), or maintenance, can be extended from approximately 1 to 5 years and second, the range of tidal flow speeds which can be efficiently harvested can be extended beyond that of a conventional submerged generator. The approach uses scalable, commercial-off-the-shelf (COTS) components, facilitating scale-up and commercialization. All the objectives of the Project have been successfully met (1) A TRL4 system was designed, constructed and tested. It simulates a tidal energy turbine, with a 2-m diameter blade in up to a 2.9 m/sec flow. The system consists of a drive motor assembly providing appropriate torque and RPM, attached to a radial piston pump. The pump circulates pressurized, environmentally-friendly, HEES hydraulic fluid in a closed loop to an axial piston motor which drives an electrical generator, with a resistive load. The performance of the components, subsystems and system were evaluated during simulated tidal cycles. The pump is contained in a tank for immersion testing. The COTS pump and motor were selected to scale to MW size and were oversized for the TRL-4 demonstration, operating at only 1-6% of rated values. Nevertheless, in for 2-18 kW drive power, in agreement with manufacturer performance data, we measured efficiencies of 85-90% and 75-80% for the pump and motor, respectively. These efficiencies being 95-96% at higher operating powers. (2) Two follow-on paths were identified. In both cases conventional turbine systems can be modified, replacing existing gear box and generator with a hydraulic pump and on-shore components. On a conventional path, a TRL5/6 15kW turbine system can be engineered and tested on a barge at an existing site in Maine. Alternatively, on an accelerated path, a TRL-8 100kW system can be engineered and tested by modifying a team member's existing MHK turbines, with barge and grid-connected test sites in-place. On both paths the work can be expedited and cost effective by reusing TRL-4 components, modifying existing turbines and using established test sites. (3) Sizing, performance modeling and costing of a scaled 15MW system, suitable for operation in Maine's Western Passage, was performed. COTS components are identified and the performance projections are favorable. The estimated LCOE is comparable to wind generation with peak production at high demand times. (4) We determined that a similar HET approach can be extended to on-shore and off-shore wind turbine systems. These are very large energy resources which can be addressed in parallel for even great National benefit. (5) Preliminary results on this project were presented at two International Conferences on renewable energy in 2012, providing a timely dissemination of information. We have thus demonstrated a proof-in-concept of a novel, tidal HET system that eliminates all submerged gears and electronics to improve reliability. Hydraulic pump efficiencies of 90% have been confirmed in simulated tidal flows between 1 and 3 m/s, and at only 1-6% of rated power. Total system efficiencies have also been modeled, up to MW-scale, for ti

  4. Reference Model #1 - Tidal Energy: Resource Dr. Brian Polagye

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    constituents, as well as the aharmonic response to these currents induced by local topography and bathymetry. Aharmonic currents are not described by tidal constituents, but are...

  5. Superior Energy Performance Industrial Facility Best Practice...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Facility Best Practice Scorecard Superior Energy Performance Industrial Facility Best Practice Scorecard Superior Energy Performance logo Industrial facilities seeking...

  6. MHK Projects/Rockaway Tidal Energy Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK5 < MHKKembla < MHK Projects JumpRockaway Tidal

  7. List of Tidal Energy Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWindsCompressedList of RefuelingRoomList ofSolarTidal

  8. MHK Projects/Cape May Tidal Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 Jump to:Projects/Alaska 31BondurantCETO3May Tidal

  9. Energy Technology Partnership (ETP) Energy Industry Doctorates

    E-Print Network [OSTI]

    Painter, Kevin

    Energy Technology Partnership (ETP) Energy Industry Doctorates in Low Carbon Energy Technologies for Guidance 1. Introduction The Energy Technology Partnership (ETP) has established an Energy Industry for `industry-ready', post-doctoral researchers to enhance energy industry innovation and knowledge exchange

  10. Oklahoma Industrial Energy Management Program 

    E-Print Network [OSTI]

    Estes, C. B.; Turner, W. C.

    1980-01-01

    this, the Oklahoma Department of Energy designed a program to acquaint Oklahoma industry with the potential savings available through energy management and some basic techniques. The program is, entitled "Oklahoma Industrial Energy Management Program...

  11. Tidal Charged Black Holes as Particle Accelerators to Arbitrarily High Energy

    E-Print Network [OSTI]

    Pradhan, Parthapratim

    2014-01-01

    We show that Randall Sundrum tidal charged spherically symmetric vacuum brane black holes could be act as a particle accelerator with ultrahigh center-of-mass energy in the limiting case of \\emph{ maximal black hole tidal charge}. For non-extremal Randall Sundrum tidal charged black hole, the center-of-mass energy is finite. While for maximally Randall Sundrum tidal charged black hole, the center-of-mass energy is \\emph{infinite}. We have also derived the center-of-mass energy at ISCO(Innermost Stable Circular Orbit) or LSCO(Last Stable Circular Orbit) or MSCO(Marginally Stable Circular Orbit) and MBCO (Marginally Bound Circular Orbit) for maximally Randall Sundrum tidal charged black hole. We show visually the differences between Reissner-Nordstr{\\o}m black hole and Randall Sundrum tidal charged BH. We have found that for maximally Randall Sundrum tidal charged black hole the center-of-mass energy is satisfied the following inequality: $E_{cm}\\mid_{r_{+}}>E_{cm}\\mid_{r_{mb}}>E_{cm}\\mid_{r_{ISCO}}$ i.e. $E_{c...

  12. Tidal Charged Black Holes as Particle Accelerators to Arbitrarily High Energy

    E-Print Network [OSTI]

    Parthapratim Pradhan

    2014-12-28

    We show that Randall Sundrum tidal charged spherically symmetric vacuum brane black holes could be act as a particle accelerator with ultrahigh center-of-mass energy in the limiting case of \\emph{ maximal black hole tidal charge}. For non-extremal Randall Sundrum tidal charged black hole, the center-of-mass energy is finite. While for maximally Randall Sundrum tidal charged black hole, the center-of-mass energy is \\emph{infinite}. We have also derived the center-of-mass energy at ISCO(Innermost Stable Circular Orbit) or LSCO(Last Stable Circular Orbit) or MSCO(Marginally Stable Circular Orbit) and MBCO (Marginally Bound Circular Orbit) for maximally Randall Sundrum tidal charged black hole. We show visually the differences between Reissner-Nordstr{\\o}m black hole and Randall Sundrum tidal charged BH. We have found that for maximally Randall Sundrum tidal charged black hole the center-of-mass energy is satisfied the following inequality: $E_{cm}\\mid_{r_{+}}>E_{cm}\\mid_{r_{mb}}>E_{cm}\\mid_{r_{ISCO}}$ i.e. $E_{cm}\\mid_{r_{+} = \\frac{M}{M_{p}^2}}: E_{cm}\\mid_{r_{mb} = \\left(\\frac{3+\\sqrt{5}}{2}\\right)\\frac{M}{M_{p}^2}}:E_{cm}\\mid_{r_{ISCO} = 4\\frac{M}{M_{p}^2}} = \\infty: 3.23 : 2.6$. Which is exactly \\emph{similar} to the spherically symmetric extreme Reissner-Nordstr\\"{o}m black hole.}

  13. Maine Project Takes Historic Step Forward in U.S. Tidal Energy...

    Energy Savers [EERE]

    contracts will be in place for 20 years -- making them the first long-term tidal energy power purchase agreements in the United States. The implications of these agreements are...

  14. Industrial energy management and utilization

    SciTech Connect (OSTI)

    Witte, L.C.; Schmidt, P.S.; Brown, D.

    1986-01-01

    This text covers the principles of industrial energy conservation and energy conservation applications, with emphasis on the energy-intensive industries. Topics covered include energy consumption, alternative energy sources, elements of energy audits, economic investment analysis, management of energy conservation programs, boilers and fired heaters, steam and condensate systems, classification and fouling of heat exchangers, heat transfer augmentation, waste heat sources, heat recovery equipment, properties and characteristics of insulation, energy conservation in industrial buildings, cogeneration, power circuit components and energy conversion devices, electrical energy conservation. A review of the fundamentals of fluid mechanics, heat transfer, and thermodynamics, as well as examples, problems, and case studies from specific industries are included.

  15. A Modeling Study of the Potential Water Quality Impacts from In-Stream Tidal Energy Extraction

    SciTech Connect (OSTI)

    Wang, Taiping; Yang, Zhaoqing; Copping, Andrea E.

    2013-11-09

    To assess the effects of tidal energy extraction on water quality in a simplified estuarine system, which consists of a tidal bay connected to the coastal ocean through a narrow channel where energy is extracted using in-stream tidal turbines, a three-dimensional coastal ocean model with built-in tidal turbine and water quality modules was applied. The effects of tidal energy extraction on water quality were examined for two energy extraction scenarios as compared with the baseline condition. It was found, in general, that the environmental impacts associated with energy extraction depend highly on the amount of power extracted from the system. Model results indicate that, as a result of energy extraction from the channel, the competition between decreased flushing rates in the bay and increased vertical mixing in the channel directly affects water quality responses in the bay. The decreased flushing rates tend to cause a stronger but negative impact on water quality. On the other hand, the increase of vertical mixing could lead to higher bottom dissolved oxygen at times. As the first modeling effort directly aimed at examining the impacts of tidal energy extraction on estuarine water quality, this study demonstrates that numerical models can serve as a very useful tool for this purpose. However, more careful efforts are warranted to address system-specific environmental issues in real-world, complex estuarine systems.

  16. Industrial Energy Efficiency

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide toIMPROVEMENT OFBarriers to Industrial Energy Efficiency Report to

  17. Industrial Energy Efficiency and Climate Change Mitigation

    E-Print Network [OSTI]

    Worrell, Ernst

    2009-01-01

    Stimulating R&D of industrial energy-efficient technology;Turnover, Retrofit and Industrial Energy Efficiency. Energyprograms perform at improving industrial energy efficiency.

  18. Setting the Standard for Industrial Energy Efficiency

    E-Print Network [OSTI]

    McKane, Aimee; Williams, Robert; Perry, Wayne; Li, Tienan

    2008-01-01

    IEA) 7 July 2006 Industrial motor systems energy efficiency:of energy-efficient equipment in industrial motor systems isin industrial energy efficiency, especially motor, steam,

  19. Modeling Tidal Stream Energy Extraction and its Effects on Transport Processes in a Tidal Channel and Bay System Using a Three-dimensional Coastal Ocean Model

    SciTech Connect (OSTI)

    Yang, Zhaoqing; Wang, Taiping; Copping, Andrea E.

    2013-02-28

    This paper presents a numerical modeling study for simulating in-stream tidal energy extraction and assessing its effects on the hydrodynamics and transport processes in a tidal channel and bay system connecting to coastal ocean. A marine and hydrokinetic (MHK) module was implemented in a three-dimensional (3-D) coastal ocean model using the momentum sink approach. The MHK model was validated with the analytical solutions for tidal channels under one-dimensional (1-D) conditions. Model simulations were further carried out to compare the momentum sink approach with the quadratic bottom friction approach. The effects of 3-D simulations on the vertical velocity profile, maximum extractable energy, and volume flux reduction across the channel were investigated through a series of numerical experiments. 3-D model results indicate that the volume flux reduction at the maximum extractable power predicted by the 1-D analytical model or two-dimensional (2-D) depth-averaged numerical model may be overestimated. Maximum extractable energy strongly depends on the turbine hub height in the water column, and which reaches a maximum when turbine hub height is located at mid-water depth. Far-field effects of tidal turbines on the flushing time of the tidal bay were also investigated. Model results demonstrate that tidal energy extraction has a greater effect on the flushing time than volume flux reduction, which could negatively affect the biogeochemical processes in estuarine and coastal waters that support primary productivity and higher forms of marine life.

  20. Tidal energy effects of dark matter halos on early-type galaxies

    E-Print Network [OSTI]

    Valentinuzzi, T; D'Onofrio, M

    2010-01-01

    Tidal interactions between neighboring objects span across the whole admissible range of lengths in nature: from, say, atoms to clusters of galaxies i.e. from micro to macrocosms. According to current cosmological theories, galaxies are embedded within massive non-baryonic dark matter (DM) halos, which affects their formation and evolution. It is therefore highly rewarding to understand the role of tidal interaction between the dark and luminous matter in galaxies. The current investigation is devoted to Early-Type Galaxies (ETGs), looking in particular at the possibility of establishing whether the tidal interaction of the DM halo with the luminous baryonic component may be at the origin of the so-called "tilt" of the Fundamental Plane (FP). The extension of the tensor virial theorem to two-component matter distributions implies the calculation of the self potential energy due to a selected subsystem, and the tidal potential energy induced by the other one. The additional assumption of homeoidally striated d...

  1. Field Measurements at River and Tidal Current Sites for Hydrokinetic Energy Development: Best Practices Manual

    SciTech Connect (OSTI)

    Neary, Vincent S; Gunawan, Budi

    2011-09-01

    In this report, existing data collection techniques and protocols for characterizing open channel flows are reviewed and refined to further address the needs of the MHK industry. The report provides an overview of the hydrodynamics of river and tidal channels, and the working principles of modern acoustic instrumentation, including best practices in remote sensing methods that can be applied to hydrokinetic energy site characterization. Emphasis is placed upon acoustic Doppler velocimeter (ADV) and acoustic-Doppler current profiler (ADCP) instruments, as these represent the most practical and economical tools for use in the MHK industry. Incorporating the best practices as found in the literature, including the parameters to be measured, the instruments to be deployed, the instrument deployment strategy, and data post-processing techniques. The data collected from this procedure aims to inform the hydro-mechanical design of MHK systems with respect to energy generation and structural loading, as well as provide reference hydrodynamics for environmental impact studies. The standard metrics and protocols defined herein can be utilized to guide field experiments with MHK systems.

  2. Temperature and Tidal Dynamics in a Branching Estuarine System

    E-Print Network [OSTI]

    Wagner, Richard Wayne

    2012-01-01

    distribution of tidal energy. When specific locations ordissipation which may alter tidal energy in other parts ofAdditionally, changes to tidal energy reflection within a

  3. Industrial energy management and utilization

    SciTech Connect (OSTI)

    Witte, L.C.; Schmidt, P.S.; Brown, D.R.

    1988-01-01

    This book presents a study of the technical, economic and management principles of effective energy use. The authors report on: energy consumption, conservation, and resources. They present an analysis of thermal-fluid systems. Energy conservation in combustion systems. Heat exchangers, heat recovery, energy conservation in industrial buildings, and industrial cogeneration are discussed.

  4. Subtropical catastrophe: Significant loss of low-mode tidal energy at J. A. MacKinnon and K. B. Winters

    E-Print Network [OSTI]

    MacKinnon, Jennifer

    Subtropical catastrophe: Significant loss of low-mode tidal energy at 28.9°° J. A. MacKinnon and K with a northward baroclinic tidal flux of approximately 1.7 kW/m. After an initial spinup period, energy is quickly of low-mode tidal energy at 28.9°, Geophys. Res. Lett., 32, L15605, doi:10.1029/ 2005GL023376. 1

  5. Guiding Principles for Successfully Implementing Industrial Energy...

    Office of Environmental Management (EM)

    Guiding Principles for Successfully Implementing Industrial Energy Assessment Recommendations Guiding Principles for Successfully Implementing Industrial Energy Assessment...

  6. Midstate Electric Cooperative - Commercial and Industrial Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial and Industrial Energy Efficiency Rebate Program Midstate Electric Cooperative - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial...

  7. Industrial Energy Efficiency: Designing Effective State Programs...

    Office of Environmental Management (EM)

    Energy Efficiency: Designing Effective State Programs for the Industrial Sector Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector This...

  8. Sandia Energy - High Fidelity Evaluation of Tidal Turbine Performance for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal Energy & Drilling TechnologyHeavy Duty HomeHeavyIndustry

  9. Hydra Tidal Energy Technology AS | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNewTexas: EnergyHunterdonHutto,Fuel Cell Corporation Jump

  10. Modeling of In-stream Tidal Energy Development and its Potential Effects in Tacoma Narrows, Washington, USA

    SciTech Connect (OSTI)

    Yang, Zhaoqing; Wang, Taiping; Copping, Andrea E.; Geerlofs, Simon H.

    2014-10-01

    Understanding and providing proactive information on the potential for tidal energy projects to cause changes to the physical system and to key water quality constituents in tidal waters is a necessary and cost-effective means to avoid costly regulatory involvement and late stage surprises in the permitting process. This paper presents a modeling study for evaluating the tidal energy extraction and its potential impacts on the marine environment in a real world site - Tacoma Narrows of Puget Sound, Washington State, USA. An unstructured-grid coastal ocean model, fitted with a module that simulates tidal energy devices, was applied to simulate the tidal energy extracted by different turbine array configurations and the potential effects of the extraction at local and system-wide scales in Tacoma Narrows and South Puget Sound. Model results demonstrated the advantage of an unstructured-grid model for simulating the far-field effects of tidal energy extraction in a large model domain, as well as assessing the near-field effect using a fine grid resolution near the tidal turbines. The outcome shows that a realistic near-term deployment scenario extracts a very small fraction of the total tidal energy in the system and that system wide environmental effects are not likely; however, near-field effects on the flow field and bed shear stress in the area of tidal turbine farm are more likely. Model results also indicate that from a practical standpoint, hydrodynamic or water quality effects are not likely to be the limiting factor for development of large commercial-scale tidal farms. Results indicate that very high numbers of turbines are required to significantly alter the tidal system; limitations on marine space or other environmental concerns are likely to be reached before reaching these deployment levels. These findings show that important information obtained from numerical modeling can be used to inform regulatory and policy processes for tidal energy development.

  11. Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska FINAL REPORT

    SciTech Connect (OSTI)

    Wright, Bruce Albert

    2014-05-07

    The Aleutian Pribilof Islands Association was awarded a U.S. Department of Energy Tribal Energy Program grant (DE-EE0005624) for the Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska (Project). The goal of the Project was to perform a feasibility study to determine if a tidal energy project would be a viable means to generate electricity and heat to meet long-term fossil fuel use reduction goals, specifically to produce at least 30% of the electrical and heating needs of the tribally-owned buildings in False Pass. The Project Team included the Aleut Region organizations comprised of the Aleutian Pribilof Island Association (APIA), and Aleutian Pribilof Island Community Development Association (APICDA); the University of Alaska Anchorage, ORPC Alaska a wholly-owned subsidiary of Ocean Renewable Power Company (ORPC), City of False Pass, Benthic GeoScience, and the National Renewable Energy Laboratory (NREL). The following Project objectives were completed: collected existing bathymetric, tidal, and ocean current data to develop a basic model of current circulation at False Pass, measured current velocities at two sites for a full lunar cycle to establish the viability of the current resource, collected data on transmission infrastructure, electrical loads, and electrical generation at False Pass, performed economic analysis based on current costs of energy and amount of energy anticipated from and costs associated with the tidal energy project conceptual design and scoped environmental issues. Utilizing circulation modeling, the Project Team identified two target sites with strong potential for robust tidal energy resources in Isanotski Strait and another nearer the City of False Pass. In addition, the Project Team completed a survey of the electrical infrastructure, which identified likely sites of interconnection and clarified required transmission distances from the tidal energy resources. Based on resource and electrical data, the Project Team developed a conceptual tidal energy project design utilizing ORPC’s TidGen® Power System. While the Project Team has not committed to ORPC technology for future development of a False Pass project, this conceptual design was critical to informing the Project’s economic analysis. The results showed that power from a tidal energy project could be provided to the City of False at a rate at or below the cost of diesel generated electricity and sold to commercial customers at rates competitive with current market rates, providing a stable, flat priced, environmentally sound alternative to the diesel generation currently utilized for energy in the community. The Project Team concluded that with additional grants and private investment a tidal energy project at False Pass is well-positioned to be the first tidal energy project to be developed in Alaska, and the first tidal energy project to be interconnected to an isolated micro grid in the world. A viable project will be a model for similar projects in coastal Alaska.

  12. Puget Sound Tidal Energy In-Water Testing and Development Project Final Technical Report

    SciTech Connect (OSTI)

    Craig W. Collar

    2012-11-16

    Tidal energy represents potential for the generation of renewable, emission free, environmentally benign, and cost effective energy from tidal flows. A successful tidal energy demonstration project in Puget Sound, Washington may enable significant commercial development resulting in important benefits for the northwest region and the nation. This project promoted the United States Department of Energy�s Wind and Hydropower Technologies Program�s goals of advancing the commercial viability, cost-competitiveness, and market acceptance of marine hydrokinetic systems. The objective of the Puget Sound Tidal Energy Demonstration Project is to conduct in-water testing and evaluation of tidal energy technology as a first step toward potential construction of a commercial-scale tidal energy power plant. The specific goal of the project phase covered by this award was to conduct all activities necessary to complete engineering design and obtain construction approvals for a pilot demonstration plant in the Admiralty Inlet region of the Puget Sound. Public Utility District No. 1 of Snohomish County (The District) accomplished the objectives of this award through four tasks: Detailed Admiralty Inlet Site Studies, Plant Design and Construction Planning, Environmental and Regulatory Activities, and Management and Reporting. Pre-Installation studies completed under this award provided invaluable data used for site selection, environmental evaluation and permitting, plant design, and construction planning. However, these data gathering efforts are not only important to the Admiralty Inlet pilot project. Lessons learned, in particular environmental data gathering methods, can be applied to future tidal energy projects in the United States and other parts of the world. The District collaborated extensively with project stakeholders to complete the tasks for this award. This included Federal, State, and local government agencies, tribal governments, environmental groups, and others. All required permit and license applications were completed and submitted under this award, including a Final License Application for a pilot hydrokinetic license from the Federal Energy Regulatory Commission. The tasks described above have brought the project through all necessary requirements to construct a tidal pilot project in Admiralty Inlet with the exception of final permit and license approvals, and the selection of a general contractor to perform project construction.

  13. Industrial Energy Efficiency Assessments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency Assessments Lynn Price Staff Scientist China Energy Group Energy Analysis Department Environmental Energy Technologies Division Lawrence Berkeley National...

  14. Energy Savings in Industrial Buildings 

    E-Print Network [OSTI]

    Zhou, A.; Tutterow, V.; Harris, J.

    2009-01-01

    The industrial sector accounts for more than one-third of total energy use in the United States and emits 28.7 percent of the country’s greenhouse gases. Energy use in the industrial sector is largely for steam and process heating systems...

  15. Assessment of Energy Production Potential from Tidal Streams...

    Broader source: Energy.gov (indexed) [DOE]

    Skip to main content Menu Energy.gov Office of Energy Efficiency & Renewable Energy Search Search form Search Office of Energy Efficiency & Renewable Energy Office of Energy...

  16. Clean Energy Manufacturing Initiative Industrial Efficiency and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis An error occurred. Try...

  17. The Wash Tidal Barrier Corporation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeterInformation Policy andInstitute JumpWash Tidal Barrier

  18. MHK Projects/Avalon Tidal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 Jump to:Projects/Alaska 31 <Avalon Tidal < MHK

  19. MHK Projects/BW2 Tidal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 Jump to:Projects/Alaska 31 <Avalon Tidal <BW2

  20. MHK Projects/Maurice River Tidal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 JumpCoos Bay OPTHalf| OpenMaurice River Tidal <

  1. MHK Technologies/Sabella subsea tidal turbine | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050Enermar <OMIS D E < MHKSPERBOY <subsea tidal

  2. Hydropower, Wave and Tidal Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy, Ph.D.FoodHydropower, Wave and Tidal » Technology

  3. Sandia Energy - Tidal & Current Modeling Development and Validation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)GeothermalFuel Magnetization andStochasticunique wind(CREW)Tidal &

  4. Ontario's Industrial Energy Services Program 

    E-Print Network [OSTI]

    Ploeger, L. K.

    1987-01-01

    stream_source_info ESL-IE-87-09-69.pdf.txt stream_content_type text/plain stream_size 13674 Content-Encoding ISO-8859-1 stream_name ESL-IE-87-09-69.pdf.txt Content-Type text/plain; charset=ISO-8859-1 ONTARIO'S INDUSTRIAL... ENERGY SERVICES PROGRAM LINDA K. PLOEGER, GENERAL MANAGER, INDUSTRY PROGRAMS ONTARIO MINISTRY OF ENERGY TORONTO, ONTARIO, ABSTRACT The Ontario Ministry of Energy began offering its new Industrial Energy Services Program (IESP) in early 1987...

  5. Energy Department Partners with Industry to Train Federal Energy...

    Office of Environmental Management (EM)

    Partners with Industry to Train Federal Energy Managers and Reduce Energy Costs Energy Department Partners with Industry to Train Federal Energy Managers and Reduce Energy Costs...

  6. The Cascade of Tidal Energy from Low to High Modes on a Continental Slope SAMUEL M. KELLY* AND JONATHAN D. NASH

    E-Print Network [OSTI]

    The Cascade of Tidal Energy from Low to High Modes on a Continental Slope SAMUEL M. KELLY 25 March 2012) ABSTRACT The linear transfer of tidal energy from large to small scales is quantified. Observed transfer of tidal energy into high-mode internal tides is quantitatively consistent with observed

  7. TIDAL ENERGY SITE RESOURCE ASSESSMENT: TECHNICAL SPECIFICATIONS, BEST PRACTICES AND CASE STUDIES

    E-Print Network [OSTI]

    Siefert, Chris

    , Wind and Water Power Technologies, Environmental Sciences Division, Oak Ridge National Laboratory, Oak fashion, we can develop tidal energy site classes that map to standard TEC designs, similar to the wind over a representative period of record, to design the structural loading and power capacity of the TEC

  8. MHK Projects/Fishers Island Tidal Energy Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 JumpCoos Bay OPT WaveFishers Island Tidal Energy

  9. Distribution of Energy Spectra, Reynolds Stresses, Turbulence Production, and Dissipation in a Tidally Driven Bottom Boundary Layer

    E-Print Network [OSTI]

    Distribution of Energy Spectra, Reynolds Stresses, Turbulence Production, and Dissipation in a Tidally Driven Bottom Boundary Layer L. LUZNIK,* R. GURKA,*, W. A. M. NIMMO SMITH,# W. ZHU,* J. KATZ) site] are examined, covering the accelerating and decelerating phases of a single tidal cycle

  10. Outlook for Industrial Energy Benchmarking 

    E-Print Network [OSTI]

    Hartley, Z.

    2000-01-01

    The U.S. Environmental Protection Agency is exploring options to sponsor an industrial energy efficiency benchmarking study to identify facility specific, cost-effective best practices and technologies. Such a study could help develop a common...

  11. Productivity benefits of industrial energy efficiency measures

    E-Print Network [OSTI]

    Worrell, Ernst

    2011-01-01

    energy savings are related to energy price changes through1997 dollars. All energy prices and savings were evaluatedthe relationship of energy prices to industry-wide energy

  12. Student Trainee (Energy Industry)

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission (FERC) is an independent regulatory agency that regulates and oversees various aspects of the energy markets within the United States. We value independence...

  13. Industrial Energy Conservation Technology

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    A separate abstract was prepared for each of the 55 papers presented in this volume, all of which will appear in Energy Research Abstracts (ERA); 18 were selected for Energy Abstracts for Policy Analysis (EAPA). (MCW)

  14. Industrial energy conservation technology

    SciTech Connect (OSTI)

    Schmidt, P.S.; Williams, M.A.

    1980-01-01

    A separate abstract was prepared for each of the 60 papers included in this volume, all of which will appear in Energy Research Abstracts (ERA); 21 were selected for Energy Abstracts for Policy Analysis (EAPA). (MCW)

  15. Inductrack configuration - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar...

  16. EPRI's Industrial Energy Management Program 

    E-Print Network [OSTI]

    Mergens, E.; Niday, L.

    1992-01-01

    supporting national objectives for a clean environment and a strong economic future. The Electric Power Research Institute (EPRI) recognizes that the management of energy use and the environmental impacts of industrial activity are of national importance... in municipal water and sewage treatment plants, field evaluation of advanced reverse osmosis to recycle electroplating waste water, and cross divisional analysis and assessment of EPRI-developed technology for industrial customer applications. SUMMARY...

  17. Industrial Distributed Energy: Combined Heat & Power

    Office of Energy Efficiency and Renewable Energy (EERE)

    Information about the Department of Energy’s Industrial Technologies Program and its Combined Heat and Power program.

  18. Transforming the Oil Industry into the Energy Industry

    E-Print Network [OSTI]

    Sperling, Daniel; Yeh, Sonia

    2009-01-01

    Transforming the Oil Industry into the Energy Industry BYculprit. It consumes half the oil used in the world andconsuming two thirds of the oil and causing about one third

  19. Overview of Ocean Wave and Tidal Energy Lingchuan Mei

    E-Print Network [OSTI]

    Lavaei, Javad

    ) Avoiding the damage that may be caused by other energy tecnology: explosion and lethal radiation of nuclear

  20. Implementation and Rejection of Industrial Steam System Energy Efficiency Measures

    E-Print Network [OSTI]

    Therkelesen, Peter

    2014-01-01

    Energy  Use   and  Energy  Efficiency  Improvement  Summer   Study  on  Energy  Efficiency  in  Industry.  Summer  Study  on  Energy  Efficiency  in  Industry.  

  1. Energy Department Invests $16 Million to Harness Wave and Tidal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    wave conditions and adjust system settings to maximize power output. Responsible and Sustainable Energy Development As part of the Administration's commitment to developing...

  2. Setting the Standard for Industrial Energy Efficiency

    E-Print Network [OSTI]

    McKane, Aimee; Williams, Robert; Perry, Wayne; Li, Tienan

    2008-01-01

    Voluntary Agreements for Energy Efficiency or GHG EmissionsACEEE Summer Study on Energy Efficiency in Industry, WestStandard for Industrial Energy Efficiency A. McKane 1 , R.

  3. Industrial Energy Procurement Contracts 

    E-Print Network [OSTI]

    Thompson, P.; Cooney, K.

    2000-01-01

    suppliers: from the commodity broker to the full range energy services provider. But these contracts are not the same old preordained "service agreements" -where all the real risks were already allocated by the PUC in the terms and conditions section... first decide on which supplier they would prefer to deal with on the basis of customer service, types of customers, ability to meet firm power needs, financial solvency etc. Only after identifying a short list of "qualified suppliers" does the firm...

  4. Tidal Disruption Flares as the Source of Ultra-high Energy Cosmic Rays

    E-Print Network [OSTI]

    Glennys R. Farrar

    2012-10-03

    The optical spectral energy distributions of two tidal disruption flares identified by van Velzen et al. (2011) in archival SDSS data, are found to be well-fit by a thin-accretion-disk model. Furthermore, the inferred Supermassive Black Hole mass values agree well with the SMBH masses estimated from the host galaxy properties. Integrating the model SEDs to include shorter wavelength contributions provides an estimate of the bolometric luminosities of the accretion disks. The resultant bolometric luminosities are well in excess of the minimum required for accelerating UHECR protons. In combination with the recent observational estimate of the TDF rate (van Velzen and Farrar, these Proceedings), the results presented here strengthen the case that transient jets formed in tidal disruption events may be responsible for accelerating all or most UHECRs.

  5. Tidal Disruption Flares as the Source of Ultra-high Energy Cosmic Rays

    E-Print Network [OSTI]

    Farrar, Glennys R

    2012-01-01

    The optical spectral energy distributions of two tidal disruption flares identified by van Velzen et al. (2011) in archival SDSS data, are found to be well-fit by a thin-accretion-disk model. Furthermore, the inferred Supermassive Black Hole mass values agree well with the SMBH masses estimated from the host galaxy properties. Integrating the model SEDs to include shorter wavelength contributions provides an estimate of the bolometric luminosities of the accretion disks. The resultant bolometric luminosities are well in excess of the minimum required for accelerating UHECR protons. In combination with the recent observational estimate of the TDF rate (van Velzen and Farrar, these Proceedings), the results presented here strengthen the case that transient jets formed in tidal disruption events may be responsible for accelerating all or most UHECRs.

  6. Alkaline tolerant dextranase from streptomyces anulatus - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial...

  7. Environmental Effects of Sediment Transport Alteration and Impacts on Protected Species: Edgartown Tidal Energy Project

    SciTech Connect (OSTI)

    Barrett, Stephen B.; Schlezinger, David, Ph.D; Cowles, Geoff, Ph.D; Hughes, Patricia; Samimy; Roland, I.; and Terray, E, Ph.D.

    2012-12-29

    The Islands of Martha�¢����s Vineyard and Nantucket are separated from the Massachusetts mainland by Vineyard and Nantucket Sounds; water between the two islands flows through Muskeget Channel. The towns of Edgartown (on Martha�¢����s Vineyard) and Nantucket recognize that they are vulnerable to power supply interruptions due to their position at the end of the power grid, and due to sea level rise and other consequences of climate change. The tidal energy flowing through Muskeget Channel has been identified by the Electric Power Research Institute as the strongest tidal resource in Massachusetts waters. The Town of Edgartown proposes to develop an initial 5 MW (nameplate) tidal energy project in Muskeget Channel. The project will consist of 14 tidal turbines with 13 providing electricity to Edgartown and one operated by the University of Massachusetts at Dartmouth for research and development. Each turbine will be 90 feet long and 50 feet high. The electricity will be brought to shore by a submarine cable buried 8 feet below the seabed surface which will landfall in Edgartown either on Chappaquiddack or at Katama. Muskeget Channel is located between Martha�¢����s Vineyard and Nantucket. Its depth ranges between 40 and 160 feet in the deepest portion. It has strong currents where water is transferred between Nantucket Sound and the Atlantic Ocean continental shelf to the south. This makes it a treacherous passage for navigation. Current users of the channel are commercial and recreational fishing, and cruising boats. The US Coast Guard has indicated that the largest vessel passing through the channel is a commercial scallop dragger with a draft of about 10 feet. The tidal resource in the channel has been measured by the University of Massachusetts-Dartmouth and the peak velocity flow is approximately 5 knots. The technology proposed is the helical Gorlov-type turbine positioned with a horizontal axis that is positively buoyant in the water column and held down by anchors. This is the same technology proposed by Ocean Renewable Power Company in the Western Passage and Cobscook Bay near Eastport Maine. The blades rotate in two directions capturing the tides energy both during flood and ebb tides. The turbines will be anchored to the bottom and suspended in the water column. Initial depth of the turbines is expected to be about 25 feet below the surface to avoid impacting navigation while also capturing the strongest currents. The Town of Edgartown was initially granted a Preliminary Permit by the Federal Energy Regulatory Commission (FERC) on March 1, 2008, and has recently received a second permit valid through August 2014. The Preliminary Permit gives Edgartown the exclusive right to apply for a power generation license for power generated from the hydrokinetic energy in the water flowing in this area. Edgartown filed a Draft Pilot License Application with FERC on February 1, 2010 and an Expanded Environmental Notification Form with the Massachusetts Environmental Policy Act (MEPA) Office at the same time. It expects to file a Final License Application in late 2013. Harris Miller Miller & Hanson (HMMH) of Burlington Massachusetts is acting as the Project Manager for the Town of Edgartown and collaborating with other partners of the project including the University of Massachusetts - Dartmouth's Marine Renewable Energy Center and the Massachusetts Clean Energy Center. HMMH was awarded a grant under the Department of Energy's Advanced Water Program to conduct marine science and hydrokinetic site-specific environmental studies for projects actively seeking a FERC License. HMMH, on behalf of the Town, is managing this comprehensive study of the marine environment in Muskeget Channel and potential impacts of the tidal project on indicator species and habitats. The University of Massachusetts School of Marine Science and Technology (SMAST) conducted oceanographic studies of tidal currents, tide level, benthic habit

  8. Benchmarks for industrial energy efficiency

    SciTech Connect (OSTI)

    Amarnath, K.R. [Electric Power Research Inst., Palo Alto, CA (United States); Kumana, J.D. [Linnhoff March, Inc., Houston, TX (United States); Shah, J.V. [Electric Power Research Inst., Pittsburgh, PA (United States). Chemicals and Petroleum Center

    1996-12-31

    What are the standards for improving energy efficiency for industries such as petroleum refining, chemicals, and glass manufacture? How can different industries in emerging markets and developing accelerate the pace of improvements? This paper discusses several case studies and experiences relating to this subject emphasizing the use of energy efficiency benchmarks. Two important benchmarks are discussed. The first is based on a track record of outstanding performers in the related industry segment; the second benchmark is based on site specific factors. Using energy use reduction targets or benchmarks, projects have been implemented in Mexico, Poland, India, Venezuela, Brazil, China, Thailand, Malaysia, Republic of South Africa and Russia. Improvements identified through these projects include a variety of recommendations. The use of oxy-fuel and electric furnaces in the glass industry in Poland; reconfiguration of process heat recovery systems for refineries in China, Malaysia, and Russia; recycling and reuse of process wastewater in Republic of South Africa; cogeneration plant in Venezuela. The paper will discuss three case studies of efforts undertaken in emerging market countries to improve energy efficiency.

  9. Industrial Energy Efficiency Projects Improve Competitiveness...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency Projects Improve Competitiveness and Protect Jobs Industrial Energy Efficiency Projects Improve Competitiveness and Protect Jobs U.S. Department of Energy (DOE)...

  10. Tidal Stream Power Web GIS Tool | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)Open Energy Information ThreeTianDiHydraulic GeneratorsPower

  11. Reservoir response to tidal and barometric effects | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewable Energy RFPsLtdEnergy PlcWorldInformation

  12. Supporting industries energy and environmental profile

    SciTech Connect (OSTI)

    None, None

    2005-09-21

    As part of its Industries of the Future strategy, the Industrial Technologies Program within the U.S. Department of Energy’s (DOE) Office of Energy Efficiency and Renewable Energy works with energy-intensive industries to improve efficiency, reduce waste, and increase productivity. These seven Industries of the Future (IOFs) – aluminum, chemicals, forest products, glass, metal casting, mining, and steel – rely on several other so-called “supporting industries” to supply materials and processes necessary to the products that the IOFs create. The supporting industries, in many cases, also provide great opportunities for realizing energy efficiency gains in IOF processes.

  13. Industrial Energy Use Indices 

    E-Print Network [OSTI]

    Hanegan, A.; Heffington, W. M.

    2007-01-01

    data and present the results of the study. ____________________________ 1 This material is based upon work supported by the Department of Energy under award numbers DE-FC36-02GO12086 and DE-FC36-06GO16067. This report was prepared based on work....04 25 0.97 1.49 0.98 26 0.46 0.56 0.53 27 1.04 0.89 1.56 28 0.65 0.74 1.13 29 2.38 1.05 2.40 30 1.15 1.01 1.60 32 0.86 1.34 0.92 33 1.03 1.01 0.99 34 1.40 1.10 1.75 35 1.08 1.07 1.03 36 1.03 0.98 1.15 37 0.90 1.08 1.07 38 2.11 2.41 1.25 39 1.12 1.36 1...

  14. Tidal disruption jets as the source of Ultra-High Energy Cosmic Rays

    E-Print Network [OSTI]

    Farrar, Glennys R

    2014-01-01

    Observations of the spectacular, blazar-like tidal disruption event (TDE) candidates Swift J1644+57 and J2058+05 show that the conditions required for accelerating protons to 10^{20} eV appear to be realized in the outer jet, and possibly in the inner jet as well. Direct and indirect estimates of the rate of jetted-TDEs, and of the energy they inject, are compatible with the observed flux of ultra-high energy cosmic rays (UHECRs) and the abundance of presently contributing sources. Thus TDE-jets can be a major source of UHECRs, even compabile with a pure proton composition.

  15. Emerging Energy-Efficient Technologies for Industry 

    E-Print Network [OSTI]

    Worrell, E.; Martin, N.; Price, L.; Ruth, M.; Elliott, N.; Shipley, A.; Thorn, J.

    2001-01-01

    consists of all industrial activity outside of agriculture, mining, and construction, accounts for 70% of industrial value added (4). In 1998, the United States consumed 94 Quadrillion Btu (99 EJ) of primary energy or 25% of world primary energy use..., mining, construction, energy intensive industries, and non-energy intensive manufacturing. Energy is necessary to help our industries create useful products; however, we are increasingly confronted with the challenge of moving society toward a...

  16. Pulse Tidal formerly Pulse Generation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLCALLETE Inc dEAPrysmian JumpOpenformerly Pulse

  17. MHK Projects/Deception Pass Tidal Energy Hydroelectric Project | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 JumpCoos Bay OPT Wave Park <Energy

  18. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    pp. IEA, 2006b: Industrial motor systems energy efficiency:industrial energy efficiency. Presented at Energy Efficiency in Motorenergy-efficient electric motors and motor-systems. These include: (1) industrial

  19. Energy Programs of the Texas Industrial Commission 

    E-Print Network [OSTI]

    Heare, J.; dePlante, L. E.

    1979-01-01

    The objectives of the Industrial Energy Conservation Program are to assist Texas industry in using energy more efficiently through seminars, workshops, technical information exchange and other supportive programs with the goal of conserving at least...

  20. Gene coding for the E1 endoglucanase - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial...

  1. Gear Trains Employing Magnetic Coupling - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial...

  2. Cellobiohydrolase I gene and improved variants - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial...

  3. SILICON NANOCRYSTAL INKS, FILMS, AND METHODS - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial...

  4. Silicon nanocrystal inks, films, and methods - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial...

  5. Reid Industries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/WaterEnergyRedfield1989) JumpLiteratureReid Industries Jump

  6. Assessing the Energy Efficiency Potential of Industrial Motor Systems

    E-Print Network [OSTI]

    McKane, Aimee

    2014-01-01

    2003. Energy-efficient motor systems in the industrial andpotential for energy efficiency in industrial motor systemspotential for energy efficiency in industrial motor systems

  7. Assessment of Energy Production Potential from Tidal Streams in the United States

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u tCorporationIt's Potential from Tidal Streams in the United

  8. Application of Industrial Heat Improving energy efficiency of

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Application of Industrial Heat Pumps Improving energy ­ efficiency of industrial processes . H Session Application of Industrial Heat Pumps Improving energy ­ efficiency of industrial processes Agency (IEA) - Agreements "Heat Pump Programme" "Industrial Energy-related Technologies and Systems #12

  9. Industrial Customer Perspectives on Utility Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Customer Perspectives on Utility Energy Efficiency Programs Industrial Customer Perspectives on Utility Energy Efficiency Programs These presentations from ATK Aerospace Systems,...

  10. Industrial Energy Audit Guidebook: Guidelines for Conducting...

    Open Energy Info (EERE)

    Lawrence Berkeley National Laboratory Sector: Energy Focus Area: Energy Efficiency, Industry Resource Type: Guidemanual Website: china.lbl.govsiteschina.lbl.gov...

  11. MIT and Energy Industries MIT Industry Brief

    E-Print Network [OSTI]

    Polz, Martin

    and demand, security and environmental impact. MITEI's interdisci- plinary research program focuses on: 1 of nanotechnology to solar and thermoelectric energy conversion. The mission of the MIT Photovoltaic Research synthesizes and characterizes commer- cial and next-generation photovoltaic materials and devices, engineering

  12. Turbulence and internal waves in tidal flow over topography

    E-Print Network [OSTI]

    Gayen, Bishakhdatta

    2012-01-01

    M. C. 2006 An estimate of tidal energy lost to turbulence atcant loss of low-mode tidal energy at 28.9 ? . Geophys. Res.of turbulent kinetic energy over a tidal cycle. Maximum T KE

  13. Dispersion and Tidal Dynamics of Channel-Shoal Estuaries

    E-Print Network [OSTI]

    Holleman, Christopher Dean

    2013-01-01

    San Pablo Bay: ? M 2 and tidal energy flux for the hNS0? M 2 and tidal energy flux for hNS0. . . . . . . . . . .areas dissipate incident tidal energy, countering the added

  14. Probing the tidal disruption flares of massive black holes with high-energy neutrinos

    E-Print Network [OSTI]

    Wang, Xiang-Yu; Dai, Zi-Gao; Cheng, K S

    2011-01-01

    The recently discovered high-energy transient Swift J164449.3+573451 (Sw J1644+57) is thought to arise from the tidal disruption of a passing star by a dormant massive black hole. Modeling of the broadband emission suggests the presence of a powerful relativistic jet, which contributes dominantly to the observed X-ray emission. Here we suggest that high energy protons accelerated by internal shocks in the jets produce ~0.1-10 PeV neutrinos through photomeson interactions with X-ray photons. The large X-ray fluence (7*10^{-4} erg cm^{-2}) and high photopion efficiency, together with the insignificant cooling of secondary mesons, result in bright neutrino emission expected from Sw J1644+57 if the jet composition is matter-dominated. One to several neutrinos may be detected by a Km^3-scale detector from one tidal disruption event similar to Sw J1644+57, thereby providing a powerful probe of the composition of the jets.

  15. Microscopic unitary description of tidal excitations in high-energy string-brane collisions

    E-Print Network [OSTI]

    Giuseppe D'Appollonio; Paolo Di Vecchia; Rodolfo Russo; Gabriele Veneziano

    2013-11-15

    The eikonal operator was originally introduced to describe the effect of tidal excitations on higher-genus elastic string amplitudes at high energy. In this paper we provide a precise interpretation for this operator through the explicit tree-level calculation of generic inelastic transitions between closed strings as they scatter off a stack of parallel Dp-branes. We perform this analysis both in the light-cone gauge, using the Green-Schwarz vertex, and in the covariant formalism, using the Reggeon vertex operator. We also present a detailed discussion of the high energy behaviour of the covariant string amplitudes, showing how to take into account the energy factors that enhance the contribution of the longitudinally polarized massive states in a simple way.

  16. Microscopic unitary description of tidal excitations in high-energy string-brane collisions

    E-Print Network [OSTI]

    D'Appollonio, Giuseppe; Vecchia, Paolo; Veneziano, Gabriele

    2013-01-01

    The eikonal operator was originally introduced to describe the effect of tidal excitations on higher-genus elastic string amplitudes at high energy. In this paper we provide a precise interpretation for this operator through the explicit tree-level calculation of generic inelastic transitions between closed strings as they scatter off a stack of parallel Dp-branes. We perform this analysis both in the light-cone gauge, using the Green-Schwarz vertex, and in the covariant formalism, using the Reggeon vertex operator. We also present a detailed discussion of the high energy behaviour of the covariant string amplitudes, showing how to take into account the energy factors that enhance the contribution of the longitudinally polarized massive states in a simple way.

  17. Pulp & Paper Industry- A Strategic Energy Review 

    E-Print Network [OSTI]

    Stapley, C. E.

    1997-01-01

    The pulp and paper industry with yearly energy purchases of $5 billion per year including 50 billion kWh of power is one of the largest industrial energy producers in the U.S. However, structural changes in the global pulp and paper industry could...

  18. Industry Professional | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8, 13 (Vt. WaterInformationPlant ServicesIndustry

  19. Shrenik Industries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo New Energy Equipment Co Ltd JumpShrenik Industries

  20. Innovative Energy Efficient Industrial Ventilation 

    E-Print Network [OSTI]

    Litomisky, A.

    2005-01-01

    This paper was written to describe an innovative “on-demand” industrial ventilation system for woodworking, metalworking, food processing, pharmaceutical, chemical, and other industries. Having analyzed existing industrial ventilation in 130...

  1. Fort Collins Utilities - Commercial and Industrial Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial and Industrial Energy Efficiency Rebate Program Fort Collins Utilities - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial...

  2. Energy Conservation in China North Industries Corporation 

    E-Print Network [OSTI]

    You, W. T.; De, C. H.; Chu, J. X.; Fu, L. R.

    1985-01-01

    IN CHINA NORTH INDUSTRIES CORPORATION Wang Tian You, Chen Hua De, Jing Xing Chu, Ling Rui Fu, China North Industries Corporation Beijing, People's Republic of China ABSTRACT This paper describes an overview of the energy conservation in China... North Industries Corporation. It shows how the corporation improves energy effi ciencies and how it changes constitution of fuel-- converting oil consumption to coal. Energy management organization, energy balance in plants and several specific...

  3. World Best Practice Energy Intensity Values for Selected Industrial Sectors

    E-Print Network [OSTI]

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

    2007-01-01

    in the Pulp and Paper Industry: An Energy Benchmarkingin the Pulp and Paper Industries. Integrated Pollutionin the Pulp and Paper Industry: An Energy Benchmarking

  4. Policy modeling for industrial energy use

    E-Print Network [OSTI]

    2003-01-01

    CO 2 Taxation in OECD . Energy Policy 29, no. 6 (2001): 489-Economic Activity. Energy Policy 6-7 28 pp.351-501 Worrell,and Paper Industry", Energy Policy, Vol. 25, Nos. 7-9, pp.

  5. Industrial energy efficiency policy in China

    E-Print Network [OSTI]

    Price, Lynn; Worrell, Ernst; Sinton, Jonathan; Yun, Jiang

    2001-01-01

    Economic Indicators," Energy Policy 25(7'-9): 727-744. X u ,Best Practice Energy Policies in the Industrial Sector, Mayand Intensity Change," Energy Policy 22(3): Sinton, J.E.

  6. Identifying Opportunities for Industrial Energy Conservation 

    E-Print Network [OSTI]

    Hoffman, A. R.

    1981-01-01

    The Energy Productivity Center of the Mellon Institute is engaged in a 2-year study to identify opportunities for improved U.S. industrial energy productivity. A distinguishing feature is the focus on energy services provided when fuels are consumed...

  7. Setting the Standard for Industrial Energy Efficiency

    E-Print Network [OSTI]

    McKane, Aimee; Williams, Robert; Perry, Wayne; Li, Tienan

    2008-01-01

    7 th European Council for an Energy Efficient Economy SummerVoluntary Agreements for Energy Efficiency or GHG EmissionsACEEE Summer Study on Energy Efficiency in Industry, West

  8. Industrial Energy Efficiency Programs: Development and Trends 

    E-Print Network [OSTI]

    Chittum, A.; Kaufman, N.; Elliot, N.

    2010-01-01

    As more states establish Energy Efficiency Resource Standards (EERS), goals for energy efficiency savings are increasing across the country. Increasingly, states are relying on their industrial energy efficiency programs to find and help implement...

  9. Energy Technical Assistance: Industrial Processes Program 

    E-Print Network [OSTI]

    McClure, J. D.

    1980-01-01

    The Energy Technical Assistance Division of Texas Engineering Extension Service (TEEX) has implemented an energy conservation program to assist small industry in using energy more efficiently. This full time service, an outgrowth of the Texas A...

  10. Emerging energy-efficient industrial technologies

    E-Print Network [OSTI]

    2000-01-01

    Heat Recovery and Energy Saving in a Bakery. ” Project No.energy in the baking industry. (Heat recovery without food contamination in a bakery. )”energy-intensive process step was used in another process step. At bakeries,

  11. Energy Intensity Indicators: Industrial Source Energy Consumption

    Office of Energy Efficiency and Renewable Energy (EERE)

    The industrial sector comprises manufacturing and other nonmanufacturing industries not included in transportation or services. Manufacturing includes 18 industry sectors, generally defined at the...

  12. Industry Leaders Saving Energy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide toIMPROVEMENT OFBarriers to Industrial EnergyTheJoshua DeLung

  13. Energy Department Announces Funding for Demonstration and Testing...

    Broader source: Energy.gov (indexed) [DOE]

    0 million to strengthen the U.S. marine and hydrokinetic (MHK) energy industry, including wave and tidal energy sources. Through the two funding opportunities announced today the...

  14. Building a State Industrial Energy Efficiency Network 

    E-Print Network [OSTI]

    Ferland, K.

    2005-01-01

    Energy Efficiency Network? Kathey Ferland Project Manager Texas Industries of the Future University of Texas at Austin (512)232-4823 or kferland@mail.utexas.edu http://TexasIOF.ces.utexas.edu Texas Industries of the Future brings the tools... industrial energy users. The presentation will cover recent activities of the program, technology highlights from a conference on NOx reduction and energy efficiency, and upcoming events. ...

  15. EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine

    Broader source: Energy.gov [DOE]

    Draft Environmental AssessmentThis EA evaluates the environmental impacts of a project that would use the tidal currents of Cobscook Bay to generate electricity via cross-flow Kinetic System turbine generator units (TGU) mounted on the seafloor. The TGUs would capture energy from the flow in both ebb and flood directions.

  16. Solar Energy Education. Industrial arts: student activities....

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    arts: student activities. Field test edition Citation Details In-Document Search Title: Solar Energy Education. Industrial arts: student activities. Field test edition You are...

  17. Electrical Energy Monitoring in an Industrial Plant 

    E-Print Network [OSTI]

    Dorhofer, F. J.; Heffington, W. M.

    1994-01-01

    INDUSTRIAL ENERGY TECHNOLOGY CONFERENCE 1994 ESL-PA-94/04-04 REPRINTED WITH PERMISSION ELECTRICAL ENERGY MONITORING IN AN INDUSTRIAL PLANT Frank J. Dorhofer and Warren M. Heffington Energy Systems Laboratory Department of Mechanical Engineering Texas A...&M University College Station, Texas ABSTRACT The Energy Systems Laboratory (ESL) at Texas A&M University is currently monitoring the electrical energy use of a metal fabrication facility in Houston, Texas. This paper deals with the installation of the data...

  18. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    increased use of biomass and energy efficiency improvements,Moreira, J. , 2006: Global biomass energy potential. Journal1971–2004 Notes 1) Biomass energy included 2) Industrial

  19. Current and future industrial energy service characterizations

    SciTech Connect (OSTI)

    Krawiec, F.; Thomas, T.; Jackson, F.; Limaye, D.R.; Isser, S.; Karnofsky, K.; Davis, T.D.

    1980-10-01

    Current and future energy demands, end uses, and cost used to characterize typical applications and resultant services in the industrial sector of the United States and 15 selected states are examined. A review and evaluation of existing industrial energy data bases was undertaken to assess their potential for supporting SERI research on: (1) market suitability analysis, (2) market development, (3) end-use matching, (3) industrial applications case studies, and (4) identification of cost and performance goals for solar systems and typical information requirements for industrial energy end use. In reviewing existing industrial energy data bases, the level of detail, disaggregation, and primary sources of information were examined. The focus was on fuels and electric energy used for heat and power purchased by the manufacturing subsector and listed by 2-, 3-, and 4-digit SIC, primary fuel, and end use. Projections of state level energy prices to 1990 are developed using the energy intensity approach. The effects of federal and state industrial energy conservation programs on future industrial sector demands were assessed. Future end-use energy requirements were developed for each 4-digit SIC industry and were grouped as follows: (1) hot water, (2) steam (212 to 300/sup 0/F, each 100/sup 0/F interval from 300 to 1000/sup 0/F, and greater than 1000/sup 0/F), and (3) hot air (100/sup 0/F intervals). Volume I details the activities performed in this effort.

  20. Developing a solar energy industry in Egypt

    E-Print Network [OSTI]

    AbdelMessih, Sherife (Sherife Mohsen)

    2009-01-01

    This paper assesses Egypt's current energy infrastructure and its problems, the available solar energy resource, and the technologies required to harness this resource. After this assessment, an industry based on high ...

  1. Effective Transfer of Industrial Energy Conservation Technologies 

    E-Print Network [OSTI]

    Clement, M.; Vallario, R. W.

    1983-01-01

    Voluntary participation in industrial energy conservation programs resulted in savings of approximately 1 million barrels of oil equivalent per day in the U.S. during 1981. These energy savings accrued largely from the ...

  2. Industrial Energy Systems Laboratory Mechanical Engineering

    E-Print Network [OSTI]

    Psaltis, Demetri

    in pulp and paper industry are insight-based approaches limited to local sections of the mill as they lack of Water and Energy (SOWE) Adapting SOWE to pulp and paper industry Conclusions Master's Thesis MAZIARIndustrial Energy Systems Laboratory School of Mechanical Engineering Ressources naturelles Canada

  3. The Texas Industrial Energy Conservation Program 

    E-Print Network [OSTI]

    Waldrop, T.

    1982-01-01

    Industry is Texas' largest consumer of energy (46+% of total). With foresight of the escalating cost of energy, it was apparent these additional costs to industry would have two adverse effects. First, the cost of their product to the consumer would...

  4. Fusion Energy An Industry-Led Initiative

    E-Print Network [OSTI]

    business not big science InternationalCompetitivenessissue - $26T/yr energy market with $300B/yr futureFusion Energy An Industry-Led Initiative September 10,1993 ATeam Effort TRW General Dynamics;Energy Supply and Needs Global per capita energy usage Global Per Capita energy usage will increase even

  5. ITP Industrial Distributed Energy: Combined Heat and Power: Effective...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ITP Industrial Distributed Energy: Combined Heat and Power: Effective Energy Solutions for a Sustainable Future ITP Industrial Distributed Energy: Combined Heat and Power:...

  6. Estimating energy-augmenting technological change in developing country industries

    E-Print Network [OSTI]

    Sanstad, Alan H.; Roy, Joyashree; Sathaye, Jayant A.

    2006-01-01

    trend due to the constant energy price bias assumption. ThisIndian industries, Energy price bias (standard error)industries, 1980–1997 Energy price bias (standard error)

  7. Energy-Efficiency Improvement Opportunities for the Textile Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2010-01-01

    temperature (and thus the best energy-efficiency) and lowBest practices/case studies - Indian Industries, Energy-Best practices/case studies - Indian Industries, Energy-

  8. Department Of Energy Offers $60 Million to Spur Industry Engagement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department Of Energy Offers 60 Million to Spur Industry Engagement in Global Nuclear Energy Partnership Department Of Energy Offers 60 Million to Spur Industry Engagement in...

  9. Estimating energy-augmenting technological change in developing country industries

    E-Print Network [OSTI]

    Sanstad, Alan H.; Roy, Joyashree; Sathaye, Jayant A.

    2006-01-01

    Productivity trends in India's energy-intensive industries,estimates. However, in India, the energy trend is negativefor several energy-intensive industries in India and South

  10. Energy-Efficiency Improvement Opportunities for the Textile Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2010-01-01

    Energy- efficient Motor Systems: A Handbook on Technology, Program, and Policy. New Energy and Industrial

  11. Industrial Utility Webinar: Opportunities for Cost-Effective Energy Efficiency in the Industrial Sector

    SciTech Connect (OSTI)

    2010-01-13

    The Industrial Utility Webinars focus on providing utilities with information on how to develop sucessful energy efficeincy programs for industrial energy consumers.

  12. Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms

    E-Print Network [OSTI]

    Lewis, Joanna; Wiser, Ryan

    2005-01-01

    Renewable Energy. Renewable Energy Policy Project ResearchIndustrial Policy and Renewable Energy Technology.Development of Renewable Energy. Energy Policy, 31, 799-812.

  13. Otter Tail Power Company - Commercial & Industrial Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rebate Program Otter Tail Power Company - Commercial & Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Agricultural Savings Category Geothermal...

  14. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    specified in the ‘Energy Technology List’ during the yearenergy consumers in the chemical industry, and list examples of technology

  15. Process modeling and industrial energy use

    SciTech Connect (OSTI)

    Howe, S O; Pilati, D A; Sparrow, F T

    1980-11-01

    How the process models developed at BNL are used to analyze industrial energy use is described and illustrated. Following a brief overview of the industry modeling program, the general methodology of process modeling is discussed. The discussion highlights the important concepts, contents, inputs, and outputs of a typical process model. A model of the US pulp and paper industry is then discussed as a specific application of process modeling methodology. Case study results from the pulp and paper model illustrate how process models can be used to analyze a variety of issues. Applications addressed with the case study results include projections of energy demand, conservation technology assessment, energy-related tax policies, and sensitivity analysis. A subsequent discussion of these results supports the conclusion that industry process models are versatile and powerful tools for energy end-use modeling and conservation analysis. Information on the current status of industry models at BNL is tabulated.

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Industrial Savings Category: Solar Photovoltaics, Wind (All), Biomass, Landfill Gas, Tidal, Wave, Lighting, Furnaces, Boilers, Air conditioners, Energy Mgmt. SystemsBuilding...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tidal Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Property Tax Exemption for Renewable Energy Systems Beginning in October 2014, commercial and industrial...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Waste, Landfill Gas, Tidal, Wave, Ocean Thermal, Wind (Small), Anaerobic Digestion Tacoma Power- Commercial and Industrial Energy Efficiency Rebate Programs Tacoma Power's New...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Gas, Tidal, Wave, Ocean Thermal, Wind (Small) Property Tax Exemption for Renewable Energy Systems Beginning in October 2014, commercial and industrial systems (meeting the same...

  20. Energy Department Partners with Industry to Train Federal Energy...

    Energy Savers [EERE]

    of Energy Finalizes Regulations to Increase Energy Efficiency in New Federal Buildings by 30% Department of Energy Awards 2.2 Million to Save Energy in the Pulp and Paper Industry...

  1. The Role of Thermal Energy Storage in Industrial Energy Conservation 

    E-Print Network [OSTI]

    Duscha, R. A.; Masica, W. J.

    1979-01-01

    Thermal Energy Storage for Industrial Applications is a major thrust of the Department of Energy's Thermal Energy Storage Program. Utilizing Thermal Energy Storage (TES) with process or reject heat recovery systems has been shown to be extremely...

  2. Industrial energy-efficiency-improvement program

    SciTech Connect (OSTI)

    Not Available

    1980-12-01

    Progress made by industry toward attaining the voluntary 1980 energy efficiency improvement targets is reported. The mandatory reporting population has been expanded from ten original industries to include ten additional non-targeted industries and all corporations using over one trillion Btu's annually in any manufacturing industry. The ten most energy intensive industries have been involved in the reporting program since the signing of the Energy Policy and Conservation Act and as industrial energy efficiency improvement overview, based primarily on information from these industries (chemicals and allied products; primary metal industry; petroleum and coal products; stone, clay, and glass products; paper and allied products; food and kindred products; fabricated metal products; transportation equipment; machinery, except electrical; and textile mill products), is presented. Reports from industries, now required to report, are included for rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products. Additional data from voluntary submissions are included for American Gas Association; American Hotel and Motel Association; General Telephone and Electronics Corporation; and American Telephone and Telegraph Company. (MCW)

  3. Lean Analysis of Industrial Energy Assessment 

    E-Print Network [OSTI]

    Viera, R. J.; Lee, J.; McInerny, S.

    2015-01-01

    Energy Assessments Raul Viera, Jim Lee, Sally Ann McInerny, and Zahra Sardoueinasab Mechanical Engineering University of Louisiana at Lafayette IETC Conference June 2015 ESL-IE-15-06-19 Proceedings of the Thrity-Seventh Industrial Energy Technology... Conference New Orleans, LA. June 2-4, 2015 Research for a reason. LOUISIANA SMART AND SECURE ENERGY LABORATORY (LASSEL) Replacement to Louisiana Industrial Assessment Center (LIAC): • LIAC at UL Lafayette from1999-2012, Funded by the DOE • Last year...

  4. Energy Industry Days- Performance Contracting- Sacramento, CA

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy is hosting several Energy Industry Day events to promote and publicize opportunities for small businesses seeking to meet DOE support requirements. Opportunities will be available for attendees to learn of potential partnerships with prime and subcontracting companies. These Energy Industry Day events would both support the agency's commitment to DOE's "Small Business First Policy" and would provide dedicated sessions that introduce Energy Service Companies (ESCOs) and other prime contract holders with small business.

  5. Energy efficient industrialized housing research program

    SciTech Connect (OSTI)

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; Mc Donald, M.; McGinn, B.; Ryan, P.; Sekiguchi, T. . Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Maxwell, L.; Roland, J.; Swart, W. )

    1989-01-01

    This is the second volume of a two volume report on energy efficient industrialized housing. Volume II contains support documentation for Volume I. The following items are included: individual trip reports; software bibliography; industry contacts in the US, Denmark, and Japan; Cost comparison of industrialized housing in the US and Denmark; draft of the final report on the systems analysis for Fleetwood Mobile Home Manufacturers. (SM)

  6. Industrial Energy Auditing: An Opportunity for Improving Energy Efficiency and Industrial Competitiveness 

    E-Print Network [OSTI]

    Glaser, C.

    1992-01-01

    AUDITING: AN OPPORTUNITY FOR IMPROVING ENERGY EFFICIENCY AND INDUSTRIAL COMPETITIVENESS CHARLES GLASER, PROGRAM MANAGER, IMPLEMENTATION AND DEPLOYMENT DIVISION OFFICE OF INDUSTRIAL TECHNOLOGIES, U.S. DEPARTMENT OF ENERGY, WASHINGTON, D.C. ABSTRACT..., economically sou environmentally sustainable fut wareness at nal Energy g 1991, has ficiency 1 in building nd, and ure ( I} ? The U.S. Department of Energy (DOE ) , Office of Industrial Technologies (OIT), number of programs that are all goals...

  7. Industry Perspective | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIAL TECHNICAL ASSISTANCE Supports the deployment ofIndustry

  8. Thinking Globally: How ISO 50001 - Energy Management can make industrial energy efficiency standard practice

    E-Print Network [OSTI]

    McKane, Aimee

    2010-01-01

    Tracking Industrial Energy Efficiency and CO2 Emissions: Aapplication of Energy Efficiency in Industry, Vienna,for Promoting Industrial Energy Efficiency in Developing

  9. 1 | September 2013 | des courantsWave energyTidal turbines

    E-Print Network [OSTI]

    element in making OTEC a turnkey industrial reality. Energy production depends on both instantaneous and titanium tubes heat exchangers - Turbo expander ammonia with asynchronous generator - Not submerged centrifugal chopper seawater pumps with low speed (about 300 rpm) - Efficient system against biofouling OTEC

  10. ENERGY EFFICIENCY OPPORTUNITIES IN THE U.S. PULP AND PAPER INDUSTRY

    E-Print Network [OSTI]

    Kramer, Klaas Jan

    2010-01-01

    Efficiency and Renewable Energy, Industrial TechnologiesEfficiency and Renewable Energy, Industrial TechnologiesEfficiency and Renewable Energy, Industrial Technologies

  11. Solar Industry Scorches Records | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Records Solar Industry Scorches Records March 6, 2014 - 5:24pm Addthis Workers install a solar energy system on the rooftop of a home in Golden, Colorado. More than 4,751...

  12. DOE Announces First Companies to Receive Industrial Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Announces First Companies to Receive Industrial Energy Efficiency Certification DOE Announces First Companies to Receive Industrial Energy Efficiency Certification December 9,...

  13. EIS-0412: TX Energy, LLC, Industrial Gasification Facility Near...

    Office of Environmental Management (EM)

    2: TX Energy, LLC, Industrial Gasification Facility Near Beaumont, TX EIS-0412: TX Energy, LLC, Industrial Gasification Facility Near Beaumont, TX February 18, 2009 EIS-0412:...

  14. Energy Storage Solutions Industrial Symposium | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Solutions Industrial Symposium Sep 04 2013 09:00 AM - 05:30 PM Energy Storage Solutions Industrial Symposium - Wednesday September 4, 2013 CONTACT : Email: Phone:...

  15. ITP Industrial Distributed Energy: Combined Heat and Power -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ITP Industrial Distributed Energy: Combined Heat and Power - A Decade of Progress, A Vision for the Future ITP Industrial Distributed Energy: Combined Heat and Power - A Decade of...

  16. Government and Industry A Force for Collaboration at the Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Government and Industry A Force for Collaboration at the Energy Roadmap Update Workshop Government and Industry A Force for Collaboration at the Energy Roadmap Update Workshop...

  17. Guangdong Nuclear Power and New Energy Industrial Investment...

    Open Energy Info (EERE)

    Nuclear Power and New Energy Industrial Investment Fund Management Company Jump to: navigation, search Name: Guangdong Nuclear Power and New Energy Industrial Investment Fund...

  18. Energy efficient industrialized housing research program

    SciTech Connect (OSTI)

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko . Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Mazwell, L.; Roland, J.; Swart, W. )

    1989-12-01

    This document describes the research work completed in five areas in fiscal year 1989. (1) The analysis of the US industrialized housing industry includes statistics, definitions, a case study, and a code analysis. (2) The assessment of foreign technology reviews the current status of design, manufacturing, marketing, and installation of industrialized housing primarily in Sweden and Japan. (3) Assessment of industrialization applications reviews housing production by climate zone, has a cost and energy comparison of Swedish and US housing, and discusses future manufacturing processes and emerging components. (4) The state of computer use in the industry is described and a prototype design tool is discussed. (5) Side by side testing of industrialized housing systems is discussed.

  19. Energy Responsibility Accounting - An Energy Conservation Tool for Industrial Facilities 

    E-Print Network [OSTI]

    Kelly, R. L.

    1980-01-01

    As energy costs continue to rise faster than the rate of inflation, industrial energy management becomes a more important issue in the control of manufacturing costs. Energy Responsibility Accounting (ERA) is a tool which improves management...

  20. Financing of Industrial Energy Efficiency Through State Energy Offices 

    E-Print Network [OSTI]

    Elliott, R. N.; Weidenbaum, A.

    1994-01-01

    The New York State Energy Office Energy Investment Loan Program has a uniquely successful track record on financing industrial energy efficiency projects. The program is conducted in cooperation with 105 financial institutions in New York State...

  1. Energy efficient industrialized housing research program

    SciTech Connect (OSTI)

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko . Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Maxwell, L.; Roland, J.; Swart, W. )

    1990-02-01

    This report summarizes three documents: Multiyear Research Plan, Volume I FY 1989 Task Reports, and Volume II Appendices. These documents describe tasks that were undertaken from November 1988 to December 1989, the first year of the project. Those tasks were: (1) the formation of a steering committee, (2) the development of a multiyear research plan, (3) analysis of the US industrialized housing industry, (4) assessment of foreign technology, (5) assessment of industrial applications, (6) analysis of computerized design and evaluation tools, and (7) assessment of energy performance of baseline and advanced industrialized housing concepts. While this document summarizes information developed in each task area, it doesn't review task by task, as Volume I FY 1989 Task Reports does, but rather treats the subject of energy efficient industrialized housing as a whole to give the reader a more coherent view. 7 figs., 9 refs.

  2. Comprehensive Energy Efficiency in the Process Industries 

    E-Print Network [OSTI]

    Rossiter, A.

    2015-01-01

    Efficiency in the Process Industries Alan Rossiter Rossiter & Associates alan@rossiters.org Beth Jones LyondellBasell (ret) ESL-IE-15-06-15a Proceedings of the Thrity-Seventh Industrial Energy Technology Conference New Orleans, LA. June 2-4, 2015 The Main.... June 2-4, 2015 Keys to Improvement •Behavioral changes ? people and organizations ? no-cost savings •Process improvements ? typically capital projects ESL-IE-15-06-15a Proceedings of the Thrity-Seventh Industrial Energy Technology Conference New Orleans...

  3. Effects of Tidal Turbine Noise on Fish Hearing and Tissues - Draft Final Report - Environmental Effects of Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    Halvorsen, Michele B.; Carlson, Thomas J.; Copping, Andrea E.

    2011-09-30

    Snohomish Public Utility District No.1 plans to deploy two 6 meter OpenHydro tidal turbines in Admiralty Inlet in Puget Sound, under a FERC pilot permitting process. Regulators and stakeholders have raised questions about the potential effect of noise from the turbines on marine life. Noise in the aquatic environment is known to be a stressor to many types of aquatic life, including marine mammals, fish and birds. Marine mammals and birds are exceptionally difficult to work with for technical and regulatory reasons. Fish have been used as surrogates for other aquatic organisms as they have similar auditory structures. This project was funded under the FY09 Funding Opportunity Announcement (FOA) to Snohomish PUD, in partnership with the University of Washington - Northwest National Marine Renewable Energy Center, the Sea Mammal Research Unit, and Pacific Northwest National Laboratory. The results of this study will inform the larger research project outcomes. Proposed tidal turbine deployments in coastal waters are likely to propagate noise into nearby waters, potentially causing stress to native organisms. For this set of experiments, juvenile Chinook salmon (Oncorhynchus tshawytscha) were used as the experimental model. Plans exist for prototype tidal turbines to be deployed into their habitat. Noise is known to affect fish in many ways, such as causing a threshold shift in auditory sensitivity or tissue damage. The characteristics of noise, its spectra and level, are important factors that influence the potential for the noise to injure fish. For example, the frequency range of the tidal turbine noise includes the audiogram (frequency range of hearing) of most fish. This study was performed during FY 2011 to determine if noise generated by a 6-m diameter OpenHydro turbine might affect juvenile Chinook salmon hearing or cause barotrauma. Naturally spawning stocks of Chinook salmon that utilize Puget Sound are listed as threatened (http://www.nwr.noaa.gov/ESA-Salmon-Listings/Salmon-Populations/Chinook/CKPUG.cfm); the fish used in this experiment were hatchery raised and their populations are not in danger of depletion. After they were exposed to simulated tidal turbine noise, the hearing of juvenile Chinook salmon was measured and necropsies performed to check for tissue damage. Experimental groups were (1) noise exposed, (2) control (the same handling as treatment fish but without exposure to tidal turbine noise), and (3) baseline (never handled). Experimental results indicate that non-lethal, low levels of tissue damage may have occurred but that there were no effects of noise exposure on the auditory systems of the test fish.

  4. Energy Efficiency Programs for Small and Medium Sized Industry 

    E-Print Network [OSTI]

    Shipley, A. M.; Elliott, R. N.

    2001-01-01

    Abundant, low-cost energy efficiency opportunities exist in industries with a high representation of small and medium-sized manufacturers. Small industrial facilities with fewer than 250 employees consume 25% of all industrial energy. Designing...

  5. Financing the growth of energy efficiency service industry in Shanghai

    E-Print Network [OSTI]

    Lin, Jiang; Gilligan, Donald; Zhao, Yinghua

    2005-01-01

    capacity to use to finance an energy-saving project. Becausefinance for other reasons. Industrial customers typically expected a very short payback on energyfinance industrial and commercial projects. The resistance of commercial and industrial customers to implementing energy

  6. World Best Practice Energy Intensity Values for Selected Industrial Sectors

    E-Print Network [OSTI]

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

    2007-01-01

    Cost Reduction in the Pulp and Paper Industry: An EnergyTechniques in the Pulp and Paper Industries. IntegratedCost Reduction in the Pulp and Paper Industry: An Energy

  7. Industrial Compressed Air System Energy Efficiency Guidebook.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1993-12-01

    Energy efficient design, operation and maintenance of compressed air systems in industrial plants can provide substantial reductions in electric power and other operational costs. This guidebook will help identify cost effective, energy efficiency opportunities in compressed air system design, re-design, operation and maintenance. The guidebook provides: (1) a broad overview of industrial compressed air systems, (2) methods for estimating compressed air consumption and projected air savings, (3) a description of applicable, generic energy conservation measures, and, (4) a review of some compressed air system demonstration projects that have taken place over the last two years. The primary audience for this guidebook includes plant maintenance supervisors, plant engineers, plant managers and others interested in energy management of industrial compressed air systems.

  8. Mechanical Engineering Industrial Energy Systems Laboratory

    E-Print Network [OSTI]

    Candea, George

    's operation consists of two succeeding cycles, heat-pump and thermal- engine which represents the chargingSchool of Mechanical Engineering Industrial Energy Systems Laboratory Study of the Integration of District Heating and Cooling with an Electro-Thermal Energy Storage System Master Thesis ANURAG KUMAR

  9. Energy Flow Models for the Steel Industry 

    E-Print Network [OSTI]

    Hyman, B.; Andersen, J. P.

    1998-01-01

    Energy patterns in the U. S. steel industry are examined using several models. First is an end-use model based on data in the 1994 Manufacturing Energy Consumption Survey (MECS). Then a seven-step process model is presented and material flow through...

  10. Integrated Systems Plus Principles Approach to Industrial Energy Efficiency

    E-Print Network [OSTI]

    Kissock, Kelly

    Integrated Systems Plus Principles Approach to Industrial Energy Efficiency Tim Raffio, Hang Zhang the environmental impacts of energy use drive improvements in manufacturing energy efficiency. This paper presents a systematic approach for improving industrial energy efficiency that breaks complicated manufacturing

  11. Motech Industries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, searchsource History ViewMoeOhio:LightNewIndustries Jump

  12. Despatch Industries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavy Electricals Ltd BHELEuropeLage LandenDespatch Industries Jump

  13. Constraining the High-Density Behavior of Nuclear Symmetry Energy with the Tidal Polarizability of Neutron Stars

    E-Print Network [OSTI]

    F. J. Fattoyev; J. Carvajal; W. G. Newton; Bao-An Li

    2012-10-12

    Using a set of model equations of state satisfying the latest constraints from both terrestrial nuclear experiments and astrophysical observations as well as state-of-the-art nuclear many-body calculations of the pure neutron matter equation of state, the tidal polarizability of canonical neutron stars in coalescing binaries is found to be a very sensitive probe of the high-density behavior of nuclear symmetry energy which is among the most uncertain properties of dense neutron-rich nucleonic matter. Moreover, it changes less than $\\pm 10%$ by varying various properties of symmetric nuclear matter and symmetry energy around the saturation density within their respective ranges of remaining uncertainty.

  14. Constraining the High-Density Behavior of Nuclear Symmetry Energy with the Tidal Polarizability of Neutron Stars

    E-Print Network [OSTI]

    Fattoyev, F J; Newton, W G; Li, Bao-An

    2012-01-01

    Using a set of model equations of state satisfying the latest constraints from both terrestrial nuclear experiments and astrophysical observations as well as state-of-the-art nuclear many-body calculations of the pure neutron matter equation of state, the tidal polarizability of canonical neutron stars in coalescing binaries is found to be a very sensitive probe of the high-density behavior of nuclear symmetry energy which is among the most uncertain properties of dense neutron-rich nucleonic matter. Moreover, it changes less than $\\pm 10%$ by varying various properties of symmetric nuclear matter and symmetry energy around the saturation density within their respective ranges of remaining uncertainty.

  15. MHK Projects/Homeowner Tidal Power Elec Gen | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 JumpCoos Bay OPTHalf Moon Cove TidalTidal

  16. California Industrial Energy Efficiency Potential

    E-Print Network [OSTI]

    Coito, Fred; Worrell, Ernst; Price, Lynn; Masanet, Eric; Rafael Friedmann; Rufo, Mike

    2005-01-01

    Bakery - Process (Mixing) - O&M O&M / Drives Spinning Machines O&M - Extruders/Injection Molding All Power recovery Energy

  17. Technologies and Policies to Improve Energy Efficiency in Industry

    E-Print Network [OSTI]

    Price, Lynn

    2008-01-01

    Industrial Technologies Program provides many software tools for assessing energy efficiency of motors,

  18. Technologies and Policies to Improve Energy Efficiency in Industry

    E-Print Network [OSTI]

    Price, Lynn

    2008-01-01

    implementation of energy-efficiency and greenhouse gasWorking Group on Energy-Efficiency and Clean EnergyTracking Industrial Energy Efficiency and CO2 Emissions.

  19. Wind and tidal response of a semi-enclosed bay, Bahía Concepción, Baja California

    E-Print Network [OSTI]

    Ponte, Aurélien L. S.

    2009-01-01

    J. H. , 1973: Tidal patterns and energy balance in the GulfTable 4.1). Because the tidal energy is similar between boththe mouth. Some energy is captured by the tidal analysis at

  20. Ocean Tidal Dissipation and its Role in Solar System Satellite Evolution

    E-Print Network [OSTI]

    Chen, Erinna

    2013-01-01

    Significant dissipation of tidal energy in the deep ocean2001. Estimates of M 2 tidal energy dissipation from TOPEX/e.g. the ocean kinetic energy and tidal dissipation, using a

  1. Snacktime for Hungry Black Holes: Theoretical Studies of the Tidal Disruption of Stars

    E-Print Network [OSTI]

    Strubbe, Linda Elisabeth

    2011-01-01

    tidal disruption rate as a function of pericenter distance at various energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Tidal disruption rate as a function of pericenter distance at various energies2.5: Spectral energy distributions for tidal flares around a

  2. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01

    Pharmaceutical Industry .17 5.1 Energy Managementthe U.S. pharmaceutical industry. General Energy managementpharmaceutical industry. A focused and strategic energy management

  3. Student Trainee (Energy Industry Analyst)

    Broader source: Energy.gov [DOE]

    Are you seeking challenging assignments working for a dynamic agency while gaining real-world experience? We are looking for the best and brightest to help us shape the future of the energy...

  4. Energy Conservation Through Improved Industrial Ventilation in Small and Medium-Sized Industrial Plants 

    E-Print Network [OSTI]

    Saman, N. F.; Nutter, D. W.

    1994-01-01

    INDUSTRIAL ENERGY TECHNOLOGY CONFERENCE 1994 ESL-PA-94/04-03 REPRINTED WITH PERMISSION ENERGY CONSERVATION THROUGH IMPROVED INDUSTRIAL VENTILATION IN SMALL AND MEDIUM-SIZED INDUSTRIAL PLANTS Namir Saman, Ph.D., P.E. Visiting Assistant Professor Energy System... Laboratory Texas A&M University ABSTRACT This paper discusses energy conservation projects in the area of industrial ventilation that have been recommended by the Texas A&M University Energy Analysis and Diagnostic Center (EADQ to small and medium...

  5. Emerging energy-efficient industrial technologies

    SciTech Connect (OSTI)

    Martin, N.; Worrell, E.; Ruth, M.; Price, L.; Elliott, R.N.; Shipley, A.M.; Thorne, J.

    2000-10-01

    U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, industry is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology will be essential for meeting these challenges. At some point, businesses are faced with investment in new capital stock. At this decision point, new and emerging technologies compete for capital investment alongside more established or mature technologies. Understanding the dynamics of the decision-making process is important to perceive what drives technology change and the overall effect on industrial energy use. The assessment of emerging energy-efficient industrial technologies can be useful for: (1) identifying R&D projects; (2) identifying potential technologies for market transformation activities; (3) providing common information on technologies to a broad audience of policy-makers; and (4) offering new insights into technology development and energy efficiency potentials. With the support of PG&E Co., NYSERDA, DOE, EPA, NEEA, and the Iowa Energy Center, staff from LBNL and ACEEE produced this assessment of emerging energy-efficient industrial technologies. The goal was to collect information on a broad array of potentially significant emerging energy-efficient industrial technologies and carefully characterize a sub-group of approximately 50 key technologies. Our use of the term ''emerging'' denotes technologies that are both pre-commercial but near commercialization, and technologies that have already entered the market but have less than 5 percent of current market share. We also have chosen technologies that are energy-efficient (i.e., use less energy than existing technologies and practices to produce the same product), and may have additional ''non-energy benefits.'' These benefits are as important (if not more important in many cases) in influencing the decision on whether to adopt an emerging technology. The technologies were characterized with respect to energy efficiency, economics, and environmental performance. The results demonstrate that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. We show that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity and worker safety, and reduced capital costs.

  6. Emerging Energy-Efficient Technologies for Industry

    SciTech Connect (OSTI)

    Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliot, Neal; Shipley, Anna; Thorn, Jennifer

    2005-05-05

    U.S. industry consumes approximately 37 percent of thenation's energy to produce 24 percent of the nation's GDP. Increasingly,society is confronted with the challenge of moving toward a cleaner, moresustainable path of production and consumption, while increasing globalcompetitiveness. Technology is essential in achieving these challenges.We report on a recent analysis of emerging energy-efficient technologiesfor industry, focusing on over 50 selected technologies. The technologiesare characterized with respect to energy efficiency, economics andenvironmental performance. This paper provides an overview of theresults, demonstrating that we are not running out of technologies toimprove energy efficiency, economic and environmental performance, andneither will we in the future. The study shows that many of thetechnologies have important non-energy benefits, ranging from reducedenvironmental impact to improved productivity, and reduced capital costscompared to current technologies.

  7. The US textile industry: An energy perspective

    SciTech Connect (OSTI)

    Badin, J. S.; Lowitt, H. E.

    1988-01-01

    This report investigates the state of the US textile industry in terms of energy consumption and conservation. Specific objectives were: To update and verify energy and materials consumption data at the various process levels in 1984; to determine the potential energy savings attainable with current (1984), state-of-the-art, and future production practices and technologies (2010); and to identify new areas of research and development opportunity that will enable these potential future savings to be achieved. Results of this study concluded that in the year 2010, there is a potential to save between 34% and 53% of the energy used in current production practices, dependent on the projected technology mix. RandD needs and opportunities were identified for the industry in three categories: process modification, basic research, and improved housekeeping practices that reduce energy consumption. Potential RandD candidates for DOE involvement with the private sector were assessed and selected from the identified list.

  8. Jax Industries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8,OpenKentucky: EnergyFacilityIllinois:SouthLLCJavaJax

  9. Industrial Energy Audit Guidebook: Guidelines for Conducting an Energy Audit in Industrial Facilities

    SciTech Connect (OSTI)

    Hasanbeigi, Ali; Price, Lynn

    2010-10-07

    Various studies in different countries have shown that significant energy-efficiency improvement opportunities exist in the industrial sector, many of which are cost-effective. These energy-efficiency options include both cross-cutting as well as sector-specific measures. However, industrial plants are not always aware of energy-efficiency improvement potentials. Conducting an energy audit is one of the first steps in identifying these potentials. Even so, many plants do not have the capacity to conduct an effective energy audit. In some countries, government policies and programs aim to assist industry to improve competitiveness through increased energy efficiency. However, usually only limited technical and financial resources for improving energy efficiency are available, especially for small and medium-sized enterprises. Information on energy auditing and practices should, therefore, be prepared and disseminated to industrial plants. This guidebook provides guidelines for energy auditors regarding the key elements for preparing for an energy audit, conducting an inventory and measuring energy use, analyzing energy bills, benchmarking, analyzing energy use patterns, identifying energy-efficiency opportunities, conducting cost-benefit analysis, preparing energy audit reports, and undertaking post-audit activities. The purpose of this guidebook is to assist energy auditors and engineers in the plant to conduct a well-structured and effective energy audit.

  10. Oklahoma Industrial Energy Management Program 

    E-Print Network [OSTI]

    Turner, W. C.; Estes, C. B.

    1982-01-01

    definitions were given (BTU, Therm, etc.), along with the basic laws of thermodYnamics. Then, some conversion figures were given to compare var ious forms of energy. Finally, a brief tutorial on meter reading, demand charge, power factor, and other...

  11. Advanced, Energy-Efficient Hybrid Membrane System for Industrial...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced, Energy- Efficient Hybrid Membrane System for Industrial Water Reuse New Hybrid Membrane System Utilizes Industrial Waste Heat to Power Water Purification Process As...

  12. Energy Department Partners with State, City and Industry Stakeholders...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State, City and Industry Stakeholders to Help Hoboken Region Improve Its Electric Grid in the Aftermath of Hurricane Sandy Energy Department Partners with State, City and Industry...

  13. Sandia Energy - Brayton Cycle Workshop and Industry Day

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brayton Cycle Workshop and Industry Day Home Stationary Power Nuclear Fuel Cycle Nuclear Energy Workshops Brayton Cycle Workshop and Industry Day Brayton Cycle Workshop and...

  14. ITP Industrial Distributed Energy: Distributed Energy Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with Onsite Energy: CHP System Provides Reliable Energy for a Verizon Telecommunications Switching Center csverizon.pdf More Documents & Publications Case Study: Fuel Cells...

  15. Greenline Industries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County,Solar Jump to: navigation, Logo: Greenlight EnergyGreenline

  16. Ventower Industries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo New EnergyWind PowerUnisonEnergia eVentower

  17. Benteler Industries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation BeaufortBent County, Colorado: Energy Resources Jump to:Benteler

  18. Guardian Industries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energy Resources Jump to: navigation, search

  19. Energy Efficiency in the Microelectronics Industry 

    E-Print Network [OSTI]

    Bhatti, B.

    1998-01-01

    Distnbution and how a system approach to understanding these can result in developing energy efficient sites for this industry. OVERVIEW Almost all sites trend and trdck their electric demand KW and KWH profile along with their electric utility bill... selected buildings with utility rdtes and air and plant system simulated data generdting a variety of outputs to display total energy use information. We will use this to generdte KW, KWH profIles and then component annual electric costs. igure 3...

  20. Fact Sheet INDUSTRIAL SUPERIOR ENERGY PERFORMANCE (SEP) RATEPAYER...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INDUSTRIAL SUPERIOR ENERGY PERFORMANCE (SEP) RATEPAYER-FUNDED ACCELERATOR Learn more at energy.govbetterbuildings What Is Strategic Energy Management (SEM)? Many companies use...

  1. Value Capture in the Global Wind Energy Industry

    E-Print Network [OSTI]

    Dedrick, Jason; Kraemer, Kenneth L.

    2011-01-01

    investigations/wind-energy-funds-going-overseas/ Dedrick,America. GWEC (Global Wind Energy Council) (2010). Globaland investment flows in the wind energy industry. Peterson

  2. Energy Efficiency Improvement Opportunities for the Cement Industry

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01

    Lime Institute. 2001. Energy Efficiency Opportunity Guide inIndustry, Office of Energy Efficiency, Natural Resourcesof a Cement Kiln, Energy Efficiency Demonstration Scheme,

  3. General relativistic tidal heating for Moller pseudotensor

    E-Print Network [OSTI]

    Lau Loi So

    2015-09-30

    Thorne elucidated that the relativistic tidal heating is the same as the Newtonian theory. Moreover, Thorne also claimed that the tidal heating is independent of how one localizes gravitational energy and is unambiguously given by a certain formula. Purdue and Favata calculated the tidal heating for different classical pseudotensors including Moller and obtained the results all matched with the Newtonian perspective. After re-examined this Moller pseudotensor, we find that there does not exist any tidal heating value. Thus we claim that the relativistic tidal heating is pseudotensor independent under the condition that if the peusdotensor is a Freud typed superpotential.

  4. General relativistic tidal heating for Moller pseudotensor

    E-Print Network [OSTI]

    So, Lau Loi

    2015-01-01

    Thorne elucidated that the relativistic tidal heating is the same as the Newtonian theory. Moreover, Thorne also claimed that the tidal heating is independent of how one localizes gravitational energy and is unambiguously given by a certain formula. Purdue and Favata calculated the tidal heating for different classical pseudotensors including Moller and obtained the results all matched with the Newtonian perspective. After re-examined this Moller pseudotensor, we find that there does not exist any tidal heating value. Thus we claim that the relativistic tidal heating is pseudotensor independent under the condition that if the peusdotensor is a Freud typed superpotential.

  5. Setting the Standard for Industrial Energy Efficiency

    SciTech Connect (OSTI)

    McKane, Aimee; Williams, Robert; Perry, Wayne; Li, Tienan

    2007-06-01

    Industrial motor-driven systems use more than 2194 billionkWh annually on a global basis and offer one of the largest opportunitiesfor energy savings.1 The International Energy Agency estimates thatoptimization of motor driven systems could reduce global electricitydemand by 7 percent through the application of commercially availabletechnologies and using well-tested engineering practices. Yet manyindustrial firms remain either unaware of or unable to achieve theseenergy savings. The same factors that make it so challenging to achieveand sustain energy efficiency in motor-driven systems (complexity,frequent changes) apply to the production processes that they support.Yet production processes typically operate within a narrow band ofacceptable performance. These processes are frequently incorporated intoISO 9000/14000 quality and environmental management systems, whichrequire regular, independent audits to maintain ISO certification, anattractive value for international trade. It is our contention that acritical step in achieving and sustaining energy efficiency ofmotor-driven systems specifically, and industrial energy efficiencygenerally, is the adoption of a corporate energy management standard thatis consistent with current industrial quality and environmentalmanagement systems such as ISO. Several energy management standardscurrently exist (US, Denmark, Ireland, Sweden) and specifications(Germany, Netherlands) others are planned (China, Spain, Brazil, Korea).This paper presents the current status of energy management standardsdevelopment internationally, including an analysis of their sharedfeatures and differences, in terms of content, promulgation, andimplementation. The purpose of the analysis is to describe the currentstate of "best practices" for this emerging area of energy efficiencypolicymaking and tosuggest next steps toward the creation of a trulyinternational energy management standard that is consistent with the ISOprinciples of measurement, documentation, and continuousimprovement.

  6. Industrial Energy Efficiency Assessments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingREnergyDepartment|ReserveofIndustrial

  7. Reduce NOx and Improve Energy Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01

    This fact sheet describes how the Industrial Technologies Program NOx and Energy Assessment Tool (NxEAT) can help petroleum refining and chemical plants improve energy efficiency.

  8. Acoustic Effects of Hydrokinetic Tidal Turbines

    SciTech Connect (OSTI)

    Polagye, Brian

    2011-11-01

    This presentation from the Water Peer Review highlights one of the program's marine and hyrokinetics environmental projects to determine the likely acoustic effects from a tidal energy device.

  9. Energy Analysis and Diagnostics Data Analysis From Industrial Energy Assessments for Manufacturing Industries 

    E-Print Network [OSTI]

    Gopalakrishnan, B.; Plummer, R. W.; Srinath, S.; Meffe, C. M.; Ipe, J. J.; Veena, R.

    1997-01-01

    m fil o N (") QFORSIC32 Figure 6. Energy consumption for SIC 32 SIC 35 type of industry, which is associated with machinery manufacture. This is probably due to the need for adequate lighting for precision inspection and the possibility...

  10. Characterization of mean velocity and flow structures in rivers and tidal flow is crucial for the annual energy production estimation and

    E-Print Network [OSTI]

    Siefert, Chris

    · Characterization of mean velocity and flow structures in rivers and tidal flow is crucial for the annual energy production estimation and structural design of MHK devices. · ADCP moving vessel. FV data This research was funded by the U.S. Department of Energy under Contract DE-AC05-00OR22725. 5

  11. Changing Industrial Energy Behavior Via Education: Case Study of an Energy Efficiency Refrigeration Certification

    E-Print Network [OSTI]

    McClaren, Mersiha; Phoutrides, Steve; O'Neil, Nick; McRae, Marjorie

    2015-01-01

    Changing Industrial Energy Behavior Via Education: Casewith the operation of industrial refrigeration plants,aim was to encourage industrial refrigeration professionals

  12. Industrial Energy Use and Energy Efficiency in Developing Countries 

    E-Print Network [OSTI]

    Price, L.; Martin, N.; Levine, M. D.; Worrell, E.

    1996-01-01

    The industrial sector accounts for over 50% of energy used in developing countries. Growth in this sector has been over 4.5% per year since 1980. Energy intensity trends for four energy-intensive sub-sectors (iron and steel, chemicals, building...

  13. Riverland Energy Cooperative - Commercial and Industrial Energy...

    Broader source: Energy.gov (indexed) [DOE]

    units, and agricultural equipment. All rebates except for the lighting rebates require load management control. Rebates also exist for home energy audits, implementation of...

  14. On the implications of incompressibility of the quantum mechanical wavefunction in the presence of tidal gravitational fields

    E-Print Network [OSTI]

    Minter, Stephen

    2010-01-01

    of being the tidal gravitational potential energy operator,the energy shift is negative, the tidal gravitational …eldtidal gravitational …eld is treated as a perturbation to the energy

  15. DOE Selects 26 Universities to Assess Industrial Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Selects 26 Universities to Assess Industrial Energy Efficiency DOE Selects 26 Universities to Assess Industrial Energy Efficiency July 24, 2006 - 4:32pm Addthis Smart use of...

  16. Adaptive Management in the Marine Renewable Energy Industry Webinar...

    Office of Environmental Management (EM)

    Adaptive Management in the Marine Renewable Energy Industry Webinar Adaptive Management in the Marine Renewable Energy Industry Webinar December 10, 2015 8:30AM to 10:00AM PST As...

  17. Carbon Fiber and Clean Energy: 4 Uses for Industry | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon Fiber and Clean Energy: 4 Uses for Industry Carbon Fiber and Clean Energy: 4 Uses for Industry February 7, 2014 - 3:27pm Addthis Oxidized fibers move to a high temperature...

  18. Industrial Technologies Program Research Plan for Energy-Intensive Process Industries

    SciTech Connect (OSTI)

    Chapas, Richard B.; Colwell, Jeffery A.

    2007-10-01

    In this plan, the Industrial Technologies Program (ITP) identifies the objectives of its cross-cutting strategy for conducting research in collaboration with industry and U.S. Department of Energy national laboratories to develop technologies that improve the efficiencies of energy-intensive process industries.

  19. MHK Projects/Half Moon Cove Tidal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 JumpCoos Bay OPTHalf Moon Cove Tidal Project <

  20. MHK Projects/Hammerfest Strom UK Tidal Stream | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 JumpCoos Bay OPTHalf Moon Cove Tidal Project

  1. Energy Department Invests $16 Million to Harness Wave and Tidal Energy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015 Infographic courtesy of theSolarDepartmentEnergyFunding

  2. Process Energy Audit for Large Industries 

    E-Print Network [OSTI]

    Chari, S.

    1993-01-01

    of the auditor, process improvements would be identified. A systems approach would be used in identifying process improvement. Task 12 ? Identification of Demand Side Management Technologies A derivative of Task 12 would be the identification of DSM... will consist of results of all the tasks. Example Audits. Having discussed the general audit procedure for a comprehensive audit, the following on a few energy intensive industries such as: ? cement ? chloralkalies ? foundry ? paper manufacturing...

  3. Barriers to Industrial Energy Efficiency - Report to Congress, June 2015

    SciTech Connect (OSTI)

    2015-06-01

    This report examines barriers that impede the adoption of energy efficient technologies and practices in the industrial sector, and identifies successful examples and opportunities to overcome these barriers. Three groups of energy efficiency technologies and measures were examined: industrial end-use energy efficiency, industrial demand response, and industrial combined heat and power. This report also includes the estimated economic benefits from hypothetical Federal energy efficiency matching grants, as directed by the Act.

  4. Barriers to Industrial Energy Efficiency - Study (Appendix A), June 2015

    SciTech Connect (OSTI)

    2015-06-01

    This study examines barriers that impede the adoption of energy efficient technologies and practices in the industrial sector, and identifies successful examples and opportunities to overcome these barriers. Three groups of energy efficiency technologies and measures were examined: industrial end-use energy efficiency, industrial demand response, and industrial combined heat and power. This study also includes the estimated economic benefits from hypothetical Federal energy efficiency matching grants, as directed by the Act.

  5. Mining Industry Profile | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    utilities, the primary metals industry, non-metallic minerals industry (glass, cement, lime), and the construction industry. Employment Mining operations are often the leading...

  6. INDUSTRIAL ENERGY DATA COLLECTION EXISTING SYSTEM AND PROPOSED FUTURE

    E-Print Network [OSTI]

    INDUSTRIAL ENERGY DATA COLLECTION IN CANADA: EXISTING SYSTEM AND PROPOSED FUTURE DEVELOPMENT. Parminder S. Sandhu Paul Willis October 1994 #12;Industrial Energy Data Collection in Canada: Existing. INTRODUCTION 1 3. NEED FOR INDUSTRIAL ENERGY DATA COLLECTION 2 PART 1 EVALUATION OF EXISTING DATA COLLECTION

  7. Illuminating Massive Black Holes With White Dwarfs: Orbital Dynamics and High Energy Transients from Tidal Interactions

    E-Print Network [OSTI]

    MacLeod, Morgan; Ramirez-Ruiz, Enrico; Guillochon, James; Samsing, Johan

    2014-01-01

    White dwarfs (WDs) can be tidally disrupted only by massive black holes (MBHs) with masses less than approximately $10^5 M_\\odot$. These tidal interactions feed material to the MBH well above its Eddington limit, with the potential to launch a relativistic jet. The corresponding beamed emission is a promising signpost to an otherwise quiescent MBH of relatively low mass. We show that the mass transfer history, and thus the lightcurve, are quite different when the disruptive orbit is parabolic, eccentric, or circular. The mass lost each orbit exponentiates in the eccentric-orbit case leading to the destruction of the WD after several tens of orbits and making it difficult to produce a Swift J1644+57-like lightcurve via this channel. We then examine the stellar dynamics of clusters surrounding these MBHs to show that single-passage WD disruptions are substantially more common than repeating encounters in eccentric orbits. The $10^{49}$ erg s$^{-1}$ peak luminosity of these events makes them visible to cosmologi...

  8. Multi-Project Baselines for Evaluation of Industrial Energy-Efficiency and Electric Power Projects

    E-Print Network [OSTI]

    2001-01-01

    industrial energy- efficiency and electric power projects.of Industrial Energy-Efficiency and Electric Power Projectsof Industrial Energy-Efficiency and Electric Power Projects

  9. Solar Energy Industries Association | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity forSilicium deEnergy InformationDepot IncHome Jump to:Solar

  10. Colorado Industrial Energy Challenge | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p aDepartment of Energyof theAction No. 08-cv-01624 (FebruaryThe

  11. Productivity benefits of industrial energy efficiency measures

    E-Print Network [OSTI]

    Worrell, Ernst

    2011-01-01

    installations in the paper industry. In: Proceedings 1995in the pulp and paper industry, food processing, industrialIndustry Number of case studies Food manufacturing Building materials Steel manufacturing Paper

  12. Barriers to Industrial Energy Efficiency - Report to Congress...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report to Congress, June 2015 Barriers to Industrial Energy Efficiency - Report to Congress, June 2015 This report examines barriers that impede the adoption of energy efficient...

  13. Barriers to Industrial Energy Efficiency - Study (Appendix A...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Study (Appendix A), June 2015 Barriers to Industrial Energy Efficiency - Study (Appendix A), June 2015 This study examines barriers that impede the adoption of energy efficient...

  14. Lincoln Electric System (Commercial and Industrial)- 2015 Sustainable Energy Program

    Broader source: Energy.gov [DOE]

    Lincoln Electric System (LES) offers a variety of energy efficiency incentives for commercial and industrial customers through the Sustainable Energy Program (SEP). Some incentives are provided on...

  15. Industrial Energy Efficiency and Combined Heat and Power Fact Sheet

    SciTech Connect (OSTI)

    Industrial Energy Efficiency and Combined Heat and Power Working Group

    2012-07-16

    Provides an overview of the State and Local Energy Efficiency Action Network's (SEE Action) Industrial Energy Efficiency and Combined Heat and Power Working Group.

  16. Global Energy Efficient IT Equipment Industry 2015 Market Research...

    Open Energy Info (EERE)

    Global Energy Efficient IT Equipment Industry 2015 Market Research Report Home Gosreports's picture Submitted by Gosreports(70) Contributor 30 June, 2015 - 20:07 Global Energy...

  17. Sandia Energy - JBEI Research Receives Strong Industry Interest...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Receives Strong Industry Interest in DOE Technology Transfer Call Home Renewable Energy Energy Biofuels Facilities Partnership JBEI News News & Events Research &...

  18. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    SciTech Connect (OSTI)

    Selldorff, John; Atwell, Monte

    2014-09-23

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  19. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    ScienceCinema (OSTI)

    Selldorff, John; Atwell, Monte

    2014-12-03

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  20. Delivered Energy Consumption Projections by Industry in the Annual Energy Outlook 2002

    Reports and Publications (EIA)

    2002-01-01

    This paper presents delivered energy consumption and intensity projections for the industries included in the industrial sector of the National Energy Modeling System.

  1. Millennium Energy Industries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec 2005 WindPROLLC Jump

  2. Energy efficiency programs and policies in the industrial sector in industrialized countries

    E-Print Network [OSTI]

    Galitsky, Christina; Price, Lynn; Worrell, Ernst

    2004-01-01

    company and the Danish Energy Agency. The agreements, whichDanish Energy Authority [1] The Ministry of the Environment [2] and its Environmental Protection Agency [agencies 1. Voluntary Agreements with industry – Danish Energy

  3. Binary asteroid systems: Tidal end states and estimates of material properties

    E-Print Network [OSTI]

    Taylor, PA; Margot, JL

    2011-01-01

    tidal evolution and then discuss stability limits and energyon tidal evolution. Angular momentum and energy content Theenergy can be dissipated as heat as a result of internal friction due to tidal ?

  4. Industry, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8, 13 (Vt. WaterInformationPlant

  5. Industry, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8, 13 (Vt. WaterInformationPlant(Redirected from

  6. Energy Industries of Ohio | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop, Inc JumpElko,ServiziEnergyIndexFinancing Incof Ohio

  7. Advanced Energy Industries Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'S FUTURE.EnergyWoodenDateSA Jump to:Adani Enterprises Ltd

  8. Advanced Energy Industries, Inc. SEGIS developments.

    SciTech Connect (OSTI)

    Scharf, Mesa P.; Bower, Ward Isaac; Mills-Price, Michael A.; Sena-Henderson, Lisa; David, Carolyn; Akhil, Abbas Ali; Kuszmaul, Scott S.; Gonzalez, Sigifredo

    2012-03-01

    The Solar Energy Grid Integration Systems (SEGIS) initiative is a three-year, three-stage project that includes conceptual design and market analysis (Stage 1), prototype development/testing (Stage 2), and commercialization (Stage 3). Projects focus on system development of solar technologies, expansion of intelligent renewable energy applications, and connecting large-scale photovoltaic (PV) installations into the electric grid. As documented in this report, Advanced Energy Industries, Inc. (AE), its partners, and Sandia National Laboratories (SNL) successfully collaborated to complete the final stage of the SEGIS initiative, which has guided new technology development and development of methodologies for unification of PV and smart-grid technologies. The combined team met all deliverables throughout the three-year program and commercialized a broad set of the developed technologies.

  9. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01

    Industrial Electric Motor Systems Market Opportunities Assessment. Prepared for the United States Department of Energy’Motor. Office of Energy Efficiency and Renewable Energy, Industrial

  10. Industrial Scale Energy Systems Integration; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Ruth, Mark

    2015-07-28

    The industrial sector consumes 25% of the total energy in the U.S. and produces 18% of the greenhouse gas (GHG) emissions. Energy Systems Integration (ESI) opportunities can reduce those values and increase the profitability of that sector. This presentation outlines several options. Combined heat and power (CHP) is an option that is available today for many applications. In some cases, it can be extended to trigeneration by adding absorbtion cooling. Demand response is another option in use by the industrial sector - in 2012, industry provided 47% of demand response capacity. A longer term option that combines the benefits of CHP with those of demand response is hybrid energy systems (HESs). Two possible HESs are described and development implications discussed. extended to trigeneration by adding absorbtion cooling. Demand response is another option in use by the industrial sector - in 2012, industry provided 47% of demand response capacity. A longer term option that combines the benefits of CHP with those of demand response is hybrid energy systems (HESs). Two possible HESs are described and development implications discussed.

  11. Energy-Efficiency Improvement Opportunities for the Textile Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2010-01-01

    in the iron and steel industry include pumps for circulatingU.S. textile industry steam and motor-driven systems (pumps,Industry Program for Energy Conservation (CIPEC), 2007b.Team up for energy savings-Fans and Pumps.

  12. Videocon Industries Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, NewArkansas:Standards JumpUSA JumpVideocon Industries Ltd Jump

  13. Industrial Geospatial Analysis Tool for Energy Evaluation 

    E-Print Network [OSTI]

    Alkadi, N.; Starke, M.; Ma, O.; Nimbalkar, S.; Cox, D.; Dowling, K.; Johnson, B.; Khan, S.

    2013-01-01

    Technology Conference New Orleans, LA. May 21-24, 2013 23 Presentation name Questions Contact: Nasr Alkadi Industrial Energy Efficiency Oak Ridge National laboratory, ORNL 865-946-1558 636-734-4143 alkadine@ornl.gov or nasr.alkadi@gmail.com ESL-IE-13....D., CEM (ORNL) Michael Starke, Ph.D. (ORNL) Ookie Ma, Ph.D. (DOE) Sachin Nimbalkar, Ph.D. (ORNL) Daryl Cox (ORNL) Kevin Dowling, University of Tennessee, Knoxville Brandon Johnson, University of Tennessee, Knoxville Saqib Khan, University of Texas...

  14. IFB Agro Industries Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNewTexas:HydrothermallyIFB Agro Industries Ltd Jump to:

  15. PRAJ Industries Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLC Jump to: navigation,GridWisePPLPRAJ Industries Ltd

  16. Integrated Biodiesel Industries Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA JumpDuimenMaking EnergyIndosolarInnovasolPowerAfricanIndustries Ltd

  17. Toray Industries Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin Film Solar TechnologiesCFRTopTen EnergyToray Industries Inc

  18. Ashkelon Technological Industries ATI | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A SOpen EnergyInformationAshkelon Technological Industries

  19. Cardinal Glass Industries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla, Georgia: Energy ResourcesRanchCirculatingGlass Industries

  20. Industrial Assessment Centers (IACs) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment ofOffice| Department of Energy Review of theapproach is,Industrial

  1. International co-operation on industrial energy efficiency

    E-Print Network [OSTI]

    Ahrendt, Wolfgang

    International co-operation on industrial energy efficiency IEA-IETS WWW.IEA-INDUSTRY.ORG Jan Sandvig Nielsen Weel & Sandvig IEA-IETS chair #12;Outline · International Energy Agency - IEA · IEA in IEA PI activities #12;IEA key activities · Energy statistics ­ Key world energy statistics ­ Country

  2. Industrial Energy Efficiency and Climate Change Mitigation

    E-Print Network [OSTI]

    Worrell, Ernst

    2009-01-01

    Emissions in the U.S. Pulp and Paper Industry. Berkeley, CA:for the cement and pulp and paper industries. Area b 2030opportunities in the pulp and paper industry consist of

  3. Industrial Energy Efficiency and Climate Change Mitigation

    E-Print Network [OSTI]

    Worrell, Ernst

    2009-01-01

    in the U.S. Pulp and Paper Industry. Berkeley, CA: Lawrenceand pulp and paper industries. Area b 2030 production (Mt) aPlantation Products and Paper Industry Council,

  4. ENERGY USE AND CONSERVATION IN INDUSTRIALIZED COUNTRIES

    E-Print Network [OSTI]

    Schipper, L.

    2012-01-01

    of the size of the paper industry. 2. Prices In addition toparticu- larly the paper industry. However, it is importantin U.S. only H€aVy industry Paper 4-2 Sweden more electric (

  5. Energy Management Services for the Industrial Market Segment at TVA 

    E-Print Network [OSTI]

    Hamby, R. E.; Knight, V. R.

    1984-01-01

    The Tennessee Valley Authority has provided energy management surveys (EMSs) to commercial and industrial power consumers since 1979. A significant number of EMSs have been performed to a variety of industry types and sizes. As in all developmental...

  6. Online Modeling in the Process Industry for Energy Optimization 

    E-Print Network [OSTI]

    Alexander, J.

    1988-01-01

    "This paper discusses how steady state models are being used in the process industry to perform online energy optimization of steam and electrical systems. It presents process demands commonly found in the processing industry in terms of steam...

  7. Industrial Energy Auditing - A Short Course for Engineers 

    E-Print Network [OSTI]

    Witte, L. C.

    1979-01-01

    This paper describes an intensive five day short course, directed toward engineers currently working in industry, which provides the participants with the rudiments of industrial energy auditing. Experience has shown that this format of training can...

  8. Energy Efficiency Opportunities in the Stone and Asphalt Industry 

    E-Print Network [OSTI]

    Moray, S.; Throop, N.; Seryak, J.; Schmidt, C.; Fisher, C.; D'Antonio, M.

    2006-01-01

    of locations use underground mines. Mining methods involve removing the overburden to extract the underlying rock deposits. Tricone rotary drills, long-hole percussion drills, and churn drills are used to create the blast holes in the rocks. Blasting... Energy & Resource Solutions, Inc. Haverhill, MA Abstract The highly energy-intensive stone mining and crushing industry, grouped with other mining industries, has been one of the focal sectors of the US Department of Energy’s Industries...

  9. Tuesday Webcasts for Industry | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tuesday Webcasts for Industry Tuesday Webcasts for Industry Learn about AMO's software tools, technologies, partnership opportunities, and other resources by watching the Tuesday...

  10. Passive Solar Industries Council | Open Energy Information

    Open Energy Info (EERE)

    Passive Solar Industries Council Jump to: navigation, search Name: Passive Solar Industries Council Place: Ashland, OR Information About Partnership with NREL Partnership with NREL...

  11. Industrial Energy Efficiency and Climate Change Mitigation

    E-Print Network [OSTI]

    Worrell, Ernst

    2009-01-01

    mitigate 21 MtCO 2 . Cogeneration (also called Combined Heatefficiencies. Industrial cogeneration is an important partpotential for industrial cogeneration is estimated at almost

  12. Industrial Energy Efficiency and Climate Change Mitigation

    E-Print Network [OSTI]

    Worrell, Ernst

    2009-01-01

    R.R. ,et al . (2004) Eco-industrial park initiatives in thea CHP plant) form an eco-industrial park that serves as an

  13. Certifying Industrial Energy Efficiency Performance: Aligning Management, Measurement, and Practice to Create Market Value

    E-Print Network [OSTI]

    McKane, Aimee; Scheihing, Paul; Williams, Robert

    2008-01-01

    LBNL-58504 http://industrial-energy.lbl.gov/node/294Certifying Industrial Energy Efficiency Performance:Williams, United Nations Industrial Development Organization

  14. Industrial Approaches to Reducing Energy Costs in a Restructuring Electric Industry 

    E-Print Network [OSTI]

    Lowe, E. T.

    1995-01-01

    . Although many electricity providers will offer their services in a restructure U.S. electricity market, it is not clear which pow r producers industrial customers wil1 buy from. James Rouse, associate director of energy policy for Praxair, Inc., thinks... the Seventeenth Industrial Energy Technology Conference, Houston, TX, April 5-6, 1995 choices we will have will force [utilities 'J rates down" (1). Electric Industry Restructuring in the United Kingdom The open access system for electricity being implemented...

  15. Industrial Energy Efficiency in Ukraine: The Business Outlook 

    E-Print Network [OSTI]

    Evans, M.

    1996-01-01

    Ukraine is full of profitable opportunities for energy efficiency. Industry accounts for many of these opportunities because of its high level of energy consumption and its ability to pay for energy efficiency measures in hard currency. This paper...

  16. Energy-Efficiency Improvement Opportunities for the Textile Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2010-01-01

    well as the potential for the use of renewable energy in thevarious potentials for the use of renewable energy in thepotential in Turkish textile industry: Case study for city of Bursa. ? Renewable and Sustainable Energy

  17. Using DOE Industrial Energy Audit Data for Utility Program Design 

    E-Print Network [OSTI]

    Glaser, C. J.; Packard, C. P.; Parfomak, P.

    1993-01-01

    The U.S. Department of Energy (DOE), Energy Analysis and Diagnostic Center Program has offered no-cost energy conservation audits to industrial plants since 1976. The EADC program has maintained a database of detailed plant and audit information...

  18. Incremental Implementation of Energy Management at Industrial Facilities 

    E-Print Network [OSTI]

    Brown, M.; Key, G.

    2005-01-01

    The essential elements of a sustainable energy management program at industrial facilities are defined in the ANSI/MSE 2000 Management System for Energy standard document. Although many organizations have expressed interest in improving their energy...

  19. Energy Challenges and Conservation Achievements in the Aluminum Industry 

    E-Print Network [OSTI]

    Sheldon, A. C.

    1979-01-01

    Energy is a vital resource in the production of aluminum. It is economically essential that producers use it efficiently. The aluminum industry developed historically in an economy of energy surplus or abundance. It has responded to energy...

  20. Industrial Energy Conservation in Central America and Panama 

    E-Print Network [OSTI]

    Oven, M. J.; Pashkevich, P. A.

    1985-01-01

    The Regional Industrial Energy Efficiency Project (RIEEP) is the largest and most comprehensive energy conservation effort in Central America and Panama. This paper describes the regional economic and energy situation leading up to the project...

  1. Energy Efficiency Improvement Opportunities for the Cement Industry

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01

    S. , 1990. Energy Outlook in West Germany’s Cement Industry.Energy, Emissions, Savings Potential and Policy Actions, Fraunhofer Institute for Systems Technology and Innovation, Karlsruhe, Germany.Wiesbaden, Germany: 296-304. Caffal, C. 1995. Energy

  2. A Field Tested Model of Industrial Energy Conservation Assistance to Small Industries 

    E-Print Network [OSTI]

    Jendrucko, R. J.; Mitchell, D. S.; Snyder, W. T.; Symonds, F. W.

    1980-01-01

    industrial energy audits of Tennessee manufacturing firms from which over 150 feasible ECO's have been identified and analyzed. The process consists of the following steps: (1) Analyzing energy consumption and costs for a two year period; (2) Conducting a one...

  3. Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector

    SciTech Connect (OSTI)

    Industrial Energy Efficiency and Combined Heat and Power Working Group

    2014-03-21

    This report provides state regulators, utilities, and other program administrators with an overview of U.S. industrial energy efficiency programs and assesses some of the key features of programs that have generated increased energy savings.

  4. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India's Cement Industry

    E-Print Network [OSTI]

    Morrow III, William R.

    2014-01-01

    L. 2000. “Potentials for Energy Efficiency Improvement inthe U.S. Cement Industry,” Energy, 25, 1189-1214. Worrell,Benefits of Industrial Energy Efficiency Measures,” Energy

  5. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry

    E-Print Network [OSTI]

    Brush, Adrian

    2012-01-01

    Efficiency and Renewable Energy, Industrial TechnologiesEnergy Efficiency and Renewable Energy, Building TechnologyEfficiency and Renewable Energy, Industrial Technologies

  6. Optimizing Process Loads in Industrial Cogeneration Energy Systems 

    E-Print Network [OSTI]

    Ahner, D. J.; Babson, P. E.

    1995-01-01

    W OPTIMIZING PROCESS LOADS IN INDUSTRIAL COGENERAnON ENERGY SYSTEMS DJ. Ahner Manager, Generation Technology Power Tecbnologies, Inc. Schenectady, New York ABSTRACT Optimum dispatcb of energy supply systems can result in large savings... and industrial cogeneration are extended to solving this trigeneration problem where the optimum dispatch of the final load devices (i.e. compressors, fans, pumps, etc.) are an integral part of the total energy system optimization. An example industrial...

  7. AMO Industrial Distributed Energy: Summary of EPA Final Rules...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary of EPA Final Rules for Air Toxic Standards for Industrial, Commercial, and Institutional (ICI) Boilers and Process Heaters ICF International for U.S. Department of Energy...

  8. Government and Industry A Force for Collaboration at the Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Act Blog Leadership Budget Our Organization Strategic Plan Our History Offices Roadmap to Secure Control Systems in the Energy Sector Government and Industry A Force for...

  9. Energy and Environmental Profile of the Chemicals Industry

    SciTech Connect (OSTI)

    Pellegrino, Joan L.

    2000-05-01

    This informative report provides an overview of the U.S. Chemical Industry including data on market trends, energy and material consumption, and an environmental overview.

  10. AEP (SWEPCO)- Commercial and Industrial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    South Western Electric Power Company (SWEPCO) as part of its C&I solutions program provides various incentives to its commercial and industrial customers to save energy

  11. Energy and Environmental Profile of the Aluminum Industry

    SciTech Connect (OSTI)

    Margolis, Nancy

    1997-07-01

    This detailed report (PDF 2.5 MB) benchmarks the energy and environmental characteristics of the key technologies used in the major processes of the aluminum industry.

  12. IT Industry's Renewable Energy Procurement is Significant, Set...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IT Industry's Renewable Energy Procurement is Significant, Set to Climb August 20, 2015 The percentage of renewable electricity purchased by U.S. companies in the information and...

  13. Commercial and Industrial Energy Conservation Programs in Illinois 

    E-Print Network [OSTI]

    Thomas, S. K.

    1980-01-01

    This paper presents the State of Illinois' evolving role in assisting commercial and industrial firms in identifying and improving inefficiencies in the use of energy....

  14. Industrial Energy Conservation by New Process Design and Efficiency Improvements 

    E-Print Network [OSTI]

    Kusik, C. L.; Stickles, R. P.; Machacek, R. F.

    1983-01-01

    Industrial energy productivity has increased substantially over the last decade. Such measures as implementing efficient housekeeping practices and using retrofit equipment on currently operating production units have ...

  15. Oklahoma Municipal Power Authority- Commercial and Industrial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    The Oklahoma Municipal Power Authority (OMPA) offers the Demand and Energy Efficiency Program (DEEP) to eligible commercial, industrial, and municipal government customers served by OMPA. This...

  16. Policies and Measures to Realise Industrial Energy Efficiency...

    Open Energy Info (EERE)

    Policies and Measures to Realise Industrial Energy Efficiency and Mitigate Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Policies and Measures to...

  17. Global Advanced Clean Energy Storage Devices Industry 2015 Market...

    Open Energy Info (EERE)

    Global Advanced Clean Energy Storage Devices Industry 2015 Market Research Report Home There are currently no posts in this category. Syndicate content...

  18. Solar Energy Education. Industrial arts: teacher's guide. Field...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    guide. Field test edition. Includes glossary Citation Details In-Document Search Title: Solar Energy Education. Industrial arts: teacher's guide. Field test edition. Includes...

  19. Purchasing Energy-Efficient Commercial and Industrial LED Luminaires

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for commercial and industrial light emitting diode (LED) luminaires, a product category covered by FEMP efficiency...

  20. Policy modeling for industrial energy use

    SciTech Connect (OSTI)

    Worrell, Ernst; Park, Hi-Chun; Lee, Sang-Gon; Jung, Yonghun; Kato, Hiroyuki; Ramesohl, Stephan; Boyd, Gale; Eichhammer, Wolfgang; Nyboer, John; Jaccard, Mark; Nordqvist, Joakim; Boyd, Christopher; Klee, Howard; Anglani, Norma; Biermans, Gijs

    2003-03-01

    The international workshop on Policy Modeling for Industrial Energy Use was jointly organized by EETA (Professional Network for Engineering Economic Technology Analysis) and INEDIS (International Network for Energy Demand Analysis in the Industrial Sector). The workshop has helped to layout the needs and challenges to include policy more explicitly in energy-efficiency modeling. The current state-of-the-art models have a proven track record in forecasting future trends under conditions similar to those faced in the recent past. However, the future of energy policy in a climate-restrained world is likely to demand different and additional services to be provided by energy modelers. In this workshop some of the international models used to make energy consumption forecasts have been discussed as well as innovations to enable the modeling of policy scenarios. This was followed by the discussion of future challenges, new insights in the data needed to determine the inputs into energy model s, and methods to incorporate decision making and policy in the models. Based on the discussion the workshop participants came to the following conclusions and recommendations: Current energy models are already complex, and it is already difficult to collect the model inputs. Hence, new approaches should be transparent and not lead to extremely complex models that try to ''do everything''. The model structure will be determined by the questions that need to be answered. A good understanding of the decision making framework of policy makers and clear communication on the needs are essential to make any future energy modeling effort successful. There is a need to better understand the effects of policy on future energy use, emissions and the economy. To allow the inclusion of policy instruments in models, evaluation of programs and instruments is essential, and need to be included in the policy instrument design. Increased efforts are needed to better understand the effects of innovative (no n-monetary) policy instruments through evaluation and to develop approaches to model both conventional and innovative policies. The explicit modeling of barriers and decision making in the models seems a promising way to enable modeling of conventional and innovative policies. A modular modeling approach is essential to not only provide transparency, but also to use the available resources most effectively and efficiently. Many large models have been developed in the past, but have been abandoned after only brief periods of use. A development path based on modular building blocks needs the establishment of a flexible but uniform modeling framework. The leadership of international agencies and organizations is essential in the establishment of such a framework. A preference is given for ''softlinks'' between different modules and models, to increase transparency and reduce complexity. There is a strong need to improve the efficiency of data collection and interpretation efforts to produce reliable model inputs. The workshop participants support the need for the establishment of an (in-)formal exchanges of information, as well as modeling approaches. The development of an informal network of research institutes and universities to help build a common dataset and exchange ideas on specific areas is proposed. Starting with an exchange of students would be a relative low-cost way to start such collaboration. It would be essential to focus on specific topics. It is also essential to maintain means of regular exchange of ideas between researchers in the different focus points.

  1. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    Planta- tion Products and Paper Industry Council, Paper Industry, Confederationof European Paper Industries, Brussels, March 2001. CESP,

  2. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01

    1984). Energy Use and Energy Efficiency in UK Manufacturingin Industry: Energy Use and Energy Efficiency ImprovementExpert System for Energy Efficiency and Pollution Abatement

  3. Improve the Energy Efficiency of Pump Systems, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01

    This fact sheet describes how the Industrial Technologies Program Pumping System Assessment Tool (PSAT) can help industrial plants identify opportunities to save energy and money in pump systems.

  4. Enhancing Electrical Supply by Pumped Storage in Tidal Lagoons

    E-Print Network [OSTI]

    MacKay, David J.C.

    to demand into high­value demand­following power; and second, it can simultaneously serve as a tidal powerEnhancing Electrical Supply by Pumped Storage in Tidal Lagoons David J.C. MacKay Cavendish/3/07 Summary The principle that the net energy delivered by a tidal pool can be increased by pumping extra

  5. Research papers Tidal characteristics of the gulf of Tonkin

    E-Print Network [OSTI]

    calibration derived from a set of sensitivity experiments to model parameters. The tidal energy budgetResearch papers Tidal characteristics of the gulf of Tonkin Nguyen Nguyet Minh a,c , Marchesiello of this study is to revisit the dominant physical processes that characterize tidal dynamics in the Gulf

  6. State Level Analysis of Industrial Energy Use 

    E-Print Network [OSTI]

    Elliott, R. N.; Shipley, A. M.; Brown, E.

    2003-01-01

    industrial policies for these states. This paper will provide an overview of our analytical approach, the data sources that are available, and provide examples of the analysis results to demonstrate the regional diversity of industrial electricity use....

  7. Thinking Globally: How ISO 50001 - Energy Management can make industrial energy efficiency standard practice

    E-Print Network [OSTI]

    McKane, Aimee

    2010-01-01

    Comparison of National Energy Management Standards, prepared2007, Industrial Energy Management: Issues Paper, preparedMeeting: Using Energy Management Standards to stimulate

  8. SUPERIOR ENERGY PERFORMANCE INDUSTRIAL FACILITY BEST PRACTICE SCORECARD

    Broader source: Energy.gov [DOE]

    Facilities seeking to use the Mature Energy Pathway to qualify for Superior Energy Performance® (SEP™) certification will use the SEP Industrial Facility Best Practice Scorecard to assess the...

  9. Motor Energy Saving Opportunities in an Industrial Plant 

    E-Print Network [OSTI]

    Kumar, B.; Elwell, A.

    1999-01-01

    Industrial plants have enormous energy saving opportunities with electric motors. Improving motor efficiency is a conventional wisdom to save energy. Re-engineering affords far greater savings opportunities than motor efficiency improvement. Motor...

  10. 2015 ACEEE Summer Study on Energy Efficiency in Industry

    Broader source: Energy.gov [DOE]

    The American Council for an Energy-Efficient Economy (ACEEE) is hosting a summer conference that will have six panels with concurrent sessions held over two days, each developed around industry energy efficiency.

  11. Large Industrial Renewable Energy Purchase Program (New Brunswick)

    Broader source: Energy.gov [DOE]

    Beginning January 1, 2012 the Large Industrial Renewable Energy Purchase Program allows NB Power to purchase renewable energy generated by its largest customers at a rate of $95/MWh. This...

  12. Energy and process substitution in the frozen-food industry:...

    Office of Scientific and Technical Information (OSTI)

    and process substitution in the frozen-food industry: geothermal energy and the retortable pouch Stern, M.W.; Hanemann, W.M.; Eckhouse, K. 32 ENERGY CONSERVATION, CONSUMPTION, AND...

  13. Canadian Industrial Energy End-use Data and Analysis

    E-Print Network [OSTI]

    technologies. CIEEDAC is responsible for the industrial energy data under this initiative. The Centre operates as part clearinghouse, part depository, and part analysis centre for energy data on the Canadian

  14. Distributed Wind - Economical, Clean Energy for Industrial Facilities 

    E-Print Network [OSTI]

    Trapanese, A.; James, F.

    2011-01-01

    Distributed wind energy works for industrial clients. Corporations and other organizations are choosing to add Distributed Wind energy to their corporate goals for a numerous reasons: economic, environmental, marketing, values, and attracting new...

  15. Value Capture in the Global Wind Energy Industry

    E-Print Network [OSTI]

    Dedrick, Jason; Kraemer, Kenneth L.

    2011-01-01

    Wind Energy Council, 2011 New installation in 2010 The wind industry value chain Wind turbineWind Energy Council (GWEC, 2011) domestic content in U.S. -deployed turbines

  16. Energy Smart Industrial: five years of enormous savings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2.5 million kWh a year. JD Hisey, the plant's continuous improvement manager, says Energy Smart Industrial did more than just cut Fitesa's energy costs. "The new equipment reduced...

  17. The Gas Utility View of Industrial Energy Conservation 

    E-Print Network [OSTI]

    Loberg, T. J.

    1980-01-01

    The gas industry fostered more efficient energy utilization long before the idea of energy conservation became fashionable. It became apparent in the late '60's that misguided Federal Legislation was discouraging necessary search for new gas...

  18. The French National Energy Conservation Program - The Case of Industry 

    E-Print Network [OSTI]

    Zyss, J.

    1980-01-01

    France is certainly one of the industrialized countries which has been the most severely affected by the energy crisis. It has thus been necessary since 1974 to plan and execute a bold, far-reaching government policy for energy reconversion...

  19. New Jersey Industrial Energy Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartmentNew Jersey is home to energy-intensive industrial

  20. Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01

    Banerjee, R. , 2005. Energy Efficiency and Demand SideKiln Systems,” Energy Efficiency in the Cement Industry (Ed.of Industrial Energy Efficiency Measures,” Proceedings of

  1. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry

    E-Print Network [OSTI]

    Brush, Adrian

    2012-01-01

    Summer Study on Energy Efficiency in Industry. AmericanSummer Study on Energy Efficiency in Industry. AmericanCanada, Office of Energy Efficiency, Ottawa, Ontario. Carbon

  2. U.S. Department of Energy (DOE) Industrial Programs and Their Impacts 

    E-Print Network [OSTI]

    Weakley, S. A.; Roop, J. M.

    2008-01-01

    The U.S. Department of Energy’s Industrial Technologies Program (ITP) has been working with industry since 1976 to encourage the development and adoption of new, energy-efficient technologies. ITP has helped industry not only use energy...

  3. Industry

    SciTech Connect (OSTI)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

  4. ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    shown as changes in oil demand for elec- trical energyindustry fuel. ity Oil demand is specified by four majorft /year) II. Annual Oil Demand (10 Transportation Industry

  5. Energy efficiency opportunities in the brewery industry

    E-Print Network [OSTI]

    Worrell, Ernst; Galitsky, Christina; Martin, Nathan

    2002-01-01

    1999. 1997-Economic Census Breweries, Manufacturing IndustrySavings for United States Breweries, Berkeley, CA: LawrenceSavings for United States Breweries MBAA Technical Quarterly

  6. Biodiesel Industries Inc | Open Energy Information

    Open Energy Info (EERE)

    Barbara, California Zip: 93110 Product: Biodiesel producer and facility developer. References: Biodiesel Industries Inc1 This article is a stub. You can help OpenEI by expanding...

  7. ENERGY USE AND CONSERVATION IN INDUSTRIALIZED COUNTRIES

    E-Print Network [OSTI]

    Schipper, L.

    2012-01-01

    demand in the long run. Cogeneration of electricity and heatthe expan- sion of cogeneration, especially just now whencame from industrial cogeneration, 4% in l976 (a recession),

  8. ENERGY USE AND CONSERVATION IN INDUSTRIALIZED COUNTRIES

    E-Print Network [OSTI]

    Schipper, L.

    2012-01-01

    Cogeneration of electricity and heat in industrial plants iscogeneration, especially just now when long term electricity contracts hide the marginal cost of new power from existing plants.

  9. Productivity benefits of industrial energy efficiency measures

    E-Print Network [OSTI]

    Worrell, Ernst

    2011-01-01

    Energy Efficiency and Renewable Energy, 1997. 5. M. Pye andGolden, CO: National Renewable Energy Laboratory, 1997. 11.

  10. Industrial Energy Efficiency and Climate Change Mitigation

    E-Print Network [OSTI]

    Worrell, Ernst

    2009-01-01

    opportunities for petroleum refineries - An ENERGY STARsecondary energy products, such as electricity and petroleummost petroleum refineries can economically improve energy

  11. Productivity benefits of industrial energy efficiency measures

    E-Print Network [OSTI]

    Worrell, Ernst

    2011-01-01

    the linkage between energy efficiency and productivity.and increased energy efficiency in integrated paper andand Office of Energy Efficiency and Renewable Energy, 1997.

  12. Note on the redistribution and dissipation of tidal energy over mid-ocean ridges

    E-Print Network [OSTI]

    Liang, Xinfeng

    The redistribution and dissipation of internal wave energy arising from the conversion at mid-ocean ridges of the barotropic tide is studied in a set of numerical experiments. A two-dimensional non-hydrostatic model with ...

  13. MOWII Webinar: OCGen Prototype Testing: Evaluating Buoyancy Pod/Tension Leg Platforms for Tidal Energy Development

    Broader source: Energy.gov [DOE]

    Ocean Renewable Power Company (ORPC) will present the results of the company's design, permitting, and testing of a mooring system for ocean energy devices in partnership with the U.S. Department...

  14. Renewables for Energy Conservation

    E-Print Network [OSTI]

    Banerjee, Rangan

    & SYSTEMS USEFUL ENERGY END USE ACTIVITIES (ENERGY SERVICES) COAL, OIL, SOLAR, GAS POWER PLANT, REFINERIES;Renewable Energy Options Wind Solar Small Hydro Biomass Tidal Energy Wave Energy Ocean Thermal Energy Solar Commercial Residential #12;Industry Process Heating Energy from Waste Cogeneration Solar Water Heater Solar

  15. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01

    and M. Kushler. (1997). Energy Efficiency in Automotive andSummer Study on Energy Efficiency in Industry. AmericanConsortium for Energy Efficiency (CEE) (2007). Energy-

  16. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry

    E-Print Network [OSTI]

    Brush, Adrian

    2012-01-01

    Experiences with Industrial Heat Pumps. Analyses Series #23.of Energy (DOE) (2003). Industrial Heat Pumps for Steam andin the industrial sector. However, geothermal heat pumps may

  17. 12th Annual Wave & Tidal 2015

    Broader source: Energy.gov [DOE]

    The UK is currently the undisputed global leader in marine energy, with more wave and tidal stream devices installed than the rest of the world combined. This leading position is built on an...

  18. Measuring industrial energy efficiency: Physical volume versus economic value

    SciTech Connect (OSTI)

    Freeman, S.L.; Niefer, M.J.; Roop, J.M.

    1996-12-01

    This report examines several different measures of industrial output for use in constructing estimates of industrial energy efficiency and discusses some reasons for differences between the measures. Estimates of volume-based measures of output, as well as 3 value-based measures of output (value of production, value of shipments, and value added), are evaluated for 15 separate 4-digit industries. Volatility, simple growth rate, and trend growth rate estimates are made for each industry and each measure of output. Correlations are made between the volume- and value-based measures of output. Historical energy use data are collected for 5 of the industries for making energy- intensity estimates. Growth rates in energy use, energy intensity, and correlations between volume- and value-based measures of energy intensity are computed. There is large variability in growth trend estimates both long term and from year to year. While there is a high correlation between volume- and value-based measures of output for a few industries, typically the correlation is low, and this is exacerbated for estimates of energy intensity. Analysis revealed reasons for these low correlations. It appears that substantial work must be done before reliable measures of trends in the energy efficiency of industry can be accurately characterized.

  19. QER- Comment of Industrial Energy Consumer Group

    Broader source: Energy.gov [DOE]

    Thanks Tony. We'll be announcing dates for a number of other meetings in the next few days so hopefully you'll be able to participate in one of those, or have some of your member companies join. Regards, Karen Karen G. Wayland, Ph.D. Deputy Director for State, Local and Tribal Cooperation Energy Policy and Systems Analysis U.S. Department of Energy 1000 Independence Ave. SW Washington, DC 20585 Phone: +1 (202) 586-1347 Cell: +1 (240) 751-8483 From: Buxton, Anthony W. Sent: Thursday, June 12, 2014 11:44 AM To: Wayland, Karen Subject: Re: Save the Date: June 19 QER meeting on Water-Energy Nexus Thank you, Karen. Our participation in the Providence hearing was a very positive and useful experience. IECG will be unable to attend the San Francisco hearing for obvious reasons, though it is always a temptation. IECG appreciates the effort going into and the significance of the Review and will continue to observe and comment as appropriate. We have become increasingly concerned recently about whether the Federal Power Act and related statutes provide adequate authority for the federal government and related energy institutions ( NERC) to take the actions necessary to ensure the supply of energy to America on a reliable and low cost basis. The decision of the D.C. Circuit Court of Appeals invalidating FERC's Order 750 and the consequent challenges to Order 1000 on the same basis exemplify this difficulty. The states are generally without adequate powers and legal authority as well, save for several large states. The RTOs are an ongoing answer from FERC, but they also are limited by the Federal Power Act. We urge attention to this important issue. Thank you again for your New England hearings and for your excellent work. Tony Buxton Counsel to Industrial Energy Consumer Group. From: Wayland, Karen [mailto:Karen.Wayland@Hq.Doe.Gov] Sent: Thursday, June 12, 2014 11:22 AM Eastern Standard Time To: Wayland, Karen Subject: Save the Date: June 19 QER meeting on Water-Energy Nexus Thank you for your interest in the Quadrennial Energy Review (QER), and apologies for any duplicate emails. The next stakeholders meeting for the QER will focus on the Water-Energy Nexus. The meeting will be held at the San Francisco City Hall on June 19 at 9 am. Doors open at 8 am. We will be posting an agenda and background memo on the QER website over the next week at http://www.energy.gov/epsa/events/qer-public-meeting-water-energy-nexus, so check back regularly. We encourage you to attend and participate, and to share the meeting information with your lists. Please note that we are extending the comment period for stakeholders during the open mic session from 3 minutes (as described in the Federal Register notice) to 5 minutes to give stakeholders adequate time to make substantive statements. We look forward to hearing from you! Information on past meetings, including panelists' statements and summaries of discussions, as well the list of upcoming meetings, can be found at www.energy.gov/qer. Regards, Karen Wayland Karen G. Wayland, Ph.D. Deputy Director for State, Local and Tribal Cooperation Energy Policy and Systems Analysis U.S. Department of Energy 1000 Independence Ave. SW Washington, DC 20585 In accordance with Internal Revenue Service Circular 230, we hereby advise you that if this E-mail or any attachment hereto contains any tax advice, such tax advice was not intended or written to be used, and it cannot be used, by any taxpayer for the purpose of avoiding penalties that may be imposed on the taxpayer by the Internal Revenue Service. This E-Mail may contain information that is privileged, confidential and / or exempt from discovery or disclosure under applicable law. Unintended transmission shall not constitute waiver of the attorney-client or any other privilege. If you are not the intended recipient of this communication, and have received it in error, please do not distribute it and notify me immediately by E-mail at abuxton@preti.com or via telephone at 207.791.3000 and delete the original message. Unless expressly stated in this e-mail, noth

  20. Tidal sampler

    DOE Patents [OSTI]

    Hayes, David W. (Aiken, SC)

    1978-01-01

    An apparatus for pumping a sample of water or other liquid that uses the energy generated from the rise and fall of the liquid level to force a sample of the liquid into a collection vessel. A suction vessel and booster vessel with interconnecting tubing and check valves are responsive to an oscillating liquid level to pump a portion of said liquid into a collection vessel.

  1. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    for the European Pulp and Paper Industry, Confederation ofin food and pulp and paper industry wastes, turbines tocement, and pulp and paper industries and in the control of

  2. Industrial Geospatial Analysis Tool for Energy Evaluation (IGATE-E)

    SciTech Connect (OSTI)

    Alkadi, Nasr E [ORNL] [ORNL; Starke, Michael R [ORNL] [ORNL; Ma, Ookie [DOE EERE] [DOE EERE; Nimbalkar, Sachin U [ORNL] [ORNL; Cox, Daryl [ORNL] [ORNL

    2013-01-01

    IGATE-E is an energy analysis tool for industrial energy evaluation. The tool applies statistical modeling to multiple publicly available datasets and provides information at the geospatial resolution of zip code using bottom up approaches. Within each zip code, the current version of the tool estimates electrical energy consumption of manufacturing industries based on each type of industries using DOE s Industrial Assessment Center database (IAC-DB) and DOE s Energy Information Administration Manufacturing Energy Consumption Survey database (EIA-MECS DB), in addition to other commercially available databases such as the Manufacturing News database (MNI, Inc.). Ongoing and future work include adding modules for the predictions of fuel energy consumption streams, manufacturing process steps energy consumption, major energy intensive processes (EIPs) within each industry type among other metrics of interest. The tool provides validation against DOE s EIA-MECS state level energy estimations and permits several statistical examinations. IGATE-E is intended to be a decision support and planning tool to a wide spectrum of energy analysts, researchers, government organizations, private consultants, industry partners, and alike.

  3. ENERGY EFFICIENCY OPPORTUNITIES IN THE U.S. PULP AND PAPER INDUSTRY

    E-Print Network [OSTI]

    Kramer, Klaas Jan

    2010-01-01

    Waste. Office of Energy Efficiency and Renewable Energy,Industry. Office of Energy Efficiency and Renewable Energy,Savings. Office of Energy Efficiency and Renewable Energy,

  4. New Interactive Map Reveals U.S. Tidal Energy Resources | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment ofProgramImportsEnergyForecastingNewInsights

  5. Overview of U. S. Department of Energy Program in Industrial Energy Conservation Technology Development 

    E-Print Network [OSTI]

    Massey, R. G.

    1980-01-01

    The primary responsibility for Federal industrial energy conservation is in the Office of Industrial Programs which reports to the Assistant Secretary for Conservation and Solar Energy. The objectives of the Federal program are to: achieve maximum...

  6. Under consideration for publication in J. Fluid Mech. 1 Reflecting tidal wave beams and local

    E-Print Network [OSTI]

    were generated locally by a propagating beam of internal tidal energy which had originatedUnder consideration for publication in J. Fluid Mech. 1 Reflecting tidal wave beams and local generation mecha- nism: tidal flow over steep topography forces a propagating beam of internal tidal wave

  7. Meeting State Carbon Emission Requirements through Industrial Energy Efficiency: The Southern California Gas Company’s Industrial End User Program

    SciTech Connect (OSTI)

    2010-06-25

    This case study describes the Southern California Gas Company’s Industrial End User program that helps large industrial customers increase energy efficiency and reduce energy use and GHG emissions.

  8. Meeting State Carbon Emission Requirements through Industrial Energy Efficiency: The Southern California Gas Company’s Industrial End User Program

    Broader source: Energy.gov [DOE]

    This case study describes the Southern California Gas Company’s Industrial End User program, which helps large industrial customers increase energy efficiency and reduce energy use and greenhouse gas emissions.

  9. Energy Use and Savings in the Canadian Industrial Sector 

    E-Print Network [OSTI]

    James, B.

    1982-01-01

    The changing role of energy as a production input in the industrial sector in Canada is examined. Energy use patterns are reviewed in terms of the energy input types, both purchased and self-produced, the actual energy form and quality requirements...

  10. Evaluating the Energy Saving Potential and Cost-Effectiveness of Industrial Energy Efficiency Initiatives

    E-Print Network [OSTI]

    Evaluating the Energy Saving Potential and Cost-Effectiveness of Industrial Energy Efficiency Initiatives of the Office of Energy Efficiency Prepared for the Office of Energy Efficiency Prepared ............................................................................................. 18 5 SIMULATION OF THE FIVE ENERGY EFFICIENCY PROGRAMS

  11. Div ision of T echnology, Industry & Economics Energy Branch Deploying renewable energy

    E-Print Network [OSTI]

    Canet, Léonie

    Div ision of T echnology, Industry & Economics Energy Branch Deploying renewable energy, Industry & Economics Energy Branch 1. Policy landscape 2. Helping transition to Renewable Energy 3 governments are promoting renewable energy. Renewable energy ­ Policy Landscape #12;Div ision of T echnology

  12. Energy Industry Days- Performance Contracting- San Diego, CA

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy is hosting several Energy Industry Day events to promote and publicize opportunities for small businesses seeking to meet DOE support requirements. Opportunities will be available for attendees to learn of potential partnerships with prime and subcontracting companies. These Energy Industry Day events would both support the agency's commitment to DOE's "Small Business First Policy" and would provide dedicated sessions that introduce Energy Service Companies (ESCOs) and other prime contract holders with small business.

  13. Snohomish PUD No 1 (TRL 7 8 System) - Puget Sound Pilot Tidal Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4Energy Smooth Brome Monitoring at RockyProject |

  14. Save Energy Now for Maryland Industry | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummaryDIST OFMEAG, Dalton2ProgramAreaLaboratory |Industries11The

  15. International industrial sector energy efficiency policies

    E-Print Network [OSTI]

    Price, Lynn; Worrell, Ernst

    2000-01-01

    and Opportunities,” Energy Policy 26(11): 859-872. Hall,1999. “Incentives in Energy Policy – A Comparison BetweenVoluntary Agreements in Energy Policy – Implementation and

  16. ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    Power Solar Thermal-Electric Power Plants Energy Generationfrom new energy tech- nologies, including the solar-thermalsolar thermal- electric power plants and electrical energy

  17. International industrial sector energy efficiency policies

    E-Print Network [OSTI]

    Price, Lynn; Worrell, Ernst

    2000-01-01

    company and the Danish Energy Agency (Ezban et al. , 1994;company and the Danish Energy Agency. The agreements, whichagreements with the Danish Energy Agency, representing 45%

  18. ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    Annual Incremental Energy and Capacity Savings from Passivein incremental annual energy and capacity savings of 3.1 Xand estimated energy and capacity savings for each.

  19. Industrial Energy Efficiency and Climate Change Mitigation

    E-Print Network [OSTI]

    Worrell, Ernst

    2009-01-01

    increased use of biomass and energy efficiency improvements,Energy (EJ) Notes 1) Biomass energy included 2) Industrialenergy efficiency improvement, cogeneration, increased use of (self- generated) biomass

  20. ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    calcu.lat energy consumption in passive solar houses havesolar heating form a major source of energy supply in the second scenario. The energy consumption

  1. Setting the Standard for Industrial Energy Efficiency

    E-Print Network [OSTI]

    McKane, Aimee; Williams, Robert; Perry, Wayne; Li, Tienan

    2008-01-01

    Netherlands has an Energy Management System, not a standard,LTAs and must use the Energy Management System. The 150 mostinvolvement. The energy management system (introduced as a

  2. ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    we select three alternative energy futures for California inwith the ~J -xi- alternative energy futures in order toassess the impacts of alternative energy futures. In later

  3. ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    we select three alternative energy futures for California inwith the ~J -xi- alternative energy futures in order tothe impacts of alternative energy futures. In later sections

  4. ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    Rand Corporation, "Energy Alternatives for California: PathsDoctor et aI. , "Energy Alternatives for California: PathsPrograms Energy Facility Alternatives Discussion . ,

  5. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01

    Industrial Electric Motor Systems Market Opportunities Assessment. U.S. Department of Energy’Energy Now in Your Motor-Driven Systems. Office of Energy Efficiency and Renewable Energy, IndustrialMotor. Office of Energy Efficiency and Renewable Energy, Industrial

  6. Certifying Industrial Energy Efficiency Performance: Aligning Management, Measurement, and Practice to Create Market Value

    E-Print Network [OSTI]

    McKane, Aimee; Scheihing, Paul; Williams, Robert

    2008-01-01

    knowledge concerning energy management best practices andapplying and validating energy management best practices inan international industrial energy management standard that

  7. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry

    E-Print Network [OSTI]

    Brush, Adrian

    2012-01-01

    Caffal, C. (1995). Energy Management in Industry. Centre forEnergy Management .Management. Federal Energy Management Program, Washington,

  8. Industrial Energy Efficiency and Climate Change Mitigation

    E-Print Network [OSTI]

    Worrell, Ernst

    2009-01-01

    iron and steel production. IEA Greenhouse Gas R&D Programme,industry. Cheltenham, UK, IEA Greenhouse Gas R&D Programme,WBCSD), Geneva, Switzerland. IEA (1997) Voluntary actions

  9. Energy Conservation Through Industrial Cogeneration Systems 

    E-Print Network [OSTI]

    Solt, J. C.

    1979-01-01

    This paper traces the development of cogeneration systems in industry, and discusses some early applications. The effect of changing markets and economic conditions is evaluated and specific examples are presented to illustrate the increasingly...

  10. A new generation of marine turbine that can harness energy from the sea is being developed by Nautricity,

    E-Print Network [OSTI]

    Strathclyde, University of

    A new generation of marine turbine that can harness energy from the sea is being developed player in the marine tidal energy industry through the application of game-changing technologies designed infancy and neither the wave nor the tidal energy market has consolidated on a single device design

  11. Energy Conservation in Army Industrial Facilities 

    E-Print Network [OSTI]

    Aveta, G. A.; Sliwinski, B. J.

    1984-01-01

    studies for military installations to identify energy conservation projects and develop energy master plans, and (2) the Department of Defense (DOD) Energy Conservation Investment Program (ECIP) and Energy Conservation and Management Program (ECAM...

  12. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry

    E-Print Network [OSTI]

    Brush, Adrian

    2012-01-01

    energy efficiency measures available for motors and pumps in industrialEnergy (DOE) (2002e). United States Industrial Electric MotorIndustrial Electric Motor Systems Market Opportunities Assessment. Prepared for the United States Department of Energy

  13. U.S. Department of Energy's Industrial Technologies Program and Its Impacts 

    E-Print Network [OSTI]

    Weakley, S. A.; Brown, S. A.

    2011-01-01

    The U.S. Department of Energy's Industrial Technologies Program (ITP) has been working with industry since 1976 to encourage the development and adoption of new, energy-efficient technologies. ITP has helped industry not only use energy...

  14. TIDAL ENERGY SITE RESOURCE ASSESSMENT: TECHNICAL SPECIFICATIONS, BEST PRACTICES AND CASE STUDIES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainableDEPARTMENT OF ENERGY Officeb

  15. All Eyes on Eastport: Tidal Energy Project Brings Change, Opportunity to

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment of EnergyResearchers atDay 12:wasProjects | DepartmentAliMarkovitz

  16. Assessment of Energy Production Potential from Tidal Streams in the United

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I Due DateOpportunity |MarketWindStates | Department of

  17. Policy modeling for industrial energy use

    E-Print Network [OSTI]

    2003-01-01

    the market mechanism. Energy suppliers will try to maximizepolicy and program. Energy suppliers and consumers who are

  18. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01

    Industrial Technologies, Washington, DC. Motor Systems Tip Sheet United States Department of Energy (Industrial Electric Motor Systems Market Opportunities Assessment. U.S. Department of Energy’Energy Now in Your Motor-Driven Systems. Office of Energy Efficiency and Renewable Energy, Industrial

  19. Energy-Efficiency Improvement Opportunities for the Textile Industry

    SciTech Connect (OSTI)

    China Energy Group; Hasanbeigi, Ali

    2010-09-29

    The textile industry is one of the most complicated manufacturing industries because it is a fragmented and heterogeneous sector dominated by small and medium enterprises (SMEs). Energy is one of the main cost factors in the textile industry. Especially in times of high energy price volatility, improving energy efficiency should be a primary concern for textile plants. There are various energy-efficiency opportunities that exist in every textile plant, many of which are cost-effective. However, even cost-effective options often are not implemented in textile plants mostly because of limited information on how to implement energy-efficiency measures, especially given the fact that a majority of textile plants are categorized as SMEs and hence they have limited resources to acquire this information. Know-how on energy-efficiency technologies and practices should, therefore, be prepared and disseminated to textile plants. This guidebook provides information on energy-efficiency technologies and measures applicable to the textile industry. The guidebook includes case studies from textile plants around the world and includes energy savings and cost information when available. First, the guidebook gives a brief overview of the textile industry around the world, with an explanation of major textile processes. An analysis of the type and the share of energy used in different textile processes is also included in the guidebook. Subsequently, energy-efficiency improvement opportunities available within some of the major textile sub-sectors are given with a brief explanation of each measure. The conclusion includes a short section dedicated to highlighting a few emerging technologies in the textile industry as well as the potential for the use of renewable energy in the textile industry.

  20. Cleanroom energy benchmarking in high-tech and biotech industries

    SciTech Connect (OSTI)

    Tschudi, William; Benschine, Kathleen; Fok, Stephen; Rumsey, Peter

    2001-04-01

    Cleanrooms, critical to a wide range of industries, universities, and government facilities, are extremely energy intensive. Consequently, energy represents a significant operating cost for these facilities. Improving energy efficiency in cleanrooms will yield dramatic productivity improvement. But more importantly to the industries which rely on cleanrooms, base load reduction will also improve reliability. The number of cleanrooms in the US is growing and the cleanroom environmental systems' energy use is increasing due to increases in total square footage and trends toward more energy intensive, higher cleanliness applications. In California, many industries important to the State's economy utilize cleanrooms. In California these industries utilize over 150 cleanrooms with a total of 4.2 million sq. ft. (McIlvaine). Energy intensive high tech buildings offer an attractive incentive for large base load energy reduction. Opportunities for energy efficiency improvement exist in virtually all operating cleanrooms as well as in new designs. To understand the opportunities and their potential impact, Pacific Gas and Electric Company sponsored a project to benchmark energy use in cleanrooms in the electronics (high-tech) and biotechnology industries. Both of these industries are heavily dependent intensive cleanroom environments for research and manufacturing. In California these two industries account for approximately 3.6 million sq. ft. of cleanroom (McIlvaine, 1996) and 4349 GWh/yr. (Sartor et al. 1999). Little comparative energy information on cleanroom environmental systems was previously available. Benchmarking energy use allows direct comparisons leading to identification of best practices, efficiency innovations, and highlighting previously masked design or operational problems.

  1. Page 1 of 13 Understanding Industrial Energy Use Through Lean Energy Analysis

    E-Print Network [OSTI]

    Kissock, Kelly

    Page 1 of 13 11SDP-0048 Understanding Industrial Energy Use Through Lean Energy Analysis Abels, B statistical method to statistically disaggregate industrial energy use into production-dependent, weather improving model calibration, quantifying non-productive energy use and identifying energy efficiency

  2. A Low Cost Energy Management Program at Engelhard Industries Division 

    E-Print Network [OSTI]

    Brown, T. S.; Michalek, R.; Reiter, S.

    1982-01-01

    in technology related to precious metals and nonmetallic minerals. It manufactures high-performance chemical and precious metals products, including catalysts for the petroleum and automotive industries. Engelhard's energy costs have risen dramatically over...

  3. Industrial Energy Efficiency Technical Review Guidelines and Best Practices 

    E-Print Network [OSTI]

    Dalziel, N.

    2013-01-01

    . Methodology and Scope of Research: 1. Empirical analysis of reported energy savings at the application, reviewed (contracted), measurement and verification (M&V) and evaluation stages for multiple large or industrial incentive programs. a. Assess impact...

  4. World Energy Projection System Plus Model Documentation: Industrial Model

    Reports and Publications (EIA)

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) World Industrial Model (WIM). It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  5. Industrial Distributed Energy R&D Portfolio Review Summary Report

    SciTech Connect (OSTI)

    none,

    2011-12-01

    Summary report of the Industrial Distributed Energy R&D Portfolio Review. The purpose of the review was for project recipients to report on their project goals, approach, and results to date.

  6. Energy Management in a Multi-Industry Organization 

    E-Print Network [OSTI]

    Lawrence, J.

    1981-01-01

    Tenneco operates in seven of the nation's ten most energy intensive industries: Petroleum Refining, Chemicals Manufacturing, Pulp and Paper, Transportation Equipment, Primary Metals, Food Processing, and Machinery. This diversification...

  7. Hardening and Resiliency: U.S. Energy Industry Response to Recent...

    Office of Environmental Management (EM)

    Hardening and Resiliency: U.S. Energy Industry Response to Recent Hurricane Seasons - August 2010 Hardening and Resiliency: U.S. Energy Industry Response to Recent Hurricane...

  8. RenewableNY - An Industrial Energy Conservation Initiative

    SciTech Connect (OSTI)

    Lubarr, Tzipora

    2009-09-30

    The New York Industrial Retention Network (NYIRN) manages the RenewableNY program to assist industrial companies in New York City to implement energy efficiency projects. RenewableNY provides companies with project management assistance and grants to identify opportunities for energy savings and implement energy efficiency projects. The program helps companies identify energy efficient projects, complete an energy audit, and connect with energy contractors who install renewable energy and energy efficient equipment. It also provides grants to help cover the costs of installation for new systems and equipment. RenewableNY demonstrates that a small grant program that also provides project management assistance can incentivize companies to implement energy efficiency projects that might otherwise be avoided. Estimated savings through RenewableNY include 324,500 kWh saved through efficiency installations, 158 kW of solar energy systems installed, and 945 thm of gas avoided.

  9. Virtual Seafloor Reduces Internal Wave Generation by Tidal Flow Likun Zhang*

    E-Print Network [OSTI]

    the applicability of linear theory to global predictions of the conversion of tidal energy into internal wave energy of the energy budget of the oceans requires a determination of the efficiency of conversion of tidal energyVirtual Seafloor Reduces Internal Wave Generation by Tidal Flow Likun Zhang* and Harry L. Swinney

  10. Want to Learn Simple Industrial Energy Efficiency Tips?

    E-Print Network [OSTI]

    Want to Learn Simple Industrial Energy Efficiency Tips? Attend a free workshop put can reduce energy usage. This program is valuable to all manufacturing segments. Friday, June 23, 2006 8 a.m. ­ 12 noon Xcel Energy's Technical Services Bldg 550 15th St - Denver, CO 80202 Conference

  11. Energy Efficiency Improvement Opportunities for the Cement Industry

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01

    S. , 1990. Energy Outlook in West Germany’s Cement Industry.Energy, Emissions, Savings Potential and Policy Actions, Fraunhofer Institute for Systems Technology and Innovation, Karlsruhe, Germany.Germany) and Mitsui Mining (Japan). Several companies in China also provide optimized information technology for energy

  12. A Novel Excitation Scheme for an Ocean Wave Energy Converter

    E-Print Network [OSTI]

    Orazov, Bayram

    2011-01-01

    1.4 Tidal Energy . . . . . . .7th European Wave and Tidal Energy Conference. Porto (for such application. 1.4 Tidal Energy Often mistakenly

  13. Potential environmental effects of energy conservation measures in northwest industries

    SciTech Connect (OSTI)

    Baechler, M C; Gygi, K F; Hendrickson, P L

    1992-01-01

    The Bonneville Power Administration (Bonneville) has identified 101 plants in the Pacific Northwest that account for 80% of the region's industrial electricity consumption. These plants offer a precise target for a conservation program. PNL determined that most of these 101 plants were represented by 11 major industries. We then reviewed 36 major conservation technologies used in these 11 industrial settings to determine their potential environmental impacts. Energy efficiency technologies designed for industrial use may result in direct or indirect environmental impacts. Effects may result from the production of the conservation measure technology, changes in the working environment due to different energy and material requirements, or changes to waste streams. Industry type, work-place conditions, worker training, and environmental conditions inside and outside the plant are all key variables that may affect environmental outcomes. To address these issues this report has three objectives: Describe potential conservation measures that Bonneville may employ in industrial programs and discuss potential primary impacts. Characterize industrial systems and processes where the measure may be employed and describe general environmental issues associated with each industry type. Review environmental permitting, licensing, and other regulatory actions required for industries and summarize the type of information available from these sources for further analysis.

  14. Measuring Energy Efficiency Improvements in Industrial Battery Chargers 

    E-Print Network [OSTI]

    Matley, R.

    2009-01-01

    PG&E and Southern California Edison (SCE) are testing industrial battery chargers according to a California Energy Commission (CEC) approved test procedure. This test procedure, developed with charger manufacturer input as part of the CEC?s... possible by using the SCR controls. TEST PROCEDURE A test procedure was developed for the California Energy Commission?s (CEC) Codes and Standards process. This test procedure was developed with industry stakeholder input for battery and charger...

  15. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01

    and M. Kushler. (1997). Energy Efficiency in Automotive and22 nd National Industrial Energy Technology ConferenceJr. and G. P. Looby. (1996). Energy Conservation and Waste

  16. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01

    actions, develop an energy management plan for business; and38. Caffal, C. (1995). Energy Management in Industry. Centre23 5.1 Energy Management Systems and

  17. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01

    2005). Guidelines for Energy Management. Washington, D.C.Caffal, C. (1995). Energy Management in Industry. Centre forfor improving your energy management practices. Resources

  18. Analysis of Energy-Efficiency Opportunities for the Pulp and Paper Industry in China

    E-Print Network [OSTI]

    Kong, Lingbo

    2014-01-01

    International Energy Agency (IEA). 2007. Tracking IndustrialInternational Energy Agency (IEA). 2009. Energy TechnologyInternational Energy Agency (IEA). 2010. Energy Technology

  19. Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry

    E-Print Network [OSTI]

    Kong, Lingbo

    2014-01-01

    International Energy Agency (IEA). 2007. Tracking IndustrialInternational Energy Agency (IEA). 2009. Energy TechnologyInternational Energy Agency (IEA). 2010a. Energy Technology

  20. Productivity benefits of industrial energy efficiency measures

    E-Print Network [OSTI]

    Worrell, Ernst

    2011-01-01

    in calculations of the cost of conserved energy (CCE) forthe cost calculations cut the potential for energy savingscosts of an energy efficiency measure, thereby lowering the CCE. Adjusting the CCE calculation

  1. ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    Corporation, "The Energy Supply Planning Model," Vols. I andFrancisco> CA, tiThe Energy Supply Plan- ning Model," Vols.Categories from Bechtel Energy Supply Planning Model. Total

  2. ENERGY USE AND CONSERVATION IN INDUSTRIALIZED COUNTRIES

    E-Print Network [OSTI]

    Schipper, L.

    2012-01-01

    simplified measure. while energy prices fell for decades,GNP models are re-run using energy prices as an intermediateof four variation in energy price. Moreover, among countries

  3. ENERGY USE AND CONSERVATION IN INDUSTRIALIZED COUNTRIES

    E-Print Network [OSTI]

    Schipper, L.

    2012-01-01

    priced energy countries like Japan and west Germany and inthe overaTT energy/GNP ratios of France, Germany, Denmark,far more energy—thrifty light diesel trucks in Germany than

  4. A Review of Energy Use and Energy Efficiency Technologies for the Textile Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2014-01-01

    Inc. for U.S. Department of Energy’s Office of IndustrialRenewable and Sustainable Energy Reviews”, Volume 16 (2012)and Muthukumaraswamy, P. SITRA Energy Audit – Implementation

  5. ENERGY USE AND CONSERVATION IN INDUSTRIALIZED COUNTRIES

    E-Print Network [OSTI]

    Schipper, L.

    2012-01-01

    European countries export embodied energy. b) we feed thegrains and other export staples, is not energy intensive onenergy are also important, notably climate, composition of imports and exports,

  6. Energy Conservation Program for Certain Industrial Equipment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Standards and Test Procedures for Commercial Heating, Air- Conditioning, and Water-Heating Equipment AGENCY: Office of Energy Efficiency and Renewable Energy, Department...

  7. Energy Recovery in Industrial Distillation Processes 

    E-Print Network [OSTI]

    Paul, D. B.

    1983-01-01

    Distillation processes are energy intensive separation processes which present attractive opportunities for energy conservation. Through the use of multistage vapor recompression, heat which is normally unavailable can be ...

  8. Setting the Standard for Industrial Energy Efficiency

    E-Print Network [OSTI]

    McKane, Aimee; Williams, Robert; Perry, Wayne; Li, Tienan

    2008-01-01

    Brazil, Spain, and Korea have also initiated work on an energyBrazil, Korea). This paper presents the current status of energy

  9. Industrial Energy Audit Training for Engineers 

    E-Print Network [OSTI]

    Russell, B. D.; Willis, G.; Colburn, B.

    1982-01-01

    training programs that were conceived and initiated under the guidance of the Texas Industrial Commission. One such program, begun with Texas A&M and expanded throughout the state, has continued to provide a high level of engineering and scientific training...

  10. Energy Efficiency Opportunities in the Brewery Industry 

    E-Print Network [OSTI]

    Worrell, E.; Galitsky, C.; Martin, N.

    2002-01-01

    Breweries in the United States spend annually over $200 Million on energy. Energy consumption is equal to 3-8% of the production costs of beer, making energy efficiency improvement an important way to reduce costs, especially in times of high energy...

  11. Productivity benefits of industrial energy efficiency measures

    E-Print Network [OSTI]

    Worrell, Ernst

    2011-01-01

    maintenance Energy monitoring and management systems Variable speed drives for flue gas control, pumps,

  12. ENERGY USE AND CONSERVATION IN INDUSTRIALIZED COUNTRIES

    E-Print Network [OSTI]

    Schipper, L.

    2012-01-01

    Future) *"Energy Demand to the Year 1985 — National Studies" — worksheets from the workshop on Alternative

  13. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    and waste management that take place within industrialpolicies Waste management policies can reduce industrialWaste management policies.56 7.10 Co-benefits of industrial

  14. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    R.R. ,et al. , 2004: Eco-industrial park initiatives in theCHP plant) form an eco-industrial park that serves as an ex-

  15. Industrial Sector Energy Demand: Revisions for Non-Energy-Intensive Manufacturing (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    For the industrial sector, the Energy Information Administration's (EIA) analysis and projection efforts generally have focused on the energy-intensive industriesfood, bulk chemicals, refining, glass, cement, steel, and aluminumwhere energy cost averages 4.8% of annual operating cost. Detailed process flows and energy intensity indicators have been developed for narrowly defined industry groups in the energy-intensive manufacturing sector. The non-energy-intensive manufacturing industries, where energy cost averages 1.9% of annual operating cost, previously have received somewhat less attention, however. In Annual Energy Outlook 2006 (AEO), energy demand projections were provided for two broadly aggregated industry groups in the non-energy-intensive manufacturing sector: metal-based durables and other non-energy-intensive. In the AEO2006 projections, the two groups accounted for more than 50% of the projected increase in industrial natural gas consumption from 2004 to 2030.

  16. Energy and materials flows in the iron and steel industry

    SciTech Connect (OSTI)

    Sparrow, F.T.

    1983-06-01

    Past energy-consumption trends and future energy-conservation opportunities are investigated for the nation's iron and steel industry. It is estimated that, in 1980, the industry directly consumed approximately 2.46 x 10/sup 15/ Btu of energy (roughly 3% of total US energy consumption) to produce 111 million tons of raw steel and to ship 84 million tons of steel products. Direct plus indirect consumption is estimated to be about 3.1 x 10/sup 15/ Btu. Of the set of conservation technologies identified, most are judged to be ready for commercialization if and when the industry's capital formation and profitability problems are solved and the gradual predicted increase in energy prices reduces the payback periods to acceptable levels.

  17. Making the Most of Financed Energy Projects The energy engineers in the Residential, Commercial, and Industrial

    E-Print Network [OSTI]

    Making the Most of Financed Energy Projects The energy engineers in the Residential, Commercial, and Industrial Energy Efficiency Group are experts in the technical, financial, and contractual aspects of ESPCs, and Industrial Energy Efficiency Group (865) 574-1013 kelleyjs@ornl.gov 9/08 r1 ORNL helps organizations

  18. Maine Tidal Power Initiative: Environmental Impact Protocols For Tidal Power

    SciTech Connect (OSTI)

    Peterson, Michael Leroy; Zydlewski, Gayle Barbin; Xue, Huijie; Johnson, Teresa R.

    2014-02-02

    The Maine Tidal Power Initiative (MTPI), an interdisciplinary group of engineers, biologists, oceanographers, and social scientists, has been conducting research to evaluate tidal energy resources and better understand the potential effects and impacts of marine hydro-kinetic (MHK) development on the environment and local community. Project efforts include: 1) resource assessment, 2) development of initial device design parameters using scale model tests, 3) baseline environmental studies and monitoring, and 4) human and community responses. This work included in-situ measurement of the environmental and social response to the pre-commercial Turbine Generator Unit (TGU®) developed by Ocean Renewable Power Company (ORPC) as well as considering the path forward for smaller community scale projects.

  19. Plastic Magen Industry | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975) | OpenBethlehemPlainsboroPlastic Magen Industry Jump to:

  20. Setting the Standard for Industrial Energy Efficiency

    E-Print Network [OSTI]

    McKane, Aimee; Williams, Robert; Perry, Wayne; Li, Tienan

    2008-01-01

    energy monitoring and process control systems can play an important role in energy managementenergy management during the last 10 years has been to transform it from a rather technical monitoring and measurement system to a management system

  1. Group Dynamics Approach to Industrial Energy Management 

    E-Print Network [OSTI]

    Thomas, D. G.

    1993-01-01

    This paper is aimed at people who want to start or rejuvenate an energy management effort. The information in this paper is based on a combination of four years as the energy coordinator of a fertilizer manufacturing plant ...

  2. Industrial Energy Management: Doing More with Less 

    E-Print Network [OSTI]

    Sheppard, J.; Tisot, A.

    2006-01-01

    . In fact, recent advances in enterprise energy management (“EEM”) technology are helping businesses to control costs, optimize processes, and prevent downtime. Energy management systems use a combination of advanced metering hardware and software... the historical consumption data provided to predict energy usage for the month, allocate costs by department, and identify waste. A detailed understanding of the facility’s energy requirements over time can also help managers spot recurring trends, simulate...

  3. Industrial Energy Efficiency and Climate Change Mitigation

    E-Print Network [OSTI]

    Worrell, Ernst

    2009-01-01

    2000) Manufacturing energy use in India: A decompositionenergy efficiency improvement varying from 15% (Japan) to 40% (China, India and

  4. Industrial Energy Efficiency Achieving Success in a Difficult Environment 

    E-Print Network [OSTI]

    Castellow, C.

    2011-01-01

    EFFICIENCY ACHIEVING SUCCESS IN A DIFFICULT ENVIRONMENT CARL CASTELLOW DIRECTOR, INDUSTRIAL ENERGY EFFICIENCY SCHNEIDER ELECTRIC RALEIGH, NC ABSRACT Energy use and the resulting environmental impacts are major points of concern... threat would lead to consequences that would dwarf the economic woes already in place, he outlined fundamental principles of his new energy plan. Among his points: ? ?Conservation is the quickest, cheapest, most practical source of energy.? ? ?We...

  5. ENERGY EFFICIENCY OPPORTUNITIES IN THE U.S. PULP AND PAPER INDUSTRY

    E-Print Network [OSTI]

    Kramer, Klaas Jan

    2010-01-01

    Efficiency and the Pulp and Paper Industry. American CouncilLowitt (1988). The U.S. Pulp and Paper Industry: An EnergyOpportunities for the Pulp and Paper Industry -- An ENERGY

  6. Opportunities to improve energy efficiency in the U.S. pulp and paper industry

    E-Print Network [OSTI]

    Worrell, Ernst; Martin, Nathan; Anglani, Norma; Einstein, Dan; Khrushch, Marta; Price, Lynn

    2001-01-01

    Association of the Pulp and Paper Industry, 1998. J.G. Depolicies on the US pulp and paper industry,” Energy Policy 4Energy Efficiency and the Pulp and Paper Industry,” American

  7. Analysis of Energy-Efficiency Opportunities for the Pulp and Paper Industry in China

    E-Print Network [OSTI]

    Kong, Lingbo

    2014-01-01

    Techniques in the Pulp and Paper Industry. Brussels. U.S.and D. White. 2006. Pulp and Paper Industry Energy BandwidthOpportunities for the Pulp and Paper Industry, An ENERGY

  8. ENERGY EFFICIENCY OPPORTUNITIES IN THE U.S. PULP AND PAPER INDUSTRY

    E-Print Network [OSTI]

    Kramer, Klaas Jan

    2010-01-01

    and the Pulp and Paper Industry. American Council for anThe U.S. Pulp and Paper Industry: An Energy Perspective.on Energy (2006). Pulp & Paper Industry Case Studies. Dryer

  9. Modern Visualization of Industrial Energy Use and Loss 

    E-Print Network [OSTI]

    Brueske, S.

    2015-01-01

    of Manufacturing Energy Use and Loss June 4, 2015 Presented by: Sabine Brueske ESL-IE-15-06-20 Proceedings of the Thrity-Seventh Industrial Energy Technology Conference New Orleans, LA. June 2-4, 2015 Slide 2/46 1. Manufacturing Energy Use and Loss 2. U... New Orleans, LA. June 2-4, 2015 Slide 3/46 Shedding Light on U.S. Manufacturing Energy Use • Manufacturing ? one quarter of nation’s energy consumption • What types of energy? • Where is the energy used? • Where do the greatest losses occur? 2010...

  10. MARCH 2007 1 Tidal mixing hotspots governed by rapid parametric subharmonic instability

    E-Print Network [OSTI]

    MacKinnon, Jennifer

    at 21S demonstrate a rapid transfer of energy (over only a few days) to waves of half the tidal the generation site; overall 40 % of the tidal energy is dissipated locally. Further simulations indicate.9nearly 80 % of tidal energy is dissipated locally. Poleward of the critical latitude, M2/2

  11. Energy Conservation Projects to Benefit the Railroad Industry

    SciTech Connect (OSTI)

    Clifford Mirman; Promod Vohra

    2009-12-31

    The Energy Conservation Projects to benefit the railroad industry using the Norfolk Southern Company as a model for the railroad industry has five unique tasks which are in areas of importance within the rail industry, and specifically in the area of energy conservation. The NIU Engineering and Technology research team looked at five significant areas in which research and development work can provide unique solutions to the railroad industry in energy the conservation. (1) Alternate Fuels - An examination of various blends of bio-based diesel fuels for the railroad industry, using Norfolk Southern as a model for the industry. The team determined that bio-diesel fuel is a suitable alternative to using straight diesel fuel, however, the cost and availability across the country varies to a great extent. (2) Utilization of fuel cells for locomotive power systems - While the application of the fuel cell has been successfully demonstrated in the passenger car, this is a very advanced topic for the railroad industry. There are many safety and power issues that the research team examined. (3) Thermal and emission reduction for current large scale diesel engines - The current locomotive system generates large amount of heat through engine cooling and heat dissipation when the traction motors are used to decelerate the train. The research team evaluated thermal management systems to efficiently deal with large thermal loads developed by the operating engines. (4) Use of Composite and Exotic Replacement Materials - Research team redesigned various components using new materials, coatings, and processes to provide the needed protection. Through design, analysis, and testing, new parts that can withstand the hostile environments were developed. (5) Tribology Applications - Identification of tribology issues in the Railroad industry which play a significant role in the improvement of energy usage. Research team analyzed and developed solutions which resulted in friction modification to improve energy efficiency.

  12. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    cement and pulp and paper industries in China, and in thePulp and Paper Industry, Confederation of European Paper Industries, Brussels, March 2001. CESP, 2004: China’pulp and paper industries (GOI, 2005). There are 39.8 million SMEs in China,

  13. Tools for Assessing Building Energy Use in Industrial Plants 

    E-Print Network [OSTI]

    Martin, M.; MacDonald, M.

    2007-01-01

    . The nature and extent of building energy assessment tools will then be profiled, and the beneficial use of an appropriate subset of these tools for assessing energy savings in buildings at industrial plants will be described. Possible future tools that may...

  14. Energy Matters: An invitation to Chat About Industrial Efficiency

    SciTech Connect (OSTI)

    Hogan, Kathleen

    2011-01-01

    Do you have questions or ideas about how the U.S. Department of Energy can contribute to global competitiveness through industrial efficiency? Dr. Kathleen Hogan would like to hear them. Submit your questions via: Email ( newmedia@hq.doe.gov ) Twitter ( @Energy ) Facebook ( Facebook.com/Energygov ) **LIVE CHAT IS EXPIRED**

  15. Combined Heat & Power (CHP) -A Clean Energy Solution for Industry 

    E-Print Network [OSTI]

    Parks, H.; Hoffman, P.; Kurtovich, M.

    1999-01-01

    (CHP) - A Clean Energy Solution for Industry William Parks, Patricia Hoffman, and Martin Kurtovich U.S. Department of Energy System Laboratory From the late 1970's to the early 1990's cogeneration or CHP saw enormous growth, especially in the process...

  16. Energy Matters: An invitation to Chat About Industrial Efficiency

    ScienceCinema (OSTI)

    Hogan, Kathleen

    2013-05-29

    Do you have questions or ideas about how the U.S. Department of Energy can contribute to global competitiveness through industrial efficiency? Dr. Kathleen Hogan would like to hear them. Submit your questions via: Email ( newmedia@hq.doe.gov ) Twitter ( @Energy ) Facebook ( Facebook.com/Energygov ) **LIVE CHAT IS EXPIRED**

  17. China's Energy Management System Program for Industry 

    E-Print Network [OSTI]

    Hedman, B.; Yu, Y.; Friedman, Z.; Taylor, R.

    2014-01-01

    Use: 1995 – 2010 Source: NBS, 2011b 9 0 200 400 600 800 1000 1200 1400 1600 1800 2000 1995 2000 2005 2010 P r i m a r y E n e r g y * ( M t c e ) Wood and wood products Transport equipment Non-specified industry Paper, pulp and printing Food... Poland China India Food and tobacco Textile and leather Wood and wood products Paper, pulp and printing Petrochemicals Chemicals and chemical products Non-metallic minerals Metals Machinery Transport equipment Total ESL-IE-14...

  18. Global Industry Analysts | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky:BoreOpenGilliamOhio:Change |Framework forIndustry Analysts

  19. MSM Industries Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK5 < MHKKemblaSolar Jump to:Industries Inc Jump to:

  20. Goat Industries Fuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEniaElectric JumpAtlas forCommunityIndustries Fuels

  1. Solkar Solar Industry Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter BatterySolarfin Jump to:Solkar Solar Industry Ltd Jump to:

  2. Solventus Industrial SL | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter BatterySolarfin Jump to:Solkar Solar Industry LtdSolutionSolventus

  3. Solar Industry Scorches Records | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool FitsProjectDataSecretaryDepartment ofLocal GovernmentTennesseeSolarForSolar Industry

  4. TWS Industrial Holdings Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ Automation Jump to: navigation, search Name TJTMATWS Industrial

  5. Biofuel Industries Group LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformationBio-Gas Technologies, LLC JumpBiofame Consulting GroupIndustries

  6. Equity Industrial Partners | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop, IncsourceEnginuityBusinessEnvivaEquity Industrial

  7. South Jersey Industries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity forSiliciumEnergyHouston, Texas: Energy Resources

  8. Emerging energy-efficient industrial technologies

    E-Print Network [OSTI]

    2000-01-01

    Converter Furnace. ” In Ironmaking 2000, 18th Advancedenergy consumption for ironmaking is estimated at 780 TBtu (would reduce energy use in ironmaking by 30 percent relative

  9. Wells Public Utilities - Commercial & Industrial Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Refrigeration Equipment Program Info Sector Name Utility Administrator Wells Public Utilities Website http:www.SaveEnergyInWells.com State Minnesota Program Type Rebate Program...

  10. Blooming Prairie Public Utilities - Commercial & Industrial Energy...

    Broader source: Energy.gov (indexed) [DOE]

    per technology Program Info Sector Name Utility Administrator Blooming Prairie Public Utilities Website http:www.SaveEnergyInBloomingPrairie.com State Minnesota Program Type...

  11. Preston Public Utilities - Commercial & Industrial Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Refrigeration Equipment Program Info Sector Name Utility Administrator Preston Public Utilities Website http:www.SaveEnergyInPreston.com State Minnesota Program Type Rebate...

  12. New Prague Utilities Commission - Commercial & Industrial Energy...

    Broader source: Energy.gov (indexed) [DOE]

    per year, per technology Program Info Sector Name Utility Administrator New Prague Utilities Commission Website http:www.SaveEnergyInNewPrague.com State Minnesota Program Type...

  13. Saint Peter Municipal Utilities - Commercial & Industrial Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Equipment Program Info Sector Name Utility Administrator Saint Peter Municipal Utilities Website http:www.SaveEnergyInSaintPeter.com State Minnesota Program Type Rebate...

  14. Borla Performance Industries, Inc. | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combining this innovation with Borla's diesel exhaust technology will lead to a low cost, unique exhaust system that will double as a neutral energy device to recover and...

  15. Promoting Energy Efficiency in Cement Making: The ENERGY STAR(R) for Industry Program

    E-Print Network [OSTI]

    Masanet, Eric; Worrell, Ernst

    2007-01-01

    or quality. Uncertain energy prices in today’s marketplacein an ENERGY STAR Industrial Focus, and many of today’s U.S.energy efficiency investment is a sound business strategy in today’

  16. Potential Energy Savings and CO2 Emissions Reduction of China's Cement Industry

    E-Print Network [OSTI]

    Ke, Jing

    2013-01-01

    Specific cement energy consumption: conversion of power into2006. Cement industry energy consumption status and energyZhou, H. , 2007a. Energy consumption and environment

  17. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India's Cement Industry

    E-Print Network [OSTI]

    Morrow III, William R.

    2014-01-01

    2000. “Potentials for Energy Efficiency Improvement in theBenefits of Industrial Energy Efficiency Measures,” EnergyC. , and Price, L. , 2008. Energy Efficiency Improvement

  18. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry: An ENERGY STAR? Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Brush, Adrian

    2014-01-01

    Summer Study on Energy Efficiency in Industry. AmericanSummer Study on Energy Efficiency in Industry. AmericanCanada, Office of Energy Efficiency, Ottawa, Ontario. Carbon

  19. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01

    M. Kushler. (c. 1997). Energy Efficiency in Automotive andSummer Study on Energy Efficiency in Industry, Americanof Industrial Technologies, Energy Efficiency and Renewable

  20. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2011-01-01

    opportunities, recommend energy efficiency actions, developSummer Study on Energy efficiency in Industry. AmericanACEEE Summer Study on Energy Efficiency in Industry, ACEEE,