National Library of Energy BETA

Sample records for thrust fault sawteeth

  1. Sawteeth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sawteeth and energy confinement in the Madison Symmetric Torus reversed-field pinch B. E. Chapman, a) A. F. Almagri, M. Cekic, D. J. Den Hartog, S. C. Prager, and J. S. Sarff University of Wisconsin, Department of Physics, 1150 University Avenue, Madison, Wisconsin 53706 ͑Received 23 October 1995; accepted 6 December 1995͒ Most Madison Symmetric Torus ͑MST͒ ͓Fusion Technol. 19, 131 ͑1991͔͒ reversed-field pinch discharges exhibit sawtooth oscillations with a period of 2-5 ms,

  2. Anastomosing grabens, low-angle faults, and Tertiary thrust( ) faults, western Markagunt Plateau, southwestern Utah

    SciTech Connect (OSTI)

    Maldonado, F.; Sable, E.G. )

    1993-04-01

    A structurally complex terrane composed of grabens and horsts, low-angle faults, Tertiary thrust( ) faults, gravity-slide blocks, and debris deposits has been mapped along the western Markagunt Plateau, east of Parowan and Summit, southwestern Utah. This terrane, structurally situated within the transition between the Basin and Range and Colorado Plateau provinces, contains Tertiary volcanic and sedimentary and Cretaceous sedimentary rocks. The structures are mostly Miocene to Oligocene but some are Pleistocene. The oldest structure is the Red Hills low-angle shear zone, interpreted as a shallow structure that decoupled an upper plate composed of a Miocene-Oligocene volcanic ash-flow tuff and volcaniclastic succession from a lower plate of Tertiary sedimentary rocks. The period of deformation on the shear zone is bracketed from field relationships between 22.5 and 20 Ma. The graben-horst system trends northeast and formed after about 20 Ma (and probably much later) based on displacement of dated dikes and a laccolith. The central part of the system contains many grabens that merge toward its southerly end to become a single graben. Within these grabens, (1) older structures are preserved, (2) debris eroded from horst walls forms lobe-shaped deposits, (3) Pleistocene basaltic cinder cones have localized along graben-bounding faults, and (4) rock units are locally folded suggesting some component of lateral translation along graben-bounding faults. Megabreccia deposits and landslide debris are common. Megabreccia deposits are interpreted as gravity-slide blocks of Miocene-Oligocene( ) age resulting from formation of the Red Hills shear zone, although some may be related to volcanism, and still others to later deformation. The debris deposits are landslides of Pleistocene-Pliocene( ) age possibly caused by continued uplift of the Markagunt Plateau.

  3. Thrust faults of southern Diamond Mountains, central Nevada: Implications for hydrocarbons in Diamond Valley and at Yucca Mountain

    SciTech Connect (OSTI)

    French, D.E.

    1993-04-01

    Overmature Mississippian hydrocarbon source rocks in the southern Diamond Mountains have been interpreted to be a klippe overlying less mature source rocks and represented as an analogy to similar conditions near Yucca Mountain (Chamberlain, 1991). Geologic evidence indicates an alternative interpretation. Paleogeologic mapping indicates the presence of a thrust fault, referred to here as the Moritz Nager Thrust Fault, with Devonian rocks emplaced over Permian to Mississippian strata folded into an upright to overturned syncline, and that the overmature rocks of the Diamond Mountains are in the footwall of this thrust. The upper plate has been eroded from most of the Diamond Mountains but remnants are present at the head of Moritz Nager Canyon and at Sentinel Mountain. Devonian rocks of the upper plate comprised the earliest landslide megabreccia. Later, megabreccias of Pennsylvanian and Permian rocks of the overturned syncline of the lower plate were deposited. By this interpretation the maturity of lower-plate source rocks in the southern Diamond Mountains, which have been increased by tectonic burial, is not indicative of conditions in Diamond Valley, adjacent to the west, where upper-plate source rocks might be present in generating conditions. The interpretation that overmature source rocks of the Diamond Mountains are in a lower plate rather than in a klippe means that this area is an inappropriate model for the Eleana Range near Yucca Mountain.

  4. Thrusts - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thrust Hero Image.JPG Thrusts Research Introduction Thrusts Library Resources Research Introduction Why Solar Fuels? Goals & Objectives Thrusts Thrust 1 Thrust 2 Thrust 3 Thrust 4 Library Publications Research Highlights Videos Resources User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS Spectral Database JCAP research thrusts THRUST 1: Electrocatalysis Thrust-01-FINAL-COMPOSITE.jpg Thrust-01-FINAL-COMPOSITE.jpg THRUST 2: Photoelectrocatalysis Thrust 3: integration

  5. Soro West: A non-seismically defined, fault cut-off prospect in the Papuan Fold and Thrust Belt, Papua New Guinea

    SciTech Connect (OSTI)

    Robinson, W.F. ); Swift, C.M. Jr. )

    1996-01-01

    Soro West is a fault cut-off prospect located in the frontal portion of the Papuan Fold and Thrust Belt. Prospective Toro and Imburu sandstones are interpreted to be in the hanging wall of the Soro Thrust. Truncation against the thrust, both updip and through lateral ramps, provides the trapping mechanism. The Soro West Prospect was defined using geological, geochemical, remote sensing, and geophysical data. The definition and location of the trap is a primary risk and work was focused on this aspect. Surface geological data (lithology, strikes, and dips) topography and synthetic aperture radar imagery were incorporated into the evaluation. Statistical curvature analysis techniques helped define the shape of the structure and the locations of the lateral ramps. Strontium isotope analyses of Darai Limestone surface samples refined erosional levels using a locally-derived reference curve. Severe karst precludes the acquisition of coherent surface seismic data, so the primary geophysical tool used was magnetotellurics (MT). A detailed, pre-survey feasibility study defined expected responses from alternative structural models. The MT data demonstrated that the limestone at surface is underlain by thick conductive clastics and not another Darai Limestone sheet. The data also constrained the range of fault cut-off positions significantly. Multiple, three-dimensionally consistent, restorable alternative structural models were created using results from all analyses. These led to a positive assessment of the prospect and an exploratory test is to be drilled in 1996.

  6. Soro West: A non-seismically defined, fault cut-off prospect in the Papuan Fold and Thrust Belt, Papua New Guinea

    SciTech Connect (OSTI)

    Robinson, W.F.; Swift, C.M. Jr.

    1996-12-31

    Soro West is a fault cut-off prospect located in the frontal portion of the Papuan Fold and Thrust Belt. Prospective Toro and Imburu sandstones are interpreted to be in the hanging wall of the Soro Thrust. Truncation against the thrust, both updip and through lateral ramps, provides the trapping mechanism. The Soro West Prospect was defined using geological, geochemical, remote sensing, and geophysical data. The definition and location of the trap is a primary risk and work was focused on this aspect. Surface geological data (lithology, strikes, and dips) topography and synthetic aperture radar imagery were incorporated into the evaluation. Statistical curvature analysis techniques helped define the shape of the structure and the locations of the lateral ramps. Strontium isotope analyses of Darai Limestone surface samples refined erosional levels using a locally-derived reference curve. Severe karst precludes the acquisition of coherent surface seismic data, so the primary geophysical tool used was magnetotellurics (MT). A detailed, pre-survey feasibility study defined expected responses from alternative structural models. The MT data demonstrated that the limestone at surface is underlain by thick conductive clastics and not another Darai Limestone sheet. The data also constrained the range of fault cut-off positions significantly. Multiple, three-dimensionally consistent, restorable alternative structural models were created using results from all analyses. These led to a positive assessment of the prospect and an exploratory test is to be drilled in 1996.

  7. Development of magnetohydrodynamic modes during sawteeth in tokamak plasmas

    SciTech Connect (OSTI)

    Firpo, M.-C.; Ettoumi, W.; Farengo, R.; Ferrari, H. E.; Consejo Nacional de Investigaciones Cientficas y Tcnicas , Bariloche ; Garca-Martnez, P. L.; Lifschitz, A. F.

    2013-07-15

    A dynamical analysis applied to a reduced resistive magnetohydrodynamics model is shown to explain the chronology of the nonlinear destabilization of modes observed in tokamak sawteeth. A special emphasis is put on the nonlinear self-consistent perturbation of the axisymmetric m = n = 0 mode that manifests through the q-profile evolution. For the very low fusion-relevant resistivity values, the q-profile is shown to remain almost unchanged on the early nonlinear timescale within the central tokamak region, which supports a partial reconnection scenario. Within the resistive region, indications for a local flattening or even a local reversed-shear of the q-profile are given. The impact of this ingredient in the occurrence of the sawtooth crash is discussed.

  8. Theory of discrete dynamo activity in laboratory plasmas: RFP sawteeth

    SciTech Connect (OSTI)

    Hegna, C.C.; Prager, S.C.; Gimblett, C.G.

    1996-12-31

    Reversed field pinch experiments (RFP) exhibit relaxation phenomena which sustain the magnetic configuration longer than electrical resistivity should allow. This effect is due to the NMD dynamo. An interesting feature of the dynamo is that the relaxations often occur in a discrete and nearly periodic sawtoothing fashion. Unlike the tokamak sawtooth where a single Fourier harmonic is believed to play a central role in the sawtooth dynamics, RFP sawteeth are characterized by a set of tearing instabilities which play the essential role in the MHD dynamo. A theoretical explanation of the discrete dynamo is presented which is based upon a description of the RFP dynamics as a low order dynamical system. The calculation accounts for the evolution of the equilibrium that is affected by applied electrical fields, diffusion processes and the MHD dynamo, as well as a dynamical description of the MHD dynamo which is determined from the behavior of the tearing instabilities and the properties of the equilibrium. The system can be reduced to two ordinary differential equations for the averaged current gradient, which measures the degree of plasma relaxation, and the dynamo amplitude. The dynamical system exhibit a predator-prey type periodic limit cycle, which is characterized by a slow current peaking phase followed by a rapid crash. The sawtooth amplitude and period are predicted to increase with Lundquist number and plasma current, features which are in qualitative agreement with experimental observations.

  9. Off-axis sawteeth and double-tearing reconnection in reversed magnetic shear plasmas in TFTR

    SciTech Connect (OSTI)

    Chang, Z.; Park, W.; Fredrickson, E.D.

    1996-06-01

    Off-axis sawteeth are often observed in reversed magnetic shear plasmas when the minimum safety factor q is near or below 2. Fluctuations with m/n = 2/1 (m and n are the poloidal and toroidal mode numbers) appear before and after the crashes. Detailed comparison has been made between the measured T{sub e} profile evolution during the crash and a nonlinear numerical magnetohydrodynamics (MHD) simulation. The good agreement between the observation and simulation indicates that the off-axis sawteeth are due to a double-tearing magnetic reconnection process.

  10. Thrust 1 - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1: Electrocatalysis Research Why Solar Fuels Goals & Objectives Thrust 1 Thrust 2 Thrust 3 Thrust 4 Publications Research Highlights Videos Innovations User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS Spectral Database Research Introduction Why Solar Fuels? Goals & Objectives Thrusts Thrust 1 Thrust 2 Thrust 3 Thrust 4 Library Publications Research Highlights Videos Resources User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS Spectral

  11. Thrust 2 - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2: Photoelectrocatalysis Research Why Solar Fuels Goals & Objectives Thrust 1 Thrust 2 Thrust 3 Thrust 4 Publications Research Highlights Videos Innovations User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS Spectral Database Research Introduction Why Solar Fuels? Goals & Objectives Thrusts Thrust 1 Thrust 2 Thrust 3 Thrust 4 Library Publications Research Highlights Videos Resources User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS

  12. Thrust 3 - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3: Integration Research Why Solar Fuels Goals & Objectives Thrust 1 Thrust 2 Thrust 3 Thrust 4 Publications Research Highlights Videos Innovations User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS Spectral Database Research Introduction Why Solar Fuels? Goals & Objectives Thrusts Thrust 1 Thrust 2 Thrust 3 Thrust 4 Library Publications Research Highlights Videos Resources User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS Spectral

  13. Thrust 4 - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4: Prototyping Research Why Solar Fuels Goals & Objectives Thrust 1 Thrust 2 Thrust 3 Thrust 4 Publications Research Highlights Videos Innovations User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS Spectral Database Research Introduction Why Solar Fuels? Goals & Objectives Thrusts Thrust 1 Thrust 2 Thrust 3 Thrust 4 Library Publications Research Highlights Videos Resources User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS Spectral

  14. THRUST BEARING

    DOE Patents [OSTI]

    Heller, P.R.

    1958-09-16

    A thrust bearing suitable for use with a rotor or blower that is to rotate about a vertical axis is descrihed. A centrifagal jack is provided so thnt the device may opernte on one hearing at starting and lower speeds, and transfer the load to another bearing at higher speeds. A low viscosity fluid is used to lubricate the higher speed operation bearing, in connection with broad hearing -surfaces, the ability to withstand great loads, and a relatively high friction loss, as contraated to the lower speed operatio;n bearing which will withstand only light thrust loads but is sufficiently frictionfree to avoid bearing seizure during slow speed or startup operation. An axially aligned shaft pin provides the bearing surface for low rotational speeds, but at higher speed, weights operating against spring tension withdraw nthe shaft pin into the bearing proper and the rotor shaft comes in contact with the large bearing surfaces.

  15. M3D-K simulations of sawteeth and energetic particle transport in tokamak plasmas

    SciTech Connect (OSTI)

    Shen, Wei; Sheng, Zheng-Mao [Department of Physics, Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Fu, G. Y.; Breslau, J. A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Wang, Feng [School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China)

    2014-09-15

    Nonlinear simulations of sawteeth and related energetic particle transport are carried out using the kinetic/magnetohydrodynamic (MHD) hybrid code M3D-K. MHD simulations show repeated sawtooth cycles for a model tokamak equilibrium. Furthermore, test particle simulations are carried out to study the energetic particle transport due to a sawtooth crash. The results show that energetic particles are redistributed radially in the plasma core, depending on pitch angle and energy. For trapped particles, the redistribution occurs for particle energy below a critical value in agreement with existing theories. For co-passing particles, the redistribution is strong with little dependence on particle energy. In contrast, the redistribution level of counter-passing particles decreases with increasing particle energy.

  16. Measuring axial pump thrust

    DOE Patents [OSTI]

    Suchoza, Bernard P.; Becse, Imre

    1988-01-01

    An apparatus for measuring the hydraulic axial thrust of a pump under operation conditions is disclosed. The axial thrust is determined by forcing the rotating impeller off of an associated thrust bearing by use of an elongate rod extending coaxially with the pump shaft. The elongate rod contacts an impeller retainer bolt where a bearing is provided. Suitable measuring devices measure when the rod moves to force the impeller off of the associated thrust bearing and the axial force exerted on the rod at that time. The elongate rod is preferably provided in a housing with a heat dissipation mechanism whereby the hot fluid does not affect the measuring devices.

  17. Measuring axial pump thrust

    DOE Patents [OSTI]

    Suchoza, B.P.; Becse, I.

    1988-11-08

    An apparatus for measuring the hydraulic axial thrust of a pump under operation conditions is disclosed. The axial thrust is determined by forcing the rotating impeller off of an associated thrust bearing by use of an elongate rod extending coaxially with the pump shaft. The elongate rod contacts an impeller retainer bolt where a bearing is provided. Suitable measuring devices measure when the rod moves to force the impeller off of the associated thrust bearing and the axial force exerted on the rod at that time. The elongate rod is preferably provided in a housing with a heat dissipation mechanism whereby the hot fluid does not affect the measuring devices. 1 fig.

  18. Variable thrust cartridge

    DOE Patents [OSTI]

    Taleyarkhan, Rusi P.

    2000-11-07

    The present invention is a variable thrust cartridge comprising a water-molten aluminum reaction chamber from which a slug is propelled. The cartridge comprises a firing system that initiates a controlled explosion from the reaction chamber. The explosive force provides a thrust to a slug, preferably contained within the cartridge.

  19. San Juan Montana Thrust Belt WY Thrust Belt Black Warrior

    U.S. Energy Information Administration (EIA) Indexed Site

    San Juan Montana Thrust Belt WY Thrust Belt Black Warrior Paradox - San Juan NW (2) Uinta- Piceance Paradox - San Juan SE (2) Florida Peninsula Appalachian- NY (1) Appalachian ...

  20. Physics Thrust Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thrust Areas Physics Thrust Areas Physics Division serves the nation through its broad portfolio of fundamental and applied research. Quality basic science research: critical component of maintaining our capabilities in national security research To further understand the physical world, generate new or improved technology in experimental physics, and establish a physics foundation for current and future Los Alamos programs, Physics Division leverages its expertise and experimental capabilities

  1. Zonal flow sawteeth and the time period between edge-localized transport bursts in tokamaks

    SciTech Connect (OSTI)

    Kleva, Robert G.; Guzdar, Parvez N.

    2007-01-15

    The time period between particle and energy transport bursts in simulations of tokamak edge turbulence is determined by the magnitude of the diamagnetic drift parameter {alpha}{sub d}{identical_to}{omega}{sub *}/{gamma}{sub 0}, where the diamagnetic drift frequency {omega}{sub *}={rho}{sub s}c{sub s}/L{sub 0}L{sub n} and the characteristic ballooning mode growth rate {gamma}{sub 0}=c{sub s}/(RL{sub n}/2){sup 1/2}. Here, R is the major radius of the torus, L{sub n} is the density gradient scale length, {rho}{sub s} is the ion gyroradius, and c{sub s} is the ion acoustic speed. The scale length L{sub 0} is given by L{sub 0}=2{pi}qR {nu}{sub ei}{rho}{sub s}/2{omega}{sub e}R){sup 1/2}(2R/L{sub n}){sup 1/4}, where q is the safety factor, {nu}{sub ei} is the electron-ion collision frequency, and {omega}{sub e} is the electron cyclotron frequency. When the diamagnetic drift frequency becomes larger than the ballooning mode growth rate ({alpha}{sub d}>1), then the transport in the tokamak edge is characterized by regularly recurring bursts of particles and energy with a single well-defined frequency. As {alpha}{sub d} increases above unity, the time period between the bursts becomes much longer. The temporal dependence of the energy in the zonal flow generated nonlinearly has the appearance of sawteeth.

  2. Thrusts in High Performance Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in HPC 1 Thrusts in High Performance Computing Science at Scale Petaflops to Exaflops Science through Volume Thousands to Millions of Simulations Science in Data Petabytes to ...

  3. Micro thrust and heat generator

    DOE Patents [OSTI]

    Garcia, Ernest J.

    1998-01-01

    A micro thrust and heat generator has a means for providing a combustion fuel source to an ignition chamber of the micro thrust and heat generator. The fuel is ignited by a ignition means within the micro thrust and heat generator's ignition chamber where it burns and creates a pressure. A nozzle formed from the combustion chamber extends outward from the combustion chamber and tappers down to a narrow diameter and then opens into a wider diameter where the nozzle then terminates outside of said combustion chamber. The pressure created within the combustion chamber accelerates as it leaves the chamber through the nozzle resulting in pressure and heat escaping from the nozzle to the atmosphere outside the micro thrust and heat generator. The micro thrust and heat generator can be microfabricated from a variety of materials, e.g., of polysilicon, on one wafer using surface micromachining batch fabrication techniques or high aspect ratio micromachining techniques (LIGA).

  4. Micro thrust and heat generator

    DOE Patents [OSTI]

    Garcia, E.J.

    1998-11-17

    A micro thrust and heat generator have a means for providing a combustion fuel source to an ignition chamber of the micro thrust and heat generator. The fuel is ignited by a ignition means within the micro thrust and heat generator`s ignition chamber where it burns and creates a pressure. A nozzle formed from the combustion chamber extends outward from the combustion chamber and tappers down to a narrow diameter and then opens into a wider diameter where the nozzle then terminates outside of said combustion chamber. The pressure created within the combustion chamber accelerates as it leaves the chamber through the nozzle resulting in pressure and heat escaping from the nozzle to the atmosphere outside the micro thrust and heat generator. The micro thrust and heat generator can be microfabricated from a variety of materials, e.g., of polysilicon, on one wafer using surface micromachining batch fabrication techniques or high aspect ratio micromachining techniques (LIGA). 30 figs.

  5. Low-thrust rocket trajectories

    SciTech Connect (OSTI)

    Keaton, P.W.

    1986-01-01

    The development of low-thrust propulsion systems to complement chemical propulsion systems will greatly enhance the evolution of future space programs. Two advantages of low-thrust rockets are stressed: first, in a strong gravitational field, such as occurs near the Earth, freighter missions with low-thrust engines require one-tenth as much propellant as do chemical engines. Second, in a weak gravitational field, such as occurs in the region between Venus and Mars, low-thrust rockets are faster than chemical rockets with comparable propellant mass. The purpose here is to address the physics of low-thrust trajectories and to interpret the results with two simple models. Analytic analyses are used where possible - otherwise, the results of numerical calculations are presented in graphs. The author has attempted to make this a self-contained report. 57 refs., 10 figs.

  6. Low-thrust rocket trajectories

    SciTech Connect (OSTI)

    Keaton, P.W.

    1987-03-01

    The development of low-thrust propulsion systems to complement chemical propulsion systems will greatly enhance the evolution of future space programs. Two advantages of low-thrust rockets are stressed: first, in a strong gravitational field, such as occurs near the Earth, freighter missions with low-thrust engines require one-tenth as much propellant as do chemical engines. Second, in a weak gravitational field, such as occurs in the region between Venus and Mars, low-thrust rockets are faster than chemical rockets with comparable propellant mass. The purpose here is to address the physics of low-thrust trajectories and to interpret the results with two simple models. Analytic analyses are used where possible - otherwise, the results of numerical calculations are presented in graphs. The author has attempted to make this a self-contained report.

  7. Hawaii Faults

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nicole Lautze

    2015-01-01

    Faults combined from USGS 2007 Geologic Map of the State of Hawaii and the USGS Quaternary Fault and Fold database. This data is in shapefile format.

  8. Grenville foreland thrust belt hidden beneath the eastern US midcontinent

    SciTech Connect (OSTI)

    Hauser, E.C. (Cornell Univ., Ithaca, NY (United States))

    1993-01-01

    Grenville foreland thrust structures are observed beneath the eastern US midcontinent on COCORP (Consortium for Continental Reflection Profiling) line OH-1 and a short seismic line in southwest Ohio. These structures represent the first evidence for a significant Grenville foreland thrust belt preserved in eastern North America. On the COCORP lines, the structures include a thrust ramp anticline and an associated asymmetric syncline. The Grenville front tectonic zone appears to truncate these foreland structures, indicating a later, second phase expressed as a deeply penetrating, out-of-sequence thrust zone associated with the main uplift of the Grenville province on the east. A short, shallow seismic line in southwestern Ohio reveals an east-dipping sequence of prominently layered rocks that may lie above a footwall ramp to a deeper Grenville thrust fault. A drill hole into the less reflective top of this dipping sequence encountered unmetamorphosed sedimentary rocks like those increasingly reported from other drill holes in southwestern Ohio and adjacent states. Although possibly part of a late Precambrian (Keweenawan ) rift, these clastic sedimentary rocks may instead preserve evidence of a heretofore unrecognized Grenville foreland basin in eastern North America. Alternatively these Precambrian sedimentary rocks together with an underlying, but yet undrilled, strongly layered sequence may correlate with similarly layered rocks observed on COCORP and industrial seismic lines within the Middle Proterozoic granite-rhyolite province to the west in Indiana and Illinois and indicate that unmetamorphosed sedimentary material is an important constituent of the granite-rhyolite province. 25 refs., 6 figs.

  9. San Juan Montana Thrust Belt WY Thrust Belt Black Warrior

    U.S. Energy Information Administration (EIA) Indexed Site

    San Juan Montana Thrust Belt WY Thrust Belt Black Warrior Paradox - San Juan NW (2) Uinta- Piceance Paradox - San Juan SE (2) Florida Peninsula Appalachian- NY (1) Appalachian OH-PA (2) Appalachian Eastern PA (3) Appalachian Southern OH (4) Appalachian Eastern WV (5) Appalachian WV-VA (6) Appalachian TN-KY (7) Piceance Greater Green River Eastern OR-WA Ventura Williston Williston NE (2) Williston NW (1) Williston South (3) Eastern Great Basin Ventura West, Central, East Eastern OR-WA Eastern

  10. Fault finder

    DOE Patents [OSTI]

    Bunch, Richard H.

    1986-01-01

    A fault finder for locating faults along a high voltage electrical transmission line. Real time monitoring of background noise and improved filtering of input signals is used to identify the occurrence of a fault. A fault is detected at both a master and remote unit spaced along the line. A master clock synchronizes operation of a similar clock at the remote unit. Both units include modulator and demodulator circuits for transmission of clock signals and data. All data is received at the master unit for processing to determine an accurate fault distance calculation.

  11. Geometry and evolution of the frontal part of the Magallanes foreland thrust and fold belt (Vicuna Area), Tierra del Fuego, southern Chile

    SciTech Connect (OSTI)

    Alvarez-Marron, J.; McClay, K.R. ); Harambour, S.; Rojas, L.; Skarmeta, J. )

    1993-11-01

    The Magallanes foreland thrust and fold belt is a thin-skinned foreland thrust and fold belt of Paleocene to Oligocene age that deforms Upper Jurassic through Tertiary volcanic, volcaniclastic, and siliciclastic strata of the Magallanes basin, southern Andean Cordillera, Chile. This paper is a detailed description and analysis of the geology and structural evolution of the thrust front (Vicuna area of southern Tierra del Fuego). Reflection seismic and well data, together with 1:50,000 scale geological mapping, have been used in the analysis. In the southern part of the Vicuna area, two different thrust systems have been found: an upper imbricate fan that deforms Upper Jurassic and Cretaceous strata, and a younger, lower duplex composed of Cretaceous and probably Upper Jurassic rocks. The imbricate fan is characterized by fault-propagation folding in which listric thrust faults merge downward into a sole thrust that probably is located within the Upper Jurassic stratigraphy. The sole thrust of the upper imbricates forms the roof thrust of the underlying duplex. In the northern part of the Vicuna area, the syntectonic sedimentary wedge of the foredeep consists of Late Cretaceous through Tertiary siliciclastics that have been deformed and uplifted by passive back thrusting at the triangle zone. The structural style in the foreland region shows three main subhorizontal detachment levels located within the sedimentary wedge as a result of the progressive transfer of slip from the thrust belt to the foreland. Minor blind thrusts produce stacked [open quotes]pop up[close quotes] and triangle structures that result in complex geometries in the cores of anticlines. A forward-breaking sequence of thrusting is interpreted. During deformation, the active foredeep wedge migrated at least 10 km northward. Balanced geological cross sections indicate approximately 60% (-30 km) shortening for this part of the Magallanes thrust belt.

  12. Thrust bolting: roof bolt support apparatus

    DOE Patents [OSTI]

    Tadolini, Stephen C.; Dolinar, Dennis R.

    1992-01-01

    A method of installing a tensioned roof bolt in a borehole of a rock formation without the aid of a mechanical anchoring device or threaded tensioning threads by applying thrust to the bolt (19) as the bonding material (7') is curing to compress the strata (3) surrounding the borehole (1), and then relieving the thrust when the bonding material (7') has cured.

  13. Exploration within the Sub-Andean Thrust Belt of Southern Bolivia

    SciTech Connect (OSTI)

    Nelson, K.J. )

    1993-02-01

    The Sub-Andean thrust belt of Southern Bolivia is a proven hydrocarbon province. Chevron began a regional study of the area in 1988 and chose the Caipipendi block due to its high potential for significant new oil reserves. A regional work program designed to acquire and integrate seismic data, geologic field data, geochemistry, and gravity data was used to generated structural models, evaluate regional risk components and to detail leads. The structural style within the Caipipendi block is interpreted as being an in sequence, thin skinned thrust belt with eastward verging folds and thrust faults. Tight surface anticlines associated with a Middle Devonian detachment have been later folded by deeper fault bend folds associated with the Silurian detachment. While the tight surface folds are presently producing oil, the deeper broader structures associated with the Silurian detachement have not been tested. Seismic data, utilized for the first time in this part of the Sub-Andean thrust belt, integrated with balanced structural cross sections, is the key to evaluating this new play. Geochemical analysis, including oil biomarker work, indicate that the oils are sourced from the Silurian-Devonian sequence. A generative oil system model formulated by integrating the geochemical analysis with maturation modeling indicates that the Devonian Los Monos formation is the primary oil source. Anticipated reservoirs for the new play are Carboniferous and Devonian sandstones which are also productive elsewhere in the basin.

  14. Collar nut and thrust ring

    DOE Patents [OSTI]

    Lowery, Guy B.

    1991-01-01

    A collar nut comprises a hollow cylinder having fine interior threads at one end for threadably engaging a pump mechanical seal assembly and an inwardly depending flange at the other end. The flange has an enlarged portion with a groove for receiving an O-ring for sealing against the intrusion of pumpage from the exterior. The enlarged portion engages a thrust ring about the pump shaft for crushing a hard O-ring, such as a graphite O-ring. The hard O-ring seals the interior of the mechanical seal assembly and pump housing against the loss of lubricants or leakage of pumpage. The fine threads of the hollow cylinder provide the mechanical advantage for crushing the hard O-ring evenly and easily with a hand tool from the side of the collar nut rather than by tightening a plurality of bolts from the end and streamlines the exterior surface of the mechanical seal. The collar nut avoids the spatial requirements of bolt heads at the end of a seal and associated bolt head turbulence.

  15. LANSCE | Lujan Center | Science Thrust Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Thrust Areas User research at the Lujan Center is focused in four science thrust areas. Each has a contact person who is available to discuss proposed experiments and to provide advice on the appropriate instrument and instrument scientist, available sample environments, and other details for planned experiments. Lujan Center instrument scientists welcome questions and discussions about new experiments and are happy to provide guidance for proposal development. New users are encouraged

  16. Restoration of geological surface-UNFOLD method-a validation of complex structural mapping interpretation in the Andean Thrust Belt

    SciTech Connect (OSTI)

    Guillier, B. ); Oller, J.; Mendez, E.; Leconte, J.C.; Letouzey, J.; Specht, M.; Gratier, J.P.

    1993-02-01

    One of the most important problems in petroleum structural geology is dependable interpretation of structural maps obtained by seismic and sub-surface data. One method for validating the geometry of geological structures is the balancing cross-section technique which allows verification of cross-section geometry by a return to its initial horizontal state. However, this can not be used for of 3D halokinesis, shale tectonics, structures formed by polyphased noncoaxial tectonic events, or strike-slip and wrench faulting. An alternative approach is to test the restoration of folded and faulted surfaces to verify 3D structures by balancing geological surfaces represented by a structural map. This method tests the geometry of studied horizon and faults and is based upon the fact that, initially, actual folded/faulted structures were continuous at deposition. The balancing surface program, UNFOLD, restores the actual geological surface to its initial state. Misfits along faults implied poor structural map drawings or strong internal deformation of the geological level. By trial and error method, we returned to the initial data interpretation modifications. This method has been applied to 2D and 3D seismic structural interpretation in different structural styles, environments, rift zones, salt basins, wrench faulting, thrust belt,etc. Some applications to oil field structures in the Andean Thrust Belt have been done to check and validate the complex structural mapping interpretation.

  17. The Wallula fault and tectonic framework of south-central Washington, as interpreted from magnetic and gravity anomalies

    SciTech Connect (OSTI)

    Blakely, Richard J.; Sherrod, Brian; Weaver, Craig; Wells, Ray E.; Rohay, Alan C.

    2014-06-11

    Magnetic and gravity data, collected in south-central Washington near the Yakima Fold and Thrust Belt (YFTB) are used to model upper crustal structure, the extent of the late Columbia River Basalt flow named the Ice Harbor member, the vertical conduits (dikes) that the Ice Harbor erupted from, and whether the dikes are offset or affected by faulting on the Wallula Fault zone.

  18. Structural styles of subandean fold and thrust belt of Peru and Southern Ecuador

    SciTech Connect (OSTI)

    Aleman, A.M.

    1988-01-01

    Along-strike variations in structural styles of the east-verging Subandean fold and thrust belt (SAFTB) in Peru and southern Ecuador are controlled by the presence or absence of thick Late Permian to Jurassic evaporite sequences rather than changes in subducting plate geometries as has been suggested previously for the Andes. Salt distribution and thickness have not only controlled the styles and segmentation along the SAFTB but also have been important factors in strike variations across the belt. The southern Ecuador SAFTB lacks significant evaporite units and is characterized by thick-skinned deformation that encompasses high-angle reverse faults, and broad, low-amplitude folds. The style changes to thin-skinned deformation near 2S lat. and it is well illustrated in the Santiago and Huallaga basins where thick evaporite units are present. This segment is characterized by a major decollement on the salt, grabens formed by salt withdrawal from reactivation of thrust faults as listric normal faults, salt piercement at or near synclinal axes, and periclines and asymmetric folds. The frontal thrust of this thin-skinned segment consists of box, overturned and upright folds above shallow salt domes, and by a major backthrust at the mountain front. This segment extends to 1030'S lat., near Oxapampa, Peru, where the thin-skinned SAFTB is narrow and changes across strike to a thick-skinned deformation as the evaporite units thin and disappear eastward. South of 1030'S lat., a new thick-skinned deformation segment is present in southern Peru and characterizes most of the deformation in the SAFTB of the Ucayali and Madre De Dios basins.

  19. Exploration for hydrocarbons under thrust belts - a challenging new frontier in the Carpathians

    SciTech Connect (OSTI)

    Picha, F.J. )

    1993-09-01

    The Carpathian thrust belt has been explored with mixed results. Large reserves of oil and gas have been found in Romania and the western Ukraine, while exploration in other areas has been disappointing. Deep drilling and seismic profiling, as well as better understanding of structure, however, has contributed to the opening of promising new plays beneath the allochthonous belt. The thin-skinned Carpathian thrust belt is characterized by a long-range tectonic transport over the Neogene foredeep and the underlying European platform. The complex structure of the platform involves Caledonian and Variscan compressional deformation, Mesozoic extension, related to the development of the northern Tethyan margins, and Cenozoic normal faulting and wrenching associated with the Alpine Orogeny. Elements of the platform were also detached and incorporated into the thrust belt proper. In addition to numerous structural plays, significant morphologic features, such as large Paleogene and neogene buried valleys, have been found within the platform margins. Both the valley fill and the associated subsea fans and channels represent promising plays. Generation of hydrocarbons from various source rocks within the platform was greatly enhanced by emplacement of the wedge-shaped Carpathian thrust belt. The low heat flow, typical for the subthrust setting, enabled generation and preservation of hydrocarbons at great depths. Although several oil and gas fields have been found in shallower parts of the platform, the deeper structures (below 5 km) remain mostly unexplored. The complexity and diversity of subthrust geology offers a big challenge to exploration, but also provides an opportunity for finding significant oil and gas accumulations not only in the Carpathians, but elsewhere under thin-skinned thrust belts.

  20. MATERIALS PERFORMANCE TARGETED THRUST FY 2004 PROJECTS

    SciTech Connect (OSTI)

    DOE

    2005-09-13

    The Yucca Mountain site was recommended by the President to be a geological repository for commercial spent nuclear fuel and high-level radioactive waste. The multi-barrier approach was adopted for assessing and predicting system behavior, including both natural barriers and engineered barriers. A major component of the long-term strategy for safe disposal of nuclear waste is first to completely isolate the radionuclides in waste packages for long times and then to greatly retard the egress and transport of radionuclides from penetrated packages. The goal of the Materials Performance Targeted Thrust program is to further enhance the understanding of the role of engineered barriers in waste isolation. In addition, the Thrust will explore technical enhancements and seek to offer improvements in materials costs and reliability.

  1. Thrust bolting: Roof-bolt-support apparatus

    SciTech Connect (OSTI)

    Tadolini, S.C.; Dolinar, D.R.

    1991-01-01

    The invention relates to a method for installing a roof bolt in a borehole of a rock formation and more specifically to tensioning the unit without the aid of a mechanical anchoring device or threaded tensioning threads. The bolt is capable of being placed into tension along the length and the levels of active support can be controlled by varying the length of the grouted portion and the level of thrust applied to the bolt during installation.

  2. Thrust bearing assembly for a downhole drill motor

    SciTech Connect (OSTI)

    Geczy, B. A.

    1985-12-24

    A bidirectional thrust bearing assembly is used between a downhole fluid motor and a rock bit for drilling oil wells. The bearing assembly has a stationary housing with radial journal bearing sleeves and a rotatable drive shaft also having radial bearing sleeves. A pair of oppositely facing thrust bearing rings are mounted in the housing. A second pair of thrust bearing rings are mounted on the shaft so as to have faces opposing the bearing faces on the first pair of rings. Belleville springs resiliently bias a pair of the thrust bearing rings apart and carry the thrust load between such rings. Each ring has a plurality of inserts of hard material, preferably polycrystalline diamond, at the bearing surface. Means are provided for circulating drilling fluid from the motor through the thrust bearing faces for forming hydrodynamic fluid bearing films in the bearing interfaces.

  3. Center for Inverse Design: Research Thrusts and Subtasks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Thrusts and Subtasks The Center for Inverse Design creates an unprecedented coupling of theory and experiment to realize the thesis that inverse design can revolutionize ...

  4. Tobias Hanrath > Research Thrust Leader - Fuel Cells and Batteries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanrath Research Thrust Leader - Fuel Cells and Batteries Assistant Professor Chemical and Biomolecular Engineering Research Group Webpage th358@cornell.edu Research There is a...

  5. David Muller > Research Thrust Leader - Complex OxidesProfessor...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    David Muller Research Thrust Leader - Complex Oxides Professor Applied and Engineering Physics Research Group Webpage dm24@cornell.edu He joined the Applied and Engineering Physics...

  6. Late Cretaceous extension in the hinterland of the Sevier thrust...

    Open Energy Info (EERE)

    Sevier thrust belt, northwestern Utah and southern Idaho Abstract Cover rocks of the Raft River metamorphic core complex, located in the Sevier belt hinterland, preserve a...

  7. Photovoltaic System Fault Detection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic System Fault Detection and Diagnostics using Laterally Primed Adaptive Resonance Theory Neural Network C. Birk Jones, Joshua S. Stein, Sigifredo Gonzalez, and Bruce H. King Sandia National Laboratories, Albuquerque, NM, 87185, U.S.A Abstract-Cost effective integration of solar photovoltaic (PV) systems requires increased reliability. This can be achieved with a robust fault detection and diagnostic (FDD) tool that auto- matically discovers faults. This paper introduces the Laterally

  8. Fault Current Limiters

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Other benefits include: &17; Enhanced system safety, stability, and efficiency of the power ... large fault current desaturates the iron core of the series AC coils and the increased ...

  9. Solar system fault detection

    DOE Patents [OSTI]

    Farrington, Robert B.; Pruett, Jr., James C.

    1986-01-01

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  10. Solar system fault detection

    DOE Patents [OSTI]

    Farrington, R.B.; Pruett, J.C. Jr.

    1984-05-14

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  11. OpenStudio - Fault Modeling

    Energy Science and Technology Software Center (OSTI)

    2014-09-19

    This software record documents the OpenStudio fault model development portion of the Fault Detection and Diagnostics LDRD project.The software provides a suite of OpenStudio measures (scripts) for modeling typical HVAC system faults in commercial buildings and also included supporting materials: example projects and OpenStudio measures for reporting fault costs and energy impacts.

  12. Thrust stand for vertically oriented electric propulsion performance evaluation

    SciTech Connect (OSTI)

    Moeller, Trevor; Polzin, Kurt A.

    2010-11-15

    A variation of a hanging pendulum thrust stand capable of measuring the performance of an electric thruster operating in the vertical orientation is presented. The vertical orientation of the thruster dictates that the thruster must be horizontally offset from the pendulum pivot arm, necessitating the use of a counterweight system to provide a neutrally stable system. Motion of the pendulum arm is transferred through a balance mechanism to a secondary arm on which deflection is measured. A noncontact light-based transducer is used to measure displacement of the secondary beam. The members experience very little friction, rotating on twisting torsional pivots with oscillatory motion attenuated by a passive, eddy-current damper. Displacement is calibrated using an in situ thrust calibration system. Thermal management and self-leveling systems are incorporated to mitigate thermal and mechanical drifts. Gravitational force and torsional spring constants associated with flexure pivots provide restoring moments. An analysis of the design indicates that the thrust measurement range spans roughly four decades, with the stand capable of measuring thrust up to 12 N for a 200 kg thruster and up to approximately 800 mN for a 10 kg thruster. Data obtained from calibration tests performed using a 26.8 lbm simulated thruster indicated a resolution of 1 mN on 100 mN level thrusts, while those tests conducted on a 200 lbm thruster yielded a resolution of roughly 2.5 mN at thrust levels of 0.5 N and greater.

  13. Fault tolerant linear actuator

    DOE Patents [OSTI]

    Tesar, Delbert

    2004-09-14

    In varying embodiments, the fault tolerant linear actuator of the present invention is a new and improved linear actuator with fault tolerance and positional control that may incorporate velocity summing, force summing, or a combination of the two. In one embodiment, the invention offers a velocity summing arrangement with a differential gear between two prime movers driving a cage, which then drives a linear spindle screw transmission. Other embodiments feature two prime movers driving separate linear spindle screw transmissions, one internal and one external, in a totally concentric and compact integrated module.

  14. Computer hardware fault administration

    DOE Patents [OSTI]

    Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.

    2010-09-14

    Computer hardware fault administration carried out in a parallel computer, where the parallel computer includes a plurality of compute nodes. The compute nodes are coupled for data communications by at least two independent data communications networks, where each data communications network includes data communications links connected to the compute nodes. Typical embodiments carry out hardware fault administration by identifying a location of a defective link in the first data communications network of the parallel computer and routing communications data around the defective link through the second data communications network of the parallel computer.

  15. DIFFERENTIAL FAULT SENSING CIRCUIT

    DOE Patents [OSTI]

    Roberts, J.H.

    1961-09-01

    A differential fault sensing circuit is designed for detecting arcing in high-voltage vacuum tubes arranged in parallel. A circuit is provided which senses differences in voltages appearing between corresponding elements likely to fault. Sensitivity of the circuit is adjusted to some level above which arcing will cause detectable differences in voltage. For particular corresponding elements, a group of pulse transformers are connected in parallel with diodes connected across the secondaries thereof so that only voltage excursions are transmitted to a thyratron which is biased to the sensitivity level mentioned.

  16. Row fault detection system

    DOE Patents [OSTI]

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2008-10-14

    An apparatus, program product and method checks for nodal faults in a row of nodes by causing each node in the row to concurrently communicate with its adjacent neighbor nodes in the row. The communications are analyzed to determine a presence of a faulty node or connection.

  17. Row fault detection system

    DOE Patents [OSTI]

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2012-02-07

    An apparatus, program product and method check for nodal faults in a row of nodes by causing each node in the row to concurrently communicate with its adjacent neighbor nodes in the row. The communications are analyzed to determine a presence of a faulty node or connection.

  18. Row fault detection system

    DOE Patents [OSTI]

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2010-02-23

    An apparatus and program product check for nodal faults in a row of nodes by causing each node in the row to concurrently communicate with its adjacent neighbor nodes in the row. The communications are analyzed to determine a presence of a faulty node or connection.

  19. Dynamic Fault Detection Chassis

    SciTech Connect (OSTI)

    Mize, Jeffery J

    2007-01-01

    Abstract The high frequency switching megawatt-class High Voltage Converter Modulator (HVCM) developed by Los Alamos National Laboratory for the Oak Ridge National Laboratory's Spallation Neutron Source (SNS) is now in operation. One of the major problems with the modulator systems is shoot-thru conditions that can occur in a IGBTs H-bridge topology resulting in large fault currents and device failure in a few microseconds. The Dynamic Fault Detection Chassis (DFDC) is a fault monitoring system; it monitors transformer flux saturation using a window comparator and dV/dt events on the cathode voltage caused by any abnormality such as capacitor breakdown, transformer primary turns shorts, or dielectric breakdown between the transformer primary and secondary. If faults are detected, the DFDC will inhibit the IGBT gate drives and shut the system down, significantly reducing the possibility of a shoot-thru condition or other equipment damaging events. In this paper, we will present system integration considerations, performance characteristics of the DFDC, and discuss its ability to significantly reduce costly down time for the entire facility.

  20. Methods for determining atypical gate valve thrust requirements

    SciTech Connect (OSTI)

    Steele, R. Jr.; Watkins, J.C.; DeWall, K.G.

    1995-04-01

    Evaluating the performance of rising stem, wedge type, gate valves used in nuclear power plant is not a problem when the valves can be design-basis tested and their operability margins determined diagnostically. The problem occurs when they cannot be tested because of plant system limitations or when they can be tested only at some less-than-design-basis condition. To evaluate the performance of these valves requires various analytical and/or extrapolation methods by which the design-basis stem thrust requirement can be determined. This has been typically accomplished with valve stem thrust models used to calculate the requirements or by extrapolating the results from a less-than-design-basis test. The stem thrust models used by the nuclear industry to determine the opening or closing stem thrust requirements for these gate valves have generally assumed that the highest load the valve experiences during closure (but before seating) is at flow isolation and during unwedging or before flow initiation in the opening direction. However, during full-scale valve testing conducted for the USNRC, several of the valves produced stem thrust histories that showed peak closing stem forces occurring before flow isolation in the closing direction and after flow initiation in the opening direction. All of the valves that exhibited this behavior in the closing direction also showed signs of internal damage. Initially, we dismissed the early peak in the closing stem thrust requirement as damage-induced and labeled it nonpredictable behavior. Opening responses were not a priority in our early research, so that phenomenon was set aside for later evaluation.

  1. Problems of millipound thrust measurement. The "Hansen Suspension"

    SciTech Connect (OSTI)

    Carta, David G.

    2014-03-31

    Considered in detail are problems which led to the need and use of the 'Hansen Suspension'. Also discussed are problems which are likely to be encountered in any low level thrust measuring system. The methods of calibration and the accuracies involved are given careful attention. With all parameters optimized and calibration techniques perfected, the system was found capable of a resolution of 10 {mu} lbs. A comparison of thrust measurements made by the 'Hansen Suspension' with measurements of a less sophisticated device leads to some surprising results.

  2. Engineering Research, Development and Technology, FY95: Thrust area report

    SciTech Connect (OSTI)

    1996-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through their collaboration with US industry in pursuit of the most cost-effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where they can establish unique competencies, and (2) conduct high-quality research and development to enhance their capabilities and establish themselves as the world leaders in these technologies. To focus Engineering`s efforts, technology thrust areas are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1995. The report provides timely summaries of objectives methods, and key results from eight thrust areas: computational electronics and electromagnetics; computational mechanics; microtechnology; manufacturing technology; materials science and engineering; power conversion technologies; nondestructive evaluation; and information engineering.

  3. Automatic Fault Classification

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Automatic Fault Classification of Photovoltaic Strings Based on an In Situ IV Characterization System and a Gaussian Process Algorithm. C. Birk Jones ∗ , Manel Mart´ ınez-Ram´ on ‡ , § Ryan Smith † , Craig K. Carmignani ∗ , Olga Lavrova ∗ , Charles Robinson ∗ , and Joshua S. Stein ∗ ∗ Sandia National Laboratories Solar PV & Grid Integration, Albuquerque, NM, USA. ‡ Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, USA, §

  4. Thrust Area Report, Engineering Research, Development and Technology

    SciTech Connect (OSTI)

    Langland, R. T.

    1997-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through our collaboration with U.S. industry in pursuit of the most cost- effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where we can establish unique competencies, and (2) conduct high-quality research and development to enhance our capabilities and establish ourselves as the world leaders in these technologies. To focus Engineering`s efforts technology {ital thrust areas} are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1996. The report provides timely summaries of objectives, methods, and key results from eight thrust areas: Computational Electronics and Electromagnetics; Computational Mechanics; Microtechnology; Manufacturing Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; and Information Engineering. Readers desiring more information are encouraged to contact the individual thrust area leaders or authors. 198 refs., 206 figs., 16 tabs.

  5. Fault Detection Tool Project: Automatic Discovery of Faults using...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Systems LaboratoryBrayton Lab Photovoltaic Systems Evaluation Laboratory PV ... HomeEnergy, Photovoltaic, Renewable Energy, Research & Capabilities, SolarFault ...

  6. Development of Hydrologic Characterization Technology of Fault Zones -- Phase I, 2nd Report

    SciTech Connect (OSTI)

    Karasaki, Kenzi; Onishi, Tiemi; Black, Bill; Biraud, Sebastien

    2009-03-31

    This is the year-end report of the 2nd year of the NUMO-LBNL collaborative project: Development of Hydrologic Characterization Technology of Fault Zones under NUMO-DOE/LBNL collaboration agreement, the task description of which can be found in the Appendix 3. Literature survey of published information on the relationship between geologic and hydrologic characteristics of faults was conducted. The survey concluded that it may be possible to classify faults by indicators based on various geometric and geologic attributes that may indirectly relate to the hydrologic property of faults. Analysis of existing information on the Wildcat Fault and its surrounding geology was performed. The Wildcat Fault is thought to be a strike-slip fault with a thrust component that runs along the eastern boundary of the Lawrence Berkeley National Laboratory. It is believed to be part of the Hayward Fault system but is considered inactive. Three trenches were excavated at carefully selected locations mainly based on the information from the past investigative work inside the LBNL property. At least one fault was encountered in all three trenches. Detailed trench mapping was conducted by CRIEPI (Central Research Institute for Electric Power Industries) and LBNL scientists. Some intriguing and puzzling discoveries were made that may contradict with the published work in the past. Predictions are made regarding the hydrologic property of the Wildcat Fault based on the analysis of fault structure. Preliminary conceptual models of the Wildcat Fault were proposed. The Wildcat Fault appears to have multiple splays and some low angled faults may be part of the flower structure. In parallel, surface geophysical investigations were conducted using electrical resistivity survey and seismic reflection profiling along three lines on the north and south of the LBNL site. Because of the steep terrain, it was difficult to find optimum locations for survey lines as it is desirable for them to be as

  7. Fault Mapping | Open Energy Information

    Open Energy Info (EERE)

    to help locate and identify geothermal systems that rely on faults as high permeability pathways for fluid circulation. There are many techniques that can be done to...

  8. Fault current limiter

    DOE Patents [OSTI]

    Darmann, Francis Anthony

    2013-10-08

    A fault current limiter (FCL) includes a series of high permeability posts for collectively define a core for the FCL. A DC coil, for the purposes of saturating a portion of the high permeability posts, surrounds the complete structure outside of an enclosure in the form of a vessel. The vessel contains a dielectric insulation medium. AC coils, for transporting AC current, are wound on insulating formers and electrically interconnected to each other in a manner such that the senses of the magnetic field produced by each AC coil in the corresponding high permeability core are opposing. There are insulation barriers between phases to improve dielectric withstand properties of the dielectric medium.

  9. Final Technical Report: PV Fault Detection Tool.

    SciTech Connect (OSTI)

    King, Bruce Hardison; Jones, Christian Birk

    2015-12-01

    The PV Fault Detection Tool project plans to demonstrate that the FDT can (a) detect catastrophic and degradation faults and (b) identify the type of fault. This will be accomplished by collecting fault signatures using different instruments and integrating this information to establish a logical controller for detecting, diagnosing and classifying each fault.

  10. Engineering research, development and technology. Thrust area report, FY93

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff, tools, and facilities needed to support current and future LLNL programs. The efforts are guided by a dual-benefit research and development strategy that supports Department of Energy missions, such as national security through nuclear deterrence and economic competitiveness through partnerships with U.S. industry. This annual report, organized by thrust area, describes the activities for the fiscal year 1993. The report provides timely summaries of objectives, methods, and results from nine thrust areas for this fiscal year: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Fabrication Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; Remote Sensing, Imaging, and Signal Engineering; and Emerging Technologies. Separate abstracts were prepared for 47 papers in this report.

  11. Joel Brock > Research Thrust Leader - Complex Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Professor Applied and Engineering Physics > Faculty Directory > The Energy Materials Center at Cornell Joel Brock Research Thrust Leader - Complex Oxides Professor Applied and Engineering Physics Research Group Webpage jdb20@cornell.edu After receiving his doctoral degree, Brock spent two years as a postdoctoral research associate at the Massachusetts Institute of Technology and then joined the Cornell faculty in 1989. He served as Director of the School of Applied & Engineering

  12. Colorado Regional Faults

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Originator: Colorado Geological Survey (CGS) Publication Date: 2012 Title: Regional Faults Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains the regional faults of Colorado Spatial Domain: Extent: Top: 4543192.100000 m Left: 144385.020000 m Right: 754585.020000 m Bottom: 4094592.100000 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS ’984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  13. Direct thrust measurement of a permanent magnet helicon double layer thruster

    SciTech Connect (OSTI)

    Takahashi, K.; Lafleur, T.; Charles, C.; Alexander, P.; Boswell, R. W.; Perren, M.; Laine, R.; Pottinger, S.; Lappas, V.; Harle, T.; Lamprou, D.

    2011-04-04

    Direct thrust measurements of a permanent magnet helicon double layer thruster have been made using a pendulum thrust balance and a high sensitivity laser displacement sensor. At the low pressures used (0.08 Pa) an ion beam is detected downstream of the thruster exit, and a maximum thrust force of about 3 mN is measured for argon with an rf input power of about 700 W. The measured thrust is proportional to the upstream plasma density and is in good agreement with the theoretical thrust based on the maximum upstream electron pressure.

  14. Arc fault detection system

    DOE Patents [OSTI]

    Jha, K.N.

    1999-05-18

    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard. 1 fig.

  15. Arc fault detection system

    DOE Patents [OSTI]

    Jha, Kamal N.

    1999-01-01

    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard.

  16. Comparison of Cenozoic Faulting at the Savannah River Site to Fault Characteristics of the Atlantic Coast Fault Province: Implications for Fault Capability

    SciTech Connect (OSTI)

    Cumbest, R.J.

    2000-11-14

    This study compares the faulting observed on the Savannah River Site and vicinity with the faults of the Atlantic Coastal Fault Province and concludes that both sets of faults exhibit the same general characteristics and are closely associated. Based on the strength of this association it is concluded that the faults observed on the Savannah River Site and vicinity are in fact part of the Atlantic Coastal Fault Province. Inclusion in this group means that the historical precedent established by decades of previous studies on the seismic hazard potential for the Atlantic Coastal Fault Province is relevant to faulting at the Savannah River Site. That is, since these faults are genetically related the conclusion of ''not capable'' reached in past evaluations applies.In addition, this study establishes a set of criteria by which individual faults may be evaluated in order to assess their inclusion in the Atlantic Coast Fault Province and the related association of the ''not capable'' conclusion.

  17. The Owens Valley Fault Zone Eastern California and Surface Faulting...

    Open Energy Info (EERE)

    it steps 3 km to the left and continues northwest across Crater Mountain and through Big Pine. The fault has an overall strike of 340 and dip of 8015 ENE. Surface...

  18. Fault Detection Tool Project: Automatic Discovery of Faults using Machine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Learning Fault Detection Tool Project: Automatic Discovery of Faults using Machine Learning - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization

  19. Hot Pot Detail - Evidence of Quaternary Faulting

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    Compilation of published data, field observations and photo interpretation relevant to Quaternary faulting at Hot Pot.

  20. Hot Pot Detail - Evidence of Quaternary Faulting

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    2013-06-27

    Compilation of published data, field observations and photo interpretation relevant to Quaternary faulting at Hot Pot.

  1. Cell boundary fault detection system

    DOE Patents [OSTI]

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2009-05-05

    A method determines a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.

  2. Fault Controlled | Open Energy Information

    Open Energy Info (EERE)

    has been provided for this term. Add a Definition This classification is used if the literature describes the geothermal fluids as being controlled by faults, but not in detail....

  3. Thrust Generation with Low-Power Continuous-Wave Laser and Aluminum Foil Interaction

    SciTech Connect (OSTI)

    Horisawa, Hideyuki; Sumida, Sota; Funaki, Ikkoh

    2010-05-06

    The micro-newton thrust generation was observed through low-power continuous-wave laser and aluminum foil interaction without any remarkable ablation of the target surface. To evaluate the thrust characteristics, a torsion-balance thrust stand capable for the measurement of the thrust level down to micro-Newton ranges was developed. In the case of an aluminum foil target with 12.5 micrometer thickness, the maximum thrust level was 15 micro-newtons when the laser power was 20 W, or about 0.75 N/MW. It was also found that the laser intensity, or laser power per unit area, irradiated on the target was significantly important on the control of the thrust even under the low-intensity level.

  4. Passive fault current limiting device

    DOE Patents [OSTI]

    Evans, D.J.; Cha, Y.S.

    1999-04-06

    A passive current limiting device and isolator is particularly adapted for use at high power levels for limiting excessive currents in a circuit in a fault condition such as an electrical short. The current limiting device comprises a magnetic core wound with two magnetically opposed, parallel connected coils of copper, a high temperature superconductor or other electrically conducting material, and a fault element connected in series with one of the coils. Under normal operating conditions, the magnetic flux density produced by the two coils cancel each other. Under a fault condition, the fault element is triggered to cause an imbalance in the magnetic flux density between the two coils which results in an increase in the impedance in the coils. While the fault element may be a separate current limiter, switch, fuse, bimetal strip or the like, it preferably is a superconductor current limiter conducting one-half of the current load compared to the same limiter wired to carry the total current of the circuit. The major voltage during a fault condition is in the coils wound on the common core in a preferred embodiment. 6 figs.

  5. Passive fault current limiting device

    DOE Patents [OSTI]

    Evans, Daniel J.; Cha, Yung S.

    1999-01-01

    A passive current limiting device and isolator is particularly adapted for use at high power levels for limiting excessive currents in a circuit in a fault condition such as an electrical short. The current limiting device comprises a magnetic core wound with two magnetically opposed, parallel connected coils of copper, a high temperature superconductor or other electrically conducting material, and a fault element connected in series with one of the coils. Under normal operating conditions, the magnetic flux density produced by the two coils cancel each other. Under a fault condition, the fault element is triggered to cause an imbalance in the magnetic flux density between the two coils which results in an increase in the impedance in the coils. While the fault element may be a separate current limiter, switch, fuse, bimetal strip or the like, it preferably is a superconductor current limiter conducting one-half of the current load compared to the same limiter wired to carry the total current of the circuit. The major voltage during a fault condition is in the coils wound on the common core in a preferred embodiment.

  6. Thrust 1: Structure and Dynamics of Simple Fluid-Solid Interfaces (Peter T. Cumm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thrust 1: Structure and Dynamics of Simple Fluid-Solid Interfaces (Peter T. Cummings, Vanderbilt University, Thrust Leader). This thrust integrate multiscale computational modeling and novel experimental probes of interfacial fluid properties at 'simple' interfaces, such as planar, cylindrical, and spherical surfaces, parallel slit and cylindrical pores, etc. which can be rigorously modeled with the minimum incorporation of simplifying approximations and assumptions. Such simple interfaces are

  7. Data Archive and Portal Thrust Area Strategy Report

    SciTech Connect (OSTI)

    Sivaraman, Chitra; Stephan, Eric G.; Macduff, Matt C.; Hagler, Clay D.

    2014-09-30

    This report describes the Data Archive and Portal (DAP), a key capability of the U.S. Department of Energy's Atmosphere to Electron (A2e) initiative. The DAP Thrust Area Planning Group was organized to develop a plan for deploying this capability. Primarily, the report focuses on a distributed system--a DOE Wind Cloud--that functions as a repository for all A2e data. The Wind Cloud will be accessible via an open, easy-to-navigate user interface that facilitates community data access, interaction, and collaboration. DAP management will work with the community, industry, and international standards bodies to develop standards for wind data and to capture important characteristics of all data in the Wind Cloud.

  8. Alleghanian development of the Goat Rock fault zone, southernmost Appalachians: Temporal compatibility with the master decollement

    SciTech Connect (OSTI)

    Steltenpohl, M.G. (Auburn Univ., AL (United States)); Goldberg, S.A. (Univ. of North Carolina, Chapel Hill (United States)); Hanley, T.B. (Columbus College, GA (United States)); Kunk, M.J. (Geological Survey, Reston, VA (United States))

    1992-09-01

    The Goat Rock and associated Bartletts Ferry fault zones, which mark the eastern margin of the Pine Mountain Grenville basement massif, are controversial due to the suggestion that they are rare exposed segments of the late Paleozoic southern Appalachian master decollement. The controversy in part stems from reported middle Paleozoic (Acadian) radiometric dates postulated as the time of movement along these fault zones. Ultramylonite samples from the type area at Goat Rock Dam yield a 287 [plus minus] 15 Ma Rb-Sr isochron interpreted as the time of Sr isotopic rehomgenization during mylonitization. This date is corroborated by Late Pennsylvanian-Early Permian [sup 40]Ar/[sup 39]Ar mineral ages on hornblende (297-288 Ma) and muscovite (285-278 Ma) from neomineralized and dynamically recrystallized rocks within and straddling the fault zone. These Late Pennsylvanian-Early Permian dates indicate the time of right-slip movement (Alleghenian) along the Goat Rock fault zone, which is compatible with the timing suggested by COCORP for thrusting along the southern Appalachian master decollement.

  9. Studies of the pattern and ages of post-metamorphic faults in the Piedmont of Virginia and North Carolina

    SciTech Connect (OSTI)

    Glover, L. III; Costain, J.K.; Coruh, C.

    1988-04-01

    A geologic corridor from the Blue Ridge to the eastern Piedmont of Virginia is integrated into a tectonic model and extrapolated downward 10-15 km by means of seismic reflection and gravity studies. The Blue Ridge appears to be a hinge zone that faced a rift-generated Iapetus Ocean. An eastern continent with an Eocambrian and Cambrian magmatic arc and sediments of the same age, collided with the North American continental margin in the middle and late Ordovician. Subsequent Devono-Mississippian and Mississippian-Permian orogenesis continued to drive thin thrust nappes onto North America. Early Mesozoic rift basins record the beginning of the Atlantic basin and, from Middle Jurassic to Present, the margin of North America was covered by Coastal Plain sediments. Several constrained hypocenters of the central Virginia seismic zone, adjacent to a reflection profile, show an apparent relation to structure. We tentatively conclude that flat and ramp faults formed during Paleozoic nappe emplacement are currently being reactivated. The reactivation may be largely aseismic on the old thrust faults, but seismicity appears to be related to high angle transcurrent faults where new rock breakage may be occurring. 125 refs., 28 figs., 2 tabs.

  10. Cell boundary fault detection system

    DOE Patents [OSTI]

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2011-04-19

    An apparatus and program product determine a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.

  11. High temperature superconducting fault current limiter

    DOE Patents [OSTI]

    Hull, John R.

    1997-01-01

    A fault current limiter (10) for an electrical circuit (14). The fault current limiter (10) includes a high temperature superconductor (12) in the electrical circuit (14). The high temperature superconductor (12) is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter (10).

  12. High temperature superconducting fault current limiter

    DOE Patents [OSTI]

    Hull, J.R.

    1997-02-04

    A fault current limiter for an electrical circuit is disclosed. The fault current limiter includes a high temperature superconductor in the electrical circuit. The high temperature superconductor is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter. 15 figs.

  13. SOURCE TERM TARGETED THRUST FY 2005 NEW START PROJECTS

    SciTech Connect (OSTI)

    NA

    2005-10-05

    While a significant amount of work has been devoted to developing thermodynamic data. describing the sorption of radionuclides to iron oxides and other geomedia, little data exist to describe the interaction of key radionuclides found in high-level radioactive waste with the uranium surfaces expected in corroded spent nuclear fuel (SNF) waste packages. Recent work indicates that actinide adsorption to the U(VI) solids expected in the engineered barrier system may play a key role in the reduction of dissolved concentrations of radionuclides such as Np(V). However, little is known about the mechanism(s) of adsorption, nor are the thermodynamic data available to represent the phenomenon in predictive modeling codes. Unfortunately, this situation makes it difficult to consider actinide adsorption to the U(VI) silicates in either geochemical or performance assessment (PA) predictions. The primary goal in the Source Term Targeted Thrust area is to ''study processes that control radionuclide release from the waste form''. Knowledge of adsorption of actinides to U(VI) silicate solids its and parameterization in geochemical models will be an important step towards this goal.

  14. Inverter Ground Fault Overvoltage Testing

    SciTech Connect (OSTI)

    Hoke, Andy; Nelson, Austin; Chakraborty, Sudipta; Chebahtah, Justin; Wang, Trudie; McCarty, Michael

    2015-08-12

    This report describes testing conducted at NREL to determine the duration and magnitude of transient overvoltages created by several commercial PV inverters during ground fault conditions. For this work, a test plan developed by the Forum on Inverter Grid Integration Issues (FIGII) has been implemented in a custom test setup at NREL. Load rejection overvoltage test results were reported previously in a separate technical report.

  15. Frank DiSalvo > Research Thrust Leader - Fuel Cells and Batteries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Frank DiSalvo Research Thrust Leader - Fuel Cells and Batteries John A. Newman Professor of Physical Science Chemistry and Chemical Biology Research Group Webpage fjd3@cornell.edu...

  16. CONTROL AND FAULT DETECTOR CIRCUIT

    DOE Patents [OSTI]

    Winningstad, C.N.

    1958-04-01

    A power control and fault detectcr circuit for a radiofrequency system is described. The operation of the circuit controls the power output of a radio- frequency power supply to automatically start the flow of energizing power to the radio-frequency power supply and to gradually increase the power to a predetermined level which is below the point where destruction occurs upon the happening of a fault. If the radio-frequency power supply output fails to increase during such period, the control does not further increase the power. On the other hand, if the output of the radio-frequency power supply properly increases, then the control continues to increase the power to a maximum value. After the maximumn value of radio-frequency output has been achieved. the control is responsive to a ''fault,'' such as a short circuit in the radio-frequency system being driven, so that the flow of power is interrupted for an interval before the cycle is repeated.

  17. Method to Produce High Specific Impulse and Moderate Thrust from a

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion-powered Rocket Engine: (ARE-Aneutronic Rocket Engine) --- Inventor(s) Samuel A. Cohen, Michael Paluszek, Yosef Razin, and Gary Pajer | Princeton Plasma Physics Lab Method to Produce High Specific Impulse and Moderate Thrust from a Fusion-powered Rocket Engine: (ARE-Aneutronic Rocket Engine) --- Inventor(s) Samuel A. Cohen, Michael Paluszek, Yosef Razin, and Gary Pajer This Invention describes a fusion-powered rocket engine that will produce high specific impulse, Isp, moderate thrust,

  18. Late Cenozoic fault kinematics and basin development, Calabrian arc, Italy

    SciTech Connect (OSTI)

    Knott, S.D.; Turco, E.

    1988-08-01

    Current views for explaining the present structure of the Calabrian arc emphasize bending or buckling of an initially straight zone by rigid indentation. Although bending has played an important role, bending itself cannot explain all structural features now seen in the arc for the following reasons: (1) across-arc extension is inconsistent with buckling, (2) north-south compression predicted by a bending mechanism to occur in the internal part of a curved mountain belt is not present in the Calabrian arc, and (3) lateral shear occurs throughout the arc, not just along the northern and southern boundaries. The model presented here is based on lateral bending of mantle and lower crust (demonstrated by variation in extension in the Tyrrhenian basin) and semibrittle faulting and block rotation in the upper crust. These two styles of deformation are confined to the upper plate of the Calabrian subduction system. This deformation is considered to have been active from the beginning of extension in the Tyrrhenian basin (late Tortonian) and is still active today (based on Holocene seismicity). Block rotations are a consequence of lateral heterogeneous shear during extension. Therefore, some of the observed rotation of paleo-magnetic declinations may have occurred in areas undergoing extension and not just during thrusting. Inversion of sedimentary basins by block rotation is predicted by the model. The model will be a useful aid in interpreting reflection seismic data and exploring and developing offshore and onshore sedimentary basins in southern Italy.

  19. Fault Current Limiters (FCL) Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fault Current Limiters (FCL) Fact Sheet Fault Current Limiters (FCL) Fact Sheet Plugging America Into the Future of Power: Superconducting & Solid-state Power Equipment What are Fault Current Limiters Why do we need Fault Current Limiters What are the benefits to utilities Fault Current Limiter projects Fault Current Limiters (926.42 KB) More Documents & Publications An Assessment of Fault Current Limiter Testing Requirements Superconductivity Program Overview Superconductivity for

  20. Fault-tolerant dynamic task graph scheduling

    SciTech Connect (OSTI)

    Kurt, Mehmet C.; Krishnamoorthy, Sriram; Agrawal, Kunal; Agrawal, Gagan

    2014-11-16

    In this paper, we present an approach to fault tolerant execution of dynamic task graphs scheduled using work stealing. In particular, we focus on selective and localized recovery of tasks in the presence of soft faults. We elicit from the user the basic task graph structure in terms of successor and predecessor relationships. The work stealing-based algorithm to schedule such a task graph is augmented to enable recovery when the data and meta-data associated with a task get corrupted. We use this redundancy, and the knowledge of the task graph structure, to selectively recover from faults with low space and time overheads. We show that the fault tolerant design retains the essential properties of the underlying work stealing-based task scheduling algorithm, and that the fault tolerant execution is asymptotically optimal when task re-execution is taken into account. Experimental evaluation demonstrates the low cost of recovery under various fault scenarios.

  1. Sandia Energy - PV Arc-Fault and Ground Fault Detection and Mitigation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    prescribe maintenance schedules, and warn of arc-fault events. Investigating the proscons of module-level, string-level, and array-level arc-fault detection schemes....

  2. Detachment Faulting & Geothermal Resources - Pearl Hot Spring...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Detachment Faulting & Geothermal Resources - Pearl Hot Spring, NV Finding Large Aperture Fractures in Geothermal Resource Areas Using a Three-Component Long-Offset Surface Seismic ...

  3. Efficient Synchronization Stability Metrics for Fault Clearing...

    Office of Scientific and Technical Information (OSTI)

    Title: Efficient Synchronization Stability Metrics for Fault Clearing Authors: Backhaus, Scott N. 1 ; Chertkov, Michael 1 ; Bent, Russell Whitford 1 ; Bienstock, Daniel 2...

  4. Reducing the Risk of Arc-Faults

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    arc-fault detection algorithms by: 1. Performing arcing tests at the Distributed Energy Technologies Laboratory (DETL) with AFCI prototypes to verify their functionality on...

  5. Engineering Research and Development and Technology thrust area report FY92

    SciTech Connect (OSTI)

    Langland, R.T.; Minichino, C.

    1993-03-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff and the technology needed to support current and future LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) to identify key technologies and (2) to conduct high-quality work to enhance our capabilities in these key technologies. To help focus our efforts, we identify technology thrust areas and select technical leaders for each area. The thrust areas are integrated engineering activities and, rather than being based on individual disciplines, they are staffed by personnel from Electronics Engineering, Mechanical Engineering, and other LLNL organizations, as appropriate. The thrust area leaders are expected to establish strong links to LLNL program leaders and to industry; to use outside and inside experts to review the quality and direction of the work; to use university contacts to supplement and complement their efforts; and to be certain that we are not duplicating the work of others. This annual report, organized by thrust area, describes activities conducted within the Program for the fiscal year 1992. Its intent is to provide timely summaries of objectives, theories, methods, and results. The nine thrust areas for this fiscal year are: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Emerging Technologies; Fabrication Technology; Materials Science and Engineering; Microwave and Pulsed Power; Nondestructive Evaluation; and Remote Sensing and Imaging, and Signal Engineering.

  6. Physiochemical Evidence of Faulting Processes and Modeling of Fluid in Evolving Fault Systems in Southern California

    SciTech Connect (OSTI)

    Boles, James

    2013-05-24

    Our study targets recent (Plio-Pleistocene) faults and young (Tertiary) petroleum fields in southern California. Faults include the Refugio Fault in the Transverse Ranges, the Ellwood Fault in the Santa Barbara Channel, and most recently the Newport- Inglewood in the Los Angeles Basin. Subsurface core and tubing scale samples, outcrop samples, well logs, reservoir properties, pore pressures, fluid compositions, and published structural-seismic sections have been used to characterize the tectonic/diagenetic history of the faults. As part of the effort to understand the diagenetic processes within these fault zones, we have studied analogous processes of rapid carbonate precipitation (scaling) in petroleum reservoir tubing and manmade tunnels. From this, we have identified geochemical signatures in carbonate that characterize rapid CO2 degassing. These data provide constraints for finite element models that predict fluid pressures, multiphase flow patterns, rates and patterns of deformation, subsurface temperatures and heat flow, and geochemistry associated with large fault systems.

  7. Self-triggering superconducting fault current limiter

    DOE Patents [OSTI]

    Yuan, Xing; Tekletsadik, Kasegn

    2008-10-21

    A modular and scaleable Matrix Fault Current Limiter (MFCL) that functions as a "variable impedance" device in an electric power network, using components made of superconducting and non-superconducting electrically conductive materials. The matrix fault current limiter comprises a fault current limiter module that includes a superconductor which is electrically coupled in parallel with a trigger coil, wherein the trigger coil is magnetically coupled to the superconductor. The current surge doing a fault within the electrical power network will cause the superconductor to transition to its resistive state and also generate a uniform magnetic field in the trigger coil and simultaneously limit the voltage developed across the superconductor. This results in fast and uniform quenching of the superconductors, significantly reduces the burnout risk associated with non-uniformity often existing within the volume of superconductor materials. The fault current limiter modules may be electrically coupled together to form various "n" (rows).times."m" (columns) matrix configurations.

  8. Geology of oil and gas accumulations in the Papuan fold and thrust belt

    SciTech Connect (OSTI)

    Foo, W.K. )

    1990-06-01

    The high level of exploration interest in Papua New Guinea has developed in large part because of recent discoveries in the western Papuan fold and thrust belt and shows in the adjacent foreland region. Results from recent drilling in the Iagifu/Hedinia area by a Chevron-led joint venture have outlined several pools in culminations along a 50 km long structural axis. Oil and gas are sourced from a thick succession of Jurassic marine shales that were deposited along the rifted northern margin of the Australian plate. Generation and migration is interpreted to have peaked coincident with development of the fold and thrust belt during the Neogene. Trapping occurred as anticlines and thrust sheets developed sequentially from northeast to southwest. Several trends remain untested on lands held by various groups, primarily in the area west of the Juha gas condensate pool.

  9. Multi-fault Tolerance for Cartesian Data Distributions (Journal...

    Office of Scientific and Technical Information (OSTI)

    Fault-tolerant linear algebra (FTLA) algo- rithms employ additional processors that store parities along the dimensions of a matrix to tolerate multiple, simultaneous faults. ...

  10. Modeling of fault reactivation and induced seismicity during...

    Office of Scientific and Technical Information (OSTI)

    Modeling of fault reactivation and induced seismicity during hydraulic fracturing of shale-gas reservoirs Citation Details In-Document Search Title: Modeling of fault reactivation ...

  11. Termination of a Major Normal Fault | Open Energy Information

    Open Energy Info (EERE)

    sometimes split into multiple closely-spaced faults that result in increased permeability. Fault sets at these terminations sometimes appear as "horsetailing" splays that...

  12. Mechanical Models of Fault-Related Folding

    SciTech Connect (OSTI)

    Johnson, A. M.

    2003-01-09

    The subject of the proposed research is fault-related folding and ground deformation. The results are relevant to oil-producing structures throughout the world, to understanding of damage that has been observed along and near earthquake ruptures, and to earthquake-producing structures in California and other tectonically-active areas. The objectives of the proposed research were to provide both a unified, mechanical infrastructure for studies of fault-related foldings and to present the results in computer programs that have graphical users interfaces (GUIs) so that structural geologists and geophysicists can model a wide variety of fault-related folds (FaRFs).

  13. PV Systems Reliability Final Technical Report: Ground Fault Detection

    SciTech Connect (OSTI)

    Lavrova, Olga; Flicker, Jack David; Johnson, Jay

    2016-01-01

    We have examined ground faults in PhotoVoltaic (PV) arrays and the efficacy of fuse, current detection (RCD), current sense monitoring/relays (CSM), isolation/insulation (Riso) monitoring, and Ground Fault Detection and Isolation (GFID) using simulations based on a Simulation Program with Integrated Circuit Emphasis SPICE ground fault circuit model, experimental ground faults installed on real arrays, and theoretical equations.

  14. HVAC Fault Detection and Diagnosis Toolkit

    Energy Science and Technology Software Center (OSTI)

    2004-12-31

    This toolkit supports component-level model-based fault detection methods in commercial building HVAC systems. The toolbox consists of five basic modules: a parameter estimator for model calibration, a preprocessor, an AHU model simulator, a steady-state detector, and a comparator. Each of these modules and the fuzzy logic rules for fault diagnosis are described in detail. The toolbox is written in C++ and also invokes the SPARK simulation program.

  15. A connecting network with fault tolerance capabilities

    SciTech Connect (OSTI)

    Ciminiera, L.; Serra, A.

    1986-06-01

    A new multistage interconnection network is presented in this paper. It is able to handle the communications between the connected devices correctly, even in the presence of fault(s) in the network. This goal is achieved by using redundant paths with a fast procedure able to dynamically reroute the message. It is also shown that the rerouting properties are still valid when broadcasting transmission is used.

  16. Development of Fault Models for Hybrid Fault Detection and Diagnostics Algorithm: October 1, 2014 -- May 5, 2015

    SciTech Connect (OSTI)

    Cheung, Howard; Braun, James E.

    2015-12-31

    This report describes models of building faults created for OpenStudio to support the ongoing development of fault detection and diagnostic (FDD) algorithms at the National Renewable Energy Laboratory. Building faults are operating abnormalities that degrade building performance, such as using more energy than normal operation, failing to maintain building temperatures according to the thermostat set points, etc. Models of building faults in OpenStudio can be used to estimate fault impacts on building performance and to develop and evaluate FDD algorithms. The aim of the project is to develop fault models of typical heating, ventilating and air conditioning (HVAC) equipment in the United States, and the fault models in this report are grouped as control faults, sensor faults, packaged and split air conditioner faults, water-cooled chiller faults, and other uncategorized faults. The control fault models simulate impacts of inappropriate thermostat control schemes such as an incorrect thermostat set point in unoccupied hours and manual changes of thermostat set point due to extreme outside temperature. Sensor fault models focus on the modeling of sensor biases including economizer relative humidity sensor bias, supply air temperature sensor bias, and water circuit temperature sensor bias. Packaged and split air conditioner fault models simulate refrigerant undercharging, condenser fouling, condenser fan motor efficiency degradation, non-condensable entrainment in refrigerant, and liquid line restriction. Other fault models that are uncategorized include duct fouling, excessive infiltration into the building, and blower and pump motor degradation.

  17. Measuring and Modeling Fault Density for Plume-Fault Encounter Probability Estimation

    SciTech Connect (OSTI)

    Jordan, P.D.; Oldenburg, C.M.; Nicot, J.-P.

    2011-05-15

    Emission of carbon dioxide from fossil-fueled power generation stations contributes to global climate change. Storage of this carbon dioxide within the pores of geologic strata (geologic carbon storage) is one approach to mitigating the climate change that would otherwise occur. The large storage volume needed for this mitigation requires injection into brine-filled pore space in reservoir strata overlain by cap rocks. One of the main concerns of storage in such rocks is leakage via faults. In the early stages of site selection, site-specific fault coverages are often not available. This necessitates a method for using available fault data to develop an estimate of the likelihood of injected carbon dioxide encountering and migrating up a fault, primarily due to buoyancy. Fault population statistics provide one of the main inputs to calculate the encounter probability. Previous fault population statistics work is shown to be applicable to areal fault density statistics. This result is applied to a case study in the southern portion of the San Joaquin Basin with the result that the probability of a carbon dioxide plume from a previously planned injection had a 3% chance of encountering a fully seal offsetting fault.

  18. Fault Locating, Prediction and Protection (FLPPS)

    SciTech Connect (OSTI)

    Yinger, Robert, J.; Venkata, S., S.; Centeno, Virgilio

    2010-09-30

    One of the main objectives of this DOE-sponsored project was to reduce customer outage time. Fault location, prediction, and protection are the most important aspects of fault management for the reduction of outage time. In the past most of the research and development on power system faults in these areas has focused on transmission systems, and it is not until recently with deregulation and competition that research on power system faults has begun to focus on the unique aspects of distribution systems. This project was planned with three Phases, approximately one year per phase. The first phase of the project involved an assessment of the state-of-the-art in fault location, prediction, and detection as well as the design, lab testing, and field installation of the advanced protection system on the SCE Circuit of the Future located north of San Bernardino, CA. The new feeder automation scheme, with vacuum fault interrupters, will limit the number of customers affected by the fault. Depending on the fault location, the substation breaker might not even trip. Through the use of fast communications (fiber) the fault locations can be determined and the proper fault interrupting switches opened automatically. With knowledge of circuit loadings at the time of the fault, ties to other circuits can be closed automatically to restore all customers except the faulted section. This new automation scheme limits outage time and increases reliability for customers. The second phase of the project involved the selection, modeling, testing and installation of a fault current limiter on the Circuit of the Future. While this project did not pay for the installation and testing of the fault current limiter, it did perform the evaluation of the fault current limiter and its impacts on the protection system of the Circuit of the Future. After investigation of several fault current limiters, the Zenergy superconducting, saturable core fault current limiter was selected for

  19. Fault Detection and Load Distribution for the Wind Farm Challenge

    SciTech Connect (OSTI)

    Borchehrsen, Anders B.; Larsen, Jesper A.; Stoustrup, Jakob

    2014-08-24

    In this paper a fault detection system and a fault tolerant controller for a wind farm model. The wind farm model used is the one proposed as a public challenge. In the model three types of faults are introduced to a wind farm consisting of nine turbines. A fault detection system designed, by taking advantage of the fact that within a wind farm several wind turbines will be operating under all most identical conditions. The turbines are then grouped, and then turbines within each group are used to generate residuals for turbines in the group. The generated residuals are then evaluated using dynamical cumulative sum. The designed fault detection system is cable of detecting all three fault types occurring in the model. But there is room for improving the fault detection in some areas. To take advantage of the fault detection system a fault tolerant controller for the wind farm has been designed. The fault tolerant controller is a dispatch controller which is estimating the possible power at each individual turbine and then setting the reference accordingly. The fault tolerant controller has been compared to a reference controller. And the comparison shows that the fault tolerant controller performance better in all measures. The fault detection and a fault tolerant controller has been designed, and based on the simulated results the overall performance of the wind farm is improved on all measures. Thereby this is a step towards improving the overall performance of current and future wind farms.

  20. Stem thrust prediction model for W-K-M double wedge parallel expanding gate valves

    SciTech Connect (OSTI)

    Eldiwany, B.; Alvarez, P.D.; Wolfe, K.

    1996-12-01

    An analytical model for determining the required valve stem thrust during opening and closing strokes of W-K-M parallel expanding gate valves was developed as part of the EPRI Motor-Operated Valve Performance Prediction Methodology (EPRI MOV PPM) Program. The model was validated against measured stem thrust data obtained from in-situ testing of three W-K-M valves. Model predictions show favorable, bounding agreement with the measured data for valves with Stellite 6 hardfacing on the disks and seat rings for water flow in the preferred flow direction (gate downstream). The maximum required thrust to open and to close the valve (excluding wedging and unwedging forces) occurs at a slightly open position and not at the fully closed position. In the nonpreferred flow direction, the model shows that premature wedging can occur during {Delta}P closure strokes even when the coefficients of friction at different sliding surfaces are within the typical range. This paper summarizes the model description and comparison against test data.

  1. Optimization of residual heat removal pump axial thrust and axial bearing

    SciTech Connect (OSTI)

    Schubert, F.

    1996-12-01

    The residual heat removal (RHR) pumps of German 1300 megawatt pressurized-water reactor (PWR) power plants are of the single stage end suction type with volute casing or with diffuser and forged circular casing. Due to the service conditions the pumps have to cover the full capacity range as well as a big variation in suction static pressure. This results in a big difference in the axial thrust that has to be borne by the axial bearing. Because these pumps are designed to operate without auxiliary systems (things that do not exist can not fail), they are equipped with antifriction bearings and sump oil lubrication. To minimize the heat production within the bearing casing, a number of PWR plants have pumps with combined axial/radial bearings of the ball type. Due to the fact that the maximum axial thrust caused by static pressure and hydrodynamic forces on the impeller is too big to be borne by that type of axial bearing, the impellers were designed to produce a hydrodynamic axial force that counteracts the static axial force. Thus, the resulting axial thrust may change direction when the static pressure varies.

  2. The quest for better seismic imaging in the sub-Andean thrust belt of southern Bolivia

    SciTech Connect (OSTI)

    Dunn, J.F.; Nelson, K.J.

    1996-08-01

    Like many thrust belts around the world, the sub-Andean thrust belt of southern Bolivia is a difficult place to acquire good seismic data because of the challenges of complex geology, rugged topography, and remote access. This is further aggravated by the fact that we generally desire to image below the surface anticlines, where the conditions for acquiring good data are the worst. Near-surface, steeply-dipping beds also challenge some of the fundamental assumptions of seismic processing. Our approach has been to integrate detailed structural analysis of the surface and subsurface with the seismic interpretation. Seismic imaging of structural geometry is a fundamental risk element in thrust belt hydrocarbon exploration. Acquiring high-quality seismic data in mountainous terrain has been a difficult, time consuming, and costly task. We have exerted considerable effort into finding innovative ways to improve data quality. After an initial round of acquisition in Bolivia, we designed a seismic test program to optimize acquisition parameters. We found that standard parameters were acceptable in the valleys, but larger dynamite charges yielded better results in the mountainous areas where imaging had previously been poor. Additionally, a swath line layout (three parallel receiver lines 200 m apart) helped improve the signal-to-noise ratio. Better static solutions, detailed velocity analysis, and careful structural modeling and depth migrations all help to yield better data and a more reliable interpretation.

  3. Buried pipelines in large fault movements

    SciTech Connect (OSTI)

    Wang, L.J.; Wang, L.R.L.

    1995-12-31

    Responses of buried pipelines in large fault movements are examined based upon a non-linear cantilever beam analogy. This analogy assumes that the pipeline in a large deflection zone behaves like a cantilever beam under a transverse-concentrated shear at the inflection point with a uniformly distributed soil pressure along the entire span. The tangent modulus approach is adopted to analyze the coupled axial force-bending moment interaction on pipeline deformations in the inelastic range. The buckling load of compressive pipeline is computed by the modified Newmark`s numerical integration scheme. Parametric studies of both tensile and compressive pipeline responses to various fault movements, pipeline/fault crossing angles, soil/pipe friction angles, buried depths, pipe diameters and thickness are investigated. It is shown by the comparisons that previous findings were unconservative.

  4. VCSEL fault location apparatus and method

    DOE Patents [OSTI]

    Keeler, Gordon A.; Serkland, Darwin K.

    2007-05-15

    An apparatus for locating a fault within an optical fiber is disclosed. The apparatus, which can be formed as a part of a fiber-optic transmitter or as a stand-alone instrument, utilizes a vertical-cavity surface-emitting laser (VCSEL) to generate a test pulse of light which is coupled into an optical fiber under test. The VCSEL is subsequently reconfigured by changing a bias voltage thereto and is used as a resonant-cavity photodetector (RCPD) to detect a portion of the test light pulse which is reflected or scattered from any fault within the optical fiber. A time interval .DELTA.t between an instant in time when the test light pulse is generated and the time the reflected or scattered portion is detected can then be used to determine the location of the fault within the optical fiber.

  5. Fault-tolerant three-level inverter

    DOE Patents [OSTI]

    Edwards, John; Xu, Longya; Bhargava, Brij B.

    2006-12-05

    A method for driving a neutral point clamped three-level inverter is provided. In one exemplary embodiment, DC current is received at a neutral point-clamped three-level inverter. The inverter has a plurality of nodes including first, second and third output nodes. The inverter also has a plurality of switches. Faults are checked for in the inverter and predetermined switches are automatically activated responsive to a detected fault such that three-phase electrical power is provided at the output nodes.

  6. The Cordilleran foreland thrust belt in northwestern Montana and northern Idaho from COCORP and industry seismic reflection data

    SciTech Connect (OSTI)

    Yoos, T.R.; Potter, C.J.; Thigpen, J.L.; Brown, L.D. (Cornell Univ., Ithaca, NY (United States))

    1991-06-01

    COCORP and petroleum industry seismic reflection profiles in northwestern Montana reveal the structure of the Cordilleran foreland thrust belt. The Front Ranges consist of thick thrust sheets containing Precambrian Belt Supergroup and Paleozoic miogeoclinal shelf rocks above a thin remnant of Paleozoic rocks and gently westward-dipping North American basement. Interpretation of the seismic data and results from a recent petroleum exploration well suggest that 15-22 km of Precambrian Belt Supergroup sedimentary rocks are present in several thrust plates beneath the eastern Purcell anticlinorium. Previous hypotheses of a large mass of Paleozoic miogeoclinal sedimentary rocks or slices of crystalline basement located beneath the eastern Purcell anticlinorium do not appear to be supported by the data. The easternmost occurrence of allochthonous basement is interpreted to be in the western part of the anticlinorium near the Montana-Idaho border. Comparison of the Cordilleran foreland thrust belt in northwestern Montana and southern Canada suggest that a change in the deep structure of the Purcell anticlinorium occurs along strike. The anticlinorium in southern Canada has been interpreted as a hanging-wall anticline that was thrust over the western edge of thick Proterozoic North American basement, whereas in northwestern Montana the anticlinorium appears to consist of a complex series of thrust sheets above highly attenuated North American basement.

  7. Magnetostratigraphic constraints on the development of paired fold-thrust belts/foreland basins in the Argentine Andes

    SciTech Connect (OSTI)

    Reynolds, J.H. ); Damanti, J.F. ); Jordan, T.E. )

    1991-03-01

    Development of a paired fold thrust-thrust belt/foreland basin is correlated to the flattening of the subducting Nazca plate between 28-33{degree}S. Magnetostratigraphic studies in neogene basin-filling continental strata determine local basin subsidence rates and provide relatively precise chronostratigraphic correlation between different depositional environments. The data demonstrate that most existing lithostratigraphic units are diachronous and require new tectonic interpretations. Increases in sediment accumulation rates closely correspond to changes in provenance and indicate that the Frontal Cordillera, on the Chile-Argentina border was a positive topographic province by 18 Ma. The Precordillera evolved from {approx}16 Ma to the present as thrusting migrated from west to east. Published ages from intercalated airfall tuffs constrain some sedimentary sections in the eastern Sierras Pampeanas where the earliest uplift occurred since 10 Ma. The youngest uplifts are on the west side close to continuing thrusting in the Precordillera. Not all fold-thrust belt/foreland basin pairs are associated with flat subduction, suggesting that tectonic controls exceeding the scale of individual plate segments may be important. The hydrocarbon-producing Subandean fold-thrust belt/foreland basin, located in the area of 'steep' subduction that underlies northern Argentina and Bolivia (18-24{degree}S), is also believed to have evolved since middle Miocene time. Recently initiated magnetostratigraphic studies in the Subandean foreland basin will attempt to temporally constrain the Neogene tectonic evolution for comparison with the southern region.

  8. Oregon Cascades Play Fairway Analysis: Faults and Heat Flow maps

    SciTech Connect (OSTI)

    Adam Brandt

    2015-11-15

    This submission includes a fault map of the Oregon Cascades and backarc, a probability map of heat flow, and a fault density probability layer. More extensive metadata can be found within each zip file.

  9. Arc-Fault Detector Algorithm Evaluation Method Utilizing Prerecorded...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... This pulse was fed into the AFD circuit to better tune the arc-fault detector. Figure 4 shows the string current (Hall Effect), the arc-fault voltage (Arc V (TEK)), and the arcing ...

  10. Deep drilling phase of the Pen Brand Fault Program

    SciTech Connect (OSTI)

    Stieve, A.

    1991-05-15

    This deep drilling activity is one element of the Pen Branch Fault Program at Savannah River Site (SRS). The effort will consist of three tasks: the extension of wells PBF-7 and PBF-8 into crystalline basement, geologic and drilling oversight during drilling operations, and the lithologic description and analysis of the recovered core. The drilling program addresses the association of the Pen Branch fault with order fault systems such as the fault that formed the Bunbarton basin in the Triassic.

  11. Adjustable direct current and pulsed circuit fault current limiter

    DOE Patents [OSTI]

    Boenig, Heinrich J.; Schillig, Josef B.

    2003-09-23

    A fault current limiting system for direct current circuits and for pulsed power circuit. In the circuits, a current source biases a diode that is in series with the circuits' transmission line. If fault current in a circuit exceeds current from the current source biasing the diode open, the diode will cease conducting and route the fault current through the current source and an inductor. This limits the rate of rise and the peak value of the fault current.

  12. Understanding Fault Characteristics of Inverter-Based Distributed Energy Resources

    SciTech Connect (OSTI)

    Keller, J.; Kroposki, B.

    2010-01-01

    This report discusses issues and provides solutions for dealing with fault current contributions from inverter-based distributed energy resources.

  13. All row, planar fault detection system

    DOE Patents [OSTI]

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D; Smith, Brian Edward

    2013-07-23

    An apparatus, program product and method for detecting nodal faults may simultaneously cause designated nodes of a cell to communicate with all nodes adjacent to each of the designated nodes. Furthermore, all nodes along the axes of the designated nodes are made to communicate with their adjacent nodes, and the communications are analyzed to determine if a node or connection is faulty.

  14. Multi-directional fault detection system

    DOE Patents [OSTI]

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2009-03-17

    An apparatus, program product and method checks for nodal faults in a group of nodes comprising a center node and all adjacent nodes. The center node concurrently communicates with the immediately adjacent nodes in three dimensions. The communications are analyzed to determine a presence of a faulty node or connection.

  15. Multi-directional fault detection system

    DOE Patents [OSTI]

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2010-11-23

    An apparatus, program product and method checks for nodal faults in a group of nodes comprising a center node and all adjacent nodes. The center node concurrently communicates with the immediately adjacent nodes in three dimensions. The communications are analyzed to determine a presence of a faulty node or connection.

  16. Multi-directional fault detection system

    DOE Patents [OSTI]

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2010-06-29

    An apparatus, program product and method checks for nodal faults in a group of nodes comprising a center node and all adjacent nodes. The center node concurrently communicates with the immediately adjacent nodes in three dimensions. The communications are analyzed to determine a presence of a faulty node or connection.

  17. Coordinated Fault Tolerance for High-Performance Computing

    SciTech Connect (OSTI)

    Dongarra, Jack; Bosilca, George; et al.

    2013-04-08

    Our work to meet our goal of end-to-end fault tolerance has focused on two areas: (1) improving fault tolerance in various software currently available and widely used throughout the HEC domain and (2) using fault information exchange and coordination to achieve holistic, systemwide fault tolerance and understanding how to design and implement interfaces for integrating fault tolerance features for multiple layers of the software stack—from the application, math libraries, and programming language runtime to other common system software such as jobs schedulers, resource managers, and monitoring tools.

  18. Statistical Fault Detection & Diagnosis Expert System

    Energy Science and Technology Software Center (OSTI)

    1996-12-18

    STATMON is an expert system that performs real-time fault detection and diagnosis of redundant sensors in any industrial process requiring high reliability. After a training period performed during normal operation, the expert system monitors the statistical properties of the incoming signals using a pattern recognition test. If the test determines that statistical properties of the signals have changed, the expert system performs a sequence of logical steps to determine which sensor or machine component hasmoredegraded.less

  19. Undulator Hall Air Temperature Fault Scenarios

    SciTech Connect (OSTI)

    Sevilla, J.; Welch, J.; ,

    2010-11-17

    Recent experience indicates that the LCLS undulator segments must not, at any time following tuning, be allowed to change temperature by more than about {+-}2.5 C or the magnetic center will irreversibly shift outside of acceptable tolerances. This vulnerability raises a concern that under fault conditions the ambient temperature in the Undulator Hall might go outside of the safe range and potentially could require removal and retuning of all the segments. In this note we estimate changes that can be expected in the Undulator Hall air temperature for three fault scenarios: (1) System-wide power failure; (2) Heating Ventilation and Air Conditioning (HVAC) system shutdown; and (3) HVAC system temperature regulation fault. We find that for either a system-wide power failure or an HVAC system shutdown (with the technical equipment left on), the short-term temperature changes of the air would be modest due to the ability of the walls and floor to act as a heat ballast. No action would be needed to protect the undulator system in the event of a system-wide power failure. Some action to adjust the heat balance, in the case of the HVAC power failure with the equipment left on, might be desirable but is not required. On the other hand, a temperature regulation failure of the HVAC system can quickly cause large excursions in air temperature and prompt action would be required to avoid damage to the undulator system.

  20. US Synthetic Corp (TRL 4 Component)- The Development of Open, Water Lubricated Polycrystalline Diamond Thrust Bearings for use in Marine Hydrokinetic (MHK) Energy Machines

    Broader source: Energy.gov [DOE]

    US Synthetic Corp (TRL 4 Component) - The Development of Open, Water Lubricated Polycrystalline Diamond Thrust Bearings for use in Marine Hydrokinetic (MHK) Energy Machines

  1. Calculating the probability of injected carbon dioxide plumes encountering faults

    SciTech Connect (OSTI)

    Jordan, P.D.

    2011-04-01

    One of the main concerns of storage in saline aquifers is leakage via faults. In the early stages of site selection, site-specific fault coverages are often not available for these aquifers. This necessitates a method using available fault data to estimate the probability of injected carbon dioxide encountering and migrating up a fault. The probability of encounter can be calculated from areal fault density statistics from available data, and carbon dioxide plume dimensions from numerical simulation. Given a number of assumptions, the dimension of the plume perpendicular to a fault times the areal density of faults with offsets greater than some threshold of interest provides probability of the plume encountering such a fault. Application of this result to a previously planned large-scale pilot injection in the southern portion of the San Joaquin Basin yielded a 3% and 7% chance of the plume encountering a fully and half seal offsetting fault, respectively. Subsequently available data indicated a half seal-offsetting fault at a distance from the injection well that implied a 20% probability of encounter for a plume sufficiently large to reach it.

  2. Detachment faults: Evidence for a low-angle origin

    SciTech Connect (OSTI)

    Scott, R.J.; Lister, G.S. )

    1992-09-01

    The origin of low-angle normal faults or detachment faults mantling metamorphic core complexes in the southwestern United States remains controversial. If [sigma][sub 1] is vertical during extension, the formation of, or even slip along, such low-angle normal faults is mechanically implausible. No records exist of earthquakes on low-angle normal faults in areas currently undergoing continental extension, except from an area of actively forming core complexes in the Solomon Sea, Papua New Guinea. In light of such geophysical and mechanical arguments, W.R. Buck and B. Wernicke and G.J. Axen proposed models in which detachment faults originate as high-angle normal faults, but rotate to low angles and become inactive as extension proceeds. These models are inconsistent with critical field relations in several core complexes. The Rawhide fault, an areally extensive detachment fault in western Arizona, propagated at close to its present subhorizontal orientation late in the Tertiary extension of the region. Neither the Wernicke and Axen nor Buck models predict such behavior; in fact, both models preclude the operation of low-angle normal faults. The authors recommend that alternative explanations or modifications of existing models are needed to explain the evidence that detachment faults form and operate with gentle dips.

  3. Co-Optimization of Fuels and Engines (Co-Optima) -- Thrust II Engine Projects, Sprays, and Emissions Control Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FT039 - Part 1 Co-Optimization of Fuels and Engines Advanced Engine Development Team Paul Miles, 4 Magnus Sjöberg, 4 John Dec, 4 Steve Ciatti, 1 Chris Kolodziej, 1 Scott Curran, 3 Mark Musculus, 4 Charles Mueller 4 1. Argonne National Laboratory 2. National Renewable Energy Laboratory 3. Oak Ridge National Laboratory 4. Sandia National Laboratories Co-Optima DOE VTO Management Team: Kevin Stork, Gurpreet Singh, & Leo Breton Thrust II engine projects June 9 th , 2016 Overview: Thrust II

  4. Fault-Oblivious Exascale Computing Environment | Argonne Leadership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computing Facility Fault-Oblivious Exascale Computing Environment PI Name: Maya B. Gokhale PI Email: gokhale2@llnl.gov Allocation Program: INCITE Allocation Hours at ALCF: 10,000,000 Year: 2012 Research Domain: Computer Science Two areas of concern that have emerged from several DOE meetings on exascale systems (machines with 100 million cores) are runtime systems which can function at that scale, and fault management. The Fault Oblivious Exascale (FOX) project aims to build a software stack

  5. An Assessment of Fault Current Limiter Testing Requirements | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Fault Current Limiter Testing Requirements An Assessment of Fault Current Limiter Testing Requirements The U.S. Department of Energy's (DOE) Office of Electricity Delivery and Energy Reliability (OE) is conducting research and development (R&D) on next-generation electricity delivery equipment including fault current limiters (FCLs). Prototype FCL devices are undergoing testing with the aim of market-ready devices making their debut in the transmission and distribution (T&D)

  6. Properties of the extra stage cube under multiple faults

    SciTech Connect (OSTI)

    Adams, G.B., III; Siegel, H.J.

    1982-01-01

    The extra stage cube (ESC) interconnection network, a fault tolerant structure, has been proposed for use in large-scale parallel and distributed systems. It has all of the interconnecting capabilities of the multistage cube-type networks that have been proposed for many systems, and the ESC provides fault tolerance for any single failure. The paper examines the ability of the ESC to operate with multiple faults. 9 references.

  7. Recency of Faulting and Neotectonic Framework in the Dixie Valley...

    Open Energy Info (EERE)

    by active geothermal springs. More specifically, our investigation shows that induced stress concentrations at the endpoints of normal fault ruptures appear to promote favorable...

  8. Error Estimation for Fault Tolerance in Numerical Integration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Error Estimation for Fault Tolerance in Numerical Integration Solvers Event Sponsor: ... In numerical integration solvers, approximation error can be estimated at a low cost. We ...

  9. Understanding Fault Characteristics And Sediment Depth For Geothermal...

    Open Energy Info (EERE)

    Understanding Fault Characteristics And Sediment Depth For Geothermal Exploration Using 3D Gravity Inversion In Walker Valley, Nevada Jump to: navigation, search OpenEI Reference...

  10. Microsoft PowerPoint - HPC - Resilience-Fault Injection Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This document is approved for public release; further dissemination unlimited Resilience ... FIT 32Gbit High FIT 32Gbit Low FIT Resilience Fault Injection Research ...

  11. Upper crustal faulting in an obliquely extending orogen, structural...

    Open Energy Info (EERE)

    faulting in an obliquely extending orogen, structural control on permeability and production in the Coso Geothermal Field, eastern California Jump to: navigation, search OpenEI...

  12. Active Fault Controls At High-Temperature Geothermal Sites- Prospectin...

    Open Energy Info (EERE)

    model in which recently active (Holocene) faults are preferred conduits for migration of thermal water from deep crustal depths, and we infer that the detection of sites...

  13. Active Fault Segments As Potential Earthquake Sources- Inferences...

    Open Energy Info (EERE)

    Segments As Potential Earthquake Sources- Inferences From Integrated Geophysical Mapping Of The Magadi Fault System, Southern Kenya Rift Jump to: navigation, search OpenEI...

  14. Controls on Fault-Hosted Fluid Flow: Preliminary Results from...

    Open Energy Info (EERE)

    Flow: Preliminary Results from the Coso Geothermal Field, CA Abstract cap rock, permeability, fault, fracture, clay, Coso Authors Davatzes, N.C.; Hickman and S.H. Published...

  15. Dating of major normal fault systems using thermochronology-...

    Open Energy Info (EERE)

    Dating of major normal fault systems using thermochronology- An example from the Raft River detachment, Basin and Range, western United States Jump to: navigation, search OpenEI...

  16. Fault Mapping At Raft River Geothermal Area (1993) | Open Energy...

    Open Energy Info (EERE)

    Raft River Geothermal Area (1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fault Mapping At Raft River Geothermal Area (1993) Exploration...

  17. Asking the right questions: benchmarking fault-tolerant extreme...

    Office of Scientific and Technical Information (OSTI)

    Title: Asking the right questions: benchmarking fault-tolerant extreme-scale systems. Abstract not provided. Authors: Widener, Patrick ; Ferreira, Kurt Brian ; Levy, Scott N. ; ...

  18. Statistical Fault Detection & Diagnosis Expert System

    Energy Science and Technology Software Center (OSTI)

    1996-12-18

    STATMON is an expert system that performs real-time fault detection and diagnosis of redundant sensors in any industrial process requiring high reliability. After a training period performed during normal operation, the expert system monitors the statistical properties of the incoming signals using a pattern recognition test. If the test determines that statistical properties of the signals have changed, the expert system performs a sequence of logical steps to determine which sensor or machine component hasmore » degraded.« less

  19. Superconducting fault current controller/current controller

    DOE Patents [OSTI]

    Cha, Yung S.

    2004-06-15

    A superconducting fault current controller/current controller employs a superconducting-shielded core reactor (SSCR) with a variable impedance in a secondary circuit to control current in a primary circuit such as an electrical distribution system. In a second embodiment, a variable current source is employed in a secondary circuit of an SSCR to control current in the primary circuit. In a third embodiment, both a variable impedance in one secondary circuit and a variable current source in a second circuit of an SSCR are employed for separate and independent control of current in the primary circuit.

  20. The Pingding segment of the Altyn Tagh Fault (91 °E): Holocene slip-rate determination from cosmogenic radionuclide dating of offset fluvial terraces

    SciTech Connect (OSTI)

    Meriaux, A. -S.; Van der Woerd, J.; Tapponnier, P.; Ryerson, F. J.; Finkel, R. C.; Lasserre, C.; Xu, X.

    2012-09-25

    Morphochronologic slip-rates on the Altyn Tagh Fault (ATF) along the southern front of the Pingding Shan at ~90.5°E are determined by cosmogenic radionuclide (CRN) dating of seven offset terraces at two sites. The terraces are defined based upon morphology, elevation and dating, together with fieldwork and high-resolution satellite analysis. The majority of the CRN model ages fall within narrow ranges (<2 ka) on the four main terraces (T1, T2, T3 and T3′), and allow a detailed terrace chronology. Bounds on the terrace ages and offsets of 5 independent terraces yield consistent slip-rate estimates. The long-term slip-rate of 13.9 ± 1.1 mm/yr is defined at the 95% confidence level, as the joint rate probability distribution of the rate derived from each independent terrace. It falls within the bounds of all the rates defined on the central Altyn Tagh Fault between the Cherchen He (86.4°E) and Akato Tagh (~88°E) sites. This rate is ~10 mm/yr less than the upper rate determined near Tura at ~87°E, in keeping with the inference of an eastward decreasing rate due to progressive loss of slip to thrusts branching off the fault southwards but it is greater than the 9 ± 4 mm/yr rate determined at ~90°E by GPS surveys and other geodetic short-term rates defined elsewhere along the ATF. Furthermore, whether such disparate rates will ultimately be reconciled by a better understanding of fault mechanics, resolved transient deformations during the seismic cycle or by more accurate measurements made with either approach remains an important issue.

  1. The Pingding segment of the Altyn Tagh Fault (91 °E): Holocene slip-rate determination from cosmogenic radionuclide dating of offset fluvial terraces

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Meriaux, A. -S.; Van der Woerd, J.; Tapponnier, P.; Ryerson, F. J.; Finkel, R. C.; Lasserre, C.; Xu, X.

    2012-09-25

    Morphochronologic slip-rates on the Altyn Tagh Fault (ATF) along the southern front of the Pingding Shan at ~90.5°E are determined by cosmogenic radionuclide (CRN) dating of seven offset terraces at two sites. The terraces are defined based upon morphology, elevation and dating, together with fieldwork and high-resolution satellite analysis. The majority of the CRN model ages fall within narrow ranges (<2 ka) on the four main terraces (T1, T2, T3 and T3′), and allow a detailed terrace chronology. Bounds on the terrace ages and offsets of 5 independent terraces yield consistent slip-rate estimates. The long-term slip-rate of 13.9 ± 1.1more » mm/yr is defined at the 95% confidence level, as the joint rate probability distribution of the rate derived from each independent terrace. It falls within the bounds of all the rates defined on the central Altyn Tagh Fault between the Cherchen He (86.4°E) and Akato Tagh (~88°E) sites. This rate is ~10 mm/yr less than the upper rate determined near Tura at ~87°E, in keeping with the inference of an eastward decreasing rate due to progressive loss of slip to thrusts branching off the fault southwards but it is greater than the 9 ± 4 mm/yr rate determined at ~90°E by GPS surveys and other geodetic short-term rates defined elsewhere along the ATF. Furthermore, whether such disparate rates will ultimately be reconciled by a better understanding of fault mechanics, resolved transient deformations during the seismic cycle or by more accurate measurements made with either approach remains an important issue.« less

  2. All-to-all sequenced fault detection system

    DOE Patents [OSTI]

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2010-11-02

    An apparatus, program product and method enable nodal fault detection by sequencing communications between all system nodes. A master node may coordinate communications between two slave nodes before sequencing to and initiating communications between a new pair of slave nodes. The communications may be analyzed to determine the nodal fault.

  3. Folding associated with extensional faulting: Sheep Range detachment, southern Nevada

    SciTech Connect (OSTI)

    Guth, P.L.

    1985-01-01

    The Sheep Range detachment is a major Miocene extensional fault system of the Great Basin. Its major faults have a scoop shape, with straight, N-S traces extending 15-30 km and then abruptly turning to strike E-W. Tertiary deformation involved simultaneous normal faulting, sedimentation, landsliding, and strike-slip faulting. Folds occur in two settings: landslide blocks and drag along major faults. Folds occur in landslide blocks and beneath them. Most folds within landslide blocks are tight anticlines, with limbs dipping 40-60 degrees. Brecciation of the folds and landslide blocks suggests brittle deformation. Near Quijinump Canyon in the Sheep Range, at least three landslide blocks (up to 500 by 1500 m) slid into a small Tertiary basin. Tertiary limestone beneath the Paleozoic blocks was isoclinally folded. Westward dips reveal drag folds along major normal faults, as regional dips are consistently to the east. The Chowderhead anticline is the largest drag fold, along an extensional fault that offsets Ordovician units 8 km. East-dipping Ordovician and Silurian rocks in the Desert Range form the hanging wall. East-dipping Cambrian and Ordovician units in the East Desert Range form the foot wall and east limb of the anticline. Caught along the fault plane, the anticline's west-dipping west limb contains mostly Cambrian units.

  4. Fault current limiter with shield and adjacent cores

    DOE Patents [OSTI]

    Darmann, Francis Anthony; Moriconi, Franco; Hodge, Eoin Patrick

    2013-10-22

    In a fault current limiter (FCL) of a saturated core type having at least one coil wound around a high permeability material, a method of suppressing the time derivative of the fault current at the zero current point includes the following step: utilizing an electromagnetic screen or shield around the AC coil to suppress the time derivative current levels during zero current conditions.

  5. Automated Proactive Fault Isolation: A Key to Automated Commissioning

    SciTech Connect (OSTI)

    Katipamula, Srinivas; Brambley, Michael R.

    2007-07-31

    In this paper, we present a generic model for automated continuous commissioing and then delve in detail into one of the processes, proactive testing for fault isolation, which is key to automating commissioning. The automated commissioining process uses passive observation-based fault detction and diagnostic techniques, followed by automated proactive testing for fault isolation, automated fault evaluation, and automated reconfiguration of controls together to continuously keep equipment controlled and running as intended. Only when hard failures occur or a physical replacement is required does the process require human intervention, and then sufficient information is provided by the automated commissioning system to target manual maintenance where it is needed. We then focus on fault isolation by presenting detailed logic that can be used to automatically isolate faults in valves, a common component in HVAC systems, as an example of how automated proactive fault isolation can be accomplished. We conclude the paper with a discussion of how this approach to isolating faults can be applied to other common HVAC components and their automated commmissioning and a summary of key conclusions of the paper.

  6. Automatic Fault Characterization via Abnormality-Enhanced Classification

    SciTech Connect (OSTI)

    Bronevetsky, G; Laguna, I; de Supinski, B R

    2010-12-20

    Enterprise and high-performance computing systems are growing extremely large and complex, employing hundreds to hundreds of thousands of processors and software/hardware stacks built by many people across many organizations. As the growing scale of these machines increases the frequency of faults, system complexity makes these faults difficult to detect and to diagnose. Current system management techniques, which focus primarily on efficient data access and query mechanisms, require system administrators to examine the behavior of various system services manually. Growing system complexity is making this manual process unmanageable: administrators require more effective management tools that can detect faults and help to identify their root causes. System administrators need timely notification when a fault is manifested that includes the type of fault, the time period in which it occurred and the processor on which it originated. Statistical modeling approaches can accurately characterize system behavior. However, the complex effects of system faults make these tools difficult to apply effectively. This paper investigates the application of classification and clustering algorithms to fault detection and characterization. We show experimentally that naively applying these methods achieves poor accuracy. Further, we design novel techniques that combine classification algorithms with information on the abnormality of application behavior to improve detection and characterization accuracy. Our experiments demonstrate that these techniques can detect and characterize faults with 65% accuracy, compared to just 5% accuracy for naive approaches.

  7. Development of Hydrologic Characterization Technology of Fault Zones

    SciTech Connect (OSTI)

    Karasaki, Kenzi; Onishi, Tiemi; Wu, Yu-Shu

    2008-03-31

    Through an extensive literature survey we find that there is very limited amount of work on fault zone hydrology, particularly in the field using borehole testing. The common elements of a fault include a core, and damage zones. The core usually acts as a barrier to the flow across it, whereas the damage zone controls the flow either parallel to the strike or dip of a fault. In most of cases the damage zone isthe one that is controlling the flow in the fault zone and the surroundings. The permeability of damage zone is in the range of two to three orders of magnitude higher than the protolith. The fault core can have permeability up to seven orders of magnitude lower than the damage zone. The fault types (normal, reverse, and strike-slip) by themselves do not appear to be a clear classifier of the hydrology of fault zones. However, there still remains a possibility that other additional geologic attributes and scaling relationships can be used to predict or bracket the range of hydrologic behavior of fault zones. AMT (Audio frequency Magneto Telluric) and seismic reflection techniques are often used to locate faults. Geochemical signatures and temperature distributions are often used to identify flow domains and/or directions. ALSM (Airborne Laser Swath Mapping) or LIDAR (Light Detection and Ranging) method may prove to be a powerful tool for identifying lineaments in place of the traditional photogrammetry. Nonetheless not much work has been done to characterize the hydrologic properties of faults by directly testing them using pump tests. There are some uncertainties involved in analyzing pressure transients of pump tests: both low permeability and high permeability faults exhibit similar pressure responses. A physically based conceptual and numerical model is presented for simulating fluid and heat flow and solute transport through fractured fault zones using a multiple-continuum medium approach. Data from the Horonobe URL site are analyzed to demonstrate the

  8. Exploration in the Sub Andean thrust/fold belt of northwest Argentina

    SciTech Connect (OSTI)

    Schulz, A.; Alarcon, M.; Aramayo, F.; Santiago, M.; Ashby, W.J.

    1996-08-01

    A significant portion of the 15,000 square kilometer Aguarague exploration permit is located with the Sub Andean zone of northwest Argentina bordering Bolivia. The Sub Andean sedimentary section is dominated by a succession of tectonostratigraphic cycles of Silurian to recent age. These cycles display a complex geological history prior to the onset of the Andean deformation of Upper Miocene age. As the structures are complex, several different exploration techniques were combined, including satellite imagery, aeromagnetics, geological mapping, geochemistry, microtectonic studies, magneto stratigraphy, seismic modeling and seismic with pre- and post-stack depth migration. The interpretation of these techniques produced three dimensional structural models, at regional and prospect scales, that demonstrated the deformation mechanism, sequence and timing of the structures; these were then linked to the timing of generation/expulsion of hydrocarbons. The physical properties of the sedimentary sequence produces three structural environs, each with distinct fold and fault mechanisms. 1. (Upper): A product of the cumulative deformation of the underlying environs; 2. (Middle): The presence of an incompetent shale, the principal source rock, within this unit produces {open_quotes}fold disharmony {close_quotes} (horizontally and vertically) between the overlying and underlying environs. 3. (Lower): Characterized by folds developed by Fault Bend Fold processes. Hydrocarbon fields and exploration prospects are present within all three environs. The work performed has permitted the successful evaluation of several structures within the Sub Andean of the UTE Aguarague.

  9. Locating an active fault zone in Coso geothermal field by analyzing...

    Open Energy Info (EERE)

    waves from microearthquake data Abstract Active fault systems usually provide high-permeability channels for hydrothermal outflow in geothermal fields. Locating such fault systems...

  10. Self field triggered superconducting fault current limiter

    DOE Patents [OSTI]

    Tekletsadik, Kasegn D.

    2008-02-19

    A superconducting fault current limiter array with a plurality of superconductor elements arranged in a meanding array having an even number of supconductors parallel to each other and arranged in a plane that is parallel to an odd number of the plurality of superconductors, where the odd number of supconductors are parallel to each other and arranged in a plane that is parallel to the even number of the plurality of superconductors, when viewed from a top view. The even number of superconductors are coupled at the upper end to the upper end of the odd number of superconductors. A plurality of lower shunt coils each coupled to the lower end of each of the even number of superconductors and a plurality of upper shunt coils each coupled to the upper end of each of the odd number of superconductors so as to generate a generally orthoganal uniform magnetic field during quenching using only the magenetic field generated by the superconductors.

  11. Locating hardware faults in a parallel computer

    DOE Patents [OSTI]

    Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.

    2010-04-13

    Locating hardware faults in a parallel computer, including defining within a tree network of the parallel computer two or more sets of non-overlapping test levels of compute nodes of the network that together include all the data communications links of the network, each non-overlapping test level comprising two or more adjacent tiers of the tree; defining test cells within each non-overlapping test level, each test cell comprising a subtree of the tree including a subtree root compute node and all descendant compute nodes of the subtree root compute node within a non-overlapping test level; performing, separately on each set of non-overlapping test levels, an uplink test on all test cells in a set of non-overlapping test levels; and performing, separately from the uplink tests and separately on each set of non-overlapping test levels, a downlink test on all test cells in a set of non-overlapping test levels.

  12. Online Monitoring System for Performance Fault Detection

    SciTech Connect (OSTI)

    Gioiosa, Roberto; Kestor, Gokcen; Kerbyson, Darren J.

    2014-05-19

    To achieve the exaFLOPS performance within a contain power budget, next supercomputers will feature hundreds of millions of components operating at low- and near-threshold voltage. As the probability that at least one of these components fails during the execution of an application approaches certainty, it seems unrealistic to expect that any run of a scientific application will not experience some performance faults. We believe that there is need of a new generation of light-weight performance and debugging tools that can be used online even during production runs of parallel applications and that can identify performance anomalies during the application execution. In this work we propose the design and implementation of a monitoring system that continuously inspects the evolution of run

  13. Development of Characterization Technology for Fault Zone Hydrology

    SciTech Connect (OSTI)

    Karasaki, Kenzi; Onishi, Tiemi; Gasperikova, Erika; Goto, Junichi; Tsuchi, Hiroyuki; Miwa, Tadashi; Ueta, Keiichi; Kiho, Kenzo; MIyakawa, Kimio

    2010-08-06

    Several deep trenches were cut, and a number of geophysical surveys were conducted across the Wildcat Fault in the hills east of Berkeley, California. The Wildcat Fault is believed to be a strike-slip fault and a member of the Hayward Fault System, with over 10 km of displacement. So far, three boreholes of ~;; 150m deep have been core-drilled and borehole geophysical logs were conducted. The rocks are extensively sheared and fractured; gouges were observed at several depths and a thick cataclasitic zone was also observed. While confirming some earlier, published conclusions from shallow observations about Wildcat, some unexpected findings were encountered. Preliminary analysis indicates that Wildcat near the field site consists of multiple faults. The hydraulic test data suggest the dual properties of the hydrologic structure of the fault zone. A fourth borehole is planned to penetrate the main fault believed to lie in-between the holes. The main philosophy behind our approach for the hydrologic characterization of such a complex fractured system is to let the system take its own average and monitor a long term behavior instead of collecting a multitude of data at small length and time scales, or at a discrete fracture scale and to ?up-scale,? which is extremely tenuous.

  14. Conceptual Engine System Design for NERVA derived 66.7KN and 111.2KN Thrust Nuclear Thermal Rockets

    SciTech Connect (OSTI)

    Fittje, James E.; Buehrle, Robert J.

    2006-01-20

    The Nuclear Thermal Rocket concept is being evaluated as an advanced propulsion concept for missions to the moon and Mars. A tremendous effort was undertaken during the 1960's and 1970's to develop and test NERVA derived Nuclear Thermal Rockets in the 111.2 KN to 1112 KN pound thrust class. NASA GRC is leveraging this past NTR investment in their vehicle concepts and mission analysis studies, and has been evaluating NERVA derived engines in the 66.7 KN to the 111.2 KN thrust range. The liquid hydrogen propellant feed system, including the turbopumps, is an essential component of the overall operation of this system. The NASA GRC team is evaluating numerous propellant feed system designs with both single and twin turbopumps. The Nuclear Engine System Simulation code is being exercised to analyze thermodynamic cycle points for these selected concepts. This paper will present propellant feed system concepts and the corresponding thermodynamic cycle points for 66.7 KN and 111.2 KN thrust NTR engine systems. A pump out condition for a twin turbopump concept will also be evaluated, and the NESS code will be assessed against the Small Nuclear Rocket Engine preliminary thermodynamic data.

  15. Laramide thrusting and Tertiary deformation Tierra Caliente, Michoacan and Guerrero States, southwestern Mexico

    SciTech Connect (OSTI)

    Johnson, C.A.; Harrison, C.G.A. ); Lang, H. ); Barros, J.A.; Cabral-Cano, E.

    1990-05-01

    Field investigations and detailed interpretations of Landsat Thematic Mapper images are in progress to improve understanding of regional structure and tectonics of the southernmost extension of the North American cordillera. Two areas have been selected within the Ciudad Altamirano 1:250,000 topographical sheet for geologic mapping and structural interpretation at 1:50,000 scale. The authors results to date require modification of previous ideas concerning the style and timing of deformations, the role and timing of terrane accretion in the overall tectonic history of the region, and the importance of southern Mexico to investigations of the tectonic evolution of the plates in the region. The relative sequence of deformation in the area correlates well with variations in relative motion between North America and plates in the Pacific. Post-Campanian thrusts and generally eastward-verging folds deformed the Mesozoic sequence during the (Laramide equivalent) Hidalgoan orogeny, associated with high-velocity east-west convergence with the Farallon plate that began about 70 Ma. The resulting unconformity was covered by the Tertiary Balsas Formation, a thick sequence of mostly continental clastics. The Tertiary stratigraphy is regionally and sometimes locally variable, but it can be divided into two members. The lower member is relatively volcanic poor and more deformed, and it lies below a regionally significant mid-Tertiary unconformity, which may mark a change to northeast-directed convergence with the Farallon plate sometime prior to 40 Ma. Continued mid-Tertiary deformation in southern Mexico may be related to eastward movement of the Chortis block and the resulting truncation of the Pacific margin of Mexico. The authors also suggest a tentative correlation between the volcaniclastic member of the Lower Cretaceous San Lucas Formation and the protolith of the Roca Verde metamorphics to the east.

  16. Analysis of the growth of strike-slip faults using effective medium theory

    SciTech Connect (OSTI)

    Aydin, A.; Berryman, J.G.

    2009-10-15

    Increases in the dimensions of strike-slip faults including fault length, thickness of fault rock and the surrounding damage zone collectively provide quantitative definition of fault growth and are commonly measured in terms of the maximum fault slip. The field observations indicate that a common mechanism for fault growth in the brittle upper crust is fault lengthening by linkage and coalescence of neighboring fault segments or strands, and fault rock-zone widening into highly fractured inner damage zone via cataclastic deformation. The most important underlying mechanical reason in both cases is prior weakening of the rocks surrounding a fault's core and between neighboring fault segments by faulting-related fractures. In this paper, using field observations together with effective medium models, we analyze the reduction in the effective elastic properties of rock in terms of density of the fault-related brittle fractures and fracture intersection angles controlled primarily by the splay angles. Fracture densities or equivalent fracture spacing values corresponding to the vanishing Young's, shear, and quasi-pure shear moduli were obtained by extrapolation from the calculated range of these parameters. The fracture densities or the equivalent spacing values obtained using this method compare well with the field data measured along scan lines across the faults in the study area. These findings should be helpful for a better understanding of the fracture density/spacing distribution around faults and the transition from discrete fracturing to cataclastic deformation associated with fault growth and the related instabilities.

  17. Coupled hydro-mechanical processes and fault reactivation induced...

    Office of Scientific and Technical Information (OSTI)

    Coupled hydro-mechanical processes and fault reactivation induced by Co2 Injection in a three-layer storage formation Citation Details In-Document Search This content will become ...

  18. Recent earthquake sequences at Coso: Evidence for conjugate faulting...

    Open Energy Info (EERE)

    earthquake sequences at Coso: Evidence for conjugate faulting and stress loading near a geothermal field Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal...

  19. STRESS AND FAULTING IN THE COSO GEOTHERMAL FIELD: UPDATE AND...

    Open Energy Info (EERE)

    STRESS AND FAULTING IN THE COSO GEOTHERMAL FIELD: UPDATE AND RECENT RESULTS FROM THE EAST FLANK AND COSO WASH Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  20. INVESTIGATION OF HOLOCENE FAULTING PROPOSED C-746-U LANDFILL EXPANSION

    SciTech Connect (OSTI)

    Lettis, William

    2006-07-01

    This report presents the findings of a fault hazard investigation for the C-746-U landfill's proposed expansion located at the Department of Energy's (DOE) Paducah Gaseous Diffusion Plant (PGDP), in Paducah, Kentucky. The planned expansion is located directly north of the present-day C-746-U landfill. Previous geophysical studies within the PGDP site vicinity interpret possible northeast-striking faults beneath the proposed landfill expansion, although prior to this investigation the existence, locations, and ages of these inferred faults have not been confirmed through independent subsurface exploration. The purpose of this investigation is to assess whether or not Holocene-active fault displacement is present beneath the footprint of the proposed landfill expansion.

  1. Fault Tree Reliability Analysis and Design-for-reliability

    Energy Science and Technology Software Center (OSTI)

    1998-05-05

    WinR provides a fault tree analysis capability for performing systems reliability and design-for-reliability analyses. The package includes capabilities for sensitivity and uncertainity analysis, field failure data analysis, and optimization.

  2. Fault and joint geometry at Raft River geothermal area, Idaho...

    Open Energy Info (EERE)

    may be useful for locating the surface traces of faults in the reservoir. Authors Guth, L. R.; Bruhn, R. L.; Beck and S. L. Published DOE Information Bridge, 711981 DOI...

  3. High-Resolution Aeromagnetic Survey to Image Shallow Faults,...

    Open Energy Info (EERE)

    to Image Shallow Faults, Dixie Valley Geothermal Field, Nevada Abstract NA Author V. J. S. Grauch Published U.S. Geological Survey, 2002 Report Number 02-384 DOI Not Provided...

  4. Exploiting data representation for fault tolerance

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hoemmen, Mark Frederick; Elliott, J.; Sandia National Lab.; Mueller, F.

    2015-01-06

    Incorrect computer hardware behavior may corrupt intermediate computations in numerical algorithms, possibly resulting in incorrect answers. Prior work models misbehaving hardware by randomly flipping bits in memory. We start by accepting this premise, and present an analytic model for the error introduced by a bit flip in an IEEE 754 floating-point number. We then relate this finding to the linear algebra concepts of normalization and matrix equilibration. In particular, we present a case study illustrating that normalizing both vector inputs of a dot product minimizes the probability of a single bit flip causing a large error in the dot product'smore » result. Moreover, the absolute error is either less than one or very large, which allows detection of large errors. Then, we apply this to the GMRES iterative solver. We count all possible errors that can be introduced through faults in arithmetic in the computationally intensive orthogonalization phase of GMRES, and show that when the matrix is equilibrated, the absolute error is bounded above by one.« less

  5. Exploiting data representation for fault tolerance

    SciTech Connect (OSTI)

    Hoemmen, Mark Frederick; Elliott, J.; Mueller, F.

    2015-01-06

    Incorrect computer hardware behavior may corrupt intermediate computations in numerical algorithms, possibly resulting in incorrect answers. Prior work models misbehaving hardware by randomly flipping bits in memory. We start by accepting this premise, and present an analytic model for the error introduced by a bit flip in an IEEE 754 floating-point number. We then relate this finding to the linear algebra concepts of normalization and matrix equilibration. In particular, we present a case study illustrating that normalizing both vector inputs of a dot product minimizes the probability of a single bit flip causing a large error in the dot product's result. Moreover, the absolute error is either less than one or very large, which allows detection of large errors. Then, we apply this to the GMRES iterative solver. We count all possible errors that can be introduced through faults in arithmetic in the computationally intensive orthogonalization phase of GMRES, and show that when the matrix is equilibrated, the absolute error is bounded above by one.

  6. Detachment Faulting & Geothermal Resources - Pearl Hot Spring, NV |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Detachment Faulting & Geothermal Resources - Pearl Hot Spring, NV presentation at the April 2013 peer review meeting held in Denver, Colorado. pearl_hot_springs_peer2013.pdf (1.5 MB) More Documents & Publications Detachment Faulting & Geothermal Resources - Pearl Hot Spring, NV Conducting a 3D Converted Shear Wave Project to Reduce Exploration Risk at Wister, CA Crump Geyser: High Precision Geophysics & Detailed Structural Exploration & Slim Well

  7. Near-surface geophysical characterization of Holocene faults conducive to

    Office of Scientific and Technical Information (OSTI)

    geothermal flow near Pyramid Lake, Nevada (Conference) | SciTech Connect Conference: Near-surface geophysical characterization of Holocene faults conducive to geothermal flow near Pyramid Lake, Nevada Citation Details In-Document Search Title: Near-surface geophysical characterization of Holocene faults conducive to geothermal flow near Pyramid Lake, Nevada Colton Dudley, Alison Dorsey, Paul Opdyke, Dustin Naphan, Marlon Ramos, John Louie, Paul Schwering, and Satish Pullammanappallil, 2013,

  8. Preliminary observations on Quaternary reverse faulting along the southern front of the Northern Range of Trinidad

    SciTech Connect (OSTI)

    Beltran, C. , Caracus )

    1993-02-01

    Several geomorphological evidences of Quaternary reverse faulting are observed along the southern front of the Northern Range in Trinidad between Port-of-Spain and Matura Point. Such a mountain front is associated to a reverse fault system showing an imbricated pattern southward. In the north, the system is limited by a structural feature showing an important vertical component. Southward this system progressively changes to low angle faults. This geometry is corroborated by seismic profiling in the continent shelf. The active faulting evidences consist in lateral drainage offsets, fault trenches, sag-ponds, triangular facets, and saddles. Some quaternary terraces show fault scarps and tilting. We postulate that these reverse fault systems as Arima Fault instead of El Pilar fault as it is not actually connected to the San Sebestian-El Pilar right-lateral slip system, due to the southward prolongation of the southern limit of the Caribbean Plate through the fault system of Los Bajos-El Soldado.

  9. Adding Fault Tolerance to NPB Benchmarks Using ULFM

    SciTech Connect (OSTI)

    Parchman, Zachary W; Vallee, Geoffroy R; Naughton III, Thomas J; Engelmann, Christian; Bernholdt, David E; Scott, Stephen L

    2016-01-01

    In the world of high-performance computing, fault tolerance and application resilience are becoming some of the primary concerns because of increasing hardware failures and memory corruptions. While the research community has been investigating various options, from system-level solutions to application-level solutions, standards such as the Message Passing Interface (MPI) are also starting to include such capabilities. The current proposal for MPI fault tolerant is centered around the User-Level Failure Mitigation (ULFM) concept, which provides means for fault detection and recovery of the MPI layer. This approach does not address application-level recovery, which is currently left to application developers. In this work, we present a mod- ification of some of the benchmarks of the NAS parallel benchmark (NPB) to include support of the ULFM capabilities as well as application-level strategies and mechanisms for application-level failure recovery. As such, we present: (i) an application-level library to checkpoint and restore data, (ii) extensions of NPB benchmarks for fault tolerance based on different strategies, (iii) a fault injection tool, and (iv) some preliminary results that show the impact of such fault tolerant strategies on the application execution.

  10. Microcomputer applications of, and modifications to, the modular fault trees

    SciTech Connect (OSTI)

    Zimmerman, T.L.; Graves, N.L.; Payne, A.C. Jr.; Whitehead, D.W.

    1994-10-01

    The LaSalle Probabilistic Risk Assessment was the first major application of the modular logic fault trees after the IREP program. In the process of performing the analysis, many errors were discovered in the fault tree modules that led to difficulties in combining the modules to form the final system fault trees. These errors are corrected in the revised modules listed in this report. In addition, the application of the modules in terms of editing them and forming them into the system fault trees was inefficient. Originally, the editing had to be done line by line and no error checking was performed by the computer. This led to many typos and other logic errors in the construction of the modular fault tree files. Two programs were written to help alleviate this problem: (1) MODEDIT - This program allows an operator to retrieve a file for editing, edit the file for the plant specific application, perform some general error checking while the file is being modified, and store the file for later use, and (2) INDEX - This program checks that the modules that are supposed to form one fault tree all link up appropriately before the files are,loaded onto the mainframe computer. Lastly, the modules were not designed for relay type logic common in BWR designs but for solid state type logic. Some additional modules were defined for modeling relay logic, and an explanation and example of their use are included in this report.

  11. Development of transfer zones and location of oil and gas fields in frontal part of Bolivian Andean fold-and-thrust belt

    SciTech Connect (OSTI)

    Baby, P. ); Specht, M.; Colletta, B.; Letouzey, J. ); Mendez, E. ); Guillier, B. )

    1993-02-01

    The frontal part of the Bolivian Andean thrust belt consists of a thick series of paleozoic to cenozoic sedimentary rocks (5 to 8 km thick) which are folded and thrusted towards the east on a sole thrust at the base of paleozoic series. The front of this tectonic wedge is characterized by transfer zones of various scales and geometries. The main oil and gas fields are located in these transfer zones. A study realized from YPFB (Yacimientos Petroliferos Fiscales Bolivianos) seismic data shows that in all the cases, the deformation is controlled by the geometry and thickness variations of the paleozoic basin. The most spectacular transfer zone appears at the bolivian orocline scale and corresponds to the famous bending of the andean thrust front close to Santa Cruz. More to the south (19 to 22[degrees] S) the southern foreland fold and thrust belt is characterized by a set of local right lateral offset transfer zones ([open quotes]en echellon[close quotes] folds). The difference of geometry and scale of the transfer zones seems to be related to the variation of the angle value between the shortening direction and the direction of the paleozoic basin borders. In order to test our interpretation, to constrain the boundary conditions and to study the thrust propagation sequence, we performed a set of analog model experiments whose 3D visualization was analyzed by computerized X-ray tomography.

  12. Stem thrust prediction model for Westinghouse wedge gate valves with linkage type stem-to-disk connection

    SciTech Connect (OSTI)

    Wang, J.K.; Sharma, V.; Kalsi, M.S.

    1996-12-01

    The Electric Power Research Institute (EPRI) conducted a comprehensive research program with the objective of providing nuclear utilities with analytical methods to predict motor operated valve (MOV) performance under design basis conditions. This paper describes the stem thrust calculation model developed for evaluating the performance of one such valve, the Westinghouse flexible wedge gate valve. These procedures account for the unique functional characteristics of this valve design. In addition, model results are compared to available flow loop and in situ test data as a basis for evaluating the performance of the valve model.

  13. Factors affecting the recognition of faults exposed in exploratory trenches. Bulletin

    SciTech Connect (OSTI)

    Bonilla, M.G.; Lienkaemper, J.J.

    1991-01-01

    During excavation of the reactor shaft at the proposed Bodega Head nuclear reactor in California, a fault was found in the sediments overlying bedrock. This apparent lack of a complete connection with the bedrock fault led to disagreement as to whether the fault in the sediments was of tectonic or landslide origin. The report provides information on some of the conditions under which fault strands in trench walls are either difficult to see or die out, and the frequency of occurrence of these phenomena. Information is also provided on the widths of fault zones, on the deformation of the hanging wall and footwall of dip-slip faults, and on the frequency of occurrence of pebble rotation, open fissures, gouge, slickensides, mixing, fault breccia, fault rubble, crushing, polishing, water barriers, and liquefaction effects. Short summaries of information relating to fault strands that are poorly expressed or that die out have already been published (Bonilla and Lienkaemper, 1988, 1990).

  14. Field Guide for Testing Existing Photovoltaic Systems for Ground Faults and Installing Equipment to Mitigate Fire Hazards

    SciTech Connect (OSTI)

    Brooks, William; Basso, Thomas; Coddington, Michael

    2015-10-01

    Ground faults and arc faults are the two most common reasons for fires in photovoltaic (PV) arrays and methods exist that can mitigate the hazards. This report provides field procedures for testing PV arrays for ground faults, and for implementing high resolution ground fault and arc fault detectors in existing and new PV system designs.

  15. Accident Fault Trees for Defense Waste Processing Facility

    SciTech Connect (OSTI)

    Sarrack, A.G.

    1999-06-22

    The purpose of this report is to document fault tree analyses which have been completed for the Defense Waste Processing Facility (DWPF) safety analysis. Logic models for equipment failures and human error combinations that could lead to flammable gas explosions in various process tanks, or failure of critical support systems were developed for internal initiating events and for earthquakes. These fault trees provide frequency estimates for support systems failures and accidents that could lead to radioactive and hazardous chemical releases both on-site and off-site. Top event frequency results from these fault trees will be used in further APET analyses to calculate accident risk associated with DWPF facility operations. This report lists and explains important underlying assumptions, provides references for failure data sources, and briefly describes the fault tree method used. Specific commitments from DWPF to provide new procedural/administrative controls or system design changes are listed in the ''Facility Commitments'' section. The purpose of the ''Assumptions'' section is to clarify the basis for fault tree modeling, and is not necessarily a list of items required to be protected by Technical Safety Requirements (TSRs).

  16. Impact of Installation Faults on Heat Pump Performance

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hourahan, Glenn; Baxter, Van D.

    2015-01-01

    Numerous studies and surveys indicate that typically-installed HVAC equipment operate inefficiently and waste considerable energy due to varied installation errors (faults) such as improper refrigerant charge, incorrect airflow, oversized equipment, and leaky ducts. This article summarizes the results of a large United States (U.S.) experimental/analytical study (U.S. contribution to IEA HPP Annex 36) of the impact that different faults have on the performance of an air-source heat pump (ASHP) in a typical U.S. single-family house. It combines building effects, equipment effects, and climate effects in an evaluation of the faults impact on seasonal energy consumption through simulations of the house/ASHPmore » pump system.« less

  17. Network resilience; A measure of network fault tolerance

    SciTech Connect (OSTI)

    Najjar, W. . Dept. of Computer Science); Gaudoit, J.L. . Dept. of Electrical Engineering)

    1990-02-01

    The failure of a node in a multicomputer system will not only reduce the computational power but also alter the network's topology. Network fault tolerance is a measure of the number of failures the network can sustain before a disconnection occurs. It is expressed traditionally as the network's node degree. In this paper, the authors propose a probabilistic measure of network fault tolerance expressed as the probability f a disconnection. Qualitative evaluation of this measure is presented. As expected, the single-node disconnection probability is the dominant factor irrespective of the topology under consideration. They derive an analytical approximation of the disconnection probability and verify it with Monte Carlo simulation. Based on this model, the measures of network resilience and relative network resilience are proposed as probabilistic measures of network fault tolerance. These are then used to evaluate the effects of the disconnection probability on the reliability of the system.

  18. Impact of Installation Faults on Heat Pump Performance

    SciTech Connect (OSTI)

    Hourahan, Glenn; Baxter, Van D.

    2015-01-01

    Numerous studies and surveys indicate that typically-installed HVAC equipment operate inefficiently and waste considerable energy due to varied installation errors (faults) such as improper refrigerant charge, incorrect airflow, oversized equipment, and leaky ducts. This article summarizes the results of a large United States (U.S.) experimental/analytical study (U.S. contribution to IEA HPP Annex 36) of the impact that different faults have on the performance of an air-source heat pump (ASHP) in a typical U.S. single-family house. It combines building effects, equipment effects, and climate effects in an evaluation of the faults impact on seasonal energy consumption through simulations of the house/ASHP pump system.

  19. Garbage collection: an exercise in distributed, fault-tolerant programming

    SciTech Connect (OSTI)

    Vestal, S.C.

    1987-01-01

    Two garbage-collection algorithms are presented to reclaim unused storage in object-oriented systems implemented on local area networks. The algorithms are fault-tolerant and allowed parallel, incremental collection in an object address space distributed throughout the system. The two approaches allow multiple collectors, so some unused storage can be reclaimed in partitioned networks. The first method makes use of fault-tolerant reference counts together with an algorithm to collect cycles of objects that would otherwise remain unclaimed. The second method adapts a parallel collector so that it can be used to collect subspaces of the entire network address space. Throughout this work concern is with a methodology for developing distributed, parallel, fault-tolerant programs. Also, there is concern with the suitability of object-oriented systems for such applications.

  20. Multistage network with an additional stage for fault tolerance

    SciTech Connect (OSTI)

    Adams, G.B. III; Siegel, H.J.

    1982-01-01

    The extra stage cube (ESC) network, a fault tolerant structure, is proposed for use in large-scale parallel and distributed supercomputer systems. This network is derived from the generalised cube network by the addition of one stage of interchange boxes and a bypass capability for two stages. It is shown that the ESC provides fault tolerance for any single failure. Further, the network can be controlled even when it has a single failure, using a simple modification of a routing tag scheme proposed for the generalised cube. Both one-to-one and broadcast connections under routing tag control are performable by the faulted ESC. The effects of the extra stage on the partitioning and permuting abilities of the network are described. 19 references.

  1. Solid-State Fault Current Limiter Development : Design and Testing Update of a 15kV SSCL Power Stack

    SciTech Connect (OSTI)

    Dr. Ram Adapa; Mr. Dante Piccone

    2012-04-30

    limiting or current interrupting capabilities. It can be applied to variety of applications from distribution class to transmission class power delivery grids and networks. It can also be applied to single major commercial and industrial loads and distributed generator supplies. The active switching of devices can be further utilized for protection of substation transformers. The stress on the system can be reduced substantially improving the life of the power system. It minimizes the voltage sag by speedy elimination of heavy fault currents and promises to be an important element of the utility power system. DOE Perspective This development effort is now focused on a 15kV system. This project will help mitigate the challenges of increasing available fault current. DOE has made a major contribution in providing a cost effective SSCL designed to integrate seamlessly into the Transmission and Distribution networks of today and the future. Approach SSCL development program for a 69kV SSCL was initiated which included the use of the Super GTO advanced semiconductor device which won the 2007 R&D100 Award. In the beginning, steps were identified to accomplish the economically viable design of a 69kV class Solid State Current Limiter that is extremely reliable, cost effective, and compact enough to be applied in urban transmission. The prime thrust in design and development was to encompass the 1000A and the 3000A ratings and provide a modular design to cover the wide range of applications. The focus of the project was then shifted to a 15kV class SSCL. The specifications for the 15kV power stack are reviewed. The design changes integrated into the 15kV power stack are discussed. In this Technical Update the complete project is summarized followed by a detailed test report. The power stack independent high voltage laboratory test requirements and results are presented. Keywords Solid State Current Limiter, SSCL, Fault Current Limiter, Fault Current Controller, Power electronics

  2. Observations on Faults and Associated Permeability Structures in Hydrogeologic Units at the Nevada Test Site

    SciTech Connect (OSTI)

    Prothro, Lance B.; Drellack, Sigmund L.; Haugstad, Dawn N.; Huckins-Gang, Heather E.; Townsend, Margaret J.

    2009-03-30

    Observational data on Nevada Test Site (NTS) faults were gathered from a variety of sources, including surface and tunnel exposures, core samples, geophysical logs, and down-hole cameras. These data show that NTS fault characteristics and fault zone permeability structures are similar to those of faults studied in other regions. Faults at the NTS form complex and heterogeneous fault zones with flow properties that vary in both space and time. Flow property variability within fault zones can be broken down into four major components that allow for the development of a simplified, first approximation model of NTS fault zones. This conceptual model can be used as a general guide during development and evaluation of groundwater flow and contaminate transport models at the NTS.

  3. Faulted reservoirs characterization by an image processing technique

    SciTech Connect (OSTI)

    Martinez-Angeles, R.

    1994-12-31

    This paper has developed an image processing method for obtaining the discontinuous areal distribution of oil parameters (formation top, porosity, water saturation,...) of faulted heterogeneous oil reservoirs. For its application it requires the previous knowledge of a set of discrete values z(k,l) from well-logs and seismic profiles. Faulted structures were discretized into continuous structures or blocks bounded by faults. The theoretical fundamental assumption of the proposed method establishes that the natural distributions can be considered as the superposition of several elementary brownian distributions, represented by discrete values z(k,l), whose physical model is the diffusion differential equation and its solution associated. This is a technique that allows the representation of a composed brownian distribution as a linear combination of all elementary brownian functions. For illustrating the operational aspect of brownian analysis, two examples are studied. The results are presented as a digital images by means of an image processing software. This method can be applied in mapping, three dimensions interpolation and reserves calculation of faulted reservoirs.

  4. Experimental and computational studies on stacking faults in zinc titanate

    SciTech Connect (OSTI)

    Sun, W.; Ageh, V.; Mohseni, H.; Scharf, T. W. E-mail: Jincheng.Du@unt.edu; Du, J. E-mail: Jincheng.Du@unt.edu

    2014-06-16

    Zinc titanate (ZnTiO{sub 3}) thin films grown by atomic layer deposition with ilmenite structure have recently been identified as an excellent solid lubricant, where low interfacial shear and friction are achieved due to intrafilm shear velocity accommodation in sliding contacts. In this Letter, high resolution transmission electron microscopy with electron diffraction revealed that extensive stacking faults are present on ZnTiO{sub 3} textured (104) planes. These growth stacking faults serve as a pathway for dislocations to glide parallel to the sliding direction and hence achieve low interfacial shear/friction. Generalized stacking fault energy plots also known as ?-surfaces were computed for the (104) surface of ZnTiO{sub 3} using energy minimization method with classical effective partial charge potential and verified by using density functional theory first principles calculations for stacking fault energies along certain directions. These two are in qualitative agreement but classical simulations generally overestimate the energies. In addition, the lowest energy path was determined to be along the [451{sup }] direction and the most favorable glide system is (104) ?451{sup }? that is responsible for the experimentally observed sliding-induced ductility.

  5. High voltage fault current limiter having immersed phase coils

    DOE Patents [OSTI]

    Darmann, Francis Anthony

    2014-04-22

    A fault current limiter including: a ferromagnetic circuit formed from a ferromagnetic material and including at least a first limb, and a second limb; a saturation mechanism surrounding a limb for magnetically saturating the ferromagnetic material; a phase coil wound around a second limb; a dielectric fluid surrounding the phase coil; a gaseous atmosphere surrounding the saturation mechanism.

  6. Development of Asset Fault Signatures for Prognostic and Health Management in the Nuclear Industry

    SciTech Connect (OSTI)

    Vivek Agarwal; Nancy J. Lybeck; Randall Bickford; Richard Rusaw

    2014-06-01

    Proactive online monitoring in the nuclear industry is being explored using the Electric Power Research Institute’s Fleet-Wide Prognostic and Health Management (FW-PHM) Suite software. The FW-PHM Suite is a set of web-based diagnostic and prognostic tools and databases that serves as an integrated health monitoring architecture. The FW-PHM Suite has four main modules: Diagnostic Advisor, Asset Fault Signature (AFS) Database, Remaining Useful Life Advisor, and Remaining Useful Life Database. This paper focuses on development of asset fault signatures to assess the health status of generator step-up generators and emergency diesel generators in nuclear power plants. Asset fault signatures describe the distinctive features based on technical examinations that can be used to detect a specific fault type. At the most basic level, fault signatures are comprised of an asset type, a fault type, and a set of one or more fault features (symptoms) that are indicative of the specified fault. The AFS Database is populated with asset fault signatures via a content development exercise that is based on the results of intensive technical research and on the knowledge and experience of technical experts. The developed fault signatures capture this knowledge and implement it in a standardized approach, thereby streamlining the diagnostic and prognostic process. This will support the automation of proactive online monitoring techniques in nuclear power plants to diagnose incipient faults, perform proactive maintenance, and estimate the remaining useful life of assets.

  7. Characterization of Quaternary and suspected Quaternary faults, regional studies, Nevada and California

    SciTech Connect (OSTI)

    Anderson, R.E.; Bucknam, R.C.; Crone, A.J.; Haller, K.M.; Machette, M.N.; Personius, S.F.; Barnhard, T.P.; Cecil, M.J.; Dart, R.L.

    1995-12-31

    This report presents the results of geologic studies that help define the Quaternary history of selected faults in the region around Yucca Mountain, Nevada. These results are relevant to the seismic-design basis of a potential nuclear waste repository at Yucca Mountain. The relevancy is based, in part, on a need for additional geologic data that became apparent in ongoing studies that resulted in the identification of 51 relevant and potentially relevant individual and compound faults and fault zones in the 100-km-radius region around the Yucca Mountain site. Geologic data used to characterize the regional faults and fault zones as relevant or potentially relevant seismic sources includes age and displacement information, maximum fault lengths, and minimum distances between the fault and the Yucca Mountain site. For many of the regional faults, no paleoseismic field studies have previously been conducted, and age and displacement data are sparse to nonexistent. In November 1994, the Branch of Earthquake and Landslide Hazards entered into two Memoranda of Agreement with the Yucca Mountain Project Branch to conduct field reconnaissance, analysis, and interpretation of six relevant and six potentially relevant regional faults. This report describes the results of study of those faults exclusive of those in the Pahrump-Stewart Valley-Ash Meadows-Amargosa Valley areas. We also include results of a cursory study of faults on the west flank of the Specter Range and in the northern part of the Last Chance Range. A four-phase strategy was implemented for the field study.

  8. High resolution, shallow seismic reflection survey of the Pen Branch fault

    SciTech Connect (OSTI)

    Stieve, A.

    1991-05-15

    The purpose of this project, at the Savannah River River Site (SRS) was to acquire, process, and interpret 28 km (17.4 miles) of high resolution seismic reflection data taken across the trace of the Pen Branch fault and other suspected, intersecting north-south trending faults. The survey was optimized for the upper 300 ft of geologic strata in order to demonstrate the existence of very shallow, flat lying horizons, and to determine the depth of the fault or to sediments deformed by the fault. Field acquisition and processing parameters were selected to define small scale spatial variability and structural features in the vicinity of the Pen Branch fault leading to the definition and the location of the Pen Branch fault, the shallowest extent of the fault, and the quantification of the sense and magnitude of motion. Associated geophysical, borehole, and geologic data were incorporated into the investigation to assist in the determination of optimal parameters and aid in the interpretation.

  9. Rule based decision support system for single-line fault detection in a delta-delta connected distribution system

    SciTech Connect (OSTI)

    Momoh, J.A.; Dias, L.G.; Thor, T. . Dept. of Electrical Engineering); Laird, D. )

    1994-05-01

    Single-line fault detection, faulted feeder identification, fault type classification, fault location and fault impedance estimation, continue to pose a problem to delta-delta connected distribution systems such as the Los Angeles Department of Water and Power (LADWP) which has over 1,500 feeder circuits at the 4.8kV voltage level. This paper describes a rule based decision support (RBDS) system application to single-line fault detection in a delta-delta connected distribution system. The RBDS system is built from knowledge acquired through exhaustive simulation based on non-arcing type fault situations. It is primarily designed to detect the presence of a fault, identify the faulted feeder, the faulted phase and classify the fault type. It is also designed to gauge the proximity of the fault to the substation and to assess the fault impedance. A fault in the distribution system, upon identification, triggers an alarm with explanatory facility leading to the fault. The RBDS system was tested with different sets of simulated data and proved successful in most cases. Additional tests will be done using field data made available by LADWP. The RBDS system module is a prototype integrated fault detection scheme to be installed in a LADWP distribution substation.

  10. When did movement begin on the Furnace Creek fault zone

    SciTech Connect (OSTI)

    Reheis, M. )

    1993-04-01

    About 50 km of post-Jurassic right-lateral slip has occurred on the northern part of the Furnace Creek fault zone (FCFZ). The sedimentology, stratigraphy, and structure of Tertiary rocks suggest that movement on the fault began no earlier than 12--8 Ma and possibly as late as 5--4 Ma. Large remnants of erosion surfaces occur on both sides of the FCFZ in the southern White Mountains and Fish Lake Valley and are buried by rhyolite and basalt, mostly 12--10 Ma; the ash flows and welded tuffs were likely erupted from sources at least 40 km to the east. Thus, the area probably had gentle topography, suggesting a lengthy period of pre-late Miocene tectonic stability. On the west side of the FCFZ, Cambrian sedimentary rocks are buried by a fanglomerate with an [sup [minus

  11. Testing of 3-meter Prototype Fault Current Limiting Cables

    SciTech Connect (OSTI)

    Gouge, Michael J; Duckworth, Robert C; Demko, Jonathan A; Rey, Christopher M; Thompson, James R; Lindsay, David T; Tolbert, Jerry Carlton; Willen, Dag; Lentge, Heidi; Thidemann, Carsten; Carter, Bill

    2009-01-01

    Two 3-m long, single-phase cables have been fabricated by Ultera from second generation (2G) superconductor supplied by American Superconductor. The first cable was made with two layers of 2G tape conductor and had a critical current of 5,750 A while the second cable had four layers and a critical current of 8,500 A. AC loss was measured for both cables at ac currents of up to 4 kArms. Ultera performed initial fault current studies of both cables in Denmark with limited currents in the range from 9.1 to 44 kA. Results from these tests will provide a basis for a 25-m long, three-phase, prototype cable to be tested at ORNL early next year and a 300-m long, fault current limiting, superconducting cable to be installed in a ConEd substation in New York City.

  12. NREL Research Proves Wind Can Provide Ancillary Grid Fault Response |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Systems Integration | NREL NREL Research Proves Wind Can Provide Ancillary Grid Fault Response April 1, 2016 Interior of the controllable grid interface test facility, showing a long hallway and shelves full of electronic equipment. The controllable grid interface test facility at the National Wind Technology Center makes it possible to research the effectiveness of wind energy in providing ancillary grid services such as frequency control. Photo by Dennis Schroeder/NREL 27442 Image

  13. Superconducting fault current-limiter with variable shunt impedance

    DOE Patents [OSTI]

    Llambes, Juan Carlos H; Xiong, Xuming

    2013-11-19

    A superconducting fault current-limiter is provided, including a superconducting element configured to resistively or inductively limit a fault current, and one or more variable-impedance shunts electrically coupled in parallel with the superconducting element. The variable-impedance shunt(s) is configured to present a first impedance during a superconducting state of the superconducting element and a second impedance during a normal resistive state of the superconducting element. The superconducting element transitions from the superconducting state to the normal resistive state responsive to the fault current, and responsive thereto, the variable-impedance shunt(s) transitions from the first to the second impedance. The second impedance of the variable-impedance shunt(s) is a lower impedance than the first impedance, which facilitates current flow through the variable-impedance shunt(s) during a recovery transition of the superconducting element from the normal resistive state to the superconducting state, and thus, facilitates recovery of the superconducting element under load.

  14. Modeling of fault activation and seismicity by injection directly into a fault zone associated with hydraulic fracturing of shale-gas reservoirs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rutqvist, Jonny; Rinaldi, Antonio P.; Cappa, Frédéric; Moridis, George J.

    2015-03-01

    We conducted three-dimensional coupled fluid-flow and geomechanical modeling of fault activation and seismicity associated with hydraulic fracturing stimulation of a shale-gas reservoir. We simulated a case in which a horizontal injection well intersects a steeply dip- ping fault, with hydraulic fracturing channeled within the fault, during a 3-hour hydraulic fracturing stage. Consistent with field observations, the simulation results show that shale-gas hydraulic fracturing along faults does not likely induce seismic events that could be felt on the ground surface, but rather results in numerous small microseismic events, as well as aseismic deformations along with the fracture propagation. The calculated seismicmore » moment magnitudes ranged from about -2.0 to 0.5, except for one case assuming a very brittle fault with low residual shear strength, for which the magnitude was 2.3, an event that would likely go unnoticed or might be barely felt by humans at its epicenter. The calculated moment magnitudes showed a dependency on injection depth and fault dip. We attribute such dependency to variation in shear stress on the fault plane and associated variation in stress drop upon reactivation. Our simulations showed that at the end of the 3-hour injection, the rupture zone associated with tensile and shear failure extended to a maximum radius of about 200 m from the injection well. The results of this modeling study for steeply dipping faults at 1000 to 2500 m depth is in agreement with earlier studies and field observations showing that it is very unlikely that activation of a fault by shale-gas hydraulic fracturing at great depth (thousands of meters) could cause felt seismicity or create a new flow path (through fault rupture) that could reach shallow groundwater resources.« less

  15. Modeling of fault activation and seismicity by injection directly into a fault zone associated with hydraulic fracturing of shale-gas reservoirs

    SciTech Connect (OSTI)

    Rutqvist, Jonny; Rinaldi, Antonio P.; Cappa, Frédéric; Moridis, George J.

    2015-03-01

    We conducted three-dimensional coupled fluid-flow and geomechanical modeling of fault activation and seismicity associated with hydraulic fracturing stimulation of a shale-gas reservoir. We simulated a case in which a horizontal injection well intersects a steeply dip- ping fault, with hydraulic fracturing channeled within the fault, during a 3-hour hydraulic fracturing stage. Consistent with field observations, the simulation results show that shale-gas hydraulic fracturing along faults does not likely induce seismic events that could be felt on the ground surface, but rather results in numerous small microseismic events, as well as aseismic deformations along with the fracture propagation. The calculated seismic moment magnitudes ranged from about -2.0 to 0.5, except for one case assuming a very brittle fault with low residual shear strength, for which the magnitude was 2.3, an event that would likely go unnoticed or might be barely felt by humans at its epicenter. The calculated moment magnitudes showed a dependency on injection depth and fault dip. We attribute such dependency to variation in shear stress on the fault plane and associated variation in stress drop upon reactivation. Our simulations showed that at the end of the 3-hour injection, the rupture zone associated with tensile and shear failure extended to a maximum radius of about 200 m from the injection well. The results of this modeling study for steeply dipping faults at 1000 to 2500 m depth is in agreement with earlier studies and field observations showing that it is very unlikely that activation of a fault by shale-gas hydraulic fracturing at great depth (thousands of meters) could cause felt seismicity or create a new flow path (through fault rupture) that could reach shallow groundwater resources.

  16. Significance of recurrent fault movement at Grays Point quarry, southeast Missouri

    SciTech Connect (OSTI)

    Diehl, S.F.; Throckmorton, C.K. ); Clendenin, C.W. )

    1993-03-01

    Geologic relationships indicate recurrent movement on a fault exposed at Grays Point, MO. Faulting offsets Middle-Late Ordovician Plattin Group, Decorah Group, Kimmswick Limestone, and Maquoketa Group strata. In plan, the fault is characterized by a relatively narrow zone (30--70 m) of northeast-striking fault slices associated with a northwest-striking zone of right-stepping en echelon fractures. This systematic fracture-fault array identifies right-lateral strike-slip movement. A vertically offset basal Decorah Group contact shows 22 m of down-to-the-southeast dip slip, which indicates a component of oblique slip. Oldest recognizable movement on the fault is evidenced by Maquoketa Group strata that fill a northeast-striking, wedge-shaped synform. Post-Ordovician movement along an adjacent subvertical fault displaces part of this synform 300 m right laterally. In thin section, the northwest-striking fracture set shows a polyphase history of deformation indicated by cataclastic textures and intrusion of carbonate-rich fluids. Three periods of movement occurred: (1) initial fracturing sealed by authigenic mineral cements; (2) renewed fracturing associated with recrystallization of sub-rounded clasts; and (3) subsequent brecciation marked by angular clasts and filling of fractures and vugs. Each successive fluid intrusion is characterized by an increase in grain size of the authigenic cement. The fault is subparallel to the regional, northeast-striking English Hill fault system. Polyphase oblique-slip deformation suggests that the fault, like others in southeastern Missouri, is a reactivated Late Proterozoic-Cambrian zone of weakness. Initial fault reactivation occurred during Middle-Late Ordovician as opposed to Devonian, as commonly interpreted for southeast Missouri. Multiple authigenic mineral cements imply that fluids may have been an important factor influencing the fault's tendency to be reactivated.

  17. Arc-Fault Detector Algorithm Evaluation Method Utilizing Prerecorded Arcing Signatures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arc-Fault Detector Algorithm Evaluation Method Utilizing Prerecorded Arcing Signatures Jay Johnson 1 and Jack Kang 2 1 Sandia National Laboratories, Albuquerque, NM, USA 2 Sensata Technologies, Attleboro, MA, USA ABSTRACT Abstract - The 2011 National Electrical Code® Article 690.11 requires photovoltaic systems on or penetrating a building to include a DC arc-fault protection device. In order to satisfy this requirement, new Arc-Fault Detectors (AFDs) are being developed by multiple

  18. NEAR-SURFACE GEOPHYSICAL CHARACTERIZATION OF A HOLOCENE FAULT CONDUCIVE TO

    Office of Scientific and Technical Information (OSTI)

    GEOTHERMAL FLOW NEAR PYRAMID LAKE, NEVADA (Other) | SciTech Connect NEAR-SURFACE GEOPHYSICAL CHARACTERIZATION OF A HOLOCENE FAULT CONDUCIVE TO GEOTHERMAL FLOW NEAR PYRAMID LAKE, NEVADA Citation Details In-Document Search Title: NEAR-SURFACE GEOPHYSICAL CHARACTERIZATION OF A HOLOCENE FAULT CONDUCIVE TO GEOTHERMAL FLOW NEAR PYRAMID LAKE, NEVADA Linear deposits of calcium carbonate tufa columns mark recent faults that cut 11 ka Lake Lahontan sediments at Astor Pass, north of Pyramid Lake,

  19. Investigations of stacking fault density in perpendicular recording media

    SciTech Connect (OSTI)

    Piramanayagam, S. N. Varghese, Binni; Yang, Yi; Kiat Lee, Wee; Khume Tan, Hang

    2014-06-28

    In magnetic recording media, the grains or clusters reverse their magnetization over a range of reversal field, resulting in a switching field distribution. In order to achieve high areal densities, it is desirable to understand and minimize such a distribution. Clusters of grains which contain stacking faults (SF) or fcc phase have lower anisotropy, an order lower than those without them. It is believed that such low anisotropy regions reverse their magnetization at a much lower reversal field than the rest of the material with a larger anisotropy. Such clusters/grains cause recording performance deterioration, such as adjacent track erasure and dc noise. Therefore, the observation of clusters that reverse at very low reversal fields (nucleation sites, NS) could give information on the noise and the adjacent track erasure. Potentially, the observed clusters could also provide information on the SF. In this paper, we study the reversal of nucleation sites in granular perpendicular media based on a magnetic force microscope (MFM) methodology and validate the observations with high resolution cross-section transmission electron microscopy (HRTEM) measurements. Samples, wherein a high anisotropy CoPt layer was introduced to control the NS or SF in a systematic way, were evaluated by MFM, TEM, and magnetometry. The magnetic properties indicated that the thickness of the CoPt layer results in an increase of nucleation sites. TEM measurements indicated a correlation between the thickness of CoPt layer and the stacking fault density. A clear correlation was also observed between the MFM results, TEM observations, and the coercivity and nucleation field of the samples, validating the effectiveness of the proposed method in evaluating the nucleation sites which potentially arise from stacking faults.

  20. Non-abelian fractional quantum hall effect for fault-resistant...

    Office of Scientific and Technical Information (OSTI)

    Non-abelian fractional quantum hall effect for fault-resistant topological quantum computation. Citation Details In-Document Search Title: Non-abelian fractional quantum hall...

  1. Sandia Research on PV Arc-Fault Detection Submitted for US Patent

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Predictive Simulation of Engines Transportation Energy Consortiums Engine Combustion ... The 2011 National Electrical Code requires PV DC series arc-fault protection, but does ...

  2. Pull-Apart in Strike-Slip Fault Zone | Open Energy Information

    Open Energy Info (EERE)

    of sinistral fault systems, resulting in localized crustal extension and enhanced permeability. Other definitions:Wikipedia Reegle Controlling Structures List of controlling...

  3. Wind Power Plant Enhancement with a Fault-Current Limiter: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Gevorgian, V.; DeLaRosa, F.

    2011-03-01

    This paper investigates the capability of a saturable core fault-current limiter to limit the short circuit current of different types of wind turbine generators.

  4. VOLTTRON Compatible Whole-Building Root-Fault Detection and Diagnosis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    tool that integrates both statistical process control and machine learning techniques and rule-based methods to achieve a whole-building energy system "root-fault" diagnosis. ...

  5. Stepover or Relay Ramp in Normal Fault Zones | Open Energy Information

    Open Energy Info (EERE)

    intersections between the overlapping fault strands results in increased fracture density that enhances hydrothermal fluid flow. Other definitions:Wikipedia Reegle Controlling...

  6. A Fault Oblivious Extreme-Scale Execution Environment

    SciTech Connect (OSTI)

    McKie, Jim

    2014-11-20

    The FOX project, funded under the ASCR X-stack I program, developed systems software and runtime libraries for a new approach to the data and work distribution for massively parallel, fault oblivious application execution. Our work was motivated by the premise that exascale computing systems will provide a thousand-fold increase in parallelism and a proportional increase in failure rate relative to today’s machines. To deliver the capability of exascale hardware, the systems software must provide the infrastructure to support existing applications while simultaneously enabling efficient execution of new programming models that naturally express dynamic, adaptive, irregular computation; coupled simulations; and massive data analysis in a highly unreliable hardware environment with billions of threads of execution. Our OS research has prototyped new methods to provide efficient resource sharing, synchronization, and protection in a many-core compute node. We have experimented with alternative task/dataflow programming models and shown scalability in some cases to hundreds of thousands of cores. Much of our software is in active development through open source projects. Concepts from FOX are being pursued in next generation exascale operating systems. Our OS work focused on adaptive, application tailored OS services optimized for multi → many core processors. We developed a new operating system NIX that supports role-based allocation of cores to processes which was released to open source. We contributed to the IBM FusedOS project, which promoted the concept of latency-optimized and throughput-optimized cores. We built a task queue library based on distributed, fault tolerant key-value store and identified scaling issues. A second fault tolerant task parallel library was developed, based on the Linda tuple space model, that used low level interconnect primitives for optimized communication. We designed fault tolerance mechanisms for task parallel computations

  7. Field Guide for Testing Existing Photovoltaic Systems for Ground Faults and Installing Equipment to Mitigate Fire Hazards: November 2012 - October 2013

    SciTech Connect (OSTI)

    Brooks, William

    2015-02-01

    Ground faults and arc faults are the two most common reasons for fires in photovoltaic (PV) arrays and methods exist that can mitigate the hazards. This report provides field procedures for testing PV arrays for ground faults, and for implementing high resolution ground fault and arc fault detectors in existing and new PV system designs.

  8. Coordinated Fault-Tolerance for High-Performance Computing Final Project Report

    SciTech Connect (OSTI)

    Panda, Dhabaleswar Kumar; Beckman, Pete

    2011-07-28

    With the Coordinated Infrastructure for Fault Tolerance Systems (CIFTS, as the original project came to be called) project, our aim has been to understand and tackle the following broad research questions, the answers to which will help the HEC community analyze and shape the direction of research in the field of fault tolerance and resiliency on future high-end leadership systems. Will availability of global fault information, obtained by fault information exchange between the different HEC software on a system, allow individual system software to better detect, diagnose, and adaptively respond to faults? If fault-awareness is raised throughout the system through fault information exchange, is it possible to get all system software working together to provide a more comprehensive end-to-end fault management on the system? #15; What are the missing fault-tolerance features that widely used HEC system software lacks today that would inhibit such software from taking advantage of systemwide global fault information? #15; What are the practical limitations of a systemwide approach for end-to-end fault management based on fault awareness and coordination? #15; What mechanisms, tools, and technologies are needed to bring about fault awareness and coordination of responses on a leadership-class system? #15; What standards, outreach, and community interaction are needed for adoption of the concept of fault awareness and coordination for fault management on future systems? Keeping our overall objectives in mind, the CIFTS team has taken a parallel fourfold approach. #15; Our central goal was to design and implement a light-weight, scalable infrastructure with a simple, standardized interface to allow communication of fault-related information through the system and facilitate coordinated responses. This work led to the development of the Fault Tolerance Backplane (FTB) publish-subscribe API specification, together with a reference implementation and several experimental

  9. Award ER25750: Coordinated Infrastructure for Fault Tolerance Systems Indiana University Final Report

    SciTech Connect (OSTI)

    Lumsdaine, Andrew

    2013-03-08

    The main purpose of the Coordinated Infrastructure for Fault Tolerance in Systems initiative has been to conduct research with a goal of providing end-to-end fault tolerance on a systemwide basis for applications and other system software. While fault tolerance has been an integral part of most high-performance computing (HPC) system software developed over the past decade, it has been treated mostly as a collection of isolated stovepipes. Visibility and response to faults has typically been limited to the particular hardware and software subsystems in which they are initially observed. Little fault information is shared across subsystems, allowing little flexibility or control on a system-wide basis, making it practically impossible to provide cohesive end-to-end fault tolerance in support of scientific applications. As an example, consider faults such as communication link failures that can be seen by a network library but are not directly visible to the job scheduler, or consider faults related to node failures that can be detected by system monitoring software but are not inherently visible to the resource manager. If information about such faults could be shared by the network libraries or monitoring software, then other system software, such as a resource manager or job scheduler, could ensure that failed nodes or failed network links were excluded from further job allocations and that further diagnosis could be performed. As a founding member and one of the lead developers of the Open MPI project, our efforts over the course of this project have been focused on making Open MPI more robust to failures by supporting various fault tolerance techniques, and using fault information exchange and coordination between MPI and the HPC system software stack from the application, numeric libraries, and programming language runtime to other common system components such as jobs schedulers, resource managers, and monitoring tools.

  10. Mobility and coalescence of stacking fault tetrahedra in Cu

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Martínez, Enrique; Uberuaga, Blas P.

    2015-03-13

    Stacking fault tetrahedra (SFTs) are ubiquitous defects in face-centered cubic metals. They are produced during cold work plastic deformation, quenching experiments or under irradiation. From a dislocation point of view, the SFTs are comprised of a set of stair-rod dislocations at the (110) edges of a tetrahedron bounding triangular stacking faults. These defects are extremely stable, increasing their energetic stability as they grow in size. At the sizes visible within transmission electron microscope they appear nearly immobile. Contrary to common belief, we show in this report, using a combination of molecular dynamics and temperature accelerated dynamics, how small SFTs canmore » diffuse by temporarily disrupting their structure through activated thermal events. More over, we demonstrate that the diffusivity of defective SFTs is several orders of magnitude higher than perfect SFTs, and can be even higher than isolated vacancies. Finally, we show how SFTs can coalesce, forming a larger defect in what is a new mechanism for the growth of these omnipresent defects.« less

  11. Editorial: Mathematical Methods and Modeling in Machine Fault Diagnosis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yan, Ruqiang; Chen, Xuefeng; Li, Weihua; Sheng, Shuangwen

    2014-12-18

    Modern mathematics has commonly been utilized as an effective tool to model mechanical equipment so that their dynamic characteristics can be studied analytically. This will help identify potential failures of mechanical equipment by observing change in the equipment’s dynamic parameters. On the other hand, dynamic signals are also important and provide reliable information about the equipment’s working status. Modern mathematics has also provided us with a systematic way to design and implement various signal processing methods, which are used to analyze these dynamic signals, and to enhance intrinsic signal components that are directly related to machine failures. This special issuemore » is aimed at stimulating not only new insights on mathematical methods for modeling but also recently developed signal processing methods, such as sparse decomposition with potential applications in machine fault diagnosis. Finally, the papers included in this special issue provide a glimpse into some of the research and applications in the field of machine fault diagnosis through applications of the modern mathematical methods.« less

  12. Restoration and testing of an HTS fault current controller

    SciTech Connect (OSTI)

    Waynert, J. A.; Boenig, H.; Mielke, C. H.; Willis, J. O.; Burley, B. L.

    2002-01-01

    A three-phase, 1200 A, 12.5 kV fault current controller using three HTS 4 mH coils, was built by industry and tested in 1999 at the Center Substation of Southern California Edison in Norwalk, CA. During the testing, it appeared that each of the three single-phase units had experienced a voltage breakdown, one externally and two internally. Los Alamos National Laboratory (LANL) was asked by DOE to restore the operation of the fault current controller provided the HTS coils had not been damaged during the initial substation tests. When the internally-failed coil vacuum vessels were opened it became evident that in these two vessels, a flashover had occurred at the high voltage bus section leading to the terminals of the superconducting coil. An investigation into the failure mechanism resulted in six possible causes for the flashover. Based on these causes, the high voltage bus was completely redesigned. Single-phase tests were successfully performed on the modified unit at a 13.7 kV LANL substation. This paper presents the postulated voltage flashover failure mechanisms, the new high voltage bus design which mitigates the failure mechanisms, the sequence of tests used to validate the new design, and finally, the results of variable load and short-circuit tests with the single-phase unit operating on the LANL 13.7 kV substation.

  13. Editorial: Mathematical Methods and Modeling in Machine Fault Diagnosis

    SciTech Connect (OSTI)

    Yan, Ruqiang; Chen, Xuefeng; Li, Weihua; Sheng, Shuangwen

    2014-12-18

    Modern mathematics has commonly been utilized as an effective tool to model mechanical equipment so that their dynamic characteristics can be studied analytically. This will help identify potential failures of mechanical equipment by observing change in the equipment’s dynamic parameters. On the other hand, dynamic signals are also important and provide reliable information about the equipment’s working status. Modern mathematics has also provided us with a systematic way to design and implement various signal processing methods, which are used to analyze these dynamic signals, and to enhance intrinsic signal components that are directly related to machine failures. This special issue is aimed at stimulating not only new insights on mathematical methods for modeling but also recently developed signal processing methods, such as sparse decomposition with potential applications in machine fault diagnosis. Finally, the papers included in this special issue provide a glimpse into some of the research and applications in the field of machine fault diagnosis through applications of the modern mathematical methods.

  14. Unconventional modelling of faulted reservoirs: a case study

    SciTech Connect (OSTI)

    Goldthorpe, W.H.; Chow, Y.S.

    1985-02-01

    An example is presented of detailed unconventional gridding of the North Rankin Field, which is a large, structurally complex gas-condensate field offshore Western Australia. A non-Cartesian areal grid was used with corner point geometry to approximate a generalized curvilinear coordinate system for the surface and interior of each reservoir unit. Coordinate lines in the vertical plane at any node in the grid were tilted where necessary to define sloping edges and sides of grid blocks. Thus, any sloping twisted surface could be modelled. To investigate possible communication across faults between different geological units, transmissibilities at faults were automatically calculated for any over-lapping cells and sensitivities made of the effect of varying these transmissibilities on well production, recovery factors, pressure decline and water encroachment. The model was solved with a fully implicit simulator using a Newton-Raphson iteration method for the non-linear equations and a variant of the Conjugate Gradient procedure with a preconditioning matrix for the linear equations.

  15. Pipeline coating impedance effects on powerline fault current coupling

    SciTech Connect (OSTI)

    Dabkowski, J.

    1989-12-01

    Prior research leading to the development of predictive electromagnetic coupling computer codes has shown that the coating conductance is the principal factor in determining the response of a pipeline to magnetic induction from an overhead power transmission line. Under power line fault conditions, a high voltage may stress the coating causing a significant change in its conductance, and hence, the coupling response. Based upon laboratory experimentation and analysis, a model has been developed which allows prediction of the modified coating characteristics when subjected to high voltage during fault situations. Another program objective was the investigation of a method to determine the high voltage behavior of an existing coating from low voltage in situ field measurements. Such a method appeared conceptually feasible for non-porous coatings whose conductance is primarily a result of current leakage through existing holidays. However, limited testing has shown that difficulties in determining the steel-electrolyte capacitance limit the application of the method Methods for field measurement of the pipeline coating conductance were also studied for both dc ad ac signal excitation. Ac techniques offer the advantage that cathodic protection current interruption is not required, thus eliminating depolarization effects. However, ac field measurement techniques need additional refinement before these methods can be generally applied. 53 figs.

  16. Fault current limiter and alternating current circuit breaker

    DOE Patents [OSTI]

    Boenig, Heinrich J.

    1998-01-01

    A solid-state circuit breaker and current limiter for a load served by an alternating current source having a source impedance, the solid-state circuit breaker and current limiter comprising a thyristor bridge interposed between the alternating current source and the load, the thyristor bridge having four thyristor legs and four nodes, with a first node connected to the alternating current source, and a second node connected to the load. A coil is connected from a third node to a fourth node, the coil having an impedance of a value calculated to limit the current flowing therethrough to a predetermined value. Control means are connected to the thyristor legs for limiting the alternating current flow to the load under fault conditions to a predetermined level, and for gating the thyristor bridge under fault conditions to quickly reduce alternating current flowing therethrough to zero and thereafter to maintain the thyristor bridge in an electrically open condition preventing the alternating current from flowing therethrough for a predetermined period of time.

  17. Fault current limiter and alternating current circuit breaker

    DOE Patents [OSTI]

    Boenig, H.J.

    1998-03-10

    A solid-state circuit breaker and current limiter are disclosed for a load served by an alternating current source having a source impedance, the solid-state circuit breaker and current limiter comprising a thyristor bridge interposed between the alternating current source and the load, the thyristor bridge having four thyristor legs and four nodes, with a first node connected to the alternating current source, and a second node connected to the load. A coil is connected from a third node to a fourth node, the coil having an impedance of a value calculated to limit the current flowing therethrough to a predetermined value. Control means are connected to the thyristor legs for limiting the alternating current flow to the load under fault conditions to a predetermined level, and for gating the thyristor bridge under fault conditions to quickly reduce alternating current flowing therethrough to zero and thereafter to maintain the thyristor bridge in an electrically open condition preventing the alternating current from flowing therethrough for a predetermined period of time. 9 figs.

  18. Scissor thrust valve actuator

    DOE Patents [OSTI]

    DeWall, Kevin G.; Watkins, John C; Nitzel, Michael E.

    2006-08-29

    Apparatus for actuating a valve includes a support frame and at least one valve driving linkage arm, one end of which is rotatably connected to a valve stem of the valve and the other end of which is rotatably connected to a screw block. A motor connected to the frame is operatively connected to a motor driven shaft which is in threaded screw driving relationship with the screw block. The motor rotates the motor driven shaft which drives translational movement of the screw block which drives rotatable movement of the valve driving linkage arm which drives translational movement of the valve stem. The valve actuator may further include a sensory control element disposed in operative relationship with the valve stem, the sensory control element being adapted to provide control over the position of the valve stem by at least sensing the travel and/or position of the valve stem.

  19. Influence of Transcontinental arch on Cretaceous listric-normal faulting, west flank, Denver basin

    SciTech Connect (OSTI)

    Davis, T.L.

    1983-08-01

    Seismic studies along the west flank of the Denver basin near Boulder and Greeley, Colorado illustrate the interrelationship between shallow listric-normal faulting in the Cretaceous and deeper basement-controlled faulting. Deeper fault systems, primarily associated with the Transcontinental arch, control the styles and causative mechanisms of listric-normal faulting that developed in the Cretaceous. Three major stratigraphic levels of listric-normal faulting occur in the Boulder-Greeley area. These tectonic sensitive intervals are present in the following Cretaceous formations: Laramie-Fox Hills-upper Pierre, middle Pierre Hygiene zone, and the Niobrara-Carlile-Greenhorn. Documentation of the listric-normal fault style reveals a Wattenberg high, a horst block or positive feature of the greater Transcontinental arch, was active in the east Boulder-Greeley area during Cretaceous time. Paleotectonic events associated with the Wattenberg high are traced through analysis of the listric-normal fault systems that occur in the area. These styles are important to recognize because of their stratigraphic and structural influence on Cretaceous petroleum reservoir systems in the Denver basin. Similar styles of listric-normal faulting occur in the Cretaceous in many Rocky Mountain foreland basins.

  20. Effect of faulting on ground-water movement in the Death Valley region, Nevada and California

    SciTech Connect (OSTI)

    Faunt, C.C.

    1997-12-31

    This study characterizes the hydrogeologic system of the Death Valley region, an area covering approximately 100,000 square kilometers. The study also characterizes the effects of faults on ground-water movement in the Death Valley region by synthesizing crustal stress, fracture mechanics,a nd structural geologic data. The geologic conditions are typical of the Basin and Range Province; a variety of sedimentary and igneous intrusive and extrusive rocks have been subjected to both compressional and extensional deformation. Faulting and associated fracturing is pervasive and greatly affects ground-water flow patterns. Faults may become preferred conduits or barriers to flow depending on whether they are in relative tension, compression, or shear and other factors such as the degree of dislocations of geologic units caused by faulting, the rock types involved, the fault zone materials, and the depth below the surface. The current crustal stress field was combined with fault orientations to predict potential effects of faults on the regional ground-water flow regime. Numerous examples of fault-controlled ground-water flow exist within the study area. Hydrologic data provided an independent method for checking some of the assumptions concerning preferential flow paths. 97 refs., 20 figs., 5 tabs.

  1. System for detecting and limiting electrical ground faults within electrical devices

    DOE Patents [OSTI]

    Gaubatz, Donald C.

    1990-01-01

    An electrical ground fault detection and limitation system for employment with a nuclear reactor utilizing a liquid metal coolant. Elongate electromagnetic pumps submerged within the liquid metal coolant and electrical support equipment experiencing an insulation breakdown occasion the development of electrical ground fault current. Without some form of detection and control, these currents may build to damaging power levels to expose the pump drive components to liquid metal coolant such as sodium with resultant undesirable secondary effects. Such electrical ground fault currents are detected and controlled through the employment of an isolated power input to the pumps and with the use of a ground fault control conductor providing a direct return path from the affected components to the power source. By incorporating a resistance arrangement with the ground fault control conductor, the amount of fault current permitted to flow may be regulated to the extent that the reactor may remain in operation until maintenance may be performed, notwithstanding the existence of the fault. Monitors such as synchronous demodulators may be employed to identify and evaluate fault currents for each phase of a polyphase power, and control input to the submerged pump and associated support equipment.

  2. The role of the digital fault recorder in the automated substation

    SciTech Connect (OSTI)

    Brandt, J.D.

    1996-10-01

    This paper addresses the role of the digital fault recorder in the automated substation. The topics of the paper include distributed architecture, the substation LAN and reduced installation costs, multiple functions, improved substation intelligence, record generation and record merging, fault summaries, master station software, and future considerations.

  3. System and method for motor fault detection using stator current noise cancellation

    DOE Patents [OSTI]

    Zhou, Wei; Lu, Bin; Nowak, Michael P.; Dimino, Steven A.

    2010-12-07

    A system and method for detecting incipient mechanical motor faults by way of current noise cancellation is disclosed. The system includes a controller configured to detect indicia of incipient mechanical motor faults. The controller further includes a processor programmed to receive a baseline set of current data from an operating motor and define a noise component in the baseline set of current data. The processor is also programmed to acquire at least on additional set of real-time operating current data from the motor during operation, redefine the noise component present in each additional set of real-time operating current data, and remove the noise component from the operating current data in real-time to isolate any fault components present in the operating current data. The processor is then programmed to generate a fault index for the operating current data based on any isolated fault components.

  4. A Framework For Evaluating Comprehensive Fault Resilience Mechanisms In Numerical Programs

    SciTech Connect (OSTI)

    Chen, S.; Peng, L.; Bronevetsky, G.

    2015-01-09

    As HPC systems approach Exascale, their circuit feature will shrink, while their overall size will grow, all at a fixed power limit. These trends imply that soft faults in electronic circuits will become an increasingly significant problem for applications that run on these systems, causing them to occasionally crash or worse, silently return incorrect results. This is motivating extensive work on application resilience to such faults, ranging from generic techniques such as replication or checkpoint/restart to algorithm-specific error detection and resilience techniques. Effective use of such techniques requires a detailed understanding of (1) which vulnerable parts of the application are most worth protecting (2) the performance and resilience impact of fault resilience mechanisms on the application. This paper presents FaultTelescope, a tool that combines these two and generates actionable insights by presenting in an intuitive way application vulnerabilities and impact of fault resilience mechanisms on applications.

  5. System and method for bearing fault detection using stator current noise cancellation

    DOE Patents [OSTI]

    Zhou, Wei; Lu, Bin; Habetler, Thomas G.; Harley, Ronald G.; Theisen, Peter J.

    2010-08-17

    A system and method for detecting incipient mechanical motor faults by way of current noise cancellation is disclosed. The system includes a controller configured to detect indicia of incipient mechanical motor faults. The controller further includes a processor programmed to receive a baseline set of current data from an operating motor and define a noise component in the baseline set of current data. The processor is also programmed to repeatedly receive real-time operating current data from the operating motor and remove the noise component from the operating current data in real-time to isolate any fault components present in the operating current data. The processor is then programmed to generate a fault index for the operating current data based on any isolated fault components.

  6. Buffered coscheduling for parallel programming and enhanced fault tolerance

    DOE Patents [OSTI]

    Petrini, Fabrizio; Feng, Wu-chun

    2006-01-31

    A computer implemented method schedules processor jobs on a network of parallel machine processors or distributed system processors. Control information communications generated by each process performed by each processor during a defined time interval is accumulated in buffers, where adjacent time intervals are separated by strobe intervals for a global exchange of control information. A global exchange of the control information communications at the end of each defined time interval is performed during an intervening strobe interval so that each processor is informed by all of the other processors of the number of incoming jobs to be received by each processor in a subsequent time interval. The buffered coscheduling method of this invention also enhances the fault tolerance of a network of parallel machine processors or distributed system processors

  7. Characterization and application of microearthquake clusters to problems of scaling, fault zone dynamics, and seismic monitoring at Parkfield, California

    SciTech Connect (OSTI)

    Nadeau, R.M.

    1995-10-01

    This document contains information about the characterization and application of microearthquake clusters and fault zone dynamics. Topics discussed include: Seismological studies; fault-zone dynamics; periodic recurrence; scaling of microearthquakes to large earthquakes; implications of fault mechanics and seismic hazards; and wave propagation and temporal changes.

  8. Investigation of Ground-Fault Protection Devices for Photovoltaic Power Systems Applications

    SciTech Connect (OSTI)

    BOWER,WARD I.; WILES,JOHN

    2000-10-03

    Photovoltaic (PV) power systems, like other electrical systems, may be subject to unexpected ground faults. Installed PV systems always have invisible elements other than those indicated by their electrical schematics. Stray inductance, capacitance and resistance are distributed throughout the system. Leakage currents associated with the PV modules, the interconnected array, wires, surge protection devices and conduit add up and can become large enough to look like a ground-fault. PV systems are frequently connected to other sources of power or energy storage such as batteries, standby generators, and the utility grid. This complex arrangement of distributed power and energy sources, distributed impedance and proximity to other sources of power requires sensing of ground faults and proper reaction by the ground-fault protection devices. The different dc grounding requirements (country to country) often add more confusion to the situation. This paper discusses the ground-fault issues associated with both the dc and ac side of PV systems and presents test results and operational impacts of backfeeding commercially available ac ground-fault protection devices under various modes of operation. Further, the measured effects of backfeeding the tripped ground-fault devices for periods of time comparable to anti-islanding allowances for utility interconnection of PV inverters in the United States are reported.

  9. Pattern of extensional faulting in pelagic carbonates of the Unbria-Marche Apennines of central Italy

    SciTech Connect (OSTI)

    Alvarez, W. )

    1990-05-01

    The Umbria-Marche Apennines provide a new region in which the nature passive-margin extensional faulting can be studied in outcrop. In these dominantly pelagic carbonate rocks of Jurassic and Cretaceous age, horsts acted as shallow, nonvolcani seamounts, while tilted half grabens formed deeper basins. One well-exposed seamount-basin transition agrees in general with the model of listric normal faulting and tilted half grabens, but shows interesting and significant divergences when studied in detail. A small sedimentary wedge at the faulted margin of a horst-block seamount thickens unexpectedly toward the adjacent basin. This wedge developed because of local convex-upward curvature of the shallowest part of a fault which at depth must have concave-up, listric geometry. The local sedimentary wedge resulted from deposition on the hanging wall as it tilted, followed by differential compaction of younger limestones that lapped onto the gentle slope leading from the horst-block seamount toward the basin. The map pattern of listric normal faulting in the Umbria-Marche Apennines suggests that both principal strain axes were extensional, in contrast to the usual pattern of listric faults crossed by transfer faults.

  10. Recurrent motion on Precambrian-age basement faults, Palo Duro basin, Texas Panhandle

    SciTech Connect (OSTI)

    Budnik, R.T.

    1983-03-01

    The distribution of Late Precambrian through Quaternary strata in the Palo Duro basin and surrounding uplifts documents recurrent motion on Precambrian-age basement faults. Basement blocks have been uplifted with little tilting or folding of overlying strata along a system of northwest-southeast oriented faults, part of a regional trend extending from central Colorado to southwestern Oklahoma. The orientation of basement terranes in Colorado and that of a 50-mi (80-km) long mylonite zone in east-central New Mexico suggest a Precambrian age for the faults. An Arkosic sandstone overlies basement and underlies a Cambrian(.) quartzose sandstone in a few Palo Duro basin wells. It may represent debris shed from active fault blocks during the opening of the southern Oklahoma aulocogen in the Late Precambrian or Early Cambrian. Ordovician carbonates thin or are missing beneath Mississippian carbonates on some fault blocks, indicating a post-Ordovician-pre-Mississippian period of faulting. The greatest amount of deformation occurred during the Pennsylvanian. Thickness, distribution, and facies of sediments were controlled by the location of active faults. Lower Pennsylvanian strata thin by up to 50% across some structures. Fault blocks provided sources of arkosic debris and loci for carbonate buildups throughout the Pennsylvanian and Early Permian. Around the periphery of the basin, Late Pennsylvanian or Early Permian faulting caused a wedging out of older units beneath the Wolfcamp. Permian, Triassic, and Neogene units, along with present topography, all have been subtly affected by basement structures. The entire section thins over basement highs. Middle and Upper Permian evaporites are thicker in structural lows. The overlying Dockum Group (Triassic) and Ogallala Formation (Neogene), both nonmarine clastic units, become finer grained over basement highs. Present topographic highs coincide with some basement highs.

  11. A practical approach to accurate fault location on extra high voltage teed feeders

    SciTech Connect (OSTI)

    Aggarwal, R.K.; Coury, D.V.; Johns, A.T. . School of Electronic and Electrical Engineering); Kalam, A. )

    1993-07-01

    This paper describes the basis of an alternative approach for accurately locating faults on teed feeders and the technique developed utilizes fault voltages and currents at all three ends. The method is virtually independent of fault resistance and largely insensitive to variations in source impedance, teed and line configurations, including line untransposition. The paper presents the basic theory of the technique which is then extensively tested using simulated primary system voltage and current waveforms which in turn include the transducer/hardware errors encountered in practice. The performance clearly shows a high degree of accuracy attained.

  12. Method and system for controlling a permanent magnet machine during fault conditions

    DOE Patents [OSTI]

    Krefta, Ronald John; Walters, James E.; Gunawan, Fani S.

    2004-05-25

    Method and system for controlling a permanent magnet machine driven by an inverter is provided. The method allows for monitoring a signal indicative of a fault condition. The method further allows for generating during the fault condition a respective signal configured to maintain a field weakening current even though electrical power from an energy source is absent during said fault condition. The level of the maintained field-weakening current enables the machine to operate in a safe mode so that the inverter is protected from excess voltage.

  13. A Fault-Oblivious Extreme-Scale Execution Environment (FOX)

    SciTech Connect (OSTI)

    Van Hensbergen, Eric; Speight, William; Xenidis, Jimi

    2013-03-15

    IBM Research’s contribution to the Fault Oblivious Extreme-scale Execution Environment (FOX) revolved around three core research deliverables: ● collaboration with Boston University around the Kittyhawk cloud infrastructure which both enabled a development and deployment platform for the project team and provided a fault-injection testbed to evaluate prototypes ● operating systems research focused on exploring role-based operating system technologies through collaboration with Sandia National Labs on the NIX research operating system and collaboration with the broader IBM Research community around a hybrid operating system model which became known as FusedOS ● IBM Research also participated in an advisory capacity with the Boston University SESA project, the core of which was derived from the K42 operating system research project funded in part by DARPA’s HPCS program. Both of these contributions were built on a foundation of previous operating systems research funding by the Department of Energy’s FastOS Program. Through the course of the X-stack funding we were able to develop prototypes, deploy them on production clusters at scale, and make them available to other researchers. As newer hardware, in the form of BlueGene/Q, came online, we were able to port the prototypes to the new hardware and release the source code for the resulting prototypes as open source to the community. In addition to the open source coded for the Kittyhawk and NIX prototypes, we were able to bring the BlueGene/Q Linux patches up to a more recent kernel and contribute them for inclusion by the broader Linux community. The lasting impact of the IBM Research work on FOX can be seen in its effect on the shift of IBM’s approach to HPC operating systems from Linux and Compute Node Kernels to role-based approaches as prototyped by the NIX and FusedOS work. This impact can be seen beyond IBM in follow-on ideas being incorporated into the proposals for the Exasacale Operating

  14. An artificial neutral network fault-diagnostic adviser for a nuclear power plant with error prediction

    SciTech Connect (OSTI)

    Kim, Keehoon

    1992-12-31

    This thesis is part of an ongoing project at Iowa State University to develop ANN bases fault diagnostic systems to detect and classify operational transients at nuclear power plants.

  15. An artificial neutral network fault-diagnostic adviser for a nuclear power plant with error prediction

    SciTech Connect (OSTI)

    Kim, Keehoon.

    1992-01-01

    This thesis is part of an ongoing project at Iowa State University to develop ANN bases fault diagnostic systems to detect and classify operational transients at nuclear power plants.

  16. Effect of stacking fault energy on mechanism of plastic deformation in nanotwinned FCC metals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Borovikov, Valery; Mendelev, Mikhail I.; King, Alexander H.; LeSar, Richard

    2015-05-15

    Starting from a semi-empirical potential designed for Cu, we have developed a series of potentials that provide essentially constant values of all significant (calculated) materials properties except for the intrinsic stacking fault energy, which varies over a range that encompasses the lowest and highest values observed in nature. In addition, these potentials were employed in molecular dynamics (MD) simulations to investigate how stacking fault energy affects the mechanical behavior of nanotwinned face-centered cubic (FCC) materials. The results indicate that properties such as yield strength and microstructural stability do not vary systematically with stacking fault energy, but rather fall into twomore » distinct regimes corresponding to 'low' and 'high' stacking fault energies.« less

  17. On-line early fault detection and diagnosis of municipal solid waste incinerators

    SciTech Connect (OSTI)

    Zhao Jinsong [College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029 (China)], E-mail: jinsongzhao@mail.tsinghua.edu.cn; Huang Jianchao [College of Information Science and Technology, Beijing Institute of Technology, Beijing 10086 (China); Sun Wei [College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

    2008-11-15

    A fault detection and diagnosis framework is proposed in this paper for early fault detection and diagnosis (FDD) of municipal solid waste incinerators (MSWIs) in order to improve the safety and continuity of production. In this framework, principal component analysis (PCA), one of the multivariate statistical technologies, is used for detecting abnormal events, while rule-based reasoning performs the fault diagnosis and consequence prediction, and also generates recommendations for fault mitigation once an abnormal event is detected. A software package, SWIFT, is developed based on the proposed framework, and has been applied in an actual industrial MSWI. The application shows that automated real-time abnormal situation management (ASM) of the MSWI can be achieved by using SWIFT, resulting in an industrially acceptable low rate of wrong diagnosis, which has resulted in improved process continuity and environmental performance of the MSWI.

  18. Method and system for early detection of incipient faults in electric motors

    DOE Patents [OSTI]

    Parlos, Alexander G; Kim, Kyusung

    2003-07-08

    A method and system for early detection of incipient faults in an electric motor are disclosed. First, current and voltage values for one or more phases of the electric motor are measured during motor operations. A set of current predictions is then determined via a neural network-based current predictor based on the measured voltage values and an estimate of motor speed values of the electric motor. Next, a set of residuals is generated by combining the set of current predictions with the measured current values. A set of fault indicators is subsequently computed from the set of residuals and the measured current values. Finally, a determination is made as to whether or not there is an incipient electrical, mechanical, and/or electromechanical fault occurring based on the comparison result of the set of fault indicators and a set of predetermined baseline values.

  19. Fault isolation through no-overhead link level CRC

    DOE Patents [OSTI]

    Chen, Dong; Coteus, Paul W.; Gara, Alan G.

    2007-04-24

    A fault isolation technique for checking the accuracy of data packets transmitted between nodes of a parallel processor. An independent crc is kept of all data sent from one processor to another, and received from one processor to another. At the end of each checkpoint, the crcs are compared. If they do not match, there was an error. The crcs may be cleared and restarted at each checkpoint. In the preferred embodiment, the basic functionality is to calculate a CRC of all packet data that has been successfully transmitted across a given link. This CRC is done on both ends of the link, thereby allowing an independent check on all data believed to have been correctly transmitted. Preferably, all links have this CRC coverage, and the CRC used in this link level check is different from that used in the packet transfer protocol. This independent check, if successfully passed, virtually eliminates the possibility that any data errors were missed during the previous transfer period.

  20. Effects of stacking faults on the electronic structures of quantum rods

    SciTech Connect (OSTI)

    Wang, Lin-Wang

    2004-03-30

    Atomistic semiempirical pseudopotential method is used to study the effects of stacking faults in a wurtzite structure quantum rod. It is found that a single stacking fault can cause a 10-50 meV change in the conduction state eigen energy, and a localization in the electron wave function. However, the effects on the hole eigen energies and wave functions are very small.

  1. VOLTTRON Compatible Whole-Building Root-Fault Detection and Diagnosis |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy VOLTTRON Compatible Whole-Building Root-Fault Detection and Diagnosis VOLTTRON Compatible Whole-Building Root-Fault Detection and Diagnosis Planned mixed-use demonstration site on Drexel University campus. Planned mixed-use demonstration site on Drexel University campus. Photo courtesy Drexel University. Photo courtesy Drexel University. Planned mixed-use demonstration site on Drexel University campus. Photo courtesy Drexel University. Lead Performer: Drexel University -

  2. Volttron Implementation: Automated Fault Detection and Diagnosis for AHU-VAV Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Volttron Implementation: Automated Fault Detection and Diagnosis for AHU-VAV Systems 1 Volttron Workshop 23 July 2015 Arlington, VA Adam Regnier Jin Wen, Ph.D. Building Science & Engineering Group Drexel University Philadelphia, PA Outline/Agenda o Platform overview o Drivers o Database o Agents 4. Why Volttron? o Benefits for research & for industry 5. Going Forward Overview/Agenda 1. Introduction o Faults in AHU-VAV Systems 2. Diagnostics o Methods & Requirements 3. Volttron

  3. Imaging Faults with Reverse-Time Migration for Geothermal Exploration at Jemez Pueblo in New Mexico

    SciTech Connect (OSTI)

    Huang, Lianjie; Albrecht, Michael; Kaufman, Greg; Kelley, Shari; Rehfeldt, Kenneth; Zhang, Zhifu

    2011-01-01

    The fault zones at Jemez Pueblo may dominate the flow paths of hot water, or confine the boundaries of the geothermal reservoir. Therefore, it is crucial to image the geometry of these fault zones for geothermal exploration in the area. We use reverse-time migration with a separation imaging condition to image the faults at Jemez Pueblo. A finite-difference full-wave equation method with a perfectly-matching-layer absorbing boundary condition is used for backward propagation of seismic reflection data from receivers and forward propagation of wavefields from sources. In the imaging region, the wavefields are separated into the upgoing and downgoing waves, and leftgoing and rightgoing waves. The upgoing and downgoing waves are used to obtain the downward-looking image, and the leftgoing and rightgoing waves are used to form the left-looking image and right-looking image from sources. The left-looking and right-looking images are normally weaker than the downward-looking image because the reflections from the fault zones are much weaker than those from sedimentary layers, but these migration results contain the images of the faults. We apply our reverse-time migration with a wavefield separation imaging condition to seismic data acquired at Jemez Pueblo, and our preliminary results reveal many faults in the area.

  4. Apparatus for and method of testing an electrical ground fault circuit interrupt device

    DOE Patents [OSTI]

    Andrews, Lowell B.

    1998-01-01

    An apparatus for testing a ground fault circuit interrupt device includes a processor, an input device connected to the processor for receiving input from an operator, a storage media connected to the processor for storing test data, an output device connected to the processor for outputting information corresponding to the test data to the operator, and a calibrated variable load circuit connected between the processor and the ground fault circuit interrupt device. The ground fault circuit interrupt device is configured to trip a corresponding circuit breaker. The processor is configured to receive signals from the calibrated variable load circuit and to process the signals to determine a trip threshold current and/or a trip time. A method of testing the ground fault circuit interrupt device includes a first step of providing an identification for the ground fault circuit interrupt device. Test data is then recorded in accordance with the identification. By comparing test data from an initial test with test data from a subsequent test, a trend of performance for the ground fault circuit interrupt device is determined.

  5. Apparatus for and method of testing an electrical ground fault circuit interrupt device

    DOE Patents [OSTI]

    Andrews, L.B.

    1998-08-18

    An apparatus for testing a ground fault circuit interrupt device includes a processor, an input device connected to the processor for receiving input from an operator, a storage media connected to the processor for storing test data, an output device connected to the processor for outputting information corresponding to the test data to the operator, and a calibrated variable load circuit connected between the processor and the ground fault circuit interrupt device. The ground fault circuit interrupt device is configured to trip a corresponding circuit breaker. The processor is configured to receive signals from the calibrated variable load circuit and to process the signals to determine a trip threshold current and/or a trip time. A method of testing the ground fault circuit interrupt device includes a first step of providing an identification for the ground fault circuit interrupt device. Test data is then recorded in accordance with the identification. By comparing test data from an initial test with test data from a subsequent test, a trend of performance for the ground fault circuit interrupt device is determined. 17 figs.

  6. Pen Branch fault program: Consolidated report on the seismic reflection surveys and the shallow drilling

    SciTech Connect (OSTI)

    Stieve, A.L.; Stephenson, D.E.; Aadland, R.K.

    1991-03-23

    The Pen Branch fault was identified in the subsurface at the Savannah River Site (SRS) in 1989 based upon interpretation of earlier seismic reflection surveys and other geologic investigations (Seismorgraph Services Incorp., 1973; Chapman and DiStefano, 1989; Snipes, Fallaw and Price, 1989). A program was initiated at that time to determine the capability of the fault to release seismic energy (Price and others, 1989) as defined in the Nuclear Regulatory Commission regulatory guidelines, 10 CFR 100 Appendix A. This report presents the results of the Pen Branch fault investigation based on data acquired from seismic reflection surveys and shallow drilling across the fault completed at this time. The Earth Science Advisory Committee (ESAC) has reviewed the results of these investigations and unanimously agrees with the conclusion of Westinghouse Savannah River Company (WSRC) that the Pen Branch fault is a non-capable fault. ESAC is a committee of 12 earth science professionals from academia and industry with the charter of providing outside peer review of SRS geotechnical, seismic, and ground water modeling programs.

  7. Fault-tolerant interconnection network and image-processing applications for the PASM parallel processing system

    SciTech Connect (OSTI)

    Adams, G.B. III

    1984-01-01

    The demand for very high speed data processing coupled with falling hardware costs has made large-scale parallel and distributed computer systems both desirable and feasible. Two modes of parallel processing are single instruction stream-multiple data stream (SIMD) and multiple instruction stream-multiple data stream (MIMD). PASM, a partitionable SIMD/MIMD system, is a reconfigurable multimicroprocessor system being designed for image processing and pattern recognition. An important component of these systems is the interconnection network, the mechanism for communication among the computation nodes and memories. Assuring high reliability for such complex systems is a significant task. Thus, a crucial practical aspect of an interconnection network is fault tolerance. In answer to this need, the Extra Stage Cube (ESC), a fault-tolerant, multistage cube-type interconnection network, is define. The fault tolerance of the ESC is explored for both single and multiple faults, routing tags are defined, and consideration is given to permuting data and partitioning the ESC in the presence of faults. The ESC is compared with other fault-tolerant multistage networks. Finally, reliability of the ESC and an enhanced version of it are investigated.

  8. Criteria for design of the Yucca Mountain structures, systems and components for fault displacement

    SciTech Connect (OSTI)

    Stepp, C.; Hossain, Q.; Nesbit, S.; Hardy, M.

    1995-12-31

    The DOE intends to design the Yucca Mountain high-level waste facility structures, systems and components (SSCs) for fault displacements to provide reasonable assurance that they will meet the preclosure safety performance objectives established by 10 CFR Part 60. To the extent achievable, fault displacement design of the facility will follow guidance provided in the NRC Staff Technical Position. Fault avoidance will be the primary design criterion, especially for spatially compact or clustered SSCs. When fault avoidance is not reasonably achievable, expected to be the case for most spatially extended SSCs, engineering design procedures and criteria or repair and rehabilitation actions, depending on the SSC`s importance to safety, are provided. SSCs that have radiological safety importance will be designed for fault displacements that correspond to the hazard exceedance frequency equal to their established seismic safety performance goals. Fault displacement loads are generally localized and may cause local inelastic response of SSCs. For this reason, the DOE intends to use strain-based design acceptance criteria similar to the strain-based criteria used to design nuclear plant SSCs for impact and impulsive loads.

  9. Survey and discussion of models applicable to the transport and fate thrust area of the Department of Energy Chemical and Biological Nonproliferation Program

    SciTech Connect (OSTI)

    1997-09-01

    The availability and easy production of toxic chemical and biological agents by domestic and international terrorists pose a serious threat to US national security, especially to civilian populations in and around urban areas. To address this threat, the Department of Energy (DOE) has established the Chemical and Biological Nonproliferation Program (CBNP) with the goal of focusing the DOE`s technical resources and expertise on capabilities to deny, deter, mitigate and respond to clandestine releases of chemical and biological agents. With the intent to build on DOE core competencies, the DOE has established six technology thrust areas within the CBNP Program: Biological Information Resources; Point Sensor Systems; Stand-off Detection; Transport and Fate; Decontamination; and Systems Analysis and Integration. The purpose of the Transport and Fate Thrust is to accurately predict the dispersion, concentration and ultimate fate of chemical and biological agents released into the urban and suburban environments and has two major goals: (1) to develop an integrated and validated state-of-the-art atmospheric transport and fate modeling capability for chemical and biological agent releases within the complex urban environment from the regional scale down to building and subway interiors, and (2) to apply this modeling capability in a broad range of simulation case studies of chemical and biological agent release scenarios in suburban, urban and confined (buildings and subways) environments and provide analysis for the incident response user community. Sections of this report discuss subway transport and fate models; buildings interior transport and fate modeling; models for flow and transport around buildings; and local-regional meteorology and dispersion models.

  10. Final Project Report: Self-Correcting Controls for VAV System Faults Filter/Fan/Coil and VAV Box Sections

    SciTech Connect (OSTI)

    Brambley, Michael R.; Fernandez, Nicholas; Wang, Weimin; Cort, Katherine A.; Cho, Heejin; Ngo, Hung; Goddard, James K.

    2011-05-01

    This report addresses original research by the Pacific Northwest National Laboratory for the California Institute for Energy and Environment on self-correcting controls for variable-air-volume (VAV) heating, ventilating and air-conditioning systems and focuses specifically on air handling and VAV box components of the air side of the system. A complete set of faults for these components was compiled and a fault mode analysis performed to understand the detectable symptoms of the faults and the chain of causation. A set of 26 algorithms was developed to facilitate the automatic correction of these faults in typical commercial VAV systems. These algorithms include training tests that are used during commissioning to develop models of normal system operation, passive diagnostics used to detect the symptoms of faults, proactive diagnostics used to diagnose the cause of a fault, and finally fault correction algorithms. Ten of the twenty six algorithms were implemented in a prototype software package that interfaces with a test bed facility at PNNL's Richland, WA, laboratory. Measurement bias faults were instigated in the supply-air temperature sensor and the supply-air flow meter to test the algorithms developed. The algorithms as implemented in the laboratory software correctly detected, diagnosed and corrected these faults. Finally, an economic and impact assessment was performed for the State of California for deployment of self-correcting controls. Assuming 15% HVAC energy savings and a modeled deployment profile, 3.1-5.8 TBu of energy savings are possible by year 15.

  11. Final Project Report. Scalable fault tolerance runtime technology for petascale computers

    SciTech Connect (OSTI)

    Krishnamoorthy, Sriram; Sadayappan, P

    2015-06-16

    With the massive number of components comprising the forthcoming petascale computer systems, hardware failures will be routinely encountered during execution of large-scale applications. Due to the multidisciplinary, multiresolution, and multiscale nature of scientific problems that drive the demand for high end systems, applications place increasingly differing demands on the system resources: disk, network, memory, and CPU. In addition to MPI, future applications are expected to use advanced programming models such as those developed under the DARPA HPCS program as well as existing global address space programming models such as Global Arrays, UPC, and Co-Array Fortran. While there has been a considerable amount of work in fault tolerant MPI with a number of strategies and extensions for fault tolerance proposed, virtually none of advanced models proposed for emerging petascale systems is currently fault aware. To achieve fault tolerance, development of underlying runtime and OS technologies able to scale to petascale level is needed. This project has evaluated range of runtime techniques for fault tolerance for advanced programming models.

  12. Symmetrical and Unsymmetrical Fault Currents of a Wind Power Plant: Preprint

    SciTech Connect (OSTI)

    Gevorgian, V.; Singh, M.; Muljadi, E.

    2011-12-01

    This paper investigates the short-circuit behavior of a wind power plant for different types of wind turbines. Both symmetrical faults and unsymmetrical faults are investigated. The size of wind power plants (WPPs) keeps getting bigger and bigger. The number of wind plants in the U.S. has increased very rapidly in the past 10 years. It is projected that in the U.S., the total wind power generation will reach 330 GW by 2030. As the importance of WPPs increases, planning engi-neers must perform impact studies used to evaluate short-circuit current (SCC) contribution of the plant into the transmission network under different fault conditions. This information is needed to size the circuit breakers, to establish the proper sys-tem protection, and to choose the transient suppressor in the circuits within the WPP. This task can be challenging to protec-tion engineers due to the topology differences between different types of wind turbine generators (WTGs) and the conventional generating units. This paper investigates the short-circuit behavior of a WPP for different types of wind turbines. Both symmetrical faults and unsymmetrical faults are investigated. Three different soft-ware packages are utilized to develop this paper. Time domain simulations and steady-state calculations are used to perform the analysis.

  13. Interplay between intrinsic and stacking-fault magnetic domains in bi-layered manganites

    SciTech Connect (OSTI)

    Hossain, M.A; Burkhardt, Mark H.; Sarkar, S.; Ohldag, H.; Chuang, Y.-D.; Scholl, A.; Young, A.T.; Doran, A.; Dessau, D.S.; Zheng, H.; Mitchell, J.F.; Durr, H.A.; Stohr, J.

    2012-09-11

    We present a low temperature X-ray photoemission electron microscopy study of the bi-layered manganite compound La{sub 1.2}Sr{sub 1.8}Mn{sub 2}O{sub 7} (BL-LSMO) to investigate the influence of stacking faults, which are structurally and magnetically different from the bi-layered host. In BL-LSMO small magnetic moment persists to T* = 300K, well above the Curie temperature of 120K (T{sub C}). Our magnetic images show that 3D stacking faults are responsible for the T* transition. Furthermore, close to the T{sub C}, stacking faults are well coupled to the bi-layered host with latter magnetic domains controlling the spin direction of the stacking faults. Contrary to recent reports, we find that stacking faults do not seed magnetic domains in the host via an exchange spring mechanism and the intrinsic T{sub C} of the BL-LSMO is not lower than 120K.

  14. FITL: Extending LLVM for the Translation of Fault-Injection Directives

    SciTech Connect (OSTI)

    Lee, Seyong; Vetter, Jeffrey S

    2015-01-01

    The frequency of hardware errors in HPC systems continues to grow as system designs evolve toward exascale. Tolerating these errors efficiently and effectively will require software-based resilience solutions. With this requirement in mind, recent research has increasingly employed LLVM-based tools to simulate transient hardware faults in order to study the resilience characteristics of specific applications. However, such tools require researchers to configure their experiments at the level of the LLVM intermediate representation (LLVM IR) rather than at the source level of the applications under study. In this paper, we present FITL (Fault-Injection Toolkit for LLVM), a set of LLVM extensions to which it is straightforward to translate source-level pragmas that specify fault injection. While we have designed FITL not to be tied to any particular compiler front end or high-level language, we also describe how we have extended our OpenARC compiler to translate a novel set of fault-injection pragmas for C to FITL. Finally, we present several resilience studies we have conducted using FITL, including a comparison with a source-level fault injector we have built as part of OpenARC.

  15. Crossing Active Faults on the Sakhalin II Onshore Pipeline Route: Analysis Methodology and Basic Design

    SciTech Connect (OSTI)

    Vitali, Luigino; Mattiozzi, Pierpaolo

    2008-07-08

    Twin oil (20 and 24 inch) and gas (20 and 48 inch) pipeline systems stretching 800 km are being constructed to connect offshore hydrocarbon deposits from the Sakhalin II concession in the North to an LNG plant and oil export terminal in the South of Sakhalin island. The onshore pipeline route follows a regional fault zone and crosses individual active faults at 19 locations. Sakhalin Energy, Design and Construction companies took significant care to ensure the integrity of the pipelines, should large seismic induced ground movements occur during the Operational life of the facilities. Complex investigations including the identification of the active faults, their precise location, their particular displacement values and assessment of the fault kinematics were carried out to provide input data for unique design solutions. Lateral and reverse offset displacements of 5.5 and 4.5 m respectively were determined as the single-event values for the design level earthquake (DLE)--the 1000-year return period event. Within the constraints of a pipeline route largely fixed, the underground pipeline fault crossing design was developed to define the optimum routing which would minimize stresses and strain using linepipe materials which had been ordered prior to the completion of detailed design, and to specify requirements for pipe trenching shape, materials, drainage system, etc. This Paper describes the steps followed to formulate the concept of the special trenches and the analytical characteristics of the Model.

  16. Crossing Active Faults on the Sakhalin II Onshore Pipeline Route: Pipeline Design and Risk Analysis

    SciTech Connect (OSTI)

    Mattiozzi, Pierpaolo; Strom, Alexander

    2008-07-08

    Twin oil (20 and 24 inch) and gas (20 and 48 inch) pipeline systems stretching 800 km are being constructed to connect offshore hydrocarbon deposits from the Sakhalin II concession in the North to an LNG plant and oil export terminal in the South of Sakhalin island. The onshore pipeline route follows a regional fault zone and crosses individual active faults at 19 locations. Sakhalin Energy, Design and Construction companies took significant care to ensure the integrity of the pipelines, should large seismic induced ground movements occur during the Operational life of the facilities. Complex investigations including the identification of the active faults, their precise location, their particular displacement values and assessment of the fault kinematics were carried out to provide input data for unique design solutions. Lateral and reverse offset displacements of 5.5 and 4.5 m respectively were determined as the single-event values for the design level earthquake (DLE) - the 1000-year return period event. Within the constraints of a pipeline route largely fixed, the underground pipeline fault crossing design was developed to define the optimum routing which would minimize stresses and strain using linepipe materials which had been ordered prior to the completion of detailed design, and to specify requirements for pipe trenching shape, materials, drainage system, etc. Detailed Design was performed with due regard to actual topography and to avoid the possibility of the trenches freezing in winter, the implementation of specific drainage solutions and thermal protection measures.

  17. Embedded atom calculations of unstable stacking fault energies and surface energies in intermetallics

    SciTech Connect (OSTI)

    Farkas, D.; Zhou, S.J.; Vailhe, C.; Mutasa, B.; Panova, J.

    1997-01-01

    We performed embedded atom method calculations on surface energies and unstable stacking fault energies for a series of intermetallics for which interatomic potentials of the embedded atom type have recently been developed. These results were analyzed and applied to the prediction of relative ductility of these materials using the various current theories. Series of alloys with the B2 ordered structure were studied, and the results were compared to those in pure body-centered cubic (bcc) Fe. Ordered compounds with L1{sub 2} and L1{sub 0} structures based on the face-centered cubic (fcc) lattice were also studied. It was found that there is a correlation between the values of the antiphase boundary (APB) energies in B2 alloys and their unstackable stacking fault energies. Materials with higher APB energies tend to have higher unstable stacking fault energies, leading to an increased tendency to brittle fracture. {copyright} {ital 1997 Materials Research Society.}

  18. Methods and apparatus using commutative error detection values for fault isolation in multiple node computers

    DOE Patents [OSTI]

    Almasi, Gheorghe [Ardsley, NY; Blumrich, Matthias Augustin [Ridgefield, CT; Chen, Dong [Croton-On-Hudson, NY; Coteus, Paul [Yorktown, NY; Gara, Alan [Mount Kisco, NY; Giampapa, Mark E. [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Hoenicke, Dirk I. [Ossining, NY; Singh, Sarabjeet [Mississauga, CA; Steinmacher-Burow, Burkhard D. [Wernau, DE; Takken, Todd [Brewster, NY; Vranas, Pavlos [Bedford Hills, NY

    2008-06-03

    Methods and apparatus perform fault isolation in multiple node computing systems using commutative error detection values for--example, checksums--to identify and to isolate faulty nodes. When information associated with a reproducible portion of a computer program is injected into a network by a node, a commutative error detection value is calculated. At intervals, node fault detection apparatus associated with the multiple node computer system retrieve commutative error detection values associated with the node and stores them in memory. When the computer program is executed again by the multiple node computer system, new commutative error detection values are created and stored in memory. The node fault detection apparatus identifies faulty nodes by comparing commutative error detection values associated with reproducible portions of the application program generated by a particular node from different runs of the application program. Differences in values indicate a possible faulty node.

  19. Compatible and Cost-Effective Fault Diagnostic Solutions for Air Handling

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unit-Variable Air Volume and Air Handling Unit-Constant Air Volume Systems - 2014 BTO Peer Review | Department of Energy Compatible and Cost-Effective Fault Diagnostic Solutions for Air Handling Unit-Variable Air Volume and Air Handling Unit-Constant Air Volume Systems - 2014 BTO Peer Review Compatible and Cost-Effective Fault Diagnostic Solutions for Air Handling Unit-Variable Air Volume and Air Handling Unit-Constant Air Volume Systems - 2014 BTO Peer Review Presenter: Jin Wen, Drexel

  20. Microsoft PowerPoint - HPC - Resilience-Fault Injection Research Penta_Final [Compatibility Mode]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3146 This document is approved for public release; further dissemination unlimited Resilience / Fault Injection Research ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 0 10 20 30 40 50 60 70 80 32PB 64PB 96PB 128PB System Memory Capacity Uncorrected Error Rate (Relative to Cielo) ● ● ● ● ● ● 8Gbit / High FIT 8Gbit / Low FIT 16Gbit / High FIT 16Gbit / Low FIT 32Gbit / High FIT 32Gbit / Low FIT Resilience / Fault Injection Research

  1. Preliminary 3d depth migration of a network of 2d seismic lines for fault

    Office of Scientific and Technical Information (OSTI)

    imaging at a Pyramid Lake, Nevada geothermal prospect (Conference) | SciTech Connect Preliminary 3d depth migration of a network of 2d seismic lines for fault imaging at a Pyramid Lake, Nevada geothermal prospect Citation Details In-Document Search Title: Preliminary 3d depth migration of a network of 2d seismic lines for fault imaging at a Pyramid Lake, Nevada geothermal prospect Roxanna Frary, John N. Louie, Sathish Pullammanappallil, Amy Eisses, 2011, Preliminary 3d depth migration of a

  2. Detailed Geophysical Fault Characterization in Yucca Flat, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    Theodore H. Asch; Donald Sweetkind; Bethany L. Burton; Erin L. Wallin

    2009-02-10

    Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site (NTS) in Nye County, Nevada. Between the years 1951 and 1992, 659 underground nuclear tests took place in Yucca Flat; most were conducted in large, vertical excavations that penetrated alluvium and the underlying Cenozoic volcanic rocks. Radioactive and other potential chemical contaminants at the NTS are the subject of a long-term program of investigation and remediation by the U.S. Department of Energy (DOE), National Nuclear Security Administration, Nevada Site Office, under its Environmental Restoration Program. As part of the program, the DOE seeks to assess the extent of contamination and to evaluate the potential risks to humans and the environment from byproducts of weapons testing. To accomplish this objective, the DOE Environmental Restoration Program is constructing and calibrating a ground-water flow model to predict hydrologic flow in Yucca Flat as part of an effort to quantify the subsurface hydrology of the Nevada Test Site. A necessary part of calibrating and evaluating a model of the flow system is an understanding of the location and characteristics of faults that may influence ground-water flow. In addition, knowledge of fault-zone architecture and physical properties is a fundamental component of the containment of the contamination from underground nuclear tests, should such testing ever resume at the Nevada Test Site. The goal of the present investigation is to develop a detailed understanding of the geometry and physical properties of fault zones in Yucca Flat. This study was designed to investigate faults in greater detail and to characterize fault geometry, the presence of fault splays, and the fault-zone width. Integrated geological and geophysical studies have been designed and implemented to work toward this goal. This report describes the geophysical surveys conducted near two drill holes in Yucca Flat, the data analyses performed, and the

  3. Superconducting matrix fault current limiter with current-driven trigger mechanism

    DOE Patents [OSTI]

    Yuan, Xing

    2008-04-15

    A modular and scalable Matrix-type Fault Current Limiter (MFCL) that functions as a "variable impedance" device in an electric power network, using components made of superconducting and non-superconducting electrically conductive materials. An inductor is connected in series with the trigger superconductor in the trigger matrix and physically surrounds the superconductor. The current surge during a fault will generate a trigger magnetic field in the series inductor to cause fast and uniform quenching of the trigger superconductor to significantly reduce burnout risk due to superconductor material non-uniformity.

  4. Geometry and controls on fracturing in a natural fault-bend fold: Rosario field, Maracaibo basin, Venezuela

    SciTech Connect (OSTI)

    Apotria, T.G.; Wilkerson, M.S.; Knewtson, S.L.

    1996-08-01

    The Rosario oil field lies between the Perija Mountain front and Lake Maracaibo and produces from fractured Cretaceous carbonates and Tertiary clastics. We interpret the structure as a detached fault-bend fold which ramps through Cretaceous Cogollo and La Luna carbonates and flattens into an upper detachment at the base of the Upper Cretaceous Colon Shale. The structural relief formed primarily during the Mid Miocene and younger. Seismic and well control on the three-dimensional geometry illustrates the effects of (1) lithology and displacement variation on fold geometry, (2) an oblique footwall ramp on hangingwall faulting, and (3) fold curvature on fracturing and hydrocarbon production. Fold geometry at different structural levels is strongly controlled by lithology. Stiff Cogollo and La Luna carbonates exhibit kink-style folding above the upper fault-bend. The weak Colon Shale decouples the faulted carbonates from the concentrically folded Tertiary clastics. Regions of enhanced faulting and fracturing of Cretaceous carbonates are a function of structural position. We observe normal faults in the hangingwall where the strike of the footwall ramp changes from N20{degrees}E to N65{degrees}E. Fold curvature highlights fold hinges, yet distributed faulting is seismically imaged in the forelimb, suggesting that rocks fracture as they migrate through the ramp-upper flat fault-bend. Production rates are higher near the forelimb relative to the flat crestal region.

  5. Thoughts Regarding the Dimensions of Faults at Rainier and Aqueduct Mesas, Nye County, Nevada, Based on Surface and Underground Mapping

    SciTech Connect (OSTI)

    Drellack, S.L.; Prothro, L.B.; Townsend, M.J.; Townsend, D.R.

    2011-02-01

    The geologic setting and history, along with observations through 50 years of detailed geologic field work, show that large-displacement (i.e., greater than 30 meters of displacement) syn- to post-volcanic faults are rare in the Rainier Mesa area. Faults observed in tunnels and drill holes are mostly tight, with small displacements (most less than 1.5 meters) and small associated damage zones. Faults are much more abundant in the zeolitized tuffs than in the overlying vitric tuffs, and there is little evidence that faults extend downward from the tuff section through the argillic paleocolluvium into pre-Tertiary rocks. The differences in geomechanical characteristics of the various tuff lithologies at Rainier Mesa suggest that most faults on Rainer Mesa are limited to the zeolitic units sandwiched between the overlying vitric bedded tuffs and the underlying pre-Tertiary units (lower carbonate aquifer3, lower clastic confining unit1, and Mesozoic granite confining unit).

  6. Directly imaging steeply-dipping fault zones in geothermal fields with multicomponent seismic data

    SciTech Connect (OSTI)

    Chen, Ting; Huang, Lianjie

    2015-07-30

    For characterizing geothermal systems, it is important to have clear images of steeply-dipping fault zones because they may confine the boundaries of geothermal reservoirs and influence hydrothermal flow. Elastic reverse-time migration (ERTM) is the most promising tool for subsurface imaging with multicomponent seismic data. However, conventional ERTM usually generates significant artifacts caused by the cross correlation of undesired wavefields and the polarity reversal of shear waves. In addition, it is difficult for conventional ERTM to directly image steeply-dipping fault zones. We develop a new ERTM imaging method in this paper to reduce these artifacts and directly image steeply-dipping fault zones. In our new ERTM method, forward-propagated source wavefields and backward-propagated receiver wavefields are decomposed into compressional (P) and shear (S) components. Furthermore, each component of these wavefields is separated into left- and right-going, or downgoing and upgoing waves. The cross correlation imaging condition is applied to the separated wavefields along opposite propagation directions. For converted waves (P-to-S or S-to-P), the polarity correction is applied to the separated wavefields based on the analysis of Poynting vectors. Numerical imaging examples of synthetic seismic data demonstrate that our new ERTM method produces high-resolution images of steeply-dipping fault zones.

  7. Directly imaging steeply-dipping fault zones in geothermal fields with multicomponent seismic data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Ting; Huang, Lianjie

    2015-07-30

    For characterizing geothermal systems, it is important to have clear images of steeply-dipping fault zones because they may confine the boundaries of geothermal reservoirs and influence hydrothermal flow. Elastic reverse-time migration (ERTM) is the most promising tool for subsurface imaging with multicomponent seismic data. However, conventional ERTM usually generates significant artifacts caused by the cross correlation of undesired wavefields and the polarity reversal of shear waves. In addition, it is difficult for conventional ERTM to directly image steeply-dipping fault zones. We develop a new ERTM imaging method in this paper to reduce these artifacts and directly image steeply-dipping fault zones.more » In our new ERTM method, forward-propagated source wavefields and backward-propagated receiver wavefields are decomposed into compressional (P) and shear (S) components. Furthermore, each component of these wavefields is separated into left- and right-going, or downgoing and upgoing waves. The cross correlation imaging condition is applied to the separated wavefields along opposite propagation directions. For converted waves (P-to-S or S-to-P), the polarity correction is applied to the separated wavefields based on the analysis of Poynting vectors. Numerical imaging examples of synthetic seismic data demonstrate that our new ERTM method produces high-resolution images of steeply-dipping fault zones.« less

  8. Ab initio study of point defects near stacking faults in 3C-SiC

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xi, Jianqi; Liu, Bin; Zhang, Yanwen; Weber, William J.

    2016-07-02

    Interactions between point defects and stacking faults in 3C-SiC are studied using an ab initio method based on density functional theory. The results show that the discontinuity of the stacking sequence considerably affects the configurations and behavior of intrinsic defects, especially in the case of silicon interstitials. The existence of an intrinsic stacking fault (missing a C-Si bilayer) shortens the distance between the tetrahedral-center site and its second-nearest-neighboring silicon layer, making the tetrahedral silicon interstitial unstable. Instead of a tetrahedral configuration with four C neighbors, a pyramid-like interstitial structure with a defect state within the band gap becomes a stablemore » configuration. In addition, orientation rotation occurs in the split interstitials that has diverse effects on the energy landscape of silicon and carbon split interstitials in the stacking fault region. Moreover, our analyses of ionic relaxation and electronic structure of vacancies show that the built-in strain field, owing to the existence of the stacking fault, makes the local environment around vacancies more complex than that in the bulk.« less

  9. Preliminary photovoltaic arc-fault prognostic tests using sacrificial fiber optic cabling.

    SciTech Connect (OSTI)

    Johnson, Jay; Blemel, Kenneth D.; Peter, Francis

    2013-02-01

    Through the New Mexico Small Business Assistance Program, Sandia National Laboratories worked with Sentient Business Systems, Inc. to develop and test a novel photovoltaic (PV) arc-fault detection system. The system operates by pairing translucent polymeric fiber optic sensors with electrical circuitry so that any external abrasion to the system or internal heating causes the fiber optic connection to fail or detectably degrade. A periodic pulse of light is sent through the optical path using a transmitter-receiver pair. If the receiver does not detect the pulse, an alarm is sounded and the PV system can be de-energized. This technology has the unique ability to prognostically determine impending failures to the electrical system in two ways: (a) the optical connection is severed prior to physical abrasion or cutting of PV DC electrical conductors, and (b) the polymeric fiber optic cable melts via Joule heating before an arc-fault is established through corrosion. Three arc-faults were created in different configurations found in PV systems with the integrated fiber optic system to determine the feasibility of the technology. In each case, the fiber optic cable was broken and the system annunciated the fault.

  10. Aerial photographic interpretation of lineaments and faults in late Cenozoic deposits in the eastern parts of the Saline Valley 1:100, 000 quadrangle, Nevada and California, and the Darwin Hills 1:100, 000 quadrangle, California

    SciTech Connect (OSTI)

    Reheis, M.C.

    1991-09-01

    Faults and fault-related lineaments in Quaternary and late Tertiary deposits in the southern part of the Walker Lane are potentially active and form patterns that are anomalous compared to those in most other areas of the Great Basin. Two maps at a scale of 1:100,000 summarize information about lineaments and faults in the area around and southwest of the Death Valley-Furnace Creek fault system based on extensive aerial-photo interpretation, limited field interpretation, limited field investigations, and published geologic maps. There are three major fault zones and two principal faults in the Saline Valley and Darwin Hills 1:100,000 quadrangles. (1) The Death Valley-Furnace Creek fault system and (2) the Hunter Mountain fault zone are northwest-trending right-lateral strike-slip fault zones. (3) The Panamint Valley fault zone and associated Towne Pass and Emigrant faults are north-trending normal faults. The intersection of the Hunter Mountain and Panamint Valley fault zones is marked by a large complex of faults and lineaments on the floor of Panamint Valley. Additional major faults include (4) the north-northwest-trending Ash Hill fault on the west side of Panamint Valley, and (5) the north-trending range-front Tin Mountain fault on the west side of the northern Cottonwood Mountains. The most active faults at present include those along the Death Valley-Furnace Creek fault system, the Tin Mountain fault, the northwest and southeast ends of the Hunter Mountain fault zone, the Ash Hill fault, and the fault bounding the west side of the Panamint Range south of Hall Canyon. Several large Quaternary landslides on the west sides of the Cottonwood Mountains and the Panamint Range apparently reflect slope instability due chiefly to rapid uplift of these ranges. 16 refs.

  11. Heterogeneous slip and rupture models of the San Andreas fault zone based upon three-dimensional earthquake tomography

    SciTech Connect (OSTI)

    Foxall, W.

    1992-11-01

    Crystal fault zones exhibit spatially heterogeneous slip behavior at all scales, slip being partitioned between stable frictional sliding, or fault creep, and unstable earthquake rupture. An understanding the mechanisms underlying slip segmentation is fundamental to research into fault dynamics and the physics of earthquake generation. This thesis investigates the influence that large-scale along-strike heterogeneity in fault zone lithology has on slip segmentation. Large-scale transitions from the stable block sliding of the Central 4D Creeping Section of the San Andreas, fault to the locked 1906 and 1857 earthquake segments takes place along the Loma Prieta and Parkfield sections of the fault, respectively, the transitions being accomplished in part by the generation of earthquakes in the magnitude range 6 (Parkfield) to 7 (Loma Prieta). Information on sub-surface lithology interpreted from the Loma Prieta and Parkfield three-dimensional crustal velocity models computed by Michelini (1991) is integrated with information on slip behavior provided by the distributions of earthquakes located using, the three-dimensional models and by surface creep data to study the relationships between large-scale lithological heterogeneity and slip segmentation along these two sections of the fault zone.

  12. A method to determine fault vectors in 4H-SiC from stacking sequences observed on high resolution transmission electron microscopy images

    SciTech Connect (OSTI)

    Wu, Fangzhen; Wang, Huanhuan; Raghothamachar, Balaji; Dudley, Michael; Mueller, Stephan G.; Chung, Gil; Sanchez, Edward K.; Hansen, Darren; Loboda, Mark J.; Zhang, Lihua; Su, Dong; Kisslinger, Kim; Stach, Eric

    2014-09-14

    A new method has been developed to determine the fault vectors associated with stacking faults in 4H-SiC from their stacking sequences observed on high resolution TEM images. This method, analogous to the Burgers circuit technique for determination of dislocation Burgers vector, involves determination of the vectors required in the projection of the perfect lattice to correct the deviated path constructed in the faulted material. Results for several different stacking faults were compared with fault vectors determined from X-ray topographic contrast analysis and were found to be consistent. This technique is expected to applicable to all structures comprising corner shared tetrahedra.

  13. Fault Diagnosis with Multi-State Alarms in a Nuclear Power Control Simulation

    SciTech Connect (OSTI)

    Stuart A. Ragsdale; Roger Lew; Ronald L. Boring

    2014-09-01

    This research addresses how alarm systems can increase operator performance within nuclear power plant operations. The experiment examined the effects of two types of alarm systems (two-state and three-state alarms) on alarm compliance and diagnosis for two types of faults differing in complexity. We hypothesized the use of three-state alarms would improve performance in alarm recognition and fault diagnoses over that of two-state alarms. Sensitivity and criterion based on the Signal Detection Theory were used to measure performance. We further hypothesized that operator trust would be highest when using three-state alarms. The findings from this research showed participants performed better and had more trust in three-state alarms compared to two-state alarms. Furthermore, these findings have significant theoretical implications and practical applications as they apply to improving the efficiency and effectiveness of nuclear power plant operations.

  14. FAULT DIAGNOSIS WITH MULTI-STATE ALARMS IN A NUCLEAR POWER CONTROL SIMULATOR

    SciTech Connect (OSTI)

    Austin Ragsdale; Roger Lew; Brian P. Dyre; Ronald L. Boring

    2012-10-01

    This research addresses how alarm systems can increase operator performance within nuclear power plant operations. The experiment examined the effect of two types of alarm systems (two-state and three-state alarms) on alarm compliance and diagnosis for two types of faults differing in complexity. We hypothesized three-state alarms would improve performance in alarm recognition and fault diagnoses over that of two-state alarms. We used sensitivity and criterion based on Signal Detection Theory to measure performance. We further hypothesized that operator trust would be highest when using three-state alarms. The findings from this research showed participants performed better and had more trust in three-state alarms compared to two-state alarms. Furthermore, these findings have significant theoretical implications and practical applications as they apply to improving the efficiency and effectiveness of nuclear power plant operations.

  15. Locating hardware faults in a data communications network of a parallel computer

    DOE Patents [OSTI]

    Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.

    2010-01-12

    Hardware faults location in a data communications network of a parallel computer. Such a parallel computer includes a plurality of compute nodes and a data communications network that couples the compute nodes for data communications and organizes the compute node as a tree. Locating hardware faults includes identifying a next compute node as a parent node and a root of a parent test tree, identifying for each child compute node of the parent node a child test tree having the child compute node as root, running a same test suite on the parent test tree and each child test tree, and identifying the parent compute node as having a defective link connected from the parent compute node to a child compute node if the test suite fails on the parent test tree and succeeds on all the child test trees.

  16. Gear-box fault detection using time-frequency based methods

    SciTech Connect (OSTI)

    Odgaard, Peter F.; Stoustrup, Jakob

    2015-12-31

    Gear-box fault monitoring and detection is important for optimization of power generation and availability of wind turbines. The current industrial approach is to use condition monitoring systems, which runs in parallel with the wind turbine control system, using expensive additional sensors. An alternative would be to use the existing measurements which are normally available for the wind turbine control system. The usage of these sensors instead would cut down the cost of the wind turbine by not using additional sensors. One of these available measurements is the generator speed, in which changes in the gear-box resonance frequency can be detected. Two different time-frequency based approaches are presented in this paper. One is a filter based approach and the other is based on a Karhunen-Loeve basis. Both of them detects the gear-box fault with an acceptable detection delay.

  17. A dynamical model for condition monitoring and fault diagnostics of spur gears

    SciTech Connect (OSTI)

    Paya, B.; Esat, I.; Badi, M.N.M.

    1996-12-31

    The symptoms of condition monitoring and fault diagnostics of machinery based on the dynamic modelling of spur gears are discussed in this paper. The mathematical model presented in the earlier work, assumes two degree of freedom for each gear and the rotor, and also incorporates a varying gear tooth stiffness. This system is assumed to be in good condition (i.e. no fault present). The results obtained from this analytical model are compared with the ones obtained from an experimental model gearbox. This experimental gearbox consists of two meshing spur gears driven by an electric motor. The comparison of the results are encouraging as fundamental (dominant) frequencies of the analytical results correlates very closely to the experimental ones. It is shown that certain vibration frequency of a real gearbox such as the tooth meshing frequencies can be achieved from its mathematical model.

  18. A microprocessor-based digital feeder monitor with high-impedance fault detection

    SciTech Connect (OSTI)

    Patterson, R.; Tyska, W.; Russell, B.D.

    1994-12-31

    The high impedance fault detection technology developed at Texas A&M University after more than a decade of research, funded in large part by the Electric Power Research Institute, has been incorporated into a comprehensive monitoring device for overhead distribution feeders. This digital feeder monitor (DFM) uses a high waveform sampling rate for the ac current and voltage inputs in conjunction with a high-performance reduced instruction set (RISC) microprocessor to obtain the frequency response required for arcing fault detection and power quality measurements. Expert system techniques are employed to assure security while maintaining dependability. The DFM is intended to be applied at a distribution substation to monitor one feeder. The DFM is packaged in a non-drawout case which fits the panel cutout for a GE IAC overcurrent relay to facilitate retrofits at the majority of sites were electromechanical overcurrent relays already exist.

  19. Methods for locating ground faults and insulation degradation condition in energy conversion systems

    DOE Patents [OSTI]

    Agamy, Mohamed; Elasser, Ahmed; Galbraith, Anthony William; Harfman Todorovic, Maja

    2015-08-11

    Methods for determining a ground fault or insulation degradation condition within energy conversion systems are described. A method for determining a ground fault within an energy conversion system may include, in part, a comparison of baseline waveform of differential current to a waveform of differential current during operation for a plurality of DC current carrying conductors in an energy conversion system. A method for determining insulation degradation within an energy conversion system may include, in part, a comparison of baseline frequency spectra of differential current to a frequency spectra of differential current transient at start-up for a plurality of DC current carrying conductors in an energy conversion system. In one embodiment, the energy conversion system may be a photovoltaic system.

  20. LMFBR fuel-design environment for endurance testing, primarily of oxide fuel elements with local faults

    SciTech Connect (OSTI)

    Warinner, D.K.

    1980-01-01

    The US Department of Energy LMFBR Lines-of-Assurance are briefly stated and local faults are given perspective with an historical review and definition to help define the constraints of LMFBR fuel-element designs. Local-fault-propagation (fuel-element failure-propagation and blockage propagation) perceptions are reviewed. Fuel pin designs and major LMFBR parameters affecting pin performance are summarized. The interpretation of failed-fuel data is aided by a discussion of the effects of nonprototypicalities. The fuel-pin endurance expected in the US, USSR, France, UK, Japan, and West Germany is outlined. Finally, fuel-failure detection and location by delayed-neutron and gaseous-fission-product monitors are briefly discussed to better realize the operational limits.

  1. LANSCE-NS thrust areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutron and Nuclear Science (WNR) Facility at LANSCE Semiconductor irradiations (ICE House, ICE II) High resolution gamma-ray measurements following nuclear reactions (GEANIE) Detector development Neutron radiography (FP05) Fission and neutron capture cross sections (TPC, DANCE) Fission fragment measurements (SPIDER) Fission neutron output spectrum measurements (Chi-nu) Neutron-induced Charged Particle Detection (n,z

  2. NREL Research Proves Wind Can Provide Ancillary Grid Fault Response | Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modernization | NREL Research Proves Wind Can Provide Ancillary Grid Fault Response April 1, 2016 Interior of the controllable grid interface test facility, showing a long hallway and shelves full of electronic equipment. The controllable grid interface test facility at the National Wind Technology Center makes it possible to research the effectiveness of wind energy in providing ancillary grid services such as frequency control. Photo by Dennis Schroeder/NREL 27442 Image of a single wind

  3. Fault-Aware Utility-Based Job Scheduling on Blue Gene/P systems | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leadership Computing Facility Fault-Aware Utility-Based Job Scheduling on Blue Gene/P systems Authors: Tang, W., Lan, Z., Desai, N., Buettner, D. Job scheduling on large-scale systems is increasingly a complicated affair, with numerous factors influencing scheduling policy. Addressing these concerns results in sophisticated scheduling policies that can be difficult to reason about. In this paper, we present a general utility-based scheduling framework to balance different scheduling

  4. Microsoft Word - GroundFaultSAND-rev7-JJ.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3459 Unlimited Release Printed June 2013 Photovoltaic Ground Fault and Blind Spot Electrical Simulations Jack D. Flicker Jay Johnson Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract

  5. The BTeV DAQ and Trigger System - Some throughput, usability and fault tolerance aspects

    SciTech Connect (OSTI)

    Erik Edward Gottschalk et al.

    2001-08-20

    As presented at the last CHEP conference, the BTeV triggering and data collection pose a significant challenge in construction and operation, generating 1.5 Terabytes/second of raw data from over 30 million detector channels. We report on facets of the DAQ and trigger farms. We report on the current design of the DAQ, especially its partitioning features to support commissioning of the detector. We are exploring collaborations with computer science groups experienced in fault tolerant and dynamic real-time and embedded systems to develop a system to provide the extreme flexibility and high availability required of the heterogeneous trigger farm ({approximately} ten thousand DSPs and commodity processors). We describe directions in the following areas: system modeling and analysis using the Model Integrated Computing approach to assist in the creation of domain-specific modeling, analysis, and program synthesis environments for building complex, large-scale computer-based systems; System Configuration Management to include compilable design specifications for configurable hardware components, schedules, and communication maps; Runtime Environment and Hierarchical Fault Detection/Management--a system-wide infrastructure for rapidly detecting, isolating, filtering, and reporting faults which will be encapsulated in intelligent active entities (agents) to run on DSPs, L2/3 processors, and other supporting processors throughout the system.

  6. Sideband Algorithm for Automatic Wind Turbine Gearbox Fault Detection and Diagnosis: Preprint

    SciTech Connect (OSTI)

    Zappala, D.; Tavner, P.; Crabtree, C.; Sheng, S.

    2013-01-01

    Improving the availability of wind turbines (WT) is critical to minimize the cost of wind energy, especially for offshore installations. As gearbox downtime has a significant impact on WT availabilities, the development of reliable and cost-effective gearbox condition monitoring systems (CMS) is of great concern to the wind industry. Timely detection and diagnosis of developing gear defects within a gearbox is an essential part of minimizing unplanned downtime of wind turbines. Monitoring signals from WT gearboxes are highly non-stationary as turbine load and speed vary continuously with time. Time-consuming and costly manual handling of large amounts of monitoring data represent one of the main limitations of most current CMSs, so automated algorithms are required. This paper presents a fault detection algorithm for incorporation into a commercial CMS for automatic gear fault detection and diagnosis. The algorithm allowed the assessment of gear fault severity by tracking progressive tooth gear damage during variable speed and load operating conditions of the test rig. Results show that the proposed technique proves efficient and reliable for detecting gear damage. Once implemented into WT CMSs, this algorithm can automate data interpretation reducing the quantity of information that WT operators must handle.

  7. Geomechanical effects on CO{sub 2} leakage through fault zones during large-scale underground injection

    SciTech Connect (OSTI)

    Rinaldi, A.P.; Rutqvist, J.; Cappa, F.

    2013-09-01

    The importance of geomechanicsincluding the potential for faults to reactivate during large scale geologic carbon sequestration operationshas recently become more widely recognized. However, notwithstanding the potential for triggering notable (felt) seismic events, the potential for buoyancy-driven CO{sub 2} to reach potable groundwater and the ground surface is actually more important from public safety and storage-efficiency perspectives. In this context, this work extends the previous studies on the geomechanical modeling of fault responses during underground carbon dioxide injection, focusing on the short-term integrity of the sealing caprock, and hence on the potential for leakage of either brine or CO{sub 2} to reach the shallow groundwater aquifers during active injection. We consider stress/strain-dependent permeability and study the leakage through the fault zone as its permeability changes during a reactivation, also causing seismicity. We analyze several scenarios related to the volume of CO{sub 2} injected (and hence as a function of the overpressure), involving both minor and major faults, and analyze the profile risks of leakage for different stress/strain-permeability coupling functions. We conclude that whereas it is very difficult to predict how much fault permeability could change upon reactivation, this process can have a significant impact on the leakage rate. Moreover, our analysis shows that induced seismicity associated with fault reactivation may not necessarily open up a new flow path for leakage. Results show a poor correlation between magnitude and amount of fluid leakage, meaning that a single event is generally not enough to substantially change the permeability along the entire fault length. Consequently, even if some changes in permeability occur, this does not mean that the CO{sub 2} will migrate up along the entire fault, breaking through the caprock to enter the overlying aquifer.

  8. Trench logs from a strand of the Rock Valley Fault System, Nevada Test Site, Nye County, Nevada

    SciTech Connect (OSTI)

    Yount, J.C.; Shroba, R.R.; McMasters, C.R.; Huckins, H.E.; Rodriguez, E.A.

    1987-12-31

    The Rock Valley fault system trends northeasterly through the southeast corner of the Nevada Test Site. The system records left-lateral offset of Paleozoic and Tertiary rocks, although total offset amounts to only a few kilometers. Distinct scarps in alluvial deposits of Quaternary age and a concentration of seismicity, particularly at its north end, suggest that the Rock Valley fault system may be active. Two trenches were excavated by backhoe in 1978 across a 0.5-m-high scarp produced by a strand of the Rock Valley fault system. A detailed logging of the two Rock Valley fault trenches was undertaken during the spring of 1984. This report presents: (1) logs of both walls of the two trenches, (2) a general description of the lithologic units and the soils formed in these units that are exposed in and near the fault trenches, (3) observations of the clast fabric of unfaulted and faulted deposits exposed in the trench walls, and (4) a map of the surficial deposits in the vicinity of the trenches.

  9. Seismic Reflection Project Near the Southern Terminations of the Lost River and Lemhi Faults, Eastern Snake River Plain, Idaho

    SciTech Connect (OSTI)

    S. M. Jackson; G. S. Carpenter; R. P. Smith; J. L. Casper

    2006-10-01

    Thirteen seismic reflection lines were processed and interpreted to determine the southern terminations of the Lost River and Lemhi faults along the northwest boundary of the eastern Snake River Plain (ESRP). The southernmost terminations of the Arco and Howe segments were determined to support characterization of the Lost River and Lemhi fault sources, respectively, for the INL probabilistic seismic hazard analysis. Keywords:Keywords are required forExternal Release Review*Keywords  Keywords *Contacts (Type and Name are required for each row) Type ofContactContact Name  POC Editor RecordFour commercial seismic reflection lines (Arco lines 81-1 and 81-2; Howe lines 81-3 and 82-2) were obtained from the Montana Power Company. The seismic data were collected in the early 1980’s using a Vibroseis source with station and shot point locations that resulted in 12-fold data. Arco lines 81?1 and 81?2 and Howe lines 81?3 and 82?2 are located within the basins adjacent to the Arco and Howe segments, respectively. Seven seismic lines (Arco lines A1, A2, A3, and A4 and Howe lines H1, H2, and H3) were acquired by EG&G Idaho, Inc. Geosciences for this study using multiple impacts with an accelerated weight drop source. Station and shot point locations yielded 12-fold data. The seismic reflection lines are oriented perpendicular to and at locations along the projected extensions of the Arco and Howe fault segments within the ESRP. Two seismic lines (Arco line S2 and Howe line S4) were obtained from Sierra Geophysics. In 1984, they acquired seismic reflection data using an accelerated weight drop source with station and shot point locations that yielded 6-fold data. The two seismic reflection lines are oriented perpendicular to and at locations along the projected extensions of the Arco and Howe fault segments within the ESRP. In 1992 for this study, Geotrace Technologies Inc. processed all of the seismic reflection data using industry standard processing techniques. The

  10. High energy arcing fault fires in switchgear equipment : a literature review.

    SciTech Connect (OSTI)

    Nowlen, Steven Patrick; Brown, Jason W.; Wyant, Francis John

    2008-10-01

    In power generating plants, switchgear provide a means to isolate and de-energize specific electrical components and buses in order to clear downstream faults, perform routine maintenance, and replace necessary electrical equipment. These protective devices may be categorized by the insulating medium, such as air or oil, and are typically specified by voltage classes, i.e. low, medium, and high voltage. Given their high energy content, catastrophic failure of switchgear by means of a high energy arcing fault (HEAF) may occur. An incident such as this may lead to an explosion and fire within the switchgear, directly impact adjacent components, and possibly render dependent electrical equipment inoperable. Historically, HEAF events have been poorly documented and discussed in little detail. Recent incidents involving switchgear components at nuclear power plants, however, were scrupulously investigated. The phenomena itself is only understood on a very elementary level from preliminary experiments and theories; though many have argued that these early experiments were inaccurate due to primitive instrumentation or poorly justified methodologies and thus require re-evaluation. Within the past two decades, however, there has been a resurgence of research that analyzes previous work and modern technology. Developing a greater understanding of the HEAF phenomena, in particular the affects on switchgear equipment and other associated switching components, would allow power generating industries to minimize and possibly prevent future occurrences, thereby reducing costs associated with repair and downtime. This report presents the findings of a literature review focused on arc fault studies for electrical switching equipment. The specific objective of this review was to assess the availability of the types of information needed to support development of improved treatment methods in fire Probabilistic Risk Assessment (PRA) for nuclear power plant applications.

  11. Earthquake geology of the northern San Andreas Fault near Point Arena, California

    SciTech Connect (OSTI)

    Prentice, C.S.

    1989-01-01

    Excavations into a Holocene alluvial fan provided exposures of a record of prehistoric earthquakes near Point Arena, California. At least five earthquakes were recognized in the section. All of these occurred since the deposition of a unit that is approximately 2000 years old. Radiocarbon dating allows constraints to be placed on the dates of these earthquakes. A buried Holocene (2356-2709 years old) channel has been offset a maximum of 64 {plus minus} 2 meters. This implies a maximum slip rate of 25.5 {plus minus} 2.5 mm/yr. These data suggest that the average recurrence interval for great earthquakes on this segment of the San Andreas fault is long - between about 200 and 400 years. Offset marine terrace risers near Point Arena and an offset landslide near Fort Ross provide estimates of the average slip rate since Late Pleistocene time. Near Fort Ross, an offset landslide implies a slip rate of less than 39 mm/yr. Correlation and age estimates of two marine terrace risers across the San Andreas fault near Point Arena suggest slip rates of about 18-19 mm/yr since Late Pleistocene time. Tentative correlation of the Pliocene Ohlson Ranch Formation in northwestern Sonoma County with deposits 50 km to the northwest near Point Arean, provides piercing points to use in calculation of a Pliocene slip rate for the northern San Andreas fault. A fission-track age 3.3 {plus minus} 0.8 Ma was determined for zicrons separated from a tuff collected from the Ohlson Ranch Formation. The geomorphology of the region, especially of the two major river drainages, supports the proposed 50 km Pliocene offset. This implies a Pliocene slip rate of at least 12-20 mm/yr. These rates for different time periods imply that much of the Pacific-North American plate motion must be accommodated on other structures at this latitude.

  12. Low Cost Arc Fault Detection and Protection for PV Systems: January 30, 2012 - September 30, 2013

    SciTech Connect (OSTI)

    McCalmont, S.

    2013-10-01

    Final report for Tigo Energy Incubator project. The specific objective of this 18-month research effort was to develop an off-the-shelf arc-fault detector. The starting point of the project was a prototype detector that was constructed using discrete components and laboratory equipment. An intermediate objective was to build a technically viable detector using programmable components in the detector circuitry. The final objective was to build a commercially viable detector by reducing the cost of the circuitry through the use of more sophisticated programmable components and higher levels of integration.

  13. Composite refraction-reflection stack sections: Tracing faults in the Atlantic coastal plain sediments

    SciTech Connect (OSTI)

    Stephenson, D.E.; Coruh, C.; Costain, J.K.

    1993-05-01

    Seismic data from the Atlantic Coastal Plain are reprocessed and composite refraction-reflection stack sections produced to investigate basement faults that penetrate upward into Atlantic Coastal Plain sediments in South Carolina. Reprocessing recovered reflections from within the deep crust to the Moho as well as from within thin veneer (300) of the Atlantic Coastal Plain sediments. One of the major objectives of this paper is to discuss the use of shallow refracted arrivals to construct a composite refraction- reflection stack that allows better imaging of the subsurface at shallow depths.

  14. Hydrologic characterization of faults and other potentially conductive geologic features in the unsaturated zone

    SciTech Connect (OSTI)

    Javandel, I.; Shan, C.

    1990-01-01

    The capability of characterizing near-vertical faults and other potentially highly conductive geologic features in the vicinity of a high-level-waste repository is of great importance in site characterization of underground waste-isolation projects. The possibility of using transient air pressure data at depth for characterizing these features in the unsaturated zone are investigated. Analytical solutions for calculating the pressure response of such systems are presented. Solutions are given for two types of barometric pressure fluctuations, step function and sinusoidal. 3 refs., 9 figs.

  15. Formation and Growth of Stacking Fault Tetrahedra in Ni via Vacancy Aggregation Mechanism

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aidhy, Dilpuneet S.; Lu, Chenyang; Jin, Ke; Bei, Hongbin; Zhang, Yanwen; Wang, Lumin; Weber, William J.

    2015-12-29

    Using molecular dynamics simulations, the formation and growth of stacking fault tetrahedra (SFT) are captured by vacancy cluster diffusion and aggregation mechanisms in Ni. The vacancytetrahedron acts as a nucleation point for SFT formation. Simulations show that perfect SFT can grow to the next size perfect SFT via a vacancy aggregation mechanism. The stopping and range of ions in matter (SRIM) calculations and transmission electron microscopy (TEM) observations reveal that SFT can form farther away from the initial cascade-event locations, indicating the operation of diffusion-based vacancy-aggregation mechanism.

  16. NO FAULT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    does it again! Thursday, December 18, 2014 - 2:23pm Employees donate bikes, toys, time, cash for Toys for Tots Employees at the Nevada National Security Site have outdone themselves again this year by collecting 123 bicycles and 17 barrels of toys for this year's Toys for Tots campaign. The items will be distributed to children in the Las Vegas, Nev., area. Last year the Marine Corps fulfilled the holiday hopes and dreams of 6.8 million less fortunate children in 762 communities nationwide.

  17. Faults and gravity anomalies over the East Mesa hydrothermal-geothermal system

    SciTech Connect (OSTI)

    Goldstein, N.E.; Carle, S.

    1986-05-01

    Detailed interpretations of gravity anomalies over geothermal systems may be extremely useful for mapping the fracture or fault systems that control the circulation of the thermal waters. This approach seems to be particularly applicable in areas like the Salton Trough where reactions between the thermal waters and the porous sediments produce authigenic-hydrothermal minerals in sufficient quantity to cause distinct gravity anomalies at the surface. A 3-D inversion of the residual Bouguer gravity anomaly over the East Mesa geothermal field was made to examine the densified volume of rock. We show that the data not only resolve a north-south and an intersecting northwest structure, but that it may be possible to distinguish between the active present-day hydrothermal system and an older and cooler part of the system. The densified region is compared spatially to self-potential, thermal and seismic results and we find a good concordance between the different geophysical data sets. Our results agree with previous studies that have indicated that the main feeder fault recharging the East Mesa reservoir dips steeply to the west.

  18. Insights From Laboratory Experiments On Simulated Faults With Application To Fracture Evolution In Geothermal Systems

    SciTech Connect (OSTI)

    Stephen L. Karner, Ph.D

    2006-06-01

    Laboratory experiments provide a wealth of information related to mechanics of fracture initiation, fracture propagation processes, factors influencing fault strength, and spatio-temporal evolution of fracture properties. Much of the existing literature reports on laboratory studies involving a coupling of thermal, hydraulic, mechanical, and/or chemical processes. As these processes operate within subsurface environments exploited for their energy resource, laboratory results provide insights into factors influencing the mechanical and hydraulic properties of geothermal systems. I report on laboratory observations of strength and fluid transport properties during deformation of simulated faults. The results show systematic trends that vary with stress state, deformation rate, thermal conditions, fluid content, and rock composition. When related to geophysical and geologic measurements obtained from engineered geothermal systems (e.g. microseismicity, wellbore studies, tracer analysis), laboratory results provide a means by which the evolving thermal reservoir can be interpreted in terms of physico-chemical processes. For example, estimates of energy release and microearthquake locations from seismic moment tensor analysis can be related to strength variations observed from friction experiments. Such correlations between laboratory and field data allow for better interpretations about the evolving mechanical and fluid transport properties in the geothermal reservoir ultimately leading to improvements in managing the resource.

  19. Creating dynamic equivalent PV circuit models with impedance spectroscopy for arc-fault modeling.

    SciTech Connect (OSTI)

    Johnson, Jay Dean; Kuszmaul, Scott S.; Strauch, Jason E.; Schoenwald, David Alan

    2011-06-01

    Article 690.11 in the 2011 National Electrical Code{reg_sign} (NEC{reg_sign}) requires new photovoltaic (PV) systems on or penetrating a building to include a listed arc fault protection device. Currently there is little experimental or empirical research into the behavior of the arcing frequencies through PV components despite the potential for modules and other PV components to filter or attenuate arcing signatures that could render the arc detector ineffective. To model AC arcing signal propagation along PV strings, the well-studied DC diode models were found to inadequately capture the behavior of high frequency arcing signals. Instead dynamic equivalent circuit models of PV modules were required to describe the impedance for alternating currents in modules. The nonlinearities present in PV cells resulting from irradiance, temperature, frequency, and bias voltage variations make modeling these systems challenging. Linearized dynamic equivalent circuits were created for multiple PV module manufacturers and module technologies. The equivalent resistances and capacitances for the modules were determined using impedance spectroscopy with no bias voltage and no irradiance. The equivalent circuit model was employed to evaluate modules having irradiance conditions that could not be measured directly with the instrumentation. Although there was a wide range of circuit component values, the complex impedance model does not predict filtering of arc fault frequencies in PV strings for any irradiance level. Experimental results with no irradiance agree with the model and show nearly no attenuation for 1 Hz to 100 kHz input frequencies.

  20. Evaluation of Simple Causal Message Logging for Large-Scale Fault Tolerant HPC Systems

    SciTech Connect (OSTI)

    Bronevetsky, G; Meneses, E; Kale, L V

    2011-02-25

    The era of petascale computing brought machines with hundreds of thousands of processors. The next generation of exascale supercomputers will make available clusters with millions of processors. In those machines, mean time between failures will range from a few minutes to few tens of minutes, making the crash of a processor the common case, instead of a rarity. Parallel applications running on those large machines will need to simultaneously survive crashes and maintain high productivity. To achieve that, fault tolerance techniques will have to go beyond checkpoint/restart, which requires all processors to roll back in case of a failure. Incorporating some form of message logging will provide a framework where only a subset of processors are rolled back after a crash. In this paper, we discuss why a simple causal message logging protocol seems a promising alternative to provide fault tolerance in large supercomputers. As opposed to pessimistic message logging, it has low latency overhead, especially in collective communication operations. Besides, it saves messages when more than one thread is running per processor. Finally, we demonstrate that a simple causal message logging protocol has a faster recovery and a low performance penalty when compared to checkpoint/restart. Running NAS Parallel Benchmarks (CG, MG and BT) on 1024 processors, simple causal message logging has a latency overhead below 5%.

  1. Combined expert system/neural networks method for process fault diagnosis

    DOE Patents [OSTI]

    Reifman, Jaques; Wei, Thomas Y. C.

    1995-01-01

    A two-level hierarchical approach for process fault diagnosis is an operating system employs a function-oriented approach at a first level and a component characteristic-oriented approach at a second level, where the decision-making procedure is structured in order of decreasing intelligence with increasing precision. At the first level, the diagnostic method is general and has knowledge of the overall process including a wide variety of plant transients and the functional behavior of the process components. An expert system classifies malfunctions by function to narrow the diagnostic focus to a particular set of possible faulty components that could be responsible for the detected functional misbehavior of the operating system. At the second level, the diagnostic method limits its scope to component malfunctions, using more detailed knowledge of component characteristics. Trained artificial neural networks are used to further narrow the diagnosis and to uniquely identify the faulty component by classifying the abnormal condition data as a failure of one of the hypothesized components through component characteristics. Once an anomaly is detected, the hierarchical structure is used to successively narrow the diagnostic focus from a function misbehavior, i.e., a function oriented approach, until the fault can be determined, i.e., a component characteristic-oriented approach.

  2. Electrical and thermal finite element modeling of arc faults in photovoltaic bypass diodes.

    SciTech Connect (OSTI)

    Bower, Ward Isaac; Quintana, Michael A.; Johnson, Jay

    2012-01-01

    Arc faults in photovoltaic (PV) modules have caused multiple rooftop fires. The arc generates a high-temperature plasma that ignites surrounding materials and subsequently spreads the fire to the building structure. While there are many possible locations in PV systems and PV modules where arcs could initiate, bypass diodes have been suspected of triggering arc faults in some modules. In order to understand the electrical and thermal phenomena associated with these events, a finite element model of a busbar and diode was created. Thermoelectrical simulations found Joule and internal diode heating from normal operation would not normally cause bypass diode or solder failures. However, if corrosion increased the contact resistance in the solder connection between the busbar and the diode leads, enough voltage potentially would be established to arc across micron-scale electrode gaps. Lastly, an analytical arc radiation model based on observed data was employed to predicted polymer ignition times. The model predicted polymer materials in the adjacent area of the diode and junction box ignite in less than 0.1 seconds.

  3. Combined expert system/neural networks method for process fault diagnosis

    DOE Patents [OSTI]

    Reifman, J.; Wei, T.Y.C.

    1995-08-15

    A two-level hierarchical approach for process fault diagnosis of an operating system employs a function-oriented approach at a first level and a component characteristic-oriented approach at a second level, where the decision-making procedure is structured in order of decreasing intelligence with increasing precision. At the first level, the diagnostic method is general and has knowledge of the overall process including a wide variety of plant transients and the functional behavior of the process components. An expert system classifies malfunctions by function to narrow the diagnostic focus to a particular set of possible faulty components that could be responsible for the detected functional misbehavior of the operating system. At the second level, the diagnostic method limits its scope to component malfunctions, using more detailed knowledge of component characteristics. Trained artificial neural networks are used to further narrow the diagnosis and to uniquely identify the faulty component by classifying the abnormal condition data as a failure of one of the hypothesized components through component characteristics. Once an anomaly is detected, the hierarchical structure is used to successively narrow the diagnostic focus from a function misbehavior, i.e., a function oriented approach, until the fault can be determined, i.e., a component characteristic-oriented approach. 9 figs.

  4. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama. Annual report, March 1996--March 1997

    SciTech Connect (OSTI)

    Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.; Alabi, G.G.; Groshong, R.H.

    1997-08-01

    Gilbertown Field is the oldest oil field in Alabama and produces oil from chalk of the Upper Cretaceous Selma Group and from sandstone of the Eutaw Formation along the southern margin of the Gilbertown fault system. Most of the field has been in primary recovery since establishment, but production has declined to marginally economic levels. This investigation applies advanced geologic concepts designed to aid implementation of improved recovery programs. The Gilbertown fault system is detached at the base of Jurassic salt. The fault system began forming as a half graben and evolved in to a full graben by the Late Cretaceous. Conventional trapping mechanisms are effective in Eutaw sandstone, whereas oil in Selma chalk is trapped in faults and fault-related fractures. Burial modeling establishes that the subsidence history of the Gilbertown area is typical of extensional basins and includes a major component of sediment loading and compaction. Surface mapping and fracture analysis indicate that faults offset strata as young as Miocene and that joints may be related to regional uplift postdating fault movement. Preliminary balanced structural models of the Gilbertown fault system indicate that synsedimentary growth factors need to be incorporated into the basic equations of area balance to model strain and predict fractures in Selma and Eutaw reservoirs.

  5. Dynamic modeling of injection-induced fault reactivation and ground motion and impact on surface structures and human perception

    SciTech Connect (OSTI)

    Rutqvist, Jonny; Cappa, Frederic; Rinaldi, Antonio P.; Godano, Maxime

    2014-12-31

    We summarize recent modeling studies of injection-induced fault reactivation, seismicity, and its potential impact on surface structures and nuisance to the local human population. We used coupled multiphase fluid flow and geomechanical numerical modeling, dynamic wave propagation modeling, seismology theories, and empirical vibration criteria from mining and construction industries. We first simulated injection-induced fault reactivation, including dynamic fault slip, seismic source, wave propagation, and ground vibrations. From co-seismic average shear displacement and rupture area, we determined the moment magnitude to about Mw = 3 for an injection-induced fault reactivation at a depth of about 1000 m. We then analyzed the ground vibration results in terms of peak ground acceleration (PGA), peak ground velocity (PGV), and frequency content, with comparison to the U.S. Bureau of Mines vibration criteria for cosmetic damage to buildings, as well as human-perception vibration limits. For the considered synthetic Mw = 3 event, our analysis showed that the short duration, high frequency ground motion may not cause any significant damage to surface structures, and would not cause, in this particular case, upward CO2 leakage, but would certainly be felt by the local population.

  6. Domain wall pinning on strain relaxation defects (stacking faults) in nanoscale FePd (001)/MgO thin films

    SciTech Connect (OSTI)

    Hsiao, C. H.; Ouyang, Chuenhou E-mail: houyang@mx.nthu.edu.tw; Yao, Y. D.; Lo, S. C.; Chang, H. W. E-mail: houyang@mx.nthu.edu.tw

    2015-10-05

    FePd (001) films, prepared by an electron beam deposition system on MgO(100), exhibit a perpendicular magnetic anisotropy (1.7 × 10{sup 7 }erg/cc) with a high order parameter (0.92). The relation between stacking faults induced by the strain relaxation, which act as strong domain wall pinning sites, and the perpendicular coercivity of (001) oriented L1{sub 0} FePd films prepared at different temperatures have been investigated. Perpendicular coercivity can be apparently enhanced by raising the stacking fault densities, which can be elevated by climbing dissociation of total dislocation. The increased stacking fault densities (1.22 nm{sup −2}) with large perpendicular coercivity (6000 Oe) are obtained for samples prepared at 650 °C. This present work shows through controlling stacking fault density in FePd film, the coercivity can be manipulated, which can be applied in future magnetic devices.

  7. Power line fault current coupling to nearby natural gas pipelines: Volume 3, Analysis of pipeline coating impedance: Final report

    SciTech Connect (OSTI)

    Dabkowski, J.; Frazier, M. J.

    1988-08-01

    This report is a compilation of results obtained from two research programs. The response of a pipeline and coating at the higher voltage excitation levels encountered under power line fault conditions appears to be dominated by conduction at holiday sites in the coating. A simple analytical model was developed for predicting the resistance of a pipeline coating holiday as a function of the voltage produced across the pipeline coating by a nearby faulted power transmission line. The model was initially validated using coated pipeline samples stressed by a capacitive discharge voltage. Additional validation tests were then performed at the Pacific Gas and Electric Company's High Voltage Engineering Research Facility using high voltage ac waveforms for fault simulation. The principle program objective was to develop, both by laboratory and controlled field testing, an electrical resistance characterization for the pipeline coating as a function of the applied voltage level. The development of this model will allow a more accurate prediction of coupled voltage levels to a pipeline during fault current conditions. 54 figs, 3 tabs.

  8. Dynamic modeling of injection-induced fault reactivation and ground motion and impact on surface structures and human perception

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rutqvist, Jonny; Cappa, Frederic; Rinaldi, Antonio P.; Godano, Maxime

    2014-12-31

    We summarize recent modeling studies of injection-induced fault reactivation, seismicity, and its potential impact on surface structures and nuisance to the local human population. We used coupled multiphase fluid flow and geomechanical numerical modeling, dynamic wave propagation modeling, seismology theories, and empirical vibration criteria from mining and construction industries. We first simulated injection-induced fault reactivation, including dynamic fault slip, seismic source, wave propagation, and ground vibrations. From co-seismic average shear displacement and rupture area, we determined the moment magnitude to about Mw = 3 for an injection-induced fault reactivation at a depth of about 1000 m. We then analyzed themore » ground vibration results in terms of peak ground acceleration (PGA), peak ground velocity (PGV), and frequency content, with comparison to the U.S. Bureau of Mines’ vibration criteria for cosmetic damage to buildings, as well as human-perception vibration limits. For the considered synthetic Mw = 3 event, our analysis showed that the short duration, high frequency ground motion may not cause any significant damage to surface structures, and would not cause, in this particular case, upward CO2 leakage, but would certainly be felt by the local population.« less

  9. Fault tolerance in an inner-outer solver: A GVR-enabled case study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Ziming; Chien, Andrew A.; Teranishi, Keita

    2015-04-18

    Resilience is a major challenge for large-scale systems. It is particularly important for iterative linear solvers, since they take much of the time of many scientific applications. We show that single bit flip errors in the Flexible GMRES iterative linear solver can lead to high computational overhead or even failure to converge to the right answer. Informed by these results, we design and evaluate several strategies for fault tolerance in both inner and outer solvers appropriate across a range of error rates. We implement them, extending Trilinos’ solver library with the Global View Resilience (GVR) programming model, which provides multi-streammore » snapshots, multi-version data structures with portable and rich error checking/recovery. Lastly, experimental results validate correct execution with low performance overhead under varied error conditions.« less

  10. Methods and apparatuses for self-generating fault-tolerant keys in spread-spectrum systems

    DOE Patents [OSTI]

    Moradi, Hussein; Farhang, Behrouz; Subramanian, Vijayarangam

    2015-12-15

    Self-generating fault-tolerant keys for use in spread-spectrum systems are disclosed. At a communication device, beacon signals are received from another communication device and impulse responses are determined from the beacon signals. The impulse responses are circularly shifted to place a largest sample at a predefined position. The impulse responses are converted to a set of frequency responses in a frequency domain. The frequency responses are shuffled with a predetermined shuffle scheme to develop a set of shuffled frequency responses. A set of phase differences is determined as a difference between an angle of the frequency response and an angle of the shuffled frequency response at each element of the corresponding sets. Each phase difference is quantized to develop a set of secret-key quantized phases and a set of spreading codes is developed wherein each spreading code includes a corresponding phase of the set of secret-key quantized phases.

  11. Wrench fault tectonics in northern New Guinea basin, Papua New Guinea

    SciTech Connect (OSTI)

    Trumbly, N.I.; Pigott, J.D.

    1984-04-01

    New Guinea lies on the northern Australian plate boundary and has been a sensitive tectonic recorder of Cenozoic plate interactions between the Australian and Pacific plates. The specific plate interactions are documented by the evolution of the Northern New Guinea fault system and the basin it overprints, the Northern New Guinea basin. Consideration of plate kinematics suggests convergence became increasingly oblique during the Cenozoic. Hydrocarbon exploration strategies within the Northern New Guinea basin must address not only sedimentation, but also must deal with the basin's complex structural and tectonic evolution. A static tectonic classification will not adequately define the Northern New Guinea basin. It is better described as an evolving basin being overprinted by wrenching.

  12. Design, Test and Demonstration of Saturable Reactor High-Temperature Superconductor Fault Current Limiters

    SciTech Connect (OSTI)

    Frank Darmann; Robert Lombaerde; Franco Moriconi; Albert Nelson

    2011-10-31

    Zenergy Power has successfully designed, built, tested, and installed in the US electrical grid a saturable reactor Fault Current Limiter. Beginning in 2007, first as SC Power Systems and from 2008 as Zenergy Power, Inc., ZP used DOE matching grant and ARRA funds to help refine the design of the saturated reactor fault current limiter. ZP ultimately perfected the design of the saturated reactor FCL to the point that ZP could reliably design a suitable FCL for most utility applications. Beginning with a very basic FCL design using 1G HTS for a coil housed in a LN2 cryostat for the DC bias magnet, the technology progressed to a commercial system that was offered for sale internationally. Substantial progress was made in two areas. First, the cryogenics cooling system progressed from a sub-cooled liquid nitrogen container housing the HTS coils to cryostats utilizing dry conduction cooling and reaching temperatures down to less than 20 degrees K. Large, round cryostats with “warm bore” diameters of 1.7 meters enabled the design of large tanks to hold the AC components. Second, the design of the AC part of the FCL was refined from a six legged “spider” design to a more compact and lighter design with better fault current limiting capability. Further refinement of the flux path and core shape led to an efficient saturated reactor design requiring less Ampere-turns to saturate the core. In conclusion, the development of the saturable reactor FCL led to a more efficient design not requiring HTS magnets and their associated peripheral equipment, which yielded a more economical product in line with the electric utility industry expectations. The original goal for the DOE funding of the ZP project “Design, Test and Demonstration of Saturable Reactor High-Temperature Superconductor Fault Current Limiters” was to stimulate the HTS wire industry with, first 1G, then 2G, HTS wire applications. Over the approximately 5 years of ZP’s product

  13. Fault tolerance in an inner-outer solver: A GVR-enabled case study

    SciTech Connect (OSTI)

    Zhang, Ziming; Chien, Andrew A.; Teranishi, Keita

    2015-04-18

    Resilience is a major challenge for large-scale systems. It is particularly important for iterative linear solvers, since they take much of the time of many scientific applications. We show that single bit flip errors in the Flexible GMRES iterative linear solver can lead to high computational overhead or even failure to converge to the right answer. Informed by these results, we design and evaluate several strategies for fault tolerance in both inner and outer solvers appropriate across a range of error rates. We implement them, extending Trilinos’ solver library with the Global View Resilience (GVR) programming model, which provides multi-stream snapshots, multi-version data structures with portable and rich error checking/recovery. Lastly, experimental results validate correct execution with low performance overhead under varied error conditions.

  14. Basic criteria for formation of growth twins in high stacking fault energy metals

    SciTech Connect (OSTI)

    Yu, K. Y.; Zhang, X.; Bufford, D.; Chen, Y.; Liu, Y.; Wang, H.

    2013-10-28

    Nanotwinned metals received significant interest lately as twin boundaries may enable simultaneous enhancement of strength, ductility, thermal stability, and radiation tolerance. However, nanotwins have been the privilege of metals with low-to-intermediate stacking fault energy (SFE). Recent scattered studies show that nanotwins could be introduced into high SFE metals, such as Al. In this paper, we examine several sputter-deposited, (111) textured Ag/Al, Cu/Ni, and Cu/Fe multilayers, wherein growth twins were observed in Al, Ni, and face-centered cubic (fcc) Fe. The comparisons lead to two important design criteria that dictate the introduction of growth twins in high SFE metals. The validity of these criteria was then examined in Ag/Ni multilayers. Furthermore, another twin formation mechanism in high SFE metals was discovered in Ag/Ni system.

  15. A complex systems analysis of stick-slip dynamics of a laboratory fault

    SciTech Connect (OSTI)

    Walker, David M.; Tordesillas, Antoinette; Small, Michael; Behringer, Robert P.; Tse, Chi K.

    2014-03-15

    We study the stick-slip behavior of a granular bed of photoelastic disks sheared by a rough slider pulled along the surface. Time series of a proxy for granular friction are examined using complex systems methods to characterize the observed stick-slip dynamics of this laboratory fault. Nonlinear surrogate time series methods show that the stick-slip behavior appears more complex than a periodic dynamics description. Phase space embedding methods show that the dynamics can be locally captured within a four to six dimensional subspace. These slider time series also provide an experimental test for recent complex network methods. Phase space networks, constructed by connecting nearby phase space points, proved useful in capturing the key features of the dynamics. In particular, network communities could be associated to slip events and the ranking of small network subgraphs exhibited a heretofore unreported ordering.

  16. Assessment study of superconducting fault-current limiters operating at 77K

    SciTech Connect (OSTI)

    Giese, R.F. ); Runde, M. )

    1992-01-01

    The possible impact of nitrogen-cooled superconductors on the design and cost of superconducting fault-current limiters is assessed by considering the technical specifications such devices must meet and by comparing material properties of 77-K and 4-K superconductors. The main advantage of operating superconductors at 77 K is that the refrigeration operating cost is reduced by a factor of up to 25, and the refrigeration capital cost is reduced by a factor of up to 10. The heat capacity of 77 K is several orders of magnitude larger than at 4 K. This phenomenon increases conductor stability against flux jumps but makes switching from the superconducting to normal state slow and difficult. Consequently, a high critical current density, probably at least 10{sup 5} A/cm{sup 2}, is required.

  17. Assessment study of superconducting fault-current limiters operating at 77K

    SciTech Connect (OSTI)

    Giese, R.F.; Runde, M.

    1992-07-01

    The possible impact of nitrogen-cooled superconductors on the design and cost of superconducting fault-current limiters is assessed by considering the technical specifications such devices must meet and by comparing material properties of 77-K and 4-K superconductors. The main advantage of operating superconductors at 77 K is that the refrigeration operating cost is reduced by a factor of up to 25, and the refrigeration capital cost is reduced by a factor of up to 10. The heat capacity of 77 K is several orders of magnitude larger than at 4 K. This phenomenon increases conductor stability against flux jumps but makes switching from the superconducting to normal state slow and difficult. Consequently, a high critical current density, probably at least 10{sup 5} A/cm{sup 2}, is required.

  18. Methods and apparatuses for self-generating fault-tolerant keys in spread-spectrum systems

    DOE Patents [OSTI]

    Moradi, Hussein; Farhang, Behrouz; Subramanian, Vijayarangam

    2015-12-22

    Self-generating fault-tolerant keys for use in spread-spectrum systems are disclosed. At a communication device, beacon signals are received from another communication device and impulse responses are determined from the beacon signals. The impulse responses are circularly shifted to place a largest sample at a predefined position. The impulse responses are converted to a set of frequency responses in a frequency domain. The frequency responses are shuffled with a predetermined shuffle scheme to develop a set of shuffled frequency responses. A set of phase differences is determined as a difference between an angle of the frequency response and an angle of the shuffled frequency response at each element of the corresponding sets. Each phase difference is quantized to develop a set of secret-key quantized phases and a set of spreading codes is developed wherein each spreading code includes a corresponding phase of the set of secret-key quantized phases.

  19. Final Technical Report Recovery Act: Online Nonintrusive Condition Monitoring and Fault Detection for Wind Turbines

    SciTech Connect (OSTI)

    Wei Qiao

    2012-05-29

    The penetration of wind power has increased greatly over the last decade in the United States and across the world. The U.S. wind power industry installed 1,118 MW of new capacity in the first quarter of 2011 alone and entered the second quarter with another 5,600 MW under construction. By 2030, wind energy is expected to provide 20% of the U.S. electricity needs. As the number of wind turbines continues to grow, the need for effective condition monitoring and fault detection (CMFD) systems becomes increasingly important [3]. Online CMFD is an effective means of not only improving the reliability, capacity factor, and lifetime, but it also reduces the downtime, energy loss, and operation and maintenance (O&M) of wind turbines. The goal of this project is to develop novel online nonintrusive CMFD technologies for wind turbines. The proposed technologies use only the current measurements that have been used by the control and protection system of a wind turbine generator (WTG); no additional sensors or data acquisition devices are needed. Current signals are reliable and easily accessible from the ground without intruding on the wind turbine generators (WTGs) that are situated on high towers and installed in remote areas. Therefore, current-based CMFD techniques have great economic benefits and the potential to be adopted by the wind energy industry. Specifically, the following objectives and results have been achieved in this project: (1) Analyzed the effects of faults in a WTG on the generator currents of the WTG operating at variable rotating speed conditions from the perspective of amplitude and frequency modulations of the current measurements; (2) Developed effective amplitude and frequency demodulation methods for appropriate signal conditioning of the current measurements to improve the accuracy and reliability of wind turbine CMFD; (3) Developed a 1P-invariant power spectrum density (PSD) method for effective signature extraction of wind turbine faults with

  20. Design, Fabrication and Testing of a Superconducting Fault Current Limiter (SFCL)

    SciTech Connect (OSTI)

    Gouge, M..; Schwenterly, S.W.; Hazelton, D.

    2011-06-15

    The purpose of this project was to conduct R&D on specified components and provide technical design support to a SuperPower team developing a high temperature superconducting Fault Current Limiter (SFCL). ORNL teamed with SuperPower, Inc. on a Superconductivity Partnerships with Industry (SPI) proposal for the SFCL that was submitted to DOE and approved in FY 2003. A contract between DOE and SuperPower, Inc. was signed on July 14, 2003 to design, fabricate and test the SFCL. This device employs high temperature superconducting (HTS) elements and SuperPower's proprietary technology. The program goal was to demonstrate a device that will address a broad range of the utility applications and meet utility industry requirements. This DOE-sponsored Superconductivity Partnership with Industry project would positively impact electric power transmission reliability and security by introducing a new element in the grid that can significantly mitigate fault currents and provide lower cost solutions for grid protection. The project will conduct R&D on specified components and provide technical design support to a SuperPower-led team developing a SFCL as detailed in tasks 1-5 below. Note the SuperPower scope over the broad SPI project is much larger than that shown below which indicates only the SuperPower tasks that are complementary to the ORNL tasks. SuperPower is the Project Manager for the SFCL program, and is responsible for completion of the project on schedule and budget. The scope of work for ORNL is to provide R&D support for the SFCL in the following four broad areas: (1) Assist with high voltage subsystem R&D, design, fabrication and testing including characterization of the general dielectric performance of LN2 and component materials; (2) Consult on cryogenic subsystem R&D, design, fabrication and testing; (3) Participate in project conceptual and detailed design reviews; and (4) Guide commercialization by participation on the Technical Advisory Board (TAB). Super

  1. Some fundamental aspects of fault-tree and digraph-matrix relationships for a systems-interaction evaluation procedure

    SciTech Connect (OSTI)

    Alesso, H.P.

    1982-02-28

    Recent events, such as Three Mile Island-2, Brown's Ferry-3, and Crystal River-3, have demonstrated that complex accidents can occur as a result of dependent (common-cause/mode) failures. These events are now being called Systems Interactions. A procedure for the identification and evaluation of Systems Interactions is being developed by the NRC. Several national laboratories and utilities have contributed preliminary procedures. As a result, there are several important views of the Systems Interaction problem. This report reviews some fundamental mathematical background of both fault-oriented and success-oriented risk analyses in order to bring out the advantages and disadvantages of each. In addition, it outlines several fault-oriented/dependency analysis approaches and several success-oriented/digraph-matrix approaches. The objective is to obtain a broad perspective of present options for solving the Systems Interaction problem.

  2. Effects of Volcanism, Crustal Thickness, and Large Scale Faulting on the Development and Evolution of Geothermal Systems: Collaborative Project in Chile

    Broader source: Energy.gov [DOE]

    Effects of Volcanism, Crustal Thickness, and Large Scale Faulting on the Development and Evolution of Geothermal Systems: Collaborative Project in Chile presentation at the April 2013 peer review meeting held in Denver, Colorado.

  3. Comparison of chiller models for use in model-based fault detection

    SciTech Connect (OSTI)

    Sreedharan, Priya; Haves, Philip

    2001-06-07

    Selecting the model is an important and essential step in model based fault detection and diagnosis (FDD). Factors that are considered in evaluating a model include accuracy, training data requirements, calibration effort, generality, and computational requirements. The objective of this study was to evaluate different modeling approaches for their applicability to model based FDD of vapor compression chillers. Three different models were studied: the Gordon and Ng Universal Chiller model (2nd generation) and a modified version of the ASHRAE Primary Toolkit model, which are both based on first principles, and the DOE-2 chiller model, as implemented in CoolTools{trademark}, which is empirical. The models were compared in terms of their ability to reproduce the observed performance of an older, centrifugal chiller operating in a commercial office building and a newer centrifugal chiller in a laboratory. All three models displayed similar levels of accuracy. Of the first principles models, the Gordon-Ng model has the advantage of being linear in the parameters, which allows more robust parameter estimation methods to be used and facilitates estimation of the uncertainty in the parameter values. The ASHRAE Toolkit Model may have advantages when refrigerant temperature measurements are also available. The DOE-2 model can be expected to have advantages when very limited data are available to calibrate the model, as long as one of the previously identified models in the CoolTools library matches the performance of the chiller in question.

  4. ROSE::FTTransform - A Source-to-Source Translation Framework for Exascale Fault-Tolerance Research

    SciTech Connect (OSTI)

    Lidman, J; Quinlan, D; Liao, C; McKee, S

    2012-03-26

    Exascale computing systems will require sufficient resilience to tolerate numerous types of hardware faults while still assuring correct program execution. Such extreme-scale machines are expected to be dominated by processors driven at lower voltages (near the minimum 0.5 volts for current transistors). At these voltage levels, the rate of transient errors increases dramatically due to the sensitivity to transient and geographically localized voltage drops on parts of the processor chip. To achieve power efficiency, these processors are likely to be streamlined and minimal, and thus they cannot be expected to handle transient errors entirely in hardware. Here we present an open, compiler-based framework to automate the armoring of High Performance Computing (HPC) software to protect it from these types of transient processor errors. We develop an open infrastructure to support research work in this area, and we define tools that, in the future, may provide more complete automated and/or semi-automated solutions to support software resiliency on future exascale architectures. Results demonstrate that our approach is feasible, pragmatic in how it can be separated from the software development process, and reasonably efficient (0% to 30% overhead for the Jacobi iteration on common hardware; and 20%, 40%, 26%, and 2% overhead for a randomly selected subset of benchmarks from the Livermore Loops [1]).

  5. Fault-tolerant corrector/detector chip for high-speed data processing

    DOE Patents [OSTI]

    Andaleon, David D.; Napolitano, Jr., Leonard M.; Redinbo, G. Robert; Shreeve, William O.

    1994-01-01

    An internally fault-tolerant data error detection and correction integrated circuit device (10) and a method of operating same. The device functions as a bidirectional data buffer between a 32-bit data processor and the remainder of a data processing system and provides a 32-bit datum is provided with a relatively short eight bits of data-protecting parity. The 32-bits of data by eight bits of parity is partitioned into eight 4-bit nibbles and two 4-bit nibbles, respectively. For data flowing towards the processor the data and parity nibbles are checked in parallel and in a single operation employing a dual orthogonal basis technique. The dual orthogonal basis increase the efficiency of the implementation. Any one of ten (eight data, two parity) nibbles are correctable if erroneous, or two different erroneous nibbles are detectable. For data flowing away from the processor the appropriate parity nibble values are calculated and transmitted to the system along with the data. The device regenerates parity values for data flowing in either direction and compares regenerated to generated parity with a totally self-checking equality checker. As such, the device is self-validating and enabled to both detect and indicate an occurrence of an internal failure. A generalization of the device to protect 64-bit data with 16-bit parity to protect against byte-wide errors is also presented.

  6. Fault-tolerant corrector/detector chip for high-speed data processing

    DOE Patents [OSTI]

    Andaleon, D.D.; Napolitano, L.M. Jr.; Redinbo, G.R.; Shreeve, W.O.

    1994-03-01

    An internally fault-tolerant data error detection and correction integrated circuit device and a method of operating same is described. The device functions as a bidirectional data buffer between a 32-bit data processor and the remainder of a data processing system and provides a 32-bit datum with a relatively short eight bits of data-protecting parity. The 32-bits of data by eight bits of parity is partitioned into eight 4-bit nibbles and two 4-bit nibbles, respectively. For data flowing towards the processor the data and parity nibbles are checked in parallel and in a single operation employing a dual orthogonal basis technique. The dual orthogonal basis increase the efficiency of the implementation. Any one of ten (eight data, two parity) nibbles are correctable if erroneous, or two different erroneous nibbles are detectable. For data flowing away from the processor the appropriate parity nibble values are calculated and transmitted to the system along with the data. The device regenerates parity values for data flowing in either direction and compares regenerated to generated parity with a totally self-checking equality checker. As such, the device is self-validating and enabled to both detect and indicate an occurrence of an internal failure. A generalization of the device to protect 64-bit data with 16-bit parity to protect against byte-wide errors is also presented. 8 figures.

  7. Extreme temperature robust optical sensor designs and fault-tolerant signal processing

    DOE Patents [OSTI]

    Riza, Nabeel Agha; Perez, Frank

    2012-01-17

    Silicon Carbide (SiC) probe designs for extreme temperature and pressure sensing uses a single crystal SiC optical chip encased in a sintered SiC material probe. The SiC chip may be protected for high temperature only use or exposed for both temperature and pressure sensing. Hybrid signal processing techniques allow fault-tolerant extreme temperature sensing. Wavelength peak-to-peak (or null-to-null) collective spectrum spread measurement to detect wavelength peak/null shift measurement forms a coarse-fine temperature measurement using broadband spectrum monitoring. The SiC probe frontend acts as a stable emissivity Black-body radiator and monitoring the shift in radiation spectrum enables a pyrometer. This application combines all-SiC pyrometry with thick SiC etalon laser interferometry within a free-spectral range to form a coarse-fine temperature measurement sensor. RF notch filtering techniques improve the sensitivity of the temperature measurement where fine spectral shift or spectrum measurements are needed to deduce temperature.

  8. Fault-related CO2 degassing, geothermics, and fluid flow in southern California basins---Physiochemical evidence and modeling

    SciTech Connect (OSTI)

    Boles, James R.; Garven, Grant

    2015-08-04

    Our studies have had an important impact on societal issues. Experimental and field observations show that CO2 degassing, such as might occur from stored CO2 reservoir gas, can result in significant stable isotopic disequilibrium. In the offshore South Ellwood field of the Santa Barbara channel, we show how oil production has reduced natural seep rates in the area, thereby reducing greenhouse gases. Permeability is calculated to be ~20-30 millidarcys for km-scale fault-focused fluid flow, using changes in natural gas seepage rates from well production, and poroelastic changes in formation pore-water pressure. In the Los Angeles (LA) basin, our characterization of formation water chemistry, including stable isotopic studies, allows the distinction between deep and shallow formations waters. Our multiphase computational-based modeling of petroleum migration demonstrates the important role of major faults on geological-scale fluid migration in the LA basin, and show how petroleum was dammed up against the Newport-Inglewood fault zone in a “geologically fast” interval of time (less than 0.5 million years). Furthermore, these fluid studies also will allow evaluation of potential cross-formational mixing of formation fluids. Lastly, our new study of helium isotopes in the LA basin shows a significant leakage of mantle helium along the Newport Inglewood fault zone (NIFZ), at flow rates up to 2 cm/yr. Crustal-scale fault permeability (~60 microdarcys) and advective versus conductive heat transport rates have been estimated using the observed helium isotopic data. The NIFZ is an important deep-seated fault that may crosscut a proposed basin decollement fault in this heavily populated area, and appears to allow seepage of helium from the mantle sources about 30 km beneath Los Angeles. The helium study has been widely cited in recent weeks by the news media, both in radio and on numerous web sites.

  9. A novel micro-Raman technique to detect and characterize 4H-SiC stacking faults

    SciTech Connect (OSTI)

    Piluso, N. Camarda, M.; La Via, F.

    2014-10-28

    A novel Micro-Raman technique was designed and used to detect extended defects in 4H-SiC homoepitaxy. The technique uses above band-gap high-power laser densities to induce a local increase of free carriers in undoped epitaxies (n < 10{sup 16} at/cm{sup −3}), creating an electronic plasma that couples with the longitudinal optical (LO) Raman mode. The Raman shift of the LO phonon-plasmon-coupled mode (LOPC) increases as the free carrier density increases. Crystallographic defects lead to scattering or recombination of the free carriers which results in a loss of coupling with the LOPC, and in a reduction of the Raman shift. Given that the LO phonon-plasmon coupling is obtained thanks to the free carriers generated by the high injection level induced by the laser, we named this technique induced-LOPC (i-LOPC). This technique allows the simultaneous determination of both the carrier lifetime and carrier mobility. Taking advantage of the modifications on the carrier lifetime induced by extended defects, we were able to determine the spatial morphology of stacking faults; the obtained morphologies were found to be in excellent agreement with those provided by standard photoluminescence techniques. The results show that the detection of defects via i-LOPC spectroscopy is totally independent from the stacking fault photoluminescence signals that cover a large energy range up to 0.7 eV, thus allowing for a single-scan simultaneous determination of any kind of stacking fault. Combining the i-LOPC method with the analysis of the transverse optical mode, the micro-Raman characterization can determine the most important properties of unintentionally doped film, including the stress status of the wafer, lattice impurities (point defects, polytype inclusions) and a detailed analysis of crystallographic defects, with a high spectral and spatial resolution.

  10. The importance of input variables to a neural network fault-diagnostic system for nuclear power plants

    SciTech Connect (OSTI)

    Lanc, T.L.

    1992-01-01

    This thesis explores safety enhancement for nuclear power plants. Emergency response systems currently in use depend mainly on automatic systems engaging when certain parameters go beyond a pre-specified safety limit. Often times the operator has little or no opportunity to react since a fast scram signal shuts down the reactor smoothly and efficiently. These accidents are of interest to technical support personnel since examining the conditions that gave rise to these situations help determine causality. In many other cases an automated fault-diagnostic advisor would be a valuable tool in assisting the technicians and operators to determine what just happened and why.

  11. The importance of input variables to a neural network fault-diagnostic system for nuclear power plants

    SciTech Connect (OSTI)

    Lanc, T.L.

    1992-12-31

    This thesis explores safety enhancement for nuclear power plants. Emergency response systems currently in use depend mainly on automatic systems engaging when certain parameters go beyond a pre-specified safety limit. Often times the operator has little or no opportunity to react since a fast scram signal shuts down the reactor smoothly and efficiently. These accidents are of interest to technical support personnel since examining the conditions that gave rise to these situations help determine causality. In many other cases an automated fault-diagnostic advisor would be a valuable tool in assisting the technicians and operators to determine what just happened and why.

  12. Segregation At Stacking Faults Within The ?' Phase Of Two Ni-base Superalloys Following Intermediate Temperature Creep

    SciTech Connect (OSTI)

    Viswanathan, G. B.; Shi, R.; Genc, Arda; Vorontsov, V. A.; Kovarik, Libor; Rae, C.M. F.; Mills, M. J.

    2015-01-01

    Using state-of-the-art energy dispersive spectroscopy, it has been established for the first time that there exists significant compositional variation (enrichment of Co and Cr and deficiency of Ni and Al) associated with superlattice intrinsic stacking faults created in the ordered ?' precipitates following intermediate temperature deformation of two commercial superalloys. The results indicate that long range diffusion of these elements is intimately involved in the precipitate shearing process and is therefore closely linked to the time-dependent deformation of the alloys.

  13. Evaluation of chiller modeling approaches and their usability for fault detection

    SciTech Connect (OSTI)

    Sreedharan, Priya

    2001-05-01

    Selecting the model is an important and essential step in model based fault detection and diagnosis (FDD). Several factors must be considered in model evaluation, including accuracy, training data requirements, calibration effort, generality, and computational requirements. All modeling approaches fall somewhere between pure first-principles models, and empirical models. The objective of this study was to evaluate different modeling approaches for their applicability to model based FDD of vapor compression air conditioning units, which are commonly known as chillers. Three different models were studied: two are based on first-principles and the third is empirical in nature. The first-principles models are the Gordon and Ng Universal Chiller model (2nd generation), and a modified version of the ASHRAE Primary Toolkit model, which are both based on first principles. The DOE-2 chiller model as implemented in CoolTools{trademark} was selected for the empirical category. The models were compared in terms of their ability to reproduce the observed performance of an older chiller operating in a commercial building, and a newer chiller in a laboratory. The DOE-2 and Gordon-Ng models were calibrated by linear regression, while a direct-search method was used to calibrate the Toolkit model. The ''CoolTools'' package contains a library of calibrated DOE-2 curves for a variety of different chillers, and was used to calibrate the building chiller to the DOE-2 model. All three models displayed similar levels of accuracy. Of the first principles models, the Gordon-Ng model has the advantage of being linear in the parameters, which allows more robust parameter estimation methods to be used and facilitates estimation of the uncertainty in the parameter values. The ASHRAE Toolkit Model may have advantages when refrigerant temperature measurements are also available. The DOE-2 model can be expected to have advantages when very limited data are available to calibrate the model, as

  14. An overview of the star thrust experiment

    SciTech Connect (OSTI)

    Miller, Kenneth; Slough, John; Hoffman, Alan

    1998-01-15

    The Field Reversed Configuration, FRC, is a closed field fusion confinement geometry with great potential to be used as a space propulsive device and power source. Present formation techniques are cumbersome and severely constrain the resultant FRC. An experiment is presently under construction to study the formation and sustainment of the FRC using a rotating magnetic field. If successful, this technique would vastly simplify and enable future FRC endeavors. An overview of the STX experiment is presented.

  15. Mismatch relaxation by stacking fault formation of AlN islands in AlGaN/GaN structures on m-plane GaN substrates

    SciTech Connect (OSTI)

    Smalc-Koziorowska, Julita; Sawicka, Marta; Skierbiszewski, Czeslaw; Grzegory, Izabella

    2011-08-08

    We study the mismatch relaxation of 2-5 nm thin elongated AlN islands formed during growth of AlGaN on bulk m-plane GaN by molecular beam epitaxy. The relaxation of these m-plane AlN layers is anisotropic and occurs through the introduction of stacking faults in [0001] planes during island coalescence, while no relaxation is observed along the perpendicular [1120] direction. This anisotropy in the mismatch relaxation and the formation of stacking faults in the AlN islands are explained by the growth mode of the AlN platelets and their coalescence along the [0001] direction.

  16. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama. Final report, March 1996--September 1998

    SciTech Connect (OSTI)

    Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.; Alabi, G.G.; Carroll, R.E.; Groshong, R.H.; Jin, G.

    1998-12-01

    This project was designed to analyze the structure of Mesozoic and Tertiary strata in Gilbertown Field and adjacent areas to suggest ways in which oil recovery can be improved. The Eutaw Formation comprises 7 major flow units and is dominated by low-resistivity, low-contrast play that is difficult to characterize quantitatively. Selma chalk produces strictly from fault-related fractures that were mineralized as warm fluid migrated from deep sources. Resistivity, dipmeter, and fracture identification logs corroborate that deformation is concentrated in the hanging-wall drag zones. New area balancing techniques were developed to characterize growth strata and confirm that strain is concentrated in hanging-wall drag zones. Curvature analysis indicates that the faults contain numerous fault bends that influence fracture distribution. Eutaw oil is produced strictly from footwall uplifts, whereas Selma oil is produced from fault-related fractures. Clay smear and mineralization may be significant trapping mechanisms in the Eutaw Formation. The critical seal for Selma reservoirs, by contrast, is where Tertiary clay in the hanging wall is juxtaposed with poorly fractured Selma chalk in the footwall. Gilbertown Field can be revitalized by infill drilling and recompletion of existing wells. Directional drilling may be a viable technique for recovering untapped oil from Selma chalk. Revitalization is now underway, and the first new production wells since 1985 are being drilled in the western part of the field.

  17. Protection from ground faults in the stator winding of generators at power plants in the Siberian networks

    SciTech Connect (OSTI)

    Vainshtein, R. A.; Lapin, V. I.; Naumov, A. M.; Doronin, A. V.; Yudin, S. M.

    2010-05-15

    The experience of many years of experience in developing and utilization of ground fault protection in the stator winding of generators in the Siberian networks is generalized. The main method of protection is to apply a direct current or an alternating current with a frequency of 25 Hz to the primary circuits of the stator. A direct current is applied to turbo generators operating in a unit with a transformer without a resistive coupling to the external grid or to other generators. Applying a 25 Hz control current is appropriate for power generation systems with compensation of a capacitive short circuit current to ground. This method forms the basis for protection of generators operating on busbars, hydroelectric generators with a neutral grounded through an arc-suppression reactor, including in consolidated units with generators operating in parallel on a single low-voltage transformer winding.

  18. Use of inverse time, adjustable instantaneous pickup circuit breakers for short circuit and ground fault protection of energy efficient motors

    SciTech Connect (OSTI)

    Heath, D.W.; Bradfield, H.L.

    1995-12-31

    Many energy efficient low voltage motors exhibit first half cycle instantaneous inrush current values greater than the National Electrical Code`s 13 times motor full load amperes maximum permissible setting for instantaneous trip circuit breakers. The alternate use of an inverse time circuit breaker could lead to inadequate protection if the breaker does not have adjustable instantaneous settings. Recent innovations in digital solid state trip unit technology have made available an inverse time, adjustable instantaneous trip circuit breaker in 15A to 150A ratings. This allows the instantaneous pickup to be adjusted to a value slightly above motor inrush so that low level faults will be cleared instantaneously while avoiding nuisance tripping at startup. Applications, settings and comparisons are discussed.

  19. Potential-induced degradation in solar cells: Electronic structure and diffusion mechanism of sodium in stacking faults of silicon

    SciTech Connect (OSTI)

    Ziebarth, Benedikt Gumbsch, Peter; Mrovec, Matous; Elssser, Christian

    2014-09-07

    Sodium decorated stacking faults (SFs) were recently identified as the primary cause of potential-induced degradation in silicon (Si) solar-cells due to local electrical short-circuiting of the p-n junctions. In the present study, we investigate these defects by first principles calculations based on density functional theory in order to elucidate their structural, thermodynamic, and electronic properties. Our calculations show that the presence of sodium (Na) atoms leads to a substantial elongation of the Si-Si bonds across the SF, and the coverage and continuity of the Na layer strongly affect the diffusion behavior of Na within the SF. An analysis of the electronic structure reveals that the presence of Na in the SF gives rise to partially occupied defect levels within the Si band gap that participate in electrical conduction along the SF.

  20. A Summary of Fault Recurrence and Strain Rates in the Vicinity of the Hanford Site--Topical Report

    SciTech Connect (OSTI)

    Bjornstad, Bruce N.; Winsor, Kelsey; Unwin, Stephen D.

    2012-08-01

    This document is one in a series of topical reports compiled by the Pacific Northwest National Laboratory to summarize technical information on selected topics important to the performance of a probabilistic seismic hazard analysis of the Hanford Site. The purpose of this report is to summarize available data and analyses relevant to fault recurrence and strain rates within the Yakima Fold Belt. Strain rates have met with contention in the expert community and may have a significant potential for impact on the seismic hazard estimate at the Hanford Site. This report identifies the alternative conceptual models relevant to this technical issue and the arguments and data that support those models. It provides a brief description of the technical issue and principal uncertainties; a general overview on the nature of the technical issue, along with alternative conceptual models, supporting arguments and information, and uncertainties; and finally, suggests some prospective approaches to reducing uncertainties about earthquake recurrence rates for the Yakima Fold Belt.

  1. Aerial photographic interpretation of lineaments and faults in late cenozoic deposits in the Eastern part of the Benton Range 1:100,000 quadrangle and the Goldfield, Last Chance Range, Beatty, and Death Valley Junction 1:100,000 quadrangles, Nevada and California

    SciTech Connect (OSTI)

    Reheis, M.C.; Noller, J.S.

    1991-09-01

    Lineaments and faults in Quaternary and late Tertiary deposits in the southern part of the Walker Lane are potentially active and form patterns that are anomalous with respect to the typical fault patterns in most of the Great Basin. Little work has been done to identify and characterize these faults, with the exception of those in the Death Valley-Furnace Creek (DVFCFZ) fault system and those in and near the Nevada Test Site. Four maps at a scale of 1:100,000 summarize the existing knowledge about these lineaments and faults based on extensive aerial-photo interpretation, limited field investigations, and published geologic maps. The lineaments and faults in all four maps can be divided geographically into two groups. The first group includes west- to north-trending lineaments and faults associated with the DVFCFZ and with the Pahrump fault zone in the Death Valley Junction quadrangle. The second group consists of north- to east-northeast-trending lineaments and faults in a broad area that lies east of the DVFCFZ and north of the Pahrump fault zone. Preliminary observations of the orientations and sense of slip of the lineaments and faults suggest that the least principle stress direction is west-east in the area of the first group and northwest-southeast in the area of the second group. The DVFCFZ appears to be part of a regional right-lateral strike-slip system. The DVFCFZ steps right, accompanied by normal faulting in an extensional zone, to the northern part of the Walker Lane a the northern end of Fish Lake Valley (Goldfield quadrangle), and appears to step left, accompanied by faulting and folding in a compressional zone, to the Pahrump fault zone in the area of Ash Meadows (Death Valley Junction quadrangle). 25 refs.

  2. Fault Tolerance and Scaling in e-Science Cloud Applications: Observations from the Continuing Development of MODISAzure

    SciTech Connect (OSTI)

    Li, Jie; Humphrey, Marty; Cheah, You-Wei; Ryu, Youngryel; Agarwal, Deb; Jackson, Keith; van Ingen, Catharine

    2010-04-01

    It can be natural to believe that many of the traditional issues of scale have been eliminated or at least greatly reduced via cloud computing. That is, if one can create a seemingly wellfunctioning cloud application that operates correctly on small or moderate-sized problems, then the very nature of cloud programming abstractions means that the same application will run as well on potentially significantly larger problems. In this paper, we present our experiences taking MODISAzure, our satellite data processing system built on the Windows Azure cloud computing platform, from the proof-of-concept stage to a point of being able to run on significantly larger problem sizes (e.g., from national-scale data sizes to global-scale data sizes). To our knowledge, this is the longest-running eScience application on the nascent Windows Azure platform. We found that while many infrastructure-level issues were thankfully masked from us by the cloud infrastructure, it was valuable to design additional redundancy and fault-tolerance capabilities such as transparent idempotent task retry and logging to support debugging of user code encountering unanticipated data issues. Further, we found that using a commercial cloud means anticipating inconsistent performance and black-box behavior of virtualized compute instances, as well as leveraging changing platform capabilities over time. We believe that the experiences presented in this paper can help future eScience cloud application developers on Windows Azure and other commercial cloud providers.

  3. Multi-scale simulation of lithium diffusion in the presence of a 30 partial dislocation and stacking fault in Si

    SciTech Connect (OSTI)

    Wang, Chao-Ying; Li, Chen-liang; Wu, Guo-Xun; Wang, Bao-Lai; Yang, Li-Jun; Zhao, Wei; Meng, Qing-Yuan

    2014-01-28

    The multi-scale simulation method is employed to investigate how defects affect the performances of Li-ion batteries (LIBs). The stable positions, binding energies and dynamics properties of Li impurity in Si with a 30 partial dislocation and stacking fault (SF) have been studied in comparison with the ideal crystal. It is found that the most table position is the tetrahedral (T{sub d}) site and the diffusion barrier is 0.63?eV in bulk Si. In the 30 partial dislocation core and SF region, the most stable positions are at the centers of the octagons (Oct-A and Oct-B) and pentahedron (site S), respectively. In addition, Li dopant may tend to congregate in these defects. The motion of Li along the dislocation core are carried out by the transport among the Oct-A (Oct-B) sites with the barrier of 1.93?eV (1.12?eV). In the SF region, the diffusion barrier of Li is 0.91?eV. These two types of defects may retard the fast migration of Li dopant that is finally trapped by them. Thus, the presence of the 30 partial dislocation and SF may deactivate the Li impurity and lead to low rate capability of LIB.

  4. Generating a fault-tolerant global clock using high-speed control signals for the MetaNet architecture

    SciTech Connect (OSTI)

    Ofek, Y. )

    1994-05-01

    This work describes a new technique, based on exchanging control signals between neighboring nodes, for constructing a stable and fault-tolerant global clock in a distributed system with an arbitrary topology. It is shown that it is possible to construct a global clock reference with time step that is much smaller than the propagation delay over the network's links. The synchronization algorithm ensures that the global clock tick' has a stable periodicity, and therefore, it is possible to tolerate failures of links and clocks that operate faster and/or slower than nominally specified, as well as hard failures. The approach taken in this work is to generate a global clock from the ensemble of the local transmission clocks and not to directly synchronize these high-speed clocks. The steady-state algorithm, which generates the global clock, is executed in hardware by the network interface of each node. At the network interface, it is possible to measure accurately the propagation delay between neighboring nodes with a small error or uncertainty and thereby to achieve global synchronization that is proportional to these error measurements. It is shown that the local clock drift (or rate uncertainty) has only a secondary effect on the maximum global clock rate. The synchronization algorithm can tolerate any physical failure. 18 refs.

  5. Growth faulting and syntectonic casting of the Dawson Creek Graben Complex: A North American craton-marginal trough; Carboniferous-Permian Peace River Embayment, western Canada

    SciTech Connect (OSTI)

    Barclay, J.E.; Utting, J. ); Krause, F.F.; Campbell, R.I. )

    1991-06-01

    The Dawson Creek Graben Complex was a 150 {times} 300 km, craton-perpendicular trough near the western North American craton margin. Sedimentary infill spanned 100 million years, and this tectonically controlled basin provides a comparison with other craton-marginal troughs or aulacogens, such as the Big Snowy, Uinta, Delaware, and Southern Oklahoma. The authors suspect that the graben complex was controlled by outboard, Antler-like orogeny and perhaps some strike-slip control. This syntectonic graben infill model provides a basis for developing new structural-stratigraphic plays in this mature basin. This extensional trough rests on a former basement arch and is centered in the broadly downwarped Peace River embayment. Sediment infill records several graben casting stages beginning with westernmost down-dropping, which then extended eastward and was accompanied by an increase in growth-type block faulting. Subsidence and faulting decay was followed by a retreat to western areas and tectonic stabilization. The complex was an arcuate half-graben, steep to the north, that widened asymmetrically and increased in depth to the west through time. The complex contained a principal half-graben with neighboring satellite grabens; throughout the complex are numerous kilometer-scale horst and graben blocks. The horsts subsided slower than neighboring grabens. This differential subsidence along block-bounding syn- and postdepositional growth-type normal faults controlled formation and bed thickness, as did inter- and intraformational unconformities.

  6. Distributed computing for signal processing: modeling of asynchronous parallel computation. Appendix C. Fault-tolerant interconnection networks and image-processing applications for the PASM parallel processing systems. Final report

    SciTech Connect (OSTI)

    Adams, G.B.

    1984-12-01

    The demand for very-high-speed data processing coupled with falling hardware costs has made large-scale parallel and distributed computer systems both desirable and feasible. Two modes of parallel processing are single-instruction stream-multiple data stream (SIMD) and multiple instruction stream - multiple data stream (MIMD). PASM, a partitionable SIMD/MIMD system, is a reconfigurable multimicroprocessor system being designed for image processing and pattern recognition. An important component of these systems is the interconnection network, the mechanism for communication among the computation nodes and memories. Assuring high reliability for such complex systems is a significant task. Thus, a crucial practical aspect of an interconnection network is fault tolerance. In answer to this need, the Extra Stage Cube (ESC), a fault-tolerant, multistage cube-type interconnection network, is defined. The fault tolerance of the ESC is explored for both single and multiple faults, routing tags are defined, and consideration is given to permuting data and partitioning the ESC in the presence of faults. The ESC is compared with other fault-tolerant multistage networks. Finally, reliability of the ESC and an enhanced version of it are investigated.

  7. Carbon deposition during brittle rock deformation: Changes in electrical properties of fault zones and potential geoelectric phenomena during earthquakes

    SciTech Connect (OSTI)

    Mathez, E A; Roberts, J J; Duba, A G; Kronenberg, A K; Karner, S L

    2008-05-16

    To investigate potential mechanisms for geoelectric phenomena accompanying earthquakes, we have deformed hollow cylinders of Sioux quartzite to failure in the presence of carbonaceous pore fluids and investigated the resulting changes in electrical conductivity and carbon distribution. Samples were loaded at room temperature or 400 C by a hydrostatic pressure at their outer diameter, increasing pressure at a constant rate to {approx}290 MPa. Pore fluids consisted of pure CO, CO{sub 2}, CH{sub 4} and a 1:1 mixture of CO{sub 2} and CH{sub 4}, each with pore pressures of 2.0 to 4.1 MPa. Failure occurred by the formation of mode II shear fractures transecting the hollow cylinder walls. Radial resistivities of the cylinders fell to 2.9 to 3.1 M{Omega}-m for CO tests and 15.2 to 16.5 M{Omega}-m for CO{sub 2}:CH{sub 4} tests, compared with >23 M{Omega}-m for dry, undeformed cylinders. Carbonaceous fluids had no discernable influence on rock strength. Based on mapping using electron microprobe techniques, carbon occurs preferentially as quasi-continuous films on newly-formed fracture surfaces, but these films are absent from pre-existing surfaces in those same experiments. The observations support the hypothesis that electrical conductivity of rocks is enhanced by the deposition of carbon on fracture surfaces and imply that electrical properties may change in direct response to brittle deformation. They also suggest that the carbon films formed nearly instantaneously as the cracks formed. Carbon film deposition may accompany the development of microfracture arrays prior to and during fault rupture and thus may be capable of explaining precursory and coseismic geoelectric phenomena.

  8. Structural health and prognostics management for offshore wind turbines : case studies of rotor fault and blade damage with initial O&M cost modeling.

    SciTech Connect (OSTI)

    Myrent, Noah J.; Kusnick, Joshua F.; Barrett, Natalie C.; Adams, Douglas E.; Griffith, Daniel Todd

    2013-04-01

    Operations and maintenance costs for offshore wind plants are significantly higher than the current costs for land-based (onshore) wind plants. One way to reduce these costs would be to implement a structural health and prognostic management (SHPM) system as part of a condition based maintenance paradigm with smart load management and utilize a state-based cost model to assess the economics associated with use of the SHPM system. To facilitate the development of such a system a multi-scale modeling approach developed in prior work is used to identify how the underlying physics of the system are affected by the presence of damage and faults, and how these changes manifest themselves in the operational response of a full turbine. This methodology was used to investigate two case studies: (1) the effects of rotor imbalance due to pitch error (aerodynamic imbalance) and mass imbalance and (2) disbond of the shear web; both on a 5-MW offshore wind turbine in the present report. Based on simulations of damage in the turbine model, the operational measurements that demonstrated the highest sensitivity to the damage/faults were the blade tip accelerations and local pitching moments for both imbalance and shear web disbond. The initial cost model provided a great deal of insight into the estimated savings in operations and maintenance costs due to the implementation of an effective SHPM system. The integration of the health monitoring information and O&M cost versus damage/fault severity information provides the initial steps to identify processes to reduce operations and maintenance costs for an offshore wind farm while increasing turbine availability, revenue, and overall profit.

  9. Allocating application to group of consecutive processors in fault-tolerant deadlock-free routing path defined by routers obeying same rules for path selection

    DOE Patents [OSTI]

    Leung, Vitus J.; Phillips, Cynthia A.; Bender, Michael A.; Bunde, David P.

    2009-07-21

    In a multiple processor computing apparatus, directional routing restrictions and a logical channel construct permit fault tolerant, deadlock-free routing. Processor allocation can be performed by creating a linear ordering of the processors based on routing rules used for routing communications between the processors. The linear ordering can assume a loop configuration, and bin-packing is applied to this loop configuration. The interconnection of the processors can be conceptualized as a generally rectangular 3-dimensional grid, and the MC allocation algorithm is applied with respect to the 3-dimensional grid.

  10. Parallel, Multigrid Finite Element Simulator for Fractured/Faulted and Other Complex Reservoirs based on Common Component Architecture (CCA)

    SciTech Connect (OSTI)

    Milind Deo; Chung-Kan Huang; Huabing Wang

    2008-08-31

    Black-oil, compositional and thermal simulators have been developed to address different physical processes in reservoir simulation. A number of different types of discretization methods have also been proposed to address issues related to representing the complex reservoir geometry. These methods are more significant for fractured reservoirs where the geometry can be particularly challenging. In this project, a general modular framework for reservoir simulation was developed, wherein the physical models were efficiently decoupled from the discretization methods. This made it possible to couple any discretization method with different physical models. Oil characterization methods are becoming increasingly sophisticated, and it is possible to construct geologically constrained models of faulted/fractured reservoirs. Discrete Fracture Network (DFN) simulation provides the option of performing multiphase calculations on spatially explicit, geologically feasible fracture sets. Multiphase DFN simulations of and sensitivity studies on a wide variety of fracture networks created using fracture creation/simulation programs was undertaken in the first part of this project. This involved creating interfaces to seamlessly convert the fracture characterization information into simulator input, grid the complex geometry, perform the simulations, and analyze and visualize results. Benchmarking and comparison with conventional simulators was also a component of this work. After demonstration of the fact that multiphase simulations can be carried out on complex fracture networks, quantitative effects of the heterogeneity of fracture properties were evaluated. Reservoirs are populated with fractures of several different scales and properties. A multiscale fracture modeling study was undertaken and the effects of heterogeneity and storage on water displacement dynamics in fractured basements were investigated. In gravity-dominated systems, more oil could be recovered at a given pore

  11. Bisectional fault detection system

    DOE Patents [OSTI]

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2008-11-11

    An apparatus, program product and method logically divides a group of nodes and causes node pairs comprising a node from each section to communicate. Results from the communications may be analyzed to determine performance characteristics, such as bandwidth and proper connectivity.

  12. Bisectional fault detection system

    DOE Patents [OSTI]

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2009-08-04

    An apparatus and program product logically divide a group of nodes and causes node pairs comprising a node from each section to communicate. Results from the communications may be analyzed to determine performance characteristics, such as bandwidth and proper connectivity.

  13. Bisectional fault detection system

    DOE Patents [OSTI]

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2012-02-14

    An apparatus, program product and method logically divide a group of nodes and causes node pairs comprising a node from each section to communicate. Results from the communications may be analyzed to determine performance characteristics, such as bandwidth and proper connectivity.

  14. In situ monitoring of stacking fault formation and its carrier lifetime mediation in p-type 4H-SiC

    SciTech Connect (OSTI)

    Chen, Bin Chen, Jun; Yao, Yuanzhao; Sekiguchi, Takashi; Matsuhata, Hirofumi; Okumura, Hajime

    2014-07-28

    Using the fine control of an electron beam (e-beam) in scanning electron microscopy with the capabilities of both electrical and optical imaging, the stacking fault (SF) formation together with its tuning of carrier lifetime was in situ monitored and investigated in p-type 4H-SiC homoepitaxial films. The SFs were formed through engineering basal plane dislocations with the energy supplied by the e-beam. The e-beam intensity required for the SF formation in the p-type films was ?100 times higher than that in the n-type ones. The SFs reduced the minority-carrier lifetime in the p-type films, which was opposite to that observed in the n-type case. The reason for the peculiar SF behavior in the p-type 4H-SiC is discussed with the cathodoluminescence results.

  15. Final Scientific/Technical Report – DE-EE0002960 Recovery Act. Detachment faulting and Geothermal Resources - An Innovative Integrated Geological and Geophysical Investigation of Pearl Hot Spring, Nevada

    SciTech Connect (OSTI)

    Stockli, Daniel F.

    2015-11-30

    The Pearl Host Spring Geothermal Project funded by the DoE Geothermal Program was a joint academic (KU/UT & OU) and industry collaboration (Sierra and Ram Power) to investigate structural controls and the importance of low-angle normal faults on geothermal fluid flow through a multifaceted geological, geophysical, and geochemical investigation in west-central Nevada. The study clearly showed that the geothermal resources in Clayton Valley are controlled by the interplay between low-angle normal faults and active deformation related to the Walker Lane. The study not only identified potentially feasible blind geothermal resource plays in eastern Clayton Valley, but also provide a transportable template for exploration in the area of west-central Nevada and other regional and actively-deforming releasing fault bends. The study showed that deep-seated low-angle normal faults likely act as crustal scale permeability boundaries and could play an important role in geothermal circulation and funneling geothermal fluid into active fault zones. Not unique to this study, active deformation is viewed as an important gradient to rejuvenated fracture permeability aiding the long-term viability of blind geothermal resources. The technical approach for Phase I included the following components, (1) Structural and geological analysis of Pearl Hot Spring Resource, (2) (U-Th)/He thermochronometry and geothermometry, (3) detailed gravity data and modeling (plus some magnetic and resistivity), (4) Reflection and Refraction Seismic (Active Source), (5) Integration with existing and new geological/geophysical data, and (6) 3-D Earth Model, combining all data in an innovative approach combining classic work with new geochemical and geophysical methodology to detect blind geothermal resources in a cost-effective fashion.

  16. LANSCE | Lujan Center | Thrust Area | Local Structure, Magnetism...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ingredients hypothesized to be important in the emergence of superconductivity. J. M. Caron, et al., Phys. Rev. B 84 (2011). DOI:10.1103PhysRevB.84.180409 Parametric Studies...

  17. Complex Oxides - Research Thrust Leader > Joel Brock > Leadership...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Joel Brock jdb20@cornell.edu Dr. Brock is a Professor in the School of Applied and Engineering Physics and a member of the graduate fields of Applied Physics and of Materials...

  18. Batteries & Fuel Cells - Research Thrust Leader > Tobias Hanrath...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tobias Hanrath th358@cornell.edu Research There is a tremendous opportunity space for nanostructured materials to play a key role in next generation energy technologies. Our...

  19. Batteries & Fuel Cells - Research Thrust Leader > Frank DiSalvo...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Frank DiSalvo fjd3@cornell.edu Research The DiSalvo Group's research focuses on the synthesis, characterization and potential applications of new solid state materials. Current...

  20. Complex Oxides - Research Thrust Leader > David Muller > Leadership...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    David Muller dm24@cornell.edu He joined the Applied and Engineering Physics faculty at Cornell University in July 2003, is a graduate of the University of Sydney and completed his...

  1. Data Archive and Portal Thrust Area Strategy Report (Technical...

    Office of Scientific and Technical Information (OSTI)

    Close Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for ...

  2. Evaluation of stacking faults and associated partial dislocations in AlSb/GaAs (001) interface by aberration-corrected high-resolution transmission electron microscopy

    SciTech Connect (OSTI)

    Wen, C.; Ge, B. H.; Cui, Y. X.; Li, F. H.; Zhu, J.; Yu, R.; Cheng, Z. Y.

    2014-11-15

    The stacking faults (SFs) in an AlSb/GaAs (001) interface were investigated using a 300 kV spherical aberration-corrected high-resolution transmission electron microscope (HRTEM). The structure and strain distribution of the single and intersecting (V-shaped) SFs associated with partial dislocations (PDs) were characterized by the [110] HRTEM images and geometric phase analysis, respectively. In the biaxial strain maps ?{sub xx} and ?{sub yy}, a SF can be divided into several sections under different strain states (positive or negative strain values). Furthermore, the strain state for the same section of a SF is in contrast to each other in ?{sub xx} and ?{sub yy} strain maps. The modification in the strain states was attributed to the variation in the local atomic displacements for the SF in the AlSb film on the GaAs substrate recorded in the lattice image. Finally, the single SF was found to be bounded by two 30 PDs. A pair of 30 PDs near the heteroepitaxial interface reacted to form a Lomer-Cottrell sessile dislocation located at the vertices of V-shaped SFs with opposite screw components. The roles of misfit dislocations, such as the PDs, in strain relaxation were also discussed.

  3. Evaluation of select heat and pressure measurement gauges for potential use in the NRC/OECD High Energy Arc Fault (HEAF) test program.

    SciTech Connect (OSTI)

    Lopez, Carlos; Wente, William Baker; Figueroa, Victor G.

    2014-01-01

    In an effort to improve the current state of the art in fire probabilistic risk assessment methodology, the U.S. Nuclear Regulatory Commission, Office of Regulatory Research, contracted Sandia National Laboratories (SNL) to conduct a series of scoping tests to identify thermal and mechanical probes that could be used to characterize the zone of influence (ZOI) during high energy arc fault (HEAF) testing. For the thermal evaluation, passive and active probes were exposed to HEAF-like heat fluxes for a period of 2 seconds at the SNLs National Solar Thermal Test Facility to determine their ability to survive and measure such an extreme environment. Thermal probes tested included temperature lacquers (passive), NANMAC thermocouples, directional flame thermometers, modified plate thermometers, infrared temperature sensors, and a Gardon heat flux gauge. Similarly, passive and active pressure probes were evaluated by exposing them to pressures resulting from various high-explosive detonations at the Sandia Terminal Ballistic Facility. Pressure probes included bikini pressure gauges (passive) and pressure transducers. Results from these tests provided good insight to determine which probes should be considered for use during future HEAF testing.

  4. Stress and fault rock controls on fault zone hydrology, Coso...

    Open Energy Info (EERE)

    fracture networks play only a minor role in fluid flow despite locally high fracture density and some fractures well-oriented for slip. At the surface, hydrothermal activity is...

  5. Inverter Ground Fault Overvoltage Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Task Force on Effective Grounding, ITFEG), led by Brian Lydic of Fronius USA, for providing the test plan that served as the basis for the test procedure used in this study. ...

  6. Fault Intersection | Open Energy Information

    Open Energy Info (EERE)

    Tectonic Setting Host Rock Age Host Rock Lithology Mean Capacity Mean Reservoir Temp Bac-Man Laguna Geothermal Area Philippine Island Arc Subduction Zone Volcanic 150 MW150,000 kW...

  7. Fault location in optical networks

    DOE Patents [OSTI]

    Stevens, Rick C.; Kryzak, Charles J.; Keeler, Gordon A.; Serkland, Darwin K.; Geib, Kent M.; Kornrumpf, William P.

    2008-07-01

    One apparatus embodiment includes an optical emitter and a photodetector. At least a portion of the optical emitter extends a radial distance from a center point. The photodetector provided around at least a portion of the optical emitter and positioned outside the radial distance of the portion of the optical emitter.

  8. Mesozoic and Cenozoic structural geology of the CP Hills, Nevada Test Site, Nye County, Nevada; and regional implications

    SciTech Connect (OSTI)

    Caskey, S.J.

    1991-08-01

    Detailed mapping and structural analysis of upper Proterozoic and Paleozoic rocks in the CP Hills of the Nevada Test Site, together with analysis of published maps and cross sections and a reconnaissance of regional structural relations indicate that the CP thrust of Barnes and Poole (1968) actually comprises two separate, oppositely verging Mesozoic thrust systems: (1) the west-vergent CP thrust which is well exposed in the CP Hills and at Mine Mountain, and (2) the east-vergent Belted Range thrust located northwest of Yucca Flat. West-vergence of the CP thrust is indicated by large scale west-vergent recumbent folds in both its hangingwall and footwall and by the fact that the CP thrust ramps up section through hangingwall strata toward the northwest. Regional structural relations indicate that the CP thrust forms part of a narrow sigmoidal belt of west-vergent folding and thrusting traceable for over 180 km along strike. The Belted Range thrust represents earlier Mesozoic deformation that was probably related to the Last Chance thrust system in southeastern California, as suggested by earlier workers. A pre-Tertiary reconstruction of the Cordilleran fold and thrust belt in the region between the NTS and the Las Vegas Range bears a close resemblance to other regions of the Cordillera and has important implications for the development of hinterland-vergent deformation as well as for the probable magnitude of Tertiary extension north of Las Vegas Valley. Subsequent to Mesozoic deformation, the CP Hills were disrupted by at least two episodes of Tertiary extensional deformation: (1) an earlier episode represented by pre-middle Miocene low-angle normal faults, and (2) a later, post-11 Ma episode of high-angle normal faulting. Both episodes of extension were related to regional deformation, the latter of which has resulted in the present basin and range topography of the NTS region.

  9. Using PHP format

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sawteeth, and the energy and particle confinement. Current is driven in the edge by electrostatic current sources. ... gradients in the normalized current density, (J"BB 2 ). ...

  10. The Macolumn - the Mac gets geophysical. [A review of geophysical software for the Apple Macintosh computer

    SciTech Connect (OSTI)

    Busbey, A.B. )

    1990-02-01

    Seismic Processing Workshop, a program by Parallel Geosciences of Austin, TX, is discussed in this column. The program is a high-speed, interactive seismic processing and computer analysis system for the Apple Macintosh II family of computers. Also reviewed in this column are three products from Wilkerson Associates of Champaign, IL. SubSide is an interactive program for basin subsidence analysis; MacFault and MacThrustRamp are programs for modeling faults.

  11. Influence of Mesozoic age structure on Miocene tectonic development in NE Anzoategui, Eastern Venezuela Basin

    SciTech Connect (OSTI)

    Sadler, P.; White, S.

    1996-08-01

    Structure within and surrounding the Quiamare-La Ceiba region, Eastern Venezuela Basin, is dominated by two major thrust fault systems. They were generated during Early-Middle Miocene time in response to oblique convergence of the Caribbean and South American plates. They are. respectively, the SE vergent NE-SW oriented Anaco fault system, and the SSE vergent ENE-WSW oriented Pirital fault system. The major structural feature associated with each fault system is a basement cored ramp anticline. New seismic data provides evidence that contributes to a better understanding of the sequence of tectonic development within and surrounding the Quiamare-La Ceiba region. Compressional structures in both the hanging wall and the footwall of the Pirital fault system appear to be inverted normal faults, that were previously active during Mesozoic time along the northern South America passive margin. A conjugate set of strike-slip faults is also present. They are oriented NNW-SSE, parallel to the Urica lineation, and SSW-NNE, respectively. A Mesozoic origin for these faults is suggested. Post-compressional relaxation during Plio-Pleistocene time resulted in the development of shallow, small scale normal faults. These normal faults appear to be localized by structural adjustments along the strike-slip fault sets. Existing oil and gas production within the Quiamare-La Ceiba region is from localized structural closures. Strike-slip faults dissect the prevailing structural grain, and may provide an additional hydrocarbon trapping mechanism.

  12. The Influence of fold and fracture development on reservoir behavior of the Lisburne Group of northern Alaska

    SciTech Connect (OSTI)

    Wesley K. Wallace; Catherine L. Hanks; Jerry Jensen: Michael T. Whalen; Paul Atkinson; Joseph Brinton; Thang Bui; Margarete Jadamec; Alexandre Karpov; John Lorenz; Michelle M. McGee; T.M. Parris; Ryan Shackleton

    2004-07-01

    The Carboniferous Lisburne Group is a major carbonate reservoir unit in northern Alaska. The Lisburne is folded and thrust faulted where it is exposed throughout the Brooks Range, but is relatively undeformed in areas of current production in the subsurface of the North Slope. The objectives of this study were to develop a better understanding of four major aspects of the Lisburne: (1) The geometry and kinematics of folds and their truncation by thrust faults. (2) The influence of folding on fracture patterns. (3) The influence of deformation on fluid flow. (4) Lithostratigraphy and its influence on folding, faulting, fracturing, and reservoir characteristics. Symmetrical detachment folds characterize the Lisburne in the northeastern Brooks Range. In contrast, Lisburne in the main axis of the Brooks Range is deformed into imbricate thrust sheets with asymmetrical hangingwall anticlines and footwall synclines. The Continental Divide thrust front separates these different structural styles in the Lisburne and also marks the southern boundary of the northeastern Brooks Range. Field studies were conducted for this project during 1999 to 2001 in various locations in the northeastern Brooks Range and in the vicinity of Porcupine Lake, immediately south of the Continental Divide thrust front. Results are summarized below for the four main subject areas of the study.

  13. Major Normal Fault | Open Energy Information

    Open Energy Info (EERE)

    345,000,000 W 345,000,000,000 mW 0.345 GW 3.45e-4 TW 548.15 K275 C 527 F 986.67 R Java - Darajat Geothermal Area Sunda Volcanic Arc Subduction Zone Volcanics 255 MW255,000 kW...

  14. Detachment Faulting and Geothermal Resources - An Innovative...

    Open Energy Info (EERE)

    Resources - An Innovative Integrated Geological and Geophysical Investigation in Fish Lake Valley, Nevada Geothermal Project Jump to: navigation, search Last modified on...

  15. PV Module Arc Fault Modeling and Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    performance and reliability testing * Component interoperability testing Advanced Power Electronics Components and Systems * Solar Energy Grid Integration Systems (SEGIS) *...

  16. Volttron Implementation: Automated Fault Detection and Diagnosis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OutlineAgenda o Platform overview o Drivers o Database o Agents 4. Why Volttron? o ... data * Automatically "learns" system characteristics * Adapts to any sensor set or ...

  17. Fault Tree Cut Set System Performance.

    Energy Science and Technology Software Center (OSTI)

    2000-02-21

    Version 00 SIGPI computes the probabilistic performance of complex systems by combining cut set or other binary product data with probability information on each basic event. SIGPI is designed to work with either coherent systems, where the system fails when certain combinations of components fail, or noncoherent systems, where at least one cut set occurs only if at least one component of the system is operating properly. The program can handle conditionally independent components, dependentmore » components, or a combination of component types and has been used to evaluate responses to environmental threats and seismic events. The three data types that can be input are cut set data in disjoint normal form, basic component probabilities for independent basic components, and mean and covariance data for statistically dependent basic components.« less

  18. Close range fault tolerant noncontacting position sensor

    DOE Patents [OSTI]

    Bingham, D.N.; Anderson, A.A.

    1996-02-20

    A method and system are disclosed for locating the three dimensional coordinates of a moving or stationary object in real time. The three dimensional coordinates of an object in half space or full space are determined based upon the time of arrival or phase of the wave front measured by a plurality of receiver elements and an established vector magnitudes proportional to the measured time of arrival or phase at each receiver element. The coordinates of the object are calculated by solving a matrix equation or a set of closed form algebraic equations. 3 figs.

  19. Fault Tolerant Programming Abstractions and Failure Recovery...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Problem Description * Why adding FT to MPI is difficult? * Challenges & areas of concern Lessons Learned * Where do we go from here? * Summary Approaches * Current solutions to...

  20. Design to Achieve Fault Tolerance and Resilience

    SciTech Connect (OSTI)

    Ted Quinn; Richard Bockhorst; Craig Peterson; Gregg Swindlehurst

    2012-09-01

    The purpose of this report is to provide initial scoping for follow on work designed to improve nuclear plant operation. The focus of this report is twofold. Selected trips over the last five years are examined to determine if there are potential opportunities to automate tasks that are currently performed manually. The second area is to evaluate the potential for avoiding reactor trips by reducing power in a controlled manner upon the loss of turbine generator load. Some candidate opportunities to reduce the frequency on reactor trips identified in this report are redundant feedwater controls, automated response to a feedwater or condensate pump trip reducing power vice a reactor trip, and elimination of air operators for the feedwater control valves or providing redundant air supplies.

  1. Fault-tolerant reactor protection system

    DOE Patents [OSTI]

    Gaubatz, Donald C.

    1997-01-01

    A reactor protection system having four divisions, with quad redundant sensors for each scram parameter providing input to four independent microprocessor-based electronic chassis. Each electronic chassis acquires the scram parameter data from its own sensor, digitizes the information, and then transmits the sensor reading to the other three electronic chassis via optical fibers. To increase system availability and reduce false scrams, the reactor protection system employs two levels of voting on a need for reactor scram. The electronic chassis perform software divisional data processing, vote 2/3 with spare based upon information from all four sensors, and send the divisional scram signals to the hardware logic panel, which performs a 2/4 division vote on whether or not to initiate a reactor scram. Each chassis makes a divisional scram decision based on data from all sensors. Each division performs independently of the others (asynchronous operation). All communications between the divisions are asynchronous. Each chassis substitutes its own spare sensor reading in the 2/3 vote if a sensor reading from one of the other chassis is faulty or missing. Therefore the presence of at least two valid sensor readings in excess of a set point is required before terminating the output to the hardware logic of a scram inhibition signal even when one of the four sensors is faulty or when one of the divisions is out of service.

  2. Network Fault Tolerance in Open MPI

    SciTech Connect (OSTI)

    Shipman, Galen; Graham, Richard L; Bosilca, George

    2007-01-01

    High Performance Computing (HPC) systems are rapidly growing in size and complexity. As a result, transient and persistent network failures can occur on the time scale of application run times, reducing the productive utilization of these systems. The ubiquitous network protocol used to deal with such failures is TCP/IP, however, available implementations of this protocol provide unacceptable performance for HPC system users, and do not provide the high bandwidth, low latency communications of modern interconnects. This paper describes methods used to provide protection against several network errors such as dropped packets, corrupt packets, and loss of network interfaces while maintaining high-performance communications. Micro-benchmark experiments using vendor supplied TCP/IP and O/S bypass low-level communications stacks over InfiniBand and Myrinet are used to demonstrate the high-performance characteristics of our protocol. The NAS Parallel Benchmarks are used to demonstrate the scalability and the minimal performance impact of this protocol. The micro-benchmarks show that providing higher data reliability decrease performance by up to 30% relative to unprotected communications, but provide performance improvements of a factor of four over TCP/IP running over InfiniBand DDR. The NAS Parallel Benchmarks show virtually no impact of the data reliability protocol on overall run-time.

  3. Fault-tolerant reactor protection system

    DOE Patents [OSTI]

    Gaubatz, D.C.

    1997-04-15

    A reactor protection system is disclosed having four divisions, with quad redundant sensors for each scram parameter providing input to four independent microprocessor-based electronic chassis. Each electronic chassis acquires the scram parameter data from its own sensor, digitizes the information, and then transmits the sensor reading to the other three electronic chassis via optical fibers. To increase system availability and reduce false scrams, the reactor protection system employs two levels of voting on a need for reactor scram. The electronic chassis perform software divisional data processing, vote 2/3 with spare based upon information from all four sensors, and send the divisional scram signals to the hardware logic panel, which performs a 2/4 division vote on whether or not to initiate a reactor scram. Each chassis makes a divisional scram decision based on data from all sensors. Each division performs independently of the others (asynchronous operation). All communications between the divisions are asynchronous. Each chassis substitutes its own spare sensor reading in the 2/3 vote if a sensor reading from one of the other chassis is faulty or missing. Therefore the presence of at least two valid sensor readings in excess of a set point is required before terminating the output to the hardware logic of a scram inhibition signal even when one of the four sensors is faulty or when one of the divisions is out of service. 16 figs.

  4. Close range fault tolerant noncontacting position sensor

    DOE Patents [OSTI]

    Bingham, Dennis N.; Anderson, Allen A.

    1996-01-01

    A method and system for locating the three dimensional coordinates of a moving or stationary object in real time. The three dimensional coordinates of an object in half space or full space are determined based upon the time of arrival or phase of the wave front measured by a plurality of receiver elements and an established vector magnitudes proportional to the measured time of arrival or phase at each receiver element. The coordinates of the object are calculated by solving a matrix equation or a set of closed form algebraic equations.

  5. Efficient Synchronization Stability Metrics for Fault Clearing...

    Office of Scientific and Technical Information (OSTI)

    Technical Information Service, Springfield, VA at www.ntis.gov. Authors: Backhaus, Scott N. 1 ; Chertkov, Michael 1 ; Bent, Russell Whitford 1 ; Bienstock, Daniel 2...

  6. Thrust at N{sup 3}LL with power corrections and a precision global...

    Office of Scientific and Technical Information (OSTI)

    ... Country of Publication: United States Language: English Subject: 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; ACCURACY; B QUARKS; CENTER-OF-MASS SYSTEM; CORRECTIONS; ...

  7. Franciscan-Knoxville Problem: Relationship between an accretionary prism and adjacent fore-arc basin

    SciTech Connect (OSTI)

    Korsch, R.J.

    1983-01-01

    The relationship between the Franciscan complex and Knoxville shales in the Californian Coast Ranges has been the subject of debate for a considerable period of time. Initially, gradational and unconformable relationships for the contact were proposed. This was followed by the recognition, at some localities, of a thrust fault contact. Plate tectonics has provided a framework for interpretation of the Franciscan complex as an accretionary prism related to subduction of oceanic crust and the Great Valley sequence, including the Knoxville shales, as fore-arc basin deposits. Thus, the contact between the two units was the initial site of the Benioff zone, which then migrated westward as the accretionary prism developed. In the Franciscan complex and Great Valley sequence many thrusts have been recognized recently. At different localities, the Franciscan complex can be observed juxtaposed against various units of the Great Valley sequence, suggesting a complicated thrusting history subsequent to initiation of the Benioff zone. Some of the thrusts had movement during development of the accretionary prism, but movement on others may be post-subduction in time. The term ''Coast Range thrust'' has been used to refer to the contact, but in recent years its meaning has become blurred by liberalization and excessive use. It is proposed that the term be used only as originally proposed, that is, as the thrust that juxtaposes the Franciscan complex and the ophiolitic base of the Great Valley sequence.

  8. Structure and time of deformation in the central Pancake Range, Nye County, Nevada

    SciTech Connect (OSTI)

    Perry, W.J.; Grow, J.A. )

    1993-04-01

    In east-central Nevada, the Portuguese Mountain area of the central Pancake Range directly west of Railroad Valley contains mapped thrust' faults that form part of the basis of the central Nevada thrust-belt oil play. The authors have mapped and field checked the structure of this area to determine if thrust-style hydrocarbon traps are likely. In this region, previously mapped thrusts have been found to be (1) normal faults, dipping more than 60[degree], (2) landslide masses of both Oligocene igneous rocks and Paleozoic carbonate rocks, and (3) low-angle attenuation faults that omit rather than duplicate stratigraphic section. Locally, the first two types (mapped Portuguese Mountain thrust') involve Oligocene igneous rocks and are therefore younger. The third is represented by a low-angle detachment system northeast of Portuguese Mountain that was first differentially eroded and then overlapped by thin limestone-clast conglomerate and red clays (terra rosa) of the Sheep Pass( ) Formation and overlying volcanic rocks. The possible Sheep Pass correlation would imply that the detachment system is Paleogene or older. Farther north, near McClure Spring, a similar terra rosa and subjacent thin limestone-clast conglomerate sequence is underlain paraconformably by gray claystone containing dinosaur bone fragments, similar to the type Newark Canyon Formation (Cretaceous) to the north. Sheep Pass( ) terra rosa of the upper part of this sequence rest with profound unconformity (nearly 90[degree]) on mid-Pennsylvanian limestone of the east limb of the McClure Spring syncline, a major recumbent syncline cored by Permian to Triassic( ) synorogenic conglomerates. These rocks contain outcrop-scale synorogenic angular unconformities of as much as 15[degree] suggesting that folding began in Permian time. These preliminary results suggest that contractional deformation of the McClure Spring syncline may be pre-Sevier and possibly of Permian-Triassic age.

  9. Fluctuation and transport reduction in a reversed field pinch by inductive poloidal current drive

    SciTech Connect (OSTI)

    Sarff, J.S.; Hokin, S.A.; Ji, H.; Prager, S.C.; Sovinec, C.R.

    1993-12-01

    An auxilliay poloidal inductive electric field applied to a reversed field pinch plasma reduces the current density gradient, slows the growth of m=1 tearing fluctations, suppresses their associated sawteeth, and doubles the energy confinement time. Small sawteeth occur in the improved state but with m=0 precursors. By requiring a change of toroidal flux embedding the plasma, inductive poloidal current profile drive is transient, but the improvement encourages the program of RFP transport suppression using current profile control.

  10. EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    arc-fault

  11. Heavy oil reservoirs in the Tulare Fold Belt, Cymric-McKittrick fields, Kern County, California

    SciTech Connect (OSTI)

    Farley, T. )

    1990-05-01

    The Tulare fold belt is a series of asymmetric, generally northeast-verging anticlines and synclines in the Pliocene-Pleistocene Tulare Formation that trend northwestward through the Cymric-McKittrick fields. Anticlines within the deformed belt generally originated as fault propagation folds above decollements, the most important of which is the regional decollement on top of the Amnicola sand, the basal Tulare unit. The Amnicola decollement is the northeast subsurface extension of the McKittrick thrust, a low-angle fault that has displaced the Miocene Antelope shale over the Pliocene San Joaquin Formation and locally over the Tulare Formation. The Amnicola decollement is itself deformed by folding related to a younger, deeper decollement near the base of the San Joaquin Formation that merges westward with the Amnicola decollement and defines a zone of faulting associated with the McKittrick thrust Heavy oil reservoirs in the Tulare Formation are currently undergoing active development by thermal recovery techniques. In general, the geometry of heavy oil reservoirs is determined by location within the Tulare fold belt combined with the position of a subhorizontal fluid level trap that forms the updip limit of fluid-saturated rock Reservoir geometry is complicated by complex local structure, discontinuous stratigraphy, and partial depletion of heavy oil reservoirs by fluid withdrawal due to gravity drainage. Proper resolution of fold geometry, fault geometry, and position of the fluid level trap is crucial to the design and monitoring of thermal recovery projects within the Tulare fold belt.

  12. Co-Optimization of Fuels and Engines (Co-Optima) -- Fuel Properties and Chemical Kinetics and Thrust I Engine Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This presentation does not contain any proprietary, confidential, or otherwise restricted information #$%&'"(")*+,"!" Co-Optimization of Fuels and Engines Fuel Property Team -./0+,"12"345.+67489 ! "!"#$%&"'('#") * %+",%-./0"12) 3 %4",%5$/1) 6 %7$89%:"9;1) <% :$=%:>?;#9/) @ %5"99%7"2.) @ %+'#%A8;>B;) * %:$=%C$2>9"D) * %5($E%F"G9;() * %->'=%!'9E10'('8GH I % *J!

  13. The Development of Open Water-lubricated Polycrystalline Diamond (PCD) Thrust Bearings for Use in Marine Hydrokinetic (MHK) Energy Machines

    SciTech Connect (OSTI)

    Cooley, Craig, H.; Khonsari, Michael,, M; Lingwall, Brent

    2012-11-28

    Polycrstalline diamond (PCD) bearings were designed, fabricated and tested for marine-hydro-kinetic (MHK) application. Bearing efficiency and life were evaluated using the US Synthetic bearing test facility. Three iterations of design, build and test were conducted to arrive at the best bearing design. In addition life testing that simulated the starting and stopping and the loading of real MHK applications were performed. Results showed polycrystalline diamond bearings are well suited for MHK applications and that diamond bearing technology is TRL4 ready. Based on life tests results bearing life is estimated to be at least 11.5 years. A calculation method for evaluating the performance of diamond bearings of round geometry was also investigated and developed. Finally, as part of this effort test bearings were supplied free of charge to the University of Alaska for further evaluation. The University of Alaska test program will subject the diamond bearings to sediment laden lubricating fluid.

  14. Geothermal resources of the Green River Basin, Wyoming, including thermal data for the Wyoming portion of the Thrust Belt

    SciTech Connect (OSTI)

    Spencer, S.A.; Heasler, H.P.; Hinckley, B.S.

    1985-01-01

    The geothermal resources of the Green River basin were investigated. Oil-well bottom-hole temperatures, thermal logs of wells, and heat flow data have been interpreted within a framework of geologic and hydrologic constraints. Basic thermal data, which includes the background thermal gradient and the highest recorded temperature and corresponding depth is tabulated. It was concluded that large areas are underlain by water at temperatures greater than 120/sup 0/F. Although much of this water is too deep to be economically tapped solely for geothermal use, oil and gas wells presently provide access to this significant geothermal resource. Isolated areas with high temperature gradients exist. These areas - many revealed by hot springs - represent geothermal systems which might presently be developed economically. 34 refs., 11 figs., 8 tabs. (ACR)

  15. INNOVATIVE METHODOLOGY FOR DETECTION OF FRACTURE-CONTROLLED SWEET SPOTS IN THE NORTHERN APPALACHIAN BASIN

    SciTech Connect (OSTI)

    Robert Jacobi; John Fountain

    2001-02-28

    In the structure task, we completed a N-S transect east of Seneca Lake that indicated a N-striking fault near the southeastern shore of Seneca Lake, and also indicated NE and ENE-trending FIDs and faults north of Valois. The orientation and existence of the NE-striking FIDs and faults are thought to be controlled by basement faults, rather than thrust ramps above the Salina salt controlled only by a far-field Alleghanian stress field. Structure contour maps based on well log analyses have been constructed but not interpreted. Soil gas data displayed a number of ethane-charged soil gas ''spikes'' on a N-S transect from Ovid south to near Valois. The soil gas team found a larger number of spikes in the northern half of the survey, suggesting more open fractures (and faults) in the northern half of the survey. Seismic data has been purchased and reprocessed. Several grabens observed in the Trenton reflector are consistent with surface structure, soil gas, and aeromagnetic anomalies. The aeromagnetic survey is completed and the data is processed. Prominent magnetic anomalies suggest that faults in the Precambrian basement are located beneath regions where grabens in the Trenton are located.

  16. Petroleum systems of Jianghan Basin, Hubel Province, China

    SciTech Connect (OSTI)

    Cunningham, A.E.; Schaps, S.; McGregor, D.

    1996-12-31

    The Jianghan Basin is a Cretaceous-Tertiary nonmarine rift basin superimposed on a late Precambrian to Jurassic passive margin and foreland basin succession deformed by mid-Mesozoic folding and thrusting. Hence the basin has potential for superimposed petroleum systems. Oil production is established in a Tertiary petroleum system developed in two major depocenters, the Jiangling (west) and Qianjiang (east) Depressions. Lacustrine source beds in the early Eocene Xingouzhui and late Eocene Qianjiang Formations generated hydrocarbons during local maximum basin fill in the Oligocene to present. Very early, low temperature generation of petroleum occurs where Type 1S Qianjiang Formation kerogen is present. Tertiary fluvial and deltaic sandstones form reservoirs that trap oil in highs or rollover structures formed by normal faulting and salt movement. The pre-rift section contains large folds and good source-beds, but has high exploration risk. Factors limiting effectiveness of older petroleum systems are: (1) Uplift and erosion of thrust structures; (2) Overmaturation of pre-Permian source rocks prior to folding and thrusting; (3) Limited extent of secondary maturation of Late Paleozoic and Mesozoic source beds; and (4) Disruption of older traps and seals by widespread normal faulting. Production of hydrocarbons from Permian and Triassic rocks to the west of Hubei suggests that further seismic work and drilling are merited to evaluate pre-Tertiary potential in the Jianghan Basin.

  17. Petroleum systems of Jianghan Basin, Hubel Province, China

    SciTech Connect (OSTI)

    Cunningham, A.E. ); Schaps, S.; McGregor, D. )

    1996-01-01

    The Jianghan Basin is a Cretaceous-Tertiary nonmarine rift basin superimposed on a late Precambrian to Jurassic passive margin and foreland basin succession deformed by mid-Mesozoic folding and thrusting. Hence the basin has potential for superimposed petroleum systems. Oil production is established in a Tertiary petroleum system developed in two major depocenters, the Jiangling (west) and Qianjiang (east) Depressions. Lacustrine source beds in the early Eocene Xingouzhui and late Eocene Qianjiang Formations generated hydrocarbons during local maximum basin fill in the Oligocene to present. Very early, low temperature generation of petroleum occurs where Type 1S Qianjiang Formation kerogen is present. Tertiary fluvial and deltaic sandstones form reservoirs that trap oil in highs or rollover structures formed by normal faulting and salt movement. The pre-rift section contains large folds and good source-beds, but has high exploration risk. Factors limiting effectiveness of older petroleum systems are: (1) Uplift and erosion of thrust structures; (2) Overmaturation of pre-Permian source rocks prior to folding and thrusting; (3) Limited extent of secondary maturation of Late Paleozoic and Mesozoic source beds; and (4) Disruption of older traps and seals by widespread normal faulting. Production of hydrocarbons from Permian and Triassic rocks to the west of Hubei suggests that further seismic work and drilling are merited to evaluate pre-Tertiary potential in the Jianghan Basin.

  18. Thermal Waters Along The Konocti Bay Fault Zone, Lake County...

    Open Energy Info (EERE)

    in the diluted spring waters suggest that the diluting water is old. Authors J. M. Thompson, R. H. Mariner, L. D. White, T. S. Presser and W. C. Evans Published Journal Journal...

  19. Recency Of Faulting And Neotechtonic Framework In The Dixie Valley...

    Open Energy Info (EERE)

    Photography At Beowawe Hot Springs Area (Wesnousky, Et Al., 2003) Aerial Photography At Brady Hot Springs Area (Wesnousky, Et Al., 2003) Aerial Photography At Dixie Valley...

  20. Type E: Extensional Tectonic, Fault-Controlled Resource | Open...

    Open Energy Info (EERE)

    W 49,500,000,000 mW 0.0495 GW 4.95e-5 TW 470.15 K197 C 386.6 F 846.27 R Brady Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region Accommodation...

  1. MICRO-SEISMICITY, FAULT STRUCTURE AND HYDRAULIC COMPARTMENTALIZATION...

    Open Energy Info (EERE)

    system geometry, fluid conduits and fluid compartmentalization critical to geothermal reservoir management. We analyze 16 years of seismicity to improve hypocentral locations...

  2. Fault diagnosis via neural networks: The Boltzmann machine

    SciTech Connect (OSTI)

    Marseguerra, M.; Zio, E. . Dept. of Nuclear Engineering)

    1994-07-01

    The Boltzmann machine is a general-purpose artificial neural network that can be used as an associative memory as well as a mapping tool. The usual information entropy is introduced, and a network energy function is suitably defined. The network's training procedure is based on the simulated annealing during which a combination of energy minimization and entropy maximization is achieved. An application in the nuclear reactor field is presented in which the Boltzmann input-output machine is used to detect and diagnose a pipe break in a simulated auxiliary feedwater system feeding two coupled steam generators. The break may occur on either the hot or the cold leg of any of the two steam generators. The binary input data to the network encode only the trends of the thermohydraulic signals so that the network is actually a polarity device. The results indicate that the trained neural network is actually capable of performing its task. The method appears to be robust enough so that it may also be applied with success in the presence of substantial amounts of noise that cause the network to be fed with wrong signals.

  3. Fault Mapping At Coso Geothermal Area (1980) | Open Energy Information

    Open Energy Info (EERE)

    intrudes the crust in repsonse to lithospheric extension. References Duffield, W.A.; Bacon, C.R.; Dalrymple, G.B. (10 May 1980) Late Cenozoic volcanism, geochronology, and...

  4. PHOTOVOLTAIC DC ARC FAULT DETECTOR TESTING AT SANDIA NATIONAL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy PHOTOS: Vice President Biden Swears in New Deputy Secretary of Energy PHOTOS: Vice President Biden Swears in New Deputy Secretary of Energy October 15, 2014 - 11:39am Addthis 1 of 8 On October 10, 2014, U.S. Vice President Joe Biden visited the Department of Energy to swear in Dr. Elizabeth Sherwood-Randall as the Deputy Secretary of the U.S. Department of Energy. Here, Sherwood-Randall is joined on stage by her husband, two sons and her mother as she takes the oath of

  5. PV Arc Fault Detector Challenges Due to Module Frequency Response...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pink AC noise on top of the DC current. This signal travels down the line through the system. 2. As the signal passes through the modules and connectors, some of the frequency...

  6. Effects of Volcanism, Crustal Thickness, and Large Scale Faulting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... at Stanford Geothermal Workshop Feb. 2013 Interpret data in context of regional and local geology Initial interpretation completed - analysis ongoing Ongoing 12 | US DOE ...

  7. Fault block kinematics at a releasing stepover of the Eastern...

    Open Energy Info (EERE)

    Coso geothermal area and what Monastero et al. (F.C. Monastero, A.M. Katzenstein, J.S. Miller, J.R. Unruh, M.C. Adams, K. Richards-Dinger, The Coso geothermal field: a nascent...

  8. Fault Block Kinematics at a Releasing Stepover of the Eastern...

    Open Energy Info (EERE)

    Coso geothermal area and what Monastero et al. F.C. Monastero, A.M. Katzenstein, J.S. Miller, J.R. Unruh, M.C. Adams, K. Richards-Dinger, The Coso geothermal field: a nascent...

  9. Scattering from a fault interface in the Coso geothermal field...

    Open Energy Info (EERE)

    of the half space. The S-wave velocity, 3.25 kms, agrees with independently derived 1-D models in this area. The large amplitude, vertical impedance contrast interface coincides...

  10. CBEI: VOLTTRON Compatible and Cost-effective Fault Diagnostic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... data-driven and rule-based methods * Including energy impact estimation * Automated for rapid, low-cost deployment Demonstrate the solutions in a variety of small to medium ...

  11. Fault tolerance in a supercomputer through dynamic repartitioning

    DOE Patents [OSTI]

    Chen, Dong; Coteus, Paul W.; Gara, Alan G.; Takken, Todd E.

    2007-02-27

    A multiprocessor, parallel computer is made tolerant to hardware failures by providing extra groups of redundant standby processors and by designing the system so that these extra groups of processors can be swapped with any group which experiences a hardware failure. This swapping can be under software control, thereby permitting the entire computer to sustain a hardware failure but, after swapping in the standby processors, to still appear to software as a pristine, fully functioning system.

  12. Fault-induced delayed voltage recovery in a long inhomogeneous...

    Office of Scientific and Technical Information (OSTI)

    GrantContract Number: AC52-06NA25396 Type: Publisher's Accepted Manuscript Journal Name: Physical Review E Additional Journal Information: Journal Volume: 91; Journal Issue: 2; ...

  13. Cryptic Faulting and Multi-Scale Geothermal Fluid Connections...

    Open Energy Info (EERE)

    at least in this region of the Great Basin is primarily a modern feature. Authors Philip E. Wannamaker, William M. Doerner and Derrick P. Hasterok Editor NA Conference...

  14. Effects of Volcanism, Crustal Thickness, and Large Scale Faulting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    meeting held in Denver, Colorado. collaborativeprojectchilepeer2013.pdf (916.09 KB) ... Systems, Hawaii & Maui Validation of Innovation Exploration Technologies for Newberry ...

  15. Fault Detection and Isolation in Low-Voltage DC Distribution...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PDF Document Publication CU2941D-3222D (DC Microgrid) Marketing Summary.pdf (172 KB) ... Small-scale low-voltage distribution systems, such as a microgrid, have many advantages to ...

  16. Aksaray And Ecemis Faults - Diapiric Salt Relationships- Relevance...

    Open Energy Info (EERE)

    To The Hydrocarbon Exploration In The Tuz Golu (Salt Lake) Basin, Central Anatolia, Turkey Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  17. NEAR-SURFACE GEOPHYSICAL CHARACTERIZATION OF A HOLOCENE FAULT...

    Office of Scientific and Technical Information (OSTI)

    The warm fluids deposited the tufa when they hit cold Lake Lahontan water at the lakebed. ... Water samples from more than 1 km depth in exploration wells have a TDS of 2500 p.p.m., ...

  18. PSU CBEI: VOLTTRON Compatible and Cost-Effective Fault Diagnostic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for AHU-VAV and AHU-CAV Systems 2014 Building Technologies Office Peer Review Dr. ... Project Goal: Develop and demonstrate a library of diagnostics decision support tools ...

  19. Compatible and Cost-Effective Fault Diagnostic Solutions for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air Volume Systems - 2014 BTO Peer Review Presenter: Jin Wen, Drexel University The goal of this project is to develop and demonstrate a library of diagnostics decision-support ...

  20. Geometry of Cenozoic extensional faulting: Dixie Valley, Nevada...

    Open Energy Info (EERE)

    was also 15 km instead of the previously reported 40 km. Local microearthquakes cluster around 10-15 km. The geometrical block models indicate that crustal horst-graben...

  1. CBEI - Fault Detection and Diagnostics (FDD) for Advanced RTUs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Expected cost of FDD Even for 6 ton RTU FDD can achieve 3 year payback based on cost estimates This page contains no technical data subject to the EAR or the ITAR. 9 LabView ...

  2. Local rollback for fault-tolerance in parallel computing systems

    DOE Patents [OSTI]

    Blumrich, Matthias A.; Chen, Dong; Gara, Alan; Giampapa, Mark E.; Heidelberger, Philip; Ohmacht, Martin; Steinmacher-Burow, Burkhard; Sugavanam, Krishnan

    2012-01-24

    A control logic device performs a local rollback in a parallel super computing system. The super computing system includes at least one cache memory device. The control logic device determines a local rollback interval. The control logic device runs at least one instruction in the local rollback interval. The control logic device evaluates whether an unrecoverable condition occurs while running the at least one instruction during the local rollback interval. The control logic device checks whether an error occurs during the local rollback. The control logic device restarts the local rollback interval if the error occurs and the unrecoverable condition does not occur during the local rollback interval.

  3. Waste Management facilities fault tree databank 1995 status report

    SciTech Connect (OSTI)

    Minnick, W.V.; Wellmaker, K.A.

    1995-08-16

    The Safety Information Management and Analysis Group (SIMA) of the Safety Engineering Department (SED) maintains compilations of incidents that have occurred in the Separations and Process Control, Waste Management, Fuel Fabrication, Tritium and SRTC facilities. This report records the status of the Waste Management (WM) Databank at the end of CY-1994. The WM Databank contains more than 35,000 entries ranging from minor equipment malfunctions to incidents with significant potential for injury or contamination of personnel. This report documents the status of the WM Databank including the availability, training, sources of data, search options, Quality Assurance, and usage to which these data have been applied. Periodic updates to this memorandum are planned as additional data or applications are acquired.

  4. Apex or Salient of Normal Fault | Open Energy Information

    Open Energy Info (EERE)

    H. Hinz,Mark F. Coolbaugh,Patricia H. Cashman,Christopher Kratt,Gregory Dering,Joel Edwards,Brett Mayhew,Holly McLachlan. 2011. Assessment of Favorable Structural Settings of...

  5. Active Faulting in the Coso Geothermal Field, Eastern California...

    Open Energy Info (EERE)

    and seismogenic deformation above the shallow BDT may contribute to development of permeability in the geothermal reservoir, and provide pathways for upward circulation of...

  6. Active Faulting in the Coso Geothermal Field- Eastern California...

    Open Energy Info (EERE)

    and seismogenic deformation above the shallow BDT may contribute to development of permeability in the geothermal reservoir, and provide pathways for upward circulation of...

  7. Data Acquisition-Manipulation At San Jacinto Fault Geothermal...

    Open Energy Info (EERE)

    portions of both the random and non-random components of the seismicity. The methodology employed compares the seismicity distributions with a generalized Poisson...

  8. Intersecting Fault Trends and Crustal-Scale Fluid Pathways Below...

    Open Energy Info (EERE)

    of an integrative research project to establish Engineered Geothermal Systems (EGS) methodology at district scales for high-enthalpy ex-tensional systems, a 3D magnetotelluric...

  9. Cluster-based architecture for fault-tolerant quantum computation...

    Office of Scientific and Technical Information (OSTI)

    In this cluster-based architecture, concatenated computation is implemented in a quite different way from the usual circuit-based architecture where physical gates are recursively ...

  10. Detachment Faulting & Geothermal Resources- Pearl Hot Spring, NV

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objective: Integration of new thermochronometric, structural and geological analyses, reflection and refraction seismic surveys and existing geophysical data into a 3-D Earth Model to elucidate the tectonic and 4-D thermal evolution of southern Clayton Valley and the Weepah Hills (Pearl Hot Spring geothermal play).

  11. INNOVATIVE METHODOLOGY FOR DETECTION OF FRACTURE-CONTROLLED SWEET SPOTS IN THE NORTHERN APPALACHIAN BASIN

    SciTech Connect (OSTI)

    Robert Jacobi; John Fountain

    2001-06-30

    In the structure task, the authors completed reducing the data they had collected from a N-S transect on the east side of Seneca Lake. They have calculated the fracture frequency for all the fracture sets at each site, and constructed modified rose diagrams that summarize the fracture attributes at each site. These data indicate a N-striking fault near the southeastern shore of Seneca Lake, and also indicate NE and ENE-trending FIDs and faults north of Valois. The orientation and existence of the ENE-striking FIDs and faults are thought to be guided by faults in the Precambrian basement. These basement faults apparently were sufficiently reactivated to cause faulting in the Paleozoic section. Other faults are thrust ramps above the Silurian salt section that were controlled by a far-field Alleghanian stress field. Structure contour maps and isopach maps have been revised based on additional well log analyses. Except for the Glodes Corners Field, the well spacing generally is insufficient to definitely identify faults. However, relatively sharp elevational changes east of Keuka Lake support the contention that faults occur along the east side of Keuka Lake. Outcrop stratigraphy along the east side of Seneca Lake indicates that faults and gentle folds can be inferred from some exposures along Seneca Lake, but the lensing nature of the individual sandstones can preclude long-distance definite correlations and structure identification. Soil gas data collected during the 2000 field season was reduced and displayed in the previous semiannual report. The seismic data that Quest licensed has been reprocessed. Several grabens observed in the Trenton reflector are consistent with surface structure, soil gas, and aeromagnetic anomalies. In this report they display an interpreted seismic line that crosses the Glodes Corners and Muck Farms fields. The final report from the subcontractor concerning the completed aeromagnetic survey is included. Prominent magnetic anomalies

  12. INNOVATIVE METHODOLOGY FOR DETECTION OF FRACTURE-CONTROLLED SWEET SPOTS IN THE NORTHERN APPALACHIAN BASIN

    SciTech Connect (OSTI)

    Robert Jacobi; John Fountain

    2002-01-30

    In the structure task, we completed reducing the data we had collected from a N-S transect on the east of Seneca Lake. We have calculated the fracture frequency for all the fracture sets at each site, and constructed modified rose diagrams that summarize the fracture attributes at each site. These data indicate a N-striking fault near the southeastern shore of Seneca Lake, and also indicate NE and ENE-trending FIDs and faults north of Valois. The orientation and existence of the ENE-striking FIDs and faults are thought to be guided by faults in the Precambrian basement; these basement faults apparently were sufficiently reactivated to cause faulting in the Paleozoic section. Other faults are thrust ramps above the Silurian salt section that were controlled by a far-field Alleghanian stress field. Structure contour maps and isopach maps have been revised based on additional well log analyses. Except for the Glodes Corners Field, the well spacing generally is insufficient to definitively identify faults. However, relatively sharp elevational changes east of Keuka Lake support the contention that faults occur along the east side of Keuka Lake. Outcrop stratigraphy along the east side of Seneca Lake indicates that faults and gentle folds can be inferred from the some exposures along Seneca Lake, but the lensing nature of the individual sandstones can preclude long-distance definitive correlations and structure identification. Soil gas data collected during the 2000 field season was reduced and displayed in the previous semiannual report. The seismic data that Quest licensed has been reprocessed. Several grabens observed in the Trenton reflector are consistent with surface structure, soil gas, and aeromagnetic anomalies. In this report we display an interpreted seismic line that crosses the Glodes Corners and Muck Farm fields. The final report from the subcontractor concerning the completed aeromagnetic survey is included. Prominent magnetic anomalies suggest that

  13. Observation of Spontaneous Neoclassical Tearing Modes

    SciTech Connect (OSTI)

    E.D. Fredrickson

    2001-10-03

    We present data in this paper from the Tokamak Fusion Test Reactor (TFTR) which challenges the commonly held belief that extrinsic MHD events such as sawteeth or ELMs [edge localized modes] are required to provide the seed islands that trigger Neoclassical Tearing Modes (NTMs). While sawteeth are reported to provide the trigger for most of the NTMs on DIII-D [at General Atomics in San Diego, California] and ASDEX-U [at Max-Planck-Institut fuer Plasmaphysik in Garching, Germany], the majority of NTMs seen in TFTR occur in plasmas without sawteeth, that is which are above the beta threshold for sawtooth stabilization. Examples of NTMs appearing in the absence of any detectable extrinsic MHD activity will be shown. Conversely, large n=1 modes in plasmas above the NTM beta threshold generally do not trigger NTMs. An alternative mechanism for generating seed islands will be discussed.

  14. Evolution of Pre-Jurassic basement beneath northern Gulf of Mexico coastal plain

    SciTech Connect (OSTI)

    Van Siclen, D.C.

    1990-09-01

    Data from the northern Gulf Coast region reveal a late Paleozoic wrench fault system along which North America (NA) moved southeast (present directions) alongside the northeastern edge of future South America (SA), to where collision with that continent converted a broad continental embankment off the Southern Oklahoma aulacogen into the Ouachita thrust belt. At the same time, Africa farther east, to which protruding SA was firmly joined, was continuing to advance the Appalachian thrusts on the opposite side of these faults. This relationship left no space between the American continents for the conventional remnant ocean or microcontinents. By Late Triassic time, however, extension south of the Ouachita Mountains was forming the series of Interior rift basins, at both ends of which new wrench faults transferred the extension southward to the DeSoto Canyon and South Texas rift basins. Genetically, the Ouachita thrusts are part of the subduction zone along the front of a former SA forearc basin, which continued to receive marine sediments into middle Permian. The Wiggins arch southeast of it is a sliver of that continent, left with NA when the Interior basin rifting jumped from that forearc basin southward across bordering outer basement highs to begin opening the deep Gulf of Mexico (GOM) basin. The Late Triassic crustal extension resulted from right-lateral translation of NA around the bulge of northwestern Africa. About 200 mi of this placed Cape Hatteras against Africa's Cap Blanc, in the configuration from which the magnetic data indicate spreading began in the Central North Atlantic Ocean. The reality of this translation is confirmed by widespread rifting at the same time in western North Africa and between all three northern Atlantic continents; this drew the tip of the Tethys sea southward to Cape Hatteras and led to deposition of voluminous Late Triassic red beds and evaporites along it.

  15. Mara Field, a unique giant in Venezuela

    SciTech Connect (OSTI)

    Young, G.A. )

    1993-02-01

    The Mara field is located in Venzuela, 45 km northwest of Maracaibo, on the Mara-La Paz anticlinal trend. Discovered in 1945 by the Caribbean Petroleum Co. (Shell group), the field has produced 407 MMB as of 1991 and has remaining proven reserves of 60 MMB, and probable and possible reserves of 58 MMB, for an ultimate potential recovery of 525 MMB. In addition to being a giant field, Mara is also unique in that it produces from fractures igneous basement rocks as well as from fractured Cretaceous limestones, which are the source rocks of the region, and Paleocene/Eocene sandstone and carbonate reservoirs. The sedimentary stratigraphic section comprises beds ranging from early Cretaceous to middle Eocene, which suffered considerable erosion, and overlying Plio-Pleistocene sediments, all of which were involved in the latest strong deformation. The structure of the field is complex; a main thrust zone (consisting of numerous individual faults) borders the northwest flank of the elongated anticline and an opposing minor thrust zone cuts the southeast flank, forming a thrusted horst. Oblique transverse faults also cut the structure. By studying the patterns of cumulative production and lost circulation, it was possible to derive relationships between the accumulations of oil and the faulting and conceptual patterns of related fracturing in the different types of reservoir rocks. The study indicates that one can prognosticate the more prospective drilling locations on this or similar structures involving basement and limestone. It is felt that this information may be applicable to other plays in other regions.

  16. THE INFLUENCE OF FOLD AND FRACTURE DEVELOPMENT ON RESERVOIR BEHAVIOR OF THE LISBURNE GROUP OF NORTHERN ALASKA

    SciTech Connect (OSTI)

    Wesley K. Wallace; Catherine L. Hanks; Jerry Jensen; Michael T. Whalen

    2002-01-01

    The Carboniferous Lisburne Group is a major carbonate reservoir unit in northern Alaska. The Lisburne is detachment folded where it is exposed throughout the northeastern Brooks Range, but is relatively undeformed in areas of current production in the subsurface of the North Slope. The objectives of this study are to develop a better understanding of four major aspects of the Lisburne: (1) The geometry and kinematics of detachment folds and their truncation by thrust faults. (2) The influence of folding on fracture patterns. (3) The influence of deformation on fluid flow. (4) Lithostratigraphy and its influence on folding, faulting, fracturing, and reservoir characteristics. The Lisburne in the main axis of the Brooks Range is characteristically deformed into imbricate thrust sheets with asymmetrical hanging wall anticlines and footwall synclines. In contrast, the Lisburne in the northeastern Brooks Range is characterized by symmetrical detachment folds. The focus of our 2000 field studies was at the boundary between these structural styles in the vicinity of Porcupine Lake, in the Arctic National Wildlife Refuge. The northern edge of thrust-truncated folds in Lisburne is marked by a local range front that likely represents an eastward continuation of the central Brooks Range front. This is bounded to the north by a gently dipping panel of Lisburne with local asymmetrical folds. The leading edge of the flat panel is thrust over Permian to Cretaceous rocks in a synclinal depression. These younger rocks overlie symmetrically detachment-folded Lisburne, as is extensively exposed to the north. Six partial sections were measured in the Lisburne of the flat panel and local range front. The Lisburne here is about 700 m thick and is interpreted to consist primarily of the Wachsmuth and Alapah Limestones, with only a thin veneer of Wahoo Limestone. The Wachsmuth (200 m) is gradational between the underlying Missippian Kayak Shale and the overlying Mississippian Alapah, and

  17. Publications - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    056.JPG Publications Research Why Solar Fuels Goals & Objectives Thrust 1 Thrust 2 Thrust 3 Thrust 4 Publications Research Highlights Videos Innovations User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS Spectral Database Research Introduction Why Solar Fuels? Goals & Objectives Thrusts Thrust 1 Thrust 2 Thrust 3 Thrust 4 Library Publications Research Highlights Videos Resources User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS

  18. Research Highlights - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    100.JPG Research Highlights Research Why Solar Fuels Goals & Objectives Thrust 1 Thrust 2 Thrust 3 Thrust 4 Publications Research Highlights Videos Innovations User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS Spectral Database Research Introduction Why Solar Fuels? Goals & Objectives Thrusts Thrust 1 Thrust 2 Thrust 3 Thrust 4 Library Publications Research Highlights Videos Resources User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS

  19. XPS Spectral Database - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JCAP20130222-220.jpg XPS Spectral Database Research Why Solar Fuels Goals & Objectives Thrust 1 Thrust 2 Thrust 3 Thrust 4 Publications Research Highlights Videos Innovations User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS Spectral Database Research Introduction Why Solar Fuels? Goals & Objectives Thrusts Thrust 1 Thrust 2 Thrust 3 Thrust 4 Library Publications Research Highlights Videos Resources User Facilities Expert Team Benchmarking Database Device

  20. Device Simulation Tool - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PAZ0036_v2.jpg Device Simulation Tool Research Why Solar Fuels Goals & Objectives Thrust 1 Thrust 2 Thrust 3 Thrust 4 Publications Research Highlights Videos Innovations User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS Spectral Database Research Introduction Why Solar Fuels? Goals & Objectives Thrusts Thrust 1 Thrust 2 Thrust 3 Thrust 4 Library Publications Research Highlights Videos Resources User Facilities Expert Team Benchmarking Database Device Simulation

  1. User Facilities Expert Team - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IMG_2298.JPG User Facilities Expert Team Research Why Solar Fuels Goals & Objectives Thrust 1 Thrust 2 Thrust 3 Thrust 4 Publications Research Highlights Videos Innovations User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS Spectral Database Research Introduction Why Solar Fuels? Goals & Objectives Thrusts Thrust 1 Thrust 2 Thrust 3 Thrust 4 Library Publications Research Highlights Videos Resources User Facilities Expert Team Benchmarking Database Device

  2. Videos - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jcap-kjo080714_kjo0080.jpg Videos Research Why Solar Fuels Goals & Objectives Thrust 1 Thrust 2 Thrust 3 Thrust 4 Publications Research Highlights Videos Innovations User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS Spectral Database Research Introduction Why Solar Fuels? Goals & Objectives Thrusts Thrust 1 Thrust 2 Thrust 3 Thrust 4 Library Publications Research Highlights Videos Resources User Facilities Expert Team Benchmarking Database Device Simulation

  3. Why Solar Fuels - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ©bobpaz.com0145.JPG Why Solar Fuels? Research Why Solar Fuels Goals & Objectives Thrust 1 Thrust 2 Thrust 3 Thrust 4 Publications Research Highlights Videos Innovations User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS Spectral Database Research Introduction Why Solar Fuels? Goals & Objectives Thrusts Thrust 1 Thrust 2 Thrust 3 Thrust 4 Library Publications Research Highlights Videos Resources User Facilities Expert Team Benchmarking Database Device Simulation

  4. Innovations - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PAZ0031.JPG Innovations Research Why Solar Fuels Goals & Objectives Thrust 1 Thrust 2 Thrust 3 Thrust 4 Publications Research Highlights Videos Innovations User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS Spectral Database Research Introduction Why Solar Fuels? Goals & Objectives Thrusts Thrust 1 Thrust 2 Thrust 3 Thrust 4 Library Publications Research Highlights Videos Resources User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS

  5. Benchmarking Database - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ©bobpaz.com0121.JPG Benchmarking Database Research Why Solar Fuels Goals & Objectives Thrust 1 Thrust 2 Thrust 3 Thrust 4 Publications Research Highlights Videos Innovations User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS Spectral Database Research Introduction Why Solar Fuels? Goals & Objectives Thrusts Thrust 1 Thrust 2 Thrust 3 Thrust 4 Library Publications Research Highlights Videos Resources User Facilities Expert Team Benchmarking Database Device

  6. Piedmont seismic reflection study: A program integrated with tectonics to probe the cause of eastern seismicity

    SciTech Connect (OSTI)

    Glover, L. III; Coruh, C.; Costain, J.K.; Bollinger, G.A. . Dept. of Geological Sciences)

    1992-03-01

    A new tectonic model of the Appalachian orogen indicates that one, not two or more, terrane boundaries is present in the Piedmont and Blue Ridge of the central and southern Appalachians. This terrane boundary is the Taconic suture, it has been transported in the allochthonous Blue Ridge/Piedmont crystalline thrust nappe, and it is repeated at the surface by faulting and folding associated with later Paleozoic orogenies. The suture passes through the lower crust and lithosphere somewhere east of Richmond. It is spatially associated with seismicity in the central Virginia seismic zone, but is not conformable with earthquake focal planes and appears to have little causal relation to their localization.

  7. Quaternary tectonic movements in the Argentine Puna, 24/sup 0/ to 27/sup 0/ s latitude

    SciTech Connect (OSTI)

    Strecker, M.R.; Alonso, R.; Rivelli, F.; Mon, R.

    1985-01-01

    The Puna of NW Argentina, one of the highest plateaus in the world, is the southern continuation of the Andean Altiplano geomorphic province of Peru and Bolivia. The region is not seismically active and reports of neotectonic movements are scarce. However, the areas of Salar de los Pastos Grandes, Salar del Hombre Muerto and Sierra Calalaste clearly have experienced Quaternary tectonic movements. At Salar de los Pastos Grandes, early Pleistocene lake sediments are offset by reverse faulting. At Salar del Hombre Muerto, Quaternary pyroclastic and debris-flow deposits are unconformable over sediments 5.86 m.y. old that were folded during the Pliocene-Pleistocene Diaguita deformation. Within the Quaternary sediments two separate deformational phases with reverse faulting and shallow thrusting are recognized. The timing of movement is well defined since the deformed strata are covered by a basalt flow 0.75 m.y. old. The flow in turn is affected by normal faulting. Similar normal faults associated with basalt flows were found at Sierra Calalaste. These observations are in accord with pronounced extensional movements and basaltic volcanism at the Calama-Olacapato-Toro Lineament (0.2 m.y. old flows) and might document the Quaternary transition from a compressive to an extensional tectonic regime in the southern Puna.

  8. Geological setting and geodynamical evolution of the central Apennines (Italy)

    SciTech Connect (OSTI)

    Cavinato, G.P. ); Cosentino, D.; Funiciello, R.; Parotto, M. ); Salvini, F. ); Tozzi, M. )

    1990-05-01

    In the peninsula of Italy, new and revised data allow recognition of geodynamic, units: (1) a deformed intraorogenic foreland (Apulia) made up of several blocks with differing sense and amounts of rotation since the Late Cretaceous; (2) a thrust belt (Apennines) that developed from the late Miocene to at least the middle Pliocene; (3) a deformed foredeep (Bradanic trough) that is widely overthrusted by the Apennine chain and (4) a hinterland (Tyrrehenian basin) that is now undergoing extension and includes large volcanic centers. Within this framework the authors have recognized large-scale, spectacular thrust faults and several new features including backthrusts and important strike-slip zones that lead to new interpretations of the tectonics of the Central Apennines. The new data, acquired during the last 10 yr of field mapping and structural analysis, indicate a complexity of geometry and kinematics not previously recognized. The tectonics of this region cannot be explained in terms of simple extensions and compressional phases. They have included the new data on those styles as well as the backthrust and strike-slip faults into our new model. The recognition of strike-slip components suggests that it will be more difficult to balance cross sections through the region.

  9. Vehicle Technologies Office Merit Review 2016: Co-Optimization of Fuels and Engines (Co-Optima)—Fuel Properties and Chemical Kinetics and Thrust I Engine Projects

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory (ORNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Fuel & Lubricants

  10. Vehicle Technologies Office Merit Review 2016: Co-Optimization of Fuels and Engines (Co-Optima)-- Fuel Properties and Chemical Kinetics and Thrust I Engine Projects

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory (ORNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Fuel...

  11. Major Oil Plays In Utah And Vicinity

    SciTech Connect (OSTI)

    Thomas Chidsey

    2007-12-31

    Jurassic Twin Creek Limestone, or a low-permeability zone at the top of the Nugget. The Nugget Sandstone thrust belt play is divided into three subplays: (1) Absaroka thrust - Mesozoic-cored shallow structures, (2) Absaroka thrust - Mesozoic-cored deep structures, and (3) Absaroka thrust - Paleozoic-cored shallow structures. Both of the Mesozoic-cored structures subplays represent a linear, hanging wall, ramp anticline parallel to the leading edge of the Absaroka thrust. Fields in the shallow Mesozoic subplay produce crude oil and associated gas; fields in the deep subplay produce retrograde condensate. The Paleozoic-cored structures subplay is located immediately west of the Mesozoic-cored structures subplays. It represents a very continuous and linear, hanging wall, ramp anticline where the Nugget is truncated against a thrust splay. Fields in this subplay produce nonassociated gas and condensate. Traps in these subplays consist of long, narrow, doubly plunging anticlines. Prospective drilling targets are delineated using high-quality, two-dimensional and three-dimensional seismic data, forward modeling/visualization tools, and other state-of-the-art techniques. Future Nugget Sandstone exploration could focus on more structurally complex and subtle, thrust-related traps. Nugget structures may be present beneath the leading edge of the Hogsback thrust and North Flank fault of the Uinta uplift. The Jurassic Twin Creek Limestone play in the Utah/Wyoming thrust belt province has produced over 15 million barrels (2.4 million m{sup 3}) of oil and 93 billion cubic feet (2.6 billion m{sup 3}) of gas. Traps form on discrete subsidiary closures along major ramp anticlines where the low-porosity Twin Creek is extensively fractured. Hydrocarbons in Twin Creek reservoirs were generated from subthrust Cretaceous source rocks. The seals for the producing horizons are overlying argillaceous and clastic beds, and non-fractured units within the Twin Creek. The Twin Creek Limestone thrust

  12. Eocene chert resources of Papua New Guinea

    SciTech Connect (OSTI)

    Carman, G.J.; St John, V.P.

    1986-05-01

    The Eocene Port Moresby beds consist of chert, siliceous argillite, and calcarenite in a 3000-m sequence. A northwest grain and severe topography at outcrop reflect 50/sup 0/-80/sup 0/ structural dips, northeastward-inclined, low-angle thrust faults, and high-angle reverse faults. Within the fault slices, symmetrical folds plunge toward the northwest, and syntaphral folds occur intermittently. The cherts are comprised of biogenic silica and rarer spherulitic, fibrous chalcedony in massive nodular concretions up to 2 m in diameter and as competent, repetitive, 10 to 30-cm thick beds. The calcarenites are richly nummulitic, partly silicified, and contain chert nodules. Radiolaria, planktonic foraminifera, and sponge spicules predominate over reworked fauna in the cherts. Microlaminations and sparse pyrite endorse the interpretation of sheltered, possibly deep, and rapid deposition in a reducing environment. Chert and cherty limestone crop out again, 200 km northwest at Hell's Gate, Saw Mountains. Oil and gas seeps in the intervening Lakekamu-Moresby Embayment were first recorded 75 years ago, and seismic interpretation confirms the presence of buried thrust folds. Gas and Oil fluorescence was recorded in four vintage wells, but none have tested the Eocene. Like the Monterey Formation, fractured radiolarian cherts have potential as a resource in terms of both reservoir and source. Moresby chert deposition is possibly related to opening of the Coral Sea. The chert diagenesis and thermal maturation were probably influenced by Paleogene overthrusting of oceanic crust 100 km east, Neogene uplift of the Mesozoic metamorphics in the 4000-m Owen Stanley Range, and consequential southwesterly detachment folding of the Tertiary section.

  13. The tectonic mechanism for uplift and rotation of crustal blocks in the Central basin platform, Permian basin, Texas and New Mexico

    SciTech Connect (OSTI)

    Yang Kennming; Dorobek, S.L. )

    1991-03-01

    The Central basin platform is a positive tectonic element in the subsurface of the Permian basin. This enigmatic platform strikes north-northwest-south-southeast and at a high angle to the Marathon fold-and-thrust belt to the south. Although the uplift of the platform was related temporally to major overthrusting in the orogenic belt to the south and east, its formative mechanisms are still poorly understood. Previously compiled tectonic maps and cross sections were analyzed to identify the significant characteristics of this complicated structure. (1) Much of the platform is bounded by laterally discontinuous, high-angle faults with large vertical displacements. (2) The bounding faults suggest that the platform is composed of several discrete blocks that are arranged in a dextral en echelon pattern. (3) The southwest and northeast corners of each block typically are bounded by major faults; block uplift is greatest at the southwest and northeast corners. (4) Blocks are separated by west-northwest-east-southeast-trending transfer zones. These characteristics suggest that the Central Basin platform was subjected to a north-northwest-south-southeast-trending dextral couple that caused the platform to split into several blocks. Individual blocks rotated in the same clockwise sense and produced the maximum uplift observed at the southwest and northeast corners of blocks. In addition to the above characteristics, the amount of uplift an the width of individual blocks progressively decrease toward the north; block boundaries also become less defined northward. However, these additional complexities are not fully understood yet.

  14. Permian and Pennsylvanian tectonic events in eastern California in relation to major plate motions

    SciTech Connect (OSTI)

    Stevens, C.H.; Sedlock, R. ); Stone, P. )

    1993-04-01

    Northwest-trending basins cutting across older northeast-trending facies belts in eastern California opened by Middle Pennsylvanian time and continued to develop and expand into the Early Permian. Basin development was accompanied by east-vergent thrust-faulting in the Early Permian and was followed by development of northeast-trending folds and regional uplift in middle and Late Permian time. These events have been considered products of long-tern sinistral truncation of the western North American continental margin. Later, in the Late Permian, extensional faulting created small northeast-trending basins in which deposition of terrestrial and shallow-marine rocks occurred. The author consider all late Paleozoic tectonism in eastern California to have been driven by plate interactions along the western margin of North America and to be only indirectly related to the late Paleozoic collision between North America and Gondwana. They propose that the truncated part of North America was part of the Paleo-pacific plate. In Nevada the margin of this plate, along which the Havallah assemblage eventually was emplaced, was convergent, but in California the margin bent sharply and became transform. This fault continued as the Mojave-Sonora mega-shear into Mexico where the oceanic part of the Paleopacific plate was subducted under Gondwana, forming an extensive arc now represented by rocks in S. America.

  15. Bayesian probabilistic model for life prediction and fault mode classification of solid state luminaires

    SciTech Connect (OSTI)

    Lall, Pradeep; Wei, Junchao; Sakalaukus, Peter

    2014-06-22

    A new method has been developed for assessment of the onset of degradation in solid state luminaires to classify failure mechanisms by using metrics beyond lumen degradation that are currently used for identification of failure. Luminous Flux output, Correlated Color Temperature Data on Philips LED Lamps has been gathered under 85°C/85%RH till lamp failure. Failure modes of the test population of the lamps have been studied to understand the failure mechanisms in 85°C/85%RH accelerated test. Results indicate that the dominant failure mechanism is the discoloration of the LED encapsulant inside the lamps which is the likely cause for the luminous flux degradation and the color shift. The acquired data has been used in conjunction with Bayesian Probabilistic Models to identify luminaires with onset of degradation much prior to failure through identification of decision boundaries between lamps with accrued damage and lamps beyond the failure threshold in the feature space. In addition luminaires with different failure modes have been classified separately from healthy pristine luminaires. The α-λ plots have been used to evaluate the robustness of the proposed methodology. Results show that the predicted degradation for the lamps tracks the true degradation observed during 85°C/85%RH during accelerated life test fairly closely within the ±20% confidence bounds. Correlation of model prediction with experimental results indicates that the presented methodology allows the early identification of the onset of failure much prior to development of complete failure distributions and can be used for assessing the damage state of SSLs in fairly large deployments. It is expected that, the new prediction technique will allow the development of failure distributions without testing till L70 life for the manifestation of failure.

  16. Method and apparatus for generating motor current spectra to enhance motor system fault detection

    DOE Patents [OSTI]

    Linehan, D.J.; Bunch, S.L.; Lyster, C.T.

    1995-10-24

    A method and circuitry are disclosed for sampling periodic amplitude modulations in a nonstationary periodic carrier wave to determine frequencies in the amplitude modulations. The method and circuit are described in terms of an improved motor current signature analysis. The method insures that the sampled data set contains an exact whole number of carrier wave cycles by defining the rate at which samples of motor current data are collected. The circuitry insures that a sampled data set containing stationary carrier waves is recreated from the analog motor current signal containing nonstationary carrier waves by conditioning the actual sampling rate to adjust with the frequency variations in the carrier wave. After the sampled data is transformed to the frequency domain via the Discrete Fourier Transform, the frequency distribution in the discrete spectra of those components due to the carrier wave and its harmonics will be minimized so that signals of interest are more easily analyzed. 29 figs.

  17. Method and apparatus for generating motor current spectra to enhance motor system fault detection

    DOE Patents [OSTI]

    Linehan, Daniel J.; Bunch, Stanley L.; Lyster, Carl T.

    1995-01-01

    A method and circuitry for sampling periodic amplitude modulations in a nonstationary periodic carrier wave to determine frequencies in the amplitude modulations. The method and circuit are described in terms of an improved motor current signature analysis. The method insures that the sampled data set contains an exact whole number of carrier wave cycles by defining the rate at which samples of motor current data are collected. The circuitry insures that a sampled data set containing stationary carrier waves is recreated from the analog motor current signal containing nonstationary carrier waves by conditioning the actual sampling rate to adjust with the frequency variations in the carrier wave. After the sampled data is transformed to the frequency domain via the Discrete Fourier Transform, the frequency distribution in the discrete spectra of those components due to the carrier wave and its harmonics will be minimized so that signals of interest are more easily analyzed.

  18. Fault zone structure determined through the analysis of earthquake arrival times

    SciTech Connect (OSTI)

    Michelini, A.

    1991-10-01

    This thesis develops and applies a technique for the simultaneous determination of P and S wave velocity models and hypocenters from a set of arrival times. The velocity models are parameterized in terms of cubic B-splines basis functions which permit the retrieval of smooth models that can be used directly for generation of synthetic seismograms using the ray method. In addition, this type of smoothing limits the rise of instabilities related to the poor resolving power of the data. V{sub P}/V{sub S} ratios calculated from P and S models display generally instabilities related to the different ray-coverages of compressional and shear waves. However, V{sub P}/V{sub S} ratios are important for correct identification of rock types and this study introduces a new methodology based on adding some coupling (i.e., proportionality) between P and S models which stabilizes the V{sub P}/V{sub S} models around some average preset value determined from the data. Tests of the technique with synthetic data show that this additional coupling regularizes effectively the resulting models.

  19. Thin-Film Fiber Optic Sensors for Power Control and Fault Detection. Final Report

    SciTech Connect (OSTI)

    Duncan, Paul Grems

    2003-09-30

    Described is the development of an optical current measurement device, an active power conditioning system, and sol gel type thin films for the detection of magnetic fields.

  20. Poly 3D fault modeling scripts/data for permeability potential of Washington State geothermal prospects

    SciTech Connect (OSTI)

    Michael Swyer

    2015-02-05

    Matlab scripts/functions and data used to build Poly3D models and create permeability potential GIS layers for 1) Mount St Helen's, 2) Wind River Valley, and 3) Mount Baker geothermal prospect areas located in Washington state.

  1. 7-Solar ABCs 2011 Arc Fault Update-10-2010-a.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    response affected by materials and PV module technology - Thin film, crystalline, multi-junction, slivers, etc - Conductors, terminal compositions, insulation types, humidity...

  2. Late Cenozoic Ring Faulting and Volcanism in the Coso Range Area...

    Open Energy Info (EERE)

    to the surface during the past few million years. Author Wendell A. Duffield Published Journal Geology, 1975 DOI Not Provided Check for DOI availability: http:crossref.org...

  3. Non-abelian fractional quantum hall effect for fault-resistant...

    Office of Scientific and Technical Information (OSTI)

    Authors: Pan, Wei ; Thalakulam, Madhu ; Shi, Xiaoyan ; Crawford, Matthew ; Nielsen, Erik ; Cederberg, Jeffrey George Publication Date: 2013-10-01 OSTI Identifier: 1121903 Report ...

  4. ANDY: A general, fault-tolerant tool for database searching on

    Office of Scientific and Technical Information (OSTI)

    searching on computer clusters Andrew Smith 1,2,3,4 , John-Marc Chandonia 2 , and ... Cluster Node Cluster Node DRM Queue ANDY Server Process Smith, Chandonia, & Brenner, ...

  5. ANDY: A general, fault-tolerant tool for database searching oncomputer...

    Office of Scientific and Technical Information (OSTI)

    Authors: Smith, Andrew ; Chandonia, John-Marc ; Brenner, Steven E. Publication Date: 2005-12-21 OSTI Identifier: 903042 Report Number(s): LBNL--59252 R&D Project: 864D2D; BnR: ...

  6. Fault-tolerant battery system employing intra-battery network architecture

    DOE Patents [OSTI]

    Hagen, Ronald A.; Chen, Kenneth W.; Comte, Christophe; Knudson, Orlin B.; Rouillard, Jean

    2000-01-01

    A distributed energy storing system employing a communications network is disclosed. A distributed battery system includes a number of energy storing modules, each of which includes a processor and communications interface. In a network mode of operation, a battery computer communicates with each of the module processors over an intra-battery network and cooperates with individual module processors to coordinate module monitoring and control operations. The battery computer monitors a number of battery and module conditions, including the potential and current state of the battery and individual modules, and the conditions of the battery's thermal management system. An over-discharge protection system, equalization adjustment system, and communications system are also controlled by the battery computer. The battery computer logs and reports various status data on battery level conditions which may be reported to a separate system platform computer. A module transitions to a stand-alone mode of operation if the module detects an absence of communication connectivity with the battery computer. A module which operates in a stand-alone mode performs various monitoring and control functions locally within the module to ensure safe and continued operation.

  7. Physics based model for online fault detection in autonomous cryogenic loading system

    SciTech Connect (OSTI)

    Kashani, Ali; Ponizhovskaya, Ekaterina; Luchinsky, Dmitry; Smelyanskiy, Vadim; Patterson-Hine, Anna; Sass, Jared; Brown, Barbara

    2014-01-29

    We report the progress in the development of the chilldown model for a rapid cryogenic loading system developed at NASA-Kennedy Space Center. The nontrivial characteristic feature of the analyzed chilldown regime is its active control by dump valves. The two-phase flow model of the chilldown is approximated as one-dimensional homogeneous fluid flow with no slip condition for the interphase velocity. The model is built using commercial SINDA/FLUINT software. The results of numerical predictions are in good agreement with the experimental time traces. The obtained results pave the way to the application of the SINDA/FLUINT model as a verification tool for the design and algorithm development required for autonomous loading operation.

  8. Subsurface basin analysis of fault-controlled turbidite system in Bradano trough, southern Adriatic foredeep, Italy

    SciTech Connect (OSTI)

    Casnedi, R.

    1988-11-01

    Subsurface data (seismic lines, wireline logs, cores, and drill cuttings) from intensive hydrocarbon exploration in the Pliocene-Pleistocene Bradano Trough were used in performing a three-dimensional basin analysis and in reconstructing the time-space evolution of the basin. A middle Pliocene sedimentary system characterizes the hydrocarbon-bearing sands of the major gas field of the Bradano Trough, the Candela field. This system includes two phases of deposition in a migrating basin. 9 figures.

  9. In-situ fault detection apparatus and method for an encased energy storing device

    DOE Patents [OSTI]

    Hagen, Ronald A.; Comte, Christophe; Knudson, Orlin B.; Rosenthal, Brian; Rouillard, Jean

    2000-01-01

    An apparatus and method for detecting a breach in an electrically insulating surface of an electrically conductive power system enclosure within which a number of series connected energy storing devices are disposed. The energy storing devices disposed in the enclosure are connected to a series power connection. A detector is coupled to the series connection and detects a change of state in a test signal derived from the series connected energy storing devices. The detector detects a breach in the insulating layer of the enclosure by detecting a state change in the test signal from a nominal state to a non-nominal state. A voltage detector detects a state change of the test signals from a nominal state, represented by a voltage of a selected end energy storing device, to a non-nominal state, represented by a voltage that substantially exceeds the voltage of the selected opposing end energy storing device. Alternatively, the detector may comprise a signal generator that produces the test signal as a time-varying or modulated test signal and injects the test signal into the series connection. The detector detects the state change of the time-varying or modulated test signal from a nominal state, represented by a signal substantially equivalent to the test signal, to a non-nominal state, representative by an absence of the test signal.

  10. Application of a model-based fault detection system to nuclear plant signals

    SciTech Connect (OSTI)

    Gross, K.C.; Singer, R.M.; Wegerich, S.W.; Herzog, J.P.; VanAlstine, R.; Bockhorst, F.

    1997-05-01

    To assure the continued safe and reliable operation of a nuclear power station, it is essential that accurate online information on the current state of the entire system be available to the operators. Such information is needed to determine the operability of safety and control systems, the condition of active components, the necessity of preventative maintenance, and the status of sensory systems. To this end, ANL has developed a new Multivariate State Estimation Technique (MSET) which utilizes advanced pattern recognition methods to enhance sensor and component operational validation for commercial nuclear reactors. Operational data from the Crystal River-3 (CR-3) nuclear power plant are used to illustrate the high sensitivity, accuracy, and the rapid response time of MSET for annunciation of a variety of signal disturbances.

  11. Compilation of Failure Data and Fault Tree Analysis for Geothermal Energy Conversion Systems

    SciTech Connect (OSTI)

    Miller, F.L., Jr.; Zimmerman, D.E.

    1990-11-01

    The failure data for geothermal energy conversion facilities collected to date are compiled and tabled. These facilities have not accumulated sufficient production history to reliably estimated component failure rates. In addition, the improvements made in drilling technology in recent years may have made less pertinent the accumulation of data on well failures.

  12. Modeling fault-zone guided waves of microearthquakes in a geothermal...

    Open Energy Info (EERE)

    velocity structure have been estimated. It is suggested here that the identification and modeling of such guided waves is an effective tool to locate fracture-induced,...

  13. Development of a new type of optical transducer for measuring fault current

    SciTech Connect (OSTI)

    Hasegawa, Y.; Ichikawa, Y. ); Katsukawa, H.; Tanaka, N.; Sakurai, Y. )

    1994-07-01

    An optical current transducer has been developed capable of measuring current up to short-circuit currents of 50 kA. The optical current transducer is composed of a current measuring unit, an insulator with integral optical fibers, and an optical interface. The current measuring unit combines a winding with a magnetic iron core and a solenoid coil containing a Faraday sensor. The optical interface converts optical signals into electrical signals. Prototype optical current transducers have satisfied target performance requirements and have demonstrated maintaining that level of performance in field applications.

  14. Bayesian Models for Life Prediction and Fault-Mode Classification in Solid State Lamps

    SciTech Connect (OSTI)

    Lall, Pradeep; Wei, Junchao; Sakalaukus, Peter

    2015-04-19

    A new method has been developed for assessment of the onset of degradation in solid state luminaires to classifY failure mechanisms by using metrics beyond lumen degradation that are currently used for identification of failure. Luminous Flux output, Correlated Color Temperature Data on Philips LED Lamps has been gathered under 85°C/85%RH till lamp failure. The acquired data has been used in conjunction with Bayesian Probabilistic Models to identifY luminaires with onset of degradation much prior to failure through identification of decision boundaries between lamps with accrued damage and lamps beyond the failure threshold in the feature space. In addition luminaires with different failure modes have been classified separately from healthy pristine luminaires. It is expected that, the new test technique will allow the development of failure distributions without testing till L 70 life for the manifestation of failure.

  15. Rooftop unit embedded diagnostics: Automated fault detection and diagnostics (AFDD) development, field testing and validation

    SciTech Connect (OSTI)

    Katipamula, Srinivas; Kim, Woohyun; Lutes, Robert G.; Underhill, Ronald M.

    2015-09-30

    This report documents the development, testing and field validation of the integrated AFDD and advanced rooftop unit (RTU) controls using a single controller in buildings.

  16. Wind Power Plant Short Circuit Current Contribution for Different Fault and Wind Turbine Topologies: Preprint

    SciTech Connect (OSTI)

    Gevorgian, V.; Muljadi, E.

    2010-10-01

    This paper presents simulation results for SC current contribution for different types of WTGs obtained through transient and steady-state computer simulation software.

  17. Superior model for fault tolerance computation in designing nano-sized circuit systems

    SciTech Connect (OSTI)

    Singh, N. S. S. Muthuvalu, M. S.; Asirvadam, V. S.

    2014-10-24

    As CMOS technology scales nano-metrically, reliability turns out to be a decisive subject in the design methodology of nano-sized circuit systems. As a result, several computational approaches have been developed to compute and evaluate reliability of desired nano-electronic circuits. The process of computing reliability becomes very troublesome and time consuming as the computational complexity build ups with the desired circuit size. Therefore, being able to measure reliability instantly and superiorly is fast becoming necessary in designing modern logic integrated circuits. For this purpose, the paper firstly looks into the development of an automated reliability evaluation tool based on the generalization of Probabilistic Gate Model (PGM) and Boolean Difference-based Error Calculator (BDEC) models. The Matlab-based tool allows users to significantly speed-up the task of reliability analysis for very large number of nano-electronic circuits. Secondly, by using the developed automated tool, the paper explores into a comparative study involving reliability computation and evaluation by PGM and, BDEC models for different implementations of same functionality circuits. Based on the reliability analysis, BDEC gives exact and transparent reliability measures, but as the complexity of the same functionality circuits with respect to gate error increases, reliability measure by BDEC tends to be lower than the reliability measure by PGM. The lesser reliability measure by BDEC is well explained in this paper using distribution of different signal input patterns overtime for same functionality circuits. Simulation results conclude that the reliability measure by BDEC depends not only on faulty gates but it also depends on circuit topology, probability of input signals being one or zero and also probability of error on signal lines.

  18. Variscan fold belt and its foreland in western Europe from late Carboniferous to Permian time

    SciTech Connect (OSTI)

    Mascle, A.; Benard, F.; Cazes, M.; Le Gall, B.

    1988-08-01

    The Variscan front was emplaced in the Later Carboniferous with a south-to-north or southeast-to-northwest-trending vergence of thrusting. At the same time, folds were formed in the foreland. In England and southern Scotland, such structures were induced by an east-west direction of shortening, followed by a more subdued north-south compressive event. In Stephanian time, isolated basins developed on the Hercynian belt. In the Massif Central Marues Massif, they are closely related to transcurrent faults which developed in response to north-south-trending compressive stresses. The distribution of stresses completely changed in Early Permian time when extension dominated almost everywhere. Three kinds of basins developed at that time: those related to the relaxation of stresses on the Hercynian range, a north-south-trending rift system in the western United Kingdom and the North Sea, and a broad flexural evaporitic basin from eastern England to Poland.

  19. ORNUGWPO-019 Determination of Effective Porosity of Mudrocks...

    Office of Scientific and Technical Information (OSTI)

    ... for the Kingston thrust sheet and the Copper Creek and Whiteoak Mountain thrust sheets ... sheet (fig. la) and for the Copper Creek and Whiteoak Mountain Thrust sheets (fig. lb). ...

  20. Quaternary structure of the southern Po Plain (Italy): Eustatic and tectonic implications

    SciTech Connect (OSTI)

    Farabegoli E.; Onorevoli, G. )

    1990-05-01

    The Quaternary telescoped growth pattern of the Southern Po Plain developed during the last 250,000 yr through the superimposition of six fining-upward continental sequences, which can be correlated with terraced deposits. The boundary surfaces of every cycle (base and top of gravels and/or sands), the overall thickness, the thickness of basal coarse sediments, and the related trends and deviations have been computer-gridded and contoured. Comparison between the maps of the whole Quaternary sequence and the structural map of Pliocene isobaths suggests that the sequence evolution has been controlled by the combined action of glacio-eustatic fluctuations and strong tectonics. Lowstands controlled the regional pattern of the basal surfaces, and highstands coincide with the time of accretions of the sequences. Tectonics influenced the local subsidence, and consequently, the paleogeographic setting, following a rather regular cyclic trend. Four tectonic events alternated with four pauses; each period was 20,000-50,000 years long. Thrust kinematics proceeded cyclically from the inner to outer thrust faults, giving rise to isolated grouped and joined and grouped but free tectonic elements.