Sample records for thin-film solar panel

  1. Copper and Transparent-Conductor Reflectarray Elements on Thin-Film Solar Cell Panels

    E-Print Network [OSTI]

    Dreyer, Philippe; Nicolay, Sylvain; Ballif, Christophe; Perruisseau-Carrier, Julien

    2013-01-01T23:59:59.000Z

    This work addresses the integration of reflectarray antennas (RA) on thin film Solar Cell (SC) panels, as a mean to save real estate, weight, or cost in platforms such as satellites or transportable autonomous antenna systems. Our goal is to design a good RA unit cell in terms of phase response and bandwidth, while simultaneously achieving high optical transparency and low microwave loss, to preserve good SC and RA energy efficiencies, respectively. Since there is a trade-off between the optical transparency and microwave surface conductivity of a conductor, here both standard copper and transparent conductors are considered. The results obtained at the unit cell level demonstrates the feasibility of integrating RA on a thin-film SC, preserving for the first time good performance in terms of both SC and RA efficiency. For instance, measurement at X-band demonstrate families of cells providing a phase range larger than 270{\\deg} with average microwave loss of -2.45dB (resp. -0.25dB) and average optical transpa...

  2. Tax Credits Give Thin-Film Solar a Big Boost | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Thin-Film Solar a Big Boost October 18, 2010 - 2:00pm Addthis MiaSol will expand its capacity to make its thin-film solar panels by more than ten times, thanks to two Recovery...

  3. Efficient light trapping structure in thin film silicon solar cells

    E-Print Network [OSTI]

    Sheng, Xing

    Thin film silicon solar cells are believed to be promising candidates for continuing cost reduction in photovoltaic panels because silicon usage could be greatly reduced. Since silicon is an indirect bandgap semiconductor, ...

  4. Modeling and control of thin film surface morphology: application to thin film solar cells

    E-Print Network [OSTI]

    Huang, Jianqiao

    2012-01-01T23:59:59.000Z

    of a p-i-n thin-film solar cell with front transparent con-for thin-film a-si:h solar cells. Progress in Photovoltaics,in thin-film silicon solar cells. Optics Communications,

  5. Thin film photovoltaic panel and method

    DOE Patents [OSTI]

    Ackerman, Bruce (El Paso, TX); Albright, Scot P. (El Paso, TX); Jordan, John F. (El Paso, TX)

    1991-06-11T23:59:59.000Z

    A thin film photovoltaic panel includes a backcap for protecting the active components of the photovoltaic cells from adverse environmental elements. A spacing between the backcap and a top electrode layer is preferably filled with a desiccant to further reduce water vapor contamination of the environment surrounding the photovoltaic cells. The contamination of the spacing between the backcap and the cells may be further reduced by passing a selected gas through the spacing subsequent to sealing the backcap to the base of the photovoltaic panels, and once purged this spacing may be filled with an inert gas. The techniques of the present invention are preferably applied to thin film photovoltaic panels each formed from a plurality of photovoltaic cells arranged on a vitreous substrate. The stability of photovoltaic conversion efficiency remains relatively high during the life of the photovoltaic panel, and the cost of manufacturing highly efficient panels with such improved stability is significantly reduced.

  6. Thin film solar energy collector

    DOE Patents [OSTI]

    Aykan, Kamran (Monmouth Beach, NJ); Farrauto, Robert J. (Westfield, NJ); Jefferson, Clinton F. (Millburn, NJ); Lanam, Richard D. (Westfield, NJ)

    1983-11-22T23:59:59.000Z

    A multi-layer solar energy collector of improved stability comprising: (1) a substrate of quartz, silicate glass, stainless steel or aluminum-containing ferritic alloy; (2) a solar absorptive layer comprising silver, copper oxide, rhodium/rhodium oxide and 0-15% by weight of platinum; (3) an interlayer comprising silver or silver/platinum; and (4) an optional external anti-reflective coating, plus a method for preparing a thermally stable multi-layered solar collector, in which the absorptive layer is undercoated with a thin film of silver or silver/platinum to obtain an improved conductor-dielectric tandem.

  7. Thin film absorber for a solar collector

    DOE Patents [OSTI]

    Wilhelm, William G. (Cutchogue, NY)

    1985-01-01T23:59:59.000Z

    This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  8. Electron-reflector strategy for CdTe thin-film solar cells.

    E-Print Network [OSTI]

    Hsiao, Kuo-Jui

    2010-01-01T23:59:59.000Z

    ??The CdTe thin-film solar cell has a large absorption coefficient and high theoretical efficiency. Moreover, large-area photovoltaic panels can be economically fabricated. These features potentially… (more)

  9. US polycrystalline thin film solar cells program

    SciTech Connect (OSTI)

    Ullal, H.S.; Zweibel, K.; Mitchell, R.L. (Solar Energy Research Inst., Golden, CO (USA)) [Solar Energy Research Inst., Golden, CO (USA)

    1989-11-01T23:59:59.000Z

    The Polycrystalline Thin Film Solar Cells Program, part of the United States National Photovoltaic Program, performs R D on copper indium diselenide and cadmium telluride thin films. The objective of the Program is to support research to develop cells and modules that meet the US Department of Energy's long-term goals by achieving high efficiencies (15%-20%), low-cost ($50/m{sup 2}), and long-time reliability (30 years). The importance of work in this area is due to the fact that the polycrystalline thin-film CuInSe{sub 2} and CdTe solar cells and modules have made rapid advances. They have become the leading thin films for PV in terms of efficiency and stability. The US Department of Energy has increased its funding through an initiative through the Solar Energy Research Institute in CuInSe{sub 2} and CdTe with subcontracts to start in Spring 1990. 23 refs., 5 figs.

  10. Identification, Characterization, and Implications of Shadow Degradation in Thin Film Solar Cells

    E-Print Network [OSTI]

    Alam, Muhammad A.

    cells [4]. The problem of shadowing of solar panels has been studied for quite some time; however of a solar cell, showing the dark and light current components. (b) The series connection in a solar panelIdentification, Characterization, and Implications of Shadow Degradation in Thin Film Solar Cells

  11. Low-Cost Light Weigh Thin Film Solar Concentrators

    Broader source: Energy.gov (indexed) [DOE]

    Light Weight Thin Film Solar Concentrators PI: Gani B. Ganapathi (JPLCaltech) Other Contributors: L'Garde: Art Palisoc, Gyula Greschik, Koorosh Gidanian JPL: Bill Nesmith,...

  12. 1. INTRODUCTION Polycrystalline CdTe thin films solar cells have shown long

    E-Print Network [OSTI]

    Romeo, Alessandro

    to the solar panel that can be adapted to any kind of shape and is easy to deploy in space. We have developed1. INTRODUCTION Polycrystalline CdTe thin films solar cells have shown long term stable performance for the solar cell, therefore high specific power (ratio of out- put power to the weight) solar cells

  13. A survey of thin-film solar photovoltaic industry & technologies

    E-Print Network [OSTI]

    Grama, Sorin

    2007-01-01T23:59:59.000Z

    A new type of solar cell technology using so-called thin-film solar photovoltaic material has the potential to make a great impact on our lives. Because it uses very little or no silicon at all, thin- film (TF) solar ...

  14. Modeling of thin-film solar thermoelectric generators

    E-Print Network [OSTI]

    Weinstein, Lee Adragon

    Recent advances in solar thermoelectric generator (STEG) performance have raised their prospect as a potential technology to convert solar energy into electricity. This paper presents an analysis of thin-film STEGs. ...

  15. DISSERTATION DEVICE PHYSICS OF Cu(In,Ga)Se2 THIN-FILM SOLAR CELLS

    E-Print Network [OSTI]

    Sites, James R.

    DISSERTATION DEVICE PHYSICS OF Cu(In,Ga)Se2 THIN-FILM SOLAR CELLS Submitted by Markus Gloeckler PHYSICS OF Cu(In,Ga)Se2 THIN-FILM SOLAR CELLS BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS OF Cu(In,Ga)Se2 THIN-FILM SOLAR CELLS Thin-film solar cells have the potential to be an important

  16. Fully Solution-Processed Copper Chalcopyrite Thin Film Solar Cells: Materials Chemistry, Processing, and Device Physics

    E-Print Network [OSTI]

    Chung, Choong-Heui

    2012-01-01T23:59:59.000Z

    nanowire networks as window layers in thin film solar cells.window layer for fully solution-deposited thin filmITO) thin films by silver nanowire composite window layers

  17. A Review of Thin Film Silicon for Solar Cell Applications

    E-Print Network [OSTI]

    A Review of Thin Film Silicon for Solar Cell Applications May 99 Contents 1 Introduction 3 2 Low 2.2.3 Deposition onto foreign substrates with the intention of improving crystallographic nature Field Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 11

  18. Recent technological advances in thin film solar cells

    SciTech Connect (OSTI)

    Ullal, H.S.; Zwelbel, K.; Surek, T.

    1990-03-01T23:59:59.000Z

    High-efficiency, low-cost thin film solar cells are an exciting photovoltaic technology option for generating cost-effective electricity in 1995 and beyond. This paper reviews the substantial advances made by several thin film solar cell technologies, namely, amorphous silicon, copper indium diselenide, cadmium telluride, and polycrystalline silicon. Recent examples of utility demonstration projects of these emerging materials are also discussed. 8 refs., 4 figs.

  19. Focused ion beam specimen preparation for electron holography of electrically biased thin film solar cells

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    , biased TEM specimen, thin film solar cell, FIB Thin films of hydrogenated Si (Si:H) can be used as active for electron holography of a thin film solar cell using conventional lift-out specimen preparation and a homeFocused ion beam specimen preparation for electron holography of electrically biased thin film

  20. Atmospheric Pressure Chemical Vapor Deposition of High Silica SiO2-TiO2 Antireflective Thin Films for Glass Based Solar Panels

    SciTech Connect (OSTI)

    Klobukowski, Erik R [ORNL; Tenhaeff, Wyatt E [ORNL; McCamy, James [PPG; Harris, Caroline [PPG; Narula, Chaitanya Kumar [ORNL

    2013-01-01T23:59:59.000Z

    The atmospheric pressure chemical vapor deposition (APCVD) of SiO2-TiO2 thin films employing [[(tBuO)3Si]2O-Ti(OiPr)2], which can be prepared from commercially available materials, results in antireflective thin films on float glass under industrially relevant manufacturing conditions. It was found that while the deposition temperature had an effect on the SiO2:TiO2 ratio, the thickness was dependent on the time of deposition. This study shows that it is possible to use APCVD employing a single source precursor containing titanium and silicon to produce thin films on float glass with high SiO2:TiO2 ratios.

  1. Mode Splitting for Efficient Plasmoinc Thin-film Solar Cell

    E-Print Network [OSTI]

    Li, Tong; Jiang, Chun

    2010-01-01T23:59:59.000Z

    We propose an efficient plasmonic structure consisting of metal strips and thin-film silicon for solar energy absorption. We numerically demonstrate the absorption enhancement in symmetrical structure based on the mode coupling between the localized plasmonic mode in Ag strip pair and the excited waveguide mode in silicon slab. Then we explore the method of symmetry-breaking to excite the dark modes that can further enhance the absorption ability. We compare our structure with bare thin-film Si solar cell, and results show that the integrated quantum efficiency is improved by nearly 90% in such thin geometry. It is a promising way for the solar cell.

  2. Real time intelligent process control system for thin film solar cell manufacturing

    SciTech Connect (OSTI)

    George Atanasoff

    2010-10-29T23:59:59.000Z

    This project addresses the problem of lower solar conversion efficiency and waste in the typical solar cell manufacturing process. The work from the proposed development will lead toward developing a system which should be able to increase solar panel conversion efficiency by an additional 12-15% resulting in lower cost panels, increased solar technology adoption, reduced carbon emissions and reduced dependency on foreign oil. All solar cell manufacturing processes today suffer from manufacturing inefficiencies that currently lead to lower product quality and lower conversion efficiency, increased product cost and greater material and energy consumption. This results in slower solar energy adoption and extends the time solar cells will reach grid parity with traditional energy sources. The thin film solar panel manufacturers struggle on a daily basis with the problem of thin film thickness non-uniformity and other parameters variances over the deposited substrates, which significantly degrade their manufacturing yield and quality. Optical monitoring of the thin films during the process of the film deposition is widely perceived as a necessary step towards resolving the non-uniformity and non-homogeneity problem. In order to enable the development of an optical control system for solar cell manufacturing, a new type of low cost optical sensor is needed, able to acquire local information about the panel under deposition and measure its local characteristics, including the light scattering in very close proximity to the surface of the film. This information cannot be obtained by monitoring from outside the deposition chamber (as traditional monitoring systems do) due to the significant signal attenuation and loss of its scattering component before the reflected beam reaches the detector. In addition, it would be too costly to install traditional external in-situ monitoring systems to perform any real-time monitoring over large solar panels, since it would require significant equipment refurbishing needed for installation of multiple separate ellipsometric systems, and development of customized software to control all of them simultaneously. The proposed optical monitoring system comprises AccuStrata’s fiber optics sensors installed inside the thin film deposition equipment, a hardware module of different components (beyond the scope of this project) and our software program with iterative predicting capability able to control material bandgap and surface roughness as films are deposited. Our miniature fiber optics monitoring sensors are installed inside the vacuum chamber compartments in very close proximity where the independent layers are deposited (an option patented by us in 2003). The optical monitoring system measures two of the most important parameters of the photovoltaic thin films during deposition on a moving solar panel - material bandgap and surface roughness. In this program each sensor array consists of two fiber optics sensors monitoring two independent areas of the panel under deposition. Based on the monitored parameters and their change in time and from position to position on the panel, the system is able to provide to the equipment operator immediate information about the thin films as they are deposited. This DoE Supply Chain program is considered the first step towards the development of intelligent optical control system capable of dynamically adjusting the manufacturing process “on-the-fly” in order to achieve better performance. The proposed system will improve the thin film solar cell manufacturing by improving the quality of the individual solar cells and will allow for the manufacturing of more consistent and uniform products resulting in higher solar conversion efficiency and manufacturing yield. It will have a significant impact on the multibillion-dollar thin film solar market. We estimate that the financial impact of these improvements if adopted by only 10% of the industry ($7.7 Billion) would result in about $1.5 Billion in savings by 2015 (at the assumed 20% improvement). This can b

  3. DISSERTATION ELECTRON-REFLECTOR STRATEGY FOR CdTe THIN-FILM SOLAR CELLS

    E-Print Network [OSTI]

    Sites, James R.

    DISSERTATION ELECTRON-REFLECTOR STRATEGY FOR CdTe THIN-FILM SOLAR CELLS Submitted by Kuo-Jui Hsiao ELECTRON- REFLECTOR STRATEGY FOR CdTe THIN-FILM SOLAR CELLS BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS SOLAR CELLS The CdTe thin-film solar cell has a large absorption coefficient and high theoretical

  4. Mechanics of thin-film transistors and solar cells on flexible substrates Helena Gleskova*

    E-Print Network [OSTI]

    1 Mechanics of thin-film transistors and solar cells on flexible substrates Helena Gleskova* , I be minimized throughout the fabrication process. Amorphous silicon thin-film transistors and solar cells, thin-film transistor, solar cell, flexible electronics Phone: (609) 258-4626, Fax: (609) 258-3585, E

  5. Performance predictions for monolithic, thin-film CdTe/Ge tandem solar cells

    E-Print Network [OSTI]

    Pulfrey, David L.

    Performance predictions for monolithic, thin-film CdTe/Ge tandem solar cells D.L. Pulfrey*, J. Dell): pulfrey@ece.ubc.ca ABSTRACT Cadmium telluride thin-film solar cells are now commercially available be attainable. 1. INTRODUCTION Thin film solar cells based on polycrystalline CdTe have been investigated

  6. EARTH ABUNDANT MATERIALS FOR HIGH EFFICIENCY HETEROJUNCTION THIN FILM SOLAR CELLS

    E-Print Network [OSTI]

    Ceder, Gerbrand

    EARTH ABUNDANT MATERIALS FOR HIGH EFFICIENCY HETEROJUNCTION THIN FILM SOLAR CELLS Yun Seog Lee 1; * Corresponding author: buonassisi@mit.edu; ABSTRACT We investigate earth abundant materials for thin- film solar cuprous oxide (Cu2O) as a prototype candidate for investigation as an absorber layer in thin film solar

  7. Femtosecond laser ablation of indium tin-oxide narrow grooves for thin film solar cells

    E-Print Network [OSTI]

    Van Stryland, Eric

    Femtosecond laser ablation of indium tin-oxide narrow grooves for thin film solar cells Qiumei Bian in the fabrication and assembly of thin film solar cells. Using a femtosecond (fs) laser, we selectively removed a unique scheme to ablate the indium tin-oxide layer for the fabrication of thin film solar cells

  8. Plasmonic enhancement of thin-film solar cells using gold-black C.J. Fredricksena

    E-Print Network [OSTI]

    Peale, Robert E.

    Plasmonic enhancement of thin-film solar cells using gold-black coatings C.J. Fredricksena , D. R thin-film amorphous-silicon solar cells enhance the short-circuit current by 20% over a broad spectrum and locally enhance the field strength. Keywords: plasmonics, thin-film, solar cell, metallic nanoparticles

  9. Optimization of the absorption efficiency of an amorphous-silicon thin-film tandem solar cell

    E-Print Network [OSTI]

    Optimization of the absorption efficiency of an amorphous-silicon thin-film tandem solar cell-wave approach was used to compute the plane-wave absorptance of a thin-film tandem solar cell with a metallic­4]. In this context, a basic idea is to periodically texture the metallic back reflector of a thin-film solar cell

  10. Metal-black scattering centers to enhance light harvesting by thin-film solar cells

    E-Print Network [OSTI]

    Peale, Robert E.

    Metal-black scattering centers to enhance light harvesting by thin-film solar cells Deep Panjwania as scattering centers to increase the effective optical thickness of thin-film solar cells. The particular type. Gold-black was deposited on commercial thin-film solar cells using a thermal evaporator in nitrogen

  11. Polycrystalline thin-film solar cells and modules

    SciTech Connect (OSTI)

    Ullal, H.S.; Stone, J.L.; Zweibel, K.; Surek, T.; Mitchell, R.L.

    1991-12-01T23:59:59.000Z

    This paper describes the recent technological advances in polycrystalline thin-film solar cells and modules. Three thin film materials, namely, cadmium telluride (CdTe), copper indium diselenide (CuInSe{sub 2}, CIS) and silicon films (Si-films) have made substantial technical progress, both in device and module performance. Early stability results for modules tested outdoors by various groups worldwide are also encouraging. The major global players actively involved in the development of the these technologies are discussed. Technical issues related to these materials are elucidated. Three 20-kW polycrystalline thin-film demonstration photovoltaic (PV) systems are expected to be installed in Davis, CA in 1992 as part of the Photovoltaics for Utility-Scale Applications (PVUSA) project. This is a joint project between the US Department of Energy (DOE), Pacific Gas and Electric (PG&E), Electric Power Research Institute (EPRI), California Energy Commission (CEC), and a utility consortium.

  12. Polycrystalline thin-film solar cells and modules

    SciTech Connect (OSTI)

    Ullal, H.S.; Stone, J.L.; Zweibel, K.; Surek, T.; Mitchell, R.L.

    1991-12-01T23:59:59.000Z

    This paper describes the recent technological advances in polycrystalline thin-film solar cells and modules. Three thin film materials, namely, cadmium telluride (CdTe), copper indium diselenide (CuInSe{sub 2}, CIS) and silicon films (Si-films) have made substantial technical progress, both in device and module performance. Early stability results for modules tested outdoors by various groups worldwide are also encouraging. The major global players actively involved in the development of the these technologies are discussed. Technical issues related to these materials are elucidated. Three 20-kW polycrystalline thin-film demonstration photovoltaic (PV) systems are expected to be installed in Davis, CA in 1992 as part of the Photovoltaics for Utility-Scale Applications (PVUSA) project. This is a joint project between the US Department of Energy (DOE), Pacific Gas and Electric (PG E), Electric Power Research Institute (EPRI), California Energy Commission (CEC), and a utility consortium.

  13. LBIC ANALYSIS OF THIN-FILM POLYCRYSTALLINE SOLAR CELLS James R. Sites and Timothy J. Nagle

    E-Print Network [OSTI]

    Sites, James R.

    LBIC ANALYSIS OF THIN-FILM POLYCRYSTALLINE SOLAR CELLS James R. Sites and Timothy J. Nagle Physics response map, was developed and used to map defects in thin-film solar cells [4]. Improvements to the two) measurements are providing a direct link between the spatial non-uniformities inherent in thin-film

  14. High efficiency thin film silicon solar cells with novel light trapping : principle, design and processing

    E-Print Network [OSTI]

    Zeng, Lirong, Ph. D. Massachusetts Institute of Technology

    2008-01-01T23:59:59.000Z

    One major efficiency limiting factor in thin film solar cells is weak absorption of long wavelength photons due to the limited optical path length imposed by the thin film thickness. This is especially severe in Si because ...

  15. Junction Evolution During Fabrication of CdS/CdTe Thin-film PV Solar Cells (Presentation)

    SciTech Connect (OSTI)

    Gessert, T. A.

    2010-09-01T23:59:59.000Z

    Discussion of the formation of CdTe thin-film PV junctions and optimization of CdTe thin-film PV solar cells.

  16. Development of Commercial Technology for Thin Film Silicon Solar Cells on Glass: Cooperative Research and Development Final Report, CRADA Number CRD-07-209

    SciTech Connect (OSTI)

    Sopori, B.

    2013-03-01T23:59:59.000Z

    NREL has conducted basic research relating to high efficiency, low cost, thin film silicon solar cell design and the method of making solar cells. Two patents have been issued to NREL in the above field. In addition, specific process and metrology tools have been developed by NREL. Applied Optical Sciences Corp. (AOS) has expertise in the manufacture of solar cells and has developed its own unique concentrator technology. AOS wants to complement its solar cell expertise and its concentrator technology by manufacturing flat panel thin film silicon solar cell panels. AOS wants to take NREL's research to the next level, using it to develop commercially viable flat pane, thin film silicon solar cell panels. Such a development in equipment, process, and metrology will likely produce the lowest cost solar cell technology for both commercial and residential use. NREL's fundamental research capability and AOS's technology and industrial background are complementary to achieve this product development.

  17. Methods for fabricating thin film III-V compound solar cell

    DOE Patents [OSTI]

    Pan, Noren; Hillier, Glen; Vu, Duy Phach; Tatavarti, Rao; Youtsey, Christopher; McCallum, David; Martin, Genevieve

    2011-08-09T23:59:59.000Z

    The present invention utilizes epitaxial lift-off in which a sacrificial layer is included in the epitaxial growth between the substrate and a thin film III-V compound solar cell. To provide support for the thin film III-V compound solar cell in absence of the substrate, a backing layer is applied to a surface of the thin film III-V compound solar cell before it is separated from the substrate. To separate the thin film III-V compound solar cell from the substrate, the sacrificial layer is removed as part of the epitaxial lift-off. Once the substrate is separated from the thin film III-V compound solar cell, the substrate may then be reused in the formation of another thin film III-V compound solar cell.

  18. Thin film solar cell including a spatially modulated intrinsic layer

    DOE Patents [OSTI]

    Guha, Subhendu (Troy, MI); Yang, Chi-Chung (Troy, MI); Ovshinsky, Stanford R. (Bloomfield Hills, MI)

    1989-03-28T23:59:59.000Z

    One or more thin film solar cells in which the intrinsic layer of substantially amorphous semiconductor alloy material thereof includes at least a first band gap portion and a narrower band gap portion. The band gap of the intrinsic layer is spatially graded through a portion of the bulk thickness, said graded portion including a region removed from the intrinsic layer-dopant layer interfaces. The band gap of the intrinsic layer is always less than the band gap of the doped layers. The gradation of the intrinsic layer is effected such that the open circuit voltage and/or the fill factor of the one or plural solar cell structure is enhanced.

  19. Low work function, stable thin films

    DOE Patents [OSTI]

    Dinh, Long N. (Concord, CA); McLean, II, William (Oakland, CA); Balooch, Mehdi (Berkeley, CA); Fehring, Jr., Edward J. (Dublin, CA); Schildbach, Marcus A. (Livermore, CA)

    2000-01-01T23:59:59.000Z

    Generation of low work function, stable compound thin films by laser ablation. Compound thin films with low work function can be synthesized by simultaneously laser ablating silicon, for example, and thermal evaporating an alkali metal into an oxygen environment. For example, the compound thin film may be composed of Si/Cs/O. The work functions of the thin films can be varied by changing the silicon/alkali metal/oxygen ratio. Low work functions of the compound thin films deposited on silicon substrates were confirmed by ultraviolet photoelectron spectroscopy (UPS). The compound thin films are stable up to 500.degree. C. as measured by x-ray photoelectron spectroscopy (XPS). Tests have established that for certain chemical compositions and annealing temperatures of the compound thin films, negative electron affinity (NEA) was detected. The low work function, stable compound thin films can be utilized in solar cells, field emission flat panel displays, electron guns, and cold cathode electron guns.

  20. Enhanced quantum efficiency of amorphous silicon thin film solar cells with the inclusion of a rear-reflector thin film

    SciTech Connect (OSTI)

    Park, Seungil [Department of Mechanical Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Energy Conversions Technology Center, Korea Institute of Industrial Technology, Cheonan 331-825 (Korea, Republic of); Yong Ji, Hyung; Jun Kim, Myeong; Hyeon Peck, Jong [Energy Conversions Technology Center, Korea Institute of Industrial Technology, Cheonan 331-825 (Korea, Republic of); Kim, Keunjoo, E-mail: kimk@chonbuk.ac.kr [Department of Mechanical Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2014-02-17T23:59:59.000Z

    We investigated the growth mechanism of amorphous silicon thin films by implementing hot-wire chemical vapor deposition and fabricated thin film solar cell devices. The fabricated cells showed efficiencies of 7.5 and 8.6% for the samples without and with the rear-reflector decomposed by sputtering, respectively. The rear-reflector enhances the quantum efficiency in the infrared spectral region from 550 to 750?nm. The more stable quantum efficiency of the sample with the inclusion of a rear-reflector than the sample without the rear-reflector due to the bias effect is related to the enhancement of the short circuit current.

  1. Resonant cavity enhanced light harvesting in flexible thin-film organic solar cells

    E-Print Network [OSTI]

    Fan, Shanhui

    Resonant cavity enhanced light harvesting in flexible thin-film organic solar cells Nicholas P of solar energy conversion be- cause they use thin films of photoactive material and can be manufactured and photocurrent in flexible organic solar cells. We demonstrate that this enhancement is attributed to a broadband

  2. METAL BLACKS AS SCATTERING CENTERS TO INCREASE THE EFFICIENCY OF THIN FILM SOLAR CELLS

    E-Print Network [OSTI]

    Peale, Robert E.

    METAL BLACKS AS SCATTERING CENTERS TO INCREASE THE EFFICIENCY OF THIN FILM SOLAR CELLS by DEEP R surface of thin-film solar cells to improve efficiency. The principle is that scattering, which film solar cell. The particular types of particles investigated here are known as "metal-black", well

  3. Extended light scattering model incorporating coherence for thin-film silicon solar cells

    E-Print Network [OSTI]

    Lenstra, Arjen K.

    Extended light scattering model incorporating coherence for thin-film silicon solar cells Thomas film solar cells. The model integrates coherent light propagation in thin layers with a direct, non potential for light trapping in textured thin film silicon solar cells. VC 2011 American Institute

  4. The Roles of Cu Impurity States in CdTe Thin Film Solar Cells Ken K. Chin1

    E-Print Network [OSTI]

    , to a better p-type, to insulating, and then to n-type -- is all due to different levels of Cu involvement treatment temperature. #12;2 I. Introduction CdTe based solar panels have emerged in recent years1 The Roles of Cu Impurity States in CdTe Thin Film Solar Cells Ken K. Chin1 , T.A. Gessert2

  5. Diffusion of indium and gallium in Cu(In,Ga)Se2 thin film solar cells

    E-Print Network [OSTI]

    Rockett, Angus

    Diffusion of indium and gallium in Cu(In,Ga)Se2 thin film solar cells O. Lundberga,*, J. Lua , A. Rockettb , M. Edoffa , L. Stolta a A°ngstro¨m Solar Center, Uppsala University, P.O. Box 534, SE-751 21 Abstract The diffusion of indium and gallium in polycrystalline thin film Cu(In,Ga)Se2 layers has been

  6. Nano-photonic Light Trapping In Thin Film Solar Dennis M. Callahan Jr.

    E-Print Network [OSTI]

    Winfree, Erik

    Nano-photonic Light Trapping In Thin Film Solar Cells Thesis by Dennis M. Callahan Jr. In Partial. Jeremy Munday for helping me get started on the thin-film GaAs project and for all the time we spent to thank Dr. Jonathan Grandidier for working closely with me for a couple years on the nano sphere solar

  7. INCREASED CELL EFFICIENCY IN InGaAs THIN FILM SOLAR CELLS WITH DIELECTRIC AND METAL BACK REFLECTORS

    E-Print Network [OSTI]

    Atwater, Harry

    INCREASED CELL EFFICIENCY IN InGaAs THIN FILM SOLAR CELLS WITH DIELECTRIC AND METAL BACK REFLECTORS solar cells using back reflectors. We studied absorption enhancement in InGaAs and InGaAsP thin film and metal, on InGaAs thin film solar cell performance by device modeling and nu- merical simulations. DEVICE

  8. Universality of non-Ohmic shunt leakage in thin-film solar cells S. Dongaonkar,1,a

    E-Print Network [OSTI]

    Alam, Muhammad A.

    Universality of non-Ohmic shunt leakage in thin-film solar cells S. Dongaonkar,1,a J. D. Servaites thin-film solar cell types: hydrogenated amorphous silicon a-Si:H p-i-n cells, organic bulk understanding of thin film solar cell device physics, including important module performance variability issues

  9. Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings

    E-Print Network [OSTI]

    Veronis, Georgios

    Enhancement of optical absorption in thin-film organic solar cells through the excitation 2010 We theoretically investigate the enhancement of optical absorption in thin-film organic solar.1063/1.3377791 Thin-film organic solar cells OSCs are a promising candidate for low-cost energy conversion.1­6 However

  10. THE PERFORMANCE OF THIN FILM SOLAR CELLS EMPLOYING PHOTOVOLTAIC Cu22014x Te-CdTe HETEROJUNCTIONS (1)

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    195 THE PERFORMANCE OF THIN FILM SOLAR CELLS EMPLOYING PHOTOVOLTAIC Cu22014x Te This paper is a short status report on the continuing development of Cu22014xTe-CdTe thin film solar cells Company has had a conti- nuous effort on thin film solar cells for the past four and a half years

  11. Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: High efficiency and junction property

    E-Print Network [OSTI]

    Wang, Wei Hua

    Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: High-conductor-free organic lead iodide thin film solar cells have been fabricated with a sequential deposition method are comparable to that of the high-efficiency thin-film solar cells. VC 2014 AIP Publishing LLC. [http

  12. Flat panel display using Ti-Cr-Al-O thin film

    DOE Patents [OSTI]

    Jankowski, Alan F. (Livermore, CA); Schmid, Anthony P. (Solan Beach, CA)

    2002-01-01T23:59:59.000Z

    Thin films of Ti--Cr--Al--O are used as a resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O.sub.2. Resistivity values from 10.sup.4 to 10.sup.10 Ohm-cm have been measured for Ti--Cr--Al--O film <1 .mu.m thick. The film resistivity can be discretely selected through control of the target composition and the deposition parameters. The application of Ti--Cr--Al--O as a thin film resistor has been found to be thermodynamically stable, unlike other metal-oxide films. The Ti--Cr--Al--O film can be used as a vertical or lateral resistor, for example, as a layer beneath a field emission cathode in a flat panel display; or used to control surface emissivity, for example, as a coating on an insulating material such as vertical wall supports in flat panel displays.

  13. HIGH EFFICIENCY CdTe/CdS THIN FILM SOLAR CELLS WITH A NOVEL BACK-CONTACT Nicola Romeoa

    E-Print Network [OSTI]

    Romeo, Alessandro

    HIGH EFFICIENCY CdTe/CdS THIN FILM SOLAR CELLS WITH A NOVEL BACK-CONTACT Nicola Romeoa , Alessio in the fabrication of high efficiency CdTe/CdS thin film solar cells. Usually, it is done first by etching the Cd: Back Contact, CdTe, Thin Film 1 INTRODUCTION The back contact in the CdTe/CdS thin film solar cell

  14. Impurity and back contact effects on CdTe/CdS thin film solar cells.

    E-Print Network [OSTI]

    Zhao, Hehong

    2008-01-01T23:59:59.000Z

    ??CdTe/CdS thin film solar cells are the most promising cost-effective solar cells. The goal of this project is to improve the performance for CdS/CdTe devices… (more)

  15. Anti-reflection zinc oxide nanocones for higher efficiency thin-film silicon solar cells

    E-Print Network [OSTI]

    Mailoa, Jonathan P

    2012-01-01T23:59:59.000Z

    Thin film silicon solar cells, which are commonly made from microcrystalline silicon ([mu]c-Si) or amorphous silicon (a-Si), have been considered inexpensive alternatives to thick polycrystalline silicon (polysilicon) solar ...

  16. Earth abundant materials for high efficiency heterojunction thin film solar cells

    E-Print Network [OSTI]

    Buonassisi, Tonio

    We investigate earth abundant materials for thin-film solar cells that can meet tens of terawatts level deployment potential. Candidate materials are identified by combinatorial search, large-scale electronic structure ...

  17. Technological assessment of light-trapping technology for thin-film Si solar cell

    E-Print Network [OSTI]

    Susantyoko, Rahmat Agung

    2009-01-01T23:59:59.000Z

    The proposed light trapping technology of Distributed Bragg Reflector (DBR) with Diffraction Grating (DG) and Anti-Reflection Coating (ARC) for thin film Si solar cell was analyzed from the technology, market, and ...

  18. Thin Film Solar Cells with Light Trapping Transparent Conducting Oxide Layer

    E-Print Network [OSTI]

    Lu, Tianlin

    2012-07-16T23:59:59.000Z

    Thin film solar cells, if film thickness is thinner than the optical absorption length, typically give lower cell performance. For the thinner structure, electric current loss due to light penetration can offset the electric current gain obtained...

  19. Integrated photonic structures for light trapping in thin-film Si solar cells

    E-Print Network [OSTI]

    Sheng, Xing

    We explore the mechanisms for an efficient light trapping structure for thin-film silicon solar cells. The design combines a distributed Bragg reflector (DBR) and periodic gratings. Using photonic band theories and numerical ...

  20. High Efficiency Thin Film CdTe and a-Si Based Solar Cells Final Technical Report for the Period

    E-Print Network [OSTI]

    Deng, Xunming

    High Efficiency Thin Film CdTe and a-Si Based Solar Cells Final Technical Report for the PeriodTe-based thin-film solar cells and on high efficiency a-Si-based thin-film solar cells. Phases I and II have the performance of a-SiGe solar cells and properties of a-SiGe single layer films with different Ge contents

  1. CARRIER COLLECTION IN THIN-FILM CDTE SOLAR CELLS: THEORY AND EXPERIMENT

    E-Print Network [OSTI]

    -n junction solar cell theory predicts that the total solar cell current in the light, JLCARRIER COLLECTION IN THIN-FILM CDTE SOLAR CELLS: THEORY AND EXPERIMENT A.E. Delahoy, Z. Cheng and K.K. Chin Department of Physics, Apollo Solar Energy Research Center, New Jersey Institute

  2. Rapid Deposition Technology Holds the Key for the World's Largest Manufacturer of Thin-Film Solar Modules (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-08-01T23:59:59.000Z

    First Solar, Inc. has been collaborating with NREL since 1991, advancing its thin-film cadmium telluride solar technology to grow from a startup company to become one of the world's largest manufacturers of solar modules, and the world's largest manufacturer of thin-film solar modules.

  3. Near perfect solar absorption in ultra-thin-film GaAs photonic crystals

    E-Print Network [OSTI]

    John, Sajeev

    Near perfect solar absorption in ultra-thin-film GaAs photonic crystals Sergey Eyderman,*a Alexei Deinegaa and Sajeev Johnab We present designs that enable a significant increase of solar absorption­99.5% solar absorption is demonstrated depending on the photonic crystal architecture used and the nature

  4. Dual gratings for enhanced light trapping in thin-film solar cells

    E-Print Network [OSTI]

    , Ireland * christian.schuster@york.ac.uk Abstract: Thin film solar cells benefit significantly from; (350.6050) Solar energy. References and links 1. M. A. Green, J. Zhao, A. Wang, and S. R. Wenham, "Progress and outlook for high-efficiency crystalline silicon solar cells," Sol. Energy Mater. Sol. Cells 65

  5. Electron energy-loss spectroscopy of boron-doped layers in amorphous thin film silicon solar cells

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    Electron energy-loss spectroscopy of boron-doped layers in amorphous thin film silicon solar cells. de Bariloche, Argentina 3 ECN Solar Energy, High Tech Campus, Building 5, 5656 AE Eindhoven energy-loss spectroscopy (EELS) is used to study p-doped layers in n-i-p amorphous thin film Si solar

  6. Enhanced Efficiency of Light-Trapping Nanoantenna Arrays for Thin Film Solar Cells

    E-Print Network [OSTI]

    Simovski, Constantin R; Voroshilov, Pavel M; Guzhva, Michael E; Belov, Pavel A; Kivshar, Yuri S

    2013-01-01T23:59:59.000Z

    We suggest a novel concept of efficient light-trapping structures for thin-film solar cells based on arrays of planar nanoantennas operating far from plasmonic resonances. The operation principle of our structures relies on the excitation of chessboard-like collective modes of the nanoantenna arrays with the field localized between the neighboring metal elements. We demonstrated theoretically substantial enhancement of solar-cell short-circuit current by the designed light-trapping structure in the whole spectrum range of the solar-cell operation compared to conventional structures employing anti-reflecting coating. Our approach provides a general background for a design of different types of efficient broadband light-trapping structures for thin-film solar-cell technologically compatible with large-area thin-film fabrication techniques.

  7. DISSERTATION ANALYSIS OF IMPACT OF NON-UNIFORMITIES ON THIN-FILM SOLAR CELLS

    E-Print Network [OSTI]

    Sites, James R.

    -scale problems such as energy demand, pollution, and environment safety. The cost ($/kWh) is the primaryDISSERTATION ANALYSIS OF IMPACT OF NON-UNIFORMITIES ON THIN-FILM SOLAR CELLS AND MODULES WITH 2-D-FILM SOLAR CELLS AND MODULES WITH 2-D SIMULATIONS BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS

  8. Enhanced efficiency of thin film solar cells using a shifted dual grating plasmonic structure

    E-Print Network [OSTI]

    Levy, Uriel

    .5403) Plasmonics; (310.2790) Guided waves. References and links 1. O. Morton, "Solar energy: A new day dawning Society of America OCIS codes: (350.6050) Solar energy; (050.2770) Gratings; (310.0310) Thin films; (250? Silicon valley sunrise," Nature 443(7107), 19­22 (2006). 2. M. A. Green and S. Pillai, "Harnessing

  9. innovati nNREL Produces Highly Efficient, Wide-Bandgap, Thin-Film Solar Cells

    E-Print Network [OSTI]

    . Low-bandgap cells can lose 25% of their power output and efficiency ratings as solar cell operating energy output than a low-bandgap cell with the same wattage or power rating. NREL is a nationalinnovati nNREL Produces Highly Efficient, Wide-Bandgap, Thin-Film Solar Cells Researchers

  10. STRUCTURAL AND CHEMICAL STUDIES ON CdTe/CdS THIN FILM SOLAR CELLS WITH ANALYTICAL TRANSMISSION ELECTRON MICROSCOPY

    E-Print Network [OSTI]

    Romeo, Alessandro

    STRUCTURAL AND CHEMICAL STUDIES ON CdTe/CdS THIN FILM SOLAR CELLS WITH ANALYTICAL TRANSMISSION, A. N. Tiwari Thin Film Physics Group, Laboratory for Solid State Physics, Technopark ETH-Building, Technoparkstr. 1, CH-8005 Zurich, Switzerland ABSTRACT: CdTe/CdS thin ÂŁlm solar cells have been grown by closed

  11. Structural and chemical investigations of CBD-and PVD-CdS buffer layers and interfaces in Cu(In,Ga)Se2-based thin film solar cells

    E-Print Network [OSTI]

    Romeo, Alessandro

    (In,Ga)Se2-based thin film solar cells D. Abou-Rasa,b,*, G. Kostorza , A. Romeob,1 , D. Rudmannb , A Available online 8 December 2004 Abstract It is known that high-efficiency thin film solar cells based on Cu; Chemical bath deposition; CdS buffer 1. Introduction The highest efficiencies for thin film solar cells

  12. Low cost and high performance light trapping structure for thin-film solar cells

    E-Print Network [OSTI]

    Wang, DongLin; Su, Gang

    2015-01-01T23:59:59.000Z

    Nano-scaled dielectric and metallic structures are popular light tapping structures in thin-film solar cells. However, a large parasitic absorption in those structures is unavoidable. Most schemes based on such structures also involve the textured active layers that may bring undesirable degradation of the material quality. Here we propose a novel and cheap light trapping structure based on the prism structured SiO2 for thin-film solar cells, and a flat active layer is introduced purposefully. Such a light trapping structure is imposed by the geometrical shape optimization to gain the best optical benefit. By examining our scheme, it is disclosed that the conversion efficiency of the flat a-Si:H thin-film solar cell can be promoted to exceed the currently certified highest value. As the cost of SiO2-based light trapping structure is much cheaper and easier to fabricate than other materials, this proposal would have essential impact and wide applications in thin-film solar cells.

  13. A Review of Thin Film Crystalline Silicon for Solar Cell Applications. Part 1 : Native Substrates.

    E-Print Network [OSTI]

    A Review of Thin Film Crystalline Silicon for Solar Cell Applications. Part 1 : Native Substrates. Michelle J. Mc Cann, Kylie R. Catchpole, Klaus J. Weber and Andrew W. Blakers Centre for Sustainable Energy Systems Engineering Department, The Australian National University, ACT 0200, Australia. Email : michelle

  14. Disorder improves nanophotonic light trapping in thin-film solar cells

    SciTech Connect (OSTI)

    Paetzold, U. W., E-mail: u.paetzold@fz-juelich.de; Smeets, M.; Meier, M.; Bittkau, K.; Merdzhanova, T.; Smirnov, V.; Carius, R.; Rau, U. [IEK5—Photovoltaik, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Michaelis, D.; Waechter, C. [Fraunhofer Institut für Angewandte Optik und Feinmechanik, Albert Einstein Str. 7, D-07745 Jena (Germany)

    2014-03-31T23:59:59.000Z

    We present a systematic experimental study on the impact of disorder in advanced nanophotonic light-trapping concepts of thin-film solar cells. Thin-film solar cells made of hydrogenated amorphous silicon were prepared on imprint-textured glass superstrates. For periodically textured superstrates of periods below 500?nm, the nanophotonic light-trapping effect is already superior to state-of-the-art randomly textured front contacts. The nanophotonic light-trapping effect can be associated to light coupling to leaky waveguide modes causing resonances in the external quantum efficiency of only a few nanometer widths for wavelengths longer than 500?nm. With increasing disorder of the nanotextured front contact, these resonances broaden and their relative altitude decreases. Moreover, overall the external quantum efficiency, i.e., the light-trapping effect, increases incrementally with increasing disorder. Thereby, our study is a systematic experimental proof that disorder is conceptually an advantage for nanophotonic light-trapping concepts employing grating couplers in thin-film solar cells. The result is relevant for the large field of research on nanophotonic light trapping in thin-film solar cells which currently investigates and prototypes a number of new concepts including disordered periodic and quasi periodic textures.

  15. Method of forming particulate materials for thin-film solar cells

    DOE Patents [OSTI]

    Eberspacher, Chris; Pauls, Karen Lea

    2004-11-23T23:59:59.000Z

    A method for preparing particulate materials useful in fabricating thin-film solar cells is disclosed. Particulate materials is prepared by the method include for example materials comprising copper and indium and/or gallium in the form of single-phase, mixed-metal oxide particulates; multi-phase, mixed-metal particulates comprising a metal oxide; and multinary metal particulates.

  16. NREL Produces Highly Efficient, Wide-Bandgap, Thin-Film Solar Cells (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01T23:59:59.000Z

    Researchers at the National Renewable Energy Laboratory (NREL) are finding new ways to manufacture thin-film solar cells made from copper, indium, gallium, and selenium - called CIGS cells - that are different than conventional CIGS solar cells. Their use of high-temperature glass, designed by SCHOTT AG, allows higher fabrication temperatures, opening the door to new CIGS solar cells employing light-absorbing materials with wide 'bandgaps.'

  17. High Efficiency Thin Film CdTe and a-Si Based Solar Cells Annual Technical Report for the Period

    E-Print Network [OSTI]

    Deng, Xunming

    High Efficiency Thin Film CdTe and a-Si Based Solar Cells Annual Technical Report for the Period solar cells and on high efficiency a-Si-based thin-film solar cells. The effort on CdTe- based materials the performance of a-SiGe solar cells and properties of a-SiGe single layer films with different Ge contents

  18. Novel wide band gap materials for highly efficient thin film tandem solar cells

    SciTech Connect (OSTI)

    Brian E. Hardin, Stephen T. Connor, Craig H. Peters

    2012-06-11T23:59:59.000Z

    Tandem solar cells (TSCs), which use two or more materials to absorb sunlight, have achieved power conversion efficiencies of >25% versus 11-20% for commercialized single junction solar cell modules. The key to widespread commercialization of TSCs is to develop the wide-band, top solar cell that is both cheap to fabricate and has a high open-circuit voltage (i.e. >1V). Previous work in TSCs has generally focused on using expensive processing techniques with slow growth rates resulting in costs that are two orders of magnitude too expensive to be used in conventional solar cell modules. The objective of the PLANT PV proposal was to investigate the feasibility of using Ag(In,Ga)Se2 (AIGS) as the wide-bandgap absorber in the top cell of a thin film tandem solar cell (TSC). Despite being studied by very few in the solar community, AIGS solar cells have achieved one of the highest open-circuit voltages within the chalcogenide material family with a Voc of 949mV when grown with an expensive processing technique (i.e. Molecular Beam Epitaxy). PLANT PV�s goal in Phase I of the DOE SBIR was to 1) develop the chemistry to grow AIGS thin films via solution processing techniques to reduce costs and 2) fabricate new device architectures with high open-circuit voltage to produce full tandem solar cells in Phase II. PLANT PV attempted to translate solution processing chemistries that were successful in producing >12% efficient Cu(In,Ga)Se2 solar cells by replacing copper compounds with silver. The main thrust of the research was to determine if it was possible to make high quality AIGS thin films using solution processing and to fully characterize the materials properties. PLANT PV developed several different types of silver compounds in an attempt to fabricate high quality thin films from solution. We found that silver compounds that were similar to the copper based system did not result in high quality thin films. PLANT PV was able to deposit AIGS thin films using a mixture of solution and physical vapor deposition processing, but these films lacked the p-type doping levels that are required to make decent solar cells. Over the course of the project PLANT PV was able to fabricate efficient CIGS solar cells (8.7%) but could not achieve equivalent performance using AIGS. During the nine-month grant PLANT PV set up a variety of thin film characterization tools (e.g. drive-level capacitance profiling) at the Molecular Foundry, a Department of Energy User Facility, that are now available to both industrial and academic researchers via the grant process. PLANT PV was also able to develop the back end processing of thin film solar cells at Lawrence Berkeley National Labs to achieve 8.7% efficient CIGS solar cells. This processing development will be applied to other types of thin film PV cells at the Lawrence Berkeley National Labs. While PLANT PV was able to study AIGS film growth and optoelectronic properties we concluded that AIGS produced using these methods would have a limited efficiency and would not be commercially feasible. PLANT PV did not apply for the Phase II of this grant.

  19. Angular behavior of the absorption limit in thin film silicon solar cells

    E-Print Network [OSTI]

    Naqavi, Ali; Söderström, Karin; Battaglia, Corsin; Paeder, Vincent; Scharf, Toralf; Herzig, Hans Peter; Ballif, Christophe

    2013-01-01T23:59:59.000Z

    We investigate the angular behavior of the upper bound of absorption provided by the guided modes in thin film solar cells. We show that the 4n^2 limit can be potentially exceeded in a wide angular and wavelength range using two-dimensional periodic thin film structures. Two models are used to estimate the absorption enhancement; in the first one, we apply the periodicity condition along the thickness of the thin film structure but in the second one, we consider imperfect confinement of the wave to the device. To extract the guided modes, we use an automatized procedure which is established in this work. Through examples, we show that from the optical point of view, thin film structures have a high potential to be improved by changing their shape. Also, we discuss the nature of different optical resonances which can be potentially used to enhance light trapping in the solar cell. We investigate the two different polarization directions for one-dimensional gratings and we show that the transverse magnetic pola...

  20. p-Doping limit and donor compensation in CdTe polycrystalline thin film solar cells

    E-Print Network [OSTI]

    p-Doping limit and donor compensation in CdTe polycrystalline thin film solar cells Ken K. Chin n Department of Physics and Apollo CdTe Solar Energy Research Center, NJIT, Newark, NJ 07058, USA a r t i c l e May 2010 Keywords: CdTe p-Doping Hole density Non-shallow Acceptor Activation energy a b s t r a c

  1. Hot-Wire Deposition of Hydrogenated Nanocrystalline SiGe Films for Thin-Film Si Based Solar Cells

    E-Print Network [OSTI]

    Deng, Xunming

    Hot-Wire Deposition of Hydrogenated Nanocrystalline SiGe Films for Thin-Film Si Based Solar Cells trapping, for the nc- Si:H absorber in the Si-based thin film solar cells. Furthermore, nc-Si:H is usually bandgap absorber in an a-Si/a-SiGe/nc-SiGe(nc- Si) triple-junction solar cell due to its higher optical

  2. Thin-film solar cell fabricated on a flexible metallic substrate

    DOE Patents [OSTI]

    Tuttle, John R.; Noufi, Rommel; Hasoon, Falah S.

    2006-05-30T23:59:59.000Z

    A thin-film solar cell (10) is provided. The thin-film solar cell (10) comprises a flexible metallic substrate (12) having a first surface and a second surface. A back metal contact layer (16) is deposited on the first surface of the flexible metallic substrate (12). A semiconductor absorber layer (14) is deposited on the back metal contact. A photoactive film deposited on the semiconductor absorber layer (14) forms a heterojunction structure and a grid contact (24) deposited on the heterjunction structure. The flexible metal substrate (12) can be constructed of either aluminium or stainless steel. Furthermore, a method of constructing a solar cell is provided. The method comprises providing an aluminum substrate (12), depositing a semiconductor absorber layer (14) on the aluminum substrate (12), and insulating the aluminum substrate (12) from the semiconductor absorber layer (14) to inhibit reaction between the aluminum substrate (12) and the semiconductor absorber layer (14).

  3. Thin-Film Solar Cell Fabricated on a Flexible Metallic Substrate

    DOE Patents [OSTI]

    Tuttle, J. R.; Noufi, R.; Hasoon, F. S.

    2006-05-30T23:59:59.000Z

    A thin-film solar cell (10) is provided. The thin-film solar cell (10) comprises a flexible metallic substrate (12) having a first surface and a second surface. A back metal contact layer (16) is deposited on the first surface of the flexible metallic substrate (12). A semiconductor absorber layer (14) is deposited on the back metal contact. A photoactive film deposited on the semiconductor absorber layer (14) forms a heterojunction structure and a grid contact (24) deposited on the heterjunction structure. The flexible metal substrate (12) can be constructed of either aluminium or stainless steel. Furthermore, a method of constructing a solar cell is provided. The method comprises providing an aluminum substrate (12), depositing a semiconductor absorber layer (14) on the aluminum substrate (12), and insulating the aluminum substrate (12) from the semiconductor absorber layer (14) to inhibit reaction between the aluminum substrate (12) and the semiconductor absorber layer (14).

  4. Generation of low work function, stable compound thin films by laser ablation

    DOE Patents [OSTI]

    Dinh, Long N. (Concord, CA); McLean, II, William (Oakland, CA); Balooch, Mehdi (Berkeley, CA); Fehring, Jr., Edward J. (Dublin, CA); Schildbach, Marcus A. (Livermore, CA)

    2001-01-01T23:59:59.000Z

    Generation of low work function, stable compound thin films by laser ablation. Compound thin films with low work function can be synthesized by simultaneously laser ablating silicon, for example, and thermal evaporating an alkali metal into an oxygen environment. For example, the compound thin film may be composed of Si/Cs/O. The work functions of the thin films can be varied by changing the silicon/alkali metal/oxygen ratio. Low work functions of the compound thin films deposited on silicon substrates were confirmed by ultraviolet photoelectron spectroscopy (UPS). The compound thin films are stable up to 500.degree. C. as measured by x-ray photoelectron spectroscopy (XPS). Tests have established that for certain chemical compositions and annealing temperatures of the compound thin films, negative electron affinity (NEA) was detected. The low work function, stable compound thin films can be utilized in solar cells, field emission flat panel displays, electron guns, and cold cathode electron guns.

  5. Characterization of the Electronic and Chemical Structure at the Thin Film Solar Cell Interfaces: June 2005 -- June 2009

    SciTech Connect (OSTI)

    Heske, C.

    2009-09-01T23:59:59.000Z

    Study using photoelectron spectroscopy, inverse photoemission, and X-ray absorption and emission to derive the electronic structure of interfaces in CIGSS and CdTe thin-film solar cells.

  6. Low-cost, deterministic quasi-periodic photonic structures for light trapping in thin film silicon solar cells

    E-Print Network [OSTI]

    Sheng, Xing

    Light trapping has been an important issue for thin film silicon solar cells because of the low absorption coefficient in the near infrared range. In this paper, we present a photonic structure which combines anodic aluminum ...

  7. Low-Cost Light Weigh Thin Film Solar Concentrators

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  8. Identification of critical stacking faults in thin-film CdTe solar cells

    SciTech Connect (OSTI)

    Yoo, Su-Hyun; Walsh, Aron, E-mail: a.walsh@bath.ac.uk [Global E3 Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Bath BA2 7AY (United Kingdom); Butler, Keith T. [Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Bath BA2 7AY (United Kingdom); Soon, Aloysius [Global E3 Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Abbas, Ali; Walls, John M., E-mail: j.m.wall@loughborough.ac.uk [Centre for Renewable Energy Systems Technology, School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom)

    2014-08-11T23:59:59.000Z

    Cadmium telluride (CdTe) is a p-type semiconductor used in thin-film solar cells. To achieve high light-to-electricity conversion, annealing in the presence of CdCl{sub 2} is essential, but the underlying mechanism is still under debate. Recent evidence suggests that a reduction in the high density of stacking faults in the CdTe grains is a key process that occurs during the chemical treatment. A range of stacking faults, including intrinsic, extrinsic, and twin boundary, are computationally investigated to identify the extended defects that limit performance. The low-energy faults are found to be electrically benign, while a number of higher energy faults, consistent with atomic-resolution micrographs, are predicted to be hole traps with fluctuations in the local electrostatic potential. It is expected that stacking faults will also be important for other thin-film photovoltaic technologies.

  9. Flexible Solar-Energy Harvesting System on Plastic with Thin-film LC Oscillators Operating Above ft for

    E-Print Network [OSTI]

    Flexible Solar-Energy Harvesting System on Plastic with Thin-film LC Oscillators Operating Above ft- This paper presents an energy-harvesting system consisting of amorphous-silicon (a-Si) solar cells and thin of the energy-harvesting system. The solar module consists of solar cells in series operating at an output

  10. Performance and Loss Analyses of High-Efficiency CBD-ZnS/Cu(In1-xGax)Se2 Thin-Film Solar Cells

    E-Print Network [OSTI]

    Sites, James R.

    1 Performance and Loss Analyses of High-Efficiency CBD-ZnS/Cu(In1-xGax)Se2 Thin-Film Solar Cells, Setagaya-ku, Tokyo 157-8572, Japan (Received ) KEYWORDS: ZnS buffer, Cu(In,Ga)Se2, thin-film solar cells alternative to CdS in polycrystalline thin-film Cu(In1-xGax)Se2 (CIGS) solar cells. Cells with efficiency

  11. Electron and hole drift mobility measurements on thin film CdTe solar cells Qi Long, Steluta A. Dinca, E. A. Schiff, Ming Yu, and Jeremy Theil

    E-Print Network [OSTI]

    Schiff, Eric A.

    .1063/1.2220491 Lock-in thermography and nonuniformity modeling of thin-film CdTe solar cells Appl. Phys. Lett. 84, 729

  12. THIN FILM SOLAR CELLS AND A REVIEW OF RECENT RESULTS ON GaAs By PAUL RAPPAPORT,

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    154. THIN FILM SOLAR CELLS AND A REVIEW OF RECENT RESULTS ON GaAs By PAUL RAPPAPORT, RCA been known that non-single- crystals films can be used for solar cells as, for example, in the selenium and copper oxide photo- electric exposnre meter. More recently [1], the cadmium sulfide film-type solar cell

  13. for doubling solar panel

    E-Print Network [OSTI]

    An outline for doubling solar panel efficiency C o l o ra do S c ho o l of M i ne s Ma g a z i ne Take a look at a solar panel on a sunny Colorado day and, if you're like most people, you won't see physics professor and solar energy researcher, who admits to checking out his panels and their energy

  14. Thin-film silicon triple-junction solar cell with 12.5% stable efficiency on innovative flat light-scattering substrate

    E-Print Network [OSTI]

    Psaltis, Demetri

    Thin-film silicon triple-junction solar cell with 12.5% stable efficiency on innovative flat light://jap.aip.org/about/rights_and_permissions #12;Thin-film silicon triple-junction solar cell with 12.5% stable efficiency on innovative flat light require light-trapping schemes that are predominantly based on depositing the solar cells on rough

  15. Non-Uniformities in Thin-Film Cadmium Telluride Solar Cells Using Electroluminescence and Photoluminescence

    SciTech Connect (OSTI)

    Zaunbrecher, K.; Johnston, S.; Yan, F.; Sites, J.

    2011-01-01T23:59:59.000Z

    It is the purpose of this research to develop specific imaging techniques that have the potential to be fast, inline tools for quality control in thin-film CdTe solar cells. Electroluminescence (EL) and photoluminescence (PL) are two techniques that are currently under investigation on CdTe small area devices made at Colorado State University. It is our hope to significantly advance the understanding of EL and PL measurements as applied to CdTe. Qualitative analysis of defects and non-uniformities is underway on CdTe using EL, PL, and other imaging techniques.

  16. Non-Uniformities in Thin-Film Cadmium Telluride Solar Cells Using Electroluminescence and Photoluminescence: Preprint

    SciTech Connect (OSTI)

    Zaunbrecher, K.; Johnston, S.; Yan, F.; Sites, J.

    2011-07-01T23:59:59.000Z

    It is the purpose of this research to develop specific imaging techniques that have the potential to be fast, in-line tools for quality control in thin-film CdTe solar cells. Electroluminescence (EL) and photoluminescence (PL) are two techniques that are currently under investigation on CdTe small area devices made at Colorado State University. It is our hope to significantly advance the understanding of EL and PL measurements as applied to CdTe. Qualitative analysis of defects and non-uniformities is underway on CdTe using EL, PL, and other imaging techniques.

  17. First-Principles Study of Back Contact Effects on CdTe Thin Film Solar Cells

    SciTech Connect (OSTI)

    Du, Mao-Hua [ORNL

    2009-01-01T23:59:59.000Z

    Forming a chemically stable low-resistance back contact for CdTe thin-film solar cells is critically important to the cell performance. This paper reports theoretical study of the effects of the back-contact material, Sb{sub 2}Te{sub 3}, on the performance of the CdTe solar cells. First-principles calculations show that Sb impurities in p-type CdTe are donors and can diffuse with low diffusion barrier. There properties are clearly detrimental to the solar-cell performance. The Sb segregation into the grain boundaries may be required to explain the good efficiencies for the CdTe solar cells with Sb{sub 2}Te{sub 3} back contacts.

  18. Controlling the Texture and Crystallinity of Evaporated Lead Phthalocyanine Thin Films for Near-Infrared Sensitive Solar Cells

    E-Print Network [OSTI]

    Schreiber, Frank

    Controlling the Texture and Crystallinity of Evaporated Lead Phthalocyanine Thin Films for Near-Infrared Sensitive Solar Cells Karolien Vasseur,, Katharina Broch,§ Alexander L. Ayzner, Barry P. Rand, David Cheyns: To achieve organic solar cells with a broadened spectral absorption, we aim to promote the growth of the near

  19. Thin Film Photovoltaics Research

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) supports research and development of four thin-film technologies on the path to achieving cost-competitive solar energy, including:

  20. QUANTIFICATION OF LOSSES IN THIN-FILM CdS/CdTe SOLAR CELLS S.H. Demtsu and J.R. Sites

    E-Print Network [OSTI]

    Sites, James R.

    QUANTIFICATION OF LOSSES IN THIN-FILM CdS/CdTe SOLAR CELLS S.H. Demtsu and J.R. Sites Department of Physics, Colorado State University, Fort Collins, CO 80523, USA ABSTRACT Quantification of solar cell Thin-film CdS/CdTe devices have been studied extensively, but some basic underlying properties

  1. Solar reflection panels

    DOE Patents [OSTI]

    Diver, Jr., Richard B. (Albuquerque, NM); Grossman, James W. (Albuquerque, NM); Reshetnik, Michael (Boulder, CO)

    2006-07-18T23:59:59.000Z

    A solar collector comprising a glass mirror, and a composite panel, wherein the back of the mirror is affixed to a front surface of the composite panel. The composite panel comprises a front sheet affixed to a surface of a core material, preferably a core material comprising a honeycomb structure, and a back sheet affixed to an opposite surface of the core material. The invention may further comprise a sealing strip, preferably comprising EPDM, positioned between the glass mirror and the front surface of the composite panel. The invention also is of methods of making such solar collectors.

  2. A non-resonant dielectric metamaterial for enhancement of thin-film solar cells

    E-Print Network [OSTI]

    Omelyanovich, Mikhail; Simovski, Constantin

    2014-01-01T23:59:59.000Z

    Recently, we have suggested dielectric metamaterial composed as an array of submicron dielectric spheres located on top of an amorphous thin-film solar cell. We have theoretically shown that this metamaterial can decrease the reflection and simultaneously can suppress the transmission through the photovoltaic layer because it transforms the incident plane wave into a set of focused light beams. This theoretical concept has been strongly developed and experimentally confirmed in the present paper. Here we consider the metamaterial for oblique angle illumination, redesign the solar cell and present a detailed experimental study of the whole structure. In contrast to our precedent theoretical study we show that our omnidirectional light-trapping structure may operate better than the optimized flat coating obtained by plasma-enhanced chemical vapor deposition.

  3. Investigation of porous alumina as a self-assembled diffractive element to facilitate light trapping in thin film silicon solar cells

    E-Print Network [OSTI]

    Coronel, Naomi (Naomi Cristina)

    2009-01-01T23:59:59.000Z

    Thin film solar cells are currently being investigated as an affordable alternative energy source because of the reduced material cost. However, these devices suffer from low efficiencies, compared to silicon wafer solar ...

  4. Thin Film Solar Cells Derived from Sintered Semiconductor Quantum Dots: Cooperative Research and Development Final Report, CRADA number CRD-07-00226

    SciTech Connect (OSTI)

    Ginley, D. S.

    2010-07-01T23:59:59.000Z

    The NREL/Evident team will develop techniques to fabricate thin film solar cells where the absorption layers comprising the solar cells are derived from sintered semiconductor quantum dots.

  5. Spin Coated Plasmonic Nanoparticle Interfaces for Photocurrent Enhancement in Thin Film Si Solar Cells

    E-Print Network [OSTI]

    Israelowitz, Miriam; Cong, Tao; Sureshkumar, Radhakrishna

    2013-01-01T23:59:59.000Z

    Nanoparticle (NP) arrays of noble metals strongly absorb light in the visible to infrared wavelengths through resonant interactions between the incident electromagnetic field and the metal's free electron plasma. Such plasmonic interfaces enhance light absorption and photocurrent in solar cells. We report a cost effective and scalable room temperature/pressure spin-coating route to fabricate broadband plasmonic interfaces consisting of silver NPs. The NP interface yields photocurrent enhancement (PE) in thin film silicon devices by up to 200% which is significantly greater than previously reported values. For coatings produced from Ag nanoink containing particles with average diameter of 40 nm, an optimal NP surface coverage of 7% was observed. Scanning electron microscopy of interface morphologies revealed that for low surface coverage, particles are well-separated, resulting in broadband PE. At higher surface coverage, formation of particle strings and clusters caused red-shifting of the PE peak and a narro...

  6. Indium doped zinc oxide nanowire thin films for antireflection and solar absorber coating applications

    SciTech Connect (OSTI)

    Shaik, Ummar Pasha [ACRHEM, University of Hyderabad, Hyderabad-500046 (India); Krishna, M. Ghanashyam, E-mail: mgksp@uohyd.ac.in [ACRHEM and School of Physics, University of Hyderabad, Hyderabad-500046 (India)

    2014-04-24T23:59:59.000Z

    Indium doped ZnO nanowire thin films were prepared by thermal oxidation of Zn-In metal bilayer films at 500°C. The ZnO:In nanowires are 20-100 nm in diameter and several tens of microns long. X-ray diffraction patterns confirm the formation of oxide and indicate that the films are polycrystalline, both in the as deposited and annealed states. The transmission which is <2% for the as deposited Zn-In films increases to >90% for the ZnO:In nanowire films. Significantly, the reflectance for the as deposited films is < 10% in the region between 200 to 1500 nm and < 2% for the nanowire films. Thus, the as deposited films can be used solar absorber coatings while the nanowire films are useful for antireflection applications. The growth of nanowires by this technique is attractive since it does not involve very high temperatures and the use of catalysts.

  7. Alta Devices Develops World Record Setting Thin-Film Solar Cell

    Office of Energy Efficiency and Renewable Energy (EERE)

    EERE supported the development of Alta Devices' thin film Gallium Arsenide photovoltaic technology that set a world record for conversion efficiency.

  8. DEVELOPMENT OF A NOVEL PRECURSOR FOR THE PREPARATION BY SELENIZATION OF HIGH EFFICIENCY CuInGaSe2/CdS THIN FILM SOLAR CELLS

    E-Print Network [OSTI]

    Romeo, Alessandro

    /CdS THIN FILM SOLAR CELLS N. Romeo1 , A. Bosio1 , V. Canevari2 , R. Tedeschi1 , S. Sivelli1 , A. Solar cells prepared by depositing in sequence on top of the CuInGaSe2 film 60 nm of CdS, 100 nm of pure(InGa)Se2, Thin Films, Selenization 1 INTRODUCTION CuInGaSe2 based solar cells exhibit the highest

  9. Light trapping in thin-film solar cells measured by Raman spectroscopy

    SciTech Connect (OSTI)

    Ledinský, M., E-mail: ledinsky@fzu.cz [Laboratory of Nanostructures and Nanomaterials, Institute of Physics, Academy of Sciences of the Czech Republic, v. v. i., Cukrovarnická 10, 162 00 Prague (Czech Republic); Photovoltaics and Thin Film Electronics Laboratory, Institute of Microengineering (IMT), École Polytechnique Fédérale de Lausanne (EPFL), Rue de la Maladičre 71b, CH-2000 Neuchâtel (Switzerland); Moulin, E.; Bugnon, G.; Meillaud, F.; Ballif, C. [Photovoltaics and Thin Film Electronics Laboratory, Institute of Microengineering (IMT), École Polytechnique Fédérale de Lausanne (EPFL), Rue de la Maladičre 71b, CH-2000 Neuchâtel (Switzerland); Ganzerová, K.; Vetushka, A.; Fejfar, A. [Laboratory of Nanostructures and Nanomaterials, Institute of Physics, Academy of Sciences of the Czech Republic, v. v. i., Cukrovarnická 10, 162 00 Prague (Czech Republic)

    2014-09-15T23:59:59.000Z

    In this study, Raman spectroscopy is used as a tool to determine the light-trapping capability of textured ZnO front electrodes implemented in microcrystalline silicon (?c-Si:H) solar cells. Microcrystalline silicon films deposited on superstrates of various roughnesses are characterized by Raman micro-spectroscopy at excitation wavelengths of 442?nm, 514?nm, 633?nm, and 785?nm, respectively. The way to measure quantitatively and with a high level of reproducibility the Raman intensity is described in details. By varying the superstrate texture and with it the light trapping in the ?c-Si:H absorber layer, we find significant differences in the absolute Raman intensity measured in the near infrared wavelength region (where light trapping is relevant). A good agreement between the absolute Raman intensity and the external quantum efficiency of the ?c-Si:H solar cells is obtained, demonstrating the validity of the introduced method. Applications to thin-film solar cells, in general, and other optoelectronic devices are discussed.

  10. Electroless (autocatalytic) nickel-cobalt thin films as solar control coatings

    SciTech Connect (OSTI)

    John, S.; Srinivasan, K.N.; Selvam, M. [Central Electrochemical Research Inst., Tamilnadu (India); Anuradha, S.; Rajendran, S. [Alagappa Univ., Tamilnadu (India). Dept. of Physics

    1994-12-31T23:59:59.000Z

    This paper describes the deposition of nickel-cobalt-phosphorus coatings by the electroless deposition technique for use as solar control coatings in architectural glazing of buildings. Electroless deposition is characterized by the autocatalytic deposition of a metal/alloy from an aqueous solution of its ions by interaction with a chemical reducing agent. The reducing agent provides electrons for the metal ions to be neutralized. The reduction is initiated by the catalyzed surface of the substrate and continued by the self catalytic activity of the deposited metal/alloy as long as the substrate is immersed in the electroless bath and operating conditions are maintained. Electroless nickel-cobalt-phosphorus thin films were deposited from a solution containing 15 g/l nickel sulphate, 5 g/l cobalt sulphate, 60 g/l ammonium citrate and 25 g/l sodium hypophosphite operating at 30 C, at a pH of 9.5 for two minutes. Electroless nickel-cobalt-phosphorus coatings are found to satisfy the basic requirements of solar control coatings. Autocatalytic deposition technique offers the possibilities of producing large area coatings with low capital investment, stability and good adhesion to glass substrates.

  11. New strategy to promote conversion efficiency using high-index nanostructures in thin-film solar cells

    E-Print Network [OSTI]

    Wang, DongLin

    2014-01-01T23:59:59.000Z

    Nano-scaled metallic or dielectric structures may provide various ways to trap light into thin-film solar cells for improving the conversion efficiency. In most schemes, the textured active layers are involved into light trapping structures that can provide perfect optical benefits but also bring undesirable degradation of electrical performance. Here we propose a novel approach to design high-performance thin-film solar cells. In our strategy, a flat active layer is adopted for avoiding electrical degradation, and an optimization algorithm is applied to seek for an optimized light trapping structure for the best optical benefit. As an example, we show that the efficiency of a flat a-Si:H thin-film solar cell can be promoted close to the certified highest value. It is also pointed out that, by choosing appropriate dielectric materials with high refractive index (>3) and high transmissivity in wavelength region of 350nm-800nm, the conversion efficiency of solar cells can be further enhanced.

  12. Development of CdTe thin film solar cells on flexible foil substrates.

    E-Print Network [OSTI]

    Hodges, Deidra Ranel

    2009-01-01T23:59:59.000Z

    ??Cadmium telluride (CdTe) is a leading thin film photovoltaic (PV) material due to its near ideal band gap of 1.45 eV, its high optical absorption… (more)

  13. CdTe/CdS Thin Film Solar Cells Fabricated on Flexible Substrates.

    E-Print Network [OSTI]

    Palekis, Vasilios

    2011-01-01T23:59:59.000Z

    ??Cadmium Telluride (CdTe) is a leading thin film photovoltaic (PV) material due to its near ideal bandgap of 1.45 eV and its high optical absorption… (more)

  14. Methods for forming thin-film heterojunction solar cells from I-III-VI{sub 2}

    DOE Patents [OSTI]

    Mickelsen, R.A.; Chen, W.S.

    1985-08-13T23:59:59.000Z

    An improved thin-film, large area solar cell, and methods for forming the same are disclosed, having a relatively high light-to-electrical energy conversion efficiency and characterized in that the cell comprises a p-n type heterojunction formed of: (i) a first semiconductor layer comprising a photovoltaic active material selected from the class of I-III-VI{sub 2} chalcopyrite ternary materials which is vacuum deposited in a thin ``composition-graded`` layer ranging from on the order of about 2.5 microns to about 5.0 microns ({approx_equal}2.5 {mu}m to {approx_equal}5.0 {mu}m) and wherein the lower region of the photovoltaic active material preferably comprises a low resistivity region of p-type semiconductor material having a superimposed region of relatively high resistivity, transient n-type semiconductor material defining a transient p-n homojunction; and (ii) a second semiconductor layer comprising a low resistivity n-type semiconductor material; wherein interdiffusion occurs (a) between the elemental constituents of the two discrete juxtaposed regions of the first semiconductor layer defining a transient p-n homojunction layer, and (b) between the transient n-type material in the first semiconductor layer and the second n-type semiconductor layer. 16 figs.

  15. Methods for forming thin-film heterojunction solar cells from I-III-VI.sub. 2

    DOE Patents [OSTI]

    Mickelsen, Reid A. (Bellevue, WA) [Bellevue, WA; Chen, Wen S. (Seattle, WA) [Seattle, WA

    1985-08-13T23:59:59.000Z

    An improved thin-film, large area solar cell, and methods for forming the same, having a relatively high light-to-electrical energy conversion efficiency and characterized in that the cell comprises a p-n type heterojunction formed of: (i) a first semiconductor layer comprising a photovoltaic active material selected from the class of I-III-VI.sub.2 chalcopyrite ternary materials which is vacuum deposited in a thin "composition-graded" layer ranging from on the order ot about 2.5 microns to about 5.0 microns (.congruent.2.5 .mu.m to .congruent.5.0 .mu.m) and wherein the lower region of the photovoltaic active material preferably comprises a low resistivity region of p-type semiconductor material having a superimposed region of relatively high resistivity, transient n-type semiconductor material defining a transient p-n homojunction; and (ii), a second semiconductor layer comprising a low resistivity n-type semiconductor material; wherein interdiffusion (a) between the elemental constituents of the two discrete juxtaposed regions of the first semiconductor layer defining a transient p-n homojunction layer, and (b) between the transient n-type material in the first semiconductor layer and the second n-type semiconductor layer, causes the The Government has rights in this invention pursuant to Contract No. EG-77-C-01-4042, Subcontract No. XJ-9-8021-1 awarded by the U.S. Department of Energy.

  16. High Efficiency CdTe/CdS Thin Film solar Cells by a Process Suitable for Large Scale Production. N. Romeo, A. Bosio, A. Romeo, M. Bianucci, L. Bonci, C. Lenti

    E-Print Network [OSTI]

    Romeo, Alessandro

    High Efficiency CdTe/CdS Thin Film solar Cells by a Process Suitable for Large Scale Production. N-mail:Nicola.Romeo@fis.unipr.it ABSTRACT: It has been demonstrated that CdTe/CdS thin film solar cells can exhibit an efficiency around 16 Film. 1 INTRODUCTION CdTe/CdS thin film solar cells have a good possibility to be produced on large

  17. Concentrating photovoltaic solar panel

    DOE Patents [OSTI]

    Cashion, Steven A; Bowser, Michael R; Farrelly, Mark B; Hines, Braden E; Holmes, Howard C; Johnson, Jr., Richard L; Russell, Richard J; Turk, Michael F

    2014-04-15T23:59:59.000Z

    The present invention relates to photovoltaic power systems, photovoltaic concentrator modules, and related methods. In particular, the present invention features concentrator modules having interior points of attachment for an articulating mechanism and/or an articulating mechanism that has a unique arrangement of chassis members so as to isolate bending, etc. from being transferred among the chassis members. The present invention also features adjustable solar panel mounting features and/or mounting features with two or more degrees of freedom. The present invention also features a mechanical fastener for secondary optics in a concentrator module.

  18. Simulation of nanostructure-based and ultra-thin film solar cell devices beyond the classical picture

    E-Print Network [OSTI]

    Aeberhard, Urs

    2014-01-01T23:59:59.000Z

    In this paper, an optoelectronic device simulation framework valid for arbitrary spatial variation of electronic potentials and optical modes, and for transport regimes ranging from ballistic to diffusive, is used to study non-local photon absorption, photocurrent generation and carrier extraction in ultra-thin film and nanostructure-based solar cell devices at the radiative limit. Among the effects that are revealed by the microscopic approach and which are inaccessible to macroscopic models is the impact of structure, doping or bias induced nanoscale potential variations on the local photogeneration rate and the photocarrier transport regime.

  19. Absorber processing issues in high-efficiency, thin-film Cu(In,Ga)Se{sub 2}-based solar cells

    SciTech Connect (OSTI)

    Tuttle, J.R.; Gabor, A.M.; Contreras, M.A.; Tennant, A.L.; Ramanathan, K.R.; Franz, A.; Matson, R.; Noufi, R. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States)

    1996-01-01T23:59:59.000Z

    Three approaches to thin-film Cu(In,Ga)Se{sub 2} absorber fabrication are considered. They are generically described in terms of the sequential or concurrent nature of source material delivery, selenium delivery, and compound formation. A two-stage evaporation process successfully produced the absorber component of a world-record, 17.1{percent} efficient solar cell. Alternative approaches that reduce the requirements for high substrate temperatures are considered. The relationship between absorber process parameters, band gap profile, and device performance are examined. Engineering the [Ga]/([Ga]+[In]) profile in the absorber has led to the reported advances. {copyright} {ital 1996 American Institute of Physics.}

  20. Experimental Demonstration of Quasi-Resonant Absorption in Silicon Thin Films for Enhanced Solar Light Trapping

    E-Print Network [OSTI]

    Oskooi, Ardavan; Ishizaki, Kenji; Noda, Susumu

    2013-01-01T23:59:59.000Z

    We experimentally demonstrate that the addition of partial lattice disorder to a thin-film micro-crystalline silicon photonic crystal results in the controlled spectral broadening of its absorption peaks to form quasi resonances; increasing light trapping over a wide bandwidth while also reducing sensitivity to the angle of incident radiation. Accurate computational simulations are used to design the active-layer photonic crystal so as to maximize the number of its absorption resonances over the broadband interval where micro-crystalline silicon is weakly absorbing before lattice disorder augmented with fabrication-induced imperfections are applied to further boost performance. Such a design strategy may find practical use for increasing the efficiency of thin-film silicon photovoltaics.

  1. Solar Panel Anomaly Detection and Classification.

    E-Print Network [OSTI]

    Hu, Bo

    2012-01-01T23:59:59.000Z

    ??The number of solar panels deployed worldwide has rapidly increased. Solar panels are often placed in areas not easily accessible. It is also difficult for… (more)

  2. One Panel One Roof, DOE Powering Solar Workforce | Department...

    Broader source: Energy.gov (indexed) [DOE]

    One Panel One Roof, DOE Powering Solar Workforce One Panel One Roof, DOE Powering Solar Workforce...

  3. CuIn1-xGaxS2 thin film solar cells with ZnxCd1-xS as heterojunction partner Bhaskar Kumar

    E-Print Network [OSTI]

    Sites, James R.

    CuIn1-xGaxS2 thin film solar cells with ZnxCd1-xS as heterojunction partner Bhaskar Kumar 1 , Parag). i:ZnO/Al:ZnO transparent and conducting window bilayer was deposited by RF magnetron sputtering

  4. Defect physics of the kesterite thin-film solar cell absorber Cu2ZnSnS4 Shiyou Chen,1,2

    E-Print Network [OSTI]

    Gong, Xingao

    Defect physics of the kesterite thin-film solar cell absorber Cu2ZnSnS4 Shiyou Chen,1,2 X. G. Gong Physics Laboratory, Fudan University, Shanghai 200433, People's Republic of China 2 Laboratory of Polar Materials and Devices, East China Normal University, Shanghai 200241, People's Republic of China 3

  5. Plane and parabolic solar panels

    E-Print Network [OSTI]

    J. H. O. Sales; A. T. Suzuki

    2009-05-14T23:59:59.000Z

    We present a plane and parabolic collector that absorbs radiant energy and transforms it in heat. Therefore we have a panel to heat water. We study how to increment this capture of solar beams onto the panel in order to increase its efficiency in heating water.

  6. Plane and parabolic solar panels

    E-Print Network [OSTI]

    Sales, J H O

    2009-01-01T23:59:59.000Z

    We present a plane and parabolic collector that absorbs radiant energy and transforms it in heat. Therefore we have a panel to heat water. We study how to increment this capture of solar beams onto the panel in order to increase its efficiency in heating water.

  7. Process for fabricating polycrystalline semiconductor thin-film solar cells, and cells produced thereby

    DOE Patents [OSTI]

    Wu, Xuanzhi (Golden, CO); Sheldon, Peter (Lakewood, CO)

    2000-01-01T23:59:59.000Z

    A novel, simplified method for fabricating a thin-film semiconductor heterojunction photovoltaic device includes initial steps of depositing a layer of cadmium stannate and a layer of zinc stannate on a transparent substrate, both by radio frequency sputtering at ambient temperature, followed by the depositing of dissimilar layers of semiconductors such as cadmium sulfide and cadmium telluride, and heat treatment to convert the cadmium stannate to a substantially single-phase material of a spinel crystal structure. Preferably, the cadmium sulfide layer is also deposited by radio frequency sputtering at ambient temperature, and the cadmium telluride layer is deposited by close space sublimation at an elevated temperature effective to convert the amorphous cadmium stannate to the polycrystalline cadmium stannate with single-phase spinel structure.

  8. Multilayer nanoparticle arrays for broad spectrum absorption enhancement in thin film solar cells

    E-Print Network [OSTI]

    Krishnan, Aravind; Krishna, Siva Rama; Khan, Mohammed Zafar Ali

    2013-01-01T23:59:59.000Z

    In this paper, we present a theoretical study on the absorption efficiency enhancement of a thin film amorphous Silicon (a-Si) photovoltaic cell over a broad spectrum of wavelengths using multiple nanoparticle arrays. The light absorption efficiency is enhanced in the lower wavelengths by a nanoparticle array on the surface and in the higher wavelengths by another nanoparticle array embedded in the active region. The efficiency at intermediate wavelengths is enhanced by the constructive interference of plasmon coupled light. We optimize this design by tuning the radius of particles in both arrays, the period of the array and the distance between the two arrays. The optimization results in 61.44% increase in total quantum efficiency for a 500 nm thick a-Si substrate.

  9. Processing and modeling issues for thin-film solar cell devices. Annual subcontract report, January 16, 1994--January 15, 1995

    SciTech Connect (OSTI)

    Birkmire, R.W.; Phillips, J.E.; Buchanan, W.A.; Hegedus, S.S.; McCandless, B.E.; Shafarman, W.N. [Delaware Univ., Newark, DE (United States). Inst. of Energy Conversion

    1995-06-01T23:59:59.000Z

    This report describes results achieved during the second phase of a four year subcontract to develop and understand thin film solar cell technology related to a-Si and its alloys, CuIn{sub 1{minus}x}Ga{sub x}Se{sub 2}, and CdTe. Accomplishments during this phase include, development of equations and reaction rates for the formation of CuIn{sub 1{minus}x}Ga{sub x}Se{sub 2} films by selenization, fabrication of a 15% efficient CuIn{sub 1{minus}x}Ga{sub x}Se{sub 2} cell, development of a reproducible, reliable Cu-diffused contact to CdTe, investigation of the role of CdTe-CdS interdiffusion on device operation, investigation of the substitution of HCl for CdCl{sub 2} in the post-deposition heat treatment of CdTe/CdS, demonstration of an improved reactor design for deposition of a-Si films, demonstration of improved process control in the fabrication of a ten set series of runs producing {approximately}8% efficient a-Si devices, demonstration of the utility of a simplified optical model for determining quantity and effect of current generation in each layer of a triple stacked a-Si cell, presentation of analytical and modeling procedures adapted to devices produced with each material system, presentation of baseline parameters for devices produced with each material system, and various investigations of the roles played by other layers in thin film devices including the Mo underlayer, CdS and ZnO in CuIn{sub 1{minus}x}Ga{sub x}Se{sub 2} devices, the CdS in CdTe devices, and the ZnO as window layer and as part of the back surface reflector in a-Si devices. In addition, collaborations with over ten research groups are briefly described. 73 refs., 54 figs., 34 tabs.

  10. Thin films of mixed metal compounds

    DOE Patents [OSTI]

    Mickelsen, Reid A. (Bellevue, WA); Chen, Wen S. (Seattle, WA)

    1985-01-01T23:59:59.000Z

    A compositionally uniform thin film of a mixed metal compound is formed by simultaneously evaporating a first metal compound and a second metal compound from independent sources. The mean free path between the vapor particles is reduced by a gas and the mixed vapors are deposited uniformly. The invention finds particular utility in forming thin film heterojunction solar cells.

  11. High Efficiency CdTe/CdS Thin Film Solar Cells Prepared by Treating CdTe Films with a Freon Gas in Substitution of CdCl2

    E-Print Network [OSTI]

    Romeo, Alessandro

    High Efficiency CdTe/CdS Thin Film Solar Cells Prepared by Treating CdTe Films with a Freon Gas delle Scienze, 37/A-43010 Fontanini, Parma, Italy ABSTRACT: CdTe/CdS thin film solar cells have reached in the preparation of high efficiency CdTe/CdS solar cells is the activation treatment of CdTe film. Most research

  12. Solar Decathlon Technology Spotlight: Structural Insulated Panels...

    Broader source: Energy.gov (indexed) [DOE]

    Decathlon Technology Spotlight: Structural Insulated Panels Solar Decathlon Technology Spotlight: Structural Insulated Panels September 20, 2011 - 7:13am Addthis These structural...

  13. Thin film photovoltaic device

    DOE Patents [OSTI]

    Catalano, A.W.; Bhushan, M.

    1982-08-03T23:59:59.000Z

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids. 5 figs.

  14. Thin film photovoltaic device

    DOE Patents [OSTI]

    Catalano, Anthony W. (Wilmington, DE); Bhushan, Manjul (Wilmington, DE)

    1982-01-01T23:59:59.000Z

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids.

  15. Towards high efficiency thin-film crystalline silicon solar cells: The roles of light trapping and non-radiative recombinations

    SciTech Connect (OSTI)

    Bozzola, A., E-mail: angelo.bozzola@unipv.it; Kowalczewski, P.; Andreani, L. C. [Physics Department, University of Pavia and CNISM, via Bassi 6, I-27100 Pavia (Italy)

    2014-03-07T23:59:59.000Z

    Thin-film solar cells based on silicon have emerged as an alternative to standard thick wafers technology, but they are less efficient, because of incomplete absorption of sunlight, and non-radiative recombinations. In this paper, we focus on the case of crystalline silicon (c-Si) devices, and we present a full analytic electro-optical model for p-n junction solar cells with Lambertian light trapping. This model is validated against numerical solutions of the drift-diffusion equations. We use this model to investigate the interplay between light trapping, and bulk and surface recombination. Special attention is paid to surface recombination processes, which become more important in thinner devices. These effects are further amplified due to the textures required for light trapping, which lead to increased surface area. We show that c-Si solar cells with thickness of a few microns can overcome 20% efficiency and outperform bulk ones when light trapping is implemented. The optimal device thickness in presence of light trapping, bulk and surface recombination, is quantified to be in the range of 10–80??m, depending on the bulk quality. These results hold, provided the effective surface recombination is kept below a critical level of the order of 100?cm/s. We discuss the possibility of meeting this requirement, in the context of state-of-the-art techniques for light trapping and surface passivation. We show that our predictions are within the capability of present day silicon technologies.

  16. Institute of Photo Electronic Thin Film Devices and Technology...

    Open Energy Info (EERE)

    Technology of Nankai University Place: Tianjin Municipality, China Zip: 300071 Sector: Solar Product: A thin-film solar cell research institute in China. References: Institute...

  17. 62 Journal of Student Research in Environmental Science at Appalachian Site Suitability Analysis for a Solar Farm

    E-Print Network [OSTI]

    Thaxton, Christopher S.

    ]. The semiconductor materials typically used are crystalline-silicone, containing monocrystalline or polycrystalline cells, or thin-film, containing materials including CdTe and copper indium gal- lium selenide, solar modules [2]. Although thin- film solar panels are typically less expensive than c-Si solar panels

  18. Fully Solution-Processed Copper Chalcopyrite Thin Film Solar Cells: Materials Chemistry, Processing, and Device Physics

    E-Print Network [OSTI]

    Chung, Choong-Heui

    2012-01-01T23:59:59.000Z

    energy sources, the potential of solar energy is the mostuse of solar cells as an energy source [2]. Therefore, thinspread use of solar cells as a renewable energy source [2].

  19. Semiconductor heterostructures and optimization of light-trapping structures for efficient thin-film solar cells

    E-Print Network [OSTI]

    Yu, Edward T.

    applications. However, one of the most persistent issues in solar cell design continues to be how to most and integration of active and passive media in solar cells. Myriad photonic structures containing sub of semiconductor nanostructures have inspired a host of new solar cell structures, including designs based

  20. Inside the White House: Solar Panels

    Broader source: Energy.gov [DOE]

    Go inside the White House and learn about the installation of solar panels on the roof of the residence.

  1. (Sr,Ba)(Si,Ge){sub 2} for thin-film solar-cell applications: First-principles study

    SciTech Connect (OSTI)

    Kumar, Mukesh, E-mail: Kumar.Mukesh@nims.go.jp, E-mail: mkgarg79@gmail.com [Environmental Remediation Materials Unit, National Institute for Materials Science, Ibaraki 305-0044 (Japan); Umezawa, Naoto [Environmental Remediation Materials Unit, National Institute for Materials Science, Ibaraki 305-0044 (Japan); PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012 (Japan); TU-NIMS Joint Research Center, School of Materials Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin (China); Imai, Motoharu [Superconducting Properties Unit, National Institute for Materials Science, Ibaraki 305-0047 (Japan)

    2014-05-28T23:59:59.000Z

    In order to meet the increasing demand for electric power generation from solar energy conversion, the development of efficient light absorber materials has been awaited. To this end, the electronic and optical properties of advanced alkaline-earth-metals disilicides and digermanides (SrSi{sub 2}, BaSi{sub 2}, SrGe{sub 2}, and BaGe{sub 2}) are studied by means of the density functional theory using HSE06 exchange-correlation energy functional. Our calculations show that all these orthorhombic structured compounds have fundamental indirect band gaps in the range E{sub g} ? 0.89–1.25 eV, which is suitable for solar cell applications. The estimated lattice parameters and band gaps are in good agreement with experiments. Our calculations show that the electronic band structures of all four compounds are very similar except in the vicinity of the ?-point. The valence band of these compounds is made up by Si(Ge)-p states, whereas the conduction band is composed of Sr(Ba)-d states. Their band alignments are carefully determined by estimating the work function of each compound using slab model. The optical properties are discussed in terms of the complex dielectric function ?(?)?=??{sub 1}(?)?+?i?{sub 2}(?). The static and high-frequency dielectric constants are calculated, taking into account the ionic contribution. The absorption coefficient ?(?) demonstrates that a low energy dispersion of the conduction band, which results in a flat conduction band minimum, leads to large optical activity in these compounds. Therefore, alkaline-earth-metals disilicides and digermanides possess great potential as light absorbers for applications in thin-film solar cell technologies.

  2. Fully Solution-Processed Copper Chalcopyrite Thin Film Solar Cells: Materials Chemistry, Processing, and Device Physics

    E-Print Network [OSTI]

    Chung, Choong-Heui

    2012-01-01T23:59:59.000Z

    CuIn(Se,S) 2 solar cell with a PCE of 11.1% under dark andpower conversion efficiency (PCE) of around 20% among thinAchievement of such high PCE can be largely ascribed to the

  3. Light trapping in thin film solar cells using textured photonic crystal

    DOE Patents [OSTI]

    Yi, Yasha (Somerville, MA); Kimerling, Lionel C. (Concord, MA); Duan, Xiaoman (Amesbury, MA); Zeng, Lirong (Cambridge, MA)

    2009-01-27T23:59:59.000Z

    A solar cell includes a photoactive region that receives light. A photonic crystal is coupled to the photoactive region, wherein the photonic crystal comprises a distributed Bragg reflector (DBR) for trapping the light.

  4. Barrier Coatings for Thin Film Solar Cells: Final Subcontract Report, September 1, 2002 -- January 30, 2008

    SciTech Connect (OSTI)

    Olsen, L. C.

    2010-03-01T23:59:59.000Z

    This program has involved investigations of the stability of CdTe and copper-indium-gallium-diselenide (CIGS) solar cells under damp heat conditions and effects of barrier coatings.

  5. Creating CZTS Thin Films Via Stacked Metallic CVD and Sulfurization

    E-Print Network [OSTI]

    Bielecki, Anthony

    2013-01-01T23:59:59.000Z

    Research, Thin-Film Photovoltaic (PV) Cells Market Analysiscost of photovoltaic systems (such as solar cells) due tosolar cells are created by depositing layers of photovoltaic

  6. almgb14 thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

  7. aggase2 thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

  8. area thin film: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

  9. aluminide thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

  10. antiferroelectric thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

  11. ain thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

  12. advanced thin film: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

  13. ZnO transparent thin films for gas sensor applications M. Suchea a,b,, S. Christoulakis a,b

    E-Print Network [OSTI]

    in solar cells and flat panel displays as well as for the fabrication of gratings in optoelectronic de analysis of thin films sputtered from a ceramic target has shown a completely different surface behavior of the earliest discovered metal oxide gas sensing materials. It is an n-type semiconductor of wurtzite structure

  14. Thin film solar cells by selenization sulfurization using diethyl selenium as a selenium precursor

    DOE Patents [OSTI]

    Dhere, Neelkanth G.; Kadam, Ankur A.

    2009-12-15T23:59:59.000Z

    A method of forming a CIGSS absorber layer includes the steps of providing a metal precursor, and selenizing the metal precursor using diethyl selenium to form a selenized metal precursor layer (CIGSS absorber layer). A high efficiency solar cell includes a CIGSS absorber layer formed by a process including selenizing a metal precursor using diethyl selenium to form the CIGSS absorber layer.

  15. Configuration Optimization of a Nanosphere Array on Top of a Thin Film Solar Cell

    E-Print Network [OSTI]

    Atwater, Harry

    solar cell fabrication. Index Terms -- Nanospheres, Whispering gallery modes, Photovoltaic systems is done. For a hexagonally close packed sphere configuration, we vary the size of the spheres as well in the photovoltaics industry [2]. II. DESCRIPTION OF THE MODEL Our approach here is to consider an array

  16. Amorphous thin films for solar-cell applications. Final report, September 11, 1978-September 10, 1979

    SciTech Connect (OSTI)

    Carlson, D E; Balberg, I; Crandall, R S; Goldstein, B C; Hanak, J J; Pankove, J I; Staebler, D L; Weakliem, H A; Williams, R

    1980-02-01T23:59:59.000Z

    In Section II, Theoretical Modeling, theories for the capture of electrons by deep centers in hydrogenated amorphous silicon (a-Si:H) and for field-dependent quantum efficiency in a-Si:H are presented. In Section III, Deposition and Doping Studies, the optimization of phosphorus-doped a-Si:H carried out in four different discharge systems is described. Some details of the dc proximity and rf magnetron discharge systems are also provided. Preliminary mass spectroscopy studies of the rf magnetron discharge in both SiH/sub 4/ and SiF/sub 4/ are presented. In Section IV, Experimental Methods for Characterizing a-Si:H, recent work involving photoluminescence of fluorine-doped a-Si:H, photoconductivity spectra, the photoelectromagnetic effect, the photo-Hall effect and tunneling into a-Si:H is presented. Also, studies of the growth mechanism of Pt adsorbed on both crystalline Si and a-Si:H are described. Measurements of the surface photovoltage have been used to estimate the distribution of surface states of phosphorus-doped and undoped a-Si:H. Section V, Formation of Solar-Cell Structures, contains information on stacked or multiple-junction a-Si:H solar cells. In Section VI, Theoretical and Experimental Evaluation of Solar-Cell Parameters, an upper limit of approx. = 400 A is established for the hole diffusion length in undoped a-Si:H. A detailed description of carrier generation, recombination and transport in a-Si:H solar cells is given. Finally, some characteristics of Pd-Schottky-barrier cells are described for different processing histories.

  17. Processing and analysis of polycrystalline thin-film solar cells made from uniform single phase materials

    SciTech Connect (OSTI)

    Birkmire, R.W.; Hichri, H.; Klenk, R.; Marudachalam, M.; McCandless, B.E.; Phillips, J.E.; Schultz, J.M.; Shafarman, W.N. [Institute of Energy Conversion, Department of Energy, University Center of Excellence for Photovoltaic, Research and Education (National Renewable Energy Laboratory), University of Delaware, Newark, Delaware 19716 (United States)

    1996-01-01T23:59:59.000Z

    This paper presents processes for producing uniform single phase polycrystalline films of Cu(InGa)Se{sub 2} and CdTe and the analysis of the resulting films and solar cell devices. The first two sections discuss Cu(InGa)Se{sub 2} cells prepared by the selenization of Cu-In-Ga films and of elemental evaporation. The third section describes a CdCl{sub 2} vapor treatment of CdTe that results in uniform large grain films with reduced {ital S} diffusion and reproducible performance. {copyright} {ital 1996 American Institute of Physics.}

  18. Identification and Analysis of Distinct Features in Imaging Thin-Film Solar Cells: Preprint

    SciTech Connect (OSTI)

    Zaunbrecher, K. N.; Johnston, S. W.; Sites, J. R.

    2012-06-01T23:59:59.000Z

    Electroluminescence and photoluminescence (EL and PL) are two imaging techniques employed at NREL that are used to qualitatively evaluate solar cells. In this work, imaging lab-scale CdTe and CIGS devices provides information about small-area PV response, which will aid in determining the effects of non-uniformities on cell performance. EL, PL, and dark lock-in thermography signatures are first catalogued. Their responses to varying conditions are then studied. Further analysis includes acquiring spectral data, making microscopy measurements, and correlating luminescence to device performance. The goal of this work is to quantitatively determine non-uniformity effects on cell performance using rapid imaging techniques.

  19. Asymmetric electrical properties of fork a-Si:H thin-film transistor and its application to flat panel displays

    E-Print Network [OSTI]

    Kanicki, Jerzy

    of Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor, Michigan 48109, USA 2 LG-effect hydrogen- ated amorphous silicon a-Si:H solar cells to enhance out- put power.6 In an a-Si:H TFT, one pair

  20. Thin film solar cells using impure polycrystalline silicon M. Rodot (1), M. Barbe (1), J. E. Bouree (1), V. Perraki (*) (1), G. Revel (2),R. Kishore (2) (**), J. L. Pastol (2), R. Mertens (3), M. Caymax (3) and M. Eyckmans

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    687 Thin film solar cells using impure polycrystalline silicon M. Rodot (1), M. Barbe (1), J. E avec les autres aptes à l'utilisation de Si-UMG bon marché. Abstract. 2014 Epitaxial solar cells have and electron diffusion length adequate to produce good solar cells. 10.3 % efficiency cells have been obtained

  1. Polycrystalline thin-film cadmium telluride solar cells fabricated by electrodeposition. Annual technical report

    SciTech Connect (OSTI)

    Trefny, J.U.; Mao, D. [Colorado School of Mines, Golden, CO (United States). Dept. of Physics

    1998-01-01T23:59:59.000Z

    During the past year, Colorado School of Mines (CSM) researchers performed systematic studies of the growth and properties of electrodeposition CdS and back-contact formation using Cu-doped ZnTe, with an emphasis on low Cu concentrations. CSM also started to explore the stability of its ZnTe-Cu contacted CdTe solar cells. Researchers investigated the electrodeposition of CdS and its application in fabricating CdTe/CdS solar cells. The experimental conditions they explored in this study were pH from 2.0 to 3.0; temperatures of 80 and 90 C; CdCl{sub 2} concentration of 0.2 M; deposition potential from {minus}550 to {minus}600 mV vs. Ag/AgCl electrode; [Na{sub 2}S{sub 2}O{sub 4}] concentration between 0.005 and 0.05 M. The deposition rate increases with increase of the thiosulfate concentration and decrease of solution pH. Researchers also extended their previous research of ZnTe:Cu films by investigating films doped with low Cu concentrations (< 5 at. %). The low Cu concentration enabled them to increase the ZnTe:Cu post-annealing temperature without causing excessive Cu diffusion into CdTe or formation of secondary phases. The effects of Cu doping concentration and post-deposition annealing temperature on the structural, compositional, and electrical properties of ZnTe were studied systematically using X-ray diffraction, atomic force microscopy, electron microprobe, Hall effect, and conductivity measurements.

  2. Integrated Solar Panel Antennas for Cube Satellites.

    E-Print Network [OSTI]

    Mahmoud, Mahmoud N.

    2010-01-01T23:59:59.000Z

    ??This thesis work presents an innovative solution for small satellite antennas by integrating slot antennas and solar cells on the same panel to save small… (more)

  3. Theoretical Analysis of Effects of Deep Level, Back Contact, and Absorber Thickness on Capacitance-Voltage Profiling of CdTe Thin-Film Solar Cells

    SciTech Connect (OSTI)

    Li, J. V.; Halverson, A. F.; Sulima, O. V.; Bansal, S.; Burst, J. M.; Barnes, T. M.; Gessert, T. A.; Levi, D. H.

    2012-05-01T23:59:59.000Z

    The apparent carrier density profile measured by the capacitance-voltage technique in CdTe thin-film solar cells frequently displays a distinctive U-shape. We show that, even assuming a uniform carrier density, such a U-shape may arise from deep levels, a non-ohmic back-contact, and a thin absorber, which are commonly present in practical CdTe thin-film solar cells. A thin CdTe absorber contributes to the right branch of the U-shape due to a punch-through effect at reverse or zero biases, when the CdTe absorber is nearly fully depleted. A rectifying back-contact contributes to both branches of the U-shape due to voltage sharing with the front junction under a forward bias and early punch-through under a reverse bias. Deep levels contribute to the right branch, but also raise the bottom of the U-shape, leading to an overestimate of carrier density.

  4. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Cheng, Y.T.; Poli, A.A.; Meltser, M.A.

    1999-03-23T23:59:59.000Z

    A thin film hydrogen sensor includes a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end. 5 figs.

  5. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Cheng, Yang-Tse (Rochester Hills, MI); Poli, Andrea A. (Livonia, MI); Meltser, Mark Alexander (Pittsford, NY)

    1999-01-01T23:59:59.000Z

    A thin film hydrogen sensor, includes: a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end.

  6. Effects of solar photovoltaic panels on roof heat transfer

    E-Print Network [OSTI]

    Dominguez, Anthony; Kleissl, Jan; Luvall, Jeffrey C

    2011-01-01T23:59:59.000Z

    the underside of the tilted solar panels and the surface of the roof under the solar panel (Fig.  2).  An air temperature of the  solar panel is similar to the roof 

  7. Design and fabrication of photonic crystal thin film photovoltaic cells Guillaume Gomarda,b

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Design and fabrication of photonic crystal thin film photovoltaic cells Guillaume Gomarda,b , Ounsi of an absorbing planar photonic crystal within a thin film photovoltaic cell. The devices are based on a stack with large areas. Keywords: Photonic crystal, Photovoltaic solar cell, Thin film solar cell, Hydrogenated

  8. New GE Plant to Produce Thin Film PV Solar Panels Based on NREL Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugustNationalMarkets with WindPrudent Developmentand Trucks|

  9. ADVANCED REFLECTIVE FILMS AND PANELS FOR NEXT GENERATION SOLAR...

    Office of Environmental Management (EM)

    ADVANCED REFLECTIVE FILMS AND PANELS FOR NEXT GENERATION SOLAR COLLECTORS ADVANCED REFLECTIVE FILMS AND PANELS FOR NEXT GENERATION SOLAR COLLECTORS This presentation was delivered...

  10. Obama Administration Announces Plans to Install New Solar Panels...

    Broader source: Energy.gov (indexed) [DOE]

    Plans to Install New Solar Panels on the White House Residence Obama Administration Announces Plans to Install New Solar Panels on the White House Residence October 5, 2010 -...

  11. Development of Thin Film Silicon Solar Cell Using Inkjet Printed Silicon and Other Inkjet Processes: Cooperative Research and Development Final Report, CRADA Number CRD-07-260

    SciTech Connect (OSTI)

    Sopori, B.

    2012-04-01T23:59:59.000Z

    The cost of silicon photovoltaics (Si-PV) can be greatly lowered by developing thin-film crystalline Si solar cells on glass or an equally lower cost substrate. Typically, Si film is deposited by thermal evaporation, plasma enhanced chemical vapor deposition, and sputtering. NREL and Silexos have worked under a CRADA to develop technology to make very low cost solar cells using liquid organic precursors. Typically, cyclopentasilane (CPS) is deposited on a glass substrate and then converted into an a-Si film by UV polymerization followed by low-temperature optical process that crystallizes the amorphous layer. This technique promises to be a very low cost approach for making a Si film.

  12. 335Nanostructured ZnO and ZAO transparent thin films by sputteringsurface characterization Corresponding author: M. Suchea, e-mail: mirasuchea@iesl.forth.gr

    E-Print Network [OSTI]

    as transparent electrode in solar cells and flat panel displays as well as for the fabrication of gratings Abstract. Zinc oxide (ZnO) and aluminum zinc oxide (ZAO) transparent thin films with different thickness Zinc oxide is one of the earliest discovered metal oxide gas sensing materials. It is an n-type semi

  13. Method of fabricating high-efficiency Cu(In,Ga)(Se,S){sub 2} thin films for solar cells

    DOE Patents [OSTI]

    Noufi, R.; Gabor, A.M.; Tuttle, J.R.; Tennant, A.L.; Contreras, M.A.; Albin, D.S.; Carapella, J.J.

    1995-08-15T23:59:59.000Z

    A process for producing a slightly Cu-poor thin film of Cu(In,Ga)(Se,S){sub 2} comprises depositing a first layer of (In,Ga){sub x} (Se,S){sub y} followed by depositing just enough Cu+(Se,S) or Cu{sub x} (Se,S) to produce the desired slightly Cu-poor material. In a variation, most, but not all, (about 90 to 99%) of the (In,Ga){sub x} (Se,S){sub y} is deposited first, followed by deposition of all the Cu+(Se,S) or Cu{sub x} (Se,S) to go near stoichiometric, possibly or even preferably slightly Cu-rich, and then in turn followed by deposition of the remainder (about 1 to 10%) of the (In,Ga){sub x} (Se,S){sub y} to end with a slightly Cu-poor composition. In yet another variation, a small portion (about 1 to 10%) of the (In,Ga){sub x} (Se,S){sub y} is first deposited as a seed layer, followed by deposition of all of the Cu+(Se,S) or Cu{sub x} (Se,S) to make a very Cu-rich mixture, and then followed deposition of the remainder of the (In,Ga){sub x} (Se,S){sub y} to go slightly Cu-poor in the final Cu(In,Ga)(Se,S){sub 2} thin film. 5 figs.

  14. Method of fabricating high-efficiency Cu(In,Ga)(SeS).sub.2 thin films for solar cells

    DOE Patents [OSTI]

    Noufi, Rommel (Golden, CO); Gabor, Andrew M. (Boulder, CO); Tuttle, John R. (Denver, CO); Tennant, Andrew L. (Denver, CO); Contreras, Miguel A. (Golden, CO); Albin, David S. (Denver, CO); Carapella, Jeffrey J. (Evergreen, CO)

    1995-01-01T23:59:59.000Z

    A process for producing a slightly Cu-poor thin film of Cu(In,Ga)(Se,S).sub.2 comprises depositing a first layer of (In,Ga).sub.x (Se,S).sub.y followed by depositing just enough Cu+(Se,S) or Cu.sub.x (Se,S) to produce the desired slightly Cu-poor material. In a variation, most, but not all, (about 90 to 99%) of the (In,Ga).sub.x (Se,S).sub.y is deposited first, followed by deposition of all the Cu+(Se,S) or Cu.sub.x (Se,S) to go near stoichiometric, possibly or even preferably slightly Cu-rich, and then in turn followed by deposition of the remainder (about 1 to 10%) of the (In,Ga).sub.x (Se,S).sub.y to end with a slightly Cu-poor composition. In yet another variation, a small portion (about 1 to 10%) of the (In,Ga).sub.x (Se,S).sub.y is first deposited as a seed layer, followed by deposition of all of the Cu+(Se,S) or Cu.sub.x (Se,S) to make a very Cu-rich mixture, and then followed deposition of the remainder of the (In,Ga).sub.x (Se,S).sub.y to go slightly Cu-poor in the final Cu(In,Ga)(Se,S).sub.2 thin film.

  15. Cadmium-free junction fabrication process for CuInSe.sub.2 thin film solar cells

    DOE Patents [OSTI]

    Ramanathan, Kannan V. (Lakewood, CA); Contreras, Miguel A. (Golden, CA); Bhattacharya, Raghu N. (Littleton, CA); Keane, James (Lakewood, CA); Noufi, Rommel (Golden, CA)

    1999-01-01T23:59:59.000Z

    The present invention provides an economical, simple, dry and controllable semiconductor layer junction forming process to make cadmium free high efficiency photovoltaic cells having a first layer comprised primarily of copper indium diselenide having a thin doped copper indium diselenide n-type region, generated by thermal diffusion with a group II(b) element such as zinc, and a halide, such as chlorine, and a second layer comprised of a conventional zinc oxide bilayer. A photovoltaic device according the present invention includes a first thin film layer of semiconductor material formed primarily from copper indium diselenide. Doping of the copper indium diselenide with zinc chloride is accomplished using either a zinc chloride solution or a solid zinc chloride material. Thermal diffusion of zinc chloride into the copper indium diselenide upper region creates the thin n-type copper indium diselenide surface. A second thin film layer of semiconductor material comprising zinc oxide is then applied in two layers. The first layer comprises a thin layer of high resistivity zinc oxide. The second relatively thick layer of zinc oxide is doped to exhibit low resistivity.

  16. Modeling of capacitance transients of thin-film solar cells: A valuable tool to gain information on perturbing layers or interfaces

    SciTech Connect (OSTI)

    Lauwaert, Johan, E-mail: Johan.Lauwaert@UGent.be; Van Puyvelde, Lisanne; Vrielinck, Henk [Department of Solid State Sciences, Ghent University, Krijgslaan 281-S1, 9000 Gent (Belgium); Lauwaert, Jeroen; Thybaut, Joris W. [Laboratory for Chemical Technology (LCT), Ghent University, Krijgslaan 281-S5, 9000 Gent (Belgium)

    2014-02-03T23:59:59.000Z

    Thin-film electronic and photovoltaic devices often comprise, in addition to the anticipated p-n junctions, additional non-ideal ohmic contacts between layers. This may give rise to additional signals in capacitance spectroscopy techniques that are not directly related to defects in the structure. In this paper, we present a fitting algorithm for transient signals arising from such an additional junction. The fitting results are in excellent agreement with the diode characteristics extracted from static measurements on individual components. Finally, the algorithm is applied for determining the barriers associated with anomalous signals reported for selected CuIn{sub 1–x}Ga{sub x}Se{sub 2} and CdTe solar cells.

  17. Optical and electrical properties study of sol-gel derived Cu{sub 2}ZnSnS{sub 4} thin films for solar cells

    SciTech Connect (OSTI)

    Guo, B. L.; Liu, X. J.; Li, A. D., E-mail: wcliu@nju.edu.cn, E-mail: adli@nju.edu.cn [National Laboratory of Solid State Microstructures, College of Engineering and Applied Science, Nanjing University, Nanjing 210093 (China); Chen, Y. H. [National Laboratory of Solid State Microstructures, Photovoltaic Engineering Center, Nanjing University, Nanjing 210093 (China); Liu, W. C., E-mail: wcliu@nju.edu.cn, E-mail: adli@nju.edu.cn [National Laboratory of Solid State Microstructures, College of Engineering and Applied Science, Nanjing University, Nanjing 210093 (China); National Laboratory of Solid State Microstructures, Photovoltaic Engineering Center, Nanjing University, Nanjing 210093 (China)

    2014-09-15T23:59:59.000Z

    The fabrication of environmental-friendly Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films with pure kesterite phase is always a challenge to researchers in the field of solar cells. We introduce a simple non-vacuum sol-gel method to fabricate kesterite CZTS films. Ethylenediamine is used as the chelating agent and stabilizer and plays an important role in preparing stable precursor. X-ray diffraction, Raman and scanning electron microscopy studies suggest that the microstructure and optical properties of CZTS films depend strongly on annealing temperatures. The temperature dependence of conductivity of 500?°C annealed CZTS film shows that the Mott law dominates in the low temperature region and thermionic emission is predominant at high temperatures.

  18. Research on polycrystalline thin-film CuGaInSe{sub 2} solar cells. Annual subcontract report, 3 May 1991--2 May 1992

    SciTech Connect (OSTI)

    Stanbery, B.J.; Chen, W.S.; Devaney, W.E.; Stewart, J.W. [Boeing Co., Seattle, WA (United States). Defense and Space Systems Group

    1992-11-01T23:59:59.000Z

    This report describes research to fabricate high-efficiency CdZnS/CuInGaSe{sub 2} (CIGS) thin-film solar cells, and to develop improved transparent conductor window layers such as ZnO. A specific technical milestone was the demonstration of an air mass (AM) 1.5 global, 13% efficient, 1-cm{sup 2}-total-area CIGS thin-film solar cell. Our activities focused on three areas. First, a CIGS deposition: system was modified to double its substrate capacity, thus increasing throughput, which is critical to speeding the process development by providing multiple substrates from the same CIGS run. Second, new tooling was developed to enable an investigation of a modified aqueous CdZnS process. The goal was to improve the yield of this critical step in the device fabrication process. Third, our ZnO sputtering system was upgraded to improve its reliability, and the sputtering parameters were further optimized to improve its properties as a transparent conducting oxide. The characterization of the new CIGS deposition system substrate fixturing was completed, and we produced good thermal uniformity and adequately high temperatures for device-quality CIGS deposition. Both the CIGS and ZnO deposition processes were refined to yield a ZnO//Cd{sub 0.82}Zn{sub 0.18}S/CuIn{sub 0.80}Ga{sub 0.20}Se{sub 2} cell that was verified at NREL under standard testing conditions at 13.1% efficiency with V{sub oc} = 0.581 V, J{sub sc} = 34.8 mA/cm{sup 2}, FF = 0.728, and a cell area of 0.979 cm{sup 2}.

  19. Sputtered Nickel Oxide Thin Film for Efficient Hole Transport Layer in Polymer-Fullerene Bulk-Heterojunction Organic Solar Cell

    SciTech Connect (OSTI)

    Widjonarko, N. E.; Ratcliff, E. L.; Perkins, C. L.; Sigdel, A. K.; Zakutayev, A.; Ndione, P. F.; Gillaspie, D. T.; Ginley, D. S.; Olson, D. C.; Berry, J. J.

    2012-03-01T23:59:59.000Z

    Bulk-heterojunction (BHJ) organic photovoltaics (OPV) are very promising thin film renewable energy conversion technologies due to low production cost by high-throughput roll-to-roll manufacturing, an expansive list of compatible materials, and flexible device fabrication. An important aspect of OPV device efficiency is good contact engineering. The use of oxide thin films for this application offers increased design flexibility and improved chemical stability. Here we present our investigation of radio frequency magnetron sputtered nickel oxide (NiO{sub x}) deposited from oxide targets as an efficient, easily scalable hole transport layer (HTL) with variable work-function, ranging from 4.8 to 5.8 eV. Differences in HTL work-function were not found to result in statistically significant changes in open circuit voltage (V{sub oc}) for poly(3-hexylthiophene):[6,6]-phenyl-C{sub 61}-butyric acid methyl ester (P3HT:PCBM) BHJ device. Ultraviolet photoemission spectroscopy (UPS) characterization of the NiO{sub x} film and its interface with the polymer shows Fermi level alignment of the polymer with the NiO{sub x} film. UPS of the blend also demonstrates Fermi level alignment of the organic active layer with the HTL, consistent with the lack of correlation between V{sub oc} and HTL work-function. Instead, trends in j{sub sc}, V{sub oc}, and thus overall device performance are related to the surface treatment of the HTL prior to active layer deposition through changes in active layer thickness.

  20. Oxidation of In2S3 films to synthetize In2S3(1-x)O3x thin films as a buffer layer in solar cells

    E-Print Network [OSTI]

    Boyer, Edmond

    Oxidation of In2S3 films to synthetize In2S3(1-x)O3x thin films as a buffer layer in solar cells S layers for solar cells. PACS : 68.55.ag Semiconductors, 68.55.J Morphology of films , 68.55.Nq the oxidation occurs is strongly dependent on the texture of deposited films. As-grown films deposited

  1. Thin Film Reliability SEMICONDUCTORS

    E-Print Network [OSTI]

    Thin Film Reliability SEMICONDUCTORS Our goal is to develop new ways to evaluate the reliability $250 billion per year. As semiconductor devices become ultra miniaturized, reliability testing becomes-world conditions as possible will enable product designers to better balance performance and reliability

  2. Thin film photovoltaic cell

    DOE Patents [OSTI]

    Meakin, John D. (Newark, DE); Bragagnolo, Julio (Newark, DE)

    1982-01-01T23:59:59.000Z

    A thin film photovoltaic cell having a transparent electrical contact and an opaque electrical contact with a pair of semiconductors therebetween includes utilizing one of the electrical contacts as a substrate and wherein the inner surface thereof is modified by microroughening while being macro-planar.

  3. Epitaxial thin films

    DOE Patents [OSTI]

    Hunt, Andrew Tye; Deshpande, Girish; Lin, Wen-Yi; Jan, Tzyy-Jiuan

    2006-04-25T23:59:59.000Z

    Epitatial thin films for use as buffer layers for high temperature superconductors, electrolytes in solid oxide fuel cells (SOFC), gas separation membranes or dielectric material in electronic devices, are disclosed. By using CCVD, CACVD or any other suitable deposition process, epitaxial films having pore-free, ideal grain boundaries, and dense structure can be formed. Several different types of materials are disclosed for use as buffer layers in high temperature superconductors. In addition, the use of epitaxial thin films for electrolytes and electrode formation in SOFCs results in densification for pore-free and ideal gain boundary/interface microstructure. Gas separation membranes for the production of oxygen and hydrogen are also disclosed. These semipermeable membranes are formed by high-quality, dense, gas-tight, pinhole free sub-micro scale layers of mixed-conducting oxides on porous ceramic substrates. Epitaxial thin films as dielectric material in capacitors are also taught herein. Capacitors are utilized according to their capacitance values which are dependent on their physical structure and dielectric permittivity. The epitaxial thin films of the current invention form low-loss dielectric layers with extremely high permittivity. This high permittivity allows for the formation of capacitors that can have their capacitance adjusted by applying a DC bias between their electrodes.

  4. Eternal Sunshine of the Solar Panel

    E-Print Network [OSTI]

    Ginithan, Mackenzie; Lefevre, Daniel; Srinivasan, Sowmya; Urena, Barbara; Barley, Kamal; Vega, Jose; Yong, Kamuela E; Flores, Jose

    2014-01-01T23:59:59.000Z

    The social dynamics of residential solar panel use within a theoretical population are studied using a compartmental model. In this study we consider three solar power options commonly available to consumers: the community block, leasing, and buying. In particular we are interested in studying how social influence affects the dynamics within these compartments. As a result of this research a threshold value is determined, beyond which solar panels persist in the population. In addition, as is standard in this type of study, we perform equilibrium analysis, as well as uncertainty and sensitivity analyses on the threshold value. We also perform uncertainty analysis on the population levels of each compartment. The analysis shows that social influence plays an important role in the adoption of residential solar panels.

  5. Thin-film optical initiator

    DOE Patents [OSTI]

    Erickson, Kenneth L. (Albuquerque, NM)

    2001-01-01T23:59:59.000Z

    A thin-film optical initiator having an inert, transparent substrate, a reactive thin film, which can be either an explosive or a pyrotechnic, and a reflective thin film. The resultant thin-film optical initiator system also comprises a fiber-optic cable connected to a low-energy laser source, an output charge, and an initiator housing. The reactive thin film, which may contain very thin embedded layers or be a co-deposit of a light-absorbing material such as carbon, absorbs the incident laser light, is volumetrically heated, and explodes against the output charge, imparting about 5 to 20 times more energy than in the incident laser pulse.

  6. Multi-resonant silver nano-disk patterned thin film hydrogenated amorphous silicon solar cells for Staebler-Wronski effect compensation

    E-Print Network [OSTI]

    Vora, Ankit; Pearce, Joshua M; Bergstrom, Paul L; Güney, Durdu Ö

    2014-01-01T23:59:59.000Z

    We study polarization independent improved light trapping in commercial thin film hydrogenated amorphous silicon (a-Si:H) solar photovoltaic cells using a three-dimensional silver array of multi-resonant nano-disk structures embedded in a silicon nitride anti-reflection coating (ARC) to enhance optical absorption in the intrinsic layer (i-a-Si:H) for the visible spectrum for any polarization angle. Predicted total optical enhancement (OE) in absorption in the i-a-Si:H for AM-1.5 solar spectrum is 18.51% as compared to the reference, and producing a 19.65% improvement in short-circuit current density (JSC) over 11.7 mA/cm2 for a reference cell. The JSC in the nano-disk patterned solar cell (NDPSC) was found to be higher than the commercial reference structure for any incident angle. The NDPSC has a multi-resonant optical response for the visible spectrum and the associated mechanism for OE in i-a-Si:H layer is excitation of Fabry-Perot resonance facilitated by surface plasmon resonances. The detrimental Staebl...

  7. New Ideas for Seeding Your Solar Marketplace Workshop Panel Presentati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Panel Presentations New Ideas for Seeding Your Solar Marketplace Workshop Panel Presentations Download the speaker presentations from the 2014 SunShot Grand Challenge Summit and...

  8. Antimony-Doped Tin(II) Sulfide Thin Films

    E-Print Network [OSTI]

    Chakraborty, Rupak

    Thin-film solar cells made from earth-abundant, inexpensive, and nontoxic materials are needed to replace the current technologies whose widespread use is limited by their use of scarce, costly, and toxic elements. Tin ...

  9. Chemical technology news from across RSC Publishing. Printing solar panels

    E-Print Network [OSTI]

    Rogers, John A.

    Publishing Chemical technology news from across RSC Publishing. Printing solar panels 22 January size) silicon microcells that connect together to form flexible solar panels. By stamping hundreds solar panels 2/8/2010http://www.rsc.org/Publishing/ChemTech/Volume/2010/02/printing_solar.asp #12;Page 2

  10. Enhancement of current collection in epitaxial lift-off InAs/GaAs quantum dot thin film solar cell and concentrated photovoltaic study

    SciTech Connect (OSTI)

    Sogabe, Tomah, E-mail: sogabe@mbe.rcast.u-tokyo.ac.jp; Shoji, Yasushi; Tamayo, Efrain; Okada, Yoshitaka [Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8504 (Japan); Mulder, Peter; Schermer, John [Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands)

    2014-09-15T23:59:59.000Z

    We report the fabrication of a thin film InAs/GaAs quantum dot solar cell (QD cell) by applying epitaxial lift-off (ELO) approach to the GaAs substrate. We confirmed significant current collection enhancement (?0.91?mA/cm{sup 2}) in the ELO-InAs QD cell within the wavelength range of 700?nm–900?nm when compared to the ELO-GaAs control cell. This is almost six times of the sub-GaAs bandgap current collection (?0.16?mA/cm{sup 2}) from the wavelength range of 900?nm and beyond, we also confirmed the ELO induced resonance cavity effect was able to increase the solar cell efficiency by increasing both the short circuit current and open voltage. The electric field intensity of the resonance cavity formed in the ELO film between the Au back reflector and the GaAs front contact layer was analyzed in detail by finite-differential time-domain (FDTD) simulation. We found that the calculated current collection enhancement within the wavelength range of 700?nm–900?nm was strongly influenced by the size and shape of InAs QD. In addition, we performed concentrated light photovoltaic study and analyzed the effect of intermediate states on the open voltage under varied concentrated light intensity for the ELO-InAs QD cell.

  11. Impact of environmental conditions on the chemical surface properties of Cu(In,Ga)(S,Se){sub 2} thin-film solar cell absorbers

    SciTech Connect (OSTI)

    Hauschild, D., E-mail: dirk.hauschild@physik.uni-wuerzburg.de, E-mail: l.weinhardt@kit.edu; Meyer, F. [Experimental Physics VII, University of Würzburg, Am Hubland, 97074 Würzburg (Germany); Pohlner, S.; Lechner, R.; Dietmüller, R.; Palm, J. [AVANCIS GmbH and Co. KG, Otto-Hahn-Ring 6, 81739 Munich (Germany); Heske, C. [Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology (KIT), Hermann-v.-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); ANKA Synchrotron Radiation Facility, Karlsruhe Institute of Technology (KIT), Hermann-v.-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Department of Chemistry, University of Nevada, Las Vegas (UNLV), 4505 Maryland Parkway, Las Vegas, Nevada 89154-4003 (United States); Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 18/20, 76128 Karlsruhe (Germany); Weinhardt, L., E-mail: dirk.hauschild@physik.uni-wuerzburg.de, E-mail: l.weinhardt@kit.edu [Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology (KIT), Hermann-v.-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); ANKA Synchrotron Radiation Facility, Karlsruhe Institute of Technology (KIT), Hermann-v.-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Department of Chemistry, University of Nevada, Las Vegas (UNLV), 4505 Maryland Parkway, Las Vegas, Nevada 89154-4003 (United States); Reinert, F. [Experimental Physics VII, University of Würzburg, Am Hubland, 97074 Würzburg (Germany); Karlsruhe Institute of Technology (KIT), Gemeinschaftslabor für Nanoanalytik, 76021 Karlsruhe (Germany)

    2014-05-14T23:59:59.000Z

    Environmentally driven aging effects play a crucial role in thin-film solar cells based on Cu(In,Ga)(S,Se){sub 2}, both for long-term stability and short air exposure during production. For a better understanding of such effects, Cu(In,Ga)(S,Se){sub 2} absorber surfaces were investigated by x-ray photoelectron and Auger electron spectroscopy after exposure to different environmental conditions. Identical absorbers were stored in a nitrogen atmosphere, in damp heat, and under ambient conditions for up to 14 days. We find varying degrees of diffusion of sulfur, copper, and sodium towards the surface, with potential impact on the electronic surface structure (band gap) and the properties of the interface to a buffer layer in a solar cell device. Furthermore, we observe an oxidation (in decreasing order) of indium, copper, and selenium (but no oxidation of sulfur). And finally, varying amounts of carbon- and oxygen-containing adsorbates are found. In particular, the findings suggest that, for ambient air exposure, sodium carbonate is formed at the surface.

  12. Biomimetic thin film deposition

    SciTech Connect (OSTI)

    Rieke, P.R.; Graff, G.E.; Campbell, A.A.; Bunker, B.C.; Baskaran, S.; Song, L.; Tarasevich, B.J.; Fryxell, G.E.

    1995-09-01T23:59:59.000Z

    Biological mineral deposition for the formation of bone, mollusk shell and other hard tissues provides materials scientists with illustrative materials processing strategies. This presentation will review the key features of biomineralization and how these features can be of technical importance. We have adapted existing knowledge of biomineralization to develop a unique method of depositing inorganic thin films and coating. Our approach to thin film deposition is to modify substrate surfaces to imitate the proteins found in nature that are responsible for controlling mineral deposition. These biomimetic surfaces control the nucleation and growth of the mineral from a supersaturated aqueous solution. This has many processing advantages including simple processing equipment, environmentally benign reagents, uniform coating of highly complex shapes, and enhanced adherence of coating. Many different types of metal oxide, hydroxide, sulfide and phosphate materials with useful mechanical, optical, electronic and biomedical properties can be deposited.

  13. Thin film composite electrolyte

    DOE Patents [OSTI]

    Schucker, Robert C. (The Woodlands, TX)

    2007-08-14T23:59:59.000Z

    The invention is a thin film composite solid (and a means for making such) suitable for use as an electrolyte, having a first layer of a dense, non-porous conductive material; a second layer of a porous ionic conductive material; and a third layer of a dense non-porous conductive material, wherein the second layer has a Coefficient of thermal expansion within 5% of the coefficient of thermal expansion of the first and third layers.

  14. abrasion-resistant thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

  15. al-cu-fe thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

  16. alendronate-hydroxyapatite thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

  17. ag-in-se thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

  18. Arizona: Solar Panels Replace Inefficient Fossil Fuel-Powered...

    Energy Savers [EERE]

    Arizona: Solar Panels Replace Inefficient Fossil Fuel-Powered Energy Systems Arizona: Solar Panels Replace Inefficient Fossil Fuel-Powered Energy Systems May 1, 2014 - 9:33am...

  19. Design and Analysis of Cooling Methods for Solar Panels.

    E-Print Network [OSTI]

    Palumbo, Adam M

    2013-01-01T23:59:59.000Z

    ??As the future progresses, many companies and industries are striving to achieve a "greener" approach to energy production by using solar energy. Solar panels that… (more)

  20. Effects of solar photovoltaic panels on roof heat transfer

    E-Print Network [OSTI]

    Dominguez, Anthony; Kleissl, Jan; Luvall, Jeffrey C

    2011-01-01T23:59:59.000Z

    the energy performance of  photovoltaic roofs, ASHRAE Trans A thermal model for photovoltaic systems, Solar Energy, Effects of Solar Photovoltaic Panels on Roof Heat Transfer 

  1. Apparatus for forming thin-film heterojunction solar cells employing materials selected from the class of I-III-VI.sub.2 chalcopyrite compounds

    DOE Patents [OSTI]

    Mickelsen, Reid A. (Bellevue, WA); Chen, Wen S. (Seattle, WA)

    1983-01-01T23:59:59.000Z

    Apparatus for forming thin-film, large area solar cells having a relatively high light-to-electrical energy conversion efficiency and characterized in that the cell comprises a p-n-type heterojunction formed of: (i) a first semiconductor layer comprising a photovoltaic active material selected from the class of I-III-VI.sub.2 chalcopyrite ternary materials which is vacuum deposited in a thin "composition-graded" layer ranging from on the order of about 2.5 microns to about 5.0 microns (.congruent.2.5 .mu.m to .congruent.5.0 .mu.m) and wherein the lower region of the photovoltaic active material preferably comprises a low resistivity region of p-type semiconductor material having a superimposed region of relatively high resistivity, transient n-type semiconductor material defining a transient p-n homojunction; and (ii), a second semiconductor layer comprising a low resistivity n-type semiconductor material wherein interdiffusion (a) between the elemental constituents of the two discrete juxtaposed regions of the first semiconductor layer defining a transient p-n homojunction layer, and (b) between the transient n-type material in the first semiconductor layer and the second n-type semiconductor layer, causes the transient n-type material in the first semiconductor layer to evolve into p-type material, thereby defining a thin layer heterojunction device characterized by the absence of voids, vacancies and nodules which tend to reduce the energy conversion efficiency of the system.

  2. EXPERIMENTAL TESTING OF TWO SOLAR PANEL SIMULATIONS Krisztina Leban

    E-Print Network [OSTI]

    Ritchie, Ewen

    EXPERIMENTAL TESTING OF TWO SOLAR PANEL SIMULATIONS Krisztina Leban Institute of Energy Technology solar panel for varying temperature and irradiance. Final validation was done by comparing experimental are a renewable, non-polluting source of energy that are increasingly used for hybrid (solar panels and grid

  3. Peer Effects in the Diffusion of Solar Photovoltaic Panels

    E-Print Network [OSTI]

    Lee, Daeyeol

    Peer Effects in the Diffusion of Solar Photovoltaic Panels Bryan Bollinger NYU Stern School base of consumers in the reference group. We study the diffusion of solar photovoltaic panels of an environmentally beneficial technology, solar photovoltaic (PV) panels. Policymakers are particularly interested

  4. NO. REV. MO EASEP SOLAR PANEL OCCULTAT ION

    E-Print Network [OSTI]

    Rathbun, Julie A.

    ., : :. I · ' NO. REV. MO· EATM-59 EASEP SOLAR PANEL OCCULTAT ION PAGE l OF 9 DATE 24 Feb 1969 ()i~ ~ .I /1'1 . ! I Prepared by:~ ~Wallack . 11 ''--'/ ~~~ #12;: : .. EASEP SOLAR PANEL OCCULTATION. EATM-59 PAGE 2 OF 9 DATE 24 Feb I969 #12;NO. RIV. NO. : : .~ EASEP Solar Panel Occultation EATM-59 PAGI

  5. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); Hoffheins, Barbara S. (Knoxville, TN); Fleming, Pamela H. (Oak Ridge, TN)

    1994-01-01T23:59:59.000Z

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed.

  6. Guided optical modes in randomly textured ZnO thin films imaged by near-field scanning optical K. Bittkau* and R. Carius

    E-Print Network [OSTI]

    Peinke, Joachim

    relevance. In particular, when designing thin-film solar cells and light emitting diodes LEDs , ran- domly

  7. Annealed CVD molybdenum thin film surface

    DOE Patents [OSTI]

    Carver, Gary E. (Tucson, AZ); Seraphin, Bernhard O. (Tucson, AZ)

    1984-01-01T23:59:59.000Z

    Molybdenum thin films deposited by pyrolytic decomposition of Mo(CO).sub.6 attain, after anneal in a reducing atmosphere at temperatures greater than 700.degree. C., infrared reflectance values greater than reflectance of supersmooth bulk molybdenum. Black molybdenum films deposited under oxidizing conditions and annealed, when covered with an anti-reflecting coating, approach the ideal solar collector characteristic of visible light absorber and infrared energy reflector.

  8. Thin film ion conducting coating

    DOE Patents [OSTI]

    Goldner, Ronald B. (Lexington, MA); Haas, Terry (Sudbury, MA); Wong, Kwok-Keung (Watertown, MA); Seward, George (Arlington, MA)

    1989-01-01T23:59:59.000Z

    Durable thin film ion conducting coatings are formed on a transparent glass substrate by the controlled deposition of the mixed oxides of lithium:tantalum or lithium:niobium. The coatings provide durable ion transport sources for thin film solid state storage batteries and electrochromic energy conservation devices.

  9. Effects of solar photovoltaic panels on roof heat transfer

    E-Print Network [OSTI]

    Dominguez, Anthony; Kleissl, Jan; Luvall, Jeffrey C

    2011-01-01T23:59:59.000Z

    Itron Inc. , CPUC California Solar Initiative 2009 Impact hot  days found by the California Solar Initiative impact solar photovoltaic (PV) panels were conducted in  San Diego, California.  

  10. Correlations of Capacitance-Voltage Hysteresis with Thin-Film CdTe Solar Cell Performance During Accelerated Lifetime Testing

    SciTech Connect (OSTI)

    Albin, D.; del Cueto, J.

    2011-03-01T23:59:59.000Z

    In this paper we present the correlation of CdTe solar cell performance with capacitance-voltage hysteresis, defined presently as the difference in capacitance measured at zero-volt bias when collecting such data with different pre-measurement bias conditions. These correlations were obtained on CdTe cells stressed under conditions of 1-sun illumination, open-circuit bias, and an acceleration temperature of approximately 100 degrees C.

  11. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Lauf, R.J.; Hoffheins, B.S.; Fleming, P.H.

    1994-11-22T23:59:59.000Z

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed. 6 figs.

  12. Black Silicon Solar Thin-film Microcells Integrating Top Nanocone Structures for Broadband and Omnidirectional Light-Trapping

    E-Print Network [OSTI]

    Xu, Zhida; Brueckner, Eric P; Li, Lanfang; Jiang, Jing; Nuzzo, Ralph G; Liu, Gang L

    2014-01-01T23:59:59.000Z

    Recently developed classes of monocrystalline silicon solar microcells (u-cell) can be assembled into modules with characteristics (i.e., mechanically flexible forms, compact concentrator designs, and high-voltage outputs) that would be impossible to achieve using conventional, wafer-based approaches. In this paper, we describe a highly dense, uniform and non-periodic nanocone forest structure of black silicon (bSi) created on optically-thin (30 um) u-cells for broadband and omnidirectional light-trapping with a lithography-free and high-throughput plasma texturizing process. With optimized plasma etching conditions and a silicon nitride passivation layer, black silicon u-cells, when embedded in a polymer waveguiding layer, display dramatic increases of as much as 65.7% in short circuit current, as compared to a bare silicon device. The conversion efficiency increases from 8% to 11.5% with a small drop in open circuit voltage and fill factor.

  13. Molecular beam epitaxy-grown wurtzite MgS thin films for solar-blind ultra-violet detection

    SciTech Connect (OSTI)

    Lai, Y. H.; He, Q. L. [Nano Science and Nano Technology Program, The Hong Kong University of Science and Technology, HKSAR, People's Republic of China (China) [Nano Science and Nano Technology Program, The Hong Kong University of Science and Technology, HKSAR, People's Republic of China (China); Department of Physics and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, HKSAR, People's Republic of China (China); Cheung, W. Y.; Lok, S. K.; Wong, K. S.; Sou, I. K. [Department of Physics and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, HKSAR, People's Republic of China (China)] [Department of Physics and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, HKSAR, People's Republic of China (China); Ho, S. K. [Faculty of Science and Technology, University of Macau, Macau, People's Republic of China (China)] [Faculty of Science and Technology, University of Macau, Macau, People's Republic of China (China); Tam, K. W. [Department of Electrical and Electronics Engineering, University of Macau, Macau, People's Republic of China (China)] [Department of Electrical and Electronics Engineering, University of Macau, Macau, People's Republic of China (China)

    2013-04-29T23:59:59.000Z

    Molecular beam epitaxy grown MgS on GaAs(111)B substrate was resulted in wurtzite phase, as demonstrated by detailed structural characterizations. Phenomenological arguments were used to account for why wurtzite phase is preferred over zincblende phase or its most stable rocksalt phase. Results of photoresponse and reflectance measurements performed on wurtzite MgS photodiodes suggest a direct bandgap at around 5.1 eV. Their response peaks at 245 nm with quantum efficiency of 9.9% and enjoys rejection of more than three orders at 320 nm and close to five orders at longer wavelengths, proving the photodiodes highly competitive in solar-blind ultraviolet detection.

  14. The Protocol Of KFM Characterization On Cross-section Of CdS/CdTe Thin Film Solar Cell

    SciTech Connect (OSTI)

    You, L. [CEA - LETI, MINATEC Campus, 17 rue des Martyrs - 38054 Grenoble Cedex 9 (France); LTM-CNRS, 17, rue des Martyrs, F38054 Grenoble Cedex 9 (France); Chevalier, N.; Bernardi, S.; Martinez, E.; Mariolle, D.; Feuillet, G.; Chabli, A.; Bertin, F. [CEA - LETI, MINATEC Campus, 17 rue des Martyrs - 38054 Grenoble Cedex 9 (France); Kogelschatz, M. [LTM-CNRS, 17, rue des Martyrs, F38054 Grenoble Cedex 9 (France); Bremond, G. [Universite de Lyon, Institut des Nanotechnologies de Lyon (INL), CNRS UMR-5270, INSA-LYON, 7 Avenue Jean Capelle, Bat. Blaise Pascal, F69621 Villeurbanne Cedex (France)

    2011-11-10T23:59:59.000Z

    In this work, we report a series of Kelvin Force Microscopy (KFM) measurements, suitable to observe the topography and the contact potential difference (CPD) distribution of the following stack: CdTe/CdS/ITO/glass. The sample is prepared by mechanical polishing after cleavage to decrease the roughness. In order to have a better understanding of the charge transport inside the solar cell and to vary the Fermi level pinning effect, different bias are applied to the sample. The CPD variations with different bias on cross-section in dark condition are presented. We observe the reverse bias widens the CdTe/CdS depletion region. Under illumination, electron and holes are generated near the interface and varies the CPD distribution. Additionally, the chemical composition of each layer has been investigated by nano-Auger electron spectroscopy (AES). We observe the interdiffusion at the CdTe/CdS interface and determine the composition of the active layers to be CdTe/CdS{sub 0.7}Te{sub 0.3}.

  15. Amorphous thin films for solar-cell applications. Technical progress report, 11 October 1980 to 15 January 1981

    SciTech Connect (OSTI)

    Jonath, A.D.; Anderson, W.W.; Crowley, J.L.; MacMillan H.F. Jr.; Thornton, J.A.

    1981-02-20T23:59:59.000Z

    Progress has been ahead of planned expectations in three instances: (a) achievement of 4 mA/cm/sup 2/, short circuit current density in a MIS structure solar cell under AM1 illumination; (b) fabrication of large area (4 cm/sup 2/) MIS cells with external J/sub sc/ > 3 mA/cm/sup 2/; and (c) deposition of p/sup +/ layers by B/sub 2/H/sub 6/ gas phase doping. A program status table is included. Reproducible n layers are now routinely deposited by sputtering in Ar, H/sub 2/, and PH/sub 3/ gases. The major remaining obstacle to the goal of a 3.5% cell is the deposition of a quality i-layer. Although information deduced from infrared absorption and Raman data indicates that most of the hydrogen is bonded in the SiH configuration, the photoconductivity of the intrinsic material requires marked improvement. Two forms of magnetron sputtering, planar and cylindrical, are being exploited. The planar deposition system has the advantage that experimental costs are low; the cylindrical system is easily scalable to large product throughput. Schematic illustrations of the two systems and descriptions of apparatus modifications incorporated are included.

  16. Core-Shell Nanopillar Array Solar Cells using Cadmium Sulfide Coating on Indium Phosphide Nanopillars

    E-Print Network [OSTI]

    Tu, Bor-An Clayton

    2013-01-01T23:59:59.000Z

    Monocrystalline silicon solar cells, polycrystalline silicon solar cells, and amorphous silicon (thin-film) solar

  17. Solar Energy Materials & Solar Cells 91 (2007) 17261732 Optical and structural properties of Ta2O5CeO2 thin films

    E-Print Network [OSTI]

    Thirumalai, Devarajan

    Solar Energy Materials & Solar Cells 91 (2007) 1726­1732 Optical and structural properties of Ta2O5

  18. Vertically Aligned Nanocomposite Thin Films

    E-Print Network [OSTI]

    Bi, Zhenxing

    2012-07-16T23:59:59.000Z

    and epitaxial growth ability on given substrates. In the present work, we investigated unique epitaxial two-phase VAN (BiFeO3)x:(Sm2O3)1-x and (La0.7Sr0.3MnO3)x:(Mn3O4)1-x thin film systems by pulsed laser deposition. These VAN thin films exhibit a highly...

  19. Method of improving field emission characteristics of diamond thin films

    DOE Patents [OSTI]

    Krauss, Alan R. (Naperville, IL); Gruen, Dieter M. (Downer Grove, IL)

    1999-01-01T23:59:59.000Z

    A method of preparing diamond thin films with improved field emission properties. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display.

  20. Method of improving field emission characteristics of diamond thin films

    DOE Patents [OSTI]

    Krauss, A.R.; Gruen, D.M.

    1999-05-11T23:59:59.000Z

    A method of preparing diamond thin films with improved field emission properties is disclosed. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display. 3 figs.

  1. Canadian Solar Road Panel Design: A Structural and Environmental Analysis.

    E-Print Network [OSTI]

    Northmore, Andrew

    2014-01-01T23:59:59.000Z

    ??Solar road panels are a technology that have the ability to revolutionize the way that roads are built and how electricity is generated. Strong incentives… (more)

  2. Experimental investigation of wind effect on solar panels.

    E-Print Network [OSTI]

    Abiola-Ogedengbe, Ayodeji

    2013-01-01T23:59:59.000Z

    ??Photovoltaic Solar Panels for electricity generation are outdoor low-rise structures that are vulnerable to damage by the wind. The existing building codes do not contain… (more)

  3. "PBS NEWSHOUR" covers new technique that may make solar panel...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientists have developed a more efficient method of creating the material that makes solar panels work, according to a report published this week, which researchers say could...

  4. City and County of Denver- Solar Panel Permitting (Colorado)

    Broader source: Energy.gov [DOE]

    Construction, Electrical, Plumbing and Zoning Permits* are required for Photovoltaic (PV) systems installed in the city of Denver. Denver provides same day permit review for most solar panel...

  5. Solar panels as cosmic-ray detectors

    E-Print Network [OSTI]

    Stella, Carlo; Assis, Pedro; Brogueira, Pedro; Santo, Catarina Espirito; Goncalves, Patricia; Pimenta, Mario; De Angelis, Alessandro

    2014-01-01T23:59:59.000Z

    Due to fundamental limitations of accelerators, only cosmic rays can give access to centre-of- mass energies more than one order of magnitude above those reached at the LHC. In fact, extreme energy cosmic rays (1018 eV - 1020 eV) are the only possibility to explore the 100 TeV energy scale in the years to come. This leap by one order of magnitude gives a unique way to open new horizons: new families of particles, new physics scales, in-depth investigations of the Lorentz symmetries. However, the flux of cosmic rays decreases rapidly, being less than one particle per square kilometer per year above 1019 eV: one needs to sample large surfaces. A way to develop large-effective area, low cost, detectors, is to build a solar panel-based device which can be used in parallel for power generation and Cherenkov light detection. Using solar panels for Cherenkov light detection would combine power generation and a non-standard detection device.

  6. Dynamic instabilities imparted by CubeSat deployable solar panels

    E-Print Network [OSTI]

    Peters, Eric David

    2014-01-01T23:59:59.000Z

    In this work, multibody dynamics simulation was used to investigate the effects of solar panel deployment on CubeSat attitude dynamics. Nominal and partial/asymmetric deployments were simulated for four different solar ...

  7. Joint Development of Coated Conductor and Low Cost Thin Film Solar Cells: Cooperative Research and Development Final Report, CRADA Number CRD-007-213

    SciTech Connect (OSTI)

    Bhattacharya, R.

    2011-02-01T23:59:59.000Z

    UES plans on developing CIGS thin films by using Metal Organic Deposition (MOD) technique as it is a low-cost, non-vacuum method for scale-up to large area PV modules. NREL will support UES, Inc. through expert processing, characterization and device fabrication. NREL scientists will also help develop a processing phase diagram which includes composition, film thickness, annealing temperature and ambient conditions. Routine measurements of devices and materials will be done under NREL's core support project.

  8. Solar Energy Materials & Solar Cells 92 (2008) 821829 Modeling the optical properties of WO3 and WO3SiO2 thin films

    E-Print Network [OSTI]

    Thirumalai, Devarajan

    Solar Energy Materials & Solar Cells 92 (2008) 821­829 Modeling the optical properties of WO3 the optical response of the films in the near-UV and visible region: two interband transitions for energies E

  9. Epitaxial Thin Film XRD | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial Thin Film XRD Epitaxial Thin Film XRD Systems

  10. Semiconductor-nanocrystal/conjugated polymer thin films

    DOE Patents [OSTI]

    Alivisatos, A. Paul (Oakland, CA); Dittmer, Janke J. (Munich, DE); Huynh, Wendy U. (Munich, DE); Milliron, Delia (Berkeley, CA)

    2010-08-17T23:59:59.000Z

    The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

  11. The reversal of the laser-beam-induced-current contrast with varying illumination density in a Cu{sub 2}ZnSnSe{sub 4} thin-film solar cell

    SciTech Connect (OSTI)

    Chen, Qiong; Zhang, Yong, E-mail: yong.zhang@uncc.edu [Department of Electrical and Computer Engineering, and Energy Production and Infrastructure Center (EPIC), The University of North Carolina at Charlotte, Charlotte, North Carolina 28223 (United States)] [Department of Electrical and Computer Engineering, and Energy Production and Infrastructure Center (EPIC), The University of North Carolina at Charlotte, Charlotte, North Carolina 28223 (United States)

    2013-12-09T23:59:59.000Z

    We apply an array of correlated spatially-resolved techniques, including ?-Raman/photoluminescence/reflectance/laser-beam-induced-current in conjunction with scanning electron microscopy and atomic force microscopy, to study the impact of the microscopic-scale thickness inhomogeneity of CdS layer in a Cu{sub 2}ZnSnSe{sub 4} thin-film solar cell. Thicker CdS regions are found to cause more light reflecting loss thus yield lower external quantum efficiencies and energy conversion efficiencies than the general area. However, these regions show much less efficiency degradation at high illumination intensity, leading to an inversion of laser-beam-induced-current contrast in the area mapping. While improving the CdS layer uniformity can boost the device performance, the finding further points out the possibility of operating thin-film photovoltaic devices based on the similar materials (such as CuInGaSe{sub 2}, CdTe, Cu{sub 2}ZnSn(S,Se){sub 4}) under a substantially higher illumination density for concentrated photovoltaic and photo-detection.

  12. Fabrication of polycrystalline thin films by pulsed laser processing

    DOE Patents [OSTI]

    Mitlitsky, F.; Truher, J.B.; Kaschmitter, J.L.; Colella, N.J.

    1998-02-03T23:59:59.000Z

    A method is disclosed for fabricating polycrystalline thin films on low-temperature (or high-temperature) substrates which uses processing temperatures that are low enough to avoid damage to the substrate, and then transiently heating select layers of the thin films with at least one pulse of a laser or other homogenized beam source. The pulse length is selected so that the layers of interest are transiently heated to a temperature which allows recrystallization and/or dopant activation while maintaining the substrate at a temperature which is sufficiently low to avoid damage to the substrate. This method is particularly applicable in the fabrication of solar cells. 1 fig.

  13. Fabrication of polycrystalline thin films by pulsed laser processing

    DOE Patents [OSTI]

    Mitlitsky, Fred (Livermore, CA); Truher, Joel B. (San Rafael, CA); Kaschmitter, James L. (Pleasanton, CA); Colella, Nicholas J. (Livermore, CA)

    1998-02-03T23:59:59.000Z

    A method for fabricating polycrystalline thin films on low-temperature (or high-temperature) substrates which uses processing temperatures that are low enough to avoid damage to the substrate, and then transiently heating select layers of the thin films with at least one pulse of a laser or other homogenized beam source. The pulse length is selected so that the layers of interest are transiently heated to a temperature which allows recrystallization and/or dopant activation while maintaining the substrate at a temperature which is sufficiently low to avoid damage to the substrate. This method is particularly applicable in the fabrication of solar cells.

  14. Optimization on Solar Panels: Finding the Optimal Output Brian Y. Lu

    E-Print Network [OSTI]

    Lavaei, Javad

    Optimization on Solar Panels: Finding the Optimal Output Brian Y. Lu January 1, 2013 1 Introduction of solar panel: Routing the configuration between solar cells with a switch matrix. However, their result models and control policies for the optimal output of solar panels. The smallest unit on a solar panel

  15. Thin film polymeric gel electrolytes

    DOE Patents [OSTI]

    Derzon, Dora K. (1554 Rosalba St. NE., Albuquerque, Bernalillo County, NM 87112); Arnold, Jr., Charles (3436 Tahoe, NE., Albuquerque, Bernalillo County, NM 87111); Delnick, Frank M. (9700 Fleming Rd., Dexter, MI 48130)

    1996-01-01T23:59:59.000Z

    Novel hybrid thin film electrolyte, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities .apprxeq.10.sup.-3 .OMEGA..sup.-1 cm.sup.-1 are useful as electrolytes for rechargeable lithium batteries.

  16. Thin film polymeric gel electrolytes

    DOE Patents [OSTI]

    Derzon, D.K.; Arnold, C. Jr.; Delnick, F.M.

    1996-12-31T23:59:59.000Z

    Novel hybrid thin film electrolytes, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities {approx_equal}10{sup {minus}3}{Omega}{sup {minus}1} cm{sup {minus}1} are useful as electrolytes for rechargeable lithium batteries. 1 fig.

  17. Thin film photovoltaic cells

    DOE Patents [OSTI]

    Rothwarf, Allen (Philadelphia, PA)

    1981-01-01T23:59:59.000Z

    A solar cell has as its transparent electrical contact a grid made from a non-noble metal by providing a layer of copper oxide between the transparent electrical contact and the absorber-generator.

  18. TI--CR--AL--O thin film resistors

    DOE Patents [OSTI]

    Jankowski, Alan F. (Livermore, CA); Schmid, Anthony P. (Solana Beach, CA)

    2000-01-01T23:59:59.000Z

    Thin films of Ti--Cr--Al--O are used as a resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O.sub.2. Resistivity values from 10.sup.4 to 10.sup.10 Ohm-cm have been measured for Ti--Cr--Al--O film <1 .mu.m thick. The film resistivity can be discretely selected through control of the target composition and the deposition parameters. The application of Ti--Cr--Al--O as a thin film resistor has been found to be thermodynamically stable, unlike other metal-oxide films. The Ti--Cr--Al--O film can be used as a vertical or lateral resistor, for example, as a layer beneath a field emission cathode in a flat panel display; or used to control surface emissivity, for example, as a coating on an insulating material such as vertical wall supports in flat panel displays.

  19. Black Silicon Enhanced Thin Film Silicon Photovoltaic Devices

    SciTech Connect (OSTI)

    Martin U. Pralle; James E. Carey

    2010-07-31T23:59:59.000Z

    SiOnyx has developed an enhanced thin film silicon photovoltaic device with improved efficiency. Thin film silicon solar cells suffer from low material absorption characteristics resulting in poor cell efficiencies. SiOnyx’s approach leverages Black Silicon, an advanced material fabricated using ultrafast lasers. The laser treated films show dramatic enhancement in optical absorption with measured values in excess of 90% in the visible spectrum and well over 50% in the near infrared spectrum. Thin film Black Silicon solar cells demonstrate 25% higher current generation with almost no impact on open circuit voltage as compared with representative control samples. The initial prototypes demonstrated an improvement of nearly 2 percentage points in the suns Voc efficiency measurement. In addition we validated the capability to scale this processing technology to the throughputs (< 5 min/m2) required for volume production using state of the art commercially available high power industrial lasers. With these results we clearly demonstrate feasibility for the enhancement of thin film solar cells with this laser processing technique.

  20. Core-Shell Nanopillar Array Solar Cells using Cadmium Sulfide Coating on Indium Phosphide Nanopillars

    E-Print Network [OSTI]

    Tu, Bor-An Clayton

    2013-01-01T23:59:59.000Z

    Monocrystalline silicon solar cells, polycrystalline silicon solar cells, and amorphous silicon (thin-film)

  1. Arkansas Students Get Their Hands Dirty in Solar Panel Project...

    Broader source: Energy.gov (indexed) [DOE]

    at-risk youth graduate from high school. "Having been in the military and stationed in Germany, I saw a magazine article about German farmers who install solar panels on the...

  2. Polymeric precursor derived nanocrystalline ZnO thin films using EDTA as chelating agent

    E-Print Network [OSTI]

    Mohanty, Saraju P.

    properties, ZnO has plausible electro-optical applications, such as, solar cells [1, 2], light- emitting diodes [3, 4], UV lasers [5], thin film transistors [6,7], and UV photodetectors [8]. Besides

  3. Lateral heterojunction photodetector consisting of molecular organic and colloidal quantum dot thin films

    E-Print Network [OSTI]

    exception being the dye- sensitized solar cell.3 Owing to its unique geometry, the present device also and that is sensitized across visible wavelengths by a thin film of colloidal CdSe nanocrystal quantum dots QDs . High

  4. MELT-MEDIATED LASER CRYSTALLIZATION OF THIN FILM NITI SHAPE MEMORY ALLOYS

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    matrix displays (e.g. LCD and OLED) as well as the active medium in thin film solar cells [4 of furnace, solid phase crystallization parameters (i.e. annealing temperature and dwell time

  5. Structural, optical and photocatalytic properties of ZnO thin films and

    E-Print Network [OSTI]

    emitting diodes, gas sensors and transparent conducting thin films for solar cells. In this work, Zn an electronic furnace. Fig. 1. Grain size (black) and RMS variations (blue) of 1-6 layered ZnO films vs

  6. anti-reflective thin film: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mailoa, Jonathan P 2012-01-01 3 Technological assessment of light-trapping technology for thin-film Si solar cell MIT - DSpace Summary: The proposed light trapping technology of...

  7. Defect engineering of cuprous oxide thin-films for photovoltaic applications

    E-Print Network [OSTI]

    Lee, Yun Seog

    2013-01-01T23:59:59.000Z

    Thin-film solar cells are promising for renewable-energy applications due to their low material usage and inexpensive manufacturing potential, making them compatible with terawatts-level deployment. Cuprous oxide (Cu?O) ...

  8. Influence of different sulfur to selenium ratios on the structural and electronic properties of Cu(In,Ga)(S,Se){sub 2} thin films and solar cells formed by the stacked elemental layer process

    SciTech Connect (OSTI)

    Mueller, B. J., E-mail: bjm.mueller@web.de [Robert Bosch GmbH, Corporate Research and Advance Engineering, Advanced Functional Materials and Microsystems, D-70839 Gerlingen (Germany); Institute of Micro- and Nanomaterials, University of Ulm, D-89081 Ulm (Germany); Zimmermann, C.; Haug, V., E-mail: veronika.haug@de.bosch.com; Koehler, T.; Zweigart, S. [Robert Bosch GmbH, Corporate Research and Advance Engineering, Advanced Functional Materials and Microsystems, D-70839 Gerlingen (Germany); Hergert, F. [Bosch Solar CISTech GmbH, D-14772 Brandenburg (Germany); Herr, U., E-mail: ulrich.herr@uni-ulm.de [Institute of Micro- and Nanomaterials, University of Ulm, D-89081 Ulm (Germany)

    2014-11-07T23:59:59.000Z

    In this study, we investigate the effect of different elemental selenium to elemental sulfur ratios on the chalcopyrite phase formation in Cu(In,Ga)(S,Se){sub 2} thin films. The films are formed by the stacked elemental layer process. The structural and electronic properties of the thin films and solar cells are analyzed by means of scanning electron microscopy, glow discharge optical emission spectrometry, X-ray diffraction, X-ray fluorescence, Raman spectroscopy, spectral photoluminescence as well as current-voltage, and quantum efficiency measurements. The influence of different S/(S+Se) ratios on the anion incorporation and on the Ga/In distribution is investigated. We find a homogenous sulfur concentration profile inside the film from the top surface to the bottom. External quantum efficiency measurements show that the band edge of the solar cell device is shifted to shorter wavelength, which enhances the open-circuit voltages. The relative increase of the open-circuit voltage with S/(S+Se) ratio is lower than expected from the band gap energy trend, which is attributed to the presence of S-induced defects. We also observe a linear decrease of the short-circuit current density with increasing S/(S+Se) ratio which can be explained by a reduced absorption. Above a critical S/(S+Se) ratio of around 0.61, the fill factor drops drastically, which is accompanied by a strong series resistance increase which may be attributed to changes in the back contact or p-n junction properties.

  9. The research field of thin-film photovoltaics of the department of energy-and semiconductor research (EHF) of the institute of physics at the Carl-von-Ossietzky University of Oldenburg

    E-Print Network [OSTI]

    Peinke, Joachim

    The research field of thin-film photovoltaics of the department of energy- and semiconductor and calibration of an optical simulation for thin-film solar cells In recent years, the photovoltaic has become is necessary to let photovoltaic remain economical attractive. Thin-film solar cells on basis of Cu(In,Ga)Se2

  10. Bonded Bracket Assmebly for Frameless Solar Panels

    SciTech Connect (OSTI)

    Murray, Todd

    2013-01-30T23:59:59.000Z

    In February 2011 the US Department of Energy announced their new Sunshot Initiative. The Sunshot goal is to reduce the total cost of solar energy systems by about 75 percent before the end of the decade. The DOE estimated that a total installed cost of $1 per watt for photovoltaic systems would be equivalent to 6���¢/kilowatt hour (kWh) for energy available from the grid. The DOE also estimated that to meet the $1 per watt goal, PV module costs would need to be reduced to $.50 per watt, balance of systems costs would need to be reduced to $.40 per watt, and power electronic costs would need to reach $.10 per watt. To address the BOS balance of systems cost component of the $1 per watt goal, the DOE announced a funding opportunity called (BOS-X) Extreme Balance of System Hardware Cost Reductions. The DOE identified eight areas within the total BOS costs: 1) installation labor, 2) installation materials, 3) installation overhead and profit, 4) tracker, 5) permitting and commissioning, 6) site preparation, 7) land acquisition, 8) sales tax. The BOS-X funding announcement requested applications in four specific topics: Topic 1: Transformational Building Integrated Photovoltaic (BIPV) Modules Topic 2: Roof and Ground Mount Innovations Topic 3: Transformational Photovoltaic System Designs Topic 4: Development of New Wind Load Codes for PV Systems The application submitted by ARaymond Tinnerman reflected the requirements listed in Topic #2, Roof and Ground Mount Innovations. The goal of topic #2 was to develop technologies that would result in the extreme reduction of material and labor costs associated with applications that require physical connections and attachments to roof and ground mount structures. The topics researched in this project included component cost reduction, labor reduction, weight reduction, wiring innovations, and alternative material utilization. The project objectives included: 1) The development of an innovative quick snap bracket assembly that would be bonded to frameless PV modules for commercial rooftop installations. 2) The development of a composite pultruded rail to replace traditional racking materials. 3) In partnership with a roofing company, pilot the certification of a commercial roof to be solar panel compliant, eliminating the need for structural analysis and government oversight resulting in significantly decreased permitting costs. 4) Reduce the sum of all cost impacts in topic #2 from a baseline total of $2.05/watt to $.34/watt.

  11. Investigation of Solar Energy Transfer through Plasmonic Au Nanoparticle-doped Sol-derived TiO? Thin Films in Photocatalysis and Photovoltaics /

    E-Print Network [OSTI]

    Zelinski, Andrew

    2013-01-01T23:59:59.000Z

    SAN DIEGO Investigation of Solar Energy Transfer through20 Solar Energy Conversion ThroughOF THE THESIS Investigation of Solar Energy Transfer through

  12. Lunar Rover Solar Panel MountTeam Members: Tian Le, Tudor Boiangiu, Jeremy Chan, James Haensel To develop a mechanized mount for a solar panel to

    E-Print Network [OSTI]

    Lunar Rover Solar Panel MountTeam Members: Tian Le, Tudor Boiangiu, Jeremy Chan, James Haensel To develop a mechanized mount for a solar panel to be mounted on a lunar rover. Must be: · capable of orienting panel towards sun · reside on mast extending vertically from rover · capable of unfurling solar

  13. Thin films of mixed metal compounds

    DOE Patents [OSTI]

    Mickelsen, R.A.; Chen, W.S.

    1985-06-11T23:59:59.000Z

    Disclosed is a thin film heterojunction solar cell, said heterojunction comprising a p-type I-III-IV[sub 2] chalcopyrite substrate and an overlying layer of an n-type ternary mixed metal compound wherein said ternary mixed metal compound is applied to said substrate by introducing the vapor of a first metal compound to a vessel containing said substrate from a first vapor source while simultaneously introducing a vapor of a second metal compound from a second vapor source of said vessel, said first and second metals comprising the metal components of said mixed metal compound; independently controlling the vaporization rate of said first and second vapor sources; reducing the mean free path between vapor particles in said vessel, said gas being present in an amount sufficient to induce homogeneity of said vapor mixture; and depositing said mixed metal compound on said substrate in the form of a uniform composition polycrystalline mixed metal compound. 5 figs.

  14. Thin-film CdTe and CuInSe{sub 2} photovoltaic technologies

    SciTech Connect (OSTI)

    Ullal, H.S.; Zweibel, K.; von Roedern, B.G.

    1993-08-01T23:59:59.000Z

    Total-area conversion efficiency of 15%--15.8% have been achieved for thin-film CdTe and CIS solar cells. Modules with power output of 5--53 W have been demonstrated by several groups world-wide. Critical processes and reaction pathways for achieving excellent PV devices have been eluciated. Research, development and technical issues have been identified, which could result in potential improvements in device and module performance. A 1-kW thin-film CdTe array has been installed and is being tested. Multimegawatt thin-film CdTe manufacturing plants are expected to be completed in 1-2 years.

  15. Phase-change materials to improve solar panel's performance Pascal Biwole1,2,*

    E-Print Network [OSTI]

    -change materials to improve solar panel's performance Pascal Biwole1,2,* , Pierre Eclache3 , Frederic Kuznik3 1-mail:phbiwole@unice.fr Abstract: High operating temperatures induce a loss of efficiency in solar photovoltaic and thermal panels set-up. Results show that adding a PCM on the back of a solar panel can maintain the panel

  16. Project focus: Complete design of an interactive solar panel system to be situated on

    E-Print Network [OSTI]

    Project focus: · Complete design of an interactive solar panel system to be situated on top the effective area · Two types of solar cells: · 3 panel configurations: · Real-time power output data Si panels with 30.0o tilt c) 10 CdTe panels; 38.5o tilt · Solar insolation recorder, thermometer

  17. Swiss Federal Laboratories for Materials Science and Technology Advances in Thin Film PV: CIGS & CdTe

    E-Print Network [OSTI]

    Canet, Léonie

    and Photovoltaics Thin film solar cells based on compound semiconductor absorbers: CIGS and CdTe High efficiency and Photovoltaics Swiss Federal Laboratories for Material Science and Technology Key issues in high efficiency CIGSTe Laboratory for Thin Films and Photovoltaics Empa- Swiss Federal Laboratories for Material Science

  18. Method for formation of thin film transistors on plastic substrates

    DOE Patents [OSTI]

    Carey, Paul G. (Mountain View, CA); Smith, Patrick M. (San Ramon, CA); Sigmon, Thomas W. (Portola Valley, CA); Aceves, Randy C. (Livermore, CA)

    1998-10-06T23:59:59.000Z

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The process relies on techniques for depositing semiconductors, dielectrics, and metals at low temperatures; crystallizing and doping semiconductor layers in the TFT with a pulsed energy source; and creating top-gate self-aligned as well as back-gate TFT structures. The process enables the fabrication of amorphous and polycrystalline channel silicon TFTs at temperatures sufficiently low to prevent damage to plastic substrates. The process has use in large area low cost electronics, such as flat panel displays and portable electronics.

  19. Method for formation of thin film transistors on plastic substrates

    DOE Patents [OSTI]

    Carey, P.G.; Smith, P.M.; Sigmon, T.W.; Aceves, R.C.

    1998-10-06T23:59:59.000Z

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The process relies on techniques for depositing semiconductors, dielectrics, and metals at low temperatures; crystallizing and doping semiconductor layers in the TFT with a pulsed energy source; and creating top-gate self-aligned as well as back-gate TFT structures. The process enables the fabrication of amorphous and polycrystalline channel silicon TFTs at temperatures sufficiently low to prevent damage to plastic substrates. The process has use in large area low cost electronics, such as flat panel displays and portable electronics. 5 figs.

  20. STATEMENT OF CONSIDERATIONS REQUEST BY SHELL SOLAR INDUSTRIES...

    Broader source: Energy.gov (indexed) [DOE]

    to item 2 of SSI's waiver petition, the purpose of this subcontract encompasses thin film solar cell and module development including improved thin film module efficiencies,...

  1. Investigation of Solar Energy Transfer through Plasmonic Au Nanoparticle-doped Sol-derived TiO? Thin Films in Photocatalysis and Photovoltaics /

    E-Print Network [OSTI]

    Zelinski, Andrew

    2013-01-01T23:59:59.000Z

    Nanoparticles in Dye-Sensitized Solar Cells. ACS Nano. 2012,to the operation of a Dye-Sensitized solar cell. Figure 13:gas sensors, Dye Sensitized Solar Cells, and optical

  2. Thin film buried anode battery

    DOE Patents [OSTI]

    Lee, Se-Hee (Lakewood, CO); Tracy, C. Edwin (Golden, CO); Liu, Ping (Denver, CO)

    2009-12-15T23:59:59.000Z

    A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

  3. Thin-film Lithium Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 andThe1 MembersStability| EMSLforThin Thin-Film

  4. Evaluation of Wind Loads on Solar Panels.

    E-Print Network [OSTI]

    Barata, Johann

    2011-01-01T23:59:59.000Z

    ?? The current impetus for alternative energy sources is increasing the demand for solar energy technologies in Florida – the Sunshine State. Florida’s energy production… (more)

  5. Direct Measurement of Oxygen Incorporation into Thin Film Oxides...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement of Oxygen Incorporation into Thin Film Oxides at Room Temperature Upon Ultraviolet Phton Irradiation. Direct Measurement of Oxygen Incorporation into Thin Film Oxides...

  6. An Unconventional Route to High-Efficiency Dye-Sensitized Solar Cells via Embedding Graphitic Thin Films into TiO2 Nanoparticle

    E-Print Network [OSTI]

    Lin, Zhiqun

    An Unconventional Route to High-Efficiency Dye-Sensitized Solar Cells via Embedding Graphitic Thin into the conventional dye- sensitized solar cells (DSSCs), resulting in a remarkably improved cell efficiency due to its followed by direct carbonization. For dye-sensitized TiO2 based solar cells containing carbon/TiO2 thin

  7. Solar panels are cost intensive, have limitations with respect to

    E-Print Network [OSTI]

    Langendoen, Koen

    advantage of being able to convert sunlight into clean energy. After the glass is coated, we install clean electricity. Advantages · Building-integratable. · Contributes to EU targets towards energySolar panels are cost intensive, have limitations with respect to where they can be integrated

  8. BDS thin film damage competition

    SciTech Connect (OSTI)

    Stolz, C J; Thomas, M D; Griffin, A J

    2008-10-24T23:59:59.000Z

    A laser damage competition was held at the 2008 Boulder Damage Symposium in order to determine the current status of thin film laser resistance within the private, academic, and government sectors. This damage competition allows a direct comparison of the current state-of-the-art of high laser resistance coatings since they are all tested using the same damage test setup and the same protocol. A normal incidence high reflector multilayer coating was selected at a wavelength of 1064 nm. The substrates were provided by the submitters. A double blind test assured sample and submitter anonymity so only a summary of the results are presented here. In addition to the laser resistance results, details of deposition processes, coating materials, and layer count will also be shared.

  9. Solar Reflection Panels - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSite CulturalDepartment ofatRenewable EnergySolar Thermal Solar

  10. 11-level Cascaded H-bridge Grid-tied Inverter Interface with Solar Panels

    E-Print Network [OSTI]

    Tolbert, Leon M.

    11-level Cascaded H-bridge Grid-tied Inverter Interface with Solar Panels Faete Filho, Yue Cao multilevel DC-AC grid-tied inverter. Each inverter bridge is connected to a 200 W solar panel. OPAL-RT lab match. A novel SPWM scheme is proposed in this paper to be used with the solar panels that can account

  11. Plasmonic light trapping in thin-film Si solar cells This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Polman, Albert

    worldwide energy demand. Growth in installed solar power has been very large over the last few years, as new of energy. Reducing the overall cost per watt is thus one of the major challenges in solar cell research watt of sola

  12. Integrated All-silicon Thin-film Power Electronics on Flexible Sheets For Ubiquitous Wireless Charging Stations based on Solar-energy Harvesting

    E-Print Network [OSTI]

    the power inverter circuit. To generate an AC output current, the two solar modules (S1/2) are used to provide embedded power inversion, harvester control, and power amplification. This converts DC outputs from the solar modules to AC power for wireless device charging through patterned capacitive antennas

  13. Control of morphology for enhanced electronic transport in PECVD-grown a-Si : H Thin Films

    E-Print Network [OSTI]

    Castro Galnares, Sebastián

    2010-01-01T23:59:59.000Z

    Solar cells have become an increasingly viable alternative to traditional, pollution causing power generation methods. Although crystalline silicon (c-Si) modules make up most of the market, thin films such as hydrogenated ...

  14. Single crystal growth and heteroepitaxy of polyacene thin films on arbitrary substrates

    E-Print Network [OSTI]

    Headrick, Randall L.

    in a number of low-cost, large area electronic applications such as flat panel displays. Organic thin film as other substrates.6-12 Recently, significant progress has been made towards fabricating high quality is to prepare single crystal films on arbitrary substrates. Here we describe two significant advances towards

  15. Study of molybdenum oxide as a back contact buffer for thin film n-CdS/p-CdTe solar cells.

    E-Print Network [OSTI]

    Lin, Hao

    2013-01-01T23:59:59.000Z

    ??Back contact improvement is one of the most crucial issues for the realization of highly efficient n-CdS/p-CdTe solar cells. Conventional methods for making a sufficiently… (more)

  16. Visible spectrometer utilizing organic thin film absorption

    E-Print Network [OSTI]

    Tiefenbruck, Laura C. (Laura Christine)

    2004-01-01T23:59:59.000Z

    In this thesis, I modeled and developed a spectrometer for the visible wavelength spectrum, based on absorption characteristics of organic thin films. The device uses fundamental principles of linear algebra to reconstruct ...

  17. Solid State Thin Film Lithium Microbatteries

    E-Print Network [OSTI]

    Shi, Z.

    Solid state thin film lithium microbatteries fabricated by pulsed-laser deposition (PLD) are suggested. During deposition the following process parameters must be considered, which are laser energy and fluence, laser pulse ...

  18. Local Charge Neutrality Condition, Fermi Level, and Carrier Compensation of CdTe Polycrystalline Thin Film in CdS/CdTe Solar Cells

    E-Print Network [OSTI]

    Te Solar Energy Research Center, NJIT, Newark, NJ 07102 2 National Renewable Energy Laboratory, Golden, CO in the band gap of semiconductors according to the charging and transition energy levels of the state being single or multiple, and according to the atomic configuration and formation of energy of the state being

  19. Modeling and simulation of CuIn{sub 1?x}Ga{sub x}Se{sub 2} based thin film solar cell

    SciTech Connect (OSTI)

    Kumari, S., E-mail: sarita.kumari132@gmail.com; Verma, A. S. [Department of Physics, Banasthali University, Rajasthan-304022 (India); Singh, P.; Gautam, R. [Department of Electronics and Communication, Krishna Institute of Engg. and Tech., Ghaziabad-201206 (India)

    2014-04-24T23:59:59.000Z

    In this work, CIGS (Copper Indium Gallium Diselenide) based solar cell structure has been simulated. We have been calculated short circuit current, open circuit voltage and efficiency of the cell. The thickness of the absorption layer is varied from 400 to 3000 nm, keeping the thickness of other layers unchanged. The effect of absorption layer thickness over cell performance has been analyzed and found that the efficiency increases upto 22% until the thickness of the absorption layer reaches around 2000 nm.

  20. Investigations of CuInSe sub 2 thin films and contacts

    SciTech Connect (OSTI)

    Nicolet, M.A. (California Inst. of Tech., Pasadena, CA (United States))

    1991-10-01T23:59:59.000Z

    This report describes research into electrical contacts for copper indium diselenide (CuInSe{sub 2}) polycrystalline thin films used for solar cell applications. Molybdenum contacts have historically been the most promising for heterojunction solar cells. This program studied contact stability by investigating thermally induced bilayer reactions between molybdenum and copper, indium, and selenium. Because selenization is widely used to fabricate CuInSe{sub 2} thin films for photovoltaic cells, a second part of the program investigated how the morphologies, phases, and reactions of pre-selenization Cu-In structures are affected by the deposition process and heat treatments. 7 refs., 6 figs.

  1. The novel usage of spectroscopic ellipsometry for the development of amorphous Si solar cells

    E-Print Network [OSTI]

    Park, Byungwoo

    May 2010 Keywords: a-Si:H Thin film Si solar cell Spectroscopic ellipsometry (SE) a b s t r a c t We analyzed with relation to structural and electrical properties of a-Si:H thin film for solar cell and faster methodology to develop a-Si:H thin film for thin film Si solar cells using SE measurements

  2. Optical Constants ofOptical Constants of Uranium Nitride Thin FilmsUranium Nitride Thin Films

    E-Print Network [OSTI]

    Hart, Gus

    Optical Constants ofOptical Constants of Uranium Nitride Thin FilmsUranium Nitride Thin FilmsDelta--Beta Scatter Plot at 220 eVBeta Scatter Plot at 220 eV #12;Why Uranium Nitride?Why Uranium Nitride? UraniumUranium, uranium,Bombard target, uranium, with argon ionswith argon ions Uranium atoms leaveUranium atoms leave

  3. Ambient pressure process for preparing aerogel thin films reliquified sols useful in preparing aerogel thin films

    DOE Patents [OSTI]

    Brinker, Charles Jeffrey (Albuquerque, NM); Prakash, Sai Sivasankaran (Minneapolis, MN)

    1999-01-01T23:59:59.000Z

    A method for preparing aerogel thin films by an ambient-pressure, continuous process. The method of this invention obviates the use of an autoclave and is amenable to the formation of thin films by operations such as dip coating. The method is less energy intensive and less dangerous than conventional supercritical aerogel processing techniques.

  4. High-Rate Fabrication of a-Si-Based Thin-Film Solar Cells Using Large-Area VHF PECVD Processes

    SciTech Connect (OSTI)

    Deng, Xunming [University of Toledo] [University of Toledo; Fan, Qi Hua

    2011-12-31T23:59:59.000Z

    The University of Toledo (UT), working in concert with it’s a-Si-based PV industry partner Xunlight Corporation (Xunlight), has conducted a comprehensive study to develop a large-area (3ft x 3ft) VHF PECVD system for high rate uniform fabrication of silicon absorber layers, and the large-area VHF PECVD processes to achieve high performance a-Si/a-SiGe or a-Si/nc-Si tandem junction solar cells during the period of July 1, 2008 to Dec. 31, 2011, under DOE Award No. DE-FG36-08GO18073. The project had two primary goals: (i) to develop and improve a large area (3 ft × 3 ft) VHF PECVD system for high rate fabrication of > = 8 Ĺ/s a-Si and >= 20 Ĺ/s nc-Si or 4 Ĺ/s a-SiGe absorber layers with high uniformity in film thicknesses and in material structures. (ii) to develop and optimize the large-area VHF PECVD processes to achieve high-performance a-Si/nc-Si or a-Si/a-SiGe tandem-junction solar cells with >= 10% stable efficiency. Our work has met the goals and is summarized in “Accomplishments versus goals and objectives”.

  5. Supply Chain Integration, Product Modularity, and Market Valuation: Evidence from the Solar Energy Industry

    E-Print Network [OSTI]

    Davies, Jane; Joglekar, Nitin

    2013-07-17T23:59:59.000Z

    of the solar modules that are ultimately installed as panels on rooftops to Page 15 convert solar energy to electricity. The supply chain for the production of thin-film cells involves a subset of these processes: the production of solar cells... determine the network by identifying the supply chain linkages reported in 119 newswire announcements of solar PV supply contracts in Factiva for the year 2007. We supplement this data with information on customer and supplier relationships provided...

  6. Method for producing textured substrates for thin-film photovoltaic cells

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN)

    1994-01-01T23:59:59.000Z

    The invention pertains to the production of ceramic substrates used in the manufacture of thin-film photovoltaic cells used for directly converting solar energy to electrical energy. Elongated ribbon-like sheets of substrate precursor containing a mixture of ceramic particulates, a binder, and a plasticizer are formed and then while green provided with a mechanically textured surface region used for supporting the thin film semiconductor of the photovoltaic cell when the sheets of the substrate precursor are subsequently cut into substrate-sized shapes and then sintered. The textured surface pattern on the substrate provides enhanced light trapping and collection for substantially increasing the solar energy conversion efficiency of thin-film photovoltaic cells.

  7. Method for producing textured substrates for thin-film photovoltaic cells

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN)

    1996-01-01T23:59:59.000Z

    The invention pertains to the production of ceramic substrates used in the manufacture of thin-film photovoltaic cells used for directly converting solar energy to electrical energy. Elongated ribbon-like sheets of substrate precursor containing a mixture of ceramic particulates, a binder, and a plasticizer are formed and then while green provided with a mechanically textured surface region used for supporting the thin film semiconductor of the photovoltaic cell when the sheets of the substrate precursor are subsequently cut into substrate-sized shapes and then sintered. The textured surface pattern on the substrate provides enhanced light trapping and collection for substantially increasing the, solar energy conversion efficiency of thin-film photovoltaic cells.

  8. Method for producing textured substrates for thin-film photovoltaic cells

    DOE Patents [OSTI]

    Lauf, R.J.

    1994-04-26T23:59:59.000Z

    The invention pertains to the production of ceramic substrates used in the manufacture of thin-film photovoltaic cells used for directly converting solar energy to electrical energy. Elongated ribbon-like sheets of substrate precursor containing a mixture of ceramic particulates, a binder, and a plasticizer are formed and then while green provided with a mechanically textured surface region used for supporting the thin film semiconductor of the photovoltaic cell when the sheets of the substrate precursor are subsequently cut into substrate-sized shapes and then sintered. The textured surface pattern on the substrate provides enhanced light trapping and collection for substantially increasing the solar energy conversion efficiency of thin-film photovoltaic cells. 4 figures.

  9. Method for producing textured substrates for thin-film photovoltaic cells

    DOE Patents [OSTI]

    Lauf, R.J.

    1996-04-02T23:59:59.000Z

    The invention pertains to the production of ceramic substrates used in the manufacture of thin-film photovoltaic cells used for directly converting solar energy to electrical energy. Elongated ribbon-like sheets of substrate precursor containing a mixture of ceramic particulates, a binder, and a plasticizer are formed and then while green provided with a mechanically textured surface region used for supporting the thin film semiconductor of the photovoltaic cell when the sheets of the substrate precursor are subsequently cut into substrate-sized shapes and then sintered. The textured surface pattern on the substrate provides enhanced light trapping and collection for substantially increasing the, solar energy conversion efficiency of thin-film photovoltaic cells. 4 figs.

  10. Has sempra found El Dorado in solar PVs? grid parity may now be within reach

    SciTech Connect (OSTI)

    NONE

    2009-03-15T23:59:59.000Z

    Instead of using conventional polycrystalline silicon modules that turn sunlight into electricity, these solar panels use cadmium telluride, a lower-cost semiconductor manufactured into thin-film cells that are cheaper to manufacture than their silicon-based counterparts. Electricity is being produced at costs as low as 7.5 {cents}/kWh.

  11. Thin film dielectric composite materials

    DOE Patents [OSTI]

    Jia, Quanxi (Los Alamos, NM); Gibbons, Brady J. (Los Alamos, NM); Findikoglu, Alp T. (Los Alamos, NM); Park, Bae Ho (Los Alamos, NM)

    2002-01-01T23:59:59.000Z

    A dielectric composite material comprising at least two crystal phases of different components with TiO.sub.2 as a first component and a material selected from the group consisting of Ba.sub.1-x Sr.sub.x TiO.sub.3 where x is from 0.3 to 0.7, Pb.sub.1-x Ca.sub.x TiO.sub.3 where x is from 0.4 to 0.7, Sr.sub.1-x Pb.sub.x TiO.sub.3 where x is from 0.2 to 0.4, Ba.sub.1-x Cd.sub.x TiO.sub.3 where x is from 0.02 to 0.1, BaTi.sub.1-x Zr.sub.x O.sub.3 where x is from 0.2 to 0.3, BaTi.sub.1-x Sn.sub.x O.sub.3 where x is from 0.15 to 0.3, BaTi.sub.1-x Hf.sub.x O.sub.3 where x is from 0.24 to 0.3, Pb.sub.1-1.3x La.sub.x TiO.sub.3+0.2x where x is from 0.23 to 0.3, (BaTiO.sub.3).sub.x (PbFeo.sub.0.5 Nb.sub.0.5 O.sub.3).sub.1-x where x is from 0.75 to 0.9, (PbTiO.sub.3).sub.- (PbCo.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.1 to 0.45, (PbTiO.sub.3).sub.x (PbMg.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.2 to 0.4, and (PbTiO.sub.3).sub.x (PbFe.sub.0.5 Ta.sub.0.5 O.sub.3).sub.1-x where x is from 0 to 0.2, as the second component is described. The dielectric composite material can be formed as a thin film upon suitable substrates.

  12. Tungsten-doped thin film materials

    DOE Patents [OSTI]

    Xiang, Xiao-Dong; Chang, Hauyee; Gao, Chen; Takeuchi, Ichiro; Schultz, Peter G.

    2003-12-09T23:59:59.000Z

    A dielectric thin film material for high frequency use, including use as a capacitor, and having a low dielectric loss factor is provided, the film comprising a composition of tungsten-doped barium strontium titanate of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3, where X is between about 0.5 and about 1.0. Also provided is a method for making a dielectric thin film of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3 and doped with W, where X is between about 0.5 and about 1.0, a substrate is provided, TiO.sub.2, the W dopant, Ba, and optionally Sr are deposited on the substrate, and the substrate containing TiO.sub.2, the W dopant, Ba, and optionally Sr is heated to form a low loss dielectric thin film.

  13. Thin Film Transistors On Plastic Substrates

    DOE Patents [OSTI]

    Carey, Paul G. (Mountain View, CA); Smith, Patrick M. (San Ramon, CA); Sigmon, Thomas W. (Portola Valley, CA); Aceves, Randy C. (Livermore, CA)

    2004-01-20T23:59:59.000Z

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The silicon based thin film transistor produced by the process includes a low temperature substrate incapable of withstanding sustained processing temperatures greater than about 250.degree. C., an insulating layer on the substrate, a layer of silicon on the insulating layer having sections of doped silicon, undoped silicon, and poly-silicon, a gate dielectric layer on the layer of silicon, a layer of gate metal on the dielectric layer, a layer of oxide on sections of the layer of silicon and the layer of gate metal, and metal contacts on sections of the layer of silicon and layer of gate metal defining source, gate, and drain contacts, and interconnects.

  14. Vibration welding system with thin film sensor

    DOE Patents [OSTI]

    Cai, Wayne W; Abell, Jeffrey A; Li, Xiaochun; Choi, Hongseok; Zhao, Jingzhou

    2014-03-18T23:59:59.000Z

    A vibration welding system includes an anvil, a welding horn, a thin film sensor, and a process controller. The anvil and horn include working surfaces that contact a work piece during the welding process. The sensor measures a control value at the working surface. The measured control value is transmitted to the controller, which controls the system in part using the measured control value. The thin film sensor may include a plurality of thermopiles and thermocouples which collectively measure temperature and heat flux at the working surface. A method includes providing a welder device with a slot adjacent to a working surface of the welder device, inserting the thin film sensor into the slot, and using the sensor to measure a control value at the working surface. A process controller then controls the vibration welding system in part using the measured control value.

  15. The interplay between spatially separated ferromagnetic and superconducting thin films

    E-Print Network [OSTI]

    Sullivan, Isaac John

    2013-02-22T23:59:59.000Z

    Ferromagnetic thin films have been grown via physical vapor deposition utilizing the technique of flash evaporation and characterized by measuring magnetization as a function of magnetic field. An Al thin film was evaporated atop the ferromagnetic...

  16. Guided Self-Assembly of Gold Thin Films

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guided Self-Assembly of Gold Thin Films Guided Self-Assembly of Gold Thin Films Print Wednesday, 21 November 2012 12:18 Nanoparticles-man-made atoms with unique optical,...

  17. Conductivity of Oriented Samaria-Doped Ceria Thin Films Grown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conductivity of Oriented Samaria-Doped Ceria Thin Films Grown by Oxygen-plasma-assisted Molecular Beam Epitaxy. Conductivity of Oriented Samaria-Doped Ceria Thin Films Grown by...

  18. aluminium thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 21 Thin-Film Metamaterials called Sculptured Thin Films CERN Preprints Summary: Morphology...

  19. Developement of a digitally controlled low power single phase inverter for grid connected solar panel.

    E-Print Network [OSTI]

    Marguet, Raphael

    2010-01-01T23:59:59.000Z

    ?? The work consists in developing a power conversion unit for solar panel connected to the grid. This unit will be a single phase inverter… (more)

  20. SINGLE AND DUAL LAYER THIN FILM BULGE TESTING

    E-Print Network [OSTI]

    Huston, Dryver R.

    film windows that are used in Next Generation Lithography masks and certain MEMS devices. The bulge testing method measures the mechanical properties of a thin film by isolating it in a thin film window of the system. Figure 6 Dual Layer Thin Film Membrane Window For a dual layer membrane the effective total

  1. THIN FILM MECHANICS BULGING AND Ph.D Dissertation

    E-Print Network [OSTI]

    Huston, Dryver R.

    for the intensive effort in research in materials and processing techniques. Thin film windows are window underneath. The thin film window has such a small thickness to span ratio that it can usually be considered and precision-stretching of thin film windows are examined. Bulge Testing is a method used to evaluate

  2. NANO-INDENTATION OF COPPER THIN FILMS ON SILICON SUBSTRATES

    E-Print Network [OSTI]

    Suresh, Subra

    NANO-INDENTATION OF COPPER THIN FILMS ON SILICON SUBSTRATES S. Suresh1 , T.-G. Nieh2 and B.W. Choi2: Mechanical properties; Nano-indentation; Thin films; Copper; Dislocations Introduction Indentation methods films on substrates (e.g., [2,3]) using instrumented indentation. Nano-indentation studies of thin films

  3. Enhanced Thin Film Organic Photovoltaic Devices

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2014-01-10T23:59:59.000Z

    A novel structure design for thin film organic photovoltaic (OPV) devices provides a system for increasing the optical absorption in the active layer. The waveguided structure permits reduction of the active layer thickness, resulting in enhanced charge collection and extraction, leading to improved power conversion efficiency compared to standard OPV devices....

  4. Economic Mass Producible Mirror Panels for Solar Concentrators G Johnston, G. Burgess, K. Lovegrove and A. Luzzi

    E-Print Network [OSTI]

    Economic Mass Producible Mirror Panels for Solar Concentrators G Johnston, G. Burgess, K. Lovegrove to the success of all solar concentrators of this nature are cost effective and durable mirror panel components World Solar Congress 743 #12;Economic Mass Producible Mirror Panels for Solar Concentrators Johnston

  5. Thin Film Solar Technologies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective JumpInc., 2010) |Thesee Jump to:

  6. Detailed balance analysis of nanophotonic solar cells

    E-Print Network [OSTI]

    Fan, Shanhui

    , "Demonstration of enhanced absorption in thin film si solar cells with textured photonic crystal back reflector. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, "Design of plasmonic thin-film solar of surface textures for thin-film si solar cells," Opt. Express 19, A841­A850 (2011). 15. A. Raman, Z. Yu

  7. Process for producing Ti-Cr-Al-O thin film resistors

    DOE Patents [OSTI]

    Jankowski, Alan F. (Livermore, CA); Schmid, Anthony P. (Solana Beach, CA)

    2001-01-01T23:59:59.000Z

    Thin films of Ti-Cr-Al-O are used as a resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O.sub.2. Resistivity values from 10.sup.4 to 10.sup.10 Ohm-cm have been measured for Ti-Cr-Al-O film <1 .mu.m thick. The film resistivity can be discretely selected through control of the target composition and the deposition parameters. The application of Ti-Cr-Al-O as a thin film resistor has been found to be thermodynamically stable, unlike other metal-oxide films. The Ti-Cr-Al-O film can be used as a vertical or lateral resistor, for example, as a layer beneath a field emission cathode in a flat panel display; or used to control surface emissivity, for example, as a coating on an insulating material such as vertical wall supports in flat panel displays.

  8. High-Throughput Thin Film Approach for Screening of Temperature-Pressure-Composition Phase Space

    SciTech Connect (OSTI)

    Zakutayev, A.; Subramaniyan, A.; Caskey, C. M.; Ndione, P. F.; Richards, R. M.; O'Hayre, R.; Ginley, D. S.

    2013-01-01T23:59:59.000Z

    Many solar energy technologies, for example CIGS and CdTe photovoltaics, utilize materials in thin film form. The equilibrium phase diagrams for these and other more novel solar energy materials are not known or are irrelevant because of the non-equilibrium character of the thin film growth processes. We demonstrate a high-throughput thin film approach for screening of temperature-pressure-composition phase diagrams and phase spaces. The examples in focus are novel solar absorbers Cu-N, Cu-O and p-type transparent conductors in the Cr2O3-MnO system. The composition axis of the Cr2O3-MnO phase diagram was screened using a composition spread method. The temperature axis of the Mn-O phase diagram was screened using a temperature spread method. The pressure axes of the Cu-N and Cu-O phase diagrams were screened using rate spread method with the aid of non-equilibrium growth phenomena. Overall these three methods constitute an approach to high-throughput screening of inorganic thin film phase diagrams. This research is supported by U.S. Department of Energy as a part of two NextGen Sunshot projects and an Energy Frontier Research Center.

  9. Thin film transistors on plastic substrates with reflective coatings for radiation protection

    DOE Patents [OSTI]

    Wolfe, Jesse D.; Theiss, Steven D.; Carey, Paul G.; Smith, Patrick M.; Wickboldt, Paul

    2003-11-04T23:59:59.000Z

    Fabrication of silicon thin film transistors (TFT) on low-temperature plastic substrates using a reflective coating so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The TFT can be used in large area low cost electronics, such as flat panel displays and portable electronics such as video cameras, personal digital assistants, and cell phones.

  10. Thin film transistors on plastic substrates with reflective coatings for radiation protection

    DOE Patents [OSTI]

    Wolfe, Jesse D. (Fairfield, CA); Theiss, Steven D. (Woodbury, MN); Carey, Paul G. (Mountain View, CA); Smith, Patrick M. (San Ramon, CA); Wickbold, Paul (Walnut Creek, CA)

    2006-09-26T23:59:59.000Z

    Fabrication of silicon thin film transistors (TFT) on low-temperature plastic substrates using a reflective coating so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The TFT can be used in large area low cost electronics, such as flat panel displays and portable electronics such as video cameras, personal digital assistants, and cell phones.

  11. Propagating Uncertainty in Solar Panel Performance for Life Cycle Modeling in Early Stage Design

    E-Print Network [OSTI]

    Yang, Maria

    Propagating Uncertainty in Solar Panel Performance for Life Cycle Modeling in Early Stage Design. This work is conducted in the context of an amorphous photovoltaic (PV) panel, using data gathered from the National Solar Radiation Database, as well as realistic data collected from an experimental hardware setup

  12. Microstructured surface design for omnidirectional antireflection coatings on solar cells

    E-Print Network [OSTI]

    Zhou, Weidong

    to current crystalline silicon solar cells, as well as future thin film, quantum dot, and organic solar cells as the precise control of film thick- ness. In solar cell applications, a single layer thin film AR coating, e.g., silicon nitride SiNx thin film for silicon Si solar cells, is often used as a cost effective approach

  13. amorphous silicon flat-panel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Asymmetric Electrical Properties of Half Corbino Hydrogenated Amorphous Silicon Thin-Film Transistor and Its Applications to Flat Panel Displays Materials Science...

  14. FABRICATION AND CHARACTERIZATION OF 3-D ALL POLYMER FLEXIBLE SOLAR CELL

    E-Print Network [OSTI]

    Kassegne, Samuel Kinde

    ....................................................................................3 2 LITERATURE SURVEY ON THIN FILM ANDORGANIC/TANDEM SOLAR CELL........................................................................7 2.3 Thin Film Solar CellFABRICATION AND CHARACTERIZATION OF 3-D ALL POLYMER FLEXIBLE SOLAR CELL _______________ A Thesis

  15. CERN News - A major contract has been signed for the supply of solar panels derived from CERN technology

    E-Print Network [OSTI]

    CERN Video Productions; Marion Viguier

    2012-01-01T23:59:59.000Z

    CERN News - A major contract has been signed for the supply of solar panels derived from CERN technology

  16. Polycrystalline thin films FY 1992 project report

    SciTech Connect (OSTI)

    Zweibel, K. [ed.

    1993-01-01T23:59:59.000Z

    This report summarizes the activities and results of the Polycrystalline Thin Film Project during FY 1992. The purpose of the DOE/NREL PV (photovoltaic) Program is to facilitate the development of PV that can be used on a large enough scale to produce a significant amount of energy in the US and worldwide. The PV technologies under the Polycrystalline Thin Film project are among the most exciting ``next-generation`` options for achieving this goal. Over the last 15 years, cell-level progress has been steady, with laboratory cell efficiencies reaching levels of 15 to 16%. This progress, combined with potentially inexpensive manufacturing methods, has attracted significant commercial interest from US and international companies. The NREL/DOE program is designed to support the efforts of US companies through cost-shared subcontracts (called ``government/industry partnerships``) that we manage and fund and through collaborative technology development work among industry, universities, and our laboratory.

  17. Electrostatic thin film chemical and biological sensor

    DOE Patents [OSTI]

    Prelas, Mark A. (Columbia, MO); Ghosh, Tushar K. (Columbia, MO); Tompson, Jr., Robert V. (Columbia, MO); Viswanath, Dabir (Columbia, MO); Loyalka, Sudarshan K. (Columbia, MO)

    2010-01-19T23:59:59.000Z

    A chemical and biological agent sensor includes an electrostatic thin film supported by a substrate. The film includes an electrostatic charged surface to attract predetermined biological and chemical agents of interest. A charge collector associated with said electrostatic thin film collects charge associated with surface defects in the electrostatic film induced by the predetermined biological and chemical agents of interest. A preferred sensing system includes a charge based deep level transient spectroscopy system to read out charges from the film and match responses to data sets regarding the agents of interest. A method for sensing biological and chemical agents includes providing a thin sensing film having a predetermined electrostatic charge. The film is exposed to an environment suspected of containing the biological and chemical agents. Quantum surface effects on the film are measured. Biological and/or chemical agents can be detected, identified and quantified based on the measured quantum surface effects.

  18. Packaging material for thin film lithium batteries

    DOE Patents [OSTI]

    Bates, John B. (116 Baltimore Dr., Oak Ridge, TN 37830); Dudney, Nancy J. (11634 S. Monticello Rd., Knoxville, TN 37922); Weatherspoon, Kim A. (223 Wadsworth Pl., Oak Ridge, TN 37830)

    1996-01-01T23:59:59.000Z

    A thin film battery including components which are capable of reacting upon exposure to air and water vapor incorporates a packaging system which provides a barrier against the penetration of air and water vapor. The packaging system includes a protective sheath overlying and coating the battery components and can be comprised of an overlayer including metal, ceramic, a ceramic-metal combination, a parylene-metal combination, a parylene-ceramic combination or a parylene-metal-ceramic combination.

  19. UBC Social Ecological Economic Development Studies (SEEDS) Student Report An Investigation Into Solar Panel Options For The New SUB

    E-Print Network [OSTI]

    Into Solar Panel Options For The New SUB Henry Lo, Miguel Antonio University of British Columbia APSC261 the current status of the subject matter of a project/report". #12;i AN INVESTIGATION INTO SOLAR PANEL that has been done on solar panels as a renewable energy source and the feasibility of using it in the new

  20. Real Time Selective Harmonic Minimization for Multilevel Inverters Connected to Solar Panels Using Artificial Neural Network Angle Generation

    E-Print Network [OSTI]

    Tolbert, Leon M.

    Real Time Selective Harmonic Minimization for Multilevel Inverters Connected to Solar Panels Using varying DC input sources. Five 195 W solar panels were used as the DC source for each full bridge cells or solar panels and will consequently bring a voltage unbalance depending on the system dynamics

  1. Characterization of Field Exposed Thin Film Modules: Preprint

    SciTech Connect (OSTI)

    Wohlgemuth, J. H.; Sastry, O. S.; Stokes, A.; Singh, Y. K.; Kumar, M.

    2012-06-01T23:59:59.000Z

    Test arrays of thin film modules have been deployed at the Solar Energy Centre near New Delhi, India since 2002-2003. Performances of these arrays were reported by O.S. Sastry [1]. This paper reports on NREL efforts to support SEC by performing detailed characterization of selected modules from the array. Modules were selected to demonstrate both average and worst case power loss over the 8 years of outdoor exposure. The modules characterized included CdTe, CIS and three different types of a-Si. All but one of the a-Si types were glass-glass construction. None of the modules had edge seals. Detailed results of these tests are presented along with our conclusions about the causes of the power loss for each technology.

  2. DEVELOPMENT OF HIGH EFFICIENCY FLEXIBLE CdTe SOLAR CELLS A.Romeo, M. Arnold, D.L. Btzner, H. Zogg and A.N. Tiwari*

    E-Print Network [OSTI]

    Romeo, Alessandro

    to the solar panel that can be adapted to any kind of shape and is easy to deploy in space. In the last yearsDEVELOPMENT OF HIGH EFFICIENCY FLEXIBLE CdTe SOLAR CELLS A.Romeo, M. Arnold, D.L. Bätzner, H. Zogg Telephone: +44-1509-227031 E-mail: a.n.tiwari@lboro.ac.uk ABSTRACT: Polycrystalline thin film solar cells

  3. Rechargeable thin film battery and method for making the same

    DOE Patents [OSTI]

    Goldner, Ronald B.; Liu, Te-Yang; Goldner, Mark A.; Gerouki, Alexandra; Haas, Terry E.

    2006-01-03T23:59:59.000Z

    A rechargeable, stackable, thin film, solid-state lithium electrochemical cell, thin film lithium battery and method for making the same is disclosed. The cell and battery provide for a variety configurations, voltage and current capacities. An innovative low temperature ion beam assisted deposition method for fabricating thin film, solid-state anodes, cathodes and electrolytes is disclosed wherein a source of energetic ions and evaporants combine to form thin film cell components having preferred crystallinity, structure and orientation. The disclosed batteries are particularly useful as power sources for portable electronic devices and electric vehicle applications where high energy density, high reversible charge capacity, high discharge current and long battery lifetimes are required.

  4. applications thin film: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nikolay 27 Solvent-enhanced dye diffusion in polymer thin films for polymer light-emitting diode application Engineering Websites Summary: Solvent-enhanced dye diffusion in...

  5. antibacterial thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Skovlin, Dean Oliver 2012-06-07 138 Uncooled Thin Film Pyroelectric IR Detector with Aerogel Thermal Isolation CiteSeer Summary: Uncooled pyroelectric IR imaging systems, such...

  6. acid thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    films Engineering Websites Summary: of domain switching and controllability, preventing thin-film and polycrystalline ferroelectrics from the switching mechanisms of...

  7. ablation thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    films Engineering Websites Summary: of domain switching and controllability, preventing thin-film and polycrystalline ferroelectrics from the switching mechanisms of...

  8. aln thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    deposited by the reactive dc magnetron sputtering technique at room, amorphous and polycrystalline GaN thin films have been deposited using the magnetron sputtering...

  9. anatase thin film: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    films Engineering Websites Summary: of domain switching and controllability, preventing thin-film and polycrystalline ferroelectrics from the switching mechanisms of...

  10. arsenide thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    films Engineering Websites Summary: of domain switching and controllability, preventing thin-film and polycrystalline ferroelectrics from the switching mechanisms of...

  11. Uncooled thin film pyroelectric IR detector with aerogel thermal isolation

    SciTech Connect (OSTI)

    Ruffner, Judith A. (Albuquerque, NM); Bullington, Jeff A. (Albuquerque, NM); Clem, Paul G. (Albuquerque, NM); Warren, William L. (Albuquerque, NM); Brinker, C. Jeffrey (Albuquerque, NM); Tuttle, Bruce A. (Albuquerque, NM); Schwartz, Robert W. (Seneca, SC)

    1999-01-01T23:59:59.000Z

    A monolithic infrared detector structure which allows integration of pyroelectric thin films atop low thermal conductivity aerogel thin films. The structure comprises, from bottom to top, a substrate, an aerogel insulating layer, a lower electrode, a pyroelectric layer, and an upper electrode layer capped by a blacking layer. The aerogel can offer thermal conductivity less than that of air, while providing a much stronger monolithic alternative to cantilevered or suspended air-gap structures for pyroelectric thin film pixel arrays. Pb(Zr.sub.0.4 Ti.sub.0.6)O.sub.3 thin films deposited on these structures displayed viable pyroelectric properties, while processed at 550.degree. C.

  12. Thickness Dependency of Thin Film Samaria Doped Ceria for Oxygen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High temperature oxygen sensors are widely used for exhaust gas monitoring in automobiles. This particular study explores the use of thin film single crystalline samaria...

  13. An investigation of preferences for product appearance : a case study of residential solar panels

    E-Print Network [OSTI]

    Bao, Qifang

    2014-01-01T23:59:59.000Z

    The importance of the styling and appearance of consumer products is widely understood. This paper evaluates the appearance of a technology-oriented product, the residential solar panel, using a quantitative approach known ...

  14. Thin film photovoltaic device with multilayer substrate

    DOE Patents [OSTI]

    Catalano, Anthony W. (Rushland, PA); Bhushan, Manjul (Wilmington, DE)

    1984-01-01T23:59:59.000Z

    A thin film photovoltaic device which utilizes at least one compound semiconductor layer chosen from Groups IIB and VA of the Periodic Table is formed on a multilayer substrate The substrate includes a lowermost support layer on which all of the other layers of the device are formed. Additionally, an uppermost carbide or silicon layer is adjacent to the semiconductor layer. Below the carbide or silicon layer is a metal layer of high conductivity and expansion coefficient equal to or slightly greater than that of the semiconductor layer.

  15. Synthesis and application perspective of advanced plasma polymerized organic thin films

    E-Print Network [OSTI]

    Boo, Jin-Hyo

    Synthesis and application perspective of advanced plasma polymerized organic thin films I.-S. Bae a November 2005 Abstract Plasma polymerized cyclohexane and ethylcyclohexane organic thin films were rights reserved. Keywords: Plasma polymerization; Ethylcyclohexane and cyclohexane organic thin films

  16. ADVANCED REFLECTIVE FILMS AND PANELS FOR NEXT GENERATION SOLAR...

    Broader source: Energy.gov (indexed) [DOE]

    film based panel -formed at high accuracy (<1.5 mrad RMS slope error) Adaptive optics (minimizes canting errors) Space frame based support structure Operation and...

  17. Apparatus for laser assisted thin film deposition

    DOE Patents [OSTI]

    Warner, B.E.; McLean, W. II

    1996-02-13T23:59:59.000Z

    A pulsed laser deposition apparatus uses fiber optics to deliver visible output beams. One or more optical fibers are coupled to one or more laser sources, and delivers visible output beams to a single chamber, to multiple targets in the chamber or to multiple chambers. The laser can run uninterrupted if one of the deposition chambers ceases to operate because other chambers can continue their laser deposition processes. The laser source can be positioned at a remote location relative to the deposition chamber. The use of fiber optics permits multi-plexing. A pulsed visible laser beam is directed at a generally non-perpendicular angle upon the target in the chamber, generating a plume of ions and energetic neutral species. A portion of the plume is deposited on a substrate as a thin film. A pulsed visible output beam with a high pulse repetition frequency is used. The high pulse repetition frequency is greater than 500 Hz, and more preferably, greater than about 1000 Hz. Diamond-like-carbon (DLC) is one of the thin films produced using the apparatus. 9 figs.

  18. Apparatus for laser assisted thin film deposition

    DOE Patents [OSTI]

    Warner, Bruce E. (Pleasanton, CA); McLean, II, William (Oakland, CA)

    1996-01-01T23:59:59.000Z

    A pulsed laser deposition apparatus uses fiber optics to deliver visible output beams. One or more optical fibers are coupled to one or more laser sources, and delivers visible output beams to a single chamber, to multiple targets in the chamber or to multiple chambers. The laser can run uninterrupted if one of the deposition chambers ceases to operate because other chambers can continue their laser deposition processes. The laser source can be positioned at a remote location relative to the deposition chamber. The use of fiber optics permits multi-plexing. A pulsed visible laser beam is directed at a generally non-perpendicular angle upon the target in the chamber, generating a plume of ions and energetic neutral species. A portion of the plume is deposited on a substrate as a thin film. A pulsed visible output beam with a high pulse repetition frequency is used. The high pulse repetition frequency is greater than 500 Hz, and more preferably, greater than about 1000 Hz. Diamond-like-carbon (DLC) is one of the thin films produced using the apparatus.

  19. Rechargeable thin-film lithium batteries

    SciTech Connect (OSTI)

    Bates, J.B.; Gruzalski, G.R.; Dudney, N.J.; Luck, C.F.; Yu, X.

    1993-09-01T23:59:59.000Z

    Rechargeable thin-film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have been fabricated and characterized. These include Li-TiS{sub 2}, Li-V{sub 2}O{sub 5}, and Li-Li{sub x}Mn{sub 2}O{sub 4} cells with open circuit voltages at full charge of about 2.5 V, 3.7 V, and 4.2 V, respectively. The realization of these robust cells, which can be cycled thousands of times, was possible because of the stability of the amorphous lithium electrolyte, lithium phosphorus oxynitride. This material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46}and a conductivity at 25 C of 2 {mu}S/cm. The thin-film cells have been cycled at 100% depth of discharge using current densities of 5 to 100 {mu}A/cm{sup 2}. Over most of the charge-discharge range, the internal resistance appears to be dominated by the cathode, and the major source of the resistance is the diffusion of Li{sup +} ions from the electrolyte into the cathode. Chemical diffusion coefficients were determined from ac impedance measurements.

  20. STRESSES AND FAILURE MODES IN THIN FILMS AND MULTILAYERS

    E-Print Network [OSTI]

    Hutchinson, John W.

    Stressesin a Thin Film 4 2.3 Stresses in a Multilayer: Layer by Layer Deposition and Release from of the Interface a Bilayer under Residual Stress 30 5.2 Delamination of a Bilayer by Layer Cracking Parallel FOR THIN FILMS UNDER RESIDUAL COMPRESSION 36 6.1 Straight-sided Blisters 36 6.2 Circular Blisters 40 6

  1. CHARACTERIZATION OF URANIUM, URANIUM OXIDE AND SILICON MULTILAYER THIN FILMS

    E-Print Network [OSTI]

    Hart, Gus

    CHARACTERIZATION OF URANIUM, URANIUM OXIDE AND SILICON MULTILAYER THIN FILMS by David T. Oliphant. Woolley Dean, College of Physical and Mathematical Sciences #12;ABSTRACT CHARACTERIZATION OF URANIUM, URANIUM OXIDE AND SILICON MULTILAYER THIN FILMS David T. Oliphant Department of Physics and Astronomy

  2. Avalanches through windows: Multiscale visualization in magnetic thin films

    E-Print Network [OSTI]

    Sethna, James P.

    Avalanches through windows: Multiscale visualization in magnetic thin films Alessandro Magni, Cornell University, Ithaca, NY 14853-2501 Abstract--The dynamics of domain walls motion in thin films dynamics, but are strongly dependent on the size of the windows chosen. Here we investigate how to properly

  3. Fracture patterns in thin films and multilayers Alex A. Volinsky

    E-Print Network [OSTI]

    Volinsky, Alex A.

    Fracture patterns in thin films and multilayers Alex A. Volinsky University of South Florida, excessive residual and externally applied stresses cause film fracture. In the case of tensile stress is the key for causing thin film fracture, either in tension, or compression, it is the influence

  4. APPLIED PHYSICS REVIEWS Erbium implanted thin film photonic materials

    E-Print Network [OSTI]

    Polman, Albert

    , phosphosilicate, borosilicate, and soda-lime glasses , ceramic thin films Al2O3, Y2O3, LiNbO3 , and amorphous. Phosphosilicate glass. . . . . . . . . . . . . . . . . . . . . . 7 C. Soda-lime silicate glass Er-doped thin film photonic materials is described. It focuses on oxide glasses pure SiO2

  5. Wave propagation in highly inhomogeneous thin films: exactly solvable models

    E-Print Network [OSTI]

    Boyer, Edmond

    Wave propagation in highly inhomogeneous thin films: exactly solvable models Guillaume Petite(1 of wave propagation in some inhomogeneous thin films with highly space- dependent dielectric constant will show that depending on the type of space dependence, an incident wave can either propagate or tunnel

  6. E-Print Network 3.0 - alumina thin films Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    constant in RF devices. Some unique features of thin-film silica and alumina aerogels have been... aerogel thin films, silica and alumina aerogel cantilevers were...

  7. Light trapping and absorption optimization in certain thin-film photonic crystal architectures Alongkarn Chutinan and Sajeev John

    E-Print Network [OSTI]

    John, Sajeev

    . This capability of PBG materials to localize light has yet to be fully exploited for solar-energy harvestingLight trapping and absorption optimization in certain thin-film photonic crystal architectures Alongkarn Chutinan and Sajeev John Department of Physics, University of Toronto, 60 St. George Street

  8. pH-Dependent Electron Transfer from Re-bipyridyl Complexes to Metal Oxide Nanocrystalline Thin Films

    E-Print Network [OSTI]

    to a dye-sensitized solar cell, in which the rates of charge injection from a molecular excited state-CH2COOH] sensitized TiO2 and ReC1P sensitized SnO2 nanocrystalline thin films using femtosecond

  9. Method of fabrication of display pixels driven by silicon thin film transistors

    DOE Patents [OSTI]

    Carey, Paul G. (Mountain View, CA); Smith, Patrick M. (San Ramon, CA)

    1999-01-01T23:59:59.000Z

    Display pixels driven by silicon thin film transistors are fabricated on plastic substrates for use in active matrix displays, such as flat panel displays. The process for forming the pixels involves a prior method for forming individual silicon thin film transistors on low-temperature plastic substrates. Low-temperature substrates are generally considered as being incapable of withstanding sustained processing temperatures greater than about 200.degree. C. The pixel formation process results in a complete pixel and active matrix pixel array. A pixel (or picture element) in an active matrix display consists of a silicon thin film transistor (TFT) and a large electrode, which may control a liquid crystal light valve, an emissive material (such as a light emitting diode or LED), or some other light emitting or attenuating material. The pixels can be connected in arrays wherein rows of pixels contain common gate electrodes and columns of pixels contain common drain electrodes. The source electrode of each pixel TFT is connected to its pixel electrode, and is electrically isolated from every other circuit element in the pixel array.

  10. In Solis Pacem Dialogue between modern technology and nature is developed through celebrating solar panels and a styl-

    E-Print Network [OSTI]

    Goodman, Robert M.

    with a discussion about technology and nature. A field of solar panels to produce economic revenue to consider technology and energy, a Solar Garden exists among the panels. In contrast, an Asian-inspired PondIn Solis Pacem Dialogue between modern technology and nature is developed through celebrating solar

  11. Reproduced with pennission from Elsevier Solar CelLS',30 (1991) 515-523 515'f'

    E-Print Network [OSTI]

    emerged since the early 1980s. In particular, thin film solar cell technologies such as amorphous silicon To investigate the implications of projected advances in thin film solar cells for PV hydrogen production, we set). A large (> 10 MW) tilted, fixed, flat plate PV array using thin film solar modules is coupled directly

  12. Glow discharge plasma deposition of thin films

    DOE Patents [OSTI]

    Weakliem, Herbert A. (Pennington, NJ); Vossen, Jr., John L. (Bridgewater, NJ)

    1984-05-29T23:59:59.000Z

    A glow discharge plasma reactor for deposition of thin films from a reactive RF glow discharge is provided with a screen positioned between the walls of the chamber and the cathode to confine the glow discharge region to within the region defined by the screen and the cathode. A substrate for receiving deposition material from a reactive gas is positioned outside the screened region. The screen is electrically connected to the system ground to thereby serve as the anode of the system. The energy of the reactive gas species is reduced as they diffuse through the screen to the substrate. Reactive gas is conducted directly into the glow discharge region through a centrally positioned distribution head to reduce contamination effects otherwise caused by secondary reaction products and impurities deposited on the reactor walls.

  13. Rechargeable thin-film electrochemical generator

    DOE Patents [OSTI]

    Rouillard, Roger (Beloeil, CA); Domroese, Michael K. (South St. Paul, MN); Hoffman, Joseph A. (Minneapolis, MN); Lindeman, David D. (Hudson, WI); Noel, Joseph-Robert-Gaetan (St-Hubert, CA); Radewald, Vern E. (Austin, TX); Ranger, Michel (Lachine, CA); Sudano, Anthony (Laval, CA); Trice, Jennifer L. (Eagan, MN); Turgeon, Thomas A. (Fridley, MN)

    2000-09-15T23:59:59.000Z

    An improved electrochemical generator is disclosed. The electrochemical generator includes a thin-film electrochemical cell which is maintained in a state of compression through use of an internal or an external pressure apparatus. A thermal conductor, which is connected to at least one of the positive or negative contacts of the cell, conducts current into and out of the cell and also conducts thermal energy between the cell and thermally conductive, electrically resistive material disposed on a vessel wall adjacent the conductor. The thermally conductive, electrically resistive material may include an anodized coating or a thin sheet of a plastic, mineral-based material or conductive polymer material. The thermal conductor is fabricated to include a resilient portion which expands and contracts to maintain mechanical contact between the cell and the thermally conductive material in the presence of relative movement between the cell and the wall structure. The electrochemical generator may be disposed in a hermetically sealed housing.

  14. Thin Film Femtosecond Laser Damage Competition

    SciTech Connect (OSTI)

    Stolz, C J; Ristau, D; Turowski, M; Blaschke, H

    2009-11-14T23:59:59.000Z

    In order to determine the current status of thin film laser resistance within the private, academic, and government sectors, a damage competition was started at the 2008 Boulder Damage Symposium. This damage competition allows a direct comparison of the current state of the art of high laser resistance coatings since they are tested using the same damage test setup and the same protocol. In 2009 a high reflector coating was selected at a wavelength of 786 nm at normal incidence at a pulse length of 180 femtoseconds. A double blind test assured sample and submitter anonymity so only a summary of the results are presented here. In addition to the laser resistance results, details of deposition processes, coating materials and layer count, and spectral results will also be shared.

  15. P.7 / G. Yoo A Maskless Laser-Write Lithography Processing of Thin-Film Transistors

    E-Print Network [OSTI]

    Kanicki, Jerzy

    and solar-cell panel processing, as substrate sizes increase, the cost of mask fabrication rapidly increases

  16. Bulge testing of single and dual layer thin films Dryver R. Huston*ab

    E-Print Network [OSTI]

    Huston, Dryver R.

    to a thin film window. By comparing the pressure- displacement relation with a mechanical model, the elastic structures, such as the thin film windows that are used in Next Generation Lithography masks and certain MEMS it in a thin film window. Thin film windows are fabricated by removing the thick substrate out from underneath

  17. 1Electricity from Sunlight: The Van Allen Probes Solar Panels NASA's twin Van Allen Probes spacecraft will be launched in 2012. The

    E-Print Network [OSTI]

    1Electricity from Sunlight: The Van Allen Probes Solar Panels NASA's twin Van Allen Probes of the surrounding four solar panel `wings' that provide power to the spacecraft instruments. The small blue rectangles within each of the four solar panels show the location of the solar cells used to power

  18. Polycrystalline Thin-Film Research: Cadmium Telluride (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01T23:59:59.000Z

    Capabilities fact sheet that includes scope, core competencies and capabilities, and contact/web information for Polycrystalline Thin-Film Research: Cadmium Telluride at the National Center for Photovoltaics.

  19. Structural, magnetic, and optical properties of orthoferrite thin films

    E-Print Network [OSTI]

    Supplee, William Wagner

    2007-01-01T23:59:59.000Z

    Pulsed laser deposition was used to create thin films of Ce-Fe-O and Y-Fe-O systems. Deposition temperature and ambient oxygen pressure were varied systematically between samples to determine which deposition conditions ...

  20. Fluorination of amorphous thin-film materials with xenon fluoride

    DOE Patents [OSTI]

    Weil, R.B.

    1987-05-01T23:59:59.000Z

    A method is disclosed for producing fluorine-containing amorphous semiconductor material, preferably comprising amorphous silicon. The method includes depositing amorphous thin-film material onto a substrate while introducing xenon fluoride during the film deposition process.

  1. Polycrystalline Thin-Film Research: Cadmium Telluride (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-06-01T23:59:59.000Z

    This National Center for Photovoltaics sheet describes the capabilities of its polycrystalline thin-film research in the area of cadmium telluride. The scope and core competencies and capabilities are discussed.

  2. Multimonth controlled small molecule release from biodegradable thin films

    E-Print Network [OSTI]

    Hammond, Paula T.

    Long-term, localized delivery of small molecules from a biodegradable thin film is challenging owing to their low molecular weight and poor charge density. Accomplishing highly extended controlled release can facilitate ...

  3. amorphous thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Amorphous Silicon Thin-Film Transistor Pixel.S.A. 1 LG Philips LCD Research and Development Center, An-Yang, 431-080, Korea (Received July 23, 2006; accepted October 31, 2006;...

  4. amorphous thin film: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Amorphous Silicon Thin-Film Transistor Pixel.S.A. 1 LG Philips LCD Research and Development Center, An-Yang, 431-080, Korea (Received July 23, 2006; accepted October 31, 2006;...

  5. Initiated chemical vapor deposition of functional polyacrylic thin films

    E-Print Network [OSTI]

    Mao, Yu, 1975-

    2005-01-01T23:59:59.000Z

    Initiated chemical vapor deposition (iCVD) was explored as a novel method for synthesis of functional polyacrylic thin films. The process introduces a peroxide initiator, which can be decomposed at low temperatures (<200?C) ...

  6. al thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dalek@eee.hku.hk , C. Y. Kwong, T. W. Lau, L. S. M. Lam, and W. K 276 DEFECT-FREE THIN FILM MEMBRANES FOR H2 SEPARATION AND ISOLATION Energy Storage, Conversion and...

  7. al thin film: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dalek@eee.hku.hk , C. Y. Kwong, T. W. Lau, L. S. M. Lam, and W. K 276 DEFECT-FREE THIN FILM MEMBRANES FOR H2 SEPARATION AND ISOLATION Energy Storage, Conversion and...

  8. Monolithic integration of thin-film coolers with optoelectronic devices

    E-Print Network [OSTI]

    Monolithic integration of thin-film coolers with optoelectronic devices Christopher La Barbara, California 93106-9560 Abstract. Active refrigeration of optoelectronic components through the use manuscript received June 30, 2000; accepted for publication June 30, 2000. 1 Introduction Optoelectronic

  9. Role of Microstructural Phenomena in Magnetic Thin Films. Final Report

    SciTech Connect (OSTI)

    Laughlin, D. E.; Lambeth, D. N.

    2001-04-30T23:59:59.000Z

    Over the period of the program we systematically varied microstructural features of magnetic thin films in an attempt to better identify the role which each feature plays in determining selected extrinsic magnetic properties. This report summarizes the results.

  10. Self-Assembling Process for Fabricating Tailored Thin Films

    ScienceCinema (OSTI)

    Sandia

    2009-09-01T23:59:59.000Z

    A simple, economical nanotechnology coating process that enables the development of nanoparticle thin films with architectures and properties unattainable by any other processing method. 2007 R&D 100 winner (SAND2007-1878P)

  11. Self-Assembling Process for Fabricating Tailored Thin Films

    ScienceCinema (OSTI)

    None

    2010-01-08T23:59:59.000Z

    A simple, economical nanotechnology coating process that enables the development of nanoparticle thin films with architectures and properties unattainable by any other processing method. 2007 R&D 100 winner (SAND2007-1878P)

  12. Orientational Analysis of Molecules in Thin Films | Stanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Orientational Analysis of Molecules in Thin Films Monday, September 17, 2012 - 10:00am SSRL Bldg. 137, room 226 Daniel Kaefer The synchrotron-based X-ray absorption spectroscopy is...

  13. National High Magnetic Field Laboratory: Magnetic Thin Films

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    recorded work with magnetic thin films took place in the 1880s and was carried out by German physicist August Kundt. Well known for his research on sound and optics, Kundts...

  14. Enabling integration of vapor-deposited polymer thin films

    E-Print Network [OSTI]

    Petruczok, Christy D. (Christy Danielle)

    2014-01-01T23:59:59.000Z

    Initiated Chemical Vapor Deposition (iCVD) is a versatile, one-step process for synthesizing conformal and functional polymer thin films on a variety of substrates. This thesis emphasizes the development of tools to further ...

  15. Method for making surfactant-templated thin films

    DOE Patents [OSTI]

    Brinker, C. Jeffrey (Albuquerque, NM); Lu, Yunfeng (New Orleans, LA); Fan, Hong You (Albuquerque, NM)

    2010-08-31T23:59:59.000Z

    An evaporation-induced self-assembly method to prepare a porous, surfactant-templated, thin film by mixing a silica sol, a solvent, a surfactant, and an interstitial compound, evaporating a portion of the solvent to form a liquid, crystalline thin film mesophase material, and then removal of the surfactant template. Coating onto a substrate produces a thin film with the interstitial compound either covalently bonded to the internal surfaces of the ordered or disordered mesostructure framework or physically entrapped within the ordered or disordered mesostructured framework. Particles can be formed by aerosol processing or spray drying rather than coating onto a substrate. The selection of the interstitial compound provides a means for developing thin films for applications including membranes, sensors, low dielectric constant films, photonic materials and optical hosts.

  16. Method for making surfactant-templated thin films

    DOE Patents [OSTI]

    Brinker, C. Jeffrey (Albuquerque, NM); Lu, Yunfeng (San Jose, CA); Fan, Hongyou (Albuquerque, NM)

    2002-01-01T23:59:59.000Z

    An evaporation-induced self-assembly method to prepare a porous, surfactant-templated, thin film by mixing a silica sol, a solvent, a surfactant, and an interstitial compound, evaporating a portion of the solvent to form a liquid, crystalline thin film mesophase material, and then removal of the surfactant template. Coating onto a substrate produces a thin film with the interstitial compound either covalently bonded to the internal surfaces of the ordered or disordered mesostructure framework or physically entrapped within the ordered or disordered mesostructured framework. Particles can be formed by aerosol processing or spray drying rather than coating onto a substrate. The selection of the interstitial compound provides a means for developing thin films for applications including membranes, sensors, low dielectric constant films, photonic materials and optical hosts.

  17. Laser Induced Breakdown Spectroscopy and Applications Toward Thin Film Analysis

    E-Print Network [OSTI]

    Owens, Travis Nathan

    2011-01-01T23:59:59.000Z

    on the surface. Ultrafast laser pulses are shorter than thethe advantages of ultrafast laser pulses for thin film LIBS,each time. While ultrafast laser pulses are effective in

  18. Nanostructured thin films for solid oxide fuel cells

    E-Print Network [OSTI]

    Yoon, Jongsik

    2009-05-15T23:59:59.000Z

    The goals of this work were to synthesize high performance perovskite based thin film solid oxide fuel cell (TF-SOFC) cathodes by pulsed laser deposition (PLD), to study the structural, electrical and electrochemical properties of these cathodes...

  19. ag thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MgO, Ref. 21 Marcon, Marco 2 Multi-level surface enhanced Raman scattering using AgOx thin film Physics Websites Summary: by applying laser-direct writing (LDW) technique on...

  20. Properties and sensor performance of zinc oxide thin films

    E-Print Network [OSTI]

    Min, Yongki, 1965-

    2003-01-01T23:59:59.000Z

    Reactively sputtered ZnO thin film gas sensors were fabricated onto Si wafers. The atmosphere dependent electrical response of the ZnO micro arrays was examined. The effects of processing conditions on the properties and ...

  1. Functionalized multilayer thin films for protection against acutely toxic agents

    E-Print Network [OSTI]

    Krogman, Kevin Christopher

    2009-01-01T23:59:59.000Z

    The recently developed practice of spraying polyelectrolyte solutions onto a substrate in order to construct thin films via the Layer-by-Layer (LbL) technique has been further investigated and extended. In this process a ...

  2. Direct printing of lead zirconate titanate thin films

    E-Print Network [OSTI]

    Bathurst, Stephen, 1980-

    2008-01-01T23:59:59.000Z

    Thus far, use of lead zirconate titanate (PZT) in MEMS has been limited due to the lack of process compatibility with existing MEMS manufacturing techniques. Direct printing of thin films eliminates the need for photolithographic ...

  3. Nonlinear viscoelastic characterization of thin films using dynamic mechanical analysis

    E-Print Network [OSTI]

    Payne, Debbie Flowers

    1993-01-01T23:59:59.000Z

    NONLINEAR VISCOELASTIC CHARACTERIZATION OF THIN FILMS USING DYNAMIC MECHANICAL ANALYSIS A Thesis by DEBBIE FLOWERS PAYNE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE AUGUST 1993 Major Subject: Aerospace Engineering NONLINEAR VISCOELASTIC CHARACTERIZATION OF THIN FILMS USING DYNAMIC MECHANICAL ANALYSIS A Thesis by DEBBIE FLOWERS PAYNE Approved as to style and content by: Thomas W...

  4. Concentrating Solar Panels: Bringing the Highest Power and Lowest Cost to the Rooftop

    SciTech Connect (OSTI)

    Michael Deck; Rick Russell

    2010-01-05T23:59:59.000Z

    Soliant Energy is a venture-capital-backed startup focused on bringing advanced concentrating solar panels to market. Our fundamental innovation is that we are the first company to develop a racking solar concentrator specifically for commercial rooftop applications, resulting in the lowest LCOE for rooftop electricity generation. Today, the commercial rooftop segment is the largest and fastest-growing market in the solar industry. Our concentrating panels can make a major contribution to the SAI's objectives: reducing the cost of solar electricity and rapidly deploying capacity. Our commercialization focus was re-shaped in 2009, shifting from an emphasis solely on panel efficiency to LCOE. Since the inception of the SAI program, LCOE has become the de facto standard for comparing commercial photovoltaic systems. While estimation and prediction models still differ, the emergence of performance-based incentive (PBI) and feed-in tariff (FIT) systems, as well as power purchase agreement (PPA) financing structures make LCOE the natural metric for photovoltaic systems. Soliant Energy has designed and demonstrated lower-cost, higher-power solar panels that consists of 6 (500X) PV module assemblies utilizing multi-junction cells and an integrated two-axis tracker. In addition, we have designed and demonstrated a prototype 1000X panel assembly with 8. Cost reductions relative to conventional flat panel PV systems were realized by (1) reducing the amount of costly semiconductor material and (2) developing strategies and processes to reduce the manufacturing costs of the entire system. Performance gains against conventional benchmarks were realized with (1) two-axis tracking and (2) higher-efficiency multi-junction PV cells capable of operating at a solar concentration ratio of 1000X (1000 kW/m2). The program objectives are: (1) Develop a tracking/concentrating solar module that has the same geometric form factor as a conventional flat, roof mounted photovoltaic (PV) panel - the Soliant module will produce more power and cost less than conventional panels of the same size; (2) Target LCOE: $0.079/kWh in 2010; (3) Target efficiency - 26% in 2010 (22% for 2008 prototype, 24% for 2009 pilot); and (4) Target performance - equivalent to 650Wp in 2010 (490W for 2008 prototype, 540W for 2009 pilot).

  5. Picoseconds-Laser Modification of Thin Films

    SciTech Connect (OSTI)

    Gakovic, Biljana; Trtica, Milan [Institute of Nuclear Sciences 'VINCA' 522, 11001 Belgrade (Serbia and Montenegro); Batani, Dimitri; Desai, Tara; Redaelli, Renato [Dipartimento di Fisica 'G. Occhialini', Universita' degli Studi Milano-Bicocca, Piazza della Scienza 3, Milan 20126 (Italy)

    2006-04-07T23:59:59.000Z

    The interaction of a Nd:YAG laser, pulse duration of 40 ps, with a titanium nitride (TiN) and tungsten-titanium (W-Ti) thin films deposited at silicon was studied. The peak intensity on targets was up to 1012 W/cm2. Results have shown that the TiN surface was modified, by the laser beam, with energy density of {>=}0.18 J/cm2 ({lambda}laser= 532 nm) as well as of 30.0 J/cm2 ({lambda}laser= 1064 nm). The W-Ti was surface modified with energy density of 5.0 J/cm2 ({lambda}laser= 532 nm). The energy absorbed from the Nd:YAG laser beam is partially converted to thermal energy, which generates a series of effects such as melting, vaporization of molten materials, dissociation and ionization of the vaporized material, appearance of plasma, etc. The following morphological changes of both targets were observed: (i) The appearance of periodic microstructures, in the central zone of the irradiated area, for laser irradiation at 532 nm. Accumulation of great number of laser pulses caused film ablation and silicon modification. (ii) Hole formation on the titanium nitride/silicon target was registered at 1064 nm. The process of the Nd:YAG laser interaction with both targets was accompanied by plasma formation above the target.

  6. Controlled nanostructuration of polycrystalline tungsten thin films

    SciTech Connect (OSTI)

    Girault, B. [Institut P' (UPR 3346 CNRS), Universite de Poitiers, ENSMA, Bd Pierre et Marie Curie, 86962 Futuroscope Cedex (France); Institut de Recherche en Genie Civil et Mecanique (UMR CNRS 6183), LUNAM Universite, Universite de Nantes, Centrale Nantes, CRTT, 37 Bd de l'Universite, BP 406, 44602 Saint-Nazaire Cedex (France); Eyidi, D.; Goudeau, P.; Guerin, P.; Bourhis, E. Le; Renault, P.-O. [Institut P' (UPR 3346 CNRS), Universite de Poitiers, ENSMA, Bd Pierre et Marie Curie, 86962 Futuroscope Cedex (France); Sauvage, T. [CEMHTI/CNRS (UPR 3079 CNRS), Universite d'Orleans, 3A rue de la Ferollerie, 45071 Orleans Cedex 2 (France)

    2013-05-07T23:59:59.000Z

    Nanostructured tungsten thin films have been obtained by ion beam sputtering technique stopping periodically the growing. The total thickness was maintained constant while nanostructure control was obtained using different stopping periods in order to induce film stratification. The effect of tungsten sublayers' thicknesses on film composition, residual stresses, and crystalline texture evolution has been established. Our study reveals that tungsten crystallizes in both stable {alpha}- and metastable {beta}-phases and that volume proportions evolve with deposited sublayers' thicknesses. {alpha}-W phase shows original fiber texture development with two major preferential crystallographic orientations, namely, {alpha}-W<110> and unexpectedly {alpha}-W<111> texture components. The partial pressure of oxygen and presence of carbon have been identified as critical parameters for the growth of metastable {beta}-W phase. Moreover, the texture development of {alpha}-W phase with two texture components is shown to be the result of a competition between crystallographic planes energy minimization and crystallographic orientation channeling effect maximization. Controlled grain size can be achieved for the {alpha}-W phase structure over 3 nm stratification step. Below, the {beta}-W phase structure becomes predominant.

  7. Electrochromism in copper oxide thin films

    SciTech Connect (OSTI)

    Richardson, T.J.; Slack, J.L.; Rubin, M.D.

    2000-08-15T23:59:59.000Z

    Transparent thin films of copper(I) oxide prepared on conductive SnO2:F glass substrates by anodic oxidation of sputtered copper films or by direct electrodeposition of Cu2O transformed reversibly to opaque metallic copper films when reduced in alkaline electrolyte. In addition, the same Cu2O films transform reversibly to black copper(II) oxide when cycled at more anodic potentials. Copper oxide-to-copper switching covered a large dynamic range, from 85% and 10% photopic transmittance, with a coloration efficiency of about 32 cm2/C. Gradual deterioration of the switching range occurred over 20 to 100 cycles. This is tentatively ascribed to coarsening of the film and contact degradation caused by the 65% volume change on conversion of Cu to Cu2O. Switching between the two copper oxides (which have similar volumes) was more stable and more efficient (CE = 60 cm2/C), but covered a smaller transmittance range (60% to 44% T). Due to their large electrochemical storage capacity and tolerance for alkaline electrolytes, these cathodically coloring films may be useful as counter electrodes for anodically coloring electrode films such as nickel oxide or metal hydrides.

  8. Adhesion and Thin-Film Module Reliability

    SciTech Connect (OSTI)

    McMahon, T. J.; Jorgenson, G. J.

    2006-01-01T23:59:59.000Z

    Among the infrequently measured but essential properties for thin-film (T-F) module reliability are the interlayer adhesion and cohesion within a layer. These can be cell contact layers to glass, contact layers to the semiconductor, encapsulant to cell, glass, or backsheet, etc. We use an Instron mechanical testing unit to measure peel strengths at 90deg or 180deg and, in some cases, a scratch and tape pull test to evaluate inter-cell layer adhesion strengths. We present peel strength data for test specimens laminated from the three T-F technologies, before and after damp heat, and in one instance at elevated temperatures. On laminated T-F cell samples, failure can occur uniformly at any one of the many interfaces, or non-uniformly across the peel area at more than one interface. Some peel strengths are Lt1 N/mm. This is far below the normal ethylene vinyl acetate/glass interface values of >10 N/mm. We measure a wide range of adhesion strengths and suggest that adhesion measured under higher temperature and relative humidity conditions is more relevant for module reliability.

  9. Josephson junction in a thin film

    SciTech Connect (OSTI)

    Kogan, V. G.; Dobrovitski, V. V.; Clem, J. R.; Mawatari, Yasunori; Mints, R. G.

    2001-04-01T23:59:59.000Z

    The phase difference {phi}(y) for a vortex at a line Josephson junction in a thin film attenuates at large distances as a power law, unlike the case of a bulk junction where it approaches exponentially the constant values at infinities. The field of a Josephson vortex is a superposition of fields of standard Pearl vortices distributed along the junction with the line density {phi}'(y)/2{pi}. We study the integral equation for {phi}(y) and show that the phase is sensitive to the ratio l/{Lambda}, where l={lambda}{sub J}{sup 2}/{lambda}{sub L}, {Lambda}=2{lambda}{sub L}{sup 2}/d, {lambda}{sub L}, and {lambda}{sub J} are the London and Josephson penetration depths, and d is the film thickness. For l<<{Lambda}, the vortex ''core'' of the size l is nearly temperature independent, while the phase ''tail'' scales as l{Lambda}/y{sup 2}={lambda}{sub J}2{lambda}{sub L}/d/y{sup 2}; i.e., it diverges as T{yields}T{sub c}. For l>>{Lambda}, both the core and the tail have nearly the same characteristic length l{Lambda}.

  10. An investigation of preferences for product appearance : a case study of residential solar panels ; Case study of residential solar panels .

    E-Print Network [OSTI]

    Bao, Qifang

    2014-01-01T23:59:59.000Z

    ??The importance of the styling and appearance of consumer products is widely understood. This paper evaluates the appearance of a technology-oriented product, the residential solar… (more)

  11. Lessons Learned from the Photovoltaic Manufacturing Technology/PV Manufacturing R&D and Thin Film PV Partnership Projects

    SciTech Connect (OSTI)

    Margolis, R.; Mitchell, R.; Zweibel, K.

    2006-09-01T23:59:59.000Z

    As the U.S. Department of Energy's (DOE's) Solar Energy Technologies Program initiates new cost-shared solar energy R&D under the Solar America Initiative (SAI), it is useful to analyze the experience gained from cost-shared R&D projects that have been funded through the program to date. This report summarizes lessons learned from two DOE-sponsored photovoltaic (PV) projects: the Photovoltaic Manufacturing Technology/PV Manufacturing R&D (PVMaT/PVMR&D) project and the Thin-Film PV Partnership project. During the past 10-15 years, these two projects have invested roughly $330 million of government resources in cost-shared R&D and leveraged another $190 million in private-sector PV R&D investments. Following a description of key findings and brief descriptions of the PVMaT/PVMR&D and Thin-Film PV Partnership projects, this report presents lessons learned from the projects.

  12. 16 BOSTONIA Summer 2014 Self-CleaningSolarPanels

    E-Print Network [OSTI]

    , a global pioneer in the construction of CSP (concentrated solar power) and PV (photovoltaic) power plants than 100,000 homes. With at least two plants in desert locations, Abengoa was keenly interested

  13. Nitrogen doped zinc oxide thin film

    SciTech Connect (OSTI)

    Li, Sonny X.

    2003-12-15T23:59:59.000Z

    To summarize, polycrystalline ZnO thin films were grown by reactive sputtering. Nitrogen was introduced into the films by reactive sputtering in an NO{sub 2} plasma or by N{sup +} implantation. All ZnO films grown show n-type conductivity. In unintentionally doped ZnO films, the n-type conductivities are attributed to Zn{sub i}, a native shallow donor. In NO{sub 2}-grown ZnO films, the n-type conductivity is attributed to (N{sub 2}){sub O}, a shallow double donor. In NO{sub 2}-grown ZnO films, 0.3 atomic % nitrogen was found to exist in the form of N{sub 2}O and N{sub 2}. Upon annealing, N{sub 2}O decomposes into N{sub 2} and O{sub 2}. In furnace-annealed samples N{sub 2} redistributes diffusively and forms gaseous N{sub 2} bubbles in the films. Unintentionally doped ZnO films were grown at different oxygen partial pressures. Zni was found to form even at oxygen-rich condition and led to n-type conductivity. N{sup +} implantation into unintentionally doped ZnO film deteriorates the crystallinity and optical properties and leads to higher electron concentration. The free electrons in the implanted films are attributed to the defects introduced by implantation and formation of (N{sub 2}){sub O} and Zni. Although today there is still no reliable means to produce good quality, stable p-type ZnO material, ZnO remains an attractive material with potential for high performance short wavelength optoelectronic devices. One may argue that gallium nitride was in a similar situation a decade ago. Although we did not obtain any p-type conductivity, we hope our research will provide a valuable reference to the literature.

  14. Potential of Thin Films for use in Charged Particle Tracking Detectors

    E-Print Network [OSTI]

    J. Metcalfe; I. Mejia; J. Murphy; M. Quevedo; L. Smith; J. Alvarado; B. Gnade; H. Takai

    2014-11-06T23:59:59.000Z

    Thin Film technology has widespread applications in everyday electronics, notably Liquid Crystal Display screens, solar cells, and organic light emitting diodes. We explore the potential of this technology as charged particle radiation tracking detectors for use in High Energy Physics experiments such as those at the Large Hadron Collider or the Relativistic Heavy Ion Collider. Through modern fabrication techniques, a host of semiconductor materials are available to construct thin, flexible detectors with integrated electronics with pixel sizes on the order of a few microns. We review the material properties of promising candidates, discuss the potential benefits and challenges associated with this technology, and review previously demonstrated applicability as a neutron detector.

  15. Potential of Thin Films for use in Charged Particle Tracking Detectors

    E-Print Network [OSTI]

    Metcalfe, J; Murphy, J; Quevedo, M; Smith, L; Alvarado, J; Gnade, B; Takai, H

    2014-01-01T23:59:59.000Z

    Thin Film technology has widespread applications in everyday electronics, notably Liquid Crystal Display screens, solar cells, and organic light emitting diodes. We explore the potential of this technology as charged particle radiation tracking detectors for use in High Energy Physics experiments such as those at the Large Hadron Collider or the Relativistic Heavy Ion Collider. Through modern fabrication techniques, a host of semiconductor materials are available to construct thin, flexible detectors with integrated electronics with pixel sizes on the order of a few microns. We review the material properties of promising candidates, discuss the potential benefits and challenges associated with this technology, and review previously demonstrated applicability as a neutron detector.

  16. Net Zero Residential Test Facility Gaithersburg, MD Solar Photovoltaic Panels

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Heating System Preheat - Solar thermal 80-gal tank, electric auxiliary heating Active, indirect forced-gal tank, electric auxiliary heating Multiple operating modes: heat pump, hybrid and standard and Ventilation Systems Advanced Air-to-Air Heat Pump Systems Suitable for Low Energy Homes Geothermal Heat Pump

  17. Thin Film Packaging Solutions for High Efficiency OLED Lighting Products

    SciTech Connect (OSTI)

    None

    2008-06-30T23:59:59.000Z

    The objective of the 'Thin Film Packaging Solutions for High Efficiency OLED Lighting Products' project is to demonstrate thin film packaging solutions based on SiC hermetic coatings that, when applied to glass and plastic substrates, support OLED lighting devices by providing longer life with greater efficiency at lower cost than is currently available. Phase I Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on optical glass with lifetime of 1,000 hour life, CRI greater than 75, and 15 lm/W. Phase II Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on plastic or glass composite with 25 lm/W, 5,000 hours life, and CRI greater than 80. Phase III Objective: Demonstrate 2 x 2 ft{sup 2} thin film encapsulated working phosphorescent OLED with 40 lm/W, 10,000 hour life, and CRI greater than 85. This report details the efforts of Phase III (Budget Period Three), a fourteen month collaborative effort that focused on optimization of high-efficiency phosphorescent OLED devices and thin-film encapsulation of said devices. The report further details the conclusions and recommendations of the project team that have foundation in all three budget periods for the program. During the conduct of the Thin Film Packaging Solutions for High Efficiency OLED Lighting Products program, including budget period three, the project team completed and delivered the following achievements: (1) a three-year marketing effort that characterized the near-term and longer-term OLED market, identified customer and consumer lighting needs, and suggested prototype product concepts and niche OLED applications lighting that will give rise to broader market acceptance as a source for wide area illumination and energy conservation; (2) a thin film encapsulation technology with a lifetime of nearly 15,000 hours, tested by calcium coupons, while stored at 16 C and 40% relative humidity ('RH'). This encapsulation technology was characterized as having less than 10% change in transmission during the 15,000 hour test period; (3) demonstrated thin film encapsulation of a phosphorescent OLED device with 1,500 hours of lifetime at 60 C and 80% RH; (4) demonstrated that a thin film laminate encapsulation, in addition to the direct thin film deposition process, of a polymer OLED device was another feasible packaging strategy for OLED lighting. The thin film laminate strategy was developed to mitigate defects, demonstrate roll-to-roll process capability for high volume throughput (reduce costs) and to support a potential commercial pathway that is less dependent upon integrated manufacturing since the laminate could be sold as a rolled good; (5) demonstrated that low cost 'blue' glass substrates could be coated with a siloxane barrier layer for planarization and ion-protection and used in the fabrication of a polymer OLED lighting device. This study further demonstrated that the substrate cost has potential for huge cost reductions from the white borosilicate glass substrate currently used by the OLED lighting industry; (6) delivered four-square feet of white phosphorescent OLED technology, including novel high efficiency devices with 82 CRI, greater than 50 lm/W efficiency, and more than 1,000 hours lifetime in a product concept model shelf; (7) presented and or published more than twenty internal studies (for private use), three external presentations (OLED workshop-for public use), and five technology-related external presentations (industry conferences-for public use); and (8) issued five patent applications, which are in various maturity stages at time of publication. Delivery of thin film encapsulated white phosphorescent OLED lighting technology remains a challenging technical achievement, and it seems that commercial availability of thin, bright, white OLED light that meets market requirements will continue to require research and development effort. However, there will be glass encapsulated white OLED lighting products commercialized in niche markets during the 2008 calendar year. This commercializ

  18. Modeling and control of thin film surface morphology: application to thin film solar cells

    E-Print Network [OSTI]

    Huang, Jianqiao

    2012-01-01T23:59:59.000Z

    Deposition. Industrial & Engineering Chemistry Research, 50,deposition. Industrial & Engineering Chemistry Research, 48:deposition. Industrial & Engineering Chemistry Research, 50:

  19. Uncooled thin film pyroelectric IR detector with aerogel thermal isolation

    SciTech Connect (OSTI)

    Ruffner, J.A.; Clem, P.G.; Tuttle, B.A. [and others

    1998-01-01T23:59:59.000Z

    Uncooled pyroelectric IR imaging systems, such as night vision goggles, offer important strategic advantages in battlefield scenarios and reconnaissance surveys. Until now, the current technology for fabricating these devices has been limited by low throughput and high cost which ultimately limit the availability of these sensor devices. We have developed and fabricated an alternative design for pyroelectric IR imaging sensors that utilizes a multilayered thin film deposition scheme to create a monolithic thin film imaging element on an active silicon substrate for the first time. This approach combines a thin film pyroelectric imaging element with a thermally insulating SiO{sub 2} aerogel thin film to produce a new type of uncooled IR sensor that offers significantly higher thermal, spatial, and temporal resolutions at a substantially lower cost per unit. This report describes the deposition, characterization and optimization of the aerogel thermal isolation layer and an appropriate pyroelectric imaging element. It also describes the overall integration of these components along with the appropriate planarization, etch stop, adhesion, electrode, and blacking agent thin film layers into a monolithic structure. 19 refs., 8 figs., 6 tabs.

  20. Ames Lab 101: Improving Solar Cell Efficiency

    SciTech Connect (OSTI)

    Biswas, Rana

    2011-01-01T23:59:59.000Z

    Rana Biswas, a scientist with the Ames Laboratory, discusses his team's research in creating more efficient solar cells and working with Iowa Thin Film to produce these cells.

  1. Ames Lab 101: Improving Solar Cell Efficiency

    ScienceCinema (OSTI)

    Biswas, Rana

    2012-08-29T23:59:59.000Z

    Rana Biswas, a scientist with the Ames Laboratory, discusses his team's research in creating more efficient solar cells and working with Iowa Thin Film to produce these cells.

  2. Holographic technology could increase solar efficiency | Department...

    Broader source: Energy.gov (indexed) [DOE]

    cost. Redirect the light And that's just part of what holographic technology offers to solar energy generation. Because of its light-bending properties, holographic thin film...

  3. Divya Energy Solar Panel Savings Calculator | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The followingDirect Energy ServicesColumbia: Energy Resources

  4. Properties of zirconia thin films deposited by laser ablation

    SciTech Connect (OSTI)

    Cancea, V. N. [Department of Physics, University of Craiova, Craiova 200585 (Romania); Filipescu, M.; Colceag, D.; Dinescu, M. [Department of Lasers, National Institute for Laser, Plasma and Radiation Physics, Magurele 077125 (Romania); Mustaciosu, C. [Horia Hulubei National Institute of Physics and Nuclear Engineering, Magurele, Bucharest (Romania)

    2013-11-13T23:59:59.000Z

    Zirconia thin films have been deposited by laser ablation of a ceramic ZrO{sub 2} target in vacuum or in oxygen background at 0.01 mbar. The laser beam generated by an ArF laser (?=193 nm, ?=40 Hz) has been focalized on the target through a spherical lens at an incident angle of 45°. The laser fluence has been established to a value from 2.0 to 3.4 Jcm{sup ?2}. A silicon (100) substrate has been placed parallel to the target, at a distance of 4 cm, and subsequently has been heated to temperatures ranging between 300 °C and 600 °C. Thin films morphology has been characterized by atomic force microscopy and secondary ion mass spectrometry. Biocompatibility of these thin films has been assessed by studying the cell attachment of L929 mouse fibroblasts.

  5. Shape variation of micelles in polymer thin films

    SciTech Connect (OSTI)

    Zhou, Jiajia, E-mail: zhou@uni-mainz.de; Shi, An-Chang, E-mail: shi@mcmaste.ca [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1 (Canada)] [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1 (Canada)

    2014-01-14T23:59:59.000Z

    The equilibrium properties of block copolymer micelles confined in polymer thin films are investigated using self-consistent field theory. The theory is based on a model system consisting of AB diblock copolymers and A homopolymers. Two different methods, based on the radius of gyration tensor and the spherical harmonics expansion, are used to characterize the micellar shape. The results reveal that the morphology of micelles in thin films depends on the thickness of the thin films and the selectivity of the confining surfaces. For spherical (cylindrical) micelles, the spherical (cylindrical) symmetry is broken by the presence of the one-dimensional confinement, whereas the top-down symmetry is broken by the selectivity of the confining surfaces. Morphological transitions from spherical or cylindrical micelles to cylinders or lamella are predicted when the film thickness approaches the micellar size.

  6. "Increasing Solar Panel Efficiency And Reliability By Evaporative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy SystemsFebruary 7-8,MarchKnyszek,A. Jaworski

  7. Solar Panels Hit Energy Milestone For Potawatomi and Milwaukee | Department

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research |RegulationRenewable Energy (EERE)SmartRemarkson solarDamien LaVeraSunShotof

  8. A comparison of thick film and thin film traffic stripes

    E-Print Network [OSTI]

    Keese, Charles J

    1952-01-01T23:59:59.000Z

    Striys. . . Pigmented Bitusmn Stripes . Asphalt %uilt-Upa Striye vith Pigmented Portland Cement Mortar Cover Course 38 . ~ 41 Thin Film Stripes Used for Comparison Results of Comparing Thick Film Stripes and Thin Film Paint Stripes . ~ ~ ~ ~ ~ 43... was aspbaltio oonorets. The pavement in Test Areas 2y 3p and 4 vas portland cesmnh ooncrete, Two test areas (3 and 4) vere located in such manner as to provide uninterrupted flow of traffic over tbs entire length of the test area. The other two test areas (1...

  9. Study of Martensitic Phase transformation in a NiTiCu Thin Film...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Phase transformation in a NiTiCu Thin Film Shape Memory Alloy Using Photoelectron Emission Microscopy. Study of Martensitic Phase transformation in a NiTiCu Thin Film Shape...

  10. The development of a thin-film rollforming process for pharmaceutical continuous manufacturing

    E-Print Network [OSTI]

    Slaughter, Ryan (Ryan R.)

    2013-01-01T23:59:59.000Z

    In this thesis, a continuous rollforming process for the folding of thin-films was proposed and studied as a key step in the continuous manufacturing of pharmaceutical tablets. HPMC and PEG based polymeric thin-films were ...

  11. PID Failure of c-Si and Thin-Film Modules and Possible Correlation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PID Failure of c-Si and Thin-Film Modules and Possible Correlation with Leakage Currents PID Failure of c-Si and Thin-Film Modules and Possible Correlation with Leakage Currents...

  12. Epoxy/Single Walled Carbon Nanotube Nanocomposite Thin Films for Composites Reinforcement

    E-Print Network [OSTI]

    Warren, Graham

    2010-07-14T23:59:59.000Z

    This work is mainly focused upon the preparation, processing and evaluation of mechanical and material properties of epoxy/single walled carbon nanotube (SWCNT) nanocomposite thin films. B-staged epoxy/SWCNT nanocomposite thin films at 50% of cure...

  13. Characterization of LiNi?.?Mn?.?O? Thin Film Cathode Prepared by Pulsed Laser Deposition

    E-Print Network [OSTI]

    Xia, Hui

    LiNi?.?Mn?.?O? thin films have been grown by pulsed laser deposition (PLD) on stainless steel (SS) substrates. The crystallinity and structure of thin films were investigated by X-ray diffraction (XRD). Microstructure and ...

  14. Adsorption of iso-/n-butane on an Anatase Thin Film: A Molecular...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    iso-n-butane on an Anatase Thin Film: A Molecular Beam Scattering and TDS Study. Adsorption of iso-n-butane on an Anatase Thin Film: A Molecular Beam Scattering and TDS Study....

  15. Influence of samaria doping on the resistance of ceria thin films...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    doping on the resistance of ceria thin films and its implications to the planar oxygen sensing devices. Influence of samaria doping on the resistance of ceria thin films and...

  16. Carrier Dynamics in a-Fe2O3 (0001) Thin Films and Single Crystals...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carrier Dynamics in a-Fe2O3 (0001) Thin Films and Single Crystals Probed by Femtosecond Transient Absorption and Reflectivity. Carrier Dynamics in a-Fe2O3 (0001) Thin Films and...

  17. Two-color Laser Desorption of Nanostructured MgO Thin Films....

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two-color Laser Desorption of Nanostructured MgO Thin Films. Two-color Laser Desorption of Nanostructured MgO Thin Films. Abstract: Neutral magnesium atom emission from...

  18. Initiated chemical vapor deposition of polymeric thin films : mechanism and applications

    E-Print Network [OSTI]

    Chan, Kelvin, Ph. D. Massachusetts Institute of Technology

    2005-01-01T23:59:59.000Z

    Initiated chemical vapor deposition (iCVD) is a novel technique for depositing polymeric thin films. It is able to deposit thin films of application-specific polymers in one step without using any solvents. Its uniqueness ...

  19. Iron Oxide-Gold Core-Shell Nanoparticles and Thin-Film Assembly...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oxide-Gold Core-Shell Nanoparticles and Thin-Film Assembly. Iron Oxide-Gold Core-Shell Nanoparticles and Thin-Film Assembly. Abstract: This paper reports findings of an...

  20. Ein historisches Photovoltaik-Modul:das TSG MQ 36/0. A historical module:the TSG MQ 36/0 solar panel.

    E-Print Network [OSTI]

    Damm, Werner

    /0 solar panel. #12;Die Photovoltaikanlage des Energielabors der Universi- tät Oldenburg ist eine der the condition of a solar module:Scientists examine the solar panel. #12;54 EINBLICKE 9 The "Energielabor"attheUniversityofOldenburg modules provide very important measurement data for the current discussion about the lifetime of solar

  1. Temperature Dependence of Sputtered Conductive Carbon Thin Films Bull. Korean Chem. Soc. 2011, Vol. 32, No. 3 939 DOI 10.5012/bkcs.2011.32.3.939

    E-Print Network [OSTI]

    Boo, Jin-Hyo

    °C to 700 °C in increments of 100 °C using a rapid thermal annealing method by vacuum furnace in the electronic devices such as organic thin film transistor (OTFT), dye-sensitized solar cell (DSSC), and field by a vacuum furnace in vacuum ambient, and the effects of annealing temperature on struc- tural, tribological

  2. Solar panels as air Cherenkov detectors for extremely high energy cosmic rays

    E-Print Network [OSTI]

    Cecchini, S; Esposti, L D; Giacomelli, G; Guerra, M; Lax, I; Mandrioli, G; Parretta, A; Sarno, A; Schioppo, R; Sorel, M; Spurio, M

    2000-01-01T23:59:59.000Z

    Increasing interest towards the observation of the highest energy cosmic rayshas motivated the development of new detection techniques. The properties ofthe Cherenkov photon pulse emitted in the atmosphere by these very rareparticles indicate low-cost semiconductor detectors as good candidates fortheir optical read-out. The aim of this paper is to evaluate the viability of solar panels for thispurpose. The experimental framework resulting from measurements performed withsuitably-designed solar cells and large conventional photovoltaic areas ispresented. A discussion on the obtained and achievable sensitivities follows.

  3. Solar panels as air Cherenkov detectors for extremely high energy cosmic rays

    E-Print Network [OSTI]

    S. Cecchini; I. D'Antone; L. Degli Esposti; G. Giacomelli; M. Guerra; I. Lax; G. Mandrioli; A. Parretta; A. Sarno; R. Schioppo; M. Sorel; M. Spurio

    2000-02-07T23:59:59.000Z

    Increasing interest towards the observation of the highest energy cosmic rays has motivated the development of new detection techniques. The properties of the Cherenkov photon pulse emitted in the atmosphere by these very rare particles indicate low-cost semiconductor detectors as good candidates for their optical read-out. The aim of this paper is to evaluate the viability of solar panels for this purpose. The experimental framework resulting from measurements performed with suitably-designed solar cells and large conventional photovoltaic areas is presented. A discussion on the obtained and achievable sensitivities follows.

  4. Approaches for identifying consumer preferences for the design of technology products : a case study of residential solar panels

    E-Print Network [OSTI]

    Chen, Heidi Qianyi

    2012-01-01T23:59:59.000Z

    This thesis investigates ways to obtain consumer preferences for technology products to help designers identify the key attributes that contribute to a product's market success. A case study of residential solar PV panels ...

  5. Barium ferrite thin film media with perpendicular c-axis orientation and small grain size

    E-Print Network [OSTI]

    Laughlin, David E.

    Barium ferrite thin film media with perpendicular c-axis orientation and small grain size Zailong, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 Barium ferrite thin films with perpendicular c conditions. The c-axis orientation of barium ferrite thin films is most sensitive to the oxygen partial

  6. An integrated thin-film thermo-optic waveguide beam deflector Suning Tang,a)

    E-Print Network [OSTI]

    Chen, Ray

    An integrated thin-film thermo-optic waveguide beam deflector Suning Tang,a) Bulang Li, and Xinghua for publication 16 February 2000 We have demonstrated the operation of a thin-film thermo-optical beam deflector in a three-layer optical planar waveguide. The fabricated waveguide beam deflector consists of a thin-film Si

  7. DETERMINING OPTICAL CONSTANTS OF URANIUM NITRIDE THIN FILMS IN THE EXTREME

    E-Print Network [OSTI]

    Hart, Gus

    DETERMINING OPTICAL CONSTANTS OF URANIUM NITRIDE THIN FILMS IN THE EXTREME ULTRAVIOLET (1.6-35 NM deposition and characterization of reactively-sputtered uranium nitride thin films. I also report optical.1 Application 1 1.2 Optical Constants 2 1.3 Project Focus 7 2 Uranium Nitride Thin Films 8 2.1 Sputtering 8 2

  8. Josephson junction in a thin film V. G. Kogan, V. V. Dobrovitski, and J. R. Clem

    E-Print Network [OSTI]

    Mints, Roman G.

    Josephson junction in a thin film V. G. Kogan, V. V. Dobrovitski, and J. R. Clem Ames Laboratory The phase difference (y) for a vortex at a line Josephson junction in a thin film attenuates at large was normal to the film faces unlike traditional thin-film large- area Josephson junctions in which

  9. Microwave plasma assisted supersonic gas jet deposition of thin film materials

    DOE Patents [OSTI]

    Schmitt, III, Jerome J. (New Haven, CT); Halpern, Bret L. (Bethany, CT)

    1993-01-01T23:59:59.000Z

    An apparatus for fabricating thin film materials utilizing high speed gas dynamics relies on supersonic free jets of carrier gas to transport depositing vapor species generated in a microwave discharge to the surface of a prepared substrate where the vapor deposits to form a thin film. The present invention generates high rates of deposition and thin films of unforeseen high quality at low temperatures.

  10. Stress and Moisture Effects on Thin Film Buckling Delamination

    E-Print Network [OSTI]

    Volinsky, Alex A.

    ­2 GPa compres- sive residual stresses were sputter deposited on top of thin (below 100 nm) copper superlayer with com- pressive residual stress was sputter deposited on top of the films in order to help Mechanics 2006 Abstract Deposition processes control the properties of thin films; they can also introduce

  11. Thin film cracking and ratcheting caused by temperature cycling

    E-Print Network [OSTI]

    Suo, Zhigang

    Thin film cracking and ratcheting caused by temperature cycling M. Huang and Z. Suo Mechanical caused by ratcheting in an adjacent ductile layer. For example, on a silicon die directly attached corners. Aided by cycling temperature, the shear stresses cause ratcheting in the aluminum pads

  12. Perovskite phase thin films and method of making

    DOE Patents [OSTI]

    Boyle, Timothy J. (Albuquerque, NM); Rodriguez, Mark A. (Albuquerque, NM)

    2000-01-01T23:59:59.000Z

    The present invention comprises perovskite-phase thin films, of the general formula A.sub.x B.sub.y O.sub.3 on a substrate, wherein A is selected from beryllium, magnesium, calcium, strontium, and barium or a combination thereof; B is selected from niobium and tantalum or a combination thereof; and x and y are mole fractions between approximately 0.8 and 1.2. More particularly, A is strontium or barium or a combination thereof and B is niobium or tantalum or a combination thereof. Also provided is a method of making a perovskite-phase thin film, comprising combining at least one element-A-containing compound, wherein A is selected from beryllium, magnesium, calcium, strontium or barium, with at least one element-B-containing compound, wherein B niobium or tantalum, to form a solution; adding a solvent to said solution to form another solution; spin-coating the solution onto a substrate to form a thin film; and heating the film to form the perovskite-phase thin film.

  13. Quasi-Reversible Oxygen Exchange of Amorphous IGZO Thin Films

    E-Print Network [OSTI]

    Shahriar, Selim

    MRSEC Quasi-Reversible Oxygen Exchange of Amorphous IGZO Thin Films NSF Grant # 1121262 A. U. Adler of varying oxygen partial pressure. Oxygen exchange was confirmed by 18O tracer diffusion (time of carrier content vs. pO2) analysis should be applicable for studying the underlying carrier generation

  14. Critical fields in ferromagnetic thin films: Identification of four regimes

    E-Print Network [OSTI]

    Otto, Felix

    Critical fields in ferromagnetic thin films: Identification of four regimes Rub´en Cantero­film elements is a paradigm for a multi­scale pattern­forming system. On one hand, there is a material length functional ceases to be positive definite. The degenerate subspace consists of the "unstable modes

  15. Method of preparing thin film polymeric gel electrolytes

    DOE Patents [OSTI]

    Derzon, Dora K. (Albuquerque, NM); Arnold, Jr., Charles (Albuquerque, NM)

    1997-01-01T23:59:59.000Z

    Novel hybrid thin film electrolyte, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities .apprxeq.10.sup.-3 .OMEGA..sup.-1 cm.sup.-1 are useful as electrolytes for rechargeable lithium batteries.

  16. Preparation and characterization of TL-based superconducting thin films

    E-Print Network [OSTI]

    Wang, Pingshu

    1995-01-01T23:59:59.000Z

    A simple method for growth of Tl-based superconducting thin films is described. In this method, the precursor was prepared in a vacuum chamber by deposition of Ba, Ca and Cu metals or a Ba-Ca alloy and Cu metal. The precursor was then oxidized...

  17. Method of preparing thin film polymeric gel electrolytes

    DOE Patents [OSTI]

    Derzon, D.K.; Arnold, C. Jr.

    1997-11-25T23:59:59.000Z

    Novel hybrid thin film electrolyte is described, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities {approx_equal}10{sup {minus}3}{Omega}{sup {minus}1}cm{sup {minus}1} are useful as electrolytes for rechargeable lithium batteries. 1 fig.

  18. Method for double-sided processing of thin film transistors

    DOE Patents [OSTI]

    Yuan, Hao-Chih (Madison, WI); Wang, Guogong (Madison, WI); Eriksson, Mark A. (Madison, WI); Evans, Paul G. (Madison, WI); Lagally, Max G. (Madison, WI); Ma, Zhenqiang (Middleton, WI)

    2008-04-08T23:59:59.000Z

    This invention provides methods for fabricating thin film electronic devices with both front- and backside processing capabilities. Using these methods, high temperature processing steps may be carried out during both frontside and backside processing. The methods are well-suited for fabricating back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.

  19. Front and backside processed thin film electronic devices

    DOE Patents [OSTI]

    Evans, Paul G. (Madison, WI); Lagally, Max G. (Madison, WI); Ma, Zhenqiang (Middleton, WI); Yuan, Hao-Chih (Lakewood, CO); Wang, Guogong (Madison, WI); Eriksson, Mark A. (Madison, WI)

    2012-01-03T23:59:59.000Z

    This invention provides thin film devices that have been processed on their front- and backside. The devices include an active layer that is sufficiently thin to be mechanically flexible. Examples of the devices include back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.

  20. Front and backside processed thin film electronic devices

    DOE Patents [OSTI]

    Yuan, Hao-Chih (Madison, WI); Wang, Guogong (Madison, WI); Eriksson, Mark A. (Madison, WI); Evans, Paul G. (Madison, WI); Lagally, Max G. (Madison, WI); Ma, Zhenqiang (Middleton, WI)

    2010-10-12T23:59:59.000Z

    This invention provides methods for fabricating thin film electronic devices with both front- and backside processing capabilities. Using these methods, high temperature processing steps may be carried out during both frontside and backside processing. The methods are well-suited for fabricating back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.

  1. Chemical analysis of thin films at Sandia National Laboratories

    SciTech Connect (OSTI)

    Tallant, D.R.; Taylor, E.L.

    1980-05-01T23:59:59.000Z

    The characterization of thin films produced by chemical and physical vapor deposition requires special analytical techniques. When the average compositions of the films are required, dissolution of the thin films and measurement of the concentrations of the solubilized species is the appropriate analytical approach. In this report techniques for the wet chemical analysis of thin films of Si:Al, P/sub 2/O/sub 5/:SiO/sub 2/, B/sub 2/O/sub 3/:SiO/sub 2/, TiB/sub x/ and TaB/sub x/ are described. The analyses are complicated by the small total quantities of these analytes present in the films, the refractory characters of these analytes, and the possibility of interferences from the substrates on which the films are deposited. Etching conditions are described which dissolve the thin films without introducing interferences from the substrates. A chemical amplification technique and inductively coupled plasma atomic emission spectrometry are shown to provide the sensitivity required to measure the small total quantities (micrograms to milligrams) of analytes present. Also the chemical analysis data has been used to calibrate normal infrared absorption spectroscopy to give fast estimates of the phosphorus and/or boron dopant levels in thin SiO/sub 2/ films.

  2. Micromachined thin-film gas flow sensor for microchemical reactors

    E-Print Network [OSTI]

    Besser, Ronald S.

    Micromachined thin-film gas flow sensor for microchemical reactors W C Shin and R S Besser New applications not practical before such as highly compact, non-invasive pressure sensors, accelerometers and gas power consumption, fast response, and low-cost batch production [1-4]. Spurred by the development

  3. Thin Films and the Systems-Driven Approach

    SciTech Connect (OSTI)

    Zweibel, K.

    2005-01-01T23:59:59.000Z

    A systems-driven approach is used to discern tradeoffs between cost and efficiency improvements for various thin-film module technologies and designs. Prospects for reduced system cost via such strategies are enhanced as balance-of-systems costs decline, and some strategies are identified for greater research focus.

  4. Long-wave models of thin film fluid dynamics

    E-Print Network [OSTI]

    A. J. Roberts

    1994-11-04T23:59:59.000Z

    Centre manifold techniques are used to derive rationally a description of the dynamics of thin films of fluid. The derived model is based on the free-surface $\\eta(x,t)$ and the vertically averaged horizontal velocity $\\avu(x,t)$. The approach appears to converge well and has significant differences from conventional depth-averaged models.

  5. Polycrystalline thin-film technology: Recent progress in photovoltaics

    SciTech Connect (OSTI)

    Mitchell, R.L.; Zweibel, K.; Ullal, H.S.

    1991-12-01T23:59:59.000Z

    Polycrystalline thin films have made significant technical progress in the past year. Three of these materials that have been studied extensively for photovoltaic (PV) power applications are copper indium diselenide (CuInSe{sub 2}), cadmium telluride (CdTe), and thin-film polycrystalline silicon (x-Si) deposited on ceramic substrates. The first of these materials, polycrystalline thin-film CuInSe{sub 2}, has made some rapid advances in terms of high efficiency and long-term reliability. For CuInSe{sub 2} power modules, a world record has been reported on a 0.4-m{sup 2} module with an aperture-area efficiency of 10.4% and a power output of 40.4 W. Additionally, outdoor reliability testing of CuInSe{sub 2} modules, under both loaded and open-circuit conditions, has resulted in only minor changes in module performance after more than 1000 days of continuous exposure to natural sunlight. CdTe module research has also resulted in several recent improvements. Module performance has been increased with device areas reaching nearly 900 cm{sup 2}. Deposition has been demonstrated by several different techniques, including electrodeposition, spraying, and screen printing. Outdoor reliability testing of CdTe modules was also carried out under both loaded and open-circuit conditions, with more than 600 days of continuous exposure to natural sunlight. These tests were also encouraging and indicated that the modules were stable within measurement error. The highest reported aperture-area module efficiency for CdTe modules is 10%; the semiconductor material was deposited by electrodeposition. A thin-film CdTe photovoltaic system with a power output of 54 W has been deployed in Saudi Arabia for water pumping. The Module Development Initiative has made significant progress in support of the Polycrystalline Thin-Film Program in the past year, and results are presented in this paper.

  6. An investigation of a residential solar system coupled to a radiant panel ceiling

    SciTech Connect (OSTI)

    Zhang, Z.; Pate, M.; Nelson, R.

    1988-08-01T23:59:59.000Z

    An experimental study of a solar-radiant heating system was performed at Iowa State University's Energy Research House (ERH). The ERH was constructed with copper tubes embedded in the plaster ceilings, thus providing a unique radiant heating system. In addition, 24 water-glycol, flat-plate solar collectors were mounted on the south side of the residence. The present study uses the solar collectors to heat a storage tank via a submerged copper tube oil. Hot water from the storage tank is then circulated through a heat exchanger, which heats the water flowing through the radiant ceiling. This paper contains a description of the solar-radiant system and an interpretation of the data that were measured during a series of transient experiments. In addition, the performance of the flat-plate solar collectors and the water storage tank were evaluated. The characteristics of a solar-to-radiant heat exchanger were also investigated. The thermal behavior of the radiant ceiling and the room enclosures were observed, and the heat transfer from the ceiling by radiation and convection was estimated. The overall heating system was also evaluated using the thermal performances of the individual components. The results of this study verify that it is feasible to use a solar system coupled to a low-temperature radiant-panel heating system for space heating. A sample performance evaluation is also presented.

  7. Structure of All-Polymer Solar Cells Impedes Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    thin films of semiconducting polymers as a possible alternative to silicon-based solar cells. Such devices would have the advantages of being cheap to produce,...

  8. arsenide solar cells: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pankaj J Edla; Dr. Bhupendra Gupta 92 Fully Solution-Processed Copper Chalcopyrite Thin Film Solar Cells: Materials Chemistry, Processing, and Device Physics University of...

  9. arsenide solar cell: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pankaj J Edla; Dr. Bhupendra Gupta 92 Fully Solution-Processed Copper Chalcopyrite Thin Film Solar Cells: Materials Chemistry, Processing, and Device Physics University of...

  10. alloy solar cells: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pankaj J Edla; Dr. Bhupendra Gupta 91 Fully Solution-Processed Copper Chalcopyrite Thin Film Solar Cells: Materials Chemistry, Processing, and Device Physics University of...

  11. Investigation of polycrystalline thin-film CuInSe{sub 2} solar cells based on ZnSe windows. Annual subcontract report, 15 Febraury 1992--14 February 1993

    SciTech Connect (OSTI)

    Olsen, L C [Washington State Univ. at Tri-Cities, Richland, WA (United States)

    1994-05-01T23:59:59.000Z

    Investigations of ZnSe/CIS solar cells are being carried out in an effort to improve the efficiencies CIS cells and to determine if ZnSe is a viable alternative to CdS as a window material. MOCVD growth of ZnSe is accomplished in a SPIRE 500XT reactor housed in the Electronic Materials Laboratory at WSU Tri-Cities by reacting a zinc adduct with H{sub 2}Se. Conductive n-type ZnSe is grown by using iodine as a dopant. Ethyliodide was mixed with helium and installed on one of the gas lines to the system. ZnSe films have been grown on CIS substrates at 200{degrees}C to 250{degrees}C. ZnO is also being deposited by MOCVD by reacting tetrahydrofuran (THF) with a zinc adduct. ZnSe/CIS heterojunctions have been studied by growing n-ZnSe films onto 2 cm x 2 cm CIS substrates diced from materials supplied by Siemens and then depositing an array of aluminum circular areas 2.8.mm in diameter on top of the ZnSe to serve as contacts. Al films are deposited with a thickness of 80 to l00 {angstrom}so that light can pass through the film, thus allowing the illuminated characteristics of the ZnSe/CIS junction to be tested. Accounting for the 20 to 25 % transmittance through the Al film into the ZnSe/CIS structure, current devices have estimated, active-area AM1.5 efficiencies of 14 %. Open circuit voltages > 500 mV are often attained.

  12. Science news doi:10.1038/nindia.2012.185; Published online 17 December 2012 Stacked panels boost solar energy production

    E-Print Network [OSTI]

    Harinarayana, T.

    solar energy production K. S. Jayaraman Researchers at Gujarat Energy Research and Management Institute, the energy generation from commercially available single layer solar panel system for a typical day the energy generation by stacking transparent solar panels which will become available in the near future

  13. Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells

    E-Print Network [OSTI]

    Atwater, Harry

    Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells Vivian E. Ferry, Luke in thin film solar cells. In particular, the ability of plasmonic structures to localize light sunlight into guided modes in thin film Si and GaAs plasmonic solar cells whose back interface is coated

  14. Thin film battery and method for making same

    DOE Patents [OSTI]

    Bates, John B. (Oak Ridge, TN); Dudney, Nancy J. (Knoxville, TN); Gruzalski, Greg R. (Oak Ridge, TN); Luck, Christopher F. (Knoxville, TN)

    1994-01-01T23:59:59.000Z

    Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between -15.degree. C. and 150.degree. C.

  15. Thin film photovoltaic device and process of manufacture

    DOE Patents [OSTI]

    Albright, Scot P. (Lakewood, CO); Chamberlin, Rhodes (El Paso, TX)

    1999-02-09T23:59:59.000Z

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells.

  16. Thin film photovoltaic device and process of manufacture

    DOE Patents [OSTI]

    Albright, Scot P. (Lakewood, CO); Chamberlin, Rhodes (El Paso, TX)

    1997-10-07T23:59:59.000Z

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells.

  17. Thin film photovoltaic device and process of manufacture

    DOE Patents [OSTI]

    Albright, S.P.; Chamberlin, R.

    1997-10-07T23:59:59.000Z

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells. 13 figs.

  18. Thin film photovoltaic device and process of manufacture

    DOE Patents [OSTI]

    Albright, S.P.; Chamberlin, R.

    1999-02-09T23:59:59.000Z

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells. 13 figs.

  19. Thin-Film Reliability Trends Toward Improved Stability: Preprint

    SciTech Connect (OSTI)

    Jordan, D. C.; Kurtz, S. R.

    2011-07-01T23:59:59.000Z

    Long-term, stable performance of photovoltaic (PV) modules will be increasingly important to their successful penetration of the power grid. This paper summarizes more than 150 thin-film and more than 1700 silicon PV degradation rates (Rd) quoted in publications for locations worldwide. Partitioning the literature results by technology and date of installation statistical analysis shows an improvement in degradation rate especially for thin-film technologies in the last decade. A CIGS array deployed at NREL for more than 5 years that appears to be stable supports the literature trends. Indoor and outdoor data indicate undetectable change in performance (0.2+/-0.2 %/yr). One module shows signs of slight degradation from what appears to be an initial manufacturing defect, however it has not affected the overall system performance.

  20. Thin film battery and method for making same

    DOE Patents [OSTI]

    Bates, J.B.; Dudney, N.J.; Gruzalski, G.R.; Luck, C.F.

    1994-08-16T23:59:59.000Z

    Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode. Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between [minus]15 C and 150 C. 9 figs.

  1. Thin-Film Reliability Trends Toward Improved Stability

    SciTech Connect (OSTI)

    Jordan, D. C.; Kurtz, S. R.

    2011-01-01T23:59:59.000Z

    Long-term, stable performance of photovoltaic (PV) modules will be increasingly important to their successful penetration of the power grid. This paper summarizes more than 150 thin-film and more than 1700 silicon PV degradation rates (R{sub d}) quoted in publications for locations worldwide. Partitioning the literature results by technology and date of installation statistical analysis shows an improvement in degradation rate especially for thin-film technologies in the last decade. A CIGS array deployed at NREL for more than 5 years that appears to be stable supports the literature trends. Indoor and outdoor data indicate undetectable change in performance (0.2 {+-} 0.2 %/yr). One module shows signs of slight degradation from what appears to be an initial manufacturing defect, however it has not affected the overall system performance.

  2. Superhydrophobic Thin Film Coatings - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystalline Gallium OxideSuminDeposition of Metal FilmsIndustrialSolar

  3. Strain mapping on gold thin film buckling and siliconblistering

    SciTech Connect (OSTI)

    Goudeau, P.; Tamura, N.; Parry, G.; Colin, J.; Coupeau, C.; Cleymand, F.; Padmore, H.

    2005-09-01T23:59:59.000Z

    Stress/Strain fields associated with thin film buckling induced by compressive stresses or blistering due to the presence of gas bubbles underneath single crystal surfaces are difficult to measure owing to the microscale dimensions of these structures. In this work, we show that micro Scanning X-ray diffraction is a well suited technique for mapping the strain/stress tensor of these damaged structures.

  4. Preparation of redox polymer cathodes for thin film rechargeable batteries

    DOE Patents [OSTI]

    Skotheim, T.A.; Lee, H.S.; Okamoto, Yoshiyuki.

    1994-11-08T23:59:59.000Z

    The present invention relates to the manufacture of thin film solid state electrochemical devices using composite cathodes comprising a redox polymer capable of undergoing oxidation and reduction, a polymer solid electrolyte and conducting carbon. The polymeric cathode material is formed as a composite of radiation crosslinked polymer electrolytes and radiation crosslinked redox polymers based on polysiloxane backbones with attached organosulfur side groups capable of forming sulfur-sulfur bonds during electrochemical oxidation.

  5. Synthesis of thin films and materials utilizing a gaseous catalyst

    DOE Patents [OSTI]

    Morse, Daniel E; Schwenzer, Birgit; Gomm, John R; Roth, Kristian M; Heiken, Brandon; Brutchey, Richard

    2013-10-29T23:59:59.000Z

    A method for the fabrication of nanostructured semiconducting, photoconductive, photovoltaic, optoelectronic and electrical battery thin films and materials at low temperature, with no molecular template and no organic contaminants. High-quality metal oxide semiconductor, photovoltaic and optoelectronic materials can be fabricated with nanometer-scale dimensions and high dopant densities through the use of low-temperature biologically inspired synthesis routes, without the use of any biological or biochemical templates.

  6. Optical sensors and multisensor arrays containing thin film electroluminescent devices

    DOE Patents [OSTI]

    Aylott, Jonathan W. (Ann Arbor, MI); Chen-Esterlit, Zoe (Ann Arbor, MI); Friedl, Jon H. (Ames, IA); Kopelman, Raoul (Ann Arbor, MI); Savvateev, Vadim N. (Ames, IA); Shinar, Joseph (Ames, IA)

    2001-12-18T23:59:59.000Z

    Optical sensor, probe and array devices for detecting chemical biological, and physical analytes. The devices include an analyte-sensitive layer optically coupled to a thin film electroluminescent layer which activates the analyte-sensitive layer to provide an optical response. The optical response varies depending upon the presence of an analyte and is detected by a photodetector and analyzed to determine the properties of the analyte.

  7. Fabrication and testing of thermoelectric thin film devices

    SciTech Connect (OSTI)

    Wagner, A.V.; Foreman, R.J.; Summers, L.J.; Barbee, T.W. Jr.; Farmer, J.C. [Lawrence Livermore National Lab., CA (United States). Chemistry and Materials Science Dept.

    1996-03-01T23:59:59.000Z

    Two thin-film thermoelectric devices are experimentally demonstrated. The relevant thermal loads on the cold junction of these devices are determined. The analytical form of the equation that describes the thermal loading of the device enables one to model the performance based on the independently measured electronic properties of the films forming the devices. This model elucidates which parameters determine device performance, and how they can be used to maximize performance.

  8. Substrates suitable for deposition of superconducting thin films

    DOE Patents [OSTI]

    Feenstra, Roeland (Oak Ridge, TN); Boatner, Lynn A. (Oak Ridge, TN)

    1993-01-01T23:59:59.000Z

    A superconducting system for the lossless transmission of electrical current comprising a thin film of superconducting material Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.7-x epitaxially deposited upon a KTaO.sub.3 substrate. The KTaO.sub.3 is an improved substrate over those of the prior art since the it exhibits small lattice constant mismatch and does not chemically react with the superconducting film.

  9. Formation of thin-film resistors on silicon substrates

    DOE Patents [OSTI]

    Schnable, George L. (Montgomery County, PA); Wu, Chung P. (Hamilton Township, Mercer County, NJ)

    1988-11-01T23:59:59.000Z

    The formation of thin-film resistors by the ion implantation of a metallic conductive layer in the surface of a layer of phosphosilicate glass or borophosphosilicate glass which is deposited on a silicon substrate. The metallic conductive layer materials comprise one of the group consisting of tantalum, ruthenium, rhodium, platinum and chromium silicide. The resistor is formed and annealed prior to deposition of metal, e.g. aluminum, on the substrate.

  10. Thin film adhesion by nanoindentation-induced superlayers. Final report

    SciTech Connect (OSTI)

    Gerberich, William W.; Volinsky, A.A.

    2001-06-01T23:59:59.000Z

    This work has analyzed the key variables of indentation tip radius, contact radius, delamination radius, residual stress and superlayer/film/interlayer properties on nanoindentation measurements of adhesion. The goal to connect practical works of adhesion for very thin films to true works of adhesion has been achieved. A review of this work titled ''Interfacial toughness measurements of thin metal films,'' which has been submitted to Acta Materialia, is included.

  11. Study of Copper Diffusion Through Ruthenium Thin Film by Photoemission

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystalline Gallium Oxide Thin Films.AdministrationAerosol

  12. Electrical properties of quench-condensed thin film

    E-Print Network [OSTI]

    Lee, Kyoungjin

    2009-05-15T23:59:59.000Z

    cryopump is used for high vacuum pumping. Materials to be evaporated (evaporant) are held by evaporation sources, like a crucible, boat or wire coil. Tungsten wire is commonly used as an evaporation source for materials like aluminum, nickel, chromium... films were evaporated at room temperature with NRC 3114 commercial thermal evaporator. We deposited aluminum and nickel thin films in a form of bar with shadow mask. A commercial tungsten basket was used for the evaporation source. The evaporation...

  13. MEMS-based thin-film fuel cells

    DOE Patents [OSTI]

    Jankowksi, Alan F.; Morse, Jeffrey D.

    2003-10-28T23:59:59.000Z

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  14. Geometric shape control of thin film ferroelectrics and resulting structures

    DOE Patents [OSTI]

    McKee, Rodney A. (Kingston, TN); Walker, Frederick J. (Oak Ridge, TN)

    2000-01-01T23:59:59.000Z

    A monolithic crystalline structure and a method of making involves a semiconductor substrate, such as silicon, and a ferroelectric film, such as BaTiO.sub.3, overlying the surface of the substrate wherein the atomic layers of the ferroelectric film directly overlie the surface of the substrate. By controlling the geometry of the ferroelectric thin film, either during build-up of the thin film or through appropriate treatment of the thin film adjacent the boundary thereof, the in-plane tensile strain within the ferroelectric film is relieved to the extent necessary to permit the ferroelectric film to be poled out-of-plane, thereby effecting in-plane switching of the polarization of the underlying substrate material. The method of the invention includes the steps involved in effecting a discontinuity of the mechanical restraint at the boundary of the ferroelectric film atop the semiconductor substrate by, for example, either removing material from a ferroelectric film which has already been built upon the substrate, building up a ferroelectric film upon the substrate in a mesa-shaped geometry or inducing the discontinuity at the boundary by ion beam deposition techniques.

  15. International Conference on Technological Advances of Thin Films & Surface Coatings (Thin Films 2008), Singapore, 13-16 July 2008

    E-Print Network [OSTI]

    Cirkva, Vladimir

    were examined by XRD, UV-Vis, AFM and SEM. Compared with pure titania, the UV-Vis spectra of some Mn by the degradation of mono-chloroacetic acid in a microwave field using mercury electrodeless discharge lamp. The degradation efficiency of MCAA on some Mn+ doped TiO2 was higher than those of pure TiO2. Thin Films 212 #12;

  16. DISSERTATION Role of the Cu-O Defect in CdTe Solar Cells

    E-Print Network [OSTI]

    Sites, James R.

    OF THE CU-O DEFECT COMPLEX IN CDTE SOLAR CELLS Thin-film CdTe is one of the leading materials used the defects present in thin-film CdTe deposited for solar cells. One key defect seen in the thin-film CdDISSERTATION Role of the Cu-O Defect in CdTe Solar Cells Submitted by Caroline R. Corwine

  17. Back contact buffer layer for thin-film solar cells

    DOE Patents [OSTI]

    Compaan, Alvin D.; Plotnikov, Victor V.

    2014-09-09T23:59:59.000Z

    A photovoltaic cell structure is disclosed that includes a buffer/passivation layer at a CdTe/Back contact interface. The buffer/passivation layer is formed from the same material that forms the n-type semiconductor active layer. In one embodiment, the buffer layer and the n-type semiconductor active layer are formed from cadmium sulfide (CdS). A method of forming a photovoltaic cell includes the step of forming the semiconductor active layers and the buffer/passivation layer within the same deposition chamber and using the same material source.

  18. Low resistance thin film organic solar cell electrodes

    DOE Patents [OSTI]

    Forrest, Stephen (Princeton, NJ); Xue, Jiangeng (Piscataway, NJ)

    2008-01-01T23:59:59.000Z

    A method which lower the series resistance of photosensitive devices includes providing a transparent film of a first electrically conductive material arranged on a transparent substrate; depositing and patterning a mask over the first electrically conductive material, such that openings in the mask have sloping sides which narrow approaching the substrate; depositing a second electrically conductive material directly onto the first electrically conductive material exposed in the openings of the mask, at least partially filling the openings; stripping the mask, leaving behind reentrant structures of the second electrically conductive material which were formed by the deposits in the openings of the mask; after stripping the mask, depositing a first organic material onto the first electrically conductive material in between the reentrant structures; and directionally depositing a third electrically conductive material over the first organic material deposited in between the reentrant structures, edges of the reentrant structures aligning deposition so that the third electrically conductive material does not directly contact the first electrically conductive material, and does not directly contact the second electrically conductive material.

  19. Overview and Challenges of Thin Film Solar Electric Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 The 2002Optics Group (X-rayLSDPreciousM206Oversight7

  20. Microwave plasma assisted supersonic gas jet deposition of thin film materials

    DOE Patents [OSTI]

    Schmitt, J.J. III; Halpern, B.L.

    1993-10-26T23:59:59.000Z

    An apparatus for fabricating thin film materials utilizing high speed gas dynamics relies on supersonic free jets of carrier gas to transport depositing vapor species generated in a microwave discharge to the surface of a prepared substrate where the vapor deposits to form a thin film. The present invention generates high rates of deposition and thin films of unforeseen high quality at low temperatures. 5 figures.

  1. Studies of Block Copolymer Thin Films and Mixtures with an Ionic Liquid

    E-Print Network [OSTI]

    Virgili, Justin

    2009-01-01T23:59:59.000Z

    identification of structure and domain size in block copolymer thin films using RSoXS enables a quantitative comparison of the bulk

  2. Electrochemical kinetics of thin film vanadium pentoxide cathodes for lithium batteries

    E-Print Network [OSTI]

    Mui, Simon C., 1976-

    2005-01-01T23:59:59.000Z

    Electrochemical experiments were performed to investigate the processing-property-performance relations of thin film vanadium pentoxide cathodes used in lithium batteries. Variations in microstructures were achieved via ...

  3. E-Print Network 3.0 - active thin films Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Western Ontario a JOINT presentation of the Summary: and conducting thin films for optoelectronic applications from carbon nanotubes and graphene" ABSTRACT: Low... . The interest...

  4. Study of GaN:Eu3+ Thin Films Deposited by Metallorganic

    E-Print Network [OSTI]

    McKittrick, Joanna

    as an advantageous architecture for transparent electrodes in optoelectronic devices due primarily to high characteristics of electrodes in optoelectronic devices and in supercapactiors, we introduced oxide thin films

  5. Structure disorder degree of polysilicon thin films grown by different processing: Constant C from Raman spectroscopy

    SciTech Connect (OSTI)

    Wang, Quan, E-mail: wangq@mail.ujs.edu.cn [School of mechanical engineering, Jiangsu University, Zhenjiang 212013 (China); State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhang, Yanmin; Hu, Ran; Ren, Naifei [School of mechanical engineering, Jiangsu University, Zhenjiang 212013 (China); Ge, Daohan [School of mechanical engineering, Jiangsu University, Zhenjiang 212013 (China); State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050 (China)

    2013-11-14T23:59:59.000Z

    Flat, low-stress, boron-doped polysilicon thin films were prepared on single crystalline silicon substrates by low pressure chemical vapor deposition. It was found that the polysilicon films with different deposition processing have different microstructure properties. The confinement effect, tensile stresses, defects, and the Fano effect all have a great influence on the line shape of Raman scattering peak. But the effect results are different. The microstructure and the surface layer are two important mechanisms dominating the internal stress in three types of polysilicon thin films. For low-stress polysilicon thin film, the tensile stresses are mainly due to the change of microstructure after thermal annealing. But the tensile stresses in flat polysilicon thin film are induced by the silicon carbide layer at surface. After the thin film doped with boron atoms, the phenomenon of the tensile stresses increasing can be explained by the change of microstructure and the increase in the content of silicon carbide. We also investigated the disorder degree states for three polysilicon thin films by analyzing a constant C. It was found that the disorder degree of low-stress polysilicon thin film larger than that of flat and boron-doped polysilicon thin films due to the phase transformation after annealing. After the flat polysilicon thin film doped with boron atoms, there is no obvious change in the disorder degree and the disorder degree in some regions even decreases.

  6. Chemical vapor deposition of organosilicon composite thin films for porous low-k dielectrics

    E-Print Network [OSTI]

    Ross, April Denise, 1977-

    2005-01-01T23:59:59.000Z

    Pulsed plasma enhanced chemical vapor deposition has produced organosilicon thin films with the potential use as low dielectric constant interconnect materials in microelectronic circuits. Both diethylsilane and ...

  7. Synthesis of nanomesh, thin film nanocomposite, nanocomposite membranes and synthesis of potassium ion selective membrane electrodes

    E-Print Network [OSTI]

    Singh, Jayant K.

    Synthesis of nanomesh, thin film nanocomposite, nanocomposite membranes and synthesis of potassium and naofibers, which has potential use in protection of agricultural products from hailing. We developed

  8. as2s3 thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    films Engineering Websites Summary: of domain switching and controllability, preventing thin-film and polycrystalline ferroelectrics from the switching mechanisms of...

  9. amorphous silicon thin-film: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    amorphous silicon Kanicki, Jerzy 17 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  10. E-Print Network 3.0 - analyzing solar reflective Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Market Studies Collection: Power Transmission, Distribution and Plants 3 SIMULATION OF LIGHT IN-COUPLING AT OBLIQUE ANGLES IN THIN-FILM SILICON SOLAR CELLS Summary: roughness in...

  11. Toward microscale Cu,,In,Ga...Se2 solar cells for efficient conversion and optimized material usage: Theoretical evaluation

    E-Print Network [OSTI]

    Boyer, Edmond

    solar cells are gaining a growing market share in the photovoltaic field. CIGS thin film solar cells. In this paper, the behavior of microscale thin film solar cells under concen- tration will be studied. We focusToward microscale Cu,,In,Ga...Se2 solar cells for efficient conversion and optimized material usage

  12. B{sub 4}C thin films for neutron detection

    SciTech Connect (OSTI)

    Hoeglund, Carina [European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden); Department of Physics, Chemistry and Biology (IFM), Thin Film Physics Division, Linkoeping University, SE-581 83 Linkoeping (Sweden); Birch, Jens; Jensen, Jens; Hultman, Lars [Department of Physics, Chemistry and Biology (IFM), Thin Film Physics Division, Linkoeping University, SE-581 83 Linkoeping (Sweden); Andersen, Ken; Hall-Wilton, Richard [European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden); Bigault, Thierry; Buffet, Jean-Claude; Correa, Jonathan; Esch, Patrick van; Guerard, Bruno; Piscitelli, Francesco [Institute Laue Langevin, Rue Jules Horowitz, FR-380 00 Grenoble (France); Khaplanov, Anton [European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden); Institute Laue Langevin, Rue Jules Horowitz, FR-380 00 Grenoble (France); Vettier, Christian [European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden); European Synchrotron Radiation Facility, BP 220, FR-380 43 Grenoble Cedex 9 (France); Vollenberg, Wilhelmus [Vacuum, Surfaces and Coatings Group (TE/VSC), CERN, CH-1211 Geneva 23 (Switzerland)

    2012-05-15T23:59:59.000Z

    Due to the very limited availability of {sup 3}He, new kinds of neutron detectors, not based on {sup 3}He, are urgently needed. Here, we present a method to produce thin films of {sup 10}B{sub 4}C, with maximized detection efficiency, intended to be part of a new generation of large area neutron detectors. B{sub 4}C thin films have been deposited onto Al-blade and Si wafer substrates by dc magnetron sputtering from {sup nat}B{sub 4}C and {sup 10}B{sub 4}C targets in an Ar discharge, using an industrial deposition system. The films were characterized with scanning electron microscopy, elastic recoil detection analysis, x-ray reflectivity, and neutron radiography. We show that the film-substrate adhesion and film purity are improved by increased substrate temperature and deposition rate. A deposition rate of 3.8 A/s and substrate temperature of 400 deg. C result in films with a density close to bulk values and good adhesion to film thickness above 3 {mu}m. Boron-10 contents of almost 80 at. % are obtained in 6.3 m{sup 2} of 1 {mu}m thick {sup 10}B{sub 4}C thin films coated on Al-blades. Initial neutron absorption measurements agree with Monte Carlo simulations and show that the layer thickness, number of layers, neutron wavelength, and amount of impurities are determining factors. The study also shows the importance of having uniform layer thicknesses over large areas, which for a full-scale detector could be in total {approx}1000 m{sup 2} of two-side coated Al-blades with {approx}1 {mu}m thick {sup 10}B{sub 4}C films.

  13. Design, construction, and testing of the direct absorption receiver panel research experiment

    SciTech Connect (OSTI)

    Chavez, J.M.; Rush, E.E.; Matthews, C.W.; Stomp, J.M.; Imboden, J.; Dunkin, S.

    1990-01-01T23:59:59.000Z

    A panel research experiment (PRE) was designed, built, and tested as a scaled-down model of a direct absorption receiver (DAR). The PRE is a 3-MW{sub t}DAR experiment that will allow flow testing with molten nitrate salt and provide a test bed for DAR testing with actual solar heating. In a solar central receiver system DAR, the heat absorbing fluid (a blackened molten nitrate salt) flows in a thin film down a vertical panel (rather than through tubes as in conventional receiver designs) and absorbs the concentrated solar flux directly. The ability of the flowing salt film to absorb flux directly. The ability of the flowing salt film to absorb the incident solar flux depends on the panel design, hydraulic and thermal fluid flow characteristics, and fluid blackener properties. Testing of the PRE is being conducted to demonstrate the engineering feasibility of the DAR concept. The DAR concept is being investigated because it offers numerous potential performance and economic advantages for production of electricity when compared to other solar receiver designs. The PRE utilized a 1-m wide by 6-m long absorber panel. The salt flow tests are being used to investigate component performance, panel deformations, and fluid stability. Salt flow testing has demonstrated that all the DAR components work as designed and that there are fluid stability issues that need to be addressed. Future solar testing will include steady-state and transient experiments, thermal loss measurements, responses to severe flux and temperature gradients and determination of peak flux capability, and optimized operation. In this paper, we describe the design, construction, and some preliminary flow test results of the Panel Research Experiment. 11 refs., 8 figs., 2 tabs.

  14. Durable silver thin film coating for diffraction gratings

    DOE Patents [OSTI]

    Wolfe, Jesse D. (Discovery Bay, CA); Britten, Jerald A. (Oakley, CA); Komashko, Aleksey M. (San Diego, CA)

    2006-05-30T23:59:59.000Z

    A durable silver film thin film coated non-planar optical element has been developed to replace Gold as a material for fabricating such devices. Such a coating and resultant optical element has an increased efficiency and is resistant to tarnishing, can be easily stripped and re-deposited without modifying underlying grating structure, improves the throughput and power loading of short pulse compressor designs for ultra-fast laser systems, and can be utilized in variety of optical and spectrophotometric systems, particularly high-end spectrometers that require maximized efficiency.

  15. Oriented niobate ferroelectric thin films for electrical and optical devices

    DOE Patents [OSTI]

    Wessels, Bruce W. (Wilmette, IL); Nystrom, Michael J. (Chicago, IL)

    2001-01-01T23:59:59.000Z

    Sr.sub.x Ba.sub.1-x Nb.sub.2 O.sub.6, where x is greater than 0.25 and less than 0.75, and KNbO.sub.3 ferroelectric thin films metalorganic chemical vapor deposited on amorphous or cyrstalline substrate surfaces to provide a crystal axis of the film exhibiting a high dielectric susceptibility, electro-optic coefficient, and/or nonlinear optic coefficient oriented preferentially in a direction relative to a crystalline or amorphous substrate surface. Such films can be used in electronic, electro-optic, and frequency doubling components.

  16. Control of magnetization reversal in oriented strontium ferrite thin films

    SciTech Connect (OSTI)

    Roy, Debangsu, E-mail: debangsu@physics.iisc.ernet.in; Anil Kumar, P. S. [Department of Physics, Indian Institute of Science, Bangalore 560012 (India)

    2014-02-21T23:59:59.000Z

    Oriented Strontium Ferrite films with the c axis orientation were deposited with varying oxygen partial pressure on Al{sub 2}O{sub 3}(0001) substrate using Pulsed Laser Deposition technique. The angle dependent magnetic hysteresis, remanent coercivity, and temperature dependent coercivity had been employed to understand the magnetization reversal of these films. It was found that the Strontium Ferrite thin film grown at lower (higher) oxygen partial pressure shows Stoner-Wohlfarth type (Kondorsky like) reversal. The relative importance of pinning and nucleation processes during magnetization reversal is used to explain the type of the magnetization reversal with different oxygen partial pressure during growth.

  17. Laser-induced metallic nanograined thin films processing

    SciTech Connect (OSTI)

    Tosa, Nicoleta, E-mail: nicoleta.tosa@itim-cj.ro, E-mail: florin.toadere@itim-cj.ro; Toadere, Florin, E-mail: nicoleta.tosa@itim-cj.ro, E-mail: florin.toadere@itim-cj.ro; Hojbota, Calin, E-mail: nicoleta.tosa@itim-cj.ro, E-mail: florin.toadere@itim-cj.ro; Tosa, Valer, E-mail: nicoleta.tosa@itim-cj.ro, E-mail: florin.toadere@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath., 400293 Cluj-Napoca (Romania)] [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath., 400293 Cluj-Napoca (Romania)

    2013-11-13T23:59:59.000Z

    A direct laser writing method for designing metallic nanograined thin films is presented. This method takes advantage of photon conversion within a chemical process localized at the focal point. A computer controlled positioning system allows the control of experimental parameters and spatial resolution of the pattern. Spectroscopic investigations reveal variable attenuation of the optical properties in UV-visible range and a spectral imaging processing algorithm simulated the functionality of these films in visible light. This could be an important step for obtaining neutral density attenuators.

  18. Electron cyclotron resonance microwave ion sources for thin film processing

    SciTech Connect (OSTI)

    Berry, L.A.; Gorbatkin, S.M.

    1990-01-01T23:59:59.000Z

    Plasmas created by microwave absorption at the electron cyclotron resonance (ECR) are increasingly used for a variety of plasma processes, including both etching and deposition. ECR sources efficiently couple energy to electrons and use magnetic confinement to maximize the probability of an electron creating an ion or free radical in pressure regimes where the mean free path for ionization is comparable to the ECR source dimensions. The general operating principles of ECR sources are discussed with special emphasis on their use for thin film etching. Data on source performance during Cl base etching of Si using an ECR system are presented. 32 refs., 5 figs.

  19. Photoresponse of Tb{sup 3+} doped phosphosilicate thin films

    SciTech Connect (OSTI)

    Lee, B.L.; Cao, Z. [Clemson Univ., SC (United States). Gilbert C. Robinson Dept. of Ceramic and Materials Engineering] [Clemson Univ., SC (United States). Gilbert C. Robinson Dept. of Ceramic and Materials Engineering; Sisk, W.N.; Hudak, J. [Univ. of North Carolina, Charlotte, NC (United States)] [Univ. of North Carolina, Charlotte, NC (United States); Samuels, W.D.; Exarhos, G.J. [Pacific Northwest National Lab., Richland, WA (United States). Materials and Chemical Science] [Pacific Northwest National Lab., Richland, WA (United States). Materials and Chemical Science

    1997-09-01T23:59:59.000Z

    Phosphosilicate ceramic was doped with Tb{sup 3+} using sol-gel technique to prepare thin films. The films were prepared by spin coating the phosphosilicate sols on SiO{sub x}/indium-tin-oxide/glass substrates. The photocurrent of the films at 355 nm laser excitation was observed. The photoresponse as a function of applied field and laser energy was linear and showed no sign of saturation. The films exhibited very stable photoresponse under a very high number of laser shots.

  20. Fractal-Mound Growth of Pentacene Thin Films

    E-Print Network [OSTI]

    Serkan Zorba; Yonathan Shapir; Yongli Gao

    2006-10-19T23:59:59.000Z

    The growth mechanism of pentacene film formation on SiO2 substrate was investigated with a combination of atomic force microscopy measurements and numerical modeling. In addition to the diffusion-limited aggregation (DLA) that has already been shown to govern the growth of the ordered pentacene thin films, it is shown here for the first time that the Schwoebel barrier effect steps in and disrupts the desired epitaxial growth for the subsequent layers, leading to mound growth. The terraces of the growing mounds have a fractal dimension of 1.6, indicating a lateral DLA shape. This novel growth morphology thus combines horizontal DLA-like growth with vertical mound growth.