National Library of Energy BETA

Sample records for thin film silicon

  1. Efficient light trapping structure in thin film silicon solar cells

    E-Print Network [OSTI]

    Sheng, Xing

    Thin film silicon solar cells are believed to be promising candidates for continuing cost reduction in photovoltaic panels because silicon usage could be greatly reduced. Since silicon is an indirect bandgap semiconductor, ...

  2. BACK CONTACT MONOCRYSTALLINE THIN-FILM SILICON SOLAR CELLS FROM THE POROUS SILICON PROCESS

    E-Print Network [OSTI]

    BACK CONTACT MONOCRYSTALLINE THIN-FILM SILICON SOLAR CELLS FROM THE POROUS SILICON PROCESS F. Haase contact cells. Kraiem et al [7] made a back contact thin film monocrystalline solar cell with cell), Am Ohrberg 1, D-31860 Emmerthal, Germany ABSTRACT We develop a back contact monocrystalline thin-film

  3. CRYSTALLINE SILICON THIN-FILM SOLAR CELLS FROM THE POROUS SILICON PROCESS APPLYING CONVECTION ASSISTED CHEMICAL VAPOR DEPOSITION

    E-Print Network [OSTI]

    CRYSTALLINE SILICON THIN-FILM SOLAR CELLS FROM THE POROUS SILICON PROCESS APPLYING CONVECTION for the first time to monocrystalline Si thin-film solar cells from the porous silicon (PSI) layer transfer for manufacturing high efficiency silicon thin-film solar cells. Industrially feasible epitaxy systems therefore

  4. LOSS ANALYSIS OF BACK-CONTACT BACK-JUNCTION THIN-FILM MONOCRYSTALLINE SILICON SOLAR CELLS

    E-Print Network [OSTI]

    LOSS ANALYSIS OF BACK-CONTACT BACK-JUNCTION THIN-FILM MONOCRYSTALLINE SILICON SOLAR CELLS F. Haase losses in back-contact back- junction monocrystalline thin-film silicon solar cells. The cells are made for back-contact back- junction (BC BJ) monocrystalline thin-film silicon solar cells using the PSI process

  5. Anti-reflection zinc oxide nanocones for higher efficiency thin-film silicon solar cells

    E-Print Network [OSTI]

    Mailoa, Jonathan P

    2012-01-01

    Thin film silicon solar cells, which are commonly made from microcrystalline silicon ([mu]c-Si) or amorphous silicon (a-Si), have been considered inexpensive alternatives to thick polycrystalline silicon (polysilicon) solar ...

  6. Light trapping regimes in thin-film silicon solar cells with a photonic pattern

    E-Print Network [OSTI]

    Light trapping regimes in thin-film silicon solar cells with a photonic pattern Simone Zanotto a theoretical study of crystalline and amorphous silicon thin-film solar cells with a periodic pattern on a sub. Poortmans and V. Arkhipov (editors), Thin Film Solar Cells (Wiley, Chichester 2006). 4. P. W¨urfel, Physics

  7. Thin palladium films on silicon and titanium

    SciTech Connect (OSTI)

    Harris, L.A.

    1982-12-01

    Films of Pd from 20 to 160A thick were deposited on sputter-etched Si and on Ti films of Si and then tested electrochemically in 0.5M H/sub 2/SO/sub 4/. The behavior characteristic of Pd metal was lost with prolonged storage or with extended electrochemical cycling. The thinner films produced oxidation and reduction peaks in the voltammograms similar to the hydrogen peaks observed with Pt. Hydrogen sorption measured from voltammograms at different sweep rates and by pulse measurements indicates a definite diffusion component that begins to limit hydrogen sorption for P films thicker than about 80A. Shifts of the oxygen reduction peak indicate an increase in oxygen bonding strength as the films are made thinner.

  8. The electron beam hole drilling of silicon nitride thin films

    SciTech Connect (OSTI)

    Howitt, D. G.; Chen, S. J.; Gierhart, B. C.; Smith, R. L.; Collins, S. D.

    2008-01-15

    The mechanism by which an intense electron beam can produce holes in thin films of silicon nitride has been investigated using a combination of in situ electron energy loss spectrometry and electron microscopy imaging. A brief review of electron beam interactions that lead to material loss in different materials is also presented. The loss of nitrogen and silicon decreases with decreasing beam energy and although still observable at a beam energy of 150 keV ceases completely at 120 keV. The linear behavior of the loss rate coupled with the energy dependency indicates that the process is primarily one of direct displacement, involving the sputtering of atoms from the back surface of the specimen with the rate controlling mechanism being the loss of nitrogen.

  9. Fracture toughness of polycrystalline silicon carbide thin films J. J. Bellante and H. Kahn

    E-Print Network [OSTI]

    Ballarini, Roberto

    Fracture toughness of polycrystalline silicon carbide thin films J. J. Bellante and H. Kahn online 11 February 2005 Thin film polycrystalline silicon carbide poly-SiC doubly clamped microtensile reported, including pressure sensors,2,3 bolometers,4 resonators,5,6 and fuel atomizers;7 these were

  10. Extended light scattering model incorporating coherence for thin-film silicon solar cells

    E-Print Network [OSTI]

    Lenstra, Arjen K.

    Extended light scattering model incorporating coherence for thin-film silicon solar cells Thomas film solar cells. The model integrates coherent light propagation in thin layers with a direct, non efficiency spectra of state-of-the-art microcrystalline silicon solar cells. The simulations agree very well

  11. Growth of nano-and microcrystalline silicon thin films at low temperature by pulsed electron deposition

    E-Print Network [OSTI]

    Zexian, Cao

    in a multi-junction design [4]. The solar cells based on nanocrystalline silicon (nc-Si) films have now in electronic and optoelectronic devices, particularly in the fabrication of solar cells. Noticeably, thin-film silicon solar cells take a larger market share than the single- and polycrystalline silicon solar cells

  12. Silicon Oxynitride Thin Film Barriers for PV Packaging (Poster)

    SciTech Connect (OSTI)

    del Cueto, J. A.; Glick, S. H.; Terwilliger, K. M.; Jorgensen, G. J.; Pankow, J. W.; Keyes, B. M.; Gedvilas, L. M.; Pern, F. J.

    2006-10-03

    Dielectric, adhesion-promoting, moisture barriers comprised of silicon oxynitride thin film materials (SiOxNy with various material stoichiometric compositions x,y) were applied to: 1) bare and pre-coated soda-lime silicate glass (coated with transparent conductive oxide SnO2:F and/or aluminum), and polymer substrates (polyethylene terephthalate, PET, or polyethylene napthalate, PEN); plus 2) pre- deposited photovoltaic (PV) cells and mini-modules consisting of amorphous silicon (a-Si) and copper indium gallium diselenide (CIGS) thin-film PV technologies. We used plasma enhanced chemical vapor deposition (PECVD) process with dilute silane, nitrogen, and nitrous oxide/oxygen gas mixtures in a low-power (< or = 10 milliW per cm2) RF discharge at ~ 0.2 Torr pressure, and low substrate temperatures < or = 100(degrees)C, over deposition areas ~ 1000 cm2. Barrier properties of the resulting PV cells and coated-glass packaging structures were studied with subsequent stressing in damp-heat exposure at 85(degrees)C/85% RH. Preliminary results on PV cells and coated glass indicate the palpable benefits of the barriers in mitigating moisture intrusion and degradation of the underlying structures using SiOxNy coatings with thicknesses in the range of 100-200 nm.

  13. Silicon-integrated thin-film structure for electro-optic applications

    DOE Patents [OSTI]

    McKee, Rodney A. (Kingston, TN); Walker, Frederick Joseph (Oak Ridge, TN)

    2000-01-01

    A crystalline thin-film structure suited for use in any of an number of electro-optic applications, such as a phase modulator or a component of an interferometer, includes a semiconductor substrate of silicon and a ferroelectric, optically-clear thin film of the perovskite BaTiO.sub.3 overlying the surface of the silicon substrate. The BaTiO.sub.3 thin film is characterized in that substantially all of the dipole moments associated with the ferroelectric film are arranged substantially parallel to the surface of the substrate to enhance the electro-optic qualities of the film.

  14. Optical limiting effects in nanostructured silicon carbide thin films

    SciTech Connect (OSTI)

    Borshch, A A; Starkov, V N; Volkov, V I; Rudenko, V I; Boyarchuk, A Yu; Semenov, A V

    2013-12-31

    We present the results of experiments on the interaction of nanosecond laser radiation at 532 and 1064 nm with nanostructured silicon carbide thin films of different polytypes. We have found the effect of optical intensity limiting at both wavelengths. The intensity of optical limiting at ? = 532 nm (I{sub cl} ? 10{sup 6} W cm{sup -2}) is shown to be an order of magnitude less than that at ? = 1064 nm (I{sub cl} ? 10{sup 7} W cm{sup -2}). We discuss the nature of the nonlinearity, leading to the optical limiting effect. We have proposed a method for determining the amount of linear and two-photon absorption in material media. (nonlinear optical phenomena)

  15. Low emissivity high-temperature tantalum thin film coatings for silicon Veronika Rinnerbauer,a)

    E-Print Network [OSTI]

    Low emissivity high-temperature tantalum thin film coatings for silicon devices Veronika) The authors study the use of thin ($230 nm) tantalum (Ta) layers on silicon (Si) as a low emissivity (high to achieve such a coating are low emissivity in the near infrared and superior thermal stability at high

  16. Enhanced optical absorption in nanopatterned silicon thin films with a nano-cone-hole

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    .6845, 040.5350. The silicon solar cell is presently dominating the solar cell market, owing to its abundant supply, nearly ideal band gap, and mature fabrication process. Most commer- cial silicon solar cells is consumed, leading to a higher cost for the final product [1]. The thin film silicon solar cell

  17. Efficient organic light-emitting diodes using polycrystalline silicon thin films as semitransparent anode

    E-Print Network [OSTI]

    .1063/1.2032604 Organic light-emitting diodes OLED have attracted much interest due to their potential application in flat with silicon microdisplay OLED.8,9 However, silicon has high absorption in the visible light which greatlyEfficient organic light-emitting diodes using polycrystalline silicon thin films as semitransparent

  18. Study of plasma enhanced chemical vapor deposition of boron-doped hydrogenated amorphous silicon thin films and the application to p-channel thin film transistor 

    E-Print Network [OSTI]

    Nominanda, Helinda

    2004-01-01

    The material and process characteristics of boron doped hydrogenated amorphous silicon (a-Si:H) thin film deposited by plasma enhanced chemical vapor deposition technique (PECVD) have been studied. The goal is to apply the high quality films...

  19. High quality crystalline YBa2Cu307+ films on thin silicon substrates FL Haakenaasen

    E-Print Network [OSTI]

    Golovchenko, Jene A.

    High quality crystalline YBa2Cu307+ films on thin silicon substrates FL Haakenaasen Department) films with near perfect crystallinity have been grown epitaxially on Si(100) using two intermediate good crystallinity and be quite thin ((1 m)? Relativistic electrons are sent through the crystal

  20. Optimization of the absorption efficiency of an amorphous-silicon thin-film tandem solar cell

    E-Print Network [OSTI]

    to bring down the cost of photovoltaic (PV) solar cells has gained huge momentum, and many strategiesOptimization of the absorption efficiency of an amorphous-silicon thin-film tandem solar cell-wave approach was used to compute the plane-wave absorptance of a thin-film tandem solar cell with a metallic

  1. Photonic light trapping and electrical transport in thin-film silicon solar cells

    E-Print Network [OSTI]

    Photonic light trapping and electrical transport in thin-film silicon solar cells Lucio Claudio Keywords: Thin-film solar cells Light trapping Photonic structures Carrier collection Electro-optical simulations Surface recombination a b s t r a c t Efficient solar cells require both strong absorption

  2. A Review of Thin Film Crystalline Silicon for Solar Cell Applications. Part 1 : Native Substrates.

    E-Print Network [OSTI]

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.5 Epilift process - Centre for Sustainable Energy Systems, ANU Systems Engineering Department, The Australian National University, ACT 0200, Australia. Email : michelleA Review of Thin Film Crystalline Silicon for Solar Cell Applications. Part 1 : Native Substrates

  3. Ambipolar charge transport in microcrystalline silicon thin-film transistors

    SciTech Connect (OSTI)

    Knipp, Dietmar; Marinkovic, M.; Chan, Kah-Yoong; Gordijn, Aad; Stiebig, Helmut

    2011-01-15

    Hydrogenated microcrystalline silicon ({mu}c-Si:H) is a promising candidate for thin-film transistors (TFTs) in large-area electronics due to high electron and hole charge carrier mobilities. We report on ambipolar TFTs based on {mu}c-Si:H prepared by plasma-enhanced chemical vapor deposition at temperatures compatible with flexible substrates. Electrons and holes are directly injected into the {mu}c-Si:H channel via chromium drain and source contacts. The TFTs exhibit electron and hole charge carrier mobilities of 30-50 cm{sup 2}/V s and 10-15 cm{sup 2}/V s, respectively. In this work, the electrical characteristics of the ambipolar {mu}c-Si:H TFTs are described by a simple analytical model that takes the ambipolar charge transport into account. The analytical expressions are used to model the transfer curves, the potential and the net surface charge along the channel of the TFTs. The electrical model provides insights into the electronic transport of ambipolar {mu}c-Si:H TFTs.

  4. Bendable single crystal silicon thin film transistors formed by printing on plastic substrates

    E-Print Network [OSTI]

    Rogers, John A.

    Bendable single crystal silicon thin film transistors formed by printing on plastic substrates E on plastic substrates using an efficient dry transfer printing technique. In these devices, free standing-Si is then transferred, to a specific location and with a controlled orientation, onto a thin plastic sheet

  5. Mode coupling by plasmonic surface scatterers in thin-film silicon solar cells M. van Lare,1

    E-Print Network [OSTI]

    Polman, Albert

    Mode coupling by plasmonic surface scatterers in thin-film silicon solar cells M. van Lare,1 F a completed thin-film a-Si:H solar cell. Current-voltage measurements show a photocurrent enhancement of 10 of Physics. [http://dx.doi.org/10.1063/1.4767997] Thin-film solar cells offer the potential of high photovol

  6. Studies of thin film hydrogenated silicon solar cells using electron energy-loss spectroscopy in the transmission electron microscope

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    Studies of thin film hydrogenated silicon solar cells using electron energy-loss spectroscopy (TEM) to study n-i-p thin film Si solar cells grown on steel foil or glass substrates. For a solar cell experiment, we study the chemical compositions of defective regions in thin film Si solar cells using energy

  7. Towards high efficiency thin-film crystalline silicon solar cells: The roles of light trapping and non-radiative recombinations

    E-Print Network [OSTI]

    important evaluation criterion for photovoltaic (PV) technology. Therefore, research on novel structuresTowards high efficiency thin-film crystalline silicon solar cells: The roles of light trapping February 2014; published online 3 March 2014) Thin-film solar cells based on silicon have emerged

  8. Response to "Comment on `Towards high efficiency thin-film crystalline silicon solar cells: The roles of light trapping and non-radiative recombinations'" [J. Appl. Phys. 117,

    E-Print Network [OSTI]

    Response to "Comment on `Towards high efficiency thin-film crystalline silicon solar cells high efficiency thin-film crystalline silicon solar cells: The roles of light trapping and non.1063/1.4905182 Towards high efficiency thin-film crystalline silicon solar cells: The roles of light trapping and non

  9. A Systematic Study of the Formation of Nano-Tips on Silicon Thin Films by Excimer Laser Irradiation

    E-Print Network [OSTI]

    Avrutsky, Ivan

    A Systematic Study of the Formation of Nano-Tips on Silicon Thin Films by Excimer Laser Irradiation cone is formed when a single-crystal silicon film on an insulator substrate is irradiated in air of the laser fluence, the film thickness, and the diameter of the irradiated spot. Atomic force microscopy

  10. Investigation of the formation of nanostructures on silicon thin films by excimer laser irradiation

    E-Print Network [OSTI]

    Chaudhary, Vipin

    Investigation of the formation of nanostructures on silicon thin films by excimer laser irradiation-pulse excimer laser irradiation. The fabricated structures have heights of about 1 m and apical radii on an insulator substrate is irradiated in air environment with a single 25ns pulse from a KrF excimer laser

  11. LAYER TRANSFER OF LARGE AREA MACROPOROUS SILICON FOR MONOCRYSTALLINE THIN-FILM SOLAR CELLS

    E-Print Network [OSTI]

    LAYER TRANSFER OF LARGE AREA MACROPOROUS SILICON FOR MONOCRYSTALLINE THIN-FILM SOLAR CELLS Marco-based solar cells is approximately 200 µm with a kerf loss of about 100 µm caused by wire sawing. However, lower wafer thicknesses are sufficient for achieving high solar cell efficiencies exceeding 20 % [1

  12. Thin film polycrystalline silicon: Promise and problems in displays and solar cells

    SciTech Connect (OSTI)

    Fonash, S.J.

    1995-08-01

    Thin film polycrystalline Si (poly-Si) with its carrier mobilities, potentially good stability, low intragrain defect density, compatibility with silicon processing, and ease of doping activation is an interesting material for {open_quotes}macroelectronics{close_quotes} applications such as TFTs for displays and solar cells. The poly-Si films needed for these applications can be ultra-thin-in the 500{Angstrom} to 1000{Angstrom} thickness range for flat panel display TFTs and in the 4{mu}m to 10{mu}m thickness range for solar cells. Because the films needed for these microelectronics applications can be so thin, an effective approach to producing the films is that of crystallizing a-Si precursor material. Unlike cast materials, poly-Si films made this way can be produced using low temperature processing. Unlike deposited poly-Si films, these crystallized poly-Si films can have grain widths that are much larger than the film thickness and almost atomically smooth surfaces. This thin film poly-Si crystallized from a-Si precursor films, and its promise and problems for TFTs and solar cells, is the focus of this discussion.

  13. Electron energy-loss spectroscopy of boron-doped layers in amorphous thin film silicon solar cells

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    Electron energy-loss spectroscopy of boron-doped layers in amorphous thin film silicon solar cells. de Bariloche, Argentina 3 ECN Solar Energy, High Tech Campus, Building 5, 5656 AE Eindhoven energy-loss spectroscopy (EELS) is used to study p-doped layers in n-i-p amorphous thin film Si solar

  14. Low-cost, deterministic quasi-periodic photonic structures for light trapping in thin film silicon solar cells

    E-Print Network [OSTI]

    Sheng, Xing

    Light trapping has been an important issue for thin film silicon solar cells because of the low absorption coefficient in the near infrared range. In this paper, we present a photonic structure which combines anodic aluminum ...

  15. Modeling and control of thin film surface morphology: application to thin film solar cells

    E-Print Network [OSTI]

    Huang, Jianqiao

    2012-01-01

    microcrystalline silicon thin films and solar cells. Journalof a p-i-n thin-film solar cell with front transparent con-microcrystalline silicon thin film solar cells. Solar Energy

  16. Microstructure factor and mechanical and electronic properties of hydrogenated amorphous and nanocrystalline silicon thin-films for microelectromechanical systems applications

    SciTech Connect (OSTI)

    Mouro, J.; Gualdino, A.; Chu, V. [Instituto de Engenharia de Sistemas e Computadores – Microsistemas e Nanotecnologias (INESC-MN) and IN – Institute of Nanoscience and Nanotechnology, 1000-029 Lisbon (Portugal); Conde, J. P. [Instituto de Engenharia de Sistemas e Computadores – Microsistemas e Nanotecnologias (INESC-MN) and IN – Institute of Nanoscience and Nanotechnology, 1000-029 Lisbon (Portugal); Department of Bioengineering, Instituto Superior Técnico (IST), 1049-001 Lisbon (Portugal)

    2013-11-14

    Thin-film silicon allows the fabrication of MEMS devices at low processing temperatures, compatible with monolithic integration in advanced electronic circuits, on large-area, low-cost, and flexible substrates. The most relevant thin-film properties for applications as MEMS structural layers are the deposition rate, electrical conductivity, and mechanical stress. In this work, n{sup +}-type doped hydrogenated amorphous and nanocrystalline silicon thin-films were deposited by RF-PECVD, and the influence of the hydrogen dilution in the reactive mixture, the RF-power coupled to the plasma, the substrate temperature, and the deposition pressure on the structural, electrical, and mechanical properties of the films was studied. Three different types of silicon films were identified, corresponding to three internal structures: (i) porous amorphous silicon, deposited at high rates and presenting tensile mechanical stress and low electrical conductivity, (ii) dense amorphous silicon, deposited at intermediate rates and presenting compressive mechanical stress and higher values of electrical conductivity, and (iii) nanocrystalline silicon, deposited at very low rates and presenting the highest compressive mechanical stress and electrical conductivity. These results show the combinations of electromechanical material properties available in silicon thin-films and thus allow the optimized selection of a thin silicon film for a given MEMS application. Four representative silicon thin-films were chosen to be used as structural material of electrostatically actuated MEMS microresonators fabricated by surface micromachining. The effect of the mechanical stress of the structural layer was observed to have a great impact on the device resonance frequency, quality factor, and actuation force.

  17. Method of fabrication of display pixels driven by silicon thin film transistors

    DOE Patents [OSTI]

    Carey, Paul G. (Mountain View, CA); Smith, Patrick M. (San Ramon, CA)

    1999-01-01

    Display pixels driven by silicon thin film transistors are fabricated on plastic substrates for use in active matrix displays, such as flat panel displays. The process for forming the pixels involves a prior method for forming individual silicon thin film transistors on low-temperature plastic substrates. Low-temperature substrates are generally considered as being incapable of withstanding sustained processing temperatures greater than about 200.degree. C. The pixel formation process results in a complete pixel and active matrix pixel array. A pixel (or picture element) in an active matrix display consists of a silicon thin film transistor (TFT) and a large electrode, which may control a liquid crystal light valve, an emissive material (such as a light emitting diode or LED), or some other light emitting or attenuating material. The pixels can be connected in arrays wherein rows of pixels contain common gate electrodes and columns of pixels contain common drain electrodes. The source electrode of each pixel TFT is connected to its pixel electrode, and is electrically isolated from every other circuit element in the pixel array.

  18. Optically activated sub-millimeter dielectric relaxation in amorphous thin film silicon at room temperature

    SciTech Connect (OSTI)

    Rahman, Rezwanur; Ohno, Tim R.; Taylor, P. C.; Scales, John A.

    2014-05-05

    Knowing the frequency-dependent photo-induced complex conductivity of thin films is useful in the design of photovoltaics and other semi-conductor devices. For example, annealing in the far-infrared could in principle be tailored to the specific dielectric properties of a particular sample. The frequency dependence of the conductivity (whether dark or photo-induced) also gives insight into the effective dimensionality of thin films (via the phonon density of states) as well as the presence (or absence) of free carriers, dopants, defects, etc. Ultimately, our goal is to make low-noise, phase-sensitive room temperature measurements of the frequency-dependent conductivity of thin films from microwave frequencies into the far-infrared; covering, the frequency range from ionic and dipole relaxation to atomic and electronic processes. To this end, we have developed a high-Q (quality factor) open cavity resonator capable of resolving the complex conductivity of sub-micron films in the range of 100–350?GHz (0.1–0.35 THz, or 0.4–1?meV). In this paper, we use a low-power green laser to excite bound charges in high-resistivity amorphous silicon thin film. Even at room temperature, we can resolve both the dark conductivity and photo-induced changes associated with dielectric relaxation and possibly some small portion of free carriers.

  19. Amorphous silicon thin film transistor as nonvolatile device. 

    E-Print Network [OSTI]

    Nominanda, Helinda

    2008-10-10

    have been measured. The gamma-ray irradiation damaged bulk films and interfaces and caused the shift of the transfer characteristics to the positive voltage direction. The field effect mobility, on/off current ratio, and interface state density... accumulation layer, and (2) the gate, the gate dielectric, and the channel are viewed as a capacitor,25 i.e., the gate voltage, Vg, controls the mobile charge in the channel. The current observed at the drain, Id, ( ) dtgeffSiNd VVVLWCI x ?= µ (1) where...

  20. Synthesis and characterization of inorganic silicon oxycarbide glass thin films by reactive rf-magnetron sputtering

    SciTech Connect (OSTI)

    Ryan, Joseph V.; Pantano, C. G.

    2007-01-03

    Silicon oxycarbide glasses have been of interest because of the potential range of properties they might exhibit through a change in carbon-to-oxygen ratio. They are metastable materials and, as such, their structures and properties are very dependent upon the synthesis method. Silicon oxycarbide bonding has been seen in materials made by melting, oxidation, polycarbosilane or sol/gel pyrolysis, and chemical vapor deposition. In this work, the radio-frequency reactive sputtering of silicon carbide targets was explored for synthesis of amorphous silicon oxycarbide thin films. SiO (2?2x) Cx films, with a continuous range of compositions where 0film compositions, structures, and properties were performed using x-ray photoelectron spectroscopy, infrared spectroscopy, nuclear magnetic resonance, profilometry, electron microscopy, grazing incidence x-ray reflectivity, and UV-visible transmission and reflection. The compositional range obtainable by this rf sputtering method is much wider than that of other synthesis methods. It is shown here that for oxygen-to-carbon ratios between *0.10 and 10.0, silicon oxycarbide bonding comprises 55%-95% of the material structure. These sputter-deposited materials were also found to have significantly less free carbon as compared to those produced by other methods. Thus, the unique properties for these novel oxycarbide materials can now be established.

  1. Sequential lateral solidification of silicon thin films on low-k dielectrics for low temperature integration

    SciTech Connect (OSTI)

    Carta, Fabio Hlaing, Htay; Kymissis, Ioannis; Gates, Stephen M.; Edelstein, Daniel C.; Limanov, Alexander B.; Im, James S.

    2014-12-15

    We present the excimer laser crystallization of amorphous silicon on a low dielectric constant (low-k) insulator for very large scale integration monolithic 3D integration and demonstrate that low dielectric constant materials are suitable substrates for 3D integration through laser crystallization of silicon thin films. We crystallized 100?nm amorphous silicon on top of SiO{sub 2} and SiCOH (low-k) dielectrics, at different material thicknesses (1??m, 0.75??m, and 0.5??m). The amorphous silicon crystallization on low-k dielectric requires 35% less laser energy than on an SiO{sub 2} dielectric. This difference is related to the thermal conductivity of the two materials, in agreement with one dimensional simulations of the crystallization process. We analyzed the morphology of the material through defect-enhanced microscopy, Raman spectroscopy, and X-ray diffraction analysis. SEM micrographs show that polycrystalline silicon is characterized by micron-long grains with an average width of 543?nm for the SiO{sub 2} sample and 570?nm for the low-k samples. Comparison of the Raman spectra does not show any major difference in film quality for the two different dielectrics, and polycrystalline silicon peaks are closely placed around 517?cm{sup ?1}. From X-ray diffraction analysis, the material crystallized on SiO{sub 2} shows a preferential (111) crystal orientation. In the SiCOH case, the 111 peak strength decreases dramatically and samples do not show preferential crystal orientation. A 1D finite element method simulation of the crystallization process on a back end of line structure shows that copper (Cu) damascene interconnects reach a temperature of 70?°C or lower with a 0.5??m dielectric layer between the Cu and the molten Si layer, a favorable condition for monolithic 3D integration.

  2. High efficiency thin film silicon solar cells with novel light trapping : principle, design and processing

    E-Print Network [OSTI]

    Zeng, Lirong, Ph. D. Massachusetts Institute of Technology

    2008-01-01

    One major efficiency limiting factor in thin film solar cells is weak absorption of long wavelength photons due to the limited optical path length imposed by the thin film thickness. This is especially severe in Si because ...

  3. Synthesis and characterization of large-grain solid-phase crystallized polycrystalline silicon thin films

    SciTech Connect (OSTI)

    Kumar, Avishek, E-mail: avishek.kumar@nus.edu.sg, E-mail: dalapatig@imre.a-star.edu.sg [Solar Energy Research Institute of Singapore, National University of Singapore, 7 Engineering Drive 1, Block E3A, #06-01, Singapore 117574 (Singapore); Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583 (Singapore); Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore); Law, Felix; Widenborg, Per I. [Solar Energy Research Institute of Singapore, National University of Singapore, 7 Engineering Drive 1, Block E3A, #06-01, Singapore 117574 (Singapore); Dalapati, Goutam K., E-mail: avishek.kumar@nus.edu.sg, E-mail: dalapatig@imre.a-star.edu.sg; Subramanian, Gomathy S.; Tan, Hui R. [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore); Aberle, Armin G. [Solar Energy Research Institute of Singapore, National University of Singapore, 7 Engineering Drive 1, Block E3A, #06-01, Singapore 117574 and Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583 (Singapore)

    2014-11-01

    n-type polycrystalline silicon (poly-Si) films with very large grains, exceeding 30??m in width, and with high Hall mobility of about 71.5?cm{sup 2}/V s are successfully prepared by the solid-phase crystallization technique on glass through the control of the PH{sub 3} (2% in H{sub 2})/SiH{sub 4} gas flow ratio. The effect of this gas flow ratio on the electronic and structural quality of the n-type poly-Si thin film is systematically investigated using Hall effect measurements, Raman microscopy, and electron backscatter diffraction (EBSD), respectively. The poly-Si grains are found to be randomly oriented, whereby the average area weighted grain size is found to increase from 4.3 to 18??m with increase of the PH{sub 3} (2% in H{sub 2})/SiH{sub 4} gas flow ratio. The stress in the poly-Si thin films is found to increase above 900?MPa when the PH{sub 3} (2% in H{sub 2})/SiH{sub 4} gas flow ratio is increased from 0.025 to 0.45. Finally, high-resolution transmission electron microscopy, high angle annular dark field-scanning tunneling microscopy, and EBSD are used to identify the defects and dislocations caused by the stress in the fabricated poly-Si films.

  4. Pyroelectric response of lead zirconate titanate thin films on silicon: Effect of thermal stresses

    SciTech Connect (OSTI)

    Kesim, M. T.; Zhang, J.; Alpay, S. P.; Trolier-McKinstry, S.; Mantese, J. V.; Whatmore, R. W.

    2013-11-28

    Ferroelectric lead zirconate titanate [Pb(Zr{sub x}Ti{sub 1-x}O){sub 3}, (PZT x:1-x)] has received considerable interest for applications related to uncooled infrared devices due to its large pyroelectric figures of merit near room temperature, and the fact that such devices are inherently ac coupled, allowing for simplified image post processing. For ferroelectric films made by industry-standard deposition techniques, stresses develop in the PZT layer upon cooling from the processing/growth temperature due to thermal mismatch between the film and the substrate. In this study, we use a non-linear thermodynamic model to investigate the pyroelectric properties of polycrystalline PZT thin films for five different compositions (PZT 40:60, PZT 30:70, PZT 20:80, PZT 10:90, PZT 0:100) on silicon as a function of processing temperature (25–800?°C). It is shown that the in-plane thermal stresses in PZT thin films alter the out-of-plane polarization and the ferroelectric phase transformation temperature, with profound effect on the pyroelectric properties. PZT 30:70 is found to have the largest pyroelectric coefficient (0.042??C cm{sup ?2}?°C{sup ?1}, comparable to bulk values) at a growth temperature of 550?°C; typical to what is currently used for many deposition processes. Our results indicate that it is possible to optimize the pyroelectric response of PZT thin films by adjusting the Ti composition and the processing temperature, thereby, enabling the tailoring of material properties for optimization relative to a specific deposition process.

  5. Thin Film Encapsulation Methods for Large Area MEMS Packaging

    E-Print Network [OSTI]

    Mahajerin, Armon

    2012-01-01

    P. J. French, “Robust Wafer-Level Thin-Film Encapsulation ofThe Elastic Properties of Thin- Film Silicon Nitride,” IEEELPCVD Silicon Nitride Thin Films at Cryogenic Temperatures,”

  6. Modeling and control of thin film surface morphology: application to thin film solar cells

    E-Print Network [OSTI]

    Huang, Jianqiao

    2012-01-01

    of a p-i-n thin-film solar cell with front transparent con-for thin-film a-si:h solar cells. Progress in Photovoltaics,in thin-film silicon solar cells. Optics Communications,

  7. Process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction

    DOE Patents [OSTI]

    Toet, Daniel; Sigmon, Thomas W.

    2004-12-07

    A process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction for use in advanced magnetic random access memory (MRAM) cells for high performance, non-volatile memory arrays. The process is based on pulsed laser processing for the fabrication of vertical polycrystalline silicon electronic device structures, in particular p-n junction diodes, on films of metals deposited onto low temperature-substrates such as ceramics, dielectrics, glass, or polymers. The process preserves underlayers and structures onto which the devices are typically deposited, such as silicon integrated circuits. The process involves the low temperature deposition of at least one layer of silicon, either in an amorphous or a polycrystalline phase on a metal layer. Dopants may be introduced in the silicon film during or after deposition. The film is then irradiated with short pulse laser energy that is efficiently absorbed in the silicon, which results in the crystallization of the film and simultaneously in the activation of the dopants via ultrafast melting and solidification. The silicon film can be patterned either before or after crystallization.

  8. Process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction

    DOE Patents [OSTI]

    Toet, Daniel (Mountain View, CA); Sigmon, Thomas W. (Albuquerque, NM)

    2003-01-01

    A process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction for use in advanced magnetic random access memory (MRAM) cells for high performance, non-volatile memory arrays. The process is based on pulsed laser processing for the fabrication of vertical polycrystalline silicon electronic device structures, in particular p-n junction diodes, on films of metals deposited onto low temperature-substrates such as ceramics, dielectrics, glass, or polymers. The process preserves underlayers and structures onto which the devices are typically deposited, such as silicon integrated circuits. The process involves the low temperature deposition of at least one layer of silicon, either in an amorphous or a polycrystalline phase on a metal layer. Dopants may be introduced in the silicon film during or after deposition. The film is then irradiated with short pulse laser energy that is efficiently absorbed in the silicon, which results in the crystallization of the film and simultaneously in the activation of the dopants via ultrafast melting and solidification. The silicon film can be patterned either before or after crystallization.

  9. Process For Direct Integration Of A Thin-Film Silicon P-N Junction Diode With A Magnetic Tunnel Junction

    DOE Patents [OSTI]

    Toet, Daniel (Mountain View, CA); Sigmon, Thomas W. (Albuquerque, NM)

    2005-08-23

    A process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction for use in advanced magnetic random access memory (MRAM) cells for high performance, non-volatile memory arrays. The process is based on pulsed laser processing for the fabrication of vertical polycrystalline silicon electronic device structures, in particular p-n junction diodes, on films of metals deposited onto low temperature-substrates such as ceramics, dielectrics, glass, or polymers. The process preserves underlayers and structures onto which the devices are typically deposited, such as silicon integrated circuits. The process involves the low temperature deposition of at least one layer of silicon, either in an amorphous or a polycrystalline phase on a metal layer. Dopants may be introduced in the silicon film during or after deposition. The film is then irradiated with short pulse laser energy that is efficiently absorbed in the silicon, which results in the crystallization of the film and simultaneously in the activation of the dopants via ultrafast melting and solidification. The silicon film can be patterned either before or after crystallization.

  10. Dual mechanical behaviour of hydrogen in stressed silicon nitride thin films

    SciTech Connect (OSTI)

    Volpi, F. Braccini, M.; Pasturel, A.; Devos, A.; Raymond, G.; Morin, P.

    2014-07-28

    In the present article, we report a study on the mechanical behaviour displayed by hydrogen atoms and pores in silicon nitride (SiN) films. A simple three-phase model is proposed to relate the physical properties (stiffness, film stress, mass density, etc.) of hydrogenated nanoporous SiN thin films to the volume fractions of hydrogen and pores. This model is then applied to experimental data extracted from films deposited by plasma enhanced chemical vapour deposition, where hydrogen content, stress, and mass densities range widely from 11% to 30%, ?2.8 to 1.5?GPa, and 2.0 to 2.8?g/cm{sup 3}, respectively. Starting from the conventional plotting of film's Young's modulus against film porosity, we first propose to correct the conventional calculation of porosity volume fraction with the hydrogen content, thus taking into account both hydrogen mass and concentration. The weight of this hydrogen-correction is found to evolve linearly with hydrogen concentration in tensile films (in accordance with a simple “mass correction” of the film density calculation), but a clear discontinuity is observed toward compressive stresses. Then, the effective volume occupied by hydrogen atoms is calculated taking account of the bond type (N-H or Si-H bonds), thus allowing a precise extraction of the hydrogen volume fraction. These calculations applied to tensile films show that both volume fractions of hydrogen and porosity are similar in magnitude and randomly distributed against Young's modulus. However, the expected linear dependence of the Young's modulus is clearly observed when both volume fractions are added. Finally, we show that the stiffer behaviour of compressive films cannot be only explained on the basis of this (hydrogen?+?porosity) volume fraction. Indeed this stiffness difference relies on a dual mechanical behaviour displayed by hydrogen atoms against the film stress state: while they participate to the stiffness in compressive films, hydrogen atoms mainly behave like pores in tensile films where they do not participate to the film stiffness.

  11. Critical dimension improvement of plasma enhanced chemical vapor deposition silicon nitride thin films in GaAs devices

    E-Print Network [OSTI]

    Shapira, Yoram

    , Faculty of Engineering, Tel-Aviv University, Ramat-Aviv 69978, Israel Abstract Silicon nitride thin films. This is important since GaAs processing does not tolerate higher temperatures. However, using hydride source gases and Engineering B102 (2003) 352Á/357 www.elsevier.com/locate/mseb 0921-5107/03/$ - see front matter # 2003

  12. Low emissivity high-temperature tantalum thin film coatings for silicon devices

    E-Print Network [OSTI]

    Rinnerbauer, Veronika

    The authors study the use of thin ( ? 230?nm) tantalum (Ta) layers on silicon (Si) as a low emissivity (high reflectivity) coating for high-temperature Si devices. Such coatings are critical to reduce parasitic radiation ...

  13. Investigation of porous alumina as a self-assembled diffractive element to facilitate light trapping in thin film silicon solar cells

    E-Print Network [OSTI]

    Coronel, Naomi (Naomi Cristina)

    2009-01-01

    Thin film solar cells are currently being investigated as an affordable alternative energy source because of the reduced material cost. However, these devices suffer from low efficiencies, compared to silicon wafer solar ...

  14. Thin-film silicon triple-junction solar cell with 12.5% stable efficiency on innovative flat light-scattering substrate

    E-Print Network [OSTI]

    Psaltis, Demetri

    Thin-film silicon triple-junction solar cell with 12.5% stable efficiency on innovative flat light://jap.aip.org/about/rights_and_permissions #12;Thin-film silicon triple-junction solar cell with 12.5% stable efficiency on innovative flat light developed substrate that decouples the growth and scattering interfaces are investigated in n-i-p triple-junction

  15. Accounting for Localized Defects in the Optoelectronic Design of Thin-Film Solar Cells

    E-Print Network [OSTI]

    Deceglie, Michael G.

    2014-01-01

    in ultrathin plasmonic solar cells," Optics Express, vol.Bailat, "Thin-film silicon solar cell technology," Progresstrapping in silicon thin film solar cells," Solar Energy,

  16. Thin, High Lifetime Silicon Wafers with No Sawing; Re-crystallization in a Thin Film Capsule

    SciTech Connect (OSTI)

    Emanuel Sachs Tonio Buonassisi

    2013-01-16

    The project fits within the area of renewable energy called photovoltaics (PV), or the generation of electricity directly from sunlight using semiconductor devices. PV has the greatest potential of any renewable energy technology. The vast majority of photovoltaic modules are made on crystalline silicon wafers and these wafers accounts for the largest fraction of the cost of a photovoltaic module. Thus, a method of making high quality, low cost wafers would be extremely beneficial to the PV industry The industry standard technology creates wafers by casting an ingot and then sawing wafers from the ingot. Sawing rendered half of the highly refined silicon feedstock as un-reclaimable dust. Being a brittle material, the sawing is actually a type of grinding operation which is costly both in terms of capital equipment and in terms of consumables costs. The consumables costs associated with the wire sawing technology are particularly burdensome and include the cost of the wire itself (continuously fed, one time use), the abrasive particles, and, waste disposal. The goal of this project was to make wafers directly from molten silicon with no sawing required. The fundamental concept was to create a very low cost (but low quality) wafer of the desired shape and size and then to improve the quality of the wafer by a specialized thermal treatment (called re-crystallization). Others have attempted to create silicon sheet by recrystallization with varying degrees of success. Key among the difficulties encountered by others were: a) difficulty in maintaining the physical shape of the sheet during the recrystallization process and b) difficulty in maintaining the cleanliness of the sheet during recrystallization. Our method solved both of these challenges by encapsulating the preform wafer in a protective capsule prior to recrystallization (see below). The recrystallization method developed in this work was extremely effective at maintaining the shape and the cleanliness of the wafer. In addition, it was found to be suitable for growing very large crystals. The equipment used was simple and inexpensive to operate. Reasonable solar cells were fabricated on re-crystallized material.

  17. Low work function, stable thin films

    DOE Patents [OSTI]

    Dinh, Long N. (Concord, CA); McLean, II, William (Oakland, CA); Balooch, Mehdi (Berkeley, CA); Fehring, Jr., Edward J. (Dublin, CA); Schildbach, Marcus A. (Livermore, CA)

    2000-01-01

    Generation of low work function, stable compound thin films by laser ablation. Compound thin films with low work function can be synthesized by simultaneously laser ablating silicon, for example, and thermal evaporating an alkali metal into an oxygen environment. For example, the compound thin film may be composed of Si/Cs/O. The work functions of the thin films can be varied by changing the silicon/alkali metal/oxygen ratio. Low work functions of the compound thin films deposited on silicon substrates were confirmed by ultraviolet photoelectron spectroscopy (UPS). The compound thin films are stable up to 500.degree. C. as measured by x-ray photoelectron spectroscopy (XPS). Tests have established that for certain chemical compositions and annealing temperatures of the compound thin films, negative electron affinity (NEA) was detected. The low work function, stable compound thin films can be utilized in solar cells, field emission flat panel displays, electron guns, and cold cathode electron guns.

  18. Modeling and control of thin film surface morphology: application to thin film solar cells

    E-Print Network [OSTI]

    Huang, Jianqiao

    2012-01-01

    Solar Energy Materials and Solar Cells, 86:207–216, 2005. [silicon thin films and solar cells. Journal of Appliedof a p-i-n thin-film solar cell with front transparent con-

  19. Angular behavior of the absorption limit in thin film silicon solar cells

    E-Print Network [OSTI]

    Naqavi, Ali; Söderström, Karin; Battaglia, Corsin; Paeder, Vincent; Scharf, Toralf; Herzig, Hans Peter; Ballif, Christophe

    2013-01-01

    We investigate the angular behavior of the upper bound of absorption provided by the guided modes in thin film solar cells. We show that the 4n^2 limit can be potentially exceeded in a wide angular and wavelength range using two-dimensional periodic thin film structures. Two models are used to estimate the absorption enhancement; in the first one, we apply the periodicity condition along the thickness of the thin film structure but in the second one, we consider imperfect confinement of the wave to the device. To extract the guided modes, we use an automatized procedure which is established in this work. Through examples, we show that from the optical point of view, thin film structures have a high potential to be improved by changing their shape. Also, we discuss the nature of different optical resonances which can be potentially used to enhance light trapping in the solar cell. We investigate the two different polarization directions for one-dimensional gratings and we show that the transverse magnetic pola...

  20. PEDOT:PSS emitters on multicrystalline silicon thin-film absorbers for hybrid solar cells

    SciTech Connect (OSTI)

    Junghanns, Marcus; Plentz, Jonathan Andrä, Gudrun; Gawlik, Annett; Höger, Ingmar; Falk, Fritz

    2015-02-23

    We fabricated an efficient hybrid solar cell by spin coating poly(3,4-ethylene-dioxythiophene):polystyrenesulfonate (PEDOT:PSS) on planar multicrystalline Si (mc-Si) thin films. The only 5??m thin Si absorber layers were prepared by diode laser crystallization of amorphous Si deposited by electron beam evaporation on glass. On these absorber layers, we studied the effect of SiO{sub x} and Al{sub 2}O{sub 3} terminated Si surfaces. The short circuit density and power conversion efficiency (PCE) of the mc-Si/Al{sub 2}O{sub 3}/PEDOT:PSS solar cell increase from 20.6 to 25.4?mA/cm{sup 2} and from 7.3% to 10.3%, respectively, as compared to the mc-Si/SiO{sub x}/PEDOT:PSS cell. Al{sub 2}O{sub 3} lowers the interface recombination and improves the adhesion of the polymer film on the hydrophobic mc-Si thin film. Open circuit voltages up to 604?mV were reached. This study demonstrates the highest PCE so far of a hybrid solar cell with a planar thin film Si absorber.

  1. Development of Commercial Technology for Thin Film Silicon Solar Cells on Glass: Cooperative Research and Development Final Report, CRADA Number CRD-07-209

    SciTech Connect (OSTI)

    Sopori, B.

    2013-03-01

    NREL has conducted basic research relating to high efficiency, low cost, thin film silicon solar cell design and the method of making solar cells. Two patents have been issued to NREL in the above field. In addition, specific process and metrology tools have been developed by NREL. Applied Optical Sciences Corp. (AOS) has expertise in the manufacture of solar cells and has developed its own unique concentrator technology. AOS wants to complement its solar cell expertise and its concentrator technology by manufacturing flat panel thin film silicon solar cell panels. AOS wants to take NREL's research to the next level, using it to develop commercially viable flat pane, thin film silicon solar cell panels. Such a development in equipment, process, and metrology will likely produce the lowest cost solar cell technology for both commercial and residential use. NREL's fundamental research capability and AOS's technology and industrial background are complementary to achieve this product development.

  2. Electrochemical thinning of silicon

    DOE Patents [OSTI]

    Medernach, John W. (Albuquerque, NM)

    1994-01-01

    Porous semiconducting material, e.g. silicon, is formed by electrochemical treatment of a specimen in hydrofluoric acid, using the specimen as anode. Before the treatment, the specimen can be masked. The porous material is then etched with a caustic solution or is oxidized, depending of the kind of structure desired, e.g. a thinned specimen, a specimen, a patterned thinned specimen, a specimen with insulated electrical conduits, and so on. Thinned silicon specimen can be subjected to tests, such as measurement of interstitial oxygen by Fourier transform infra-red spectroscopy (FTIR).

  3. Electrochemical thinning of silicon

    DOE Patents [OSTI]

    Medernach, J.W.

    1994-01-11

    Porous semiconducting material, e.g. silicon, is formed by electrochemical treatment of a specimen in hydrofluoric acid, using the specimen as anode. Before the treatment, the specimen can be masked. The porous material is then etched with a caustic solution or is oxidized, depending of the kind of structure desired, e.g. a thinned specimen, a specimen, a patterned thinned specimen, a specimen with insulated electrical conduits, and so on. Thinned silicon specimen can be subjected to tests, such as measurement of interstitial oxygen by Fourier transform infra-red spectroscopy (FTIR). 14 figures.

  4. Structural characterisation of BaTiO{sub 3} thin films deposited on SrRuO{sub 3}/YSZ buffered silicon substrates and silicon microcantilevers

    SciTech Connect (OSTI)

    Colder, H.; Jorel, C. Méchin, L.; Domengès, B.; Marie, P.; Boisserie, M.; Guillon, S.; Nicu, L.; Galdi, A.

    2014-02-07

    We report on the progress towards an all epitaxial oxide layer technology on silicon substrates for epitaxial piezoelectric microelectromechanical systems. (101)-oriented epitaxial tetragonal BaTiO{sub 3} (BTO) thin films were deposited at two different oxygen pressures, 5.10{sup ?2} mbar and 5.10{sup ?3} mbar, on SrRuO{sub 3}/Yttria-stabilized zirconia (YSZ) buffered silicon substrates by pulsed laser deposition. The YSZ layer full (001) orientation allowed the further growth of a fully (110)-oriented conductive SrRuO{sub 3} electrode as shown by X-ray diffraction. The tetragonal structure of the BTO films, which is a prerequisite for the piezoelectric effect, was identified by Raman spectroscopy. In the BTO film deposited at 5.10{sup ?2} mbar strain was mostly localized inside the BTO grains whereas at 5.10{sup ?3} mbar, it was localized at the grain boundaries. The BTO/SRO/YSZ layers were finally deposited on Si microcantilevers at an O{sub 2} pressure of 5.10{sup ?3} mbar. The strain level was low enough to evaluate the BTO Young modulus. Transmission electron microscopy (TEM) was used to investigate the epitaxial quality of the layers and their epitaxial relationship on plain silicon wafers as well as on released microcantilevers, thanks to Focused-Ion-Beam TEM lamella preparation.

  5. Thin Film Transistors On Plastic Substrates

    DOE Patents [OSTI]

    Carey, Paul G. (Mountain View, CA); Smith, Patrick M. (San Ramon, CA); Sigmon, Thomas W. (Portola Valley, CA); Aceves, Randy C. (Livermore, CA)

    2004-01-20

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The silicon based thin film transistor produced by the process includes a low temperature substrate incapable of withstanding sustained processing temperatures greater than about 250.degree. C., an insulating layer on the substrate, a layer of silicon on the insulating layer having sections of doped silicon, undoped silicon, and poly-silicon, a gate dielectric layer on the layer of silicon, a layer of gate metal on the dielectric layer, a layer of oxide on sections of the layer of silicon and the layer of gate metal, and metal contacts on sections of the layer of silicon and layer of gate metal defining source, gate, and drain contacts, and interconnects.

  6. Towards high efficiency thin-film crystalline silicon solar cells: The roles of light trapping and non-radiative recombinations

    SciTech Connect (OSTI)

    Bozzola, A. Kowalczewski, P.; Andreani, L. C.

    2014-03-07

    Thin-film solar cells based on silicon have emerged as an alternative to standard thick wafers technology, but they are less efficient, because of incomplete absorption of sunlight, and non-radiative recombinations. In this paper, we focus on the case of crystalline silicon (c-Si) devices, and we present a full analytic electro-optical model for p-n junction solar cells with Lambertian light trapping. This model is validated against numerical solutions of the drift-diffusion equations. We use this model to investigate the interplay between light trapping, and bulk and surface recombination. Special attention is paid to surface recombination processes, which become more important in thinner devices. These effects are further amplified due to the textures required for light trapping, which lead to increased surface area. We show that c-Si solar cells with thickness of a few microns can overcome 20% efficiency and outperform bulk ones when light trapping is implemented. The optimal device thickness in presence of light trapping, bulk and surface recombination, is quantified to be in the range of 10–80??m, depending on the bulk quality. These results hold, provided the effective surface recombination is kept below a critical level of the order of 100?cm/s. We discuss the possibility of meeting this requirement, in the context of state-of-the-art techniques for light trapping and surface passivation. We show that our predictions are within the capability of present day silicon technologies.

  7. Producer-Focused Life Cycle Assessment of Thin-Film Silicon Photovoltaic Systems

    E-Print Network [OSTI]

    Zhang, Teresa Weirui

    2011-01-01

    microcrystalline- silicon photovoltaic cell, B) range ofpayback of roof mounted photovoltaic cells. Boustead, I. andmicrocrystalline-silicon photovoltaic cell, B) range of

  8. Accounting for Localized Defects in the Optoelectronic Design of Thin-Film Solar Cells

    E-Print Network [OSTI]

    Deceglie, Michael G.

    2014-01-01

    trapping in silicon thin film solar cells," Solar Energy,textured surfaces in thin-film solar cells," Opt. Express,Design of Plasmonic Thin-Film Solar Cells with Broadband

  9. Leakage current models of thin film silicon-on-insulator devices Hank Shin,a)

    E-Print Network [OSTI]

    Schroder, Dieter K.

    of excellent isolation due to the buried oxide layer leading to reduced capacitance coupling and no latchup in complementary metal-oxide-silicon circuits compared with bulk silicon devices. Reduced junction area should lead to lower leakage for a given device. However, because of the buried oxide, stress is built up in the Si

  10. Integration of a 2D Periodic Nanopattern Into Thin Film Polycrystalline Silicon Solar Cells by Nanoimprint Lithography

    E-Print Network [OSTI]

    Abdo, Islam; Deckers, Jan; Depauw, Valérie; Tous, Loic; Van Gestel, Dries; Guindi, Rafik; Gordon, Ivan; Daif, Ounsi El

    2015-01-01

    The integration of two-dimensional (2D) periodic nanopattern defined by nanoimprint lithography and dry etching into aluminum induced crystallization (AIC) based polycrystalline silicon (Poly-Si) thin film solar cells is investigated experimentally. Compared to the unpatterned cell an increase of 6% in the light absorption has been achieved thanks to the nanopattern which, in turn, increased the short circuit current from 20.6 mA/cm2 to 23.8 mA/cm2. The efficiency, on the other hand, has limitedly increased from 6.4% to 6.7%. We show using the transfer length method (TLM) that the surface topography modification caused by the nanopattern has increased the sheet resistance of the antireflection coating (ARC) layer as well as the contact resistance between the ARC layer and the emitter front contacts. This, in turn, resulted in increased series resistance of the nanopatterned cell which has translated into a decreased fill factor, explaining the limited increase in efficiency.

  11. Scattering of long wavelengths into thin silicon photovoltaic films by plasmonic silver nanoparticles

    E-Print Network [OSTI]

    Osgood, R. M.

    Nanoparticles and nanostructures with plasmonic resonances are currently being employed to enhance the efficiency of solar cells. Ag stripe arrays have been shown theoretically to enhance the short-circuit current of thin ...

  12. Modeling and control of thin film surface morphology: application to thin film solar cells

    E-Print Network [OSTI]

    Huang, Jianqiao

    2012-01-01

    Solar Energy Materials and Solar Cells, 86:207–216, 2005. [silicon thin films and solar cells. Journal of Appliedtrapping in nanostructured solar cells. ACS Nano, 5:10055–

  13. Modeling and control of thin film surface morphology: application to thin film solar cells

    E-Print Network [OSTI]

    Huang, Jianqiao

    2012-01-01

    modeling of ? -Si : H solar cells with rough interfaces:of a p-i-n thin-film solar cell with front transparent con-amorphous-silicon-based P-I-N solar cells deposited on rough

  14. EFFICIENCY ENHANCEMENT IN THIN-FILM SILICON SOLAR CELLS WITH A PHOTONIC LATTICE

    E-Print Network [OSTI]

    designed antireflection coating. The study and optimization of the PV structure as a function of all into the quasi guided modes of the photonic slab. We compare the efficiency of this structure to that of PV cells layer is over 100 microns, and the cost of the silicon is more than a half of the total cost

  15. Application of Thin-Film Amorphous Silicon to Chemical Imaging Tatsuo Yoshinobu1

    E-Print Network [OSTI]

    Moritz, Werner

    silicon (a-Si) deposited on a glass substrate was employed as a semiconductor material for the chemical is determined by the thickness of the semiconductor layer as well as by the material parameters properties and the spatial resolution of the a-Si sensors were investigated. Nearly-Nernstian p

  16. TRANSMISSION ELECTRON MICROSCOPY OF THE TEXTURED SILVER BACK REFLECTOR OF A THIN FILM SILICON SOLAR CELL: FROM CRYSTALLOGRAPHY TO OPTICAL ABSORPTION

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    in amorphous, microcrystalline and micromorph thin-film Si solar cells is an important and active field-reflector of thin-film Si solar cells. 1 INTRODUCTION The study of light trapping in thin-film Si solar cells for an optimized back reflector structure in a microcrystalline thin film Si solar cell, when compared with the use

  17. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Cheng, Y.T.; Poli, A.A.; Meltser, M.A.

    1999-03-23

    A thin film hydrogen sensor includes a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end. 5 figs.

  18. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Cheng, Yang-Tse (Rochester Hills, MI); Poli, Andrea A. (Livonia, MI); Meltser, Mark Alexander (Pittsford, NY)

    1999-01-01

    A thin film hydrogen sensor, includes: a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end.

  19. Fluorination of amorphous thin-film materials with xenon fluoride

    DOE Patents [OSTI]

    Weil, R.B.

    1987-05-01

    A method is disclosed for producing fluorine-containing amorphous semiconductor material, preferably comprising amorphous silicon. The method includes depositing amorphous thin-film material onto a substrate while introducing xenon fluoride during the film deposition process.

  20. {sup 1}H NMR electron-nuclear cross relaxation in thin films of hydrogenated amorphous silicon

    SciTech Connect (OSTI)

    Su Tining; Taylor, P. C.; Ganguly, G.; Carlson, D. E.; Bobela, D. C.; Hari, P. [Department of Physics, Colorado School of Mines, Golden, Colorado 80401 (United States); BP Solar, Toano, Virginia 23168 (United States); Department of Physics, University of Utah, Salt Lake City, Utah 84112 (United States); Department of Physics and Engineering Physics, University of Tulsa, Tulsa, Oklahoma 74104 (United States)

    2007-12-15

    We investigate the spin-lattice relaxation of the dipolar order in {sup 1}H NMR in hydrogenated amorphous silicon (a-Si:H). We find that the relaxation is dominated by the cross relaxation between the hydrogen nuclei and the paramagnetic states. The relaxation is inhomogeneous, and can be described as a stretched exponential function. We proposed a possible mechanism for this relaxation. This mechanism applies to a rather broad range of paramagnetic states, including the deep neutral defects (dangling bonds), the light-induced metastable defects, the defects created by doping, and the singly occupied, localized band-tail states populated by light at low temperatures. The cross relaxation is only sensitive to the bulk spin density, and the surface spins have a negligible effect on the relaxation.

  1. Picosecond and nanosecond laser annealing and simulation of amorphous silicon thin films for solar cell applications

    SciTech Connect (OSTI)

    Theodorakos, I.; Zergioti, I.; Tsoukalas, D.; Raptis, Y. S.; Vamvakas, V.

    2014-01-28

    In this work, a picosecond diode pumped solid state laser and a nanosecond Nd:YAG laser have been used for the annealing and the partial nano-crystallization of an amorphous silicon layer. These experiments were conducted as an alternative/complementary to plasma-enhanced chemical vapor deposition method for fabrication of micromorph tandem solar cell. The laser experimental work was combined with simulations of the annealing process, in terms of temperature distribution evolution, in order to predetermine the optimum annealing conditions. The annealed material was studied, as a function of several annealing parameters (wavelength, pulse duration, fluence), as far as it concerns its structural properties, by X-ray diffraction, SEM, and micro-Raman techniques.

  2. Multifunctional thin film surface

    DOE Patents [OSTI]

    Brozik, Susan M.; Harper, Jason C.; Polsky, Ronen; Wheeler, David R.; Arango, Dulce C.; Dirk, Shawn M.

    2015-10-13

    A thin film with multiple binding functionality can be prepared on an electrode surface via consecutive electroreduction of two or more aryl-onium salts with different functional groups. This versatile and simple method for forming multifunctional surfaces provides an effective means for immobilization of diverse molecules at close proximities. The multifunctional thin film has applications in bioelectronics, molecular electronics, clinical diagnostics, and chemical and biological sensing.

  3. Graphene-silicon layered structures on single-crystalline Ir(111) thin films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Que, Yande D.; Tao, Jing; Zhang, Yong; Wang, Yeliang L.; Wu, Lijun J.; Zhu, Yimei M.; Kim, Kisslinger; Weinl, Michael; Schreck, Matthias; Shen, Chengmin M.; et al

    2015-01-20

    Epitaxial growth of graphene on transition metal crystals, such as Ru,?¹?³? Ir,????? and Ni,??? provides large-area, uniform graphene layers with controllable defect density, which is crucial for practical applications in future devices. To decrease the high cost of single-crystalline metal bulks, single-crystalline metal films are strongly suggested as the substrates for epitaxial growth large-scale high-quality graphene.???¹?? Moreover, in order to weaken the interactions of graphene with its metal host, which may result in a suppression of the intrinsic properties of graphene,?¹¹ ¹²? the method of element intercalation of semiconductors at the interface between an epitaxial graphene layer and a transitionmore »metal substrate has been successfully realized.?¹³?¹??« less

  4. High efficiency low cost thin film silicon solar cell design and method for making

    DOE Patents [OSTI]

    Sopori, Bhushan L. (Denver, CO)

    1999-01-01

    A semiconductor device having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer.

  5. High efficiency low cost thin film silicon solar cell design and method for making

    DOE Patents [OSTI]

    Sopori, B.L.

    1999-04-27

    A semiconductor device is described having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer. 9 figs.

  6. High efficiency, low cost, thin film silicon solar cell design and method for making

    DOE Patents [OSTI]

    Sopori, Bhushan L. (Denver, CO)

    2001-01-01

    A semiconductor device having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer.

  7. Impact of solid-phase crystallization of amorphous silicon on the chemical structure of the buried Si/ZnO thin film solar cell interface

    SciTech Connect (OSTI)

    Bar, M.; Wimmer, M.; Wilks, R. G.; Roczen, M.; Gerlach, D.; Ruske, F.; Lips, K.; Rech, B.; Weinhardt, L.; Blum, M.; Pookpanratana, S.; Krause, S.; Zhang, Y.; Heske, C.; Yang, W.; Denlinger, J. D.

    2010-04-30

    The chemical interface structure between phosphorus-doped hydrogenated amorphous silicon and aluminum-doped zinc oxide thin films is investigated with soft x-ray emission spectroscopy (XES) before and after solid-phase crystallization (SPC) at 600C. In addition to the expected SPC-induced phase transition from amorphous to polycrystalline silicon, our XES data indicates a pronounced chemical interaction at the buried Si/ZnO interface. In particular, we find an SPC-enhanced formation of Si-O bonds and the accumulation of Zn in close proximity to the interface. For an assumed closed and homogeneous SiO2 interlayer, an effective thickness of (5+2)nm after SPC could be estimated.

  8. Air stable n-doping of WSe{sub 2} by silicon nitride thin films with tunable fixed charge density

    SciTech Connect (OSTI)

    Chen, Kevin; Kiriya, Daisuke; Hettick, Mark; Tosun, Mahmut; Ha, Tae-Jun; Madhvapathy, Surabhi Rao; Desai, Sujay; Sachid, Angada; Javey, Ali

    2014-09-01

    Stable n-doping of WSe{sub 2} using thin films of SiN{sub x} deposited on the surface via plasma-enhanced chemical vapor deposition is presented. Positive fixed charge centers inside SiN{sub x} act to dope WSe{sub 2} thin flakes n-type via field-induced effect. The electron concentration in WSe{sub 2} can be well controlled up to the degenerate limit by simply adjusting the stoichiometry of the SiN{sub x} through deposition process parameters. For the high doping limit, the Schottky barrier width at the metal/WSe{sub 2} junction is significantly thinned, allowing for efficient electron injection via tunneling. Using this doping scheme, we demonstrate air-stable WSe{sub 2} n-MOSFETs with a mobility of ?70 cm{sup 2}/V?s.

  9. Light trapping in thin-film solar cells with randomly rough and hybrid

    E-Print Network [OSTI]

    Light trapping in thin-film solar cells with randomly rough and hybrid textures Piotr Kowalczewski. M. Smets, and M. Zeman, "Plasmonic light trapping in thin-film silicon solar cells with improved Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns," Opt. Express 20, A224­A

  10. Mechanics of thin-film transistors and solar cells on flexible substrates

    E-Print Network [OSTI]

    Suo, Zhigang

    Mechanics of thin-film transistors and solar cells on flexible substrates Helena Gleskova a,*, I be minimized throughout the fab- rication process. Amorphous silicon thin-film transistors and solar cells rights reserved. Keywords: Amorphous silicon; Thin-film transistor; Solar cell; Flexible electronics 1

  11. Thin film photovoltaic device

    DOE Patents [OSTI]

    Catalano, A.W.; Bhushan, M.

    1982-08-03

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids. 5 figs.

  12. Thin film photovoltaic device

    DOE Patents [OSTI]

    Catalano, Anthony W. (Wilmington, DE); Bhushan, Manjul (Wilmington, DE)

    1982-01-01

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids.

  13. Epitaxial thin films

    DOE Patents [OSTI]

    Hunt, Andrew Tye; Deshpande, Girish; Lin, Wen-Yi; Jan, Tzyy-Jiuan

    2006-04-25

    Epitatial thin films for use as buffer layers for high temperature superconductors, electrolytes in solid oxide fuel cells (SOFC), gas separation membranes or dielectric material in electronic devices, are disclosed. By using CCVD, CACVD or any other suitable deposition process, epitaxial films having pore-free, ideal grain boundaries, and dense structure can be formed. Several different types of materials are disclosed for use as buffer layers in high temperature superconductors. In addition, the use of epitaxial thin films for electrolytes and electrode formation in SOFCs results in densification for pore-free and ideal gain boundary/interface microstructure. Gas separation membranes for the production of oxygen and hydrogen are also disclosed. These semipermeable membranes are formed by high-quality, dense, gas-tight, pinhole free sub-micro scale layers of mixed-conducting oxides on porous ceramic substrates. Epitaxial thin films as dielectric material in capacitors are also taught herein. Capacitors are utilized according to their capacitance values which are dependent on their physical structure and dielectric permittivity. The epitaxial thin films of the current invention form low-loss dielectric layers with extremely high permittivity. This high permittivity allows for the formation of capacitors that can have their capacitance adjusted by applying a DC bias between their electrodes.

  14. NREL Core Program (NCPV), Session: Film Silicon (Presentation)

    SciTech Connect (OSTI)

    Branz, H. M.

    2008-04-01

    This project supports the Solar America Initiative by: R and D that contributes to goal of grid parity by 2015; research to fill the industry R and D pipeline for next-generation low-cost scalable products; development of industry collaborative research; and improvement of NREL tools and capabilities for film silicon research. The project addresses both parts of film silicon roadmap: (1) amorphous-silicon-based thin film PV--amorphous and nanocrystalline materials, present '2nd generation' technology, 4% of world PV sales in 2007; (2) advanced R and D toward film crystal silicon--definition, large-grained or single-crystal silicon < 100 {micro}m thick; 3-8 year horizon; and goal of reaching 15% cells at area costs approaching thin films.

  15. NMR characterization of thin films

    DOE Patents [OSTI]

    Gerald, II, Rex E. (Brookfield, IL); Klingler, Robert J. (Glenview, IL); Rathke, Jerome W. (Homer Glen, IL); Diaz, Rocio (Chicago, IL); Vukovic, Lela (Westchester, IL)

    2008-11-25

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  16. NMR characterization of thin films

    DOE Patents [OSTI]

    Gerald II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2010-06-15

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  17. Thin film photovoltaic cell

    DOE Patents [OSTI]

    Meakin, John D. (Newark, DE); Bragagnolo, Julio (Newark, DE)

    1982-01-01

    A thin film photovoltaic cell having a transparent electrical contact and an opaque electrical contact with a pair of semiconductors therebetween includes utilizing one of the electrical contacts as a substrate and wherein the inner surface thereof is modified by microroughening while being macro-planar.

  18. Thin film solar cells using impure polycrystalline silicon M. Rodot (1), M. Barbe (1), J. E. Bouree (1), V. Perraki (*) (1), G. Revel (2),R. Kishore (2) (**), J. L. Pastol (2), R. Mertens (3), M. Caymax (3) and M. Eyckmans

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    687 Thin film solar cells using impure polycrystalline silicon M. Rodot (1), M. Barbe (1), J. E avec les autres aptes à l'utilisation de Si-UMG bon marché. Abstract. 2014 Epitaxial solar cells have and electron diffusion length adequate to produce good solar cells. 10.3 % efficiency cells have been obtained

  19. Overview and Challenges of Thin Film Solar Electric Technologies

    SciTech Connect (OSTI)

    Ullal, H. S.

    2008-12-01

    In this paper, we report on the significant progress made worldwide by thin-film solar cells, namely, amorphous silicon (a-Si), cadmium telluride (CdTe), and copper indium gallium diselenide (CIGS). Thin-film photovoltaic (PV) technology status is also discussed in detail. In addition, R&D and technology challenges in all three areas are elucidated. The worldwide estimated projection for thin-film PV technology production capacity announcements are estimated at more than 5000 MW by 2010.

  20. Thin film superconductor magnetic bearings

    DOE Patents [OSTI]

    Weinberger, Bernard R. (Avon, CT)

    1995-12-26

    A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

  1. Modeling and control of thin film surface morphology: application to thin film solar cells

    E-Print Network [OSTI]

    Huang, Jianqiao

    2012-01-01

    151 Two-stage thin film deposition process15 Description of thin film depositionProcess Model . . . . 54 Porous Thin-Film Deposition Process

  2. A survey of thin-film solar photovoltaic industry & technologies

    E-Print Network [OSTI]

    Grama, Sorin

    2007-01-01

    A new type of solar cell technology using so-called thin-film solar photovoltaic material has the potential to make a great impact on our lives. Because it uses very little or no silicon at all, thin- film (TF) solar ...

  3. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF ELECTROPLATED Cu THIN FILMS

    E-Print Network [OSTI]

    Volinsky, Alex A.

    MICROSTRUCTURE AND MECHANICAL PROPERTIES OF ELECTROPLATED Cu THIN FILMS A.A. Volinsky* , J. Vella microns were electroplated on top of the adhesion-promoting barrier layers on single crystal silicon

  4. Laser Induced Breakdown Spectroscopy and Applications Toward Thin Film Analysis

    E-Print Network [OSTI]

    Owens, Travis Nathan

    2011-01-01

    Organic Thin Films 4.1 Introduction . . . . . . . . . . . .T iO 2 thin films. . . . . . . . . . . . . . . . . . . . .properties of the organic thin films. . . . . . . . .

  5. Thin film composite electrolyte

    DOE Patents [OSTI]

    Schucker, Robert C. (The Woodlands, TX)

    2007-08-14

    The invention is a thin film composite solid (and a means for making such) suitable for use as an electrolyte, having a first layer of a dense, non-porous conductive material; a second layer of a porous ionic conductive material; and a third layer of a dense non-porous conductive material, wherein the second layer has a Coefficient of thermal expansion within 5% of the coefficient of thermal expansion of the first and third layers.

  6. May 2003 NREL/CP-520-33933 Amorphous and Thin-Film

    E-Print Network [OSTI]

    Deng, Xunming

    May 2003 · NREL/CP-520-33933 Amorphous and Thin-Film Silicon B.P. Nelson, H.A. Atwater, B. von and Thin-Film Silicon Brent P. Nelson,1 Harry A. Atwater,2 Bolko von Roedern,1 Jeff Yang,3 Paul Sims,4 in the Amorphous and Thin-Film Silicon session at the National Center for Photovoltaics and Solar Program Review

  7. Generation of low work function, stable compound thin films by laser ablation

    DOE Patents [OSTI]

    Dinh, Long N. (Concord, CA); McLean, II, William (Oakland, CA); Balooch, Mehdi (Berkeley, CA); Fehring, Jr., Edward J. (Dublin, CA); Schildbach, Marcus A. (Livermore, CA)

    2001-01-01

    Generation of low work function, stable compound thin films by laser ablation. Compound thin films with low work function can be synthesized by simultaneously laser ablating silicon, for example, and thermal evaporating an alkali metal into an oxygen environment. For example, the compound thin film may be composed of Si/Cs/O. The work functions of the thin films can be varied by changing the silicon/alkali metal/oxygen ratio. Low work functions of the compound thin films deposited on silicon substrates were confirmed by ultraviolet photoelectron spectroscopy (UPS). The compound thin films are stable up to 500.degree. C. as measured by x-ray photoelectron spectroscopy (XPS). Tests have established that for certain chemical compositions and annealing temperatures of the compound thin films, negative electron affinity (NEA) was detected. The low work function, stable compound thin films can be utilized in solar cells, field emission flat panel displays, electron guns, and cold cathode electron guns.

  8. Effect of Dual-Function Nano-Structured Silicon Oxide Thin Film on Multi-Junction Solar Cells

    SciTech Connect (OSTI)

    Yan, B.; Sivec, L.; Yue, G.; Jiang, C. S.; Yang, J.; Guha, S.

    2011-01-01

    We present our recent study of using nano-structured hydrogenated silicon oxide films (nc-SiO{sub x}:H) as a dual-function layer in multi-junction solar cells. The nc-SiO{sub x}:H films were deposited using very high frequency glow discharge of a SiH{sub 4} (or Si{sub 2}H{sub 6}), CO{sub 2}, PH{sub 3}, and H{sub 2} gas mixture. By optimizing deposition parameters, we obtained 'dual function' nc-SiO{sub x}:H material characterized by a conductivity suitable for use as an n layer and optical properties suitable for use as an inter-reflection layer. We tested the nc-SiO{sub x}:H by replacing the normal n-type material in the tunnel junction of a multi-junction structure. The advantage of the dual-function nc-SiO{sub x}:H layer is twofold; one is to simplify the cell structure, and the other is to reduce any optical loss associated with the inter-reflection layer. Quantum efficiency measurements show the gain in top cell current is equal to or greater than the loss in bottom cell current for a-Si:H/nc-Si:H structures. In addition, a thinner a-Si:H top cell with the nc-SiO{sub x}:H n layer improves the top-cell stability, thereby providing higher stabilized solar cell efficiency. We also used the dual-function layer between the middle and the bottom cells in a-Si:H/a-SiGe:H/nc-Si:H triple-junction structures. The gain in the middle cell current is {approx}1.0 mA/cm{sup 2}, leading to an initial active-area efficiency of 14.8%.

  9. Multi-resonant silver nano-disk patterned thin film hydrogenated amorphous silicon solar cells for Staebler-Wronski effect compensation

    E-Print Network [OSTI]

    Vora, Ankit; Pearce, Joshua M; Bergstrom, Paul L; Güney, Durdu Ö

    2014-01-01

    We study polarization independent improved light trapping in commercial thin film hydrogenated amorphous silicon (a-Si:H) solar photovoltaic cells using a three-dimensional silver array of multi-resonant nano-disk structures embedded in a silicon nitride anti-reflection coating (ARC) to enhance optical absorption in the intrinsic layer (i-a-Si:H) for the visible spectrum for any polarization angle. Predicted total optical enhancement (OE) in absorption in the i-a-Si:H for AM-1.5 solar spectrum is 18.51% as compared to the reference, and producing a 19.65% improvement in short-circuit current density (JSC) over 11.7 mA/cm2 for a reference cell. The JSC in the nano-disk patterned solar cell (NDPSC) was found to be higher than the commercial reference structure for any incident angle. The NDPSC has a multi-resonant optical response for the visible spectrum and the associated mechanism for OE in i-a-Si:H layer is excitation of Fabry-Perot resonance facilitated by surface plasmon resonances. The detrimental Staebl...

  10. Effects of low temperature annealing on the adhesion of electroless plated copper thin films in TiN deposited silicon integrated circuit substrates 

    E-Print Network [OSTI]

    Tate, Adam Timothy

    2013-02-22

    ], (These tests have been used to determine the adhesion of a variety of materials, not only thin films. ) While many tests exist and have been employed to make qualitative comparisons of adhesion strengths, little quantitative data on thin fil adhesion... It has been demonstrated that an anneal following metal deposition results in improved adhesion of the metal thin film to the substrate [2]. Both low temperature and high temperature anneals can be performed to improve the adhesion of a copper fil...

  11. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); Hoffheins, Barbara S. (Knoxville, TN); Fleming, Pamela H. (Oak Ridge, TN)

    1994-01-01

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed.

  12. Abstract--In this paper, the propagation characteristics of an enhanced-thickness magnetic nanoparticle thin film are

    E-Print Network [OSTI]

    Tentzeris, Manos

    nanoparticle thin film are investigated on high resistivity silicon substrate (10,000 ohm-cm) for the first time up to 60 GHz. Contrary to other thin films, this nanoparticle thin film can achieve a thickness up to several hundred nanometers, even to micron. The enhanced thickness of this thin film is achieved

  13. Single-crystalline silicon lift-off films for metaloxidesemiconductor devices on arbitrary substrates

    E-Print Network [OSTI]

    Ludwig-Maximilians-Universität, München

    Single-crystalline silicon lift-off films for metal­oxide­semiconductor devices on arbitrary Received 9 March 2000; accepted for publication 31 May 2000 We present a technique to mount single-crystalline,4 Combining silicon microelectronics on crystalline, high- quality thin silicon films with the properties

  14. Thin film ion conducting coating

    DOE Patents [OSTI]

    Goldner, Ronald B. (Lexington, MA); Haas, Terry (Sudbury, MA); Wong, Kwok-Keung (Watertown, MA); Seward, George (Arlington, MA)

    1989-01-01

    Durable thin film ion conducting coatings are formed on a transparent glass substrate by the controlled deposition of the mixed oxides of lithium:tantalum or lithium:niobium. The coatings provide durable ion transport sources for thin film solid state storage batteries and electrochromic energy conservation devices.

  15. Engineering Gaussian disorder at rough interfaces for light trapping in thin-film solar cells

    E-Print Network [OSTI]

    Engineering Gaussian disorder at rough interfaces for light trapping in thin-film solar cells Piotr A theoretical study of randomly rough interfaces to obtain light trapping in thin-film silicon solar cells of thin-film solar cells. © 2012 Optical Society of America OCIS codes: 040.5350, 050.1950. Reducing

  16. Dielectric back scattering patterns for light trapping in thin-film Si solar cells

    E-Print Network [OSTI]

    Polman, Albert

    Dielectric back scattering patterns for light trapping in thin-film Si solar cells M. van Lare,1 of dielectric and metallic backscattering patterns in thin-film a-Si:H solar cells. We compare devices for Light Trapping in Thin-Film Silicon Solar Cells", in Proceedings of the 23rd European Photovoltaic Solar

  17. Mode Splitting for Efficient Plasmoinc Thin-film Solar Cell

    E-Print Network [OSTI]

    Li, Tong; Jiang, Chun

    2010-01-01

    We propose an efficient plasmonic structure consisting of metal strips and thin-film silicon for solar energy absorption. We numerically demonstrate the absorption enhancement in symmetrical structure based on the mode coupling between the localized plasmonic mode in Ag strip pair and the excited waveguide mode in silicon slab. Then we explore the method of symmetry-breaking to excite the dark modes that can further enhance the absorption ability. We compare our structure with bare thin-film Si solar cell, and results show that the integrated quantum efficiency is improved by nearly 90% in such thin geometry. It is a promising way for the solar cell.

  18. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Lauf, R.J.; Hoffheins, B.S.; Fleming, P.H.

    1994-11-22

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed. 6 figs.

  19. Towards high efficiency thin-film crystalline silicon solar cells: The roles of light trapping and non-radiative recombinations

    E-Print Network [OSTI]

    ://dx.doi.org/10.1063/1.4867008] I. INTRODUCTION A central focus of crystalline silicon (c-Si) solar cell research important evaluation criterion for photovoltaic (PV) technology. Therefore, research on novel structures

  20. Plasma polymerization of C[subscript 4]F[subscript 8] thin film on high aspect ratio silicon molds

    E-Print Network [OSTI]

    Yeo, L. P.

    High aspect ratio polymeric micro-patterns are ubiquitous in many fields ranging from sensors, actuators, optics, fluidics and medical. Second generation PDMS molds are replicated against first generation silicon molds ...

  1. An approach to simultaneously test multiple devices for high-throughput production of thin film electronics

    E-Print Network [OSTI]

    Kumar, A.; Flewitt, A. J.

    2015-07-28

    of transparent flexible thin-film transistors using amorphous oxide semiconductors.,” Nature, vol. 432, no. 7016, pp. 488–492, 2004. [2] E. Fortunato, P. Barquinha, and R. Martins, “Oxide semiconductor thin-film transistors: a review of recent advances... , M. Lavine, and R. Coontz, “Looking Beyond Silicon,” Science, vol. 327, no. 5973. pp. 1595–1595, 2010. [6] A. J. Flewitt, “Hydrogenated Amorphous Silicon Thin Film Transistors (a Si:H TFTs),” Handbook of Visual Display Technology-Springer, 2012...

  2. Flexoelectricity in barium strontium titanate thin film

    SciTech Connect (OSTI)

    Kwon, Seol Ryung; Huang, Wenbin; Yuan, Fuh-Gwo; Jiang, Xiaoning, E-mail: xjiang5@ncsu.edu [Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Shu, Longlong [Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Electronic Materials Research Laboratory, International Center for Dielectric Research, Xi'an Jiao Tong University, Xi'an, Shaanxi 710049 (China); Maria, Jon-Paul [Department of Material Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2014-10-06

    Flexoelectricity, the linear coupling between the strain gradient and the induced electric polarization, has been intensively studied as an alternative to piezoelectricity. Especially, it is of interest to develop flexoelectric devices on micro/nano scales due to the inherent scaling effect of flexoelectric effect. Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} thin film with a thickness of 130?nm was fabricated on a silicon wafer using a RF magnetron sputtering process. The flexoelectric coefficients of the prepared thin films were determined experimentally. It was revealed that the thin films possessed a transverse flexoelectric coefficient of 24.5??C/m at Curie temperature (?28?°C) and 17.44??C/m at 41?°C. The measured flexoelectric coefficients are comparable to that of bulk BST ceramics, which are reported to be 10–100??C/m. This result suggests that the flexoelectric thin film structures can be effectively used for micro/nano-sensing devices.

  3. PV prospects: thinPV prospects: thin--film cellsfilm cells Si cell costs

    E-Print Network [OSTI]

    Pulfrey, David L.

    1 PV prospects: thinPV prospects: thin--film cellsfilm cells LECTURE 8 · Si cell costs · optimizing://www.solarbuzz.com/Moduleprices.htm #12;6 Cost of PV modulesCost of PV modules The lowest retail price for a multicrystalline silicon

  4. Vertically Aligned Nanocomposite Thin Films 

    E-Print Network [OSTI]

    Bi, Zhenxing

    2012-07-16

    and epitaxial growth ability on given substrates. In the present work, we investigated unique epitaxial two-phase VAN (BiFeO3)x:(Sm2O3)1-x and (La0.7Sr0.3MnO3)x:(Mn3O4)1-x thin film systems by pulsed laser deposition. These VAN thin films exhibit a highly...

  5. The state of the art of thin-film photovoltaics

    SciTech Connect (OSTI)

    Surek, T.

    1993-10-01

    Thin-film photovoltaic technologies, based on materials such as amorphous or polycrystalline silicon, copper indium diselenide, cadmium telluride, and gallium arsenide, offer the potential for significantly reducing the cost of electricity generated by photovoltaics. The significant progress in the technologies, from the laboratory to the marketplace, is reviewed. The common concerns and questions raised about thin films are addressed. Based on the progress to date and the potential of these technologies, along with continuing investments by the private sector to commercialize the technologies, one can conclude that thin-film PV will provide a competitive alternative for large-scale power generation in the future.

  6. Creating CZTS Thin Films Via Stacked Metallic CVD and Sulfurization

    E-Print Network [OSTI]

    Bielecki, Anthony

    2013-01-01

    Katagiri, Cu2ZnSnS4 thin film solar cells, Thin Solid FilmsIndium Galenide Films Thin-film solar cells are created bycandidate for thin- film solar cells. CIGS solar cell

  7. Yttria-stabilized zirconia buffered silicon to optimize in-plane electrical conductivity of [Ca{sub 2}CoO{sub 3}]{sub 0.62}[CoO{sub 2}] thin films

    SciTech Connect (OSTI)

    Kraus, T.; Griesser, A.; Klein, O.; Fischer, M.; Schreck, M.; Karl, H.

    2014-05-05

    The monolithic integration of thermoelectric generators and magnetoresistive functionality on the basis of misfit cobaltate [Ca{sub 2}CoO{sub 3}]{sub 0.62}[CoO{sub 2}] thin films into silicon technology is a prerequisite for their application in miniaturized electric circuits. Here, we report on [Ca{sub 2}CoO{sub 3}]{sub 0.62}[CoO{sub 2}] thin films grown by pulsed laser deposition on (001)-silicon with a thin epitaxial yttria-stabilized zirconia (YSZ) buffer layer. X-ray diffraction and cross-sectional high resolution transmission electron microscopy analysis reveal that high quality c-axis oriented heteroepitaxial [Ca{sub 2}CoO{sub 3}]{sub 0.62}[CoO{sub 2}] films with a 12-fold in-plane rotational symmetry can be grown, which exhibit remarkable lower electrical resistivity compared to those with random in-plane orientation. This result is explained by energetically preferred epitaxial growth directions of the pseudo hexagonal [CoO{sub 2}] sublayer in monoclinic [Ca{sub 2}CoO{sub 3}]{sub 0.62}[CoO{sub 2}] onto the cubic (001)-YSZ surface leading to a highly symmetric in-plane mutual orientation of the charge transporting CoO{sub 2} sublayer domains.

  8. Vapor deposition of thin films

    DOE Patents [OSTI]

    Smith, David C. (Los Alamos, NM); Pattillo, Stevan G. (Los Alamos, NM); Laia, Jr., Joseph R. (Los Alamos, NM); Sattelberger, Alfred P. (Los Alamos, NM)

    1992-01-01

    A highly pure thin metal film having a nanocrystalline structure and a process of preparing such highly pure thin metal films of, e.g., rhodium, iridium, molybdenum, tungsten, rhenium, platinum, or palladium by plasma assisted chemical vapor deposition of, e.g., rhodium(allyl).sub.3, iridium(allyl).sub.3, molybdenum(allyl).sub.4, tungsten(allyl).sub.4, rhenium(allyl).sub.4, platinum(allyl).sub.2, or palladium(allyl).sub.2 are disclosed. Additionally, a general process of reducing the carbon content of a metallic film prepared from one or more organometallic precursor compounds by plasma assisted chemical vapor deposition is disclosed.

  9. Vapor deposition of thin films

    SciTech Connect (OSTI)

    Smith, D.C.; Pattillo, S.G.; Laia, J.R. Jr.; Sattelberger, A.P.

    1990-10-05

    A highly pure thin metal film having a nanocrystalline structure and a process of preparing such highly pure thin metal films of, e.g., rhodium, iridium, molybdenum, tungsten, rhenium, platinum, or palladium by plasma assisted chemical vapor deposition of, e.g., rhodium(allyl){sub 3}, iridium(allyl){sub 3}, molybdenum(allyl){sub 4}, tungsten(allyl){sub 4}, rhenium (allyl){sub 4}, platinum(allyl){sub 2}, or palladium(allyl){sub 2} are disclosed. Additionally, a general process of reducing the carbon content of a metallic film prepared from one or more organometallic precursor compounds by plasma assisted chemical vapor deposition is disclosed.

  10. Z .Diamond and Related Materials 11 2002 16 21 Plasma enhanced deposition of silicon carbonitride thin films

    E-Print Network [OSTI]

    Zexian, Cao

    at moderate energies up to 180 eV . X-Ray photoelectron spectroscopy XPS , Fourier-transform Z . Z . Z xported for cBN films is only 3 m 2 , this has consider- ably limited the applicability of these superior

  11. Research on high-efficiency, multiple-gap, multijunction, amorphous-silicon-based alloy thin-film solar cells

    SciTech Connect (OSTI)

    Guha, S. )

    1989-06-01

    This report presents results of research on advancing our understanding of amorphous-silicon-based alloys and their use in small-area multijunction solar cells. The principal objectives of the program are to develop a broad scientific base for the chemical, structural, optical, and electronic properties of amorphous-silicon-based alloys; to determine the optimum properties of these alloy materials as they relate to high-efficiency cells; to determine the optimum device configuration for multijunction cells; and to demonstrate proof-of-concept, multijunction, a-Si-alloy-based solar cells with 18% efficiency under standard AM1.5 global insolation conditions and with an area of at least 1 cm{sup 2}. A major focus of the work done during this reporting period was the optimization of a novel, multiple-graded structure that enhances cell efficiency through band-gap profiling. The principles of the operation of devices incorporating such a structure, computer simulations of those, and experimental results for both single- and multijunction cells prepared by using the novel structure are discussed in detail. 14 refs., 35 figs., 7 tabs.

  12. Low-temperature plasma-deposited silicon epitaxial films: Growth...

    Office of Scientific and Technical Information (OSTI)

    Low-temperature plasma-deposited silicon epitaxial films: Growth and properties Citation Details In-Document Search Title: Low-temperature plasma-deposited silicon epitaxial films:...

  13. The silicon/zinc oxide interface in amorphous silicon-based thin-film solar cells: Understanding an empirically optimized contact

    SciTech Connect (OSTI)

    Gerlach, D.; Wilks, R. G.; Wimmer, M.; Felix, R.; Gorgoi, M.; Lips, K.; Rech, B.; Wippler, D.; Mueck, A.; Meier, M.; Huepkes, J.; Lozac'h, M.; Ueda, S.; Sumiya, M.; Yoshikawa, H.; Kobayashi, K.; Baer, M.

    2013-07-08

    The electronic structure of the interface between the boron-doped oxygenated amorphous silicon 'window layer' (a-SiO{sub x}:H(B)) and aluminum-doped zinc oxide (ZnO:Al) was investigated using hard x-ray photoelectron spectroscopy and compared to that of the boron-doped microcrystalline silicon ({mu}c-Si:H(B))/ZnO:Al interface. The corresponding valence band offsets have been determined to be (-2.87 {+-} 0.27) eV and (-3.37 {+-} 0.27) eV, respectively. A lower tunnel junction barrier height at the {mu}c-Si:H(B)/ZnO:Al interface compared to that at the a-SiO{sub x}:H(B)/ZnO:Al interface is found and linked to the higher device performances in cells where a {mu}c-Si:H(B) buffer between the a-Si:H p-i-n absorber stack and the ZnO:Al contact is employed.

  14. Thin film-coated polymer webs

    DOE Patents [OSTI]

    Wenz, Robert P. (Cottage Grove, MN); Weber, Michael F. (Shoreview, MN); Arudi, Ravindra L. (Woodbury, MN)

    1992-02-04

    The present invention relates to thin film-coated polymer webs, and more particularly to thin film electronic devices supported upon a polymer web, wherein the polymer web is treated with a purifying amount of electron beam radiation.

  15. Nanomechanical properties of hydrated organic thin films

    E-Print Network [OSTI]

    Choi, Jae Hyeok

    2007-01-01

    Hydrated organic thin films are biological or synthetic molecularly thin coatings which impart a particular functionality to an underlying substrate and which have discrete water molecules associated with them. Such films ...

  16. Semiconductor-nanocrystal/conjugated polymer thin films

    DOE Patents [OSTI]

    Alivisatos, A. Paul (Oakland, CA); Dittmer, Janke J. (Munich, DE); Huynh, Wendy U. (Munich, DE); Milliron, Delia (Berkeley, CA)

    2010-08-17

    The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

  17. Universality of non-Ohmic shunt leakage in thin-film solar cells S. Dongaonkar,1,a

    E-Print Network [OSTI]

    Alam, Muhammad A.

    Universality of non-Ohmic shunt leakage in thin-film solar cells S. Dongaonkar,1,a J. D. Servaites thin-film solar cell types: hydrogenated amorphous silicon a-Si:H p-i-n cells, organic bulk understanding of thin film solar cell device physics, including important module performance variability issues

  18. EFFECT OF HYDROGEN ON SURFACE TEXTURING AND CRYSTALLIZATION ON A-SI:H THIN FILM IRRADIATED BY EXCIMER LASER

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    -Si:H thin film solar cell applications. Introduction Many industrial solar cells in use today use bulk and instability, thin-film a- Si:H solar cells require a highly efficient light-trapping design to absorb cell applications. In this study, hydrogenated and dehydrogenated amorphous silicon thin films

  19. Shielding superconductors with thin films

    E-Print Network [OSTI]

    Posen, Sam; Catelani, Gianluigi; Liepe, Matthias U; Sethna, James P

    2015-01-01

    Determining the optimal arrangement of superconducting layers to withstand large amplitude AC magnetic fields is important for certain applications such as superconducting radiofrequency cavities. In this paper, we evaluate the shielding potential of the superconducting film/insulating film/superconductor (SIS') structure, a configuration that could provide benefits in screening large AC magnetic fields. After establishing that for high frequency magnetic fields, flux penetration must be avoided, the superheating field of the structure is calculated in the London limit both numerically and, for thin films, analytically. For intermediate film thicknesses and realistic material parameters we also solve numerically the Ginzburg-Landau equations. It is shown that a small enhancement of the superheating field is possible, on the order of a few percent, for the SIS' structure relative to a bulk superconductor of the film material, if the materials and thicknesses are chosen appropriately.

  20. THE STRUCTURE OF ULTRA-THIN OXIDE ON SILICON

    E-Print Network [OSTI]

    Krivanek, Ondrej L.

    2012-01-01

    Ultra-thin (10-lOOA) silicon oxide layers on silicon are ofcrystalline silicon. The oxide layer is seen to be sharplyundulation of the whole oxide layer with ~300A wavelength.

  1. Thin films and uses

    DOE Patents [OSTI]

    Baskaran, Suresh (Kennewick, WA); Graff, Gordon L. (Kennewick, WA); Song, Lin (Richland, WA)

    1998-01-01

    The invention provides a method for synthesizing a titanium oxide-containing film comprising the following steps: (a) preparing an aqueous solution of a titanium chelate with a titanium molarity in the range of 0.01M to 0.6M. (b) immersing a substrate in the prepared solution, (c) decomposing the titanium chelate to deposit a film on the substrate. The titanium chelate maybe decomposed acid, base, temperature or other means. A preferred method provides for the deposit of adherent titanium oxide films from C2 to C5 hydroxy carboxylic acids. In another aspect the invention is a novel article of manufacture having a titanium coating which protects the substrate against ultraviolet damage. In another aspect the invention provides novel semipermeable gas separation membranes, and a method for producing them.

  2. High Efficiency, Low Cost Solar Cells Manufactured Using 'Silicon Ink' on Thin Crystalline Silicon Wafers

    SciTech Connect (OSTI)

    Antoniadis, H.

    2011-03-01

    Reported are the development and demonstration of a 17% efficient 25mm x 25mm crystalline Silicon solar cell and a 16% efficient 125mm x 125mm crystalline Silicon solar cell, both produced by Ink-jet printing Silicon Ink on a thin crystalline Silicon wafer. To achieve these objectives, processing approaches were developed to print the Silicon Ink in a predetermined pattern to form a high efficiency selective emitter, remove the solvents in the Silicon Ink and fuse the deposited particle Silicon films. Additionally, standard solar cell manufacturing equipment with slightly modified processes were used to complete the fabrication of the Silicon Ink high efficiency solar cells. Also reported are the development and demonstration of a 18.5% efficient 125mm x 125mm monocrystalline Silicon cell, and a 17% efficient 125mm x 125mm multicrystalline Silicon cell, by utilizing high throughput Ink-jet and screen printing technologies. To achieve these objectives, Innovalight developed new high throughput processing tools to print and fuse both p and n type particle Silicon Inks in a predetermined pat-tern applied either on the front or the back of the cell. Additionally, a customized Ink-jet and screen printing systems, coupled with customized substrate handling solution, customized printing algorithms, and a customized ink drying process, in combination with a purchased turn-key line, were used to complete the high efficiency solar cells. This development work delivered a process capable of high volume producing 18.5% efficient crystalline Silicon solar cells and enabled the Innovalight to commercialize its technology by the summer of 2010.

  3. Silicon epitaxy below 200C: Towards thin crystalline solar cells R. Carioua,b

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . However material still represent more than 40% of the cost of c-Si PV Thin Film Solar Technology IV-Si) technology. Indeed, the learning curve of c-Si solar cells has reached a plateau since 1999 with the 25Silicon epitaxy below 200°C: Towards thin crystalline solar cells R. Carioua,b , R. Ruggeria,c , P

  4. Dual gratings for enhanced light trapping in thin-film solar cells

    E-Print Network [OSTI]

    Dual gratings for enhanced light trapping in thin-film solar cells by a layer-transfer technique, Ireland * christian.schuster@york.ac.uk Abstract: Thin film solar cells benefit significantly from, "Progress and outlook for high-efficiency crystalline silicon solar cells," Sol. Energy Mater. Sol. Cells 65

  5. Configuration Optimization of a Nanosphere Array on Top of a Thin Film Solar Cell

    E-Print Network [OSTI]

    Grandidier, Jonathan

    Configuration Optimization of a Nanosphere Array on Top of a Thin Film Solar Cell J. Grandidier photocurrent of the solar cell. On a typical thin film amorphous silicon solar cell, a parametric analysis of SiO2 spheres directly placed on top of a-Si [1] and gallium arsenide (GaAs) [3] solar cells. We

  6. Mixed-mode interfacial adhesive strength of a thin film on an anisotropic substrate

    E-Print Network [OSTI]

    Sottos, Nancy R.

    Mixed-mode interfacial adhesive strength of a thin film on an anisotropic substrate Rajesh Kiteya adhesion strength between a gold (Au) thin film and an anisotropic passivated silicon (Si) substrate delamination remain a major reliability concern as interfacial properties, in particular interfacial adhesion

  7. Optimization-based design of surface textures for thin-film Si solar cells

    E-Print Network [OSTI]

    Sheng, Xing

    We numerically investigate the light-absorption behavior of thin-film silicon for normal-incident light, using surface textures to enhance absorption. We consider a variety of texture designs, such as simple periodic ...

  8. Sponsored by Nanotechnology Seminar Program Electronics on Anything: How Thin Film

    E-Print Network [OSTI]

    Fisher, Frank

    including electronically active and flexible materials. Our group has been working on the hybrid integrationSponsored by Nanotechnology Seminar Program Electronics on Anything: How Thin Film Electronics University ABSTRACT: Silicon electronics have revolutionized the processing and handling of information

  9. Integrated photonic structures for light trapping in thin-film Si solar cells

    E-Print Network [OSTI]

    Sheng, Xing

    We explore the mechanisms for an efficient light trapping structure for thin-film silicon solar cells. The design combines a distributed Bragg reflector (DBR) and periodic gratings. Using photonic band theories and numerical ...

  10. Thin film buried anode battery

    DOE Patents [OSTI]

    Lee, Se-Hee (Lakewood, CO); Tracy, C. Edwin (Golden, CO); Liu, Ping (Denver, CO)

    2009-12-15

    A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

  11. Geometric shape control of thin film ferroelectrics and resulting structures

    DOE Patents [OSTI]

    McKee, Rodney A. (Kingston, TN); Walker, Frederick J. (Oak Ridge, TN)

    2000-01-01

    A monolithic crystalline structure and a method of making involves a semiconductor substrate, such as silicon, and a ferroelectric film, such as BaTiO.sub.3, overlying the surface of the substrate wherein the atomic layers of the ferroelectric film directly overlie the surface of the substrate. By controlling the geometry of the ferroelectric thin film, either during build-up of the thin film or through appropriate treatment of the thin film adjacent the boundary thereof, the in-plane tensile strain within the ferroelectric film is relieved to the extent necessary to permit the ferroelectric film to be poled out-of-plane, thereby effecting in-plane switching of the polarization of the underlying substrate material. The method of the invention includes the steps involved in effecting a discontinuity of the mechanical restraint at the boundary of the ferroelectric film atop the semiconductor substrate by, for example, either removing material from a ferroelectric film which has already been built upon the substrate, building up a ferroelectric film upon the substrate in a mesa-shaped geometry or inducing the discontinuity at the boundary by ion beam deposition techniques.

  12. Method of preparing high-temperature-stable thin-film resistors

    DOE Patents [OSTI]

    Raymond, L.S.

    1980-11-12

    A chemical vapor deposition method for manufacturing tungsten-silicide thin-film resistors of predetermined bulk resistivity and temperature coefficient of resistance (TCR) is disclosed. Gaseous compounds of tungsten and silicon are decomposed on a hot substrate to deposit a thin-film of tungsten-silicide. The TCR of the film is determined by the crystallinity of the grain structure, which is controlled by the temperature of deposition and the tungsten to silicon ratio. The bulk resistivity is determined by the tungsten to silicon ratio. Manipulation of the fabrication parameters allows for sensitive control of the properties of the resistor.

  13. SEARCH FOR CHARGED -PARTICLE d -d FUSION PRODUCTS IN AN ENCAPSULATED Pd THIN FILM

    E-Print Network [OSTI]

    Neuhauser, Barbara

    of activity in two nearby Geiger counters were observed with the film loaded to a nominal 150% deuterium-to-palladium the deuterated palladium film from being sputtered by the deuterium ion beam during the implantation for charged particle reaction products from d-d fusion in a deuterated palladium thin film. A silicon nitride

  14. Mechanism of fatigue in micron-scale films of polycrystalline silicon for microelectromechanical applications

    SciTech Connect (OSTI)

    Muhlstein, C.L.; Stach, E.A.; Ritchie, R.O.

    2001-08-02

    Reported nearly a decade ago, cyclic fatigue failure in silicon thin films has remained a mystery. Silicon does not display the room temperature plasticity or extrinsic toughening mechanisms necessary to cause fatigue in either ductile (e.g., metals) or brittle (e.g., ceramics and ordered mintermetallic) materials.

  15. Zinc oxide thin film acoustic sensor

    SciTech Connect (OSTI)

    Mohammed, Ali Jasim; Salih, Wafaa Mahdi; Hassan, Marwa Abdul Muhsien; Nusseif, Asmaa Deiaa; Kadhum, Haider Abdullah [Department of Physics , College of Science, Al-Mustansiriyah University, Baghdad (Iraq); Mansour, Hazim Louis [Department of Physics , College of Education, Al-Mustansiriyah University, Baghdad (Iraq)

    2013-12-16

    This paper reports the implementation of (750 nm) thickness of Zinc Oxide (ZnO) thin film for the piezoelectric pressure sensors. The film was prepared and deposited employing the spray pyrolysis technique. XRD results show that the growth preferred orientation is the (002) plane. A polycrystalline thin film (close to mono crystallite like) was obtained. Depending on the Scanning Electron Microscopy photogram, the film homogeneity and thickness were shown. The resonance frequency measured (about 19 kHz) and the damping coefficient was calculated and its value was found to be about (2.5538), the thin film be haves as homogeneous for under and over damped. The thin film pressure sensing was approximately exponentially related with frequency, the thin film was observed to has a good response for mechanical stresses also it is a good material for the piezoelectric properties.

  16. Polycrystalline Thin Film Solar Cell Technologies: Preprint

    SciTech Connect (OSTI)

    Ullal, H. S.

    2008-12-01

    Rapid progress is being made by CdTe and CIGS-based thin-film PV technologies in entering commercial markets.

  17. Properties of zirconia thin films deposited by laser ablation

    SciTech Connect (OSTI)

    Cancea, V. N.; Filipescu, M.; Colceag, D.; Dinescu, M.; Mustaciosu, C.

    2013-11-13

    Zirconia thin films have been deposited by laser ablation of a ceramic ZrO{sub 2} target in vacuum or in oxygen background at 0.01 mbar. The laser beam generated by an ArF laser (?=193 nm, ?=40 Hz) has been focalized on the target through a spherical lens at an incident angle of 45°. The laser fluence has been established to a value from 2.0 to 3.4 Jcm{sup ?2}. A silicon (100) substrate has been placed parallel to the target, at a distance of 4 cm, and subsequently has been heated to temperatures ranging between 300 °C and 600 °C. Thin films morphology has been characterized by atomic force microscopy and secondary ion mass spectrometry. Biocompatibility of these thin films has been assessed by studying the cell attachment of L929 mouse fibroblasts.

  18. Oxynitride Thin Film Barriers for PV Packaging

    SciTech Connect (OSTI)

    Glick, S. H.; delCueto, J. A.; Terwilliger, K. M.; Jorgensen, G. J.; Pankow, J. W.; Keyes, B. M.; Gedvilas, L. M.; Pern, F. J.

    2005-11-01

    Dielectric thin-film barrier and adhesion-promoting layers consisting of silicon oxynitride materials (SiOxNy, with various stoichiometry) were investigated. For process development, films were applied to glass (TCO, conductive SnO2:F; or soda-lime), polymer (PET, polyethylene terephthalate), aluminized soda-lime glass, or PV cell (a-Si, CIGS) substrates. Design strategy employed de-minimus hazard criteria to facilitate industrial adoption and reduce implementation costs for PV manufacturers or suppliers. A restricted process window was explored using dilute compressed gases (3% silane, 14% nitrous oxide, 23% oxygen) in nitrogen (or former mixtures, and 11.45% oxygen mix in helium and/or 99.999% helium dilution) with a worst-case flammable and non-corrosive hazard classification. Method employed low radio frequency (RF) power, less than or equal to 3 milliwatts per cm2, and low substrate temperatures, less than or equal to 100 deg C, over deposition areas less than or equal to 1000 cm2. Select material properties for barrier film thickness (profilometer), composition (XPS/FTIR), optical (refractive index, %T and %R), mechanical peel strength and WVTR barrier performance are presented.

  19. Material Development for Highly Processable Thin Film Solar Cells

    E-Print Network [OSTI]

    Bob, Brion

    2014-01-01

    Structuring of Thin-film Solar Cells with a Single Laser1. Background on Thin Film Solar Cells and TransparentCuIn(Se,S)2 thin film solar cells: Secondary phases and

  20. Molecular solution processing of metal chalcogenide thin film solar cells

    E-Print Network [OSTI]

    Yang, Wenbing

    2013-01-01

    to High-Efficiency CZTSSe Thin-film Solar Cells, Proc. IEEEMetal chalcogenide-based thin film solar cells are currentlyof metal chalcogenide thin film solar cells A dissertation

  1. Laser desorption/ionization from nanostructured surfaces: nanowires, nanoparticle films and silicon microcolumn arrays

    E-Print Network [OSTI]

    Vertes, Akos

    Laser desorption/ionization from nanostructured surfaces: nanowires, nanoparticle films and silicon for soft laser desorption/ionization (SLDI) mass spectrometry. Thin films of gold nanoparticles (with 12 to analyze a series of directly deposited polypeptide samples. In this new SLDI method, the required laser

  2. Method for formation of thin film transistors on plastic substrates

    DOE Patents [OSTI]

    Carey, P.G.; Smith, P.M.; Sigmon, T.W.; Aceves, R.C.

    1998-10-06

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The process relies on techniques for depositing semiconductors, dielectrics, and metals at low temperatures; crystallizing and doping semiconductor layers in the TFT with a pulsed energy source; and creating top-gate self-aligned as well as back-gate TFT structures. The process enables the fabrication of amorphous and polycrystalline channel silicon TFTs at temperatures sufficiently low to prevent damage to plastic substrates. The process has use in large area low cost electronics, such as flat panel displays and portable electronics. 5 figs.

  3. Method for formation of thin film transistors on plastic substrates

    DOE Patents [OSTI]

    Carey, Paul G. (Mountain View, CA); Smith, Patrick M. (San Ramon, CA); Sigmon, Thomas W. (Portola Valley, CA); Aceves, Randy C. (Livermore, CA)

    1998-10-06

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The process relies on techniques for depositing semiconductors, dielectrics, and metals at low temperatures; crystallizing and doping semiconductor layers in the TFT with a pulsed energy source; and creating top-gate self-aligned as well as back-gate TFT structures. The process enables the fabrication of amorphous and polycrystalline channel silicon TFTs at temperatures sufficiently low to prevent damage to plastic substrates. The process has use in large area low cost electronics, such as flat panel displays and portable electronics.

  4. Uncooled thin film pyroelectric IR detector with aerogel thermal isolation

    SciTech Connect (OSTI)

    Ruffner, J.A.; Clem, P.G.; Tuttle, B.A. [and others

    1998-01-01

    Uncooled pyroelectric IR imaging systems, such as night vision goggles, offer important strategic advantages in battlefield scenarios and reconnaissance surveys. Until now, the current technology for fabricating these devices has been limited by low throughput and high cost which ultimately limit the availability of these sensor devices. We have developed and fabricated an alternative design for pyroelectric IR imaging sensors that utilizes a multilayered thin film deposition scheme to create a monolithic thin film imaging element on an active silicon substrate for the first time. This approach combines a thin film pyroelectric imaging element with a thermally insulating SiO{sub 2} aerogel thin film to produce a new type of uncooled IR sensor that offers significantly higher thermal, spatial, and temporal resolutions at a substantially lower cost per unit. This report describes the deposition, characterization and optimization of the aerogel thermal isolation layer and an appropriate pyroelectric imaging element. It also describes the overall integration of these components along with the appropriate planarization, etch stop, adhesion, electrode, and blacking agent thin film layers into a monolithic structure. 19 refs., 8 figs., 6 tabs.

  5. Thin Silicon MEMS Contact-Stress Sensor Kotovksy, J; Tooker,...

    Office of Scientific and Technical Information (OSTI)

    A; Horsley, D 42 ENGINEERING; 42 ENGINEERING; ACCURACY; ACTUATORS; SILICON This thin, MEMS contact-stress sensor continuously and accurately measures time-varying, solid...

  6. Thin Silicon MEMS Contact-Stress Sensor Kotovsky, J; Tooker,...

    Office of Scientific and Technical Information (OSTI)

    ACCURACY; ACTUATORS; CALIBRATION; DIAPHRAGM; SILICON; STABILITY; THICKNESS This thin, MEMS contact-stress (CS) sensor continuously and accurately measures time-varying, solid...

  7. Thin Silicon MEMS Contact-Stress Sensor Kotovsky, J; Tooker,...

    Office of Scientific and Technical Information (OSTI)

    LIFETIME; PACKAGING; PERFORMANCE; SILICON; THICKNESS This work offers the first, thin, MEMS contact-stress (CS) sensor capable of accurate in situ measruement of time-varying,...

  8. Electrostatic thin film chemical and biological sensor

    DOE Patents [OSTI]

    Prelas, Mark A. (Columbia, MO); Ghosh, Tushar K. (Columbia, MO); Tompson, Jr., Robert V. (Columbia, MO); Viswanath, Dabir (Columbia, MO); Loyalka, Sudarshan K. (Columbia, MO)

    2010-01-19

    A chemical and biological agent sensor includes an electrostatic thin film supported by a substrate. The film includes an electrostatic charged surface to attract predetermined biological and chemical agents of interest. A charge collector associated with said electrostatic thin film collects charge associated with surface defects in the electrostatic film induced by the predetermined biological and chemical agents of interest. A preferred sensing system includes a charge based deep level transient spectroscopy system to read out charges from the film and match responses to data sets regarding the agents of interest. A method for sensing biological and chemical agents includes providing a thin sensing film having a predetermined electrostatic charge. The film is exposed to an environment suspected of containing the biological and chemical agents. Quantum surface effects on the film are measured. Biological and/or chemical agents can be detected, identified and quantified based on the measured quantum surface effects.

  9. Thin films of mixed metal compounds

    DOE Patents [OSTI]

    Mickelsen, Reid A. (Bellevue, WA); Chen, Wen S. (Seattle, WA)

    1985-01-01

    A compositionally uniform thin film of a mixed metal compound is formed by simultaneously evaporating a first metal compound and a second metal compound from independent sources. The mean free path between the vapor particles is reduced by a gas and the mixed vapors are deposited uniformly. The invention finds particular utility in forming thin film heterojunction solar cells.

  10. Atomistic surface erosion and thin film growth modelled over...

    Office of Scientific and Technical Information (OSTI)

    Atomistic surface erosion and thin film growth modelled over realistic time scales Citation Details In-Document Search Title: Atomistic surface erosion and thin film growth...

  11. Institute of Photo Electronic Thin Film Devices and Technology...

    Open Energy Info (EERE)

    Institute of Photo Electronic Thin Film Devices and Technology of Nankai University Jump to: navigation, search Name: Institute of Photo-Electronic Thin Film Devices and Technology...

  12. Solvothermal Thin Film Deposition of Electron Blocking Layers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solvothermal Thin Film Deposition of Electron Blocking Layers Home > Research > ANSER Research Highlights > Solvothermal Thin Film Deposition of Electron Blocking Layers...

  13. High Temperature Thin Film Polymer Dielectric Based Capacitors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Temperature Thin Film Polymer Dielectric Based Capacitors for HEV Power Electronic Systems High Temperature Thin Film Polymer Dielectric Based Capacitors for HEV Power Electronic...

  14. A Sensitivity Analysis of a Thin Film Conductivity Estimation...

    Office of Scientific and Technical Information (OSTI)

    Conference: A Sensitivity Analysis of a Thin Film Conductivity Estimation Method Citation Details In-Document Search Title: A Sensitivity Analysis of a Thin Film Conductivity...

  15. Multilayer Thin-Film Thermoelectric Materials for Vehicle Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multilayer Thin-Film Thermoelectric Materials for Vehicle Applications Multilayer Thin-Film Thermoelectric Materials for Vehicle Applications 2004 Diesel Engine Emissions Reduction...

  16. Semiconductor-nanocrystal/conjugated polymer thin films (Patent...

    Office of Scientific and Technical Information (OSTI)

    Semiconductor-nanocrystalconjugated polymer thin films Citation Details In-Document Search Title: Semiconductor-nanocrystalconjugated polymer thin films You are accessing a...

  17. DISORDER ENGINEERING FOR LIGHT-TRAPPING IN THIN-FILM SOLAR CELLS P. Kowalczewski, M. Liscidini, and L.C. Andreani

    E-Print Network [OSTI]

    DISORDER ENGINEERING FOR LIGHT-TRAPPING IN THIN-FILM SOLAR CELLS P. Kowalczewski, M. Liscidini: In this work we focus on randomly rough textures for light-trapping in thin-film silicon solar cells. We use light management is a key to achieve high efficiency thin-film solar cells, and a wide variety of light

  18. The interplay between spatially separated ferromagnetic and superconducting thin films 

    E-Print Network [OSTI]

    Sullivan, Isaac John

    2013-02-22

    characterized. 26 CHAPTER III THE SC/FM THIN FILM MULTILAYER The fabrication and characterization of the SC/FM film couples comprised the most de- manding and arduous work during the tenure of my thesis project. Many special parts were designed... EXPERIMENTAL DETAILS A. Ferromagnetic Thin Films 1. Film Preparation 2. Film Characterization B. Superconducting Thin Films 1. Film Preparation III THE SC/FM THIN FILM MULTILAYER . A. SC/FM Thin Film Multilayer Preparation B. SC/FM Thin Film Multilayer...

  19. Thin Silicon MEMS Contact-Stress Sensor

    SciTech Connect (OSTI)

    Kotovsky, J; Tooker, A; Horsley, D

    2010-03-22

    This thin, MEMS contact-stress (CS) sensor continuously and accurately measures time-varying, solid interface loads in embedded systems over tens of thousands of load cycles. Unlike all other interface load sensors, the CS sensor is extremely thin (< 150 {micro}m), provides accurate, high-speed measurements, and exhibits good stability over time with no loss of calibration with load cycling. The silicon CS sensor, 5 mm{sup 2} and 65 {micro}m thick, has piezoresistive traces doped within a load-sensitive diaphragm. The novel package utilizes several layers of flexible polyimide to mechanically and electrically isolate the sensor from the environment, transmit normal applied loads to the diaphragm, and maintain uniform thickness. The CS sensors have a highly linear output in the load range tested (0-2.4 MPa) with an average accuracy of {+-} 1.5%.

  20. Thin Single Crystal Silicon Solar Cells on Ceramic Substrates: November 2009 - November 2010

    SciTech Connect (OSTI)

    Kumar, A.; Ravi, K. V.

    2011-06-01

    In this program we have been developing a technology for fabricating thin (< 50 micrometres) single crystal silicon wafers on foreign substrates. We reverse the conventional approach of depositing or forming silicon on foreign substrates by depositing or forming thick (200 to 400 micrometres) ceramic materials on high quality single crystal silicon films ~ 50 micrometres thick. Our key innovation is the fabrication of thin, refractory, and self-adhering 'handling layers or substrates' on thin epitaxial silicon films in-situ, from powder precursors obtained from low cost raw materials. This 'handling layer' has sufficient strength for device and module processing and fabrication. Successful production of full sized (125 mm X 125 mm) silicon on ceramic wafers with 50 micrometre thick single crystal silicon has been achieved and device process flow developed for solar cell fabrication. Impurity transfer from the ceramic to the silicon during the elevated temperature consolidation process has resulted in very low minority carrier lifetimes and resulting low cell efficiencies. Detailed analysis of minority carrier lifetime, metals analysis and device characterization have been done. A full sized solar cell efficiency of 8% has been demonstrated.

  1. Structural characterization of thin film photonic crystals

    SciTech Connect (OSTI)

    Subramania, G.; Biswas, R.; Constant, K.; Sigalas, M. M.; Ho, K. M.

    2001-06-15

    We quantitatively analyze the structure of thin film inverse-opal photonic crystals composed of ordered arrays of air pores in a background of titania. Ordering of the sphere template and introduction of the titania background were performed simultaneously in the thin film photonic crystals. Nondestructive optical measurements of backfilling with high refractive index liquids, angle-resolved reflectivity, and optical spectroscopy were combined with band-structure calculations. The analysis reveals a thin film photonic crystal structure with a very high filling fraction (92{endash}94%) of air and a substantial compression along the c axis ({similar_to}22{endash}25%).

  2. Permanent laser conditioning of thin film optical materials

    DOE Patents [OSTI]

    Wolfe, C.R.; Kozlowski, M.R.; Campbell, J.H.; Staggs, M.; Rainer, F.

    1995-12-05

    The invention comprises a method for producing optical thin films with a high laser damage threshold and the resulting thin films. The laser damage threshold of the thin films is permanently increased by irradiating the thin films with a fluence below an unconditioned laser damage threshold. 9 figs.

  3. Permanent laser conditioning of thin film optical materials

    DOE Patents [OSTI]

    Wolfe, C. Robert (Palo Alto, CA); Kozlowski, Mark R. (Pleasanton, CA); Campbell, John H. (Livermore, CA); Staggs, Michael (Tracy, CA); Rainer, Frank (Livermore, CA)

    1995-01-01

    The invention comprises a method for producing optical thin films with a high laser damage threshold and the resulting thin films. The laser damage threshold of the thin films is permanently increased by irradiating the thin films with a fluence below an unconditioned laser damage threshold.

  4. A comparison of thick film and thin film traffic stripes 

    E-Print Network [OSTI]

    Keese, Charles J

    1952-01-01

    of this thesis. CONTESTS Introduction ~ ~ ~ ~ ~ 1 Scope and Obfectives Method of Conducting Road Service Tests ~ ~ ~ ~ ~ ~ ~ ~ 7 ~ ~ ~ ~ ~ ~ ~ ~ ~ 8 PART I A Comparison of Paint Films of Various Thicknesses . . . . . . . . ~ ~, ~, ~ 72 App1ioation... of Test Stripes . Results of Thiokness Tests . 13 19 Conclusions 2$ PART II A Comparison of Various Thick Film and Thin Film Traffic Stripes. 26 Paint Stripes Over Adhesive Films Rosin Striping Compounds. . . + ~ . , ~ 29 ~ ~ ~ Preforsmd Plastic...

  5. Control of morphology for enhanced electronic transport in PECVD-grown a-Si : H Thin Films

    E-Print Network [OSTI]

    Castro Galnares, Sebastián

    2010-01-01

    Solar cells have become an increasingly viable alternative to traditional, pollution causing power generation methods. Although crystalline silicon (c-Si) modules make up most of the market, thin films such as hydrogenated ...

  6. Durham Workshop, Dec 2005Durham Workshop, Dec 2005 Thin Film Metrology UsingThin Film Metrology Using

    E-Print Network [OSTI]

    Greenaway, Alan

    Durham Workshop, Dec 2005Durham Workshop, Dec 2005 Thin Film Metrology UsingThin Film Metrology Modelling to investigate level of aberrations introduced by thin film structure.introduced by thin film Solar Cells Reflectors Solar Cell Covers Security UV Protection Anti-static Gas Temperature Pressure

  7. Thin film production method and apparatus

    DOE Patents [OSTI]

    Loutfy, Raouf O. (Tucson, AZ); Moravsky, Alexander P. (Tucson, AZ); Hassen, Charles N. (Tucson, AZ)

    2010-08-10

    A method for forming a thin film material which comprises depositing solid particles from a flowing suspension or aerosol onto a filter and next adhering the solid particles to a second substrate using an adhesive.

  8. Polycrystalline Thin-Film Multijunction Solar Cells

    SciTech Connect (OSTI)

    Noufi, R.; Wu, X.; Abu-Shama, J.; Ramanathan, K; Dhere, R.; Zhou, J.; Coutts, T.; Contreras, M.; Gessert, T.; Ward, J. S.

    2005-11-01

    We present a digest of our research on the thin-film material components that comprise the top and bottom cells of three different material systems and the tandem devices constructed from them.

  9. Creating CZTS Thin Films Via Stacked Metallic CVD and Sulfurization

    E-Print Network [OSTI]

    Bielecki, Anthony

    2013-01-01

    film solar cells. CIGS solar cell efficiencies have beenCIGS, making it a favorable choice for thin-film solar cells.thin film solar cell [3]. However, use of CIGS has a number

  10. A thin film transistor driven microchannel device 

    E-Print Network [OSTI]

    Lee, Hyun Ho

    2005-02-17

    THIN FILM TRANSISTOR DRIVEN MICROCHANNEL DEVICE FOR PROTEIN AND DNA ELECTROPHORESIS A Dissertation by HYUN HO LEE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of DOCTOR OF PHILOSOPHY December 2004 Major Subject: Chemical Engineering A THIN FILM TRANSISTOR DRIVEN MICROCHANNEL DEVICE FOR PROTEIN AND DNA ELECTROPHORESIS A Dissertation by HYUN HO LEE Submitted to Texas A...

  11. Polycrystalline GaAs solar cells on low-cost Silicon-Film{trademark} substrates

    SciTech Connect (OSTI)

    Mauk, M.G.; Feyock, B.W.; Hall, R.B.; Cavanaugh, K.D.; Cotter, J.E.

    1997-12-31

    The authors assess the potential of a low-cost, large-area Silicon-Film{trademark} sheet as a substrate for thin-film polycrystalline GaAs solar cells. Silicon-Film is a relatively inexpensive material on which large-grain (>2 mm) polycrystalline GaAs films can be formed. The GaAs epitaxial layers are grown by a simple close-spaced vapor transport (CSVT) technique using water vapor as a transport agent. A recrystallized Ge{sub 1{minus}x}Si{sub x} buffer layer between the GaAs epilayer and Silicon-Film substrate can facilitate growth of the GaAs. Selective epitaxy on patterned, oxide-masked substrates is effective in reducing thermal stress effects.

  12. Process for forming silicon carbide films and microcomponents

    DOE Patents [OSTI]

    Hamza, Alex V. (Livermore, CA); Balooch, Mehdi (Berkeley, CA); Moalem, Mehran (Berkeley, CA)

    1999-01-01

    Silicon carbide films and microcomponents are grown on silicon substrates at surface temperatures between 900 K and 1700 K via C.sub.60 precursors in a hydrogen-free environment. Selective crystalline silicon carbide growth can be achieved on patterned silicon-silicon oxide samples. Patterned SiC films are produced by making use of the high reaction probability of C.sub.60 with silicon at surface temperatures greater than 900 K and the negligible reaction probability for C.sub.60 on silicon dioxide at surface temperatures less than 1250 K.

  13. Thin-Film Reliability Trends Toward Improved Stability: Preprint

    SciTech Connect (OSTI)

    Jordan, D. C.; Kurtz, S. R.

    2011-07-01

    Long-term, stable performance of photovoltaic (PV) modules will be increasingly important to their successful penetration of the power grid. This paper summarizes more than 150 thin-film and more than 1700 silicon PV degradation rates (Rd) quoted in publications for locations worldwide. Partitioning the literature results by technology and date of installation statistical analysis shows an improvement in degradation rate especially for thin-film technologies in the last decade. A CIGS array deployed at NREL for more than 5 years that appears to be stable supports the literature trends. Indoor and outdoor data indicate undetectable change in performance (0.2+/-0.2 %/yr). One module shows signs of slight degradation from what appears to be an initial manufacturing defect, however it has not affected the overall system performance.

  14. Eddy Current Testing for Detecting Small Defects in Thin Films

    SciTech Connect (OSTI)

    Obeid, Simon; Tranjan, Farid M. [Electrical and Computer Engineering Department, UNCC (United States); Dogaru, Teodor [Albany Instruments, 426-O Barton Creek, Charlotte, NC 28262 (United States)

    2007-03-21

    Presented here is a technique of using Eddy Current based Giant Magneto-Resistance sensor (GMR) to detect surface and sub-layered minute defects in thin films. For surface crack detection, a measurement was performed on a copper metallization of 5-10 microns thick. It was done by scanning the GMR sensor on the surface of the wafer that had two scratches of 0.2 mm, and 2.5 mm in length respectively. In another experiment, metal coatings were deposited over the layers containing five defects with known lengths such that the defects were invisible from the surface. The limit of detection (resolution), in terms of defect size, of the GMR high-resolution Eddy Current probe was studied using this sample. Applications of Eddy Current testing include detecting defects in thin film metallic layers, and quality control of metallization layers on silicon wafers for integrated circuits manufacturing.

  15. Fully Solution-Processed Copper Chalcopyrite Thin Film Solar Cells: Materials Chemistry, Processing, and Device Physics

    E-Print Network [OSTI]

    Chung, Choong-Heui

    2012-01-01

    CuIn(Se,S) 2 thin film solar cells: secondary phaseChalcopyrite Thin Film Solar Cells: Materials Chemistry,Chalcopyrite Thin Film Solar Cells: Materials Chemistry,

  16. Thin film absorber for a solar collector

    DOE Patents [OSTI]

    Wilhelm, William G. (Cutchogue, NY)

    1985-01-01

    This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  17. Ambient pressure process for preparing aerogel thin films reliquified sols useful in preparing aerogel thin films

    DOE Patents [OSTI]

    Brinker, Charles Jeffrey (Albuquerque, NM); Prakash, Sai Sivasankaran (Minneapolis, MN)

    1999-01-01

    A method for preparing aerogel thin films by an ambient-pressure, continuous process. The method of this invention obviates the use of an autoclave and is amenable to the formation of thin films by operations such as dip coating. The method is less energy intensive and less dangerous than conventional supercritical aerogel processing techniques.

  18. Tungsten-doped thin film materials

    DOE Patents [OSTI]

    Xiang, Xiao-Dong; Chang, Hauyee; Gao, Chen; Takeuchi, Ichiro; Schultz, Peter G.

    2003-12-09

    A dielectric thin film material for high frequency use, including use as a capacitor, and having a low dielectric loss factor is provided, the film comprising a composition of tungsten-doped barium strontium titanate of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3, where X is between about 0.5 and about 1.0. Also provided is a method for making a dielectric thin film of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3 and doped with W, where X is between about 0.5 and about 1.0, a substrate is provided, TiO.sub.2, the W dopant, Ba, and optionally Sr are deposited on the substrate, and the substrate containing TiO.sub.2, the W dopant, Ba, and optionally Sr is heated to form a low loss dielectric thin film.

  19. Efficient light-trapping nanostructures in thin silicon solar cells

    E-Print Network [OSTI]

    Han, Sang Eon

    We examine light-trapping in thin crystalline silicon periodic nanostructures for solar cell applications. Using group theory, we show that light-trapping can be improved over a broad band when structural mirror symmetry ...

  20. Nanocrystalline Silicon Thin Film Transistors on Optically Clear Polymer Foil Substrates Alex Kattamis, I-Chun Cheng, Ke Long, James C. Sturm, Sigurd Wagner

    E-Print Network [OSTI]

    -ethylene terephthalate (PET) [5] . However since PET has a glass transition temperature (Tg) process areas, compared to TFTs of amorphous silicon. Introduction Flexible displays are the next technology using fabrication processes that already have been developed for glass with only minor changes

  1. Optoelectrical properties of four amorphous silicon thin-film transistors 200 dpi active-matrix organic polymer light-emitting display

    E-Print Network [OSTI]

    Kanicki, Jerzy

    with the polycrystal- line silicon poly-Si TFTs technology1­3 for the active- matrix organic light-emitting displays AM­OLEDs . Fur- thermore, recent enhancements of the organic light-emitting device OLED performances4 have made and driving devices in pixel electrode circuits. To drive light-emitting devices in AM­ OLEDs, a continuous

  2. Graphene as tunable contact for high performance thin film transistor

    E-Print Network [OSTI]

    Liu, Yuan

    2015-01-01

    64 Figure 4-5. Air stability of a planar PCBM thin filmfilm. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .obtained by annealing 8-nm thick gold thin film. . . . .

  3. Thermoelectric effect in very thin film Pt/Au thermocouples

    E-Print Network [OSTI]

    Salvadori, M.C.; Vaz, A.R.; Teixeira, F.S.; Cattani, M.; Brown, I.G.

    2006-01-01

    TABLE I. Measured thermoelectric power S for samples ofThermoelectric effect in very thin film Pt/Au thermocouplesthickness dependence of the thermoelectric power of Pt films

  4. Thin film dielectric composite materials

    SciTech Connect (OSTI)

    Jia, Quanxi; Gibbons, Brady J.; Findikoglu, Alp T.; Park, Bae Ho

    2002-01-01

    A dielectric composite material comprising at least two crystal phases of different components with TiO.sub.2 as a first component and a material selected from the group consisting of Ba.sub.1-x Sr.sub.x TiO.sub.3 where x is from 0.3 to 0.7, Pb.sub.1-x Ca.sub.x TiO.sub.3 where x is from 0.4 to 0.7, Sr.sub.1-x Pb.sub.x TiO.sub.3 where x is from 0.2 to 0.4, Ba.sub.1-x Cd.sub.x TiO.sub.3 where x is from 0.02 to 0.1, BaTi.sub.1-x Zr.sub.x O.sub.3 where x is from 0.2 to 0.3, BaTi.sub.1-x Sn.sub.x O.sub.3 where x is from 0.15 to 0.3, BaTi.sub.1-x Hf.sub.x O.sub.3 where x is from 0.24 to 0.3, Pb.sub.1-1.3x La.sub.x TiO.sub.3+0.2x where x is from 0.23 to 0.3, (BaTiO.sub.3).sub.x (PbFeo.sub.0.5 Nb.sub.0.5 O.sub.3).sub.1-x where x is from 0.75 to 0.9, (PbTiO.sub.3).sub.- (PbCo.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.1 to 0.45, (PbTiO.sub.3).sub.x (PbMg.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.2 to 0.4, and (PbTiO.sub.3).sub.x (PbFe.sub.0.5 Ta.sub.0.5 O.sub.3).sub.1-x where x is from 0 to 0.2, as the second component is described. The dielectric composite material can be formed as a thin film upon suitable substrates.

  5. Mesoscale morphologies in polymer thin films.

    SciTech Connect (OSTI)

    Ramanathan, M.; Darling, S. B. (Center for Nanoscale Materials)

    2011-06-01

    In the midst of an exciting era of polymer nanoscience, where the development of materials and understanding of properties at the nanoscale remain a major R&D endeavor, there are several exciting phenomena that have been reported at the mesoscale (approximately an order of magnitude larger than the nanoscale). In this review article, we focus on mesoscale morphologies in polymer thin films from the viewpoint of origination of structure formation, structure development and the interaction forces that govern these morphologies. Mesoscale morphologies, including dendrites, holes, spherulites, fractals and honeycomb structures have been observed in thin films of homopolymer, copolymer, blends and composites. Following a largely phenomenological level of description, we review the kinetic and thermodynamic aspects of mesostructure formation outlining some of the key mechanisms at play. We also discuss various strategies to direct, limit, or inhibit the appearance of mesostructures in polymer thin films as well as an outlook toward potential areas of growth in this field of research.

  6. Vibration welding system with thin film sensor

    DOE Patents [OSTI]

    Cai, Wayne W; Abell, Jeffrey A; Li, Xiaochun; Choi, Hongseok; Zhao, Jingzhou

    2014-03-18

    A vibration welding system includes an anvil, a welding horn, a thin film sensor, and a process controller. The anvil and horn include working surfaces that contact a work piece during the welding process. The sensor measures a control value at the working surface. The measured control value is transmitted to the controller, which controls the system in part using the measured control value. The thin film sensor may include a plurality of thermopiles and thermocouples which collectively measure temperature and heat flux at the working surface. A method includes providing a welder device with a slot adjacent to a working surface of the welder device, inserting the thin film sensor into the slot, and using the sensor to measure a control value at the working surface. A process controller then controls the vibration welding system in part using the measured control value.

  7. Piezoreslstive graphite/polyimide thin films for micromachining applications

    E-Print Network [OSTI]

    Piezoreslstive graphite/polyimide thin films for micromachining applications A. Bruno Frazier) In this work, graphite/polyimide composite thin films are introduced and characterized for micromachining tetracarboxylic dianhydride+xydianiline/metaphenylene diamine polyimide matrix. The resultant material represents

  8. Superconducting thin films on potassium tantalate substrates

    DOE Patents [OSTI]

    Feenstra, Roeland (Oak Ridge, TN); Boatner, Lynn A. (Oak Ridge, TN)

    1992-01-01

    A superconductive system for the lossless transmission of electrical current comprising a thin film of superconducting material Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.7-x epitaxially deposited upon a KTaO.sub.3 substrate. The KTaO.sub.3 is an improved substrate over those of the prior art since the it exhibits small lattice constant mismatch and does not chemically react with the superconducting film.

  9. Thin film transistors on plastic substrates with reflective coatings for radiation protection

    DOE Patents [OSTI]

    Wolfe, Jesse D.; Theiss, Steven D.; Carey, Paul G.; Smith, Patrick M.; Wickboldt, Paul

    2003-11-04

    Fabrication of silicon thin film transistors (TFT) on low-temperature plastic substrates using a reflective coating so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The TFT can be used in large area low cost electronics, such as flat panel displays and portable electronics such as video cameras, personal digital assistants, and cell phones.

  10. Thin film transistors on plastic substrates with reflective coatings for radiation protection

    DOE Patents [OSTI]

    Wolfe, Jesse D. (Fairfield, CA); Theiss, Steven D. (Woodbury, MN); Carey, Paul G. (Mountain View, CA); Smith, Patrick M. (San Ramon, CA); Wickbold, Paul (Walnut Creek, CA)

    2006-09-26

    Fabrication of silicon thin film transistors (TFT) on low-temperature plastic substrates using a reflective coating so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The TFT can be used in large area low cost electronics, such as flat panel displays and portable electronics such as video cameras, personal digital assistants, and cell phones.

  11. Polymer-Metal Nanocomposites via Polymer Thin Film

    E-Print Network [OSTI]

    Shyamasundar, R.K.

    Polymer-Metal Nanocomposites via Polymer Thin Film T. P. Radhakrishnan School of Chemistry, University of Hyderabad Polymer-metal nanocomposite thin films are versatile materials that not only Chemistry Inside a Polymer Thin Film P. Radhakrishnan School of Chemistry, University of Hyderabad metal

  12. Environmental Aspects of Thin Film Module Production and Product Lifetime

    E-Print Network [OSTI]

    Bergman, Keren

    Impact #12;3 Thin-Film PV -The Triangle of SuccessThin-Film PV -The Triangle of Success Low Cost of Thin Film Module Production and Product Lifetime Vasilis Fthenakis PV Environmental Research Center@bnl.gov web: www.pv.bnl.gov www.clca.columbia.edu #12;2 PV Sustainability CriteriaPV Sustainability Criteria

  13. Photon-Electron Harvesting in Thin-Film Flexible Solar Cells

    E-Print Network [OSTI]

    Wu, Shin-Tson

    ) Dr. Debashis Chanda's Group Cost effective and high efficiency solar cells are important in orderPhoton-Electron Harvesting in Thin-Film Flexible Solar Cells Javaneh Boroumand (12:00 PM ­ 12:30 PM-crystalline silicon (c- Si) remained number one material of choice for harnessing solar energy due to natural

  14. ORIGINAL PAPER Nanocrystalline Diamond Thin Films Synthesis

    E-Print Network [OSTI]

    Qin, Qinghua

    -CVD, and Meng [13] prepared NCD thin film on cemented carbide using a high extended DC arc plasma process substrate using direct current plasma jet chemical vapor deposition. A special cooling system was designed of Physics, Australian National University, Canberra, ACT 0200, Australia 123 Plasma Chem Plasma Process

  15. Thin film hydrous metal oxide catalysts

    DOE Patents [OSTI]

    Dosch, Robert G. (Albuquerque, NM); Stephens, Howard P. (Albuquerque, NM)

    1995-01-01

    Thin film (<100 nm) hydrous metal oxide catalysts are prepared by 1) synthesis of a hydrous metal oxide, 2) deposition of the hydrous metal oxide upon an inert support surface, 3) ion exchange with catalytically active metals, and 4) activating the hydrous metal oxide catalysts.

  16. Magnetic/metallic thin films and nanostructures

    E-Print Network [OSTI]

    Lewis, Robert Michael

    examples. During the past decade applications of nano-scale magnetic devices to data storage have hadMagnetic/metallic thin films and nanostructures The College of William and MarY;'l Virginia http://www.as.wm.cdu/Faculty/Lukaszcw.html It is widely believed that revolutionary progress can be made as materials and devices are developed to operate

  17. Temperature effect on low-k dielectric thin films studied by ERDA

    SciTech Connect (OSTI)

    Jensen, Jens; Possnert, Göran; Zhang, Yanwen

    2008-09-23

    Low-k dielectric materials are becoming increasingly interesting as alternative to SiO2 with device geometries shrinking beyond the 65 nm technology node. At elevated temperatures hydrogen migration becomes an important degradation mechanism for conductivity breakdown in semiconductor devices. The possibility of hydrogen release during the fabrication process is, therefore, of great interest in the understanding of device reliability. In this study, various low-k dielectric films were subjected to thermal annealing at temperatures that are generally used for device fabrication. Elastic recoil detection analysis (ERDA) was used to investigate compositional changes and hydrogen redistribution in thin films of plasma-enhanced tetraethylortho-silicate (PETEOS), phosphorus doped silicon glass (PSG), silicon nitride (SiN) and silicon oxynitride (SiON). Except for an initial hydrogen release from the surface region in films of PETEOS and PSG, the results indicate that the elemental composition of the films was stable for at least 2 hours at 450?C.

  18. Post-Growth Manipulation of Transition Metal Dichalcogenides Thin Film

    E-Print Network [OSTI]

    Ma, Quan

    2014-01-01

    electron doping in thin MoS2 films deposited on dielectriclayer Molybdenum Disulfide Films by Sulfur/Selenium ExchangeMolybdenum disulfide films by sulfur/ selenium exchange, ACS

  19. Preparation of thin film high temperature superconductors

    SciTech Connect (OSTI)

    VenKatesan, X.X.T.; Li, Q.; Findikoglu, A.; Hemmick, D. . Dept. of Physics); Wu, X.D. ); Inam, A.; Chang, C.C.; Ramesh, R.; Hwang, D.M.; Ravi, T.S.; Etemad, S.; Martinez, J.A.; Wilkens, B. )

    1991-03-01

    This paper addresses fundamental issues in preparing high quality high T{sub c} YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} thin films. The techniques of inverted cylindrical magnetron sputtering and pulsed laser deposition are chosen as successful examples to illustrate how the key problems can be solved. The fabrication of YBa{sub 2}Cu{sub 3}O{sub 7{minus}x}/PrBa{sub 2}Cu{sub 3}O{sub 7{minus}x} superlattices where superconductivity in a single unit cell layer of YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} was observed demonstrates the state of the art of thin film deposition of high T{sub c} materials. Systematic variations of the deposition parameters result in changes of superconducting and structural properties of the films that correlate with their microwave and infrared characteristics.

  20. Enabling Thin Silicon Solar Cell Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    has spurred companies to reduce the cost and increase the reliability of their solar photovoltaics (SPVs). The use of thinner silicon in SPV technologies is being widely...

  1. Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics

    E-Print Network [OSTI]

    Kang, Jin Sung

    2012-01-01

    to integrate thin-film solar cells and batteries (2)methods for thin-film solar cells and batteries (4) Developamorphous silicon thin-film solar cell. Part number TX3-25

  2. Electron-beam-evaporated thin films of hafnium dioxide for fabricating electronic devices

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xiao, Zhigang; Kisslinger, Kim

    2015-06-17

    Thin films of hafnium dioxide (HfO2) are widely used as the gate oxide in fabricating integrated circuits because of their high dielectric constants. In this paper, the authors report the growth of thin films of HfO2 using e-beam evaporation, and the fabrication of complementary metal-oxide semiconductor (CMOS) integrated circuits using this HfO2 thin film as the gate oxide. The authors analyzed the thin films using high-resolution transmission electron microscopy and electron diffraction, thereby demonstrating that the e-beam-evaporation-grown HfO2 film has a polycrystalline structure and forms an excellent interface with silicon. Accordingly, we fabricated 31-stage CMOS ring oscillator to test themore »quality of the HfO2 thin film as the gate oxide, and obtained excellent rail-to-rail oscillation waveforms from it, denoting that the HfO2 thin film functioned very well as the gate oxide.« less

  3. Electrohydrodynamic instabilities in thin liquid trilayer films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Roberts, Scott A. [Sandia National Lab., Albuquerque, NM (United States); Kumar, Satish [Univ. of Minnesota, Minneapolis, MN (United States)

    2010-09-12

    Experiments by Dickey et al. [Langmuir, 22, 4315 (2006)] and Leach et al. [Chaos, 15, 047506 (2005)] show that novel pillar shapes can be generated from electrohydrodynamic instabilities at the interfaces of thin polymer/polymer/air trilayer films. In this paper, we use linear stability analysis to investigate the effect of free charge and ac electric fields on the stability of trilayer systems. Our work is also motivated by our recent theoretical study [J. Fluid Mech., 631, 255 (2009)] which demonstrates how ac electric fields can be used to increase control over the pillar formation process in thin liquid bilayer films. For perfect dielectric films, the effect of an AC electric field can be understood by considering an equivalent DC field. Leaky dielectric films yield pillar configurations that are drastically different from perfect dielectric films, and AC fields can be used to control the location of free charge within the trilayer system. This can alter the pillar instability modes and generate smaller diameter pillars when conductivities are mismatched. The results presented here may be of interest for the creation of complex topographical patterns on polymer coatings and in microelectronics.

  4. Electrohydrodynamic instabilities in thin liquid trilayer films

    SciTech Connect (OSTI)

    Roberts, Scott A.; Kumar, Satish

    2010-01-01

    Experiments by Dickey and Leach show that novel pillar shapes can be generated from electrohydrodynamic instabilities at the interfaces of thin polymer/polymer/air trilayer films. In this paper, we use linear stability analysis to investigate the effect of free charge and ac electric fields on the stability of trilayer systems. Our work is also motivated by our recent theoretical study which demonstrates how ac electric fields can be used to increase control over the pillar formation process in thin liquid bilayer films. For perfect dielectric films, the effect of an AC electric field can be understood by considering an equivalent DC field. Leaky dielectric films yield pillar configurations that are drastically different from perfect dielectric films, and AC fields can be used to control the location of free charge within the trilayer system. This can alter the pillar instability modes and generate smaller diameter pillars when conductivities are mismatched. The results presented here may be of interest for the creation of complex topographical patterns on polymer coatings and in microelectronics.

  5. Electrohydrodynamic instabilities in thin liquid trilayer films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Roberts, Scott A.; Kumar, Satish

    2010-12-09

    Experiments by Dickey and Leach show that novel pillar shapes can be generated from electrohydrodynamic instabilities at the interfaces of thin polymer/polymer/air trilayer films. In this paper, we use linear stability analysis to investigate the effect of free charge and ac electric fields on the stability of trilayer systems. Our work is also motivated by our recent theoretical study which demonstrates how ac electric fields can be used to increase control over the pillar formation process in thin liquid bilayer films. For perfect dielectric films, the effect of an AC electric field can be understood by considering an equivalent DCmore »field. Leaky dielectric films yield pillar configurations that are drastically different from perfect dielectric films, and AC fields can be used to control the location of free charge within the trilayer system. This can alter the pillar instability modes and generate smaller diameter pillars when conductivities are mismatched. The results presented may be of interest for the creation of complex topographical patterns on polymer coatings and in microelectronics.« less

  6. Nitrogen doped zinc oxide thin film

    SciTech Connect (OSTI)

    Li, Sonny X.

    2003-12-15

    To summarize, polycrystalline ZnO thin films were grown by reactive sputtering. Nitrogen was introduced into the films by reactive sputtering in an NO{sub 2} plasma or by N{sup +} implantation. All ZnO films grown show n-type conductivity. In unintentionally doped ZnO films, the n-type conductivities are attributed to Zn{sub i}, a native shallow donor. In NO{sub 2}-grown ZnO films, the n-type conductivity is attributed to (N{sub 2}){sub O}, a shallow double donor. In NO{sub 2}-grown ZnO films, 0.3 atomic % nitrogen was found to exist in the form of N{sub 2}O and N{sub 2}. Upon annealing, N{sub 2}O decomposes into N{sub 2} and O{sub 2}. In furnace-annealed samples N{sub 2} redistributes diffusively and forms gaseous N{sub 2} bubbles in the films. Unintentionally doped ZnO films were grown at different oxygen partial pressures. Zni was found to form even at oxygen-rich condition and led to n-type conductivity. N{sup +} implantation into unintentionally doped ZnO film deteriorates the crystallinity and optical properties and leads to higher electron concentration. The free electrons in the implanted films are attributed to the defects introduced by implantation and formation of (N{sub 2}){sub O} and Zni. Although today there is still no reliable means to produce good quality, stable p-type ZnO material, ZnO remains an attractive material with potential for high performance short wavelength optoelectronic devices. One may argue that gallium nitride was in a similar situation a decade ago. Although we did not obtain any p-type conductivity, we hope our research will provide a valuable reference to the literature.

  7. Thin film photovoltaic panel and method

    DOE Patents [OSTI]

    Ackerman, Bruce (El Paso, TX); Albright, Scot P. (El Paso, TX); Jordan, John F. (El Paso, TX)

    1991-06-11

    A thin film photovoltaic panel includes a backcap for protecting the active components of the photovoltaic cells from adverse environmental elements. A spacing between the backcap and a top electrode layer is preferably filled with a desiccant to further reduce water vapor contamination of the environment surrounding the photovoltaic cells. The contamination of the spacing between the backcap and the cells may be further reduced by passing a selected gas through the spacing subsequent to sealing the backcap to the base of the photovoltaic panels, and once purged this spacing may be filled with an inert gas. The techniques of the present invention are preferably applied to thin film photovoltaic panels each formed from a plurality of photovoltaic cells arranged on a vitreous substrate. The stability of photovoltaic conversion efficiency remains relatively high during the life of the photovoltaic panel, and the cost of manufacturing highly efficient panels with such improved stability is significantly reduced.

  8. Multiferroic oxide thin films and heterostructures

    SciTech Connect (OSTI)

    Lu, Chengliang E-mail: Tao.Wu@kaust.edu.sa; Hu, Weijin; Wu, Tom E-mail: Tao.Wu@kaust.edu.sa; Tian, Yufeng

    2015-06-15

    Multiferroic materials promise a tantalizing perspective of novel applications in next-generation electronic, memory, and energy harvesting technologies, and at the same time they also represent a grand scientific challenge on understanding complex solid state systems with strong correlations between multiple degrees of freedom. In this review, we highlight the opportunities and obstacles in growing multiferroic thin films with chemical and structural integrity and integrating them in functional devices. Besides the magnetoelectric effect, multiferroics exhibit excellent resistant switching and photovoltaic properties, and there are plenty opportunities for them to integrate with other ferromagnetic and superconducting materials. The challenges include, but not limited, defect-related leakage in thin films, weak magnetism, and poor control on interface coupling. Although our focuses are Bi-based perovskites and rare earth manganites, the insights are also applicable to other multiferroic materials. We will also review some examples of multiferroic applications in spintronics, memory, and photovoltaic devices.

  9. Substrate heater for thin film deposition

    DOE Patents [OSTI]

    Foltyn, Steve R. (111 Beryl St., Los Alamos, NM 87544)

    1996-01-01

    A substrate heater for thin film deposition of metallic oxides upon a target substrate configured as a disk including means for supporting in a predetermined location a target substrate configured as a disk, means for rotating the target substrate within the support means, means for heating the target substrate within the support means, the heating means about the support means and including a pair of heating elements with one heater element situated on each side of the predetermined location for the target substrate, with one heater element defining an opening through which desired coating material can enter for thin film deposition and with the heating means including an opening slot through which the target substrate can be entered into the support means, and, optionally a means for thermal shielding of the heating means from surrounding environment is disclosed.

  10. Packaging material for thin film lithium batteries

    DOE Patents [OSTI]

    Bates, John B. (116 Baltimore Dr., Oak Ridge, TN 37830); Dudney, Nancy J. (11634 S. Monticello Rd., Knoxville, TN 37922); Weatherspoon, Kim A. (223 Wadsworth Pl., Oak Ridge, TN 37830)

    1996-01-01

    A thin film battery including components which are capable of reacting upon exposure to air and water vapor incorporates a packaging system which provides a barrier against the penetration of air and water vapor. The packaging system includes a protective sheath overlying and coating the battery components and can be comprised of an overlayer including metal, ceramic, a ceramic-metal combination, a parylene-metal combination, a parylene-ceramic combination or a parylene-metal-ceramic combination.

  11. Structures for dense, crack free thin films

    DOE Patents [OSTI]

    Jacobson, Craig P. (Lafayette, CA); Visco, Steven J. (Berkeley, CA); De Jonghe, Lutgard C. (Lafayette, CA)

    2011-03-08

    The process described herein provides a simple and cost effective method for making crack free, high density thin ceramic film. The steps involve depositing a layer of a ceramic material on a porous or dense substrate. The deposited layer is compacted and then the resultant laminate is sintered to achieve a higher density than would have been possible without the pre-firing compaction step.

  12. Synthesis and characterization of SnO{sub 2} thin films doped with Fe to 10%

    SciTech Connect (OSTI)

    López, E.; Marín, J.; Osorio, J.

    2014-05-15

    Appropriate conditions for SnO{sub 2} powder synthesis doped with iron to 10% by using sol-gel route are found. The powders obtained have been analyzed by means of analytic spectroscopic techniques: Raman, Mössbauer, diffuse reflectance, Fourier transform infrared, and X-ray diffraction. Sn{sub 0.9}Fe{sub 0.1}O{sub 2} thin films deposited by AC magnetron sputtering on silicon substrates are obtained and characterized. A crystal structure rutile-type was found for thin films.

  13. Multilayer thin-film coatings for optical communication systems

    E-Print Network [OSTI]

    Miller, David A. B.

    Multilayer thin-film coatings for optical communication systems Martina Gerken Lichttechnisches-film coatings for optical communication systems are reviewed. Particular emphasis is given to thin-film designs with dispersion related to the photonic crystal superprism effect. A single dispersive coating may be used

  14. Photochemical Pattern Transfer and Enhancement of Thin Film Silica

    E-Print Network [OSTI]

    Parikh, Atul N.

    Photochemical Pattern Transfer and Enhancement of Thin Film Silica Mesophases Andrew M. Dattelbaum chemical treatment of the film can selectively remove the mesostructured regions, leading to patterned, hydrophobicity, and structural morphology of the mesoscopic thin film material on a wide range of substrates

  15. Fracture patterns in thin films and multilayers Alex A. Volinsky

    E-Print Network [OSTI]

    Volinsky, Alex A.

    Fracture patterns in thin films and multilayers Alex A. Volinsky University of South Florida, excessive residual and externally applied stresses cause film fracture. In the case of tensile stress is the key for causing thin film fracture, either in tension, or compression, it is the influence

  16. Hydrogen plasma enhanced crystallization of hydrogenated amorphous silicon films

    E-Print Network [OSTI]

    Hydrogen plasma enhanced crystallization of hydrogenated amorphous silicon films K. Pangal,a) J. C August 1998; accepted for publication 21 October 1998 We report that a room temperature hydrogen plasma thermal crystallization of amorphous silicon time by a factor of five. Exposure to hydrogen plasma reduces

  17. Band Gap Energy of Chalcopyrite Thin Film Solar Cell Absorbers Determined by Soft X-Ray Emission and Absorption Spectroscopy

    E-Print Network [OSTI]

    Bar, M.

    2010-01-01

    OF CHALCOPYRITE THIN FILM SOLAR CELL ABSORBERS DETERMINED BYchalcopyrite thin film solar cell absorbers significantlyof chalcopyrite thin film solar cell absorbers. excitation

  18. AMORPHOUS MOLYBDENUM SILICON SUPERCONDUCTING THIN FILMS

    E-Print Network [OSTI]

    Bosworth, D.; Sahonta, S.-L.; Hadfield, R. H.; Barber, Z. H.

    2015-01-01

    Amorphous superconductors have become attractive candidate materials for superconducting nanowire single-photon detectors due to their ease of growth, homogeneity and competitive superconducting properties. To date the majority of devices have been...

  19. Integrated thin film batteries on silicon

    E-Print Network [OSTI]

    Ariel, Nava

    2005-01-01

    Monolithic integration has been implemented successfully in complementary metal oxide semiconductor (CMOS) technology and led to improved device performance, increased reliability, and overall cost reduction. The next ...

  20. Chemical vapor deposition of organosilicon and sacrificial polymer thin films

    E-Print Network [OSTI]

    Casserly, Thomas Bryan

    2005-01-01

    Chemical vapor deposition (CVD) produced films for a wide array of applications from a variety of organosilicon and organic precursors. The structure and properties of thin films were controlled by varying processing ...

  1. Creating CZTS Thin Films Via Stacked Metallic CVD and Sulfurization

    E-Print Network [OSTI]

    Bielecki, Anthony

    2013-01-01

    Research, Thin-Film Photovoltaic (PV) Cells Market Analysiscost of photovoltaic systems (such as solar cells) due tosolar cells are created by depositing layers of photovoltaic

  2. Rechargeable thin film battery and method for making the same

    DOE Patents [OSTI]

    Goldner, Ronald B.; Liu, Te-Yang; Goldner, Mark A.; Gerouki, Alexandra; Haas, Terry E.

    2006-01-03

    A rechargeable, stackable, thin film, solid-state lithium electrochemical cell, thin film lithium battery and method for making the same is disclosed. The cell and battery provide for a variety configurations, voltage and current capacities. An innovative low temperature ion beam assisted deposition method for fabricating thin film, solid-state anodes, cathodes and electrolytes is disclosed wherein a source of energetic ions and evaporants combine to form thin film cell components having preferred crystallinity, structure and orientation. The disclosed batteries are particularly useful as power sources for portable electronic devices and electric vehicle applications where high energy density, high reversible charge capacity, high discharge current and long battery lifetimes are required.

  3. Tax Credits Give Thin-Film Solar a Big Boost

    Office of Energy Efficiency and Renewable Energy (EERE)

    California company will expand its capacity to make its thin-film solar panels by more than ten times, thanks to two Recovery Act tax credits.

  4. Fast lithium-ion conducting thin film electrolytes integrated...

    Office of Scientific and Technical Information (OSTI)

    Fast lithium-ion conducting thin film electrolytes integrated directly on flexible substrates for high power solid-state batteries. Citation Details In-Document Search Title: Fast...

  5. Production and characterization of thin film group IIIB, IVB...

    Office of Scientific and Technical Information (OSTI)

    Production and characterization of thin film group IIIB, IVB and rare earth hydrides by reactive evaporation Citation Details In-Document Search Title: Production and...

  6. Orientational Analysis of Molecules in Thin Films | Stanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    crucial if an epitaxial or even crystalline organic growth is desired, if such thin film should serve as template or anchoring unit for further depositiongrowth in a...

  7. Molecular solution processing of metal chalcogenide thin film solar cells

    E-Print Network [OSTI]

    Yang, Wenbing

    2013-01-01

    for further improvement on CZTS solar cells efficiency.improvement. Figure 6.1 Efficiency progress for hydrazine solution processing CIGS and CZTS thin film solar cells

  8. Uncooled thin film pyroelectric IR detector with aerogel thermal isolation

    DOE Patents [OSTI]

    Ruffner, Judith A. (Albuquerque, NM); Bullington, Jeff A. (Albuquerque, NM); Clem, Paul G. (Albuquerque, NM); Warren, William L. (Albuquerque, NM); Brinker, C. Jeffrey (Albuquerque, NM); Tuttle, Bruce A. (Albuquerque, NM); Schwartz, Robert W. (Seneca, SC)

    1999-01-01

    A monolithic infrared detector structure which allows integration of pyroelectric thin films atop low thermal conductivity aerogel thin films. The structure comprises, from bottom to top, a substrate, an aerogel insulating layer, a lower electrode, a pyroelectric layer, and an upper electrode layer capped by a blacking layer. The aerogel can offer thermal conductivity less than that of air, while providing a much stronger monolithic alternative to cantilevered or suspended air-gap structures for pyroelectric thin film pixel arrays. Pb(Zr.sub.0.4 Ti.sub.0.6)O.sub.3 thin films deposited on these structures displayed viable pyroelectric properties, while processed at 550.degree. C.

  9. Fabrication of Microporous Thin Films from Polyelectrolyte Multilayers

    E-Print Network [OSTI]

    Barrett, Christopher

    , are established biomaterials finding application as drug delivery systems, enteric coatings for drugs, dental and biomaterial applications. Introduction The fabrication of polyelectrolyte multilayer thin films has received

  10. Substrate for thin silicon solar cells

    DOE Patents [OSTI]

    Ciszek, T.F.

    1995-03-28

    A photovoltaic device for converting solar energy into electrical signals comprises a substrate, a layer of photoconductive semiconductor material grown on said substrate, wherein the substrate comprises an alloy of boron and silicon, the boron being present in a range of from 0.1 to 1.3 atomic percent, the alloy having a lattice constant substantially matched to that of the photoconductive semiconductor material and a resistivity of less than 1{times}10{sup {minus}3} ohm-cm. 4 figures.

  11. Substrate for thin silicon solar cells

    DOE Patents [OSTI]

    Ciszek, Theodore F. (Evergreen, CO)

    1995-01-01

    A photovoltaic device for converting solar energy into electrical signals comprises a substrate, a layer of photoconductive semiconductor material grown on said substrate, wherein the substrate comprises an alloy of boron and silicon, the boron being present in a range of from 0.1 to 1.3 atomic percent, the alloy having a lattice constant substantially matched to that of the photoconductive semiconductor material and a resistivity of less than 1.times.10.sup.-3 ohm-cm.

  12. Dissociation of dilute immiscible copper alloy thin films

    SciTech Connect (OSTI)

    Barmak, K.; Lucadamo, G. A.; Cabral, C. Jr.; Lavoie, C.; Harper, J. M. E.

    2000-03-01

    The dissociation behavior of dilute, immiscible Cu-alloy thin films is found to fall into three broad categories that correlate most closely with the form of the Cu-rich end of the binary alloy phase diagrams. Available thermodynamic and tracer diffusion data shed further light on alloy behavior. Eight alloying elements were selected for these studies, with five elements from groups 5 and 6, two from group 8, and one from group 11 of the periodic table. They are respectively V, Nb, Ta, Cr, Mo, Fe, Ru, and Ag. The progress of precipitation in approximately 500-nm-thick alloy films, containing 2.5-3.8 at. % solute, was followed with in situ resistance and stress measurements as well as with in situ synchrotron x-ray diffraction. In addition, texture analysis and transmission electron microscopy were used to investigate the evolution of microstructure and texture of Cu(Ta) and Cu(Ag). For all eight alloys, dissociation occurred upon heating, with the rejection of solute and evolution of microstructure often occurring in multiple steps that range over several hundred degrees between approximately 100 and 900 degree sign C. However, in most cases, substantial reductions in resistivity of the films took place below 400 degree sign C, at temperatures of interest to copper metallization schemes for silicon chip technology. (c) 2000 American Institute of Physics.

  13. Near-Field Radiative Heat Transfer between Metamaterials coated with Silicon Carbide Film

    E-Print Network [OSTI]

    Basu, Soumyadipta; Wang, Liping

    2014-01-01

    In this letter, we study the near-field radiative heat transfer between two metamaterial substrates coated with silicon carbide (SiC) thin films. It is known that metamaterials can enhance the near-field heat transfer over ordinary materials due to excitation of magnetic plasmons associated with s polarization, while strong surface phonon polariton exists for SiC.By careful tuning of the optical properties of metamaterial it is possible to excite electrical and magnetic resonance for the metamaterial and surface phonon polaritons for SiC at different spectral regions, resulting in the enhanced heat transfer. The effect of the SiC film thickness at different vacuum gaps is investigated. Results obtained from this study will be beneficial for application of thin film coatings for energy harvesting.

  14. Rechargeable thin-film electrochemical generator

    DOE Patents [OSTI]

    Rouillard, Roger (Beloeil, CA); Domroese, Michael K. (South St. Paul, MN); Hoffman, Joseph A. (Minneapolis, MN); Lindeman, David D. (Hudson, WI); Noel, Joseph-Robert-Gaetan (St-Hubert, CA); Radewald, Vern E. (Austin, TX); Ranger, Michel (Lachine, CA); Sudano, Anthony (Laval, CA); Trice, Jennifer L. (Eagan, MN); Turgeon, Thomas A. (Fridley, MN)

    2000-09-15

    An improved electrochemical generator is disclosed. The electrochemical generator includes a thin-film electrochemical cell which is maintained in a state of compression through use of an internal or an external pressure apparatus. A thermal conductor, which is connected to at least one of the positive or negative contacts of the cell, conducts current into and out of the cell and also conducts thermal energy between the cell and thermally conductive, electrically resistive material disposed on a vessel wall adjacent the conductor. The thermally conductive, electrically resistive material may include an anodized coating or a thin sheet of a plastic, mineral-based material or conductive polymer material. The thermal conductor is fabricated to include a resilient portion which expands and contracts to maintain mechanical contact between the cell and the thermally conductive material in the presence of relative movement between the cell and the wall structure. The electrochemical generator may be disposed in a hermetically sealed housing.

  15. Pulsed laser deposition and characterization of conductive RuO{sub 2} thin films

    SciTech Connect (OSTI)

    Iembo, A.; Fuso, F.; Arimondo, E.; Ciofi, C.; Pennelli, G.; Curro, G.M.; Neri, F.; Allegrini, M. |

    1997-06-01

    RuO{sub 2} thin films have been produced on silicon-based substrates by {ital in situ} pulsed laser deposition for the first time. The electrical properties, the surface characteristics, the crystalline structure, and the film-substrate interface of deposited samples have been investigated by 4-probe resistance versus temperature technique, scanning electron microscopy, x-ray photoelectron spectroscopy, x-ray diffraction, and transmission electron microscopy, respectively. The films show good electrical properties. The RuO{sub 2}-substrate interface is very thin ({approx}3 nm), since not degraded by any annealing process. These two characteristics render our films suitable to be used as electrodes in PZT-based capacitors.{copyright} {ital 1997 Materials Research Society.}

  16. Alternative process for thin layer etching: Application to nitride spacer etching stopping on silicon germanium

    SciTech Connect (OSTI)

    Posseme, N., E-mail: nicolas.posseme@cea.fr; Pollet, O.; Barnola, S. [CEA-LETI-Minatec, 17 rue des martyrs, 38054 Grenoble cedex 09 (France)

    2014-08-04

    Silicon nitride spacer etching realization is considered today as one of the most challenging of the etch process for the new devices realization. For this step, the atomic etch precision to stop on silicon or silicon germanium with a perfect anisotropy (no foot formation) is required. The situation is that none of the current plasma technologies can meet all these requirements. To overcome these issues and meet the highly complex requirements imposed by device fabrication processes, we recently proposed an alternative etching process to the current plasma etch chemistries. This process is based on thin film modification by light ions implantation followed by a selective removal of the modified layer with respect to the non-modified material. In this Letter, we demonstrate the benefit of this alternative etch method in term of film damage control (silicon germanium recess obtained is less than 6?A), anisotropy (no foot formation), and its compatibility with other integration steps like epitaxial. The etch mechanisms of this approach are also addressed.

  17. TEM characterization of nanodiamond thin films.

    SciTech Connect (OSTI)

    Qin, L.-C.; Zhou, D.; Krauss, A. R.; Gruen, D. M.; Chemistry

    1998-05-01

    The microstructure of thin films grown by microwave plasma-enhanced chemical vapor deposition (MPCVD) from fullerene C{sub 60} precursors has been characterized by scanning electron microscopy (SEM), selected-area electron diffraction (SAED), bright-field electron microscopy, high-resolution electron microscopy (HREM), and parallel electron energy loss spectroscopy (PEELS). The films are composed of nanosize crystallites of diamond, and no graphitic or amorphous phases were observed. The diamond crystallite size measured from lattice images shows that most grains range between 3-5 nm, reflecting a gamma distribution. SAED gave no evidence of either sp2-bonded glassy carbon or sp3-bonded diamondlike amorphous carbon. The sp2-bonded configuration found in PEELS was attributed to grain boundary carbon atoms, which constitute 5-10% of the total. Occasionally observed larger diamond grains tend to be highly faulted.

  18. Process for making dense thin films

    DOE Patents [OSTI]

    Jacobson, Craig P.; Visco, Steven J.; DeJonghe, Lutgard C.

    2005-07-26

    Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for firing of device substrate to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.

  19. Thin Film Solar Technologies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin Film Solar Technologies Jump to: navigation, search Name: Thin

  20. Innovative Thin Films LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on Openei |sourceAndInformation ReeseInnovativeThin Films

  1. Thin silicon foils produced by epoxy-induced spalling of silicon for high efficiency solar cells

    SciTech Connect (OSTI)

    Martini, R., E-mail: roberto.martini@imec.be [Department of Electrical Engineering, KU Leuven, Kasteelpark 10, 3001 Leuven (Belgium); imec, Kapeldreef 75, 3001 Leuven (Belgium); Kepa, J.; Stesmans, A. [Department of Physics, KU Leuven, Celestijnenlaan 200 D, 3001 Leuven (Belgium); Debucquoy, M.; Depauw, V.; Gonzalez, M.; Gordon, I. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Poortmans, J. [Department of Electrical Engineering, KU Leuven, Kasteelpark 10, 3001 Leuven (Belgium); imec, Kapeldreef 75, 3001 Leuven (Belgium); Universiteit Hasselt, Martelarenlaan 42, B-3500 Hasselt (Belgium)

    2014-10-27

    We report on the drastic improvement of the quality of thin silicon foils produced by epoxy-induced spalling. In the past, researchers have proposed to fabricate silicon foils by spalling silicon substrates with different stress-inducing materials to manufacture thin silicon solar cells. However, the reported values of effective minority carrier lifetime of the fabricated foils remained always limited to ?100??s or below. In this work, we investigate epoxy-induced exfoliated foils by electron spin resonance to analyze the limiting factors of the minority carrier lifetime. These measurements highlight the presence of disordered dangling bonds and dislocation-like defects generated by the exfoliation process. A solution to remove these defects compatible with the process flow to fabricate solar cells is proposed. After etching off less than 1??m of material, the lifetime of the foil increases by more than a factor of 4.5, reaching a value of 461??s. This corresponds to a lower limit of the diffusion length of more than 7 times the foil thickness. Regions with different lifetime correlate well with the roughness of the crack surface which suggests that the lifetime is now limited by the quality of the passivation of rough surfaces. The reported values of the minority carrier lifetime show a potential for high efficiency (>22%) thin silicon solar cells.

  2. Tuning the Magnetic and Electronic Properties of FexSi1-x Thin Films for Spintronics

    E-Print Network [OSTI]

    Karel, Julie Elizabeth

    2012-01-01

    x Si 1-x Thin Films for Spintronics By Julie Elizabeth Karelx Si 1-x Thin Films for Spintronics Copyright 2012 by Juliex Si 1-x Thin Films for Spintronics by Julie Elizabeth Karel

  3. Quantification of thin film crystallographic orientation using X-ray diffraction with an area detector

    E-Print Network [OSTI]

    Baker, Jessica L

    2010-01-01

    properties of Au thin films by X?ray diffraction and in in  polythiophene thin?film transistors.  Nat Mater 2006, copper  phthalocyanine thin films evaporated on amorphous 

  4. The Effects of Non-Uniform Electronic Properties on Thin Film Photovoltaics

    E-Print Network [OSTI]

    Brown, Gregory Ferguson

    2011-01-01

    Intensity  in  Thin  Film  Solar  Cells   3.2.1   U.  Rau,  EL)  Intensity   in  Thin  Film  Solar  Cells   3.3  properties  of  thin  film  solar  cell   absorbers,  with  

  5. Laterally inherently thin amorphous-crystalline silicon heterojunction photovoltaic cell

    SciTech Connect (OSTI)

    Chowdhury, Zahidur R. Kherani, Nazir P.

    2014-12-29

    This article reports on an amorphous-crystalline silicon heterojunction photovoltaic cell concept wherein the heterojunction regions are laterally narrow and distributed amidst a backdrop of well-passivated crystalline silicon surface. The localized amorphous-crystalline silicon heterojunctions consisting of the laterally thin emitter and back-surface field regions are precisely aligned under the metal grid-lines and bus-bars while the remaining crystalline silicon surface is passivated using the recently proposed facile grown native oxide–plasma enhanced chemical vapour deposited silicon nitride passivation scheme. The proposed cell concept mitigates parasitic optical absorption losses by relegating amorphous silicon to beneath the shadowed metallized regions and by using optically transparent passivation layer. A photovoltaic conversion efficiency of 13.6% is obtained for an untextured proof-of-concept cell illuminated under AM 1.5 global spectrum; the specific cell performance parameters are V{sub OC} of 666?mV, J{sub SC} of 29.5?mA-cm{sup ?2}, and fill-factor of 69.3%. Reduced parasitic absorption, predominantly in the shorter wavelength range, is confirmed with external quantum efficiency measurement.

  6. Method of improving field emission characteristics of diamond thin films

    DOE Patents [OSTI]

    Krauss, Alan R. (Naperville, IL); Gruen, Dieter M. (Downer Grove, IL)

    1999-01-01

    A method of preparing diamond thin films with improved field emission properties. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display.

  7. Method of improving field emission characteristics of diamond thin films

    DOE Patents [OSTI]

    Krauss, A.R.; Gruen, D.M.

    1999-05-11

    A method of preparing diamond thin films with improved field emission properties is disclosed. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display. 3 figs.

  8. Rechargeable thin-film lithium batteries

    SciTech Connect (OSTI)

    Bates, J.B.; Gruzalski, G.R.; Dudney, N.J.; Luck, C.F.; Yu, X.

    1993-09-01

    Rechargeable thin-film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have been fabricated and characterized. These include Li-TiS{sub 2}, Li-V{sub 2}O{sub 5}, and Li-Li{sub x}Mn{sub 2}O{sub 4} cells with open circuit voltages at full charge of about 2.5 V, 3.7 V, and 4.2 V, respectively. The realization of these robust cells, which can be cycled thousands of times, was possible because of the stability of the amorphous lithium electrolyte, lithium phosphorus oxynitride. This material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46}and a conductivity at 25 C of 2 {mu}S/cm. The thin-film cells have been cycled at 100% depth of discharge using current densities of 5 to 100 {mu}A/cm{sup 2}. Over most of the charge-discharge range, the internal resistance appears to be dominated by the cathode, and the major source of the resistance is the diffusion of Li{sup +} ions from the electrolyte into the cathode. Chemical diffusion coefficients were determined from ac impedance measurements.

  9. VACUUM PUMPING STUDY OF TITANIUM-ZIRCONIUM-VANADIUM THIN FILMS*

    E-Print Network [OSTI]

    ERL 03-8 VACUUM PUMPING STUDY OF TITANIUM-ZIRCONIUM-VANADIUM THIN FILMS* Yulin Li# and Simon Ho, LEPP, Cornell University, Ithaca, NY 14853, USA Abstract* Vacuum pumping via non-evaporable getter (NEG) thin film deposited directly onto the interior of a vacuum chamber is a novel way to achieve extreme

  10. Stress and Moisture Effects on Thin Film Buckling Delamination

    E-Print Network [OSTI]

    Volinsky, Alex A.

    ­2 GPa compres- sive residual stresses were sputter deposited on top of thin (below 100 nm) copperStress and Moisture Effects on Thin Film Buckling Delamination P. Waters & A.A. Volinsky Received, commonly called telephone cords, shown in Fig. 2 for the 1 2m W film on top of a 20 nm diamond-like carbon

  11. APIVT-Grown Silicon Thin Layers and PV Devices: Preprint

    SciTech Connect (OSTI)

    Wang, T. H.; Ciszek, T. F.; Page, M. R.; Bauer, R. E.; Wang, Q.; Landry, M. D.

    2002-05-01

    Large-grained (5-20 ..mu..m) polycrystalline silicon layers have been grown at intermediate temperatures of 750-950C directly on foreign substrates without a seeding layer by iodine vapor transport at atmospheric pressure with rates as high as 3 mm/min. A model is constructed to explain the atypical temperature dependence of growth rate. We have also used this technique to grow high-quality epitaxial layers on heavily doped CZ-Si and on upgraded MG-Si substrates. Possible solar cell structures of thin-layer polycrystalline silicon on foreign substrates with light trapping have been examined, compared, and optimized by two-dimensional device simulations. The effects of grain boundary re-combination on device performance are presented for two grain sizes of 2 and 20 mm. We found that 104 cm/s recombination velocity is adequate for 20-m m grain-sized thin silicon, whereas a very low recombination velocity of 103 cm/s must be accomplished in order to achieve reasonable performance for a 2- mm grain-sized polycrystalline silicon device.

  12. Lubrication approximation for thin viscous films: asymptotic behavior of nonnegative solutions

    E-Print Network [OSTI]

    Tudorascu, Adrian

    Lubrication approximation for thin viscous films: asymptotic behavior of nonnegative solutions-order nonlinear de- generate parabolic equations of lubrication approximation for thin viscous film type. The weak

  13. The Electrodeless Discharge Lamps Coated with the Titania Thin Film for Photocatalysis in a Microwave Field

    E-Print Network [OSTI]

    Cirkva, Vladimir

    The Electrodeless Discharge Lamps Coated with the Titania Thin Film for Photocatalysis assisted photocatalysis using TiO2 thin films has been examined. Several factors influencing

  14. Stress Evolution Behavior in CoCrPt Alloy Thin Films with varying Pt Concentration

    E-Print Network [OSTI]

    Im, M.-Y.

    2009-01-01

    Stress Evolution Behavior in CoCrPt Alloy Thin Films withmagnetic recording media is to investigate growth stress,since stress inevitably generated during thin film

  15. STRESS-INDUCED PERIODIC FRACTURE PATTERNS IN THIN FILMS Alex A. Volinsky1

    E-Print Network [OSTI]

    Volinsky, Alex A.

    STRESS-INDUCED PERIODIC FRACTURE PATTERNS IN THIN FILMS Alex A. Volinsky1 , Neville R. Moody2 applied stresses in thin films can cause film fracture. In the case of compressive stress thin film stress a network of through- thickness cracks forms in thin films. Excessive biaxial residual stress

  16. Process for Polycrystalline film silicon growth

    DOE Patents [OSTI]

    Wang, Tihu (Littleton, CO); Ciszek, Theodore F. (Evergreen, CO)

    2001-01-01

    A process for depositing polycrystalline silicon on substrates, including foreign substrates, occurs in a chamber at about atmospheric pressure, wherein a temperature gradient is formed, and both the atmospheric pressure and the temperature gradient are maintained throughout the process. Formation of a vapor barrier within the chamber that precludes exit of the constituent chemicals, which include silicon, iodine, silicon diiodide, and silicon tetraiodide. The deposition occurs beneath the vapor barrier. One embodiment of the process also includes the use of a blanketing gas that precludes the entrance of oxygen or other impurities. The process is capable of repetition without the need to reset the deposition zone conditions.

  17. Thin Films for Microelectronics and Photonics: Physics, Mechanics,

    E-Print Network [OSTI]

    Volinsky, Alex A.

    , and carried out using accurate val- ues of material properties, are more valuable than simulations based on ad for years included the need for accurate modeling based on actual material properties. The 2003 version. With silicon-on-insulator (SOI) and strained silicon, semiconductor films have entered commercial design

  18. Scaling law analysis of paraffin thin films on different surfaces

    SciTech Connect (OSTI)

    Dotto, M. E. R.; Camargo, S. S. Jr. [Engenharia Metalurgica e de Materials, Universidade Federal do Rio de Janeiro, Cx. Postal 68505, Rio de Janeiro, RJ, CEP 21945-970 (Brazil)

    2010-01-15

    The dynamics of paraffin deposit formation on different surfaces was analyzed based on scaling laws. Carbon-based films were deposited onto silicon (Si) and stainless steel substrates from methane (CH{sub 4}) gas using radio frequency plasma enhanced chemical vapor deposition. The different substrates were characterized with respect to their surface energy by contact angle measurements, surface roughness, and morphology. Paraffin thin films were obtained by the casting technique and were subsequently characterized by an atomic force microscope in noncontact mode. The results indicate that the morphology of paraffin deposits is strongly influenced by substrates used. Scaling laws analysis for coated substrates present two distinct dynamics: a local roughness exponent ({alpha}{sub local}) associated to short-range surface correlations and a global roughness exponent ({alpha}{sub global}) associated to long-range surface correlations. The local dynamics is described by the Wolf-Villain model, and a global dynamics is described by the Kardar-Parisi-Zhang model. A local correlation length (L{sub local}) defines the transition between the local and global dynamics with L{sub local} approximately 700 nm in accordance with the spacing of planes measured from atomic force micrographs. For uncoated substrates, the growth dynamics is related to Edwards-Wilkinson model.

  19. J. of Supercritical Fluids 42 (2007) 410418 Growth of magnetic thin films using CO2 RESS expansions

    E-Print Network [OSTI]

    Continetti, Robert E.

    2007-01-01

    J. of Supercritical Fluids 42 (2007) 410­418 Growth of magnetic thin films using CO2 RESS) and CO2 and directing the resulting supersonic jet onto both hot and cold silicon wafers fluids (SCFs). In fact, given the nonpolar nature of SC-CO2, most of the solid ionic metal salts do

  20. Low Cost Thin Film Building-Integrated Photovoltaic Systems

    SciTech Connect (OSTI)

    Dr. Subhendu Guha; Dr. Jeff Yang

    2012-05-25

    The goal of the program is to develop 'LOW COST THIN FILM BUILDING-INTEGRATED PV SYSTEMS'. Major focus was on developing low cost solution for the commercial BIPV and rooftop PV market and meet DOE LCOE goal for the commercial market segment of 9-12 cents/kWh for 2010 and 6-8 cents/kWh for 2015. We achieved the 2010 goal and were on track to achieve the 2015 goal. The program consists of five major tasks: (1) modules; (2) inverters and BOS; (3) systems engineering and integration; (4) deployment; and (5) project management and TPP collaborative activities. We successfully crossed all stage gates and surpassed all milestones. We proudly achieved world record stable efficiencies in small area cells (12.56% for 1cm2) and large area encapsulated modules (11.3% for 800 cm2) using a triple-junction amorphous silicon/nanocrystalline silicon/nanocrystalline silicon structure, confirmed by the National Renewable Energy Laboratory. We collaborated with two inverter companies, Solectria and PV Powered, and significantly reduced inverter cost. We collaborated with three universities (Syracuse University, University of Oregon, and Colorado School of Mines) and National Renewable Energy Laboratory, and improved understanding on nanocrystalline material properties and light trapping techniques. We jointly published 50 technical papers in peer-reviewed journals and International Conference Proceedings. We installed two 75kW roof-top systems, one in Florida and another in New Jersey demonstrating innovative designs. The systems performed satisfactorily meeting/exceeding estimated kWh/kW performance. The 50/50 cost shared program was a great success and received excellent comments from DOE Manager and Technical Monitor in the Final Review.

  1. Effect of current injection into thin-film Josephson junctions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kogan, V. G.; Mints, R. G.

    2014-11-11

    New thin-film Josephson junctions have recently been tested in which the current injected into one of the junction banks governs Josephson phenomena. One thus can continuously manage the phase distribution at the junction by changing the injected current. Our method of calculating the distribution of injected currents is also proposed for a half-infinite thin-film strip with source-sink points at arbitrary positions at the film edges. The strip width W is assumed small relative to ?=2?2/d;? is the bulk London penetration depth of the film material and d is the film thickness.

  2. Synthesis and tribological behavior of silicon oxycarbonitride...

    Office of Scientific and Technical Information (OSTI)

    Article: Synthesis and tribological behavior of silicon oxycarbonitride thin films derived from poly(urea)methyl vinyl silazane. Citation Details In-Document Search Title:...

  3. Thin Film Femtosecond Laser Damage Competition

    SciTech Connect (OSTI)

    Stolz, C J; Ristau, D; Turowski, M; Blaschke, H

    2009-11-14

    In order to determine the current status of thin film laser resistance within the private, academic, and government sectors, a damage competition was started at the 2008 Boulder Damage Symposium. This damage competition allows a direct comparison of the current state of the art of high laser resistance coatings since they are tested using the same damage test setup and the same protocol. In 2009 a high reflector coating was selected at a wavelength of 786 nm at normal incidence at a pulse length of 180 femtoseconds. A double blind test assured sample and submitter anonymity so only a summary of the results are presented here. In addition to the laser resistance results, details of deposition processes, coating materials and layer count, and spectral results will also be shared.

  4. Glow discharge plasma deposition of thin films

    DOE Patents [OSTI]

    Weakliem, Herbert A. (Pennington, NJ); Vossen, Jr., John L. (Bridgewater, NJ)

    1984-05-29

    A glow discharge plasma reactor for deposition of thin films from a reactive RF glow discharge is provided with a screen positioned between the walls of the chamber and the cathode to confine the glow discharge region to within the region defined by the screen and the cathode. A substrate for receiving deposition material from a reactive gas is positioned outside the screened region. The screen is electrically connected to the system ground to thereby serve as the anode of the system. The energy of the reactive gas species is reduced as they diffuse through the screen to the substrate. Reactive gas is conducted directly into the glow discharge region through a centrally positioned distribution head to reduce contamination effects otherwise caused by secondary reaction products and impurities deposited on the reactor walls.

  5. Thin films of mixed metal compounds

    DOE Patents [OSTI]

    Mickelsen, R.A.; Chen, W.S.

    1985-06-11

    Disclosed is a thin film heterojunction solar cell, said heterojunction comprising a p-type I-III-IV[sub 2] chalcopyrite substrate and an overlying layer of an n-type ternary mixed metal compound wherein said ternary mixed metal compound is applied to said substrate by introducing the vapor of a first metal compound to a vessel containing said substrate from a first vapor source while simultaneously introducing a vapor of a second metal compound from a second vapor source of said vessel, said first and second metals comprising the metal components of said mixed metal compound; independently controlling the vaporization rate of said first and second vapor sources; reducing the mean free path between vapor particles in said vessel, said gas being present in an amount sufficient to induce homogeneity of said vapor mixture; and depositing said mixed metal compound on said substrate in the form of a uniform composition polycrystalline mixed metal compound. 5 figs.

  6. Harmonic Generation in Thin Films and Multilayers William S. Kolthammer, Dustin Barnard, Nicole Carlson, Aaron D. Edens, Nathan A. Miller, and Peter N. Saeta

    E-Print Network [OSTI]

    Saeta, Peter N.

    Harmonic Generation in Thin Films and Multilayers William S. Kolthammer, Dustin Barnard, Nicole, Claremont, CA 91711 (Dated: September 6, 2004) A general method for computing harmonic generation in studying the second- and third-harmonic generation properties of thin crystal silicon layers surrounded

  7. Glass Transition Temperature in Polystyrene Supported Thin Films: a SPM-based Investigation of the Role of Molecular Entanglement

    E-Print Network [OSTI]

    Franco Dinelli; Tommaso Sgrilli; Andrea Ricci; Paolo Baschieri; Pasqualantonio Pingue; Manjunath Puttaswamy; Peter Kingshott

    2011-12-07

    The viscoelastic properties of thin polymeric films represent a central issue, especially for nanotechnological applications. In particular, it is highly relevant the dependence of viscoelasticity on the temperature. For polystyrene it is known that the glass transition temperature is dependent on the film thickness. At present, there is wide agreement on the importance of the two interfaces that the films form with the air and with the substrate. The relevance of molecular entanglement has been also stressed for the case of suspended films. However, the role of molecular entanglement on the glass transition temperature of supported films still remains elusive. In order to investigate the viscoelastic properties of thin films on the nanoscale, we have employed a scanning probe microscope suitably modified in order to monitor the indentation of a tip into a polymeric film during a given lapse of time with the application of a constant load. Thin polystyrene films have been prepared on a range of different substrates: native silicon oxide, hydrogen-terminated silicon and polystyrene brushes. In particular, we have considered polystyrene molecules with molecular weight values below and above the critical value for the occurrence of molecular entanglement. We find that, for samples where molecular entanglement can occur accompanied by a strong interaction with the substrate either by means of chemical bonds or physisorption, the glass transition temperature of thin films increases back to values comparable with those of thick films. This phenomenon is envisioned to be of great relevance in those cases where one needs to improve the adhesion and/or to control the viscoelastic properties of thin films.

  8. Method for making surfactant-templated thin films

    DOE Patents [OSTI]

    Brinker, C. Jeffrey (Albuquerque, NM); Lu, Yunfeng (New Orleans, LA); Fan, Hong You (Albuquerque, NM)

    2010-08-31

    An evaporation-induced self-assembly method to prepare a porous, surfactant-templated, thin film by mixing a silica sol, a solvent, a surfactant, and an interstitial compound, evaporating a portion of the solvent to form a liquid, crystalline thin film mesophase material, and then removal of the surfactant template. Coating onto a substrate produces a thin film with the interstitial compound either covalently bonded to the internal surfaces of the ordered or disordered mesostructure framework or physically entrapped within the ordered or disordered mesostructured framework. Particles can be formed by aerosol processing or spray drying rather than coating onto a substrate. The selection of the interstitial compound provides a means for developing thin films for applications including membranes, sensors, low dielectric constant films, photonic materials and optical hosts.

  9. Aluminum Nitride Thin Films on Titanium for Piezoelectric MEMS Applications Seth Boeshore, Emily Parker, Vanni Lughi, Noel C. MacDonald

    E-Print Network [OSTI]

    MacDonald, Noel C.

    Aluminum Nitride Thin Films on Titanium for Piezoelectric MEMS Applications Seth Boeshore, Emily piezoelectric MEMS. Titanium is a new and attractive platform for MEMS because of its corrosion resistance with standard silicon MEMS processing and has found widespread use in film bulk acoustic resonators (FBARs

  10. Transparent conducting thin films for spacecraft applications

    SciTech Connect (OSTI)

    Perez-Davis, M.E.; Malave-Sanabria, T.; Hambourger, P.; Rutledge, S.K.; Roig, D.; Degroh, K.K.; Hung, C.

    1994-01-01

    Transparent conductive thin films are required for a variety of optoelectronic applications: automotive and aircraft windows, and solar cells for space applications. Transparent conductive coatings of indium-tin-oxide (ITO)-magnesium fluoride (MgF2) and aluminum doped zinc oxide (AZO) at several dopant levels are investigated for electrical resistivity (sheet resistance), carrier concentration, optical properties, and atomic oxygen durability. The sheet resistance values of ITO-MgF2 range from 10[sup 2] to 10[sup 11] ohms/square, with transmittance of 75 to 86 percent. The AZO films sheet resistances range from 10[sup 7] to 10[sup 11] ohms/square with transmittances from 84 to 91 percent. It was found that in general, with respect to the optical properties, the zinc oxide (ZnO), AZO, and the high MgF2 content ITO-MgF2 samples, were all durable to atomic oxygen plasma, while the low MgF2 content of ITO-MgF2 samples were not durable to atomic oxygen plasma exposure.

  11. Strain Relaxation and Vacancy Creation in Thin Platinum Films

    SciTech Connect (OSTI)

    Gruber, W.; Chakravarty, S.; Schmidt, H. [Technische Universitaet Clausthal, Institut fuer Metallurgie, Clausthal-Zellerfeld (Germany); Baehtz, C. [Helmholtz Zentrum Dresden Rossendorf, Institute of Ion Beam Physics and Materials Research, Dresden (Germany); Leitenberger, W. [Universitaet Potsdam, Institut fuer Physik und Astronomie, Potsdam (Germany); Bruns, M. [Karlsruher Institut fuer Technologie, Institute for Applied Materials, Eggenstein-Leopoldshafen (Germany); Karlsruher Institut fuer Technologie, Karlsruher Micro Nano Facility, Eggenstein-Leopoldshafen (Germany); Kobler, A.; Kuebel, C. [Karlsruher Institut fuer Technologie, Institute of Nanotechnology, Eggenstein-Leopoldshafen (Germany); Karlsruher Institut fuer Technologie, Karlsruher Micro Nano Facility, Eggenstein-Leopoldshafen (Germany)

    2011-12-23

    Synchrotron based combined in situ x-ray diffractometry and reflectometry is used to investigate the role of vacancies for the relaxation of residual stress in thin metallic Pt films. From the experimentally determined relative changes of the lattice parameter a and of the film thickness L the modification of vacancy concentration and residual strain was derived as a function of annealing time at 130 deg. C. The results indicate that relaxation of strain resulting from compressive stress is accompanied by the creation of vacancies at the free film surface. This proves experimentally the postulated dominant role of vacancies for stress relaxation in thin metal films close to room temperature.

  12. Deposition of device quality low H content, amorphous silicon films

    DOE Patents [OSTI]

    Mahan, Archie H. (Golden, CO); Carapella, Jeffrey C. (Evergreen, CO); Gallagher, Alan C. (Louisville, CO)

    1995-01-01

    A high quality, low hydrogen content, hydrogenated amorphous silicon (a-Si:H) film is deposited by passing a stream of silane gas (SiH.sub.4) over a high temperature, 2000.degree. C., tungsten (W) filament in the proximity of a high temperature, 400.degree. C., substrate within a low pressure, 8 mTorr, deposition chamber. The silane gas is decomposed into atomic hydrogen and silicon, which in turn collides preferably not more than 20-30 times before being deposited on the hot substrate. The hydrogenated amorphous silicon films thus produced have only about one atomic percent hydrogen, yet have device quality electrical, chemical, and structural properties, despite this lowered hydrogen content.

  13. Deposition of device quality low H content, amorphous silicon films

    DOE Patents [OSTI]

    Mahan, A.H.; Carapella, J.C.; Gallagher, A.C.

    1995-03-14

    A high quality, low hydrogen content, hydrogenated amorphous silicon (a-Si:H) film is deposited by passing a stream of silane gas (SiH{sub 4}) over a high temperature, 2,000 C, tungsten (W) filament in the proximity of a high temperature, 400 C, substrate within a low pressure, 8 mTorr, deposition chamber. The silane gas is decomposed into atomic hydrogen and silicon, which in turn collides preferably not more than 20--30 times before being deposited on the hot substrate. The hydrogenated amorphous silicon films thus produced have only about one atomic percent hydrogen, yet have device quality electrical, chemical, and structural properties, despite this lowered hydrogen content. 7 figs.

  14. Substrate Effect on the Melting Temperature of Thin Polyethylene Films M. Rafailovich,1,* J. Sokolov,1

    E-Print Network [OSTI]

    Substrate Effect on the Melting Temperature of Thin Polyethylene Films Y. Wang,1 M. Rafailovich,1 polyethylene thin films. The Tm decreases with the film thickness decrease when the film is thinner than that the degree of crystal- linity of polyethylene (PE) remained high even in films as thin as 15 nm [5]. A novel

  15. Thin film photovoltaic device and process of manufacture

    DOE Patents [OSTI]

    Albright, Scot P. (Lakewood, CO); Chamberlin, Rhodes (El Paso, TX)

    1999-02-09

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells.

  16. Thin film photovoltaic device and process of manufacture

    DOE Patents [OSTI]

    Albright, Scot P. (Lakewood, CO); Chamberlin, Rhodes (El Paso, TX)

    1997-10-07

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells.

  17. Thin film photovoltaic device and process of manufacture

    DOE Patents [OSTI]

    Albright, S.P.; Chamberlin, R.

    1999-02-09

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells. 13 figs.

  18. Thin film photovoltaic device and process of manufacture

    DOE Patents [OSTI]

    Albright, S.P.; Chamberlin, R.

    1997-10-07

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells. 13 figs.

  19. TI--CR--AL--O thin film resistors

    DOE Patents [OSTI]

    Jankowski, Alan F. (Livermore, CA); Schmid, Anthony P. (Solana Beach, CA)

    2000-01-01

    Thin films of Ti--Cr--Al--O are used as a resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O.sub.2. Resistivity values from 10.sup.4 to 10.sup.10 Ohm-cm have been measured for Ti--Cr--Al--O film <1 .mu.m thick. The film resistivity can be discretely selected through control of the target composition and the deposition parameters. The application of Ti--Cr--Al--O as a thin film resistor has been found to be thermodynamically stable, unlike other metal-oxide films. The Ti--Cr--Al--O film can be used as a vertical or lateral resistor, for example, as a layer beneath a field emission cathode in a flat panel display; or used to control surface emissivity, for example, as a coating on an insulating material such as vertical wall supports in flat panel displays.

  20. Investigation of defects in In–Ga–Zn oxide thin film using electron spin resonance signals

    SciTech Connect (OSTI)

    Nonaka, Yusuke; Kurosawa, Yoichi; Komatsu, Yoshihiro; Ishihara, Noritaka; Oota, Masashi; Nakashima, Motoki; Hirohashi, Takuya; Takahashi, Masahiro; Yamazaki, Shunpei; Obonai, Toshimitsu; Hosaka, Yasuharu; Koezuka, Junichi; Yamauchi, Jun

    2014-04-28

    In–Ga–Zn oxide (IGZO) is a next-generation semiconductor material seen as an alternative to silicon. Despite the importance of the controllability of characteristics and the reliability of devices, defects in IGZO have not been fully understood. We investigated defects in IGZO thin films using electron spin resonance (ESR) spectroscopy. In as-sputtered IGZO thin films, we observed an ESR signal which had a g-value of g?=?2.010, and the signal was found to disappear under thermal treatment. Annealing in a reductive atmosphere, such as N{sub 2} atmosphere, generated an ESR signal with g?=?1.932 in IGZO thin films. The temperature dependence of the latter signal suggests that the signal is induced by delocalized unpaired electrons (i.e., conduction electrons). In fact, a comparison between the conductivity and ESR signal intensity revealed that the signal's intensity is related to the number of conduction electrons in the IGZO thin film. The signal's intensity did not increase with oxygen vacancy alone but also with increases in both oxygen vacancy and hydrogen concentration. In addition, first-principle calculation suggests that the conduction electrons in IGZO may be generated by defects that occur when hydrogen atoms are inserted into oxygen vacancies.

  1. Multimonth controlled small molecule release from biodegradable thin films

    E-Print Network [OSTI]

    Hammond, Paula T.

    Long-term, localized delivery of small molecules from a biodegradable thin film is challenging owing to their low molecular weight and poor charge density. Accomplishing highly extended controlled release can facilitate ...

  2. Molecular solution processing of metal chalcogenide thin film solar cells

    E-Print Network [OSTI]

    Yang, Wenbing

    2013-01-01

    S. Guha, High-Efficiency Cu2ZnSnSe4 Solar Cells with a TiNfurther improvement on CZTS solar cells efficiency. Finally,Route to High-Efficiency CZTSSe Thin-film Solar Cells, Proc.

  3. Enabling integration of vapor-deposited polymer thin films

    E-Print Network [OSTI]

    Petruczok, Christy D. (Christy Danielle)

    2014-01-01

    Initiated Chemical Vapor Deposition (iCVD) is a versatile, one-step process for synthesizing conformal and functional polymer thin films on a variety of substrates. This thesis emphasizes the development of tools to further ...

  4. The macroscopic delamination of thin films from elastic substrates

    E-Print Network [OSTI]

    Reis, Pedro Miguel

    The wrinkling and delamination of stiff thin films adhered to a polymer substrate have important applications in “flexible electronics.” The resulting periodic structures, when used for circuitry, have remarkable mechanical ...

  5. Guided Self-Assembly of Gold Thin Films

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guided Self-Assembly of Gold Thin Films Print Nanoparticles-man-made atoms with unique optical, electrical, and mechanical properties-have become key components in many fields of...

  6. Initiated chemical vapor deposition of functional polyacrylic thin films

    E-Print Network [OSTI]

    Mao, Yu, 1975-

    2005-01-01

    Initiated chemical vapor deposition (iCVD) was explored as a novel method for synthesis of functional polyacrylic thin films. The process introduces a peroxide initiator, which can be decomposed at low temperatures (<200?C) ...

  7. Direct printing of lead zirconate titanate thin films

    E-Print Network [OSTI]

    Bathurst, Stephen, 1980-

    2008-01-01

    Thus far, use of lead zirconate titanate (PZT) in MEMS has been limited due to the lack of process compatibility with existing MEMS manufacturing techniques. Direct printing of thin films eliminates the need for photolithographic ...

  8. Functionalized multilayer thin films for protection against acutely toxic agents

    E-Print Network [OSTI]

    Krogman, Kevin Christopher

    2009-01-01

    The recently developed practice of spraying polyelectrolyte solutions onto a substrate in order to construct thin films via the Layer-by-Layer (LbL) technique has been further investigated and extended. In this process a ...

  9. Optical and Structural Characterizations of Tin Phthalocvanine Thin Films

    SciTech Connect (OSTI)

    Cherian, Regimol C.; Menon, C. S. [School of Pure and Applied Physics, Mahatma Gandhi University Priyadarshini Hills P.O., Kottayam-686560, Kerala (India)

    2008-04-23

    Phthalocyanines are today regarded as optical materials, which applies to organic dye lasers. The analysis of the optical properties of these thin films enforces the application in the field of thin film optics. Tin phthalocyanine (SnPc) thin films used for the characterization studies are prepared by thermal evaporation technique. The variation of optical band gap with irradiation of heat radiation and post deposition heat treatment are studied from the absorption spectra. Structural properties have been analyzed using the X-ray diffractogram of SnPc powder and thin films. The structure is identified as monoclinic with a = 12.132 A, b = 8.712 A, c = 10.806 A and {beta} = 108.85 deg. The grain size increases with increase of annealing temperature. The SEM images show a rough corrugated surface. Due to heat treatment, crystallites grow into bigger size.

  10. Properties and sensor performance of zinc oxide thin films

    E-Print Network [OSTI]

    Min, Yongki, 1965-

    2003-01-01

    Reactively sputtered ZnO thin film gas sensors were fabricated onto Si wafers. The atmosphere dependent electrical response of the ZnO micro arrays was examined. The effects of processing conditions on the properties and ...

  11. TiNi-based thin films for MEMS applications

    E-Print Network [OSTI]

    Fu, Yongqing

    In this paper, some critical issues and problems in the development of TiNi thin films were discussed, including preparation and characterization considerations, residual stress and adhesion, frequency improvement, fatigue ...

  12. Functionality Tuning in Vertically Aligned Nanocomposite Thin Films 

    E-Print Network [OSTI]

    Chen, Aiping

    2013-04-04

    Vertically aligned nanocomposite (VAN) oxide thin films are unique nanostructures with two-phase self-assembled, heteroepitaxially grown on single-crystal substrates. Both phases tend to grow vertically and simultaneously ...

  13. Nanostructured thin films for solid oxide fuel cells 

    E-Print Network [OSTI]

    Yoon, Jongsik

    2009-05-15

    The goals of this work were to synthesize high performance perovskite based thin film solid oxide fuel cell (TF-SOFC) cathodes by pulsed laser deposition (PLD), to study the structural, electrical and electrochemical properties of these cathodes...

  14. Antimony-Doped Tin(II) Sulfide Thin Films

    E-Print Network [OSTI]

    Chakraborty, Rupak

    Thin-film solar cells made from earth-abundant, inexpensive, and nontoxic materials are needed to replace the current technologies whose widespread use is limited by their use of scarce, costly, and toxic elements. Tin ...

  15. June 26, 2000 1 Fracture in Thin Films

    E-Print Network [OSTI]

    Suo, Zhigang

    in many technologies. Examples include zirconia coatings as thermal barriers on superalloys in enginesJune 26, 2000 1 Fracture in Thin Films Z. Suo Mechanical and Aerospace Engineering Department

  16. Self-Assembling Process for Fabricating Tailored Thin Films

    ScienceCinema (OSTI)

    None

    2010-01-08

    A simple, economical nanotechnology coating process that enables the development of nanoparticle thin films with architectures and properties unattainable by any other processing method. 2007 R&D 100 winner (SAND2007-1878P)

  17. Self-Assembling Process for Fabricating Tailored Thin Films

    ScienceCinema (OSTI)

    Sandia

    2009-09-01

    A simple, economical nanotechnology coating process that enables the development of nanoparticle thin films with architectures and properties unattainable by any other processing method. 2007 R&D 100 winner (SAND2007-1878P)

  18. Modeling of thin-film solar thermoelectric generators

    E-Print Network [OSTI]

    Weinstein, Lee Adragon

    Recent advances in solar thermoelectric generator (STEG) performance have raised their prospect as a potential technology to convert solar energy into electricity. This paper presents an analysis of thin-film STEGs. ...

  19. Sol-gel-derived Epitaxial Nanocomposite Thin Films with Large...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sol-gel-derived Epitaxial Nanocomposite Thin Films with Large Sharp Magnetoelectric Effect Home Author: B. Liu, T. Sun, J. He, V. P. Dravid Year: 2010 Abstract: Nanostructures of...

  20. Transparent and conductive indium doped cadmium oxide thin films prepared by pulsed filtered cathodic arc deposition

    E-Print Network [OSTI]

    Zhu, Yuankun

    2014-01-01

    7. Optical bandgap of the doped CdO thin films as a functionelectrical properties of In-doped CdO thin films fabricatedand transparent Ti-doped CdO films by pulsed laser

  1. Simple flash evaporator for making thin films of compounds

    SciTech Connect (OSTI)

    Hemanadhan, M.; Bapanayya, Ch.; Agarwal, S. C. [Department of Physics, Indian Institute of Technology, Kanpur 208016 (India)

    2010-07-15

    A simple and compact arrangement for flash evaporation is described. It uses a cell phone vibrator for powder dispensing that can be incorporated into a vacuum deposition chamber without any major alterations. The performance of the flash evaporation system is checked by making thin films of the optical memory chalcogenide glass Ge{sub 2}Sb{sub 2}Te{sub 5} (GST). Energy dispersive x-ray analysis shows that the flash evaporation preserves the stoichiometry in thin films.

  2. High-cycle fatigue and durability of polycrystalline silicon thin lms in ambient air

    E-Print Network [OSTI]

    Ritchie, Robert

    High-cycle fatigue and durability of polycrystalline silicon thin ®lms in ambient air C. First, silicon-based ®lms are still the dominant structural material for micromachines. Second of MEMS components are critical in this maturing ®eld. The silicon-based ®lms commonly used in micromecha

  3. Thin aerogel films for optical, thermal, acoustic, and electronic applications

    SciTech Connect (OSTI)

    Hrubesh, L.W.; Poco, J.F.

    1994-09-01

    Aerogels are a special class of continuously porous solid materials which are characterized by nanometer size particles and pores. Typically, aerogels are made using sol-gel chemistry to form a solvent filled, high porosity gel that is dried by removing the solvent without collapsing the tenuous solid phase. As bulk materials, aerogels are known to have many exceptional, and even some unique physical properties. Aerogels provide the highest thermal insulation and lowest dielectric constant of any other material known. However, some important applications require the aerogels in the form of thin films or sheets. For example, electronic applications require micrometer thin aerogel films bonded to a substrate, and others require thicker films, either on a substrate or as free standing sheets. Special methods are required to make aerogel thin films or sheets. In this paper, the authors discuss the special conditions needed to fabricate thin aerogel films and they describe methods to make films and thin sheets. They also give some specific applications for which aerogel films are being developed.

  4. Thin transparent conducting films of cadmium stannate

    DOE Patents [OSTI]

    Wu, Xuanzhi (Golden, CO); Coutts, Timothy J. (Lakewood, CO)

    2001-01-01

    A process for preparing thin Cd.sub.2 SnO.sub.4 films. The process comprises the steps of RF sputter coating a Cd.sub.2 SnO.sub.4 layer onto a first substrate; coating a second substrate with a CdS layer; contacting the Cd.sub.2 SnO.sub.4 layer with the CdS layer in a water- and oxygen-free environment and heating the first and second substrates and the Cd.sub.2 SnO.sub.4 and CdS layers to a temperature sufficient to induce crystallization of the Cd.sub.2 SnO.sub.4 layer into a uniform single-phase spinel-type structure, for a time sufficient to allow full crystallization of the Cd.sub.2 SnO.sub.4 layer at that temperature; cooling the first and second substrates to room temperature; and separating the first and second substrates and layers from each other. The process can be conducted at temperatures less than 600.degree. C., allowing the use of inexpensive soda lime glass substrates.

  5. Enhanced Superconducting Properties of Iron Chalcogenide Thin Films 

    E-Print Network [OSTI]

    Chen, Li

    2013-07-26

    phase have been studied and correlated with the superconducting properties. Second, we reported our initial attempt on introducing the flux pinning centers into FeSe_0.5Te_0.5 thin films either under a controlled oxygen atmosphere or with a thin CeO_2...

  6. Composite polymeric film and method for its use in installing a very-thin polymeric film in a device

    DOE Patents [OSTI]

    Duchane, D.V.; Barthell, B.L.

    1982-04-26

    A composite polymeric film and a method for its use in forming and installing a very thin (< 10 ..mu..m) polymeric film are disclosed. The composite film consists of a thin film layer and a backing layer. The backing layer is soluble in a solvent in which the thin film layer is not soluble. In accordance with the method, the composite film is installed in a device in the same position in which it is sought to finally emplace the thin film. The backing layer is then selectiely dissolved in the solvent to leave the insoluble thin film layer as an unbacked film. The method permits a very thin film to e successfully installed in devices where the fragility of the film would preclude handling and installation by conventional methods.

  7. RF sputtered piezoelectric zinc oxide thin film for transducer applications

    E-Print Network [OSTI]

    Tang, William C

    parameters that could influence the quality of the resulting films include RF power, the ratio of argon depen- dency of the c-axis zinc oxide growth in radio-frequency sputtering system. Different deposition on the piezoelectric and crystalline qualities of the ZnO thin films. Experimental results showed that the multilayer

  8. Industrial Application of Thin Films (TiAl)N Deposited on Thermo-Wells

    SciTech Connect (OSTI)

    Velez, G.; Jaramillo, S.; Arango, Y. C.; Devia, D.; Quintero, J.; Devia, A.

    2006-12-04

    The thermo-well is formed by two layers, one layer is a ceramic and the other layer is anviloy (comprised tungsten). They are used to coat the thermocouple in the control temperature system during the Aluminum-Silicon alloy melting process. After two weeks of continuous work at 750 deg. C of temperature (the alloy temperature), a high wear in this material is observed, affecting the ceramic. (TiAl)N thin films are deposited directly on the anviloy substrates by the PAPVD (Plasma Assisted Physics Vapor Deposition) in arc pulsed technique, using a TiAl target in a mono-vaporizer system, composed by a reactor and a power controlled system. Two opposite electrodes are placed into the reactor and discharge is produced by a controlled power system. The XRD (X-ray diffraction) patterns show the presence of the (TiAl)N thin film peaks. The morphological characteristics are studied by the scanning probe microscopy (SPM)

  9. Deposition of polyaniline film onto porous silicon layer

    SciTech Connect (OSTI)

    Parkhutik, V.P.; Martinez-Duart, J.M. [Univ. of Madrid, (Spain); Callegja, R.D.; Matveeva, E.M. [Polytechnical Univ. of Valencia, (Spain)

    1993-12-31

    Presently porous silicon (PS) layers are being considered a promising visible light emitting sources. Current research concentrates on the understanding of the nature of the light emission and the development of practical luminescent devices. The last goal is to find an appropriate solid contact to the rough surface of PS layers to ensure high electric conductivity and transparency. The aim of this work is to study the deposition of polyaniline (PANI) films onto porous silicon layers as an alternative to indium tin oxide (ITO) as the electrode.

  10. Deuterium phase behavior in thin-film Pd

    SciTech Connect (OSTI)

    Munter, A.E.; Heuser, B.J.

    1998-07-01

    The absorption of deuterium from the gas phase into two Pd thin films 668 {Angstrom} and 1207 {Angstrom} thick was measured at room temperature with {ital in situ} neutron reflectometry. Room-temperature solubility isothermal curves, out-of-plane film expansion, and deuterium depth profiles were determined from fits to the neutron reflectivity data. The measurements demonstrate that the deuterium solubility behavior, both in solid solution and within the two-phase region, is strongly perturbed by the thin-film geometry, consistent with previous solubility measurements in the published literature. The phase behavior investigated here was observed to depend on film thickness and on deuterium cycling through the two-phase region. The 668-{Angstrom} film exhibited the greatest initial phase perturbation and most significant changes upon cycling. Upon repeated cycling, both films approach nearly identical deuterium isothermal solubility and out-of-plane expansion behaviors. The observed equilibrium out-of-plane expansion behavior was consistent with the films expanding under an in-plane clamping constraint imposed by the substrate. The effect of this substrate constraining force is to amplify the out-of-plane expansion beyond that expected in bulk Pd. Taken together, these measurements implicate the film/substrate interfacial clamping interaction as the origin of the perturbed hydrogen phase behavior in thin-film geometry. {copyright} {ital 1998} {ital The American Physical Society}

  11. Flexible cadmium telluride thin films grown on electron-beam-irradiated graphene/thin glass substrates

    SciTech Connect (OSTI)

    Seo, Won-Oh; Kim, Jihyun, E-mail: hyunhyun7@korea.ac.kr [Department of Chemical and Biological Engineering, Korea University, Anam-dong, Sungbuk-gu, Seoul 136-713 (Korea, Republic of); Koo, Yong Hwan; Kim, Byungnam; Lee, Byung Cheol [Radiation Integrated System Research Division, Korea Atomic Energy Research Institute (KAERI), Daejeon 305-353 (Korea, Republic of); Kim, Donghwan [Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of)

    2014-08-25

    We demonstrate the close-spaced sublimation growth of polycrystalline cadmium telluride (CdTe) thin films on a flexible graphene electrode/thin glass substrate structure. Prior to the growth of CdTe films, chemical-vapor-deposited graphene was transferred onto a flexible glass substrate and subjected to electron-beam irradiation at an energy of 0.2?MeV in order to intentionally introduce the defects into it in a controlled manner. Micro-Raman spectroscopy and sheet resistance measurements were employed to monitor the damage and disorder in the electron-beam irradiated graphene layers. The morphology and optical properties of the CdTe thin films deposited on a graphene/flexible glass substrate were systematically characterized. The integration of the defective graphene layers with a flexible glass substrate can be a useful platform to grow various thin-film structures for flexible electronic and optoelectronic devices.

  12. Thin-film absorber for a solar collector

    SciTech Connect (OSTI)

    Wilhelm, W.G.

    1982-02-09

    This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  13. Shape variation of micelles in polymer thin films

    SciTech Connect (OSTI)

    Zhou, Jiajia Shi, An-Chang

    2014-01-14

    The equilibrium properties of block copolymer micelles confined in polymer thin films are investigated using self-consistent field theory. The theory is based on a model system consisting of AB diblock copolymers and A homopolymers. Two different methods, based on the radius of gyration tensor and the spherical harmonics expansion, are used to characterize the micellar shape. The results reveal that the morphology of micelles in thin films depends on the thickness of the thin films and the selectivity of the confining surfaces. For spherical (cylindrical) micelles, the spherical (cylindrical) symmetry is broken by the presence of the one-dimensional confinement, whereas the top-down symmetry is broken by the selectivity of the confining surfaces. Morphological transitions from spherical or cylindrical micelles to cylinders or lamella are predicted when the film thickness approaches the micellar size.

  14. Novel Structure and Dynamics of Polymer Thin Films in Supercritical Fluids-Effect of Density Fluctuation

    SciTech Connect (OSTI)

    Koga,T.

    2004-01-01

    Supercritical carbon dioxide (scCO2) is being used increasingly as a green solvent in polymer processing. The major disadvantage thus far is that only a limited class of polymers, such as fluorinated or silicone-based polymers, can be dissolved in CO2. Here I show that large density fluctuations in scCO2 can significantly enhance the solubility of scCO2 in polymer thin films even when the bulk polymers have very poor miscibility with CO2. By using in situ neutron reflectivity, I found that a wide variety of polymer thin films can swell as much as 30-60% when exposed to scCO2 within a narrow temperature and pressure regime, known as the 'density fluctuation ridge', which defines the maximum density fluctuation amplitude in CO2. Furthermore, the swollen structures induced by the density fluctuation could be frozen by a flash evaporation of CO2 via the vitrification process of the polymer without a formation of void structures. X-ray reflectivity clearly showed that the scCO2 process could be used to produce uniform low-density polymer thin films. I also found that other properties of the vitrified films, such as index of refraction, dielectric constant and glass transition, were correlated with the low-density density profile.

  15. DISSERTATION ELECTRON-REFLECTOR STRATEGY FOR CdTe THIN-FILM SOLAR CELLS

    E-Print Network [OSTI]

    Sites, James R.

    DISSERTATION ELECTRON-REFLECTOR STRATEGY FOR CdTe THIN-FILM SOLAR CELLS Submitted by Kuo-Jui Hsiao ELECTRON- REFLECTOR STRATEGY FOR CdTe THIN-FILM SOLAR CELLS BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS-FILM SOLAR CELLS The CdTe thin-film solar cell has a large absorption coefficient and high theoretical

  16. Thin Film Packaging Solutions for High Efficiency OLED Lighting Products

    SciTech Connect (OSTI)

    None

    2008-06-30

    The objective of the 'Thin Film Packaging Solutions for High Efficiency OLED Lighting Products' project is to demonstrate thin film packaging solutions based on SiC hermetic coatings that, when applied to glass and plastic substrates, support OLED lighting devices by providing longer life with greater efficiency at lower cost than is currently available. Phase I Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on optical glass with lifetime of 1,000 hour life, CRI greater than 75, and 15 lm/W. Phase II Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on plastic or glass composite with 25 lm/W, 5,000 hours life, and CRI greater than 80. Phase III Objective: Demonstrate 2 x 2 ft{sup 2} thin film encapsulated working phosphorescent OLED with 40 lm/W, 10,000 hour life, and CRI greater than 85. This report details the efforts of Phase III (Budget Period Three), a fourteen month collaborative effort that focused on optimization of high-efficiency phosphorescent OLED devices and thin-film encapsulation of said devices. The report further details the conclusions and recommendations of the project team that have foundation in all three budget periods for the program. During the conduct of the Thin Film Packaging Solutions for High Efficiency OLED Lighting Products program, including budget period three, the project team completed and delivered the following achievements: (1) a three-year marketing effort that characterized the near-term and longer-term OLED market, identified customer and consumer lighting needs, and suggested prototype product concepts and niche OLED applications lighting that will give rise to broader market acceptance as a source for wide area illumination and energy conservation; (2) a thin film encapsulation technology with a lifetime of nearly 15,000 hours, tested by calcium coupons, while stored at 16 C and 40% relative humidity ('RH'). This encapsulation technology was characterized as having less than 10% change in transmission during the 15,000 hour test period; (3) demonstrated thin film encapsulation of a phosphorescent OLED device with 1,500 hours of lifetime at 60 C and 80% RH; (4) demonstrated that a thin film laminate encapsulation, in addition to the direct thin film deposition process, of a polymer OLED device was another feasible packaging strategy for OLED lighting. The thin film laminate strategy was developed to mitigate defects, demonstrate roll-to-roll process capability for high volume throughput (reduce costs) and to support a potential commercial pathway that is less dependent upon integrated manufacturing since the laminate could be sold as a rolled good; (5) demonstrated that low cost 'blue' glass substrates could be coated with a siloxane barrier layer for planarization and ion-protection and used in the fabrication of a polymer OLED lighting device. This study further demonstrated that the substrate cost has potential for huge cost reductions from the white borosilicate glass substrate currently used by the OLED lighting industry; (6) delivered four-square feet of white phosphorescent OLED technology, including novel high efficiency devices with 82 CRI, greater than 50 lm/W efficiency, and more than 1,000 hours lifetime in a product concept model shelf; (7) presented and or published more than twenty internal studies (for private use), three external presentations (OLED workshop-for public use), and five technology-related external presentations (industry conferences-for public use); and (8) issued five patent applications, which are in various maturity stages at time of publication. Delivery of thin film encapsulated white phosphorescent OLED lighting technology remains a challenging technical achievement, and it seems that commercial availability of thin, bright, white OLED light that meets market requirements will continue to require research and development effort. However, there will be glass encapsulated white OLED lighting products commercialized in niche markets during the 2008 calendar year. This commercializ

  17. Damage mechanisms in thin film solar cells during sputtering deposition of transparent conductive coatings

    SciTech Connect (OSTI)

    Fan Qihua; Liao Xianbo [Department of Physics and Astronomy, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606 (United States); Deng, Michael [Xunlight Corporation, 3145 Nebraska Avenue, Toledo, Ohio 43607 (United States); Deng Xunming [Department of Physics and Astronomy, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606 (United States); Xunlight Corporation, 3145 Nebraska Avenue, Toledo, Ohio 43607 (United States)

    2009-02-01

    Amorphous silicon (a-Si) based thin film solar cell grown on flexible stainless steel substrate is one of the most promising energy conversion devices in the future. This type of solar cell uses a transparent conductive oxide (TCO) film as top electrode. It has been a widely accepted opinion that the radio frequency sputtering deposition of the TCO film produces a higher yield than direct current sputtering, and the reason is not clear. Here we show that the damage to the solar cell during the sputtering process is caused by a reverse bias applied to the n-i-p junction. This reverse bias is related to the characteristics of plasma discharge. The mechanism we reveal may significantly affect the solar cell process.

  18. Chapter 1. Introduction to Thin Film Technologygy Thin films are deposited onto bulk materials (substrates) to achieveThin films are deposited onto bulk materials (substrates) to achieve

    E-Print Network [OSTI]

    Wang, Jianfang

    parts TiN coatings on cutting tools Offer hardness, low friction, and a chemical barrier to alloying on this system. #12;Thin films for multiple properties Cr coatings on automobile parts TiN coatings on cutting tools Impart hardness, metallic luster, and protection against ultraviolet light. Cr coatings on plastic

  19. Junction Transport in Epitaxial Film Silicon Heterojunction Solar Cells

    SciTech Connect (OSTI)

    Young, D. L.; Li, J. V.; Teplin, C. W.; Stradins, P.; Branz, H. M.

    2011-01-01

    We report our progress toward low-temperature HWCVD epitaxial film silicon solar cells on inexpensive seed layers, with a focus on the junction transport physics exhibited by our devices. Heterojunctions of i/p hydrogenated amorphous Si (a-Si) on our n-type epitaxial crystal Si on n{sup ++} Si wafers show space-charge-region recombination, tunneling or diffusive transport depending on both epitaxial Si quality and the applied forward voltage.

  20. Junction Transport in Epitaxial Film Silicon Heterojunction Solar Cells: Preprint

    SciTech Connect (OSTI)

    Young, D. L.; Li, J. V.; Teplin, C. W.; Stradins, P.; Branz, H. M.

    2011-07-01

    We report our progress toward low-temperature HWCVD epitaxial film silicon solar cells on inexpensive seed layers, with a focus on the junction transport physics exhibited by our devices. Heterojunctions of i/p hydrogenated amorphous Si (a-Si) on our n-type epitaxial crystal Si on n++ Si wafers show space-charge-region recombination, tunneling or diffusive transport depending on both epitaxial Si quality and the applied forward voltage.

  1. Thermoelectric effect in very thin film Pt/Au thermocouples

    SciTech Connect (OSTI)

    Salvadori, M.C.; Vaz, A.R.; Teixeira, F.S.; Cattani, M.; Brown,I.G.

    2006-01-10

    The thickness dependence of the thermoelectric power of Pt films of variable thickness on a reference Au film has been determined for the case when the Pt film thickness, t, is not large compared to the charge carrier mean free path, {ell}, that is, t/{ell}. Pt film thicknesses down to 2.2 nm were investigated. We find that {Delta}S{sub F} = S{sub B}-S{sub F} (where S{sub B} and S{sub F} are the thermopowers of the Pt bulk and film, respectively) does not vary linearly as 1/t as is the case for thin film thermocouples when the film thickness is large compared to the charge carrier mean free path.

  2. Effects of neutron irradiation of ultra-thin HfO{sub 2} films

    SciTech Connect (OSTI)

    Hsu, K.-W.; Bian, S.; Shohet, J. L. [Plasma Processing and Technology Laboratory and Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Ren, H. [Applied Materials, Sunnyvale, California 94085 (United States); Agasie, R. J. [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Nishi, Y. [Stanford University, Stanford, California 94305 (United States)

    2014-01-20

    Neutron irradiation at low fluence decreases the Pb-type and E? defect levels in ultra-thin hafnium dioxide films because electrons can fill existing states. These electrons come from electron-hole pairs generated by neutron interactions with silicon and oxygen. Thus, a low fluence of neutrons “anneals” the sample. However, when neutron fluence increases, more neutrons collide with oxygen atoms and cause them to leave the lattice or to transmute into different atoms. This causes the E? states to increase. As defect-state concentrations increase, leakage currents increase, but since the E? is much lower than the Pb concentration, this is not a dominant factor.

  3. Doped tantalum oxide high K dielectric thin films 

    E-Print Network [OSTI]

    Donnelly, Joseph Patrick

    2000-01-01

    , it was doped with varying amounts of titanium oxide, aluminum oxide and silicon dioxide. The composite oxide films were deposited by reactive radio frequency (RF) cc-sputtering of two targets in a variety of oxygen and argon feed gas mixtures. The targets used...

  4. Characterization of diamond-like nanocomposite thin films grown by plasma enhanced chemical vapor deposition

    SciTech Connect (OSTI)

    Santra, T. S.; Liu, C. H. [Institute of Nanoengineering and Microsystems (NEMS), National Tsing Hua University, Hsinchu, Taiwan 30043 (China); Bhattacharyya, T. K. [Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology, Kharagpur 721302, West Bengal (India); Patel, P. [Department of Electrical and Computer Engineering, University of Illinois at Urbana Champaign, Urbana, Illinois 61801 (United States); Barik, T. K. [School of Applied Sciences, Haldia Institute of Technology, Haldia 721657, Purba Medinipur, West Bengal (India)

    2010-06-15

    Diamond-like nanocomposite (DLN) thin films, comprising the networks of a-C:H and a-Si:O were deposited on pyrex glass or silicon substrate using gas precursors (e.g., hexamethyldisilane, hexamethyldisiloxane, hexamethyldisilazane, or their different combinations) mixed with argon gas, by plasma enhanced chemical vapor deposition technique. Surface morphology of DLN films was analyzed by atomic force microscopy. High-resolution transmission electron microscopic result shows that the films contain nanoparticles within the amorphous structure. Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and x-ray photoelectron spectroscopy (XPS) were used to determine the structural change within the DLN films. The hardness and friction coefficient of the films were measured by nanoindentation and scratch test techniques, respectively. FTIR and XPS studies show the presence of C-C, C-H, Si-C, and Si-H bonds in the a-C:H and a-Si:O networks. Using Raman spectroscopy, we also found that the hardness of the DLN films varies with the intensity ratio I{sub D}/I{sub G}. Finally, we observed that the DLN films has a better performance compared to DLC, when it comes to properties like high hardness, high modulus of elasticity, low surface roughness and low friction coefficient. These characteristics are the critical components in microelectromechanical systems (MEMS) and emerging nanoelectromechanical systems (NEMS).

  5. Fatigue failure in thin-film polysilicon is due to subcriticalcracking within the oxide layer

    SciTech Connect (OSTI)

    Alsem, D.H.; Muhlstein, C.L.; Stach, E.A.; Ritchie, R.O.

    2005-01-11

    It has been established that microelectromechanical systems (MEMS) created from polycrystalline silicon thin-films are subject to cyclic fatigue. Prior work by the authors has suggested that although bulk silicon is not susceptible to fatigue failure in ambient air, fatigue in micron-scale silicon is a result of a ''reaction-layer'' process, whereby high stresses induce a thickening of the post-release oxide at stress concentrations such as notches, which subsequently undergoes moisture-assisted cracking. However, there exists some controversy regarding the post-release oxide thickness of the samples used in the prior study. In this Letter, we present data from devices from a more recent fabrication run that confirm our prior observations. Additionally, new data from tests in high vacuum show that these devices do not fatigue when oxidation and moisture are suppressed. Each of these observations lends credence to the '''reaction-layer'' mechanism. Recent advances in the design of microelectromechanical systems (MEMS) have increased the demand for more reliable microscale structures. Although silicon is an effective and widely used structural material at the microscale, it is very brittle. Consequently, reliability is a limiting factor for commercial and defense applications. Since the surface to volume ratio of these structural films is very large, classical models for failure modes in bulk materials cannot always be applied. For example, whereas bulk silicon is immune to cyclic fatigue failure thin micron-scale structural films of silicon appear to be highly susceptible. It is clear that at these size scales, surface effects may become dominant in controlling mechanical properties. The main reliability issues for MEMS are stiction, fatigue and wear. Fatigue is important in cases where devices are subjected to a large number of loading cycles with amplitudes below their (single-cycle) fracture stress, which may arise due to vibrations intentionally induced in the structure (i.e. a resonator) or those which arise from the service environment. While the reliability of MEMS has received extensive attention, the physical mechanisms responsible for these failure modes have yet to be conclusively determined. This is particularly true for fatigue, where the mechanisms have been subject to intense debate. Recently we have proposed that the fatigue of micron-scale polysilicon is associated with stress-induced surface oxide thickening and moisture-assisted subcritical cracking in the amorphous SiO{sub 2} oxide layer (''reaction-layer'' fatigue). The mechanism of oxide thickening is as yet unknown, but is likely related to some form of stress-assisted diffusion. Allameh et al. suggest a complementary mechanism involving stress-assisted oxide thickening, caused by dissolution of the surface oxide which forms deep grooves that are sites for crack initiation. Kahn et al. have criticized these mechanisms and proposed that, instead, fatigue is caused by subcritical cracking due to contacting surface asperities in the compressive part of the cycle. To the authors' knowledge, there is no direct experimental observation of such asperity contact. Also, their model cannot explain why micron-scale silicon, and not bulk silicon, is susceptible to fatigue. Moreover, Kahn et al. do not acknowledge the role of stress-induced oxide thickening, which has been observed directly using TEM and indirectly using atomic-force microscope measurements by several investigators, and have questioned whether the materials utilized by Muhlstein et al. and Allameh et al. were representative due to the relatively thick oxide scales. Accordingly, the goal of the present research is to seek a definitive understanding of the physical mechanisms responsible for fatigue in polysilicon structural thin-films. Our approach is to combine on-chip testing methods with electron microscopy by fatiguing thin-film samples and observing them, in an unthinned condition, using high-voltage transmission electron microscopy (HVTEM). Two principal results are found from this work: (1

  6. Thin Film Deposition of Conducting Polymers and Carbon Allotropes via Interfacial Solution Processing and Evaporative Vapor Phase Polymerization

    E-Print Network [OSTI]

    D'Arcy, Julio Marcelo

    2012-01-01

    K. ; Shimidzu, T. Thin Solid Films 1989, 179, Matharu, Z. ;V. ; Malhotra, B. D. Thin Solid Films 2011, 519, 1110- (27)H. ; Rubner, M. F. Thin Solid Films 1994, 244, 990-994. (28)

  7. Thin film cadmium telluride and zinc phosphide solar cells

    SciTech Connect (OSTI)

    Chu, T.

    1984-10-01

    This report describes research performed from June 1982 to October 1983 on the deposition of cadmium telluride films by direct combination of the cadmium and tellurium vapor on foreign substrates. Nearly stoichiometric p-type cadmium telluride films and arsenic-doped p-type films have been prepared reproducibly. Major efforts were directed to the deposition and characterization of heterojunction window materials, indium tin oxide, fluorine-doped tin oxide, cadmium oxide, and zinc oxide. A number of heterojunction solar cells were prepared, and the best thin-film ITO/CdTe solar cells had an AMl efficiency of about 7.2%. Zinc phosphide films were deposited on W/steel substrates by the reaction of zinc and phosphine in a hydrogen flow. Films without intentional doping had an electrical resistivity on the order of 10/sup 6/ ohm-cm, and this resistivity may be reduced to about 5 x 10/sup 4/ ohm-cm by adding hydrogen chloride or hydrogen bromide to the reaction mixture. Lower resistivity films were deposited by adding a controlled amount of silver nitrate solution on to the substrate surface. Major efforts were directed to the deposition of low-resistivity zinc selenide in order to prepare ZnSe/An/sub 3/P/sub 2/ heterojunction thin-film solar cells. However, zinc selenide films deposited by vacuum evaporation and chemical vapor deposition techniques were all of high resistivity.

  8. Deformation of an asymmetric thin film

    E-Print Network [OSTI]

    Jun Geng; Jonathan V. Selinger

    2011-11-03

    Experiments have investigated shape changes of polymer films induced by asymmetric swelling by a chemical vapor. Inspired by recent work on the shaping of elastic sheets by non-Euclidean metrics [Y. Klein, E. Efrati, and E. Sharon, Science 315, 1116 (2007)], we represent the effect of chemical vapors by a change in the target metric tensor. In this problem, unlike that earlier work, the target metric is asymmetric between the two sides of the film. Changing this metric induces a curvature of the film, which may be curvature into a partial cylinder or a partial sphere. We calculate the elastic energy for each of these shapes, and show that the sphere is favored for films smaller than a critical size, which depends on the film thickness, while the cylinder is favored for larger films.

  9. Low Temperature Chemical Vapor Deposition Of Thin Film Magnets

    DOE Patents [OSTI]

    Miller, Joel S. (Salt Lake City, UT); Pokhodnya, Kostyantyn I. (Salt Lake City, UT)

    2003-12-09

    A thin-film magnet formed from a gas-phase reaction of tetracyanoetheylene (TCNE) OR (TCNQ), 7,7,8,8-tetracyano-P-quinodimethane, and a vanadium-containing compound such as vanadium hexcarbonyl (V(CO).sub.6) and bis(benzene)vanalium (V(C.sub.6 H.sub.6).sub.2) and a process of forming a magnetic thin film upon at least one substrate by chemical vapor deposition (CVD) at a process temperature not exceeding approximately 90.degree. C. and in the absence of a solvent. The magnetic thin film is particularly suitable for being disposed upon rigid or flexible substrates at temperatures in the range of 40.degree. C. and 70.degree. C. The present invention exhibits air-stable characteristics and qualities and is particularly suitable for providing being disposed upon a wide variety of substrates.

  10. Structural, electronic, and dielectric properties of ultrathin zirconia films on silicon

    E-Print Network [OSTI]

    Garfunkel, Eric

    Structural, electronic, and dielectric properties of ultrathin zirconia films on silicon S. Sayan been many reports on the elec- trical properties of zirconia films, but detailed reports on mi

  11. Fabrication of polycrystalline thin films by pulsed laser processing

    DOE Patents [OSTI]

    Mitlitsky, Fred (Livermore, CA); Truher, Joel B. (San Rafael, CA); Kaschmitter, James L. (Pleasanton, CA); Colella, Nicholas J. (Livermore, CA)

    1998-02-03

    A method for fabricating polycrystalline thin films on low-temperature (or high-temperature) substrates which uses processing temperatures that are low enough to avoid damage to the substrate, and then transiently heating select layers of the thin films with at least one pulse of a laser or other homogenized beam source. The pulse length is selected so that the layers of interest are transiently heated to a temperature which allows recrystallization and/or dopant activation while maintaining the substrate at a temperature which is sufficiently low to avoid damage to the substrate. This method is particularly applicable in the fabrication of solar cells.

  12. Fabrication of polycrystalline thin films by pulsed laser processing

    DOE Patents [OSTI]

    Mitlitsky, F.; Truher, J.B.; Kaschmitter, J.L.; Colella, N.J.

    1998-02-03

    A method is disclosed for fabricating polycrystalline thin films on low-temperature (or high-temperature) substrates which uses processing temperatures that are low enough to avoid damage to the substrate, and then transiently heating select layers of the thin films with at least one pulse of a laser or other homogenized beam source. The pulse length is selected so that the layers of interest are transiently heated to a temperature which allows recrystallization and/or dopant activation while maintaining the substrate at a temperature which is sufficiently low to avoid damage to the substrate. This method is particularly applicable in the fabrication of solar cells. 1 fig.

  13. Large area quantitative analysis of nanostructured thin-films

    E-Print Network [OSTI]

    Sliz, Rafal; Eneh, Chibuzor; Suzuki, Yuji; Czajkowski, Jakub; Fabritius, Tapio; Kathirgamanathan, Poopathy; Nathan, Arokia; Myllyla, Risto; Jabbour, Ghassan

    2015-01-09

    of SEM images of quantum dots and InP nanostructured thin-films are provided in the supple- mentary information. 3 Results 3.1 Physical Characterization The AFM and XRD techniques were used to verify the sur- face morphology and provide the reference... research subject for their high applicability in optoelectronics22–24. In addi- tion, self-assembled gold quantum dots and InP-based nanos- tructures were examined. Prior to the analysis, ZnO fabricated thin-films were additionally characterized with AFM...

  14. Perovskite phase thin films and method of making

    DOE Patents [OSTI]

    Boyle, Timothy J. (Albuquerque, NM); Rodriguez, Mark A. (Albuquerque, NM)

    2000-01-01

    The present invention comprises perovskite-phase thin films, of the general formula A.sub.x B.sub.y O.sub.3 on a substrate, wherein A is selected from beryllium, magnesium, calcium, strontium, and barium or a combination thereof; B is selected from niobium and tantalum or a combination thereof; and x and y are mole fractions between approximately 0.8 and 1.2. More particularly, A is strontium or barium or a combination thereof and B is niobium or tantalum or a combination thereof. Also provided is a method of making a perovskite-phase thin film, comprising combining at least one element-A-containing compound, wherein A is selected from beryllium, magnesium, calcium, strontium or barium, with at least one element-B-containing compound, wherein B niobium or tantalum, to form a solution; adding a solvent to said solution to form another solution; spin-coating the solution onto a substrate to form a thin film; and heating the film to form the perovskite-phase thin film.

  15. Preparation of a semiconductor thin film

    DOE Patents [OSTI]

    Pehnt, M.; Schulz, D.L.; Curtis, C.J.; Ginley, D.S.

    1998-01-27

    A process is disclosed for the preparation of a semiconductor film. The process comprises depositing nanoparticles of a semiconductor material onto a substrate whose surface temperature during nanoparticle deposition thereon is sufficient to cause substantially simultaneous fusion of the nanoparticles to thereby coalesce with each other and effectuate film growth.

  16. Preparation of a semiconductor thin film

    DOE Patents [OSTI]

    Pehnt, Martin (TuBingen, DE); Schulz, Douglas L. (Denver, CO); Curtis, Calvin J. (Lakewood, CO); Ginley, David S. (Evergreen, CO)

    1998-01-01

    A process for the preparation of a semiconductor film. The process comprises depositing nanoparticles of a semiconductor material onto a substrate whose surface temperature during nanoparticle deposition thereon is sufficient to cause substantially simultaneous fusion of the nanoparticles to thereby coalesce with each other and effectuate film growth.

  17. The development of a thin-film rollforming process for pharmaceutical continuous manufacturing

    E-Print Network [OSTI]

    Slaughter, Ryan (Ryan R.)

    2013-01-01

    In this thesis, a continuous rollforming process for the folding of thin-films was proposed and studied as a key step in the continuous manufacturing of pharmaceutical tablets. HPMC and PEG based polymeric thin-films were ...

  18. Accounting for Localized Defects in the Optoelectronic Design of Thin-Film Solar Cells

    E-Print Network [OSTI]

    Deceglie, Michael G.

    2014-01-01

    W. Prather, "Thin film solar cell design based on photonicH. A. Atwater, "Design of nanostructured solar cells usingBrongersma, "Design of Plasmonic Thin-Film Solar Cells with

  19. PID Failure of c-Si and Thin-Film Modules and Possible Correlation...

    Energy Savers [EERE]

    PID Failure of c-Si and Thin-Film Modules and Possible Correlation with Leakage Currents PID Failure of c-Si and Thin-Film Modules and Possible Correlation with Leakage Currents...

  20. Electron-beam-evaporated thin films of hafnium dioxide for fabricating...

    Office of Scientific and Technical Information (OSTI)

    complementary metal-oxide semiconductor (CMOS) integrated circuits using this HfO2 thin film as the gate oxide. The authors analyzed the thin films using high-resolution...

  1. Cathodic ALD V2O5 thin films for high-rate electrochemical energy...

    Office of Scientific and Technical Information (OSTI)

    Cathodic ALD V2O5 thin films for high-rate electrochemical energy storage Citation Details In-Document Search Title: Cathodic ALD V2O5 thin films for high-rate electrochemical...

  2. Layer-by-Layer Assembly of Clay-filled Polymer Nanocomposite Thin Films 

    E-Print Network [OSTI]

    Jang, Woo-Sik

    2010-01-14

    robotic dipping system, for the preparation of these thin films, was built. The robot alternately dips a substrate into aqueous mixtures with rinsing and drying in between. Thin films of sodium montmorillonite clay and cationic polymer were grown...

  3. Characterization of Zirconium Phosphate/Polycation Thin Films Grown by Sequential Adsorption Reactions

    E-Print Network [OSTI]

    Characterization of Zirconium Phosphate/Polycation Thin Films Grown by Sequential Adsorption Received April 7, 1997X Monolayer and multilayer thin films consisting of anionic R-zirconium phosphate (R

  4. Engineering Al-based Thin Film Materials for Power Devices and Energy Storage Applications

    E-Print Network [OSTI]

    Perng, Ya-Chuan

    2012-01-01

    O Thin Films as a Solid Electrolyte for 3D Microbatteries,”Li 0.5 La 0.5 )TiO 3 solid electrolyte thin films grown byIonic conductivity in solid electrolytes based on lithium

  5. Junction Evolution During Fabrication of CdS/CdTe Thin-film PV Solar Cells (Presentation)

    SciTech Connect (OSTI)

    Gessert, T. A.

    2010-09-01

    Discussion of the formation of CdTe thin-film PV junctions and optimization of CdTe thin-film PV solar cells.

  6. Substrates suitable for deposition of superconducting thin films

    DOE Patents [OSTI]

    Feenstra, Roeland (Oak Ridge, TN); Boatner, Lynn A. (Oak Ridge, TN)

    1993-01-01

    A superconducting system for the lossless transmission of electrical current comprising a thin film of superconducting material Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.7-x epitaxially deposited upon a KTaO.sub.3 substrate. The KTaO.sub.3 is an improved substrate over those of the prior art since the it exhibits small lattice constant mismatch and does not chemically react with the superconducting film.

  7. Fabrication and testing of thermoelectric thin film devices

    SciTech Connect (OSTI)

    Wagner, A.V.; Foreman, R.J.; Summers, L.J.; Barbee, T.W. Jr.; Farmer, J.C. [Lawrence Livermore National Lab., CA (United States). Chemistry and Materials Science Dept.

    1996-03-01

    Two thin-film thermoelectric devices are experimentally demonstrated. The relevant thermal loads on the cold junction of these devices are determined. The analytical form of the equation that describes the thermal loading of the device enables one to model the performance based on the independently measured electronic properties of the films forming the devices. This model elucidates which parameters determine device performance, and how they can be used to maximize performance.

  8. Method for producing high quality thin layer films on substrates

    DOE Patents [OSTI]

    Strongin, Myron (Center Moriches, NY); Ruckman, Mark (Middle Island, NY); Strongin, Daniel (Port Jefferson, NY)

    1994-01-01

    A method for producing high quality, thin layer films of inorganic compounds upon the surface of a substrate is disclosed. The method involves condensing a mixture of preselected molecular precursors on the surface of a substrate and subsequently inducing the formation of reactive species using high energy photon or charged particle irradiation. The reactive species react with one another to produce a film of the desired compound upon the surface of the substrate.

  9. Method for producing high quality thin layer films on substrates

    DOE Patents [OSTI]

    Strongin, M.; Ruckman, M.; Strongin, D.

    1994-04-26

    A method for producing high quality, thin layer films of inorganic compounds upon the surface of a substrate is disclosed. The method involves condensing a mixture of preselected molecular precursors on the surface of a substrate and subsequently inducing the formation of reactive species using high energy photon or charged particle irradiation. The reactive species react with one another to produce a film of the desired compound upon the surface of the substrate. 4 figures.

  10. Experimental thin film deposition and surface analysis techniques

    SciTech Connect (OSTI)

    Collins, W.E.; Rambabu, B.

    1986-01-01

    An attempt has been made to present some of the thin-film deposition and surface analysis techniques which may be useful in growing superionic conducting materials. Emphasis is made on the importance of being careful in selecting process parameters and materials in order to produce films with properties outlined in this article. Also, special care should be given to proper consideration of grain boundary effects.

  11. Dissolution dynamics of thin films measured by optical reflectance Christian Punckt and Ilhan A. Aksaya

    E-Print Network [OSTI]

    Aksay, Ilhan A.

    of copper thin films on gold substrates in a mild hydrochloric acid solution. Due to its simplicity, our of corrosion rates of thin films are in high demand for the quan- tification of material degradation measurement of dissolution rates of galvanically corrod- ing copper thin films based on bright field optical

  12. Performance predictions for monolithic, thin-film CdTe/Ge tandem solar cells

    E-Print Network [OSTI]

    Pulfrey, David L.

    Performance predictions for monolithic, thin-film CdTe/Ge tandem solar cells D.L. Pulfrey*, J. Dell): pulfrey@ece.ubc.ca ABSTRACT Cadmium telluride thin-film solar cells are now commercially available be attainable. 1. INTRODUCTION Thin film solar cells based on polycrystalline CdTe have been investigated

  13. Gravity-Driven flow of evaporating thin liquid films over substrates with topography

    E-Print Network [OSTI]

    Jimack, Peter

    Gravity-Driven flow of evaporating thin liquid films over substrates with topography Gaskell, P. Abstract This paper considers gravity-driven flow of thin liquid films over substrates with topography of gravity-driven flow of thin liquid films over well defined topography, as indicated in Figure 1, in which

  14. EARTH ABUNDANT MATERIALS FOR HIGH EFFICIENCY HETEROJUNCTION THIN FILM SOLAR CELLS

    E-Print Network [OSTI]

    Ceder, Gerbrand

    materials for thin film solar cells such as CdTe and CIGS suffer from concerns over resource scarcity (eEARTH ABUNDANT MATERIALS FOR HIGH EFFICIENCY HETEROJUNCTION THIN FILM SOLAR CELLS Yun Seog Lee 1 conversion efficiencies should be increased. In terms of reducing module cost, thin film solar cells

  15. DETERMINING OPTICAL CONSTANTS OF URANIUM NITRIDE THIN FILMS IN THE EXTREME

    E-Print Network [OSTI]

    Hart, Gus

    deposition and characterization of reactively-sputtered uranium nitride thin films. I also report opticalDETERMINING OPTICAL CONSTANTS OF URANIUM NITRIDE THIN FILMS IN THE EXTREME ULTRAVIOLET (1.6-35 NM.1 Application 1 1.2 Optical Constants 2 1.3 Project Focus 7 2 Uranium Nitride Thin Films 8 2.1 Sputtering 8 2

  16. Asymptotic study of film thinning process on a spinning annular disk B. S. Dandapat

    E-Print Network [OSTI]

    Daripa, Prabir

    Asymptotic study of film thinning process on a spinning annular disk B. S. Dandapat Physics consider an axisymmetric flow of a thin liquid film on a rotating annular disk. The effects of surface tension and gravity terms are included. An asymptotic solution for the free surface of the thin film

  17. Small-scale thin film experiments provide models for large-scale engineering applications

    E-Print Network [OSTI]

    Reis, Pedro Miguel

    Small-scale thin film experiments provide models for large-scale engineering applicationsMIT's Department of Civil and Environmental Engineering · http://cee.mit.edu Delamination occurs in a thin film blisters occur in a predictable manner. Photo / Donna Coveney, MIT PROBLEM Thin films are omnipresent

  18. Physics of thin-film ferroelectric oxides DPMC, University of Geneva, CH-1211, Geneva 4, Switzerland

    E-Print Network [OSTI]

    Wu, Zhigang

    Physics of thin-film ferroelectric oxides M. Dawber* DPMC, University of Geneva, CH-1211, Geneva 4 of thin-film ferroelectric oxides, the strongest emphasis being on those aspects particular to ferroelectrics in thin-film form. The authors introduce the current state of development in the application

  19. Barium ferrite thin film media with perpendicular c-axis orientation and small grain size

    E-Print Network [OSTI]

    Laughlin, David E.

    Barium ferrite thin film media with perpendicular c-axis orientation and small grain size Zailong, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 Barium ferrite thin films with perpendicular c conditions. The c-axis orientation of barium ferrite thin films is most sensitive to the oxygen partial

  20. Femtosecond laser ablation of indium tin-oxide narrow grooves for thin film solar cells

    E-Print Network [OSTI]

    Van Stryland, Eric

    Femtosecond laser ablation of indium tin-oxide narrow grooves for thin film solar cells Qiumei Bian in the fabrication and assembly of thin film solar cells. Using a femtosecond (fs) laser, we selectively removed a unique scheme to ablate the indium tin-oxide layer for the fabrication of thin film solar cells

  1. Computational analysis of thin film InGaAs/GaAs quantum well solar cells with

    E-Print Network [OSTI]

    Yu, Edward T.

    Computational analysis of thin film InGaAs/GaAs quantum well solar cells with back side light, Austin, TX 78758, USA * ety@ece.utexas.edu Abstract: Simulations of thin film (~2.5 µm thick) InGaAs/GaAs. Roberts, G. Hill, and C. Calder, "Progress in quantum well solar cells," Thin Solid Films 511­512, 76

  2. Microwave plasma assisted supersonic gas jet deposition of thin film materials

    DOE Patents [OSTI]

    Schmitt, III, Jerome J. (New Haven, CT); Halpern, Bret L. (Bethany, CT)

    1993-01-01

    An apparatus for fabricating thin film materials utilizing high speed gas dynamics relies on supersonic free jets of carrier gas to transport depositing vapor species generated in a microwave discharge to the surface of a prepared substrate where the vapor deposits to form a thin film. The present invention generates high rates of deposition and thin films of unforeseen high quality at low temperatures.

  3. Metal-black scattering centers to enhance light harvesting by thin-film solar cells

    E-Print Network [OSTI]

    Peale, Robert E.

    Metal-black scattering centers to enhance light harvesting by thin-film solar cells Deep Panjwania as scattering centers to increase the effective optical thickness of thin-film solar cells. The particular type. Gold-black was deposited on commercial thin-film solar cells using a thermal evaporator in nitrogen

  4. Predictive Modeling for Glass-Side Laser Scribing of Thin Film Photovoltaic Cells

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    :F, CdTe, solar cell INTRODUCTION Thin-film solar cell is a promising technology to achieve substrates. Cadmium telluride (CdTe) is the dominant thin film solar cell material in recent years because manufacturing processes in the fabrication of thin film solar cells is monolithic cell isolation and series

  5. CARRIER COLLECTION IN THIN-FILM CDTE SOLAR CELLS: THEORY AND EXPERIMENT

    E-Print Network [OSTI]

    CARRIER COLLECTION IN THIN-FILM CDTE SOLAR CELLS: THEORY AND EXPERIMENT A.E. Delahoy, Z. Cheng different wavelengths. Keywords: CdTe, thin film solar cell, modeling 1 INTRODUCTION Traditional Si p, Jsc, is independent of voltage, i.e. superposition holds. Thin film CdTe solar cells deviate from

  6. Enhanced efficiency of thin film solar cells using a shifted dual grating plasmonic structure

    E-Print Network [OSTI]

    Levy, Uriel

    Enhanced efficiency of thin film solar cells using a shifted dual grating plasmonic structure Ronen, "Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric in thin film solar cells," Appl. Phys. Lett. 99(13), 131114 (2011). 10. H. R. Stuart and D. G. Hall

  7. LBIC ANALYSIS OF THIN-FILM POLYCRYSTALLINE SOLAR CELLS James R. Sites and Timothy J. Nagle

    E-Print Network [OSTI]

    Sites, James R.

    LBIC ANALYSIS OF THIN-FILM POLYCRYSTALLINE SOLAR CELLS James R. Sites and Timothy J. Nagle Physics response map, was developed and used to map defects in thin-film solar cells [4]. Improvements to the two) measurements are providing a direct link between the spatial non-uniformities inherent in thin-film

  8. Light trapping in thin-film solar cells via scattering by nanostructured antireflection coatings

    E-Print Network [OSTI]

    Yu, Edward T.

    Light trapping in thin-film solar cells via scattering by nanostructured antireflection coatings X://jap.aip.org/authors #12;Light trapping in thin-film solar cells via scattering by nanostructured antireflection coatings X of nanostructured TiO2 layers fabricated on thin-film solar cells to provide, simultaneously, both antireflection

  9. ENGINEERED SUBSTRATES FOR THIN-FILM SOLAR CELLS: SCATTERING PROPERTIES OF 1D ROUGHNESS

    E-Print Network [OSTI]

    ENGINEERED SUBSTRATES FOR THIN-FILM SOLAR CELLS: SCATTERING PROPERTIES OF 1D ROUGHNESS S. Del Sorbo, Optical Properties, Substrates, Texturisation, Thin Film Solar Cells 1 MOTIVATION OF THIS WORK The aim of thin film technology is to reduce both the electrical transport losses in the bulk region of a solar

  10. High-temperature superconducting thin-film-based electronic devices

    SciTech Connect (OSTI)

    Wu, X.D; Finokoglu, A.; Hawley, M.; Jia, Q.; Mitchell, T.; Mueller, F.; Reagor, D.; Tesmer, J.

    1996-09-01

    This the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project involved optimization of processing of Y123 and Tl-2212 thin films deposited on novel substrates for advanced electronic devices. The Y123 films are the basis for development of Josephson Junctions to be utilized in magnetic sensors. Microwave cavities based on the Tl-2212 films are the basis for subsequent applications as communication antennas and transmitters in satellites.

  11. Ultrashort pulse laser deposition of thin films

    DOE Patents [OSTI]

    Perry, Michael D. (Livermore, CA); Banks, Paul S. (Livermore, CA); Stuart, Brent C. (Fremont, CA)

    2002-01-01

    Short pulse PLD is a viable technique of producing high quality films with properties very close to that of crystalline diamond. The plasma generated using femtosecond lasers is composed of single atom ions with no clusters producing films with high Sp.sup.3 /Sp.sup.2 ratios. Using a high average power femtosecond laser system, the present invention dramatically increases deposition rates to up to 25 .mu.m/hr (which exceeds many CVD processes) while growing particulate-free films. In the present invention, deposition rates is a function of laser wavelength, laser fluence, laser spot size, and target/substrate separation. The relevant laser parameters are shown to ensure particulate-free growth, and characterizations of the films grown are made using several diagnostic techniques including electron energy loss spectroscopy (EELS) and Raman spectroscopy.

  12. An improved thin film approximation to accurately determine the optical conductivity of graphene from infrared transmittance

    SciTech Connect (OSTI)

    Weber, J. W.; Bol, A. A. [Department of Applied Physics, Eindhoven University of Technology, Den Dolech 2, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Sanden, M. C. M. van de [Department of Applied Physics, Eindhoven University of Technology, Den Dolech 2, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Dutch Institute for Fundamental Energy Research (DIFFER), Nieuwegein (Netherlands)

    2014-07-07

    This work presents an improved thin film approximation to extract the optical conductivity from infrared transmittance in a simple yet accurate way. This approximation takes into account the incoherent reflections from the backside of the substrate. These reflections are shown to have a significant effect on the extracted optical conductivity and hence on derived parameters as carrier mobility and density. By excluding the backside reflections, the error for these parameters for typical chemical vapor deposited (CVD) graphene on a silicon substrate can be as high as 17% and 45% for the carrier mobility and density, respectively. For the mid- and near-infrared, the approximation can be simplified such that the real part of the optical conductivity is extracted without the need for a parameterization of the optical conductivity. This direct extraction is shown for Fourier transform infrared (FTIR) transmittance measurements of CVD graphene on silicon in the photon energy range of 370–7000?cm{sup ?1}. From the real part of the optical conductivity, the carrier density, mobility, and number of graphene layers are determined but also residue, originating from the graphene transfer, is detected. FTIR transmittance analyzed with the improved thin film approximation is shown to be a non-invasive, easy, and accurate measurement and analysis method for assessing the quality of graphene and can be used for other 2-D materials.

  13. Silicon-on-glass pore network micromodels with oxygen-sensing fluorophore films for chemical imaging and defined spatial structure

    SciTech Connect (OSTI)

    Grate, Jay W.; Kelly, Ryan T.; Suter, Jonathan D.; Anheier, Norman C.

    2012-11-21

    Pore network microfluidic models were fabricated by a silicon-on-glass technique that provides the precision advantage of dry etched silicon while creating a structure that is transparent across all microfluidic channels and pores, and can be imaged from either side. A silicon layer is bonded to an underlying borosilicate glass substrate and thinned to the desired height of the microfluidic channels and pores. The silicon is then patterned and through-etched by deep reactive ion etching (DRIE), with the underlying glass serving as an etch stop. After bonding on a transparent glass cover plate, one obtains a micromodel in oxygen impermeable materials with water wet surfaces where the microfluidic channels are transparent and structural elements such as the pillars creating the pore network are opaque. The micromodel can be imaged from either side. The advantageous features of this approach in a chemical imaging application are demonstrated by incorporating a Pt porphyrin fluorophore in a PDMS film serving as the oxygen sensing layer and a bonding surface, or in a polystyrene film coated with a PDMS layer for bonding. The sensing of a dissolved oxygen gradient was demonstrated using fluorescence lifetime imaging, and it is shown that different matrix polymers lead to optimal use in different ranges dissolved oxygen concentration. Imaging with the opaque pillars in between the observation direction and the continuous fluorophore film yields images that retain spatial information in the sensor image.

  14. Equiatomic CoPt thin films with extremely high coercivity

    SciTech Connect (OSTI)

    Varghese, Binni; Piramanayagam, S. N. Yang, Yi; Kai Wong, Seng; Khume Tan, Hang; Kiat Lee, Wee; Okamoto, Iwao

    2014-05-07

    In this paper, magnetic and structural properties of near-equiatomic CoPt thin films, which exhibited a high coercivity in the film-normal direction—suitable for perpendicular magnetic recording media applications—are reported. The films exhibited a larger coercivity of about 6.5 kOe at 8?nm. The coercivity showed a monotonous decrease as the film thickness was increased. The transmission electron microscopy images indicated that the as fabricated CoPt film generally consists of a stack of magnetically hard hexagonal-close-packed phase, followed by stacking faults and face-centred-cubic phase. The thickness dependent magnetic properties are explained on the basis of exchange-coupled composite media. Epitaxial growth on Ru layers is a possible factor leading to the unusual observation of magnetically hard hcp-phase at high concentrations of Pt.

  15. Ferromagnetism and Nonmetallic Transport of Thin-Film ? - FeSi 2 : A Stabilized Metastable Material

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cao, Guixin; Singh, D.?J.; Zhang, X.-G.; Samolyuk, German; Qiao, Liang; Parish, Chad; Jin, Ke; Zhang, Yanwen; Guo, Hangwen; Tang, Siwei; et al

    2015-04-07

    A metastable phase ?-FeSi? was epitaxially stabilized on a silicon substrate using pulsed laser deposition. Nonmetallic and ferromagnetic behaviors are tailored on ?-FeSi? (111) thin films, while the bulk material of ?-FeSi? is metallic and nonmagnetic. The transport property of the films renders two different conducting states with a strong crossover at 50 K, which is accompanied by the onset of a ferromagnetic transition as well as a substantial magnetoresistance. These experimental results are discussed in terms of the unusual electronic structure of ?-FeSi? obtained within density functional calculations and Boltzmann transport calculations with and without strain. Our finding shedsmore »light on achieving ferromagnetic semiconductors through both their structure and doping tailoring, and provides an example of a tailored material with rich functionalities for both basic research and practical applications.« less

  16. Ferromagnetism and Nonmetallic Transport of Thin-Film ? - FeSi 2 : A Stabilized Metastable Material

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cao, Guixin; Singh, D.?J.; Zhang, X.-G.; Samolyuk, German; Qiao, Liang; Parish, Chad; Jin, Ke; Zhang, Yanwen; Guo, Hangwen; Tang, Siwei; Wang, Wenbin; Yi, Jieyu; Cantoni, Claudia; Siemons, Wolter; Payzant, E. Andrew; Biegalski, Michael; Ward, T.?Z.; Mandrus, David; Stocks, G.?M.; Gai, Zheng

    2015-04-01

    A metastable phase ?-FeSi? was epitaxially stabilized on a silicon substrate using pulsed laser deposition. Nonmetallic and ferromagnetic behaviors are tailored on ?-FeSi? (111) thin films, while the bulk material of ?-FeSi? is metallic and nonmagnetic. The transport property of the films renders two different conducting states with a strong crossover at 50 K, which is accompanied by the onset of a ferromagnetic transition as well as a substantial magnetoresistance. These experimental results are discussed in terms of the unusual electronic structure of ?-FeSi? obtained within density functional calculations and Boltzmann transport calculations with and without strain. Our finding sheds light on achieving ferromagnetic semiconductors through both their structure and doping tailoring, and provides an example of a tailored material with rich functionalities for both basic research and practical applications.

  17. Crystallization and phase transformations in amorphous NiTi thin films for microelectromechanical systems

    SciTech Connect (OSTI)

    Lee, Hoo-Jeong; Ramirez, Ainissa G. [Department of Mechanical Engineering, Yale University, New Haven, Connecticut 06520 (United States)

    2004-08-16

    Amorphous sputtered nickel-titanium thin films were deposited onto micromachined silicon-nitride membranes and subjected to heating and cooling conditions. Their associated microstructure was monitored directly and simultaneously with in situ transmission electron microscopy. These electron-transparent membranes constrained the NiTi films and rendered it possible for observation of the complete transformation cycle, which includes: the crystallization of the amorphous phase to austenite phase (cubic B2 structure) with heating; and the conversion of austenite (B2) to martensite (monoclinic B19{sup '} structure) with cooling. Electron micrographs show the nucleation and growth of grains occurs at a temperature of 470 deg. C and at a rate that indicates a polymorphic transformation. The onset of martensitic transformation occurs between 25 and 35 deg. C. Calorimetric measurements are consistent with the observed crystallization.

  18. Preparation and characterization of TL-based superconducting thin films 

    E-Print Network [OSTI]

    Wang, Pingshu

    1995-01-01

    A simple method for growth of Tl-based superconducting thin films is described. In this method, the precursor was prepared in a vacuum chamber by deposition of Ba, Ca and Cu metals or a Ba-Ca alloy and Cu metal. The precursor was then oxidized...

  19. Atomic layer deposition of superparamagnetic and ferrimagnetic magnetite thin films

    SciTech Connect (OSTI)

    Zhang, Yijun; Liu, Ming E-mail: wren@mail.xjtu.edu.cn Ren, Wei E-mail: wren@mail.xjtu.edu.cn; Zhang, Yuepeng; Chen, Xing; Ye, Zuo-Guang E-mail: wren@mail.xjtu.edu.cn

    2015-05-07

    One of the key challenges in realizing superparamagnetism in magnetic thin films lies in finding a low-energy growth way to create sufficiently small grains and magnetic domains which allow the magnetization to randomly and rapidly reverse. In this work, well-defined superparamagnetic and ferrimagnetic Fe{sub 3}O{sub 4} thin films are successfully prepared using atomic layer deposition technique by finely controlling the growth condition and post-annealing process. As-grown Fe{sub 3}O{sub 4} thin films exhibit a conformal surface and poly-crystalline nature with an average grain size of 7?nm, resulting in a superparamagnetic behavior with a blocking temperature of 210?K. After post-annealing in H{sub 2}/Ar at 400?°C, the as-grown ??Fe{sub 2}O{sub 3} sample is reduced to Fe{sub 3}O{sub 4} phase, exhibiting a ferrimagnetic ordering and distinct magnetic shape anisotropy. Atomic layer deposition of magnetite thin films with well-controlled morphology and magnetic properties provides great opportunities for integrating with other order parameters to realize magnetic nano-devices with potential applications in spintronics, electronics, and bio-applications.

  20. Crystalline Thin Films Formed by Supramolecular Assembly for

    E-Print Network [OSTI]

    Gao, Hongjun

    Crystalline Thin Films Formed by Supramolecular Assembly for Ultrahigh-Density Data Storage with crystalline materials.[9] In contrast with small-mole- cule materials, supramolecular materials, which combine the benefits of polymers with those of organic crystalline systems, have been considered a promising medium

  1. Synthesis and Characterization of Functional Nanostructured Zinc Oxide Thin Films

    E-Print Network [OSTI]

    Chow, Lee

    .1149/1.2357098, copyright The Electrochemical Society 65 #12;66 reduced environmental impact and a minimum undesirable inter-temperature thin film growth technique has been developed to fabricate a new generation of smart and functional and structural requirements of their applications in gas sensors and solar cells. The rapid photothermal

  2. Long-wave instabilities and saturation in thin film equations

    E-Print Network [OSTI]

    Pugh, Mary

    to shorter wavelengths which then dissipate the energy. The nonlinearity in the KS equation is advective.2) The equation arises as an interface model in bio-fluids [15], solar convec- tion [19], and binary alloys [48Long-wave instabilities and saturation in thin film equations A. L. Bertozzi Department

  3. Longwave instabilities and saturation in thin film equations

    E-Print Network [OSTI]

    Pugh, Mary

    then dissipate the energy. The nonlinearity in the KS equation is advective, and a#ects the dy­ namics di.2) The equation arises as an interface model in bio­fluids [15], solar convec­ tion [19], and binary alloys [48Long­wave instabilities and saturation in thin film equations A. L. Bertozzi Department

  4. Communications to the Editor Thin-Film Differential Scanning

    E-Print Network [OSTI]

    Allen, Leslie H.

    -mail: L-ALLEN9@uiuc.edu. Figure 1. MEMS-based calorimetric sensor for TDSC (not to scale). Volume 35. In this paper we demonstrate a recently developed MEMS-based thin-film differential scanning calorimetry (TDSC a microfabricated sensor shown in Figure 1 as a calorimetric cell. The sensor consists of a Si3Nx membrane supported

  5. Method for rapid, controllable growth and thickness, of epitaxial silicon films

    DOE Patents [OSTI]

    Wang, Qi (Littleton, CO); Stradins, Paul (Golden, CO); Teplin, Charles (Boulder, CO); Branz, Howard M. (Boulder, CO)

    2009-10-13

    A method of producing epitaxial silicon films on a c-Si wafer substrate using hot wire chemical vapor deposition by controlling the rate of silicon deposition in a temperature range that spans the transition from a monohydride to a hydrogen free silicon surface in a vacuum, to obtain phase-pure epitaxial silicon film of increased thickness is disclosed. The method includes placing a c-Si substrate in a HWCVD reactor chamber. The method also includes supplying a gas containing silicon at a sufficient rate into the reaction chamber to interact with the substrate to deposit a layer containing silicon thereon at a predefined growth rate to obtain phase-pure epitaxial silicon film of increased thickness.

  6. Characterization of Thin Films by XAFS: Application to Spintronics Materials

    SciTech Connect (OSTI)

    Heald, Steve M.; Kaspar, Tiffany C.; Droubay, Timothy C.; Chambers, Scott A.

    2009-10-25

    X-ray absorption fine structure (XAFS) has proven very valuable in characterizing thin films. This is illustrated with some examples from the area of diluted magnetic semiconductor (DMS) materials for spintronics applications. A promising route to DMS materials is doping of oxides such as TiO2 and ZnO with magnetic atoms such as Co. These can be grown as epitaxial thin films on various substrates. XAFS is especially valuable for characterizing the dopant atoms. The near edge region is sensitive to the symmetry of the bonding and valence of the dopants, and the extended XAFS can determine the details of the lattice site. XAFS is also valuable for detecting metallic nanoparticles. These can be difficult to detect by other methods, and can give a spurious magnetic signal. The power of XAFS is illustrated by examples from studies on Co doped ZnO films.

  7. Thin film porous membranes for catalytic sensors

    SciTech Connect (OSTI)

    Hughes, R.C.; Boyle, T.J.; Gardner, T.J. [and others

    1997-06-01

    This paper reports on new and surprising experimental data for catalytic film gas sensing resistors coated with nanoporous sol-gel films to impart selectivity and durability to the sensor structure. This work is the result of attempts to build selectivity and reactivity to the surface of a sensor by modifying it with a series of sol-gel layers. The initial sol-gel SiO{sub 2} layer applied to the sensor surprisingly showed enhanced O{sub 2} interaction with H{sub 2} and reduced susceptibility to poisons such as H{sub 2}S.

  8. Photoconductivity in reactively evaporated copper indium selenide thin films

    SciTech Connect (OSTI)

    Urmila, K. S., E-mail: urmilaks7@gmail.com; Asokan, T. Namitha, E-mail: urmilaks7@gmail.com; Pradeep, B., E-mail: urmilaks7@gmail.com [Solid State Physics Laboratory, Cochin University of Science and Technology, Kochi, Kerala (India); Jacob, Rajani; Philip, Rachel Reena [Thin Film Research Laboratory, Union Christian College, Aluva, Kerala (India)

    2014-01-28

    Copper indium selenide thin films of composition CuInSe{sub 2} with thickness of the order of 130 nm are deposited on glass substrate at a temperature of 423 ±5 K and pressure of 10{sup ?5} mbar using reactive evaporation, a variant of Gunther's three temperature method with high purity Copper (99.999%), Indium (99.999%) and Selenium (99.99%) as the elemental starting materials. X-ray diffraction (XRD) studies shows that the films are polycrystalline in nature having preferred orientation of grains along the (112) plane. The structural type of the film is found to be tetragonal with particle size of the order of 32 nm. The structural parameters such as lattice constant, particle size, dislocation density, number of crystallites per unit area and strain in the film are also evaluated. The surface morphology of CuInSe{sub 2} films are studied using 2D and 3D atomic force microscopy to estimate the grain size and surface roughness respectively. Analysis of the absorption spectrum of the film recorded using UV-Vis-NIR Spectrophotometer in the wavelength range from 2500 nm to cutoff revealed that the film possess a direct allowed transition with a band gap of 1.05 eV and a high value of absorption coefficient (?) of 10{sup 6} cm{sup ?1} at 570 nm. Photoconductivity at room temperature is measured after illuminating the film with an FSH lamp (82 V, 300 W). Optical absorption studies in conjunction with the good photoconductivity of the prepared p-type CuInSe{sub 2} thin films indicate its suitability in photovoltaic applications.

  9. ZnO buffer layer for metal films on silicon substrates

    SciTech Connect (OSTI)

    Ihlefeld, Jon

    2014-09-16

    Dramatic improvements in metallization integrity and electroceramic thin film performance can be achieved by the use of the ZnO buffer layer to minimize interfacial energy between metallization and adhesion layers. In particular, the invention provides a substrate metallization method utilizing a ZnO adhesion layer that has a high work of adhesion, which in turn enables processing under thermal budgets typically reserved for more exotic ceramic, single-crystal, or metal foil substrates. Embodiments of the present invention can be used in a broad range of applications beyond ferroelectric capacitors, including microelectromechanical systems, micro-printed heaters and sensors, and electrochemical energy storage, where integrity of metallized silicon to high temperatures is necessary.

  10. Thin film composition with biological substance and method of making

    DOE Patents [OSTI]

    Campbell, Allison A. (Kennewick, WA); Song, Lin (Richland, WA)

    1999-01-01

    The invention provides a thin-film composition comprising an underlying substrate of a first material including a plurality of attachment sites; a plurality of functional groups chemically attached to the attachment sites of the underlying substrate; and a thin film of a second material deposited onto the attachment sites of the underlying substrate, and a biologically active substance deposited with the thin-film. Preferably the functional groups are attached to a self assembling monolayer attached to the underlying substrate. Preferred functional groups attached to the underlying substrate are chosen from the group consisting of carboxylates, sulfonates, phosphates, optionally substituted, linear or cyclo, alkyl, alkene, alkyne, aryl, alkylaryl, amine, hydroxyl, thiol, silyl, phosphoryl, cyano, metallocenyl, carbonyl, and polyphosphate. Preferred materials for the underlying substrate are selected from the group consisting of a metal, a metal alloy, a plastic, a polymer, a proteic film, a membrane, a glass or a ceramic. The second material is selected from the group consisting of inorganic crystalline structures, inorganic amorphus structures, organic crystalline structures, and organic amorphus structures. Preferred second materials are phosphates, especially calcium phosphates and most particularly calcium apatite. The biologically active molecule is a protein, peptide, DNA segment, RNA segment, nucleotide, polynucleotide, nucleoside, antibiotic, antimicrobal, radioisotope, chelated radioisotope, chelated metal, metal salt, anti-inflamatory, steriod, nonsteriod anti-inflammatory, analgesic, antihistamine, receptor binding agent, or chemotherapeutic agent, or other biologically active material. Preferably the biologically active molecule is an osteogenic factor the compositions listed above.

  11. Thin film composition with biological substance and method of making

    SciTech Connect (OSTI)

    Campbell, A.A.; Song, L.

    1999-09-28

    The invention provides a thin-film composition comprising an underlying substrate of a first material including a plurality of attachment sites; a plurality of functional groups chemically attached to the attachment sites of the underlying substrate; and a thin film of a second material deposited onto the attachment sites of the underlying substrate, and a biologically active substance deposited with the thin-film. Preferably the functional groups are attached to a self assembling monolayer attached to the underlying substrate. Preferred functional groups attached to the underlying substrate are chosen from the group consisting of carboxylates, sulfonates, phosphates, optionally substituted, linear or cyclo, alkyl, alkene, alkyne, aryl, alkylaryl, amine, hydroxyl, thiol, silyl, phosphoryl, cyano, metallocenyl, carbonyl, and polyphosphate. Preferred materials for the underlying substrate are selected from the group consisting of a metal, a metal alloy, a plastic, a polymer, a proteic film, a membrane, a glass or a ceramic. The second material is selected from the group consisting of inorganic crystalline structures, inorganic amorphous structures, organic crystalline structures, and organic amorphous structures. Preferred second materials are phosphates, especially calcium phosphates and most particularly calcium apatite. The biologically active molecule is a protein, peptide, DNA segment, RNA segment, nucleotide, polynucleotide, nucleoside, antibiotic, antimicrobial, radioisotope, chelated radioisotope, chelated metal, metal salt, anti-inflammatory, steroid, nonsteroid anti-inflammatory, analgesic, antihistamine, receptor binding agent, or chemotherapeutic agent, or other biologically active material. Preferably the biologically active molecule is an osteogenic factor consisting of the compositions listed above.

  12. Characterization on RF magnetron sputtered niobium pentoxide thin films

    SciTech Connect (OSTI)

    Usha, N. [Department of Physics, Alagappa University, Karaikudi - 630 004 (India); Sivakumar, R., E-mail: krsivakumar1979@yahoo.com [Directorate of Distance Education, Alagappa University, Karaikudi - 630 004 (India); Sanjeeviraja, C. [Department of Physics, Alagappa Chettiar College of Engineering and Technology, Karaikudi - 630 004 (India)

    2014-10-15

    Niobium pentoxide (Nb{sub 2}O{sub 5}) thin films with amorphous nature were deposited on microscopic glass substrates at 100°C by rf magnetron sputtering technique. The effect of rf power on the structural, morphological, optical, and vibrational properties of Nb{sub 2}O{sub 5} films have been investigated. Optical study shows the maximum average transmittance of about 87% and the optical energy band gap (indirect allowed) changes between 3.70 eV and 3.47 eV. AFM result indicates the smooth surface nature of the samples. Photoluminescence measurement showed the better optical quality of the deposited films. Raman spectra show the LO-TO splitting of Nb-O stretching of Nb{sub 2}O{sub 5} films.

  13. High quality transparent conducting oxide thin films

    DOE Patents [OSTI]

    Gessert, Timothy A. (Conifer, CO); Duenow, Joel N. (Golden, CO); Barnes, Teresa (Evergreen, CO); Coutts, Timothy J. (Golden, CO)

    2012-08-28

    A transparent conducting oxide (TCO) film comprising: a TCO layer, and dopants selected from the elements consisting of Vanadium, Molybdenum, Tantalum, Niobium, Antimony, Titanium, Zirconium, and Hafnium, wherein the elements are n-type dopants; and wherein the transparent conducting oxide is characterized by an improved electron mobility of about 42 cm.sup.2/V-sec while simultaneously maintaining a high carrier density of .about.4.4e.times.10.sup.20 cm.sup.-3.

  14. Multilayer thin film thermoelectrics produced by sputtering

    SciTech Connect (OSTI)

    Wagner, A.V.; Foreman, R.J.; Summers, L.J.; Barbee, T.W. Jr.; Farmer, J.C.

    1995-06-19

    In this work we explore the possibility of achieving bulk electrical properties in single layer sputter deposited films grown epitaxially on (111) oriented BaF{sub 2} substrates. There are a number of sputter deposition parameters that can be varied in order to optimize the film quality. It is important to understand the effect of varying the deposition temperature, Ar sputtering gas pressure, and the substrate bias. We will consider only Bi and Bi{sub 0.86}Sb{sub 0.14} films in this paper. These materials were chosen since they have the same simple structure, two different band gaps and do not change significantly either in physical or electrical properties with small amounts of cross contamination. We will also present our work on multilayer thermoelectrics made of Bi and Bi{sub 0.86}Sb{sub 0.14} layers. There has been considerable interest in this multilayer structure in the literature. Theoretical calculations of the band structure and interface states of these multilayer structures have been made by Mustafaev and Agassi et al. respectively [6,7]. Experimentally Yoshida et al. have examined similar multilayer structures grown by MBE as well as Bi/Sb multilayer samples in which report an anomalous thermoelectric power [8].

  15. Method for bonding thin film thermocouples to ceramics

    DOE Patents [OSTI]

    Kreider, Kenneth G. (Potomac, MD)

    1993-01-01

    A method is provided for adhering a thin film metal thermocouple to a ceramic substrate used in an environment up to 700 degrees Centigrade, such as at a cylinder of an internal combustion engine. The method includes the steps of: depositing a thin layer of a reactive metal on a clean ceramic substrate; and depositing thin layers of platinum and a platinum-10% rhodium alloy forming the respective legs of the thermocouple on the reactive metal layer. The reactive metal layer serves as a bond coat between the thin noble metal thermocouple layers and the ceramic substrate. The thin layers of noble metal are in the range of 1-4 micrometers thick. Preferably, the ceramic substrate is selected from the group consisting of alumina and partially stabilized zirconia. Preferably, the thin layer of reactive metal is in the range of 0.015-0.030 micrometers (15-30 nanometers) thick. The preferred reactive metal is chromium. Other reactive metals may be titanium or zirconium. The thin layer of reactive metal may be deposited by sputtering in ultra high purity argon in a vacuum of approximately 2 milliTorr (0.3 Pascals).

  16. Durable silver thin film coating for diffraction gratings

    DOE Patents [OSTI]

    Wolfe, Jesse D. (Discovery Bay, CA); Britten, Jerald A. (Oakley, CA); Komashko, Aleksey M. (San Diego, CA)

    2006-05-30

    A durable silver film thin film coated non-planar optical element has been developed to replace Gold as a material for fabricating such devices. Such a coating and resultant optical element has an increased efficiency and is resistant to tarnishing, can be easily stripped and re-deposited without modifying underlying grating structure, improves the throughput and power loading of short pulse compressor designs for ultra-fast laser systems, and can be utilized in variety of optical and spectrophotometric systems, particularly high-end spectrometers that require maximized efficiency.

  17. Thin film battery and method for making same

    DOE Patents [OSTI]

    Bates, John B. (Oak Ridge, TN); Dudney, Nancy J. (Knoxville, TN); Gruzalski, Greg R. (Oak Ridge, TN); Luck, Christopher F. (Knoxville, TN)

    1994-01-01

    Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between -15.degree. C. and 150.degree. C.

  18. Thin film battery and method for making same

    DOE Patents [OSTI]

    Bates, J.B.; Dudney, N.J.; Gruzalski, G.R.; Luck, C.F.

    1994-08-16

    Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode. Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between [minus]15 C and 150 C. 9 figs.

  19. Status of High Performance PV: Polycrystalline Thin-Film Tandems

    SciTech Connect (OSTI)

    Symko-Davies, M.

    2005-02-01

    The High-Performance Photovoltaic (HiPerf PV) Project was initiated by the U.S. Department of Energy to substantially increase the viability of photovoltaics (PV) for cost-competitive applications so that PV can contribute significantly to our energy supply and our environment. The HiPerf PV Project aims at exploring the ultimate performance limits of existing PV technologies, approximately doubling their sunlight-to-electricity conversion efficiencies during its course. This work includes bringing thin-film cells and modules toward 25% and 20% efficiencies, respectively, and developing multijunction concentrator cells and modules able to convert more than one-third of the sun's energy to electricity (i.e., 33% efficiency). This paper will address recent accomplishments of the NREL in-house research effort involving polycrystalline thin-film tandems, as well as the research efforts under way in the subcontracted area.

  20. Synthesis of thin films and materials utilizing a gaseous catalyst

    DOE Patents [OSTI]

    Morse, Daniel E; Schwenzer, Birgit; Gomm, John R; Roth, Kristian M; Heiken, Brandon; Brutchey, Richard

    2013-10-29

    A method for the fabrication of nanostructured semiconducting, photoconductive, photovoltaic, optoelectronic and electrical battery thin films and materials at low temperature, with no molecular template and no organic contaminants. High-quality metal oxide semiconductor, photovoltaic and optoelectronic materials can be fabricated with nanometer-scale dimensions and high dopant densities through the use of low-temperature biologically inspired synthesis routes, without the use of any biological or biochemical templates.

  1. Preparation of redox polymer cathodes for thin film rechargeable batteries

    DOE Patents [OSTI]

    Skotheim, T.A.; Lee, H.S.; Okamoto, Yoshiyuki.

    1994-11-08

    The present invention relates to the manufacture of thin film solid state electrochemical devices using composite cathodes comprising a redox polymer capable of undergoing oxidation and reduction, a polymer solid electrolyte and conducting carbon. The polymeric cathode material is formed as a composite of radiation crosslinked polymer electrolytes and radiation crosslinked redox polymers based on polysiloxane backbones with attached organosulfur side groups capable of forming sulfur-sulfur bonds during electrochemical oxidation.

  2. Method for making dense crack free thin films

    DOE Patents [OSTI]

    Jacobson, Craig P. (Lafayette, CA); Visco, Steven J. (Berkeley, CA); De Jonghe, Lutgard C. (Lafayette, CA)

    2007-01-16

    The process described herein provides a simple and cost effective method for making crack free, high density thin ceramic film. The steps involve depositing a layer of a ceramic material on a porous or dense substrate. The deposited layer is compacted and then the resultant laminate is sintered to achieve a higher density than would have been possible without the pre-firing compaction step.

  3. Terminology relating to measurements taken on thin, reflecting films

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This standard consists of terms and definitions pertaining to measurements taken on thin, reflecting films, such as found in microelectromechanical systems (MEMS) materials. In particular, the terms are related to the standards in Section , which were generated by Committee E08 on Fatigue and Fracture. Terminology E 1823 Relating to Fatigue and Fracture Testing is applicable to this standard. 1.2 The terms are listed in alphabetical order.

  4. Scintillation of thin tetraphenyl butadiene films under alpha particle excitation

    E-Print Network [OSTI]

    Pollmann, Tina; Ku?niak, Marcin

    2010-01-01

    The alpha induced scintillation of the wavelength shifter 1,1,4,4-tetraphenyl-1,3-butadiene (TPB) was studied to improve the understanding of possible surface alpha backgrounds in the DEAP dark matter search experiment. We found that vacuum deposited thin TPB films emit 882 +/-210 photons per MeV under alpha particle excitation. The scintillation pulse shape consists of a double exponential decay with lifetimes of 11 +/-5 ns and 275 +/-10ns.

  5. Preparation of LiMn{sub 2}O{sub 4} cathode thin films for thin film lithium secondary batteries by a mist CVD process

    SciTech Connect (OSTI)

    Tadanaga, Kiyoharu, E-mail: tadanaga@chem.osakafu-u.ac.jp [Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka, 599-8531 (Japan); Yamaguchi, Akihiro; Sakuda, Atsushi; Hayashi, Akitoshi; Tatsumisago, Masahiro [Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka, 599-8531 (Japan); Duran, Alicia; Aparacio, Mario [Instituto de Cerámica y Vidrio, Consejo Superior de Investigaciones Científicas, Kelsen 5 (Campus de Cantoblanco), Madrid, 28049 (Spain)

    2014-05-01

    Highlights: • LiMn{sub 2}O{sub 4} thin films were prepared by using the mist CVD process. • An aqueous solution of lithium and manganese acetates is used for the precursor solution. • The cell with the LiMn{sub 2}O{sub 4} thin films exhibited a capacity of about 80 mAh/g. • The cell showed good cycling performance during 10 cycles. - Abstract: LiMn{sub 2}O{sub 4} cathode thin films for thin film lithium secondary batteries were prepared by using so-called the “mist CVD process”, employing an aqueous solution of lithium acetate and manganese acetate, as the source of Li and Mn, respectively. The aqueous solution of starting materials was ultrasonically atomized to form mist particles, and mists were transferred by nitrogen gas to silica glass substrate to form thin films. FE-SEM observation revealed that thin films obtained by this process were dense and smooth, and thin films with a thickness of about 750 nm were obtained. The electrochemical cell with the thin films obtained by sintering at 700 °C exhibited a capacity of about 80 mAh/g, and the cell showed good cycling performance during 10 cycles.

  6. MEMS-based thin-film fuel cells

    DOE Patents [OSTI]

    Jankowksi, Alan F.; Morse, Jeffrey D.

    2003-10-28

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  7. Plasticity contributions to interface adhesion in thin-film interconnect structures

    E-Print Network [OSTI]

    Vainchtein, Anna

    Plasticity contributions to interface adhesion in thin-film interconnect structures Michael Lanea of plasticity in thin copper layers on the interface fracture resistance in thin-film interconnect structures yield properties together with a plastic flow model for the metal layers were used to predict

  8. Brillouin light scattering studies of the mechanical properties of thin freely standing polystyrene films

    E-Print Network [OSTI]

    Dutcher, John

    Brillouin light scattering studies of the mechanical properties of thin freely standing polystyrene-frequency mechanical properties of thin freely standing polystyrene PS films. We have investigated the effects of chain, and thermal expansion of thin, freely stand- ing PS films in the glassy state are consistent with bulk values

  9. MultiLayer solid electrolyte for lithium thin film batteries

    DOE Patents [OSTI]

    Lee, Se -Hee; Tracy, C. Edwin; Pitts, John Roland; Liu, Ping

    2015-07-28

    A lithium metal thin-film battery composite structure is provided that includes a combination of a thin, stable, solid electrolyte layer [18] such as Lipon, designed in use to be in contact with a lithium metal anode layer; and a rapid-deposit solid electrolyte layer [16] such as LiAlF.sub.4 in contact with the thin, stable, solid electrolyte layer [18]. Batteries made up of or containing these structures are more efficient to produce than other lithium metal batteries that use only a single solid electrolyte. They are also more resistant to stress and strain than batteries made using layers of only the stable, solid electrolyte materials. Furthermore, lithium anode batteries as disclosed herein are useful as rechargeable batteries.

  10. THIN-FILM FLOWS WITH WALL SLIP: AN ASYMPTOTIC ANALYSIS OF HIGHER ORDER GLACIER FLOW MODELS

    E-Print Network [OSTI]

    Fournier, John J.F.

    THIN-FILM FLOWS WITH WALL SLIP: AN ASYMPTOTIC ANALYSIS OF HIGHER ORDER GLACIER FLOW MODELS, Cambridge, CB3 0ET, UK) [Received 6 January 2009. Revise 6 November 2009] Summary Free-surface thin film of the flow. Conversely, membrane or `free film' models are appropriate in situations where there is rapid

  11. "Enhanced Field Emission from Vertically Oriented Graphene by Thin Solid Film Coatings"

    E-Print Network [OSTI]

    Shaw, Leah B.

    "Enhanced Field Emission from Vertically Oriented Graphene by Thin Solid Film Coatings" MICHAEL films such as nanotubes, nanohorns, and graphene due to their favorable field emission properties by the application of low work function thin films. These studies employ various characterization techniques

  12. DISSERTATION ANALYSIS OF IMPACT OF NON-UNIFORMITIES ON THIN-FILM SOLAR CELLS

    E-Print Network [OSTI]

    Sites, James R.

    DISSERTATION ANALYSIS OF IMPACT OF NON-UNIFORMITIES ON THIN-FILM SOLAR CELLS AND MODULES WITH 2-D-FILM SOLAR CELLS AND MODULES WITH 2-D SIMULATIONS BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS-UNIFORMITIES ON THIN-FILM SOLAR CELLS AND MODULES WITH 2-D SIMULATIONS Clean and environmentally friendly photovoltaic

  13. Study of lithium diffusion in RF sputtered Nickel/Vanadium mixed oxides thin films

    E-Print Network [OSTI]

    Artuso, Florinda

    Study of lithium diffusion in RF sputtered NickelÁ/Vanadium mixed oxides thin films F. Artuso a lithium insertion inside RF sputtered Ni/V mixed oxides thin films have been investigated employing, showed three steps clearly involved in the intercalation mechanism of lithium in the oxide films: (i

  14. METAL BLACKS AS SCATTERING CENTERS TO INCREASE THE EFFICIENCY OF THIN FILM SOLAR CELLS

    E-Print Network [OSTI]

    Peale, Robert E.

    METAL BLACKS AS SCATTERING CENTERS TO INCREASE THE EFFICIENCY OF THIN FILM SOLAR CELLS by DEEP R surface of thin-film solar cells to improve efficiency. The principle is that scattering, which film solar cell. The particular types of particles investigated here are known as "metal-black", well

  15. Light trapping in thin-film solar cells measured by Raman spectroscopy

    SciTech Connect (OSTI)

    Ledinský, M., E-mail: ledinsky@fzu.cz [Laboratory of Nanostructures and Nanomaterials, Institute of Physics, Academy of Sciences of the Czech Republic, v. v. i., Cukrovarnická 10, 162 00 Prague (Czech Republic); Photovoltaics and Thin Film Electronics Laboratory, Institute of Microengineering (IMT), École Polytechnique Fédérale de Lausanne (EPFL), Rue de la Maladière 71b, CH-2000 Neuchâtel (Switzerland); Moulin, E.; Bugnon, G.; Meillaud, F.; Ballif, C. [Photovoltaics and Thin Film Electronics Laboratory, Institute of Microengineering (IMT), École Polytechnique Fédérale de Lausanne (EPFL), Rue de la Maladière 71b, CH-2000 Neuchâtel (Switzerland); Ganzerová, K.; Vetushka, A.; Fejfar, A. [Laboratory of Nanostructures and Nanomaterials, Institute of Physics, Academy of Sciences of the Czech Republic, v. v. i., Cukrovarnická 10, 162 00 Prague (Czech Republic)

    2014-09-15

    In this study, Raman spectroscopy is used as a tool to determine the light-trapping capability of textured ZnO front electrodes implemented in microcrystalline silicon (?c-Si:H) solar cells. Microcrystalline silicon films deposited on superstrates of various roughnesses are characterized by Raman micro-spectroscopy at excitation wavelengths of 442?nm, 514?nm, 633?nm, and 785?nm, respectively. The way to measure quantitatively and with a high level of reproducibility the Raman intensity is described in details. By varying the superstrate texture and with it the light trapping in the ?c-Si:H absorber layer, we find significant differences in the absolute Raman intensity measured in the near infrared wavelength region (where light trapping is relevant). A good agreement between the absolute Raman intensity and the external quantum efficiency of the ?c-Si:H solar cells is obtained, demonstrating the validity of the introduced method. Applications to thin-film solar cells, in general, and other optoelectronic devices are discussed.

  16. Oriented niobate ferroelectric thin films for electrical and optical devices and method of making such films

    DOE Patents [OSTI]

    Wessels, B.W.; Nystrom, M.J.

    1998-05-19

    Sr{sub x}Ba{sub 1{minus}x}Nb{sub 2}O{sub 6}, where x is greater than 0.25 and less than 0.75, and KNbO{sub 3} ferroelectric thin films metalorganic chemical vapor deposited on amorphous or crystalline substrate surfaces to provide a crystal axis of the film exhibiting a high dielectric susceptibility, electro-optic coefficient, and/or nonlinear optic coefficient oriented preferentially in a direction relative to a crystalline or amorphous substrate surface are disclosed. Such films can be used in electronic, electro-optic, and frequency doubling components. 8 figs.

  17. Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts

    DOE Patents [OSTI]

    Jansen, Kai W. (Lawrenceville, NJ); Maley, Nagi (Exton, PA)

    2001-01-01

    High performance photovoltaic modules are produced with improved interconnects by a special process. Advantageously, the photovoltaic modules have a dual layer back (rear) contact and a front contact with at least one layer. The front contact and the inner layer of the back contact can comprise a transparent conductive oxide. The outer layer of the back contact can comprise a metal or metal oxide. The front contact can also have a dielectric layer. In one form, the dual layer back contact comprises a zinc oxide inner layer and an aluminum outer layer and the front contact comprises a tin oxide inner layer and a silicon dioxide dielectric outer layer. One or more amorphous silicon-containing thin film semiconductors can be deposited between the front and back contacts. The contacts can be positioned between a substrate and an optional superstrate. During production, the transparent conductive oxide layer of the front contact is scribed by a laser, then the amorphous silicon-containing semiconductors and inner layer of the dual layer back contact are simultaneously scribed and trenched (drilled) by the laser and the trench is subsequently filled with the same metal as the outer layer of the dual layer back contact to provide a superb mechanical and electrical interconnect between the front contact and the outer layer of the dual layer back contact. The outer layer of the dual layer back contact can then be scribed by the laser. For enhanced environmental protection, the photovoltaic modules can be encapsulated.

  18. Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts

    DOE Patents [OSTI]

    Jansen, Kai W. (Lawrenceville, NJ); Maley, Nagi (Exton, PA)

    2000-01-01

    High performance photovoltaic modules are produced with improved interconnects by a special process. Advantageously, the photovoltaic modules have a dual layer back (rear) contact and a front contact with at least one layer. The front contact and the inner layer of the back contact can comprise a transparent conductive oxide. The outer layer of the back contact can comprise a metal or metal oxide. The front contact can also have a dielectric layer. In one form, the dual layer back contact comprises a zinc oxide inner layer and an aluminum outer layer and the front contact comprises a tin oxide inner layer and a silicon dioxide dielectric outer layer. One or more amorphous silicon-containing thin film semiconductors can be deposited between the front and back contacts. The contacts can be positioned between a substrate and an optional superstrate. During production, the transparent conductive oxide layer of the front contact is scribed by a laser, then the amorphous silicon-containing semiconductors and inner layer of the dual layer back contact are simultaneously scribed and trenched (drilled) by the laser and the trench is subsequently filled with the same metal as the outer layer of the dual layer back contact to provide a superb mechanical and electrical interconnect between the front contact and the outer layer of the dual layer back contact. The outer layer of the dual layer back contact can then be scribed by the laser. For enhanced environmental protection, the photovoltaic modules can be encapsulated.

  19. Sputter deposition for multi-component thin films

    DOE Patents [OSTI]

    Krauss, A.R.; Auciello, O.

    1990-05-08

    Ion beam sputter-induced deposition using a single ion beam and a multicomponent target is capable of reproducibly producing thin films of arbitrary composition, including those which are close to stoichiometry. Using a quartz crystal deposition monitor and a computer controlled, well-focused ion beam, this sputter-deposition approach is capable of producing metal oxide superconductors and semiconductors of the superlattice type such as GaAs-AlGaAs as well as layered metal/oxide/semiconductor/superconductor structures. By programming the dwell time for each target according to the known sputtering yield and desired layer thickness for each material, it is possible to deposit composite films from a well-controlled sub-monolayer up to thicknesses determined only by the available deposition time. In one embodiment, an ion beam is sequentially directed via a set of X-Y electrostatic deflection plates onto three or more different element or compound targets which are constituents of the desired film. In another embodiment, the ion beam is directed through an aperture in the deposition plate and is displaced under computer control to provide a high degree of control over the deposited layer. In yet another embodiment, a single fixed ion beam is directed onto a plurality of sputter targets in a sequential manner where the targets are each moved in alignment with the beam under computer control in forming a multilayer thin film. This controlled sputter-deposition approach may also be used with laser and electron beams. 10 figs.

  20. Sputter deposition for multi-component thin films

    DOE Patents [OSTI]

    Krauss, Alan R. (Plainfield, IL); Auciello, Orlando (Cary, NC)

    1990-01-01

    Ion beam sputter-induced deposition using a single ion beam and a multicomponent target is capable of reproducibly producing thin films of arbitrary composition, including those which are close to stoichiometry. Using a quartz crystal deposition monitor and a computer controlled, well-focused ion beam, this sputter-deposition approach is capable of producing metal oxide superconductors and semiconductors of the superlattice type such as GaAs-AlGaAs as well as layered metal/oxide/semiconductor/superconductor structures. By programming the dwell time for each target according to the known sputtering yield and desired layer thickness for each material, it is possible to deposit composite films from a well-controlled sub-monolayer up to thicknesses determined only by the available deposition time. In one embodiment, an ion beam is sequentially directed via a set of X-Y electrostatic deflection plates onto three or more different element or compound targets which are constituents of the desired film. In another embodiment, the ion beam is directed through an aperture in the deposition plate and is displaced under computer control to provide a high degree of control over the deposited layer. In yet another embodiment, a single fixed ion beam is directed onto a plurality of sputter targets in a sequential manner where the targets are each moved in alignment with the beam under computer control in forming a multilayer thin film. This controlled sputter-deposition approach may also be used with laser and electron beams.

  1. Long-laser-pulse method of producing thin films

    DOE Patents [OSTI]

    Balooch, Mehdi (Berkeley, CA); Olander, Donald K. (Berkeley, CA); Russo, Richard E. (Walnut Creek, CA)

    1991-01-01

    A method of depositing thin films by means of laser vaporization employs a long-pulse laser (Nd-glass of about one millisecond duration) with a peak power density typically in the range 10.sup.5 -10.sup.6 W/cm.sup.2. The method may be used to produce high T.sub.c superconducting films of perovskite material. In one embodiment, a few hundred nanometers thick film of YBa.sub.2 Cu.sub.3 O.sub.7-x is produced on a SrTiO.sub.3 crystal substrate in one or two pulses. In situ-recrystallization and post-annealing, both at elevated temperature and in the presence of an oxidizing agen The invention described herein arose in the course of, or under, Contract No. DE-C03-76SF0098 between the United States Department of Energy and the University of California.

  2. Optimization of optical absorption in thin layers of amorphous silicon enhanced by silver nanospheres

    E-Print Network [OSTI]

    Omelyanovich, Mikhail; Simovski, Constantin

    2015-01-01

    We study a highly controllable perfect plasmonic absorber -- a thin metamaterial layer which possess balanced electric and magnetic responses in some frequency range. We show that this regime is compatible with both metal-backed variant of the structure or its semitransparent variant. This regime can be implemented in a prospective thin-film photovoltaic cell with negligible parasitic losses.

  3. Towards the efficiency limits of silicon solar cells: how thin is too thin?

    E-Print Network [OSTI]

    Kowalczewski, Piotr

    2015-01-01

    It is currently possible to fabricate crystalline silicon solar cells with the absorber thickness ranging from a few hundreds of micrometers (conventional wafer-based cells) to devices as thin as $1\\,\\mu\\mathrm{m}$. In this work, we use a model single-junction solar cell to calculate the limits of energy conversion efficiency and estimate the optimal absorber thickness. The limiting efficiency for cells in the thickness range between 40 and $500\\,\\mu\\mathrm{m}$ is very similar and close to 29%. In this regard, we argue that decreasing the thickness below around $40\\,\\mu\\mathrm{m}$ is counter-productive, as it significantly reduces the maximum achievable efficiency, even when optimal light trapping is implemented. We analyse the roles of incomplete light trapping and extrinsic (bulk and surface) recombination mechanisms. For a reasonably high material quality, consistent with present-day fabrication techniques, the optimal thickness is always higher than a few tens of micrometers. We identify incomplete light ...

  4. Methods for fabricating thin film III-V compound solar cell

    DOE Patents [OSTI]

    Pan, Noren; Hillier, Glen; Vu, Duy Phach; Tatavarti, Rao; Youtsey, Christopher; McCallum, David; Martin, Genevieve

    2011-08-09

    The present invention utilizes epitaxial lift-off in which a sacrificial layer is included in the epitaxial growth between the substrate and a thin film III-V compound solar cell. To provide support for the thin film III-V compound solar cell in absence of the substrate, a backing layer is applied to a surface of the thin film III-V compound solar cell before it is separated from the substrate. To separate the thin film III-V compound solar cell from the substrate, the sacrificial layer is removed as part of the epitaxial lift-off. Once the substrate is separated from the thin film III-V compound solar cell, the substrate may then be reused in the formation of another thin film III-V compound solar cell.

  5. Ferroelectric and ferromagnetic properties in BaTiO{sub 3} thin films on Si (100)

    SciTech Connect (OSTI)

    Singamaneni, Srinivasa Rao, E-mail: ssingam@ncsu.edu; Prater, John T. [Materials Science Division, Army Research Office, Research Triangle Park, North Carolina 27709 (United States); Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Punugupati, Sandhyarani; Hunte, Frank; Narayan, Jagdish [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2014-09-07

    In this paper, we report on the epitaxial integration of room temperature lead-free ferroelectric BaTiO{sub 3} thin (?1050?nm) films on Si (100) substrates by pulsed laser deposition technique through a domain matching epitaxy paradigm. We employed MgO and TiN as buffer layers to create BaTiO{sub 3}/SrRuO{sub 3}/MgO/TiN/Si (100) heterostructures. C-axis oriented and cube-on-cube epitaxial BaTiO{sub 3} is formed on Si (100) as evidenced by the in-plane and out-of-plane x-ray diffraction, and transmission electron microscopy. X-ray photoemission spectroscopic measurements show that Ti is in 4(+) state. Polarization hysteresis measurements together with Raman spectroscopy and temperature-dependent x-ray diffraction confirm the room temperature ferroelectric nature of BaTiO{sub 3}. Furthermore, laser irradiation of BaTiO{sub 3} thin film is found to induce ferromagnetic-like behavior but affects adversely the ferroelectric characteristics. Laser irradiation induced ferromagnetic properties seem to originate from the creation of oxygen vacancies, whereas the pristine BaTiO{sub 3} shows diamagnetic behavior, as expected. This work has opened up the route for the integration of room temperature lead-free ferroelectric functional oxides on a silicon platform.

  6. Laser fabrication of crystalline silicon nanoresonators from an amorphous film for low-loss all-dielectric nanophotonics

    E-Print Network [OSTI]

    Dmitriev, P A; Milichko, V A; Mukhin, I S; Gudovskikh, A S; Sitnikova, A A; Samusev, A K; Krasnok, A E; Belov, P A

    2015-01-01

    The concept of high refractive index subwavelength dielectric nanoresonators, supporting electric and magnetic optical resonances, is a promising platform for waveguiding, sensing, and nonlinear nanophotonic devices. However, high concentration of defects in the nanoresonators diminishes their resonant properties, which are crucially dependent on their internal losses. Therefore, it seems to be inevitable to use initially crystalline materials for fabrication of the nanoresonators. Here, we show that the fabrication of crystalline (low-loss) resonant silicon nanoparticles by femtosecond laser ablation of amorphous (high-loss) silicon thin films is possible. We apply two conceptually different approaches: recently proposed laser-induced transfer and a novel laser writing technique for large-scale fabrication of the crystalline nanoparticles. The crystallinity of the fabricated nanoparticles is proven by Raman spectroscopy and electron transmission microscopy, whereas optical resonant properties of the nanopart...

  7. Outdoor Performance of a Thin-Film Gallium-Arsenide Photovoltaic Module

    SciTech Connect (OSTI)

    Silverman, T. J.; Deceglie, M. G.; Marion, B.; Cowley, S.; Kayes, B.; Kurtz, S.

    2013-06-01

    We deployed a 855 cm2 thin-film, single-junction gallium arsenide (GaAs) photovoltaic (PV) module outdoors. Due to its fundamentally different cell technology compared to silicon (Si), the module responds differently to outdoor conditions. On average during the test, the GaAs module produced more power when its temperature was higher. We show that its maximum-power temperature coefficient, while actually negative, is several times smaller in magnitude than that of a Si module used for comparison. The positive correlation of power with temperature in GaAs is due to temperature-correlated changes in the incident spectrum. We show that a simple correction based on precipitable water vapor (PWV) brings the photocurrent temperature coefficient into agreement with that measured by other methods and predicted by theory. The low operating temperature and small temperature coefficient of GaAs give it an energy production advantage in warm weather.

  8. Multilayer nanoparticle arrays for broad spectrum absorption enhancement in thin film solar cells

    E-Print Network [OSTI]

    Krishnan, Aravind; Krishna, Siva Rama; Khan, Mohammed Zafar Ali

    2013-01-01

    In this paper, we present a theoretical study on the absorption efficiency enhancement of a thin film amorphous Silicon (a-Si) photovoltaic cell over a broad spectrum of wavelengths using multiple nanoparticle arrays. The light absorption efficiency is enhanced in the lower wavelengths by a nanoparticle array on the surface and in the higher wavelengths by another nanoparticle array embedded in the active region. The efficiency at intermediate wavelengths is enhanced by the constructive interference of plasmon coupled light. We optimize this design by tuning the radius of particles in both arrays, the period of the array and the distance between the two arrays. The optimization results in 61.44% increase in total quantum efficiency for a 500 nm thick a-Si substrate.

  9. Spin Coated Plasmonic Nanoparticle Interfaces for Photocurrent Enhancement in Thin Film Si Solar Cells

    E-Print Network [OSTI]

    Israelowitz, Miriam; Cong, Tao; Sureshkumar, Radhakrishna

    2013-01-01

    Nanoparticle (NP) arrays of noble metals strongly absorb light in the visible to infrared wavelengths through resonant interactions between the incident electromagnetic field and the metal's free electron plasma. Such plasmonic interfaces enhance light absorption and photocurrent in solar cells. We report a cost effective and scalable room temperature/pressure spin-coating route to fabricate broadband plasmonic interfaces consisting of silver NPs. The NP interface yields photocurrent enhancement (PE) in thin film silicon devices by up to 200% which is significantly greater than previously reported values. For coatings produced from Ag nanoink containing particles with average diameter of 40 nm, an optimal NP surface coverage of 7% was observed. Scanning electron microscopy of interface morphologies revealed that for low surface coverage, particles are well-separated, resulting in broadband PE. At higher surface coverage, formation of particle strings and clusters caused red-shifting of the PE peak and a narro...

  10. MeV Au Ion Irradiation in Silicon and Nanocrystalline Zirconia Film Deposited on Silicon Substrate

    SciTech Connect (OSTI)

    Chang, Yongqin; Zhang, Yanwen; Zhu, Zihua; Edmondson, Philip D.; Weber, William J.

    2012-09-01

    Nanocrystalline zirconia (ZrO2) film with thickness of 305 nm deposited on a silicon substrate was irradiated with 2 MeV Au ions to different fluences at different temperatures. The implanted ion profiles were measured by time-of-flight secondary ion mass spectrometry (ToF-SIMS) and simulated using the stopping and range of ions inmatter (SRIM) code, respectively. The experimental results show that a large fraction of the incident Au ions penetrates through the ZrO2 film and are deposited into the Si substrate. At the interface of ZrO2 and Si, a sudden decrease of Au concentration is observed due to the much larger scattering cross section of Au in ZrO2 than in Si. The depth profile of the Au ions is measured in both the ZrO2 films and the Si substrates, and the results show that the Au distribution profiles do not exhibit a dependence on irradiation temperature. The local Au concentration increases proportionally with the irradiation fluence, suggesting that no thermal or irradiation-induced redistribution of the implanted Au ions. However, the Au concentration in the ZrO2 films, as determined by SIMS, is considerably lower than that predicted by the SRIM results, and the penetration depth from the SIMS measurements is much deeper than that from the SRIM predictions. These observations can be explained by an overestimation of the electronic stopping power, used in the SRIM program, for heavy incident ions in light targets. Over-estimation of the heavy-ion electronic stopping power may lead to errors in local dose calculation and underestimation of the projected range of slow heavy ions in targets that contain light elements. A quick estimate based on a reduced target density may be used to compensate the overestimation of the electronic stopping power in the SRIM program to provide better ion profile prediction.

  11. MeV Au Ion Irradiation in Silicon and Nanocrystalline Zirconia Film Deposited on Silicon Substrate

    SciTech Connect (OSTI)

    Chang, Yongqin; Zhang, Yanwen; Zhu, Zihua; Edmondson, Dr. Philip; Weber, William J

    2012-01-01

    Nanocrystalline zirconia (ZrO2) film with thickness of 305 nm deposited on a silicon substrate was irradiated with 2 MeV Au ions to different fluences at different temperatures. The implanted ion profiles were measured by time-of-flight secondary ion mass spectrometry (ToF-SIMS) and simulated using the stopping and range of ions in matter (SRIM) code, respectively. The experimental results show that a large fraction of the incident Au ions penetrates through the ZrO2 film and are deposited into the Si substrate. At the interface of ZrO2 and Si, a sudden decrease of Au concentration is observed due to the much larger scattering cross section of Au in ZrO2 than in Si. The depth profile of the Au ions is measured in both the ZrO2 films and the Si substrates, and the results show that the Au distribution profiles do not exhibit a dependence on irradiation temperature. The local Au concentration increases proportionally with the irradiation fluence, suggesting that no thermal or irradiation-induced redistribution of the implanted Au ions. However, the Au concentration in the ZrO2 films, as determined by SIMS, is considerably lower than that predicted by the SRIM results, and the penetration depth from the SIMS measurements is much deeper than that from the SRIM predictions. These observations can be explained by an overestimation of the electronic stopping power, used in the SRIM program, for heavy incident ions in light targets. Overestimation of the heavy-ion electronic stopping power may lead to errors in local dose calculation and underestimation of the projected range of slow heavy ions in targets that contain light elements. A quick estimate based on a reduced target density may be used to compensate the overestimation of the electronic stopping power in the SRIM program to provide better ion profile prediction.

  12. Deployable telescope having a thin-film mirror and metering structure

    DOE Patents [OSTI]

    Krumel, Leslie J. (Cedar Crest, NM); Martin, Jeffrey W. (Albuquerque, NM)

    2010-08-24

    A deployable thin-film mirror telescope comprises a base structure and a metering structure. The base structure houses a thin-film mirror, which can be rolled for stowage and unrolled for deployment. The metering structure is coupled to the base structure and can be folded for stowage and unfolded for deployment. In the deployed state, the unrolled thin-film mirror forms a primary minor for the telescope and the unfolded metering structure positions a secondary minor for the telescope.

  13. p-Doping limit and donor compensation in CdTe polycrystalline thin film solar cells

    E-Print Network [OSTI]

    p-Doping limit and donor compensation in CdTe polycrystalline thin film solar cells Ken K. Chin n substitution of Cd CuCd 0=À #12; #12; play critical roles in p-doping of CdTe in CdS/CdTe thin film solar cells in Fig. 1. As for the CdTe polycrystalline thin film in a CdS/CdTe solar cell, it is still being debated

  14. Microwave plasma assisted supersonic gas jet deposition of thin film materials

    DOE Patents [OSTI]

    Schmitt, J.J. III; Halpern, B.L.

    1993-10-26

    An apparatus for fabricating thin film materials utilizing high speed gas dynamics relies on supersonic free jets of carrier gas to transport depositing vapor species generated in a microwave discharge to the surface of a prepared substrate where the vapor deposits to form a thin film. The present invention generates high rates of deposition and thin films of unforeseen high quality at low temperatures. 5 figures.

  15. DISSERTATION DEVICE PHYSICS OF Cu(In,Ga)Se2 THIN-FILM SOLAR CELLS

    E-Print Network [OSTI]

    Sites, James R.

    OF Cu(In,Ga)Se2 THIN-FILM SOLAR CELLS Thin-film solar cells have the potential to be an important contributor to the global energy demand by the mid-21st-century. Cu(In,Ga)Se2 (CIGS) solar cells, which haveDISSERTATION DEVICE PHYSICS OF Cu(In,Ga)Se2 THIN-FILM SOLAR CELLS Submitted by Markus Gloeckler

  16. Light trapping and electrical transport in thin-film solar cells with randomly rough textures

    E-Print Network [OSTI]

    Yet, the central problem of thin-film photovoltaics is to capture and absorb sunlight in a thin active for photovoltaic applica- tions as intrinsically broadband scatterers. In this work, we use rigorous electro

  17. Nanopatterning of ultrananocrystalline diamond thin films via block copolymer lithography.

    SciTech Connect (OSTI)

    Ramanathan, M.; Darling, S. B.; Sumant, A. V.; Auciello, O.

    2010-07-01

    Nanopatterning of diamond surfaces is critical for the development of diamond-based microelectromechanical system/nanoelectromechanical system (MEMS/NEMS), such as resonators or switches. Micro-/nanopatterning of diamond materials is typically done using photolithography or electron beam lithography combined with reactive ion etching (RIE). In this work, we demonstrate a simple process, block copolymer (BCP) lithography, for nanopatterning of ultrananocrystalline diamond (UNCD) films to produce nanostructures suitable for the fabrication of NEMS based on UNCD. In BCP lithography, nanoscale self-assembled polymeric domains serve as an etch mask for pattern transfer. The authors used thin films of a cylinder-forming organic-inorganic BCP, poly(styrene-block-ferrocenyldimethylsilane), PS-b-PFS, as an etch mask on the surface of UNCD films. Orientational control of the etch masking cylindrical PFS blocks is achieved by manipulating the polymer film thickness in concert with the annealing treatment. We have observed that the surface roughness of UNCD layers plays an important role in transferring the pattern. Oxygen RIE was used to etch the exposed areas of the UNCD film underneath the BCP. Arrays of both UNCD posts and wirelike structures have been created using the same starting polymeric materials as the etch mask.

  18. Thin Film Solar Cells with Light Trapping Transparent Conducting Oxide Layer 

    E-Print Network [OSTI]

    Lu, Tianlin

    2012-07-16

    Thin film solar cells, if film thickness is thinner than the optical absorption length, typically give lower cell performance. For the thinner structure, electric current loss due to light penetration can offset the electric ...

  19. Characterization of the viscoelastic properties of thin-film materials using dynamic-mechanical testing techniques 

    E-Print Network [OSTI]

    Biskup, Bruce Allen

    1994-01-01

    An investigation into the use of dynamic mechanical analysis to characterize the viscoelastic properties of thin film materials is presented. The methodology was investigated using polyethylene films used on high altitude research balloons. Time...

  20. Near-infrared photodetector consisting of J-aggregating cyanine dye and metal oxide thin films

    E-Print Network [OSTI]

    Osedach, Timothy P.

    We demonstrate a near-infrared photodetector that consists of a thin film of the J-aggregating cyanine dye, U3, and transparent metal-oxide charge transport layers. The high absorption coefficient of the U3 film, combined ...

  1. Quantitative analysis of anisotropic edge retraction during solid-state dewetting of thin single crystal films

    E-Print Network [OSTI]

    Kim, Gye Hyun

    2012-01-01

    In the as-deposited state, thin films are generally far from equilibrium and will agglomerate or dewet to form arrays of islands when sufficient atomic motion is allowed. Dewetting can occur well below the films' melting ...

  2. Bi-Sr-Ca-Cu-O thin films grown by flash evaporation and pulsed laser deposition 

    E-Print Network [OSTI]

    Ganapathy Subramanian, Santhana

    2004-09-30

    -phase 2212 films were grown on a MgO substrate using the pulsed laser deposition technique from commercially available 2212 powder. The effect of annealing on the thin films was also studied....

  3. Universal scaling of the critical temperature for thin films near the superconducting-to-insulating transition

    E-Print Network [OSTI]

    Ivry, Yachin

    Thin superconducting films form a unique platform for geometrically confined, strongly interacting electrons. They allow an inherent competition between disorder and superconductivity, which in turn enables the intriguing ...

  4. Electrochromism vs. the Bugs:DevelopingWO3 Thin Film Windows...

    Office of Scientific and Technical Information (OSTI)

    Electrochromism vs. the Bugs:DevelopingWO3 Thin Film Windows toControl Photoactive Biological Systems. Citation Details In-Document Search Title: Electrochromism vs. the...

  5. Nonlinear optical characterization of ZnS thin film synthesized by chemical spray pyrolysis method

    SciTech Connect (OSTI)

    G, Sreeja V; Anila, E. I., E-mail: anilaei@gmail.com; R, Reshmi, E-mail: anilaei@gmail.com; John, Manu Punnan, E-mail: anilaei@gmail.com [Optolectronic and Nanomaterials Research Laboratory, Department of Physics, Union Christian College, Aluva-683 102, Kerala (India); V, Sabitha P; Radhakrishnan, P. [International School of Photonics, CUSAT, Cochin-22 (India)

    2014-10-15

    ZnS thin film was prepared by Chemical Spray Pyrolysis (CSP) method. The sample was characterized by X-ray diffraction method and Z scan technique. XRD pattern showed that ZnS thin film has hexagonal structure with an average size of about 5.6nm. The nonlinear optical properties of ZnS thin film was studied by open aperture Z-Scan technique using Q-switched Nd-Yag Laser at 532nm. The Z-scan plot showed that the investigated ZnS thin film has saturable absorption behavior. The nonlinear absorption coefficient and saturation intensity were also estimated.

  6. Finite-element analysis of the deformation of thin Mylar films...

    Office of Scientific and Technical Information (OSTI)

    PROCUREMENT; PRODUCTION; QUALITY CONTROL; REFRACTIVE INDEX; SHRINKAGE; SIMULATION; SOLVENTS; TESTING; THICKNESS; THIN FILMS Word Cloud More Like This Full Text preview image...

  7. Investigation of the optical properties of MoS{sub 2} thin films...

    Office of Scientific and Technical Information (OSTI)

    ellipsometry Spectroscopic ellipsometry (SE) characterization of layered transition metal dichalcogenide (TMD) thin films grown by vapor phase sulfurization is reported. By...

  8. Atmospheric Pressure Chemical Vapor Deposition of High Silica SiO2-TiO2 Antireflective Thin Films for Glass Based Solar Panels

    SciTech Connect (OSTI)

    Klobukowski, Erik R; Tenhaeff, Wyatt E; McCamy, James; Harris, Caroline; Narula, Chaitanya Kumar

    2013-01-01

    The atmospheric pressure chemical vapor deposition (APCVD) of SiO2-TiO2 thin films employing [[(tBuO)3Si]2O-Ti(OiPr)2], which can be prepared from commercially available materials, results in antireflective thin films on float glass under industrially relevant manufacturing conditions. It was found that while the deposition temperature had an effect on the SiO2:TiO2 ratio, the thickness was dependent on the time of deposition. This study shows that it is possible to use APCVD employing a single source precursor containing titanium and silicon to produce thin films on float glass with high SiO2:TiO2 ratios.

  9. Ultrafast transient reflectance of epitaxial semiconducting perovskite thin films

    SciTech Connect (OSTI)

    Smolin, S. Y.; Guglietta, G. W.; Baxter, J. B. E-mail: smay@coe.drexel.edu; Scafetta, M. D.; May, S. J. E-mail: smay@coe.drexel.edu

    2014-07-14

    Ultrafast pump-probe transient reflectance (TR) spectroscopy was used to study carrier dynamics in an epitaxial perovskite oxide thin film of LaFeO{sub 3} (LFO) with a thickness of 40 unit cells (16?nm) grown by molecular beam epitaxy on (LaAlO{sub 3}){sub 0.3}(Sr{sub 2}AlTaO{sub 6}){sub 0.7} (LSAT). TR spectroscopy shows two negative transients in reflectance with local maxima at ?2.5?eV and ?3.5?eV which correspond to two optical transitions in LFO as determined by ellipsometry. The kinetics at these transients were best fit with an exponential decay model with fast (5–40 ps), medium (?200 ps), and slow (??3?ns) components that we attribute mainly to recombination of photoexcited carriers. Moreover, these reflectance transients did not completely decay within the observable time window, indicating that ?10% of photoexcited carriers exist for at least 3?ns. This work illustrates that TR spectroscopy can be performed on thin (<20?nm) epitaxial oxide films to provide a quantitative understanding of recombination lifetimes, which are important parameters for the potential utilization of perovskite films in photovoltaic and photocatalytic applications.

  10. Nonlinear-optical and structural properties of nanocrystalline silicon carbide films

    SciTech Connect (OSTI)

    Brodyn, M. S.; Volkov, V. I. Lyakhovetskii, V. R.; Rudenko, V. I.; Puzilkov, V. M.; Semenov, A. V.

    2012-02-15

    The aim of this study is to investigate the nonlinearity of refraction in nanostructured silicon carbide films depending on their structural features (synthesis conditions for such films, substrate temperature during their deposition, concentration of the crystalline phase in the film, Si/C ratio of atomic concentrations in the film, and size of SiC nanocrystals formed in the film). The corresponding dependences are obtained, as well as the values of nonlinear-optical third-order susceptibility {chi}{sup (3)}({omega}; {omega}, -{omega}, {omega}) for various silicon polytypes (3C, 21R, and 27R) which exceed the value of {chi}{sup (3)} in bulk silicon carbide single crystals by four orders of magnitude.

  11. Epitaxial ternary nitride thin films prepared by a chemical solution method

    SciTech Connect (OSTI)

    Luo, Hongmei [Los Alamos National Laboratory; Feldmann, David M [Los Alamos National Laboratory; Wang, Haiyan [TEXAS A& M; Bi, Zhenxing [TEXAS A& M

    2008-01-01

    It is indispensable to use thin films for many technological applications. This is the first report of epitaxial growth of ternary nitride AMN2 films. Epitaxial tetragonal SrTiN2 films have been successfully prepared by a chemical solution approach, polymer-assisted deposition. The structural, electrical, and optical properties of the films are also investigated.

  12. Ultrananocrystalline and nanocrystalline diamond thin films for NEMS/MEMS applications.

    SciTech Connect (OSTI)

    Sumant, A. V.; Auciello, O.; Carpick, R. W.; Srinivasan, S.; Butler, J. E. (Center for Nanoscale Materials); ( MSD); ( PSC-USR)

    2010-04-01

    There has been a tireless quest by the designers of micro- and nanoelectro mechanical systems (MEMS/NEMS) to find a suitable material alternative to conventional silicon. This is needed to develop robust, reliable, and long-endurance MEMS/NEMS with capabilities for working under demanding conditions, including harsh environments, high stresses, or with contacting and sliding surfaces. Diamond is one of the most promising candidates for this because of its superior physical, chemical, and tribomechanical properties. Ultrananocrystalline diamond (UNCD) and nanocrystalline diamond (NCD) thin films, the two most studied forms of diamond films in the last decade, have distinct growth processes and nanostructures but complementary properties. This article reviews the fundamental and applied science performed to understand key aspects of UNCD and NCD films, including the nucleation and growth, tribomechanical properties, electronic properties, and applied studies on integration with piezoelectric materials and CMOS technology. Several emerging diamond-based MEMS/NEMS applications, including high-frequency resonators, radio frequency MEMS and photonic switches, and the first commercial diamond MEMS product - monolithic diamond atomic force microscopy probes - are discussed.

  13. In-situ investigation of thermal instabilities and solid state dewetting in polycrystalline platinum thin films via confocal laser microscopy

    SciTech Connect (OSTI)

    Jahangir, S.; Cheng, Xuan; Huang, H. H.; Nagarajan, V. [School of Materials Science and Engineering, University of New South Wales, Sydney 2052 (Australia); Ihlefeld, J. [Electronic, Optical, and Nanomaterials Department, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2014-10-28

    Solid state dewetting and the subsequent morphological changes for platinum thin films grown on zinc oxide (ZnO) buffered (001) silicon substrates (Pt/ZnO/SiO{sub 2}/(001)Si system) is investigated under vacuum conditions via a custom-designed confocal laser microscope coupled with a laser heating system. Live imaging of thin film dewetting under a range of heating and quenching vacuum ambients reveals events including hillock formation, hole formation, and hole growth that lead to formation of a network of Pt ligaments, break up of Pt ligaments to individual islands and subsequent Pt islands shape reformation, in chronological fashion. These findings are corroborated by ex-situ materials characterization and quantitative electron microscopy analysis. A secondary hole formation via blistering before film rupture is revealed to be the critical stage, after which a rapid dewetting catastrophe occurs. This process is instantaneous and cannot be captured by ex-situ methods. Finally, an intermetallic phase forms at 900?°C and alters the morphology of Pt islands, suggesting a practical limit to the thermal environments that may be used for these platinized silicon wafers in vacuum conditions.

  14. Mechanical characterization of thin TiO{sub 2} films by means of microelectromechanical systems-based cantilevers

    SciTech Connect (OSTI)

    Adami, A.; Decarli, M.; Bartali, R.; Micheli, V.; Laidani, N.; Lorenzelli, L. [FBK-CMM: Fondazione Bruno Kessler-Center for Materials and MicroSystems, via Sommarive 18, Trento 38123 (Italy)

    2010-01-15

    The measurement of mechanical parameters by means of microcantilever structures offers a reliable and accurate alternative to traditional methods, especially when dealing with thin films, which are extensively used in microfabrication technology and nanotechnology. In this work, microelectromechanical systems (MEMS)-based piezoresistive cantilevers were realized and used for the determination of Young's modulus and residual stress of thin titanium dioxide (TiO{sub 2}) deposited by sputtering from a TiO{sub 2} target using a rf plasma discharge. Films were deposited at different thicknesses, ranging from a few to a hundred nanometers. Dedicated silicon microcantilevers were designed through an optimization of geometrical parameters with the development of analytical as well as numerical models. Young's modulus and residual stress of sputtered TiO{sub 2} films were assessed by using both mechanical characterization based on scanning profilometers and piezoresistive sensing elements integrated in the silicon cantilevers. Results of MEMS-based characterization were combined with the tribological and morphological properties measured by microscratch test and x-ray diffraction analysis.

  15. Studies on nickel-tungsten oxide thin films

    SciTech Connect (OSTI)

    Usha, K. S. [Department of Physics, Alagappa University, Karaikudi - 630 004 (India); Sivakumar, R., E-mail: krsivakumar1979@yahoo.com [Directorate of Distance Education, Alagappa University, Karaikudi - 630 004 (India); Sanjeeviraja, C. [Department of Physics, Alagappa Chettiar College of Engineering and Technology, Karaikudi - 630 004 (India)

    2014-10-15

    Nickel-Tungsten oxide (95:5) thin films were prepared by rf sputtering at 200W rf power with various substrate temperatures. X-ray diffraction study reveals the amorphous nature of films. The substrate temperature induced decrease in energy band gap with a maximum transmittance of 71%1 was observed. The Micro-Raman study shows broad peaks at 560 cm{sup ?1} and 1100 cm{sup ?1} correspond to Ni-O vibration and the peak at 860 cm{sup ?1} can be assigned to the vibration of W-O-W bond. Photoluminescence spectra show two peaks centered on 420 nm and 485 nm corresponding to the band edge emission and vacancies created due to the addition of tungsten, respectively.

  16. Naphthacene Based Organic Thin Film Transistor With Rare Earth Oxide

    SciTech Connect (OSTI)

    Konwar, K. [Department of Physics, Digboi College, Digboi-786171, Assam (India); Baishya, B. [Department of Physics, Dibrugarh University, Dibrugarh-786004, Assam (India)

    2010-12-01

    Naphthacene based organic thin film transistors (OTFTs) have been fabricated using La{sub 2}O{sub 3}, as the gate insulator. All the OTFTs have been fabricated by the process of thermal evaporation in vacuum on perfectly cleaned glass substrates with aluminium as source-drain and gate electrodes. The naphthacene film morphology on the glass substrate has been studied by XRD and found to be polycrystalline in nature. The field effect mobility, output resistance, amplification factor, transconductance and gain bandwidth product of the OTFTs have been calculated by using theoretical TFT model. The highest value of field effect mobility is found to be 0.07x10{sup -3} cm{sup 2}V{sup -1}s{sup -1} for the devices annealed in vacuum at 90 deg. C for 5 hours.

  17. Microstructure of amorphous indium oxide and tin oxide thin films

    SciTech Connect (OSTI)

    Rauf, I.A.; Brown, L.M. (Univ. of Cambridge (United Kingdom))

    1994-03-15

    Indium oxide, tin oxide, and some other doped and undoped oxide semiconductors show an interesting and technologically important combination of properties. They have high luminous transparency, good electrical conductivity and high infrared reflectivity. Numerous techniques for depositing these materials have been developed and have undergone a number of changes during last two decades. An understanding of the basic physics of these materials has begun to dawn. Most of the literature on transparent conducting oxides consists of studying the dependence of the properties on the composition, preparation conditions, such as deposition rate, substrate temperature or post-deposition heat treatment. In this paper the authors have employed the transmission electron microscopy to study the microstructure of reactively evaporated, electron beam evaporated, ion-beam sputtered amorphous indium oxide and reactively evaporated amorphous tin oxide thin films. These films, which have received little attention in the past, can have enormous potential as transparent conductive coatings on heat-sensitive substrates and inexpensive solar cells.

  18. Thin film solar cell including a spatially modulated intrinsic layer

    DOE Patents [OSTI]

    Guha, Subhendu (Troy, MI); Yang, Chi-Chung (Troy, MI); Ovshinsky, Stanford R. (Bloomfield Hills, MI)

    1989-03-28

    One or more thin film solar cells in which the intrinsic layer of substantially amorphous semiconductor alloy material thereof includes at least a first band gap portion and a narrower band gap portion. The band gap of the intrinsic layer is spatially graded through a portion of the bulk thickness, said graded portion including a region removed from the intrinsic layer-dopant layer interfaces. The band gap of the intrinsic layer is always less than the band gap of the doped layers. The gradation of the intrinsic layer is effected such that the open circuit voltage and/or the fill factor of the one or plural solar cell structure is enhanced.

  19. Thin film superconductors and process for making same

    DOE Patents [OSTI]

    Nigrey, P.J.

    1988-01-21

    A process for the preparation of oxide superconductors from high-viscosity non-aqueous solution is described. Solutions of lanthanide nitrates, alkaline earth nitrates and copper nitrates in a 1:2:3 stoichiometric ratio, when added to ethylene glycol containing citric acid solutions, have been used to prepare highly viscous non-aqueous solutions of metal mixed nitrates-citrates. Thin films of these compositions are produced when a layer of the viscous solution is formed on a substrate and subjected to thermal decomposition.

  20. Preparation of thin ceramic films via an aqueous solution route

    DOE Patents [OSTI]

    Pederson, Larry R. (Kennewick, WA); Chick, Lawrence A. (Richland, WA); Exarhos, Gregory J. (Richland, WA)

    1989-01-01

    A new chemical method of forming thin ceramic films has been developed. An aqueous solution of metal nitrates or other soluble metal salts and a low molecular weight amino acid is coated onto a substrate and pyrolyzed. The amino acid serves to prevent precipitation of individual solution components, forming a very viscous, glass-like material as excess water is evaporated. Using metal nitrates and glycine, the method has been demonstrated for zirconia with various levels of yttria stabilization, for lanthanum-strontium chromites, and for yttrium-barium-copper oxide superconductors on various substrates.

  1. Thin-Film Material Science and Processing | Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.Week DayDr. JeffreyThermalš ÐÓÔÑ ÒØ ÓworkThin-Film

  2. Hydrogen adsorption in thin films of Prussian blue analogue

    SciTech Connect (OSTI)

    Yang, Dali [Los Alamos National Laboratory; Ding, Vivian [Los Alamos National Laboratory; Luo, Junhua [Los Alamos National Laboratory; Currier, Robert P [Los Alamos National Laboratory; Obrey, Steve [Los Alamos National Laboratory; Zhao, Yusheng [Los Alamos National Laboratory

    2008-01-01

    Quartz crystal microbalance with dissipation (QCM-D) measurement was used to investigate the kinetics of the molecular hydrogen adsorption into thin films of prussian blue analogues - Cu{sub 3}[Co(CN){sub 6}]{sub 2} at ambient conditions. Although the equilibrium adsorption seems to be independent of the thickness, the adsorption rate substantially decreases with the thickness of the films. In addition, the reversibility of H{sub 2} adsorption into the Cu{sub 3}[Co(CN){sub 6}]{sub 2} films was investigated. The results indicate that the Cu{sub 3}[Co(CN){sub 6}]{sub 2} maily interacts with H{sub 2} molecules physically. The highest H{sub 2} uptake by the Cu{sub 3}[Co(CN){sub 6}]{sub 2} films is obtained when the gas phase is stagnant inside the testing cell. However, the unusual high H{sub 2} uptake obtained from the QCM-D measurement makes us question how reliable this analytic methodology is.

  3. Comparative study of the mechanical properties of nanostructured thin films on stretchable substrates

    SciTech Connect (OSTI)

    Djaziri, S. [Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf (Germany); Institut P' (UPR 3346 CNRS), Université de Poitiers, ENSMA, Bd Pierre et Marie Curie, 86962 Futuroscope Cedex (France); Renault, P.-O.; Le Bourhis, E.; Goudeau, Ph., E-mail: Philippe.goudeau@univ-poitiers.fr [Institut P' (UPR 3346 CNRS), Université de Poitiers, ENSMA, Bd Pierre et Marie Curie, 86962 Futuroscope Cedex (France); Faurie, D. [LSPM, (UPR 3407 CNRS), Université Paris 13, Institut Galilée, 99 avenue Jean-Baptiste Clément, 93430 Villetaneuse (France); Geandier, G. [Institut Jean Lamour (UMR 3079 CNRS), Université de Lorraine, Parc de Saurupt, CS 50840, 54011 NANCY Cedex (France); Mocuta, C.; Thiaudière, D. [Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex (France)

    2014-09-07

    Comparative studies of the mechanical behavior between copper, tungsten, and W/Cu nanocomposite based on copper dispersoïd thin films were performed under in-situ controlled tensile equi-biaxial loadings using both synchrotron X-ray diffraction and digital image correlation techniques. The films first deform elastically with the lattice strain equal to the true strain given by digital image correlation measurements. The Cu single thin film intrinsic elastic limit of 0.27% is determined below the apparent elastic limit of W and W/Cu nanocomposite thin films, 0.30% and 0.49%, respectively. This difference is found to be driven by the existence of as-deposited residual stresses. Above the elastic limit on the lattice strain-true strain curves, we discriminate two different behaviors presumably footprints of plasticity and fracture. The Cu thin film shows a large transition domain (0.60% true strain range) to a plateau with a smooth evolution of the curve which is associated to peak broadening. In contrast, W and W/Cu nanocomposite thin films show a less smooth and reduced transition domain (0.30% true strain range) to a plateau with no peak broadening. These observations indicate that copper thin film shows some ductility while tungsten/copper nanocomposites thin films are brittle. Fracture resistance of W/Cu nanocomposite thin film is improved thanks to the high compressive residual stress and the elimination of the metastable ?-W phase.

  4. Science and technology of ultrananocrystalline diamond (UNCD) thin films for multifunctional devices

    SciTech Connect (OSTI)

    Auciello, O.; Krauss, A. R.; Gruen, D. M.; Jayatissa, A.; Sumant, A.; Tucek, J.; Mancini, D.; Molodvan, N.; Erdemir, A.; Ersoy, D.; Gardos, M. N.; Busman, H. G.; Meyer, E. M.

    2000-08-24

    MEMS devices are currently fabricated primarily in silicon because of the available surface machining technology. However, Si has poor mechanical and tribological properties, and practical MEMS devices are currently limited primarily to applications involving only bending and flexural motion, such as cantilever accelerometers and vibration sensors. However, because of the poor flexural strength and fracture toughness of Si, and the tendency of Si to adhere to hydrophyllic surfaces, even these simple devices have limited dynamic range. Future MEMS applications that involve significant rolling or sliding contact will require the use of new materials with significantly improved mechanical and tribological properties, and the ability to perform well in harsh environments. Diamond is a superhard material of high mechanical strength, exceptional chemical inertness, and outstanding thermal stability. The brittle fracture strength is 23 times that of Si, and the projected wear life of diamond MEMS moving mechanical assemblies (MEMS-MMAs) is 10,000 times greater than that of Si MMAs. However, as the hardest known material, diamond is notoriously difficult to fabricate. Conventional CVD thin film deposition methods offer an approach to the fabrication of ultra-small diamond structures, but the films have large grain size, high internal stress, poor intergranular adhesion, and very rough surfaces, and are consequently ill-suited for MEMS-MMA applications. A thin film deposition process has been developed that produces phase-pure nanocrystalline diamond with morphological and mechanical properties that are ideally suited for MEMS applications in general, and MMA use in particular. The authors have developed lithographic techniques for the fabrication of diamond microstructure including cantilevers and multi-level devices, acting as precursors to micro-bearings and gears, making nanocrystalline diamond a promising material for the development of high performance MEMS devices.

  5. Science and technology of ultrananocrystalline diamond (UNCD) thin films for multifunctional devices.

    SciTech Connect (OSTI)

    Auciello, O.; Gruen, D. M.; Krauss, A. R.; Jayatissa, A.; Sumant, A.; Tucek, J.; Mancini, D.; Moldovan, N.; Erdemir, A.; Ersoy, D.; Gardos, M. N.; Busmann, H. G.; Meyer, E. M.

    2000-11-15

    MEMS devices are currently fabricated primarily in silicon because of the available surface machining technology. However, Si has poor mechanical and tribological properties, and practical MEMS devices are currently limited primarily to applications involving only bending and flexural motion, such as cantilever accelerometers and vibration sensors, However, because of the poor flexural strength and fracture toughness of Si, and the tendency of Si to adhere to hydrophyllic surfaces, even these simple devices have limited dynamic range. Future MEMS applications that involve significant rolling or sliding contact will require the use of new materials with significantly improved mechanical and tribological properties, and the ability to perform well in harsh environments. Diamond is a superhard material of high mechanical strength, exceptional chemical inertness, and outstanding thermal stability. The brittle fracture strength is 23 times that of Si, and the projected wear life of diamond MEMS moving mechanical assemblies (MEMS-MMAS) is 10,000 times greater than that of Si MMAs. However, as the hardest known material, diamond is notoriously difficult to fabricate. Conventional CVD thin film deposition methods offer an approach to the fabrication of ultra-small diamond structures, but the films have large grain size, high internal stress, poor intergranular adhesion, and very rough surfaces, and are consequently ill-suited for MEMS-MMA applications. A thin film deposition process has been developed that produces phase-pure ultrananocrystalline diamond (UNCD) with morphological and mechanical properties that are ideally suited for MEMS applications in general, and MMA use in particular. We have developed lithographic techniques for the fabrication of diamond microstructure including cantilevers and multi-level devices, acting as precursors to micro-bearings and gears, making UNCD a promising material for the development of high performance MEMS devices.

  6. Amorphous silicon ionizing particle detectors

    DOE Patents [OSTI]

    Street, R.A.; Mendez, V.P.; Kaplan, S.N.

    1988-11-15

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation. 15 figs.

  7. Amorphous silicon ionizing particle detectors

    DOE Patents [OSTI]

    Street, Robert A. (Palo Alto, CA); Mendez, Victor P. (Berkeley, CA); Kaplan, Selig N. (El Cerrito, CA)

    1988-01-01

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation.

  8. Epitaxial growth of silicon for layer transfer

    DOE Patents [OSTI]

    Teplin, Charles; Branz, Howard M

    2015-03-24

    Methods of preparing a thin crystalline silicon film for transfer and devices utilizing a transferred crystalline silicon film are disclosed. The methods include preparing a silicon growth substrate which has an interface defining substance associated with an exterior surface. The methods further include depositing an epitaxial layer of silicon on the silicon growth substrate at the surface and separating the epitaxial layer from the substrate substantially along the plane or other surface defined by the interface defining substance. The epitaxial layer may be utilized as a thin film of crystalline silicon in any type of semiconductor device which requires a crystalline silicon layer. In use, the epitaxial transfer layer may be associated with a secondary substrate.

  9. Method of lift-off patterning thin films in situ employing phase change resists

    DOE Patents [OSTI]

    Bahlke, Matthias Erhard; Baldo, Marc A; Mendoza, Hiroshi Antonio

    2014-09-23

    Method for making a patterned thin film of an organic semiconductor. The method includes condensing a resist gas into a solid film onto a substrate cooled to a temperature below the condensation point of the resist gas. The condensed solid film is heated selectively with a patterned stamp to cause local direct sublimation from solid to vapor of selected portions of the solid film thereby creating a patterned resist film. An organic semiconductor film is coated on the patterned resist film and the patterned resist film is heated to cause it to sublime away and to lift off because of the phase change.

  10. Biaxial texturing of inorganic photovoltaic thin films using low energy ion beam irradiation during growth

    SciTech Connect (OSTI)

    Groves, James R; De Paula, Raymond F; Hayes, Garrett H; Li, Joel B; Hammond, Robert H; Salleo, Alberto; Clemens, Bruce M

    2010-05-07

    We describe our efforts to control the grain boundary alignment in polycrystalline thin films of silicon by using a biaxially textured template layer of CaF{sub 2} for photovoltaic device applications. We have chosen CaF{sub 2} as a candidate material due to its close lattice match with silicon and its suitability as an ion beam assisted deposition (mAD) material. We show that the CaF{sub 2} aligns biaxially at a thickness of {approx}10 nm and, with the addition of an epitaxial CaF{sub 2} layer, has an in-plane texture of {approx}15{sup o}. Deposition of a subsequent layer of Si aligns on the template layer with an in-plane texture of 10.8{sup o}. The additional improvement of in-plane texture is similar to the behavior observed in more fully characterized IBAD materials systems. A germanium buffer layer is used to assist in the epitaxial deposition of Si on CaF{sub 2} template layers and single crystal substrates. These experiments confirm that an mAD template can be used to biaxially orient polycrystalline Si.

  11. Effects of Process Conditions on Properties of Electroplated Ni Thin Films for Microsystem Applications

    E-Print Network [OSTI]

    Fleck, Norman A.

    Effects of Process Conditions on Properties of Electroplated Ni Thin Films for Microsystem, Southampton SO17 1QJ, United Kingdom The properties of electroplated Ni thin films have been systematically, micromotors, and pneumatic actuators.3-11 Ni and NiFe are the electroplated metals most commonly used for MEMS

  12. Ambient induced degradation and chemically activated recovery in copper phthalocyanine thin film transistors

    E-Print Network [OSTI]

    Kummel, Andrew C.

    Ambient induced degradation and chemically activated recovery in copper phthalocyanine thin film 2009 The electrical degradation aging of copper phthalocyanine CuPc organic thin film transistors OTFTs of Physics. DOI: 10.1063/1.3159885 I. INTRODUCTION The recent demand for low cost, versatile electronic de

  13. THE LUBRICATION APPROXIMATION FOR THIN VISCOUS FILMS: REGULARITY AND LONG TIME BEHAVIOR OF WEAK SOLUTIONS

    E-Print Network [OSTI]

    Pugh, Mary

    THE LUBRICATION APPROXIMATION FOR THIN VISCOUS FILMS: REGULARITY AND LONG TIME BEHAVIOR OF WEAK = - · (f(h) h) in one space dimension. This equation, derived from a `lubrication approximation', models from a `lubrication approximation', models surface tension dominated motion of thin viscous films

  14. Focused ion beam specimen preparation for electron holography of electrically biased thin film solar cells

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    solar cells M. Duchamp1 , M. den Hertog2 , R. Imlau1 , C. B. Boothroyd1 , A. Kovács1 , A. H. Tavabi1, biased TEM specimen, thin film solar cell, FIB Thin films of hydrogenated Si (Si:H) can be used as active absorber layers in solar cells deposited on low cost substrates using plasma-enhanced chemical vapour

  15. Optimization and Characterization of RF Sputtered Piezoelectric Zinc Oxide Thin Film for

    E-Print Network [OSTI]

    Tang, William C

    Oxide (ZnO) thin films had been found to have unique piezoelectric effect for the applicationsOptimization and Characterization of RF Sputtered Piezoelectric Zinc Oxide Thin Film for Transducer Applications Yu-Hsiang Hsu, John Lin, and William C. Tang* Department of Biomedical Engineering University

  16. Thin-Film Active Nano-PWAS for Structural Health Monitoring , Victor Giurgiutiu1

    E-Print Network [OSTI]

    Giurgiutiu, Victor

    Thin-Film Active Nano-PWAS for Structural Health Monitoring Bin Lin1 , Victor Giurgiutiu1 , Amar S 3 University of Texas Arlington, Arlington, TX 76019 ABSTRACT Structural health monitoring (SHM is to develop the fabrication and optimum design of thin-film nano-PWAS for structural health monitoring

  17. Organic thin film devices with stabilized threshold voltage and mobility, and method for preparing the devices

    DOE Patents [OSTI]

    Nastasi, Michael Anthony; Wang, Yongqiang; Fraboni, Beatrice; Cosseddu, Piero; Bonfiglio, Annalisa

    2013-06-11

    Organic thin film devices that included an organic thin film subjected to a selected dose of a selected energy of ions exhibited a stabilized mobility (.mu.) and threshold voltage (VT), a decrease in contact resistance R.sub.C, and an extended operational lifetime that did not degrade after 2000 hours of operation in the air.

  18. Conductive polymer/fullerene blend thin films with honeycomb framework for transparent photovoltaic application

    DOE Patents [OSTI]

    Cotlet, Mircea; Wang, Hsing-Lin; Tsai, Hsinhan; Xu, Zhihua

    2015-04-21

    Optoelectronic devices and thin-film semiconductor compositions and methods for making same are disclosed. The methods provide for the synthesis of the disclosed composition. The thin-film semiconductor compositions disclosed herein have a unique configuration that exhibits efficient photo-induced charge transfer and high transparency to visible light.

  19. Semiconductor heterostructures and optimization of light-trapping structures for efficient thin-film solar cells

    E-Print Network [OSTI]

    Yu, Edward T.

    and optimization of light-trapping structures for efficient thin-film solar cells Claiborne O McPheeters1 , Dongzhi elements are integrated for light trapping. Measurements and simulations of GaAs solar cells with less than in their performance. Keywords: quantum-well, quantum-dot, scattering, diffraction, thin-film, GaAs, InAs, photovoltaic

  20. The peeling behavior of thin films with finite bending stiffness and the implications on gecko adhesion

    E-Print Network [OSTI]

    . This paper assesses the influence of the bending stiffness on thin film peeling and argues that detailedThe peeling behavior of thin films with finite bending stiffness and the implications on gecko the bending stiffness of the spatula has a strong influence on the peeling force which is neglected