National Library of Energy BETA

Sample records for thirty-four end-use technologies

  1. Realizing Building End-Use Efficiency with Ermerging Technologies

    Broader source: Energy.gov [DOE]

    Information about the implementation of emerging technologies to maximize end-use efficiency in buildings.

  2. Vehicle Technologies Office: Biofuels End-Use Research | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Alternative Fuels » Vehicle Technologies Office: Biofuels End-Use Research Vehicle Technologies Office: Biofuels End-Use Research Biofuels offer Americans viable domestic, environmentally sustainable alternatives to gasoline and diesel. Learn about the basics, benefits, and issues to consider related to biodiesel and ethanol on the Alternative Fuels Data Center. The Vehicle Technologies Office supports research to increase our knowledge of the effects of biofuels on engines and

  3. Electricity end-use efficiency: Experience with technologies, markets, and policies throughout the world

    SciTech Connect (OSTI)

    Levine, M.D.; Koomey, J.; Price, L.; Geller, H.; Nadel, S.

    1992-03-01

    In its August meeting in Geneva, the Energy and Industry Subcommittee (EIS) of the Policy Response Panel of the Intergovernmental Panel on Climate Change (IPCC) identified a series of reports to be produced. One of these reports was to be a synthesis of available information on global electricity end-use efficiency, with emphasis on developing nations. The report will be reviewed by the IPCC and approved prior to the UN Conference on Environment and Development (UNCED), Brazil, June 1992. A draft outline for the report was submitted for review at the November 1991 meeting of the EIS. This outline, which was accepted by the EIS, identified three main topics to be addressed in the report: status of available technologies for increasing electricity end-use efficiency; review of factors currently limiting application of end-use efficiency technologies; and review of policies available to increase electricity end-use efficiency. The United States delegation to the EIS agreed to make arrangements for the writing of the report.

  4. Engineer End Uses for Maximum Efficiency; Industrial Technologies Program (ITP) Compressed Air Tip Sheet #10 (Fact Sheet)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 * August 2004 Industrial Technologies Program Suggested Actions * Review compressed air end uses and determine the required level of air pressure. * Review the compressed air end uses' original confgurations to determine whether manufacturing processes have evolved in such a way that those end uses are no longer necessary or can be reconfgured more effciently. References From Compressed Air Challenge ® (CAC): The Compressed Air System Best Practices Manual, Guidelines for Selecting a

  5. Technology data characterizing water heating in commercial buildings: Application to end-use forecasting

    SciTech Connect (OSTI)

    Sezgen, O.; Koomey, J.G.

    1995-12-01

    Commercial-sector conservation analyses have traditionally focused on lighting and space conditioning because of their relatively-large shares of electricity and fuel consumption in commercial buildings. In this report we focus on water heating, which is one of the neglected end uses in the commercial sector. The share of the water-heating end use in commercial-sector electricity consumption is 3%, which corresponds to 0.3 quadrillion Btu (quads) of primary energy consumption. Water heating accounts for 15% of commercial-sector fuel use, which corresponds to 1.6 quads of primary energy consumption. Although smaller in absolute size than the savings associated with lighting and space conditioning, the potential cost-effective energy savings from water heaters are large enough in percentage terms to warrant closer attention. In addition, water heating is much more important in particular building types than in the commercial sector as a whole. Fuel consumption for water heating is highest in lodging establishments, hospitals, and restaurants (0.27, 0.22, and 0.19 quads, respectively); water heating`s share of fuel consumption for these building types is 35%, 18% and 32%, respectively. At the Lawrence Berkeley National Laboratory, we have developed and refined a base-year data set characterizing water heating technologies in commercial buildings as well as a modeling framework. We present the data and modeling framework in this report. The present commercial floorstock is characterized in terms of water heating requirements and technology saturations. Cost-efficiency data for water heating technologies are also developed. These data are intended to support models used for forecasting energy use of water heating in the commercial sector.

  6. Understanding Superconducting Magnetic Energy Storage (SMES) technology, applications, and economics, for end-use workshop

    SciTech Connect (OSTI)

    Ferraro, R.J.; McConnell, B.W.

    1993-06-01

    The overall objective of this project was to determine the state-of-the-art and to what extent existing SMES is a viable option in meeting the needs of utilities and their customers for improving electric service power quality. By defining and analyzing SMES electrical/mechanical performance characteristics, and comparing SMES application benefits with competitive stored energy systems, industry will be able to determine SMES unique applications and potential market penetration. Building on this information base, it would also be possible to evaluate the impact of high temperature superconductors (77 K and 20-35 K) on SMES technology applications. The authors of this report constructed a network of industry contacts and research consultants that were used to collect, update, and analyze ongoing SMES R&D and marketing activities in industries, utilities, and equipment manufacturers. These key resources were utilized to assemble performance characteristics on existing SMES, battery, capacitor, flywheel, and high temperature superconductor (HTS) stored energy technologies. From this information, preliminary stored energy system comparisons were accomplished. In this way, the electric load needs would be readily comparable to the potential solutions and applications offered by each aforementioned energy storage technology.

  7. Alternative Strategies for Low-Pressure End Uses; Industrial Technologies Program (ITP) Compressed Air Tip Sheet #11 (Fact Sheet)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 * August 2004 Industrial Technologies Program Suggested Actions * Review the compressed air applications to determine which ones are valid high-pressure and which ones can operate at lower pressures. The ones that can operate at low pressure could be supported with alternative methods. * Consider a professional compressed air system evaluation. Such an exam could determine what applications could be served more effciently and which appropriate alternative applications could replace them.

  8. Healthcare Energy: Using End-Use Data to Inform Decisions | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Using End-Use Data to Inform Decisions Healthcare Energy: Using End-Use Data to Inform Decisions The Building Technologies Office conducted a healthcare energy end-use monitoring project in partnership with two hospitals. See below for ideas about how to use end-use data to inform decisions in your facility. The relative magnitude of the energy consumption of different end uses can be a starting point for prioritizing energy investments and action, whether the scope under

  9. End-use taxes: Current EIA practices

    SciTech Connect (OSTI)

    Not Available

    1994-08-17

    There are inconsistencies in the EIA published end-use price data with respect to Federal, state, and local government sales and excise taxes; some publications include end-use taxes and others do not. The reason for including these taxes in end-use energy prices is to provide consistent and accurate information on the total cost of energy purchased by the final consumer. Preliminary estimates are made of the effect on prices (bias) reported in SEPER (State Energy Price and Expenditure Report) resulting from the inconsistent treatment of taxes. EIA has undertaken several actions to enhance the reporting of end-use energy prices.

  10. Preliminary CBECS End-Use Estimates

    U.S. Energy Information Administration (EIA) Indexed Site

    For the past three CBECS (1989, 1992, and 1995), we used a statistically-adjusted engineering (SAE) methodology to estimate end-use consumption. The core of the SAE methodology...

  11. Engineer End Uses for Maximum Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engineer End Uses for Maximum Efficiency Engineer End Uses for Maximum Efficiency This tip sheet outlines steps to ensure the efficiency of compressed air end-use applications....

  12. Energy End-Use Intensities in Commercial Buildings 1989 -- Executive...

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Energy End-Use Intensities > Executive Summary Executive Summary Energy End Uses Ranked by Energy Consumption, 1989 Energy End Uses Ranked by Energy Consumption, 1989 Source:...

  13. Biomass Resource Allocation among Competing End Uses

    SciTech Connect (OSTI)

    Newes, E.; Bush, B.; Inman, D.; Lin, Y.; Mai, T.; Martinez, A.; Mulcahy, D.; Short, W.; Simpkins, T.; Uriarte, C.; Peck, C.

    2012-05-01

    The Biomass Scenario Model (BSM) is a system dynamics model developed by the U.S. Department of Energy as a tool to better understand the interaction of complex policies and their potential effects on the biofuels industry in the United States. However, it does not currently have the capability to account for allocation of biomass resources among the various end uses, which limits its utilization in analysis of policies that target biomass uses outside the biofuels industry. This report provides a more holistic understanding of the dynamics surrounding the allocation of biomass among uses that include traditional use, wood pellet exports, bio-based products and bioproducts, biopower, and biofuels by (1) highlighting the methods used in existing models' treatments of competition for biomass resources; (2) identifying coverage and gaps in industry data regarding the competing end uses; and (3) exploring options for developing models of biomass allocation that could be integrated with the BSM to actively exchange and incorporate relevant information.

  14. Biomass Resource Allocation among Competing End Uses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass Resource Allocation among Competing End Uses Emily Newes, Brian Bush, Daniel Inman, Yolanda Lin, Trieu Mai, Andrew Martinez, David Mulcahy, Walter Short, Travis Simpkins, and Caroline Uriarte National Renewable Energy Laboratory Corey Peck Lexidyne, LLC Technical Report NREL/TP-6A20-54217 May 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable

  15. Healthcare Energy End-Use Monitoring

    SciTech Connect (OSTI)

    Sheppy, M.; Pless, S.; Kung, F.

    2014-08-01

    NREL partnered with two hospitals (MGH and SUNY UMU) to collect data on the energy used for multiple thermal and electrical end-use categories, including preheat, heating, and reheat; humidification; service water heating; cooling; fans; pumps; lighting; and select plug and process loads. Additional data from medical office buildings were provided for an analysis focused on plug loads. Facility managers, energy managers, and engineers in the healthcare sector will be able to use these results to more effectively prioritize and refine the scope of investments in new metering and energy audits.

  16. Residential Lighting End-Use Consumption | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources Publications Market Studies Residential Lighting End-Use Consumption Residential Lighting End-Use Consumption The U.S. DOE Residential Lighting ...

  17. Driving Biofuels End Use: BETO/VTO Collaborations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Driving Biofuels End Use: BETO/VTO Collaborations BETO FY 2015 Peer Review Kevin Stork EERE Vehicle Technologies Office March 26, 2015 Alexandria, Virginia 2 * Transportation is responsible for 66% of U.S. petroleum usage * 27% of GHG emissions * On-Road vehicles responsible for 85% of transportation petroleum usage Oil Dependency is Dominated by Vehicles * 16.0M LDVs sold in 2014. * 240 million light-duty vehicles on the road in the U.S * 10-15 years for annual sales penetration * 10-15 years

  18. Alternative Strategies for Low Pressure End Uses | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alternative Strategies for Low Pressure End Uses Alternative Strategies for Low Pressure End Uses This tip sheet outlines alternative strategies for low-pressure end uses as a pathway to reduced compressed air energy costs. COMPRESSED AIR TIP SHEET #11 PDF icon Alternative Strategies for Low Pressure End Uses (August 2004) More Documents & Publications Eliminate Inappropriate Uses of Compressed Air Compressed Air System Control Strategies Engineer End Uses for Maximum Efficiency

  19. India Energy Outlook: End Use Demand in India to 2020

    SciTech Connect (OSTI)

    de la Rue du Can, Stephane; McNeil, Michael; Sathaye, Jayant

    2009-03-30

    Integrated economic models have been used to project both baseline and mitigation greenhouse gas emissions scenarios at the country and the global level. Results of these scenarios are typically presented at the sectoral level such as industry, transport, and buildings without further disaggregation. Recently, a keen interest has emerged on constructing bottom up scenarios where technical energy saving potentials can be displayed in detail (IEA, 2006b; IPCC, 2007; McKinsey, 2007). Analysts interested in particular technologies and policies, require detailed information to understand specific mitigation options in relation to business-as-usual trends. However, the limit of information available for developing countries often poses a problem. In this report, we have focus on analyzing energy use in India in greater detail. Results shown for the residential and transport sectors are taken from a previous report (de la Rue du Can, 2008). A complete picture of energy use with disaggregated levels is drawn to understand how energy is used in India and to offer the possibility to put in perspective the different sources of end use energy consumption. For each sector, drivers of energy and technology are indentified. Trends are then analyzed and used to project future growth. Results of this report provide valuable inputs to the elaboration of realistic energy efficiency scenarios.

  20. Healthcare Energy End-Use Monitoring | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Healthcare Energy End-Use Monitoring Healthcare Energy End-Use Monitoring NREL partnered with two hospitals (MGH and SUNY UMU) to collect data on the energy used for multiple thermal and electrical end-use categories, including preheat, heating, and reheat; humidification; service water heating; cooling; fans; pumps; lighting; and select plug and process loads. Additional data from medical office buildings were provided for an analysis focused on plug loads. Facility managers, energy managers,

  1. End Use and Fuel Certification | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    End Use and Fuel Certification End Use and Fuel Certification Breakout Session 2: Frontiers and Horizons Session 2-B: End Use and Fuel Certification John Eichberger, Vice President of Government Relations, National Association for Convenience Stores PDF icon b13_eichberger_2-b.pdf More Documents & Publications Biofuels Market Opportunities High Octane Fuels Can Make Better Use of Renewable Transportation Fuels Making Better Use of Ethanol as a Transportation Fuel With "Renewable Super

  2. Energy End-Use Intensities in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimates The end-use estimates had two main sources: the 1989 Commercial Buildings Energy Consumption Survey (CBECS) and the Facility Energy Decision Screening (FEDS) system....

  3. Energy End-Use Intensities in Commercial Buildings1992 -- Overview...

    U.S. Energy Information Administration (EIA) Indexed Site

    in the way that variables such as building age and employment density could interact with the engineering estimates of end-use consumption. The SAE equations were...

  4. Energy End-Use Intensities in Commercial Buildings 1989

    U.S. Energy Information Administration (EIA) Indexed Site

    1989 Energy End-Use Intensities Overview Full Report Tables National estimates and analysis of energy consumption by fuel (electricity, natural gas, fuel oil, and district...

  5. Energy End-Use Intensities in Commercial Buildings 1995 - Index...

    U.S. Energy Information Administration (EIA) Indexed Site

    End-Use Analyst Contact: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager URL: http:www.eia.govconsumptioncommercialdataarchivecbecscbec-eu1.html separater bar If...

  6. End-Use Sector Flowchart | Department of Energy

    Office of Environmental Management (EM)

    End-Use Sector Flowchart End-Use Sector Flowchart This system of energy intensity indicators for total energy covers the economy as a whole and each of the major end-use sectors-transportation, industry, commercial and residential-identified in Figure 1. By clicking on any of the boxes with the word "Sector" in the title will reveal the more detailed structure within that sector. PDF icon End-Use Sector Flowchart More Documents & Publications Barriers to Industrial Energy

  7. Table 5.1 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    5.1 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Other(f) Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States

  8. Table 5.2 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    2 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Residual and LPG and (excluding Coal Code(a) End Use Total Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Other(f) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 14,228 2,437 79 130 5,211 69 868 5,435 Indirect Uses-Boiler Fuel -- 27

  9. Table 5.3 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    3 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS for Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Code(a) End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States 311 - 339 ALL

  10. Table 5.4 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    4 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Demand Residual and LPG and (excluding Coal Code(a) End Use for Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 2,886 79 130 5,211 69 868 Indirect Uses-Boiler Fuel 44 46 19

  11. Table 5.5 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    5 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(c) LPG and Coke and Breeze) Total Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million Other(e) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States TOTAL FUEL CONSUMPTION

  12. Table 5.6 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    6 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Residual and LPG and (excluding Coal End Use Total Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Other(e) Total United States TOTAL FUEL CONSUMPTION 14,228 2,437 79 130 5,211 69 868 5,435 Indirect Uses-Boiler Fuel -- 27 46 19 2,134 10 572 -- Conventional Boiler Use -- 27 20 4 733

  13. Table 5.7 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    7 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(c) LPG and Coke and Breeze) for Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States TOTAL FUEL CONSUMPTION 845,727 13 22 5,064 18

  14. Table 5.8 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    8 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Demand Residual and LPG and (excluding Coal End Use for Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Total United States TOTAL FUEL CONSUMPTION 2,886 79 130 5,211 69 868 Indirect Uses-Boiler Fuel 44 46 19 2,134 10 572 Conventional Boiler Use 44 20 4 733 3 72 CHP

  15. Energy End-Use Intensities in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    as buildings of the 1980's. In this section, intensities are based upon the entire building stock, not just those buildings using a particular fuel for a given end use. This...

  16. Distribution Infrastructure and End Use | Department of Energy

    Office of Environmental Management (EM)

    Distribution Infrastructure and End Use Distribution Infrastructure and End Use The expanded Renewable Fuel Standard (RFS2) created under the Energy Independence and Security Act (EISA) of 2007 requires 36 billion gallons of biofuels to be blended into transportation fuel by 2022. Meeting the RFS2 target introduces new challenges for U.S. infrastructure, as modifications will be needed to transport and deliver renewable fuels that are not compatible with existing petroleum infrastructure. The

  17. End-use Breakdown: The Building Energy Modeling Blog | Department of Energy

    Office of Environmental Management (EM)

    End-use Breakdown: The Building Energy Modeling Blog End-use Breakdown: The Building Energy Modeling Blog RSS Welcome to the Building Technologies Office's Building Energy Modeling blog. February 19, 2016 Trimble's recent acquisition of Sefaira and its pairing with SketchUp is a good sign for the BEM industry. Image credit: Sefaira. DOE. A Good Sign for the Building Energy Modeling Industry If you are a BEM professional, know a BEM professional, or even follow one on LinkedIn or Twitter, you've

  18. Refining and End Use Study of Coal Liquids

    SciTech Connect (OSTI)

    1997-10-01

    This report summarizes revisions to the design basis for the linear programing refining model that is being used in the Refining and End Use Study of Coal Liquids. This revision primarily reflects the addition of data for the upgrading of direct coal liquids.

  19. Energy end-use intensities in commercial buildings

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    This report examines energy intensities in commercial buildings for nine end uses: space heating, cooling, ventilation, lighting, water heating, cooking, refrigeration, office equipment, and other. The objective of this analysis was to increase understanding of how energy is used in commercial buildings and to identify targets for greater energy efficiency which could moderate future growth in demand. The source of data for the analysis is the 1989 Commercial Buildings Energy Consumption survey (CBECS), which collected detailed data on energy-related characteristics and energy consumption for a nationally representative sample of approximately 6,000 commercial buildings. The analysis used 1989 CBECS data because the 1992 CBECS data were not yet available at the time the study was initiated. The CBECS data were fed into the Facility Energy Decision Screening (FEDS) system, a building energy simulation program developed by the US Department of Energy`s Pacific Northwest Laboratory, to derive engineering estimates of end-use consumption for each building in the sample. The FEDS estimates were then statistically adjusted to match the total energy consumption for each building. This is the Energy Information Administration`s (EIA) first report on energy end-use consumption in commercial buildings. This report is part of an effort to address customer requests for more information on how energy is used in buildings, which was an overall theme of the 1992 user needs study. The end-use data presented in this report were not available for publication in Commercial Buildings Energy Consumption and Expenditures 1989 (DOE/EIA-0318(89), Washington, DC, April 1992). However, subsequent reports on end-use energy consumption will be part of the Commercial Buildings Energy Consumption and Expenditures series, beginning with a 1992 data report to be published in early 1995.

  20. Residential applliance data, assumptions and methodology for end-use forecasting with EPRI-REEPS 2.1

    SciTech Connect (OSTI)

    Hwang, R.J,; Johnson, F.X.; Brown, R.E.; Hanford, J.W.; Kommey, J.G.

    1994-05-01

    This report details the data, assumptions and methodology for end-use forecasting of appliance energy use in the US residential sector. Our analysis uses the modeling framework provided by the Appliance Model in the Residential End-Use Energy Planning System (REEPS), which was developed by the Electric Power Research Institute. In this modeling framework, appliances include essentially all residential end-uses other than space conditioning end-uses. We have defined a distinct appliance model for each end-use based on a common modeling framework provided in the REEPS software. This report details our development of the following appliance models: refrigerator, freezer, dryer, water heater, clothes washer, dishwasher, lighting, cooking and miscellaneous. Taken together, appliances account for approximately 70% of electricity consumption and 30% of natural gas consumption in the US residential sector. Appliances are thus important to those residential sector policies or programs aimed at improving the efficiency of electricity and natural gas consumption. This report is primarily methodological in nature, taking the reader through the entire process of developing the baseline for residential appliance end-uses. Analysis steps documented in this report include: gathering technology and market data for each appliance end-use and specific technologies within those end-uses, developing cost data for the various technologies, and specifying decision models to forecast future purchase decisions by households. Our implementation of the REEPS 2.1 modeling framework draws on the extensive technology, cost and market data assembled by LBL for the purpose of analyzing federal energy conservation standards. The resulting residential appliance forecasting model offers a flexible and accurate tool for analyzing the effect of policies at the national level.

  1. United States Industrial Sector Energy End Use Analysis

    SciTech Connect (OSTI)

    Shehabi, Arman; Morrow, William R.; Masanet, Eric

    2012-05-11

    The United States Department of Energys (DOE) Energy Information Administration (EIA) conducts the Manufacturing Energy Consumption Survey (MECS) to provide detailed data on energy consumption in the manufacturing sector. The survey is a sample of approximately 15,000 manufacturing establishments selected from the Economic Census - Manufacturing Sector. MECS provides statistics on the consumption of energy by end uses (e.g., boilers, process, electric drives, etc.) disaggregated by North American Industry Classification System (NAICS) categories. The manufacturing sector (NAICS Sector 31-33) consists of all manufacturing establishments in the 50 States and the District of Columbia. According to the NAICS, the manufacturing sector comprises establishments engaged in the mechanical, physical, or chemical transformation of materials, substances, or components into new products. The establishments are physical facilities such as plants, factories, or mills. For many of the sectors in the MECS datasets, information is missing because the reported energy use is less than 0.5 units or BTUs, or is withheld to avoid disclosing data for individual establishments, or is withheld because the standard error is greater than 50%. We infer what the missing information likely are using several approximations techniques. First, much of the missing data can be easily calculated by adding or subtracting other values reported by MECS. If this is not possible (e.g. two data are missing), we look at historic MECS reports to help identify the breakdown of energy use in the past and assume it remained the same for the current MECS. Lastly, if historic data is also missing, we assume that 3 digit NAICS classifications predict energy use in their 4, 5, or 6 digit NAICS sub-classifications, or vice versa. Along with addressing data gaps, end use energy is disaggregated beyond the specified MECS allocations using additional industry specific energy consumption data. The result is a completed table of energy end use by sector with mechanical drives broken down by pumps, fans, compressed air, and drives.

  2. Detailed End Use Load Modeling for Distribution System Analysis

    SciTech Connect (OSTI)

    Schneider, Kevin P.; Fuller, Jason C.

    2010-04-09

    The field of distribution system analysis has made significant advances in the past ten years. It is now standard practice when performing a power flow simulation to use an algorithm that is capable of unbalanced per-phase analysis. Recent work has also focused on examining the need for time-series simulations instead of examining a single time period, i.e., peak loading. One area that still requires a significant amount of work is the proper modeling of end use loads. Currently it is common practice to use a simple load model consisting of a combination of constant power, constant impedance, and constant current elements. While this simple form of end use load modeling is sufficient for a single point in time, the exact model values are difficult to determine and it is inadequate for some time-series simulations. This paper will examine how to improve simple time invariant load models as well as develop multi-state time variant models.

  3. The Value of End-Use Energy Efficiency in Mitigation of U.S. Carbon Emissions

    SciTech Connect (OSTI)

    Kyle, G. Page; Smith, Steven J.; Clarke, Leon E.; Kim, Son H.; Wise, Marshall A.

    2007-11-27

    This report documents a scenario analysis exploring the value of advanced technologies in the U.S. buildings, industrial, and transportation sectors in stabilizing atmospheric greenhouse gas concentrations. The analysis was conducted by staff members of Pacific Northwest National Laboratory (PNNL), working at the Joint Global Change Research Institute (JGCRI) in support of the strategic planning process of the U.S. Department of Energy (U.S. DOE) Office of Energy Efficiency and Renewable Energy (EERE). The conceptual framework for the analysis is an integration of detailed buildings, industrial, and transportation modules into MiniCAM, a global integrated assessment model. The analysis is based on three technology scenarios, which differ in their assumed rates of deployment of new or presently available energy-saving technologies in the end-use sectors. These technology scenarios are explored with no carbon policy, and under two CO2 stabilization policies, in which an economic price on carbon is applied such that emissions follow prescribed trajectories leading to long-term stabilization of CO2 at roughly 450 and 550 parts per million by volume (ppmv). The costs of meeting the emissions targets prescribed by these policies are examined, and compared between technology scenarios. Relative to the reference technology scenario, advanced technologies in all three sectors reduce costs by 50% and 85% for the 450 and 550 ppmv policies, respectively. The 450 ppmv policy is more stringent and imposes higher costs than the 550 ppmv policy; as a result, the magnitude of the economic value of energy efficiency is four times greater for the 450 ppmv policy than the 550 ppmv policy. While they substantially reduce the costs of meeting emissions requirements, advanced end-use technologies do not lead to greenhouse gas stabilization without a carbon policy. This is due mostly to the effects of increasing service demands over time, the high consumption of fossil fuels in the electricity sector, and the use of unconventional feedstocks in the liquid fuel refining sector. Of the three end-use sectors, advanced transportation technologies have the greatest potential to reduce costs of meeting carbon policy requirements. Services in the buildings and industrial sectors can often be supplied by technologies that consume low-emissions fuels such as biomass or, in policy cases, electricity. Passenger transportation, in contrast, is especially unresponsive to climate policies, as the fuel costs are small compared to the time value of transportation and vehicle capital and operating costs. Delaying the transition from reference to advanced technologies by 15 years increases the costs of meeting 450 ppmv stabilization emissions requirements by 21%, but the costs are still 39% lower than the costs assuming reference technology. The report provides a detailed description of the end-use technology scenarios and provides a thorough analysis of the results. Assumptions are documented in the Appendix.

  4. Renewable Electricity Futures Study Volume 3: End-Use Electricity Demand

    Broader source: Energy.gov [DOE]

    This volume details the end-use electricity demand and efficiency assumptions. The projection of electricity demand is an important consideration in determining the extent to which a predominantly renewable electricity future is feasible. Any scenario regarding future electricity use must consider many factors, including technological, sociological, demographic, political, and economic changes (e.g., the introduction of new energy-using devices; gains in energy efficiency and process improvements; changes in energy prices, income, and user behavior; population growth; and the potential for carbon mitigation).

  5. End use energy consumption data base: transportation sector

    SciTech Connect (OSTI)

    Hooker, J.N.; Rose, A.B.; Greene, D.L.

    1980-02-01

    The transportation fuel and energy use estimates developed a Oak Ridge National Laboratory (ORNL) for the End Use Energy Consumption Data Base are documented. The total data base contains estimates of energy use in the United States broken down into many categories within all sectors of the economy: agriculture, mining, construction, manufacturing, commerce, the household, electric utilities, and transportation. The transportation data provided by ORNL generally cover each of the 10 years from 1967 through 1976 (occasionally 1977 and 1978), with omissions in some models. The estimtes are broken down by mode of transport, fuel, region and State, sector of the economy providing transportation, and by the use to which it is put, and, in the case of automobile and bus travel, by the income of the traveler. Fuel types include natural gas, motor and aviation gasoline, residual and diesel oil, liuqefied propane, liquefied butane, and naphtha- and kerosene-type jet engine fuels. Electricity use is also estimated. The mode, fuel, sector, and use categories themselves subsume one, two, or three levels of subcategories, resulting in a very detailed categorization and definitive accounting.

  6. Community energy systems and the law of public utilities. Volume thirty-four. New York

    SciTech Connect (OSTI)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of New York governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  7. Residential sector end-use forecasting with EPRI-Reeps 2.1: Summary input assumptions and results

    SciTech Connect (OSTI)

    Koomey, J.G.; Brown, R.E.; Richey, R.

    1995-12-01

    This paper describes current and projected future energy use by end-use and fuel for the U.S. residential sector, and assesses which end-uses are growing most rapidly over time. The inputs to this forecast are based on a multi-year data compilation effort funded by the U.S. Department of Energy. We use the Electric Power Research Institute`s (EPRI`s) REEPS model, as reconfigured to reflect the latest end-use technology data. Residential primary energy use is expected to grow 0.3% per year between 1995 and 2010, while electricity demand is projected to grow at about 0.7% per year over this period. The number of households is expected to grow at about 0.8% per year, which implies that the overall primary energy intensity per household of the residential sector is declining, and the electricity intensity per household is remaining roughly constant over the forecast period. These relatively low growth rates are dependent on the assumed growth rate for miscellaneous electricity, which is the single largest contributor to demand growth in many recent forecasts.

  8. Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity;

    Gasoline and Diesel Fuel Update (EIA)

    1 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Other(f) Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States

  9. Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity;

    Gasoline and Diesel Fuel Update (EIA)

    2 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Residual and LPG and (excluding Coal Code(a) End Use Total Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Other(f) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 15,658 2,850 251 129 5,512 79 1,016 5,820 Indirect Uses-Boiler Fuel --

  10. Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity;

    Gasoline and Diesel Fuel Update (EIA)

    7 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(c) LPG and Coke and Breeze) for Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States TOTAL FUEL CONSUMPTION 977,338 40 22 5,357 21

  11. Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity;

    Gasoline and Diesel Fuel Update (EIA)

    Next MECS will be conducted in 2010 Table 5.8 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Demand Residual and LPG and (excluding Coal End Use for Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Total United States TOTAL FUEL CONSUMPTION 3,335 251 129 5,512 79 1,016 Indirect Uses-Boiler Fuel 84 133 23 2,119 8 547

  12. Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity;

    Gasoline and Diesel Fuel Update (EIA)

    5 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(c) LPG and Coke and Breeze) Total Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million Other(e) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States TOTAL FUEL CONSUMPTION

  13. Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity;

    Gasoline and Diesel Fuel Update (EIA)

    6 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Residual and LPG and (excluding Coal End Use Total Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Other(e) Total United States TOTAL FUEL CONSUMPTION 15,658 2,850 251 129 5,512 79 1,016 5,820 Indirect Uses-Boiler Fue -- 41 133 23 2,119 8 547 -- Conventional Boiler Use 41 71 17

  14. "End Use","for Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Relative Standard Errors for Table 5.8;" " Unit: Percents." ,,,"Distillate" ,,,"Fuel Oil",,,"Coal" ,"Net Demand","Residual","and",,"LPG and","(excluding Coal" "End Use","for...

  15. ,"U.S. Distillate Fuel Oil and Kerosene Sales by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Distillate Fuel Oil and Kerosene Sales by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  16. GridLAB-D Technical Support Document: Residential End-Use Module Version 1.0

    SciTech Connect (OSTI)

    Taylor, Zachary T.; Gowri, Krishnan; Katipamula, Srinivas

    2008-07-31

    1.0 Introduction The residential module implements the following end uses and characteristics to simulate the power demand in a single family home: Water heater Lights Dishwasher Range Microwave Refrigerator Internal gains (plug loads) House (heating/cooling loads) The house model considers the following four major heat gains/losses that contribute to the building heating/cooling load: 1. Conduction through exterior walls, roof and fenestration (based on envelope UA) 2. Air infiltration (based on specified air change rate) 3. Solar radiation (based on CLTD model and using tmy data) 4. Internal gains from lighting, people, equipment and other end use objects. The Equivalent Thermal Parameter (ETP) approach is used to model the residential loads and energy consumption. The following sections describe the modeling assumptions for each of the above end uses and the details of power demand calculations in the residential module.

  17. ,"New Mexico Sales of Distillate Fuel Oil by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales of Distillate Fuel Oil by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Sales of Distillate Fuel Oil by End Use",13,"Annual",2014,"6/30/1984" ,"Release Date:","12/22/2015" ,"Next Release Date:","Last Week of November 2016" ,"Excel

  18. ,"Nebraska Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  19. ,"Nevada Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Nevada Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  20. ,"New Hampshire Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Hampshire Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  1. ,"New Jersey Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Jersey Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  2. ,"New Mexico Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  3. ,"New York Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  4. ,"North Carolina Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Carolina Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  5. ,"North Dakota Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  6. ,"Oklahoma Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  7. ,"Pennsylvania Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  8. ,"Rhode Island Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  9. ,"South Carolina Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Carolina Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  10. ,"South Dakota Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  11. ,"U.S. Adjusted Sales of Distillate Fuel Oil by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Distillate Fuel Oil by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Adjusted Sales of Distillate Fuel Oil by End Use",13,"Annual",2014,"6/30/1984" ,"Release Date:","12/22/2015" ,"Next Release Date:","Last Week of November 2016" ,"Excel File

  12. ,"U.S. Adjusted Sales of Residual Fuel Oil by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Residual Fuel Oil by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Adjusted Sales of Residual Fuel Oil by End Use",8,"Annual",2014,"6/30/1984" ,"Release Date:","12/22/2015" ,"Next Release Date:","Last Week of November 2016" ,"Excel File

  13. ,"Utah Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  14. ,"West Virginia Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  15. ,"Wisconsin Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wisconsin Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  16. ,"Alabama Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  17. ,"Arizona Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arizona Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  18. ,"Connecticut Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Connecticut Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  19. ,"Delaware Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  20. ,"Georgia Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Georgia Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  1. ,"Idaho Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  2. ,"Kansas Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  3. ,"Kentucky Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  4. ,"Louisiana Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  5. ,"Maryland Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  6. ,"Mississippi Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  7. ,"Missouri Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Missouri Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  8. ,"Montana Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  9. End-Use Opportunity Analysis from Progress Indicator Results for ASHRAE Standard 90.1-2013

    SciTech Connect (OSTI)

    Hart, Philip R.; Xie, YuLong

    2015-02-05

    This report and an accompanying spreadsheet (PNNL 2014a) compile the end use building simulation results for prototype buildings throughout the United States. The results represent he energy use of each edition of ASHRAE Standard 90.1, Energy Standard for Buildings Except Low-Rise Residential Buildings (ASHRAE 2004, 2007, 2010, 2013). PNNL examined the simulation results to determine how the remaining energy was used.

  10. Table B19. Energy End Uses, Number of Buildings and Floorspace, 1999

    U.S. Energy Information Administration (EIA) Indexed Site

    9. Energy End Uses, Number of Buildings and Floorspace, 1999" ,"Number of Buildings (thousand)",,,,,,"Total Floorspace (million square feet)" ,"All Buildings","Energy Used For (more than one may apply)",,,,,"All Buildings","Energy Used For (more than one may apply)" ,,"Space Heating","Cooling","Water Heating","Cooking","Manufact-uring",,"Space

  11. ,"U.S. Adjusted Distillate Fuel Oil and Kerosene Sales by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Distillate Fuel Oil and Kerosene Sales by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Residential",4,"Annual",2014,"6/30/1984" ,"Data 2","Commercial",10,"Annual",2014,"6/30/1984" ,"Data

  12. ,"U.S. Distillate Fuel Oil and Kerosene Sales by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Distillate Fuel Oil and Kerosene Sales by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Residential",4,"Annual",2014,"6/30/1984" ,"Data 2","Commercial",10,"Annual",2014,"6/30/1984" ,"Data

  13. Table 2.3 Manufacturing Energy Consumption for Heat, Power, and Electricity Generation by End Use, 2006

    U.S. Energy Information Administration (EIA) Indexed Site

    Manufacturing Energy Consumption for Heat, Power, and Electricity Generation by End Use, 2006 End-Use Category Net Electricity 1 Residual Fuel Oil Distillate Fuel Oil LPG 2 and NGL 3 Natural Gas Coal 4 Total 5 Million Kilowatthours Million Barrels Billion Cubic Feet Million Short Tons Indirect End Use (Boiler Fuel) 12,109 21 4 2 2,059 25 – – Conventional Boiler Use 12,109 11 3 2 1,245 6 – – CHP 6 and/or Cogeneration Process – – 10 1 (s) 814 19 – – Direct End Use All Process Uses 657,810

  14. Residential Lighting End-Use Consumption Study: Estimation Framework and Initial Estimates

    SciTech Connect (OSTI)

    Gifford, Will R.; Goldberg, Miriam L.; Tanimoto, Paulo M.; Celnicker, Dane R.; Poplawski, Michael E.

    2012-12-01

    The U.S. DOE Residential Lighting End-Use Consumption Study is an initiative of the U.S. Department of Energys (DOEs) Solid-State Lighting Program that aims to improve the understanding of lighting energy usage in residential dwellings. The study has developed a regional estimation framework within a national sample design that allows for the estimation of lamp usage and energy consumption 1) nationally and by region of the United States, 2) by certain household characteristics, 3) by location within the home, 4) by certain lamp characteristics, and 5) by certain categorical cross-classifications (e.g., by dwelling type AND lamp type or fixture type AND control type).

  15. Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity;

    Gasoline and Diesel Fuel Update (EIA)

    Next MECS will be conducted in 2010 Table 5.3 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS for Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Code(a) End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons)

  16. Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity;

    Gasoline and Diesel Fuel Update (EIA)

    4 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Demand Residual and LPG and (excluding Coal Code(a) End Use for Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 3,335 251 129 5,512 79 1,016 Indirect Uses-Boiler Fuel 84 133 23

  17. 1980 survey and evaluation of utility conservation, load management, and solar end-use projects. Volume 3: utility load management projects. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    The results of the 1980 survey of electric utility-sponsored energy conservation, load management, and end-use solar energy conversion projects are described. The work is an expansion of a previous survey and evaluation and has been jointly sponsored by EPRI and DOE through the Oak Ridge National Laboratory. There are three volumes and a summary document. Each volume presents the results of an extensive survey to determine electric utility involvement in customer-side projects related to the particular technology (i.e., conservation, solar, or load management), selected descriptions of utility projects and results, and first-level technical and economic evaluations.

  18. Public Meeting: Physical Characterization of Smart and Grid-Connected Commercial and Residential Building End-Use Equipment and Appliances

    Office of Energy Efficiency and Renewable Energy (EERE)

    These documents contain slide decks presented at the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting held on April 30, 2014.

  19. July 11 Public Meeting: Physical Characterization of Grid-Connected Commercial And Residential Building End-Use Equipment And Appliances

    Broader source: Energy.gov [DOE]

    These documents contain the three slide decks presented at the public meeting on the Physical Characterization of Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances, held on July 11, 2014 in Washington, DC.

  20. Microsoft Word - Major end uses front page v2 2015-03-31.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 APPENDIX C EIA - Technology Forecast Updates - Residential and Commercial Building Technologies - Reference Case Presented to: U.S. Energy Information Administration Prepared by: Navigant Consulting, Inc. 1200 19th Street, NW, Suite 700 Washington, D.C. 20036 And SAIC 8301 Greensboro Drive McLean, VA 22102 December 19, 2012 Confidential and Proprietary, ©2012 Navigant Consulting, Inc. Do not distribute or copy Final DISCLAIMER This presentation was prepared as an account of work sponsored by

  1. Microsoft Word - Major end uses front page v2 2015-03-31.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 APPENDIX D EIA - Technology Forecast Updates - Residential and Commercial Building Technologies - Advanced Case Presented to: U.S. Energy Information Administration Prepared by: Navigant Consulting, Inc. 1200 19th Street, NW, Suite 700 Washington, D.C. 20036 And SAIC 8301 Greensboro Drive McLean, VA 22102 December 19, 2012 Confidential and Proprietary, ©2012 Navigant Consulting, Inc. Do not distribute or copy Advanced Case Final DISCLAIMER This presentation was prepared as an account of work

  2. Public Health Benefits of End-Use Electrical Energy Efficiency in California: An Exploratory Study

    SciTech Connect (OSTI)

    McKone, Thomas E.; Lobscheid, A.B.

    2006-06-01

    This study assesses for California how increasing end-use electrical energy efficiency from installing residential insulation impacts exposures and disease burden from power-plant pollutant emissions. Installation of fiberglass attic insulation in the nearly 3 million electricity-heated homes throughout California is used as a case study. The pollutants nitrous oxides (NO{sub x}), sulfur dioxide (SO{sub 2}), fine particulate matter (PM2.5), benzo(a)pyrene, benzene, and naphthalene are selected for the assessment. Exposure is characterized separately for rural and urban environments using the CalTOX model, which is a key input to the US Environmental Protection Agency (EPA) Tool for the Reduction and Assessment of Chemicals and other environmental Impacts (TRACI). The output of CalTOX provides for urban and rural populations emissions-to-intake factors, which are expressed as an individual intake fraction (iFi). The typical iFi from power plant emissions are on the order of 10{sup -13} (g intake per g emitted) in urban and rural regions. The cumulative (rural and urban) product of emissions, population, and iFi is combined with toxic effects factors to determine human damage factors (HDFs). HDF are expressed as disability adjusted life years (DALYs) per kilogram pollutant emitted. The HDF approach is applied to the insulation case study. Upgrading existing residential insulation to US Department of Energy (DOE) recommended levels eliminates over the assmned 50-year lifetime of the insulation an estimated 1000 DALYs from power-plant emissions per million tonne (Mt) of insulation installed, mostly from the elimination of PM2.5 emissions. In comparison, the estimated burden from the manufacture of this insulation in DALYs per Mt is roughly four orders of magnitude lower than that avoided.

  3. Technolog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from

  4. End-use load control for power system dynamic stability enhancement

    SciTech Connect (OSTI)

    Dagle, J.E.; Winiarski, D.W.; Donnelly, M.K.

    1997-02-01

    Faced with the prospect of increasing utilization of the transmission and distribution infrastructure without significant upgrade, the domestic electric power utility industry is investing heavily in technologies to improve network dynamic performance through a program loosely referred to as Flexible AC Transmission System (FACTS). Devices exploiting recent advances in power electronics are being installed in the power system to offset the need to construct new transmission lines. These devices collectively represent investment potential of several billion dollars over the next decade. A similar development, designed to curtail the peak loads and thus defer new transmission, distribution, and generation investment, falls under a category of technologies referred to as demand side management (DSM). A subset of broader conservation measures, DSM acts directly on the load to reduce peak consumption. DSM techniques include direct load control, in which a utility has the ability to curtail specific loads as conditions warrant. A novel approach has been conceived by Pacific Northwest National Laboratory (PNNL) to combine the objectives of FACTS and the technologies inherent in DSM to provide a distributed power system dynamic controller. This technology has the potential to dramatically offset major investments in FACTS devices by using direct load control to achieve dynamic stability objectives. The potential value of distributed versus centralized grid modulation has been examined by simulating the western power grid under extreme loading conditions. In these simulations, a scenario is analyzed in which active grid stabilization enables power imports into the southern California region to be increased several hundred megawatts beyond present limitations. Modeling results show distributed load control is up to 30 percent more effective than traditional centralized control schemes in achieving grid stability.

  5. Renewable Electricity Futures Study. Volume 3: End-Use Electricity Demand

    SciTech Connect (OSTI)

    Hostick, D.; Belzer, D.B.; Hadley, S.W.; Markel, T.; Marnay, C.; Kintner-Meyer, M.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  6. Renewable Electricity Futures Study. Volume 3. End-Use Electricity Demand

    SciTech Connect (OSTI)

    Hostick, Donna; Belzer, David B.; Hadley, Stanton W.; Markel, Tony; Marnay, Chris; Kintner-Meyer, Michael

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  7. Energy Demand: Limits on the Response to Higher Energy Prices in the End-Use Sectors (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    Energy consumption in the end-use demand sectorsresidential, commercial, industrial, and transportationgenerally shows only limited change when energy prices increase. Several factors that limit the sensitivity of end-use energy demand to price signals are common across the end-use sectors. For example, because energy generally is consumed in long-lived capital equipment, short-run consumer responses to changes in energy prices are limited to reductions in the use of energy services or, in a few cases, fuel switching; and because energy services affect such critical lifestyle areas as personal comfort, medical services, and travel, end-use consumers often are willing to absorb price increases rather than cut back on energy use, especially when they are uncertain whether price increases will be long-lasting. Manufacturers, on the other hand, often are able to pass along higher energy costs, especially in cases where energy inputs are a relatively minor component of production costs. In economic terms, short-run energy demand typically is inelastic, and long-run energy demand is less inelastic or moderately elastic at best.

  8. Refining and end use of coal liquids. Quarterly report, January--March 1994

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    A key objective is to determine the most desirable ways of integrating coal liquefaction liquids into existing petroleum refineries to produce transportation fuels meeting current and future, e.g. year 2000, Clean Air Act Amendment (CAAA) standards. An intregral part of the above objectives is to test the fuels or blends produced and compare them with established ASTM fuels. The comparison will include engine tests to ascertain compliance of the fuels produced with CAAA and other applicable fuel quality and performance standards. The final part of the project includes a detailed economic evaluation of the cost of processing the coal liquids to their optimum products. The cost analyses is for the incremental processing cost; in other words, the feed is priced at zero dollars. The study reflects costs for operations using state of the art refinery technology; no capital costs for building new refineries is considered. Some modifications to the existing refinery may be required. Economy of scale dictates the minimum amount of feedstock that should be processed. To enhance management of the study, the work has been divided into two parts, the Basic Program and Option 1. The objectives of the Basic Program are to: characterize the coal liquids; develop, an optimized refinery configuration for processing indirect and direct coal liquids; and develop a LP refinery model with the Process Industry Modeling System (PICS) software. The objectives of Option 1 are to: confirm the validity of the optimization work of the Basic Program; produce large quantities of liquid transportation fuel blending stocks; conduct engine emission tests; and determine the value and the processing costs of the coal liquids. The major efforts conducted during the first quarter of 1994 were in the areas of: subcontract preparation and negotiation; and linear programming modeling.

  9. Table 10.9 Photovoltaic Cell and Module Shipments by Sector and End Use, 1989-2010 (Peak Kilowatts )

    U.S. Energy Information Administration (EIA) Indexed Site

    Photovoltaic Cell and Module Shipments by Sector and End Use, 1989-2010 (Peak Kilowatts 1 ) Year By Sector By End Use Total Residential Commercial 3 Industrial 4 Electric Power 5 Other 6 Grid-Connected 2 Off-Grid 2 Centralized 7 Distributed 8 Domestic 9 Non-Domestic 10 Total Shipments of Photovoltaic Cells and Modules 11<//td> 1989 1,439 6,057 [R] 3,993 785 551 [12] 1,251 [12] 2,620 8,954 12,825 1990 1,701 8,062 [R] 2,817 826 432 [12] 469 [12] 3,097 10,271 13,837 1991 3,624 5,715 [R] 3,947

  10. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    HVAC (e)",280,3,5,417,5,5,6.6 " Facility Lighting",212,"--","--","--","--","--",1.1 " ... HVAC (e)",41,2,3,68,1,"*",6.4 " Facility Lighting",33,"--","--","--","--","--",1.3 " Other ...

  11. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    HVAC (f)",285,4,4,378,5,2 " Facility Lighting",215,"--","--","--","--","--" " Other ... HVAC (f)",38,3,3,57,1,"*" " Facility Lighting",29,"--","--","--","--","--" " Other ...

  12. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    HVAC (f)",236,"Q",4,306,4,3 " Facility Lighting",177,"--","--","--","--","--" " Other ... HVAC (f)",29,"Q",3,45,1,"Q" " Facility Lighting",22,"--","--","--","--","--" " Other ...

  13. " Row: End Uses;" " ...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...,79355,1,1,392,1,"*","--",5.7 " Facility Lighting","--",61966,"--","--","--","--","--","--...707,"*",1,57,"*","*","--",7.2 " Facility Lighting","--",9494,"--","--","--","--","--","--"...

  14. " Row: End Uses;" " ...

    U.S. Energy Information Administration (EIA) Indexed Site

    ..."--",271,4,6,403,4,4,"--",5.7 " Facility Lighting","--",211,"--","--","--","--","--","--",... *","--",7.2 " Facility Lighting","--",32,"--","--","--","--","--","--",1...

  15. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    HVAC (f)",83480,1,1,367,1,"*" " Facility Lighting",62902,"--","--","--","--","--" " Other ... (f)",11142,"*","*",56,"*","*" " Facility Lighting",8470,"--","--","--","--","--" " Other ...

  16. " Row: End Uses;" " ...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...f)","--",265,4,4,378,5,2,"--" " Facility Lighting","--",198,"--","--","--","--","--","--" ...f)","--",34,3,3,57,1,"*","--" " Facility Lighting","--",26,"--","--","--","--","--","--" " ...

  17. " Row: End Uses;" " ...

    U.S. Energy Information Administration (EIA) Indexed Site

    ..."--",77768,1,1,367,1,"*","--" " Facility Lighting","--",58013,"--","--","--","--","--","--...,9988,"*","*",56,"*","*","--" " Facility Lighting","--",7651,"--","--","--","--","--","--" ...

  18. " Row: End Uses;" " ...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","--",222,"Q",4,306,4,3,"--" " Facility Lighting","--",165,"--","--","--","--","--","--" ...","--",26,"Q",3,45,1,"Q","--" " Facility Lighting","--",20,"--","--","--","--","--","--" " ...

  19. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    (f)",69090,"*",1,297,1,"*" " Facility Lighting",51946,"--","--","--","--","--" " Other ... (f)",8543,"*",1,43,"*","*" " Facility Lighting",6524,"--","--","--","--","--" " Other ...

  20. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    (e)",81980,1,1,406,1,"*",6.6 " Facility Lighting",62019,"--","--","--","--","--",1.1 " ...)",12126,"*",1,66,"*","*",6.4 " Facility Lighting",9668,"--","--","--","--","--",1.3 " ...

  1. " Row: End Uses;" " ...

    U.S. Energy Information Administration (EIA) Indexed Site

    ..."--",262,3,5,417,5,5,"--",6.6 " Facility Lighting","--",196,"--","--","--","--","--","--",..."--",38,2,3,68,1,"*","--",6.4 " Facility Lighting","--",30,"--","--","--","--","--","--",1...

  2. " Row: End Uses;" " ...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...,76840,1,1,406,1,"*","--",6.6 " Facility Lighting","--",57460,"--","--","--","--","--","--...241,"*",1,66,"*","*","--",6.4 " Facility Lighting","--",8831,"--","--","--","--","--","--"...

  3. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 1, 2, and 4 fuel oils and Nos. 1, 2, and 4" "diesel fuels." " (c) 'Natural Gas' ... gas brokers, marketers," "and any marketing subsidiaries of utilities." " (d) ...

  4. " Row: End Uses;" " ...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 1, 2, and 4 fuel oils and Nos. 1, 2, and 4" "diesel fuels." " (c) 'Natural Gas' ... gas brokers, marketers," "and any marketing subsidiaries of utilities." " (d) ...

  5. Table 2.6 Household End Uses: Fuel Types, Appliances, and Electronics, Selected Years, 1978-2009

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Household End Uses: Fuel Types, Appliances, and Electronics, Selected Years, 1978-2009 Appliance Year Change 1978 1979 1980 1981 1982 1984 1987 1990 1993 1997 2001 2005 2009 1980 to 2009 Total Households (millions) 77 78 82 83 84 86 91 94 97 101 107 111 114 32 Percent of Households<//td> Space Heating - Main Fuel 1 Natural Gas 55 55 55 56 57 55 55 55 53 52 55 52 50 -5 Electricity 2 16 17 18 17 16 17 20 23 26 29 29 30 35 17 Liquefied Petroleum Gases 4 5 5 4 5 5 5 5 5 5 5 5 5 0 Distillate

  6. Technology Development, Evaluation, and Application (TDEA) FY 1999 Progress Report, Environment, Safety, and Health (ESH) Division

    SciTech Connect (OSTI)

    Larry G. Hoffman

    2000-12-01

    This progress report presents the results of 10 projects funded ($500K) in FY99 by the Technology Development, Evaluation, and Application (TDEA) Committee of the Environment, Safety, and Health Division. Five are new projects for this year; seven projects have been completed in their third and final TDEA-funded year. As a result of their TDEA-funded projects, investigators have published thirty-four papers in professional journals, proceedings, or Los Alamos reports and presented their work at professional meetings. Supplemental funds and in-kind contributions, such as staff time, instrument use, and work space, were also provided to TDEA-funded projects by organizations external to ESH Division.

  7. Table 3.6 Consumer Expenditure Estimates for Energy by End-Use Sector, 1970-2010 (Million Dollars )

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumer Expenditure Estimates for Energy by End-Use Sector, 1970-2010 (Million Dollars 1) Year Residential Commercial Industrial Transportation Natural Gas 2 Petroleum Retail Electricity 3 Total 4 Natural Gas 2 Petroleum 5 Retail Electricity 3 Total 6,7 Coal Natural Gas 2 Petroleum 5 Biomass 8 Retail Electricity 3 Total 7,9 Petroleum 5 Total 7,10 1970 5,272 4,186 10,352 20,112 1,844 1,440 7,319 10,678 2,082 2,625 6,069 366 5,624 16,691 35,327 35,379 1971 5,702 4,367 11,589 21,934 2,060 1,574

  8. 2014-04-30 Public Meeting Presentation Slides: Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances

    Office of Energy Efficiency and Renewable Energy (EERE)

    These documents contain slide decks presented at the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting held on April 30, 2014.

  9. 2014-04-30 Public Meeting Agenda: Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    This document is the agenda for the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting being held on April 30, 2014.

  10. Agenda for Public Meeting on the Physical Characterization of Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    Download the agenda below for the July 11 Public Meeting on the Physical Characterization of Grid-Connected Commercial and  Residential Buildings End-Use Equipment and Appliances.

  11. The use of negotiated agreements to improve efficiency of end-use appliances: First results from the European experience

    SciTech Connect (OSTI)

    Bertoldi, P.; Bowie, R.; Hagen, L.

    1998-07-01

    The European Union is pursuing measures to improve end-use equipment efficiency through a variety of policy instruments, in particular for domestic appliances. One of the most effective methods to achieve market transformation is through minimum efficiency performance standards (MEPS). However, after the difficulties and controversy following the adoption of legislation for MEPS for domestic refrigerators/freezers, a new policy instrument, i.e. negotiated agreements by manufacturers, has been investigated and tested for two type of appliances: domestic washing machines and TVs and VCRs. Based on the positive experience of the above two agreements, other products (e.g. dryers, dishwasher, electric water heaters, etc.) will be the subject of future negotiated agreements. Based on the results of the two negotiated agreements, this paper describes the energy efficiency potential, the procedures, and the advantages and disadvantages of negotiated agreements compared to legislated mandatory for MEPS, as developed in the European context. The paper concludes that negotiated agreements are a viable policy option, which allow flexibility in the implementation of the efficiency targets and therefore the adoption of cost-effective solutions for manufacturers. In addition, negotiated agreements can be implemented more quickly compared to mandatory MEPS and they allow a closer monitoring of the results. The main question asked in the paper is whether the negotiated agreements can deliver the results in the long term compared to what could be achieved through legislation. The European experience indicates that this instrument can deliver the results and that it offer a number of advantages compared to MEPS.

  12. Table 10.7 Solar Thermal Collector Shipments by Market Sector, End Use, and Type, 2001-2009 (Thousand Square Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Solar Thermal Collector Shipments by Market Sector, End Use, and Type, 2001-2009 (Thousand Square Feet) Year and Type By Market Sector By End Use Total Residential Commercial 1 Industrial 2 Electric Power 3 Other 4 Pool Heating Water Heating Space Heating Space Cooling Combined Heating 5 Process Heating Electricity Generation Total Shipments 6<//td> 2001 Total 10,125 1,012 17 1 35 10,797 274 70 0 12 34 2 11,189 Low 7 9,885 987 12 0 34 10,782 42 61 0 0 34 0 10,919 Medium 8 240 24 5 0 1 16

  13. Power applications of high-temperature superconductivity: Variable speed motors, current switches, and energy storage for end use

    SciTech Connect (OSTI)

    Hawsey, R.A. [Oak Ridge National Lab., TN (United States); Banerjee, B.B.; Grant, P.M. [Electric Power Research Inst., Palo Alto, CA (United States)

    1996-08-01

    The objective of this project is to conduct joint research and development activities related to certain electric power applications of high-temperature superconductivity (HTS). The new superconductors may allow development of an energy-efficient switch to control current to variable speed motors, superconducting magnetic energy storage (SMES) systems, and other power conversion equipment. Motor types that were considered include induction, permanent magnet, and superconducting ac motors. Because it is impractical to experimentally alter certain key design elements in radial-gap motors, experiments were conducted on an axial field superconducting motor prototype using 4 NbTi magnets. Superconducting magnetic energy storage technology with 0.25--5 kWh stored energy was studied as a viable solution to short duration voltage sag problems on the customer side of the electric meter. The technical performance characteristics of the device wee assembled, along with competing technologies such as active power line conditioners with storage, battery-based uninterruptible power supplies, and supercapacitors, and the market potential for SMES was defined. Four reports were prepared summarizing the results of the project.

  14. April 30 Public Meeting: Physical Characterization of Smart and Grid-Connected Commercial and Residential Building End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    These documents contain slide decks presented at the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting held on April 30, 2014. The first document includes the first presentation from the meeting: DOE Vision and Objectives. The second document includes all other presentations from the meeting: Terminology and Definitions; End-User and Grid Services; Physical Characterization Framework; Value, Benefits & Metrics.

  15. Energy balances in the production and end use of alcohols derived from biomass. A fuels-specific comparative analysis of alternate ethanol production cycles

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    Considerable public interest and debate have been focused on the so-called energy balance issue involved in the conversion of biomass materials into ethanol for fuel use. This report addresses questions of net gains in premium fuels that can be derived from the production and use of ethanol from biomass, and shows that for the US alcohol fuel program, energy balance need not be a concern. Three categories of fuel gain are discussed in the report: (1) Net petroleum gain; (2) Net premium fuel gain (petroleum and natural gas); and (3) Net energy gain (for all fuels). In this study the investment of energy (in the form of premium fuels) in alcohol production includes all investment from cultivating, harvesting, or gathering the feedstock and raw materials, through conversion of the feedstock to alcohol, to the delivery to the end-user. To determine the fuel gains in ethanol production, six cases, encompassing three feedstocks, five process fuels, and three process variations, have been examined. For each case, two end-uses (automotive fuel use and replacement of petrochemical feedstocks) were scrutinized. The end-uses were further divided into three variations in fuel economy and two different routes for production of ethanol from petrochemicals. Energy requirements calculated for the six process cycles accounted for fuels used directly and indirectly in all stages of alcohol production, from agriculture through distribution of product to the end-user. Energy credits were computed for byproducts according to the most appropriate current use.

  16. Direct Conversion Technology

    SciTech Connect (OSTI)

    Back, L.H.; Fabris, G.; Ryan, M.A.

    1992-07-01

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. Initially, two systems were selected for exploratory research and advanced development. These are Alkali Metal Thermal-to-Electric Converter (AMTEC) and Two-Phase Liquid Metal MD Generator (LMMHD). This report describes progress that has been made during the first six months of 1992 on research activities associated with these two systems. (GHH)

  17. Table 3.4 Consumer Price Estimates for Energy by End-Use Sector, 1970-2010 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumer Price Estimates for Energy by End-Use Sector, 1970-2010 (Dollars 1 per Million Btu) Year Residential Commercial Industrial Transportation Natural Gas 2 Petroleum Retail Electricity 3 Total 4 Natural Gas 2 Petroleum 5 Retail Electricity 3 Total 6,7 Coal Natural Gas 2 Petroleum 5 Biomass 8 Retail Electricity 3 Total 7,9 Petroleum 5 Total 7,10 1970 1.06 1.54 6.51 2.10 0.75 0.90 [R] 6.09 1.97 0.45 0.38 0.98 1.59 2.99 0.84 2.31 2.31 1971 1.12 1.59 6.80 2.24 .80 1.02 6.44 2.15 .50 .41 1.05

  18. Direct conversion technology

    SciTech Connect (OSTI)

    Massier, P.F.; Back, L.H.; Ryan, M.A.; Fabris, G.

    1992-01-07

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC) and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1, 1991 through December 31, 1991. Research on AMTEC and on LMMHD was initiated during October 1987. Reports prepared on previous occasions (Refs. 1--5) contain descriptive and performance discussions of the following direct conversion concepts: thermoelectric, pyroelectric, thermionic, thermophotovoltaic, thermoacoustic, thermomagnetic, thermoelastic (Nitionol heat engine); and also, more complete descriptive discussions of AMTEC and LMMHD systems.

  19. The National Fuel End-Use Efficiency Field Test: Energy Savings and Performance of an Improved Energy Conservation Measure Selection Technique

    SciTech Connect (OSTI)

    Ternes, M.P.

    1991-01-01

    The performance of an advanced residential energy conservation measure (ECM) selection technique was tested in Buffalo, New York, to verify the energy savings and program improvements achieved from use of the technique in conservation programs and provide input into determining whether utility investments in residential gas end-use conservation are cost effective. The technique analyzes a house to identify all ECMs that are cost effective in the building envelope, space-heating system, and water-heating system. The benefit-to-cost ratio (BCR) for each ECM is determined and cost-effective ECMs (BCR > 1.0) are selected once interactions between ECMs are taken into account. Eighty-nine houses with the following characteristics were monitored for the duration of the field test: occupants were low-income, houses were single-family detached houses but not mobile homes, and primary space- and water-heating systems were gas-fired. Forty-five houses received a mix of ECMs as selected by the measure selection technique (audit houses) and 44 served as a control group. Pre-weatherization data were collected from January to April 1988 and post-weatherization data were collected from December 1988 to April 1989. Space- and waterheating gas consumption and indoor temperature were monitored weekly during the two winters. A house energy consumption model and regression analysis were employed to normalize the space-heating energy savings to average outdoor temperature conditions and a 68 F indoor temperature. Space and water-heating energy savings for the audit houses were adjusted by the savings for the control houses. The average savings of 257 therms/year for the audit houses was 17% of the average pre-weatherization house gas consumption and 78% of that predicted. Average space-heating energy savings was 252 therms/year (25% of pre-weatherization space-heating energy consumption and 85% of the predicted value) and average water-heating savings was 5 therms/year (2% of pre-weatherization water-heating energy consumption and 17% of predicted). The overall BCR for the ECMs was 1.24 using the same assumptions followed in the selection technique: no administration cost, residential fuel costs, real discount rate of 0.05, and no fuel escalation. A weatherization program would be cost effective at an administration cost less than $335/house. On average, the indoor temperature increased in the audit houses by 0.5 F following weatherization and decreased in the control houses by 0.1 F. The following conclusions regarding the measure selection technique were drawn from the study: (1) a significant cost-effective level of energy savings resulted, (2) space-heating energy savings and total installation costs were predicted with reasonable accuracy, indicating that the technique's recommendations are justified, (3) effectiveness improved from earlier versions and can continue to be improved, and (4) a wider variety of ECMs were installed compared to most weatherization programs. An additional conclusion of the study was that a significant indoor temperature take-back effect had not occurred.

  20. Vehicle Technologies Office: Technologies

    Broader source: Energy.gov [DOE]

    To support DOE's goal to provide clean and secure energy, the Vehicle Technologies Office (VTO) invests in research and development that:

  1. Best Practices: Policies for Building Efficiency and Emerging Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Best Practices: Policies for Building Efficiency and Emerging Technologies Best Practices: Policies for Building Efficiency and Emerging Technologies Information about appliance standards, building energy codes, ENERGY STAR program and tax incentives for building efficiency. PDF icon session_2_buildings_track_digert_en.pdf PDF icon session_2_buildings_track_digert_cn.pdf More Documents & Publications Realizing Building End-Use Efficiency with Ermerging Technologies

  2. SUSTAINABLE DEVELOPMENT IN KAZAKHASTAN: USING OIL AND GAS PRODUCTION BY-PRODUCT SULFUR FOR COST-EFFECTIVE SECONDARY END-USE PRODUCTS.

    SciTech Connect (OSTI)

    KALB, P.D.; VAGIN, S.; BEALL, P.W.; LEVINTOV, B.L.

    2004-09-25

    The Republic of Kazakhstan is continuing to develop its extensive petroleum reserves in the Tengiz region of the northeastern part of the Caspian Sea. Large quantities of by-product sulfur are being produced as a result of the removal of hydrogen sulfide from the oil and gas produced in the region. Lack of local markets and economic considerations limit the traditional outlets for by-product sulfur and the buildup of excess sulfur is a becoming a potential economic and environmental liability. Thus, new applications for re-use of by-product sulfur that will benefit regional economies including construction, paving and waste treatment are being developed. One promising application involves the cleanup and treatment of mercury at a Kazakhstan chemical plant. During 19 years of operation at the Pavlodar Khimprom chlor-alkali production facility, over 900 tons of mercury was lost to the soil surrounding and beneath the buildings. The Institute of Metallurgy and Ore Benefication (Almaty) is leading a team to develop and demonstrate a vacuum-assisted thermal process to extract the mercury from the soil and concentrate it as pure, elemental mercury, which will then be treated using the Sulfur Polymer Stabilization/Solidification (SPSS) process. The use of locally produced sulfur will recycle a low-value industrial by-product to treat hazardous waste and render it safe for return to the environment, thereby helping to solve two problems at once. SPSS chemically stabilizes mercury to mercuric sulfide, which has a low vapor pressure and low solubility, and then physically encapsulates the material in a durable, monolithic solid sulfur polymer matrix. Thus, mercury is placed in a solid form very much like stable cinnabar, the form in which it is found in nature. Previous research and development has shown that the process can successfully encapsulate up to 33 wt% mercury in the solid form, while still meeting very strict regulatory standards for leachable mercury (0.025 mg/l in the Toxicity Characteristic Leaching Procedure). The research and development to deploy Kazakhstan recycled sulfur for secondary applications described in this paper is being conducted with support from the International Science and Technology Center (ISTC) and the U.S. Department of Energy Initiatives for Proliferation Prevention (DOE IPP).

  3. Office Buildings - End-Use Equipment

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Information Administration, 2003 Commercial Buildings Energy Consumption Survey. More computers, dedicated servers, printers, and photocopiers were used in office buildings than in...

  4. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    (g)",69090,"*",1,297,1,"*" ," Facility Lighting",51946,"--","--","--","--","--" ," Other ... (g)",6192,"*","*",32,"*","*" ," Facility Lighting",6082,"--","--","--","--","--" ," Other ...

  5. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    HVAC (g)",236,"Q",4,306,4,3 ," Facility Lighting",177,"--","--","--","--","--" ," Other ... (g)",21,"*","Q",33,"*","*" ," Facility Lighting",21,"--","--","--","--","--" ," Other ...

  6. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...)","--",265,4,4,378,5,2,"--" ," Facility Lighting","--",198,"--","--","--","--","--","--" ...--",21,"*","*",30,1,"*","--" ," Facility Lighting","--",18,"--","--","--","--","--","--" ...

  7. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...--",77768,1,1,367,1,"*","--" ," Facility Lighting","--",58013,"--","--","--","--","--","--...6036,"*","*",29,"*","*","--" ," Facility Lighting","--",5291,"--","--","--","--","--","--" ...

  8. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    (g)",83480,1,1,367,1,"*" ," Facility Lighting",62902,"--","--","--","--","--" ," Other ... (g)",6217,"*","*",29,"*","*" ," Facility Lighting",5472,"--","--","--","--","--" ," Other ...

  9. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    (f)",84678,1,1,392,1,"*",5.7 ," Facility Lighting",66630,"--","--","--","--","--",1 ," ...,5402,"*","*",26,"*","*",2.2 ," Facility Lighting",4785,"--","--","--","--","--",1 ," ...

  10. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...",64945,"*",1,297,1,"*","--" ," Facility Lighting","--",48453,"--","--","--","--","--","--...5949,"*","*",32,"*","*","--" ," Facility Lighting","--",5809,"--","--","--","--","--","--" ...

  11. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    (g)",81980,1,1,406,1,"*",6.6 ," Facility Lighting",62019,"--","--","--","--","--",1.1 ," ...5037,"*","*",36,"*","*",11.3 ," Facility Lighting",4826,"--","--","--","--","--",1.3 ," ...

  12. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...79355,1,1,392,1,"*","--",5.7 ," Facility Lighting","--",61966,"--","--","--","--","--","--...,"*","*",26,"*","*","--",2.2 ," Facility Lighting","--",4492,"--","--","--","--","--","--"...

  13. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    (g)",280,3,5,417,5,5,6.6 ," Facility Lighting",212,"--","--","--","--","--",1.1 ," ...g)",17,"*","*",37,1,"*",11.3 ," Facility Lighting",16,"--","--","--","--","--",1.3 ," ...

  14. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    (f)",289,4,6,403,4,4,5.7 ," Facility Lighting",227,"--","--","--","--","--",1 ," Other ... (f)",18,1,1,26," *"," *",2.2 ," Facility Lighting",16,"--","--","--","--","--",1 ," Other ...

  15. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...,"--",222,"Q",4,306,4,3,"--" ," Facility Lighting","--",165,"--","--","--","--","--","--" ...",20,"*","Q",33,"*","*","--" ," Facility Lighting","--",20,"--","--","--","--","--","--" ...

  16. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...--",271,4,6,403,4,4,"--",5.7 ," Facility Lighting","--",211,"--","--","--","--","--","--",... *"," *","--",2.2 ," Facility Lighting","--",15,"--","--","--","--","--","--",1 ...

  17. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...--",262,3,5,417,5,5,"--",6.6 ," Facility Lighting","--",196,"--","--","--","--","--","--",...6,"*","*",37,1,"*","--",11.3 ," Facility Lighting","--",15,"--","--","--","--","--","--",1...

  18. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    HVAC (g)",285,4,4,378,5,2 ," Facility Lighting",215,"--","--","--","--","--" ," Other ... (g)",21,"*","*",30,1,"*" ," Facility Lighting",19,"--","--","--","--","--" ," Other ...

  19. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...76840,1,1,406,1,"*","--",6.6 ," Facility Lighting","--",57460,"--","--","--","--","--","--..."*","*",36,"*","*","--",11.3 ," Facility Lighting","--",4526,"--","--","--","--","--","--"...

  20. End-Use Taxes: Current EIA Practices

    U.S. Energy Information Administration (EIA) Indexed Site

    However, many States levy taxes on aviation fuel, as shown in Table B3 in Appendix B, based on information obtained from State TaxationRevenue Offices. The use of the national...

  1. Alabama Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    534,779 598,514 666,712 615,407 634,678 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 10,163 10,367 12,389 12,456 10,055 1983-2014 Plant Fuel 6,441 6,939 6,616 6,804 6,462 1983-2014 Pipeline & Distribution Use 22,124 23,091 25,349 22,166 18,688 1997-2014 Volumes Delivered to Consumers 496,051 558,116 622,359 573,981 599,473 640,707 1997-2015 Residential 42,215 36,582 27,580 35,059 38,971 31,794 1967-2015 Commercial 27,071 25,144 21,551 25,324 27,515 24,519 1967-2015 Industrial 144,938

  2. Alaska Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    333,312 335,458 343,110 332,298 327,428 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 211,918 208,531 214,335 219,190 219,451 1983-2014 Plant Fuel 37,316 35,339 37,397 36,638 36,707 1983-2014 Pipeline & Distribution Use 3,284 3,409 3,974 544 309 1997-2014 Volumes Delivered to Consumers 80,794 88,178 87,404 75,926 70,960 70,027 1997-2015 Residential 18,714 20,262 21,380 19,215 17,734 18,468 1967-2015 Commercial 15,920 19,399 19,898 18,694 17,925 19,281 1967-2015 Industrial 6,408 6,769

  3. Arizona Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    330,914 288,802 332,068 332,073 307,946 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 19 17 12 4 3 1983-2014 Pipeline & Distribution Use 15,447 13,158 12,372 12,619 13,484 1997-2014 Volumes Delivered to Consumers 315,448 275,627 319,685 319,450 294,459 336,195 1997-2015 Residential 37,812 38,592 34,974 39,692 32,397 34,215 1967-2015 Commercial 31,945 32,633 31,530 32,890 30,456 30,537 1967-2015 Industrial 19,245 21,724 22,657 22,153 22,489 19,991 1997-2015 Vehicle Fuel 2,015 1,712

  4. Arkansas Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    244,193 271,515 284,076 296,132 282,120 268,453 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 4,091 5,340 6,173 6,599 6,605 6,452 1983-2014 Plant Fuel 489 529 423 622 797 871...

  5. Louisiana Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    17,378 117,825 109,098 112,861 116,396 123,498 2001-2015 Residential 1,292 1,202 1,354 1,531 2,380 3,756 1989-2015 Commercial 1,804 1,902 2,214 2,286 2,789 2,970 1989-2015 Industrial 77,300 80,789 78,022 79,787 81,870 85,489 2001-2015 Vehicle Fuel 5 5 4 5 4 5 2010-2015 Electric Power 36,977 33,927 27,504 29,252 29,353 31,279

  6. Maine Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    NA NA NA NA NA NA 2001-2015 Residential 46 45 46 136 232 298 1989-2015 Commercial 409 425 415 569 779 961 1989-2015 Industrial NA NA NA NA NA NA 2001-2015 Vehicle Fuel 0 0 0 0 0 0 2010-2015 Electric Power 1,132 1,839 1,538 2,483 1,813 1,42

  7. Maryland Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    12,233 10,397 9,762 12,704 16,455 18,593 2001-2015 Residential 1,624 1,557 1,518 3,820 6,137 8,243 1989-2015 Commercial 2,900 2,967 2,932 4,663 5,844 6,571 1989-2015 Industrial 1,118 906 1,131 1,242 1,266 1,302 2001-2015 Vehicle Fuel 20 20 19 20 19 20 2010-2015 Electric Power 6,571 4,947 4,162 2,959 3,188 2,45

  8. Massachusetts Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    31,404 31,673 25,692 29,699 31,148 36,395 2001-2015 Residential 2,619 2,442 2,465 5,784 9,387 12,553 1989-2015 Commercial 3,912 3,873 4,066 7,399 9,210 10,044 1989-2015 Industrial 2,219 2,286 2,507 3,055 4,108 4,110 2001-2015 Vehicle Fuel 70 70 67 70 67 70 2010-2015 Electric Power 22,583 23,001 16,586 13,391 8,375 9,618

  9. Michigan Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    39,804 37,730 38,018 55,280 71,432 87,181 2001-2015 Residential 5,722 6,026 6,164 16,846 29,138 36,400 1989-2015 Commercial 5,155 5,500 5,306 9,388 13,375 18,235 1989-2015 Industrial 11,349 11,437 11,698 13,570 14,366 15,847 2001-2015 Vehicle Fuel 34 34 33 34 33 34 2010-2015 Electric Power 17,544 14,732 14,817 15,441 14,519 16,664

  10. Minnesota Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    22,461 22,087 22,872 27,097 35,845 NA 2001-2015 Residential 2,322 2,587 2,362 5,207 10,741 18,067 1989-2015 Commercial 2,540 2,910 2,786 5,206 8,381 12,550 1989-2015 Industrial 10,321 10,272 11,305 13,280 13,605 NA 2001-2015 Vehicle Fuel 4 4 4 4 4 4 2010-2015 Electric Power 7,274 6,314 6,416 3,400 3,113 5,725

  11. Mississippi Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    45,832 43,363 NA 37,302 NA 40,203 2001-2015 Residential 466 428 512 796 NA 2,377 1989-2015 Commercial 785 889 NA 1,277 NA 1,725 1989-2015 Industrial 9,730 9,838 9,911 11,304 10,334 10,524 2001-2015 Vehicle Fuel 2 2 2 2 2 2 2010-2015 Electric Power 34,848 32,206 26,810 23,923 25,741 25,574

  12. Montana Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    ,334 NA 3,662 4,787 7,811 9,316 2001-2015 Residential 381 377 494 1,042 2,634 3,260 1989-2015 Commercial 597 584 689 1,158 2,508 3,107 1989-2015 Industrial 1,438 NA 1,709 1,873 2,004 2,173 2001-2015 Vehicle Fuel 0 0 0 0 0 0 2010-2015 Electric Power 918 803 770 714 666 777

  13. Nebraska Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    10,715 9,420 8,366 9,672 13,194 16,498 2001-2015 Residential 790 684 667 1,053 2,858 5,497 1989-2015 Commercial 1,223 1,010 932 1,558 2,619 3,974 1989-2015 Industrial 7,440 6,832 6,257 7,056 7,553 6,885 2001-2015 Vehicle Fuel 5 5 5 5 5 5 2010-2015 Electric Power 1,257 890 505 W 160 137

  14. Nevada Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    24,653 NA NA 22,739 NA 30,673 2001-2015 Residential 1,108 1,176 1,215 1,440 4,172 7,264 1989-2015 Commercial 1,598 1,709 1,662 1,970 3,091 4,015 1989-2015 Industrial 1,165 NA NA 1,182 NA 1,200 2001-2015 Vehicle Fuel 60 60 58 60 58 60 2010-2015 Electric Power 20,722 22,904 20,109 18,088 15,282 18,13

  15. Colorado Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    8,936 19,060 19,128 22,856 40,791 49,929 2001-2015 Residential 2,725 2,476 3,036 5,976 16,679 23,229 1989-2015 Commercial 1,568 1,456 1,694 2,859 6,789 9,397 1989-2015 Industrial 4,997 4,987 4,790 5,823 7,640 8,931 2001-2015 Vehicle Fuel 27 27 26 27 26 27 2010-2015 Electric Power 9,620 10,114 9,582 8,172 9,658 8,346

  16. Florida Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    124,560 126,037 118,468 114,127 106,003 105,637 2001-2015 Residential 833 634 632 1,081 1,216 1,440 1989-2015 Commercial 4,734 4,651 4,441 5,003 5,214 5,660 1989-2015 Industrial 7,672 7,362 7,385 7,997 7,774 8,933 2001-2015 Vehicle Fuel 18 18 17 18 17 18 2010-2015 Electric Power 111,305 113,372 105,993 100,028 91,782 89,5

  17. Georgia Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    58,820 54,742 49,172 52,445 55,858 56,505 2001-2015 Residential 3,662 3,731 3,794 5,873 10,248 11,943 1989-2015 Commercial 2,164 2,274 2,417 3,159 4,695 5,185 1989-2015 Industrial 12,955 12,710 12,244 13,714 13,291 13,391 2001-2015 Vehicle Fuel 99 99 96 99 96 99 2010-2015 Electric Power 39,940 35,927 30,621 29,598 27,527 25,8

  18. Hawaii Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    243 240 233 240 228 251 2001-2015 Residential 45 43 41 44 44 47 1989-2015 Commercial 159 156 153 152 148 167 1989-2015 Industrial 38 41 37 43 36 36 2001-2015 Vehicle Fuel 1 1 1 1 1 1 2010-2015 Electric Power -- -- -- -- -- --

  19. Idaho Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    6,426 NA 6,838 NA NA 13,715 2001-2015 Residential 464 359 638 995 3,624 4,740 1989-2015 Commercial 625 583 694 1,066 2,068 2,719 1989-2015 Industrial 2,094 NA 2,564 NA NA 3,403 2001-2015 Vehicle Fuel 13 13 13 13 13 13 2010-2015 Electric Power 3,230 3,645 2,930 2,500 2,240 2,840

  20. Illinois Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    5,724 42,537 43,969 57,973 NA 107,844 2001-2015 Residential 7,939 7,946 8,021 18,056 35,960 50,744 1989-2015 Commercial 7,162 7,573 7,821 12,312 NA 24,179 1989-2015 Industrial 19,474 19,033 19,312 21,016 24,322 25,140 2001-2015 Vehicle Fuel 29 29 28 29 28 29 2010-2015 Electric Power 11,120 7,957 8,788 6,560 7,008 7,753

  1. Indiana Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    3,339 43,297 39,873 48,080 59,575 72,031 2001-2015 Residential 2,234 2,242 2,432 5,799 11,746 16,881 1989-2015 Commercial 2,324 2,749 2,784 4,720 6,409 8,381 1989-2015 Industrial 28,293 28,167 26,713 28,848 29,980 33,462 2001-2015 Vehicle Fuel 2 2 2 2 2 2 2010-2015 Electric Power 10,486 10,138 7,942 8,711 11,439 13,305

  2. Iowa Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    19,248 18,504 17,814 21,170 NA 32,191 2001-2015 Residential 1,171 1,036 1,260 2,268 5,686 8,921 1989-2015 Commercial 1,567 1,468 1,716 3,156 NA 6,246 1989-2015 Industrial 13,445 13,635 13,086 14,826 14,751 15,399 2001-2015 Vehicle Fuel 2 2 1 2 1 2 2010-2015 Electric Power 3,063 2,364 1,750 918 530 1,623

  3. Kansas Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    7,191 NA 11,628 12,195 NA 24,751 2001-2015 Residential 1,147 1,061 1,075 1,701 NA 8,698 1989-2015 Commercial 1,492 NA 1,164 1,755 2,731 4,161 1989-2015 Industrial 11,127 9,693 7,725 8,738 8,919 11,086 2001-2015 Vehicle Fuel 1 1 1 1 1 1 2010-2015 Electric Power 3,425 2,353 1,662 W W 804

  4. Kentucky Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    6,787 15,592 15,333 18,190 21,975 22,413 2001-2015 Residential 858 849 845 1,565 3,977 5,585 1989-2015 Commercial 1,139 1,152 1,154 1,709 2,925 3,570 1989-2015 Industrial 8,478 8,791 8,464 8,840 9,759 9,943 2001-2015 Vehicle Fuel 2 2 2 2 2 2 2010-2015 Electric Power 6,310 4,798 4,867 6,074 5,312 3,312

  5. Massachusetts Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    432,297 449,194 416,350 421,001 418,526 1997-2014 Pipeline & Distribution Use 3,827 4,657 3,712 2,759 6,258 1997-2014 Volumes Delivered to Consumers 428,471 444,537 412,637 418,241 412,268 434,781 1997-2015 Residential 125,602 129,217 115,310 116,867 126,902 125,463 1967-2015 Commercial 72,053 81,068 73,040 99,781 105,801 105,809 1967-2015 Industrial 44,239 47,590 43,928 46,677 45,581 46,186 1997-2015 Vehicle Fuel 735 760 761 699 820 831 1988-2015 Electric Power 185,842 185,903 179,598

  6. Michigan Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    46,748 776,466 790,642 814,635 850,974 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 6,626 5,857 7,428 7,248 5,948 1983-2014 Plant Fuel 1,684 1,303 1,174 1,071 1,152 1983-2014 Pipeline & Distribution Use 24,904 23,537 20,496 18,713 19,347 1997-2014 Volumes Delivered to Consumers 713,533 745,769 761,544 787,603 824,527 NA 1997-2015 Residential 304,330 318,004 276,778 334,211 354,713 319,680 1967-2015 Commercial 152,350 163,567 144,609 171,519 186,413 172,156 1967-2015 Industrial 143,351

  7. Minnesota Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    422,968 420,770 422,263 467,874 473,310 1997-2014 Pipeline & Distribution Use 15,465 15,223 12,842 11,626 12,657 1997-2014 Volumes Delivered to Consumers 407,503 405,547 409,421 456,247 460,653 NA 1997-2015 Residential 122,993 125,160 109,103 139,897 146,647 119,119 1967-2015 Commercial 89,963 94,360 83,174 105,937 110,905 93,865 1967-2015 Industrial 158,457 157,776 159,947 160,732 173,556 NA 1997-2015 Vehicle Fuel 14 7 7 41 49 32 1988-2015 Electric Power 36,076 28,244 57,190 49,640 29,496

  8. Mississippi Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    438,733 433,538 494,016 420,594 412,979 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 10,388 2,107 3,667 2,663 1,487 1983-2014 Plant Fuel 1,155 1,042 1,111 1,103 1,310 1983-2014 Pipeline & Distribution Use 28,117 28,828 48,497 23,667 19,787 1997-2014 Volumes Delivered to Consumers 399,073 401,561 440,741 393,161 390,396 NA 1997-2015 Residential 27,152 24,303 19,572 25,185 28,358 NA 1967-2015 Commercial 21,179 20,247 17,834 19,483 22,195 NA 1967-2015 Industrial 115,489 112,959 111,995

  9. Missouri Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    280,181 272,583 255,875 276,967 296,605 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 0 0 0 0 * 1984-2014 Pipeline & Distribution Use 5,820 7,049 4,973 5,626 6,184 1997-2014 Volumes Delivered to Consumers 274,361 265,534 250,902 271,341 290,421 271,116 1997-2015 Residential 107,389 102,545 83,106 106,446 115,512 102,814 1967-2015 Commercial 61,194 62,304 54,736 64,522 72,919 65,595 1967-2015 Industrial 65,554 63,053 62,516 63,212 67,115 65,349 1997-2015 Vehicle Fuel 7 6 6 42 49 31

  10. Montana Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    72,025 78,217 73,399 79,670 78,010 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 3,265 2,613 3,845 3,845 1,793 1983-2014 Plant Fuel 800 604 612 645 657 1983-2014 Pipeline & Distribution Use 7,442 6,888 6,979 6,769 4,126 1997-2014 Volumes Delivered to Consumers 60,517 68,113 61,963 68,410 71,435 NA 1997-2015 Residential 20,875 21,710 19,069 20,813 21,379 18,772 1967-2015 Commercial 20,459 22,336 19,205 20,971 21,549 NA 1967-2015 Industrial 18,478 19,386 18,319 19,352 22,084 NA 1997-2015

  11. Nebraska Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    168,944 171,777 158,757 173,376 172,749 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 331 287 194 194 62 1983-2014 Plant Fuel 0 0 0 0 0 1983-2014 Pipeline & Distribution Use 7,329 9,270 7,602 6,949 7,066 1997-2014 Volumes Delivered to Consumers 161,284 162,219 150,961 166,233 165,620 149,107 1997-2015 Residential 40,132 39,717 31,286 41,229 42,147 33,830 1967-2015 Commercial 31,993 32,115 26,503 32,214 32,407 28,474 1967-2015 Industrial 85,180 86,128 85,439 88,140 86,878 82,326

  12. Nevada Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    59,251 249,971 273,502 272,965 252,097 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 4 3 4 3 3 1988-2014 Pipeline & Distribution Use 2,992 4,161 6,256 4,954 4,912 1997-2014 Volumes Delivered to Consumers 256,256 245,807 267,242 268,008 247,182 NA 1997-2015 Residential 39,379 40,595 37,071 41,664 35,135 36,592 1967-2015 Commercial 29,475 30,763 28,991 31,211 29,105 29,614 1967-2015 Industrial 10,728 11,080 11,299 13,209 14,324 NA 1997-2015 Vehicle Fuel 837 591 589 597 701 682 1988-2015

  13. Ohio Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    784,293 823,548 842,959 912,403 1,000,231 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 773 781 836 1,079 4,247 1983-2014 Plant Fuel 0 0 127 202 468 1983-2014 Pipeline & Distribution Use 15,816 14,258 9,559 10,035 12,661 1997-2014 Volumes Delivered to Consumers 767,704 808,509 832,437 901,087 982,855 949,865 1997-2015 Residential 283,703 286,132 250,871 297,361 320,568 289,683 1967-2015 Commercial 156,407 161,408 145,482 168,233 183,105 169,515 1967-2015 Industrial 269,287 268,034

  14. Oklahoma Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    675,727 655,919 691,661 658,569 640,607 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 39,489 40,819 43,727 45,581 50,621 1983-2014 Plant Fuel 23,238 24,938 27,809 32,119 36,231 1983-2014 Pipeline & Distribution Use 30,611 30,948 32,838 41,813 45,391 1997-2014 Volumes Delivered to Consumers 582,389 559,215 587,287 539,056 508,363 544,200 1997-2015 Residential 65,429 61,387 49,052 66,108 69,050 59,675 1967-2015 Commercial 41,822 40,393 36,106 44,238 46,986 42,383 1967-2015 Industrial

  15. Oregon Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    239,325 199,419 215,830 240,418 220,076 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 31 39 44 44 25 1983-2014 Pipeline & Distribution Use 6,394 5,044 4,554 4,098 3,686 1997-2014 Volumes Delivered to Consumers 232,900 194,336 211,232 236,276 216,365 233,523 1997-2015 Residential 40,821 46,604 43,333 46,254 41,185 37,930 1967-2015 Commercial 27,246 30,359 28,805 30,566 28,377 26,502 1967-2015 Industrial 55,822 56,977 57,506 57,372 56,522 54,931 1997-2015 Vehicle Fuel 183 144 144 154 181

  16. Pennsylvania Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    879,365 965,742 1,037,979 1,121,696 1,203,418 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 19,805 46,784 79,783 115,630 112,847 1983-2014 Plant Fuel 881 963 2,529 9,200 11,602 1983-2014 Pipeline & Distribution Use 47,470 51,220 37,176 37,825 36,323 1997-2014 Volumes Delivered to Consumers 811,209 866,775 918,490 959,041 1,042,647 1,078,193 1997-2015 Residential 223,642 219,446 197,313 231,861 254,816 242,098 1967-2015 Commercial 141,699 141,173 126,936 149,114 159,636 156,887

  17. Tennessee Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    257,443 264,231 277,127 279,441 303,996 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 214 231 335 335 142 1983-2014 Plant Fuel 148 145 150 142 128 1983-2014 Pipeline & Distribution Use 10,081 11,655 9,880 6,660 5,913 1997-2014 Volumes Delivered to Consumers 247,000 252,200 266,762 272,304 297,814 306,194 1997-2015 Residential 74,316 67,190 53,810 71,241 78,385 67,951 1967-2015 Commercial 56,194 52,156 44,928 53,888 57,427 53,995 1967-2015 Industrial 94,320 106,522 105,046 110,475

  18. Texas Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    3,574,398 3,693,905 3,850,331 4,021,851 4,088,445 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 157,751 147,268 163,325 198,208 213,481 1983-2014 Plant Fuel 151,818 155,358 171,359 178,682 184,723 1983-2014 Pipeline & Distribution Use 79,817 85,549 138,429 294,316 274,451 1997-2014 Volumes Delivered to Consumers 3,185,011 3,305,730 3,377,217 3,350,645 3,415,789 3,589,916 1997-2015 Residential 226,445 199,958 169,980 207,148 234,520 199,288 1967-2015 Commercial 188,796 184,475 161,273

  19. Utah Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    219,213 222,227 223,039 247,285 242,457 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 22,022 23,209 28,165 28,165 25,336 1983-2014 Plant Fuel 1,616 3,063 3,031 5,996 4,782 1983-2014 Pipeline & Distribution Use 10,347 11,374 12,902 13,441 14,061 1997-2014 Volumes Delivered to Consumers 185,228 184,581 178,941 199,684 198,278 187,452 1997-2015 Residential 66,087 70,076 59,801 70,491 62,458 58,177 1967-2015 Commercial 38,461 40,444 35,363 41,398 38,156 35,552 1967-2015 Industrial 32,079

  20. Vermont Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    8,443 8,611 8,191 9,602 10,678 1997-2014 Pipeline & Distribution Use 16 53 114 89 124 1997-2014 Volumes Delivered to Consumers 8,428 8,558 8,077 9,512 10,554 NA 1997-2015 Residential 3,078 3,214 3,012 3,415 3,826 3,754 1980-2015 Commercial 2,384 2,479 2,314 4,748 4,830 NA 1980-2015 Industrial 2,909 2,812 2,711 1,303 1,858 NA 1997-2015 Vehicle Fuel 1 3 3 3 3 3 1997-2015 Electric Power 55 49 38 44 36 19

  1. Virginia Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    375,421 373,444 410,106 418,506 419,615 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 6,121 7,206 8,408 8,408 7,252 1983-2014 Pipeline & Distribution Use 10,091 13,957 9,443 8,475 7,424 1997-2014 Volumes Delivered to Consumers 359,208 352,281 392,255 401,623 404,939 NA 1997-2015 Residential 88,157 79,301 70,438 85,702 92,817 83,512 1967-2015 Commercial 68,911 64,282 60,217 68,126 72,164 67,597 1967-2015 Industrial 62,243 66,147 71,486 75,998 81,040 NA 1997-2015 Vehicle Fuel 142 267 266

  2. Washington Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    285,726 264,589 264,540 318,292 307,021 1997-2014 Lease and Plant Fuel 1967-1992 Pipeline & Distribution Use 7,587 6,644 9,184 10,144 8,933 1997-2014 Volumes Delivered to Consumers 278,139 257,945 255,356 308,148 298,088 NA 1997-2015 Residential 75,554 85,393 79,892 83,365 78,750 71,818 1967-2015 Commercial 51,335 56,487 53,420 55,805 54,457 49,906 1967-2015 Industrial 71,280 76,289 78,196 80,889 79,439 NA 1997-2015 Vehicle Fuel 436 510 512 418 491 524 1988-2015 Electric Power 79,535 39,265

  3. Alabama Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    56,930 54,897 50,117 49,292 50,501 54,716 2001-2015 Residential 702 694 671 934 2,031 3,411 1989-2015 Commercial 1,088 1,131 1,174 1,513 2,317 2,366 1989-2015 Industrial 15,749 15,311 14,897 15,292 15,100 15,670 2001-2015 Vehicle Fuel 19 19 18 19 18 19 2010-2015 Electric Power 39,373 37,742 33,356 31,534 31,034 33,249

  4. Alaska Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    3,931 3,785 4,473 5,317 6,929 7,958 2001-2015 Residential 493 527 1,033 1,422 2,306 2,670 1989-2015 Commercial 713 766 1,253 1,451 2,103 2,558 1989-2015 Industrial 359 375 323 348 354 393 2001-2015 Vehicle Fuel 1 1 1 1 1 1 2010-2015 Electric Power 2,365 2,116 1,863 2,096 2,164 2,336

  5. Arizona Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    38,296 42,499 35,461 29,557 25,804 30,415 2001-2015 Residential 1,056 971 1,072 1,334 3,107 6,609 1989-2015 Commercial 1,758 1,654 1,714 1,918 3,014 4,130 1989-2015 Industrial 1,468 1,457 1,417 1,572 1,844 1,988 2001-2015 Vehicle Fuel 173 173 167 173 167 173 2010-2015 Electric Power 33,842 38,244 31,091 24,561 17,672 17,515

  6. Arkansas Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    22,018 21,854 17,958 14,702 18,552 22,561 2001-2015 Residential 557 514 546 731 2,155 3,933 1989-2015 Commercial 2,308 2,444 2,571 3,048 3,863 4,724 1989-2015 Industrial 6,345 6,370 6,286 6,790 7,098 7,148 2001-2015 Vehicle Fuel 3 3 3 3 3 3 2010-2015 Electric Power 12,805 12,523 8,552 4,130 5,434 6,754

  7. California Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    92,918 199,015 189,292 186,757 195,837 235,282 2001-2015 Residential 19,107 17,560 17,188 19,412 44,802 73,730 1989-2015 Commercial 15,962 16,537 15,250 16,321 26,389 29,820 1989-2015 Industrial 70,121 71,776 66,196 64,699 63,799 67,213 2001-2015 Vehicle Fuel 1,408 1,408 1,363 1,408 1,363 1,408 2010-2015 Electric Power 86,319 91,733 89,295 84,917 59,484 63,111

  8. Tennessee Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    19,267 17,907 18,246 18,807 24,268 29,015 2001-2015 Residential 1,032 1,028 1,163 1,982 4,847 7,765 1989-2015 Commercial 2,060 2,125 2,259 3,080 4,707 5,273 1989-2015 Industrial 8,573 8,743 8,683 9,162 9,248 9,813 2001-2015 Vehicle Fuel 9 9 8 9 8 9 2010-2015 Electric Power 7,594 6,002 6,133 4,574 5,458 6,1

  9. Texas Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    329,042 332,621 291,178 276,726 267,183 307,656 2001-2015 Residential 6,189 4,587 5,116 5,934 9,793 24,772 1989-2015 Commercial 10,630 9,295 9,558 10,313 12,553 17,584 1989-2015 Industrial 130,522 132,785 125,076 128,958 134,340 141,897 2001-2015 Vehicle Fuel 300 300 290 300 290 300 2010-2015 Electric Power 181,401 185,654 151,139 131,222 110,207 123,103

  10. Ohio Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    50,025 48,583 46,019 55,863 74,007 88,545 2001-2015 Residential 5,084 4,792 4,741 12,359 22,384 31,154 1989-2015 Commercial 4,753 4,790 4,535 9,220 12,881 16,455 1989-2015 Industrial 19,742 19,354 18,786 20,416 22,796 23,708 2001-2015 Vehicle Fuel 30 30 29 30 29 30 2010-2015 Electric Power 20,417 19,618 17,928 13,838 15,918 17,199

  11. Oklahoma Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    45,577 43,618 38,010 34,185 42,019 50,354 2001-2015 Residential 1,271 1,095 1,169 1,308 2,614 6,999 1989-2015 Commercial 1,553 1,502 1,509 1,638 2,339 4,093 1989-2015 Industrial 12,322 13,036 15,155 14,917 16,551 16,204 2001-2015 Vehicle Fuel 34 34 33 34 33 34 2010-2015 Electric Power 30,396 27,950 20,143 16,289 20,482 23,024

  12. Oregon Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    17,872 17,582 18,287 18,493 25,529 28,283 2001-2015 Residential 860 841 1,217 1,804 5,854 7,090 1989-2015 Commercial 968 948 1,217 1,552 3,444 4,307 1989-2015 Industrial 4,016 4,163 4,085 4,375 4,834 5,261 2001-2015 Vehicle Fuel 15 15 15 15 15 15 2010-2015 Electric Power 12,013 11,616 11,754 10,746 11,382 11,609

  13. Pennsylvania Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    74,666 73,764 67,203 78,980 87,069 96,515 2001-2015 Residential 4,230 4,143 4,892 11,789 18,582 24,976 1989-2015 Commercial 4,493 4,751 5,319 10,093 13,175 15,188 1989-2015 Industrial 17,977 17,360 17,224 18,923 19,211 20,699 2001-2015 Vehicle Fuel 31 31 30 31 30 31 2010-2015 Electric Power 47,934 47,480 39,738 38,145 36,071 35,62

  14. Wyoming Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    4,559 4,334 4,513 4,917 7,317 9,112 2001-2015 Residential 250 205 313 415 1,468 2,262 1989-2015 Commercial 401 283 478 537 1,585 2,273 1989-2015 Industrial 3,906 3,844 3,720 3,963 4,262 4,575 2001-2015 Vehicle Fuel 2 2 2 2 2 2 2010-2015 Electric Power W W W W W W

  15. California Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    2,273,128 2,153,186 2,403,494 2,415,571 2,344,977 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 64,931 44,379 51,154 49,846 54,288 1983-2014 Plant Fuel 2,370 2,253 2,417 2,834 2,361 1983-2014 Pipeline & Distribution Use 9,741 10,276 12,906 10,471 22,897 1997-2014 Volumes Delivered to Consumers 2,196,086 2,096,279 2,337,017 2,352,421 2,265,431 2,257,216 1997-2015 Residential 494,890 512,565 477,931 481,773 397,489 404,869 1967-2015 Commercial 247,997 246,141 253,148 254,845 237,675

  16. Colorado Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    501,350 466,680 443,750 467,798 480,747 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 66,083 78,800 76,462 71,105 74,402 1983-2014 Plant Fuel 25,090 28,265 29,383 25,806 30,873 1983-2014 Pipeline & Distribution Use 14,095 13,952 10,797 9,107 8,451 1997-2014 Volumes Delivered to Consumers 396,083 345,663 327,108 361,779 367,021 NA 1997-2015 Residential 131,224 130,116 115,695 134,936 132,106 125,433 1967-2015 Commercial 57,658 55,843 51,795 58,787 58,008 NA 1967-2015 Industrial 114,295

  17. Connecticut Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    199,426 230,036 229,156 234,475 235,205 1997-2014 Pipeline & Distribution Use 6,739 6,302 4,747 4,381 4,698 1997-2014 Volumes Delivered to Consumers 192,687 223,734 224,409 230,094 230,507 250,527 1997-2015 Residential 42,729 44,719 41,050 46,802 51,193 51,857 1967-2015 Commercial 40,656 44,832 42,346 46,418 51,221 53,378 1967-2015 Industrial 24,117 26,258 26,932 29,965 28,371 25,943 1997-2015 Vehicle Fuel 41 27 27 46 54 44 1988-2015 Electric Power 85,144 107,897 114,054 106,863 99,668

  18. Delaware Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    54,825 79,715 101,676 95,978 100,776 1997-2014 Lease and Plant Fuel 1967-1992 Pipeline & Distribution Use 140 464 1,045 970 1,040 1997-2014 Volumes Delivered to Consumers 54,685 79,251 100,630 95,008 99,736 99,543 1997-2015 Residential 10,126 10,030 8,564 10,197 11,316 10,501 1967-2015 Commercial 12,193 10,478 10,034 11,170 11,882 11,189 1967-2015 Industrial 7,983 19,760 28,737 32,154 31,004 33,127 1997-2015 Vehicle Fuel 1 1 1 1 1 1 1988-2015 Electric Power 24,383 38,984 53,295 41,487 45,534

  19. Florida Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    1,158,452 1,217,689 1,328,463 1,225,676 1,231,957 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 4,512 4,896 6,080 5,609 6,551 1983-2014 Plant Fuel 0 0 0 0 272 1983-2014 Pipeline & Distribution Use 22,798 13,546 16,359 12,494 3,468 1997-2014 Volumes Delivered to Consumers 1,131,142 1,199,247 1,306,024 1,207,573 1,221,666 NA 1997-2015 Residential 18,744 16,400 14,366 15,321 16,652 14,777 1967-2015 Commercial 54,065 53,532 54,659 59,971 62,646 NA 1967-2015 Industrial 76,522 85,444 98,144

  20. Georgia Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    530,030 522,897 615,771 625,283 652,230 1997-2014 Pipeline & Distribution Use 8,473 10,432 10,509 7,973 6,977 1997-2014 Volumes Delivered to Consumers 521,557 512,466 605,262 617,310 645,253 683,796 1997-2015 Residential 138,671 113,335 97,664 121,629 134,438 117,523 1967-2015 Commercial 60,153 56,602 51,918 57,195 59,039 53,581 1967-2015 Industrial 146,737 144,940 146,481 157,982 160,821 157,407 1997-2015 Vehicle Fuel 915 1,097 1,104 998 1,171 1,194 1988-2015 Electric Power 175,082 196,492

  1. Hawaii Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    2,627 2,619 2,689 2,855 2,928 1997-2014 Pipeline & Distribution Use 2 2 3 1 1 2004-2014 Volumes Delivered to Consumers 2,625 2,616 2,687 2,853 2,927 2,929 1997-2015 Residential 509 486 481 582 583 572 1980-2015 Commercial 1,777 1,768 1,850 1,873 1,931 1,908 1980-2015 Industrial 339 362 355 388 401 442 1997-2015 Vehicle Fuel 0 0 0 10 12 7 1997-2015 Electric Power -- -- -- -- -- --

  2. Idaho Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    83,326 82,544 89,004 104,783 91,514 1997-2014 Lease and Plant Fuel 1967-1992 Pipeline & Distribution Use 7,679 5,201 5,730 5,940 3,867 1997-2014 Volumes Delivered to Consumers 75,647 77,343 83,274 98,843 87,647 NA 1997-2015 Residential 23,975 26,666 23,924 27,370 24,616 22,963 1967-2015 Commercial 15,033 16,855 15,838 18,485 16,963 16,171 1967-2015 Industrial 24,195 25,392 29,781 27,996 28,046 NA 1997-2015 Vehicle Fuel 69 131 132 133 156 152 1988-2015 Electric Power 12,375 8,299 13,599

  3. Illinois Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    966,678 986,867 940,367 1,056,826 1,092,999 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 50 101 122 122 70 1983-2014 Plant Fuel 4,559 4,917 4,896 4,917 288 1983-2014 Pipeline & Distribution Use 19,864 21,831 24,738 26,936 30,263 1997-2014 Volumes Delivered to Consumers 942,205 960,018 910,611 1,024,851 1,062,377 NA 1997-2015 Residential 416,570 418,143 360,891 452,602 479,465 399,446 1967-2015 Commercial 198,036 215,605 188,099 230,820 246,273 NA 1967-2015 Industrial 281,406 278,498

  4. Indiana Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    573,866 630,669 649,921 672,751 710,838 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 283 433 506 506 177 1983-2014 Pipeline & Distribution Use 8,679 10,259 7,206 7,428 7,025 1997-2014 Volumes Delivered to Consumers 564,904 619,977 642,209 664,817 703,637 712,946 1997-2015 Residential 138,415 132,094 115,522 144,496 156,639 133,876 1967-2015 Commercial 75,883 75,995 66,663 82,596 90,915 78,491 1967-2015 Industrial 289,314 326,573 344,678 356,690 375,647 373,191 1997-2015 Vehicle Fuel

  5. Iowa Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    311,075 306,909 295,183 326,140 330,433 1997-2014 Pipeline & Distribution Use 11,042 10,811 10,145 11,398 12,650 1997-2014 Volumes Delivered to Consumers 300,033 296,098 285,038 314,742 317,784 NA 1997-2015 Residential 68,376 67,097 55,855 72,519 76,574 62,032 1967-2015 Commercial 51,674 51,875 43,767 56,592 57,438 NA 1967-2015 Industrial 167,423 167,233 168,907 173,545 172,718 174,199 1997-2015 Vehicle Fuel 0 0 0 15 18 11 1988-2015 Electric Power 12,560 9,893 16,509 13,702 11,035 17,518

  6. Kansas Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    75,184 279,724 262,316 283,177 285,969 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 13,461 12,781 17,017 17,110 14,851 1983-2014 Plant Fuel 2,102 2,246 2,268 2,189 1,983 1983-2014 Pipeline & Distribution Use 24,305 23,225 19,842 22,586 22,588 1997-2014 Volumes Delivered to Consumers 235,316 241,473 223,188 241,292 246,547 NA 1997-2015 Residential 67,117 65,491 50,489 68,036 71,126 NA 1967-2015 Commercial 31,799 32,117 25,452 33,198 36,512 NA 1967-2015 Industrial 108,484 113,356

  7. Kentucky Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    32,099 223,034 225,924 229,983 254,244 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 5,626 5,925 6,095 6,095 4,388 1983-2014 Plant Fuel 772 278 641 280 278 1983-2014 Pipeline & Distribution Use 13,708 12,451 8,604 7,157 8,426 1997-2014 Volumes Delivered to Consumers 211,993 204,380 210,584 216,451 241,151 249,968 1997-2015 Residential 54,391 50,696 43,065 54,208 57,589 47,712 1967-2015 Commercial 36,818 34,592 30,771 37,422 40,033 34,308 1967-2015 Industrial 101,497 103,517 105,554

  8. Louisiana Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    1,354,641 1,420,264 1,482,343 1,396,261 1,460,031 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 59,336 80,983 54,463 57,549 58,034 1983-2014 Plant Fuel 40,814 42,633 42,123 34,179 30,527 1983-2014 Pipeline & Distribution Use 46,892 51,897 49,235 36,737 45,762 1997-2014 Volumes Delivered to Consumers 1,207,599 1,244,752 1,336,521 1,267,795 1,325,708 1,361,733 1997-2015 Residential 45,516 39,412 31,834 38,820 44,392 36,580 1967-2015 Commercial 27,009 25,925 26,294 28,875 31,209 30,656

  9. Maine Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    7,575 71,690 68,266 64,091 60,661 1997-2014 Pipeline & Distribution Use 1,753 2,399 762 844 1,300 1997-2014 Volumes Delivered to Consumers 75,821 69,291 67,504 63,247 59,362 NA 1997-2015 Residential 1,234 1,409 1,487 1,889 2,357 2,605 1967-2015 Commercial 5,830 6,593 7,313 8,146 9,030 9,795 1967-2015 Industrial 28,365 27,734 30,248 32,308 24,121 NA 1997-2015 Vehicle Fuel 1 1 1 * 1 1 1997-2015 Electric Power 40,392 33,555 28,456 20,904 23,853 17,447

  10. Maryland Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    212,020 193,986 208,946 197,356 207,527 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 0 0 0 0 1 1983-2014 Pipeline & Distribution Use 6,332 6,065 7,397 4,125 6,327 1997-2014 Volumes Delivered to Consumers 205,688 187,921 201,550 193,232 201,199 205,407 1997-2015 Residential 83,830 77,838 70,346 83,341 90,542 81,592 1967-2015 Commercial 67,555 67,505 64,146 71,145 74,843 69,307 1967-2015 Industrial 23,371 21,220 17,626 13,989 14,734 14,635 1997-2015 Vehicle Fuel 203 222 221 201 236 240

  11. Utah Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    11,359 11,750 10,440 10,855 20,739 27,782 2001-2015 Residential 1,623 1,545 1,320 2,002 8,290 12,265 1989-2015 Commercial 1,168 1,157 1,170 1,474 4,732 6,881 1989-2015 Industrial 2,777 2,788 2,757 2,969 3,120 3,612 2001-2015 Vehicle Fuel 22 22 22 22 22 22 2010-2015 Electric Power 5,768 6,238 5,171 4,387 4,575 5,002

  12. Vermont Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    NA 544 566 NA 1,024 1,168 2001-2015 Residential 87 73 79 164 288 393 1989-2015 Commercial NA 318 336 522 557 586 1989-2015 Industrial NA 153 150 NA 178 188 2001-2015 Vehicle Fuel 0 0 0 0 0 0 2010-2015 Electric Power 0 0 1 0 1

  13. Virginia Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    40,769 37,648 33,817 27,516 36,489 44,149 2001-2015 Residential 1,491 1,442 1,913 3,395 6,309 7,966 1989-2015 Commercial 2,656 2,587 3,658 4,647 6,019 6,065 1989-2015 Industrial 7,530 7,435 6,116 7,701 7,582 7,259 2001-2015 Vehicle Fuel 21 21 20 21 20 21 2010-2015 Electric Power 29,071 26,163 22,109 11,752 16,558 22,839

  14. Connecticut Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    27,870 20,353 15,426 14,745 16,786 17,440 2001-2015 Residential 8,998 4,902 2,172 1,368 1,120 997 1989-2015 Commercial 7,504 4,556 2,676 2,295 2,379 2,512 1989-2015 Industrial...

  15. ,"Texas Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcustxm.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  16. ,"Maine Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcusmem.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  17. ,"Indiana Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcusinm.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  18. ,"Ohio Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcusohm.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  19. ,"Michigan Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcusmim.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  20. ,"Massachusetts Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcusmam.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  1. ,"Vermont Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcusvtm.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  2. ,"Alaska Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcusakm.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  3. ,"Washington Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcuswam.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  4. ,"Arkansas Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcusarm.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  5. ,"Colorado Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcuscom.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  6. ,"Virginia Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcusvam.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  7. ,"California Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcuscam.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  8. ,"Wyoming Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcuswym.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  9. ,"Iowa Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcusiam.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  10. ,"Oregon Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcusorm.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  11. ,"Florida Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcusflm.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  12. ,"Minnesota Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcusmnm.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  13. ,"Illinois Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcusilm.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  14. ,"Hawaii Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcushim.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  15. Wisconsin Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    372,898 393,734 402,656 442,544 462,627 1997-2014 Pipeline & Distribution Use 2,973 2,606 1,780 2,803 3,629 1997-2014 Volumes Delivered to Consumers 369,924 391,128 400,876 439,741 458,999 454,450 1997-2015 Residential 123,618 129,445 112,554 142,985 150,409 126,685 1967-2015 Commercial 82,204 87,040 76,949 99,434 107,003 90,195 1967-2015 Industrial 121,408 126,856 124,338 136,034 141,661 136,264 1997-2015 Vehicle Fuel 56 60 59 100 117 96 1988-2015 Electric Power 42,639 47,727 86,975 61,188

  16. Wyoming Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    50,106 156,455 153,333 149,820 135,678 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 34,459 39,114 33,826 32,004 21,811 1983-2014 Plant Fuel 27,104 28,582 29,157 27,935 25,782 1983-2014 Pipeline & Distribution Use 20,807 17,898 16,660 15,283 14,990 1997-2014 Volumes Delivered to Consumers 67,736 70,862 73,690 74,597 73,096 72,765 1997-2015 Residential 12,915 13,283 11,502 13,640 13,269 11,942 1967-2015 Commercial 11,153 11,680 10,482 12,013 12,188 12,498 1967-2015 Industrial 43,059

  17. ,"Tennessee Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...575,20337,5751,4289,10219,,77 37605,31833,12804,8138,10610,,281 37636,37778,15336,9595,11144,,1704 37667,37692,15713,10236,11487,,256 37695,27915,10227,7187,10262,,239 ...

  18. Missouri Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    1,873 1,770 3,351 8,236 1989-2015 Commercial 1,960 2,021 2,299 2,254 3,585 5,631 1989-2015 Industrial 4,605 4,716 4,376 4,527 4,939 5,585 2001-2015 Vehicle Fuel 4 4 4 4 4 4...

  19. Washington Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    1,649 2,519 4,019 9,599 1989-2015 Commercial 2,287 1,996 1,902 2,709 3,462 5,744 1989-2015 Industrial 5,770 5,477 5,625 5,921 6,680 NA 2001-2015 Vehicle Fuel 38 42 42 40 42 40...

  20. Wisconsin Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    22,344 25,107 23,388 23,582 29,271 38,844 2001-2015 Residential 2,478 2,475 2,308 2,498 6,080 11,070 1989-2015 Commercial 2,842 2,782 2,964 2,867 4,985 7,776 1989-2015 Industrial...

  1. Delaware Natural Gas Consumption by End Use

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    8,917 8,330 7,939 2001-2015 Residential 703 270 181 163 166 157 1989-2015 Commercial 735 403 410 375 409 432 1989-2015 Industrial 3,037 2,819 2,561 2,669 2,636 2,448 2001-2015...

  2. Fuels Technologies

    Office of Environmental Management (EM)

    Fuels Technologies Program Mission To develop more energy efficient and environmentally friendly highway transportation technologies that enable America to use less petroleum. --EERE Strategic Plan, October 2002-- Kevin Stork, Team Leader Fuel Technologies & Technology Deployment Vehicle Technologies Program Energy Efficiency and Renewable Energy U.S. Department of Energy DEER 2008 August 6, 2008 Presentation Outline n Fuel Technologies Research Goals Fuels as enablers for advanced engine

  3. 2014 Wind Technologies Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Technologies Market Report 2014 Wind Technologies Market Report A photo of the cover of the 2014 Wind Technologies Market Report. According to the 2014 Wind Technologies Market Report, total installed wind power capacity in the United States grew at a rate of eight percent in 2014, bringing the United States total installed capacity to nearly 66 gigawatts (GW), which ranks second in the world and meets 4.9 percent of U.S. end-use electricity demand in an average year. In total, 4,854 MW of

  4. Exploration Technologies - Technology Needs Assessment

    SciTech Connect (OSTI)

    Greene, Amanda I.; Thorsteinsson, Hildigunnur; Reinhardt, Tim; Solomon, Samantha; James, Mallory

    2011-06-01

    This assessment is a critical component of ongoing technology roadmapping efforts, and will be used to guide the Geothermal Technology Program's research and development.

  5. NREL: Technology Transfer - Technology Partnership Agreements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ombuds. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Agreements for Commercializing Technology CRADAs Work for...

  6. High Impact Technology Catalyst: Technology Deployment Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalyst: Technology Deployment Strategies High Impact Technology Catalyst: Technology Deployment Strategies The Energy Department released the High Impact Technology Catalyst: ...

  7. Vehicle Technologies Office - Materials Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Materials Technologies Ed Owens Jerry Gibbs Will Joost eere.energy.gov 2 | Vehicle Technologies Program Materials Technologies Materials Technologies $36.9 M Lightweight Materials $28.0 M Values are FY14 enacted Propulsion Materials $8.9 M Properties and Manufacturing Multi-Material Enabling Modeling & Computational Mat. Sci. Engine Materials, Cast Al & Fe High Temp Alloys Exhaust Sys. Materials, Low T Catalysts Lightweight Propulsion FY13 Enacted $27.5 M

  8. Available Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    application. Search Our Technologies submit Advanced Materials Advanced Materials Biotechnology Biotechnology Chemistry Chemistry Energy Energy High Performance Computing:...

  9. Licensing Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Licensing Technology Licensing Technology The primary function of Los Alamos Licensing Program is to move Los Alamos technology to the marketplace for the benefit of the U.S. economy. Our intellectual property may be licensed for commercial use, research applications, and U.S. government use. Contact thumbnail of Marcus Lucero Head of Licensing Marcus Lucero Richard P. Feynman Center for Innovation (505) 665-6569 Email Although Los Alamos's primary mission is national security, our technologies

  10. Technology Opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intellectual Property » Technology Opportunities Technology Opportunities We deliver innovation through an integrated portfolio of R&D work across our key national security sponsoring agencies, enhanced by the ideas developed through our strategic internal investments. Contact Business Development Team Richard P. Feynman Center for Innovation (505) 665-9090 Email Periodically, the Laboratory notifies the public of technologies and capabilities that may be of interest. These technologies may

  11. Technology Partnering

    Energy Savers [EERE]

    on Technology Transfer and Related Technology Partnering Activities at the National Laboratories and Other Facilities Fiscal Years 2009-2013 Report to Congress May 2015 United States Department of Energy Washington, DC 20585 Message from the Secretary The Report on Technology Transfer and Related Partnering Activities at the National Laboratories and Other Facilities for Fiscal Year 2009-2013 is prepared in accordance with the requirements of the Technology Transfer and Commercialization Act of

  12. Energy Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies Our Vision National User Facilities Research Areas In Focus Global Solutions ⇒ Navigate Section Our Vision National User Facilities Research Areas In Focus Global Solutions Energy Technologies Area (ETA) Building Technology & Urban Systems Energy Analysis & Environmental Impacts Energy Storage & Distributed Resources

  13. Technology Assessment

    Energy Savers [EERE]

    - FOR OFFICIAL USE ONLY - DRAFT 1 Advanced Composites Materials and their Manufacture 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ................................................................................................ 2 4 2. Technology Potential and Assessment .................................................................................................. 4 5 2.1 The Potential for Advanced Composites for Clean Energy Application Areas

  14. Technology '90

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    The US Department of Energy (DOE) laboratories have a long history of excellence in performing research and development in a number of areas, including the basic sciences, applied-energy technology, and weapons-related technology. Although technology transfer has always been an element of DOE and laboratory activities, it has received increasing emphasis in recent years as US industrial competitiveness has eroded and efforts have increased to better utilize the research and development resources the laboratories provide. This document, Technology '90, is the latest in a series that is intended to communicate some of the many opportunities available for US industry and universities to work with the DOE and its laboratories in the vital activity of improving technology transfer to meet national needs. Technology '90 is divided into three sections: Overview, Technologies, and Laboratories. The Overview section describes the activities and accomplishments of the DOE research and development program offices. The Technologies section provides descriptions of new technologies developed at the DOE laboratories. The Laboratories section presents information on the missions, programs, and facilities of each laboratory, along with a name and telephone number of a technology transfer contact for additional information. Separate papers were prepared for appropriate sections of this report.

  15. Huazhong Science Technology University Yongtai Science Technology...

    Open Energy Info (EERE)

    Huazhong Science Technology University Yongtai Science Technology Co Ltd Jump to: navigation, search Name: Huazhong Science & Technology University Yongtai Science & Technology Co...

  16. 2014 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, R.; Bolinger, M.

    2015-08-01

    According to the 2014 Wind Technologies Market Report, total installed wind power capacity in the United States grew at a rate of eight percent in 2014, bringing the United States total installed capacity to nearly 66 gigawatts (GW), which ranks second in the world and meets 4.9 percent of U.S. end-use electricity demand in an average year. In total, 4,854 MW of new wind energy capacity were installed in the United States in 2014. The 2014 Wind Technologies Market Report also finds that wind energy prices are at an all-time low and are competitive with wholesale power prices and traditional power sources across many areas of the United States. Additionally, a new trend identified by the 2014 Wind Technologies Market Report shows utility-scale turbines with larger rotors designed for lower wind speeds have been increasingly deployed across the country in 2014. The findings also suggest that the success of the U.S. wind industry has had a ripple effect on the American economy, supporting 73,000 jobs related to development, siting, manufacturing, transportation, and other industries.

  17. NREL: Technology Deployment - Technology Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Acceleration NREL offers technology-specific assistance to federal and private industry to help address market barriers to sustainable energy technologies. Learn more about NREL's work in the following areas: Biopower and Waste-to-Energy Biopower and Waste-to-Energy Buildings Buildings Fuels, Vehicles, & Transportation Fuels, Vehicles, and Transportation Microgrid Design Microgrid Design Solar Solar Wind Wind Contact Us For more information on NREL's market transformation work,

  18. Thermally activated technologies: Technology Roadmap

    SciTech Connect (OSTI)

    None, None

    2003-05-01

    The purpose of this Technology Roadmap is to outline a set of actions for government and industry to develop thermally activated technologies for converting Americas wasted heat resources into a reservoir of pollution-free energy for electric power, heating, cooling, refrigeration, and humidity control. Fuel flexibility is important. The actions also cover thermally activated technologies that use fossil fuels, biomass, and ultimately hydrogen, along with waste heat.

  19. Technology Assessment

    Energy Savers [EERE]

    Roll to Roll (R2R) Processing 1 Technology Assessment 2 3 Contents 4 1. Introduction to the Technology/System ............................................................................................... 2 5 1.1. Introduction to R2R Processing..................................................................................................... 2 6 1.2. R2R Processing Mechanisms ......................................................................................................... 3 7 2.

  20. Technology Commercialization Showcase 2008 Vehicle Technologies Program

    SciTech Connect (OSTI)

    Davis, Patrick B.

    2009-06-19

    Presentation illustrating various technology commercialization opportunities and unexploited investment gaps for the Vehicle Technologies Program.

  1. Tag: technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tags

    technology<...

  2. Technology Validation

    Broader source: Energy.gov [DOE]

    To reduce solar technology risks, DOE and its partners evaluate the performance and reliability of novel photovoltaic (PV) hardware and systems through laboratory and field testing. The focus of...

  3. Technology Roadmap Analysis 2013: Assessing Automotive Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap Analysis 2013: Assessing Automotive Technology R&D Relevant to DOE Power Electronics Cost Targets Technology Roadmap Analysis 2013: Assessing Automotive Technology R&D ...

  4. National Energy Technology Laboratory Technology Marketing Summaries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Energy Technology Laboratory Technology Marketing Summaries Here you'll find marketing summaries for technologies available for licensing from the National Energy...

  5. Manufacturing technologies

    SciTech Connect (OSTI)

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  6. Plasma technology

    SciTech Connect (OSTI)

    Herlitz, H.G.

    1986-11-01

    This paper describes the uses of plasma technology for the thermal destruction of hazardous wastes such as PCBs, dioxins, hydrocarbons, military chemicals and biological materials; for metals recovery from steel making dusts. One advantage of the process is that destruction of wastes can be carried out on site. Systems in several countries use the excess thermal energy for district heating.

  7. (Environmental technology)

    SciTech Connect (OSTI)

    Boston, H.L.

    1990-10-12

    The traveler participated in a conference on environmental technology in Paris, sponsored by the US Embassy-Paris, US Environmental Protection Agency (EPA), the French Environmental Ministry, and others. The traveler sat on a panel for environmental aspects of energy technology and made a presentation on the potential contributions of Oak Ridge National Laboratory (ORNL) to a planned French-American Environmental Technologies Institute in Chattanooga, Tennessee, and Evry, France. This institute would provide opportunities for international cooperation on environmental issues and technology transfer related to environmental protection, monitoring, and restoration at US Department of Energy (DOE) facilities. The traveler also attended the Fourth International Conference on Environmental Contamination in Barcelona. Conference topics included environmental chemistry, land disposal of wastes, treatment of toxic wastes, micropollutants, trace organics, artificial radionuclides in the environment, and the use biomonitoring and biosystems for environmental assessment. The traveler presented a paper on The Fate of Radionuclides in Sewage Sludge Applied to Land.'' Those findings corresponded well with results from studies addressing the fate of fallout radionuclides from the Chernobyl nuclear accident. There was an exchange of new information on a number of topics of interest to DOE waste management and environmental restoration needs.

  8. Vehicle Technologies Office: Graduate Automotive Technology Education

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (GATE) | Department of Energy Education & Workforce Development » Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) DOE established the Graduate Automotive Technology Education (GATE) Centers of Excellence to provide future generations of engineers and scientists with knowledge and skills in advanced automotive technologies. By funding curriculum development and expansion as well as

  9. Technology disrupted

    SciTech Connect (OSTI)

    Papatheodorou, Y.

    2007-02-15

    Three years ago, the author presented a report on power generation technologies which in summary said 'no technology available today has the potential of becoming transformational or disruptive in the next five to ten years'. In 2006 the company completed another strategic view research report covering the electric power, oil, gas and unconventional energy industries and manufacturing industry. This article summarises the strategic view findings and then revisits some of the scenarios presented in 2003. The cost per megawatt-hour of the alternatives is given for plants ordered in 2005 and then in 2025. The issue of greenhouse gas regulation is dealt with through carbon sequestration and carbon allowances or an equivalent carbon tax. Results reveal substantial variability through nuclear power, hydro, wind, geothermal and biomass remain competitive through every scenario. Greenhouse gas scenario analysis shows coal still be viable, albeit less competitive against nuclear and renewable technologies. A carbon tax or allowance at $24 per metric ton has the same effect on IGCC cost as a sequestration mandate. However, the latter would hurt gas plants much more than a tax or allowance. Sequestering CO{sub 2} from a gas plant is almost as costly per megawatt-hour as for coal. 5 refs., 5 figs., 5 tabs.

  10. Building Technologies Office Overview

    SciTech Connect (OSTI)

    2013-04-01

    Building Technologies Office Overview Presentation for the 2013 Building Technologies Office's Program Peer Review

  11. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector

    SciTech Connect (OSTI)

    Sathaye, J.; Xu, T.; Galitsky, C.

    2010-08-15

    Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. How to effectively analyze and manage the costs associated with GHG reductions becomes extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models.

  12. Technology Name

    Energy Savers [EERE]

    Tech Fact Sheet Site Project & Identifier Tech Stage: Development DE-EM0000598 D&D KM-IT For the deployment of Information Technology for D&D knowledge management Page 1 of 2 Florida International University Florida D&D Knowledge Management Information Tool Challenge Deactivation and decommissioning (D&D) work is a high priority across the DOE Complex. The D&D community associated with the various DOE sites has gained extensive knowledge and experience over the years. To

  13. Technology Name

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tech Fact Sheet Site Project & Identifier Tech Stage: Development DE-EM0000598 D&D KM-IT For the deployment of Information Technology for D&D knowledge management Page 1 of 2 Florida International University Florida D&D Knowledge Management Information Tool Challenge Deactivation and decommissioning (D&D) work is a high priority across the DOE Complex. The D&D community associated with the various DOE sites has gained extensive knowledge and experience over the years. To

  14. TECHNOLOGY TRANSFER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    404-NOV. 1, 2000 TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 VerDate 11-MAY-2000 04:52 Nov 16, 2000 Jkt 089139 PO 00000 Frm 00001 Fmt 6579 Sfmt 6579 E:\PUBLAW\PUBL404.106 APPS27 PsN: PUBL404 114 STAT. 1742 PUBLIC LAW 106-404-NOV. 1, 2000 Public Law 106-404 106th Congress An Act To improve the ability of Federal agencies to license federally owned inventions. Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, SECTION 1. SHORT

  15. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NETL Issues Licenses for its Arc Position Sensing Technology Success Story The U.S. Department of Energy's National Energy Technology Laboratory (NETL) has issued two licenses involving its Arc Position Sensing (APS) technology to KW Associates LLC , an Oregon-based company founded by the technology's inventors. APS technology is a patented, award- winning measurement technology developed for the specialty metals industry to identify arc distribution conditions during arc melting. The unique

  16. NREL: Technology Transfer - Technologies Available for Licensing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies Available for Licensing Photo of NREL scientist in the NREL Hydrogen Lab. NREL's scientists and engineers develop award-winning technologies available for licensing. NREL scientists and engineers produce breakthrough and award-winning renewable energy and energy efficiency technologies that are available for licensing. We have many licensing opportunities for NREL-developed technologies, including our featured LED technologies. To see all our technologies available for licensing,

  17. Distributed Energy Technology Characterization (Desiccant Technologies),

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 2004 | Department of Energy Characterization (Desiccant Technologies), January 2004 Distributed Energy Technology Characterization (Desiccant Technologies), January 2004 The purpose of this report is to characterize desiccant technology and applications, and to show how these technologies can be designed to utilize the available thermal energy from a combined heat and power (CHP) system. This technology characterization is intended to provide decision-makers and system developers

  18. High Impact Technology Catalyst: Technology Deployment Strategies |

    Energy Savers [EERE]

    Department of Energy Catalyst: Technology Deployment Strategies High Impact Technology Catalyst: Technology Deployment Strategies The Energy Department released the High Impact Technology Catalyst: Technology Deployment Strategies to serve as an overview of the HIT Catalyst program activities, including a summary of the selection process undertaken to identify, evaluate and prioritize the current HITs, descriptions of the technologies and markets for each HIT, and plans for deployment. PDF

  19. NETL Technologies Recognized for Technology Development, Transfer |

    Office of Environmental Management (EM)

    Department of Energy Recognized for Technology Development, Transfer NETL Technologies Recognized for Technology Development, Transfer October 25, 2013 - 1:31pm Addthis Did you know? The Federal Laboratory Consortium for Technology Transfer is the nationwide network of federal laboratories that provides the forum to develop strategies and opportunities for linking laboratory mission technologies and expertise with the marketplace. In consonance with the Federal Technology Transfer Act of

  20. Vehicle Technologies Office: 2009 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2009 Advanced Vehicle ...

  1. Vehicle Technologies Office: 2008 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2008 Advanced Vehicle ...

  2. Distributed Energy Technology Characterization (Desiccant Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    applications, and to show how these technologies can be designed to utilize the available thermal energy from a combined heat and power (CHP) system. This technology...

  3. Nuclear Science & Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science & Technology Nuclear Science & Technology1354608000000Nuclear Science & TechnologySome of these resources are LANL-only and will require Remote Access. No...

  4. Compressed Air System Control Strategies; Industrial Technologies Program (ITP) Compressed Air Tip Sheet #7 (Fact Sheet)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 * August 2004 Industrial Technologies Program Suggested Actions * Understand your system require- ments by developing a pressure and a demand profle before investing in additional controls. * Identify end uses that are affected by pressure problems. * Check existing equipment to ensure that it is in good operating condition. * Eliminate inappropriate uses, fx major leaks, and implement a leak management program. * Once these actions have been taken, work with a compressed air special- ist to

  5. Vehicle Technologies Office Propulsion Materials Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Propulsion Materials Technologies Jerry Gibbs eere.energy.gov 2 | Vehicle Technologies Program Materials Technologies Materials Technologies $35.6 M Lightweight Materials $28.5 M Values are FY15 enacted Propulsion Materials $7.1 M Properties and Manufacturing Multi-Material Enabling Modeling & Computational Mat. Sci. Engine Materials, Cast Al & Fe High Temp Alloys Exhaust Sys. Materials, Low T Catalysts Lightweight Propulsion FY13 Enacted $27.5 M $11.9 M FY14

  6. Energy End-Use Intensities in Commercial Buildings1995 -- Overview...

    U.S. Energy Information Administration (EIA) Indexed Site

    by the Commercial Buildings Energy Consumption Survey (CBECS) and (2) building energy simulations provided by the Facility Energy Decision Screening (FEDS) system. The...

  7. Energy End-Use Intensities in Commercial Buildings1995 -- Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    model using survey data from the 1995 commercial buildings energy consumption survey and building energy simulations provided by the Facility Energy Decision Screening system....

  8. CBECS 1989 - Energy End-use Intensities in Commercial Buildings...

    U.S. Energy Information Administration (EIA) Indexed Site

    the sampling error is nonzero and unknown for the particular sample chosen, the sample design permits sampling errors to be estimated. Due to the complexity of the sample design,...

  9. Energy End-Use Intensities in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Intensities The purpose of this section is to provide information on how energy was used for space conditioning--heating, cooling, and ventilation--in commercial...

  10. Energy End-Use Intensities in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Active Solar: As an energy source, energy from the sun collected and stored using mechanical pumps or fans to circulate heat-laden fluids or air between solar collectors and the...

  11. Energy End-Use Intensities in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Energy Use in Commercial Buildings The purpose of this section is to provide an overview of how energy was used in commercial buildings. Focusing on 1989 buildings, the section...

  12. End-Use Sector Flowcharts, Energy Intensity Indicators

    Broader source: Energy.gov (indexed) [DOE]

    Economy Transportation Sector Commercial Sector Residential Sector Electric Power Sector Industrial Sector Manufacturing NAICS 311-339 Food, Beverages, & Tobacco NAICS 311/312 Textile Mills and Products NAICS 313/314 Apparel & Leather Products NAICS 315/316 Wood Products NAICS 321 Paper NAICS 322 Printing & Related Support NAICS 323 Petroleum & Coal Products NAICS 324 Chemicals NAICS 325 Plastics & Rubber Products NAICS 326 Nonmetallic Mineral Products NAICS 327 Primary

  13. Energy End-Use Intensities in Commercial Buildings 1989 data...

    U.S. Energy Information Administration (EIA) Indexed Site

    Buildings Energy Consumption Survey. Divider Bar To View andor Print Reports (requires Adobe Acrobat Reader) - Download Adobe Acrobat Reader If you experience any difficulties,...

  14. Energy End-Use Intensities in Commercial Buildings 1992

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption Survey. divider line To View andor Print Reports (requires Adobe Acrobat Reader) - Download Adobe Acrobat Reader If you experience any difficulties,...

  15. U.S. Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions,

  16. New Mexico Sales of Distillate Fuel Oil by End Use

    Gasoline and Diesel Fuel Update (EIA)

    09,709 554,352 574,557 608,490 621,430 669,923 1984-2014 Residential 55 46 37 27 72 53 1984-2014 Commercial 11,030 9,435 9,609 9,145 9,112 12,114 1984-2014 Industrial 33,804 24,429 27,110 31,316 32,029 32,917 1984-2014 Oil Company 9,871 1,705 2,127 5,857 11,218 27,016 1984-2014 Farm 11,278 14,821 10,955 12,816 15,784 11,752 1984-2014 Electric Power 4,321 4,000 1,689 5,155 4,816 3,826 1984-2014 Railroad 245 1,780 1,707 19,123 38,543 45,446 1984-2014 Vessel Bunkering 0 0 0 0 0 0 1984-2014

  17. Alabama Sales of Distillate Fuel Oil by End Use

    Gasoline and Diesel Fuel Update (EIA)

    987,571 1,038,133 1,094,359 1,132,711 1,047,981 1,027,777 1984-2014 Residential 3,971 4,895 432 750 639 722 1984-2014 Commercial 39,802 46,009 48,475 46,654 30,536 27,874 1984-2014 Industrial 90,659 77,542 81,120 120,347 77,119 65,322 1984-2014 Oil Company 0 328 1,035 2,640 2,929 2,985 1984-2014 Farm 17,882 19,881 24,518 24,503 24,651 20,459 1984-2014 Electric Power 8,276 10,372 22,490 9,375 6,514 10,071 1984-2014 Railroad 44,546 42,465 97,177 125,439 63,570 56,873 1984-2014 Vessel Bunkering

  18. Texas Sales of Distillate Fuel Oil by End Use

    Gasoline and Diesel Fuel Update (EIA)

    ,329,790 5,693,270 6,373,078 6,688,629 6,914,481 7,837,118 1984-2014 Residential 67 28 127 102 16 59 1984-2014 Commercial 136,419 100,886 184,312 173,303 142,268 132,601 1984-2014 Industrial 189,981 197,024 233,292 241,601 240,179 270,760 1984-2014 Oil Company 210,865 316,523 541,640 736,186 679,737 886,957 1984-2014 Farm 201,769 207,183 243,170 216,915 190,572 222,849 1984-2014 Electric Power 19,495 15,646 23,156 20,022 20,706 24,700 1984-2014 Railroad 429,026 467,128 498,006 483,096 504,823

  19. Biogas end-use in the European community

    SciTech Connect (OSTI)

    Constant, M.; Naveau, H.; Nyns, E.J. ); Ferrero, G.L.

    1989-01-01

    In Europe over the past few years the generation of biogas for energy and environmental purposes has been gaining in importance. Industrial wastewaters, cattle manure, sewage sludges, urban wastes, crop residues, algae and aquatic biomass are all typical of the materials being utilized. In contrast to the extensive inventory of biomethanation processes which has been carried out within the EEC, until recently a detailed, up-to-date investigation of the end-sues of biogas had not been undertaken. To supply the necessary information, the Commission of the European Communities and the Belgian Science Policy Office jointly entrusted a study to the Unit of Bioengineering at the Catholic University of Louvain, Belgium. This book is record of the study and has the following key features: it gives a broad overview of the ongoing use of biogas in Europe; it summarizes available data on storage, purification and engines using biogas; it draws several conclusions concerning the technical and economic viability of the processes; it discusses the problems of using biogas; and it outlines recommendations and future R and D and demonstration projects in the field.

  20. 1999 Commercial Buildings Characteristics--End-Use Equipment

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800. Energy Information Administration Commercial Buildings Energy Consumption Survey Cooling Equipment Packaged air conditioning units were the predominant type of cooling...

  1. End-use Breakdown: The Building Energy Modeling Blog

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling Blog en EnergyPlus Logo Debuts on Revit Toolbar http:energy.goveerebuildingsarticlesenergyplus-logo-debuts-revit-toolbar

  2. Distribution Category UC-98 Consumption End-Use A Comparison...

    U.S. Energy Information Administration (EIA) Indexed Site

    buildings) as well as a list of large buildings in each metropolitan area. MECS is based upon a comprehensive list of manufactures that is maintained by the Census Bureau for...

  3. Energy End-Use Intensities in Commercial Buildings

    Gasoline and Diesel Fuel Update (EIA)

    and stored using mechanical pumps or fans to circulate heat-laden fluids or air between solar collectors and the building. Examples include the use of solar collectors for water...

  4. Florida Sales of Distillate Fuel Oil by End Use

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    840,100 2,027,012 1,914,621 1,918,039 2,023,650 2,038,923 1984-2014 Residential 1,551 1,820 1,085 572 451 728 1984-2014 Commercial 126,292 113,313 100,791 104,860 113,873 110,082 1984-2014 Industrial 36,512 43,088 35,652 32,087 31,458 42,894 1984-2014 Oil Company 236 2,255 4,038 4,359 4,427 3,802 1984-2014 Farm 86,642 204,866 109,177 103,325 122,563 98,418 1984-2014 Electric Power 31,161 43,675 35,577 16,137 16,244 12,182 1984-2014 Railroad 33,651 42,353 46,461 66,711 93,844 92,435 1984-2014

  5. Energy Information Administration - Table 2. End Uses of Fuel...

    Gasoline and Diesel Fuel Update (EIA)

    -- -- -- Net Electricity 74 79 76 Residual Fuel Oil 19 * 11 Natural Gas 369 329 272 Machine Drive -- -- -- Net Electricity 68 86 77 Notes 1. The North American Industry...

  6. West Virginia Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    33 5,114 4,922 4,914 6,180 6,835 2001-2015 Residential 419 244 339 387 1,242 2,132 1989-2015 Commercial 796 981 876 1,107 1,547 1,923 1989-2015 Industrial 1,903 1,746 1,834 1,677...

  7. New Hampshire Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    NA NA NA NA NA NA 2001-2015 Residential 146 147 148 242 657 854 1989-2015 Commercial 221 226 232 377 823 1,017 1989-2015 Industrial NA NA NA NA NA NA 2001-2015 Vehicle Fuel 6 6 6 6 6 6 2010-2015 Electric Power 4,211 4,622 3,922 3,375 3,795 2,706

  8. New Jersey Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    47,857 46,260 NA NA 56,469 63,409 2001-2015 Residential 5,478 4,422 4,498 9,214 16,149 22,163 1989-2015 Commercial 7,486 8,431 NA NA 11,186 13,623 1989-2015 Industrial 4,256 4,032 4,128 4,370 4,611 4,249 2001-2015 Vehicle Fuel 19 19 19 19 19 19 2010-2015 Electric Power 30,618 29,355 29,675 24,677 24,504 23,354

  9. District of Columbia Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    984 1,037 1,072 1,740 2,437 2,907 2001-2015 Residential 242 240 253 520 911 1,335 1989-2015 Commercial 657 711 736 1,135 1,443 1,487 1989-2015 Industrial 0 0 0 0 0 0 2001-2015 Vehicle Fuel 86 86 83 86 83 86 2010-2015 Electric Power -- -- -- -- -- --

  10. New Hampshire Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    0,378 69,978 72,032 54,028 57,017 1997-2014 Pipeline & Distribution Use 247 202 27 67 81 1997-2014 Volumes Delivered to Consumers 60,131 69,776 72,004 53,961 56,936 NA 1997-2015 Residential 6,738 6,955 6,422 7,185 7,755 7,587 1980-2015 Commercial 8,406 8,890 8,130 9,204 9,412 9,327 1980-2015 Industrial 6,022 7,083 7,007 7,866 8,456 NA 1997-2015 Vehicle Fuel 28 37 37 62 73 60 1988-2015 Electric Power 38,937 46,812 50,408 29,644 31,240 42,67

  11. New Jersey Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    54,458 660,743 652,060 682,247 762,200 1997-2014 Pipeline & Distribution Use 5,359 5,655 4,603 5,559 5,070 1997-2014 Volumes Delivered to Consumers 649,099 655,088 647,457 676,688 757,130 NA 1997-2015 Residential 219,141 213,630 191,371 226,195 247,742 237,164 1967-2015 Commercial 181,480 191,808 174,641 171,797 202,201 NA 1967-2015 Industrial 49,269 49,865 54,785 61,468 61,494 NA 1997-2015 Vehicle Fuel 150 191 191 195 229 222 1988-2015 Electric Power 199,059 199,594 226,469 217,032 245,464

  12. New Mexico Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    41,137 246,418 243,961 245,502 246,178 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 49,070 47,556 47,696 47,018 49,406 1983-2014 Plant Fuel 35,289 38,331 37,195 33,121 35,269 1983-2014 Pipeline & Distribution Use 8,597 7,067 7,467 8,782 8,561 1997-2014 Volumes Delivered to Consumers 148,181 153,464 151,602 156,581 152,942 NA 1997-2015 Residential 35,253 34,299 32,515 36,024 32,370 34,036 1967-2015 Commercial 25,155 25,035 24,898 26,790 25,688 26,262 1967-2015 Industrial 16,779 20,500

  13. New York Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    1,198,127 1,217,324 1,223,036 1,273,263 1,345,315 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 573 498 423 375 541 1983-2014 Pipeline & Distribution Use 15,122 18,836 17,610 16,819 24,923 1997-2014 Volumes Delivered to Consumers 1,182,432 1,197,990 1,205,004 1,256,070 1,319,852 1,322,592 1997-2015 Residential 390,491 393,825 357,709 416,357 458,313 450,815 1967-2015 Commercial 287,389 291,118 270,232 300,776 320,168 309,481 1967-2015 Industrial 75,475 75,162 74,133 79,776 84,255

  14. North Carolina Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    304,148 307,804 363,945 440,175 453,212 1997-2014 Pipeline & Distribution Use 7,978 7,322 5,436 4,029 3,877 1997-2014 Volumes Delivered to Consumers 296,169 300,481 358,510 436,146 449,335 NA 1997-2015 Residential 74,520 61,644 56,511 69,654 75,178 NA 1967-2015 Commercial 56,225 49,898 48,951 55,271 59,945 NA 1967-2015 Industrial 92,321 99,110 102,151 109,662 107,904 105,096 1997-2015 Vehicle Fuel 32 30 30 71 83 62 1988-2015 Electric Power 73,072 89,799 150,866 201,489 206,226 268,925

  15. North Dakota Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    66,395 72,463 72,740 81,593 83,330 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 3,753 3,200 4,595 6,486 8,683 1983-2014 Plant Fuel 4,294 5,473 5,887 6,707 5,736 1983-2014 Pipeline & Distribution Use 13,745 13,575 15,619 14,931 14,604 1997-2014 Volumes Delivered to Consumers 44,603 50,214 46,639 53,469 54,307 55,321 1997-2015 Residential 10,536 10,937 9,594 12,085 12,505 10,606 1967-2015 Commercial 10,302 10,973 10,364 13,236 13,999 12,334 1967-2015 Industrial 23,762 28,303 26,680

  16. Rhode Island Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    94,110 100,455 95,476 85,537 88,673 1997-2014 Lease and Plant Fuel 1967-1992 Pipeline & Distribution Use 1,468 1,003 1,023 1,087 2,824 1997-2014 Volumes Delivered to Consumers 92,642 99,452 94,452 84,450 85,849 90,207 1997-2015 Residential 16,942 16,864 15,883 18,221 19,724 19,522 1967-2015 Commercial 10,458 10,843 10,090 11,633 13,178 11,734 1967-2015 Industrial 8,033 7,462 7,841 8,161 8,008 8,751 1997-2015 Vehicle Fuel 87 85 85 73 86 89 1988-2015 Electric Power 57,122 64,198 60,553 46,362

  17. South Carolina Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    220,235 229,497 244,850 232,297 231,863 1997-2014 Pipeline & Distribution Use 3,452 3,408 3,416 2,529 2,409 1997-2014 Volumes Delivered to Consumers 216,783 226,089 241,434 229,768 229,454 NA 1997-2015 Residential 32,430 26,851 22,834 28,642 31,862 27,171 1967-2015 Commercial 24,119 22,113 21,416 23,862 25,380 NA 1967-2015 Industrial 73,397 76,973 81,165 83,730 83,330 NA 1997-2015 Vehicle Fuel 7 9 9 18 21 16 1988-2015 Electric Power 86,830 100,144 116,010 93,516 88,861 135,239

  18. South Dakota Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    72,563 73,605 70,238 81,986 79,964 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 562 594 866 916 827 1983-2014 Plant Fuel 0 0 0 2012-2014 Pipeline & Distribution Use 5,806 6,692 6,402 6,888 5,221 1997-2014 Volumes Delivered to Consumers 66,195 66,320 62,969 74,182 73,917 73,755 1997-2015 Residential 12,815 12,961 10,742 13,920 14,213 11,638 1967-2015 Commercial 11,025 11,101 9,330 12,151 12,310 10,497 1967-2015 Industrial 40,755 40,668 40,432 44,039 44,205 44,683 1997-2015 Vehicle Fuel

  19. West Virginia Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    13,179 115,361 129,753 142,082 150,766 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 11,348 15,571 21,569 28,682 27,853 1983-2014 Plant Fuel 810 1,153 1,812 3,429 6,776 1983-2014 Pipeline & Distribution Use 21,589 21,447 31,913 29,578 29,160 1997-2014 Volumes Delivered to Consumers 79,432 77,189 74,459 80,393 86,978 NA 1997-2015 Residential 27,021 25,073 22,538 26,514 28,257 24,975 1967-2015 Commercial 24,907 24,094 22,634 24,252 24,101 22,584 1967-2015 Industrial 26,023 25,443 26,926

  20. U.S. Adjusted Sales of Kerosene by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Area: U.S. East Coast (PADD 1) New England (PADD 1A) Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont Central Atlantic (PADD 1B) Delaware District of Columbia Maryland New Jersey New York Pennsylvania Lower Atlantic (PADD 1C) Florida Georgia North Carolina South Carolina Virginia West Virginia Midwest (PADD 2) Illinois Indiana Iowa Kansas Kentucky Michigan Minnesota Missouri Nebraska North Dakota Ohio Oklahoma South Dakota Tennessee Wisconsin Gulf Coast (PADD 3) Alabama

  1. New Mexico Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    11,371 12,236 10,219 10,795 14,369 19,223 2001-2015 Residential 830 864 854 1,282 3,863 6,379 1989-2015 Commercial 1,029 1,121 1,106 1,689 3,294 4,321 1989-2015 Industrial 1,382 1,437 1,348 1,479 1,616 1,575 2001-2015 Vehicle Fuel 16 16 15 16 15 16 2010-2015 Electric Power 8,114 8,798 6,895 6,330 5,581 6,933

  2. North Dakota Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    2,929 3,396 3,600 4,063 5,168 5,845 2001-2015 Residential 170 147 200 513 1,069 1,713 1989-2015 Commercial 308 294 321 667 1,214 1,808 1989-2015 Industrial 1,954 2,463 2,646 2,883 2,885 2,324 2001-2015 Vehicle Fuel 0 0 0 0 0 0 2010-2015 Electric Power 497 492 433 W W W

  3. Rhode Island Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    8,254 8,371 4,837 6,216 7,643 6,847 2001-2015 Residential 430 397 385 1,038 1,591 1,903 1989-2015 Commercial 258 249 244 624 1,007 1,106 1989-2015 Industrial 658 681 694 683 704 750 2001-2015 Vehicle Fuel 7 7 7 7 7 7 2010-2015 Electric Power 6,902 7,037 3,507 3,864 4,334 3,08

  4. South Dakota Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    5,249 5,045 4,529 4,893 6,660 8,123 2001-2015 Residential 188 221 226 473 1,162 1,996 1989-2015 Commercial 304 314 315 571 1,127 1,564 1989-2015 Industrial 3,541 3,566 3,469 3,452 3,849 3,907 2001-2015 Vehicle Fuel 0 0 0 0 0 0 2010-2015 Electric Power 1,216 943 519 396 521 6

  5. U.S. Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History Total Consumption 24,086,797 24,477,425 25,538,487 26,155,071 26,698,068 27,472,867 1949-2015 Lease and Plant Fuel 1,285,627 1,322,588 1,396,273 1,483,085 1,500,181 1,580,997 1930-2015 Lease Fuel 916,797 938,340 987,957 1,068,289 1,074,943 1983-2014 Plant Fuel 368,830 384,248 408,316 414,796

  6. ,"U.S. Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    9,"Monthly","122015","1151973" ,"Release Date:","2292016" ,"Next Release Date:","3312016" ,"Excel File Name:","ngconssumdcunusm.xls" ,"Available from Web Page:","http:...

  7. District of Columbia Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    33,251 32,862 28,561 32,743 34,057 1997-2014 Pipeline & Distribution Use 213 1,703 1,068 1,434 1,305 1997-2014 Volumes Delivered to Consumers 33,038 31,159 27,493 31,309 32,751 29,157 1997-2015 Residential 13,608 12,386 11,260 13,214 14,242 12,371 1980-2015 Commercial 18,547 16,892 15,363 17,234 17,498 15,793 1980-2015 Industrial 0 0 0 0 0 0 1997-2015 Vehicle Fuel 883 879 870 861 1,011 993 1988-2015 Electric Power -- 1,003 W -- -- --

  8. Gulf of Mexico Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2009 2010 2011 2012 2013 2014 View History Total Consumption 103,976 108,490 101,217 93,985 95,207 93,855 1999-2014 Lease Fuel 103,976 108,490 101,217 93,985 95,207 93,855 1999-2014 Plant Fuel 0 2014-2014

  9. U.S. Sales of Kerosene by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Area: U.S. East Coast (PADD 1) New England (PADD 1A) Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont Central Atlantic (PADD 1B) Delaware District of Columbia Maryland New Jersey New York Pennsylvania Lower Atlantic (PADD 1C) Florida Georgia North Carolina South Carolina Virginia West Virginia Midwest (PADD 2) Illinois Indiana Iowa Kansas Kentucky Michigan Minnesota Missouri Nebraska North Dakota Ohio Oklahoma South Dakota Tennessee Wisconsin Gulf Coast (PADD 3) Alabama

  10. Louisiana Sales of Distillate Fuel Oil by End Use

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    514,474 1,744,771 1,873,769 1,488,986 1,405,392 1,375,580 1984-2014 Residential 1,036 140 34 53 84 89 1984-2014 Commercial 59,689 38,695 39,659 36,840 17,590 21,197 1984-2014 Industrial 21,826 26,063 20,770 33,052 31,744 33,670 1984-2014 Oil Company 243,789 319,394 364,261 245,303 183,801 178,810 1984-2014 Farm 42,624 44,027 49,985 48,462 40,785 46,134 1984-2014 Electric Power 4,321 4,775 5,464 2,733 4,610 4,826 1984-2014 Railroad 18,345 25,425 32,515 28,110 39,578 45,790 1984-2014 Vessel

  11. Mississippi Sales of Distillate Fuel Oil by End Use

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    835,855 800,065 771,577 830,756 806,396 819,763 1984-2014 Residential 5 5 4 7 7 8 1984-2014 Commercial 26,641 23,713 26,383 26,386 24,019 28,803 1984-2014 Industrial 21,853 18,362 15,450 20,153 21,186 19,595 1984-2014 Oil Company 3,955 4,262 4,058 6,226 7,450 6,419 1984-2014 Farm 41,080 57,087 52,559 81,878 84,753 79,443 1984-2014 Electric Power 3,796 3,393 2,019 1,674 2,223 1,921 1984-2014 Railroad 24,727 17,936 37,741 29,848 32,550 35,578 1984-2014 Vessel Bunkering 141,302 93,384 58,285 58,505

  12. ,"U.S. Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcunusa.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  13. North Carolina Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    5,890 38,346 37,432 NA 35,659 35,342 2001-2015 Residential 1,407 1,195 1,090 NA 1,121 2,814 1989-2015 Commercial 2,524 2,945 2,535 NA 3,004 4,282 1989-2015 Industrial 8,131 7,793...

  14. New York Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    20,336 33,321 1989-2015 Commercial 12,774 14,178 14,539 13,736 18,646 24,042 1989-2015 Industrial 5,333 5,249 5,770 5,562 6,203 6,620 2001-2015 Vehicle Fuel 305 331 331 320...

  15. End-Use Intensity in Commercial Buildings 1992 (TABLES)

    U.S. Energy Information Administration (EIA) Indexed Site

    3 9 21 5 64 1 9 Food Service . . . . . . . . . . . . . . 307 43 53 9 37 28 116 17 1 5 Health Care . . . . . . . . . . . . . . . 403 88 32 11 128 52 30 6 15 41 Lodging . . . . . ....

  16. Energy End-Use Intensities in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    lighting intensities per lighted square foot-hour (Figure 23). * Food service and health care buildings had the highest water-heating intensities per square foot--more than...

  17. South Carolina Natural Gas Consumption by End Use

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    22,960 23,408 22,304 20,308 22,863 25,776 2001-2015 Residential 490 496 521 542 1,020 2,345 1989-2015 Commercial 1,307 1,324 1,399 1,380 1,827 2,136 1989-2015 Industrial 6,645...

  18. Energy End-Use Intensities in Commercial Buildings 1992 - Index...

    U.S. Energy Information Administration (EIA) Indexed Site

    Author Contact: Joelle.Michaels@eia.doe.gov Joelle Michaels CBECS Survey Manager URL: http:www.eia.govconsumptioncommercialdataarchivecbecscbecs1d.html separater bar...

  19. Innovative Technologies for Bioenergy Technologies Incubator...

    Broader source: Energy.gov (indexed) [DOE]

    00PM EDT Online The Innovative Technologies for Bioenergy Technologies Incubator 2 FOA Informational Webinar will be held Wednesday, September 2, 1:00 p.m.-2:00 p.m. ET. Standard...

  20. Geothermal Technologies Office - Webmaster | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Office - Webmaster Geothermal Technologies Office - Webmaster

  1. Plasma technology directory

    SciTech Connect (OSTI)

    Ward, P.P.; Dybwad, G.L.

    1995-03-01

    The Plasma Technology Directory has two main goals: (1) promote, coordinate, and share plasma technology experience and equipment within the Department of Energy; and (2) facilitate technology transfer to the commercial sector where appropriate. Personnel are averaged first by Laboratory and next by technology area. The technology areas are accelerators, cleaning and etching deposition, diagnostics, and modeling.

  2. Direct Conversion Technology. Progress report, January 1, 1992--June 30, 1992

    SciTech Connect (OSTI)

    Back, L.H.; Fabris, G.; Ryan, M.A.

    1992-07-01

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. Initially, two systems were selected for exploratory research and advanced development. These are Alkali Metal Thermal-to-Electric Converter (AMTEC) and Two-Phase Liquid Metal MD Generator (LMMHD). This report describes progress that has been made during the first six months of 1992 on research activities associated with these two systems. (GHH)

  3. Forest products technologies

    SciTech Connect (OSTI)

    None, None

    2006-07-18

    Report highlights DOE Industrial Technology Program co-funded R&D resulting in commercial energy-efficient technologies and emerging technologies helping the forest products industry save energy.

  4. Building Technologies Office Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roland Risser Director, Building Technologies Office Building Technologies Office Energy Efficiency Starts Here. 2 Building Technologies Office Integrated Approach: Improving Building Performance Research & Development Developing High Impact Technologies Standards & Codes Locking in the Savings Market Stimulation Accelerating Tech-to- Market 3 Building Technologies Office Goal: Reduce building energy use by 50% (compared to a 2010 baseline) 4 Building Technologies Office Working to

  5. TECHNOLOGY READINESS ASSESSMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOENETL-20151710 U.S. Department of Energy 2014 TECHNOLOGY READINESS ASSESSMENT-CLEAN COAL RESEARCH PROGRAM 2 2014 TECHNOLOGY READINESS ASSESSMENT-CLEAN COAL RESEARCH PROGRAM ...

  6. Geothermal Technologies Office: Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Technologies Office Details Bookmark & Share View Related Welcome to the Energy Department's Geothermal Technologies Office Publication and Product Library. Here...

  7. Technology Selection Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technologies, including Technical Advisory Groups and the Energy Efficiency Technology Roadmap. Technical Advisory Groups E3T engages stakeholders of electric power industries in...

  8. Hydropower Program Technology Overview

    SciTech Connect (OSTI)

    Not Available

    2001-10-01

    New fact sheets for the DOE Office of Power Technologies (OPT) that provide technology overviews, description of DOE programs, and market potential for each OPT program area.

  9. Green Purchasing & Green Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Purchasing & Technology Goals 6 & 7: Green Purchasing & Green Technology Our goal is to purchase and use environmentally sustainable products whenever possible and to implement...

  10. Promising Technologies List

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    about promising new and underutilized energy-saving technologies available for Federal and commercial building sector deployment. To identify promising technologies,...

  11. NREL: Technology Transfer - Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    you may have about NREL's technology transfer opportunities. Partnering with NREL Anne Miller, 303-384-7353 Licensing NREL Technologies Eric Payne, 303-275-3166 Printable Version...

  12. Science and Technology Day

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and Technology Day Science and Technology Day February 24, 2015 Tuesday, Feb. 24 Berkeley Lab Building 50 Auditorium Attendance is open to anyone. Remote streaming is...

  13. Science & Technology - 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology Science & Technology - 2015 October HAPLS Completes Phase 1 Energy-Ramping Campaign Shaping NIF's Beams for Direct-Drive Experiments September A Pioneering Betatron...

  14. Vehicle Technologies Office: News

    Broader source: Energy.gov [DOE]

    EERE intends to issue, on behalf of its Fuel Cell Technologies Office, a Funding Opportunity Announcement (FOA) entitled "Fuel Cell Technologies Incubator: Innovations in Fuel Cell and Hydrogen...

  15. TECHNOLOGY READINESS ASSESSMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pathway for readying the next generation of affordable clean energy technology -Carbon ... developed to be applicable to nuclear-fuel- waste technology, provides a ...

  16. Technology Readiness Assessment (TRA)/Technology Maturation Plan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Readiness Assessment (TRA)Technology Maturation Plan (TMP) Process Guide Technology Readiness Assessment (TRA)Technology Maturation Plan (TMP) Process Guide This...

  17. DOE Vehicle Technologies Program 2009 Merit Review Report - Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Integration and Education DOE Vehicle Technologies Program 2009 Merit Review Report - Technology Integration and Education Merit review of DOE Vehicle Technologies...

  18. Blue Spark Technologies formerly Thin Battery Technologies Inc...

    Open Energy Info (EERE)

    Spark Technologies formerly Thin Battery Technologies Inc Jump to: navigation, search Name: Blue Spark Technologies (formerly Thin Battery Technologies Inc.) Place: Westlake, Ohio...

  19. Sun Materials Technology aka Shanyang Technology | Open Energy...

    Open Energy Info (EERE)

    Technology aka Shanyang Technology Jump to: navigation, search Name: Sun Materials Technology (aka Shanyang Technology) Place: Yilan County, Taiwan Product: A US-Taiwan JV company...

  20. GT Solar Technologies formerly GT Equipment Technologies | Open...

    Open Energy Info (EERE)

    Technologies formerly GT Equipment Technologies Jump to: navigation, search Name: GT Solar Technologies (formerly GT Equipment Technologies) Place: Merrimack, New Hampshire...

  1. Quantum Fuel Systems Technologies Worldwide Inc Quantum Technologies...

    Open Energy Info (EERE)

    Fuel Systems Technologies Worldwide Inc Quantum Technologies Jump to: navigation, search Name: Quantum Fuel Systems Technologies Worldwide Inc (Quantum Technologies) Place: Irvine,...

  2. NREL: Technology Transfer - Commercialization Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    303-275-3051. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Nondisclosure Agreements...

  3. Hydrogen delivery technology roadmap

    SciTech Connect (OSTI)

    None, None

    2005-11-15

    Document describing plan for research into and development of hydrogen delivery technology for transportation applications.

  4. Crosscutting Technology Research FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crosscutting Technology Research FAQs faq-header-big.jpg CROSSCUTTING - BASICS Q: What is the Crosscutting Technology Research Program? A: The Crosscutting Technology Research Program focuses on enabling technologies that foster transformational developments across multiple disciplines to support energy system platforms in power system design, construction, and operation for highly efficient operation and superior environmental performance. By bridging the gap between fundamental research and

  5. Innovative Process Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovative Process Technologies Fact Sheets Research Team Members Key Contacts Innovative Process Technologies Innovative Process Technologies is concerned with the development of innovative costeffective technologies that promote efficiency, environmental performance, availability of advanced energy systems, and the development of computational tools that shorten development timelines of advanced energy systems. NETL, working with members of the NETL-Regional University Alliance (NETL-RUA),

  6. Tracers and Exploration Technologies

    Broader source: Energy.gov [DOE]

    Below are the project presentations and respective peer review results for Tracers and Exploration Technologies.

  7. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer Novel...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Novel PlatinumChromium Alloy for the Manufacture of Improved Coronary Stents Success Story NETL Technology Transfer Group techtransfer@netl.doe.gov Contact Partners A coronary...

  8. Vehicle Technologies Office: 2014 Electric Drive Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Past year's reports are listed on the Annual Progress Reports page. PDF icon FY14EDTAnnualReport.pdf More Documents & Publications Vehicle Technologies Office: 2013 Advanced ...

  9. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer NETL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sorbent Technologies Licensed for Use in Biomass-to- Biofuel Conversion Process with ... as part of its spinout MG Fuels' integrated biomass-to-biofuel conversion process. ...

  10. Energy Technology Division Energy Technology Division Energy...

    Office of Scientific and Technical Information (OSTI)

    constitute or imply its endorsement, recommendation, or favoring by the United States ... sensor. 4. Technology, or the basic physical phenomena that the sensor uses to do its job. ...

  11. Materials Science and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MST Materials Science and Technology Providing world-leading, innovative, and agile materials science and technology solutions for national security missions. MST is metallurgy. The Materials Science and Technology Division provides scientific and technical leadership in materials science and technology for Los Alamos National Laboratory. READ MORE MST is engineered materials. The Materials Science and Technology Division provides scientific and technical leadership in materials science and

  12. Emerging Technologies Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emerging Technologies Program Pat Phelan Program Manager patrick.phelan@ee.doe.gov (202)287-1906 April 2, 2013 Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov How ET Fits into BTO Research & Development * Develop technology roadmaps * Prioritize opportunities * Solicit and select innovative technology solutions * Collaborate with researchers * Solve technical barriers and test innovations to prove effectiveness * Measure and validate energy

  13. TECHNOLOGY TRANSFER COORDINATORS

    Broader source: Energy.gov [DOE]

    Mark Hartney, Director of the Office of Strategic Planning, SLAC, discussed technology transfer at SLAC. Bob Hwang, Director, Transportation Energy Center, Combustion Research Facility, SNL presented on technology transfer at SNL. Elsie Quaite-Randall, Chief Technology Transfer Officer, Innovation and Partnerships Office, LBNL, presented on technology transfer at LBNL. Richard A. Rankin, Director, Industrial Partnerships Office and Economic Development Office (Interim), LLNL, presented on technology transfer at LLNL.

  14. 2010 DOE EERE Vehicle Technologies Program Merit Review … Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration | Department of Energy … Technology Integration 2010 DOE EERE Vehicle Technologies Program Merit Review … Technology Integration Technology integration merit review results PDF icon 2010_amr_08.pdf More Documents & Publications 2012 Annual Merit Review Results Report - Technology Integration 2011 Annual Merit Review Results Report - Technology Integration DOE Vehicle Technologies Program 2009 Merit Review Report - Technology Integration and Education

  15. SHARED TECHNOLOGY TRANSFER PROGRAM

    SciTech Connect (OSTI)

    GRIFFIN, JOHN M. HAUT, RICHARD C.

    2008-03-07

    The program established a collaborative process with domestic industries for the purpose of sharing Navy-developed technology. Private sector businesses were educated so as to increase their awareness of the vast amount of technologies that are available, with an initial focus on technology applications that are related to the Hydrogen, Fuel Cells and Infrastructure Technologies (Hydrogen) Program of the U.S. Department of Energy. Specifically, the project worked to increase industry awareness of the vast technology resources available to them that have been developed with taxpayer funding. NAVSEA-Carderock and the Houston Advanced Research Center teamed with Nicholls State University to catalog NAVSEA-Carderock unclassified technologies, rated the level of readiness of the technologies and established a web based catalog of the technologies. In particular, the catalog contains technology descriptions, including testing summaries and overviews of related presentations.

  16. SSL TECHNOLOGY DEVELOPMENT WORKSHOP

    Broader source: Energy.gov [DOE]

    Rapid advances in SSL technology make it easy to forget that this technology is still at a relatively early stage of development, and much of its potential remains untapped. The 10th annual DOE SSL...

  17. Technology Readiness Assessment Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-09-15

    The Guide assists individuals and teams involved in conducting Technology Readiness Assessments (TRAs) and developing Technology Maturation Plans (TMPs) for the DOE capital asset projects subject to DOE O 413.3B. Supersedes DOE G 413.3-4.

  18. Technology Deployment Case Studies

    Broader source: Energy.gov [DOE]

    Find technology deployment case studies below. Click on each individual project link to see the full case study. You can also view a map of technology deployment case studies.

  19. Tag: technology transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    17all en CNS, UT chemical sensing technology wins R&D 100 Award http:www.y12.doe.govnewspress-releasescns-ut-chemical-sensing-technology-wins-rd-100-award

  20. Open Government Technology Summit

    Broader source: Energy.gov [DOE]

    On January 25, 2012, the OCIO hosted the Open Government Technology Summit in Forrestal Auditorium.  Five speakers including Deputy U.S. Chief Technology Officer Chris Vein, DOE Director of New...

  1. The Role of Technology for Achieving Climate Policy Objectives: Overview of the EMF 27 Study on Technology Strategies and Climate Policy Scenarios

    SciTech Connect (OSTI)

    Kriegler, Elmar; Weyant, John; Blanford, Geoffrey J.; Krey, Volker; Clarke, Leon E.; Edmonds, James A.; Fawcett, Allen A.; Luderer, Gunnar; Riahi, Keywan; Richels, Richard G.; Rose, Steven; Tavoni, Massimo; Van Vuuren, Detlef

    2014-04-01

    This article presents the synthesis of results from the Stanford Energy Modeling Forum Study 27, an inter-comparison of 19 energy-economy and integrated assessment models. The study investigated the value of individual mitigation technologies such as energy intensity improvements, carbon capture and sequestration (CCS), nuclear power, solar and wind power and bioenergy for climate mitigation. Achieving atmospheric greenhouse gas concentration targets at 450 and 550 ppm CO2 equivalent requires massive greenhouse gas emissions reductions. A fragmented policy approach at the level of current ambition is inconsistent with these targets. The availability of a negative emissions technology, in most models biofuels with CCS, proved to be a key element for achieving the climate targets. Robust characteristics of the transformation of the energy system are increased energy intensity improvements and the electrification of energy end use coupled with a fast decarbonization of the electricity sector. Non-electric energy end use is hardest to decarbonize, particularly in the transport sector. Technology is a key element of climate mitigation. Versatile technologies such as CCS and bioenergy have largest value, due in part to their combined ability to produce negative emissions. The individual value of low-carbon power technologies is more limited due to the many alternatives in the sector. The scale of the energy transformation is larger for the 450 ppm than for the 550 ppm CO2e target. As a result, the achievability and the costs of the 450 ppm target are more sensitive to variations in technology variability. Mitigation costs roughly double when moving from 550 ppm to 450 ppm CO2e, but remain below 3% of GDP for most models.

  2. Fuel Cell Technologies Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7/21/2015 eere.energy.gov Fuel Cell Technologies Overview States Energy Advisory Board (STEAB) Washington, DC Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager 3/14/2012 Outline * Introduction - Technology and Market Overview * DOE Program Overview - Mission & Structure - R&D Progress - Demonstration & Deployments * State Activities - Examples of potential opportunities 2 | Fuel Cell Technologies Program Source: US DOE 7/21/2015

  3. Technology Partnership Agreements | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Partnership Agreements Looking for Funding? We do not fund any projects under a technology partnership agreement. The partner provides the necessary resources and, in most cases, covers our costs of providing technical services. NREL does provide funding opportunities through competitively placed contracts. See procurement. There are a variety of ways to partner with NREL using technology partnership agreements. See a summary of our Fiscal Year 2015 technology partnership agreements.

  4. Geothermal Energy & Drilling Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy & Drilling Technology - Sandia Energy Energy Search Icon Sandia Home Locations ... Atmospheric Radiation Measurement Climate Reasearch Facility Geomechanics and Drilling ...

  5. TECHNOLOGY READINESS ASSESSMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DECEMBER 2012 Pathway for readying the next generation of affordable clean energy technology -Carbon Capture, Utilization, and Storage (CCUS) 2012 TECHNOLOGY READINESS ASSESSMENT -OVERVIEW 2 2012 TECHNOLOGY READINESS ASSESSMENT-OVERVIEW 2012 TECHNOLOGY READINESS ASSESSMENT-OVERVIEW 3 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any

  6. Robert Jilek: Pellion Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robert Jilek: Pellion Technologies Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Robert Jilek: Pellion Technologies Senior research scientist at eastern energy storage startup September 3, 2014 Robert Jilek Robert Jilek Contact Linda Anderman Email Robert Jilek Jilek is currently with Pellion Technologies Bob Jilek is currently spending part of his time in a management role at Pellion Technologies in the Cambridge

  7. NREL: Geothermal Technologies - Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... studies, regional sedimentary basin exploration, prospect generation, reservoir ... Technologies Office in assessment and evaluation of research and development projects. ...

  8. Membrane Technology Workshop

    Broader source: Energy.gov [DOE]

    Presentation by Charles Page (Air Products & Chemicals, Inc.) for the Membrane Technology Workshop held July 24, 2012

  9. Consumer Vehicle Technology Data

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  10. Technology Integration Overview

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  11. California Institute of Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sunday, July 29, 2012 California Institute of Technology Hameetman Auditorium at the Cahill Center 8:30 AM - 5:00 PM Speakers include: o Harry Atwater, Director, LMI-EFRC and Resnick Institute, California Institute of Technology o Ivan Celanovic, Principal Research Scientist, Massachusetts Institute of Technology o Geoffrey Kinsey, Director, Photovoltaic Technologies, Fraunhofer Center for Sustainable Energy o Sarah Kurtz, Principal Scientist, National Renewable Energy Laboratory o Minh Le,

  12. First National Technology Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Technology First National Technology Center Center Dennis Hughes FMA, RPA, P.E. Lead Property Manager, First National Buildings, Inc. 2 First National Technology First National Technology Center Center First National of Nebraska, Inc. - $12 Billion Assets - 5,400 employees - 6.6 million customers in 50 states - 60 banking locations Nebraska, Colorado, Kansas, South Dakota,Texas, Illinois - Largest in house merchant processor in United States Top ten VISA® and MasterCard® processor Top

  13. Fuel Cell Technologies Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    States Energy Advisory Board (STEAB) Washington, DC Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager 3/14/2012 2 | Fuel Cell Technologies Program Source: US DOE 3/19/2013 eere.energy.gov * Introduction - Technology and Market Overview * DOE Program Overview - Mission & Structure - R&D Progress - Demonstration & Deployments * State Activities - Examples of potential opportunities Outline 3 | Fuel Cell Technologies Program Source: US DOE

  14. Benchmarking of Competitive Technologies

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  15. Bioenergy Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2015 BETO Project Peer Review - Conversion Area Overview Bryna Guriel, Technology Manager Conversion R&D March 23 rd 2015 2 | Bioenergy Technologies Office eere.energy.gov Introduction to Conversion R&D 3 | Bioenergy Technologies Office eere.energy.gov * The strategic goal of the conversion program is to develop commercially viable technologies for converting feedstocks via biological and chemical routes energy-dense, fungible, finished liquid fuels, such as renewable gasoline, jet, and

  16. Building Technologies Office Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Office Roland Risser Director, Building Technologies Office National Energy Consumption 40% 60% Reducing consumption or improving performance calls for cutting-edge energy-efficient solutions Aiming High for 2030 Double U.S. energy productivity Lower building energy use by 50% Annual energy use by 20 quads 1 billion metric tons CO 2 $200 billion for America's homes and buildings Delivering Energy-Efficient Solutions Co Emerging Technologies High-impact building technologies ~Five

  17. Building Technologies Office Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roland Risser Director, Building Technologies Office Building Technologies Office Overview Our Homes and Buildings Use 40% of Our Nation's Energy and 75% of Electricity Energy Use Electricity Use Residential Transportation 21 quads 27 quads Commercial 18 quads Industrial 31 quads U.S. Energy Bill for Buildings: $410 billion per year 2 Building Technologies Office (BTO) Ecosystem Emerging Technologies Building Codes Appliance Standards Residential Buildings Integration Commercial Buildings

  18. Carbon Fiber Technology Facility

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  19. Carbon Fiber Technology Facility

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  20. Technology Performance Exchange

    SciTech Connect (OSTI)

    2015-09-01

    To address the need for accessible, high-quality data, the Department of Energy has developed the Technology Performance Exchange (TPEx). TPEx enables technology suppliers, third-party testing laboratories, and other entities to share product performance data. These data are automatically transformed into a format that technology evaluators can easily use in their energy modeling assessments to inform procurement decisions.

  1. High Impact Technology Hub

    Broader source: Energy.gov [DOE]

    The High Impact Technology Hub is a one stop shop for information associated with technology demonstrations in occupied, operational buildings. Resources posted to Hub should accelerate the selection and evaluation of technology demonstration projects and enable transparency into DOEs market stimulation and tech to market activities.

  2. Vehicle Technologies Office

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office is developing more energy efficient and environmentally friendly highway transportation technologies that will enable America to use less petroleum. The long-term aim is to develop "leap frog" technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.

  3. NREL: Technology Transfer - Agreements for Commercializing Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agreements for Commercializing Technology NREL uses Agreements for Commercializing Technology (ACT) when a partner seeks highly specialized or technical services to complete a project. An ACT agreement also authorizes participating contractor-operated DOE laboratories, such as NREL, to partner with businesses using more flexible terms that are aligned with industry practice. Read more about how this partnership tool increases flexibility. The agreement type used depends on the business, and the

  4. Vehicle Technologies Office Merit Review 2014: Carbon Fiber Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon Fiber Technology Facility Vehicle Technologies Office Merit Review 2014: Carbon Fiber Technology Facility Presentation given by Oak Ridge National Laboratory at 2014 DOE ...

  5. Vehicle Technologies Office: 2010 Fuel Technologies R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: 2010 Fuel Technologies R&D Annual Progress Report The Fuels Technologies subprogram supports fuels and lubricants research and development (R&D)...

  6. 2010 DOE EERE Vehicle Technologies Program Merit Review ? Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration 2011 Annual Merit Review Results Report - Technology Integration DOE Vehicle Technologies Program 2009 Merit Review Report - Technology Integration and Education...

  7. Vehicle Technologies Office Merit Review 2015: Advanced Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Technology Vehicle Lab Benchmarking (L1&L2) Vehicle Technologies Office Merit Review 2015: Advanced Technology Vehicle Lab Benchmarking (L1&L2) Presentation given by Argonne ...

  8. Vehicle Technologies Office Merit Review 2014: Advanced Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Technology Vehicle Lab Benchmarking - Level 1 Vehicle Technologies Office Merit Review 2014: Advanced Technology Vehicle Lab Benchmarking - Level 1 Presentation given by ...

  9. Minerals Technologies | Open Energy Information

    Open Energy Info (EERE)

    Technologies Jump to: navigation, search Name: Minerals Technologies Place: Bethlehem, PA Website: www.mineralstechnologies.com References: Minerals Technologies1 Information...

  10. High Impact Technology Hub- Results

    Broader source: Energy.gov [DOE]

    Highlights, outcomes and activities to support the adoption of High Impact Technologies. Technology Highlights preview early results from current technology demonstrations. Case Studies overview...

  11. Gerar Technology | Open Energy Information

    Open Energy Info (EERE)

    Gerar Technology Jump to: navigation, search Name: Gerar Technology Place: Rio de Janeiro, Brazil Product: Developer of new technology for production of biodiesel from vegetable...

  12. EKB Technology | Open Energy Information

    Open Energy Info (EERE)

    EKB Technology Jump to: navigation, search Name: EKB Technology Place: Oxfordshire, United Kingdom Product: Developer of a new bioprocessing technology. Coordinates: 51.813938,...

  13. Rubicon Technology | Open Energy Information

    Open Energy Info (EERE)

    Rubicon Technology Jump to: navigation, search Name: Rubicon Technology Place: Franklin Park, Illinois Zip: 60131 Product: Rubicon Technology makes a sapphire substrates for use in...

  14. Shorepower Technologies | Open Energy Information

    Open Energy Info (EERE)

    Shorepower Technologies Jump to: navigation, search Logo: Shorepower Technologies Name: Shorepower Technologies Address: 2351 NW York St. Place: Portland, Oregon Zip: 97210 Region:...

  15. Briza Technologies | Open Energy Information

    Open Energy Info (EERE)

    Briza Technologies Jump to: navigation, search Name: Briza Technologies Place: Hillsborough, New Jersey Zip: 8844 Sector: Wind energy Product: Developing wind turbine technology....

  16. PCN Technology | Open Energy Information

    Open Energy Info (EERE)

    PCN Technology Jump to: navigation, search Name: PCN Technology Place: San Diego, California Zip: CA 92127 Product: California-based smart grid technology developer. References:...

  17. High Impact Technology HQ- Results

    Broader source: Energy.gov [DOE]

    Highlights, outcomes and activities to support the adoption of High Impact TechnologiesTechnology Highlights preview early results from current technology demonstrations.  Case Studies overview...

  18. Topanga Technologies | Open Energy Information

    Open Energy Info (EERE)

    Technologies Place: Canoga Park, California Zip: 91303 Product: Stealth-mode high-intensity discharge (HID) lighting technology developer. References: Topanga Technologies1...

  19. Konarka Technologies | Open Energy Information

    Open Energy Info (EERE)

    Technologies Jump to: navigation, search Name: Konarka Technologies Place: Lowell, MA Website: www.konarkatechnologies.com References: Konarka Technologies1 Information About...

  20. Technology transfer 1994

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    This document, Technology Transfer 94, is intended to communicate that there are many opportunities available to US industry and academic institutions to work with DOE and its laboratories and facilities in the vital activity of improving technology transfer to meet national needs. It has seven major sections: Introduction, Technology Transfer Activities, Access to Laboratories and Facilities, Laboratories and Facilities, DOE Office, Technologies, and an Index. Technology Transfer Activities highlights DOE`s recent developments in technology transfer and describes plans for the future. Access to Laboratories and Facilities describes the many avenues for cooperative interaction between DOE laboratories or facilities and industry, academia, and other government agencies. Laboratories and Facilities profiles the DOE laboratories and facilities involved in technology transfer and presents information on their missions, programs, expertise, facilities, and equipment, along with data on whom to contact for additional information on technology transfer. DOE Offices summarizes the major research and development programs within DOE. It also contains information on how to access DOE scientific and technical information. Technologies provides descriptions of some of the new technologies developed at DOE laboratories and facilities.

  1. Exploration Technologies Technology Needs Assessment | Department of Energy

    Office of Environmental Management (EM)

    Technologies Technology Needs Assessment Exploration Technologies Technology Needs Assessment The Exploration Technologies Needs Assessment is a critical component of ongoing technology roadmapping efforts, and will be used to guide the program's research and development. PDF icon iet_needs_assessment_06-2011.pdf More Documents & Publications Draft Innovative Exploration Technologies Needs Assessment Geothermal Technologies Program Annual Peer Review Presentation By Doug Hollett Hydrothermal

  2. Geothermal innovative technologies catalog

    SciTech Connect (OSTI)

    Kenkeremath, D.

    1988-09-01

    The technology items in this report were selected on the basis of technological readiness and applicability to current technology transfer thrusts. The items include technologies that are considered to be within 2 to 3 years of being transferred. While the catalog does not profess to be entirely complete, it does represent an initial attempt at archiving innovative geothermal technologies with ample room for additions as they occur. The catalog itself is divided into five major functional areas: Exploration; Drilling, Well Completion, and Reservoir Production; Materials and Brine Chemistry; Direct Use; and Economics. Within these major divisions are sub-categories identifying specific types of technological advances: Hardware; Software; Data Base; Process/Procedure; Test Facility; and Handbook.

  3. Building Technologies Office: Emerging Technologies Windows and Building Envelope

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bahman Habibzadeh, PhD Technology Development Manger Building Technologies Office Emerging Technologies Windows and Building Envelope 2 Emerging Technologies (ET)  Develop cost-effective, high-impact building technologies: Lighting, HVAC, Windows & Envelope, Sensors & Controls, Appliances & Equipment Commercial Buildings Integration (CBI) Residential Buildings Integration (RBI)  Partner with private sector to demonstrate technologies and solutions  Demonstrate market

  4. Summary - Caustic Recovery Technology

    Office of Environmental Management (EM)

    Caustic Recovery Technology ETR Report Date: July 2007 ETR-7 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Caustic Recovery Technology Why DOE-EM Did This Review The Department of Energy (DOE) Environmental Management Office (EM-21) has been developing caustic recovery technology for application to the Hanford Waste Treatment Plant (WTP) to reduce the amount of Low Activity Waste (LAW) vitrified. Recycle of sodium hydroxide with an

  5. Technology Transfer - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PAZ0004_v2.jpg Technology Transfer Who We Are JCAP Mission JCAP At A Glance Fact Sheets Organizational Chart Recent Science Technology Transfer Awards & Honors Senior Management Scientific Leadership Researchers Governance & Advisory Boards Operations & Administration Who we are Overview JCAP Mission JCAP At A Glance Fact Sheets Organizational Chart Our Achievements Recent Science Technology Transfer Awards & Honors Our People Senior Management Scientific Leadership Researchers

  6. TECHNOLOGY READINESS ASSESSMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ASSESSMENT JANUARY 2015 -A CHECKPOINT ALONG A CHALLENGING JOURNEY DOE/NETL-2015/1710 U.S. Department of Energy 2014 TECHNOLOGY READINESS ASSESSMENT-CLEAN COAL RESEARCH PROGRAM 2 2014 TECHNOLOGY READINESS ASSESSMENT-CLEAN COAL RESEARCH PROGRAM Office of Fossil Energy | National Energy Technology Laboratory DISCLAIMER 3 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor

  7. Arc Position Sensing Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arc Position Sensing Technology Award Winning Technology Flaws in specialty metals used in aerospace and other advanced applications are often caused by solidification problems that arise during the melting and refining process. A common problem is arc constriction during melting. Previously, these conditions could not be identified during furnace operations, requiring ingot manufacturers to perform extensive testing on all ingots. The Arc Position Sensing (APS) technology, developed by NETL's

  8. Technology and energy supply

    Gasoline and Diesel Fuel Update (EIA)

    Donald L. Paul Executive Director, USC Energy Institute and William M. Keck Chair of Energy Resources 06 April 2010 EIA and SAIS 2010 Energy Conference Energy and the Economy Technology and Energy Transformation Science and Technology + Economics and Business + Society and Environment + Policy and Government Scale, time, and complexity 3 Existing supply and demand infrastructure New resources, infrastructures, and paradigms Multiple generations of technology History, the present, and the future

  9. Digital Sensor Technology

    SciTech Connect (OSTI)

    Ted Quinn; Jerry Mauck; Richard Bockhorst; Ken Thomas

    2013-07-01

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy, reliability, availability, and maintainability. This report demonstrates these benefits in direct comparisons of digital and analog sensor applications. It also addresses the qualification issues that must be addressed in the application of digital sensor technology.

  10. Information Sciences and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Sciences and Technology Information Sciences and Technology National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Contact thumbnail of Business Development Executive Steve Stringer Business Development Executive Richard P. Feynman Center for Innovation (505) 660-2177 Email Los Alamos leverages advances in theory, algorithms,

  11. NREL: Technology Transfer - Ombuds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Transfer Ombuds NREL's Technology Transfer Ombuds offers an informal process to help resolve issues and concerns regarding the laboratory's technology partnership, patent, and licensing activities. As a designated neutral party, our ombuds provides confidential, resolution-focused services. Through the ombuds process, we encourage collaborative techniques such as mediation to facilitate the speedy and low-cost resolution of complaints and disputes, when appropriate. The NREL Ombuds

  12. Technologies | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies Available for Licensing Energy Storage Industrial & Manufacturing Processes Licensable Software Life Sciences Materials Transportation Fact Sheets and Forms Licensable Technologies Argonne's researchers have developed a wide and diverse range of technologies that have worldwide impact in a variety of fields. Argonne grants licenses for lab-developed intellectual property to existing and start-up companies that are technically and financially capable of turning early-stage

  13. Technology Transfer | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Transfer Through partnerships and licensing of its intellectual property rights, NREL seeks to reduce private sector risk in early stage technologies, enable investment in the adoption of renewable energy and energy efficiency technologies, reduce U.S. reliance on foreign energy sources, reduce carbon emissions, and increase U.S. industrial competitiveness. A photo of three men looking at a colorful, floor-to-ceiling, 3-D visualization of a biomass analysis model. View a summary of

  14. Carbon Fiber Technology Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon Fiber Technology Facility Dave Warren, PI Cliff Eberle, Presenter Technology Development Manager Polymer Matrix Composites Oak Ridge National Laboratory May 16, 2012 Project ID # LM003 Status as of March 30, 2012 This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 Managed by UT-Battelle for the U.S. Department of Energy Carbon Fiber Technology Facility (CFTF) ARRA CAPITAL Project Overview * Funds received FY10Q2 * Scheduled finish FY13Q4

  15. Technology Pathway Selection Effort

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BIOMASS PROGRAM Technology Pathway Selection Effort Alicia Lindauer 27 November 2012 2 | Biomass Program eere.energy.gov * Setting R&D priorities * Benchmarking * Informing multi-sectoral analytical activities * Track Program R&D progress against goals * Identify technology process routes and prioritize funding * Program direction decisions: * Are we spending our money on the right technology pathways? * Within a pathway: Are we focusing our funding on the highest priority activities?

  16. Technology Performance Exchange

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Performance Exchange TDM - Jason Koman (BTO) TDM - Dave Catarious (FEMP) William Livingood National Renewable Energy Laboratory William.Livingood@nrel.gov 303-384-7490 April 2, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem: Perceived fiscal risk associated with the installation of unfamiliar technologies impedes adoption rates for cost-effective, energy-saving products. Impact of Project: Enable end users to quickly and confidently assess

  17. Environmental Technology Verification of Mobile Sources Control...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Technology Verification of Mobile Sources Control Technologies Environmental Technology Verification of Mobile Sources Control Technologies 2005 Diesel Engine...

  18. NREL: Geothermal Technologies - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reply. Your name: Your email address: Your message: Send Message Printable Version Geothermal Technologies Home Capabilities Projects Publications Data & Resources Research Staff...

  19. Sandia Science & Technology Park

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories. More Info Liquid Common SS&TP welcomes Liquid Common Liquid Common is a digital marketing company now located in the Park. More Info Sandia Science & Technology...

  20. Director, Geothermal Technologies Office

    Broader source: Energy.gov [DOE]

    The mission of the Geothermal Technologies Office (GTO) is to accelerate the development and deployment of clean, domestic geothermal resources that will promote a stronger, more productive economy...

  1. Semiconductor Science and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    world ssls.sandia.gov Initiates decades-long investment into compound semiconductor science and technology, eventually establishing its Center for Compound Semiconductor Science...

  2. 2016 Technology Innovation Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects FY 2016 Technology Innovation Project Briefs Demand Response TIP 292: Advanced Heat Pump Water Heater Research TIP 336: Scaled Deployment and Demonstration of Demand...

  3. National Energy Technology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wellbore cement integrity is paramount to safe, successful oil and natural gas drilling. ... technologies for drilling systems associated with onshore oil and natural gas development. ...

  4. Supervisory Information Technology Specialist

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will be responsible for providing Information Technology (IT) infrastructure, capabilities and technical support to the Department of Energy (DOE),...

  5. Mobile Technology Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-11-21

    The directive will ensure that federal organizations and employees within the Department can use mobile technology to support mission requirements in a safe and secure manner.

  6. Information Sciences and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    file systems Bioinformatics Infectious disease surveillance Climate change and energy security Smart grids Learn more about our Information Science and Technology capabilities

  7. Fuel Cell Technologies Budget

    SciTech Connect (OSTI)

    EERE

    2012-03-16

    The Fuel Cell Technologies Office receives appropriations from Energy and Water Development. The offices's major activities and budget are outlined in this Web page.

  8. Overview of geothermal technologies

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The geothermal overview section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  9. Overview of biomass technologies

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The biomass overview of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  10. SRNL LDRD - Developed Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Developed Technologies Porous Wall Hollow Glass Microspheres Porous Wall Hollow Glass Microspheres Tiny Glass Spheres for Energy Storage, Medical Applications and Other Uses...

  11. Sorption Storage Technology Summary

    Broader source: Energy.gov [DOE]

    Presented at the R&D Strategies for Compressed, Cryo-Compressed and Cryo-Sorbent Hydrogen Storage Technologies Workshops on February 14 and 15, 2011.

  12. Science, Technology & Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    search, Alan Bishop has been selected to be the Laboratory's next Principal Associate Director for - 2 - Science, Technology, and Engineering (PADSTE). Bishop has been acting...

  13. ENERGY EFFICIENCY TECHNOLOGY ROADMAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    managed the overall development and maturation of this Energy Efficiency Technology Roadmap, the effort would not have been possible without the active engagement of a diverse...

  14. Collaborative Transmission Technology Roadmap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Addendum to the Collaborative Transmission Technology Roadmap March 2014 Bonneville Power Administration Enhanced PDF Functionality Functionality of the PDF version of this...

  15. Appendix C - Industrial technologies

    SciTech Connect (OSTI)

    None, None

    2002-12-20

    This report describes the results, calculations, and assumptions underlying the GPRA 2004 Quality Metrics results for all Planning Units within the Office of Industrial Technologies.

  16. Science, Technology, and Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PADSTE Science, Technology, and Engineering Delivering mission success and innovative solutions to national security problems through the agile, rapid application of our...

  17. Technology Demonstration Partnership Policy

    Broader source: Energy.gov [DOE]

    This City Council memorandum establishes a framework for engaging in and evaluating demonstration partnerships with the goal of developing, testing, and demonstrating emerging technologies, product, and service innovations.

  18. Solar Energy Technologies Office

    Broader source: Energy.gov [DOE]

    In 2011, the Energy Department's Solar Energy Technologies Office (SETO) became the SunShot Initiative, a collaborative national effort that aggressively drives innovation to make solar energy...

  19. Ocean Energy Technology Overview

    SciTech Connect (OSTI)

    none,

    2009-08-05

    Introduction to and overview of ocean renewable energy resources and technologies prepared for the U.S. Department of Energy Federal Energy management Program.

  20. ocean energy technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Tribal Energy Program Intellectual Property Current EC Partnerships How to Partner Small ... SunShot Grand Challenge: Regional Test Centers ocean energy technologies HomeTag:ocean ...

  1. Marine & Hydrokinetic Technologies

    SciTech Connect (OSTI)

    2011-07-01

    This fact sheet describes the Wind and Water Power Program's current approach to supporting the development and deployment of marine and hydrokinetic technologies.

  2. A Green Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Green Technology - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy ...

  3. Consumer Vehicle Technology Data

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    technologies Relevance: An informed understanding of the consumer allows VTO to achieve petroleum-use reduction goals through: * Robust assumptions for consumer modeling,...

  4. Consumer Vehicle Technology Data

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    technologies. Relevance: An informed understanding of the consumer allows VTO to achieve petroleum-use reduction goals through: * Robust assumptions for consumer modeling,...

  5. Renewable energy technology characterizations

    SciTech Connect (OSTI)

    None, None

    1997-12-01

    The Renewable Energy Technology Characterizations describe the technical and economic status of the major emerging renewable energy options for electricity supply.

  6. Emerging Technologies - Capturing Innovation with Technology

    SciTech Connect (OSTI)

    None

    2012-12-01

    ET team research results are critical to achieving 50% energy savings across U.S. buildings within the next two decades. The ET team focuses on supporting research, development, and tech-to-market opportunities of high impact technologies, or those that demonstrate potential for achieving significant energy savings cost effectively.

  7. Alternative Transportation Technologies: Hydrogen, Biofuels,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced ...

  8. Bioconversion Technologies | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Bioconversion Technologies Place: United Kingdom Sector: Biofuels Product: Second-generation biofuels technology developer References: Bioconversion...

  9. Hydrocarbon Technologies | Open Energy Information

    Open Energy Info (EERE)

    Technologies Jump to: navigation, search Name: Hydrocarbon Technologies Place: Lawrenceville, New Jersey Zip: 8648 Sector: Efficiency Product: String representation...

  10. Digital Actuator Technology

    SciTech Connect (OSTI)

    Ken Thomas; Ted Quinn; Jerry Mauck; Richard Bockhorst

    2014-09-01

    There are significant developments underway in new types of actuators for power plant active components. Many of these make use of digital technology to provide a wide array of benefits in performance of the actuators and in reduced burden to maintain them. These new product offerings have gained considerable acceptance in use in process plants. In addition, they have been used in conventional power generation very successfully. This technology has been proven to deliver the benefits promised and substantiate the claims of improved performance. The nuclear industry has been reluctant to incorporate digital actuator technology into nuclear plant designs due to concerns due to a number of concerns. These could be summarized as cost, regulatory uncertainty, and a certain comfort factor with legacy analog technology. The replacement opportunity for these types of components represents a decision point for whether to invest in more modern technology that would provide superior operational and maintenance benefits. Yet, the application of digital technology has been problematic for the nuclear industry, due to qualification and regulatory issues. With some notable exceptions, the result has been a continuing reluctance to undertake the risks and uncertainties of implementing digital actuator technology when replacement opportunities present themselves. Rather, utilities would typically prefer to accept the performance limitations of the legacy analog actuator technologies to avoid impacts to project costs and schedules. The purpose of this report is to demonstrate that the benefits of digital actuator technology can be significant in terms of plant performance and that it is worthwhile to address the barriers currently holding back the widespread development and use of this technology. It addresses two important objectives in pursuit of the beneficial use of digital actuator technology for nuclear power plants: 1. To demonstrate the benefits of digital actuator technology over legacy analog sensor technology in both quantitative and qualitative ways. 2. To recognize and address the added difficulty of digital technology qualification, especially in regard to software common cause failure (SCCF), that is introduced by the use of digital actuator technology.

  11. Technology Catalogue. First edition

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The Department of Energy`s Office of Environmental Restoration and Waste Management (EM) is responsible for remediating its contaminated sites and managing its waste inventory in a safe and efficient manner. EM`s Office of Technology Development (OTD) supports applied research and demonstration efforts to develop and transfer innovative, cost-effective technologies to its site clean-up and waste management programs within EM`s Office of Environmental Restoration and Office of Waste Management. The purpose of the Technology Catalogue is to provide performance data on OTD-developed technologies to scientists and engineers assessing and recommending technical solutions within the Department`s clean-up and waste management programs, as well as to industry, other federal and state agencies, and the academic community. OTD`s applied research and demonstration activities are conducted in programs referred to as Integrated Demonstrations (IDs) and Integrated Programs (IPs). The IDs test and evaluate.systems, consisting of coupled technologies, at specific sites to address generic problems, such as the sensing, treatment, and disposal of buried waste containers. The IPs support applied research activities in specific applications areas, such as in situ remediation, efficient separations processes, and site characterization. The Technology Catalogue is a means for communicating the status. of the development of these innovative technologies. The FY93 Technology Catalogue features technologies successfully demonstrated in the field through IDs and sufficiently mature to be used in the near-term. Technologies from the following IDs are featured in the FY93 Technology Catalogue: Buried Waste ID (Idaho National Engineering Laboratory, Idaho); Mixed Waste Landfill ID (Sandia National Laboratories, New Mexico); Underground Storage Tank ID (Hanford, Washington); Volatile organic compound (VOC) Arid ID (Richland, Washington); and VOC Non-Arid ID (Savannah River Site, South Carolina).

  12. Technology Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration Technology Integration 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Vehicle Technologies Plenary PDF icon vtpn02_smith_ti_2011_o.pdf More Documents & Publications Technology Integration Overview Technology Integration Overview Technology Integration Overview

  13. Assistive Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assistive Technology Assistive Technology Assistive technology word cloud Assistive technology word cloud The DOE Headquarters Accommodation Program was established to provide reasonable computer and related telecommunications accommodations for employees with disabilities. Since implementation of the Assistive Technologies program in 1993, accommodations have increased from an initial 26 to an approximately 700 individual accommodations. The Assistive Technologies program complies with Section

  14. Technology Transfer Overview

    Broader source: Energy.gov [DOE]

    DOE's capabilities, and the innovations it supports, help ensure the country's role as a leader in science and technology. In particular, technology transfer supports the maturation and deployment of DOE discoveries, providing ongoing economic, security and environmental benefits for all Americans.

  15. Advanced uranium enrichment technologies

    SciTech Connect (OSTI)

    Merriman, R.

    1983-03-10

    The Advanced Gas Centrifuge and Atomic Vapor Laser Isotope Separation methods are described. The status and potential of the technologies are summarized, the programs outlined, and the economic incentives are noted. How the advanced technologies, once demonstrated, might be deployed so that SWV costs in the 1990s can be significantly reduced is described.

  16. Additive Manufacturing Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Additive Manufacturing 1 Technology Assessment 2 1. Contents 3 1. Introduction to the Technology/System ............................................................................................... 2 4 1.1 Introduction to Additive Manufacturing ....................................................................................... 2 5 1.2 Additive Manufacturing Processes ............................................................................................... 2 6 1.3 Benefits of Additive

  17. Gasification: A Cornerstone Technology

    SciTech Connect (OSTI)

    Gary Stiegel

    2008-03-26

    NETL is a leader in the science and technology of gasification - a process for the conversion of carbon-based materials such as coal into synthesis gas (syngas) that can be used to produce clean electrical energy, transportation fuels, and chemicals efficiently and cost-effectively using domestic fuel resources. Gasification is a cornerstone technology of 21st century zero emissions powerplants

  18. Gasification: A Cornerstone Technology

    ScienceCinema (OSTI)

    Gary Stiegel

    2010-01-08

    NETL is a leader in the science and technology of gasification - a process for the conversion of carbon-based materials such as coal into synthesis gas (syngas) that can be used to produce clean electrical energy, transportation fuels, and chemicals efficiently and cost-effectively using domestic fuel resources. Gasification is a cornerstone technology of 21st century zero emissions powerplants

  19. Technology Readiness Assessment Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-09-15

    This document was developed to assist individuals and teams that will be involved in conducting Technology Readiness Assessments (TRAs) and developing Technology Maturation Plans (TMPs) for the Department of Energy (DOE) capital acquisition assets subjects to DOE O 413.3B.

  20. Accelerating Spectrum Sharing Technologies

    SciTech Connect (OSTI)

    Juan D. Deaton; Lynda L. Brighton; Rangam Subramanian; Hussein Moradi; Jose Loera

    2013-09-01

    Spectrum sharing potentially holds the promise of solving the emerging spectrum crisis. However, technology innovators face the conundrum of developing spectrum sharing technologies without the ability to experiment and test with real incumbent systems. Interference with operational incumbents can prevent critical services, and the cost of deploying and operating an incumbent system can be prohibitive. Thus, the lack of incumbent systems and frequency authorization for technology incubation and demonstration has stymied spectrum sharing research. To this end, industry, academia, and regulators all require a test facility for validating hypotheses and demonstrating functionality without affecting operational incumbent systems. This article proposes a four-phase program supported by our spectrum accountability architecture. We propose that our comprehensive experimentation and testing approach for technology incubation and demonstration will accelerate the development of spectrum sharing technologies.