Powered by Deep Web Technologies
Note: This page contains sample records for the topic "thomas jefferson site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

2013 Annual Planning Summary for the Thomas Jefferson Site Office...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thomas Jefferson Site Office 2013 Annual Planning Summary for the Thomas Jefferson Site Office 2013 Annual Planning Summary for the Thomas Jefferson Site Office The ongoing and...

2

2012 Annual Planning Summary for Thomas Jefferson Site Office  

Energy.gov (U.S. Department of Energy (DOE))

The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and 2013 within Thomas Jefferson Site Office.

3

Thomas Jefferson Site Office Homepage | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Home Home Thomas Jefferson Site Office (TJSO) TJSO Home About Current Projects Contract Management Environment, Safety and Health (ES&H) Resources Contact Information Thomas Jefferson Site Office U.S. Department of Energy 12000 Jefferson Avenue Newport News, VA 23606 P: (757) 269-7140 Thomas Jefferson Site Office Pictured Right: Thomas Jefferson Site Office Staff TJSO Staff Photo 1 of 2 Print Text Size: A A A RSS Feeds FeedbackShare Page The Thomas Jefferson Site Office (TJSO) is an organization within the U.S. Department of Energy's Office of Science with responsibility to oversee and manage the Management and Operating (M&O) contract for the Thomas Jefferson National Accelerator Facility (TJNAF) in Newport News, Virginia. TJNAF is one of ten Office of Science Laboratories and is a single program

4

Thomas Jefferson National Accelerator Facility Site Tour - Accelerator Map  

NLE Websites -- All DOE Office Websites (Extended Search)

Counting House Free Electron Accelerator Facility Machine Control Center Physics Storage Building North Linear Accelerator South Linear Accelerator VEPCO Substation Machine Control Center Annex Machine Control Center Annex II North Access Building South Access Building Central Helium Liquefier Injector Hall A Truck Ramp Hall B Truck Ramp Hall C Truck Ramp Experimental Hall A Experimental Hall B Experimental Hall C East Arc West Arc Counting House Free Electron Accelerator Facility Machine Control Center Physics Storage Building North Linear Accelerator South Linear Accelerator VEPCO Substation Machine Control Center Annex Machine Control Center Annex II North Access Building South Access Building Central Helium Liquefier Injector Hall A Truck Ramp Hall B Truck Ramp Hall C Truck Ramp Experimental Hall A Experimental Hall B Experimental Hall C East Arc West Arc Science Education Jefferson Lab Jefferson Lab Home Search Jefferson Lab Contact Jefferson Lab Science Education Home Teacher Resources Student Zone Games and Puzzles Science Cinema Programs and Events Search Education Privacy and Security Notice Jefferson Lab Site Tour Guided Tour Site Map Accelerator Area Map Administrative Area Map Tour Index

5

Thomas Jefferson Site Office CX Determinations | U.S. DOE Office of Science  

Office of Science (SC) Website

Thomas Jefferson Site Office CX Thomas Jefferson Site Office CX Determinations Integrated Support Center (ISC) ISC Home About Services Freedom of Information Act (FOIA) Privacy Act Categorical Exclusion Determinations Contact Information Integrated Support Center Roxanne Purucker U.S. Department of Energy 9800 S. Cass Avenue Argonne, IL 60439 P: (630) 252-2110 Larry Kelly U.S. Department of Energy 200 Administration Road Oak Ridge, TN 37830 P: (865) 576-0885 Categorical Exclusion (CX) Determinations Thomas Jefferson Site Office CX Determinations Print Text Size: A A A RSS Feeds FeedbackShare Page As of October 31, 2010, there have been no CX determinations made. Categorical Exclusion Determination Documents (CX Determinations): * Determination Date Name of Action: Description Categorical Exclusion Number External link

6

Thomas Jefferson Site Office CX Determinations | U.S. DOE Office of Science  

Office of Science (SC) Website

Thomas Jefferson Site Office CX Determinations Thomas Jefferson Site Office CX Determinations Safety, Security and Infrastructure (SSI) SSI Home Facilities and Infrastructure Safeguards & Security Environment, Safety and Health (ES&H) Organization Chart .pdf file (82KB) Phone Listing .pdf file (129KB) SC HQ Continuity of Operations (COOP) Implementation Plan .pdf file (307KB) Categorical Exclusion Determinations SLI & SS Budget Contact Information Safety, Security and Infrastructure U.S. Department of Energy SC-31/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4097 F: (301) 903-7047 Categorical Exclusion (CX) Determinations Thomas Jefferson Site Office CX Determinations Print Text Size: A A A RSS Feeds FeedbackShare Page As of October 31, 2010, there have been no CX determinations made.

7

Independent Oversight Inspection, Thomas Jefferson National Accelerator  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thomas Jefferson National Thomas Jefferson National Accelerator Facility - August 2008 Independent Oversight Inspection, Thomas Jefferson National Accelerator Facility - August 2008 August 2008 Inspection of Environment, Safety and Health Programs at the Thomas Jefferson National Accelerator Facility The U.S. Department of Energy (DOE) Office of Independent Oversight, within the Office of Health, Safety and Security (HSS), inspected environment, safety, and health (ES&H) programs at the DOE Thomas Jefferson Site Office (TJSO) and the Thomas Jefferson National Accelerator Facility (TJNAF) during May through July 2008. The ES&H inspection was performed by Independent Oversight's Office of Environment, Safety and Health Evaluations. In coordination with TJSO, TJNAF has taken a number of actions to develop a

8

Thomas Jefferson National Accelerator Facility  

Science Conference Proceedings (OSTI)

The Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia, USA, is one of ten national laboratories under the aegis of the Office of Science of the U.S. Department of Energy (DOE). It is managed and operated by Jefferson Science Associates, LLC. The primary facility at Jefferson Lab is the Continuous Electron Beam Accelerator Facility (CEBAF) as shown in an aerial photograph in Figure 1. Jefferson Lab was created in 1984 as CEBAF and started operations for physics in 1995. The accelerator uses superconducting radio-frequency (srf) techniques to generate high-quality beams of electrons with high-intensity, well-controlled polarization. The technology has enabled ancillary facilities to be created. The CEBAF facility is used by an international user community of more than 1200 physicists for a program of exploration and study of nuclear, hadronic matter, the strong interaction and quantum chromodynamics. Additionally, the exceptional quality of the beams facilitates studies of the fundamental symmetries of nature, which complement those of atomic physics on the one hand and of high-energy particle physics on the other. The facility is in the midst of a project to double the energy of the facility and to enhance and expand its experimental facilities. Studies are also pursued with a Free-Electron Laser produced by an energy-recovering linear accelerator.

Joseph Grames, Douglas Higinbotham, Hugh Montgomery

2010-09-01T23:59:59.000Z

9

Thomas Jefferson High School for Science & Technology National...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thomas Jefferson High School for Science & Technology National Science Bowl Champion Thomas Jefferson High School for Science & Technology National Science Bowl Champion May 2,...

10

Thomas Jefferson High School for Science & Technology National Science  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thomas Jefferson High School for Science & Technology National Thomas Jefferson High School for Science & Technology National Science Bowl® Champion Thomas Jefferson High School for Science & Technology National Science Bowl® Champion May 2, 2005 - 12:40pm Addthis WASHINGTON, DC -- "The Incompleteness Theorem" was the answer to a question on mathematics that today clinched the 2005 National Science Bowl® championship for the Thomas Jefferson High School for Science & Technology team from Alexandria, Va. The team received its championship trophy after triumphing over 62 other regional team champions this weekend. The team members are: Logan Kearsley, Matthew Isakowitz, Sam Lederer, Lisa Marrone, Charlotte Seid and coach Sharon Baker. The team also won a research trip to Alaska, three Computer Based Laboratories and $1,000 for their school's science

11

Thomas Jefferson National Accelerator Facility Technologies ...  

Jefferson Lab also conducts a variety of research using its Free-Electron Laser, which is based on the same electron-accelerating technology used in CEBAF.

12

Labs at-a-Glance: Thomas Jefferson National Accelerator Facility | U.S. DOE  

Office of Science (SC) Website

Thomas Jefferson Thomas Jefferson National Accelerator Facility Laboratories Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and Infrastructure Laboratory Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Labs at-a-Glance: Thomas Jefferson National Accelerator Facility Print Text Size: A A A RSS Feeds FeedbackShare Page Thomas Jefferson National Accelerator Facility Logo

13

UNITED STATES DEPARTMENT OF ENERGY (DOE) THOMAS JEFFERSON NATIONAL ACCELERATOR FACILITY (JEFFERSON LAB)  

NLE Websites -- All DOE Office Websites (Extended Search)

- 2014 JSAT Application Package - 2014 JSAT Application Package Page 1 of 6 UNITED STATES DEPARTMENT OF ENERGY (DOE) THOMAS JEFFERSON NATIONAL ACCELERATOR FACILITY (JEFFERSON LAB) JLAB SCIENCE ACTIVITIES FOR TEACHERS (JSAT) ATTENTION ALL 5 th , 6 th AND 8 th GRADE MIDDLE SCHOOL SCIENCE TEACHERS! THIS PROGRAM IS FOR YOU! What is it? JSAT is an after school program for 5 th , 6 th and 8 th grade science teachers designed to build teachers' skills in the physical sciences, funded by the Jefferson Science Associates Initiatives Fund. What will I do? The 2013-2014 program will include interactive activities to enhance physical science instruction at the middle school level and lectures by Jefferson Lab staff on the applications of science. And, yes, teachers WILL receive class sets of some activities!

14

SBOT VIRGINIA THOMAS JEFFERSON LAB POC Danny Llyod Telephone  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

VIRGINIA VIRGINIA THOMAS JEFFERSON LAB POC Danny Llyod Telephone (757) 269-7121 Email lloyd@jlab.org ADMINISTATIVE / WASTE / REMEDIATION Facilities Support Services 561210 Employment Placement Agencies 561311 Travel Agencies 561510 Locksmiths 561622 Exterminating and Pest Control Services 561710 Janitorial Services 561720 Landscaping Services 561730 Carpet and Upholstery Cleaning Services 561740 Hazardous Waste Collection 562112 CONSTRUCTION Industrial Building Construction 236210 Commercial and Institutional Building Construction 236220 Water and Sewer Line and Related Structures Construction 237110 Power and Communication Line and Related Structures Construction 237130 Highway, Street, and Bridge Construction 237310 Other Heavy and Civil Engineering Construction 237990 Other Foundation, Structure, and Building Exterior Contractors

15

A LIMITED LIABILITY PARTNERSHIP 1050 Thomas Jefferson Street, NW  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A LIMITED LIABILITY PARTNERSHIP A LIMITED LIABILITY PARTNERSHIP 1050 Thomas Jefferson Street, NW Seventh Floor Washington, DC 20007 (202) 298-1800 Phone (202) 338-2416 Fax MEMORANDUM TO: DOE Office of General Counsel FROM: Doug Smith DATE: August 29, 2013 RE: Record of Communication Concerning Ceiling Fan and Ceiling Fan Light Kit Framework Document-Docket No. EERE-2012-BT-STD-0045 This memo provides an overview of communications made to DOE staff on the subject of possible changes to standards and test procedures for ceiling fans and ceiling fan light kits. The communications occurred at a meeting held at 10:30 a.m. on August 20, 2013, following the close of the comment period on the initial framework document for ceiling fans and light kits. The meeting attendees included:

16

Finding of No Significant Impact Improvements at the Thomas Jefferson National Accelerator Facility Newsport News, Virginia  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IMPROVEMENTS AT THE THOMAS JEFFERSON NATIONAL ACCELERATOR FACILITY IMPROVEMENTS AT THE THOMAS JEFFERSON NATIONAL ACCELERATOR FACILITY NEWPORT NEWS, VIRGINIA AGENCY: U.S. DEPARTMENT OF ENERGY ACTION: FINDING OF NO SIGNIFICANT IMPACT SUMMARY: The U.S. Department of Energy (DOE) has completed an Environmental Assessment (DOE/EA-1384) for proposed Improvements at the Thomas Jefferson National Accelerator Facility (Jefferson Lab). Newport News, Virginia. Based on the results of the impacts analysis reported in the EA, DOE has determined that the proposed action is not a major Federal action that would significantly affect the quality of the human environment within the context of the National Environmental Policy Act of 1969 (NEPA). Therefore, preparation of an environmental impact statement (EIS) is not necessary, and DOE is issuing this Finding of No

17

Environmental Assessment Proposed Improvements at the Thomas Jefferson National Accelerator Facility Newport News, Virginia  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

84 84 Environmental Assessment Proposed Improvements at the Thomas Jefferson National Accelerator Facility Newport News, Virginia June 2002 U. S. Department of Energy Oak Ridge Operations Oak Ridge, Tennessee DOE/EA-1384 i TABLE OF CONTENTS Executive Summary.....................................................................................................................1 1. INTRODUCTION..................................................................................................................... 6 1.1 PREVIOUS ACTIONS ............................................................................................................................................. 6 1.2 SCOPE OF THIS PROPOSED ACTION..............................................................................................................

18

Questions and Answers - What did Thomas Jefferson do as a scientist?  

NLE Websites -- All DOE Office Websites (Extended Search)

Who invented magnets? Who invented magnets? Previous Question (Who invented magnets?) Questions and Answers Main Index Next Question (Why does the U.S. use Fahrenheit instead of Celsius?) Why does the U.S. useFahrenheit instead of Celsius? What did Thomas Jefferson do as a scientist? It's true that Thomas Jefferson contributed some new knowledge directly to science and technology. But his main scientific contribution was as a statesman of science. For half a century in public office and in private life, he led the growth of American optimism about science, technology, and the future. Jefferson wished he could be a scientist all the time. When he was leaving the presidency in early 1809, he wrote, "Nature intended me for the tranquil pursuits of science, by rendering them my supreme delight." In

19

Thomas Jefferson  

NLE Websites -- All DOE Office Websites (Extended Search)

2 inches, with a freckled face, rather angular features, hazel-gray eyes, and thick sandy- red hair of silky texture. Although a bit awkward, he had an unusually intelligent...

20

The BEAMS Program at Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

the Thomas Jefferson National Accelerator Facility and Newport News City Public Schools The Thomas Jefferson National Accelerator Facility (Jefferson Lab) is a U.S....

Note: This page contains sample records for the topic "thomas jefferson site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Thomas Jefferson Site Office Categorical Exclusions | U.S. DOE...  

Office of Science (SC) Website

Safety & Health Organization Chart .pdf file (82KB) Phone Listing .pdf file (129KB) SC Categorical Exclusions and NEPA Documents SLI & SS Budget Contact Information Safety,...

22

The 12 GeV CEBAF Upgrade Project at Thomas Jefferson National Accelerator Facility, OAS-RA-L-11-13  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

12 GeV CEBAF Upgrade 12 GeV CEBAF Upgrade Project at Thomas Jefferson National Accelerator Facility OAS-RA-L-11-13 September 2011 Department of Energy Washington, DC 20585 September 30, 2011 MEMORANDUM FOR THE DEPUTY DIRECTOR FOR SCIENCE PROGRAMS, OFFICE OF SCIENCE DIRECTOR, OFFICE OF RISK MANAGEMENT AND FINANCIAL POLICY, OFFICE OF THE CHIEF FINANCIAL OFFICER FROM: David Sedillo, Director NNSA & Science Audits Division Office of Inspector General SUBJECT: INFORMATION: Audit Report on "The 12 GeV CEBAF Upgrade Project at Thomas Jefferson National Accelerator Facility" Audit Report Number: OAS-RA-L-11-13 BACKGROUND In September 2008, the Department of Energy's (Department) Office of Science approved a construction project to double the electron beam energy of the Continuous Electron Beam

23

Jefferson Lab Technology Transfer  

List the name (s) of Thomas Jefferson National Accelerator Facility's technology of interest: * Does any foreign entity (company, person, ... Select license type:

24

Jefferson Lab Treasure Hunt  

NLE Websites -- All DOE Office Websites (Extended Search)

Jefferson Lab Treasure Hunt Students tour Jefferson Lab's site while searching for answers to challenging questions. Teacher Overview Download this Activity Lab Pages Questions...

25

Feasibility Test Run of C-12(e,e'K{sup +}) Reaction at Thomas Jefferson National Accelerator Facility  

DOE Green Energy (OSTI)

The high quality and high duty factor (100%) electron beam at Jefferson Lab offers an opportunity to broaden their view of hypernuclear physics by studying the (e,e{prime}K{sup +}) reaction with high resolution. The present data represent a feasibility study of such a reaction on a carbon target. The test run was carried out during experiments E91-16 (Electroproduction of Kaons and Light Hypernuclei) and E93-18 (Kaon Electroproduction on p(e,e{prime}K{sup +})Y). These two experiments used liquid deuterium and hydrogen targets, respectively. There exist data on an aluminum target for the background calibration of the liquid targets which are suitable also for a feasibility study of electroproduction of hypernuclei. These data are still under analysis. The goal of this test run is to evaluate issues concerned with the electroproduction of hypernuclei. These issues include: (1) the quasi-free production rate, which had not been measured previously, (2) random coincidence background, (3) keon identification over a possibly large hadronic background, and (4) possible evaluation of the production rate of the bound hypernuclear structures. This test run will supply significant knowledge for running high quality hypernuclear experiments at Jefferson Lab. The spectroscopy of hypernuclei has been studied mainly in two ways: the strangeness-exchange reaction (K{sup -}, {pi}{sup -}), and associated strangeness production ({pi}{sup +}, K{sup +}). The (e,e{prime}K{sup +}) reaction has the advantage of exciting both natural- and unnatural-parity states and the possibility of obtaining good energy resolution. The cross section for the (e,e{prime}K{sup +}) reaction is about a hundred times smaller than for the corresponding hadronic production reactions but it is compensated for by the availability of high intensity and high duty factor electron beams. In order to optimize the production rate, the kinematic setting requires both the scattered electron and kaon to be detected at very forward angles. The test run was not optimized for hypernuclear production, but it serves as an important technical evaluation for future hypernuclear programs at Jefferson Lab. The first high-resolution spectroscopy experiment on p-shell lambda hypernuclei is tentatively scheduled to run in 1999 in Hall C at Jefferson Lab.

Wendy Hinton

1998-08-01T23:59:59.000Z

26

Jefferson Lab Technology Transfer - Thomas Jefferson National ...  

Invention Disclosure; CRADA/WFO Routing; Fairness of Opportunity; America Invents Act Summary; Achievements at JLab. Patents; New Inventions; New ...

27

Jefferson Lab Technology Transfer - Thomas Jefferson National ...  

JSA Invention Disclosure; Technology Transfer Issues (Ombudsman) Programs and Facilities. Free-Electron Laser Program (FEL) Applied Research Center ...

28

Jefferson Lab | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

News item slideshow News item slideshow Final Piece Final Piece Workers install a section of the pre-shower calorimeter, or PCAL, which is part of the CLAS12 detector package in Jefferson Lab's Experimental Hall B. The new equipment is being installed for the 12 GeV Upgrade project. <<< Installation of PCAL in Hall B. Upgraded Detector Upgraded Detector Work on the 12 GeV Upgrade project continues at Jefferson Lab. Shown here is the new CLAS12 detector in Experimental Hall B after the recent installation of the pre-shower calorimeter, or PCAL. <<< Installation work on Hall B detector. Neutron Stopper Neutron Stopper Jefferson Lab engineer Paul Brindza holds up samples of a new system of concrete products designed to stop neutrons and other particles from harming sensitive scientific computers and detectors. The new system was

29

Wind Power Opportunities in St. Thomas, USVI: A Site-Specific Evaluation and Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Opportunities in Power Opportunities in St. Thomas, USVI: A Site-Specific Evaluation and Analysis E. Lantz, A. Warren, J.O. Roberts, and V. Gevorgian Technical Report NREL/TP-7A20-55415 September 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Wind Power Opportunities in St. Thomas, USVI: A Site-Specific Evaluation and Analysis E. Lantz, A. Warren, J.O. Roberts, and V. Gevorgian Prepared under Task No. IDVI.1020 Technical Report NREL/TP-7A20-55415 September 2012 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

30

Jefferson Lab Contract to be Awarded to Jefferson Science Associates, LLC for Management and Operation of World-Class Office of Science Laboratory  

Energy.gov (U.S. Department of Energy (DOE))

OAK RIDGE , TN - The U.S. Department of Energy has selected Jefferson Science Associates, LLC, as the contractor for management and operation of the Thomas Jefferson National Accelerator Facility....

31

Jefferson Lab Contract to be Awarded to Jefferson Science Associates, LLC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jefferson Lab Contract to be Awarded to Jefferson Science Jefferson Lab Contract to be Awarded to Jefferson Science Associates, LLC for Management and Operation of World-Class Office of Science Laboratory Jefferson Lab Contract to be Awarded to Jefferson Science Associates, LLC for Management and Operation of World-Class Office of Science Laboratory April 12, 2006 - 10:17am Addthis OAK RIDGE , TN - The U.S. Department of Energy has selected Jefferson Science Associates, LLC, as the contractor for management and operation of the Thomas Jefferson National Accelerator Facility. The contract, which has a potential value of $2 billion, becomes effective on April 17, 2006. "We have selected the team that we believe is best equipped to lead this important Office of Science laboratory for the department, and we look

32

Wind Power Opportunities in St. Thomas, USVI: A Site-Specific Evaluation and Analysis  

DOE Green Energy (OSTI)

This NREL technical report utilizes a development framework originated by NREL and known by the acronym SROPTTC to assist the U.S. Virgin Islands in identifying and understanding concrete opportunities for wind power development in the territory. The report covers each of the seven components of the SROPTTC framework: Site, Resource, Off-take, Permitting, Technology, Team, and Capital as they apply to wind power in the USVI and specifically to a site in Bovoni, St. Thomas. The report concludes that Bovoni peninsula is a strong candidate for utility-scale wind generation in the territory. It represents a reasonable compromise in terms of wind resource, distance from residences, and developable terrain. Hurricane risk and variable terrain on the peninsula and on potential equipment transport routes add technical and logistical challenges but do not appear to represent insurmountable barriers. In addition, integration of wind power into the St. Thomas power system will present operational challenges, but based on experience in other islanded power systems, there are reasonable solutions for addressing these challenges.

Lantz, E.; Warren, A.; Roberts, J. O.; Gevorgian, V.

2012-09-01T23:59:59.000Z

33

Depleted uranium risk assessment for Jefferson Proving Ground using data from environmental monitoring and site characterization. Final report  

SciTech Connect

This report documents the third risk assessment completed for the depleted uranium (DU) munitions testing range at Jefferson Proving Ground (JPG), Indiana, for the U.S. Army Test and Evaluation command. Jefferson Proving Ground was closed in 1995 under the Base Realignment and Closure Act and the testing mission was moved to Yuma Proving Ground. As part of the closure of JPG, assessments of potential adverse health effects to humans and the ecosystem were conducted. This report integrates recent information obtained from site characterization surveys at JPG with environmental monitoring data collected from 1983 through 1994 during DU testing. Three exposure scenarios were evaluated for potential adverse effects to human health: an occasional use scenario and two farming scenarios. Human exposure was minimal from occasional use, but significant risk were predicted from the farming scenarios when contaminated groundwater was used by site occupants. The human health risk assessments do not consider the significant risk posed by accidents with unexploded ordnance. Exposures of white-tailed deer to DU were also estimated in this study, and exposure rates result in no significant increase in either toxicological or radiological risks. The results of this study indicate that remediation of the DU impact area would not substantially reduce already low risks to humans and the ecosystem, and that managed access to JPG is a reasonable model for future land use options.

Ebinger, M.H.; Hansen, W.R.

1996-10-01T23:59:59.000Z

34

Jefferson Lab Technology Transfer  

For more information about Intellectual Property and Inventions, please see the Jefferson Lab Employee Handbook, the Jefferson Lab Administrative ...

35

Thomas Jefferson National Accelerator Facility Technology ...  

Energy Innovation Portal Technologies. Search Help ... This invention can produce copious quantities of carbon nanotubes at rates near grams per hour.

36

Petabyte Class Storage at Jefferson Lab (CEBAF)  

E-Print Network (OSTI)

By 1997, the Thomas Jefferson National Accelerator Facility will collect over one Terabyte of raw information per day of Accelerator operation from three concurrently operating Experimental Halls. When post-processing is included, roughly 250 TB of raw and formatted experimental data will be generated each year. By the year 2000, a total of one Petabyte will be stored on-line.

Rita Chambers Mark; Mark Davis

1996-01-01T23:59:59.000Z

37

Steven Thomas  

Energy.gov (U.S. Department of Energy (DOE))

Dr.Steven R. Thomas serves as theFeedstock Supply and Logistics Team Lead for the Bioenergy Technologies Office.

38

Jefferson Lab Coloring Book  

NLE Websites -- All DOE Office Websites (Extended Search)

Programs and Events Search Education Privacy and Security Notice Jefferson Lab Coloring Book The Jefferson Lab Coloring Book, Quarks - More Than Meets the Eye, was written to help...

39

Electroweak Physics at Jefferson Lab  

SciTech Connect

The Continuous Electron Beam Accelerator Facility (CEBAF) at the Thomas Jefferson National Accelerator Facility provides CW electron beams with high intensity, remarkable stability, and a high degree of polarization. These capabilities offer new and unique opportunities to search for novel particles and forces that would require extension of the standard model. CEBAF is presently undergoing an upgrade that includes doubling the energy of the electron beam to 12 GeV and enhancements to the experimental equipment. This upgraded facility will provide increased capability to address new physics beyond the standard model.

R. D. McKeown

2012-03-01T23:59:59.000Z

40

Jefferson Lab Contract to be Awarded to Jefferson Science Associates...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awarded to Jefferson Science Associates, LLC for Management and Operation of World-Class Office of Science Laboratory Jefferson Lab Contract to be Awarded to Jefferson Science...

Note: This page contains sample records for the topic "thomas jefferson site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

ESnet Site List  

NLE Websites -- All DOE Office Websites (Extended Search)

CA) JLAB Thomas Jefferson National Accelerator Facility (Newport News, VA) KCP Kansas City Plant (Kansas City, MO) KCP-ALBQ Kansas City Plant (Albuquerque, NM) LANL Los Alamos...

42

Thomas Durkin  

NLE Websites -- All DOE Office Websites (Extended Search)

Thomas Durkin Sr. Partner LEED, AP tdurkin@dvpe.net This speaker was a visiting speaker who delivered a talk or talks on the date(s) shown at the links below. This speaker is not...

43

Environmental Assessment for the Proposed Upgrade and Operation of the CEBAF and FEL Accelerators and Construction and Use of Buildings Associated with the 2005 Ten-Year Site Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 Environmental Assessment Proposed Upgrade and Operation of the CEBAF and FEL Accelerators and Construction and Use of Buildings Associated with the 2005 Ten-Year Site Plan at the Thomas Jefferson National Accelerator Facility Newport News, Virginia January 2007 U. S. Department of Energy Thomas Jefferson Site Office Newport News, VA DOE/EA-1534 January 2007 C:\TRANSFER\JANUARY 26 Final EA-1534-012607 (2).doc i TABLE OF CONTENTS EXECUTIVE SUMMARY .......................................................................................................... 1 1.0 INTRODUCTION ...........................................................................................11 1.1 PREVIOUS ACTIONS....................................................................................11 1.2 SCOPE OF THIS PROPOSED ACTION .......................................................11

44

Thomas W. Vetter  

Science Conference Proceedings (OSTI)

Thomas W. Vetter. Thomas is an inorganic analytical chemist. During his first few years at NIST he determined gases in ...

2012-11-15T23:59:59.000Z

45

Implementation of a level 1 trigger system using high speed serial (VXS) techniques for the 12GeV high luminosity experimental programs at Thomas Jefferson National Accelerator Facility  

SciTech Connect

We will demonstrate a hardware and firmware solution for a complete fully pipelined multi-crate trigger system that takes advantage of the elegant high speed VXS serial extensions for VME. This trigger system includes three sections starting with the front end crate trigger processor (CTP), a global Sub-System Processor (SSP) and a Trigger Supervisor that manages the timing, synchronization and front end event readout. Within a front end crate, trigger information is gathered from each 16 Channel, 12 bit Flash ADC module at 4 nS intervals via the VXS backplane, to a Crate Trigger Processor (CTP). Each Crate Trigger Processor receives these 500 MB/S VXS links from the 16 FADC-250 modules, aligns skewed data inherent of Aurora protocol, and performs real time crate level trigger algorithms. The algorithm results are encoded using a Reed-Solomon technique and transmission of this Level 1 trigger data is sent to the SSP using a multi-fiber link. The multi-fiber link achieves an aggregate trigger data transfer rate to the global trigger at 8 Gb/s. The SSP receives and decodes Reed-Solomon error correcting transmission from each crate, aligns the data, and performs the global level trigger algorithms. The entire trigger system is synchronous and operates at 250 MHz with the Trigger Supervisor managing not only the front end event readout, but also the distribution of the critical timing clocks, synchronization signals, and the global trigger signals to each front end readout crate. These signals are distributed to the front end crates on a separate fiber link and each crate is synchronized using a unique encoding scheme to guarantee that each front end crate is synchronous with a fixed latency, independent of the distance between each crate. The overall trigger signal latency is <3 uS, and the proposed 12GeV experiments at Jefferson Lab require up to 200KHz Level 1 trigger rate.

C. Cuevas, B. Raydo, H. Dong, A. Gupta, F.J. Barbosa, J. Wilson, W.M. Taylor, E. Jastrzembski, D. Abbott

2009-11-01T23:59:59.000Z

46

Jefferson Lab Technology Transfer  

What is Technology Transfer at Jefferson Lab? The transfer of technology (intellectual property) developed at JLab to the private sector is an ...

47

Jefferson Lab Technology Transfer  

Tool for Breast Cancer Research - Reducing the need for Biopsy. ... Jefferson Lab is a Department of Energy national laboratory for nuclear physics re ...

48

Thomas Kirchstetter  

NLE Websites -- All DOE Office Websites (Extended Search)

Thomas Kirchstetter Thomas Kirchstetter Sustainable Energy Systems Group Lawrence Berkeley National Laboratory 1 Cyclotron Road MS 70R0108B Berkeley CA 94720 Office Location: 90-2024J (Office), 70-215 (Lab) (510) 486-7071 TWKirchstetter@lbl.gov Dr. Kirchstetter is a Staff Scientist at Lawrence Berkeley National Laboratory, where he is a Deputy Leader in the Sustainable Energy Systems Group and a member of the Heat Island Group. He studies the role of particulate matter in the environment as it relates to energy use, climate, and air quality. He has more than 50 refereed archival journal papers and holds a concurrent appointment at the University of California, Berkeley as an Associate Adjunct Professor in the Civil and Environmental Engineering Department. Tom's current research interests include:

49

Thomas Richardson  

NLE Websites -- All DOE Office Websites (Extended Search)

Richardson Richardson Electrochemical Technologies Group Lawrence Berkeley National Laboratory 1 Cyclotron Road MS 62-0203 Berkeley CA 94720 Office Location: 62-0321 (510) 486-8619 TJRichardson@lbl.gov This publications database is an ongoing project, and not all Division publications are represented here yet. Publications 2012 Liu, Xiaosong, Jun Liu, Ruimin Qiao, Yan Yu, Hong Li, Liumin Suo, Yong-sheng Hu, Yi-De Chuang, Guojiun Shu, Fangcheng Chou et al. "Phase Transformation and Lithiation Effect on Electronic Structure of LixFePO4: An In-Depth Study by Soft X-ray and Simulations." Journal of the American Chemical Society 134, no. 33 (2012): 13708-13715. 2011 Chen, Guoying, Alpesh K. Shukla, Xiangyun Song, and Thomas J. Richardson. "Improved Kinetics and Stabilities in Mg-Sybstained Li-MnPO4." J. of

50

Jefferson Lab's Open House  

NLE Websites -- All DOE Office Websites (Extended Search)

Currently, the date for Jefferson Lab's next Open House hasn't been announced. If you would like to be notified when a date has been set, you can subscribe to the Science Education...

51

Jefferson Lab Coloring Book  

NLE Websites -- All DOE Office Websites (Extended Search)

Programs and Events Search Education Privacy and Security Notice Jefferson Lab Coloring Book Use the multi-colored crayon on the left-hand side of the screen to select a color....

52

2010 DOE National Science Bowl Photos - Thomas Jefferson High...  

Office of Science (SC) Website

Facebook Facebook External link Share with Twitter Twitter External link Share with Google Bookkmarks Google Bookmarks External link Email a Friend Email link to: send 2010 DOE...

53

JEFFERSON LAB 12 GEV CEBAF UPGRADE  

Science Conference Proceedings (OSTI)

The existing continuous electron beam accelerator facility (CEBAF) at Thomas Jefferson National Accelerator Facility (TJNAF) is a 5-pass, recirculating cw electron Linac operating at approx6 GeV and is devoted to basic research in nuclear physics. The 12 GeV CEBAF Upgrade is a $310 M project, sponsored by the Department of Energy (DOE) Office of Nuclear Physics, that will expand its research capabilities substantially by doubling the maximum energy and adding major new experimental apparatus. The project received construction approval in September 2008 and has started the major procurement process. The cryogenic aspects of the 12 GeV CEBAF Upgrade includes: doubling the accelerating voltages of the Linacs by adding ten new high-performance, superconducting radiofrequency (SRF) cryomodules (CMs) to the existing 42 1/4 cryomodules; doubling of the 2 K cryogenics plant; and the addition of eight superconducting magnets.

Rode, C. H. [Thomas Jefferson National Accelerator Facility, Newport News, Virginia, 23606 (United States)

2010-04-09T23:59:59.000Z

54

Science Education at Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

regional and national education community. Jefferson Lab's long-term commitment to science education continues to focus on increasing the number and quality of undergraduate...

55

Undergraduate Research at Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

As a Department of Energy National Lab, Jefferson Lab has a responsibility to help train the next generation of scientists. See the research projects students participating in the...

56

Jefferson Lab Technology Transfer - JLab  

What is Technology Transfer at Jefferson Lab? The transfer of technology (intellectual property) developed at JLab to the private sector is an important element of ...

57

Iran Thomas Auditorium, 8600  

NLE Websites -- All DOE Office Websites (Extended Search)

8, 2012 4:00 pm Iran Thomas Auditorium, 8600 Systematic theory-guided nano-engineering of molecular order, lattice dimensionality, and viscoelastic properties of organic...

58

Iran Thomas Auditorium, 8600  

NLE Websites -- All DOE Office Websites (Extended Search)

Thursday, December 6, 2012 11:00 am Iran Thomas Auditorium, 8600 1000 Shapes and 1000 Uses of Designer Carbon Nanostructures David Tomnek Physics and Astronomy Department,...

59

Iran Thomas Auditorium, 8600  

NLE Websites -- All DOE Office Websites (Extended Search)

October 8, 2010 11:00am Iran Thomas Auditorium, 8600 Growth and interface properties of oxide heterostructures Guus Rijnders MESA+ Institute for Nanotechnology University of...

60

Iran Thomas Auditorium, 8600  

NLE Websites -- All DOE Office Websites (Extended Search)

February 17, 2011 2:00 pm Iran Thomas Auditorium, 8600 Field-Based Simulations for the Design of Polymer Nanostructures Glenn H. Fredrickson Mitsubishi Professor of Chemical...

Note: This page contains sample records for the topic "thomas jefferson site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Iran Thomas Auditorium, 8600  

NLE Websites -- All DOE Office Websites (Extended Search)

Tuesday, March 5, 2013 2:00 pm Iran Thomas Auditorium, 8600 Materials-related aspects of photocatalysis: Insights from first principles simulations Annabella Selloni Princeton...

62

Iran Thomas Auditorium, 8600  

NLE Websites -- All DOE Office Websites (Extended Search)

April 19, 2013 11:00 am Iran Thomas Auditorium, 8600 New Methods for Controlling the Structures and Functions of Synthetic Polymers Christopher Bielawski University of Texas at...

63

Iran Thomas Auditorium, 8600  

NLE Websites -- All DOE Office Websites (Extended Search)

August 27, 2010 11:00 am Iran Thomas Auditorium, 8600 Theory of dielectric and ferroelectric properties of ultrathin films and superlattices David Vanderbilt Department of Physics...

64

Iran Thomas Auditorium, 8600  

NLE Websites -- All DOE Office Websites (Extended Search)

December 10, 2010 11:00am Iran Thomas Auditorium, 8600 Viscoelastic effect on formation of mesoglobular phase (nanoparticles) in dilute solutions: A point of view different from...

65

Iran Thomas Auditorium, 8600  

NLE Websites -- All DOE Office Websites (Extended Search)

March 22, 2013 11:00 am Iran Thomas Auditorium, 8600 Dynamics of Polymers in Polymer Nanocomposites Dieter Richter Jlich Centre for Neutron Science, Institute for Complex...

66

Thomas G. Cleary  

Science Conference Proceedings (OSTI)

... Thomas G. Cleary is a chemical engineer in the Engineered Fire Safety Group of the Fire Research Division (FRD) of the Engineering Laboratory ...

2010-10-05T23:59:59.000Z

67

Undergraduate Research at Jefferson Lab - Analysis of Contamination Levels  

NLE Websites -- All DOE Office Websites (Extended Search)

Compton Scattering Chamber Compton Scattering Chamber Previous Project (Compton Scattering Chamber) Undergraduate Research Main Index Next Project (Non-linear Multidimensional Optimization) Non-linear Multidimensional Optimization Analysis of Contamination Levels of Jefferson Laboratory SRF Clean Room Facilities during Power Outage Using FE-SEM/EDX Studies of Copper Coupons Student: Kaitlyn M. Fields School: College of William and Mary Mentored By: Ari D. Palczewski and Charles E. Reece Superconducting radiofrequency (SRF) accelerating cavities at Thomas Jefferson National Accelerator Facility support high surface electric and magnetic fields with minimal energy dissipation and resistance. The performance of these cavities can be limited by particulate contamination, which can become a source of enhanced field emission. Clean cavity assembly

68

SF6 Emissions Management at Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

SF 6 Emissions Management at Jefferson Lab Kevin Jordan PE Jefferson Lab November 16, 2010 Emissions Management Overview * SF 6 Gas Usage * SF 6 Transfer System * Remote Cesiator *...

69

Jefferson Lab Treasure Hunt - Teacher Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

a chance to see more of Jefferson Lab. Objectives: In this activity students will: - tour Jefferson Lab - collect information to answer questions in the BEAMS Lab Book Notes: -...

70

The Jefferson Lab 12 GeV Upgrade  

Science Conference Proceedings (OSTI)

A major upgrade of the Continuous Electron Beam Accelerator Facility (CEBAF) at the Thomas Jefferson National Accelerator Facility is in progress. Construction began in 2008 and the project should be completed in 2015. The upgrade includes doubling the energy of the electron beam to 12 GeV, the addition of a new fourth experimental hall, and new experimental equipment in three of the experimental halls. A brief overview of this upgrade project is presented along with some highlights of the anticipated experimental program.

R.D. McKeown

2011-10-01T23:59:59.000Z

71

Thomas Edison | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Thomas Edison Tesla vs. Edison 62 likes Thomas Edison Inventor Known as "The Wizard of Menlo Park," Edison was an American inventor who developed the first commercially practical...

72

Neutron Transversity at Jefferson Lab  

SciTech Connect

Nucleon transversity and single transverse spin asymmetries have been the recent focus of large efforts by both theorists and experimentalists. On-going and planned experiments from HERMES, COMPASS and RHIC are mostly on the proton or the deuteron. Presented here is a planned measurement of the neutron transversity and single target spin asymmetries at Jefferson Lab in Hall A using a transversely polarized {sup 3}He target. Also presented are the results and plans of other neutron transverse spin experiments at Jefferson Lab. Finally, the factorization for semi-inclusive DIS studies at Jefferson Lab is discussed.

Jian-Ping Chen; Xiaodong Jiang; Jen-chieh Peng; Lingyan Zhu

2005-09-07T23:59:59.000Z

73

Thomas Reddinger Director, Steam  

E-Print Network (OSTI)

(Distribution) Deborah Moorhead Office Coordinator III Martin Bower Steam Plant Operator Richard Redfield SteamThomas Reddinger Director, Steam Operations Steven Richards Assistant Manager of Maintenance Plant Operator Bohdan Sawa Steam Plant Operator Robert Tedesco Steam Plant Operator James Bradley

Raina, Ramesh

74

Iran Thomas Auditorium, 8600  

NLE Websites -- All DOE Office Websites (Extended Search)

May 3, 2012 4:00 pm Iran Thomas Auditorium, 8600 Understanding the Behavior of Nanoscale Magnetic Heterostructures: How Microscopy Can Help Amanda K. Petford-Long Center for...

75

Iran Thomas Auditorium, 8600  

NLE Websites -- All DOE Office Websites (Extended Search)

September 27, 2012 2:00 pm Iran Thomas Auditorium, 8600 Exploring the Physics of Graphene with Local Probes Joseph A. Stroscio Center for Nanoscale Science and Technology, NIST...

76

Spin Asymmetries on Nucleon Experiment at Jefferson Lab  

SciTech Connect

The Spin Asymmetries of the Nucleon Experiment (SANE) of Jefferson Lab is a comprehensive measurement of double spin asymmetries of the proton for both parallel and almost perpendicular spin configurations of the proton spin and the electron beam polarization directions. The experiment will provide both spin structure functions, g2 and g1 and spin observable A2 and A1 of the proton over Q2 region from 2.5 to 6.5 GeV2/c2 and Bjorken x region of 0.3 to 0.8. Using the polarized electron beam of Thomas Jefferson National Accelerator Facility and the polarized frozen NH3 target, the data were taken early 2009 in Hall C of Jefferson Lab. Scattered electrons from the inclusive reaction were detected by the Big Electron Telescope Array (BETA), a new non-magnetic detector with a large acceptance of 194 msr. The current analysis effort is focused on the proton spin structure functions g2 and g1. Physics motivations with the experimental methods will be presented with an overvew of the current status of the data analysis.

Seonho Choi

2011-10-01T23:59:59.000Z

77

Spin Asymmetries on Nucleon Experiment at Jefferson Lab  

SciTech Connect

The Spin Asymmetries of the Nucleon Experiment (SANE) of Jefferson Lab is a comprehensive measurement of double spin asymmetries of the proton for both parallel and almost perpendicular spin configurations of the proton spin and the electron beam polarization directions. The experiment will provide both spin structure functions, g{sub 2} and g{sub 1} and spin observable A{sub 2} and A{sub 1} of the proton over Q{sup 2} region from 2.5 to 6.5 GeV{sup 2}/c{sup 2} and Bjorken x region of 0.3 to 0.8. Using the polarized electron beam of Thomas Jefferson National Accelerator Facility and the polarized frozen NH{sub 3} target, the data were taken early 2009 in Hall C of Jefferson Lab. Scattered electrons from the inclusive reaction were detected by the Big Electron Telescope Array (BETA), a new non-magnetic detector with a large acceptance of 194 msr. The current analysis effort is focused on the proton spin structure functions g{sub 2} and g{sub 1}. Physics motivations with the experimental methods will be presented with an overview of the current status of the data analysis.

Choi, Seonho [Department of Physics, Seoul National University, Seoul 151-747 (Korea, Republic of)

2011-10-21T23:59:59.000Z

78

Pilar Thomas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pilar Thomas Pilar Thomas About Us Pilar Thomas - Deputy Director, Office of Indian Energy Policy and Programs Pilar Thomas Pilar Thomas (Pascua Yaqui) is the Deputy Director in the Office of Indian Energy Policy and Programs. As Deputy Director, Ms. Thomas assists the Director in developing national energy policy and programs related to Indian energy development. Ms. Thomas is also responsible for developing and implementing policy efforts within the Department and federal government to achieve the Office's Indian Energy policy objectives. Prior to joining the Department, Ms. Thomas served as the Deputy Solicitor for Indian Affairs in the U.S. Department of the Interior. Appointed as Deputy Solicitor in September 2009, Ms. Thomas was responsible for providing day to day legal advice and counsel to the Secretary, the

79

Jefferson Offshore | Open Energy Information  

Open Energy Info (EERE)

Jefferson Offshore Jefferson Offshore Facility Jefferson Offshore Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Coastal Point Energy LLC Developer Coastal Point Energy LLC Location Gulf of Mexico TX Coordinates 29.568°, -93.957° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.568,"lon":-93.957,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

80

Teacher Night at Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Night at Jefferson Lab Night at Jefferson Lab Region II Physical Science Teacher Night for Elementary and Middle School Teachers April 2nd, 2014 6:30 pm - 8:00 pm Come for the FUN! You won't want to miss the annual Virginia Region II Teacher Night at Jefferson Lab! This year's focus is on physical science activities for upper elementary and middle school teachers. Format for the Evening Think of a Science Fair with enthusiactic students lined up at tables waiting to show you their projects... Teacher Night will be similar, except enthusiactic teachers will be waiting to share one of their favorite classroom activities with YOU! All teachers will have handouts and many will have starter supplies to accompany the handouts - that's right, FREE MATERIALS! Activity Topics Friction - Electrolysis - Water Cycle - Engineering Design Challenge -

Note: This page contains sample records for the topic "thomas jefferson site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

What's used to steer Jefferson Lab's...  

NLE Websites -- All DOE Office Websites (Extended Search)

What's used to steer Jefferson Lab's electron beam? Although it may not look like it at first, the Jefferson Lab accelerator really works much like your TV set. Electrons are...

82

Jefferson Lab Technology Transfer  

This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to any browser. Concerns? Technology Transfer.

83

Thomas H. Smouse Memorial Fellowship  

Science Conference Proceedings (OSTI)

Awarded to a graduate student doing research in areas of interest to AOCS. Thomas H. Smouse Memorial Fellowship Thomas H. Smouse Memorial Fellowship graduate research scholastically outstanding Smouse Award Student Award Student Awards achievemen

84

Thomas Reddinger Director, Steam  

E-Print Network (OSTI)

Supervisor (Distribution) Deborah Moorhead Office Coordinator III Martin Bower Steam Plant Operator RichardThomas Reddinger Director, Steam Operations Steven Richards Assistant Manager of Maintenance Redfield Steam Plant Operator SU Steam Station/Chilled Water Plant Bohdan Sawa Steam Plant Operator Robert

McConnell, Terry

85

BNL | Thomas Roser  

NLE Websites -- All DOE Office Websites (Extended Search)

Roser Roser Thomas Roser Chair of the Collider-Accelerator Department photo of Thomas Roser With about 400 employees and an annual budget of $140 million, C-AD develops, improves and operates a suite of accelerators used for experiments by an international community of about 1,500 scientists. The department also designs and constructs new accelerators in support of the Laboratory's and national missions. Roser earned a Ph.D. in physics from the Swiss Federal Institute of Technology in Zurich in 1984. He became a research fellow at the University of Michigan in the same year and was appointed assistant professor of physics at the university in 1990. He joined Brookhaven Lab as an associate physicist in 1991, and, in 1994, he became the head of the Accelerator Division for Brookhaven's Alternating Gradient Synchrotron Department,

86

Mr. Thomas Dwyer  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thomas Dwyer Thomas Dwyer 5007 Clarevalley Drive Cincinnati, OH 45238 Dear Mr. Dwyer: Department of Energy Washington, DC 20585 OCT -4 2000 Re: OHA Case No. VBB-0005 This letter concerns the complaint of reprisal that you submitted to the Department of Energy under 10 C.F.R. Part 708. You have filed a petition for Secretarial review of the appeal decision issued to you on July 24, 2000. The Part 708 regulations applicable to the petition provide that the Secretary will reverse or revise an appeal decision by the Director of the Office of Hearings and Appeals only under extraordinary circumstances. 10 C.F.R. § 708.35(d). After fully evaluating all the issues that you raised in your filing dated September 8, 2000, I have determined that you have not shown that

87

Thomas B. Watson | BNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Thomas B. Watson Thomas B. Watson Chemist Watson is a Chemist and has been the leader of the Tracer Technology Group for 7 years. He has more than 21 years experience in atmospheric transport and dispersion research using intentionally released tracer compounds. His research has been focused on the processes of short- and long-range atmospheric diffusion, dispersion, and transport, and on the chemical transformation of natural and anthropogenic compounds in the atmosphere. Most of his work has been in the design, execution, and interpretation of field measurement programs and has been used in the development of predictive tools for the national security and emergency response communities. He has supervised tracer, release, sampling, and analysis for two field campaigns for Urban Dispersion Program and four programs for the

88

Jefferson Lab 12 GeV CEBAF Upgrade  

Science Conference Proceedings (OSTI)

The existing continuous electron beam accelerator facility (CEBAF) at Thomas Jefferson National Accelerator Facility (TJNAF) is a 5-pass, recirculating cw electron Linac operating at ~6 GeV and is devoted to basic research in nuclear physics. The 12 GeV CEBAF Upgrade is a $310 M project, sponsored by the Department of Energy (DOE) Office of Nuclear Physics, that will expand its research capabilities substantially by doubling the maximum energy and adding major new experimental apparatus. The project received construction approval in September 2008 and has started the major procurement process. The cryogenic aspects of the 12 GeV CEBAF Upgrade includes: doubling the accelerating voltages of the Linacs by adding ten new high-performance, superconducting radiofrequency (SRF) cryomodules (CMs) to the existing 42 1/4 cryomodules; doubling of the 2 K cryogenics plant; and the addition of eight superconducting magnets.

Claus Rode

2010-04-01T23:59:59.000Z

89

Optical modeling of the Jefferson Laboratory IR Demo FEL  

Science Conference Proceedings (OSTI)

The Thomas Jefferson National Accelerator Facility (Jefferson Lab) is in the process of building a 1 kW free-electron laser operates at 3 microns. The details of the accelerator driver are given in other papers in these proceedings. The optical cavity consists of a near-concentric resonator with transmissive outcoupling. Though several free-electron lasers have used similar designs, they have not had to confront the high average-power loading present in this laser. It is useful to know the limits of this type of optical cavity design. The optical system of the laser has been modeled using the commercial code GLAD{reg_sign} by using a Beer`s-law region to mimic the FEL interaction. The effects of mirror heating have been calculated and compared with analytical treatments. The magnitude of the distortion for several materials and wave-lengths has been estimated. The model developed here allows one to quickly determine whether the mirror substrates and coatings are adequate for operation at a given optical power level once the absorption of the coatings, substrate, and transmission are known. Results of calculations of the maximum power level expected using several different sets of mirrors will be presented. Measurements of the distortion in calcium fluoride from absorption of carbon dioxide laser light are planned to benchmark the simulations. Multimode simulations using the code ELIXER have been carried out to characterize the saturated optical mode quality. The results will be presented.

Benson, S.V.; Davidson, P.S.; Jain, R.; Kloeppel, P.K.; Neil, G.R.; Shinn, M.D.

1997-11-01T23:59:59.000Z

90

High School Research at Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

As a Department of Energy National Lab, Jefferson Lab has a responsibility to help train the next generation of scientists. See the research projects students participating in the...

91

NREL: Biomass Research - Thomas Foust  

NLE Websites -- All DOE Office Websites (Extended Search)

Thomas Foust Thomas Foust Photo of Thomas Foust Dr. Thomas Foust is an internationally recognized expert in the biomass field. His areas of expertise include feedstock production, biomass-to-fuels conversion technologies, and environmental and societal sustainability issues associated with biofuels. He has more than 20 years of research and research management experience, specializing in biomass feedstocks and conversion technologies. As National Bioenergy Center Director, Dr. Foust guides and directs NREL's research efforts to develop biomass conversion technologies via biochemical and thermochemical routes, as well as critical research areas addressing the sustainability of biofuels. This research focuses on developing the necessary science and technology for converting biomass to biofuels,

92

Vascular Flora of the Rocky Flats Area, Jefferson County, Colorado...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vascular Flora of the Rocky Flats Area, Jefferson County, Colorado, USA Vascular Flora of the Rocky Flats Area, Jefferson County, Colorado, USA August 2010 Jody K. Nelson Vascular...

93

NREL: Energy Analysis - Thomas Jenkin  

NLE Websites -- All DOE Office Websites (Extended Search)

Thomas Jenkin Thomas Jenkin Photo of Thomas Jenkin. Thomas Jenkin is a member of the Washington D.C. Office in the Strategic Energy Analysis Center. Senior Energy Analyst On staff since August 2004 Phone number: 202-488-2219 E-mail: thomas.jenkin@nrel.gov Areas of expertise Valuation and risk management Market structure and operation of natural gas and power markets Economic analysis of storage technologies Research and development (R&D) Primary research interests R&D and commercialization of energy technologies Risk and uncertainty The value of storage Economic and market analysis of renewable energy technologies Education and background training MPPM, Yale School of Management D.Phil. in physics, University of Oxford B.Sc. in physics, University of Bristol Teaching experience

94

Thomas Edison | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thomas Edison Thomas Edison Tesla vs. Edison 62 likes Thomas Edison Inventor Known as "The Wizard of Menlo Park," Edison was an American inventor who developed the first commercially practical incandescent light bulb. A savvy businessman, he invented a number of other technologies that are still in use today -- including the an early stock ticker, a sound-recording phonograph and a two-way telegraph -- and holds the record for the most patents, ever. Learn more interesting facts about Edison in our Top 8 Things You Didn't Know About Thomas Alva Edison. Innovators Sort by: Random | Alphabetical | Rating (High to Low) | Rating (Low to High) Nikola Tesla Inventor 435 likes Nikola Tesla was born in the Austrian Empire (now Croatia) but moved to the United States to work for Thomas Edison

95

NREL: Energy Sciences - Thomas Gennett  

NLE Websites -- All DOE Office Websites (Extended Search)

Thomas Gennett Thomas Gennett Senior Scientist Photo of Thomas Gennett Phone: (303) 384-6628 Email: thomas.gennett@nrel.gov Thomas Gennett is currently a senior scientist at NREL and holds Professor Emeritus of Chemistry and Materials Science status with the Rochester Institute of Technology (RIT). At NREL, Dr. Gennett leads three distinct projects. One focuses on the mechanism of room temperature hydrogen adsorption for carbon based sorbents, the second on the development of advanced materials for direct methanol fuel cell anode catalysts, and the third on development of next generation transparent conductive oxides (TCOs) for photovoltaic applications. Previously, while a Professor at RIT, he was co-founder and director (2001-2003) of the highly successful NanoPower Research Laboratory. Dr. Gennett has had a strong collaboration

96

Jefferson Utilities | Open Energy Information  

Open Energy Info (EERE)

Jefferson Utilities Jefferson Utilities Place Wisconsin Utility Id 9690 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service between 50kW and 200kW Demand with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service between 50kW and 200kW Demand Industrial Cp-1 TOD Small Power Service between 50kW and 200kW Demand Optional Time-of-Day Service 7am-9pm with Parallel Generation(20kW or less) Industrial Cp-1 TOD Small Power Service between 50kW and 200kW Demand Optional

97

Iran Thomas Auditorium, 8600  

NLE Websites -- All DOE Office Websites (Extended Search)

1, 2012 1, 2012 4:00 pm Iran Thomas Auditorium, 8600 Simulating the Formation of Carbonate Minerals: The Role of Nanoscale Phenomena in Non-Classical Nucleation Julian Gale Nanochemistry Research Institute Department of Chemistry, Curtin University, Australia CNMS D D I I S S C C O O V V E E R R Y Y SEMINAR SERIES Abstract: Calcium carbonate is an abundant mineral that exhibits three crystalline polymorphs, as well as an amorphous form, and represents a natural form of sequestered carbon. While the most stable calcite polymorph can grow as macroscopic single crystals, the process of biomineralisation can alternatively lead to complex polycrystalline assembles that serve as functional materials in nature. As such, the

98

Thomas D. Williams Assistant Administrator  

Gasoline and Diesel Fuel Update (EIA)

Thomas D. Williams Thomas D. Williams Assistant Administrator for Resource and Tecnology Management Duties Thomas D. Williams is the Assistant Administrator for Resource & Technology Management. He provides leadership and direction to oversee the management and operation of EIA's employee services, information technology policy and operations, and integrated planning, budget, procurement, evaluation and project management activity. Biography Thom is a career member of the Senior Executive Service with more than 27 years of professional experience in developing, linking, and implementing successful strategic, financial, human capital, operational, technology, and administrative policies and plans for federal research, science, engineering, and regulatory programs.

99

JeffersonSTM09.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

AOS: Measurements of Aerosol Optical and AOS: Measurements of Aerosol Optical and AOS: Measurements of Aerosol Optical and Cloud-forming Properties Cloud-forming Properties Anne Jefferson and John Ogren NOAA Environmental Science Research Laboratory CIRES, University of Colorado ARM STM 2009 Aerosol Observing Systems In-situ surface measurements of aerosol optical, chemical, size, hygroscopic and cloud-forming properties * SGP - ARM central facility Lamont, OK *AMF - Pt Reyes, CA 3/2005 - 9/2005 - Niamey, Niger 12/2005-1/2007 - Murg Valley, Germany 4/2007 -1/2008 - Shouxian China 5/2008 - 12/2008 - Graciosa Island, Azores 4/2009 *BRW/NSA - Barrow Alaska *AMF2 ? Darwin? - What instruments support the science? AMF deployment in Shouxian China, HFE HFE was located at a rural, agricultural area ~120 km from Hefei, ~200 km from Nanking

100

Math and Science Activities from Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

BEAMS is a program in which classes of 6th, 7th and 8th grade students are exposed to the scientific environment of Jefferson Lab. For five consecutive days during school hours, classes of 6th grade students and their teachers participate in science and math activities conducted with Jefferson Lab staff. The students return to the lab in the 7th and 8th grades for additional activities which reinforce their 6th grade experience. Feel free to copy and alter these activities for use in your class. 6th Grade Background Materials Vocabulary List What is Matter? What is Jefferson Lab? Careers at Jefferson Lab Periodic Table of Elements Puzzles and Games BEAMS Word Search Element Word Search Geometry Word Search BEAMS Bingo Element Bingo BEAMS Crossword Puzzle BEAMS Cryptograph

Note: This page contains sample records for the topic "thomas jefferson site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Resources | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Thomas Jefferson Site Office (TJSO) TJSO Home About TJSO Current Projects Contract Management Environment, Safety and Health (ES&H) Resources Contact Information Thomas...

102

Current Projects | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Thomas Jefferson Site Office (TJSO) TJSO Home About TJSO Current Projects Contract Management Environment, Safety and Health (ES&H) Resources Contact Information Thomas...

103

Optical modeling of the Jefferson Lab IR Demo FEL  

Science Conference Proceedings (OSTI)

The Thomas Jefferson National Accelerator Facility (formerly known as CEBAF) has embarked on the construction of a 1 kW free-electron laser operating initially at 3 microns that is designed for laser-material interaction experiments and to explore the feasibility of scaling the system in power and wavelength for industrial and Navy defense applications. The superconducting radio-frequency linac, and single-pass transport which accelerates the beam from injector to wiggler, followed by energy-recovery deceleration to a dump. The electron and optical beam time structure in the design consists of a train of pecosecond pulses at a 37.425 MHz pulse repetition rate. The initial optical configuration is a conventional near-concentric resonator with transmissive outcoupling. Future upgrades of the system will increase the power and shorten the operating wavelength, and utilize a more advanced resonator system capable of scaling to high powers. The optical system of the laser has been mode led using the GLAD code by using a Beer's-law region to mimic the FEL interaction. Effects such as mirror heating have been calculated and compared with analytical treatments. The magnitude of the distorium for several materials and wavelengths has been estimated. The advantages as well as the limitations of this approach are discussed.

G. Neil; S. Benson; Michelle D. Shinn; P. Davidson; P. Kloppel

1997-01-01T23:59:59.000Z

104

Design and implementation of a slow orbit control package at Thomas Jefferson National Accelerator Facility  

SciTech Connect

The authors describe the design and implementation of a C++ client/server based slow orbit and energy control package based on the CDEV software control bus. Several client applications are described and operational experience is given.

Zeijts, J. van; Witherspoon, S.; Watson, W.A.

1997-06-01T23:59:59.000Z

105

Mr. Thomas Mahl Granite City Steel Company  

Office of Legacy Management (LM)

8&v/ 8&v/ Mr. Thomas Mahl Granite City Steel Company 20th and State Streets Granite City, IL 62040 Dear Mr. Mahl: This is to notify you that the U.S. Department of Energy (DOE) has designated your company's facility for remedial action as a part of the Formerly Utilized Sites Remedial Action Program. Remedial activities are managed by the DOE Oak Ridge Field Office, and Ms. Teresa Perry (615-576-8956) will be the site manager. As a result of the designation decision, Ms. Perry will be the appropriate point of contact in the future. If you have any questions, please call me at 301-903-8149. W. Alexander Williams, PhD Designation and Certification Manager Division of Off-Site Programs Office of Eastern Area Programs Office of Environmental Restoration

106

Jefferson Power Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Biomass Facility Biomass Facility Jump to: navigation, search Name Jefferson Power Biomass Facility Facility Jefferson Power Sector Biomass Owner Jefferson Power LLC Location Monticello, Florida Coordinates 30.5452022°, -83.8701636° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.5452022,"lon":-83.8701636,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

107

Network Worms Thomas M. Chen*  

E-Print Network (OSTI)

Network Worms Thomas M. Chen* Dept. of Electrical Engineering Southern Methodist University PO Box is the possible rate of infection. Since worms are automated programs, they can spread without any human action. Historical examples of worms have included: · Trojan horses: software with a hidden malicious function, e

Chen, Thomas M.

108

JEFFERSON LAB HIGH SCHOOL SUMMER HONORS PROGRAM Application Procedure  

NLE Websites -- All DOE Office Websites (Extended Search)

JEFFERSON LAB HIGH SCHOOL SUMMER HONORS PROGRAM JEFFERSON LAB HIGH SCHOOL SUMMER HONORS PROGRAM Application Procedure Dear Student Applicant: To be eligible to participate in the Jefferson Lab High School Summer Honors Program, you must attend a local high school (within 60 miles of Jefferson Lab), be at least 16 years old by the start date of the program, be in good academic standing, and maintain at least a 3.3 grade point average. Students who are selected to participate in the Jefferson Lab High School Summer Honors Program are chosen on the basis of demonstrated skills and merit. Dependents of Jefferson Lab employees are not eligible for this program. The 2014 Jefferson Lab High School Summer Honors Program begins on June 23, 2014 and concludes on August 1, 2014. To apply to the Jefferson Lab High School Summer Honors Program, follow the

109

Jefferson Lab Guided Tour - What is an accelerator?  

NLE Websites -- All DOE Office Websites (Extended Search)

What is an accelerator? Welcome to Jefferson Lab Why was Jefferson Lab built? How do scientists study quarks? What is an accelerator? How does the accelerator work? Why use...

110

Jefferson Lab Guided Tour - How does the accelerator work?  

NLE Websites -- All DOE Office Websites (Extended Search)

How does the accelerator work? Welcome to Jefferson Lab Why was Jefferson Lab built? How do scientists study quarks? What is an accelerator? How does the accelerator work? Why use...

111

The Jefferson Lab program: From 6 GeV operations to the 12 GeV upgrade  

Science Conference Proceedings (OSTI)

The Thomas Jefferson National Laboratory and the CEBAF accelerator operated for more than a decade, running a comprehensive scientific program that improved our understanding of the strong interaction. The facility is now moving toward an upgrade of the machine, from 6 to 12 GeV; a new experimental hall will be added and the equipment of the three existing halls will be enhanced. In this contribution some selected results from the rich physics program run at JLab, as well as the prospects for the near future, will be presented.

Marco Battaglieri

2012-04-01T23:59:59.000Z

112

Nucleon spin structure at Jefferson Lab  

Science Conference Proceedings (OSTI)

In the past decade an extensive experimental program to measure the spin structure of the nucleon has been carried out in the three halls at Jefferson Lab. Using a longitudinally polarized beam scattering off longitudinally or transversely polarized 3 He NH 3 and ND 3 targets

The CLAS collaboration

2011-01-01T23:59:59.000Z

113

Baryon spectroscopy with CLAS at Jefferson Lab  

Science Conference Proceedings (OSTI)

A substantial part of the experimental efforts at the experimental Hall-B of Jefferson Laboratory is dedicated to this studies of light baryon spectroscopy. In this report a general overview of the experimental capabilities in the Experimental Hall-B will be presented together with preliminary results of recent double polarization measurements and finally overall status of the program.

Eugene Pasyuk, CLAS Collaboration

2012-04-01T23:59:59.000Z

114

John Thomas - Research Staff - FEERC  

NLE Websites -- All DOE Office Websites (Extended Search)

John Thomas John Thomas R&D Staff Member Specialty: Automotive Fuel Economy, Emissions, and Aftertreatment John began his career at Oak Ridge National Laboratory in 1978 and has broad experience in fossil energy technology, fuels, combustion, energy conversion, combined heat and power and power generation systems. His most recent R&D efforts include the effects of intermediate ethanol fuel blends on the legacy vehicle fleet and non-road engines, ethanol/gasoline blend engine and vehicle performance and exploring emerging fuel and/or petroleum saving technologies on vehicles. Other recent work includes R&D involving a range of diesel exhaust emissions aftertreatment technologies including soot filters, NOx adsorber catalysts, hydrocarbon SCR, and urea

115

Jim Thomas, 1946-2010  

Science Conference Proceedings (OSTI)

Jim Thomas, a visionary scientist and inspirational leader, died on 6 August 2010 in Richland, Washington. His impact on the fields of computer graphics, user interface software, and visualization was extraordinary, his ability to personally change peoples lives even more so. He is remembered for his enthusiasm, his mentorship, his generosity, and, most of all, his laughter. This collection of remembrances images him through the eyes of his many friends.

Stone, Maureen; Kasik, David; Bailey, Mike; van Dam, Andy; Dill, John; Rhyne, Theresa-Marie; Foley, Jim; Encarnacao, L. M.; Rosenblum, Larry; Earnshaw, Rae; Ma, Kwan-Liu; Wong, Pak C.; Encarnacao, Jose; Fellner, Dieter; Urban, Bodo

2010-11-01T23:59:59.000Z

116

VWA-0018 - Deputy Secretary Decision - In the Matter of Thomas T. Tiller |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deputy Secretary Decision - In the Matter of Thomas T. Deputy Secretary Decision - In the Matter of Thomas T. Tiller VWA-0018 - Deputy Secretary Decision - In the Matter of Thomas T. Tiller This is a request for review by complainant Thomas T. Tiller of an Initial Agency Decision, issued by the Office of Hearings and Appeals (OHA), denying the two reprisal complaints that he filed pursuant to 10 C.F.R. Part 708, the regulation establishing the DOE Contractor Employee Protection Program. Mr. Tiller was employed by Wackenhut Services, Inc. (Wackenhut), a DOE contractor that provides paramilitary security support services at DOE's Savannah River Site in Aiken, South Carolina. Deputy Secretary Decision Affirming VWA-0018 Decision and Order More Documents & Publications OHA Whistleblower Cases Archive File VWA-0018 - In the Matter of Thomas T. Tiller

117

Refraction Survey At Kilauea East Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Kilauea East Rift Area (Thomas, 1986) Kilauea East Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Refraction Survey At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Refraction Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Seismic refraction surveys conducted by Broyles and Furumoto (1978) and Suyenaga et al. (1978) developed a cross-sectional model of the rift zone near the present site of HGP-A that proposed a 12- 17 km wide dike complex lying at a depth of 2 to 3 km (Fig. 51). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Refraction_Survey_At_Kilauea_East_Rift_Area_(Thomas,_1986)&oldid=386690"

118

Browse by Discipline -- E-print Network Subject Pathways: Renewable...  

Office of Scientific and Technical Information (OSTI)

Thomas Jefferson National Accelerator Facility - Hall A Thomas Jefferson National Accelerator Facility - Hall B Thomas Jefferson National Accelerator Facility - Hall C Thomas...

119

12 GeV Upgrade | Jefferson Lab  

NLE Websites -- All DOE Office Websites

Science Science A Schematic of the 12 GeV Upgrade The 12 GeV Upgrade will greatly expand the research capabilities of Jefferson Lab, adding a fourth experimental hall, upgrading existing halls and doubling the power of the lab's accelerator. A D D I T I O N A L L I N K S: 12 GeV Home Public Interest Scientific Opportunities Hall D Status Updates Contacts Three-Year Accelerator Schedule 2014 - 2016 top-right bottom-left-corner bottom-right-corner 12 GeV Upgrade Physicists at Jefferson Lab are trying to find answers to some of nature's most perplexing questions about the universe by exploring the nucleus of the atom. Their goal is to answer such questions as: "What is the universe made of?" and "What holds everyday matter together?" In their search for answers, physicists smash electrons into atoms using

120

Overview of Nuclear Physics at Jefferson Lab  

E-Print Network (OSTI)

The Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab comprise a unique facility for experimental nuclear physics. This facility is presently being upgraded, which will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics. Further in the future, it is envisioned that the Laboratory will evolve into an electron-ion colliding beam facility.

R. D. McKeown

2013-03-26T23:59:59.000Z

Note: This page contains sample records for the topic "thomas jefferson site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Overview of Nuclear Physics at Jefferson Lab  

E-Print Network (OSTI)

The Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab comprise a unique facility for experimental nuclear physics. This facility is presently being upgraded, which will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics. Further in the future, it is envisioned that the Laboratory will evolve into an electron-ion colliding beam facility.

McKeown, R D

2013-01-01T23:59:59.000Z

122

Iran Thomas Auditorium, 8600 Environmental Transmission Electron...  

NLE Websites -- All DOE Office Websites (Extended Search)

April 26, 2012 11:00 am Iran Thomas Auditorium, 8600 Environmental Transmission Electron Microscopy for Catalysis Research: The Example of Carbon Nanotubes Eric A. Stach Center for...

123

Info-Exch 2012- Thomas Johnson Presentation  

Energy.gov (U.S. Department of Energy (DOE))

EM Recovery Act Program Director Thomas Johnson gave a presentation on Recovery Act lessons learned at the 2012 Recovery Act Information Exchange.

124

Dr. Thomas W. LeBrun  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. Dr. Thomas W. LeBrun. Dr. LeBrun is a research physicist in the Nanoscale Metrology Group (683.03 ...

2011-10-06T23:59:59.000Z

125

EA-1937: Pacific Direct Intertie Upgrade Project, Lake, Jefferson...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lake, Jefferson, Crook, Deschutes, and Wasco Co, OR SUMMARY This project would replace aging equipment at BPA's Celilo converter station and to upgrade equipment on the...

126

The Future of Mr. Jefferson's Laboratory (nee CEBAF)  

E-Print Network (OSTI)

We present one viewpoint plus some general information on the plans for energy upgrades and physics research at the Jefferson Laboratory.

Carl E. Carlson

1997-01-27T23:59:59.000Z

127

VEE-0032- In the Matter of Thomas Oil Company  

Energy.gov (U.S. Department of Energy (DOE))

On September 13, 1996, Thomas Oil Company (Thomas Oil) filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). In its application, Thomas...

128

NREL: Energy Analysis - Thomas R. Schneider  

NLE Websites -- All DOE Office Websites (Extended Search)

Thomas R. Schneider Thomas R. Schneider Photo of Thomas R. Schneider Thomas R. Schneider is a member of the Washington D.C. Office in the Strategic Energy Analysis Center. Principal Analyst - Strategic Energy Analysis On staff since March 2009 Phone number: 202-488-2206 E-mail: thomas.schneider@nrel.gov Areas of expertise Distributed generation and storage Advanced power generation and transmission technologies Technology assessment Strategic and scenario planning R&D policy and management Primary research interests Variable renewable resources and the grid Role of electrification in society Energy efficiency and demand response Energy storage Education and background training Ph.D. in physics, University of Pennsylvania B.S., Stevens Institute of Technology (High Honors) Prior work experience

129

Thomas Edison vs. Nikola Tesla | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Thomas Edison vs. Nikola Tesla Thomas Edison vs. Nikola Tesla Addthis Duration 46:00 Topic Alternative Fuel Vehicles Renewables Smart Grid Transmission Innovation Washington, DC...

130

Thermal Gradient Holes At Hualalai Northwest Rift Area (Thomas, 1986) |  

Open Energy Info (EERE)

Hualalai Northwest Rift Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not useful DOE-funding Unknown Notes Although not part of the current effort, two deep (approximately 2000 m) exploratory wells were drilled on the north flank of Hualalai near Puu Waawaa cinder cone. The geophysical data used for siting these wells were proprietary and hence unavailable for publication; however, the temperatures measured at the bottoms of the wells were reported to be below 20degrees C. Chemical analysis of water samples taken from these wells did not provide useful geothermal data due to contamination of the well water with drilling muds References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

131

Mr. Richard T. Thomas General Counsel for Petroleum Operations  

Office of Legacy Management (LM)

j&,J"[Di-' JAQ--- j&,J"[Di-' JAQ--- hl 3. ) :j .I Y ' ! <' Department of Energy Washington, D.C. 20545 NOV 1 1984 Mr. Richard T. Thomas General Counsel for Petroleum Operations P.O. Box 391 Ashland, Kentucky 41114 Dear Mr. Thomas: I am enclosing a copy of the radiological survey report for the Ashland Oil Company (former Haist property), Tonawanda, New York (Enclosure l), which was conducted in July 1976 (copies were sent to your Buffalo, New York, office on August 17, 1978). The results of the survey indicate levels of radioactive contamination above current guidelines. As noted in the report, the radioactive residues on the site do not pose a health hazard provided they (the residues) were not disturbed in the past or will not be disturbed in the future; i.e.,

132

Jefferson Lab Science Videos on YouTube  

DOE Data Explorer (OSTI)

Jefferson Lab, a DOE physics research lab located in Virgina, has approximately 100 lab-produced videos on YouTube. These include selected presentations from the Jefferson Lab Science Series, short clips of simple experiments for educational purposes, clips from Frostbite Theater, and clips from the Physics Out Loud series.

133

VWA-0018 - In the Matter of Thomas T. Tiller | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

In the Matter of Thomas T. Tiller In the Matter of Thomas T. Tiller VWA-0018 - In the Matter of Thomas T. Tiller This Decision concerns two whistleblower complaints filed by Thomas T. Tiller (Tiller) under the Department of Energy's (DOE) Contractor Employee Protection Program, 10 C.F.R. Part 708. At all times relevant to this proceeding, Tiller was employed by Wackenhut Services, Incorporated (Wackenhut), a DOE contractor that provides paramilitary security support services at the DOE's Savannah River Site in Aiken, South Carolina. Tiller contends in his first complaint that Wackenhut demoted him after he alleged that a senior level manager at Wackenhut had engaged in unethical and possible criminal conduct. In his second complaint, Tiller charges that Wackenhut retaliated against him after learning he had filed a Part 708

134

ORISE: Faculty Research Experiences - Dr. Thomas Liu  

NLE Websites -- All DOE Office Websites (Extended Search)

Thomas Liu Thomas Liu Professor and student team develops flexible, free alternative to proprietary data analytics software Dr. Thomas Liu and Monty Bains Dr. Thomas Liu and Monty Bains research free web-based data analysis and visualization application as an alternative to common fee-based software. They are participating in the U.S. Department of Homeland Security's Summer Research Team Program for Minority Serving Institutions. The program is administered by the Oak Ridge Institute for Science and Education. Photo courtesy of Tamra Carpenter, Rutgers University. Click image to enlarge. Fifteen years ago people could not imagine the capabilities they would soon have through the Internet and supporting programs. The evolution of web technology moves at such a fast pace that most people focus on keeping pace

135

Jefferson Lab Science Series - Current Schedule  

NLE Websites -- All DOE Office Websites (Extended Search)

Current Science Series Schedule Current Science Series Schedule Lectures are free and open to students and adults with an interest in science. All lectures begin at 7:00 pm in CEBAF Center Auditorium [Download a Map] [Locate Jefferson Lab on Google Maps] [Display a QR Code for Scanning] and last for about an hour. Seating in the CEBAF Center Auditorium and overflow area is limited to about 300 people. Seating is on a first come, first served basis. Unfortunately, people arriving once capacity has been reached will be turned away. A live video stream will be available for those not able to attend in person. Lectures will be added to the video archive for on-demand viewing upon approval from the presenter. NOTICE: For security purposes, everyone over 16 is asked to carry a photo I.D. Security guards may inspect vehicles, book bags and purses.

136

Jefferson Renewable Energy | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy Renewable Energy Jump to: navigation, search Name Jefferson Renewable Energy Place Warwick, Rhode Island Zip 2886 Product Rhode Island-based waste-to-energy and biofuel project developer. Coordinates 41.698591°, -71.461686° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.698591,"lon":-71.461686,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

137

The Jefferson Lab Frozen Spin Target  

SciTech Connect

A frozen spin polarized target, constructed at Jefferson Lab for use inside a large acceptance spectrometer, is described. The target has been utilized for photoproduction measurements with polarized tagged photons of both longitudinal and circular polarization. Protons in TEMPO-doped butanol were dynamically polarized to approximately 90% outside the spectrometer at 5 T and 200-300 mK. Photoproduction data were acquired with the target inside the spectrometer at a frozen-spin temperature of approximately 30 mK with the polarization maintained by a thin, superconducting coil installed inside the target cryostat. A 0.56 T solenoid was used for longitudinal target polarization and a 0.50 T dipole for transverse polarization. Spin relaxation times as high as 4000 hours were observed. We also report polarization results for deuterated propanediol doped with the trityl radical OX063.

Christopher Keith, James Brock, Christopher Carlin, Sara Comer, David Kashy, Josephine McAndrew, David Meekins, Eugene Pasyuk, Joshua Pierce, Mikell Seely

2012-08-01T23:59:59.000Z

138

The Jefferson Lab High Power Light Source  

Science Conference Proceedings (OSTI)

Jefferson Lab has designed, built and operated two high average power free-electron lasers (FEL) using superconducting RF (SRF) technology and energy recovery techniques. Between 1999-2001 Jefferson Lab operated the IR Demo FEL. This device produced over 2 kW in the mid-infrared, in addition to producing world record average powers in the visible (50 W), ultraviolet (10 W) and terahertz range (50 W) for tunable, short-pulse (power demonstration of an accelerator configuration that is being exploited for a number of new accelerator-driven light source facilities that are currently under design or construction. The driver accelerator for the IR Demo FEL uses an Energy Recovered Linac (ERL) configuration that improves the energy efficiency and lowers both the capital and operating cost of such devices by recovering most of the power in the spent electron beam after optical power is extracted from the beam. The IR Demo FEL was de-commissioned in late 2001 for an upgraded FEL for extending the IR power to over 10 kW and the ultraviolet power to over 1 kW. The FEL Upgrade achieved 10 kW of average power in the mid-IR (6 microns) in July of 2004, and its IR operation currently is being extended down to 1 micron. In addition, we have demonstrated the capability of on/off cycling and recovering over a megawatt of electron beam power without diminishing machine performance. A complementary UV FEL will come on-line within the next year. This paper presents a summary of the FEL characteristics, user community accomplishments with the IR Demo, and planned user experiments.

James R. Boyce

2006-01-01T23:59:59.000Z

139

Frostbite Theater - Just for Fun - Jefferson Lab Open House (2010)  

NLE Websites -- All DOE Office Websites (Extended Search)

Nitrogen Viewer Requests! Nitrogen Viewer Requests! Previous Video (Liquid Nitrogen Viewer Requests!) Frostbite Theater Main Index Next Video (Season One Bloopers) Season One Bloopers Jefferson Lab Open House (2010) Highlights from Jefferson Lab's 2010 Open House including portions of our electron accelerator, a peek inside an end station, and a visit to the Free Electron Laser. [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: And we're here at Jefferson Lab's Open House! If you're interested in science, this is the place to be! Steve: Thousands of people have come to Jefferson Lab today to learn more about science, what we do here and to just have fun! Joanna: So what are some of the things that people can do when they're

140

Thomas R. Cech, RNA, and Ribozymes  

NLE Websites -- All DOE Office Websites (Extended Search)

Thomas R. Cech, RNA, and Ribozymes Resources with Additional Information · Videos Thomas Cech Courtesy of Glenn Asakawa/ University of Colorado Thomas R. Cech conducted ground-breaking research that ‘established that RNA, like a protein, can act as a catalyst in living cells.'1 'Prior to Cech's research, most scientists believed that proteins were the only catalysts in living cells. In 1982, his research group showed that an RNA molecule from Tetrahymena, a single-celled pond organism, cut and rejoined chemical bonds in the complete absence of proteins. This discovery of self-splicing RNA provided the first exception to the long-held belief that biological reactions are always catalyzed by proteins. In 1989, Cech was awarded the Nobel Prize in Chemistry.'2

Note: This page contains sample records for the topic "thomas jefferson site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Commander, Seneca Army Depot Attention: Thomas Stincic, Safety Officer  

Office of Legacy Management (LM)

9 1986 9 1986 Department of Energy Washington, D .C. 20545 . Commander, Seneca Army Depot Attention: Thomas Stincic, Safety Officer Romulus, New York 14541 Dear Mr. Stincic: As you are aware, the Department of Energy is evaluating the radiological condition of sites formerly used by Department predecessors during the early years of nuclear energy development , and a portion of the Seneca Army Depot was identified as one such site. While our preliminary inves-tiga- tions did identify residual radioactive material on the site, it is our understanding that the Department of Army assumed responsibility for this residual radioactivity and has completed remedial action. We have not received a final report of this work and would appreciate receiving a copy

142

Development of digital feedback systems for beam position and energy at the Thomas Jefferson National Accelerator Facility  

SciTech Connect

The development of beam-based digital feedback systems for the CEBAF accelerator has gone through several stages. As the accelerator moved from commissioning to operation for the nuclear physics program, the top priority was to stabilize the beam against slow energy and position drifts (<1 Hz). These slow drifts were corrected using the existing accelerator monitors and actuators driven by software running on top of the EPICS control system. With slow drifts corrected, attention turned to quantifying the higher frequency disturbances on the beam and to designing the required feedback systems needed to achieve the CEBAF design stability requirements. Results from measurements showed the major components in position and energy to be at harmonics of the power line frequencies of 60, 120, and 180 Hz. Hardware and software was installed in two locations of the accelerator as prototypes for the faster feedback systems needed. This paper gives an overview of the measured beam disturbances and the feedback systems developed.

Karn, J.; Chowdhary, M.; Hutton, A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)] [and others

1997-06-01T23:59:59.000Z

143

Engineering Light Course instructor: Dr. Thomas Bifano  

E-Print Network (OSTI)

from a laser pointer, to make a light bulb like Thomas Edison's, to discover how engineers ruined achievements/challenges Course goals Why study light 9/10/12 Lecture 2: Edison's light bulb, light and color bulbs o Observing blackbody radiation color 9/12/12 Field Trip: Museum of Science Light exhibits

Guenther, Frank

144

Engineering Light Course instructor: Dr. Thomas Bifano  

E-Print Network (OSTI)

from a laser pointer, to make a light bulb like Thomas Edison's, to discover how engineers ruined · Smart lighting 9/10/12 Lecture 2: Edison's light bulb, light and color · What engineers do, engineering bulbs o Observing blackbody radiation color 9/12/12 Field Trip: Museum of Science · Light exhibits

Bifano, Thomas

145

EA-1937: Pacific Direct Intertie Upgrade Project, Lake, Jefferson, Crook,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

37: Pacific Direct Intertie Upgrade Project, Lake, Jefferson, 37: Pacific Direct Intertie Upgrade Project, Lake, Jefferson, Crook, Deschutes, and Wasco Co, OR EA-1937: Pacific Direct Intertie Upgrade Project, Lake, Jefferson, Crook, Deschutes, and Wasco Co, OR SUMMARY This project would replace aging equipment at BPA's Celilo converter station and to upgrade equipment on the Celilo-Sylmar 500-kilovolt (kV) transmission line from the Celilo converter station in The Dalles, Oregon to the Nevada-Oregon border. As part of the project, BPA would remove and salvage the converter terminals 1 and 2 at its Celilo converter station and install a new two-converter terminal. A 20-acre expansion of the existing substation would accommodate the new terminal equipment. About 265 miles of transmission towers on the Celilo-Sylmar 500-kV transmission line would be

146

Leavenworth-Jefferson E C, Inc | Open Energy Information  

Open Energy Info (EERE)

Leavenworth-Jefferson E C, Inc Leavenworth-Jefferson E C, Inc Jump to: navigation, search Name Leavenworth-Jefferson E C, Inc Place Kansas Utility Id 10801 Utility Location Yes Ownership C NERC Location SPP Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Outdoor Area Lighting Service (HPS 100 W) Lighting Outdoor Area Lighting Service (HPS 250 W) Lighting Outdoor Area Lighting Service (HPS 400 W) Lighting Outdoor Area Lighting Service (MH 100 W) Lighting Outdoor Area Lighting Service (MH 250 W) Lighting Outdoor Area Lighting Service (MH 400 W) Lighting Outdoor Area Lighting Service (MV 175 W) Lighting

147

The 12 GeV Energy Upgrade at Jefferson Laboratory  

SciTech Connect

Two new cryomodules and an extensive upgrade of the bending magnets at Jefferson Lab has been recently completed in preparation for the full energy upgrade in about one year. Jefferson Laboratory has undertaken a major upgrade of its flagship facility, the CW re-circulating CEBAF linac, with the goal of doubling the linac energy to 12 GeV. I will discuss here the main scope and timeline of the upgrade and report on recent accomplishments and the present status. I will then discuss in more detail the core of the upgrade, the new additional C100 cryomodules, their production, tests and recent successful performance. I will then conclude by looking at the future plans of Jefferson Laboratory, from the commissioning and operations of the 12 GeV CEBAF to the design of the MEIC electron ion collider.

Pilat, Fulvia C. [JLAB

2012-09-01T23:59:59.000Z

148

Geothermometry At Honokowai Area (Thomas, 1986) | Open Energy Information  

Open Energy Info (EERE)

Geothermometry At Honokowai Area (Thomas, 1986) Geothermometry At Honokowai Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Honokowai Area (Thomas, 1986) Exploration Activity Details Location Honokowai Area Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes Temperature and groundwater chemistry analyses were performed on three wells along the alluvial fan above Honokowai. Water temperatures were approximately 20degrees C and normal basal aquifer water chemistry was observed (Table 4). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Geothermometry_At_Honokowai_Area_(Thomas,_1986)&oldid=387033"

149

An Overview of Dark Matter Experiments at Jefferson Lab  

Science Conference Proceedings (OSTI)

Dark Matter research at Jefferson Lab started in 2006 with the LIght Pseudoscalar and Scalar Search (LIPSS) collaboration to check the validity of results reported by the PVLAS collaboration. In the intervening years interest in dark matter laboratory experiments has grown at Jefferson Lab. Current research underway or in planning stages probe various mass regions covering 14 orders of magnitude: from 10{sup -6} eV to 100 MeV. This presentation will be an overview of our dark matter efforts, three of which focus on the hypothesized A' gauge boson.

James Boyce

2012-09-01T23:59:59.000Z

150

10 Questions for an Automotive Engineer: Thomas Wallner | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10 Questions for an Automotive Engineer: Thomas Wallner 10 Questions for an Automotive Engineer: Thomas Wallner 10 Questions for an Automotive Engineer: Thomas Wallner June 17, 2011 - 3:30pm Addthis Argonne mechanical engineer Thomas Wallner adjusts Argonne's "omnivorous engine," an automobile engine that Wallner and his colleagues have tailored to efficiently run on blends of gasoline, ethanol and butanol. | Courtesy of: Argonne National Laboratory. Argonne mechanical engineer Thomas Wallner adjusts Argonne's "omnivorous engine," an automobile engine that Wallner and his colleagues have tailored to efficiently run on blends of gasoline, ethanol and butanol. | Courtesy of: Argonne National Laboratory. Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs Meet Thomas Wallner - automotive engineer extraordinaire, who hails from

151

VEE-0086 - In the Matter of Jefferson City Oil Co., Inc. | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 - In the Matter of Jefferson City Oil Co., Inc. 6 - In the Matter of Jefferson City Oil Co., Inc. VEE-0086 - In the Matter of Jefferson City Oil Co., Inc. On April 18, 2002, Jefferson City Oil Co., Inc. (Jefferson City Oil) filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). Jefferson City Oil requests that it be relieved of the requirement to prepare and file the Energy Information Administration's (EIA) form entitled "Resellers'/Retailers' Monthly Petroleum Product Sales Report" (Form EIA-782(b)). As explained below, we have concluded that Jefferson City Oil has not demonstrated that it is entitled to exception relief. vee0086.pdf More Documents & Publications VEE-0074 - In the Matter of H.A. Mapes, Inc. VEE-0081 - In the Matter of North Side Coal & Oil Co., Inc.

152

Geothermometry At Lahaina-Kaanapali Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Lahaina-Kaanapali Area (Thomas, 1986) Lahaina-Kaanapali Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Lahaina-Kaanapali Area (Thomas, 1986) Exploration Activity Details Location Lahaina-Kaanapali Area Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes Groundwater temperature and chemistry surveys were similarly unable to identify any detectable thermal influence on the basal groundwaters. Silica concentrations and water temperatures (Table 4) were within the normal range expected for basal groundwaters receiving a limited amount of irrigation return water; chloride/magnesium ratios ranged downward from normal seawater values. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

153

Iran Thomas Auditorium, 8600 Charged Domain Walls in Ferroelectrics  

NLE Websites -- All DOE Office Websites (Extended Search)

Monday, February 4, 2013 11:00 am Iran Thomas Auditorium, 8600 Charged Domain Walls in Ferroelectrics Alexander K. Tagantsev Ceramics Laboratory, Swiss Federal Institute of...

154

Geothermometry At Olowalu-Ukumehame Canyon Area (Thomas, 1986...  

Open Energy Info (EERE)

of the water produced by this aquifer indicates that the chloridemagnesium ion ratio has been significantly altered by thermal processes. References Donald M. Thomas (1...

155

MEMORANDUM FOR THOMAS P. D'AGOSTINO ADMINISTRATOR NATIONAL NUCLEAR...  

NLE Websites -- All DOE Office Websites (Extended Search)

16,20 10 MEMORANDUM FOR THOMAS P. D'AGOSTINO ADMINISTRATOR NATIONAL NUCLEAR SECURITY ADMINISTRATION WILLIAM F. BRINKMAN DIRECTOR OFFICE OF SCIENCE INES TRIAY ASSISTANT SECRETARY...

156

Water Sampling At Hualalai Northwest Rift Area (Thomas, 1986...  

Open Energy Info (EERE)

Water Sampling At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Water Sampling Activity Date...

157

Water Sampling At Lualualei Valley Area (Thomas, 1986) | Open...  

Open Energy Info (EERE)

Water Sampling At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location Lualualei Valley Area Exploration Technique Water Sampling Activity Date Usefulness not...

158

Old Jefferson, Louisiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Jefferson, Louisiana: Energy Resources Jefferson, Louisiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.3826922°, -91.0170468° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.3826922,"lon":-91.0170468,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

159

Jefferson West High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

High School Wind Project High School Wind Project Jump to: navigation, search Name Jefferson West High School Wind Project Facility Jefferson West High School Sector Wind energy Facility Type Community Wind Location KS Coordinates 39.193382°, -95.560616° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.193382,"lon":-95.560616,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

160

Jefferson County, Alabama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Jefferson County, Alabama: Energy Resources Jefferson County, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.4914122°, -86.9824288° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.4914122,"lon":-86.9824288,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "thomas jefferson site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

A dynamically polarized hydrogen and deuterium target at Jefferson Lab  

DOE Green Energy (OSTI)

Polarized electron beams have been successfully used at Jefferson Lab for over a year. The authors now report the successful achievement of polarized targets for nuclear and particle physics experiments using the dynamic nuclear polarization (DNP)technique. The technique involves initial irradiation of frozen ammonia crystals (NH{sub 3} and ND{sub 3}) using the electron beam from the new Free Electron Laser (FEL) facility at Jefferson Lab, and transferring the crystals to a special target holder for use in Experimental Halls. By subjecting the still ionized and frozen ammonia crystals to a strong magnetic field and suitably tuned RF, the high electron polarization is transmitted to the nucleus thus achieving target polarization. Details of the irradiation facility, the target holder, irradiation times, ionized crystal shelf life, and achieved polarization are discussed.

Boyce, J.R.; Keith, C.; Mitchell, J.; Seely, M.

1998-07-01T23:59:59.000Z

162

Recent Results from Jefferson Lab RSS Spin Physics Program  

Science Conference Proceedings (OSTI)

The spin physics program in Jefferson Labs Hall C concentrates on high precision and high resolution studies of the nucleon spin structure that can be extracted from inclusive polarized scattering experiments. The Resonances Spin Structure RSS experiment has measured nucleon spin structure functions in the resonances region at an intermediate four?momentum transfer Q 2 ?1.3? GeV 2 . The polarized target in Hall C could be polarized longitudinally and transversely

Mahbub Khandaker; the RSS Collaboration

2009-01-01T23:59:59.000Z

163

Thomas P. D'Agostino | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thomas P. D'Agostino Thomas P. D'Agostino About Us Thomas P. D'Agostino - Under Secretary for Nuclear Security & Administrator, National Nuclear Security Administration Photo of Thomas D’Agostino Mr. Thomas Paul D'Agostino was sworn in on August 30, 2007, as the Under Secretary for Nuclear Security and Administrator of the National Nuclear Security Administration (NNSA). On September 3, 2009, President Obama announced that Mr. D'Agostino was his choice to continue serving as the Under Secretary for Nuclear Security and NNSA Administrator. The NNSA plays a critical role in ensuring the security of our Nation by maintaining the safety, security, and effectiveness of the U.S. nuclear weapons stockpile without nuclear testing; reducing the global danger from the proliferation of nuclear weapons and materials; providing the U.S. Navy

164

Aeromagnetic Survey At Kawaihae Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Kawaihae Area (Thomas, 1986) Kawaihae Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Kawaihae Area (Thomas, 1986) Exploration Activity Details Location Kawaihae Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness useful DOE-funding Unknown Notes The aeromagnetic data noted above refer to a low-level aeromagnetic survey that was flown over the entire island of Hawaii at an altitude of approximately 300 m. The results of the survey over Kawaihae clearly indicate an anomalously magnetized body between the town of Waimea and Kawaihae Bay to the west. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Aeromagnetic_Survey_At_Kawaihae_Area_(Thomas,_1986)&oldid=402415

165

Micro-Earthquake At Kilauea East Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Micro-Earthquake At Kilauea East Rift Area (Thomas, Micro-Earthquake At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Micro-Earthquake Activity Date Usefulness not indicated DOE-funding Unknown Notes Microseismic and ground noise studies were performed along the East Rift Zone in an effort to identify areas in which earthquake activity might suggest rock fracturing as a result of cold water coming into contact with heated reservoir rocks (Furumoto, 1978a). One of the microseismic surveys utilized an array of seven seismometers to monitor earthquake activity in the vicinity of the then proposed site of the HGP-A well (Fig. 53) (Suyenaga and Furumoto, 1978). The second microearthquake study utilized only two seismometers located near the junction of the Pahoa-Kalapana and

166

Geothermometry At Haleakala Volcano Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Geothermometry At Haleakala Volcano Area (Thomas, 1986) Geothermometry At Haleakala Volcano Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Haleakala Volcano Area (Thomas, 1986) Exploration Activity Details Location Haleakala Volcano Area Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes The field survey program on the northwest rift zone consisted of soil mercury and radon emanometry surveys, groundwater temperature and chemistry studies, Schlumberger resistivity soundings and self-potential profiles. Geophysical and geochemical surveys along this rift (southwest) were limited by difficult field conditions and access limitations. The geophysical program consisted of one Schlumberger sounding, one

167

Mercury Vapor At Haleakala Volcano Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Haleakala Volcano Area (Thomas, 1986) Mercury Vapor At Haleakala Volcano Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Haleakala Volcano Area (Thomas, 1986) Exploration Activity Details Location Haleakala Volcano Area Exploration Technique Mercury Vapor Activity Date Usefulness not indicated DOE-funding Unknown Notes The field survey program on the northwest rift zone consisted of soil mercury and radon emanometry surveys, groundwater temperature and chemistry studies, Schlumberger resistivity soundings and self-potential profiles. Geophysical and geochemical surveys along this rift (southwest) were limited by difficult field conditions and access limitations. The geophysical program consisted of one Schlumberger sounding, one

168

EM Calorimeters for SoLID at Jefferson Lab  

SciTech Connect

Several approved experiments at Jefferson Lab for the 12 GeV era will use the proposed Solenoid Large Intensity Device (SoLID) spectrometer. Two EM calorimeters with a total area of 15 square meters are required for electron identification and electron-pion separation. The challenge is to build calorimeters that can withstand high radiation doses in high magnetic field region and bring photon signals to low field region for readout. Several types of calorimeters were considered and we are favoring Shashlyk type as a result of balancing performance and cost. Our preliminary design and simulation of SoLID EM calorimeters are presented.

Z.W. Zhao, J. Huang, M. Meziane, X. Zheng, P.E. Reimer, D. Armstrong, T. Averett, W. Deconinck

2012-12-01T23:59:59.000Z

169

Light Baryon Spectroscopy using the CLAS Spectrometer at Jefferson Laboratory  

Science Conference Proceedings (OSTI)

Baryons are complex systems of confined quarks and gluons and exhibit the characteristic spectra of excited states. The systematics of the baryon excitation spectrum is important to our understanding of the effective degrees of freedom underlying nucleon matter. High-energy electrons and photons are a remarkably clean probe of hadronic matter, providing a microscope for examining the nucleon and the strong nuclear force. Current experimental efforts with the CLAS spectrometer at Jefferson Laboratory utilize highly-polarized frozen-spin targets in combination with polarized photon beams. The status of the recent double-polarization experiments and some preliminary results are discussed in this contribution.

Volker Crede

2011-12-01T23:59:59.000Z

170

The Nuclear Thomas-Fermi Model  

DOE R&D Accomplishments (OSTI)

The statistical Thomas-Fermi model is applied to a comprehensive survey of macroscopic nuclear properties. The model uses a Seyler-Blanchard effective nucleon-nucleon interaction, generalized by the addition of one momentum-dependent and one density-dependent term. The adjustable parameters of the interaction were fitted to shell-corrected masses of 1654 nuclei, to the diffuseness of the nuclear surface and to the measured depths of the optical model potential. With these parameters nuclear sizes are well reproduced, and only relatively minor deviations between measured and calculated fission barriers of 36 nuclei are found. The model determines the principal bulk and surface properties of nuclear matter and provides estimates for the more subtle, Droplet Model, properties. The predicted energy vs density relation for neutron matter is in striking correspondence with the 1981 theoretical estimate of Friedman and Pandharipande. Other extreme situations to which the model is applied are a study of Sn isotopes from {sup 82}Sn to {sup 170}Sn, and the rupture into a bubble configuration of a nucleus (constrained to spherical symmetry) which takes place when Z{sup 2}/A exceeds about 100.

Myers, W. D.; Swiatecki, W. J.

1994-08-01T23:59:59.000Z

171

Water Sampling At Kauai Area (Thomas, 1986) | Open Energy Information  

Open Energy Info (EERE)

Kauai Area (Thomas, 1986) Kauai Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Kauai Area (Thomas, 1986) Exploration Activity Details Location Kauai Area Exploration Technique Water Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Groundwater geochemical data compiled for Kauai during the preliminary assessment identified a few very weak water chemistry anomalies, and although these anomalies could be interpreted to be the result of residual heat associated with Kauai's late-stage volcanism, the great age of this activity as well as the absence of any other detectable thermal effects suggests that this is very unlikely. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

172

Geothermometry At Lualualei Valley Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Geothermometry At Lualualei Valley Area (Thomas, 1986) Geothermometry At Lualualei Valley Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location Lualualei Valley Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes Yhe extensive set of groundwater chemical data compiled for the wells in the valley (Table 1) showed that two of the primary indicators that have been commonly used in Hawaii for identifying geothermal potential (i.e. silica concentration and chloride to magnesium ion ratios) were anomalous in the groundwater of this survey area (Cox and Thomas, 1979). Several wells located on the caldera boundaries were found to have both

173

Mercury Vapor At Lualualei Valley Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Lualualei Valley Area (Thomas, 1986) Mercury Vapor At Lualualei Valley Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location Lualualei Valley Area Exploration Technique Mercury Vapor Activity Date Usefulness useful DOE-funding Unknown Notes Soil mercury and radon emanation surveys were performed over much of the accessible surface of Lualualei Valley (Cox and Thomas, 1979). The results of these surveys (Figs 7 and 8) delineated several areas in which soil mercury concentrations or radon emanation rates were substantially above normal background values. Some of these areas were apparently coincident with the mapped fracture systems associated with the caldera boundaries.

174

Administrator Thomas D'Agostino, National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Thomas D'Agostino, National Nuclear Security Thomas D'Agostino, National Nuclear Security Administration, Addresses United Nations on Nuclear Disarmament | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Speeches > Administrator Thomas D'Agostino, National Nuclear Security Administration, ... Speech Administrator Thomas D'Agostino, National Nuclear Security

175

Field Mapping At Mokapu Penninsula Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Field Mapping At Mokapu Penninsula Area (Thomas, Field Mapping At Mokapu Penninsula Area (Thomas, 1986) Exploration Activity Details Location Mokapu Penninsula Area Exploration Technique Field Mapping Activity Date Usefulness useful DOE-funding Unknown Notes Geological mapping on Mokapu (Cox and Sinton, 1982) identified at least three separate volcanic vents within the study area and several other vents forming small islets around Mokapu. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Field_Mapping_At_Mokapu_Penninsula_Area_(Thomas,_1986)&oldid=510748" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load)

176

Administrator Thomas D'Agostino, National Nuclear Security  

National Nuclear Security Administration (NNSA)

Thomas D'Agostino, National Nuclear Security Thomas D'Agostino, National Nuclear Security Administration, Addresses United Nations on Nuclear Disarmament | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Speeches > Administrator Thomas D'Agostino, National Nuclear Security Administration, ... Speech Administrator Thomas D'Agostino, National Nuclear Security

177

Iran Thomas Auditorium, 8600 Nano Carbon: From Solar Cells to...  

NLE Websites -- All DOE Office Websites (Extended Search)

November 3, 2011 4:00 pm Iran Thomas Auditorium, 8600 Nano Carbon: From Solar Cells to Atomic Drums Paul McEuen Goldwin Smith Professor of Physics, Cornell University and Kavli...

178

Iran Thomas Auditorium, 8600 Fighting Cancer with Nanoparticle...  

NLE Websites -- All DOE Office Websites (Extended Search)

October 13, 2011 4:00 pm Iran Thomas Auditorium, 8600 Fighting Cancer with Nanoparticle Medicines Mark E. Davis Chemical Engineering California Institute of Technology CNMS D D I I...

179

Iran Thomas Auditorium, 8600 Determination of CO, H  

NLE Websites -- All DOE Office Websites (Extended Search)

February 9, 2012 4:00 pm Iran Thomas Auditorium, 8600 Determination of CO, H 2 and H 2 O Coverage by XANES on Pt and Au During Water Gas Shift Reaction: Experiment and DFT Modeling...

180

Iran Thomas Auditorium, 8600 Materials For Energy: In Situ Synchrotron...  

NLE Websites -- All DOE Office Websites (Extended Search)

December 15, 2011 4:00 pm Iran Thomas Auditorium, 8600 Materials For Energy: In Situ Synchrotron X-Ray Studies for Materials Design and Discovery Stephen K. Streiffer Deputy...

Note: This page contains sample records for the topic "thomas jefferson site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Iran Thomas Auditorium, 8600 Shape-Controlled Synthesis of Metal...  

NLE Websites -- All DOE Office Websites (Extended Search)

January 25, 2013 10:00 am Iran Thomas Auditorium, 8600 Shape-Controlled Synthesis of Metal Nanocrystals Younan Xia Georgia Institute of Technology CNMS D D I I S S C C O O V V E E...

182

TBU-0082- In the Matter of Thomas L. Townsend  

Energy.gov (U.S. Department of Energy (DOE))

Thomas L. Townsend (Townsend) appeals the dismissal of his complaint of retaliation and request for investigation filed under 10 C.F.R. Part 7081 by the Oak Ridge Operations Office (OR) of the...

183

DEL 1 T' I991 Mr. Thomas Jorling Commissioner  

Office of Legacy Management (LM)

I991 Mr. Thomas Jorling Commissioner State of New York Department of Environmental Conservation Albany, New York 12233-1010 Dear Mr. Jorling: I am responding to your November 25,...

184

Manhattan Project: Generals Leslie Groves and Thomas Farrell  

Office of Scientific and Technical Information (OSTI)

Generals Leslie Groves and Thomas Farrell Events > Dawn of the Atomic Era, 1945 > Debate Over How to Use the Bomb, Washington, D.C., Late Spring 1945 Generals Leslie Groves and...

185

EMC effect for light nuclei: new results from Jefferson Lab  

Science Conference Proceedings (OSTI)

High energy lepton scattering has been the primary tool for mapping out the quark distributions of nucleons and nuclei. Measurements of deep inelastic scattering in nuclei show that the quark distributions in heavy nuclei are not simply the sum of the quark distributions of the constituent proton and neutron, as one might expect for a weakly bound system. This modification of the quark distributions in nuclei is known as the EMC effect. I will discuss the results from Jefferson Lab (JLab) experiment E03-103, a precise measurement of the EMC effect in few-body nuclei with emphasis on the large x region. Data from the light nuclei suggests that the nuclear dependence of the high x quark distribution may depend on the nucleon's local environment, rather than being a purely bulk effect. In addition, I will also discuss about a future experiment at the upgraded 12 GeV Jefferson Lab facility which will further investigate the role of the local nuclear environment and the influence of detailed nuclear structure to the modification of quark distributions.

Daniel, A. [Dept. of Physics and Astronomy, Ohio University, Athens OH 45701 (United States)

2011-10-24T23:59:59.000Z

186

RF Power Upgrade for CEBAF at Jefferson Laboratory  

Science Conference Proceedings (OSTI)

Jefferson Laboratory (JLab) is currently upgrading the 6GeV Continuous Electron Beam Accelerator Facility (CEBAF) to 12GeV. As part of the upgrade, RF systems will be added, bringing the total from 340 to 420. Existing RF systems can provide up to 6.5 kW of CW RF at 1497 MHZ. The 80 new systems will provide increased RF power of up to 13 kW CW each. Built around a newly designed and higher efficiency 13 kW klystron developed for JLab by L-3 Communications, each new RF chain is a completely revamped system using hardware different than our present installations. This paper will discuss the main components of the new systems including the 13 kW klystron, waveguide isolator, and HV power supply using switch-mode technology. Methodology for selection of the various components and results of initial testing will also be addressed. Notice: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purposes.

Andrew Kimber,Richard Nelson

2011-03-01T23:59:59.000Z

187

Undergraduate Research at Jefferson Lab - Determining Electron Beam Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Pretzelosity Distribution Pretzelosity Distribution Previous Project (Pretzelosity Distribution) Undergraduate Research Main Index Next Project (Buffered Chemical Polishing) Buffered Chemical Polishing Determining Electron Beam Energy through Spin Precession Methods Student: Gina Mayonado School: McDaniel College Mentored By: Douglas Higinbotham Nuclear physics experiments at Jefferson Lab require that the beam energy of the Continuous Electron Beam Accelerator Facility (CEBAF) accelerator be known to 0.01%. The g-2 spin precession of the electrons as they circulate in the machine can be used to determine the beam energy without relying on the absolute calibration of magnets and devices required for other methods. The precision of this approach needed to be fully investigated. Spin precession methods were investigated by writing an Apple application to

188

Jefferson Davis Elec Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Davis Elec Coop, Inc Davis Elec Coop, Inc Jump to: navigation, search Name Jefferson Davis Elec Coop, Inc Place Louisiana Utility Id 9682 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes RTO SPP Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png All Electric Farm and Home Service Residential All Electric Farm and Home Service - Seasonal Residential Commercial and Industrial Services Commercial Extra Large Power Service Commercial Farm and Rice Dryers Residential Flood Lighting Service: 1000 watt- 140,000 Lumen High Pressure Sodium Lighting

189

Jefferson Lab Science Series - You Already Know This Physics!  

NLE Websites -- All DOE Office Websites (Extended Search)

Living and Working in the Freezer Living and Working in the Freezer Previous Video (Living and Working in the Freezer) Science Series Video Archive Next Video (The Origin of the Elements) The Origin of the Elements You Already Know This Physics! Mr. Jack McKisson - Jefferson Lab, Detector and Imaging Group October 9, 2012 From a research path that includes a little bit of rocket science, under sea measurements, radiation detection and measurement, space experimentation and two expeditions to the Antarctic, Mr. McKisson brings a different view of how much physics most people already know from observing the world around them. With a minimal amount of math, attendees will learn a little of the history of physics and may discover that they know more than they thought about what some view as an inscrutable subject

190

ELECTROSTATIC MODELING OF THE JEFFERSON LABORATORY INVERTED CERAMIC GUN  

SciTech Connect

Jefferson Laboratory (JLab) is currently developing a new 500kV DC electron gun for future use with the FEL. The design consists of two inverted ceramics which support a central cathode electrode. This layout allows for a load-lock system to be located behind the gun chamber. The electrostatic geometry of the gun has been designed to minimize surface electric field gradients and also to provide some transverse focusing to the electron beam during transit between the cathode and anode. This paper discusses the electrode design philosophy and presents the results of electrostatic simulations. The electric field information obtained through modeling was used with particle tracking codes to predict the effects on the electron beam.

P. Evtushenko ,F.E. Hannon, C. Hernandez-Garcia

2010-05-01T23:59:59.000Z

191

Probing the nucleon structure with SIDIS at Jefferson Lab  

Science Conference Proceedings (OSTI)

In recent years, measurements of azimuthal moments of polarized hadronic cross sections in hard processes have emerged as a powerful tool to probe nucleon structure. Many experiments worldwide are currently trying to pin down various effects related to nucleon structure through Semi-Inclusive Deep-Inelastic Scattering (SIDIS). Azimuthal distributions of final-state particles in semi-inclusive deep inelastic scattering, in particular, are sensitive to the orbital motion of quarks and play an important role in the study of Transverse Momentum Dependent parton distribution functions (TMDs) of quarks in the nucleon. The CLAS spectrometer, installed in Hall-B at Jefferson Lab, has collected semi-inclusive data using the CEBAF 6 GeV polarized electron beam on polarized solid NH{sub 3} and ND{sub 3} targets. An overview of these measurements is presented.

Pereira, Sergio Anafalos [INFN-Frascati

2013-01-01T23:59:59.000Z

192

Status of Jefferson Lab's Load Locked Polarized Electron Beam  

DOE Green Energy (OSTI)

A new 100 kV load locked polarized electron gun has been built at Jefferson Lab. The gun is installed in a test stand on a beam line that resembles the first few meters of the CEBAF nuclear physics photoinjector. With this gun, a GaAs photocathode can be loaded from atmosphere, hydrogen cleaned, activated and taken to high voltage in less than 8 hours. The gun is a three chamber design, with all of the moving parts remaining at ground potential during gun operation. Studies of gun performance, photocathode life times, transverse emittance at high bunch charge, helicity correlated effects and beam polarizations from new photocathode samples will all be greatly facilitated by the use of this load locked gun.

M.L. Stutzman; P. Adderley; M. Baylac; J. Clark; A. Day; J. Grames; J. Hansknecht; M. Poelker

2002-09-01T23:59:59.000Z

193

RICH detector at Jefferson Lab, design, performance and physics results  

Science Conference Proceedings (OSTI)

Since 2004 the hadron spectrometer of Hall A at Jefferson Lab is equipped with a proximity focusing RICH. This detector is capable of identify kaon from pion and proton with an angular separation starting from 6 sigma at 2 GeV/c. The RICH design is conceptually similar to the ALICE HMPID RICH; it uses a C6F14 liquid radiator and a 300 nm layer of CsI deposited on the cathode pad plane of an asymmetric MWPC. The RICH has operated for the Hypernuclear Spectroscopy Experiment E94-107, which took data in the last two years. Design details and performance along with first physics results from the hypernuclear experiment are shortly presented.

E. Cisbani; S. Colilli; F. Cusanno; S. Frullani; R. Frantoni; F. Garibaldi; F. Giuliani; M. Gricia; M. Lucentini; M.L. Magliozzi; L. Pierangeli; F. Santavenere; P. Veneroni; G.M. Urciuoli; M. Iodice; G. De Cataldo; R. De Leo; L. Lagamba; S. Marrone; E. Nappi; V. Paticchio; R. Feuerbach; D. Higinbotham; J. Lerose; B. Kross; R. Michaels; Y. Qiang; B. Reitz; J. Segal; B. Wojtsekhowski; C. Zorn; A. Acha; P. Markowitz; C.C. Chang; H. Breuer

2006-04-01T23:59:59.000Z

194

Studies of the Electromagnetic Structure of Mesons at Jefferson Lab  

SciTech Connect

The Jefferson Laboratory Hall B PrimEx Collaboration is using tagged photons to perform an absolute 1.4% level cross section measurement of the photoproduction of neutral pions in the Coulomb field of a nucleus. The absolute cross section for this process is directly proportional to the neutral pion radiative decay width and consequently the uncertainty in the luminosity is directly reflected in the final error bar of the measurement. The PI has taken primary responsibility for the photon flux determination and in this technical report, we outline the steps taken to limit the uncertainty in the tagged photon flux to the 1% level. These include the use of a total absorption counter for absolute flux calibration, a pair spectrometer for online relative flux monitoring, and updated procedures for postbremsstrahlung electron counting. The photon tagging technique has been used routinely in its various forms to provide quasimonochromatic photons for absolute photonuclear cross section measurements. The analysis of such experiments in the context of bremsstrahlung photon tagging was summarized by Owens in 1990. Since then, a number of developments have made possible significant improvements in the implementation of this technique. Here, we describe the steps taken by the PrimEx Collaboration in Hall B of Jefferson Laboratory to limit the systematic uncertainty in the absolute photon flux to 1%. They include an absolute flux calibration at low intensity with a total absorption counter, online relative flux monitoring with a pair spectrometer, and the use of multihit time to digital converters for post bremsstrahlung electron counting during production data runs. While this discussion focuses on the analysis techniques utilized by the PrimEx Collaboration which involves a bremsstrahlung based photon tagging system to measure the neutral pion lifetime, the methods described herein readily apply to other types of photon tagging systems.

Dale, Daniel, S.

2012-11-11T23:59:59.000Z

195

Jobs | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

TJSO Home » About » TJSO Home » About » Jobs Thomas Jefferson Site Office (TJSO) TJSO Home About Organization Chart .pdf file (136KB) Jobs Current Projects Contract Management Environment, Safety and Health (ES&H) Resources Contact Information Thomas Jefferson Site Office U.S. Department of Energy 12000 Jefferson Avenue Newport News, VA 23606 P: (757) 269-7140 About Jobs Print Text Size: A A A Subscribe FeedbackShare Page Current Open Federal Positions The Thomas Jefferson Site Office is located in Newport News, Virginia. All open federal positions listed below are posted on USAJobs.gov External link . (Thomas Jefferson Site Office Organization Chart .pdf file (136KB)) Position Details Job Number Opened Closes No positions in TJSO are currently open Important note: Please read job opportunity announcements carefully to identify the

196

Aeromagnetic Survey At Mokapu Penninsula Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Aeromagnetic Survey At Mokapu Penninsula Area (Thomas, 1986) Aeromagnetic Survey At Mokapu Penninsula Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Mokapu Penninsula Area (Thomas, 1986) Exploration Activity Details Location Mokapu Penninsula Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes A separate geophysical analysis performed on the Koolau caldera area (Kauahikaua, 1981 a) synthesized existing self-potential, gravity, seismic and aeromagnetic data with recently acquired resistivity soundings. An analysis of the observed remnant magnetization within the caldera complex suggested that subsurface temperatures ranged from less than 300degrees C to no more than 540degrees C. The resistivity data indicated that the

197

Mercury Vapor At Kawaihae Area (Thomas, 1986) | Open Energy Information  

Open Energy Info (EERE)

Mercury Vapor At Kawaihae Area (Thomas, 1986) Mercury Vapor At Kawaihae Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Kawaihae Area (Thomas, 1986) Exploration Activity Details Location Kawaihae Area Exploration Technique Mercury Vapor Activity Date Usefulness not useful DOE-funding Unknown Notes The soil geochemistry yielded quite complex patterns of mercury concentrations and radonemanation rates within the survey area (Cox and Cuff, 1981c). Mercury concentrations (Fig. 38) showed a general minimum along the Kawaihae-Waimea roads and a broad trend of increasing mercury concentrations toward both the north and south. There is no correlation apparent between the mercury patterns and either the resistivity sounding data or the surface geology in the area. The radon emanometry data (Fig.

198

Static Temperature Survey At Molokai Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Molokai Area (Thomas, 1986) Molokai Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Molokai Area (Thomas, 1986) Exploration Activity Details Location Molokai Area Exploration Technique Static Temperature Survey Activity Date Usefulness useful DOE-funding Unknown Notes Due to the very small potential market on the island of Molokai for geothermal energy, only a limited effort was made to confirm a resource in the identified PGRA. An attempt was made to locate the (now abandoned) water well that was reported to have encountered warm saline fluids. The well was located but had caved in above the water table and thus no water sampling was possible. Temperature measurements in the open portion of the well were performed, but no temperatures significantly above ambient were

199

Geothermometry At Kawaihae Area (Thomas, 1986) | Open Energy Information  

Open Energy Info (EERE)

Geothermometry At Kawaihae Area (Thomas, 1986) Geothermometry At Kawaihae Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Kawaihae Area (Thomas, 1986) Exploration Activity Details Location Kawaihae Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes Groundwater chemical data are limited due to the small number of wells near Kawaihae; however, the data that are available strongly substantiate the presence of a thermal resource. A measured water temperature of 31 degrees C in one well is clearly above normal ambient temperatures, and the chloride/magnesium ion ratio in the same well is elevated substantially above the normal range (Table 8). Both of these data provide strong evidence that at least a low-level thermal anomaly is present in the area.

200

Mercury Vapor At Mokapu Penninsula Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mokapu Penninsula Area (Thomas, 1986) Mokapu Penninsula Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Mokapu Penninsula Area (Thomas, 1986) Exploration Activity Details Location Mokapu Penninsula Area Exploration Technique Mercury Vapor Activity Date Usefulness not useful DOE-funding Unknown Notes The high degree of cultural activity (e.g. residential areas, streets, jet runways, etc.) on Mokapu both limited the extent of the soil geochemical surveys performed and rendered their interpretation much more difficult. Soil mercury concentrations and radon emanometry data on the peninsula showed a few localized high values (Figs 13, 14), but no consistent correlation between the anomalous zones and geologic features could be

Note: This page contains sample records for the topic "thomas jefferson site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Geothermometry At Mauna Loa Northeast Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Geothermometry At Mauna Loa Northeast Rift Area (Thomas, 1986) Geothermometry At Mauna Loa Northeast Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Mauna Loa Northeast Rift Area (Thomas, 1986) Exploration Activity Details Location Mauna Loa Northeast Rift Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes A reexamination of all groundwater sources in the Keaau area was undertaken in an effort to confirm the chemical and temperature anomalies that formed the primary basis on which the Keaau area was identified during the preliminary assessment survey. The data generated by this survey (Table 9) determined that all of the anomalous data present in the earlier data base were spurious and that the groundwater chemistry and temperatures in this

202

Soil Sampling At Molokai Area (Thomas, 1986) | Open Energy Information  

Open Energy Info (EERE)

Soil Sampling At Molokai Area (Thomas, 1986) Soil Sampling At Molokai Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Sampling At Molokai Area (Thomas, 1986) Exploration Activity Details Location Molokai Area Exploration Technique Soil Sampling Activity Date Usefulness useful DOE-funding Unknown Notes Due to the very small potential market on the island of Molokai for geothermal energy, only a limited effort was made to confirm a resource in the identified PGRA. An attempt was made to locate the (now abandoned) water well that was reported to have encountered warm saline fluids. The well was located but had caved in above the water table and thus no water sampling was possible. Temperature measurements in the open portion of the well were performed, but no temperatures significantly above ambient were

203

About | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

About About Thomas Jefferson Site Office (TJSO) TJSO Home About Organization Chart .pdf file (136KB) Jobs Current Projects Contract Management Environment, Safety and Health (ES&H) Resources Contact Information Thomas Jefferson Site Office U.S. Department of Energy 12000 Jefferson Avenue Newport News, VA 23606 P: (757) 269-7140 About Print Text Size: A A A RSS Feeds FeedbackShare Page The TJSO Site Office represents the Department of Energy (DOE) in conducting business with the Jefferson Science Associates, LLC External link (JSA) and others at the Thomas Jefferson National Accelerator Facility External link (also known as TJNAF) in Newport News, Virginia. Located at Jefferson Lab, the Site Office reports to the Deputy Director for Field Operations, Office of Science, with support from the DOE Oak Ridge Office (ORO) in Oak Ridge,

204

Remarks by Administrator Thomas D'Agostino, National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

on NRC International Regulators Conference on Nuclear on NRC International Regulators Conference on Nuclear Security | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Speeches > Remarks by Administrator Thomas D'Agostino, National Nuclear ... Speech Remarks by Administrator Thomas D'Agostino, National Nuclear Security

205

Remarks by Administrator Thomas D'Agostino, National Nuclear Security  

National Nuclear Security Administration (NNSA)

on NRC International Regulators Conference on Nuclear on NRC International Regulators Conference on Nuclear Security | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Speeches > Remarks by Administrator Thomas D'Agostino, National Nuclear ... Speech Remarks by Administrator Thomas D'Agostino, National Nuclear Security

206

Questions and Answers - Why did it take so long to build Jefferson Lab? Why  

NLE Websites -- All DOE Office Websites (Extended Search)

are the Halls inbio-dome shapes? are the Halls in<br>bio-dome shapes? Previous Question (Why are the Halls in bio-dome shapes?) Questions and Answers Main Index Next Question (What would happen if part of the accelerator were to break?) What would happen if part ofthe accelerator were to break? Why did it take so long to build Jefferson Lab? Why was Jefferson Lab built in Newport News? Newport News was one of several places around the nation that competed for Jefferson Lab. The Southeastern Universities Research Association (SURA) won the contract to build and run Jefferson Lab in Newport News. A couple reasons helped bring the Lab to this area: 1) The city and state governments worked hard with SURA to earn the Department of Energy's approval to bring the Lab here. (Good teamwork means

207

Jefferson Park : case study of a public housing project in transformation  

E-Print Network (OSTI)

This study focuses on the redevelopment of Jefferson Park, a public housing project in Cambridge, Massachusetts. The work establishes the historical political, social, and physical context in which that redevelopment takes ...

Powers, David Thomas

1984-01-01T23:59:59.000Z

208

Copyright Notice Copyright 2003 Jeffrey Thomas Hein, P.E.  

E-Print Network (OSTI)

V System Willamette Falls-Portland, Maine for Street Lighting - Westinghouse - 1890 1886 1st Multiple lamp lighting system for street lighting, which he put to use in Cleveland, Ohio. That same year Thomas Alva Edison (Figure 2-2) and his team of researchers invented the incandescent light bulb for home

209

Thomas H Zurbuchen, Department of Atmospheric, Oceanic and Space Sciences  

E-Print Network (OSTI)

Thomas H Zurbuchen, Department of Atmospheric, Oceanic and Space Sciences Plasmas Near Mercury: Solar Wind Driving and Surface Interac>ons #12;#12;Mercury Venus.4 kg Power: 2.0 W! 8! #12;9! #12;#12;11! MESSENGER ORBIT! Local Time Definition! 12! 0! 6! 18! Study

210

High Speed Rail in America Thomas Ducharme, Matt Schena,  

E-Print Network (OSTI)

://m.wikitravel.org/en/Frankfurt #12;Possible effects on Freight Rail · High speed rail usually hauls passengers, though new Resulting in improvement to those lines o Reducing operating costs due to sharing rail · Increase in freightHigh Speed Rail in America Thomas Ducharme, Matt Schena, and Dan Bellis #12;The US Current

Nagurney, Anna

211

Matrix models and stochastic growth in Donaldson-Thomas theory  

SciTech Connect

We show that the partition functions which enumerate Donaldson-Thomas invariants of local toric Calabi-Yau threefolds without compact divisors can be expressed in terms of specializations of the Schur measure. We also discuss the relevance of the Hall-Littlewood and Jack measures in the context of BPS state counting and study the partition functions at arbitrary points of the Kaehler moduli space. This rewriting in terms of symmetric functions leads to a unitary one-matrix model representation for Donaldson-Thomas theory. We describe explicitly how this result is related to the unitary matrix model description of Chern-Simons gauge theory. This representation is used to show that the generating functions for Donaldson-Thomas invariants are related to tau-functions of the integrable Toda and Toeplitz lattice hierarchies. The matrix model also leads to an interpretation of Donaldson-Thomas theory in terms of non-intersecting paths in the lock-step model of vicious walkers. We further show that these generating functions can be interpreted as normalization constants of a corner growth/last-passage stochastic model.

Szabo, Richard J. [Department of Mathematics, Heriot-Watt University, Colin Maclaurin Building, Riccarton, Edinburgh EH14 4AS, United Kingdom and Maxwell Institute for Mathematical Sciences, Edinburgh (United Kingdom); Tierz, Miguel [Grupo de Fisica Matematica, Complexo Interdisciplinar da Universidade de Lisboa, Av. Prof. Gama Pinto, 2, PT-1649-003 Lisboa (Portugal); Departamento de Analisis Matematico, Facultad de Ciencias Matematicas, Universidad Complutense de Madrid, Plaza de Ciencias 3, 28040 Madrid (Spain)

2012-10-15T23:59:59.000Z

212

Evolution of the Generic Lock System at Jefferson Lab  

SciTech Connect

The Generic Lock system is a software framework that allows highly flexible feedback control of large distributed systems. It allows system operators to implement new feedback loops between arbitrary process variables quickly and with no disturbance to the underlying control system. Several different types of feedback loops are provided and more are being added. This paper describes the further evolution of the system since it was first presented at ICALEPCS 2001 and reports on two years of successful use in accelerator operations. The framework has been enhanced in several key ways. Multiple-input, multiple-output (MIMO) lock types have been added for accelerator orbit and energy stabilization. The general purpose Proportional-Integral-Derivative (PID) locks can now be tuned automatically. The generic lock server now makes use of the Proxy IOC (PIOC) developed at Jefferson Lab to allow the locks to be monitored from any EPICS Channel Access aware client. (Previously clients had to be Cdev aware.) The dependency on the Qt XML parser has been replaced with the freely available Xerces DOM parser from the Apache project.

Brian Bevins; Yves Roblin

2003-10-13T23:59:59.000Z

213

The proton form factor ratio results from Jefferson Lab  

Science Conference Proceedings (OSTI)

The ratio of the proton form factors, GE p/GMp, has been measured extensively, from Q2 of 0.5 GeV2 to 8.5 GeV2, at the Jefferson Laboratory, using the polarization transfer method. This ratio is extracted directly from the measured ratio of the transverse and longitudinal polarization components of the recoiling proton in elastic electron-proton scattering. The polarization transfer results are of unprecedented high precision and accuracy, due in large part to the small systematic uncertainties associated with the experimental technique. There is an approved experiment at JLab, GEP(5), to continue the ratio measurements to 12 GeV2. A dedicated experimental setup, the Super Bigbite Spectrometer (SBS), will be built for this purpose. It will be equipped with a focal plane polarimeter to measure the polarization of the recoil protons. The scattered electrons will be detected in an electromagnetic calorimeter. In this presentation, I will review the status of the proton elastic electromagnetic form factors and discuss a number of theoretical approaches to describe nucleon form factors.

Vina Punjabi

2012-09-01T23:59:59.000Z

214

A FULL-ORDER, ALMOST-DETERMINISTIC OPTICAL MATCHING Yu-Chiu Chao, Thomas Jefferson National Accelerator Facility, Newport News, VA 23606  

E-Print Network (OSTI)

to provide input to this algorithm. Preliminary on-line testing on the CEBAF accelerator has positively, the numerical tool for obtaining global solutions, adaptation to realistic matching problems at CEBAF 3.1 Transport Matching at CEBAF In the CEBAF accelerator proper where electron beam passes through 2

215

Direct-Current Resistivity Survey At Hualalai Northwest Rift Area (Thomas,  

Open Energy Info (EERE)

Hualalai Northwest Rift Area (Thomas, Hualalai Northwest Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes A total of seven Schlumberger soundings were performed on Hualalai. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Direct-Current_Resistivity_Survey_At_Hualalai_Northwest_Rift_Area_(Thomas,_1986)&oldid=510528" Category: Exploration Activities What links here Related changes

216

Charged Pion Photoproduction from Hydrogen and Deuterium at Jefferson Lab  

DOE Green Energy (OSTI)

The {gamma}n {yields} {pi}{sup -}p and {gamma}p {yields} {pi}{sup +}n reactions are essential probes of the transition from meson-nucleon degrees of freedom to quark-gluon degrees of freedom in exclusive processes. The cross sections of these processes are also, advantageous, for the investigation of oscillatory behavior around the quark counting prediction, since they decrease relatively slower with energy compared with other photon-induced processes. Moreover, these photoreactions in nuclei can probe the QCD nuclear filtering and color transparency effects. In this talk, I discuss the preliminary results on the {gamma}p {yields} {pi}{sup +}n and {gamma}n {yields} {pi}{sup -}p processes at a center-of-mass angle of 90{sup o} from Jefferson Lab experiment E94-104. I also discuss a new experiment in which singles {gamma}p {yields} {pi}{sup +}n measurement from hydrogen, and coincidence {gamma}n {yields} {pi}{sup -}p measurements at the quasifree kinematics from deuterium and {sup 12}C for photon energies between 2.25 GeV to 5.8 GeV in fine steps at a center-of-mass angle of 90{sup o} are planned. The proposed measurement will allow a detailed investigation of the oscillatory scaling behavior in photopion production processes and the study of the nuclear dependence of rather mysterious oscillations with energy that previous experiments have indicated. The various nuclear and perturbative QCD approaches, ranging from Glauber theory, to quark-counting, to Sudakov-corrected independent scattering, make dramatically different predictions for the experimental outcomes.

Haiyan Gao

2003-02-01T23:59:59.000Z

217

Self Potential At Mokapu Penninsula Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Self Potential At Mokapu Penninsula Area (Thomas, Self Potential At Mokapu Penninsula Area (Thomas, 1986) Exploration Activity Details Location Mokapu Penninsula Area Exploration Technique Self Potential Activity Date Usefulness not indicated DOE-funding Unknown Notes A separate geophysical analysis performed on the Koolau caldera area (Kauahikaua, 1981 a) synthesized existing self-potential, gravity, seismic and aeromagnetic data with recently acquired resistivity soundings. An analysis of the observed remnant magnetization within the caldera complex suggested that subsurface temperatures ranged from less than 300degrees C to no more than 540degrees C. The resistivity data indicated that the electrical basement, to a depth of 900 m, had resistivities ranging from 42 ohm.m to more than 1000 ohm.m, which is considered to be within the

218

Water Sampling At Mokapu Penninsula Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Water Sampling At Mokapu Penninsula Area (Thomas, Water Sampling At Mokapu Penninsula Area (Thomas, 1986) Exploration Activity Details Location Mokapu Penninsula Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Chemical analysis of groundwater from Mokapu was severely restricted by the absence of drilled wells; the only groundwater sources present were five shallow, brackish ponds, Chemical data indicated that all of the ponds consisted of seawater diluted by varying amounts of fresh surface water; no thermal alteration was revealed by the water chemistry (Table 2). Available temperature and water chemistry data on the Koolau caldera area were also assessed as part of the Mokapu study. The results of this analysis (Table

219

Thomas County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Thomas County, Georgia: Energy Resources Thomas County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.8417409°, -83.8473015° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.8417409,"lon":-83.8473015,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

220

Remarks by Administrator Thomas D'Agostino, National Nuclear Security  

National Nuclear Security Administration (NNSA)

to the Energy Facility Contractors Group | National Nuclear to the Energy Facility Contractors Group | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Speeches > Remarks by Administrator Thomas D'Agostino, National Nuclear ... Speech Remarks by Administrator Thomas D'Agostino, National Nuclear Security Administration, to the Energy Facility Contractors Group

Note: This page contains sample records for the topic "thomas jefferson site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Time Series Dependent Analysis of Unparametrized Thomas Networks  

Science Conference Proceedings (OSTI)

This paper is concerned with the analysis of labeled Thomas networks using discrete time series. It focuses on refining the given edge labels and on assessing the data quality. The results are aimed at being exploitable for experimental design and include ... Keywords: Time series analysis,Regulators,Computational modeling,Time measurement,Bioinformatics,Computational biology,Labeling,constraint satisfaction.,Time series analysis,model checking,temporal logic,biology and genetics

Hannes Klarner; Heike Siebert; Alexander Bockmayr

2012-09-01T23:59:59.000Z

222

VEE-0091 - In the Matter of Jefferson Smurfit Corp. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 - In the Matter of Jefferson Smurfit Corp. 1 - In the Matter of Jefferson Smurfit Corp. VEE-0091 - In the Matter of Jefferson Smurfit Corp. This Decision decides the merits of five Applications for Exception filed with the Office of Hearings and Appeals (OHA) of the U.S. Department of Energy (DOE) under the provisions of 10 C.F.R. § 1003.20. See infra Appendix. These Applications concern annual revenues and sales data pertaining to each firm's sale of electricity that the DOE Energy Information Administration (EIA) collects through Form EIA-861, "Annual Electric Power Industry Report." EIA publishes this data, by state, in firm-specific form. The present exception request seeks to have the Applicants' data withheld as confidential. In their Applications for Exception, the Applicants incorporated an Application for Stay to prevent release of some of the

223

SPIN Effects, QCD, and Jefferson Laboratory with 12 GeV electrons  

Science Conference Proceedings (OSTI)

QCD and Spin physics are playing important role in our understanding of hadron structure. I will give a short overview of origin of hadron structure in QCD and highlight modern understanding of the subject. Jefferson Laboratory is undergoing an upgrade that will increase the energy of electron beam up to 12 GeV. JLab is one of the leading facilities in nuclear physics studies and once operational in 2015 JLab 12 will be crucial for future of nuclear physics. I will briefly discuss future studies in four experimental halls of Jefferson Lab.

Prokudin, Alexey [JLAB

2013-11-01T23:59:59.000Z

224

Recirculating Beam Breakup Study for the 12 GeV Upgrade at Jefferson Lab  

Science Conference Proceedings (OSTI)

Two new high gradient C100 cryomodules with a total of 16 new cavities were installed at the end of the CEBAF south linac during the 2011 summer shutdown as part of the 12-GeV upgrade project at Jefferson Lab. We surveyed the higher order modes (HOMs) of these cavities in the Jefferson Lab cryomodule test facility and CEBAF tunnel. We then studied recirculating beam breakup (BBU) in November 2011 to evaluate CEBAF low energy performance, measure transport optics, and evaluate BBU thresholds due to these HOMs. This paper discusses the experiment setup, cavity measurements, machine setup, optics measurements, and lower bounds on BBU thresholds by new cryomodules.

Ilkyoung Shin, Todd Satogata, Shahid Ahmed, Slawomir Bogacz, Mircea Stirbet, Haipeng Wang, Yan Wang, Byung Yunn, Ryan Bodenstein

2012-07-01T23:59:59.000Z

225

MEMORANDUM FOR ELIZABETH MONTOYA TRANSITION TEAM FROM THOMAS N. PYKE, J  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

^ g December 1, 200S ^ g December 1, 200S MEMORANDUM FOR ELIZABETH MONTOYA TRANSITION TEAM FROM THOMAS N. PYKE, J CHIEF INFORMATION OFFICER SUBJECT: Follow-up to our meeting this morning Carl Staton and I appreciated the opportunity to brief you this morning on our office's activities, including the cyber security issue. We noted four follow-up actions: 1. The breakdown ofOCIO Federal and contracting FTE at all of our sites is: Federal Contractor a. Forrestal 51 144 b. Germantown 85 213 c. Albuquerque 1 39 d. Pittsburgh 1 0 c. Linthicum, Maryland 0 8 f. Las Vegas 3 39 Total: 141 443 2. The number of Federal FTE in the OCIO cyber security office is 16. 3. We have some additional infbrmation about the detailee from NNSA that we mentioned. The detailee, Mr. Robbie Green, is in the process of being

226

CRANE CO. 757 THIRD AVENUE NEW YORK. N.Y. THOMAS UNGERLAND ASSOCIATE GENERAL COUNSEL  

Office of Legacy Management (LM)

? ? z _ - c 0-e . CRANE CO. 757 THIRD AVENUE NEW YORK. N.Y. THOMAS UNGERLAND ASSOCIATE GENERAL COUNSEL December 14, 1987 James J. Fiore Director Office of Nuclear Energy Department of Energy Washington, D.C. Re: Crane - Indian Orchard Dear M r. Fiore: W e acknowledge receipt of your letter to Paul Hundt, dated September 29, 1987, which requests certain information about Crane's plant site in Indian Orchard, Massachusetts. The plant is not currently operating. Crane was unable to locate any records concerning the machining of uranium in the 1947-48 period for a customer, Brookhaven Labs, at the Indian Orchard, facility. It is believed that the records, which were kept on the second floor at 305 Hamshire Street, Indian Orchard, Massachusetts were moved ten or fifteen years ago

227

Solar-cooling-system performance, Frenchman's Reef Hotel, St. Thomas, US Virgin Islands. Final report  

DOE Green Energy (OSTI)

The Solar Cooling System installed in the Frenchman's Reef Resort Hotel Test Site, St. Thomas, US Virgin Islands, used 956 Sunmaster Corporation evacuated glass tube collector modules which provide an effective solar collector aperture of 13,384 square feet. The system consists of the collectors, two 2500 gallon tanks, pumps, an Andover Controls Corporation computerized controller, a large solar optimized Carrier Corporation industrial sized lithium bromide absorption chiller, and associated plumbing. Solar heated water is pumped through the system to the designed public areas such as lobby, lounges, restaurant and hallways. Auxiliary heat is provided by steam and a heat exchanger to supplement the solar heat. The system, its operation sequence, and performance are described.

Harber, H.

1981-09-25T23:59:59.000Z

228

ColumbusSites.cdr  

Office of Legacy Management (LM)

Columbus, Ohio, Sites consist of two geographically Columbus, Ohio, Sites consist of two geographically separate properties owned by the Battelle Memorial Institute: the King Avenue site, located in the city of Columbus, and the West Jefferson site, located approx- imately 15 miles west of Columbus. Battelle conducted extensive nuclear research at both locations for the U.S. Department of Energy (DOE) and its predecessor agencies between 1943 and 1986. The research resulted in contamination of soil, buildings, and equipment with radioactive and mixed waste materials. Environmental cleanup of the sites began in 1986. The 6-acre King Avenue site, which was historically a part of the federal government's fuel and target fab- rication program, consisted of 9 buildings and the surrounding grounds. Nuclear research conducted at the

229

Cornell Cooperative Extension of Jefferson County Saving $6,000 per Year on Lighting  

E-Print Network (OSTI)

,000 square foot building. The building was formerly a manufacturing plant for air freshenersCornell Cooperative Extension of Jefferson County Saving $6,000 per Year on Lighting Energy comfort and client experience throughout the building · More money to spend on other things Project Cost

Keinan, Alon

230

Direct-Current Resistivity At Lualualei Valley Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Lualualei Valley Area (Thomas, 1986) Lualualei Valley Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location Lualualei Valley Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Three Schlumberger resistivity soundings were performed in Lualualei Valley (Mattice and Kauahikaua, 1979). K840 Interpretation of the resistivity soundings suggests that the source of the warm water layer within the valley was the dense dike complex associated with the ancient magma chamber of Waianae volcano. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from

231

Direct-Current Resistivity Survey At Lualualei Valley Area (Thomas, 1986) |  

Open Energy Info (EERE)

Lualualei Valley Area (Thomas, 1986) Lualualei Valley Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location Lualualei Valley Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Three Schlumberger resistivity soundings were performed in Lualualei Valley (Mattice and Kauahikaua, 1979). K840 Interpretation of the resistivity soundings suggests that the source of the warm water layer within the valley was the dense dike complex associated with the ancient magma chamber of Waianae volcano. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii

232

Studienleiter Chemie und Molekulare Wissenschaften Sekretariat Studienleitung Prof. Thomas Wandlowski Sandra Zbinden  

E-Print Network (OSTI)

Studienleiter Chemie und Molekulare Wissenschaften Sekretariat Studienleitung Prof. Thomas Wandlowski Sandra Zbinden Departement für Chemie und Biochemie Departement für Chemie und Biochemie 6318057 e-mail: thomas.wandlowski@dcb.unibe.ch e-mail: sandra.zbinden@dcb.unibe.ch Bachelor in Chemie und

Mühlemann, Oliver

233

Fuel Cell and Battery Electric Vehicles Compared By C. E. (Sandy) Thomas, Ph.D., President  

E-Print Network (OSTI)

reduction goals1 . As shown in Figure 1, hybrid electric vehicles (HEV's) and plugin hybrid electric electric vehicle; H2 ICE HEV = hydrogen internal combustion engine hybrid electric vehicle) C.E. Thomas Fuel Cell and Battery Electric Vehicles Compared By C. E. (Sandy) Thomas, Ph.D., President H2Gen

234

Mercury Vapor At Mauna Loa Northeast Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mauna Loa Northeast Rift Area (Thomas, 1986) Mauna Loa Northeast Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Mauna Loa Northeast Rift Area (Thomas, 1986) Exploration Activity Details Location Mauna Loa Northeast Rift Area Exploration Technique Mercury Vapor Activity Date Usefulness not indicated DOE-funding Unknown Notes Soil mercury and radon emanometry sampling conducted in the Keaau prospect were similarly unable to define any anomalies that could reasonably be interpreted to be due to subsurface thermal effects. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Mercury_Vapor_At_Mauna_Loa_Northeast_Rift_Area_(Thomas,_1986)&oldid=390060

235

VBH-0005 - In the Matter of Thomas Dwyer | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

VBH-0005 - In the Matter of Thomas Dwyer VBH-0005 - In the Matter of Thomas Dwyer VBH-0005 - In the Matter of Thomas Dwyer This Decision involves a whistleblower complaint filed by Thomas Dwyer under the Department of Energy's (DOE) Contractor Employee Protection Program. From January 1996 to October 1997, Mr. Dwyer was employed as a pipefitter by Fluor Daniel Fernald (FDF), a DOE contractor responsible for the cleanup of the Fernald Environmental Management Project, a former DOE uranium production facility located about 18 miles northwest of Cincinnati, Ohio. Mr. Dwyer alleges that FDF first suspended him and then terminated him in retaliation for taking certain actions and making health and safety disclosures. vbh0005.pdf More Documents & Publications VBA-0005 - In the Matter of Thomas Dwyer

236

Aeromagnetic Survey At Mauna Loa Northeast Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Rift Area (Thomas, 1986) Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Mauna Loa Northeast Rift Area (Thomas, 1986) Exploration Activity Details Location Mauna Loa Northeast Rift Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness useful DOE-funding Unknown Notes Aeromagnetic data (Godson et al., 1981) for the lower northeast rift of Mauna Loa tend to substantiate this conclusion as well. The lower extension of the rift zone does not exhibit any significant magnetic features that would correspond to a thermal source within the inferred trace of the rift zone. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Aeromagnetic_Survey_At_Mauna_Loa_Northeast_Rift_Area_(Thomas,_1986)&oldid=40242

237

Gas Flux Sampling At Mauna Loa Northeast Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Gas Flux Sampling At Mauna Loa Northeast Rift Area (Thomas, 1986) Gas Flux Sampling At Mauna Loa Northeast Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Mauna Loa Northeast Rift Area (Thomas, 1986) Exploration Activity Details Location Mauna Loa Northeast Rift Area Exploration Technique Gas Flux Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Soil mercury and radon emanometry sampling conducted in the Keaau prospect were similarly unable to define any anomalies that could reasonably be interpreted to be due to subsurface thermal effects. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Gas_Flux_Sampling_At_Mauna_Loa_Northeast_Rift_Area_(Thomas,_1986)&oldid=389039"

238

Direct-Current Resistivity Survey At Mauna Loa Southwest Rift Area (Thomas,  

Open Energy Info (EERE)

Area (Thomas, Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Mauna Loa Southwest Rift Area (Thomas, 1986) Exploration Activity Details Location Mauna Loa Southwest Rift Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Field surveys in the South Point area were limited to a series of Schlumberger soundings and a self-potential traverse across the rift zone. The absence of groundwater wells and time and funding constraints precluded any geochemical field surveys. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Direct-Current_Resistivity_Survey_At_Mauna_Loa_Southwest_Rift_Area_(Thomas,_1986)&oldid=510541"

239

Self Potential At Mauna Loa Southwest Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Southwest Rift Area (Thomas, 1986) Southwest Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Self Potential At Mauna Loa Southwest Rift Area (Thomas, 1986) Exploration Activity Details Location Mauna Loa Southwest Rift Area Exploration Technique Self Potential Activity Date Usefulness not indicated DOE-funding Unknown Notes Field surveys in the South Point area were limited to a series of Schlumberger soundings and a self-potential traverse across the rift zone. The absence of groundwater wells and time and funding constraints precluded any geochemical field surveys. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Self_Potential_At_Mauna_Loa_Southwest_Rift_Area_(Thomas,_1986)&oldid=389751

240

Ground Gravity Survey At Mokapu Penninsula Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Ground Gravity Survey At Mokapu Penninsula Area Ground Gravity Survey At Mokapu Penninsula Area (Thomas, 1986) Exploration Activity Details Location Mokapu Penninsula Area Exploration Technique Ground Gravity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes A separate geophysical analysis performed on the Koolau caldera area (Kauahikaua, 1981 a) synthesized existing self-potential, gravity, seismic and aeromagnetic data with recently acquired resistivity soundings. An analysis of the observed remnant magnetization within the caldera complex suggested that subsurface temperatures ranged from less than 300degrees C to no more than 540degrees C. The resistivity data indicated that the electrical basement, to a depth of 900 m, had resistivities ranging from 42 ohm.m to more than 1000 ohm.m, which is considered to be within the

Note: This page contains sample records for the topic "thomas jefferson site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Time-Domain Electromagnetics At Haleakala Volcano Area (Thomas, 1986) |  

Open Energy Info (EERE)

Time-Domain Electromagnetics At Haleakala Volcano Time-Domain Electromagnetics At Haleakala Volcano Area (Thomas, 1986) Exploration Activity Details Location Haleakala Volcano Area Exploration Technique Time-Domain Electromagnetics Activity Date Usefulness useful DOE-funding Unknown Notes Controlled-source electromagnetic soundings were found to be substantially more successful in the southwest rift than either the Schlumberger or the self-potential studies. This was largely due to the ability of time-domain methods to penetrate high-resistivity surface layers and thus to define lower-resistivity sections at depth. The results of this sounding study, which was conducted at elevations ranging from 75 to 497 m a.s.l., generally indicated moderate- to lowresistivity (6 - 7 ohm.m) sections to depths of 1 km on the lower rift zone and higher resistivities (12-16

242

Aeromagnetic Survey At Hualalai Northwest Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Aeromagnetic Survey At Hualalai Northwest Rift Area Aeromagnetic Survey At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness useful DOE-funding Unknown Notes Aeromagnetic survey data for Hualalai (Godson et al., 1981) clearly indicate an elongate northwest to southeast trending zone of extremely low total magnetic field over the summit region of Hualalai that extends into the upper northwest rift zone. It is extremely unlikely that the summit region is underlain by intrusive material old enough (greater than 700,000 years of age) to have been emplaced during a period of reversed magnetic field; therefore, the only alternative explanation possible (presuming the data are accurate) is that this region is underlain by material with very

243

Mr. Thomas A. Dickerson Supervisor of Environmental Affairs  

Office of Legacy Management (LM)

3 3 932. . . - ,_ ' ,;. Department of Energy Washinglon.DC 20545 tie c"rT SEP 05 1990 pff, (>-.I Mr. Thomas A. Dickerson Supervisor of Environmental Affairs Carpenter Technology Corporation Engineering and Construction P. 0. Box 14662 Reading, Pennsylvania 19612-4662 Dear Mr. Dickerson: The Department of Energy (DOE) has completed its review of the preliminary radiological data from the surveys of your facility in Reading, Pennsylvania, completed in July and August 1988. We are pleased to inform you that the survey has verified that the radiological condition of your facility is in compliance with applicable DOE Guidelines and that no remedial action or further investigations are necessary. I am enclosing a copy of the survey report prepared by our

244

MEMORANDUM FROM: THOMAS E. BROWN, DIRECTOR OFFICE OF CONTRACT MANAGEMENT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

,2008 ,2008 MEMORANDUM FROM: THOMAS E. BROWN, DIRECTOR OFFICE OF CONTRACT MANAGEMENT OFFICE OF PROCUREMENT AND ASSISTANCE MANAGEMENT SUBJECT: Contract Change Order Administration of Department of Energy Prime Contracts The purpose of this memorandum is to highlight the need for good contract administration of Department of Energy (DOE) contracts (non management and operating contracts) including those covered by DOE Order 413.3A, Program and Project Management for the Acquisition of Capital Assets. One of the focus areas of the DOE's efforts to improve contract and project management is the recopition that effectrve contract change order administration is critical to ensuring that contract and project requirements are met. Fundamentally, the award of an appropriate contract type that best

245

Site Map  

Office of Scientific and Technical Information (OSTI)

Water Channels Item Robert Curl, Jr. and the Discovery of Fullerenes Item Thomas R. Cech, RNA, and Ribozymes Click to expand or collapse folder Folder DOE Research and...

246

ADVANTAGES OF THE PROGRAM-BASED LOGBOOK SUBMISSION GUI AT JEFFERSON LAB  

Science Conference Proceedings (OSTI)

DTlite is a Tcl/Tk script that is used as the primary interface for making entries into Jefferson Lab's electronic logbooks. DTlite was originally written and implemented by a user to simplify submission of entries into Jefferson Lab?s electronic logbook, but has subsequently been maintained and developed by the controls software group. The use of a separate, script-based tool for logbook submissions (as opposed to a web-based submission tool bundled with the logbook database/interface) provides many advantages to the users, as well as creating many challenges to the programmers and maintainers of the electronic logbook system. The paper describes the advantages and challenges of this design model and how they have affected the development lifecycle of the electronic logbook system.

T. McGuckin

2006-10-24T23:59:59.000Z

247

OPERATION AND COMMISSIONING OF THE JEFFERSON LAB UV FEL USING AN SRF DRIVER ERL  

Science Conference Proceedings (OSTI)

We describe the operation and commissioning of the Jefferson Lab UV FEL using a CW SRF ERL driver. Based on the same 135 MeV linear accelerator as the Jefferson Lab 10 kW IR Upgrade FEL, the UV driver ERL uses a bypass geometry to provide transverse phase space control, bunch length compression, and nonlinear aberration compensation necessitating a unique set of commissioning and operational procedures. Additionally, a novel technique to initiate lasing is described. To meet these constraints and accommodate a challenging installation schedule, we adopted a staged commissioning plan with alternating installation and operation periods. This report addresses these issues and presents operational results from on-going beam operations.

R. Legg; S. Benson; G. Biallas; K. Blackburn; J. Boyce; D. Bullard; J. Coleman; C. Dickover; D. Douglas; F. Ellingsworth; P. Evtushenko; F. Hannon; C. Hernandez-Garcia; C. Gould; J. Gubeli; D. Hardy; K. Jordan; M. Klopf; J. Kortze; M. Marchlik; W. Moore; G. Neil; T. Powers; D. Sexton; Michelle D. Shinn; C. Tennant; R. Walker; G. Wilson

2011-03-01T23:59:59.000Z

248

Gas Flux Sampling At Haleakala Volcano Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Gas Flux Sampling At Haleakala Volcano Area (Thomas, 1986) Gas Flux Sampling At Haleakala Volcano Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Haleakala Volcano Area (Thomas, 1986) Exploration Activity Details Location Haleakala Volcano Area Exploration Technique Gas Flux Sampling Activity Date Usefulness useful DOE-funding Unknown Notes The field survey program on the northwest rift zone consisted of soil mercury and radon emanometry surveys, groundwater temperature and chemistry studies, Schlumberger resistivity soundings and self-potential profiles. Geophysical and geochemical surveys along this rift (southwest) were limited by difficult field conditions and access limitations. The geophysical program consisted of one Schlumberger sounding, one

249

VBA-0005 - In the Matter of Thomas Dwyer | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

VBA-0005 - In the Matter of Thomas Dwyer VBA-0005 - In the Matter of Thomas Dwyer VBA-0005 - In the Matter of Thomas Dwyer This Decision considers an Appeal of an Initial Agency Decision (IAD) issued on May 2, 2000, involving a complaint filed by Thomas Dwyer (Dwyer or the complainant) under the Department of Energy (DOE) Contractor Employee Protection Program, 10 C.F.R. Part 708. In his complaint, Dwyer claims that Fluor Daniel Fernald (FDF), a DOE contractor, suspended and then terminated his employment in retaliation for his making disclosures that are protected under Part 708. In the IAD, however, the Hearing Officer determined that FDF had shown that it would have terminated the complainant for his misconduct, even in the absence of the protected disclosures. As set forth in this decision, I have determined that Dwyer's Appeal must be

250

Mercury Vapor At Hualalai Northwest Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Hualalai Northwest Rift Area (Thomas, 1986) Mercury Vapor At Hualalai Northwest Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Mercury Vapor Activity Date Usefulness not indicated DOE-funding Unknown Notes The Hualalai lower northwest rift and southern flank were sampled for soil mercury concentration and radon emanation rates (Cox and Cuff, 1981d). The data generated by these surveys yielded complex patterns of mercury concentrations and radon emanation rates that generally did not show coincident anomalies (Figs 42, 43). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

251

FIA-12-0023 - In the Matter of Thomas R. Thielen | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

23 - In the Matter of Thomas R. Thielen 23 - In the Matter of Thomas R. Thielen FIA-12-0023 - In the Matter of Thomas R. Thielen The Department of Energy's (DOE) Office of Hearings and Appeals (OHA) Director granted in part and denied in all other respects a Privacy Act Appeal filed by Thomas R. Thielen. Mr. Thielen filed a request with the DOE's Richland Operations Office for documents regarding a safety concern he raised to CH2M Hill Plateau Remediation Company (CHPRC). Richland issued a determination letter which stated that, according to CHPRC's contract with DOE, CHPRC's employee concern records are the property of the contractor and not subject to the provisions of the Freedom of Information Act or Privacy Act. Richland released a copy of Mr. Thielen's DOE employee concern file, but withheld portions of the

252

An Interview with Thomas Kalil: Where politics, policy, technology and science converge  

Science Conference Proceedings (OSTI)

From the White House to Berkeley, Thomas Kalil has worked on shaping the national agenda for science and technology research initiatives. Kalil, President Clinton's former science and technology advisor, now holds a similar post at the University of ...

Ubiquity staff

2004-01-01T23:59:59.000Z

253

Direct-Current Resistivity At Honokowai Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Honokowai Area (Thomas, 1986) Honokowai Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Honokowai Area (Thomas, 1986) Exploration Activity Details Location Honokowai Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not useful DOE-funding Unknown Notes Three Schlumberger resistivity surveys were attempted on the alluvial plain around Honokowai (Fig. 22). Two of the soundings penetrated to a moderate-resistivity basement, interpreted to be seawater-saturated basalt, whereas the other sounding encountered a high-resistivity intermediate layer which could not be adequately penetrated to allow resolution of the basement resistivity (Mattice, 1981). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

254

Direct-Current Resistivity Survey At Honokowai Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Honokowai Area (Thomas, 1986) Honokowai Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Honokowai Area (Thomas, 1986) Exploration Activity Details Location Honokowai Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not useful DOE-funding Unknown Notes Three Schlumberger resistivity surveys were attempted on the alluvial plain around Honokowai (Fig. 22). Two of the soundings penetrated to a moderate-resistivity basement, interpreted to be seawater-saturated basalt, whereas the other sounding encountered a high-resistivity intermediate layer which could not be adequately penetrated to allow resolution of the basement resistivity (Mattice, 1981). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

255

Gas Flux Sampling At Hualalai Northwest Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Hualalai Northwest Rift Area (Thomas, 1986) Hualalai Northwest Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Gas Flux Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes The Hualalai lower northwest rift and southern flank were sampled for soil mercury concentration and radon emanation rates (Cox and Cuff, 1981d). The data generated by these surveys yielded complex patterns of mercury concentrations and radon emanation rates that generally did not show coincident anomalies (Figs 42, 43). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

256

Gas Flux Sampling At Lualualei Valley Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Gas Flux Sampling At Lualualei Valley Area (Thomas, 1986) Gas Flux Sampling At Lualualei Valley Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location Lualualei Valley Area Exploration Technique Gas Flux Sampling Activity Date Usefulness useful DOE-funding Unknown Notes Soil mercury and radon emanation surveys were performed over much of the accessible surface of Lualualei Valley (Cox and Thomas, 1979). The results of these surveys (Figs 7 and 8) delineated several areas in which soil mercury concentrations or radon emanation rates were substantially above normal background values. Some of these areas were apparently coincident with the mapped fracture systems associated with the caldera boundaries.

257

Aeromagnetic Survey At Kilauea East Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Thomas, 1986) Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness useful DOE-funding Unknown Notes More recent aeromagnetic data (Godson et al., 1981) generally substantiate the presence of a nearly continuous rift zone from the Kilauea summit down to sea level; the apparent width of the magnetic anomaly does not appear to match that projected by Furumoto (1978a) or Broyles et al. (1979); however, to date, no detailed analysis of the more recent data has been completed (R. B. Moore, pers. commun., 1984). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

258

Remarks by NNSA Administrator Thomas P. D'Agostino, 12th Annual Small  

NLE Websites -- All DOE Office Websites (Extended Search)

NNSA Administrator Thomas P. D'Agostino, 12th Annual Small NNSA Administrator Thomas P. D'Agostino, 12th Annual Small Business Conference & Expo, Kansas City, Missouri | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Speeches > Remarks by NNSA Administrator Thomas P. D'Agostino, ... Speech Remarks by NNSA Administrator Thomas P. D'Agostino, 12th Annual Small

259

Aeromagnetic Survey At Kilauea Southwest Rift And South Flank Area (Thomas,  

Open Energy Info (EERE)

Thomas, Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Kilauea Southwest Rift And South Flank Area (Thomas, 1986) Exploration Activity Details Location Kilauea Southwest Rift And South Flank Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness useful DOE-funding Unknown Notes Aeromagnetic data (Godson et al., 1981) for the southwest rift appears to substantiate the presence of a thermal resource; there is a marked bipolar magnetic anomaly paralleling the rift zone from the summit to the lower rift near the coast suggesting either that intense hydrothermal alteration has occurred or that subsurface temperatures exceed the Curie temperature. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

260

Atoms with nuclei of finite extension at finite temperature: A Thomas-Fermi approximation  

Science Conference Proceedings (OSTI)

Atoms at finite temperature and with a nucleus of finite extension are analyzed by a modification of the Thomas-Fermi model for {ital T}{ne}0. Applications to strange-matter atoms are included.

Epele, L.N.; Fanchiotti, H.; Garcriaaa Canal, C.A.; Guillen, J.C. (Laboratorio de Fisica Teorica, Departamento de Fisica, Universidad Nacional de La Plata, Casilla de Correo 67, 1900 La Plata (Argentina))

1990-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "thomas jefferson site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Microsoft PowerPoint - 7-02 Thomas Suttora Tech Echange - 435...  

NLE Websites -- All DOE Office Websites (Extended Search)

Order 435.1 Radioactive Waste Management Revision Status Linda Suttora, DOE HQ, EM-41 Steve Thomas, SRR EM Waste Processing Technical Exchange November 17, 2010 Print Close What is...

262

Hadronic Multi-Particle Final State Measurements with CLAS at Jefferson Lab  

E-Print Network (OSTI)

Precision measurements in the neutrino sector are becoming increasingly feasible due to the development of relatively high-rate experimental capabilities. These important developments command renewed attention to the systematic corrections needed to interpret the data. Hadronic multi-particle final state measurements made using CLAS at Jefferson Lab, together with a broad theoretical effort that links electro-nucleus and neutrino-nucleus data, will address this problem, and will elucidate long-standing problems in intermediate energy nuclear physics. This new work will ultimately enable precision determinations of fundamental quantities such as the neutrino mixing matrix elements in detailed studies of neutrino oscillations.

W. K. Brooks

2003-11-04T23:59:59.000Z

263

The GlueX experiment: Search for gluonic excitations via photoproduction at Jefferson Lab  

Science Conference Proceedings (OSTI)

Studies of meson spectra via strong decays provide insight regarding QCD at the confinement scale. These studies have led to phenomenological models for QCD such as the constituent quark model. However, QCD allows for a much richer spectrum of meson states which include extra states such as exotics, hybrids, multi-quarks, and glueballs. First discussion of the status of exotic meson searches is given followed by an overview of the progress at Jefferson Lab to double the energy of the machine to 12 GeV, which will allow us to access photoproduction of mesons in search for gluonic excited states.

Eugenio, Paul [Florida State U.

2013-07-01T23:59:59.000Z

264

The study of the elementary photo- and electro-production of kaons at Jefferson Lab  

DOE Green Energy (OSTI)

The subject of electromagnetic production of strangeness, covers an important part of the planned CEBAF experimental program at Jefferson Lab. In this review we will mainly focus on those experiments aiming to investigate the elementary mechanism of the associated production of kaon--hyperon pairs, on hydrogen target, induced by electron and by real photon beams. Complementary experiments, proposed for all the three experimental halls, allow to access a wide kinematical region where different theoretical approaches can be used for the interpretation of the (upcoming) data.

M. Iodice; E. Cisbani; S. Frullani; F. Garibaldi; G.M. Urciuoli; R. De Leo; R. Perrino; M. Sotona

1996-10-01T23:59:59.000Z

265

Solar-cooling-system performance, Frenchman's Reef Hotel, St. Thomas, US Virgin Islands. Final report  

SciTech Connect

The Solar Cooling System installed in the Frenchman's Reef Resort Hotel Test Site, St. Thomas, US Virgin Islands, used 956 Sunmaster Corporation evacuated glass tube collector modules which provide an effective solar collector aperture of 13,384 square feet. The system consists of the collectors, two 2500 gallon tanks, pumps, an Andover Controls Corporation computerized controller, a large solar optimized Carrier Corporation industrial sized lithium bromide absorption chiller, and associated plumbing. Solar heated water is pumped through the system to the designed public areas such as lobby, lounges, restaurant and hallways. Auxiliary heat is provided by steam and a heat exchanger to supplement the solar heat. The system, its operation sequence, and performance are described.

Harber, H.

1981-09-25T23:59:59.000Z

266

Geology and geothermal resources of the Santiam Pass area of the Oregon Cascade Range, Deschutes, Jefferson and Linn Counties, Oregon  

DOE Green Energy (OSTI)

This open-file report presents the results of the Santiam Pass drilling program. The first phase of this program was to compile all available geological, geophysical and geothermal data for the Santiam Pass area and select a drill site on the basis of these data (see Priest and others, 1987a), A summary of the drilling operations and costs associated with the project are presented in chapter 1 by Hill and Benoit. An Overview of the geology of the Santiam Pass area is presented by Hill and Priest in chapter 2. Geologic mapping and isotopic age determinations in the Santiam Pass-Mount Jefferson area completed since 1987 are summarized in chapter 2. One of the more important conclusions reached in chapter 2 is that a minimum of 2 km vertical displacement has occurred in the High Cascade graben in the Santiam Pass area. The petrology of the Santiam Pass drill core is presented by Hill in chapter 3. Most of the major volcanic units in the core have been analyzed for major, minor, and trace element abundances and have been studied petrographically. Three K-Ar ages are interpreted in conjunction with the magnetostratigraphy of the core to show that the oldest rocks in the core are approximately 1.8 Ma. Geothermal and geophysical data collected from the Santiam Pass well are presented by Blackwell in chapter 4. The Santiam Pass well failed to penetrate beneath the zone of lateral groundwater flow associated with highly permeable Quaternary volcanic rocks. Calculated geothermal gradients range from about 50[degree]C/km at depth 700-900 m, to roughly 110[degree]C/km from 900 m to the bottom of the well at 929 m. Heat-flow values for the bottom part of the hole bracket the regional average for the High Cascades. Blackwell concludes that heat flow along the High Cascades axis is equal to or higher than along the western edge of the High Cascades.

Hill, B.E. (ed.)

1992-10-01T23:59:59.000Z

267

Characteristics and fabrication of a 499 MHz superconducting deflecting cavity for the Jefferson Lab 12 geV Upgrade  

Science Conference Proceedings (OSTI)

A 499 MHz parallel bar superconducting deflecting cavity has been designed and optimized for a possible implementation at the Jefferson Lab. Previously the mechanical analysis, mainly stress, was performed. Since then pressure sensitivity was studied further and the cavity parts were fabricated. The prototype cavity is not completed due to the renovation at Jefferson Lab which resulted in the temporary shutdown of the electron beam welding facility. This paper will present the analysis results and facts encountered during fabrication. The unique geometry of the cavity and its required mechanical strength present interesting manufacturing challenges.

HyeKyoung Park, S.U. De Silva, J.R. Delayen

2012-07-01T23:59:59.000Z

268

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

REVERE COPPER AND BRASS CORPORATION REVERE COPPER AND BRASS CORPORATION 5851 WEST JEFFERSON STREET DETROIT, MICHIGAN MARCH 30, 1990 U.S. Department of Energy Office of Environmental Restoration and Waste Management Office of Environmental Restoration Decontamination and Decommissioning Division /I I_. ,I - CONTENTS Page INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Site Function ............................... 1 Site Description ............................ 1 Radiological History and Status ............. 2 ELIMINATION ANALYSIS ................................ 2 REFERENCES .......................................... 3 ELIMINATION REPORT FORMER REVERE COPPER 6r BRASS CORPORATION

269

Mr. Thomas Lingafeter Environmental Control Department Dow Chemical  

Office of Legacy Management (LM)

screening survey of the site was performed by DOE Chicago Operations Office and Argonne National Laboratory personnel on December 8, 1977. No readings above background were...

270

Baryon Resonances in the Double Pion Channel at Jefferson Lab (CEBAF): Experimental and Physical Analysis Status and Perspectives  

E-Print Network (OSTI)

Decay of light quark excited baryons in the double pion channel is discussed, as a particular way of investigating poorly know baryon resonances and searching for "missing states" predicted by quark models. A possible approach to the data analysis is discussed and some preliminary data from the CLAS collaboration at Jefferson Laboratory are presented.

Marco Ripani

1999-02-18T23:59:59.000Z

271

Thermal Gradient Holes At Kilauea East Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Thermal Gradient Holes At Kilauea East Rift Area (Thomas, 1986) Thermal Gradient Holes At Kilauea East Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes Two separate phases of geothermal exploratory drilling have occurred on the lower East Rift. The first was essentially a wildcat venture with relatively little surface exploratory data having been gathered, whereas the second was initiated after somewhat more geoscience information had been acquired under the Hawaii Geothermal Project. The results of the successful exploratory drilling program on the Kilauea

272

Gas Flux Sampling At Lahaina-Kaanapali Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Gas Flux Sampling At Lahaina-Kaanapali Area (Thomas, 1986) Gas Flux Sampling At Lahaina-Kaanapali Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Lahaina-Kaanapali Area (Thomas, 1986) Exploration Activity Details Location Lahaina-Kaanapali Area Exploration Technique Gas Flux Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes The soil mercury concentration and radon emanometry patterns observed for the Lahaina prospect were similar to those found in Olowalu. Several localized zones of high mercury concentration or enhanced radon emanation were observed, but showed little relationship to each other or to the recognized geologic structure in the area. The data were interpreted to suggest that there might be a small thermal anomaly to the northeast of the

273

Gas Flux Sampling At Mokapu Penninsula Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Gas Flux Sampling At Mokapu Penninsula Area (Thomas, 1986) Gas Flux Sampling At Mokapu Penninsula Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Mokapu Penninsula Area (Thomas, 1986) Exploration Activity Details Location Mokapu Penninsula Area Exploration Technique Gas Flux Sampling Activity Date Usefulness not useful DOE-funding Unknown Notes The high degree of cultural activity (e.g. residential areas, streets, jet runways, etc.) on Mokapu both limited the extent of the soil geochemical surveys performed and rendered their interpretation much more difficult. Soil mercury concentrations and radon emanometry data on the peninsula showed a few localized high values (Figs 13, 14), but no consistent correlation between the anomalous zones and geologic features could be

274

Gas Flux Sampling At Olowalu-Ukumehame Canyon Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Gas Flux Sampling At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Gas Flux Sampling At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Exploration Activity Details Location Olowalu-Ukumehame Canyon Area Exploration Technique Gas Flux Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Soil mercury concentration and radon emanometry surveys were conducted along the stream beds in both Olowalu and Ukumehame Canyons and on the coastal alluvial fans (Cox and Cuff, 1981a). The results of these surveys indicated that a few minor -nomalies might be present. However, the extreme topographic relief in the area did not permit sufficient coverage of the

275

Self Potential At Hualalai Northwest Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Self Potential At Hualalai Northwest Rift Area (Thomas, 1986) Self Potential At Hualalai Northwest Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Self Potential At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Self Potential Activity Date Usefulness not indicated DOE-funding Unknown Notes Self-potential surveys conducted over the summit and flank of Hualalai (Jackson and Sako, 1982; D. B. Jackson, pers. commun., 1983) indicate an elongate self-potential anomaly extending across the summit and down the northwest rift to Kaupulehu Crater. The positively polarized anomaly extends over an area of approximately 6 km 2 and has been interpreted to be the result of one or more buried high-temperature intrusive bodies (Jackson

276

Direct-Current Resistivity At Kilauea East Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Kilauea East Rift Area (Thomas, 1986) Kilauea East Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Electrical resistivity studies performed on the Kilauea East Rift Zone have employed a variety of techniques. Bipole mapping was conducted by Keller et al. (1977a) as part of the Hawaii Geothermal Project (HGP) geoscience program and was able to provide data on the regional resistivity structure of the summit and eastern flank of Kilauea. The model developed indicated several different types of resistivity sections depending on the location

277

Direct-Current Resistivity At Kawaihae Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Kawaihae Area (Thomas, 1986) Kawaihae Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Kawaihae Area (Thomas, 1986) Exploration Activity Details Location Kawaihae Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes In addition to the aeromagnetic data, the field survey program in Kawaihae included six Schlumberger resistivity soundings between Kawaihae and Waimea (Kauahikaua and Mattice, 1981). The results of these sounding (Fig. 35) detected apparent resistivity differences in the surface rock depending on whether the soundings were done on Kohala or Mauna Kea lavas (Figs 36, 37), whereas uniform resistivities of 650- 850 ohm.m were found at depths of

278

Thomas B. Cook,1971 | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Thomas B. Cook,1971 Thomas B. Cook,1971 The Ernest Orlando Lawrence Award Lawrence Award Home Nomination & Selection Guidelines Award Laureates 2000's 1990's 1980's 1970's 1960's Ceremony The Life of Ernest Orlando Lawrence Contact Information The Ernest Orlando Lawrence Award U.S. Department of Energy SC-2/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-9395 E: lawrence.award@science.doe.gov 1970's Thomas B. Cook,1971 Print Text Size: A A A RSS Feeds FeedbackShare Page Weapons: For his significant contributions to the study of nuclear weapons effects, for his original work in the translation of this knowledge into advanced technology for peaceful and military uses of atomic energy, and for his outstanding contributions to the nation through his service as an

279

Thomas P. Guilderson, 2011 | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Thomas P. Guilderson, 2011 Thomas P. Guilderson, 2011 The Ernest Orlando Lawrence Award Lawrence Award Home Nomination & Selection Guidelines Award Laureates 2000's 1990's 1980's 1970's 1960's Ceremony The Life of Ernest Orlando Lawrence Contact Information The Ernest Orlando Lawrence Award U.S. Department of Energy SC-2/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-9395 E: lawrence.award@science.doe.gov 2000's Thomas P. Guilderson, 2011 Print Text Size: A A A RSS Feeds FeedbackShare Page Biological and Environmental Sciences: For ground-breaking radiocarbon measurements of corals, advancements in understanding the paleo-history of ocean currents and ocean processes revealing past climate variability, and the elucidation of how physical and biogeochemical oceanic processes affect

280

Mercury Vapor At Lahaina-Kaanapali Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Lahaina-Kaanapali Area (Thomas, 1986) Mercury Vapor At Lahaina-Kaanapali Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Lahaina-Kaanapali Area (Thomas, 1986) Exploration Activity Details Location Lahaina-Kaanapali Area Exploration Technique Mercury Vapor Activity Date Usefulness not indicated DOE-funding Unknown Notes The soil mercury concentration and radon emanometry patterns observed for the Lahaina prospect were similar to those found in Olowalu. Several localized zones of high mercury concentration or enhanced radon emanation were observed, but showed little relationship to each other or to the recognized geologic structure in the area. The data were interpreted to suggest that there might be a small thermal anomaly to the northeast of the

Note: This page contains sample records for the topic "thomas jefferson site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Microsoft PowerPoint - Ralph_Thomas Energy Teaming Agreement Presentation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ralph C. Thomas III, Esquire Ralph C. Thomas III, Esquire Partner Barton Baker Thomas & Tolle LLP McLean, VA 10 th Annual U.S. Department of Energy Small Business Conference Small Businesses Leading the Way to Recovery and Reinvestment Presenters Name Page # 2 INTRODUCTION: WHAT IS A TEAMING AGREEMENT? ► "An arrangement pursuant to which . . . ► A. Two or more companies form a partnership or joint venture to act as a potential prime contractor; or ► B. A potential prime contractor agrees with one or more other companies to have them act as its subcontractor under a specified government contract or acquisition program" FAR 9.601 3 5 Reasons Why a Prime Would Be Interested in You Two Questions to Ask to Determine Which Reason Applies to You 4 SMALL BUSINESS'S OBJECTIVE IN NEGOTIATING

282

Direct-Current Resistivity Survey At Kilauea East Rift Area (Thomas, 1986)  

Open Energy Info (EERE)

Kilauea East Rift Area (Thomas, 1986) Kilauea East Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Electrical resistivity studies performed on the Kilauea East Rift Zone have employed a variety of techniques. Bipole mapping was conducted by Keller et al. (1977a) as part of the Hawaii Geothermal Project (HGP) geoscience program and was able to provide data on the regional resistivity structure of the summit and eastern flank of Kilauea. The model developed indicated several different types of resistivity sections depending on the location

283

Thomas A. Weaver, 1985 | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Thomas A. Weaver, 1985 Thomas A. Weaver, 1985 The Ernest Orlando Lawrence Award Lawrence Award Home Nomination & Selection Guidelines Award Laureates 2000's 1990's 1980's 1970's 1960's Ceremony The Life of Ernest Orlando Lawrence Contact Information The Ernest Orlando Lawrence Award U.S. Department of Energy SC-2/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-9395 E: lawrence.award@science.doe.gov 1980's Thomas A. Weaver, 1985 Print Text Size: A A A RSS Feeds FeedbackShare Page National Security: For his exceptional contributions to national security in the physics, design and leadership of x-ray laser experiments, which include work in atomic physics, radiate transfer and hydrodynamics, material science, and the development of complex diagnostics. These major

284

Thomas E. Wainwright, 1973 | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Thomas E. Wainwright, 1973 Thomas E. Wainwright, 1973 The Ernest Orlando Lawrence Award Lawrence Award Home Nomination & Selection Guidelines Award Laureates 2000's 1990's 1980's 1970's 1960's Ceremony The Life of Ernest Orlando Lawrence Contact Information The Ernest Orlando Lawrence Award U.S. Department of Energy SC-2/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-9395 E: lawrence.award@science.doe.gov 1970's Thomas E. Wainwright, 1973 Print Text Size: A A A RSS Feeds FeedbackShare Page Weapons: For fundamental and original contributions to the theory of design and outputs of nuclear explosives for the original development of computational methods for the calculation of statistical physics phenomena, and for many innovative advances in the study of transport and

285

VBB-0005 - In the Matter of Thomas Dwyer | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

05 - In the Matter of Thomas Dwyer 05 - In the Matter of Thomas Dwyer VBB-0005 - In the Matter of Thomas Dwyer This letter concerns the complaint of reprisal that you submitted to the Department of Energy under 10 C.F.R. Part 708. You have filed a petition for Secretarial review of the appeal decision issued to you on July 24, 2000. The Part 708 regulations applicable to the petition provide that the Secretary will reverse or revise an appeal decision by the Director of the Office of Hearings and Appeals only under extraordinary circumstances. 10 C.F.R. § 708.35(d). After fully evaluating all the issues that you raised in your filing dated September 8, 2000, I have determined that you have not shown that extraordinary circumstances warranting Secretarial review exist in this case. No modification to the appeal decision by the OHA Director is

286

Mr. Thomas M. Gerusky, Director Bureau of Radiation Protection  

Office of Legacy Management (LM)

at the site does not appear to be necessary. If you have any questions, please feel free to contact me at 301-353-8149. Sincerely, W. Alexander Williams,. PhD Designation and...

287

High School Research at Jefferson Lab - The Setup and Monitoring of a  

NLE Websites -- All DOE Office Websites (Extended Search)

12 GeV Safety Systems 12 GeV Safety Systems Previous Project (12 GeV Safety Systems) High School Research Main Index Next Project (Computational Physics) Computational Physics The Setup and Monitoring of a Honeypot at Jefferson Lab A honeypot is software that emulates an operating system and therefore can be used in many projects that should not be tested on a computer that could lose data. For my project it was put onto the network unprotected to see what hackers would do to it. This way we can research what the new or common methods of hacking are. Also, the honeypot does not install any of the malicious software, yet it saves a copy for further analysis. This allows Systems Security to see what bug the program exploits and the information found gives them the ability to fix the issue before hackers

288

Recent Results of Target Single-Spin Asymmetry Experiments at Jefferson Lab  

SciTech Connect

We report recent results from Jefferson Lab Hall A Neutron Transversity experiment (E06-010). Transversely polarized target single-spin asymmetry AUT and beam-target double-spin asymmetry A{sub LT} have been measured in semi-inclusive deep-inelastic scattering (SIDIS) reactions on a polarized neutron ({sup 3}He) target. Collins-type and Sivers-type asymmetries have been extracted from A{sub UT} for charged pion SIDIS productions, which are sensitive to quark transversity and Sivers distributions, correspondingly. Double spin asymmetry A{sub LT} is sensitive to a specific quark transverse momentum dependent parton distribution (TMD), the so-called transverse helicity (g{sub 1T} ) distributions. In addition, target single-spin asymmetries A{sub y} in inclusive electron scattering on a transversely polarized {sup 3}He target in quasi-elastic and deep inelastic kinematics were also measured in Hall A.

Jiang, Xiaodong [Los Alamos National Lab

2013-08-01T23:59:59.000Z

289

The New 2nd-Generation SRF R&D Facility at Jefferson Lab: TEDF  

Science Conference Proceedings (OSTI)

The US Department of Energy has funded a near-complete renovation of the SRF-based accelerator research and development facilities at Jefferson Lab. The project to accomplish this, the Technical and Engineering Development Facility (TEDF) Project has completed the first of two phases. An entirely new 3,100 m{sup 2} purpose-built SRF technical work facility has been constructed and was occupied in summer of 2012. All SRF work processes with the exception of cryogenic testing have been relocated into the new building. All cavity fabrication, processing, thermal treatment, chemistry, cleaning, and assembly work is collected conveniently into a new LEED-certified building. An innovatively designed 800 m2 cleanroom/chemroom suite provides long-term flexibility for support of multiple R&D and construction projects as well as continued process evolution. The characteristics of this first 2nd-generation SRF facility are described.

Reece, Charles E.; Reilly, Anthony V.

2012-09-01T23:59:59.000Z

290

Coherent photoproduction of pi+ from He-3 with CLAS at Jefferson Laboratory  

Science Conference Proceedings (OSTI)

We have measured the differential cross section for the {gamma}{sup 3}He {yields} t{pi}{sup +} reaction. This reaction was studied using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. Real photons produced with the Hall-B bremsstrahlung tagging system in the energy range from 0.5 to 1.55 GeV were incident on a cryogenic liquid {sup 3}He target. The differential cross sections for the {gamma}{sup 3}He {yields} i{pi}{sup +}t reaction were measured as a function of photon-beam energy and pion-scattering angle Theoretical predictions to date cannot explain the large cross sections except at backward angles, showing that additional components must be added to the model.

Rakhsha Nasseripour, Barry Berman

2011-09-01T23:59:59.000Z

291

Options for an 11 GeV RF Beam Separator for the Jefferson Lab CEBAF Upgrade  

Science Conference Proceedings (OSTI)

The CEBAF accelerator at Jefferson Lab has had, since first demonstration in 1996, the ability to deliver a 5-pass electron beam to experimental halls (A, B, and C) simultaneously. This capability was provided by a set of three, room temperature 499 MHz rf separators in the 5th pass beamline. The separator was two-rod, TEM mode type resonator, which has a high shunt impedance. The maximum rf power to deflect the 6 GeV beams was about 3.4kW. The 12 GeV baseline design does not preserve the capability of separating the 5th pass, 11 GeV beam for the 3 existing halls. Several options for restoring this capability, including extension of the present room temperature system or a new superconducting design in combination with magnetic systems, are under investigation and are presented.

Jean Delayen, Michael Spata, Haipeng Wang

2009-05-01T23:59:59.000Z

292

An overview of the planned Jefferson Lab 12-GeV helium refrigerator upgrade  

SciTech Connect

In February 2006, Jefferson Laboratory in Newport News, VA, received Critical Decision 1 (CD-1) approval to proceed with the engineering and design of the long anticipated upgrade to increase the beam energy of CEBAF, the Continuous Electron Beam Accelerator Facility, from 6 GeV to 12 GeV. This will require the installation of 10 new cryomodules, and additional 2.1-K refrigeration beyond the available 4600 W to handle the increased heat loads. Additionally, a new experimental hall, Hall D, is planned that will require the installation of a small, available refrigerator. This paper will present an overview of the integration of the new proposed refrigeration system into CEBAF, the installation of the available refrigerator for Hall D, and includes planned work scope, current schedule plans and project status.

Arenius, Dana; Creel, Jonathan; Dixon, Kelly; Ganni, Venkatarao; Knudsen, Peter; Sidi-Yekhlef, Ahmed; Wright, Mathew

2008-03-01T23:59:59.000Z

293

Exploration of deeply virtual Compton scattering on the neutron in the Hall A of Jefferson Laboratory  

SciTech Connect

Generalized Parton Distributions (GPDs) are universal functions which provide a comprehensive description of hadron properties in terms of quarks and gluons. Deeply Virtual Compton Scattering (DVCS) is the simplest hard exclusive process involving GPDs. In particular, the DVCS on the neutron is mostly sensitive to E, the less constrained GPD, wich allows to access to the quark angular momentum. The first dedicated DVCS experiment on the neutron ran in the Hall A of Jefferson Lab in fall 2004. The high luminosity of the experiment and the resulting background rate recquired specific devices which are decribed in this document. The analysis methods and the experiment results, leading to preliminary constraints on the GPD E, are presented.

Malek Mazouz

2006-12-08T23:59:59.000Z

294

Performance and results of the RICH detector for kaon physics in Hall A at Jefferson Lab  

SciTech Connect

A proximity focusing RICH detector has been constructed for the hadron High Resolution Spectrometer (HRS) of Jefferson Lab Experimental Hall-A. This detector is intended to provide excellent hadron identification up to a momentum of 2.5 GeV/c. The RICH uses a 15 mm thick liquid perfluorohexane radiator in proximity focusing geometry to produce Cherenkov photons traversing a 100 mm thick proximity gap filled with pure methane and converted into electrons by a thin film of CsI deposited on the cathode plane of a MWPC. The detector has been successfully employed in the fixed target, high luminosity and high resolution hypernuclear spectroscopy experiment. With its use as a kaon identifier in the 2 GeV/c region, the very large contribution from pions and protons to the hypernuclear spectrum was reduced to a negligible level. The basic parameters and the resulting performance obtained during the experiment are reported in this paper.

M. Iodice; E. Cisbani; S. Colilli; F. Cusanno; S. Frullani; R. Fratoni; F. Garibaldi; M. Gricia; M. Lucentini; L. Pierangeli; F. Santavenere; G.M. Urciuoli; P. Veneroni; G. De Cataldo; R. De Leo; D. Di Bari; L. Lagamba; E. Nappi; S. Marrone; B. Kross; J.J. LeRose; B. Reitz; J. Segal; C. Zorn and H. Breuer

2005-11-01T23:59:59.000Z

295

Preliminary Results from Integrating Compton Photon Polarimetry in Hall A of Jefferson Lab  

SciTech Connect

A wide range of nucleon and nuclear structure experiments in Jefferson Lab's Hall A require precise, continuous measurements of the polarization of the electron beam. In our Compton polarimeter, electrons are scattered off photons in a Fabry-Perot cavity; by measuring an asymmetry in the integrated signal of the scattered photons detected in a GSO crystal, we can make non-invasive, continuous measurements of the beam polarization. Our goal is to achieve 1% statistical error within two hours of running. We discuss the design and commissioning of an upgrade to this apparatus, and report preliminary results for experiments conducted at beam energies from 3.5 to 5.9 GeV and photon rates from 5 to 100 kHz.

D. Parno, M. Friend, F. Benmokhtar, G. Franklin, R. Michaels, S. Nanda, B. Quinn, P. Souder

2011-09-01T23:59:59.000Z

296

New photomultiplier active base for Hall C Jefferson Lab lead tungstate calorimeter  

Science Conference Proceedings (OSTI)

A new photomultiplier tube active base was designed and tested. The base combines active voltage division circuit and fast amplifier, powered by the current flowing through voltage divider. This base is developed to upgrade older photomultiplier bases of Jefferson Lab lead-tungsten calorimeter (about ?1200 crystals of PbWO{sub 4} from the PrimEx experimental setup). This is needed for the extension of detectors' rate capability to meet requirements of new Hall C proposal PR12-11-102 of measurements of the L/T separated cross sections and their ratio R = ?L/?T in neutral-pion p(e,e??0)p deep exclusive and p(p(e,e??{sup 0})p)X semi-inclusive scattering regions. New active base is direct replacement of older passive base circuit without adding of additional power or signal lines. However, it extends detectors rate capability with factor over 20. Moreover, transistorized voltage divider improves detector's amplitude resolution due to reduction of photomultiplier gain dependence from tube anode current. The PMT active base is the invention disclosed in V. Popov's U.S. Patent No. 6,791,269, which successfully works over ten years in several Jefferson Lab Cherenkov detectors. The following design is a new revised and improved electronic circuit with better gain stability and linearity in challenge to meet requirements of new Hall C experimental setup. New active base performance was tested using fast LED light source and Pr:LuAG scintillator and gamma sources. Electronics radiation hardness was tested on JLab accelerator. Results of testing R4125 Hamamatsu photomultiplier tube in new active base are presented.

Popov, Vladimir E. [JLAB; Mkrtchyan, Hamlet G. [Artem Alikhanian National Laboratory

2012-11-01T23:59:59.000Z

297

elementbingo_all.id  

NLE Websites -- All DOE Office Websites (Extended Search)

Jefferson National Accelerator Facility - Office of Science Education http:education.jlab.org Thomas Jefferson National Accelerator Facility - Office of Science Education http:...

298

Molecular Imaging for Bio-medical Research with Mice  

Molecular Imaging Researchers at the Department of Energys Thomas Jefferson National Accelerator Facility (Jefferson Lab) are collaborating with the ...

299

Toward Ubiquitous Satisficing Agent Control Thomas Wagner and Victor Lesser  

E-Print Network (OSTI)

and typically translates into parameterizing the size of the solution space that is searched during problem), and surviveable systems (Vincent et al. 1998) re- search projects. A simplified example of a T?MS task structure AutoSite task into two methods, one that locates the URL and one that issues the query. The enables NLE

Wagner, Thomas

300

Configuration et CSP avec variables `a existence conditionnee Thomas van Oudenhove  

E-Print Network (OSTI)

Configuration et CSP avec variables `a existence conditionn´ee Thomas van Oudenhove Directeurs de contraintes, par le biais des CSP, ´etait une approche adapt´ee `a cette probl´ematique. Cependant, le concept ces approches. Mots-cl´es configuration de produit -- contraintes -- CSP -- r´esolution -- filtrage 1

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "thomas jefferson site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

FDR3 --A Modern Refinement Checker for CSP Thomas Gibson-Robinson, Philip Armstrong,  

E-Print Network (OSTI)

FDR3 -- A Modern Refinement Checker for CSP Thomas Gibson-Robinson, Philip Armstrong, Alexandre.roscoe}@cs.ox.ac.uk Abstract. FDR3 is a complete rewrite of the CSP refinement checker FDR2, incorporating a significant number describe the new algorithm that FDR3 uses to construct its in- ternal representation of CSP processes

Oxford, University of

302

HOG on a WIM Aaron Stafford Wayne Piekarski Bruce H. Thomas  

E-Print Network (OSTI)

HOG on a WIM Aaron Stafford Wayne Piekarski Bruce H. Thomas Wearable Computer Lab School-mail: aaron.stafford@unisa.edu.au e-mail: wayne.piekarski@unisa.edu.au e-mail: bruce display system as presented in Stafford et al. [10]. With a projector based display, objects such as hands

Thomas, Bruce

303

Comparison of techniques for mixed-space collaborative navigation Aaron Stafford Bruce H. Thomas Wayne Piekarski  

E-Print Network (OSTI)

Comparison of techniques for mixed-space collaborative navigation Aaron Stafford Bruce H. Thomas Lakes Blvd, Mawson Lakes, South Australia, 5095 Email: {aaron.stafford reality (AR) system (Stafford et al. 2006). The 3D reconstruction tabletop display (HOG table), as seen

Thomas, Bruce

304

Efficiency of Techniques for Mixed-Space Collaborative Navigation Aaron Stafford Bruce H. Thomas Wayne Piekarski  

E-Print Network (OSTI)

Efficiency of Techniques for Mixed-Space Collaborative Navigation Aaron Stafford Bruce H. Thomas consuming to remotely navigate a person using only voice commands. e-mail: aaron.stafford@unisa.edu.au e desktop collaborative virtual environments. Virtual Reality, 7(3-4):164­174, Jun 2004. [4] A. Stafford, W

Thomas, Bruce

305

Solar-powered WirelessMesh Networksfor Environmental Monitoring Torsten Braun, Thomas Staub, Benjamin Nyffenegger  

E-Print Network (OSTI)

Solar-powered WirelessMesh Networksfor Environmental Monitoring Torsten Braun, Thomas Staub the development and experiencesof a solar-power driven wirelessmesh network for connectingsensorsin rural is available. II. SOLAR-POWER DRIVEN WIRELESS MESH NETWORK DEPLYOMENT AND OPERATION In a technology project

Braun, Torsten

306

Impact of EPS on Digestion of Waste Activate Sludge Thomas Gostanian  

E-Print Network (OSTI)

is by either aerobic or anaerobic self-digestion, in which the bacteria consume their own mass. Currently are particular in their assistance of either aerobic or anaerobic digestion. Direct samples of activated sludgeImpact of EPS on Digestion of Waste Activate Sludge Thomas Gostanian Faculty Mentor: Professor Chul

Mountziaris, T. J.

307

THOMAS PEYTON LYON Dow Chair of Sustainable Science, Technology and Commerce  

E-Print Network (OSTI)

of State Regulation," Journal of Regulatory Economics, v. 2, no. 3, 1990, pp. 299-326. "Natural Gas Policy-183. "The Structure and Regulation of the Natural Gas Industry," (principal author), Chapter 5, North New Order in Natural Gas: Markets versus Regulation by Arthur S. De #12;Thomas P. Lyon / Page 6 Vany

Lyon, Thomas P.

308

Paul Thomas, TOFE, Nashville, August 2012 Page 1 The Impact of Burning Plasma on  

E-Print Network (OSTI)

­ personnel dose rates · Remote Handling · Blanket and Divertor · Diagnostics · Dust and tritium control must be handled and maintained using remote handling methods. by Blanket RH System by Divertor RH Remote Handling ­ ITER RH philosophy #12;Page 15Paul Thomas, TOFE, Nashville, August 2012 Transfer Casks

309

Environments for Remote Teaching in Embedded Systems Courses Christian Trodhandl Thomas Handl Markus Proske Bettina Weiss  

E-Print Network (OSTI)

Environments for Remote Teaching in Embedded Systems Courses Christian Tr¨odhandl Thomas Handl points for discussion at the workshop: How to handle remote access? In a distance lab with a limited/2, 1040 Vienna, Austria {troedhandl,handl,proske,bw}@ecs.tuwien.ac.at 1 Introduction Embedded systems lab

310

Policy Quarterly Volume 9, Issue 1 February 2013 Page 9 Thomas Hoppe, Sandra Bellekom  

E-Print Network (OSTI)

Policy Quarterly ­ Volume 9, Issue 1 ­ February 2013 ­ Page 9 Thomas Hoppe, Sandra Bellekom and Kris Lulofs Energy Efficiency in the Dutch Residential Sector: reflections on policy implementation into a comprehensive, long-term Dutch climate change policy programme, which started in 1998 after the country signed

Al Hanbali, Ahmad

311

Book reviews Lynn K. Nyhart and Thomas H. Broman (eds.), Science and Civil Society. By Leigh  

E-Print Network (OSTI)

Book reviews Lynn K. Nyhart and Thomas H. Broman (eds.), Science and Civil Society. By Leigh D and intense group of thinkers and experimenters, this approach is highly appropriate. His book is very learned; but one-third of the book is concerned with Goethe and his `scientific revolution'. Here we meet `the

Richards, Robert J.

312

Mastering Windows: Improving Reconstruction Thomas Theul Helwig Hauser Eduard Groller \\Lambda  

E-Print Network (OSTI)

Mastering Windows: Improving Reconstruction Thomas Theu?l Helwig Hauser Eduard Gr¨oller \\Lambda­Rom spline and derivative and (c) Kaiser windowed sinc and cosc of width three with numerically optimal. This can be accomplished by multiplying them with windowing functions. In this paper we discuss and assess

313

Nuclear diagnostics for the National Ignition Facility ,,invited... Thomas J. Murphy,a)  

E-Print Network (OSTI)

Nuclear diagnostics for the National Ignition Facility ,,invited... Thomas J. Murphy,a) Cris W unprecedented opportunities for the use of nuclear diagnostics in inertial confinement fusion experiments to produce up to 1019 DT neutrons. In addition to a basic set of nuclear diagnostics based on previous

314

Natural radioactivity in geothermal waters, Alhambra Hot Springs and nearby areas, Jefferson County, Montana  

DOE Green Energy (OSTI)

Radioactive hot springs issue from a fault zone in crystalline rock of the Boulder batholith at Alhambra, Jefferson County, in southwestern Montana. The discharge contains high concentrations of radon, and the gross activity and the concentration of radium-226 exceed maximum levels recommended by the Environmental Protection Agency for drinking water. Part of the discharge is diverted for space heating, bathing, and domestic use. The radioactive thermal waters at measured temperatures of about 60/sup 0/C are of the sodium bicarbonate type and saturated with respect to calcium carbonate. Radium-226 in the rock and on fractured surfaces or coprecipitated with calcium carbonate probably is the principal source of radon that is dissolved in the thermal water and discharged with other gases from some wells and springs. Local surface water and shallow ground water are of the calcium bicarbonate type and exhibit low background radioactivity. The temperature, percent sodium, and radioactivity of mixed waters adjacent to the fault zone increase with depth. Samples from most of the major hot springs in southwestern Montana have been analyzed for gross alpha and beta. The high level of radioactivity at Alhambra appears to be related to leaching of radioactive material from fractured siliceous veins by ascending thermal waters, and is not a normal characteristic of hot springs issuing from fractured crystalline rock in Montana.

Leonard, R.B.; Janzer, W.J.

1977-08-01T23:59:59.000Z

315

Design of the Proposed Low Energy Ion Collider Ring at Jefferson Lab  

SciTech Connect

The polarized Medium energy Electron-Ion Collider (MEIC) envisioned at Jefferson Lab will cover a range of center-of-mass energies up to 65 GeV. The present MEIC design could also allow the accommodation of low energy electron-ion collisions (LEIC) for additional science reach. This paper presents the first design of the low energy ion collider ring which is converted from the large ion booster of MEIC. It can reach up to 25 GeV energy for protons and equivalent ion energies of the same magnetic rigidity. An interaction region and an electron cooler designed for MEIC are integrated into the low energy collider ring, in addition to other required new elements including crab cavities and ion spin rotators, for later reuse in MEIC itself. A pair of vertical chicanes which brings the low energy ion beams to the plane of the electron ring and back to the low energy ion ring are also part of the design.

Nissen, Edward W. [JLAB; Lin, Fanglei [JLAB; Morozov, Vasiliy [JLAB; Zhang, Yuhong [JLAB

2013-06-01T23:59:59.000Z

316

Electroproduction de pions neutres dans le Hall A au Jefferson Laboratory  

SciTech Connect

The past decade has seen a strong evolution of the study of the hadron structure through exclusive processes, allowing to access to a more complete description of this structure. Exclusive processes include DVCS (Deeply Virtual Compton Scattering) as well as hard exclusive meson production. This document is particularly focussed on the latter, and more particularly on exclusive neutral pion production. In this thesis is described the analysis of triple coincidence events H(e, e'{gamma}{gamma})X, which were a consequent by-product of the DVCS experiment which occured during Fall 2004 at Jefferson Lab Hall A, to extract the ep {yields} ep{pi}{sup 0} cross section. This cross section has been measured at two values of four-momentum transfer Q{sup 2} = 1.9 GeV{sup 2} and Q{sup 2} = 2.3 GeV{sup 2}. The statistical precision for these measurements is achieved at better than 5 %. The kinematic range allows to study the evolution of the extracted cross section as a function of Q{sup 2} and W. Results are be confronted with Regge inspired calculations and Generalized (GPD) predictions. An intepretation of our data within the framework of semi-inclusive deep inelastic scattering is also discussed.

Eric Fuchey

2010-06-01T23:59:59.000Z

317

Thomas Miller Office of Nuclear Energy, Science and Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Miller Miller Office of Nuclear Energy, Science and Technology U.S. Department of Energy September 30, 2002 Presentation at the Nuclear Energy Research Advisory Committee Nuclear Power 2010 Program Strategy to Deploy New Nuclear Power Plants Nuclear Power 2010 Program Strategy to Deploy New Nuclear Power Plants Office of Nuclear Energy, Science and Technology TMiller/Sept11_02 ESE Project.ppt ( 2) Nuclear Power 2010: Overview Nuclear Power 2010: Overview Goal 6 Achieve industry decision by 2005 to deploy at least one new advanced nuclear power plant by 2010 Cooperative Activities 6 Regulatory Demonstration Projects * Early Site Permit (ESP) * Combined Construction and Operating License (COL) 6 Reactor Technology Development Projects * NRC Design Certification (DC) * First-of-a-kind engineering for a standardized plant

318

Self Potential At Kilauea East Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Self Potential At Kilauea East Rift Area (Thomas, Self Potential At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Self Potential Activity Date Usefulness useful DOE-funding Unknown Notes An extensive network of self-potential surveys have been performed over the summit and flanks of Kilauea as part of the HGP exploration surveys and in separate studies of the source mechanism for the potential anomalies observed (Zablocki, 1976, 1977). The geothermal exploration surveys were performed primarily on the lower East Rift Zone and identified four separate self-potential anomalies (Fig. 59) (Zablocki, 1977). The source mechanism for the anomalies observed was inferred to be the result of electrokinetic phenomena; thermal groundwater escaping from a geothermal

319

Water Sampling At Kilauea East Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Water Sampling At Kilauea East Rift Area (Thomas, Water Sampling At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Water Sampling Activity Date Usefulness useful DOE-funding Unknown Notes Studies of groundwater and coastal spring- sources that have identified thermal fluids on the lower East Rift Zone date back to the early part of this century (Guppy, 1906). More recent investigations of temperature and groundwater chemistry were performed for the HGP geoscience program (Macdonald, 1977; McMurtry et al., 1977; Epp and Halunen, 1979). Epp and Halunen (1979) identified several warm water wells, one having a temperature in excess of 90degrees C, and coastal springs in lower Puna; temperature profiles obtained by this study indicated that in some

320

Direct-Current Resistivity Survey At Lahaina-Kaanapali Area (Thomas, 1986)  

Open Energy Info (EERE)

Survey At Survey At Lahaina-Kaanapali Area (Thomas, 1986) Exploration Activity Details Location Lahaina-Kaanapali Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Four Schlumberger soundings were performed along the coastal strip adjacent to Lahaina town (Fig. 22). Three of the four soundings were able to detect a moderate to low-resistivity basement that was interpreted to be basalt saturated with seawater at 20degrees C (Mattice, 1981). None of the resistivity sounding data in this area indicated subsurface resistivities lower than could be accounted for by local ambient temperatures (Mattice and Lienert, 1980). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

Note: This page contains sample records for the topic "thomas jefferson site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Direct-Current Resistivity Survey At Kawaihae Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Direct-Current Resistivity Survey At Kawaihae Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Kawaihae Area (Thomas, 1986) Exploration Activity Details Location Kawaihae Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes In addition to the aeromagnetic data, the field survey program in Kawaihae included six Schlumberger resistivity soundings between Kawaihae and Waimea (Kauahikaua and Mattice, 1981). The results of these sounding (Fig. 35)

322

Mercury Vapor At Olowalu-Ukumehame Canyon Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Mercury Vapor At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Exploration Activity Details Location Olowalu-Ukumehame Canyon Area Exploration Technique Mercury Vapor Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Soil mercury concentration and radon emanometry surveys were conducted along the stream beds in both Olowalu and Ukumehame Canyons and on the coastal alluvial fans (Cox and Cuff, 1981a). The results of these surveys

323

Field Mapping At Olowalu-Ukumehame Canyon Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Field Mapping At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Exploration Activity Details Location Olowalu-Ukumehame Canyon Area Exploration Technique Field Mapping Activity Date Usefulness not useful DOE-funding Unknown Notes Geologic mapping (Diller, 1982) in this area has identified several trachitic and alkalic dikes, plugs, and vents within the area bounded by the canyons (Fig. 21). The frequency distribution of those dikes in the two

324

Gas Flux Sampling At Kilauea East Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Gas Flux Sampling At Kilauea East Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Gas Flux Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Radon emanometry data for the same locality (Fig. 61) (Cox, 1980) similarly presented a complicated pattern of radon outgassing along the lower rift zone. Even though complexities are present within the rift zone, there

325

Direct-Current Resistivity At Lahaina-Kaanapali Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

At Lahaina-Kaanapali Area At Lahaina-Kaanapali Area (Thomas, 1986) Exploration Activity Details Location Lahaina-Kaanapali Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Four Schlumberger soundings were performed along the coastal strip adjacent to Lahaina town (Fig. 22). Three of the four soundings were able to detect a moderate to low-resistivity basement that was interpreted to be basalt saturated with seawater at 20degrees C (Mattice, 1981). None of the resistivity sounding data in this area indicated subsurface resistivities lower than could be accounted for by local ambient temperatures (Mattice and Lienert, 1980). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii

326

Field Mapping At Kilauea East Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Field Mapping At Kilauea East Rift Area (Thomas, Field Mapping At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Field Mapping Activity Date Usefulness useful DOE-funding Unknown Notes Geologic mapping on the East Rift Zone (ERZ) conducted by Peterson (1967), J. Moore (1971), and Wright and Fiske (1971) detailed historic lava flows originating in the ERZ and developed structural models of the rift based on the locations and progressions of recorded eruptive cycles. These studies have more recently been expanded by Holcomb (1980, 1981) and R. Moore (1982, 1983) who have presented more detailed mapping of all surface flows (historic and prehistoric), fissures and faulting on the eastern flank of the Kilauea shield. The model developed from these studies is of a rift

327

Gas Flux Sampling At Kawaihae Area (Thomas, 1986) | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Gas Flux Sampling At Kawaihae Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Kawaihae Area (Thomas, 1986) Exploration Activity Details Location Kawaihae Area Exploration Technique Gas Flux Sampling Activity Date Usefulness not useful DOE-funding Unknown Notes The soil geochemistry yielded quite complex patterns of mercury concentrations and radonemanation rates within the survey area (Cox and Cuff, 1981c). Mercury concentrations (Fig. 38) showed a general minimum along the Kawaihae-Waimea roads and a broad trend of increasing mercury

328

Direct-Current Resistivity At Haleakala Volcano Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Direct-Current Resistivity At Haleakala Volcano Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Haleakala Volcano Area (Thomas, 1986) Exploration Activity Details Location Haleakala Volcano Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes The field survey program on the northwest rift zone consisted of soil mercury and radon emanometry surveys, groundwater temperature and chemistry studies, Schlumberger resistivity soundings and self-potential profiles.

329

Mercury Vapor At Kilauea East Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Kilauea East Rift Area (Thomas, Mercury Vapor At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Mercury Vapor Activity Date Usefulness not indicated DOE-funding Unknown Notes The sampling network for soil mercury concentrations undertaken by Cox (1981) identified a complicated pattern of mercury concentrations throughout the lower Puna area (Fig. 60). The highest soil mercury concentrations found were generally located within the rift zone, but an analysis of the data showed that soil type and soil pH also had a marked impact on mercury concentration. Making corrections for these effects improved the correspondence between the surface geological expression of the rift zone and the mercury concentrations observed; interpretation of

330

Ground Gravity Survey At Kilauea East Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Ground Gravity Survey At Kilauea East Rift Area Ground Gravity Survey At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Ground Gravity Survey Activity Date Usefulness useful DOE-funding Unknown Notes This model was later expanded through the examination of detailed and regional gravity data (Krivoy and Eaton, 1961) and regional aeromagnetic data (Malahoff and Woollard, 1966) to a three-dimensional map of the rift zone (Furumoto, 1978b). This model projected a dike complex (presumably at high temperatures) which has a width of approximately 20 km near the summit of Kilauea that narrows to approximately 12 km at the lower quarter of the subaerial portion of the rift (Fig. 52). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

331

Savannah River Site Celebrates Historic Closure of Radioactive Waste Tanks:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Site Celebrates Historic Closure of Radioactive Savannah River Site Celebrates Historic Closure of Radioactive Waste Tanks: Senior DOE Officials and South Carolina Congressional Leadership Gather to Commemorate Historic Cleanup Milestone Savannah River Site Celebrates Historic Closure of Radioactive Waste Tanks: Senior DOE Officials and South Carolina Congressional Leadership Gather to Commemorate Historic Cleanup Milestone October 1, 2012 - 12:00pm Addthis U.S. Energy Under Secretary for Nuclear Security Thomas D'Agostino, left, South Carolina Department of Health and Environmental Control Director Catherine Templeton and U.S. Sen. Lindsey Graham (R-SC) unveil a marker to commemorate the closing of waste tanks at the Savannah River Site in South Carolina. U.S. Energy Under Secretary for Nuclear Security Thomas D'Agostino, left,

332

Savannah River Site Celebrates Historic Closure of Radioactive Waste Tanks:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Site Celebrates Historic Closure of Radioactive Savannah River Site Celebrates Historic Closure of Radioactive Waste Tanks: Senior DOE Officials and South Carolina Congressional Leadership Gather to Commemorate Historic Cleanup Milestone Savannah River Site Celebrates Historic Closure of Radioactive Waste Tanks: Senior DOE Officials and South Carolina Congressional Leadership Gather to Commemorate Historic Cleanup Milestone October 1, 2012 - 12:00pm Addthis U.S. Energy Under Secretary for Nuclear Security Thomas D'Agostino, left, South Carolina Department of Health and Environmental Control Director Catherine Templeton and U.S. Sen. Lindsey Graham (R-SC) unveil a marker to commemorate the closing of waste tanks at the Savannah River Site in South Carolina. U.S. Energy Under Secretary for Nuclear Security Thomas D'Agostino, left,

333

Physics Opportunities with the 12 GeV Upgrade at Jefferson Lab  

SciTech Connect

We are at the dawn of a new era in the study of hadronic nuclear physics. The non-Abelian nature of Quantum Chromodynamics (QCD) and the resulting strong coupling at low energies represent a significant challenge to nuclear and particle physicists. The last decade has seen the development of new theoretical and experimental tools to quantitatively study the nature of confinement and the structure of hadrons comprised of light quarks and gluons. Together these will allow both the spectrum and the structure of hadrons to be elucidated in unprecedented detail. Exotic mesons that result from excitation of the gluon field will be explored. Multidimensional images of hadrons with great promise to reveal the dynamics of the key underlying degrees of freedom will be produced. In particular, these multidimensional distributions open a new window on the elusive spin content of the nucleon through observables that are directly related to the orbital angular momenta of quarks and gluons. Moreover, computational techniques in Lattice QCD now promise to provide insightful and quantitative predictions that can be meaningfully confronted with, and elucidated by, forthcoming experimental data. In addition, the development of extremely high intensity, highly polarized and extraordinarily stable beams of electrons provides innovative opportunities for probing (and extending) the Standard Model, both through parity violation studies and searches for new particles. Thus the 12 GeV upgrade of the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab will enable a new experimental program with substantial discovery potential to address these and other important topics in nuclear, hadronic and electroweak physics.

Dudek, Jozef; Essig, Rouven; Kumar, Krishna; Meyer, Curtis; McKeown, Robert; Meziani, Zein Eddine; Miller, Gerald A; Pennington, Michael; Richards, David; Weinstein, Larry

2012-08-01T23:59:59.000Z

334

Brookhaven National Laboratory - Long Island Regional Science...  

Office of Science (SC) Website

Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and...

335

Sandia National Laboratories - Las Positas Regional Science Bowl...  

Office of Science (SC) Website

Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and...

336

Sandia National Laboratories/Las Positas College Regional Science...  

Office of Science (SC) Website

Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and...

337

Brookhaven National Laboratory - Long Island | U.S. DOE Office...  

Office of Science (SC) Website

Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and...

338

Lawrence Berkeley National Laboratory Regional Science Bowl ...  

Office of Science (SC) Website

Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and...

339

Design, fabrication, commissioning, and testing of a 250 g/s, 2-K helium cold compressor system  

Science Conference Proceedings (OSTI)

In June 1999 the Thomas Jefferson National Accelerator Facility (TJNAF) Cryogenic Systems Group had completed the design

V. Ganni; D. M. Arenius; B. S. Bevins; W. C. Chronis; J. D. Creel; J. D. Wilson Jr.

2002-01-01T23:59:59.000Z

340

Light Vector Meson Photoproduction off of H at Jefferson Lab and rho-omega Interference in the Leptonic Decay Channel  

SciTech Connect

Recent studies of light vector meson production in heavy nuclear targets has generated interest in {rho}-{omega} interference in the leptonic e{sup +}e{sup -} decay channel. An experimental study of the elementary process provides valuable input for theoretical models and calculations. In experiment E04-005 (g12), high statistics photoproduction data has been taken in Jefferson Lab's Hall B with the Cebaf Large Acceptance Spectrometer (CLAS). The invariant mass spectrum is fitted with two interfering relativistic Breit-Wigner functions to determine the interference phase. Preliminary analysis indicate a measurable {rho}-{omega} interference.

Chaden Djalali

2011-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "thomas jefferson site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

The search for gluonic degrees of freedom in QCD using the GlueX facility at Jefferson Lab  

Science Conference Proceedings (OSTI)

The search for gluonic degrees of freedom in mesons is an experimental challenge. The most promising approach is to look for mesons with exotic quantum numbers that can not be described by quark degrees of freedom only. The GlueX experiment at Jefferson Lab in Hall-D, currently under construction, will search for such hybrid mesons with exotic quantum numbers by scattering a linearly polarized high energetic photon beam off a liquid hydrogen target. An amplitude analysis will be employed to search for such resonances in the data and determine their quantum numbers.

Benedikt Zihlmann

2011-05-01T23:59:59.000Z

342

The design and performance of the electromagnetic calorimeters in Hall C at Jefferson Lab  

Science Conference Proceedings (OSTI)

The design and performance of the electromagnetic calorimeters in the magnetic spectrometers in Hall C at Jefferson Lab are presented. For the existing HMS and SOS spectrometers, construction information and comparisons of simulated and experimental results are presented. The design and simulated performance for a new calorimeter to be used in the new SHMS spectrometer is also presented. We have developed and constructed electromagnetic calorimeters from TF-1 type lead-glass blocks for the HMS and SOS magnetic spectrometers at JLab Hall C. The HMS/SOS calorimeters are of identical design and construction except for their total size. Blocks of dimension 10 cm 10 cm 70 cm are arranged in four planes and stacked 13 and 11 blocks high in the HMS and SOS respectively. The energy resolution of these calorimeters is better than 6%/?E, and pion/electron (?/e) separation of about 100:1 has been achieved in energy range 15 GeV. Good agreement has been observed between the experimental and GEANT4 simulated energy resolutions. The HMS/SOS calorimeters have been used nearly in all Hall C experiments, providing good energy resolution and a high pion suppression factor. No significant deterioration in their performance has been observed in the course of use since 1994. For the SHMS spectrometer, presently under construction, details on the calorimeter design and accompanying GEANT4 simulation efforts are given. A Preshower+Shower design was selected as the most cost-effective among several design choices. The preshower will consist of a layer of 28 modules with TF-1 type lead glass radiators, stacked in two columns. The shower part will consist of 224 modules with F-101 type lead glass radiators, stacked in a fly's eye configuration of 14 columns and 16 rows. The active area of 120 130 cm(2) will encompass the beam envelope at the calorimeter. The anticipated performance of the new calorimeter is simulated over the full momentum range of the SHMS, predicting resolution and yields similar to the HMS calorimeter. Good electron/hadron separation can be achieved by using energy deposition in the Preshower along with total energy deposition in the calorimeter. In this case the PID capability is similar to or better than that attainable with HMS calorimeter, with a pion suppression factor of a few hundreds predicted for 99% electron detection efficiency.

Vardan Tadevosyan, Hamlet Mkrtchyan, Arshak Asaturyan, Arthur Mkrtchyan, Simon Zhamkochyan

2012-12-01T23:59:59.000Z

343

Implementation of a cut flower and seed production garden at Monticello  

E-Print Network (OSTI)

The restored gardens of Monticello fulfill multiple roles, including the enhancement of the architectural and historical aspects of Thomas Jefferson's estate, a botanical garden, a site for historic plant preservation and a study in historic garden restoration. The gardens act as a vehicle for appreciation and education of not only the historical horticultural garden aspects, but also as a vehicle for understanding Thomas Jefferson, as a person. During the summer of 2001, I worked as an intern member of Monticello's Gardens and Grounds Department. The internship focused on the project of reestablishing a cutting flower and seed production garden. The internship also included horticultural maintenance activities within the various public gardens and grounds.

Felderhoff, Craig Anton

2001-01-01T23:59:59.000Z

344

Thomas Roser  

NLE Websites -- All DOE Office Websites (Extended Search)

Roser Roser ! NSAC Subcommittee on Scientific Facilities ! February 15, 2013 ! eRHIC Project! ! ! Performance requirements! ! eRHIC design! ! R&D for eRHIC! ! Cost and schedule! 2 Performance requirements! ! ! Highly polarized (> 70%) electron, proton and neutron (He-3) beams! ! Ion beams from deuteron to the heaviest nuclei (uranium) ! ! Center of mass energy range: ~ 20 GeV to ~ 150 GeV ! ! Non-zero crossing angle to minimize synchrotron radiation background! ! Possibility to have multiple interaction regions ! ! High luminosity: 10 33 - 10 34 cm -2 s -1 ! ! First stage to reach CM energy of ≳ 70 GeV and luminosity of 
 10 32 - 10 34 cm -2 s -1 ! ! 3 RHIC! NSRL! LINAC! Booster! AGS! Tandems! STAR! 6:00 o'clock! PHENIX! 8:00 o'clock! 10:00 o'clock! Polarized Jet Target! 12:00 o'clock! RF! 4:00 o'clock!

345

John Thomas  

NLE Websites -- All DOE Office Websites (Extended Search)

analytics and privacy protections. This Speaker's Seminars Insights and Early Results from the Pecan Street Consortium's Research on Residential Electricity, Gas and Water Usage...

346

Thomas Lam  

Science Conference Proceedings (OSTI)

... TEM) and scanning electron microscopy (SEM) to analyze skutterudite material, gasifier refractories, and mixtures of synthetic coal and petcoke ...

2011-08-30T23:59:59.000Z

347

Thomas Wenzel  

NLE Websites -- All DOE Office Websites (Extended Search)

Wenzel is a Research Scientist at LBNL working in transportation energy and environmental policy analysis. Tom has been analyzing in-use vehicle emission data since 1992; he is a...

348

Brinda Thomas  

NLE Websites -- All DOE Office Websites (Extended Search)

and an LED technology assessment at Navigant Consulting, and supported the DOE Hydrogen Fuel Cell program at SRA, Intl. She has a B.S. in Physics from Stanford. This Speaker's...

349

Geology and geothermal resources of the Santiam Pass area of the Oregon Cascade Range, Deschutes, Jefferson and Linn Counties, Oregon. Final report  

DOE Green Energy (OSTI)

This open-file report presents the results of the Santiam Pass drilling program. The first phase of this program was to compile all available geological, geophysical and geothermal data for the Santiam Pass area and select a drill site on the basis of these data (see Priest and others, 1987a), A summary of the drilling operations and costs associated with the project are presented in chapter 1 by Hill and Benoit. An Overview of the geology of the Santiam Pass area is presented by Hill and Priest in chapter 2. Geologic mapping and isotopic age determinations in the Santiam Pass-Mount Jefferson area completed since 1987 are summarized in chapter 2. One of the more important conclusions reached in chapter 2 is that a minimum of 2 km vertical displacement has occurred in the High Cascade graben in the Santiam Pass area. The petrology of the Santiam Pass drill core is presented by Hill in chapter 3. Most of the major volcanic units in the core have been analyzed for major, minor, and trace element abundances and have been studied petrographically. Three K-Ar ages are interpreted in conjunction with the magnetostratigraphy of the core to show that the oldest rocks in the core are approximately 1.8 Ma. Geothermal and geophysical data collected from the Santiam Pass well are presented by Blackwell in chapter 4. The Santiam Pass well failed to penetrate beneath the zone of lateral groundwater flow associated with highly permeable Quaternary volcanic rocks. Calculated geothermal gradients range from about 50{degree}C/km at depth 700-900 m, to roughly 110{degree}C/km from 900 m to the bottom of the well at 929 m. Heat-flow values for the bottom part of the hole bracket the regional average for the High Cascades. Blackwell concludes that heat flow along the High Cascades axis is equal to or higher than along the western edge of the High Cascades.

Hill, B.E. [ed.

1992-10-01T23:59:59.000Z

350

On Raviart-Thomas and VMS formulations for flow in heterogeneous materials.  

SciTech Connect

It is well known that the continuous Galerkin method (in its standard form) is not locally conservative, yet many stabilized methods are constructed by augmenting the standard Galerkin weak form. In particular, the Variational Multiscale (VMS) method has achieved popularity for combating numerical instabilities that arise for mixed formulations that do not otherwise satisfy the LBB condition. Among alternative methods that satisfy local and global conservation, many employ Raviart-Thomas function spaces. The lowest order Raviart-Thomas finite element formulation (RT0) consists of evaluating fluxes over the midpoint of element edges and constant pressures within the element. Although the RT0 element poses many advantages, it has only been shown viable for triangular or tetrahedral elements (quadrilateral variants of this method do not pass the patch test). In the context of heterogenous materials, both of these methods have been used to model the mixed form of the Darcy equation. This work aims, in a comparative fashion, to evaluate the strengths and weaknesses of either approach for modeling Darcy flow for problems with highly varying material permeabilities and predominantly open flow boundary conditions. Such problems include carbon sequestration and enhanced oil recovery simulations for which the far-field boundary is typically described with some type of pressure boundary condition. We intend to show the degree to which the VMS formulation violates local mass conservation for these types of problems and compare the performance of the VMS and RT0 methods at boundaries between disparate permeabilities.

Turner, Daniel Zack

2010-11-01T23:59:59.000Z

351

A High-Energy High-Luminosity p+-p* Collider David V. Neuffer, CEBAF', 12000 Jefferson Avenue, Newport News VA 23692  

E-Print Network (OSTI)

A High-Energy High-Luminosity p+-p* Collider David V. Neuffer, CEBAF', 12000 Jefferson Avenue be costly and does not use our ability to recirculate p's. A recirculating linac (RLA) like CEBAF" can and M. S. Zolotorev, Phys. Rev. Lett.71, 4146 (1993). 11. CEBAF Design Report, CEBAF, Newport News VA

McDonald, Kirk

352

EA-1534: Finding of No Significant Impact | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

534: Finding of No Significant Impact 534: Finding of No Significant Impact EA-1534: Finding of No Significant Impact Proposed Upgrade and Operation of the CEBAF and FEL Accelerators and Construction and Use of Buildings Associated with the 2005 Ten-Year Site Plan at the Thomas Jefferson National Accelerator Facility Newport News, Virginia DOE evaluated the potential environmental impacts from proposed construction of various site improvements and the proposed upgrade and operation of the CEBAF and FEL accelerators at Jefferson Lab. Proposed Upgrade and Operation of the CEBAF and FEL Accelerators and Construction and Use of Buildings Associated with the 2005 Ten-Year Site Plan at the Thomas Jefferson National Accelerator Facility Newport News, Virginia More Documents & Publications EA-1534: Final Environmental Assessment

353

Large area, high spatial resolution tracker for new generation of high luminosity experiments in Hall A at Jefferson Lab  

Science Conference Proceedings (OSTI)

In 2014 the CEBAF electron accelerator at Jefferson Lab (JLab) will deliver a longitudinally polarized (up to 85%), high intensity (up to 100 ?A) beam with maximum energy of 12 GeV, twice the present value. To exploit the new opportunities that the energy upgrade will offer, a new spectrometer (Super BigBite - SBS) is under development, featuring very forward angle, large acceptance and ability to operate in high luminosity environment. The tracking system of SBS will consist of large area (40150 cm2 and 50200 cm2), high spatial resolution (better than 100 ?m) chambers based on the GEM technology and 2 small (1020 cm) Silicon Strip Detector planes. The design of the GEM chambers and its sub-components such as the readout electronics is resented here.

Bellini, V; Castelluccio, D; Colilli, S; Cisbani, E; De Leo, R; Fratoni, R; Frullani, S; Garibaldi, F; Guiliani, F; Guisa, A; Gricia, M; Lucentini, M; Meddi, F; Minutoli, S; Musico, P; Noto, F; De Oliveira, R; Santavenere, F; Sutera, M C

2011-06-01T23:59:59.000Z

354

HDice, Highly-Polarized Low-Background Frozen-Spin HD Targets for CLAS experiments at Jefferson Lab  

Science Conference Proceedings (OSTI)

Large, portable frozen-spin HD (Deuterium-Hydride) targets have been developed for studying nucleon spin properties with low backgrounds. Protons and Deuterons in HD are polarized at low temperatures (~10mK) inside a vertical dilution refrigerator (Oxford Kelvinox-1000) containing a high magnetic field (up to 17T). The targets reach a frozen-spin state within a few months, after which they can be cold transferred to an In-Beam Cryostat (IBC). The IBC, a thin-walled dilution refrigerator operating either horizontally or vertically, is use with quasi-4? detector systems in open geometries with minimal energy loss for exiting reaction products in nucleon structure experiments. The first application of this advanced target system has been used for Spin Sum Rule experiments at the LEGS facility in Brookhaven National Laboratory. An improved target production and handling system has been developed at Jefferson Lab for experiments with the CEBAF Large Acceptance Spectrometer, CLAS.

Wei, Xiangdong [JLAB; Bass, Christopher [JLAB; D'Angelo, Annalisa [INFN-Roma Tor Vegata; Deur, Alexandre P. [JLAB; Dezern, Gary L. [JLAB; Ho, Dao Hoang [Carnegie Mellon U.; Kageya, Tsuneo [JLAB; Khandaker, Mahbubul A, [Idaho State U.; Kashy, David H. [JLAB; Laine, Vivien Eric [Universite de Clermont Ferrand; Lowry, Michael M. [JLAB; O'Connell, Thomas Robert [University of Connecticut; Sandorfi, Andrew M. [JLAB; Teachey, II, Robert W. [JLAB; Whisnant, Charles Steven [James Madison U.; Zarecky, Michael R. [JLAB

2012-12-01T23:59:59.000Z

355

Direct-Current Resistivity Survey At Mauna Loa Northeast Rift Area (Thomas,  

Open Energy Info (EERE)

Direct-Current Resistivity Survey At Mauna Loa Direct-Current Resistivity Survey At Mauna Loa Northeast Rift Area (Thomas, 1986) Exploration Activity Details Location Mauna Loa Northeast Rift Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes The vertical electrical sounding surveys encountered few difficulties and were able to resolve basement resistivities in all locations. The resistivity sections derived indicated a 3000- 20,000 ohm.m surface layer underlain by a 500- 900 ohm-m cold freshwatersaturated layer and a basement layer of less than 100 ohm.m (Kauahikaua and Mattice, 1981). The depth of penetration of these soundings was estimated to be about 800 m to 900 m b.s.1. and thus the basement resistivities probably correspond to basalts

356

Time-Domain Electromagnetics At Hualalai Northwest Rift Area (Thomas, 1986)  

Open Energy Info (EERE)

Time-Domain Electromagnetics At Hualalai Northwest Time-Domain Electromagnetics At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Time-Domain Electromagnetics Activity Date Usefulness useful DOE-funding Unknown Notes Three time-domain electromagnetic soundings were conducted on the middle northwest rift at elevations of 280-320 m (Fig. 40) (Kauahikaua and Mattice, 1981). These soundings penetrated to a greater depth than the Schlumberger soundings and two of them were able to resolve basement resistivities ranging from 9 to 12 ohm-m at depths of 1500 to 1800 m. One sounding detected a 9 ohm.m layer at 600 m depth that was underlain by a more resistive basement. These results suggest that thermal fluids may be responsible for the low-resistivity basement, whereas the high-resistivity

357

Thomas Mason Oak Ridge National Lab July 10 2012 SB Summit  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Laboratory Presented to the DOE/NNSA Regional Small Business Summit Thomas E. Mason Director, Oak Ridge National Laboratory Knoxville, Tennessee July 10, 2012 2 Managed by UT-Battelle for the U.S. Department of Energy RegionalSummit_1207 ORNL is DOE's largest science and energy laboratory 2 Managed by UT-Battelle for the U.S. Department of Energy $1.65B budget World's most intense neutron source 4,400 employees World-class research reactor 3,000 research guests annually $500M modernization investment Nation's largest materials research portfolio Most powerful open scientific computing facility Nation's most diverse energy portfolio Managing billion-dollar U.S. ITER project 3 Managed by UT-Battelle for the U.S. Department of Energy RegionalSummit_1207

358

Direct-Current Resistivity Survey At Haleakala Volcano Area (Thomas, 1986)  

Open Energy Info (EERE)

Direct-Current Resistivity Survey At Haleakala Direct-Current Resistivity Survey At Haleakala Volcano Area (Thomas, 1986) Exploration Activity Details Location Haleakala Volcano Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes The field survey program on the northwest rift zone consisted of soil mercury and radon emanometry surveys, groundwater temperature and chemistry studies, Schlumberger resistivity soundings and self-potential profiles. Geophysical and geochemical surveys along this rift (southwest) were limited by difficult field conditions and access limitations. The geophysical program consisted of one Schlumberger sounding, one self-potential profile and one controlled-source electromagnetic sounding. The geochemical data collected included a reconnaissance soil mercury and

359

Time-Domain Electromagnetics At Kilauea East Rift Area (Thomas, 1986) |  

Open Energy Info (EERE)

Time-Domain Electromagnetics At Kilauea East Rift Time-Domain Electromagnetics At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Time-Domain Electromagnetics Activity Date Usefulness useful DOE-funding Unknown Notes A series of time-domain electromagnetic (TDEM) soundings were also performed in the lower East Rift Zone as part of the HGP exploration program (Klein and Kauahikaua, 1975; Kauahikaua and Klein, 1977); this work was recently expanded to include additional TDEM and vertical electrical soundings, and the entire data set was reinterpreted (Kauahikaua, 1981b; Kauahikaua and Mattice, 1981). The resistivity model presented by Kauahikaua (1981b) suggests that moderate to high basement resistivities, corresponding to cold freshwater saturated basalts, are present north of

360

Direct-Current Resistivity Survey At Mokapu Penninsula Area (Thomas, 1986)  

Open Energy Info (EERE)

Direct-Current Resistivity Survey At Mokapu Direct-Current Resistivity Survey At Mokapu Penninsula Area (Thomas, 1986) Exploration Activity Details Location Mokapu Penninsula Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Geophysical surveys on Mokapu were restricted to three Schlumberger soundings (Fig. 17). The results of these soundings appeared to indicate a highly resistive surface section underlain by one or more layers of intermediate to low resistivity (Fig. 18). Basement resistivities in all cases were less than 3 ohm.m and were interpreted to correspond to alluvial layers saturated with cold seawater (Lienert, 1982). --- A separate geophysical analysis performed on the Koolau caldera area (Kauahikaua, 1981 a) synthesized existing self-potential, gravity, seismic and aeromagnetic

Note: This page contains sample records for the topic "thomas jefferson site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

CO2 EMISSION CALCULATIONS AND TRENDS Thomas A. Boden and Gregg Marland  

NLE Websites -- All DOE Office Websites (Extended Search)

EMISSION CALCULATIONS AND TRENDS EMISSION CALCULATIONS AND TRENDS Thomas A. Boden and Gregg Marland Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830-6335 Robert J. Andres Institute of Northern Engineering School of Engineering University of Alaska-Fairbanks Fairbanks, Alaska 99775-5900 ABSTRACT FEB 05 ZS3 OSTI The submitted manuscript has been authored by a contractor of the U.S. Government under contract No. DE- ACO5-840R21400. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so. for U.S. Government purposes." This paper describes the compilation, calculation, and availability of the most comprehensive CO2 emissions database currently available. The database offers global, regional, and national annual

362

Radiation Transport Thomas A. Brunner Joint Russian-American Five-Laboratory Conference on  

National Nuclear Security Administration (NNSA)

Forms of Approximate Forms of Approximate Radiation Transport Thomas A. Brunner Joint Russian-American Five-Laboratory Conference on Computational Mathematics/Physics 19-23 June 2005 Vienna, Austria Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The Diffusion Approximation * Taylor Expand Intensity in Angle * Fast, robust, and accurate numerical solutions * Flux can be larger than energy density - More stuff moving than is there to move * Flux Limited Diffusion improves robustness - Limits flux so that it's not larger than energy density - Many different flux limiters Spherical Harmonics (PN) * Intensity expanded further in angle than diffusion

363

Liquid-gas phase transition in nuclei in the relativistic Thomas-Fermi theory  

E-Print Network (OSTI)

The equation of state (EOS) of finite nuclei is constructed in the relativistic Thomas-Fermi theory using the non-linear $\\sigma-\\omega -\\rho$ model. The caloric curves are calculated by confining the nuclei in the freeze-out volume taken to be a sphere of size about 4 to 8 times the normal nuclear volume. The results obtained from the relativistic theory are not significantly different from those obtained earlier in a non-relativistic framework. The nature of the EOS and the peaked structure of the specific heat $C_v$ obtained from the caloric curves show clear signals of a liquid-gas phase transition in finite nuclei. The temperature evolution of the Gibbs potential and the entropy at constant pressure indicate that the characteristics of the transition are not too different from the first-order one.

Tapas Sil; B. K. Agrawal; J. N. De; S. K. Samaddar

2000-12-16T23:59:59.000Z

364
365

Environment, Safety and Health (ES&H) | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Environment, Safety and Health (ES&H) Thomas Jefferson Site Office (TJSO) TJSO Home About Current Projects Contract Management Environment, Safety and Health (ES&H) Resources Contact Information Thomas Jefferson Site Office U.S. Department of Energy 12000 Jefferson Avenue Newport News, VA 23606 P: (757) 269-7140 Environment, Safety and Health (ES&H) Print Text Size: A A A RSS Feeds FeedbackShare Page The Office of Science (SC) has a NEPA Compliance Officer on staff to coordinate all NEPA compliance and support matters at its laboratories. Responsibilities include managing the review and approval of NEPA documentation of SC Headquarter programs, and working with Department of Energy (DOE) Science programs and other DOE Headquarters Program Offices conducting research at SC facilities. SC takes a proactive approach in

366

Draft Environmental Impact Statement for the Site Selection for the Expansion of the Strategic Petroleum Reserve  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 Summary and Chapters 1 - 7 May 2006 Draft Environmental Impact Statement for Site Selection for the Expansion of the Strategic Petroleum Reserve Document No. DOE/EIS-0385 Responsible Federal Agency: U.S. Department of Energy (DOE), Office of Petroleum Reserves Location: Potential new SPR storage sites are located in Lafourche Parish, Louisiana; Perry and Claiborne Counties, Mississippi; and Brazoria County, Texas. Existing Strategic Petroleum Reserve (SPR) storage sites that could be expanded are located in Cameron, Calcasieu, and Iberville Parishes, Louisiana; and Jefferson County, Texas. Associated pipelines, marine terminals, and other facilities that might be developed are located in East Baton Rouge, East Feliciana, St. James, Terrebonne, West Baton

367

New Inventions - Jefferson Lab | Jefferson Lab  

Invention Disclosure; CRADA/WFO Routing; Fairness of Opportunity; America Invents Act Summary; Achievements at JLab. Patents; New Inventions; New ...

368

Public Meeting on Oversight of Complex, High Hazard Nuclear Operations - Statement of Thomas P. DAgostino - May 12, 2010  

NLE Websites -- All DOE Office Websites (Extended Search)

of Thomas P. D'Agostino of Thomas P. D'Agostino Administrator, National Nuclear Security Administration Defense Nuclear Facilities Safety Board Public Hearing on Line and Independent Oversight May 12, 2010 Mr. Chairman, members of the Board, thank you for this opportunity to meet with you in this public forum to discuss effective oversight of our nuclear facilities. You provided written lines of inquiry prior to this meeting, and my formal response is organized around them. Of course, I will also be happy to answer any additional questions you may have. Let me begin by describing our overall oversight approach as it currently exists. I will discuss its effectiveness, point out both its strengths and weaknesses, and use it as a basis for describing the changes we are considering. I will then discuss our approach to

369

Investigation of ZnO nanopillars fabrication in a new Thomas Swan close coupled showerhead MOCVD reactor  

Science Conference Proceedings (OSTI)

Self-organized ZnO nanopillars were grown on a-plane Al"2O"3 in a vertical MOCVD reactor using diethylzinc and N"2O as precursors. This is the very first Thomas Swan reactor that is specially designed for the growth of ZnO and GaN. The influence of different ... Keywords: MOCVD, MOVPE, Nanopillars, Zincoxide, ZnO

A. Behrends; A. Bakin; A. Waag

2009-02-01T23:59:59.000Z

370

The Search for Exotic Mesons in gamma p -> pi+pi+pi-n with CLAS at Jefferson Lab  

E-Print Network (OSTI)

The $\\pi_1(1600)$, a $J^{PC} = 1^{-+}$ exotic meson has been observed by experiments using pion beams. Theorists predict that photon beams could produce gluonic hybrid mesons, of which the $\\pi_1(1600)$ is a candidate, at enhanced levels relative to pion beams. The g12 rungroup at Jefferson Lab's CEBAF Large Acceptance Spectrometer (CLAS) has recently acquired a large photoproduction dataset, using a liquid hydrogen target and tagged photons from a 5.71 GeV electron beam. A partial-wave analysis of 502K $\\gamma p \\to \\pi^+\\pi^+\\pi^-n$ events selected from the g12 dataset has been performed, and preliminary fit results show strong evidence for well-known states such as the $a_1(1260)$, $a_2(1320)$, and $\\pi_2(1670)$. However, we observe no evidence for the production of the $\\pi_1(1600)$ in either the partial-wave intensities or the relative complex phase between the $1^{-+}$ and the $2^{-+}$ (corresponding to the $\\pi_2$) partial waves.

Craig Bookwalter

2011-08-31T23:59:59.000Z

371

The Search for Exotic Mesons in gammap-->pi+pi+pi?n with CLAS at Jefferson Lab  

DOE Green Energy (OSTI)

In addition to ordinary qq-bar pairs, quantum chromodynamics (QCD) permits many other possibilities in meson spectra, such as gluonic hybrids, glueballs, and tetraquarks. Experimental discovery and study of these exotic states provides insight on the nonperturbative regime of QCD. Over the past twenty years, some searches for exotic mesons have met with controversial results, especially those obtained in the three-pion system. Prior theoretical work indicates that in photoproduction one should find gluonic hybrids at significantly enhanced levels compared to that found in pion production. To that end, the CLAS g12 run was recently completed at Jefferson Lab, using a liquid hydrogen target and tagged photons from a 5.71 GeV electron beam. The CLAS experimental apparatus was modified to maximize forward acceptance for peripheral production of mesons. The resulting data contains the world's largest 3pi photoproduction dataset, with gammap-->pi+pi+pi?n events numbering in the millions. Early results describing the data quality, kinematics, and dysnamics will be shown.

Craig Bookwalter

2010-08-01T23:59:59.000Z

372

The Search for Exotic Mesons in gamma p -> pi+pi+pi-n with CLAS at Jefferson Lab  

DOE Green Energy (OSTI)

The {pi}{sub 1}(1600), a J{sup PC} = 1{sup {-+}} exotic meson has been observed by experiments using pion beams. Theorists predict that photon beams could produce gluonic hybrid mesons, of which the {pi}{sub 1}(1600) is a candidate, at enhanced levels relative to pion beams. The g12 rungroup at Jefferson Lab's CEBAF Large Acceptance Spectrometer (CLAS) has recently acquired a large photoproduction dataset, using a liquid hydrogen target and tagged photons from a 5.71 GeV electron beam. A partial-wave analysis of 502K {gamma}p {yields} {pi}{sup +}{pi}{sup +}{pi}{sup -}n events selected from the g12 dataset has been performed, and preliminary fit results show strong evidence for well-known states such as the a{sub 1}(1260), a{sub 2}(1320), and {pi}{sub 2}(1670). However, we observe no evidence for the production of the {pi}{sub 1}(1600) in either the partial-wave intensities or the relative complex phase between the 1{sup {-+}} and the 2{sup {-+}} (corresponding to the {pi}{sub 2}) partial waves.

Craig Bookwalter

2011-12-01T23:59:59.000Z

373

Imitative sequel writing: divine breathings, second part of the Pilgrim's Progress, and the case of T. S. (aka Thomas Sherman)  

E-Print Network (OSTI)

During the period between 1640 and 1700, over forty works were produced by authors identifying themselves as T. S. In the field of early modern literary studies, one T. S. has been particularly important to scholars because of this authors imitative version of John Bunyans popular allegory titled The Second Part of the Pilgrims Progress (1682). This work by T. S., who has become known as Thomas Sherman, achieves minor success and prompts Bunyan to write his own authentic sequel. My research has uncovered an attribution history that identifies four additional textsDivine Breathings (circa 1671); Youths Tragedy (1671); Youths Comedy (1680); Divine Breathings, the Second Part (1680)and credits all of them to a Thomas Sherman. Of the five works attributed to this author, the most impressive printing history belongs to the earliest offering, Divine Breathings, or a Pious Soul Thirsting after Christ in a Hundred Pathetical Meditations, which appears in over 60 printings from 1671 to 1883 in England, Scotland, and North America. My research scrutinizes this attribution history and raises questions about identifying this T. S. as Thomas Sherman. Based on internal and external evidence, I argue that T. S. is not the author of Divine Breathings but establishes his authorial identity as an imitative writer who actively participates in the genre of Protestant meditational literature by providing sequels (i.e., Divine Breathings the Second Part and Second Part of the Pilgrims Progress).

Garrett, Christopher E.

2007-08-01T23:59:59.000Z

374

Microsoft PowerPoint - NETL Morgantown Site from NETL Pittsburgh Site.ppt [Compatibility Mode]  

NLE Websites -- All DOE Office Websites (Extended Search)

NETL Pittsburgh Site NETL Pittsburgh Site 1. As you are leaving the 920 Plateau, turn left upon exiting the site onto WALLACE RD. 2. Turn left onto RIDGE RD. RIDGE RD. becomes RACETRACK RD. after 2 nd stop sign. 3. Turn LEFT onto OLD BROWNSVILLE RD.; bear LEFT at first stop and continue on OLD BROWNSVILLE RD to PA-88 BROWNSVILLE RD. to PA-88. 4. Turn LEFT on PA-88 and proceed through FINLEYVILLE. 5. Turn RIGHT onto VENETIA RD. 6. Turn LEFT onto LINDEN RD. 7 Turn LEFT onto THOMAS RD to PA 519 7. Turn LEFT onto THOMAS RD. to PA-519. 8. Proceed forward onto PA-519 to I-70W. 9. Take I-70W to I-79S. 10. Merge right at Exit 21 onto I-79S toward MORGANTOWN, WV. 11 Take EXIT 155 toward WV 7/WEST VIRGINIA UNIVERSITY 11. Take EXIT 155 toward WV-7/WEST VIRGINIA UNIVERSITY. 12. Turn LEFT onto CHAPLIN HILL RD.

375

Pantex Site  

NLE Websites -- All DOE Office Websites (Extended Search)

Pantex Site Pantex Site The primary mission of the Pantex Plant is the assembly, disassembly, testing, and evaluation of nuclear wespons in support of the NNSA stockpile...

376

Annual Planning Summaries: 2013 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 Annual Planning Summaries: 2013 March 25, 2013 2013 Annual Planning Summary for the Thomas Jefferson Site Office 2013 Annual Planning Summary for the Thomas Jefferson Site Office March 25, 2013 2013 Annual Planning Summary for the Pacific Northwest Site Office 2013 Annual Planning Summary for the Pacific Northwest Site Office March 25, 2013 2013 Annual Planning Summary for the New Brunswick Laboratory 2013 Annual Planning Summary for the New Brunswick Laboratory March 25, 2013 2013 Annual Planning Summary for the Strategic Petroleum Reserve 2013 Annual Planning Summary for the Strategic Petroleum Reserve March 25, 2013 2013 Annual Planning Summary for the Rocky Mountain Oilfield Testing Center 2013 Annual Planning Summary for the Rocky Mountain Oilfield Testing Center

377

Energy Secretary to Visit Georgia Nuclear Reactor Site and Tennessee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary to Visit Georgia Nuclear Reactor Site and Secretary to Visit Georgia Nuclear Reactor Site and Tennessee Laboratory to Highlight Administration Support for Nuclear Energy Energy Secretary to Visit Georgia Nuclear Reactor Site and Tennessee Laboratory to Highlight Administration Support for Nuclear Energy February 13, 2012 - 6:16pm Addthis WASHINGTON, D.C. - U.S. Secretary of Energy Secretary Steven Chu will visit the Vogtle nuclear power plant in Waynesboro, Georgia, and Oak Ridge National Laboratory on Wednesday, February 15 to highlight steps the Obama Administration is taking to restart America's nuclear energy industry. In Waynesboro, Secretary Chu will join Southern Company CEO Thomas A. Fanning, Georgia Power CEO W. Paul Bowers, and local leaders for a tour of Vogtle units 3 and 4 -- the site of the first two new nuclear power units

378

Jefferson Lab Technology Transfer  

Invention Disclosure; CRADA/WFO Routing; Fairness of Opportunity; Achievements at JLab. Patents; New Inventions; New Technologies; New Advances; ...

379

Jefferson Lab Technology Transfer  

Title to invention of sponsor or laboratory operator goes to sponsor under class patent waiver and sponsor ... Disclosure to sponsor of laboratory ...

380

Jefferson Lab Technology Transfer  

Invention Disclosure; CRADA/WFO Routing; Fairness ... Every JLab employee who has an idea that may be patentable is encouraged to follow the simple In ...

Note: This page contains sample records for the topic "thomas jefferson site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Jefferson Lab Technology Transfer  

Research was done in collaboration with the Department of Biology at the College of William and Mary which obtained a grant from NSF and with the support of the ...

382

Jefferson Lab Technology Transfer  

Cryogenic Liquid Level Measuring Apparatus; Uniform Raster Pattern Generating System; ... Injection Mode-locking Ti-Sapphire Laser System; Radial ...

383

Hampton2012report  

NLE Websites -- All DOE Office Websites (Extended Search)

Thomas Jefferson National Accelerator Laboratory. The summer 2012 workshop included a tour of the CMS e-Lab, talks by Vassilis Vassilikopolous and Josh Erlich, and explorations...

384

Land Mine Detection at TJNAF | U.S. DOE Office of Science (SC...  

Office of Science (SC) Website

A A RSS Feeds FeedbackShare Page Applicationinstrumentation: Land Mine detection and security imaging using THz radiation Developed at: Thomas Jefferson National Laboratory...

385

Toward Generalized Organizationally Contexted Agent Control y Thomas Wagner and Victor Lesser  

E-Print Network (OSTI)

(..) Search & Process PC World q(..), d(..), c(..) Key Task Method Resource nle Task nle Subtask Relation all tasks, i.e., coordination is, in a sense, a distributed search process. To control plan about which sites to query/search and handle the assimilation of the gathered data. Personal

Massachusetts at Amherst, University of

386

Hydrate Test Well, Milne Pt. Alaska Thomas D. Lorenson* U.S. Geological Survey, 345 Middlefield Rd., MS/ 999  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessment of Hydrocarbon Gas Sources from the Mt. Elbert No. 1 Gas Assessment of Hydrocarbon Gas Sources from the Mt. Elbert No. 1 Gas Hydrate Test Well, Milne Pt. Alaska Thomas D. Lorenson* U.S. Geological Survey, 345 Middlefield Rd., MS/ 999 Menlo Park, CA, 94025, USA tlorenson@usgs.gov Timothy S. Collett U.S. Geological Survey, Denver Federal Center Box 25046, MS-939 Denver CO, 80225, USA Robert B. Hunter ASRC Energy Services, 3900 C St., Suite 702 Anchorage, Alaska, 99503 USA ABSTRACT Hydrocarbon gases were collected from well cuttings and core at the MtElbert-01 gas hydrate stratigraphic test well, drilled within the Milne Point field on the Alaska North Slope. Regionally, the Eileen gas hydrate deposits overlie the more deeply buried Prudhoe Bay, Milne Point, and Kuparuk River oil fields and are

387

Guidance on how to reference and write a law essay Citation (See Thomas O'Malley, Sources Of Irish Law, 2nd  

E-Print Network (OSTI)

of the parties involved are used, e.g. o RC v E.B. [1997] 1 IR 305 (b) Law Reports · Once you have correctly1 Guidance on how to reference and write a law essay Citation (See Thomas O'Malley, Sources be as follows: o The People (Director of Public Prosecutions) v Tiernan [1988] IR 250 o The People (Attorney

Lee, Hyowon

388

China: Future Customer or Competitor in Livestock Markets? Thomas Hertel, Professor; Alejandro Nin, Graduate Research Assistant; Allan Rae, Professor at Massey  

E-Print Network (OSTI)

China: Future Customer or Competitor in Livestock Markets? Thomas Hertel, Professor; Alejandro Nin livestock trade, which has been relatively neglected. China is a net exporter of livestock products of total trade reflects a steady deterioration of China's com- parative advantage in pork and poul- try

389

In Situ NMR Analysis of Fluids Contained in Sedimentary Rock Thomas M. de Swiet,* Marco Tomaselli,* Martin D. Hurlimann, and Alexander Pines*  

E-Print Network (OSTI)

In Situ NMR Analysis of Fluids Contained in Sedimentary Rock Thomas M. de Swiet,* Marco Tomaselli of pore fluids may be obtained in situ by magic angle spinning (MAS) nuclear magnetic resonance (NMR), which is normally used for solid samples. 1 H MAS­NMR spectra of water and crude oil in Berea sandstone

Pines, Alexander

390

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

91 - 12600 of 26,764 results. 91 - 12600 of 26,764 results. Page Annual Planning Summaries: Western Area Power Administration-Colorado River Storage Project (WAPA-CRSP) http://energy.gov/nepa/annual-planning-summaries-western-area-power-administration-colorado-river-storage-project-wapa Page Annual Planning Summaries: Thomas Jefferson Site Office (TJSO) http://energy.gov/nepa/annual-planning-summaries-thomas-jefferson-site-office-tjso Page Annual Planning Summaries: Western Area Power Administration-Desert Southwest Region (WAPA-DSW) http://energy.gov/nepa/annual-planning-summaries-western-area-power-administration-desert-southwest-region-wapa-dsw Page Annual Planning Summaries: Western Area Power Administration-Rocky Mountain Region (WAPA-RMR) http://energy.gov/nepa/annual-planning-summaries-western-area-power-administration-rocky-mountain-region-wapa-rmr

391

Dynamically polarized target for the g{sub 2}{sup p} and G{sub E}{sup p} experiments at Jefferson Lab  

SciTech Connect

Recently, two experiments were concluded in Hall A at Jefferson Lab which utilized a newly assembled, solid, polarized hydrogen target. The primary components of the target are a new, high cooling power {sup 4}He evaporation refrigerator, and a re-purposed, superconducting split-coil magnet. It has been used to polarize protons in irradiated NH{sub 3} at a temperature of 1 K and at fields of 2.5 and 5.0 tesla. Maximum polarizations of 55% and 95% were obtained at those fields, respectively. To satisfy the requirements of both experiments, the magnet had to be routinely rotated between angles of 0, 6, and 90 with respect to the incident electron beam.

Pierce, Joshua J. [JLAB; Maxwell, James D. [MIT; Keith, Christopher D. [JLAB

2014-01-01T23:59:59.000Z

392

Workplace Violence at DOE Sites: An Update Through 2004 (ORISE...  

NLE Websites -- All DOE Office Websites (Extended Search)

Office 52605 Jefferson Lab, Southeastern Universities Research Assoc. 61605 Kansas City Plant, Honeywell FM&T 53105 Knolls Atomic Power Laboratory No response Lawrence...

393

EA-1384: Finding of No Significant Impact | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

384: Finding of No Significant Impact 384: Finding of No Significant Impact EA-1384: Finding of No Significant Impact Proposed Improvements at the Thomas Jefferson National Accelerator Facility, Newport News, Virginia DOE evaluated the potential environmental impacts from proposed construction of various site improvements and the proposed installation and operation of the Helios light source at Jefferson Lab. The Southeastern Universities Research Association, Inc. operates Jefferson Lab (SURA) under contract to the DOE. With this proposal, DOE intends to construct no more than four major two or three story additions to CEBAF Center, the main facility administration building, and the addition of three new single story and one two story operations support structures on the accelerator site. The proposed action also involves the installation and operation of

394

Hanford Site  

NLE Websites -- All DOE Office Websites

Around the Site Current HMS Observations Daily HMS Extremes in Met Data Met and Climate Data Summary Products Contacts Hours Current NWS Forecast for the Tri-Cities NWS...

395

Medical Sites  

NLE Websites -- All DOE Office Websites (Extended Search)

Medical Sites Name: Jenielle Location: NA Country: NA Date: NA Question: I started itching Aug. 1999. Diagnosed with ITP Oct.1999. I am in remission With a platelet count in...

396

Jerry and Jean Thomas: Thomas Farm  

E-Print Network (OSTI)

Employment and Training Act] program, which was thirty-fivegood program. It turned into JTPA [Job Training Partnership

Farmer, Ellen

2010-01-01T23:59:59.000Z

397

Jerry and Jean Thomas: Thomas Farm  

E-Print Network (OSTI)

of history emeritus Sandy Lydon, The first producer-until the mid-1970s. See Sandy Lydon, Farmers Market

Farmer, Ellen

2010-01-01T23:59:59.000Z

398

Site Map  

NLE Websites -- All DOE Office Websites (Extended Search)

Home » Site Map Home » Site Map Site Map Home About Overview NERSC Mission Contact us Staff Center Leadership Sudip Dosanjh Select Publications Jeff Broughton Katie Antypas John Shalf Francesca Verdier Center Administration James Craw Norma Early Jeff Grounds Betsy MacGowan Zaida McCunney Lynn Rippe Suzanne Stevenson David Tooker Center Communications Jon Bashor Linda Vu Margie Wylie Kathy Kincade Advanced Technologies Group Nicholas Wright Brian Austin Research Projects Matthew Cordery Christopher Daley Analytics Group Peter Nugent David Camp Hank Childs Harinarayan Krishnan Burlen Loring Joerg Meyer Prabhat Oliver Ruebel Daniela Ushizima Gunther Weber Yushu Yao Computational Systems Group Jay Srinivasan James Botts Scott Burrow Tina Butler Nick Cardo Tina Declerck Ilya Malinov David Paul Larry Pezzaglia Iwona Sakrejda

399

Manual  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thomas Jefferson Thomas Jefferson National Accelerator Facility August 2008 Office of Environment, Safety and Health Evaluations Office of Independent Oversight Office of Health, Safety and Security Office of the Secretary of Energy Office of Health, Safety and Security HSS Independent Oversight Abbreviations i 1 Introduction 1 2 Positive Attributes 3 3 Weaknesses 5 4 Results 7 4.1 Work Planning and Control Processes 7 4.2 Feedback and Improvement Systems 10 5 Conclusions 14 6 Ratings 15 Appendix A - Supplemental Information 17 Appendix B - Site-Specific Findings 18 | table Of cOntents table of contents Independent Oversight abbrevIatIOns | i abbreviations Used in this report CAIRS Computerized Accident/Incident Reporting System CAS Contractor Assurance System

400

Finding Technological Solutions to the Energy-Water Nexus by Lindsay M. Green, Thomas J. Feeley, III, and James T. Murphy  

NLE Websites -- All DOE Office Websites (Extended Search)

Technological Solutions to the Energy-Water Nexus by Lindsay M. Green, Thomas J. Feeley, III, and James T. Murphy Technological Solutions to the Energy-Water Nexus by Lindsay M. Green, Thomas J. Feeley, III, and James T. Murphy Energy Security Prepared by the Institute for the Analysis of Global Security August 29, 2005 Contact IAGS: info@iags.org To subscribe, send a blank email to subscribe@iags.org To unsubscribe, send a blank email to unsubscribe@iags.org Energy Security Current Issue What the 9/11 Commission missed One of the main conclusions of the 9/11 Commission is that in order for the U.S. to prevail in the war on terror it must develop a multidisciplinary, comprehensive, and balanced strategy, which integrates diplomacy, intelligence, covert action, law- enforcement, economic policy, foreign aid, homeland defense, and military strength. IAGS' Gal Luft argues that a

Note: This page contains sample records for the topic "thomas jefferson site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

EM ARRA Best Practices and Lessons Learned Workshop: Overview from Thomas Johnson, Jr., Recovery Act Program Director  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM ARRA BEST PRACTICES and LESSONS LEARNED WORKSHOP Presenter: Thomas Johnson, Jr. Recovery Act Program Director Waste Management Symposium Phoenix, AZ March 1, 2012 www.em.doe.gov 2 Recovery Act Benefits  $6B of Recovery Act funds supported 122 projects/activities; including 29 identified added buy-back projects: › 90 funded projects have been physically completed as of March 1st (74% of total) › Another 23 will be completed in FY 2012 (94% of total) › 7 will be completed in FY 2013 (100% of total)  Small Business: Over $2.1B › Prime: $671,119,367 › Subcontractors: $1,434,858,660  FTEs : 2,672.03 (1QFY2012)  Headcount of 36,787 (End of FY 2011) www.em.doe.gov 3 Recovery Act Funding Details Spend Plan Total does not include $ 10 million reprogrammed to DOE Departmental Administration

402

Collective excitation frequencies and stationary states of trapped dipolar Bose-Einstein condensates in the Thomas-Fermi regime  

SciTech Connect

We present a general method for obtaining the exact static solutions and collective excitation frequencies of a trapped Bose-Einstein condensate (BEC) with dipolar atomic interactions in the Thomas-Fermi regime. The method incorporates analytic expressions for the dipolar potential of an arbitrary polynomial density profile, thereby reducing the problem of handling nonlocal dipolar interactions to the solution of algebraic equations. We comprehensively map out the static solutions and excitation modes, including non-cylindrically-symmetric traps, and also the case of negative scattering length where dipolar interactions stabilize an otherwise unstable condensate. The dynamical stability of the excitation modes gives insight into the onset of collapse of a dipolar BEC. We find that global collapse is consistently mediated by an anisotropic quadrupolar collective mode, although there are two trapping regimes in which the BEC is stable against quadrupole fluctuations even as the ratio of the dipolar to s-wave interactions becomes infinite. Motivated by the possibility of a fragmented condensate in a dipolar Bose gas due to the partially attractive interactions, we pay special attention to the scissors modes, which can provide a signature of superfluidity, and identify a long-range restoring force which is peculiar to dipolar systems. As part of the supporting material for this paper we provide the computer program used to make the calculations, including a graphical user interface.

Bijnen, R. M. W. van [Eindhoven University of Technology, P.O. Box 513, NE-5600 MB Eindhoven (Netherlands); Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Parker, N. G. [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT (United Kingdom); Kokkelmans, S. J. J. M. F. [Eindhoven University of Technology, P.O. Box 513, NE-5600 MB Eindhoven (Netherlands); Martin, A. M. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); O'Dell, D. H. J. [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1 (Canada)

2010-09-15T23:59:59.000Z

403

Site C  

Office of Legacy Management (LM)

' ' u. s. A r my Corps or Engineers Kurfal.. Ilisfr ifl om« 1776 N1 . ~lI rll Sfred , lIu fflll" , New v ur k. 14207 Site C loseout Report for th e Ashland I (Includlng Seaway Arca D), Ashland 2 and Rattlesnake Creek FUS RAP Sites To nawanda . New Yor k F ina l - Octo ber 2006 Formerl y Ut ilized Sites Remedi al Actiun Program Dt:CLAlUlfiO lO OF RF ~ I'O""" A <:n o .. ('oMnLflOI'O '" 1 S-~1 1 A "n· nvnn: S Ill: C'lO'iU 'U l RtrUlIT f OR A SlIu x u l (I "ICLU I ING S t:A" ·,H A RU D j, AS H I .A ~O 2 A."n RAnU:M'AKf eRU" ~ rn~ I!d'on at A.hland 1 (Ind udonl Seaway Area DJ. Ashland 2 and kan~snak c Creek is Wi,...... 1c in acwr.hnu willi ~ Rcconl or Oecisim (ROD) . igned 00> April 20. 1998 and l'.1pbIWlOII <;If

404

Thomas Wallner resume  

NLE Websites -- All DOE Office Websites (Extended Search)

Wallner Wallner Argonne National Laboratory Center for Transportation Research 9700 South Cass Avenue, Building 362 Argonne, IL 60439 phone: 630/252-3003, fax: 630/252-3443 e-mail: twallner@anl.gov Professional Experience  2006-Present. Staff employee at Argonne National Laboratory, Center for Transportation Research  2005-2006. Postdoctoral appointee at Argonne National Laboratory, Center for Transportation Research  2004-2005. Authorized contact person and Team leader for Graz University of Technology's European Integrated Project "Hydrogen Internal Combustion Engine"  2001-2004. Scientific assistant at the Institute of Internal Combustion Engines and Thermodynamics at Graz University of Technology, Engine Research/Combustion Process Department

405

Thomas P. Forbes  

Science Conference Proceedings (OSTI)

... in Mechanical Engineering from Case Western Reserve University where ... FL, Fernandez, FM, (2008) "Comparison of Internal Energy Deposition of ...

2012-10-01T23:59:59.000Z

406

Abstract for Thomas Duguet  

NLE Websites -- All DOE Office Websites (Extended Search)

Duguet Duguet Physics Division, Argonne Bare vs effective pairing force. A microscopic pairing interaction for mean-field calculations of finite nuclei. The Hartree-Fock Bogolyubov method with effective forces and its recent extensions such as the Generator Coordinate Method on symmetry restored wave-functions are powerful methods to describe finite nuclei (almost) all over the mass table. However, the phenomenological interactions used so far need to be revisited to address on-going experimental challenges. In particular, the pairing channel of the interaction is poorly known. I will present a microscopic effective interaction proposed recently to treat pairing correlations in the 1S0 channel. This interaction is fully equivalent to the bare NN force at the mean-field level as regards pairing,

407

World Lessons Thomas Turrentine  

E-Print Network (OSTI)

years of subsidies) ­ Ethanol Brazil (3 times over 50% - WW2, 1980s, 2008); ­ 10% CNG New Zealand 1990-4% till 2007, now 15% in 2012 ­ Early experiments prepared market, strategic timing of sales tax reduction, urban mobility, infrastructure. · Oslo: car share ­Move About · Note recent sales of Renault Twizzy, low

California at Davis, University of

408

Thomas Peterson Assistant Director  

E-Print Network (OSTI)

­ Sustainable Nanomanufacturing ­ Nanotechnology for Solar Energy Collection and Conversion 4 $174 M #12 dimensions · Clean Energy Technologies ENG will support novel research for smart grid technologies, solar Hydrocarbons from Biomass Award Credit: George Huber, UMass #12;Power Grid FDRPMU Storage HVDC Wind Farm FACTS

Rose, Michael R.

409

Gentile, Thomas R.  

Science Conference Proceedings (OSTI)

... John S. Toll prize to Outstanding Physics Senior. ... assistant, Stony Brook Nuclear Structure Lab ... Affiliations American Physical Society NPDGamma ...

2012-01-24T23:59:59.000Z

410

Staff Bio - Thomas Wiggins  

Science Conference Proceedings (OSTI)

... business aspects of ATP projects in the Chemistry and Life Sciences Office. ... Tom holds a Bachelor of Science degree in Mechanical Engineering ...

2011-02-02T23:59:59.000Z

411

Thomas P. Wenzel  

NLE Websites -- All DOE Office Websites (Extended Search)

risks, for federal regulations on new vehicle fuel economy and tailpipe greenhouse gas emission standards. Prepared two reports for release with the NPRM and final rule for...

412

Douglas S. Thomas  

Science Conference Proceedings (OSTI)

... Position: Economist Engineering Laboratory Applied Economics Office. Education: Western Michigan University. Contact. ...

2013-02-14T23:59:59.000Z

413

Interview of Keith Thomas  

E-Print Network (OSTI)

in the road outside; I remember going to the village school when I was four, similar to the one my mother had taught at; it had a board saying how many pupils there were which usually said forty eight or forty six; there were three classes; I remember all... ; at that time people read their essays; nowadays they are handed a reading list with the page reference and even the shelf mark to save them the trouble, although the lists I gave were oral; now it is much more streamlined and it is quite clear what the syllabus...

Thomas, Keith

2010-01-01T23:59:59.000Z

414

Thomas McKone  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends High Technology and Industrial Buildings Lighting Systems Residential Buildings...

415

Thomas Dixon's War Prayers  

E-Print Network (OSTI)

203. Cook, Fire from the Flint, 68; Twain, As RegardsAllen Cook, Fire from the Flint: The Amazing Careers ofin Cook, Fire from the Flint, 170; David Stricklin, Ours

Capozzola, Christopher

2009-01-01T23:59:59.000Z

416

Dr. Thomas J. Bruno  

Science Conference Proceedings (OSTI)

... the University of Colorado. Google Scholar Citation Page. Research Interests: Fuel Characterization. Dr. Bruno has been ...

2013-04-17T23:59:59.000Z

417

Abstract for Thomas Schaefer  

NLE Websites -- All DOE Office Websites (Extended Search)

Giessen University, Germany Hadrons in Medium - Theory meets experiment Masses and interactions of hadrons have been predicted to change when these hadrons move inside the nuclear...

418

NIST Thomas Germer  

Science Conference Proceedings (OSTI)

... the Department of Commerce Bronze and Silver Medals, the NIST Chapter of Sigma Xi Young Scientist Award, and is a Fellow member of SPIE. ...

2012-10-25T23:59:59.000Z

419

Division Site  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Reduction Catalysts Carbon Dioxide Reduction Catalysts Our research program is directed toward developing and understanding metal complexes that catalyze reactions relevant to renewable energy, particularly those that reduce carbon dioxide to fuels or fuel precursors. Carbon dioxide reduction catalysts are important targets because they could enable "recycling" of hydrocarbon fuels, thus lowering their carbon footprint. Our research addresses two key challenges in this area. First, we aim to improve the lifetimes, activity, and selectivity of homogeneous catalysts by incorporating them into porous heterogeneous frameworks derived from structurally persistent organic polymers. These frameworks allow isolation of the catalytic centers, which inhibits reaction pathways that lead to catalyst decomposition, and enable the spatially controlled deployment of ancillary functional groups that bind and concentrate substrate near the active site and/or assist with its activation. Second, we are developing homogeneous dual-catalyst systems and assemblies that couple CO2 reduction catalysis to a parallel catalytic reaction that provides the reducing equivalents. We are especially interested in proton-coupled electron-transfer reactions involving activation of H2 and of organic dehydrogenation substrates, wherein the proton pathway also participates in the conversion of CO2 to CO. In both of these research thrusts we are studying catalysts that may be activated under thermal, electrochemical, or photochemical conditions.

420

The Office of Site Closure: Progress in the Face of Challenges  

SciTech Connect

The Office of Site Closure (OSC) was formed in November 1999 when the Department of Energy's (DOE's) Office of Environmental Management (EM) reorganized to focus specifically on site cleanup and closure. OSC's objective is to achieve safe and cost-effective cleanups and closures that are protective of our workers, the public, and the environment, now and in the future. Since its inception, OSC has focused on implementing a culture of safe closure, with emphasis in three primary areas: complete our responsibility for the Closure Sites Rocky Flats, Mound, Fernald, Ashtabula, and Weldon Spring; complete our responsibility for cleanup at sites where the DOE mission has been completed (examples include Battelle King Avenue and Battelle West Jefferson in Columbus, and General Atomics) or where other Departmental organizations have an ongoing mission (examples include the Brookhaven, Livermore, or Los Alamos National Laboratories, and the Nevada Test Site); and create a framework a nd develop specific business closure tools that will help sites close, such as guidance for and decisions on post-contract benefit liabilities, records retention, and Federal employee incentives for site closure. This paper discusses OSC's 2001 progress in achieving site cleanups, moving towards site closure, and developing specific business closure tools to support site closure. It describes the tools used to achieve progress towards cleanup and closure, such as the application of new technologies, changes in contracting approaches, and the development of agreements between sites and with host states. The paper also identifies upcoming challenges and explores options for how Headquarters and the sites can work together to address these challenges. Finally, it articulates OSC's new focus on oversight of Field Offices to ensure they have the systems in place to oversee contractor activities resulting in site cleanups and closures.

Fiore, J. J.; Murphie, W. E.; Meador, S. W.

2002-02-26T23:59:59.000Z

Note: This page contains sample records for the topic "thomas jefferson site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

SURA final  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Central Office Expenses for the Central Office Expenses for the Thomas Jefferson National Accelerator Facility DOE/IG-0629 December 2003 Central Office Expenses Details of Finding ................................................................................ 1 Recommendations and Comments ................................................. 3 Appendices Objective, Scope, and Methodology ............................................... 5 Management Comments ................................................................... 7 CENTRAL OFFICE EXPENSES FOR THE THOMAS JEFFERSON NATIONAL ACCELERATOR FACILITY TABLE OF CONTENTS Page 1 Claimed and Reimbursed Costs The Southeastern Universities Research Association is the Department of Energy's (Department) contractor for the operation of the Thomas

422

Wall-rock alteration and uranium mineralization in parts of Thomas Range Mining District, San Juan County, Utah, and its significance in mineral exploration  

SciTech Connect

Several important uranium deposits associated with fluorspar and beryllium are located in parts of Thomas Range area. the mineralization is found in dolomites and dolomitic limestones of Paleozoic age and sandstones, tuffs, and rhyolites belonging to the Tertiary Spor Mountain and Topaz Mountain Formations. The pipes, veins, and nodules of fluorspar are replaced by uranium. Veins and disseminations of radioactive fluorspar and opal and overgrowths of secondary minerals are found in rhyolites, tuffs, carbonate rocks, and breccias. The radioactivity in sandstones and conglomerates emanates from weeksite, beta-uranophane, zircon, gummite, and zircon. It also occurs as highly oxidized rare aphanitic grains disseminated in a few ore deposits. The results of the present investigations may influence the initiation of future exploration programs in the Thomas Range mining district. Hydrothermal fluids of deep-seated magmatic origin rich in U, V, Th, Be, and F reacted with the country rocks. The nature and sequence of wall-rock alteration and its paragenetic relationship with the ores have been determined. The mineralization is confined to the altered zones. The ore bodies in the sedimentary rocks and the breccias are located in the fault zones. More than 1000 faults are present in the area, greatly complicating mineral prospecting. The wall-rock alteration is very conspicuous and can be used as a valuable tool in mineral exploration.

Mohammad, H.

1985-05-01T23:59:59.000Z

423

CERCLA - Site Selector  

NLE Websites -- All DOE Office Websites (Extended Search)

(LEHR) Fernald Preserve Monticello Site Mound Site - Miamisburg Closure Project Rocky Flats Site Weldon Spring Search the Administrative Record The White House USA.gov E-Gov...

424

ORNL DAAC Site Map  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Map ORNL DAAC Site Map About Us About ORNL DAAC Who We Are User Working Group Biogeochemical Dynamics Data Citation Policy News Newsletters Workshops Site Map Products...

425

Savannah River Site  

NLE Websites -- All DOE Office Websites (Extended Search)

River Site Savannah River Site Savannah River Site (SRS) has mission responsibilities in nuclear weapons stockpile stewardship by ensuring the safe and reliable management of...

426

CERCLA - Site Selector  

Office of Legacy Management (LM)

Monticello Site Mound Site - Miamisburg Closure Project Rocky Flats Site Weldon Spring Search the Administrative Record The White House USA.gov E-Gov Information Quality FOIA...

427

SSA Young Aspen Site  

NLE Websites -- All DOE Office Websites (Extended Search)

Site (SSA-YA) The pole-tower at the YA site Closer look at the pole-tower at the YA site Solar panels powering the site, mounted on a folding ladder The young aspen canopy...

428

Chapter 3: Building Siting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

: Building Siting : Building Siting Site Issues at LANL Site Inventory and Analysis Site Design Transportation and Parking LANL | Chapter 3 Site Issues at LANL Definitions and related documents Building Siting Laboratory site-wide issues include transportation and travel distances for building occupants, impacts on wildlife corridors and hydrology, and energy supply and distribution limitations. Decisions made during site selec- tion and planning impact the surrounding natural habitat, architectural design integration, building energy con- sumption, occupant comfort, and occupant productivity. Significant opportunities for creating greener facilities arise during the site selection and site planning stages of design. Because LANL development zones are pre- determined, identify the various factors affecting devel-

429

Indiana Web Sites  

U.S. Energy Information Administration (EIA)

Indiana Web Sites Other Links : Indiana Electricity Profile: Indiana Energy Profile: Indiana Restructuring: Last Updated: April 2007 . Sites: Links ...

430

Florida Web Sites  

U.S. Energy Information Administration (EIA)

Florida Web Sites Other Links : Florida Electricity Profile: Florida Energy Profile: Florida Restructuring: Last Updated: April 2007 . Sites: Links ...

431

MIDC: Web Site Search  

NLE Websites -- All DOE Office Websites (Extended Search)

MIDC Web Site Search Enter words or phrases: Search Clear Help Also see the site directory. NREL MIDC...

432

Jefferson Lab Technology Transfer - JLab  

Grants and cooperative agreements are entered into solely by the government with a recipient whereby money or property is transferred to the recipient to support ...

433

Jefferson Lab Technology Transfer - JLab  

Proponents say scintimammography could save patients or their health care providers a lot of money on biopsies.

434

Career Opportunities at Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

more courses from time to time after they 'finish' school to improve or update their skills and knowledge. They know they must always be learning if they want to be successful....

435

Jefferson Lab Science Series - Holograms  

NLE Websites -- All DOE Office Websites (Extended Search)

Clocks and Timekeeping Previous Video (Clocks and Timekeeping) Science Series Video Archive Next Video (Which Way is Up?) Which Way is Up? Holograms Mr. Paul Christie - Liti...

436

Jefferson Lab Technology Transfer - JLab  

Dual Design Resistor for High Voltage Conditioning and Transmission Lines; Anatomic and Functional Imaging of Tagged Molecules in Animals;

437

Jefferson Lab Technology Transfer - JLab  

... Health Sciences Center will be conducting the test programs including phantom studies to identify the detector type with the ... such a facility ...

438

Science Education at Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Education Privacy and Security Notice Science Education Teacher Resources Student Zone Games and Puzzles Science Cinema Programs and Events Search Science Education As a...

439

Jefferson Science Associates, LLC - JLab  

Chief Financial Officer & Business Operations Manager, be based on JLab Management view ... risk capital and expenses necessary to bring the invention to the point of ...

440

Jefferson Lab Technology Transfer - JLab  

This control system must provide supervisory I/O, local feedback control, analysis capability, and operator interfaces for numerous accelerator ...

Note: This page contains sample records for the topic "thomas jefferson site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Flat Stanley visits Jefferson Lab!  

NLE Websites -- All DOE Office Websites (Extended Search)

halls, helps with the filming of an episode of Frostbite Theater, watches a National Science Bowl competition and strolls the sands of nearby Virginia Beach Next Page ...

442

Jefferson Lab Technology Transfer - JLab  

Invention Disclosure; CRADA/WFO Routing; Fairness of Opportunity; America Invents Act Summary; Achievements at JLab. Patents; New Inventions; New ...

443

Jefferson Lab Technology Transfer - JLab  

.6. A brief description of the company's commitment and overall plans to successfully develop, manufacture and sell products under the proposed ...

444

ESS 2012 Peer Review - Redox Flow Battery (RFB) with Low-cost Electrolyte and Membrane Technologies - Thomas Kodenkandath, ITN Energy Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovative, high energy density Mn-V based RFB electrolytes as a Innovative, high energy density Mn-V based RFB electrolytes as a low-cost alternate to all-Vanadium systems * Low-cost membrane technology, based on renewable biopolymer Chitosan with improved proton conduction & chemical stability, adaptable to Mn-V system * Scale-up of electrolyte and membrane technologies in pursuit of ARPA-E's goal for a 2.5kW/10kWh RFB stack with integrated BoS at a total cost of ~$1000/unit and ~1.2 m 3 footprint ITN Energy Systems, Inc., Littleton, CO 2.5kW/10kWh Redox Flow Battery (RFB) with Low-cost Electrolyte and Membrane Technologies $2.1 M, 33-month program awarded by ARPA-E Sept 7, 2012 Dr. Thomas Kodenkandath High-Performance, Low-cost RFB through Electrolyte & Membrane Innovations Technology Summary

445

EM Celebrates Ribbon Cutting for New Biomass Plant at Savannah River Site |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Celebrates Ribbon Cutting for New Biomass Plant at Savannah Celebrates Ribbon Cutting for New Biomass Plant at Savannah River Site EM Celebrates Ribbon Cutting for New Biomass Plant at Savannah River Site March 1, 2012 - 12:00pm Addthis Pictured from left are Senior Advisor for Environmental Management David Huizenga; DOE Savannah River Operations Office Manager Dave Moody; SRNS Infrastructure Maintenance and Engineering Manager John Stafford; DOE Federal Projects Director Jim DeMass; Under Secretary for Nuclear Security Thomas D’Agostino; DOE-Savannah River Assistant Manager Karen Guevara; Ameresco Federal Programs Director Nicole Bulgarino; Ameresco Executive Vice President Keith Derrington; U.S. Rep. Joe Wilson (R-SC); Ameresco Program Manager Ken Chacey; and Ameresco President and CEO George Sakellaris.

446

EA-1534: Final Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Environmental Assessment Final Environmental Assessment EA-1534: Final Environmental Assessment Proposed Upgrade and Operation of the CEBAF and FEL Accelerators and Construction and Use of Buildings Associated with the 2005 Ten-Year Site Plan The U. S. Department of Energy (DOE), in this Environmental Assessment (EA), reports the results of an analysis of the potential environmental impacts from the proposed upgrade and operation of the Continuous Electron Beam Accelerator Facility (CEBAF) and Free-Electron Laser (FEL) accelerators and the construction and use of buildings associated with the 2005 Ten-Year Site Plan at the Thomas Jefferson National Accelerator Facility (TJNAF or Jefferson Lab) in Newport News, Virginia. Environmental Assessment for the Proposed Upgrade and Operation of the

447

Geothermal: Site Map  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Site Map Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications...

448

Land Validation web site  

NLE Websites -- All DOE Office Websites (Extended Search)

web site A web site is now available for the Land Validation project. It was created with the purpose of facilitating communication among MODIS Land Validation Principal...

449

Site Lead TQP Standard  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of specific site safety functions. C. Must have the ability to provide an overall systematic assessment of site safety performance and to characterize the major issues and...

450

Plug & Play Sensors Sites  

Science Conference Proceedings (OSTI)

... Documents. Plug & Play Sensors Sites. ... Plug & Play Sensors Sites. By selecting some of the links below, you will be leaving NIST webspace. ...

2012-06-05T23:59:59.000Z

451

Career Site FAQs | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Careers Working at ORNL Diversity Postdocs Internships and Postgrad Opportunities Fellowships Career Site FAQs Events and Conferences Careers Home | ORNL | Careers | Career Site...

452

Hanford Site Development Plan  

SciTech Connect

The Hanford Site Development Plan (Site Development Plan) is intended to guide the short- and long-range development and use of the Hanford Site. All acquisition, development, and permanent facility use at the Hanford Site will conform to the approved plan. The Site Development Plan also serves as the base document for all subsequent studies that involve use of facilities at the Site. This revision is an update of a previous plan. The executive summary presents the highlights of the five major topics covered in the Site Development Plan: general site information, existing conditions, planning analysis, Master Plan, and Five-Year Plan. 56 refs., 67 figs., 31 tabs.

Rinne, C.A.; Curry, R.H.; Hagan, J.W.; Seiler, S.W.; Sommer, D.J. (Westinghouse Hanford Co., Richland, WA (USA)); Yancey, E.F. (Pacific Northwest Lab., Richland, WA (USA))

1990-01-01T23:59:59.000Z

453

Particle Physics Education Sites  

NLE Websites -- All DOE Office Websites (Extended Search)

Particle Physics Education Sites quick reference Education and Information - National Laboratory Education Programs - Women and Minorities in Physics - Other Physics Sites -...

454

Audit Report Hanford Site Contractors' Use of Site Services,...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report Hanford Site Contractors' Use of Site Services, WR-B-99-03 Audit Report Hanford Site Contractors' Use of Site Services, WR-B-99-03 To operate the Hanford Site (Site),...

455

Retrieval Group Sites  

Science Conference Proceedings (OSTI)

... Information Retrieval Tools and Systems: ... currently unavailable. Other sites with extensive information retrieval (IR) links: ...

456

DOE - Office of Legacy Management -- Mound Site  

Office of Legacy Management (LM)

Site Fairfield Site Falls City Site Fernald Preserve Gasbuggy Site General Atomics Geothermal Gnome-Coach Site Grand Junction Sites Granite City Site Green River Site Gunnison...

457

Notice of Availability of a Supplement Analysis for Transportation, Storage, Characterization, and Disposal of Transuranic Waste Currently Stored at the Batelle West Jefferson Site Near Columbus, Ohio (DOE/EIS-0200-SA-02) (09/08/05)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Register Federal Register / Vol. 70, No. 173 / Thursday, September 8, 2005 / Notices meeting, NIST scientists presented preliminary reports on technical work tasks defined by resolutions adopted at the January plenary meeting and one additional resolution was adopted by the Development Committee. The Development Committee approved with edits initial recommendations for voluntary voting system guidelines at the April 20 and 21, 2005 meeting. The document, Voluntary Voting System Guidelines Version 1: Initial Report was submitted by the Development Committee to the EAC as required by HAVA on May 9, 2005. The EAC is currently accepting public comment on proposed voluntary voting system guidelines through September 30, 2005. Proposed guidelines and public comment procedures are available at

458

Hanford Site Strategic Facilities Plan: Site planning  

SciTech Connect

This plan revises the Hanford Site Strategic Facilities Plan submitted by Westinghouse Hanford Company in 1988. It separates the Hanford Site facilities into two categories: ''strategically required'' facilities and ''marginal'' facilities. It provides a comparison of future facility requirements against existing capacities and proposed projects to eliminate or consolidate marginal facilities (i.e., those facilities that are not fully utilized or are no longer required to accomplish programmatic missions). The objective is to enhance the operating efficiency of the Hanford Site by maximizing facility use and minimizing unnecessary facility operating and maintenance costs. 11 refs.

1989-03-01T23:59:59.000Z

459

Site Manager Kansas City Site Office  

National Nuclear Security Administration (NNSA)

Kansas City Site Office (KCSO) Workforce Diversity FY 2010 NNSA Service Center EEO and Diversity Program Office PO Box 5400 Albuquerque, NM 87185 (505) 845-5517 TTY (800)...

460

U.S. Department of Energy Research News - Text Only  

NLE Websites -- All DOE Office Websites (Extended Search)

Research News Research News Science for America's Future Search Releases and Features: Go! Publications Image Gallery News Release Archive Features Archive Library Contacts Privacy Policy Graphical Version Site Map Labs Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Idaho National Engineering & Environmental Laboratory Lawrence Berkeley National Laboratory Lawrence Livermore National Laboratory Los Alamos National Laboratory National Energy Technology Laboratory National Renewable Energy Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory Sandia National Laboratories Stanford Linear Accelerator Center Thomas Jefferson National Accelerator Facility

Note: This page contains sample records for the topic "thomas jefferson site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

SSA Fen Site  

NLE Websites -- All DOE Office Websites (Extended Search)

View an aerial photo-map of the SSA-Fen site. A general view of the Fen The flux tower at the Fen The huts at the Fen Pink flamingos, fen hens at the SSA-Fen site. Aerial...

462

Redesigned Web Sites  

NLE Websites -- All DOE Office Websites (Extended Search)

Redesigned Web Sites In an ongoing effort to improve services to our customers, the ORNL DAAC is pleased to announce that it has released a major revision to its Web site. The new...

463

Web Site Metadata  

E-Print Network (OSTI)

International World Wide Web Conference, pages 11231124,Erik Wilde. Site Metadata on the Web. In Proceedings of theUCB ISchool Report 2009-028 Web Site Metadata [4] David R.

Wilde, Erik; Roy, Anuradha

2009-01-01T23:59:59.000Z

464

Towoomba Site Image #1  

NLE Websites -- All DOE Office Websites (Extended Search)

Graphs Image TWM-1: General view of the Towoomba savanna grassland site, South Africa. (Photograph by Dr. R.J. Scholes, Forestek, CSIR, Pretoria, South Africa). Go to Site...

465

2012 Site Visit Manual  

Science Conference Proceedings (OSTI)

... before the first day on-site, all team members meet at their hotel to finalize ... All of the prework done above will save you much time and energy on-site ...

2012-09-04T23:59:59.000Z

466

ORNL Site Ofice  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ORNL Site Ofice ORNL Site Ofice P.O. Box 2008 Oak Ridge, Tennessee 37831-6269 January 28, 2013 MEMORANDUM FOR GREGORY H. WOODS GENERAL COUNSEL GC-1 FROM: SUBJECT: ��MK = MOORE, MANAGER lF �NL SITE OFFICE ANNUAL NATIONAL ENVIRONMENTAL POLICY ACT (NEPA) PLANNING SUMMARY FOR 2013- OAK RIDGE NATIONAL LABORATORY (ORNL) SITE OFFICE (OSO) This correspondence transmits the Annual NEPA Planning Summary for 2013 for OSO.

467

Completed Sites Listing  

Energy.gov (U.S. Department of Energy (DOE))

As of fiscal year 2012, EM (and its predecessor organization UMTRA) completed cleanup and closed 90 sites in 24 states.

468

Idaho Site Nuclear Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Nuclear Facilities Idaho Idaho National Laboratorys (INL) Idaho Closure Project (ICP) This page was last updated on May 16...

469

EA-1384: Final Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1384: Final Environmental Assessment EA-1384: Final Environmental Assessment EA-1384: Final Environmental Assessment Proposed Improvements at the Thomas Jefferson National Accelerator Facility Newport News, Virginia In this EA, the DOE reports the results of an analysis of the potential environmental impacts from proposed improvements to the Thomas Jefferson National Accelerator Facility (TJNAF or Jefferson Lab) in Newport News, Virginia. The proposed action evaluated in this EA involves improvements to support the operation of Jefferson Lab. DOE has prepared this EA to determine the potential for adverse impacts from radiation produced with the operation of the Helios, disturbance of land from construction, effects on the offsite population, and other sources of potential impact. Environmental Assessment Proposed Improvements at the Thomas Jefferson

470

Neutron Structure at Large X | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 3:30PM to 4:30PM Presenter Cynthia Keppel, Thomas Jefferson National Accelerator Facility Location Building 203, Room R150 Type Seminar Series Physics Division Seminar...

471

Testimony of Gregory H. Friedman - November 30, 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American Recovery and Reinvestment Act of 2009 OAS-RA-11-20 2011-09-30 5. The 12 GeV CEBAF Upgrade Project at Thomas Jefferson National Accelerator Facility OAS-RA-L-11-13...

472

Photodisintegration of [superscript 4]He into p plus t  

E-Print Network (OSTI)

The two-body photodisintegration of 4He into a proton and a triton has been studied using the CEBAF Large-Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. Real photons produced with the ...

Suleiman, R.

473

AppStat14 04-08-13 Final FY 2014 Cong Req.xlsx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

... 484,642 500,431 544,438 +59,796 +12.3% Construction: 06-SC-01 12 GeV continuous electron beam accelerator facility upgrade, Thomas Jefferson...

474

Daily Journal -California's Largest Legal News Provider U.S. firms to enter that territory.  

E-Print Network (OSTI)

for the BCS bowl system. By Rodney K. Smith of Thomas Jefferson School of Law Technology & Science Test The Bowl Championship Series: It's about power Academic values and student welfare are no longer priorities

Rose, Michael R.

475

Principal Characteristics of a Modern Grid  

NLE Websites -- All DOE Office Websites (Extended Search)

"A little revolution now and then is a good thing." - Thomas Jefferson, 1787 Smart Grid video Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y...

476

Site Environmental Report, 1993  

SciTech Connect

The Site Environmental Report (SER) is prepared annually in accordance with DOE Order 5400.1, ``General Environmental Protection Program.`` This 1993 SER provides the general public as well as scientists and engineers with the results from the site`s ongoing Environmental Monitoring Program. Also included in this report is information concerning the site`s progress toward achieving full compliance with requirements set forth by DOE, US Environmental Protection Agency (USEPA), and Ohio EPA (OEPA). For some readers, the highlights provided in the Executive Summary may provide sufficient information. Many readers, however, may wish to read more detailed descriptions of the information than those which are presented here.

Not Available

1994-06-01T23:59:59.000Z

477

DOE Site List  

Office of Environmental Management (EM)

Links Links Central Internet Database CID Photo Banner DOE Site List Site Geo Site Code State Operations Office1 DOE Programs Generating Streams at Site DOE Programs Managing Facilities Associated Data2 Acid/Pueblo Canyons ACPC NM Oak Ridge Waste/Media, Facilities Airport Substation CA Western Area Power Administration Facilities Akron Hill Communication Site CO Western Area Power Administration Facilities Akron Substation CO Western Area Power Administration Facilities AL Complex NM Albuquerque DP Facilities Alba Craft ALCL OH Oak Ridge Facilities Albany Research Center AMRC OR Oak Ridge Facilities Alcova Switchyard WY Western Area Power Administration Facilities Aliquippa Forge ALFO PA Oak Ridge Facilities

478

Potential Release Sites  

NLE Websites -- All DOE Office Websites (Extended Search)

PRS PRS Potential Release Sites Legacy sites where hazardous materials are found to be above acceptable levels are collectively called potential release sites. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Less than 10 percent of the total number of potential release sites need to go through the full corrective action process. What are potential release sites? Potential release sites are areas around the Laboratory and the town of Los Alamos at which hazardous materials from past activities have been found. Some examples of potential release sites include septic tanks and associated drain lines chemical storage areas wastewater outfalls material disposal areas incinerators sumps firing ranges

479

TWP93.0100104 DOC#: TWP-DOC-1.4 SCIENCE AND SITING STRATEGY FOR THE  

NLE Websites -- All DOE Office Websites (Extended Search)

TWP93.0100104 TWP93.0100104 DOC#: TWP-DOC-1.4 SCIENCE AND SITING STRATEGY FOR THE TROPICAL WESTERN PACIFIC ARM CART LOCALE Thomas P. Ackerman The Pennsylvania State University Bill Clements Fairley Barnes Los Alamos National Laboratory David S. Renné National Renewable Energy laboratory Science and Siting Strategy for the Tropical Western Pacific ARM CART Locale Ackennan, T., B. Clements, F. Barnes, and D. Renne DISCLAIMER This is a working document of the Tropical Western Pacific Program of the United States Department of Energy's Atmospheric Radiation Measurement Program. It is updated periodically and this release may not reflect the most current status of the program. It should not be quoted without consultation with the authors and specific reference to this disclaimer.

480

Siting Handbook WIND ENERGY SITING HANDBOOK  

E-Print Network (OSTI)

This Wind Energy Siting Handbook (the "Handbook") presents general information about regulatory and environmental issues associated with the development and siting of wind energy projects in the United States. It is intended to be a general guidance document providing technical information and tools for identifying potential issues that may arise with wind energy projects. The Handbook contains links to resources on the Internet. Those links are provided solely as aids to assist you in locating other Internet resources that may be of interest. They are not intended to state or imply that AWEA or the Contributors endorse, approve, sponsor, or are affiliated or associated with those linked sites. The Handbook is not intended as a comprehensive discussion of all wind energy project issues and should be used in conjunction with other available resources. The Handbook also is not intended as legal or environmental advice or as a best practices manual, nor should it be considered as such. Because the Handbook is only a general guidance document, independent legal counsel and/or environmental consulting services should be obtained to further explore any wind energy siting issue, matter, or project. In reviewing all or any part of the Handbook, you acknowledge and understand that the Handbook is only a general guidance document and does not constitute a best practices manual, legal or environmental advice, or a legal or other relationship with the American Wind Energy Association ("AWEA") or any of the persons or entities

unknown authors

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thomas jefferson site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

NETL: Site Environmental Quality  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Environmental Quality Site Environmental Quality About NETL Site Environmental Quality - Certified to ISO 14001:2004 Questions about NETL's Environment, Safety and Health Management System may be directed to Michael Monahan, 304-285-4408, michael.monahan@netl.doe.gov. NETL has implemented an Environment, Safety and Health (ES&H) Management System, based on DOE's Integrated Safety Management System, the International Organization for Standardization (ISO) 14000 series, and the Occupational Health and Safety Assessment (OHSAS) 18000 series. While the original scope of the ES&H Management System included the Morgantown and Pittsburgh sites, in fiscal year 2010, the Albany site was incorporated into the existing ES&H Management System. In addition, all three sites underwent ISO 14001:2004 recertification audits and Morgantown and

482

WCI | Site 300 CORS  

NLE Websites -- All DOE Office Websites (Extended Search)

: CORS : CORS Weather Site Access Contained Firing Facility (CFF) Continuosly Operating Reference Station (CORS) CORS logo How to access GPS satellite data The National Geodetic Survey(NGS) Home Page for the S300 CORS base station is: http://www.ngs.noaa.gov/CORS/ Type S300 into "enter SiteID" To get user-friendly data: http://www.ngs.noaa.gov/UFCORS/ The GPS data will be in "receiver independent exchange" (RINEX) format, version 2.10. CORS Proxy Data Availability Details: NGS Reference Position Information Site 300 CORS Reference Position RTK Transmission Frequency NGS s300 Site Log NGS s300 Site Map Links to other GPS sites Last modified: July 27, 2011 UCRL-MI-134143 | Privacy & Legal Notice Contact: wci-webteam@llnl.gov NNSA Logo DOE Logo

483

MONTICELLO NPL SITES  

Office of Legacy Management (LM)

.. ' \ MONTICELLO NPL SITES FFA QUARTERLY REPORT: October 1 -December 31, 2008 DOE Site Manager: Jalena Dayvault JR 7CJ7 This report summarizes current project status and activities implemented during October tiU'ough December 2008, and provides a schedule of planned near term activities for the Monticello MIII Tailings Site (MMTS) and the Monticello Vicinity Properties (MVP) NPL sites. This report also includes repository and Pond 4 leachate collection data, quarterly site inspection repmis, site meteorological data, and monitoring summary for tlw ex situ ground water treatment system. 1.0 MMTS Activities/Status Repository and Pond 4 · * Monthly and quarterly inspection of the repository identified no abnormalities (see attached repmis). .

484

Site environmental report summary  

Science Conference Proceedings (OSTI)

In this summary of the Fernald 1992 Site Environmental Report the authors will describe the impact of the Fernald site on man and the environment and provide results from the ongoing Environmental Monitoring Program. Also included is a summary of the data obtained from sampling conducted to determine if the site complies with DOE, US Environmental Protection Agency (USEPA), and Ohio EPA (OEPA) requirements. These requirements are set to protect both man and the environment.

Not Available

1992-12-31T23:59:59.000Z

485

Nairobi Site Image #1  

NLE Websites -- All DOE Office Websites (Extended Search)

NRB-1: Canopy reflectance measurement within the Nairobi grassland site, Kenya. (Prof. Jenesio Kinyamario, University of Nairobi, is using a rednear-infrared spectral ratio meter....

486

CPER Site Image #1  

NLE Websites -- All DOE Office Websites (Extended Search)

CPR-1: Weather stationexclosure within the CPER grassland site, Colorado, USA. (Mark Lindquist, Colorado State University, is checking a wetdry deposition gauge. Photograph taken...

487

SITE LIGHTING FOUNDATIONS  

SciTech Connect

The purpose of this analysis is to design structural foundations for the Site Lighting. This analysis is in support of design drawing BABBDF000-01717-2100-23016.

M. Gomez

1995-01-17T23:59:59.000Z

488

Site Lead TQP Standard  

NLE Websites -- All DOE Office Websites (Extended Search)

Qualification Standard for the Office of Safety and Emergency Management Evaluations Site Lead Program May 2011 Office of Enforcement and Oversight Office of Health, Safety and...

489

1994 Site environmental report  

Science Conference Proceedings (OSTI)

The Fernald site is a Department of Energy (DOE)-owned facility that produced high-quality uranium metals for military defense for nearly 40 years. DOE suspended production at the site in 1989 and formally ended production in 1991. Although production activities have ceased, the site continues to examine the air and liquid pathways as possible routes through which pollutants from past operations and current remedial activities may leave the site. The Site Environmental Report (SER) is prepared annually in accordance with DOE Order 5400.1, General Environmental Protection Program. This 1994 SER provides the general public as well as scientists and engineers with the results from the site`s ongoing Environmental Monitoring Program. Also included in this report is information concerning the site`s progress toward achieving full compliance with requirements set forth by DOE, U.S. Environmental Protection Agency (USEPA), and Ohio EPA (OEPA). For some readers, the highlights provided in this Executive Summary may provide sufficient information. Many readers, however, may wish to read more detailed descriptions of the information than those which are presented here. All information presented in this summary is discussed more fully in the main body of this report.

NONE

1995-07-01T23:59:59.000Z

490

Site Transition Guidance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Transition Guidance March 2010 Office of Environmental Management U.S. Department of Energy Washington D. C. 20585 Standard Review Plan (SRP) Technical Framework for EM...

491

Badkhyz Site Image #1  

NLE Websites -- All DOE Office Websites (Extended Search)

BDK-1: Experiment to study the effect of UV-b solar radiation on litter decomposition at the Badkhyz grassland site, Turkmenistan. (Prof. Leonid Rodin, Komarov Botanical Institute,...

492

historic site award  

Science Conference Proceedings (OSTI)

... Honors 'Historic Site' of NBS Physics Discovery. ... The American Physical Society (APS) has named ... revealed that in certain nuclear processes pairs ...

2011-11-16T23:59:59.000Z

493

SRS Site Needs  

SRS Site Needs Neil R. Davis Program Manager Technology Development and Tank Closure Projects Washington Savannah River Company Aluminum/Chromium Leaching Technical ...

494

Calabozo Site Image #1  

NLE Websites -- All DOE Office Websites (Extended Search)

CLB-1: General view of the Trachypogon savanna at the Calabozo grassland site, Venezuela. (Trees include Curatella americana, Bowdichia virgilioides and Byrsonima crassifolia....

495

1999 Site Environmental Report  

SciTech Connect

The Site Environmental Report for Brookhaven National Laboratory for the calendar year 1999, as required by DOE Order 231.1.

NONE

2000-09-01T23:59:59.000Z

496

Historical Photographs: Idaho Sites  

NLE Websites -- All DOE Office Websites (Extended Search)

Idaho Sites Small Image 1. Measuring intentional radiation release at the Idaho experimental dairy farm (1964). (195Kbytes) Small Image 2. Measuring intentional radiation...

497

Pantex Site - Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Reports Pantex Site Activity Reports 2013 Pantex Plant Operational Awareness Oversight, May 2013 Review Reports 2012 Assessment of Nuclear Safety Culture at the Pantex Plant,...

498

RMOTC RMOTC -Site Map  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Map Home About Us About Us Staff Field Info History Photo Gallery Awards & Testimonials Safety Initiatives Outreach & Community News Latest News Newsletters Press Releases...

499

2004 Environmental Site Report  

NLE Websites -- All DOE Office Websites (Extended Search)

phenolic compounds. Tests of underground coal gasification and tests of in-situ oil shale retorting resulted in contamination at these sites. The largest cleanup activity...

500

2001 SITE ENVIRONMENTAL REPORT  

Science Conference Proceedings (OSTI)

THE SITE ENVIRONMENTAL REPORT FOR BROOKHAVEN NATIONAL LABORATORY FOR THE CALENDAR YEAR 2001, AS REQUIRED BY DOE ORDER 231.1.

BROOKHAVEN NATIONAL LABORATORY

2002-09-01T23:59:59.000Z