Powered by Deep Web Technologies
Note: This page contains sample records for the topic "thin film silicon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Efficient light trapping structure in thin film silicon solar cells  

E-Print Network (OSTI)

Thin film silicon solar cells are believed to be promising candidates for continuing cost reduction in photovoltaic panels because silicon usage could be greatly reduced. Since silicon is an indirect bandgap semiconductor, ...

Sheng, Xing

2

NANO-INDENTATION OF COPPER THIN FILMS ON SILICON SUBSTRATES  

E-Print Network (OSTI)

NANO-INDENTATION OF COPPER THIN FILMS ON SILICON SUBSTRATES S. Suresh1 , T.-G. Nieh2 and B.W. Choi2: Mechanical properties; Nano-indentation; Thin films; Copper; Dislocations Introduction Indentation methods films on substrates (e.g., [2,3]) using instrumented indentation. Nano-indentation studies of thin films

Suresh, Subra

3

Stress Management: Revealing Defects in Thin Silicon Films  

NLE Websites -- All DOE Office Websites (Extended Search)

caused by the manufacturing process for strained-silicon films. Strained silicon is a new, rapidly developing material for building enhanced-performance silicon-based...

4

NREL: Energy Analysis - Crystalline Silicon and Thin Film Photovoltaic  

NLE Websites -- All DOE Office Websites (Extended Search)

Crystalline Silicon and Thin Film Photovoltaic Results - Life Cycle Crystalline Silicon and Thin Film Photovoltaic Results - Life Cycle Assessment Harmonization Life Cycle Greenhouse Gas Emissions from Solar Photovoltaics (Fact Sheet) Cover of the Life Cycle Greenhouse Gas Emissions from Solar Photovoltaics factsheet Download the Fact Sheet Over the last 30 years, hundreds of life cycle assessments (LCAs) have been conducted and published for a variety of residential and utility-scale solar photovoltaic (PV) systems with wide-ranging results. The inconsistencies in these results can be attributed to the technologies evaluated-such as differing system designs, real-world versus conceptual systems, or technology improvements over time-and life cycle assessment methods and assumptions. To better understand greenhouse gas (GHG) emissions from commercial

5

Formation of thin-film resistors on silicon substrates  

DOE Patents (OSTI)

The formation of thin-film resistors by the ion implantation of a metallic conductive layer in the surface of a layer of phosphosilicate glass or borophosphosilicate glass which is deposited on a silicon substrate. The metallic conductive layer materials comprise one of the group consisting of tantalum, ruthenium, rhodium, platinum and chromium silicide. The resistor is formed and annealed prior to deposition of metal, e.g. aluminum, on the substrate.

Schnable, George L. (Montgomery County, PA); Wu, Chung P. (Hamilton Township, Mercer County, NJ)

1988-11-01T23:59:59.000Z

6

Anisotropic dewetting in ultra-thin single-crystal silicon-on-insulator films  

E-Print Network (OSTI)

The single crystal silicon-on-insulator thin film materials system represents both an ideal model system for the study of anisotropic thin film dewetting as well as a technologically important system for the development ...

Danielson, David T. (David Thomas)

2008-01-01T23:59:59.000Z

7

Amorphous silicon-carbon thin films  

DOE Green Energy (OSTI)

This study has shown that it is possible to produce nearly stoichiometric films of a-SiC:H with high hydrogen content by rf sputtering in an atmosphere of argon, propane, and hydrogen. The a-SiC films adhere to a variety of substrates and exhibit better thermal stability than a-Si:H films. The index of refraction is 2.8. The optical gap energy of these films is between 2.0 and 2.2 eV. A series of isochronal annealing steps show that optical gap energies decrease, optical absorption edge widths increase, and that the minimum optical density in the low absorption region increases with annealing above 450/sup 0/C. Infrared measurements show large absorptions at 2100, 1000, 750, and 650 cm/sup -1/ corresponding to SiH stretch, CH wagging, SiC stretch, and SiH wagging vibrational modes. The CH/sub n/ stretch mode near 2900 cm/sup -1/ is very small. Isochronal annealing causes a nearly continuous decrease in the integrated intensity of the SiH stretch mode at 2100 cm/sup -1/. The 2100 absorption peak shape may indicate the presence of SiH/sub 2/ in the film. Comparison of the 2100 and 750 absorption peaks show that the Si-C bonds are more heat resistant than the Si-H bonds. Annealing experiments reveal that the decrease in optical gap energy with increasing annealing temperature is probably not due to change in the Si-H bonds. Rather, the decrease is most likely due to changes or breaks in the C-H bonds and possibly the Si-C bonds. NMR results show that the films have high hydrogen concentrations. Also, NMR results and the integrated intensity for the SiH stretch mode give correct order of magnitude determination of the number and concentration of Si-H bonds in the a-SiC:H films.

Ward, J.F.

1983-09-01T23:59:59.000Z

8

Silicon Oxynitride Thin Film Barriers for PV Packaging (Poster)  

DOE Green Energy (OSTI)

Dielectric, adhesion-promoting, moisture barriers comprised of silicon oxynitride thin film materials (SiOxNy with various material stoichiometric compositions x,y) were applied to: 1) bare and pre-coated soda-lime silicate glass (coated with transparent conductive oxide SnO2:F and/or aluminum), and polymer substrates (polyethylene terephthalate, PET, or polyethylene napthalate, PEN); plus 2) pre- deposited photovoltaic (PV) cells and mini-modules consisting of amorphous silicon (a-Si) and copper indium gallium diselenide (CIGS) thin-film PV technologies. We used plasma enhanced chemical vapor deposition (PECVD) process with dilute silane, nitrogen, and nitrous oxide/oxygen gas mixtures in a low-power (< or = 10 milliW per cm2) RF discharge at ~ 0.2 Torr pressure, and low substrate temperatures < or = 100(degrees)C, over deposition areas ~ 1000 cm2. Barrier properties of the resulting PV cells and coated-glass packaging structures were studied with subsequent stressing in damp-heat exposure at 85(degrees)C/85% RH. Preliminary results on PV cells and coated glass indicate the palpable benefits of the barriers in mitigating moisture intrusion and degradation of the underlying structures using SiOxNy coatings with thicknesses in the range of 100-200 nm.

del Cueto, J. A.; Glick, S. H.; Terwilliger, K. M.; Jorgensen, G. J.; Pankow, J. W.; Keyes, B. M.; Gedvilas, L. M.; Pern, F. J.

2006-10-03T23:59:59.000Z

9

Silicon-integrated thin-film structure for electro-optic applications  

DOE Patents (OSTI)

A crystalline thin-film structure suited for use in any of an number of electro-optic applications, such as a phase modulator or a component of an interferometer, includes a semiconductor substrate of silicon and a ferroelectric, optically-clear thin film of the perovskite BaTiO.sub.3 overlying the surface of the silicon substrate. The BaTiO.sub.3 thin film is characterized in that substantially all of the dipole moments associated with the ferroelectric film are arranged substantially parallel to the surface of the substrate to enhance the electro-optic qualities of the film.

McKee, Rodney A. (Kingston, TN); Walker, Frederick Joseph (Oak Ridge, TN)

2000-01-01T23:59:59.000Z

10

Ambipolar charge transport in microcrystalline silicon thin-film transistors  

Science Conference Proceedings (OSTI)

Hydrogenated microcrystalline silicon ({mu}c-Si:H) is a promising candidate for thin-film transistors (TFTs) in large-area electronics due to high electron and hole charge carrier mobilities. We report on ambipolar TFTs based on {mu}c-Si:H prepared by plasma-enhanced chemical vapor deposition at temperatures compatible with flexible substrates. Electrons and holes are directly injected into the {mu}c-Si:H channel via chromium drain and source contacts. The TFTs exhibit electron and hole charge carrier mobilities of 30-50 cm{sup 2}/V s and 10-15 cm{sup 2}/V s, respectively. In this work, the electrical characteristics of the ambipolar {mu}c-Si:H TFTs are described by a simple analytical model that takes the ambipolar charge transport into account. The analytical expressions are used to model the transfer curves, the potential and the net surface charge along the channel of the TFTs. The electrical model provides insights into the electronic transport of ambipolar {mu}c-Si:H TFTs.

Knipp, Dietmar; Marinkovic, M. [Electronic Devices and Nanophotonics Laboratory, Jacobs University Bremen, 28759 Bremen (Germany); Chan, Kah-Yoong [IEF5-Photovoltaics, Research Center Juelich, 52425 Juelich (Germany); Faculty of Engineering, Multimedia University, Cyberjaya, 63100 Selangor (Malaysia); Gordijn, Aad [IEF5-Photovoltaics, Research Center Juelich, 52425 Juelich (Germany); Stiebig, Helmut [IEF5-Photovoltaics, Research Center Juelich, 52425 Juelich (Germany); Malibu Solar GmbH and Co. KG, 33609 Bielefeld (Germany)

2011-01-15T23:59:59.000Z

11

Physical Properties of HWCVD Microcrystalline Silicon Thin Films: Preprint  

DOE Green Energy (OSTI)

This conference paper describes Microcrystalline silicon films were grown with different thicknesses and different hydrogen dilution ratios on glass and Si substrates. Some films were deposited with a seed layer, whereas others were deposited directly on the substrate. We used atomic force microscopy, scanning electron microscopy, and X-ray diffraction to study the morphology and crystalline structure of the samples. We did not find a significant influence of the different substrates on the morphology or crystalline structure. The presence of the seed layer enhanced the crystallization process, decreasing the amount of amorphous layer present in the films. The microstructure of most films was formed by grains, with a subgrain structure. Films grown with low values of dilution ratio had (220) texture and elongated grains, whereas films deposited with high values of dilution ratio were randomly oriented and had an irregular shape.

Moutinho, H. R.; Romero, M. J.; Jiang, C. S.; Xu, Y.; Nelson, B. P.; Jones, K. M.; Mahan, A. H.; Al-Jassim, M. M.

2002-05-01T23:59:59.000Z

12

Status of Amorphous and Crystalline Thin Film Silicon Solar Cell Activities  

DOE Green Energy (OSTI)

This paper reviews the recent activities and accomplishments of the national Amorphous Silicon Team and a (crystalline) thin-film-Si subteam that was implemented in 2002 to research solar cell devices based on thin crystalline Si based layers. This paper reports the evolution of team organization, the technical highlights from the recent team meetings, and an outlook on commercialization potential.

von Roedern, B.

2003-05-01T23:59:59.000Z

13

In situ measurements of stress evolution in silicon thin films during  

NLE Websites -- All DOE Office Websites (Extended Search)

In situ measurements of stress evolution in silicon thin films during In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation Title In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation Publication Type Journal Article Year of Publication 2010 Authors Sethuraman, Vijay A., Michael J. Chon, Maxwell Shimshak, Venkat Srinivasan, and Pradeep R. Guduru Journal Journal of Power Sources Volume 195 Start Page 5062 Issue 15 Pagination 5062-5066 Date Published 08/2010 Keywords In situ stress measurement, Lithium-ion battery, Mechanical dissipation, Multi-beam optical sensor (MOS), Open-circuit relaxation, Silicon anode Abstract We report in situ measurements of stress evolution in a silicon thin-film electrode during electrochemical lithiation and delithiation by using the multi-beam optical sensor (MOS) technique. Upon lithiation, due to substrate constraint, the silicon electrode initially undergoes elastic deformation, resulting in rapid rise of compressive stress. The electrode begins to deform plastically at a compressive stress of ca. -1.75 GPa; subsequent lithiation results in continued plastic strain, dissipating mechanical energy. Upon delithiation, the electrode first undergoes elastic straining in the opposite direction, leading to a tensile stress of ca. 1 GPa; subsequently, it deforms plastically during the rest of delithiation. The plastic flow stress evolves continuously with lithium concentration. Thus, mechanical energy is dissipated in plastic deformation during both lithiation and delithiation, and it can be calculated from the stress measurements; we show that it is comparable to the polarization loss. Upon current interruption, both the film stress and the electrode potential relax with similar time constants, suggesting that stress contributes significantly to the chemical potential of lithiated silicon.

14

Amorphous-silicon thin-film heterojunction solar cells  

DOE Green Energy (OSTI)

The investigation of amorphous silicon materials at MTSEC has had two major thrusts: (1) to improve the amorphous material, i.e., obtain a low state density in the gap, improve the carrier collection depth and diminish non-radiative recombinations; and (2) to attempt to understand and improve on the limitations of the junction devices while evaluating the amorphous silicon materials. In the first of these efforts, the investigation has continued to examine the modifications to the a-Si(H) network by alloying silicon with other group IVA elements, either in binary or ternary compositions, and/or by replacing the hydrogenation for defect compensation with a combination of hydrogenation and alkylation or hydrogenation and halogenation. The doped junction layers are being examined in an attempt to determine the limiting characteristics of the junctions in solar cell devices of these amorphous materials. Amorphous alloys of Si-Ge, Si-C, Si-Sn were prepared as well as ternary compositions of Si-Ge-C and Si-Sn-C. In addition, Na vapor was added to the gas feed to deposit a-Si(Na, H) films, and to prepare Si-Sn, fluoride was added along with the tin by vapor additions of SnF/sub 4/ to the gas feed. The optical properties of these materials were measured, and structural and compositional information was obtained from the IR vibrational spectra using the scanning electron microscope and from analyses using scanning Auger microscopy. Electrical measurements have included the dark conductivity and the photo conductivity under room fluorescent light and at AM1 conditions. With alloys that displayed promising photoconductive properties n-i-p devices were prepared to assess the solar cell properties. Details are presented. (WHK)

Cretella, M. C.; Gregory, J. A.; Sandstrom, D. B.; Paul, W.

1981-01-01T23:59:59.000Z

15

Selective Formation of Size-Controlled Silicon Nanocrystals by Photosynthesis in SiO Nanoparticle Thin Film  

Science Conference Proceedings (OSTI)

The SiOx thin film with a thickness of about 1 mum was formed on a GaAs substrate by bar-coating with the organic solution of the SiOx nanoparticles (~40 nm). The as-formed SiOx thin film consists of the SiOx ... Keywords: ${hbox{SiO}}_{x}$ , Nanocrystal, Raman, photosynthesis, self- limiting, silicon

Changyong Chen; S. Kimura; S. Nozaki; H. Ono; K. Uchida

2006-11-01T23:59:59.000Z

16

Electron energy-loss spectroscopy of boron-doped layers in amorphous thin film silicon solar cells  

E-Print Network (OSTI)

Electron energy-loss spectroscopy of boron-doped layers in amorphous thin film silicon solar cells. de Bariloche, Argentina 3 ECN Solar Energy, High Tech Campus, Building 5, 5656 AE Eindhoven energy-loss spectroscopy (EELS) is used to study p-doped layers in n-i-p amorphous thin film Si solar

Dunin-Borkowski, Rafal E.

17

Low-cost, deterministic quasi-periodic photonic structures for light trapping in thin film silicon solar cells  

E-Print Network (OSTI)

Light trapping has been an important issue for thin film silicon solar cells because of the low absorption coefficient in the near infrared range. In this paper, we present a photonic structure which combines anodic aluminum ...

Sheng, Xing

18

Amorphous silicon/polycrystalline thin film solar cells  

DOE Patents (OSTI)

An improved photovoltaic solar cell is described including a p-type amorphous silicon layer, intrinsic amorphous silicon, and an n-type polycrystalline semiconductor such as cadmium sulfide, cadmium zinc sulfide, zinc selenide, gallium phosphide, and gallium nitride. The polycrystalline semiconductor has an energy bandgap greater than that of the amorphous silicon. The solar cell can be provided as a single-junction device or a multijunction device.

Ullal, H.S.

1991-03-13T23:59:59.000Z

19

Method of fabrication of display pixels driven by silicon thin film transistors  

DOE Patents (OSTI)

Display pixels driven by silicon thin film transistors are fabricated on plastic substrates for use in active matrix displays, such as flat panel displays. The process for forming the pixels involves a prior method for forming individual silicon thin film transistors on low-temperature plastic substrates. Low-temperature substrates are generally considered as being incapable of withstanding sustained processing temperatures greater than about 200.degree. C. The pixel formation process results in a complete pixel and active matrix pixel array. A pixel (or picture element) in an active matrix display consists of a silicon thin film transistor (TFT) and a large electrode, which may control a liquid crystal light valve, an emissive material (such as a light emitting diode or LED), or some other light emitting or attenuating material. The pixels can be connected in arrays wherein rows of pixels contain common gate electrodes and columns of pixels contain common drain electrodes. The source electrode of each pixel TFT is connected to its pixel electrode, and is electrically isolated from every other circuit element in the pixel array.

Carey, Paul G. (Mountain View, CA); Smith, Patrick M. (San Ramon, CA)

1999-01-01T23:59:59.000Z

20

Thin film polycrystalline silicon solar cells. Second technical progress report, July 16, 1980-October 15, 1980  

DOE Green Energy (OSTI)

The objectives of this contract are to fabricate large area thin film silicon solar cells with AM1 efficiency of 10% or greater with good reproducibility and good yield and to assess the feasibility of implementing this process for manufacturing solar cells at a cost of $300/kWe. Efforts have been directed to the purification of metallurgical silicon, the preparation and characterization of substrates and epitaxial silicon layers, and the fabrication and characterization of solar cells. The partial purification of metallurgical silicon by extraction with aqua regia has been further investigated in detail, and the resulting silicon was analyzed by the atomic absorption technique. The unidirectional solidification of aqua regia-extracted metallurgical silicon on graphite was used for the preparation of substrates, and the impurity distribution in the substrate was determined and compared with the impurity content in metallurgical silicon. The effects of heat treatment on the impurity distribution in the substrate and in the epitaxial layer have also been investigated. Large area (30 to 60 cm/sup 2/) solar cells have been prepared from aqua regia-extracted metallurgical silicon substrates by depositing a p-n junction structure using the thermal reduction of trichlorosilane containing appropriate dopants. The AM1 efficiencies are about 9% for cells of 30 to 35 cm/sup 2/ area. Larger area, 60 cm/sup 2/, thin film solar cells have been fabricated for the first time, and their AM1 efficiencies are slightly higher than 8%. The spectral response, minority carrier diffusion length, and I/sub sc/-V/sub oc/ relation in a number of solr cells have been measured.

None

1980-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "thin film silicon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

High-Cycle Fatigue of Single-Crystal Silicon Thin Films  

E-Print Network (OSTI)

When subjected to alternating stresses, most materials degrade, e.g., suffer premature failure, due to a phenomenon known as fatigue. It is generally accepted that in brittle materials, such as ceramics, fatigue can only take place in toughened solids, i.e., premature fatigue failure would not be expected in materials such as single crystal silicon. The results of this study, however, appear to be at odds with the current understanding of brittle material fatigue. Twelve thin-film ( 20 m thick) single crystal silicon specimens were tested to failure in a controlled air environment (30 0.1 C, 50 2% relative humidity). Damage accumulation and failure of the notched cantilever beams were monitored electrically during the "fatigue life" test. Specimen lives ranged from about 10 s to 48 days, or 1 10 6 to 1 10 11 cycles before failure over stress amplitudes ranging from approximately 4 to 10 GPa. A variety of mechanisms are discussed in light of the fatigue life data and fracture surface evaluation. [642] Index Terms---Fatigue failure, MEMS devices, single-crystal silicon, thin films.

Christopher L. Muhlstein; Stuart B. Brown; Robert O. Ritchie

2001-01-01T23:59:59.000Z

22

High efficiency thin film silicon solar cells with novel light trapping : principle, design and processing  

E-Print Network (OSTI)

One major efficiency limiting factor in thin film solar cells is weak absorption of long wavelength photons due to the limited optical path length imposed by the thin film thickness. This is especially severe in Si because ...

Zeng, Lirong, Ph. D. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

23

Interactions between radical growth precursors on plasma-deposited silicon thin-film surfaces  

SciTech Connect

We present a detailed analysis of the interactions between growth precursors, SiH{sub 3} radicals, on surfaces of silicon thin films. The analysis is based on a synergistic combination of density functional theory calculations on the hydrogen-terminated Si(001)-(2x1) surface and molecular-dynamics (MD) simulations of film growth on surfaces of MD-generated hydrogenated amorphous silicon (a-Si:H) thin films. In particular, the authors find that two interacting growth precursors may either form disilane (Si{sub 2}H{sub 6}) and desorb from the surface, or disproportionate, resulting in the formation of a surface dihydride (adsorbed SiH{sub 2} species) and gas-phase silane (SiH{sub 4}). The reaction barrier for disilane formation is found to be strongly dependent on the local chemical environment on the silicon surface and reduces (or vanishes) if one/both of the interacting precursors is/are in a ''fast diffusing state,'' i.e., attached to fivefold coordinated surface Si atoms. Finally, activation energy barriers in excess of 1 eV are obtained for two chemisorbed (i.e., bonded to a fourfold coordinated surface Si atom) SiH{sub 3} radicals. Activation energy barriers for disproportionation follow the same tendency, though, in most cases, higher barriers are obtained compared to disilane formation reactions starting from the same initial configuration. MD simulations confirm that disilane formation and disproportionation reactions also occur on a-Si:H growth surfaces, preferentially in configurations where at least one of the SiH{sub 3} radicals is in a ''diffusive state.'' Our results are in agreement with experimental observations and results of plasma process simulators showing that the primary source for disilane in low-power plasmas may be the substrate surface.

Bakos, Tamas; Valipa, Mayur S.; Maroudas, Dimitrios [Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003-3110 (United States)

2007-03-21T23:59:59.000Z

24

Process For Direct Integration Of A Thin-Film Silicon P-N Junction Diode With A Magnetic Tunnel Junction  

DOE Patents (OSTI)

A process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction for use in advanced magnetic random access memory (MRAM) cells for high performance, non-volatile memory arrays. The process is based on pulsed laser processing for the fabrication of vertical polycrystalline silicon electronic device structures, in particular p-n junction diodes, on films of metals deposited onto low temperature-substrates such as ceramics, dielectrics, glass, or polymers. The process preserves underlayers and structures onto which the devices are typically deposited, such as silicon integrated circuits. The process involves the low temperature deposition of at least one layer of silicon, either in an amorphous or a polycrystalline phase on a metal layer. Dopants may be introduced in the silicon film during or after deposition. The film is then irradiated with short pulse laser energy that is efficiently absorbed in the silicon, which results in the crystallization of the film and simultaneously in the activation of the dopants via ultrafast melting and solidification. The silicon film can be patterned either before or after crystallization.

Toet, Daniel (Mountain View, CA); Sigmon, Thomas W. (Albuquerque, NM)

2005-08-23T23:59:59.000Z

25

Process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction  

DOE Patents (OSTI)

A process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction for use in advanced magnetic random access memory (MRAM) cells for high performance, non-volatile memory arrays. The process is based on pulsed laser processing for the fabrication of vertical polycrystalline silicon electronic device structures, in particular p-n junction diodes, on films of metals deposited onto low temperature-substrates such as ceramics, dielectrics, glass, or polymers. The process preserves underlayers and structures onto which the devices are typically deposited, such as silicon integrated circuits. The process involves the low temperature deposition of at least one layer of silicon, either in an amorphous or a polycrystalline phase on a metal layer. Dopants may be introduced in the silicon film during or after deposition. The film is then irradiated with short pulse laser energy that is efficiently absorbed in the silicon, which results in the crystallization of the film and simultaneously in the activation of the dopants via ultrafast melting and solidification. The silicon film can be patterned either before or after crystallization.

Toet, Daniel (Mountain View, CA); Sigmon, Thomas W. (Albuquerque, NM)

2003-01-01T23:59:59.000Z

26

High cycle fatigue of polycrystalline silicon thin films in laboratory air  

E-Print Network (OSTI)

When subjected to alternating stresses, most materials degrade, e.g., suffer premature failure, due to a phenomenon known as fatigue. It is generally accepted that in brittle materials, such as ceramics, cyclic fatigue can only take place where there is some degree of toughening, implying that premature fatigue failure would not be expected in polycrystalline silicon where such toughening is absent. However, the fatigue failure of polysilicon is reported in the present work, based on tests on thirteen thin-film (2 µm thick) specimens cycled to failure in laboratory air (~25ºC, 30-50 % relative humidity), where damage accumulation and failure of the notched cantilever beams were monitored electrically during the test. Specimen lives ranged from about 10 seconds to 34 days (5 x 10 5 to 1 x 10 11 cycles) with the stress amplitude at failure being reduced to ~50 % of the low-cycle strength for lives in excess of 10 9 cycles.

C. L. Muhlstein; S. B. Brown; R. O. Ritchie

2000-01-01T23:59:59.000Z

27

Study of plasma enhanced chemical vapor deposition of boron-doped hydrogenated amorphous silicon thin films and the application to p-channel thin film transistor  

E-Print Network (OSTI)

The material and process characteristics of boron doped hydrogenated amorphous silicon (a-Si:H) thin film deposited by plasma enhanced chemical vapor deposition technique (PECVD) have been studied. The goal is to apply the high quality films deposited at low substrate temperature for devices such as thin film transistors (TFTs). The effect of the deposition parameters such as doping gas concentration, substrate temperature, hydrogen dilution, helium dilution, power density, and pressure at 50 kHz rf frequency on the films' characteristics were analyzed. The films' electrical property was characterized by its dark resistivity. The chemical composition and bonding characteristics were discussed. p-channel TFTs were fabricated with these optimized films. Three different levels of dopant concentrations in the channel were used to detect the dopant effect on the TFT properties. Doping resulted in the increase of film deposition rate. The low film deposition rate at the high temperature deposition corresponds to a dense structured film. The increase of gas phase H? concentration could increase H? etching of the weak bonds in the film, which is consistent with the decrease of the deposition rate. Film's dark conductivity is determined by the atomic B concentration in the film, the substrate temperature, the ion bombardment effect, the surface morphology, and the gas phase and film hydrogen concentration. At high power density and high pressure plasma condition, film with a high deposition rate shows a high conductivity. However, excessive ion bombardment effect, e.g. in powdery plasma region, limits the further increase of the conductivity. Film deposited with He dilution demonstrates a higher conductivity compared to the H? dilution counterpart. This might be attributed to a more effective ion bombardment effect of the former. Powder generation in the plasma significantly affects the conductivity of He diluted film compared to the H? diluted ones, which might be due to the less H? etching effect at the He dilution deposition. The output and transfer characteristics show the normal p-channel TFTs behavior. TFT characteristics, such as mobility, threshold voltage, and on-off current ratio were affected by the doping gas concentration in the channel layer and the deposition process.

Nominanda, Helinda

2004-01-01T23:59:59.000Z

28

Combinatorial Approach to Thin-Film Silicon Materials and Devices: Preprint  

DOE Green Energy (OSTI)

We apply combinatorial approaches to thin-film Si materials and device research. Our hot-wire chemical vapor deposition chamber is fitted with substrate xyz translation, a motorized shutter, and interchangable shadow masks to implement various combinatorial methods. For example, we have explored, in detail, the transition region through which thin Si changes from amorphous to microcrystalline silicon. This transition is very sensitive to deposition parameters such as hydrogen-to-silane dilution of the source gas, chamber pressure, and substrate temperature. A material library, on just a few substrates, led to a three-dimensional map of the transition as it occurs in our deposition system. This map guides our scientific studies and enables us to use several distinct transition materials in our solar-cell optimization research. We also grew thickness-graded wedge samples spanning the amorphous-to-microcrystalline Si transition. These single stripes map the temporal change of the thin silicon phase onto a single spatial dimension. Therefore, the structural, optical, and electrical properties can easily be studied through the phase transition. We have examined the nature of the phase change on the wedges with Raman spectroscopy, atomic force microscopy, extended x-ray absorption fine structure (EXAFS), x-ray absorption near-edge spectroscopy (XANES), ultraviolet reflectivity, and other techniques. Combinatorial techniques also accelerate our device research. In solar cells, for example, the combinatorial approach has significantly accelerated the optimization process of p-, i-, n-, and buffer layers through wide exploration of the complex space of growth parameters and layer thicknesses. Again, only a few deposition runs are needed. It has also been useful to correlate the materials properties of single layers in a device to their performance in the device. We achieve this by depositing layers that extend beyond the device dimensions to permit independent characterization of the layers. Not only has the combinatorial approach greatly increased the rate of materials and device experimentation in our laboratory, it has also been a powerful tool leading to a better understanding of structure-property relationships in thin film Si.

Wang, Q.; Moutinho, H.; To, B.; Perkins, J.; Ginley, D.; Branz, H. M.; Tessler, L. R.; Han, D.

2003-04-01T23:59:59.000Z

29

Low emissivity high-temperature tantalum thin film coatings for silicon devices  

E-Print Network (OSTI)

The authors study the use of thin ( ? 230?nm) tantalum (Ta) layers on silicon (Si) as a low emissivity (high reflectivity) coating for high-temperature Si devices. Such coatings are critical to reduce parasitic radiation ...

Rinnerbauer, Veronika

30

Analysis of defects at the interface between high-k thin films and (100) silicon  

Science Conference Proceedings (OSTI)

Paramagnetic defects in atomic layer deposition grown aluminium oxide thin films have been studied using electron paramagnetic resonance. Initial spectra indicate the presence of Si-db, P"b"0 and P"b"1 defects, previously observed in Si/SiO"2 structures. ... Keywords: Aluminium oxide, Defects, EPR, High-k, Interfaces, Thin films

B. J. Jones; R. C. Barklie

2005-06-01T23:59:59.000Z

31

Amorphous Silicon(a-Si: H) Thin Film Based Omnidirectional Control Solar Powered Vehicle  

Science Conference Proceedings (OSTI)

Through the paper, our goal is to drive a car with the help of thin film based solar cell. Mechanical and Electrical parts are assembled thereby. The main objective of this project is to collect maximum solar energy from the solar spectrum and use that ... Keywords: Thin film Photovoltaic, Single p-i-n Junction, Steering Mechanism, H-Bridge, Gear motor

Abdullah Moinuddin; Md. Jahidul Hoque; Jony C. Sarker; Akhter Zia

2012-03-01T23:59:59.000Z

32

NREL: Photovoltaics Research - Polycrystalline Thin-Film Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

in the area of polycrystalline thin-film materials and devices. Printable Version Photovoltaics Research Home Silicon Polycrystalline Thin Films Multijunctions New Materials,...

33

Available Technologies: Thinner Film Silicon Solar Cells  

Berkeley Lab scientists have designed a new approach to create highly efficient thin film silicon solar cells. This technology promises to lower solar cell material ...

34

Thin-film polycrystalline silicon solar cells. Quarterly report no. 3, October 16, 1980-January 15, 1981  

DOE Green Energy (OSTI)

The objectives of the project are: 1) to develop cell fabrication procedures to further define the maximum capabilities of the conducting oxide/silicon heterojunction solar cells; 2) to optimize the spray fabrication technique for making reproducible high efficiency cells; 3) to assess the stability and the projected lifetime of the cell structure; 4) to identify through appropriate measurements the effects of grain boundaries and intragrain defects on the electronic transport mechanisms in thin-film polycrystalline silicon; and 5) to determine the feasibility of a large-scale fabrication process. Progress is reported.

Ghosh, A. K.; Feng, T.; Eustace, D. J.; Maruska, H. P.

1981-01-01T23:59:59.000Z

35

Thin, High Lifetime Silicon Wafers with No Sawing; Re-crystallization in a Thin Film Capsule  

SciTech Connect

The project fits within the area of renewable energy called photovoltaics (PV), or the generation of electricity directly from sunlight using semiconductor devices. PV has the greatest potential of any renewable energy technology. The vast majority of photovoltaic modules are made on crystalline silicon wafers and these wafers accounts for the largest fraction of the cost of a photovoltaic module. Thus, a method of making high quality, low cost wafers would be extremely beneficial to the PV industry The industry standard technology creates wafers by casting an ingot and then sawing wafers from the ingot. Sawing rendered half of the highly refined silicon feedstock as un-reclaimable dust. Being a brittle material, the sawing is actually a type of grinding operation which is costly both in terms of capital equipment and in terms of consumables costs. The consumables costs associated with the wire sawing technology are particularly burdensome and include the cost of the wire itself (continuously fed, one time use), the abrasive particles, and, waste disposal. The goal of this project was to make wafers directly from molten silicon with no sawing required. The fundamental concept was to create a very low cost (but low quality) wafer of the desired shape and size and then to improve the quality of the wafer by a specialized thermal treatment (called re-crystallization). Others have attempted to create silicon sheet by recrystallization with varying degrees of success. Key among the difficulties encountered by others were: a) difficulty in maintaining the physical shape of the sheet during the recrystallization process and b) difficulty in maintaining the cleanliness of the sheet during recrystallization. Our method solved both of these challenges by encapsulating the preform wafer in a protective capsule prior to recrystallization (see below). The recrystallization method developed in this work was extremely effective at maintaining the shape and the cleanliness of the wafer. In addition, it was found to be suitable for growing very large crystals. The equipment used was simple and inexpensive to operate. Reasonable solar cells were fabricated on re-crystallized material.

Emanuel Sachs Tonio Buonassisi

2013-01-16T23:59:59.000Z

36

Amorphous silicon pixel radiation detectors and associated thin film transistor electronics readout  

SciTech Connect

We describe the characteristics of thin (1 {mu}m) and thick (> 30 {mu}m) hydrogenated amorphous silicon p-i-n diodes which are optimized for detecting and recording the spatial distribution of charged particles, x-ray, {gamma} rays and thermal neutrons. For x-ray, {gamma} ray, and charged particle detection we can use thin p-i-n photosensitive diode arrays coupled to evaporated layers of suitable scintillators. For thermal neutron detection we use thin (2{approximately}5 {mu}m) gadolinium converters on 30 {mu}m thick a-Si:H diodes. For direct detection of minimum ionizing particles and others with high resistance to radiation damage, we use the thick p-i-n diode arrays. Diode and amorphous silicon readouts as well as polysilicon pixel amplifiers are described.

Perez-Mendez, V.; Cho, G.; Drewery, J.; Jing, T.; Kaplan, S.N.; Mireshghi, A.; Wildermuth, D. (Lawrence Berkeley Lab., CA (United States)); Goodman, C. (Air Techniques Corp., Hicksville, New York (United States)); Fujieda, I. (NEC Corp., Tokyo (Japan))

1992-07-01T23:59:59.000Z

37

Thin film polycrystalline silicon solar cells. Quarterly report No. 1, October 1-December 31, 1979  

DOE Green Energy (OSTI)

The MoSi/sub 2/ separation layer growth rate has been studied as a function of time and temperature. The presence of small amounts of O/sub 2/ in the silicon deposition ambient were found to inhibit the growth rate of the MoSi/sub 2/ layer and also to affect the reliability of shear separation. Void formation in silicon at the Si-MoSi/sub 2/ interface, due predominantly to diffusion of silicon through the MoSi/sub 2/ layer was observed. This is believed to be responsible for shear separation occurring in the silicon film. Gas chromatograhic procedures were developed for characterizing the silicon deposition process. Coherent twin bundles in the grain-enhanced silicon films were not found to adversely influence solar cell efficiency. Several 1 cm x 2 cm solar cells were fabricated. Performance characteristics of these cells are discussed; the best device had a conversion efficiency of 10.7% (under simulated AM1 illumination) with V/sub OC/ = 0.545 V, J/sub SC/ = 28.65 mA/cm/sup 2/ and FF = 68.3%.

Sarma, K.R.; Rice, M.J.; Legge, R.

1979-01-01T23:59:59.000Z

38

Structural Properties Studies of Zinc Oxide Thin Film Grown on Silicon Carbide by Means of X-ray Diffraction Technique  

Science Conference Proceedings (OSTI)

In this work, the structural properties of the zinc oxide (ZnO) thin film on silicon carbide (6H-SiC) grown by radio frequency sputtering technique are investigated thoroughly by means of X-ray diffraction (XRD) technique. Both conventional XRD phase analysis and rocking curve measurements are carried out in order to determine the crystalline structure and the crystalline quality of the ZnO sample. From the phase analysis, intense peaks correspond to ZnO(002), iC(006) and their multiple reflections, i.e. ZnO(004) and SiC(0012) are observed. This result suggests that the ZnO thin film is in wurzite structure. Through the simulation of XRD rocking curve of the ZnO(002) peak, the lattice mismatch of 5.49% is obtained.

Ching, C. G.; Ng, S. S.; Hassan, Z.; Hassan, H. Abu; Al-Hardan, N. H.; Abdullah, M. J. [Nano-optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, 11800, Penang (Malaysia)

2011-03-30T23:59:59.000Z

39

Development of Thin Film Silicon Solar Cell Using Inkjet Printed Silicon and Other Inkjet Processes: Cooperative Research and Development Final Report, CRADA Number CRD-07-260  

Science Conference Proceedings (OSTI)

The cost of silicon photovoltaics (Si-PV) can be greatly lowered by developing thin-film crystalline Si solar cells on glass or an equally lower cost substrate. Typically, Si film is deposited by thermal evaporation, plasma enhanced chemical vapor deposition, and sputtering. NREL and Silexos have worked under a CRADA to develop technology to make very low cost solar cells using liquid organic precursors. Typically, cyclopentasilane (CPS) is deposited on a glass substrate and then converted into an a-Si film by UV polymerization followed by low-temperature optical process that crystallizes the amorphous layer. This technique promises to be a very low cost approach for making a Si film.

Sopori, B.

2012-04-01T23:59:59.000Z

40

CARS of Thin Films  

Science Conference Proceedings (OSTI)

... as a thin film diagnostic. Surface enhanced Raman scattering, SERS, has been used to probe the interfacial region of thin polymer films on metal ...

2012-10-02T23:59:59.000Z

Note: This page contains sample records for the topic "thin film silicon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Crystallization to polycrystalline silicon thin film and simultaneous inactivation of electrical defects by underwater laser annealing  

SciTech Connect

We propose a low-temperature laser annealing method of a underwater laser annealing (WLA) for polycrystalline silicon (poly-Si) films. We performed crystallization to poly-Si films by laser irradiation in flowing deionized-water where KrF excimer laser was used for annealing. We demonstrated that the maximum value of maximum grain size of WLA samples was 1.5 {mu}m, and that of the average grain size was 2.8 times larger than that of conventional laser annealing in air (LA) samples. Moreover, WLA forms poly-Si films which show lower conductivity and larger carrier life time attributed to fewer electrical defects as compared to LA poly-Si films.

Machida, Emi [Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192 (Japan); Research Fellowships of the Japan Society for the Promotion of Science, Japan Society for the Promotion of Science, 1-8 Chiyoda, Tokyo 102-8472 (Japan); Horita, Masahiro; Ishikawa, Yasuaki; Uraoka, Yukiharu [Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192 (Japan); Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Honcho, Kawaguchi, Saitama 332-0012 (Japan); Ikenoue, Hiroshi [Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395 (Japan)

2012-12-17T23:59:59.000Z

42

Electrochemical thinning of silicon  

DOE Patents (OSTI)

Porous semiconducting material, e.g. silicon, is formed by electrochemical treatment of a specimen in hydrofluoric acid, using the specimen as anode. Before the treatment, the specimen can be masked. The porous material is then etched with a caustic solution or is oxidized, depending of the kind of structure desired, e.g. a thinned specimen, a specimen, a patterned thinned specimen, a specimen with insulated electrical conduits, and so on. Thinned silicon specimen can be subjected to tests, such as measurement of interstitial oxygen by Fourier transform infra-red spectroscopy (FTIR). 14 figures.

Medernach, J.W.

1994-01-11T23:59:59.000Z

43

Development of Commercial Technology for Thin Film Silicon Solar Cells on Glass: Cooperative Research and Development Final Report, CRADA Number CRD-07-209  

DOE Green Energy (OSTI)

NREL has conducted basic research relating to high efficiency, low cost, thin film silicon solar cell design and the method of making solar cells. Two patents have been issued to NREL in the above field. In addition, specific process and metrology tools have been developed by NREL. Applied Optical Sciences Corp. (AOS) has expertise in the manufacture of solar cells and has developed its own unique concentrator technology. AOS wants to complement its solar cell expertise and its concentrator technology by manufacturing flat panel thin film silicon solar cell panels. AOS wants to take NREL's research to the next level, using it to develop commercially viable flat pane, thin film silicon solar cell panels. Such a development in equipment, process, and metrology will likely produce the lowest cost solar cell technology for both commercial and residential use. NREL's fundamental research capability and AOS's technology and industrial background are complementary to achieve this product development.

Sopori, B.

2013-03-01T23:59:59.000Z

44

Impact of the surface-near silicon substrate properties on the microstructure of sputter-deposited AlN thin films  

Science Conference Proceedings (OSTI)

In micro-/nanomachined devices and systems, aluminum nitride (AlN) thin films are widely used due to their piezoelectric properties. This work evaluates the potential of modifying the interface between the AlN thin film and the silicon (Si) wafer serving as bottom electrode for optimized crystallographic orientation and, hence, improved electrical and piezoelectric properties. The films were analyzed using temperature-dependant leakage current measurements, transmission electron microscopy, and x-ray diffraction. By preconditioning of the Si substrate surface applying sputter etching prior to film deposition, leakage current levels are substantially decreased and an increased (002) orientation of the AlN grains is observed.

Schneider, M.; Bittner, A.; Patocka, F.; Schmid, U. [Department for Microsystems Technology, Institute of Sensor and Actuator Systems, Vienna University of Technology, Floragasse 7, A-1040 Vienna (Austria); Stoeger-Pollach, M. [University Service Center for Transmission Electron Microscopy (USTEM), Vienna University of Technology, Wiedner Hauptstrasse 8-10/052, 1040 Vienna (Austria); Halwax, E. [Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna (Austria)

2012-11-26T23:59:59.000Z

45

Solar Control Thin Films Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Sputtering equipment Solar Control Thin Films Laboratory The Solar Control Thin Films lab develops novel thin film coatings, deposition technologies, and device systems for...

46

The Effects of Damage on Hydrogen-Implant-Induced Thin-Film Separation from Bulk Silicon Carbide  

DOE Green Energy (OSTI)

Exfoliation of Sic by hydrogen implantation and subsequent annealing forms the basis for a thin-film separation process which, when combined with hydrophilic wafer bonding, can be exploited to produce silicon-carbide-on-insulator, SiCOI. Sic thin films produced by this process exhibit unacceptably high resistivity because defects generated by the implant neutralize electrical carriers. Separation occurs because of chemical interaction of hydrogen with dangling bonds within microvoids created by the implant, and physical stresses due to gas-pressure effects during post-implant anneal. Experimental results show that exfoliation of Sic is dependent upon the concentration of implanted hydrogen, but the damage generated by the implant approaches a point when exfoliation is, in fact, retarded. This is attributed to excessive damage at the projected range of the implant which inhibits physical processes of implant-induced cleaving. Damage is controlled independently of hydrogen dosage by elevating the temperature of the SiC during implant in order to promote dynamic annealing. The resulting decrease in damage is thought to promote growth of micro-cracks which form a continuous cleave. Channeled H{sup +} implantation enhances the cleaving process while simultaneously minimizing residual damage within the separated film. It is shown that high-temperature irradiation and channeling each reduces the hydrogen fluence required to affect separation of a thin film and results in a lower concentration of defects. This increases the potential for producing SiC01 which is sufficiently free of defects and, thus, more easily electrically activated.

Gregory, R.B.; Holland, O.W.; Thomas, D.K.; Wetteroth, T.A.; Wilson, S.R.

1999-04-05T23:59:59.000Z

47

Enabling Thin Silicon Solar Cell Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Enabling Thin Silicon Solar Cell Technology Enabling Thin Silicon Solar Cell Technology Print Friday, 21 June 2013 10:49 Generic silicon solar cells showing +45, -45, and...

48

Thin Films at Interfaces  

Science Conference Proceedings (OSTI)

... internal structure of these films was probed ... provided important information on film composition and ... The PEO polymers form thin adsorbed layers ...

49

Producer-Focused Life Cycle Assessment of Thin-Film Silicon Photovoltaic Systems  

E-Print Network (OSTI)

microcrystalline- silicon photovoltaic cell, B) range ofpayback of roof mounted photovoltaic cells. Boustead, I. andmicrocrystalline-silicon photovoltaic cell, B) range of

Zhang, Teresa Weirui

2011-01-01T23:59:59.000Z

50

Thinner Film Silicon Solar Cells - Energy Innovation Portal  

Technology Marketing Summary Berkeley Lab scientists have designed a new approach to create thin film silicon solar cells with a potential increase in ...

51

Polycrystalline Thin Film Used in Photovoltaics  

Energy.gov (U.S. Department of Energy (DOE))

Polycrystalline thin-film cells are made of many tiny crystalline grains of semiconductor materials. The materials used in these cells have properties that are different from those of silicon.

52

Research on high-efficiency, single-junction, monolithic, thin-film amorphous silicon solar cells: Annual subcontract report, May 1985 - Jul 1986  

DOE Green Energy (OSTI)

A study was undertaken of the optoelectronic properties of amorphous silicon-hydrogen thin films deposited from disilane at high deposition rates. The information derived from this study was used to fabricate amorphous silicon solar cells with efficiencies exceeding 7%. The intrinsic layer of these solar cells was deposited at 15 angstroms/second. Material properties investigated included dark conductivity, photoconductivity, minority carrier diffusion length, and density of states. The solar cells properties characterized were absolute quantum yield and simulated global AM 1.5 efficiencies. Investigations were undertaken utilizing optical and infrared spectroscopy to optimize the microstructures of the intrinsic amorphous silicon. That work was sponsored by the New York State Energy Research and Development Authority. The information was used to optimize the intrinsic layer of amorphous silicon solar cells, resulting in AM 1.5 efficiencies exceeding 7%.

Wiesmann, H.; Dolan, J.; Fricano, G.; Danginis, V.

1987-02-01T23:59:59.000Z

53

ThinFilms  

NLE Websites -- All DOE Office Websites (Extended Search)

Thin Films Thin Films Manufacturing Technologies The Thin Film laboratory provides a variety of vapor deposition processes and facilities for cooperative research and development. Available capabilities include electron beam evaporation, sputter deposition, reactive deposi- tion processes, atomic layer deposition (ALD) and specialized techniques such as focused ion beam induced chemical vapor deposition. Equipment can be reconfigured for prototyping, or it can be dedicated to long-term research, development and manufacturing. Most sputter and evaporative deposition systems are capable of depositing multiple materials. Deposition capabilities and expertise * Deposition of a large variety of thin film mate- rials * Multiple sputter deposition systems - Capable of depositing four materials in a

54

Superhydrophobic Thin Film Coatings  

Exploiting its expertise with thin films and superhydrophobic materials, ORNL has developed a simple, inexpensive way to apply and reliably bond ...

55

Experimental Investigation of Size Effects on the Thermal Conductivity of Silicon-Germanium Alloy Thin Films  

E-Print Network (OSTI)

We experimentally investigate the role of size effects and boundary scattering on the thermal conductivity of silicon-germanium alloys. The thermal conductivities of a series of epitaxially grown Si[subscript 1-x] Ge[subscript ...

Cheaito, Ramez

56

The deposition of nanocrystalline TiO2 thin film on silicon using Sol-Gel technique and its characterization  

Science Conference Proceedings (OSTI)

TiO"2 thin films were deposited using Sol-Gel spin coating technique using titanium isoperoxide as the Titania precursor. The films were characterized using X-ray diffraction, capacitance voltage measurement and Raman characterization technique. The ... Keywords: Sol-Gel, Spin coating, Titanium dioxide, X-ray diffraction

Mukesh Kumar; Mukesh Kumar; Dinesh Kumar

2010-03-01T23:59:59.000Z

57

Young's modulus, Poisson's ratio, and residual stress and strain in (111)-oriented scandium nitride thin films on silicon  

E-Print Network (OSTI)

cyclotron resonance MBE which typically generate N2 + species with high kinetic energies. The causes of compressive stress in this case may instead be related to a trend commonly observed in vapor-deposited thin films. Such films typically experience... with the strain information hich is found to be 270±25 GPa. Residual m growth temperature and film thickness#2; d by the differential thermal contraction ic compressive stresses generated during .1063/1.2217106#5; Accurate determination of residual stresses...

Moram, M A; Barber, Z H; Humphreys, C J; Joyce, T B; Chalker, P R

2006-07-21T23:59:59.000Z

58

Exploring the parameter space of disc shaped silver nanoparticles for thin film silicon photovoltaics  

E-Print Network (OSTI)

We numerically simulate, using finite-difference time-domain, the optical properties of silver nano discs deposited on the front surface of silicon solar cells. We explore the effect of each of the parameters of such a system, in order to draw some general design rules for the subsequent fabrication of such structures.

Figeys, Bruno

2011-01-01T23:59:59.000Z

59

SunShot Initiative: Thin Film Photovoltaics Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Thin Film Photovoltaics Research Thin Film Photovoltaics Research to someone by E-mail Share SunShot Initiative: Thin Film Photovoltaics Research on Facebook Tweet about SunShot Initiative: Thin Film Photovoltaics Research on Twitter Bookmark SunShot Initiative: Thin Film Photovoltaics Research on Google Bookmark SunShot Initiative: Thin Film Photovoltaics Research on Delicious Rank SunShot Initiative: Thin Film Photovoltaics Research on Digg Find More places to share SunShot Initiative: Thin Film Photovoltaics Research on AddThis.com... Concentrating Solar Power Photovoltaics Research & Development Crystalline Silicon Thin Films Multijunctions Organic Photovoltaics Dye-Sensitized Solar Cells Competitive Awards Systems Integration Balance of Systems Thin Film Photovoltaics Research The U.S. Department of Energy (DOE) supports research and development of

60

Unusual defects in silicon carbide thin films grown by multiple or interrupted growth technique  

Science Conference Proceedings (OSTI)

This paper discusses the growth and characterization of 3C-SiC films on Si (100) and (111) substrates using hexamethyldisilane (HMDS) as the source material in a resistance-heated furnace as well as the formation and microstructure of various types of ... Keywords: 3C-SiC, 3C-SiC nanowires, CVD, Defects, HMDS, Interrupted growth, Voids

A. Gupta; C. Jacob

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thin film silicon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Thin film hydrogen sensor  

DOE Patents (OSTI)

A thin film hydrogen sensor, includes: a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end.

Cheng, Yang-Tse (Rochester Hills, MI); Poli, Andrea A. (Livonia, MI); Meltser, Mark Alexander (Pittsford, NY)

1999-01-01T23:59:59.000Z

62

Characterization of Amorphous Silicon Thin Films and PV Devices: Final Technical Report, January 1998 - October 2001  

DOE Green Energy (OSTI)

This report describes the most significant results of the three phases: (1) development of a second harmonic detection technique for electron spin resonance (ESR) and optically excited ESR (LESR) in a-Si:H and related alloys, (2) discovery of universal kinetics for the decay of optically excited electrons and holes in a-Si:H and related alloys at low temperatures, (3) first detection of optically excited band-tail electrons and holes in hydrogenated amorphous germanium (a-Ge:H), (4) first ESR study of the kinetics for the production of silicon dangling bonds in a-Si:H at low temperatures, and (5) determination from 1H NMR that there exists an order of magnitude more molecular hydrogen (H2) in a-Si:H than previously measured.

Taylor, P. C.

2002-03-01T23:59:59.000Z

63

Fluorination of amorphous thin-film materials with xenon fluoride  

DOE Patents (OSTI)

A method is disclosed for producing fluorine-containing amorphous semiconductor material, preferably comprising amorphous silicon. The method includes depositing amorphous thin-film material onto a substrate while introducing xenon fluoride during the film deposition process.

Weil, Raoul B. (Haifa, IL)

1988-01-01T23:59:59.000Z

64

Research on high-efficiency, single-junction, monolithic, thin-film amorphous silicon solar cells  

DOE Green Energy (OSTI)

This document describes the progress made in obtaining stable, a-Si-based submodules that have a large area and high efficiency. Conversion efficiencies of up to 11.95% were obtained in small-area, single-junction a-Si solar cells using textured TiO{sub 2}, superlattice p-layers, graded carbon concentrations near the p/i interface, and highly reflective ITO/silver back contacts. Single- junction a-SiC and a-SiGe p-i-n cells were also fabricated that had conversion efficiencies of 9%--11%, and some recently fabricated stacked-junction cells had conversion efficiencies of about 10%. In materials research boron-doped microcrystalline SiC films were recently developed containing up to 6 at. % carbon with conductivities of 3 {times} 10{sup {minus}3}/{Omega}-cm at room temperature and activation energies of 0.11 eV. Microcrystalline film growth was shown to be strongly influenced by the nature of the substrate, with nucleation occurring more readily on a-Si substrates than on TiO{sub 2}. Stability studies show that light-induced degradation is usually enhanced by the presence of carbon grading near the p/i interface. In general, adding either germanium (from GeH{sub 4}) or carbon (from CH{sub 4}) to the i-layer of a p-i-n cell leads to enhanced light-induced degradation. 13 refs., 80 figs., 17 tabs.

Catalano, A.W.; Carlson, D.E.; Ayra, R.R.; Bennett, M.S.; D'Aiello, R.V.; Dickson, C.R.; Fortmann, C.M.; Goldstein, B.; McVeigh, J.; Morris, J.; Newton, J.L.; Wiedeman, S. (Solarex Corp., Newtown, PA (USA). Thin Film Div.)

1989-10-01T23:59:59.000Z

65

Effects of interlayers on the scratch adhesion performance of ultra-thin films of copper and gold on silicon substrates  

SciTech Connect

Scratch testing has long been used to assess the adhesion of a film to its substrate. As film thicknesses have decreased, the need for greater precision and sensitivity in the scratch testing apparatus has increased. To this end, a nanoindenter was modified to make finely controlled, low-load scratches. Scratches at various loads and two orientations of a Berkovich scratching diamond were made in films of 100 nm of gold and 200 nm of copper, each on single crystal silicon. For each film type, samples with no interlayer, with an SiO{sub 2} interlayer, and with a TiW on SiO{sub 2} interlayer were tested. The scratch morphology was found to vary in a regular way with load, diamond orientation and interlayer material.

McAdams, S.D.; Tsui, T.Y.; Pharr, G.M. [Rice Univ., Houston, TX (United States); Oliver, W.C. [Nano Instruments, Inc., Knoxville, TN (United States)

1995-02-01T23:59:59.000Z

66

Thin film tritium dosimetry  

DOE Patents (OSTI)

The present invention provides a method for tritium dosimetry. A dosimeter comprising a thin film of a material having relatively sensitive RITAC-RITAP dosimetry properties is exposed to radiation from tritium, and after the dosimeter has been removed from the source of the radiation, the low energy electron dose deposited in the thin film is determined by radiation-induced, thermally-activated polarization dosimetry techniques.

Moran, Paul R. (Madison, WI)

1976-01-01T23:59:59.000Z

67

Thin film polycrystalline silicon solar cells. Quarterly report No. 1, January 1, 1979-March 31, 1979  

DOE Green Energy (OSTI)

A theory capable of predicting the performance of polycrystalline silicon solar cells is formulated. It relates grain size to mobility, lifetime, diffusion length, reverse saturation current, open circuit photovoltage and fill factor. Only the diffusion lengths measured by the surface photovoltage technique for grains less than or equal to 5 ..mu..m do not agree with our theory. The reason for this discrepancy is presently being investigated. We conclude that grains greater than or equal to 100 ..mu..m are necessary to achieve efficiencies greater than or equal to 10 percent at AM1 irradiance. The calculations were performed for the case of no grain boundary passivation. At present we are investigating the improvements to be expected from grain boundary passivation. We have determined that the parameters that best fit the available data are as follows: (1) Number of surface states at grain boundaries acting as recombination centers - 1.6 x 10/sup 13//cm/sup 2/. (2) Capture cross section - 2 x 10/sup -16/ cm/sup 2/. (3) Surface recombination velocity at grain boundary - 3.2 x 10/sup 4/ cm/sec. The following types of solar cells are considered in the model: SnO/sub 2//Si Heterostructure, MIS, and p/n junction. In all types of solar cells considered, grain boundary recombination plays a dominant role, especially for small grains. Though the calculations were originally expected to yield only order of magnitude results, they have proven to be accurate for most parameters within 10 percent.

Ghosh, A.K.; Feng, T.; Maruska, H.P.; Fishman, C.

1979-01-01T23:59:59.000Z

68

Thin films of silicon on low-cost substrates. Quarterly report No. 5, January 1-March 31, 1978  

DOE Green Energy (OSTI)

Parametric studies of silicon deposition were conducted employing the horizontal Energy Beam system. Chemical equilibrium calculations pertaining to the Energy Beam deposition conditions were performed. These calculations indicated that the reaction efficiency for hydrogen reduction of silicon tetrachloride is over 95% for any chlorosilane concentration at the Energy Beam temperature of 4300/sup 0/K. Because lower temperatures exist near the substrate surfaces, the kinetics of establishing the low temperature equilibrium will determine obtainable material efficiencies. From deposition experiments, the material efficiency was found to be strongly dependent on input chlorosilane concentrations. The highest material efficiency and growth rate obtained concurrently to date were 70% and 10 ..mu..m/min using the horizontal Energy Beam system. The Thermal Expansion Shear Separation (TESS) process for producing self supporting silicon films was further investigated.

Sarma, K.R.; Gurtler, R.W.; Baghdadi, A.; Cota, M.

1978-01-01T23:59:59.000Z

69

High efficiency low cost thin film silicon solar cell design and method for making  

DOE Patents (OSTI)

A semiconductor device having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer.

Sopori, Bhushan L. (Denver, CO)

1999-01-01T23:59:59.000Z

70

High efficiency, low cost, thin film silicon solar cell design and method for making  

DOE Patents (OSTI)

A semiconductor device having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer.

Sopori, Bhushan L. (Denver, CO)

2001-01-01T23:59:59.000Z

71

High efficiency low cost thin film silicon solar cell design and method for making  

DOE Patents (OSTI)

A semiconductor device is described having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer. 9 figs.

Sopori, B.L.

1999-04-27T23:59:59.000Z

72

Silicon-film{trademark} on ceramic solar cells. Final report  

DOE Green Energy (OSTI)

The Silicon-Film{trademark} design achieves high performance through the use of a thin silicon layer. Optimally designed thin crystalline solar cells (<50 microns thick) have performance advantages over conventional thick devices. The enhancement in performance requires the incorporation of back-surface passivation and light trapping. The high-performance Silicon-Film{trademark} design employs a metallurgical barrier between the low-cost substrate and the thin silicon layer. The properties of the metallurgical barrier must be engineered to implement specific device requirements, such as high back-surface reflectivity. Recent advances in process development are described here.

Hall, R.B.; Bacon, C.; DiReda, V.; Ford, D.H.; Ingram, A.E.; Lampo, S.M.; Rand, J.A.; Ruffins, T.R.; Barnett, A.M. [AstroPower, Inc., Newark, DE (United States)

1993-02-01T23:59:59.000Z

73

Impact of solid-phase crystallization of amorphous silicon on the chemical structure of the buried Si/ZnO thin film solar cell interface  

DOE Green Energy (OSTI)

The chemical interface structure between phosphorus-doped hydrogenated amorphous silicon and aluminum-doped zinc oxide thin films is investigated with soft x-ray emission spectroscopy (XES) before and after solid-phase crystallization (SPC) at 600C. In addition to the expected SPC-induced phase transition from amorphous to polycrystalline silicon, our XES data indicates a pronounced chemical interaction at the buried Si/ZnO interface. In particular, we find an SPC-enhanced formation of Si-O bonds and the accumulation of Zn in close proximity to the interface. For an assumed closed and homogeneous SiO2 interlayer, an effective thickness of (5+2)nm after SPC could be estimated.

Bar, M.; Wimmer, M.; Wilks, R. G.; Roczen, M.; Gerlach, D.; Ruske, F.; Lips, K.; Rech, B.; Weinhardt, L.; Blum, M.; Pookpanratana, S.; Krause, S.; Zhang, Y.; Heske, C.; Yang, W.; Denlinger, J. D.

2010-04-30T23:59:59.000Z

74

Photovoltaic Polycrystalline Thin-Film Cell Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Polycrystalline Thin-Film Cell Basics Polycrystalline Thin-Film Cell Basics Photovoltaic Polycrystalline Thin-Film Cell Basics August 20, 2013 - 2:36pm Addthis Polycrystalline thin-film cells are made of many tiny crystalline grains of semiconductor materials. The materials used in these cells have properties that are different from those of silicon. Thin-film cells have many advantages over their thick-film counterparts. For example, they use much less material. The cell's active area is usually only 1 to 10 micrometers thick, whereas thick films typically are 100 to 300 micrometers thick. Also, thin-film cells can usually be manufactured in a large-area process, which can be an automated, continuous production process. Finally, they can be deposited on flexible substrate materials. The term thin film comes from the method used to deposit the film, not from

75

Thin film photovoltaic device  

DOE Patents (OSTI)

A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids. 5 figs.

Catalano, A.W.; Bhushan, M.

1982-08-03T23:59:59.000Z

76

Thin film photovoltaic device  

DOE Patents (OSTI)

A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids.

Catalano, Anthony W. (Wilmington, DE); Bhushan, Manjul (Wilmington, DE)

1982-01-01T23:59:59.000Z

77

Thin-film optical initiator  

DOE Patents (OSTI)

A thin-film optical initiator having an inert, transparent substrate, a reactive thin film, which can be either an explosive or a pyrotechnic, and a reflective thin film. The resultant thin-film optical initiator system also comprises a fiber-optic cable connected to a low-energy laser source, an output charge, and an initiator housing. The reactive thin film, which may contain very thin embedded layers or be a co-deposit of a light-absorbing material such as carbon, absorbs the incident laser light, is volumetrically heated, and explodes against the output charge, imparting about 5 to 20 times more energy than in the incident laser pulse.

Erickson, Kenneth L. (Albuquerque, NM)

2001-01-01T23:59:59.000Z

78

Thin Film Nanocomposites for Thermoelectric Applications  

Science Conference Proceedings (OSTI)

Presentation Title, Thin Film Nanocomposites for Thermoelectric Applications ... Abstract Scope, Thin film nanocomposites comprised of refractory metals and ...

79

NREL Core Program (NCPV), Session: Film Silicon (Presentation)  

DOE Green Energy (OSTI)

This project supports the Solar America Initiative by: R and D that contributes to goal of grid parity by 2015; research to fill the industry R and D pipeline for next-generation low-cost scalable products; development of industry collaborative research; and improvement of NREL tools and capabilities for film silicon research. The project addresses both parts of film silicon roadmap: (1) amorphous-silicon-based thin film PV--amorphous and nanocrystalline materials, present '2nd generation' technology, 4% of world PV sales in 2007; (2) advanced R and D toward film crystal silicon--definition, large-grained or single-crystal silicon < 100 {micro}m thick; 3-8 year horizon; and goal of reaching 15% cells at area costs approaching thin films.

Branz, H. M.

2008-04-01T23:59:59.000Z

80

NMR characterization of thin films  

SciTech Connect

A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

Gerald, II, Rex E. (Brookfield, IL); Klingler, Robert J. (Glenview, IL); Rathke, Jerome W. (Homer Glen, IL); Diaz, Rocio (Chicago, IL); Vukovic, Lela (Westchester, IL)

2008-11-25T23:59:59.000Z

Note: This page contains sample records for the topic "thin film silicon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Thin film photovoltaic cell  

DOE Patents (OSTI)

A thin film photovoltaic cell having a transparent electrical contact and an opaque electrical contact with a pair of semiconductors therebetween includes utilizing one of the electrical contacts as a substrate and wherein the inner surface thereof is modified by microroughening while being macro-planar.

Meakin, John D. (Newark, DE); Bragagnolo, Julio (Newark, DE)

1982-01-01T23:59:59.000Z

82

Overview and Challenges of Thin Film Solar Electric Technologies  

DOE Green Energy (OSTI)

In this paper, we report on the significant progress made worldwide by thin-film solar cells, namely, amorphous silicon (a-Si), cadmium telluride (CdTe), and copper indium gallium diselenide (CIGS). Thin-film photovoltaic (PV) technology status is also discussed in detail. In addition, R&D and technology challenges in all three areas are elucidated. The worldwide estimated projection for thin-film PV technology production capacity announcements are estimated at more than 5000 MW by 2010.

Ullal, H. S.

2008-12-01T23:59:59.000Z

83

Thin film superconductor magnetic bearings  

DOE Patents (OSTI)

A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

Weinberger, Bernard R. (Avon, CT)

1995-12-26T23:59:59.000Z

84

A survey of thin-film solar photovoltaic industry & technologies  

E-Print Network (OSTI)

A new type of solar cell technology using so-called thin-film solar photovoltaic material has the potential to make a great impact on our lives. Because it uses very little or no silicon at all, thin- film (TF) solar ...

Grama, Sorin

2007-01-01T23:59:59.000Z

85

Enabling Thin Silicon Solar Cell Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Enabling Thin Silicon Solar Cell Enabling Thin Silicon Solar Cell Technology Enabling Thin Silicon Solar Cell Technology Print Friday, 21 June 2013 10:49 Generic silicon solar cells showing +45°, -45°, and dendritic crack patterns. The effort to shift U.S. energy reliance from fossil fuels to renewable sources has spurred companies to reduce the cost and increase the reliability of their solar photovoltaics (SPVs). The use of thinner silicon in SPV technologies is being widely adopted because it significantly reduces costs; however, silicon is brittle, and thinner silicon, coupled with other recent trends in SPV technologies (thinner glass, lighter or no metal frames, increased use of certain polymers for encapsulation of the silicon cells), is more susceptible to stress and cracking. When the thin

86

Design, construction and testing of a high-vacuum anneal chamber for in-situ crystallisation of silicon thin-film solar cells.  

E-Print Network (OSTI)

??Thin-film solar cells on glass substrates are likely to have a bright future due to the potentially low costs and the short energy payback times.… (more)

Weber, Jürgen Wolfgang

2006-01-01T23:59:59.000Z

87

Recent technological advances in thin film solar cells  

DOE Green Energy (OSTI)

High-efficiency, low-cost thin film solar cells are an exciting photovoltaic technology option for generating cost-effective electricity in 1995 and beyond. This paper reviews the substantial advances made by several thin film solar cell technologies, namely, amorphous silicon, copper indium diselenide, cadmium telluride, and polycrystalline silicon. Recent examples of utility demonstration projects of these emerging materials are also discussed. 8 refs., 4 figs.

Ullal, H.S.; Zwelbel, K.; Surek, T.

1990-03-01T23:59:59.000Z

88

Preparation of thin films by ablation with ANACONDA ion beam generator  

Science Conference Proceedings (OSTI)

Thin films of silicon carbide are produced by using the technology of ion beam evaporation. Various analytical methods are used to analyze film thickness, film composition and crystallization for samples obtained with different target-substrate distances.

Yatsui, K.; Jiang, W. [Nagaoka Univ. of Technology (Japan). Lab. of Beam Technology; Davis, H.A.; Olson, J.C.; Waganaar, W.J.; Rej, D. [Los Alamos National Lab., NM (United States)

1996-12-31T23:59:59.000Z

89

Silicon Film[trademark] photovoltaic manufacturing technology  

DOE Green Energy (OSTI)

This report describes work on a project to develop an advanced low-cost manufacturing process for a new utility-scale flatplate module based on thin active layers of polycrystalline silicon on a low-cost substrate. This is called the Silicon-Film[trademark] process. This new power module is based on a new large solar cell that is 675 cm[sup 2] in area. Eighteen of these solar cells form a 170-W module. Twelve ofthese modules form a 2-kW array. The program has three components: (1) development of a Silicon-Film[trademark] wafer machine that can manufacture wafer 675 cm[sup 2] in size with a total product cost reductionof 70%; (2) development of an advanced solar cell manufacturing process that will turn the Silicon-Film[trademark] wafer into a 14%-efficient solar cell; and (3) development of an advanced module design based on these large-area, efficient silicon solar cells with an average power of 170 watts. The completion of these three tasks will lead to a new power module designed for utility and other power applications with asubstantially lower cost.

Bottenberg, W.R.; Hall, R.B.; Jackson, E.L.; Lampo, S.; Mulligan, W.E.; Barnett, A.M. (AstroPower, Inc., Newark, DE (United States))

1993-04-01T23:59:59.000Z

90

Characterization of amorphous silicon thin films and PV devices: Phase 1 annual technical report: January 1998--January 1999  

DOE Green Energy (OSTI)

Major accomplishments of the previous year include: (1) an evaluation of the potential for n-type doping of a-SiS{sub x}:H and a-SiSe{sub x}:H alloys, (2) an investigation of the optically induced metastabilities in a-SiS{sub x}:H and a-SiSe{sub x}:H alloys with regard to their potential use in photovoltaic applications, and (3) a more detailed understanding of the kinetics of light-induced electron spin resonance (ESR) due to carriers trapped in localized band-tail states in a-Si:H. Also of importance are preliminary measurements of the defects and metastabilities in hot-wire samples of a-Si:H and in samples of a-Si:H made under strong hydrogen dilution. The preliminary measurements on hydrogen dilution suggest that the production of neutral silicon dangling bonds is not suppressed from the standard material even though there appears to be an improvement in the stability of cells made using the hydrogen-dilution process. The new three-chamber, load-locked plasma-enhanced chemical vapor deposition system is functioning and producing intrinsic and doped films of a-Si:H. Plans for the next year include the production of high quality devices using this new deposition system.

Taylor, P.C.

1999-10-27T23:59:59.000Z

91

Thin Films and Interfaces Committee  

Science Conference Proceedings (OSTI)

The Thin Films and Interfaces Committee is part of the Electronic, Magnetic, and Photonic Materials Division;. Our Mission: Promotes knowledge of the science ...

92

Vertically Aligned Nanocomposite Thin Films  

E-Print Network (OSTI)

Vertically aligned nanocomposite (VAN) thin films have recently stimulated significant research interest to achieve better material functionality or multifunctionalities. In VAN thin films, both phases grow epitaxially in parallel on given substrates and form a unique nano-checkerboard structure. Multiple strains, including the vertical strain which along the vertical interface and the substrate induced strain which along the film and substrate interface, exist in VAN thin films. The competition of these strains gives a promise to tune the material lattice structure and future more the nanocomposite film physical properties. Those two phases in the VAN thin films are selected based on their growth kinetics, thermodynamic stability and epitaxial growth ability on given substrates. In the present work, we investigated unique epitaxial two-phase VAN (BiFeO3)x:(Sm2O3)1-x and (La0.7Sr0.3MnO3)x:(Mn3O4)1-x thin film systems by pulsed laser deposition. These VAN thin films exhibit a highly ordered vertical columnar structure with good epitaxial quality. The strain of the two phases can be tuned by deposition parameters, e.g. deposition frequency and film composition. Their strain tunability is found to be related directly to the systematic variation of the column widths and domain structures. Their physical properties, such as dielectric loss and ferromagnetisms can be tuned systematically by this variation. The growth morphology, microstructure and material functionalities of VAN thin films can be varied by modifying the phase ratio, substrate orientation or deposition conditions. Systematic study has been done on growing (SrTiO3)0.5:(MgO)0.5 VAN thin films on SrTiO3 and MgO substrates, respectively. The variation of column width demonstrates the substrate induced strain plays another important role in the VAN thin film growth. The VAN thin films also hold promise in achieving porous thin films with ordered nanopores by thermal treatment. We selected (BiFeO3)0.5:(Sm2O3)0.5 VAN thin films as a template and get uniformly distributed bi-layered nanopores. Controllable porosity can be achieved by adjusting the microstructure of VAN (BiFeO3):(Sm2O3) thin films and the annealing parameters. In situ heating experiments within a transmission electron microscope column provide direct observations into the phases transformation, evaporation and structure reconstruction during the annealing. Systematic study in this dissertation demonstrate that the vertically aligned nanocomposite microstructure is a brand new architecture in thin films and an exciting approach that promises tunable material functionalities as well as novel nanostructures.

Bi, Zhenxing

2011-05-01T23:59:59.000Z

93

Thin film hydrogen sensor  

DOE Green Energy (OSTI)

A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed.

Lauf, Robert J. (Oak Ridge, TN); Hoffheins, Barbara S. (Knoxville, TN); Fleming, Pamela H. (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

94

Solar photovoltaic technology: The thin film option  

DOE Green Energy (OSTI)

Photovoltaics (PV) the direct conversion of sunlight to electricity was first discovered by scientists at the Bell Labs in 1954. In the late 1960's and 1970's most of the solar cell technology has been used for space applications to power satellites. The main work horse for the PV technology has been crystalline silicon (Si) solar cells. Over the past 15 years this has led to cost reduction from $35/kWh to about $0.30/kWh at the present time. Demonstrated reliability of 20 years or more has resulted in acceptance by several utilities. However, cost reductions in crystalline Si solar cells have been limited by the cost of wafering of ingots and the attendant loss of material. A number of Si sheet solar cells are also being investigated. In the past decade the emphasis of the research and development effort has been focused on thin film solar cells, which have the potential for generating power at much lower cost of $1-2/Wp. Thin film solar cells that are presently being investigated and are generating global attention are: amorphous silicon (a-Si:H), cadmium telluride (CdTe), and copper indium diselenide (CuInSe/sub 2,/ or CIS). In the past few years, considerable progress has been; made by all three of these thin film solar cells. This paper reviews the current status and future potential of these exiting thin film solar cell technologies.

Ullal, H.S.; Zweibel, K.; Sabisky, E.S.; Surek, T.

1988-01-01T23:59:59.000Z

95

NREL: Photovoltaics Research - Thin Film Photovoltaic Partnership Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Thin Film Photovoltaic Partnership Project Thin Film Photovoltaic Partnership Project NREL's Thin Film Photovoltaic (PV) Partnership Project led R&D on emerging thin-film solar technologies in the United States from 1994 to 2009. The project made many advances in thin-film PV technologies that allowed the United States to attain world leadership in this area of solar technology. Three national R&D teams focused on thin-film semiconductor materials: amorphous silicon (a-Si), cadmium telluride (CdTe), and copper indium gallium diselenide (CIGS) and its alloys. The Module Reliability Team and Environmental Health and Safety Team were crosscutting. The teams comprised researchers from the solar industry, academia, and NREL who focused their efforts on improving materials, devices, and manufacturing processes-all

96

Thin film photovoltaic device with multilayer substrate  

DOE Patents (OSTI)

A thin film photovoltaic device which utilizes at least one compound semiconductor layer chosen from Groups IIB and VA of the Periodic Table is formed on a multilayer substrate The substrate includes a lowermost support layer on which all of the other layers of the device are formed. Additionally, an uppermost carbide or silicon layer is adjacent to the semiconductor layer. Below the carbide or silicon layer is a metal layer of high conductivity and expansion coefficient equal to or slightly greater than that of the semiconductor layer.

Catalano, Anthony W. (Rushland, PA); Bhushan, Manjul (Wilmington, DE)

1984-01-01T23:59:59.000Z

97

Thin film ion conducting coating  

DOE Patents (OSTI)

Durable thin film ion conducting coatings are formed on a transparent glass substrate by the controlled deposition of the mixed oxides of lithium:tantalum or lithium:niobium. The coatings provide durable ion transport sources for thin film solid state storage batteries and electrochromic energy conservation devices.

Goldner, Ronald B. (Lexington, MA); Haas, Terry (Sudbury, MA); Wong, Kwok-Keung (Watertown, MA); Seward, George (Arlington, MA)

1989-01-01T23:59:59.000Z

98

Thin films: Past, present, future  

DOE Green Energy (OSTI)

This report describes the characteristics of the thin film photovoltaic modules necessary for an acceptable rate of return for rural areas and underdeveloped countries. The topics of the paper include a development of goals of cost and performance for an acceptable PV system, a review of current technologies for meeting these goals, issues and opportunities in thin film technologies.

Zweibel, K.

1995-04-01T23:59:59.000Z

99

NIST Hydrogen Storage in Thin Films  

Science Conference Proceedings (OSTI)

Hydrogen Storage Optimization in Thin Film Combinatorial Alloys. ... Magnesium Thin Films," International Journal of Hydrogen Energy, doi:10.1016/j ...

2013-04-01T23:59:59.000Z

100

Thin Film and Nanostructure Processing Group Homepage  

Science Conference Proceedings (OSTI)

... The Thin Film and Nanostructure Processing Group is one of seven ... Deposition of thin films Electrodeposition of metals and alloys Evaporation of ...

2012-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "thin film silicon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Metals Thin-Films Information at NIST  

Science Conference Proceedings (OSTI)

NIST Home > Metals Thin-Films Information at NIST. Metals Thin-Films Information at NIST. (the links below are a compilation ...

2010-05-24T23:59:59.000Z

102

Optical Characterization of Advanced Thin Films  

Science Conference Proceedings (OSTI)

... Recently, thin films of spun-cast poly(2,5-bis(3-alkylthiophen ... been demonstrated to exhibit exceptional hole mobilities in thin film transistors (TFTs ...

2012-10-02T23:59:59.000Z

103

Thin Film Solar Technologies | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Thin Film Solar Technologies Jump to: navigation, search Name Thin Film Solar Technologies...

104

Interfaces in Nanostructured Functional Oxide Thin Films  

Science Conference Proceedings (OSTI)

The thin film systems include high temperature superconductors (HTS), thin film solid oxide fuel cells (SOFC), and other functional oxide systems. Detailed ...

105

Hydrogenated amorphous silicon films prepared by glow discharge of disilane  

DOE Green Energy (OSTI)

This report describes the results of an investigation of the properties of hydrogenated amorphous silicon films and the efficiency of amorphous silicon solar cells deposited from disilane at rates of 1.5 nanometers/second or greater. The study was divided into two parts, investigation of basic materials properties of hydrogenated amorphous silicon thin films and the fabrication of glass-P-I-N-metal solar cells. The thin film materials properties investigated included the dark conductivity, photoconductivity, dihydride/monohydride concentration ratio, activation energy, and mobility-lifetime product. Hydrogenated amorphous silicon solar cells were fabricated with an intrinsic layer which was deposited at 1.5 nanometers/second. The absolute and reverse bias quantum yields were measured and solar cell efficiencies of 5% were achieved. Attempts to increase the efficiency by reverse bias annealing are also reported. 7 refs., 27 figs.

Wiesmann, H.J. (UHT Corp., Dobbs Ferry, NY (USA))

1990-01-01T23:59:59.000Z

106

Innovative Characterization of Amorphous and Thin-Film Silicon for Improved Module Performance: 1 February 2005 - 31 July 2008  

DOE Green Energy (OSTI)

Electron spin resonance and nuclear magnetic resonance was done on amorphous silicon samples (modules with a-Si:H and a-SixGe1-x:H intrinsic layer) to study defects that contribute to Staebler-Wronski effect.

Taylor, P. C.; Williams, G. A.

2009-09-01T23:59:59.000Z

107

CFN | Thin Films Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Synthesis and Characterization Facility Materials Synthesis and Characterization Facility Thin-Film Processing Facility Online Manager (FOM) website FOM manual ESR for lab 1L32 (High-Resolution SEM and x-ray microanalysis) CFN Operations Safety Awareness (COSA) form for 1L32 (ESR #1) Technical article on LABE detector (Analytical SEM) Request form for off-hours access (.doc, First time only, renewals done via email) Lab Tool capabilities Primary contact Training schedule Backup contact Booking calendar Booking rules SOP 1L32 Analytical SEM Camino Thurs 10-12 PM Stein FOM yes yes Hitachi S-4800 SEM Stein Tues 1-3 PM Black FOM no yes booking calendar: yes = need to reserve tool time in calendar before using tool booking rules: yes = specific rules exist for reserving tool time SOP = standard operating procedure (basic instructions)

108

Research on amorphous-silicon-based thin-film photovoltaic devices: Semiannual subcontract report, 1 July 1987--31 December 1987  

DOE Green Energy (OSTI)

The objective of this work is to develop 13% (aperture area) efficient, 850-cm/sup 2/ four-terminal hybrid tandem submodules. The module design consists of a copper-indium-diselenide (CIS)-based bottom circuit and a semitransparent, thin-film silicon-hydrogen (TFS)-based top circuit. High-performance, semitransparent TFS devices and submodules were fabricated in which ZnO was used in the front and rear transparent conductors. High-performance CIS devices and submodules were also fabricated; however, the location and nature of the junction are not yet understood. Representative four-terminal hybrid tandem devices and submodules were fabricated from TFS and CIS component circuits. Optical coupling between the circuits was lower than expected, because of reflection losses at key interfaces. Efficiencies obtained for these devices and modules include 14.17% for a four-terminal, 4-cm/sup 2/ tandem cell and 12.3% for a four-terminal, tandem module. 7 refs., 90 figs.

Bottenberg, W.; Mitchell, K.; Wieting, R.

1988-05-01T23:59:59.000Z

109

Thin Film and nanostructure Processing Staff  

Science Conference Proceedings (OSTI)

Thin Film Nanostructure Staff Directory. John Bonevich, Group Leader. Shari Beauchamp, Office Assistant. STAFF & NRC POSTDOCS. ...

2013-06-11T23:59:59.000Z

110

Solvent Permeation, Swelling Profiles and Mechanical Properties of Thin Polymer Films: New Diagnostic Tool for Epoxy and Silicone Insulation  

Science Conference Proceedings (OSTI)

This project used a novel diagnostic tool, total internal reflectance fluorescence to study the diffusion of water and other solvents into epoxy and silicone polymers, which are commonly used in many equipment insulation applications. The method is complex, but highly accurate and shows promise as a diagnostic tool.

1998-07-15T23:59:59.000Z

111

Innovative Characterization of Amorphous and Thin-Film Silicon for Improved Module Performance: 28 April 2005 - 15 September 2008  

DOE Green Energy (OSTI)

This report focuses on (1) characterizing nc-Si:H from United Solar; (2) studying Si,Ge:H alloys deposited by HWCVD; and (3) characterizing CIGS films and relating to cell performance parameters.

Cohen, J. D.

2009-12-01T23:59:59.000Z

112

Epitaxial Thin Film Silicon Solar Cells Fabricated by Hot Wire Chemical Vapor Deposition Below 750 ..deg..C: Preprint  

Science Conference Proceedings (OSTI)

We report on fabricating film c-Si solar cells on Si wafer templates by hot-wire chemical vapor deposition. These devices, grown at glass-compatible temperatures 500 mV and efficiencies > 5%.

Alberi, K.; Martin, I. T.; Shub, M.; Teplin, C. W.; Iwaniczko, E.; Xu, Y.; duda, A.; Stradin, P.; Johnston, S. W.; Romero, M. J.; Branz, H. M.; Young, D. L.

2009-06-01T23:59:59.000Z

113

Thin-film amorphous silicon alloy research partnership, Phase I. Annual technical progress report, February 2, 1995--February 1, 1996  

DOE Green Energy (OSTI)

The principal objective of this R&D program is to expand, enhance and accelerate knowledge and capabilities for the development of high-performance, two-terminal multifunction amorphous silicon (a-Si) alloy modules. The near-term goal of the program is to achieve 12% stable module efficiency by 1998 using the multifunction approach. This report describes research on back reflectors of Ag/TiO{sub 2}/ZnO.

Guha, S. [United Solar Systems Corp., Troy, MI (United States)

1996-04-01T23:59:59.000Z

114

The state of the art of thin-film photovoltaics  

DOE Green Energy (OSTI)

Thin-film photovoltaic technologies, based on materials such as amorphous or polycrystalline silicon, copper indium diselenide, cadmium telluride, and gallium arsenide, offer the potential for significantly reducing the cost of electricity generated by photovoltaics. The significant progress in the technologies, from the laboratory to the marketplace, is reviewed. The common concerns and questions raised about thin films are addressed. Based on the progress to date and the potential of these technologies, along with continuing investments by the private sector to commercialize the technologies, one can conclude that thin-film PV will provide a competitive alternative for large-scale power generation in the future.

Surek, T.

1993-10-01T23:59:59.000Z

115

Epitaxial Thin Film Silicon Solar Cells Fabricated by Hot Wire Chemical Vapor Deposition Below 750 ..deg..C: Preprint  

SciTech Connect

We report on fabricating film c-Si solar cells on Si wafer templates by hot-wire chemical vapor deposition. These devices, grown at glass-compatible temperatures < 750..deg..C, demonstrate open-circuit voltages > 500 mV and efficiencies > 5%.

Alberi, K.; Martin, I. T.; Shub, M.; Teplin, C. W.; Iwaniczko, E.; Xu, Y.; duda, A.; Stradin, P.; Johnston, S. W.; Romero, M. J.; Branz, H. M.; Young, D. L.

2009-06-01T23:59:59.000Z

116

Electronic processes in thin-film PV materials. Final report  

DOE Green Energy (OSTI)

The electronic and optical processes in an important class of thin-film PV materials, hydrogenated amorphous silicon (a-Si:H) and related alloys, have been investigated using several experimental techniques designed for thin-film geometries. The experimental techniques include various magnetic resonance and optical spectroscopies and combinations of these two spectroscopies. Two-step optical excitation processes through the manifold of silicon dangling bond states have been identifies as important at low excitation energies. Local hydrogen motion has been studied using nuclear magnetic resonance techniques and found to be much more rapid than long range diffusion as measured by secondary ion mass spectroscopy. A new metastable effect has been found in a-Si:H films alloyed with sulfur. Spin-one optically excited states have been unambiguously identified using optically detected electron spin resonance. Local hydrogen bonding in microcrystalline silicon films has been studied using NMR.

Taylor, P.C.; Chen, D.; Chen, S.L. [and others

1998-07-01T23:59:59.000Z

117

Applications of Passive Thin Films  

DOE Green Energy (OSTI)

The physical properties of thin films affect the performance and durability of nearly every solar energy conversion device. Familiar examples of thin films for solar applications are optical materials and protective coatings. Optimized optical properties are key to cost-effective photothermal conversion where individual components must have high absorptance, reflectance, or transmittance. The protection of sensitive substrates from corrosion and/or erosion is essential to ensure adequate component and system lifetime. Such substrates range from photovoltaic materials operating near room temperature to turbine blade structural alloys in hostile environments at very high temperatures (>1,000 degrees C). Although much has been written on particular categories of thin-film materials for solar energy (for example, absorbers for receiver surfaces), to date no one has provided an overview of the spectrum of applications for passive thin films in solar energy. This work is such an overview and also reviews the material state of the art as described in the current literature. Active thin film devices such as photovoltaics and thermoeleetrics are not discussed.

Call, P. J.

1979-05-01T23:59:59.000Z

118

Thin-film Lithium Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Thin-Film Battery with Lithium Anode Courtesy of Oak Ridge National Laboratory, Materials Science and Technology Division Thin-Film Lithium Batteries Resources with Additional Information The Department of Energy's 'Oak Ridge National Laboratory (ORNL) has developed high-performance thin-film lithium batteries for a variety of technological applications. These batteries have high energy densities, can be recharged thousands of times, and are only 10 microns thick. They can be made in essentially any size and shape. Recently, Teledyne licensed this technology from ORNL to make batteries for medical devices including electrocardiographs. In addition, new "textured" cathodes have been developed which have greatly increased the peak current capability of the batteries. This greatly expands the potential medical uses of the batteries, including transdermal applications for heart regulation.'

119

Surface Sensitive Scattering from Thin Films  

Science Conference Proceedings (OSTI)

... Thin films of few tenths of angstroms are becoming the staple of the electronic ... a powerful tool for the basic understanding of the film microstructure. ...

120

Thin-film forces in pseudoemulsion films  

SciTech Connect

Use of foam for enhanced oil recovery (EOR) has shown recent success in steam-flooding field applications. Foam can also provide an effective barrier against gas coning in thin oil zones. Both of these applications stem from the unique mobility-control properties a stable foam possesses when it exists in porous media. Unfortunately, oil has a major destabilizing effect on foam. Therefore, it is important for EOR applications to understand how oil destroys foam. Studies all indicate that stabilization of the pseudoemulsion film is critical to maintain foam stability in the presence of oil. Hence, to aid in design of surfactant formulations for foam insensitivity to oil the authors pursue direct measurement of the thin-film or disjoining forces that stabilize pseudoemulsion films. Experimental procedures and preliminary results are described.

Bergeron, V.; Radke, C.J. [California Univ., Berkeley, CA (United States). Dept. of Chemical Engineering]|[Lawrence Berkeley Lab., CA (United States)

1991-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "thin film silicon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Semiconductor-nanocrystal/conjugated polymer thin films  

DOE Patents (OSTI)

The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

Alivisatos, A. Paul (Oakland, CA); Dittmer, Janke J. (Munich, DE); Huynh, Wendy U. (Munich, DE); Milliron, Delia (Berkeley, CA)

2010-08-17T23:59:59.000Z

122

Thin film-coated polymer webs  

DOE Patents (OSTI)

The present invention relates to thin film-coated polymer webs, and more particularly to thin film electronic devices supported upon a polymer web, wherein the polymer web is treated with a purifying amount of electron beam radiation.

Wenz, Robert P. (Cottage Grove, MN); Weber, Michael F. (Shoreview, MN); Arudi, Ravindra L. (Woodbury, MN)

1992-02-04T23:59:59.000Z

123

Thin Film Deposition Method for Sensor Manufacturing  

Scientists at Los Alamos National Laboratory (LANL) have developed an innovative method for gas sensor manufacturing using a thin film deposition. The thin film requires very little material and can be applied in high throughput applications.

124

Thin Film Photovoltaics - Programmaster.org  

Science Conference Proceedings (OSTI)

Thin Film Structures for Energy Efficient Systems: Thin Film Photovoltaics ... Full- inorganic Heterojunction Ink-printed Solar Cells: Seigo Ito1; 1University of Hyogo ... electrochemical impedance spectroscopy (EIS) measurements were used for ...

125

Magnetoelectric Multiferroic Thin Films and Multilayers  

Science Conference Proceedings (OSTI)

Scope, The symposium will cover thin films, single crystals, normal/relaxor ferroelectrics, piezoelectric ceramics, magnetoelectric composites, multiferroic ...

126

Magnetic behaviour of europium epitaxial thin films  

Science Conference Proceedings (OSTI)

... Magnetic behaviour of europium epitaxial thin films. Philippe Mangin, University of Nancy and NCNR. We present the magnetic ...

127

MST: Organizations: Thin Film, Vacuum, and Packaging  

NLE Websites -- All DOE Office Websites (Extended Search)

Processes & Services Electronic Fabrication Manufacturing Process Science & Technology Thin Film, Vacuum, & Packaging Organic Materials Ceramic & Glass Meso Manufacturing &...

128

High Efficiency, Low Cost Solar Cells Manufactured Using 'Silicon Ink' on Thin Crystalline Silicon Wafers  

DOE Green Energy (OSTI)

Reported are the development and demonstration of a 17% efficient 25mm x 25mm crystalline Silicon solar cell and a 16% efficient 125mm x 125mm crystalline Silicon solar cell, both produced by Ink-jet printing Silicon Ink on a thin crystalline Silicon wafer. To achieve these objectives, processing approaches were developed to print the Silicon Ink in a predetermined pattern to form a high efficiency selective emitter, remove the solvents in the Silicon Ink and fuse the deposited particle Silicon films. Additionally, standard solar cell manufacturing equipment with slightly modified processes were used to complete the fabrication of the Silicon Ink high efficiency solar cells. Also reported are the development and demonstration of a 18.5% efficient 125mm x 125mm monocrystalline Silicon cell, and a 17% efficient 125mm x 125mm multicrystalline Silicon cell, by utilizing high throughput Ink-jet and screen printing technologies. To achieve these objectives, Innovalight developed new high throughput processing tools to print and fuse both p and n type particle Silicon Inks in a predetermined pat-tern applied either on the front or the back of the cell. Additionally, a customized Ink-jet and screen printing systems, coupled with customized substrate handling solution, customized printing algorithms, and a customized ink drying process, in combination with a purchased turn-key line, were used to complete the high efficiency solar cells. This development work delivered a process capable of high volume producing 18.5% efficient crystalline Silicon solar cells and enabled the Innovalight to commercialize its technology by the summer of 2010.

Antoniadis, H.

2011-03-01T23:59:59.000Z

129

Polycrystalline thin-film solar cells and modules  

DOE Green Energy (OSTI)

This paper describes the recent technological advances in polycrystalline thin-film solar cells and modules. Three thin film materials, namely, cadmium telluride (CdTe), copper indium diselenide (CuInSe{sub 2}, CIS) and silicon films (Si-films) have made substantial technical progress, both in device and module performance. Early stability results for modules tested outdoors by various groups worldwide are also encouraging. The major global players actively involved in the development of the these technologies are discussed. Technical issues related to these materials are elucidated. Three 20-kW polycrystalline thin-film demonstration photovoltaic (PV) systems are expected to be installed in Davis, CA in 1992 as part of the Photovoltaics for Utility-Scale Applications (PVUSA) project. This is a joint project between the US Department of Energy (DOE), Pacific Gas and Electric (PG&E), Electric Power Research Institute (EPRI), California Energy Commission (CEC), and a utility consortium.

Ullal, H.S.; Stone, J.L.; Zweibel, K.; Surek, T.; Mitchell, R.L.

1991-12-01T23:59:59.000Z

130

Polycrystalline thin-film solar cells and modules  

DOE Green Energy (OSTI)

This paper describes the recent technological advances in polycrystalline thin-film solar cells and modules. Three thin film materials, namely, cadmium telluride (CdTe), copper indium diselenide (CuInSe{sub 2}, CIS) and silicon films (Si-films) have made substantial technical progress, both in device and module performance. Early stability results for modules tested outdoors by various groups worldwide are also encouraging. The major global players actively involved in the development of the these technologies are discussed. Technical issues related to these materials are elucidated. Three 20-kW polycrystalline thin-film demonstration photovoltaic (PV) systems are expected to be installed in Davis, CA in 1992 as part of the Photovoltaics for Utility-Scale Applications (PVUSA) project. This is a joint project between the US Department of Energy (DOE), Pacific Gas and Electric (PG E), Electric Power Research Institute (EPRI), California Energy Commission (CEC), and a utility consortium.

Ullal, H.S.; Stone, J.L.; Zweibel, K.; Surek, T.; Mitchell, R.L.

1991-12-01T23:59:59.000Z

131

Integrated photonic structures for light trapping in thin-film Si solar cells  

E-Print Network (OSTI)

We explore the mechanisms for an efficient light trapping structure for thin-film silicon solar cells. The design combines a distributed Bragg reflector (DBR) and periodic gratings. Using photonic band theories and numerical ...

Sheng, Xing

132

Thin film buried anode battery  

DOE Patents (OSTI)

A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

Lee, Se-Hee (Lakewood, CO); Tracy, C. Edwin (Golden, CO); Liu, Ping (Denver, CO)

2009-12-15T23:59:59.000Z

133

MIS solar cells on thin polycrystalline silicon. Progress report No. 3, September 1-November 30, 1980  

DOE Green Energy (OSTI)

The first task of this project involves electron-beam deposition of thin silicon films on low cost substrates. The goal is to obtain 20 ..mu..m thick films having 20 ..mu..m diameter crystallites which may be recrystallized to > 40 ..mu..m. Material characterization and device studies are to be included in efforts to reach a 6% conversion efficiency. The second task deals with MIS solar cell fabrication on various types of silicon including poly-Si, ribbon-Si, silicon on ceramic, and thin film silicon. Conduction mechanism studies, optimum engineering design, and modification of the fabrication process are to be used to achieve 13% efficiency on Xtal-Si and 11% efficiency on poly-Si. The third task involves more detailed test procedures and includes spectral response, interface and grain boundary effects, computer analysis, materials studies, and grain boundary passivation. Progress is detailed. (WHK)

Anderson, W.A.

1980-12-01T23:59:59.000Z

134

Geometric shape control of thin film ferroelectrics and resulting structures  

DOE Patents (OSTI)

A monolithic crystalline structure and a method of making involves a semiconductor substrate, such as silicon, and a ferroelectric film, such as BaTiO.sub.3, overlying the surface of the substrate wherein the atomic layers of the ferroelectric film directly overlie the surface of the substrate. By controlling the geometry of the ferroelectric thin film, either during build-up of the thin film or through appropriate treatment of the thin film adjacent the boundary thereof, the in-plane tensile strain within the ferroelectric film is relieved to the extent necessary to permit the ferroelectric film to be poled out-of-plane, thereby effecting in-plane switching of the polarization of the underlying substrate material. The method of the invention includes the steps involved in effecting a discontinuity of the mechanical restraint at the boundary of the ferroelectric film atop the semiconductor substrate by, for example, either removing material from a ferroelectric film which has already been built upon the substrate, building up a ferroelectric film upon the substrate in a mesa-shaped geometry or inducing the discontinuity at the boundary by ion beam deposition techniques.

McKee, Rodney A. (Kingston, TN); Walker, Frederick J. (Oak Ridge, TN)

2000-01-01T23:59:59.000Z

135

Studies of pure and nitrogen-incorporated hydrogenated amorphous carbon thin films and their possible application for amorphous silicon solar cells  

Science Conference Proceedings (OSTI)

Hydrogenated amorphous carbon (a-C:H) and nitrogen-incorporated a-C:H (a-C:N:H) thin films were deposited using radio frequency-plasma-enhanced chemical vapor deposition technique and studied for their electrical, optical, and nano-mechanical properties. Introduction of nitrogen and increase of self bias enhanced the conductivity of a-C:H and a-C:N:H films, whereas current-voltage measurement reveals heterojunction formation due to their rectifying behavior. The bandgap of these films was changed over wide range from 1.9 eV to 3.45 eV by varying self bias and the nitrogen incorporation. Further, activation energy was correlated with the electronic structure of a-C:H and a-C:N:H films, and conductivity was discussed as a function of bandgap. Moreover, a-C:N:H films exhibited high hardness and elastic modulus, with maximum values as 42 GPa and 430 GPa, respectively, at -100 V. Observed fascinating electrical, optical, and nano-mechanical properties made it a material of great utility in the development of optoelectronic devices, such as solar cells. In addition, we also performed simulation study for an a-Si:H solar cell, considering a-C:H and C:N:H as window layers, and compared their performance with the a-Si:H solar cell having a-SiC:H as window layer. We also proposed several structures for the development of a near full-spectrum solar cell. Moreover, due to high hardness, a-C:N:H films can be used as a protective and encapsulate layer on solar cells, especially in n-i-p configuration on metal substrate. Nevertheless, a-C:H and a-C:N:H as a window layer can avoid the use of additional hard and protective coating and, hence, minimize the cost of the product.

Dwivedi, Neeraj [Physics of Energy Harvesting Division, National Physical Laboratory (CSIR), K.S. Krishnan Road, New Delhi 110012 (India); Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016 (India); Kumar, Sushil [Physics of Energy Harvesting Division, National Physical Laboratory (CSIR), K.S. Krishnan Road, New Delhi 110012 (India); Malik, Hitendra K. [Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016 (India)

2012-01-01T23:59:59.000Z

136

Method of preparing high-temperature-stable thin-film resistors  

DOE Patents (OSTI)

A chemical vapor deposition method for manufacturing tungsten-silicide thin-film resistors of predetermined bulk resistivity and temperature coefficient of resistance (TCR) is disclosed. Gaseous compounds of tungsten and silicon are decomposed on a hot substrate to deposit a thin-film of tungsten-silicide. The TCR of the film is determined by the crystallinity of the grain structure, which is controlled by the temperature of deposition and the tungsten to silicon ratio. The bulk resistivity is determined by the tungsten to silicon ratio. Manipulation of the fabrication parameters allows for sensitive control of the properties of the resistor.

Raymond, L.S.

1980-11-12T23:59:59.000Z

137

Method of preparing high-temperature-stable thin-film resistors  

DOE Patents (OSTI)

A chemical vapor deposition method for manufacturing tungsten-silicide thin-film resistors of predetermined bulk resistivity and temperature coefficient of resistance (TCR). Gaseous compounds of tungsten and silicon are decomposed on a hot substrate to deposit a thin-film of tungsten-silicide. The TCR of the film is determined by the crystallinity of the grain structure, which is controlled by the temperature of deposition and the tungsten to silicon ratio. The bulk resistivity is determined by the tungsten to silicon ratio. Manipulation of the fabrication parameters allows for sensitive control of the properties of the resistor.

Raymond, Leonard S. (Tucson, AZ)

1983-01-01T23:59:59.000Z

138

Large area ceramic thin films on plastics: A versatile route via solution processing  

Science Conference Proceedings (OSTI)

A new general route for large area, submicron thick ceramic thin films (crystalline metal oxide thin films) on plastic substrates is presented, where the crystallization of films is guaranteed by a firing process. Gel films are deposited on silicon substrates with a release layer and fired to be ceramic films, followed by transferring onto plastic substrates using adhesives. The ceramic films thus fabricated on plastics exhibit a certain degree of flexibility, implying the possibility of the technique to be applied to high-throughput roll-to-roll processes. Using this technique, we successfully realized transparent anatase thin films that provide high optical reflectance and transparent indium tin oxide thin films that exhibit electrical conductivity on polycarbonate and acrylic resin substrates, respectively. Crystallographically oriented zinc oxide films and patterned zinc oxide films are also demonstrated to be realized on acrylic resin substrates.

Kozuka, H.; Yamano, A.; Uchiyama, H.; Takahashi, M. [Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, 564-8680 (Japan); Fukui, T.; Yoki, M.; Akase, T. [Graduate School of Science and Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, 564-8680 (Japan)

2012-01-01T23:59:59.000Z

139

Effects of Different Precursor's Concentration on the Properties of Zinc Oxide Thin Films  

Science Conference Proceedings (OSTI)

Zinc oxide (ZnO) thin films were successfully grown on silicon substrate with different molarities, by a sol-gel method. In the process, the molarities were varied from 0.2-1.0 M and it was found that increasing in molarities had affected the structure of ZnO thin films. The properties of the thin films were characterized and studied by ultraviolet-visible spectroscopy (UV-Vis) and photoluminescence spectrometer (PL). It was found that the molarities affect the optical properties of the resultant ZnO thin films.

Malek, M. F.; Zakaria, N.; Sahdan, M. Z.; Mamat, M. H. [Faculty of Electrical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); Khusaimi, Z. [NANO-SciTech Centre, Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); Rusop, M. [Faculty of Electrical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); NANO-SciTech Centre, Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia)

2010-07-07T23:59:59.000Z

140

Method of producing amorphous thin films  

DOE Patents (OSTI)

Disclosed is a method of producing thin films by sintering which comprises: a. coating a substrate with a thin film of an inorganic glass forming parulate material possessing the capability of being sintered, and b. irridiating said thin film of said particulate material with a laser beam of sufficient power to cause sintering of said material below the temperature of liquidus thereof. Also disclosed is the article produced by the method claimed.

Brusasco, Raymond M. (Livermore, CA)

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thin film silicon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Characterization of Micro-, Nano-, and Thin Films  

Science Conference Proceedings (OSTI)

Feb 18, 2010... CdS:In Thin Films Prepared by the Spray-Pyrolysis Technique: Shadia Ikhmayies1; Riyad Ahmad-Bitar1; 1University of Jordan

142

Enhanced Thin Film Organic Photovoltaic Devices  

A novel structure design for thin film organic photovoltaic (OPV) devices provides a system for increasing the optical absorption in the active layer. ...

143

Method of producing amorphous thin films  

DOE Patents (OSTI)

This invention dicloses a method for sintering particulate material (such as silica) with a laser beam to produce amorphous optical thin films on substrates.

Brusasco, R.M.

1991-12-31T23:59:59.000Z

144

Infrared Analysis of Advanced Thin Film Materials  

Science Conference Proceedings (OSTI)

The goals of timely and cost effective integration of these new materials into ... most widely accepted method for production monitoring of transparent thin films.

145

Polycrystalline Thin Film Solar Cell Technologies: Preprint  

DOE Green Energy (OSTI)

Rapid progress is being made by CdTe and CIGS-based thin-film PV technologies in entering commercial markets.

Ullal, H. S.

2008-12-01T23:59:59.000Z

146

Mechanical Properties of Thin Film Metallic Glass  

Science Conference Proceedings (OSTI)

Because of these and other properties, thin film metallic-glasses (TFMGs) are a promising structural material for fabricating the next generation of micro- and ...

147

Textured Ultrafine Grained Al Thin Films  

Science Conference Proceedings (OSTI)

Symposium, Fatigue and Fracture of Thin Films and Nanomaterials. Presentation Title, In-Situ ACOM-TEM Nanomechanical Testing of Textured Ultrafine ...

148

Thin Film Structures for Energy Efficient Systems  

Science Conference Proceedings (OSTI)

Thin film based energy generation and storage devices - Small scale ... Dye- sensitized Solar Cells with Anodized Aluminum Alloy-based Counter-electrodes.

149

Research on high-efficiency, single-junction, monolithic, thin-film amorphous silicon solar cells: Phase II annual subcontract report, 1 January 1985--31 January 1986  

DOE Green Energy (OSTI)

This report presents results of the second phase of research on high-efficiency, single-junction, monolithic, thin-film a-Si solar cells. Five glow-discharge deposition systems, including a new in-line, multichamber system, were used to grow both doped and undoped a-Si:H. A large number of silane and disilane gas cylinders were analyzed with a gas chromatography/mass spectroscopy system. Strong correlations were found between the breakdown voltage, the deposition rate, the diffusion length, and the conversion efficiency for varying cathode-anode separations in a DC glow-discharge deposition mode. Tin oxide films were grown by chemical vapor deposition with either tetramethyl tin (TMT) or tin tetrachloride (TTC). The best were grown with TMT, but TTC films had a more controlled texture for light trapping and provided a better contact to the p-layer. The best results were obtained with 7059 glass substrates. Efficiencies as high as 10.86% were obtained in p-i-n cells with superlattice p-layers and as high as 10.74% in cells with both superlattice p- and n-layers. Measurements showed that the boron-doping level in the p-layer can strongly affect transport in the i-layer, which can be minimized by reactive flushing before i-layer deposition. Stability of a-Si:H cells is improved by light doping. 51 refs., 64 figs., 21 tabs.

Carlson, D.E.; Ayra, R.R.; Bennett, M.S.; Catalano, A.; D'Aiello, R.V.; Dickson, C.R.; McVeigh, J.; Newton, J.; O'Dowd, J.; Oswald, R.S.; Rajan, K.

1988-09-01T23:59:59.000Z

150

Oxynitride Thin Film Barriers for PV Packaging  

DOE Green Energy (OSTI)

Dielectric thin-film barrier and adhesion-promoting layers consisting of silicon oxynitride materials (SiOxNy, with various stoichiometry) were investigated. For process development, films were applied to glass (TCO, conductive SnO2:F; or soda-lime), polymer (PET, polyethylene terephthalate), aluminized soda-lime glass, or PV cell (a-Si, CIGS) substrates. Design strategy employed de-minimus hazard criteria to facilitate industrial adoption and reduce implementation costs for PV manufacturers or suppliers. A restricted process window was explored using dilute compressed gases (3% silane, 14% nitrous oxide, 23% oxygen) in nitrogen (or former mixtures, and 11.45% oxygen mix in helium and/or 99.999% helium dilution) with a worst-case flammable and non-corrosive hazard classification. Method employed low radio frequency (RF) power, less than or equal to 3 milliwatts per cm2, and low substrate temperatures, less than or equal to 100 deg C, over deposition areas less than or equal to 1000 cm2. Select material properties for barrier film thickness (profilometer), composition (XPS/FTIR), optical (refractive index, %T and %R), mechanical peel strength and WVTR barrier performance are presented.

Glick, S. H.; delCueto, J. A.; Terwilliger, K. M.; Jorgensen, G. J.; Pankow, J. W.; Keyes, B. M.; Gedvilas, L. M.; Pern, F. J.

2005-11-01T23:59:59.000Z

151

Growth study of ion assisted evaporated molybdenum thin films  

Science Conference Proceedings (OSTI)

We reported optimization of ion-to-atom ratios and ion energy for growth of molybdenum thin film on oxidized silicon substrate using ion assisted electron beam evaporation system. The ion-to-atom ratio is varied by independently adjusting the ion current density and deposition rate. The structural characterization of the films is carried out by hard X-ray reflectivity. We observed improvement in film density from 85.5% to 98.2% and film roughness from {approx}2 nm to 0.84nm on {approx}26 nm thick Mo film by optimizing ion parameters. The observed results are discussed considering the effect of kinetic of adatoms during growth of film.

Yadav, P. K.; Nayak, M.; Lodha, G. S.; Rai, S. [X-ray Optics Section, Indus Synchrotrons Utilization Division, Raja Ramanna Centre For Advanced Technology, Indore-452013 (India)

2012-06-25T23:59:59.000Z

152

Thin-Film Photovoltaic Industry  

Science Conference Proceedings (OSTI)

This report presents an overview of the thin-film (TF) photovoltaic (PV) industry as of the third quarter of 2012, a time in the midst of very rapid changes.  The TFPV industry has seen significantly greater investment in the past 5 to 10 years than in any previous time and up until recently it seemed that this investment was on track to make TFPV a much larger player in the overall PV market.  However, market dynamics have conspired to dim TFPV’s near-term prospects and ...

2012-11-30T23:59:59.000Z

153

Thin film solar energy collector  

DOE Patents (OSTI)

A multi-layer solar energy collector of improved stability comprising: (1) a substrate of quartz, silicate glass, stainless steel or aluminum-containing ferritic alloy; (2) a solar absorptive layer comprising silver, copper oxide, rhodium/rhodium oxide and 0-15% by weight of platinum; (3) an interlayer comprising silver or silver/platinum; and (4) an optional external anti-reflective coating, plus a method for preparing a thermally stable multi-layered solar collector, in which the absorptive layer is undercoated with a thin film of silver or silver/platinum to obtain an improved conductor-dielectric tandem.

Aykan, Kamran (Monmouth Beach, NJ); Farrauto, Robert J. (Westfield, NJ); Jefferson, Clinton F. (Millburn, NJ); Lanam, Richard D. (Westfield, NJ)

1983-11-22T23:59:59.000Z

154

Method for formation of thin film transistors on plastic substrates  

DOE Patents (OSTI)

A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The process relies on techniques for depositing semiconductors, dielectrics, and metals at low temperatures; crystallizing and doping semiconductor layers in the TFT with a pulsed energy source; and creating top-gate self-aligned as well as back-gate TFT structures. The process enables the fabrication of amorphous and polycrystalline channel silicon TFTs at temperatures sufficiently low to prevent damage to plastic substrates. The process has use in large area low cost electronics, such as flat panel displays and portable electronics.

Carey, Paul G. (Mountain View, CA); Smith, Patrick M. (San Ramon, CA); Sigmon, Thomas W. (Portola Valley, CA); Aceves, Randy C. (Livermore, CA)

1998-10-06T23:59:59.000Z

155

Thin-film optical initiator - Energy Innovation Portal  

A thin-film optical initiator having an inert, transparent substrate, a reactive thin film, which can be either an explosive or a pyrotechnic, and a reflective thin film.

156

Uncooled thin film pyroelectric IR detector with aerogel thermal isolation  

Science Conference Proceedings (OSTI)

Uncooled pyroelectric IR imaging systems, such as night vision goggles, offer important strategic advantages in battlefield scenarios and reconnaissance surveys. Until now, the current technology for fabricating these devices has been limited by low throughput and high cost which ultimately limit the availability of these sensor devices. We have developed and fabricated an alternative design for pyroelectric IR imaging sensors that utilizes a multilayered thin film deposition scheme to create a monolithic thin film imaging element on an active silicon substrate for the first time. This approach combines a thin film pyroelectric imaging element with a thermally insulating SiO{sub 2} aerogel thin film to produce a new type of uncooled IR sensor that offers significantly higher thermal, spatial, and temporal resolutions at a substantially lower cost per unit. This report describes the deposition, characterization and optimization of the aerogel thermal isolation layer and an appropriate pyroelectric imaging element. It also describes the overall integration of these components along with the appropriate planarization, etch stop, adhesion, electrode, and blacking agent thin film layers into a monolithic structure. 19 refs., 8 figs., 6 tabs.

Ruffner, J.A.; Clem, P.G.; Tuttle, B.A. [and others

1998-01-01T23:59:59.000Z

157

Capillary Wave Dynamics of Thin Polymer Films over Submerged Nanostructures  

Science Conference Proceedings (OSTI)

The surface dynamics of thin molten polystyrene films supported by nanoscale periodic silicon line-space gratings were investigated with x-ray photon correlation spectroscopy. Surface dynamics over these nanostructures exhibit high directional anisotropy above certain length scales, as compared to surface dynamics over flat substrates. A cutoff length scale in the dynamics perpendicular to the grooves is observed. This marks a transition from standard over-damped capillary wave behavior to suppressed dynamics due to substrate interactions.

Alvine, Kyle J.; Dai, Yeling; Ro, Hyun W.; Narayanan, Suresh; Sandy, Alec; Soles, Christopher L.; Shpyrko, Oleg G.

2012-11-13T23:59:59.000Z

158

In situ investigation of ion-induced dewetting of a thin iron-oxide film on silicon by high resolution scanning electron microscopy  

SciTech Connect

Using our new in situ high resolution scanning electron microscope, which is integrated into the UNILAC ion beamline at the Helmholtzzentrum fuer Schwerionenforschung (GSI) in Darmstadt, Germany, we investigated the swift heavy ion induced dewetting of a thin iron oxide layer on Si. Besides heterogeneous hole nucleation at defects and spontaneous (homogeneous) hole nucleation, we could clearly identify a dewetting mechanism, which is similar to the spinodal dewetting observed for liquid films. Instead of being due to capillary waves, it is based on a stress induced surface instability. The latter results in the formation of a wavy surface with constant dominant wave-length and increasing amplitude during ion irradiation. Dewetting sets in as soon as the wave-troughs reach the film-substrate interface. Inspection of the hole radii and rim shapes indicates that removal of the material from the hole area occurs mainly by plastic deformation at the inner boundary and ion induced viscous flow in the peripheral zone due to surface tension.

Amirthapandian, S. [Institut fuer Halbleiteroptik und Funktionelle Grenzflaechen, Universitaet Stuttgart, 70569 Stuttgart (Germany); Material Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Schuchart, F.; Garmatter, D.; Bolse, W. [Institut fuer Halbleiteroptik und Funktionelle Grenzflaechen, Universitaet Stuttgart, 70569 Stuttgart (Germany)

2012-11-15T23:59:59.000Z

159

Thin Silicon MEMS Contact-Stress Sensor  

SciTech Connect

This thin, MEMS contact-stress (CS) sensor continuously and accurately measures time-varying, solid interface loads in embedded systems over tens of thousands of load cycles. Unlike all other interface load sensors, the CS sensor is extremely thin (< 150 {micro}m), provides accurate, high-speed measurements, and exhibits good stability over time with no loss of calibration with load cycling. The silicon CS sensor, 5 mm{sup 2} and 65 {micro}m thick, has piezoresistive traces doped within a load-sensitive diaphragm. The novel package utilizes several layers of flexible polyimide to mechanically and electrically isolate the sensor from the environment, transmit normal applied loads to the diaphragm, and maintain uniform thickness. The CS sensors have a highly linear output in the load range tested (0-2.4 MPa) with an average accuracy of {+-} 1.5%.

Kotovsky, J; Tooker, A; Horsley, D

2010-03-22T23:59:59.000Z

160

Method of casting silicon into thin sheets  

DOE Patents (OSTI)

Silicon (Si) is cast into thin shapes within a flat-bottomed graphite crucible by providing a melt of molten Si along with a relatively small amount of a molten salt, preferably NaF. The Si in the resulting melt forms a spherical pool which sinks into and is wetted by the molten salt. Under these conditions the Si will not react with any graphite to form SiC. The melt in the crucible is pressed to the desired thinness with a graphite tool at which point the tool is held until the mass in the crucible has been cooled to temperatures below the Si melting point, at which point the Si shape can be removed.

Sanjurjo, Angel (San Jose, CA); Rowcliffe, David J. (Los Altos, CA); Bartlett, Robert W. (Tucson, AZ)

1982-10-26T23:59:59.000Z

Note: This page contains sample records for the topic "thin film silicon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Thin films of mixed metal compounds  

DOE Patents (OSTI)

A compositionally uniform thin film of a mixed metal compound is formed by simultaneously evaporating a first metal compound and a second metal compound from independent sources. The mean free path between the vapor particles is reduced by a gas and the mixed vapors are deposited uniformly. The invention finds particular utility in forming thin film heterojunction solar cells.

Mickelsen, Reid A. (Bellevue, WA); Chen, Wen S. (Seattle, WA)

1985-01-01T23:59:59.000Z

162

Electrostatic thin film chemical and biological sensor  

DOE Patents (OSTI)

A chemical and biological agent sensor includes an electrostatic thin film supported by a substrate. The film includes an electrostatic charged surface to attract predetermined biological and chemical agents of interest. A charge collector associated with said electrostatic thin film collects charge associated with surface defects in the electrostatic film induced by the predetermined biological and chemical agents of interest. A preferred sensing system includes a charge based deep level transient spectroscopy system to read out charges from the film and match responses to data sets regarding the agents of interest. A method for sensing biological and chemical agents includes providing a thin sensing film having a predetermined electrostatic charge. The film is exposed to an environment suspected of containing the biological and chemical agents. Quantum surface effects on the film are measured. Biological and/or chemical agents can be detected, identified and quantified based on the measured quantum surface effects.

Prelas, Mark A. (Columbia, MO); Ghosh, Tushar K. (Columbia, MO); Tompson, Jr., Robert V. (Columbia, MO); Viswanath, Dabir (Columbia, MO); Loyalka, Sudarshan K. (Columbia, MO)

2010-01-19T23:59:59.000Z

163

Institute of Photo Electronic Thin Film Devices and Technology...  

Open Energy Info (EERE)

Place Tianjin Municipality, China Zip 300071 Sector Solar Product A thin-film solar cell research institute in China. References Institute of Photo-Electronic Thin Film Devices...

164

Daylighting control performance of a thin-film ceramic electrochromic...  

NLE Websites -- All DOE Office Websites (Extended Search)

Daylighting control performance of a thin-film ceramic electrochromic window: Field study results Title Daylighting control performance of a thin-film ceramic electrochromic...

165

Breakthroughs in Thin-Film Magnetic Devices Earn NIST ...  

Science Conference Proceedings (OSTI)

... thin films to control magnetism as a foundation for developing better sensors and memory devices. Computer hard drives that use magnetic thin-film ...

2012-12-13T23:59:59.000Z

166

Amorphous and nanocrystalline Mg2Si thin-film electrodes  

NLE Websites -- All DOE Office Websites (Extended Search)

Contact Us Department Contacts Media Contacts Amorphous and nanocrystalline Mg2Si thin-film electrodes Title Amorphous and nanocrystalline Mg2Si thin-film electrodes...

167

Thin-Film/Low-K Dielectric Constant Measurement  

Science Conference Proceedings (OSTI)

... to pursue a very different approach to dielectric thin-film characterization at ... at NIST; DOW will simply deposit and pattern the thin films on pretested ...

2010-10-05T23:59:59.000Z

168

Thin Single Crystal Silicon Solar Cells on Ceramic Substrates: November 2009 - November 2010  

DOE Green Energy (OSTI)

In this program we have been developing a technology for fabricating thin (< 50 micrometres) single crystal silicon wafers on foreign substrates. We reverse the conventional approach of depositing or forming silicon on foreign substrates by depositing or forming thick (200 to 400 micrometres) ceramic materials on high quality single crystal silicon films ~ 50 micrometres thick. Our key innovation is the fabrication of thin, refractory, and self-adhering 'handling layers or substrates' on thin epitaxial silicon films in-situ, from powder precursors obtained from low cost raw materials. This 'handling layer' has sufficient strength for device and module processing and fabrication. Successful production of full sized (125 mm X 125 mm) silicon on ceramic wafers with 50 micrometre thick single crystal silicon has been achieved and device process flow developed for solar cell fabrication. Impurity transfer from the ceramic to the silicon during the elevated temperature consolidation process has resulted in very low minority carrier lifetimes and resulting low cell efficiencies. Detailed analysis of minority carrier lifetime, metals analysis and device characterization have been done. A full sized solar cell efficiency of 8% has been demonstrated.

Kumar, A.; Ravi, K. V.

2011-06-01T23:59:59.000Z

169

Thin Silicon MEMS Contact-Stress Sensor  

SciTech Connect

This work offers the first, thin, MEMS contact-stress (CS) sensor capable of accurate in situ measruement of time-varying, contact-stress between two solid interfaces (e.g. in vivo cartilage contact-stress and body armor dynamic loading). This CS sensor is a silicon-based device with a load sensitive diaphragm. The diaphragm is doped to create piezoresistors arranged in a full Wheatstone bridge. The sensor is similar in performance to established silicon pressure sensors, but it is reliably produced to a thickness of 65 {micro}m. Unlike commercial devices or other research efforts, this CS sensor, including packaging, is extremely thin (< 150 {micro}m fully packaged) so that it can be unobtrusively placed between contacting structures. It is built from elastic, well-characterized materials, providing accurate and high-speed (50+ kHz) measurements over a potential embedded lifetime of decades. This work explored sensor designs for an interface load range of 0-2 MPa; however, the CS sensor has a flexible design architecture to measure a wide variety of interface load ranges.

Kotovsky, J; Tooker, A; Horsley, D A

2009-12-07T23:59:59.000Z

170

Method of producing thin cellulose nitrate film  

DOE Patents (OSTI)

An improved method for forming a thin nitrocellulose film of reproducible thickness is described. The film is a cellulose nitrate film, 10 to 20 microns in thickness, cast from a solution of cellulose nitrate in tetrahydrofuran, said solution containing from 7 to 15 percent, by weight, of dioctyl phthalate, said cellulose nitrate having a nitrogen content of from 10 to 13 percent.

Lupica, S.B.

1975-12-23T23:59:59.000Z

171

CAT-CVD process and its application to preparation of Si-based thin films  

SciTech Connect

This is to review the present understanding on Cat-CVD (catalytic chemical vapor deposition) or hot wire CVD. Firstly, the deposition mechanism in Cat-CVD process is briefly mentioned along with key issues such as the effect of heat radiation and a method to avoid contamination from the catalyzer. Secondly, the properties of Cat-CVD Si-based thin films such as amorphous silicon (a-Si), polycrystalline silicon (poly-Si) and silicon nitride (SiN{sub x}) films are demonstrated, and finally, the feasibility of such films for industrial application is discussed.

Matsumura, Hideki; Masuda, Atsushi; Izumi, Akira

1999-07-01T23:59:59.000Z

172

Thin-film rechargeable lithium batteries  

SciTech Connect

Small thin-film rechargeable cells have been fabricated with a lithium phosphorus oxyniuide electrolyte, Li metal anode, and Li{sub 1-x}Mn{sub 2}O{sub 4} as the cathode film. The cathode films were fabricated by several different techniques resulting in both crystalline and amorphous films. These were compared by observing the cell discharge behavior. Estimates have been made for the scale-up of such a thin-film battery to meet the specifications for the electric vehicle application. The specific energy, energy density, and cycle life are expected to meet the USABC mid-term criteria. However, the areas of the thin-films needed to fabricate such a cell are very large. The required areas could be greatly reduced by operating the battery at temperatures near 100{degrees}C or by enhancing the lithium ion transport rate in the cathode material.

Dudney, N.J.; Bates, J.B.; Lubben, D.

1994-11-01T23:59:59.000Z

173

Aging phenomena in polystyrene thin films  

E-Print Network (OSTI)

The aging behavior is investigated for thin films of atactic polystyrene through measurements of complex electric capacitance. During isothermal aging process the real part of the electric capacitance increases with aging time, while the imaginary part decreases with aging time. This result suggests that the aging time dependence of the real and imaginary parts are mainly associated with change in thickness and dielectric permittivity, respectively. In thin films, the thickness depends on thermal history of aging even above the glass transition. Memory and `rejuvenation' effects are also observed in the thin films.

Koji Fukao; Hiroki Koizumi

2008-01-05T23:59:59.000Z

174

Thin Film Deposition and Processing  

Science Conference Proceedings (OSTI)

... Applications: Tube 1 (T1), open for future upgrade. Silicon Nitride Deposition (Tube 2): Low Stress recipe. Stoichiometric recipe. ...

2013-09-17T23:59:59.000Z

175

Innovative Thin Films LLC | Open Energy Information  

Open Energy Info (EERE)

Thin Films LLC Thin Films LLC Jump to: navigation, search Name Innovative Thin Films LLC Place Toledo, Ohio Zip 43607 Product Provider of altnernative energy thin film deposition technology. Coordinates 46.440613°, -122.847838° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.440613,"lon":-122.847838,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

176

Solid State Thin Film Lithium Microbatteries  

E-Print Network (OSTI)

Solid state thin film lithium microbatteries fabricated by pulsed-laser deposition (PLD) are suggested. During deposition the following process parameters must be considered, which are laser energy and fluence, laser pulse ...

Shi, Z.

177

Superhydrophobic Thin Film Symposium | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Connect with ORNL | For Industry | Partnerships | Events and Conferences Superhydrophobic Thin Film Symposium Sep 05 2012 12:00 AM - 05:00 PM Hosted by Oak Ridge Laboratory's...

178

Polycrystalline Thin-Film Multijunction Solar Cells  

DOE Green Energy (OSTI)

We present a digest of our research on the thin-film material components that comprise the top and bottom cells of three different material systems and the tandem devices constructed from them.

Noufi, R.; Wu, X.; Abu-Shama, J.; Ramanathan, K; Dhere, R.; Zhou, J.; Coutts, T.; Contreras, M.; Gessert, T.; Ward, J. S.

2005-11-01T23:59:59.000Z

179

Thin films for geothermal sensing: Final report  

DOE Green Energy (OSTI)

The report discusses progress in three components of the geothermal measurement problem: (1) developing appropriate chemically sensitive thin films; (2) discovering suitably rugged and effective encapsulation schemes; and (3) conducting high temperature, in-situ electrochemical measurements. (ACR)

Not Available

1987-09-01T23:59:59.000Z

180

Light-trapped interconnected, Silicon-Film{trademark} modules. Annual technical status report, 18 November 1995--18 November 1996  

DOE Green Energy (OSTI)

AstroPower is developing a module-manufacturing technology based on a film-silicon technology. AstroPower, as a Technology Partner in the Thin-Film PV Partnership, is employing its Silicon-Film{trademark} technology to develop an advanced thin-silicon-based product. This module will combine the design and process features of the most advanced thin-silicon solar cells with light-trapping. These cells will be integrated into a low-cost interconnected array. During the second year of the 3-year project, AstroPower`s emphasis was on developing key submodule fabrication processes. Key results of the work include developing a new thin-film growth concept process based on attaching the low-cost substrate to the thin silicon layer after film growth; developing a new technique to achieve light-trapping in thin layers of silicon based on pigmented high-temperature glass materials; and developing key submodule fabrication processes, including contact grid design, subelement isolation, and screen-printed interconnection.

Hall, R.B.; Rand, J.A.; Cotter, J.E.; Ford, D.H. [AstroPower, Inc., Newark, DE (United States)

1997-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "thin film silicon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Thin Film CIGS and CdTe Photovoltaic Technologies: Commercialization, Critical Issues, and Applications; Preprint  

DOE Green Energy (OSTI)

We report here on the major commercialization aspects of thin-film photovoltaic (PV) technologies based on CIGS and CdTe (a-Si and thin-Si are also reported for completeness on the status of thin-film PV). Worldwide silicon (Si) based PV technologies continues to dominate at more than 94% of the market share, with the share of thin-film PV at less than 6%. However, the market share for thin-film PV in the United States continues to grow rapidly over the past several years and in CY 2006, they had a substantial contribution of about 44%, compared to less than 10% in CY 2003. In CY 2007, thin-film PV market share is expected to surpass that of Si technology in the United States. Worldwide estimated projections for CY 2010 are that thin-film PV production capacity will be more than 3700 MW. A 40-MW thin-film CdTe solar field is currently being installed in Saxony, Germany, and will be completed in early CY 2009. The total project cost is Euro 130 million, which equates to an installed PV system price of Euro 3.25/-watt averaged over the entire solar project. This is the lowest price for any installed PV system in the world today. Critical research, development, and technology issues for thin-film CIGS and CdTe are also elucidated in this paper.

Ullal, H. S.; von Roedern, B.

2007-09-01T23:59:59.000Z

182

Process for forming silicon carbide films and microcomponents  

DOE Patents (OSTI)

Silicon carbide films and microcomponents are grown on silicon substrates at surface temperatures between 900 K and 1700 K via C{sub 60} precursors in a hydrogen-free environment. Selective crystalline silicon carbide growth can be achieved on patterned silicon-silicon oxide samples. Patterned SiC films are produced by making use of the high reaction probability of C{sub 60} with silicon at surface temperatures greater than 900 K and the negligible reaction probability for C{sub 60} on silicon dioxide at surface temperatures less than 1250 K. 5 figs.

Hamza, A.V.; Balooch, M.; Moalem, M.

1999-01-19T23:59:59.000Z

183

Process for forming silicon carbide films and microcomponents  

DOE Patents (OSTI)

Silicon carbide films and microcomponents are grown on silicon substrates at surface temperatures between 900 K and 1700 K via C.sub.60 precursors in a hydrogen-free environment. Selective crystalline silicon carbide growth can be achieved on patterned silicon-silicon oxide samples. Patterned SiC films are produced by making use of the high reaction probability of C.sub.60 with silicon at surface temperatures greater than 900 K and the negligible reaction probability for C.sub.60 on silicon dioxide at surface temperatures less than 1250 K.

Hamza, Alex V. (Livermore, CA); Balooch, Mehdi (Berkeley, CA); Moalem, Mehran (Berkeley, CA)

1999-01-01T23:59:59.000Z

184

Amorphous silicon Schottky barrier solar cells incorporating a thin insulating layer and a thin doped layer  

SciTech Connect

Amorphous silicon Schottky barrier solar cells which incorporate a thin insulating layer and a thin doped layer adjacent to the junction forming metal layer exhibit increased open circuit voltages compared to standard rectifying junction metal devices, i.e., Schottky barrier devices, and rectifying junction metal insulating silicon devices, i.e., MIS devices.

Carlson, David E. (Yardley, PA)

1980-01-01T23:59:59.000Z

185

Fullerene Film as a Coating Material for Silicon Thick Film Anodes ...  

Science Conference Proceedings (OSTI)

Presentation Title, Fullerene Film as a Coating Material for Silicon Thick Film Anodes for Lithium Ion Batteries. Author(s), Arenst Andreas Arie. On-Site Speaker

186

Thin-Film Reliability Trends Toward Improved Stability  

Science Conference Proceedings (OSTI)

Long-term, stable performance of photovoltaic (PV) modules will be increasingly important to their successful penetration of the power grid. This paper summarizes more than 150 thin-film and more than 1700 silicon PV degradation rates (R{sub d}) quoted in publications for locations worldwide. Partitioning the literature results by technology and date of installation statistical analysis shows an improvement in degradation rate especially for thin-film technologies in the last decade. A CIGS array deployed at NREL for more than 5 years that appears to be stable supports the literature trends. Indoor and outdoor data indicate undetectable change in performance (0.2 {+-} 0.2 %/yr). One module shows signs of slight degradation from what appears to be an initial manufacturing defect, however it has not affected the overall system performance.

Jordan, D. C.; Kurtz, S. R.

2011-01-01T23:59:59.000Z

187

Thin-Film Reliability Trends Toward Improved Stability: Preprint  

DOE Green Energy (OSTI)

Long-term, stable performance of photovoltaic (PV) modules will be increasingly important to their successful penetration of the power grid. This paper summarizes more than 150 thin-film and more than 1700 silicon PV degradation rates (Rd) quoted in publications for locations worldwide. Partitioning the literature results by technology and date of installation statistical analysis shows an improvement in degradation rate especially for thin-film technologies in the last decade. A CIGS array deployed at NREL for more than 5 years that appears to be stable supports the literature trends. Indoor and outdoor data indicate undetectable change in performance (0.2+/-0.2 %/yr). One module shows signs of slight degradation from what appears to be an initial manufacturing defect, however it has not affected the overall system performance.

Jordan, D. C.; Kurtz, S. R.

2011-07-01T23:59:59.000Z

188

Eddy Current Testing for Detecting Small Defects in Thin Films  

SciTech Connect

Presented here is a technique of using Eddy Current based Giant Magneto-Resistance sensor (GMR) to detect surface and sub-layered minute defects in thin films. For surface crack detection, a measurement was performed on a copper metallization of 5-10 microns thick. It was done by scanning the GMR sensor on the surface of the wafer that had two scratches of 0.2 mm, and 2.5 mm in length respectively. In another experiment, metal coatings were deposited over the layers containing five defects with known lengths such that the defects were invisible from the surface. The limit of detection (resolution), in terms of defect size, of the GMR high-resolution Eddy Current probe was studied using this sample. Applications of Eddy Current testing include detecting defects in thin film metallic layers, and quality control of metallization layers on silicon wafers for integrated circuits manufacturing.

Obeid, Simon; Tranjan, Farid M. [Electrical and Computer Engineering Department, UNCC (United States); Dogaru, Teodor [Albany Instruments, 426-O Barton Creek, Charlotte, NC 28262 (United States)

2007-03-21T23:59:59.000Z

189

Thin-film Rechargeable Lithium Batteries  

DOE R&D Accomplishments (OSTI)

Thin film rechargeable lithium batteries using ceramic electrolyte and cathode materials have been fabricated by physical deposition techniques. The lithium phosphorous oxynitride electrolyte has exceptional electrochemical stability and a good lithium conductivity. The lithium insertion reaction of several different intercalation materials, amorphous V{sub 2}O{sub 5}, amorphous LiMn{sub 2}O{sub 4}, and crystalline LiMn{sub 2}O{sub 4} films, have been investigated using the completed cathode/electrolyte/lithium thin film battery.

Dudney, N. J.; Bates, J. B.; Lubben, D.

1995-06-00T23:59:59.000Z

190

Thin-film rechargeable lithium batteries  

SciTech Connect

Thin-film rechargeable lithium batteries using ceramic electrolyte and cathode materials have been fabricated by physical deposition techniques. The lithium phosphorous oxynitride electrolyte has exceptional electrochemical stability and a good lithium conductivity. The lithium insertion reaction of several different intercalation materials, amorphous V{sub 2}O{sub 5}, amorphous LiMn{sub 2}O{sub 4}, and crystalline LiMn{sub 2}O{sub 4} films, have been investigated using the completed cathode/electrolyte/lithium thin-film battery.

Dudney, N.J.; Bates, J.B.; Lubben, D. [Oak Ridge National Lab., TN (United States). Solid State Div.

1995-06-01T23:59:59.000Z

191

Proof of damage-free selective removal of thin dielectric coatings on silicon wafers by irradiation with femtosecond laser pulses  

Science Conference Proceedings (OSTI)

The microstructural impact of selective femtosecond laser ablation of thin dielectric layers from monocrystalline silicon wafers was investigated. Various spots opened by 280 fs laser pulses at {lambda} = 1.03 {mu}m wavelength and 50 fs pulses at 800 nm, respectively, were analyzed in detail using Raman and transmission electron microscopy. The results show clearly that the thin dielectric films can be removed without any detectable modification of the Si crystal structure in the opened area. In contrast, in adjacent regions corresponding to laser fluence slightly below the breaking threshold, a thin layer of amorphous silicon with a maximum thickness of about 50 nm is found at the Si/SiO{sub 2} interface after laser irradiation. More than one pulse on the same position, however, causes structural modification of the silicon after thin film ablation in any case.

Rublack, Tino; Muchow, Markus [Zentrum fuer Innovationskompetenz SiLi-nano, Martin-Luther-Universitaet Halle-Wittenberg, 06120 Halle (Germany); Schade, Martin; Leipner, Hartmut S. [Interdisziplinaeres Zentrum fuer Materialwissenschaften, Martin-Luther-Universitaet Halle-Wittenberg, 06099 Halle (Germany); Seifert, Gerhard [Zentrum fuer Innovationskompetenz SiLi-nano, Martin-Luther-Universitaet Halle-Wittenberg, 06120 Halle (Germany); Fraunhofer-Center for Silicon Photovoltaics CSP, 06120 Halle (Germany)

2012-07-15T23:59:59.000Z

192

Thin film absorber for a solar collector  

SciTech Connect

This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

Wilhelm, William G. (Cutchogue, NY)

1985-01-01T23:59:59.000Z

193

Ambient pressure process for preparing aerogel thin films reliquified sols useful in preparing aerogel thin films  

DOE Patents (OSTI)

A method for preparing aerogel thin films by an ambient-pressure, continuous process. The method of this invention obviates the use of an autoclave and is amenable to the formation of thin films by operations such as dip coating. The method is less energy intensive and less dangerous than conventional supercritical aerogel processing techniques.

Brinker, Charles Jeffrey (Albuquerque, NM); Prakash, Sai Sivasankaran (Minneapolis, MN)

1999-01-01T23:59:59.000Z

194

Polycrystalline thin-film technology: Recent progress in photovoltaics  

DOE Green Energy (OSTI)

Polycrystalline thin films have made significant technical progress in the past year. Three of these materials that have been studied extensively for photovoltaic (PV) power applications are copper indium diselenide (CuInSe{sub 2}), cadmium telluride (CdTe), and thin-film polycrystalline silicon (x-Si) deposited on ceramic substrates. The first of these materials, polycrystalline thin-film CuInSe{sub 2}, has made some rapid advances in terms of high efficiency and long-term reliability. For CuInSe{sub 2} power modules, a world record has been reported on a 0.4-m{sup 2} module with an aperture-area efficiency of 10.4% and a power output of 40.4 W. Additionally, outdoor reliability testing of CuInSe{sub 2} modules, under both loaded and open-circuit conditions, has resulted in only minor changes in module performance after more than 1000 days of continuous exposure to natural sunlight. CdTe module research has also resulted in several recent improvements. Module performance has been increased with device areas reaching nearly 900 cm{sup 2}. Deposition has been demonstrated by several different techniques, including electrodeposition, spraying, and screen printing. Outdoor reliability testing of CdTe modules was also carried out under both loaded and open-circuit conditions, with more than 600 days of continuous exposure to natural sunlight. These tests were also encouraging and indicated that the modules were stable within measurement error. The highest reported aperture-area module efficiency for CdTe modules is 10%; the semiconductor material was deposited by electrodeposition. A thin-film CdTe photovoltaic system with a power output of 54 W has been deployed in Saudi Arabia for water pumping. The Module Development Initiative has made significant progress in support of the Polycrystalline Thin-Film Program in the past year, and results are presented in this paper.

Mitchell, R.L.; Zweibel, K.; Ullal, H.S.

1991-12-01T23:59:59.000Z

195

Method for making thin polypropylene film  

DOE Patents (OSTI)

An economical method is provided for making uniform thickness polypropylene film as thin as 100 Angstroms. A solution of polypropylene dissolved in xylene is formed by mixing granular polypropylene and xylene together in a flask at an elevated temperature. A substrate, such as a glass plate or microscope slide is immersed in the solution. When the glass plate is withdrawn from the solution at a uniform rate, a thin polypropylene film forms on a flat surface area of the glass plate as the result of xylene evaporation. The actual thickness of the polypropylene film is functional of the polypropylene in xylene solution concentration, and the particular withdrawal rate of the glass plate from the solution. After formation, the thin polypropylene film is floated from the glass plate onto the surface of water, from which it is picked up with a wire hoop.

Behymer, R.D.; Scholten, J.A.

1985-11-21T23:59:59.000Z

196

Rapid, controllable growth of epitaxial silicon films - Energy ...  

Many of the current industry cells in ... A method of producing epitaxial silicon films on a c-Si wafer substrate using hot wire chemical vapor ...

197

Structure of Silicon-Based Thin Film Solar Cell Materials: Annual Technical Progress Report, 1 April 2002--31 August 2003  

DOE Green Energy (OSTI)

The purpose of this research is to achieve a better understanding to improve materials used as the intrinsic layers of amorphous and microcrystalline silicon-based solar cells. Fundamental structural properties will be investigated on atomic and nano-scales. A powerful combination of techniques will be used: analytical high-resolution transmission electron microscopy (HRTEM), including special associated spectroscopic methods, small-angle scattering techniques (SAXS, ASAXS, SANS), and conventional wide-angle X-ray diffraction (XRD).

Williamson, D. L.

2004-01-01T23:59:59.000Z

198

Transparent Conductors and Barrier Layers for Thin Film Solar Cells:  

DOE Green Energy (OSTI)

This report describes the research undertaken to increase the efficiency of thin-film solar cells based on amorphous silicon in the so-called''superstrate structure'' (glass front surface/transparent electrically conductive oxide (TCO)/pin amorphous silicon/metal back electrode). The TCO layer must meet many requirements: high optical transparency in the wavelength region from about 350 to 900 nm, low electrical sheet resistance, stability during handling and deposition of the subsequent layers and during use, a textured (rough) surface to enhance optical absorption of red and near-infrared light, and low-resistance electrical contact to the amorphous silicon p-layer. Fluorine-doped tin oxide has been the TCO used in most commercial superstrate amorphous silicon cells. Fluorine-doped zinc oxide (ZnO:F) was later shown to be even more transparent than fluorine-doped tin oxide, as well as being more resistant to the strongly reducing conditions encountered during the deposition of amorphous silicon. Solar cells based on ZnO:F showed the expected higher currents, but the fill factors were lower than standard cells grown on tin oxide, resulting in no consistent improvement in efficiency. This problem was recently mitigated by using a new proprietary p/buffer layer combination developed at BP Solar.

Gordon, R. G.; Broomhall-Dillard, R.; Liu, X.; Pang, D.; Barton, J.

2001-12-01T23:59:59.000Z

199

Superhydrophobic Thin Film Symposium | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Superhydrophobic Thin Film Symposium Superhydrophobic Thin Film Symposium Sep 05 2012 12:00 AM - 05:00 PM Hosted by Oak Ridge Laboratory's Partnerships Directorate and focusing on the recent LDRD Launch project work completed by Dr. Tolga Aytug and Dr. John T. Simpson (ORNL research PI's). Oak Ridge, TN Oak Ridge National Laboratory CONTACT : Email: Cassie Lopez Phone:(865) 576-9294 Add to Calendar SHARE Hosted by Oak Ridge Laboratory's Partnerships Directorate and focusing on the recent LDRD Launch project work completed by Dr. Tolga Aytug and Dr. John T. Simpson (ORNL research PI's). Purpose To share the ORNL Superhydrophonbic Thin Film technology to prospective commercial partners. Date and Time The conference will be held on the morning of Wednesday September 5th at Oak Ridge National Laboratory (ORNL) by Partnerships and Technology

200

Method for synthesizing thin film electrodes  

SciTech Connect

A method for making a thin-film electrode, either an anode or a cathode, by preparing a precursor solution using an alkoxide reactant, depositing multiple thin film layers with each layer approximately 500 1000 .ANG. in thickness, and heating the layers to above 600.degree. C. to achieve a material with electrochemical properties suitable for use in a thin film battery. The preparation of the anode precursor solution uses Sn(OCH.sub.2C(CH.sub.3).sub.3).sub.2 dissolved in a solvent in the presence of HO.sub.2CCH.sub.3 and the cathode precursor solution is formed by dissolving a mixture of (Li(OCH.sub.2C(CH.sub.3).sub.3)).sub.8 and Co(O.sub.2CCH.sub.3).H.sub.2O in at least one polar solvent.

Boyle, Timothy J. (Albuquerque, NM)

2007-03-13T23:59:59.000Z

Note: This page contains sample records for the topic "thin film silicon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Mesoscale morphologies in polymer thin films.  

Science Conference Proceedings (OSTI)

In the midst of an exciting era of polymer nanoscience, where the development of materials and understanding of properties at the nanoscale remain a major R&D endeavor, there are several exciting phenomena that have been reported at the mesoscale (approximately an order of magnitude larger than the nanoscale). In this review article, we focus on mesoscale morphologies in polymer thin films from the viewpoint of origination of structure formation, structure development and the interaction forces that govern these morphologies. Mesoscale morphologies, including dendrites, holes, spherulites, fractals and honeycomb structures have been observed in thin films of homopolymer, copolymer, blends and composites. Following a largely phenomenological level of description, we review the kinetic and thermodynamic aspects of mesostructure formation outlining some of the key mechanisms at play. We also discuss various strategies to direct, limit, or inhibit the appearance of mesostructures in polymer thin films as well as an outlook toward potential areas of growth in this field of research.

Ramanathan, M.; Darling, S. B. (Center for Nanoscale Materials)

2011-06-01T23:59:59.000Z

202

Tungsten-doped thin film materials - Energy Innovation Portal  

A dielectric thin film material for high frequency use, including use as a capacitor, and having a low dielectric loss factor is provided, the film comprising a ...

203

Chemistry Chemical Analysis Thin-Films Information at NIST  

Science Conference Proceedings (OSTI)

... Method Can Affect the Use of Block Copolymer Thin Films (10/18 ... NIST Scientists Address 'Wrinkles' in Transparent Film Development (10/02/2012). ...

2010-09-24T23:59:59.000Z

204

NIST Testing Method Quickly Tells Whether Thin Films Are ...  

Science Conference Proceedings (OSTI)

... and emerging technology areas that rely on thin-film advances for ... For films less than 1 micrometer thick, mechanical-property measurements made ...

2013-01-03T23:59:59.000Z

205

Thermoelectric effect in very thin film Pt/Au thermocouples  

E-Print Network (OSTI)

thin films, the electrical resistivity ratio ? F /? B is BStudies of the electrical resistivity of metallic films [23,calculate the electrical resistivity and the thermoelectric

Salvadori, M.C.; Vaz, A.R.; Teixeira, F.S.; Cattani, M.; Brown, I.G.

2006-01-01T23:59:59.000Z

206

High-rate deposition of hydrogenated amorphous silicon films and devices  

DOE Green Energy (OSTI)

This report summarizes the status of high-rate deposition technologies associated with amorphous silicon thin films for photovoltaic applications. The report lists (1) deposition rates for a-Si:H films according to source and method and (2) efficiencies and other parameters of a-Si:H solar cells. Two main deposition source materials, silane and disilane, are discussed, as well as effects of boron doping. The effects of various deposition parameters on film characteristics and on deposition rate are presented, as well as the effects of annealing on high-deposition-rate films. Light-induced effects are also discussed. Finally, progress and problems in this field of study are summarized.

Luft, W.

1987-04-01T23:59:59.000Z

207

Thin Film Solid Oxide Fuel Cells  

Science Conference Proceedings (OSTI)

A novel solid oxide fuel cell (SOFC) design that can be fabricated entirely using low-temperature, thin-film processing is described. Potential advantages of the cell are reduced materials costs and improved fuel-cell characteristics. The critical design feature is the use of thin (approximately equal to 50 nanometers), catalytically-active oxide layers on a < 10 micrometer thick yttria-stabilized zirconia (YSZ) supported electrolyte to minimize reaction overpotentials and ohmic losses. Doped ceria at th...

1995-03-29T23:59:59.000Z

208

Solution of thin film magnetization problems in type-II superconductivity  

Science Conference Proceedings (OSTI)

Keywords: critical current, numerical solution, superconductivity, thin film, variational inequality

Leonid Prigozhin

1998-07-01T23:59:59.000Z

209

Thin film transistors on plastic substrates with reflective coatings for radiation protection  

DOE Patents (OSTI)

Fabrication of silicon thin film transistors (TFT) on low-temperature plastic substrates using a reflective coating so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The TFT can be used in large area low cost electronics, such as flat panel displays and portable electronics such as video cameras, personal digital assistants, and cell phones.

Wolfe, Jesse D. (Fairfield, CA); Theiss, Steven D. (Woodbury, MN); Carey, Paul G. (Mountain View, CA); Smith, Patrick M. (San Ramon, CA); Wickbold, Paul (Walnut Creek, CA)

2006-09-26T23:59:59.000Z

210

Superconducting thin films on potassium tantalate substrates  

DOE Patents (OSTI)

A superconductive system for the lossless transmission of electrical current comprising a thin film of superconducting material Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.7-x epitaxially deposited upon a KTaO.sub.3 substrate. The KTaO.sub.3 is an improved substrate over those of the prior art since the it exhibits small lattice constant mismatch and does not chemically react with the superconducting film.

Feenstra, Roeland (Oak Ridge, TN); Boatner, Lynn A. (Oak Ridge, TN)

1992-01-01T23:59:59.000Z

211

Annealed CVD molybdenum thin film surface  

DOE Patents (OSTI)

Molybdenum thin films deposited by pyrolytic decomposition of Mo(CO).sub.6 attain, after anneal in a reducing atmosphere at temperatures greater than 700.degree. C., infrared reflectance values greater than reflectance of supersmooth bulk molybdenum. Black molybdenum films deposited under oxidizing conditions and annealed, when covered with an anti-reflecting coating, approach the ideal solar collector characteristic of visible light absorber and infrared energy reflector.

Carver, Gary E. (Tucson, AZ); Seraphin, Bernhard O. (Tucson, AZ)

1984-01-01T23:59:59.000Z

212

Nanostructured Inorganic Thin Film Enabled Fiber Optic Sensors for ...  

Science Conference Proceedings (OSTI)

... Thin Film Enabled Fiber Optic Sensors for Gas Sensing in Energy and Environmental Systems ... Co-Doped TiO2 Nanoparticles and Thin Films for Enhanced Solar Energy Utilization ... Synthesis of Magnetic Core-TS-1 Zeolite Shell Catalyst.

213

SAW determination of surface area of thin films  

DOE Patents (OSTI)

N.sub.2 adsorption isotherms are measured from thin films on SAW devices. The isotherms may be used to determine the surface area and pore size distribution of thin films.

Frye, Gregory C. (Albuquerque, NM); Martin, Stephen J. (Albuquerque, NM); Ricco, Antonio J. (Albuquerque, NM)

1990-01-01T23:59:59.000Z

214

Using in Situ Thin Film Stress Measurements to Understand ...  

Science Conference Proceedings (OSTI)

Symposium, Nanostructured Materials for Lithium Ion Batteries and for Supercapacitors. Presentation Title, Using in Situ Thin Film Stress Measurements to ...

215

Synthesis and Characterization of Plasma Polymerized Thin Films ...  

Science Conference Proceedings (OSTI)

Presentation Title, Synthesis and Characterization of Plasma Polymerized Thin Films Deposited from Benzene and Hexamethyldisiloxane Using (PECVD) ...

216

Fracture and Delamination in Thin Film Si Electrodes  

Science Conference Proceedings (OSTI)

Symposium, Nanostructured Materials for Lithium Ion Batteries and for Supercapacitors. Presentation Title, Fracture and Delamination in Thin Film Si Electrodes.

217

Magnetic properties of TM/RE bilayer thin films  

Science Conference Proceedings (OSTI)

... Magnetic properties of TM/RE bilayer thin films. I. Zoto University of Alabama. The magnetic recording technology badly ...

218

In situ X-ray diffraction study of thin film Ir/Si solid state reactions  

Science Conference Proceedings (OSTI)

The solid state reaction between a thin (30nm) Ir film and different Si substrates (p-type Si(100), n- and p-type Si(111), silicon on insulator (SOI) and polycrystalline Si) was studied using a combination of in situ X-ray diffraction (XRD), in situ ... Keywords: Ir, NiSi, Si, XRD

W. Knaepen; J. Demeulemeester; D. Deduytsche; J. L. Jordan-Sweet; A. Vantomme; R. L. Van Meirhaeghe; C. Detavernier; C. Lavoie

2010-03-01T23:59:59.000Z

219

Advances in thin-film solar cells for lightweight space photovoltaic power  

SciTech Connect

The present stature and current research directions of photovoltaic arrays as primary power systems for space are reviewed. There have recently been great advances in the technology of thin-film solar cells for terrestrial applications. In a thin-film solar cell the thickness of the active element is only a few microns; transfer of this technology to space arrays could result in ultralow-weight solar arrays with potentially large gains in specific power. Recent advances in thin-film solar cells are reviewed, including polycrystalline copper-indium selenide (CuInSe2) and related I-III-VI2 compounds, polycrystalline cadmium telluride and related II-VI compounds, and amorphous silicon:hydrogen and alloys. The best experimental efficiency on thin-film solar cells to date is 12 percent AMO for CuInSe2. This efficiency is likely to be increased in the next few years. The radiation tolerance of thin-film materials is far greater than that of single-crystal materials. CuInSe2 shows no degradation when exposed to 1 MeV electrons. Experimental evidence also suggests that most of all of the radiation damage on thin-films can be removed by a low temperature anneal. The possibility of thin-film multibandgap cascade solar cells is discussed, including the tradeoffs between monolithic and mechanically stacked cells. The best current efficiency for a cascade is 12.5 percent AMO for an amorphous silicon on CuInSe2 multibandgap combination. Higher efficiencies are expected in the future. For several missions, including solar-electric propulsion, a manned Mars mission, and lunar exploration and manufacturing, thin-film photovolatic arrays may be a mission-enabling technology.

Landis, G.A.; Bailey, S.G.; Flood, D.J.

1989-01-01T23:59:59.000Z

220

Temperature effect on low-k dielectric thin films studied by ERDA  

DOE Green Energy (OSTI)

Low-k dielectric materials are becoming increasingly interesting as alternative to SiO2 with device geometries shrinking beyond the 65 nm technology node. At elevated temperatures hydrogen migration becomes an important degradation mechanism for conductivity breakdown in semiconductor devices. The possibility of hydrogen release during the fabrication process is, therefore, of great interest in the understanding of device reliability. In this study, various low-k dielectric films were subjected to thermal annealing at temperatures that are generally used for device fabrication. Elastic recoil detection analysis (ERDA) was used to investigate compositional changes and hydrogen redistribution in thin films of plasma-enhanced tetraethylortho-silicate (PETEOS), phosphorus doped silicon glass (PSG), silicon nitride (SiN) and silicon oxynitride (SiON). Except for an initial hydrogen release from the surface region in films of PETEOS and PSG, the results indicate that the elemental composition of the films was stable for at least 2 hours at 450?C.

Jensen, Jens; Possnert, Göran; Zhang, Yanwen

2008-09-23T23:59:59.000Z

Note: This page contains sample records for the topic "thin film silicon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Monolithically interconnected Silicon-Film{trademark} module technology: Annual technical report, 25 November 1997--24 November 1998  

DOE Green Energy (OSTI)

AstroPower continued its development of an advanced thin-silicon-based photovoltaic module product. This module combines the performance advantages of thin, light-trapped silicon layers with the capability of integration into a low-cost, monolithically interconnected array. This report summarizes the work carried out over the first year of a three-year, cost-shared contract, which has yielded the following results: Development of a low-cost, insulating, ceramic substrate that provides mechanical support at silicon growth temperatures, is matched to the thermal expansion of silicon, provides the optical properties required for light trapping through random texturing, and can be formed in large areas on a continuous basis. Different deposition techniques have been investigated, and AstroPower has developed deposition processes for the back conductive layer, the p-type silicon layer, and the mechanical/chemical barrier layer. Polycrystalline films of silicon have been grown on ceramics using AstroPower's Silicon-Film{trademark} process. These films are from 50 to 75 {micro}m thick, with columnar grains extending through the thickness of the film. Aspect ratios from 5:1 to 20:1 have been observed in these films.

Hall, R.B.; Ford, D.H.; Rand, J.A.; Ingram, A.E.

1999-11-11T23:59:59.000Z

222

Polycrystalline thin film materials and devices  

DOE Green Energy (OSTI)

Results of Phase II of a research program on polycrystalline thin film heterojunction solar cells are presented. Relations between processing, materials properties and device performance were studied. The analysis of these solar cells explains how minority carrier recombination at the interface and at grain boundaries can be reduced by doping of windows and absorber layers, such as in high efficiency CdTe and CuInSe{sub 2} based solar cells. The additional geometric dimension introduced by the polycrystallinity must be taken into consideration. The solar cells are limited by the diode current, caused by recombination in the space charge region. J-V characteristics of CuInSe{sub 2}/(CdZn)S cells were analyzed. Current-voltage and spectral response measurements were also made on high efficiency CdTe/CdS thin film solar cells prepared by vacuum evaporation. Cu-In bilayers were reacted with Se and H{sub 2}Se gas to form CuInSe{sub 2} films; the reaction pathways and the precursor were studied. Several approaches to fabrication of these thin film solar cells in a superstrate configuration were explored. A self-consistent picture of the effects of processing on the evolution of CdTe cells was developed.

Baron, B.N.; Birkmire, R.W.; Phillips, J.E.; Shafarman, W.N.; Hegedus, S.S.; McCandless, B.E. (Delaware Univ., Newark, DE (United States). Inst. of Energy Conversion)

1992-10-01T23:59:59.000Z

223

Deposition of Dense SiO2 Thin Films for Electrical Insulation Applications by Microwave ECR Plasma Source Enhanced RF Reactive Magnetron Sputtering  

Science Conference Proceedings (OSTI)

Silicon dioxide thin films have been deposited successfully on high speed steel (HSS) cutting tool substrates by means of microwave electron cyclotron resonance (MW-ECR) plasma source enhanced RF reactive magnetron sputtering of a pure silica target ... Keywords: SiO2 thin films, Electrical insulation properties, RF magnetron sputtering, Atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS)

Qiyong Zeng; Xiaofeng Zheng; Zhonghua Yu; Yunxian Cui

2010-03-01T23:59:59.000Z

224

Thin films by metal-organic precursor plasma spray  

Science Conference Proceedings (OSTI)

While most plasma spray routes to coatings utilize solids as the precursor feedstock, metal-organic precursor plasma spray (MOPPS) is an area that the authors have investigated recently as a novel route to thin film materials. Very thin films are possible via MOPPS and the technology offers the possibility of forming graded structures by metering the liquid feed. The current work employs metal-organic compounds that are liquids at standard temperature-pressure conditions. In addition, these complexes contain chemical functionality that allows straightforward thermolytic transformation to targeted phases of interest. Toward that end, aluminum 3,5-heptanedionate (Al(hd){sub 3}), triethylsilane (HSi(C{sub 2}H{sub 5}){sub 3} or HSiEt{sub 3}), and titanium tetrakisdiethylamide (Ti(N(C{sub 2}H{sub 5}){sub 2}){sub 4} or Ti(NEt{sub 2}){sub 4}) were employed as precursors to aluminum oxide, silicon carbide, and titanium nitride, respectively. In all instances, the liquids contain metal-heteroatom bonds envisioned to provide atomic concentrations of the appropriate reagents at the film growth surface, thus promoting phase formation (e.g., Si-C bond in triethylsilane, Ti-N bond in titanium amide, etc.). Films were deposited using a Sulzer Metco TriplexPro-200 plasma spray system under various experimental conditions using design of experiment principles. Film compositions were analyzed by glazing incidence x-ray diffraction and elemental determination by x-ray spectroscopy. MOPPS films from HSiEt{sub 3} showed the formation of SiC phase but Al(hd){sub 3}-derived films were amorphous. The Ti(NEt{sub 2}){sub 4} precursor gave MOPPS films that appear to consist of nanosized splats of TiOCN with spheres of TiO{sub 2} anatase. While all films in this study suffered from poor adhesion, it is anticipated that the use of heated substrates will aid in the formation of dense, adherent films.

Schulz, Douglas L.; Sailer, Robert A.; Payne, Scott; Leach, James; Molz, Ronald J. [North Dakota State University, Fargo, North Dakota 58108-6050 (United States); Sulzer Metco (United States) Inc., Westbury, New York 11590-2724 (United States)

2009-07-15T23:59:59.000Z

225

Polycrystalline thin films FY 1992 project report  

DOE Green Energy (OSTI)

This report summarizes the activities and results of the Polycrystalline Thin Film Project during FY 1992. The purpose of the DOE/NREL PV (photovoltaic) Program is to facilitate the development of PV that can be used on a large enough scale to produce a significant amount of energy in the US and worldwide. The PV technologies under the Polycrystalline Thin Film project are among the most exciting next-generation'' options for achieving this goal. Over the last 15 years, cell-level progress has been steady, with laboratory cell efficiencies reaching levels of 15 to 16%. This progress, combined with potentially inexpensive manufacturing methods, has attracted significant commercial interest from US and international companies. The NREL/DOE program is designed to support the efforts of US companies through cost-shared subcontracts (called government/industry partnerships'') that we manage and fund and through collaborative technology development work among industry, universities, and our laboratory.

Zweibel, K. (ed.)

1993-01-01T23:59:59.000Z

226

Polycrystalline thin films FY 1992 project report  

DOE Green Energy (OSTI)

This report summarizes the activities and results of the Polycrystalline Thin Film Project during FY 1992. The purpose of the DOE/NREL PV (photovoltaic) Program is to facilitate the development of PV that can be used on a large enough scale to produce a significant amount of energy in the US and worldwide. The PV technologies under the Polycrystalline Thin Film project are among the most exciting ``next-generation`` options for achieving this goal. Over the last 15 years, cell-level progress has been steady, with laboratory cell efficiencies reaching levels of 15 to 16%. This progress, combined with potentially inexpensive manufacturing methods, has attracted significant commercial interest from US and international companies. The NREL/DOE program is designed to support the efforts of US companies through cost-shared subcontracts (called ``government/industry partnerships``) that we manage and fund and through collaborative technology development work among industry, universities, and our laboratory.

Zweibel, K. [ed.

1993-01-01T23:59:59.000Z

227

Thin film photovoltaic panel and method  

DOE Patents (OSTI)

A thin film photovoltaic panel includes a backcap for protecting the active components of the photovoltaic cells from adverse environmental elements. A spacing between the backcap and a top electrode layer is preferably filled with a desiccant to further reduce water vapor contamination of the environment surrounding the photovoltaic cells. The contamination of the spacing between the backcap and the cells may be further reduced by passing a selected gas through the spacing subsequent to sealing the backcap to the base of the photovoltaic panels, and once purged this spacing may be filled with an inert gas. The techniques of the present invention are preferably applied to thin film photovoltaic panels each formed from a plurality of photovoltaic cells arranged on a vitreous substrate. The stability of photovoltaic conversion efficiency remains relatively high during the life of the photovoltaic panel, and the cost of manufacturing highly efficient panels with such improved stability is significantly reduced.

Ackerman, Bruce (El Paso, TX); Albright, Scot P. (El Paso, TX); Jordan, John F. (El Paso, TX)

1991-06-11T23:59:59.000Z

228

Structures for dense, crack free thin films  

DOE Patents (OSTI)

The process described herein provides a simple and cost effective method for making crack free, high density thin ceramic film. The steps involve depositing a layer of a ceramic material on a porous or dense substrate. The deposited layer is compacted and then the resultant laminate is sintered to achieve a higher density than would have been possible without the pre-firing compaction step.

Jacobson, Craig P. (Lafayette, CA); Visco, Steven J. (Berkeley, CA); De Jonghe, Lutgard C. (Lafayette, CA)

2011-03-08T23:59:59.000Z

229

Rechargeable thin-film lithium batteries  

SciTech Connect

Rechargeable thin-film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have recently been developed. The batteries, which are typically less than 6-{mu}m thick, can be fabricated to any specified size, large or small, onto a variety of substrates including ceramics, semiconductors, and plastics. The cells that have been investigated include Li-TiS{sub 2}, Li-V{sub 2}O{sub 5}, and Li-Li{sub x}Mn{sub 2}O{sub 4}, with open circuit voltages at full charge of about 2.5, 3.6, and 4.2, respectively. The development of these batteries would not have been possible without the discovery of a new thin-film lithium electrolyte, lithium phosphorus oxynitride, that is stable in contact with metallic lithium at these potentials. Deposited by rf magnetron sputtering of Li{sub 3}PO{sub 4} in N{sub 2}, this material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25{degrees}C of 2 {mu}S/cm. The maximum practical current density obtained from the thin-film cells is limited to about 100 {mu}A/cm{sup 2} due to a low diffusivity of Li{sup +} ions in the cathodes. In this work, the authors present a short review of their work on rechargeable thin-film lithium batteries.

Bates, J.B.; Gruzalski, G.R.; Dudney, N.J.; Luck, C.F.; Yu, Xiaohua

1993-08-01T23:59:59.000Z

230

Packaging material for thin film lithium batteries  

SciTech Connect

A thin film battery including components which are capable of reacting upon exposure to air and water vapor incorporates a packaging system which provides a barrier against the penetration of air and water vapor. The packaging system includes a protective sheath overlying and coating the battery components and can be comprised of an overlayer including metal, ceramic, a ceramic-metal combination, a parylene-metal combination, a parylene-ceramic combination or a parylene-metal-ceramic combination.

Bates, John B. (116 Baltimore Dr., Oak Ridge, TN 37830); Dudney, Nancy J. (11634 S. Monticello Rd., Knoxville, TN 37922); Weatherspoon, Kim A. (223 Wadsworth Pl., Oak Ridge, TN 37830)

1996-01-01T23:59:59.000Z

231

Active superconducting devices formed of thin films  

DOE Patents (OSTI)

Active superconducting devices are formed of thin films of superconductor which include a main conduction channel which has an active weak link region. The weak link region is composed of an array of links of thin film superconductor spaced from one another by voids and selected in size and thickness such that magnetic flux can propagate across the weak link region when it is superconducting. Magnetic flux applied to the weak link region will propagate across the array of links causing localized loss of superconductivity in the links and changing the effective resistance across the links. The magnetic flux can be applied from a control line formed of a superconducting film deposited coplanar with the main conduction channel and weak link region on a substrate. The devices can be formed of any type to superconductor but are particularly well suited to the high temperature superconductors since the devices can be entirely formed from coplanar films with no overlying regions. The devices can be utilized for a variety of electrical components, including switching circuits, amplifiers, oscillators and modulators, and are well suited to microwave frequency applications.

Martens, Jon S. (Madison, WI); Beyer, James B. (Madison, WI); Nordman, James E. (Madison, WI); Hohenwarter, Gert K. G. (Madison, WI)

1991-05-28T23:59:59.000Z

232

Thin film cadmium telluride photovoltaic cells  

DOE Green Energy (OSTI)

This report describes research to develop to vacuum-based growth techniques for CdTe thin-film solar cells: (1) laser-driven physical vapor deposition (LDPVD) and (2) radio-frequency (rf) sputtering. The LDPVD process was successfully used to deposit thin films of CdS, CdTe, and CdCl{sub 2}, as well as related alloys and doped semiconductor materials. The laser-driven deposition process readily permits the use of several target materials in the same vacuum chamber and, thus, complete solar cell structures were fabricated on SnO{sub 2}-coated glass using LDPVD. The rf sputtering process for film growth became operational, and progress was made in implementing it. Time was also devoted to enhancing or implementing a variety of film characterization systems and device testing facilities. A new system for transient spectroscopy on the ablation plume provided important new information on the physical mechanisms of LDPVD. The measurements show that, e.g., Cd is predominantly in the neutral atomic state in the plume but with a fraction that is highly excited internally ({ge} 6 eV), and that the typical neutral Cd translational kinetic energies perpendicular to the target are 20 eV and greater. 19 refs.

Compaan, A.; Bohn, R. (Toledo Univ., OH (United States))

1992-04-01T23:59:59.000Z

233

Substrate for thin silicon solar cells  

DOE Patents (OSTI)

A photovoltaic device for converting solar energy into electrical signals comprises a substrate, a layer of photoconductive semiconductor material grown on said substrate, wherein the substrate comprises an alloy of boron and silicon, the boron being present in a range of from 0.1 to 1.3 atomic percent, the alloy having a lattice constant substantially matched to that of the photoconductive semiconductor material and a resistivity of less than 1{times}10{sup {minus}3} ohm-cm. 4 figures.

Ciszek, T.F.

1995-03-28T23:59:59.000Z

234

Substrate for thin silicon solar cells  

DOE Patents (OSTI)

A photovoltaic device for converting solar energy into electrical signals comprises a substrate, a layer of photoconductive semiconductor material grown on said substrate, wherein the substrate comprises an alloy of boron and silicon, the boron being present in a range of from 0.1 to 1.3 atomic percent, the alloy having a lattice constant substantially matched to that of the photoconductive semiconductor material and a resistivity of less than 1.times.10.sup.-3 ohm-cm.

Ciszek, Theodore F. (Evergreen, CO)

1995-01-01T23:59:59.000Z

235

Thin film polycrystalline silicon solar cells  

DOE Green Energy (OSTI)

During the present quarter efficiency of heterostructure solar cells has been increased from 13 to 13.7% for single crystal and from 10.3 to 11.2% for polysilicon. For polysilicon the improvements can be attributed to reductions in grid-area coverage and in reflection losses and for single crystal to a combination of reduction in grid-area coverage and increase in fill factor. The heterostructure cells in both cases were IT0/n-Si solar cells. Degradation in Sn0/sub 2//n-Si solar cells can be greatly reduced to negligible proportions by proper encapsulation. The cells used in stability tests have an average initial efficiency of 11% which reduces to a value of about 10.5% after 6 months of exposure to sunlight and ambient conditions. This small degradation occurs within the first month, and the efficiency remains constant subsequently. The reduction in efficiency is due to a decrease in the open-circuit voltage only, while the short-circuit current and fill factor remain constant. The effects of grain-size on the Hall measurements in polysilicon have been analyzed and interpreted, with some modifications, using a model proposed by Bube. This modified model predicts that the measured effective Hall voltage is composed of components originating from the bulk and space-charge region. For materials with large grains, the carrier concentration is independent of the inter-grain boundary barrier, whereas the mobility is dependent on it. However, for small rains, both the carrier density and mobility depend on the barrier. These predictions are consistant with experimental results of mm-size Wacker polysilicon and ..mu..m-size NTD polysilicon.

Ghosh, A. K.; Feng, T.; Eustace, D. J.; Maruska, H. P.

1980-01-01T23:59:59.000Z

236

Integrated thin film batteries on silicon  

E-Print Network (OSTI)

Monolithic integration has been implemented successfully in complementary metal oxide semiconductor (CMOS) technology and led to improved device performance, increased reliability, and overall cost reduction. The next ...

Ariel, Nava

2005-01-01T23:59:59.000Z

237

Photoluminescence study of the structural evolution of amorphous and crystalline silicon nanoclusters during the thermal annealing of silicon suboxide films with different stoichiometry  

SciTech Connect

The effect of the stoichiometry of thin silicon suboxide films on the processes of the formation and evolution of silicon nanoclusters during thermal annealing is studied by photoluminescence measurements. The samples are produced by the thermal sputtering of a SiO powder in an oxygen atmosphere, with the subsequent deposition of a 500 nm-thick SiO{sub x} layer onto a Si substrate. The morphological properties and size of Si nanoclusters are explored by analyzing the photoluminescence spectra and kinetics. A comparative study of the luminescence properties of thin SiO{sub x} layers with different stoichiometric parameters, x = 1.10, 1.29, 1.56, and 1.68, is accomplished for samples annealed at different temperatures in the range 850 to 1200 Degree-Sign C. The dependences of the photoluminescence decay time on the annealing temperature, the stoichiometric parameter of the initial silicon suboxide film, and the nanocluster size are studied.

Zhigunov, D. M., E-mail: dmzhigunov@physics.msu.ru; Shvydun, N. V.; Emelyanov, A. V.; Timoshenko, V. Yu.; Kashkarov, P. K. [Lomonosov Moscow State University, Physics Department (Russian Federation); Seminogov, V. N. [Russian Academy of Sciences, Institute of Laser and Information Technologies (Russian Federation)

2012-03-15T23:59:59.000Z

238

Development of large-area monolithically integrated silicon-film photovoltaic modules  

DOE Green Energy (OSTI)

This report describes work to develop Silicon-Film Product III into a low-cost, stable device for large-scale terrestrial power applications. The Product III structure is a thin (< 100 {mu}m) polycrystalline silicon layer on a non-conductive supporting ceramic substrate. The presence of the substrate allows cells to be isolated and in interconnected monolithically in various series/parallel configurations. The long-term goal for the product is efficiencies over 18% on areas greater than 1200 cm{sup 2}. The high efficiency is made possible through the benefits of using polycrystalline thin silicon incorporated into a light-trapping structure with a passivated back surface. Short-term goals focused on the development of large-area ceramics, a monolithic interconnection process, and 100 cm{sup 2} solar cells. Critical elements of the monolithically integrated device were developed, and an insulating ceramic substrate was developed and tested. A monolithic interconnection process was developed that will isolate and interconnect individual cells on the ceramic surface. Production-based, low-cost process steps were used, and the process was verified using free-standing silicon wafers to achieve an open-circuit voltage (V{sub oc}) of 8.25 V over a 17-element string. The overall efficiency of the silicon-film materials was limited to 6% by impurities. Improved processing and feedstock materials are under investigation.

Rand, J.A.; Bacon, C.; Cotter, J.E.; Lampros, T.H.; Ingram, A.E.; Ruffins, T.R.; Hall, R.B.; Barnett, A.M. (AstroPower, Inc., Newark, DE (United States))

1992-07-01T23:59:59.000Z

239

Fabrication Of Multilayered Thin Films Via Spin-Assembly  

NLE Websites -- All DOE Office Websites (Extended Search)

Fabrication Of Multilayered Thin Films Via Spin-Assembly Fabrication Of Multilayered Thin Films Via Spin-Assembly Fabrication Of Multilayered Thin Films Via Spin-Assembly A process of forming multilayer thin film heterostructures. Available for thumbnail of Feynman Center (505) 665-9090 Email Fabrication Of Multilayered Thin Films Via Spin-Assembly A process of forming multilayer thin film heterostructures is disclosed and includes applying a solution including a first water-soluble polymer from the group of polyanionic species, polycationic species and uncharged polymer species onto a substrate to form a first coating layer on the substrate, drying the first coating layer on the substrate, applying a solution including a second water-soluble polymer from the group of polyanionic species, polycationic species and uncharged polymer species

240

Nanocrystalline Silicon Quantum Dot Light Emitting Diodes Using Metal Oxide Charge Transport Layers.  

E-Print Network (OSTI)

??Silicon-based lighting show promise for display and solid state lighting use. Here we demonstrate a novel thin film light emitting diode device using nanocrystalline silicon… (more)

Zhu, Jiayuan

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thin film silicon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Chemical vapor deposition of organosilicon and sacrificial polymer thin films  

E-Print Network (OSTI)

Chemical vapor deposition (CVD) produced films for a wide array of applications from a variety of organosilicon and organic precursors. The structure and properties of thin films were controlled by varying processing ...

Casserly, Thomas Bryan

2005-01-01T23:59:59.000Z

242

Low Cost Fabrication of Thin-Film Ceramic Membranes for ...  

For Industry; For Researchers; Success Stories; About Us; ... Inexpensive Production of High Density Thin Ceramic Films on Rigid or Porous Substrates, ...

243

Evaluation of Thin-film Interfacial Properties Using Indentation Test  

Science Conference Proceedings (OSTI)

A thin film's reliable question is depend on interfacial characterization, so evaluating interfacial characterization is the most important things in this test. So far ...

244

Ferroelectric Thin Film Capacitors to Enable a Miniaturized Smart L ...  

Science Conference Proceedings (OSTI)

The effects ultra-violet (UV)-assisted processing and compositional grading of BST capacitor thin films will be presented and the material property trade-offs for  ...

245

Single-Crystalline Thin Film Used in Photovoltaics  

Energy.gov (U.S. Department of Energy (DOE))

Single-crystalline thin films are made from gallium arsenide (GaAs), a compound semiconductor that is a mixture of gallium and arsenic.

246

Thin film techniques for solid oxide fuel cells  

Thin film techniques for solid oxide fuel cells V.E.J. van Dieten and J. Schoonman Laboratory ... ticles stay in the hot temperature region can be ...

247

Heteroepitaxial Si Thin Films Deposited on Flexible Copper ...  

Science Conference Proceedings (OSTI)

Presentation Title, Heteroepitaxial Si Thin Films Deposited on Flexible Copper Substrates for Solar Photovoltaics. Author(s), Daniela Florentina Bogorin, Lee ...

248

Electron Beam Evaporator Systems for Thin Film Deposition  

Science Conference Proceedings (OSTI)

The Thin Film and Nanostructure Processing Group has two high-vacuum, electron beam evaporator systems for fabrication of single and multilayer ...

2012-10-23T23:59:59.000Z

249

Layer-by-Layer Assembled Thin Films for Battery Electrolytes  

Science Conference Proceedings (OSTI)

Presentation Title, Layer-by-Layer Assembled Thin Films for Battery Electrolytes ... Abstract Scope, Exponential layer-by-layer (eLBL) assembled battery ...

250

Thin-Film Ferroelectric Materials for Decoupling and Tunable ...  

Science Conference Proceedings (OSTI)

Symposium, ACerS Richard M. Fulrath Award Symposium. Presentation Title, Thin-Film Ferroelectric Materials for Decoupling and Tunable Capacitors. Author( s) ...

251

Development of Polyimide/SMA Thin-Film Actuator  

Science Conference Proceedings (OSTI)

Symposium, Symposium I: Biomaterials, Smart Materials and Structures. Presentation Title, Development of Polyimide/SMA Thin-Film Actuator. Author(s), Akira ...

252

Integrated Technology of Decoupling BST Thin Film Capacitors  

Science Conference Proceedings (OSTI)

Jun 16, 2007 ... The integration technology of decoupling capacitors, which contain multi-layered Cu wiring and Barium Strontium Titanate (BST) thin film ...

253

How Thin Film Processing Can Contribute to Understanding the ...  

Science Conference Proceedings (OSTI)

Presentation Title, How Thin Film Processing Can Contribute to Understanding the Materials Science of the MAX Phases. Author(s), Per Eklund, Ulf Jansson, ...

254

Fabrication of Solid Oxide Fuel Cells via Thin Film Techniques  

Science Conference Proceedings (OSTI)

We decided to use thin film techniques to solve this problem. Among various methods of lowering the operation temperature for SOFCs, adopting bi-layer ...

255

Lessons Learned in Sputtering TiNi Thin Film  

Science Conference Proceedings (OSTI)

Experimental results have been published in journals and conference proceedings, but as yet TiNi thin film is not commercially available. The author and ...

256

AMORPHOUS THIN FILMS CONSISTING OF TERNARY MgZnCa ...  

Science Conference Proceedings (OSTI)

Jul 20, 2012 ... AMORPHOUS THIN FILMS CONSISTING OF TERNARY MgZnCa-ALLOYS by K. Schlüter, C. Zamponi, U. Schürmann, N. Hort, L. Kienle, K.U. ...

257

Interface Adhesion and Coating Integrity of the Thin Film Au ...  

Science Conference Proceedings (OSTI)

Current scientific emphasis is on process development and optimization of thin film Au-interconnect metallization for the Bi2Te3-based TE module used for the ...

258

Development of Thin-Film Materials Technology for Energy Applications...  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of Thin-Film Materials Technology for Energy Applications: High Temperature Superconductors, etc. Speaker(s): Ronald Reade Date: January 15, 2002 - 12:00pm Location:...

259

Bi-based Piezoelectric Thin Films via Chemical Solution Deposition  

Science Conference Proceedings (OSTI)

BNT-BKT-BMgT thin films showed very promising piezoelectric response with ... Chemical Quantification of Oxide Interfaces Using Energy-dispersive X-ray ...

260

Rechargeable thin-film electrochemical generator  

DOE Patents (OSTI)

An improved electrochemical generator is disclosed. The electrochemical generator includes a thin-film electrochemical cell which is maintained in a state of compression through use of an internal or an external pressure apparatus. A thermal conductor, which is connected to at least one of the positive or negative contacts of the cell, conducts current into and out of the cell and also conducts thermal energy between the cell and thermally conductive, electrically resistive material disposed on a vessel wall adjacent the conductor. The thermally conductive, electrically resistive material may include an anodized coating or a thin sheet of a plastic, mineral-based material or conductive polymer material. The thermal conductor is fabricated to include a resilient portion which expands and contracts to maintain mechanical contact between the cell and the thermally conductive material in the presence of relative movement between the cell and the wall structure. The electrochemical generator may be disposed in a hermetically sealed housing.

Rouillard, Roger (Beloeil, CA); Domroese, Michael K. (South St. Paul, MN); Hoffman, Joseph A. (Minneapolis, MN); Lindeman, David D. (Hudson, WI); Noel, Joseph-Robert-Gaetan (St-Hubert, CA); Radewald, Vern E. (Austin, TX); Ranger, Michel (Lachine, CA); Sudano, Anthony (Laval, CA); Trice, Jennifer L. (Eagan, MN); Turgeon, Thomas A. (Fridley, MN)

2000-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "thin film silicon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

APIVT-Grown Silicon Thin Layers and PV Devices: Preprint  

DOE Green Energy (OSTI)

Large-grained (5-20 ..mu..m) polycrystalline silicon layers have been grown at intermediate temperatures of 750-950C directly on foreign substrates without a seeding layer by iodine vapor transport at atmospheric pressure with rates as high as 3 mm/min. A model is constructed to explain the atypical temperature dependence of growth rate. We have also used this technique to grow high-quality epitaxial layers on heavily doped CZ-Si and on upgraded MG-Si substrates. Possible solar cell structures of thin-layer polycrystalline silicon on foreign substrates with light trapping have been examined, compared, and optimized by two-dimensional device simulations. The effects of grain boundary re-combination on device performance are presented for two grain sizes of 2 and 20 mm. We found that 104 cm/s recombination velocity is adequate for 20-m m grain-sized thin silicon, whereas a very low recombination velocity of 103 cm/s must be accomplished in order to achieve reasonable performance for a 2- mm grain-sized polycrystalline silicon device.

Wang, T. H.; Ciszek, T. F.; Page, M. R.; Bauer, R. E.; Wang, Q.; Landry, M. D.

2002-05-01T23:59:59.000Z

262

Articles including thin film monolayers and multilayers  

DOE Patents (OSTI)

This invention pertains to thin film assemblies or devices useful as sensors, nonlinear optical materials, and trace material scavengers. It claims a base substrate having an oxide surface layer, and a multidentate ligand, capable of binding a metal ion, attached to the oxide surface layer of the base substrate. A metal species may be provided attached to the ligand, and a multifunctional organic ligand may be provided attached to the metal species. A second metal species may be provided attached to the multifunctional ligand.

Li, DeQuan; Swanson, B.I.

1992-12-31T23:59:59.000Z

263

Gas dynamic aspects of silicon thin layers deposition using excitation of a free jet of the working gas mixture by an electron beam  

Science Conference Proceedings (OSTI)

A film of microcrystalline silicon ({mu}c-Si:H) deposited at low temperature is a promising material for thin-film silicon solar cells with high efficiency and high stability. To deposit silicon thin films with high deposition rate and high quality, a novel gas-jet deposition method has been developed. The paper is devoted to experimental and numerical study of the method from the gas dynamic point of view. A numerical model of the flow field of the working gas mixture in the device was developed that provides predictions of the film thickness distribution over the substrate surface and was found to describe the measured data satisfactory. The model may be used to optimize the operating parameters of the device.

Skovorodko, P. A.; Sharafutdinov, R. G.; Shchukin, V. G.; Konstantinov, V. O. [CJSC Institute of Plasma Chemical Technologies, 630090, Novosibirsk (Russian Federation) and Kutateladze Institute of Thermophysics, 630090, Novosibirsk (Russian Federation)

2012-11-27T23:59:59.000Z

264

Method of improving field emission characteristics of diamond thin films  

DOE Patents (OSTI)

A method of preparing diamond thin films with improved field emission properties. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display.

Krauss, Alan R. (Naperville, IL); Gruen, Dieter M. (Downer Grove, IL)

1999-01-01T23:59:59.000Z

265

Thin-film rechargeable lithium batteries  

SciTech Connect

Rechargeable thin-films batteries with lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have been fabricated and characterized. The cathodes include TiS{sub 2}, the {omega} phase of V{sub 2}O{sub 5}, and the cubic spinel Li{sub x}Mn{sub 2}O{sub 4} with open circuit voltages at full charge of about 2.5 V, 3.7 V, and 4.2 V, respectively. The development of these robust cells, which can be cycled thousands of times, was possible because of the stability of the amorphous lithium electrolyte, lithium phosphorus oxynitride. This material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25 C of 2 {mu}S/cm. Thin-film cells have been cycled at 100% depth of discharge using current densities of 2 to 100 {mu}A/cm{sup 2}. The polarization resistance of the cells is due to the slow insertion rate of Li{sup +} ions into the cathode. Chemical diffusion coefficients for Li{sup +} ions in the three types of cathodes have been estimated from the analysis of ac impedance measurements.

Bates, J.B.; Gruzalski, G.R.; Dudney, N.J.; Luck, C.F.; Yu, X.

1993-11-01T23:59:59.000Z

266

Rechargeable thin-film lithium batteries  

Science Conference Proceedings (OSTI)

Rechargeable thin-film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have been fabricated and characterized. These include Li-TiS{sub 2}, Li-V{sub 2}O{sub 5}, and Li-Li{sub x}Mn{sub 2}O{sub 4} cells with open circuit voltages at full charge of about 2.5 V, 3.7 V, and 4.2 V, respectively. The realization of these robust cells, which can be cycled thousands of times, was possible because of the stability of the amorphous lithium electrolyte, lithium phosphorus oxynitride. This material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46}and a conductivity at 25 C of 2 {mu}S/cm. The thin-film cells have been cycled at 100% depth of discharge using current densities of 5 to 100 {mu}A/cm{sup 2}. Over most of the charge-discharge range, the internal resistance appears to be dominated by the cathode, and the major source of the resistance is the diffusion of Li{sup +} ions from the electrolyte into the cathode. Chemical diffusion coefficients were determined from ac impedance measurements.

Bates, J.B.; Gruzalski, G.R.; Dudney, N.J.; Luck, C.F.; Yu, X.

1993-09-01T23:59:59.000Z

267

Spin hall effect in paramagnetic thin films  

E-Print Network (OSTI)

Spintronics, an abbreviation of spin based electronics and also known as magneto electronics, has attracted a lot of interest in recent years. It aims to explore the role of electrons’ spins in building next generation electric devices. Using electrons’ spins rather than electrons’ charges may allow faster, lower energy cost devices. Spin Hall Effect is an important subfield of spintronics. It studies spin current, spin transport, and spin accumulation in paramagnetic systems. It can further understanding of quantum physics, device physics, and may also provide insights for spin injection, spin detection and spin manipulation in the design of the next generation spintronics devices. In this experimental work, two sets of experiments were prepared to detect the Spin Hall Effect in metallic systems. The first set of experiments aims to extract Spin Hall Effect from Double Hall Effect in micrometer size metal thin film patterns. Our experiments proved that the Spin Hall Effect signal was much smaller than the theoretically calculated value due to higher electrical resistivity in evaporated thin films. The second set of experiments employs a multi-step process. It combines micro fabrication and electrochemical method to fabricate a perpendicular ferromagnet rod as a spin injector. Process description and various techniques to improve the measurement sensitivity are presented. Measurement results in aluminum, gold and copper are presented in Chapters III, IV and V. Some new experiments are suggested in Chapters V and VI.

Xu, Huachun

2008-12-01T23:59:59.000Z

268

Apparatus for laser assisted thin film deposition  

DOE Patents (OSTI)

A pulsed laser deposition apparatus uses fiber optics to deliver visible output beams. One or more optical fibers are coupled to one or more laser sources, and delivers visible output beams to a single chamber, to multiple targets in the chamber or to multiple chambers. The laser can run uninterrupted if one of the deposition chambers ceases to operate because other chambers can continue their laser deposition processes. The laser source can be positioned at a remote location relative to the deposition chamber. The use of fiber optics permits multi-plexing. A pulsed visible laser beam is directed at a generally non-perpendicular angle upon the target in the chamber, generating a plume of ions and energetic neutral species. A portion of the plume is deposited on a substrate as a thin film. A pulsed visible output beam with a high pulse repetition frequency is used. The high pulse repetition frequency is greater than 500 Hz, and more preferably, greater than about 1000 Hz. Diamond-like-carbon (DLC) is one of the thin films produced using the apparatus.

Warner, Bruce E. (Pleasanton, CA); McLean, II, William (Oakland, CA)

1996-01-01T23:59:59.000Z

269

Thin-film Rechargeable Lithium Batteries  

DOE R&D Accomplishments (OSTI)

Rechargeable thin films batteries with lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have been fabricated and characterized. The cathodes include TiS{sub 2}, the {omega} phase of V{sub 2}O{sub 5}, and the cubic spinel Li{sub x}Mn{sub 2}O{sub 4} with open circuit voltages at full charge of about 2.5 V, 3.7 V, and 4.2 V, respectively. The development of these robust cells, which can be cycled thousands of times, was possible because of the stability of the amorphous lithium electrolyte, lithium phosphorus oxynitride. This material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25 C of 2 {mu}S/cm. Thin film cells have been cycled at 100% depth of discharge using current densities of 2 to 100 {mu}A/cm{sup 2}. The polarization resistance of the cells is due to the slow insertion rate of Li{sup +} ions into the cathode. Chemical diffusion coefficients for Li{sup +} ions in the three types of cathodes have been estimated from the analysis of ac impedance measurements.

Bates, J. B.; Gruzalski, G. R.; Dudney, N. J.; Luck, C. F.; Yu, X.

1993-11-00T23:59:59.000Z

270

Thermal Sensor Arrays for The Combinatorial Analysis of Thin Films  

E-Print Network (OSTI)

Thermal Sensor Arrays for The Combinatorial Analysis of Thin Films A dissertation presented Advisor Author Joost J. Vlassak Patrick J. McCluskey Thermal Sensor Arrays for The Combinatorial Analysis analysis of the thermophysical properties of thin films. The continuous growth of integrated circuits

271

Amorphous hafnium-indium-zinc oxide semiconductor thin film transistors  

Science Conference Proceedings (OSTI)

We reported on the performance and electrical properties of co-sputtering-processed amorphous hafnium-indium-zinc oxide (?-HfIZO) thin film transistors (TFTs). Co-sputtering-processed ?-HfIZO thin films have shown an amorphous phase in nature. ...

Sheng-Po Chang; San-Syong Shih

2012-01-01T23:59:59.000Z

272

Long-laser-pulse method of producing thin films  

DOE Patents (OSTI)

The invention described herein arose in the course of, or under, Contract No. DE-C03-76SF0098 between the United States Department of Energy and the University of California. This invention relates in general to techniques for producing thin films, and in particular to a method of using pulsed laser to deposit high temperature supercoducting thin films. 5 figs.

Balooch, M.; Olander, D.R.; Russo, R.E.

1990-02-20T23:59:59.000Z

273

Organic thin film transistors with double insulator layers  

Science Conference Proceedings (OSTI)

We have investigated a double-layer structured gate dielectric for the organic thin films transistor (OTFT) with the purpose of improving the performance of the SiO"2 gate insulator. A 50nm PMMA layer was coated on top of the SiO"2 gate insulator as ... Keywords: Mobility, On/off ratio, Organic thin film transistor, PMMA

X. Liu; Y. Bai; L. Chen; F. X. Wei; X. B. Zhang; X. Y. Jiang; Zh. L. Zhang

2007-08-01T23:59:59.000Z

274

Thin Solid Films 430 (2003) 125129 0040-6090/03/$ -see front matter 2003 Elsevier Science B.V. All rights reserved.  

E-Print Network (OSTI)

for a-Si:H solar cell fabrication. In addition to photovoltaic applications, a-Si:H is also used of amorphous silicon (a-Si:H)-based photovoltaic devices, it is important to deposit high- quality a progress has been made in hydrogenated amorphous silicon (a-Si:H)-based thin film photovoltaic devices

Deng, Xunming

275

Ultrafast thin-film laser-induced breakdown spectroscopy of doped...  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultrafast thin-film laser-induced breakdown spectroscopy of doped oxides Title Ultrafast thin-film laser-induced breakdown spectroscopy of doped oxides Publication Type Journal...

276

A Hyper-Elastic Thin Film Nitinol Flow Diverter for Brain Aneurysms  

Science Conference Proceedings (OSTI)

The thin film Nitinol is sputter deposited with transformation temperatures at or near body temperature (37C). The thin film Nitinol is micromachined using a lift off ...

277

Silicon Surface Texturing by Electro-Deoxidation of a Thin Silica ...  

Science Conference Proceedings (OSTI)

Presentation Title, Silicon Surface Texturing by Electro-Deoxidation of a Thin Silica Layer in Molten Salt. Author(s), Eimutis Juzeliunas, Antony Cox, Derek Fray

278

Low Cost Thin Film Building-Integrated Photovoltaic Systems  

DOE Green Energy (OSTI)

The goal of the program is to develop 'LOW COST THIN FILM BUILDING-INTEGRATED PV SYSTEMS'. Major focus was on developing low cost solution for the commercial BIPV and rooftop PV market and meet DOE LCOE goal for the commercial market segment of 9-12 cents/kWh for 2010 and 6-8 cents/kWh for 2015. We achieved the 2010 goal and were on track to achieve the 2015 goal. The program consists of five major tasks: (1) modules; (2) inverters and BOS; (3) systems engineering and integration; (4) deployment; and (5) project management and TPP collaborative activities. We successfully crossed all stage gates and surpassed all milestones. We proudly achieved world record stable efficiencies in small area cells (12.56% for 1cm2) and large area encapsulated modules (11.3% for 800 cm2) using a triple-junction amorphous silicon/nanocrystalline silicon/nanocrystalline silicon structure, confirmed by the National Renewable Energy Laboratory. We collaborated with two inverter companies, Solectria and PV Powered, and significantly reduced inverter cost. We collaborated with three universities (Syracuse University, University of Oregon, and Colorado School of Mines) and National Renewable Energy Laboratory, and improved understanding on nanocrystalline material properties and light trapping techniques. We jointly published 50 technical papers in peer-reviewed journals and International Conference Proceedings. We installed two 75kW roof-top systems, one in Florida and another in New Jersey demonstrating innovative designs. The systems performed satisfactorily meeting/exceeding estimated kWh/kW performance. The 50/50 cost shared program was a great success and received excellent comments from DOE Manager and Technical Monitor in the Final Review.

Dr. Subhendu Guha; Dr. Jeff Yang

2012-05-25T23:59:59.000Z

279

Experimental investigation of size effect on thermal conductivity for ultra-thin amorphous poly(methyl methacrylate) (PMMA) films  

E-Print Network (OSTI)

An investigation was conducted to determine whether a “size effect” phenomenon for one particular thermophysical property, thermal conductivity, actually exists for amorphous poly(methyl methacrylate) (PMMA) films with thicknesses ranging from 40 nm to 2 ?m. This was done by using a non-contact, non-invasive, in-situ Transient Thermo-Reflectance (TTR) laser based technique. The results demonstrated that the intrinsic thermal conductivity of a 40 nm PMMA film deposited on native oxide of silicon increases by a factor of three over bulk PMMA values, and a distinct increase in the thermal conductivity of PMMA film was observed in ultra-thin (sub 100 nm) films. This confirmed the importance of film thickness for the through-plane thermal conductivity value of PMMA film on native oxide of silicon.

Kim, Ick Chan

2007-05-01T23:59:59.000Z

280

ITO Thin Films by RF Sputtering for Ethanol Sensing  

Science Conference Proceedings (OSTI)

The sensor for detection of ethanol vapours using RF sputter deposited ITO thin film on glass and Si substrates is reported. The principle of operation is the change of resistance of ITO film on exposure to ethanol vapours. The films were annealed at ... Keywords: Indium Tin Oxide, RF sputtering, ethanol sensor

Sudhir Chandra; H. J. Pandya; A. L. Vyas

2010-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "thin film silicon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Biaxially-Textured Photovoltaic Film Crystal Silicon on Ion Beam Assisted Deposition CaF2 Seed Layers on Glass  

SciTech Connect

We grow biaxially textured heteroepitaxial crystal silicon (c-Si) films on display glass as a low-cost photovoltaic material. We first fabricate textured CaF{sub 2} seed layers using ion-beam assisted deposition, then coat the CaF{sub 2} with a thin, evaporated epitaxial Ge buffer and finally deposit heteroepitaxial silicon on the Ge. The silicon is grown by hot-wire chemical vapor deposition, a high-rate, scalable epitaxy technology. Electron and X-ray diffraction confirm the biaxial texture of the CaF{sub 2} and epitaxial growth of the subsequent layers. Transmission electron microscopy reveals columnar silicon grains about 500 nm across. We fabricate a proof-of-concept epitaxial film c-Si solar cell with an open circuit voltage of 375 mV that is limited by minority carrier lifetime.

Groves, J. R.; Li, J. B.; Clemens, B. M.; LaSalvia, V.; Hasoon, F.; Branz, H. M.; Teplin, C. W.

2012-05-01T23:59:59.000Z

282

Real Time Optics of the Growth of Textured Silicon Films in Photovoltaics: Final Technical Report, 1 August 1999--12 August 2002  

DOE Green Energy (OSTI)

Novel optical instruments, including single and dual rotating-compensator multichannel ellipsometers, have been designed and developed to probe the evolution of the microstructure, spectroscopic optical properties, and other materials characteristics during the fabrication and processing of individual thin films and thin-film structures used in photovoltaic devices. These instruments provide a foundation for next-generation process design/control and metrology in existing and future photovoltaics technologies. In this project, the materials system studied in the greatest detail was thin-film silicon, fabricated at low temperatures by plasma-enhanced chemical vapor deposition. Real-time measurements of such thin films by multichannel ellipsometry have established deposition phase diagrams that provide guiding principles for multistep fabrication of high-performance amorphous (a-Si:H) and microcrystalline (mc-Si:H) solar cells. Such phase diagrams have also served to disprove conventional wisdom in the fabrication of thin-film solar cell structures, thus avoiding future unproductive research efforts.

Collins, R. W.; Wronski, C. R.

2003-10-01T23:59:59.000Z

283

Characterization of lithium phosphorous oxynitride thin films  

DOE Green Energy (OSTI)

Electrical and electrochemical properties of an amorphous thin-film lithium electrolyte, lithium phosphorous oxynitride (Lipon), have been studied with emphasis on the stability window vs Li metal and the behavior of the Li/Lipon interface. Ion conductivity of Lipon exhibits Arrhenius behavior at {minus}26 to +140 C, with a conductivity of 1.7 {times} 10{sup {minus}6}S/cm at 25 C and an activity energy of 0.50 {plus_minus} 0.01 eV. A stability window of 5.5 V was observed with respect to a Li{sup +}/Li reference, and no detectable reaction or degradation was evident at the Li/Lipon interface upon lithium cycling.

Yu, Xiaohua; Bates, J.B.; Jellison, G.E. Jr.

1996-01-01T23:59:59.000Z

284

Thin Film Femtosecond Laser Damage Competition  

SciTech Connect

In order to determine the current status of thin film laser resistance within the private, academic, and government sectors, a damage competition was started at the 2008 Boulder Damage Symposium. This damage competition allows a direct comparison of the current state of the art of high laser resistance coatings since they are tested using the same damage test setup and the same protocol. In 2009 a high reflector coating was selected at a wavelength of 786 nm at normal incidence at a pulse length of 180 femtoseconds. A double blind test assured sample and submitter anonymity so only a summary of the results are presented here. In addition to the laser resistance results, details of deposition processes, coating materials and layer count, and spectral results will also be shared.

Stolz, C J; Ristau, D; Turowski, M; Blaschke, H

2009-11-14T23:59:59.000Z

285

Thin films of mixed metal compounds  

DOE Patents (OSTI)

Disclosed is a thin film heterojunction solar cell, said heterojunction comprising a p-type I-III-IV[sub 2] chalcopyrite substrate and an overlying layer of an n-type ternary mixed metal compound wherein said ternary mixed metal compound is applied to said substrate by introducing the vapor of a first metal compound to a vessel containing said substrate from a first vapor source while simultaneously introducing a vapor of a second metal compound from a second vapor source of said vessel, said first and second metals comprising the metal components of said mixed metal compound; independently controlling the vaporization rate of said first and second vapor sources; reducing the mean free path between vapor particles in said vessel, said gas being present in an amount sufficient to induce homogeneity of said vapor mixture; and depositing said mixed metal compound on said substrate in the form of a uniform composition polycrystalline mixed metal compound. 5 figs.

Mickelsen, R.A.; Chen, W.S.

1985-06-11T23:59:59.000Z

286

Titanium nitride thin films for minimizing multipactoring  

DOE Patents (OSTI)

Applying a thin film coating to the surface of a workpiece, in particular, applying a coating of titanium nitride to a klystron window by means of a crossed-field diode sputtering array. The array is comprised of a cohesive group of numerous small hollow electrically conducting cylinders and is mounted so that the open ends of the cylinders on one side of the group are adjacent a titanium cathode plate. The workpiece is mounted so as to face the open ends of the other side of the group. A magnetic field is applied to the array so as to be coaxial with the cylinders and a potential is applied across the cylinders and the cathode plate, the cylinders as an anode being positive with respect to the cathode plate. The cylinders, the cathode plate and the workpiece are situated in an atmosphere of nitrogen which becomes ionized such as by field emission because of the electric field between the cylinders and cathode plate, thereby establishing an anode-cathode discharge that results in sputtering of the titanium plate. The sputtered titanium coats the workpiece and chemically combines with the nitrogen to form a titanium nitride coating on the workpiece. Gas pressure, gas mixtures, cathode material composition, voltages applied to the cathode and anode, the magnetic field, cathode, anode and workpiece spacing, and the aspect ratio (ratio of length to inner diameter) of the anode cylinders, all may be controlled to provide consistent optimum thin film coatings of various compositions and thicknesses. Another facet of the disclosure is the coating of microwave components per se with titanium nitride to reduce multipactoring under operating conditions of the components.

Welch, Kimo M. (Mountain View, CA)

1979-01-01T23:59:59.000Z

287

Chemical vapor deposition of amorphous silicon films from disilane  

SciTech Connect

Amorphous silicon films for fabrication of solar cells have been deposited by thermal chemical vapor deposition (CVD) from disilane (Si/sub 2/H/sub 6/) using a tubular flow reactor. A mathematical description for the CVD reactor was developed and solved by a numerical procedure. The proposed chemical reaction network for the model is based on silylene (SiH/sub 2/) insertion in the gas phase and film growth from SiH/sub 2/ and silicon polymers (Si/sub n/N/sub 2n/, n approx. 10). Estimates of the rate constants have been obtained for trisilane decomposition, silicon polymer formation, and polymer dehydrogenation. The silane unimolecular decomposition rate constants were corrected for pressure effects. The model behavior is compared to the experimental results over the range of conditions: reactor temperature (360 to 485/sup 0/C), pressures (2 to 48 torr), and gas holding time (1 to 70 s). Within the above range of conditions, film growth rate varies from 0.01 to 30 A/s. Results indicate that silicon polymers are the main film precursors for gas holding times greater than 3 s. Film growth by silylene only becomes important at short holding times, large inert gas dilution, and positions near the beginning of the reactor hot zone.

Bogaert, R.J.

1986-01-01T23:59:59.000Z

288

J. Phys. D: Appl. Phys. 33 (2000) 27312746. Printed in the UK PII: S0022-3727(00)14861-2 Modelling of silicon hydride clustering  

E-Print Network (OSTI)

to deposit layers of thin silicon films using silane or disilane precursor gases. This process suffers from

Swihart, Mark T.

289

Nanostructured Thin Film Electrolyte for Thin Film Solid Oxide Fuel Cells  

E-Print Network (OSTI)

Solid oxide fuel cells (SOFCs) are very attractive as energy generation devices because they are clean, reliable, and almost entirely pollution-free. SOFCs have flexible fuel selections compared with other fuel cell technologies. The main disadvantage of SOFCs is their high operating temperature (~1000ºC for conventional SOFCs) which leads to cell cracking and formation of non-conducting compounds at electrolyte/electrode interfaces. Therefore, intermediate temperature SOFCs (ITSOFCs) in the range of 500-700 ºC has attracted extensive research interests. To achieve high cell performance at reduced temperatures, it requires high-catalytic activity, high ionic conductivity, and comparable thermal expansion coefficient (TEC) of the cell components. To address the above issues, the research focuses on two main approaches (i.e., the interlayer approach and the electrolyte approach) in order to improve the overall cell performance. First, the design of a thin layer of a vertically-aligned nanocomposite (VAN) structure as an interlayer between the electrolyte and cathode is demonstrated. The development of the VAN structures consisted of the cathode material as a perovskite or ordered double perovskite structure, La0.5Sr0.5CoO3 (LSCO) or PrBaCo2O5 delta (PBCO), and the electrolyte material as a fluorite structure, Ce0.9Gd0.1O1.95 (CGO or GDC), were achieved for thin film solid oxide fuel cell (TFSOFCs). The VAN structure significantly improves the overall performance of the TFSOFC by increasing the interfacial area between the electrolyte and cathode and also acts as a transition layer that improves adhesion and relieves both thermal stress and lattice strain. Second, microstructural and electrical properties of Gd-doped CeO2 (GDC, Ce0.9Gd0.1O1.95) thin films electrolyte are studied for intermediate temperature solid oxide fuel cells (SOFCs). The GDC thin film electrolytes with different grain sizes and grain morphologies were prepared by varying the deposition parameters such as substrate temperature, oxygen partial pressure, target repetition rate, and laser ablation energy. The electrical property of the GDC thin film is strongly affected by the grain size. Third, bilayer electrolytes composed of a gadolinium-doped CeO2 (GDC) layer (~6 micrometer thickness) and an yttria-stabilized ZrO2 (YSZ) layer with various thicknesses (~330 nm, ~440 nm, and ~1 micrometer) are achieved by a pulsed laser deposition (PLD) technique for thin film solid oxide fuel cells (TFSOFCs). One effective approach is to incorporate YSZ thin film as a blocking layer in between the GDC and anode for preventing chemical reduction of GDC and electrical current leakage. This bilayer approach effectively improves the GDC's chemical/ mechanical stability and reduces the OCV loss under reducing conditions. The results suggest that the YSZ thin film serves as a blocking layer for preventing electrical current leakage in the GDC layer and also provides chemical, mechanical, and structural integrity in the cell, which leads to the overall enhanced performance.

Cho, Sungmee

2011-08-01T23:59:59.000Z

290

Method for making surfactant-templated thin films  

DOE Patents (OSTI)

An evaporation-induced self-assembly method to prepare a porous, surfactant-templated, thin film by mixing a silica sol, a solvent, a surfactant, and an interstitial compound, evaporating a portion of the solvent to form a liquid, crystalline thin film mesophase material, and then removal of the surfactant template. Coating onto a substrate produces a thin film with the interstitial compound either covalently bonded to the internal surfaces of the ordered or disordered mesostructure framework or physically entrapped within the ordered or disordered mesostructured framework. Particles can be formed by aerosol processing or spray drying rather than coating onto a substrate. The selection of the interstitial compound provides a means for developing thin films for applications including membranes, sensors, low dielectric constant films, photonic materials and optical hosts.

Brinker, C. Jeffrey (Albuquerque, NM); Lu, Yunfeng (New Orleans, LA); Fan, Hong You (Albuquerque, NM)

2010-08-31T23:59:59.000Z

291

Method for making surfactant-templated thin films  

DOE Patents (OSTI)

An evaporation-induced self-assembly method to prepare a porous, surfactant-templated, thin film by mixing a silica sol, a solvent, a surfactant, and an interstitial compound, evaporating a portion of the solvent to form a liquid, crystalline thin film mesophase material, and then removal of the surfactant template. Coating onto a substrate produces a thin film with the interstitial compound either covalently bonded to the internal surfaces of the ordered or disordered mesostructure framework or physically entrapped within the ordered or disordered mesostructured framework. Particles can be formed by aerosol processing or spray drying rather than coating onto a substrate. The selection of the interstitial compound provides a means for developing thin films for applications including membranes, sensors, low dielectric constant films, photonic materials and optical hosts.

Brinker, C. Jeffrey (Albuquerque, NM); Lu, Yunfeng (San Jose, CA); Fan, Hongyou (Albuquerque, NM)

2002-01-01T23:59:59.000Z

292

Origin of stress in radio frequency magnetron sputtered zinc oxide thin films  

SciTech Connect

Highly c-axis oriented ZnO thin films have been deposited on silicon substrates by planar rf magnetron sputtering under varying pressure (10-50 mTorr) and oxygen percentage (50-100%) in the reactive gas (Ar + O{sub 2}) mixture. The as-grown films were found to be stressed over a wide range from -1 x 10{sup 11} to -2 x 10{sup 8} dyne/cm{sup 2} that in turn depends strongly on the processing conditions, and the film becomes stress free at a unique combination of sputtering pressure and reactive gas composition. Raman spectroscopy and photoluminescence (PL) analyses identified the origin of stress as lattice distortion due to defects introduced in the ZnO thin film. FTIR study reveals that Zn-O bond becomes stronger with the increase in oxygen fraction in the reactive gas mixture. The lattice distortion or stress depends on the type of defects introduced during deposition. PL spectra show the formation of a shoulder in band emission with an increase in the processing pressure and are related to the presence of stress. The ratio of band emission to defect emission decreases with the increase in oxygen percentage from 50 to 100%. The studies show a correlation of stress with the structural, vibrational, and photoluminescence properties of the ZnO thin film. The systematic study of the stress will help in the fabrication of efficient devices based on ZnO film.

Menon, Rashmi; Gupta, Vinay; Sreenivas, K. [Electronic Material and Devices Laboratory, Department of Physics and Astrophysics, University of Delhi, Delhi 11007 (India); Tan, H. H.; Jagadish, C. [Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia)

2011-03-15T23:59:59.000Z

293

Light-trapped, interconnected, silicon-film {trademark} modules. Annual subcontract report, 18 November 1994--18 November 1995  

SciTech Connect

This report describes the first year of work performed by AstroPower, Inc., of Newark, Delaware, under the Thin-Film PV Partnership Program. The work led to the development of a new barrier-coated substrate that has enabled high-quality thin-layer polycrystalline silicon to be grown on a low-cost substrate. High diffusion lengths were measured after external phosphorous gettering. This led to a confirmed efficiency for a 0.57cm{sup 2}, thin-layer solar cell grown on a low-cost substrate.

Hall, R.B.; Rand, J.A.; Cotter, J.E.; Ford, D.H. [AstroPower, Inc., Newark, DE (United States)

1996-03-01T23:59:59.000Z

294

Deposition of device quality low H content, amorphous silicon films  

DOE Patents (OSTI)

A high quality, low hydrogen content, hydrogenated amorphous silicon (a-Si:H) film is deposited by passing a stream of silane gas (SiH{sub 4}) over a high temperature, 2,000 C, tungsten (W) filament in the proximity of a high temperature, 400 C, substrate within a low pressure, 8 mTorr, deposition chamber. The silane gas is decomposed into atomic hydrogen and silicon, which in turn collides preferably not more than 20--30 times before being deposited on the hot substrate. The hydrogenated amorphous silicon films thus produced have only about one atomic percent hydrogen, yet have device quality electrical, chemical, and structural properties, despite this lowered hydrogen content. 7 figs.

Mahan, A.H.; Carapella, J.C.; Gallagher, A.C.

1995-03-14T23:59:59.000Z

295

Strain Relaxation and Vacancy Creation in Thin Platinum Films  

Science Conference Proceedings (OSTI)

Synchrotron based combined in situ x-ray diffractometry and reflectometry is used to investigate the role of vacancies for the relaxation of residual stress in thin metallic Pt films. From the experimentally determined relative changes of the lattice parameter a and of the film thickness L the modification of vacancy concentration and residual strain was derived as a function of annealing time at 130 deg. C. The results indicate that relaxation of strain resulting from compressive stress is accompanied by the creation of vacancies at the free film surface. This proves experimentally the postulated dominant role of vacancies for stress relaxation in thin metal films close to room temperature.

Gruber, W.; Chakravarty, S.; Schmidt, H. [Technische Universitaet Clausthal, Institut fuer Metallurgie, Clausthal-Zellerfeld (Germany); Baehtz, C. [Helmholtz Zentrum Dresden Rossendorf, Institute of Ion Beam Physics and Materials Research, Dresden (Germany); Leitenberger, W. [Universitaet Potsdam, Institut fuer Physik und Astronomie, Potsdam (Germany); Bruns, M. [Karlsruher Institut fuer Technologie, Institute for Applied Materials, Eggenstein-Leopoldshafen (Germany); Karlsruher Institut fuer Technologie, Karlsruher Micro Nano Facility, Eggenstein-Leopoldshafen (Germany); Kobler, A.; Kuebel, C. [Karlsruher Institut fuer Technologie, Institute of Nanotechnology, Eggenstein-Leopoldshafen (Germany); Karlsruher Institut fuer Technologie, Karlsruher Micro Nano Facility, Eggenstein-Leopoldshafen (Germany)

2011-12-23T23:59:59.000Z

296

Thin film photovoltaic device and process of manufacture  

DOE Patents (OSTI)

Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells. 13 figs.

Albright, S.P.; Chamberlin, R.

1997-10-07T23:59:59.000Z

297

Thin film photovoltaic device and process of manufacture  

DOE Patents (OSTI)

Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells.

Albright, Scot P. (Lakewood, CO); Chamberlin, Rhodes (El Paso, TX)

1997-10-07T23:59:59.000Z

298

Thin film photovoltaic device and process of manufacture  

DOE Patents (OSTI)

Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells. 13 figs.

Albright, S.P.; Chamberlin, R.

1999-02-09T23:59:59.000Z

299

Thin film photovoltaic device and process of manufacture  

DOE Patents (OSTI)

Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells.

Albright, Scot P. (Lakewood, CO); Chamberlin, Rhodes (El Paso, TX)

1999-02-09T23:59:59.000Z

300

Functionalized multilayer thin films for protection against acutely toxic agents  

E-Print Network (OSTI)

The recently developed practice of spraying polyelectrolyte solutions onto a substrate in order to construct thin films via the Layer-by-Layer (LbL) technique has been further investigated and extended. In this process a ...

Krogman, Kevin Christopher

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thin film silicon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Critical Confinement and Elastic Instability in Thin Solid Films  

E-Print Network (OSTI)

formation; Thin soft films INTRODUCTION Pattern formation by self-organization is a subject of much interest introduced a confinement parameter e ¼ hq [16] defined as the ratio of two different length scales: thic

Chaudhury, Manoj K.

302

Polycrystalline Thin-Film Research: Cadmium Telluride (Fact Sheet)  

Science Conference Proceedings (OSTI)

Capabilities fact sheet that includes scope, core competencies and capabilities, and contact/web information for Polycrystalline Thin-Film Research: Cadmium Telluride at the National Center for Photovoltaics.

Not Available

2011-06-01T23:59:59.000Z

303

Properties and sensor performance of zinc oxide thin films  

E-Print Network (OSTI)

Reactively sputtered ZnO thin film gas sensors were fabricated onto Si wafers. The atmosphere dependent electrical response of the ZnO micro arrays was examined. The effects of processing conditions on the properties and ...

Min, Yongki, 1965-

2003-01-01T23:59:59.000Z

304

Polycrystalline Thin-Film Research: Cadmium Telluride (Fact Sheet)  

DOE Green Energy (OSTI)

This National Center for Photovoltaics sheet describes the capabilities of its polycrystalline thin-film research in the area of cadmium telluride. The scope and core competencies and capabilities are discussed.

Not Available

2013-06-01T23:59:59.000Z

305

Guided Self-Assembly of Gold Thin Films  

NLE Websites -- All DOE Office Websites (Extended Search)

Self-Assembly of Gold Thin Films Print Nanoparticles-man-made atoms with unique optical, electrical, and mechanical properties-have become key components in many fields of...

306

Biological, Electronic, and Functional Thin Films and Coatings II  

Science Conference Proceedings (OSTI)

Mar 4, 2013 ... Recent Developments in Biological, Electronic, and Functional Thin Films ... Improved Mobility and Transmittance of Room Temperature ... excellent scintillator for numerous applications in lasers, optical lens and radiography.

307

Biological, Electronic, and Functional Thin Films and Coatings I  

Science Conference Proceedings (OSTI)

Mar 4, 2013... scan (PPS) and electrical impedance spectroscopy (EIS). ... Eclipse Active and Passive Solar Control Coatings: Hulya ... In this paper two novel thin film coating systems will be presented for energy conservation solar ...

308

2 Thin Films Prepared by Sequential Evaporation for Photovoltaic  

Science Conference Proceedings (OSTI)

The defects of Cu-Se di-vacancies are formed in Cu(In,Ga)Se2 thin films and influence to the solar cell performance. In this study, we have fabricated Cu(In ...

309

Shock Dynamics in Particle-Laden Thin Films  

E-Print Network (OSTI)

We present theory and experiments for thin film particle-laden flow on an incline. At higher particle concentration and inclination angle, a new phenomenon is observed in which a large particle-rich ridge forms at the ...

Dupuy, B.

2005-04-22T23:59:59.000Z

310

Direct printing of lead zirconate titanate thin films  

E-Print Network (OSTI)

Thus far, use of lead zirconate titanate (PZT) in MEMS has been limited due to the lack of process compatibility with existing MEMS manufacturing techniques. Direct printing of thin films eliminates the need for photolithographic ...

Bathurst, Stephen, 1980-

2008-01-01T23:59:59.000Z

311

Synthesis and Patterning of Calcium and Barium Niobate Thin Films ...  

Science Conference Proceedings (OSTI)

Epitaxial CBN thin films were deposited on MgO and NSTO substrates at 800°C under 1mTorr of oxygen pressure using Pulsed Laser Deposition technique.

312

Initiated chemical vapor deposition of functional polyacrylic thin films  

E-Print Network (OSTI)

Initiated chemical vapor deposition (iCVD) was explored as a novel method for synthesis of functional polyacrylic thin films. The process introduces a peroxide initiator, which can be decomposed at low temperatures (<200?C) ...

Mao, Yu, 1975-

2005-01-01T23:59:59.000Z

313

Deriving Deformation Mechanisms in Nanocrystalline AuCu Thin Films  

Science Conference Proceedings (OSTI)

... in a SEM on nc gold and gold-copper thin films adherent to polymer substrate. .... Lithiation Mechanism of Individual SnO2 Nanowires in a Flooding Geometry.

314

Simulated Space Environmental Testing on Thin Films  

Science Conference Proceedings (OSTI)

An exploratory program has been conducted, to irradiate some mature commercial and some experimental polymer films with radiation simulating certain Earth orbits, and to obtain data about the response of each test film''s reflective and tensile properties. ...

Russell Dennis A.; Fogdall Larry B.; Bohnhoff Gail

2000-04-01T23:59:59.000Z

315

Dry-transfer of chemical vapour deposited nanocarbon thin films  

E-Print Network (OSTI)

equipment and measurement I thank Dr Xiulia Xu, high resolution transmission electron microscopy - Dr Caterina Ducati, Mr Sai Shivareddy and Dr Jamie Warner (Oxford University) and assistance with supercapacitor manufacturing and measurement - Mr (soon... that these thin films behave, in a macroscopic sense, similar to traditional c-axis conductive graphite and deviate toward tunnel dominated conduction with increasing degrees of network disorder. Various MWCNT-based thin film field emitters were considered...

Cole, Matthew Thomas

2012-01-10T23:59:59.000Z

316

Hydrogenated amorphous silicon films produced by chemical vapor deposition: Final report  

SciTech Connect

Hydrogenated amorphous silicon (a-Si:H) is a technologically important semiconductor, well-suited for solar photovoltaic energy conversion and thin film device applications. While the glow discharge technique is widely used for the deposition of a-Si:H films, this work is focused on the use of the chemical vapor deposition (CVD) technique, i.e., the thermal decomposition of disilane and higher silanes, for the deposition of a-Si:H films. A simple technique for the preparation of disilane and higher silanes by using an electric discharge in monosilane under atmospheric pressure has been developed, and the discharge product can be used directly for the deposition process. The important parameters of the CVD process including the substrate temperature, the composition and flow rate of the reaction mixture, and the nature of the diluent gas for disilane, have also been investigated. The deposition rate of a-Si:H films in a helium atmosphere is considerably higher than that in a hydrogen atmosphere, and the CVD process in a helium atmosphere is well-suited for the deposition of thick a-Si:H films. The a-Si:H films deposited under various conditions have been characterized by the photoconductivity, dissolution rate, optical absorption, mechanical stress, gap state density, minority carrier diffusion length, and stability measurements. On the basis of these measurements, a-Si:H films deposited by the thermal decomposition of disilane in a helium atmosphere exhibit better structural and electronic properties than those deposited in a hydrogen atmosphere.

Not Available

1987-04-01T23:59:59.000Z

317

Research on polycrystalline thin-film materials, cells, and modules  

DOE Green Energy (OSTI)

The US Department of Energy (DOE) supports research activities in polycrystalline thin films through the Polycrystalline Thin-Film Program at the Solar Energy Research Institute (SERI). This program includes research and development (R D) in both copper indium diselenide and cadmium telluride thin films for photovoltaic applications. The objective of this program is to support R D of photovoltaic cells and modules that meet the DOE long-term goals of high efficiency (15%--20%), low cost ($50/m{sup 2}), and reliability (30-year life time). Research carried out in this area is receiving increased recognition due to important advances in polycrystalline thin-film CuInSe{sub 2} and CdTe solar cells and modules. These have become the leading thin-film materials for photovoltaics in terms of efficiency and stability. DOE has recognized this potential through a competitive initiative for the development of CuInSe{sub 2} and CdTe modules. This paper focuses on the recent progress and future directions of the Polycrystalline Thin-Film Program and the status of the subcontracted research on these promising photovoltaic materials. 26 refs., 12 figs, 1 tab.

Mitchell, R.L.; Zweibel, K.; Ullal, H.S.

1990-11-01T23:59:59.000Z

318

Understanding Thin Film Structure for the Rational Design of  

NLE Websites -- All DOE Office Websites (Extended Search)

Understanding Thin Film Structure for the Rational Design of Understanding Thin Film Structure for the Rational Design of High-performance Organic Semiconductors for Plastic Electronics Organic semiconductors are attracting considerable research interest due to their potential applications in low-cost electronics such as organic light emitting diode (OLED) displays, RF identification tags (RFID), smart cards and electronic paper. The development of p-conjugated materials, which are composed of alternating single and double chemical bonds, are the foundation of these applications. In the past decade research in this field has progressed to the extent that desirable charge transport in the organic semiconductor film in organic thin film transistors (OTFT) can be achieved through molecular design by selective placement of electron-rich, electron-withdrawing, and aromatic groups in different parts of the molecule. Although the electronic properties are easily tuned by molecular design, the molecular packing within the thin film and the film microstructure have a significant influence on the OTFT performance. Despite this importance, this interrelationship between molecular structure, thin film molecular packing and charge transport are only poorly understood.

319

Thin aerogel films for optical, thermal, acoustic, and electronic applications  

Science Conference Proceedings (OSTI)

Aerogels are a special class of continuously porous solid materials which are characterized by nanometer size particles and pores. Typically, aerogels are made using sol-gel chemistry to form a solvent filled, high porosity gel that is dried by removing the solvent without collapsing the tenuous solid phase. As bulk materials, aerogels are known to have many exceptional, and even some unique physical properties. Aerogels provide the highest thermal insulation and lowest dielectric constant of any other material known. However, some important applications require the aerogels in the form of thin films or sheets. For example, electronic applications require micrometer thin aerogel films bonded to a substrate, and others require thicker films, either on a substrate or as free standing sheets. Special methods are required to make aerogel thin films or sheets. In this paper, the authors discuss the special conditions needed to fabricate thin aerogel films and they describe methods to make films and thin sheets. They also give some specific applications for which aerogel films are being developed.

Hrubesh, L.W.; Poco, J.F. [Lawrence Livermore National Lab., CA (United States). Chemistry and Material Sciences Dept.

1994-09-01T23:59:59.000Z

320

Front and backside processed thin film electronic devices  

Science Conference Proceedings (OSTI)

This invention provides thin film devices that have been processed on their front- and backside. The devices include an active layer that is sufficiently thin to be mechanically flexible. Examples of the devices include back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.

Evans, Paul G. (Madison, WI); Lagally, Max G. (Madison, WI); Ma, Zhenqiang (Middleton, WI); Yuan, Hao-Chih (Lakewood, CO); Wang, Guogong (Madison, WI); Eriksson, Mark A. (Madison, WI)

2012-01-03T23:59:59.000Z

Note: This page contains sample records for the topic "thin film silicon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Silicon-Film{trademark} photovoltaic manufacturing technology. Semiannual subcontract report, 15 October 1993--15 April 1994  

DOE Green Energy (OSTI)

This report describes work to develop an advanced, low-cost manufacturing process for a now utility-scale, flat-plate module. This process starts with the production of continuous sheets of thin-film, polycrystalline silicon using the Silicon-Film{trademark} process. Sheets are cut into wafers that are nominally 15 cm on a side. Fifty-six of these wafers are then fabricated into solar cells that are strung together into a 170-W module. Twelve of these modules form a 2-kW array. The program has three main components: (1) development of a Silicon-Film{trademark} wafer machine that is capable of manufacturing waters that are 225 cm{sup 2} in size at a rate of 3.0 MW/yr, with a total product cost reduction of 70%; (2) development of an advanced solar cell manufacturing process that is capable of turning the Silicon-Film{trademark} wafer into a 3.25-W solar cell; and (3) development of an advanced module design based on these large-area silicon solar cells with an average power of 170 W for 56 solar cells and 113 W for 36 solar cells.

Collins, S.R.; Hall, R.B. [AstroPower, Inc., Newark, DE (United States)

1994-09-01T23:59:59.000Z

322

Characterization of polysilicon thin films for MEMS applications  

Science Conference Proceedings (OSTI)

The microstructure of thin polycrystalline films formed by molecular beam epitaxy (MBE) has been studied by transmission electron microscopy (TEM). Beneficial compressive residual stress was introduced by cavitation impacts. Surface morphology was characterized ... Keywords: defects, gavitation, molecular beam epitaxy, polysilicon film, transmission electron microscopy

Dan O. Macodiyo; Hitoshi Soyama; Kazuo Hayashi

2006-07-01T23:59:59.000Z

323

Composite polymeric film and method for its use in installing a very thin polymeric film in a device  

DOE Patents (OSTI)

A composite polymeric film and a method for its use in forming and installing a very thin (<10 .mu.m) polymeric film are disclosed. The composite film consists of a thin film layer and a backing layer. The backing layer is soluble in a solvent in which the thin film layer is not soluble. In accordance with the method, the composite film is installed in a device in the same position in which it is sought to finally emplace the thin film. The backing layer is then selectively dissolved in the solvent to leave the insoluble thin film layer as an unbacked film. The method permits a very thin film to be successfully installed in devices where the fragility of the film would preclude handling and installation by conventional methods.

Duchane, David V. (Los Alamos, NM); Barthell, Barry L. (Tesuque, NM)

1984-01-01T23:59:59.000Z

324

Composite polymeric film and method for its use in installing a very-thin polymeric film in a device  

DOE Patents (OSTI)

A composite polymeric film and a method for its use in forming and installing a very thin (< 10 ..mu..m) polymeric film are disclosed. The composite film consists of a thin film layer and a backing layer. The backing layer is soluble in a solvent in which the thin film layer is not soluble. In accordance with the method, the composite film is installed in a device in the same position in which it is sought to finally emplace the thin film. The backing layer is then selectiely dissolved in the solvent to leave the insoluble thin film layer as an unbacked film. The method permits a very thin film to e successfully installed in devices where the fragility of the film would preclude handling and installation by conventional methods.

Duchane, D.V.; Barthell, B.L.

1982-04-26T23:59:59.000Z

325

Silicon-film {trademark} photovoltaic manufacturing technology. Annual subcontract report, 1 January 1994--31 December 1994  

DOE Green Energy (OSTI)

The goal of AstroPower`s PVMaT-2A project is to develop an advanced, low-cost manufacturing process for a new utility-scale, flat-plate module. This process starts with the production of continuous sheets of thin-film polycrystalline silicon using the Silicon-Film {trademark} process. Our main product focus in PVMaT-2A has been a 240 cm{sup 2} solar cell. Continuous sheets of silicon are produced and cut into wafers that are 15.5 cm on a side. Both standard modules (36 solar cells) and a new 56 solar cell module were produced. The targeted high power module design is a 170 watt module, used in a twelve module array to generate 2 kW. The solar cells, modules, and array developed here are described.

Collins, S.R.; Hall, R.B.; Rand, J.A. [AstroPower, Inc., Newark, DE (United States)

1995-11-01T23:59:59.000Z

326

Effects of humidity during photoprocessing on thin film metallization adhesion  

SciTech Connect

Humidity effects during photoprocessing on tantalum/chromium/gold thin film networks (TFNs) were investigated. Humidity conditions at various process steps were controlled by placing either desiccant or water in handling containers for the TFNs. The TFNs photoprocessed in humid conditions had a much higher occurrence of metallization failures compared to TFNs processed in dry conditions. Ceramic surface defects were shown to cause pores in the thin films, and these pores enhanced corrosion susceptibility for the films. This study resulted in a desiccated storage process for production of TFNs.

Norwood, D.P.

1980-03-01T23:59:59.000Z

327

Thin-film absorber for a solar collector  

DOE Green Energy (OSTI)

This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

Wilhelm, W.G.

1982-02-09T23:59:59.000Z

328

Preparation of thin film solar cells under very low pressure conditions. Final report, October 1, 1976--September 30, 1977  

DOE Green Energy (OSTI)

In this study the feasibility of fabricating backwall Schottky barrier polycrystalline solar cells under ultra-high vacuum conditions of 1 x 10/sup -10/ torr (N/sub 2/) was investigated. Thin films of electron beam vaporized silicon were deposited on cleaned metal substrates of tungsten, tantalum and hafnium. Mass spectra from the quadrapole residual gas analyzer were used to determine the partial pressure of peak heights of 13 residual gases during each processing step. During separate silicon depositions, the substrate temperature was varied between 400 and 750/sup 0/C and deposition rates between 20 and 750 A/min were used. Surface contamination and metal diffusion were monitored by in situ Auger electron spectrometry before and after cleaning, deposition and annealing. Auger depth profiling, x-ray analysis, and SEM in the topographic and channeling modes, were utilized to characterize the samples with respect to silicon-metal boundary layer, interdiffusion, silicide formation and grain size of silicon. The clean metal surface was found to enhance thin film silicide growth. Fine grain silicon films were obtained for all samples that were not completely converted to a metallic silicide. Tungsten, tantalum and hafnium were found to form silicides at temperatures as low as 600/sup 0/C.

Schmidt, F.A.; Shanks, H.R.; Bevolo, A.J.; Campisi, G.J.

1977-01-01T23:59:59.000Z

329

Ultrafast laser ablation of gold thin film targets  

Science Conference Proceedings (OSTI)

Ultrafast laser ablation of a gold thin film is studied and compared with that of a bulk target, with particular emphasis given to the process of nanoparticles generation. The process is carried out in a condition where a single laser shot removes all the irradiated film spot. The experimental results evidence interesting differences and, in particular, a reduction of the nanoparticles size, and a narrowing of a factor two of their size distribution in the case of ablation of a thin film target, a feature which we relate to a more uniform heating of the target material. We thus show that ultrashort laser ablation of thin films provides a promising way of controlling plume features and nanoparticles size.

Amoruso, S.; Ausanio, G.; Bruzzese, R. [Dipartimento di Scienze Fisiche, Universita degli Studi di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Via Cintia, I-80126 Napoli (Italy); CNR-SPIN, Complesso Universitario di Monte S. Angelo, Via Cintia, I-80126 Napoli (Italy); Nedyalkov, N. N.; Atanasov, P. A. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsaridradsko shose Boulevard, Sofia 1784 (Bulgaria); Wang, X. [CNR-SPIN, Complesso Universitario di Monte S. Angelo, Via Cintia, I-80126 Napoli (Italy)

2011-12-15T23:59:59.000Z

330

Thin-film rechargeable lithium batteries for implantable devices  

DOE Green Energy (OSTI)

Thin films of LiCoO{sub 2} have been synthesized in which the strongest x-ray reflection is either weak or missing, indicating a high degree of preferred orientation. Thin-film solid state batteries with these textured cathode films can deliver practical capacities at high current densities. For example, for one of the cells 70% of the maximum capacity between 4.2 V and 3 V ({approximately}0.2 mAh/cm{sup 2}) was delivered at a current of 2 mA/cm{sup 2}. When cycled at rates of 0.1 mA/cm{sup 2}, the capacity loss was 0.001 %/cycle or less. The reliability and performance of Li-LiCoO{sub 2} thin-film batteries make them attractive for application in implantable devices such as neural stimulators, pacemakers, and defibrillators.

Bates, J.b.; Dudney, N.J.

1997-05-01T23:59:59.000Z

331

Thin Film Packaging Solutions for High Efficiency OLED Lighting Products  

Science Conference Proceedings (OSTI)

The objective of the 'Thin Film Packaging Solutions for High Efficiency OLED Lighting Products' project is to demonstrate thin film packaging solutions based on SiC hermetic coatings that, when applied to glass and plastic substrates, support OLED lighting devices by providing longer life with greater efficiency at lower cost than is currently available. Phase I Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on optical glass with lifetime of 1,000 hour life, CRI greater than 75, and 15 lm/W. Phase II Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on plastic or glass composite with 25 lm/W, 5,000 hours life, and CRI greater than 80. Phase III Objective: Demonstrate 2 x 2 ft{sup 2} thin film encapsulated working phosphorescent OLED with 40 lm/W, 10,000 hour life, and CRI greater than 85. This report details the efforts of Phase III (Budget Period Three), a fourteen month collaborative effort that focused on optimization of high-efficiency phosphorescent OLED devices and thin-film encapsulation of said devices. The report further details the conclusions and recommendations of the project team that have foundation in all three budget periods for the program. During the conduct of the Thin Film Packaging Solutions for High Efficiency OLED Lighting Products program, including budget period three, the project team completed and delivered the following achievements: (1) a three-year marketing effort that characterized the near-term and longer-term OLED market, identified customer and consumer lighting needs, and suggested prototype product concepts and niche OLED applications lighting that will give rise to broader market acceptance as a source for wide area illumination and energy conservation; (2) a thin film encapsulation technology with a lifetime of nearly 15,000 hours, tested by calcium coupons, while stored at 16 C and 40% relative humidity ('RH'). This encapsulation technology was characterized as having less than 10% change in transmission during the 15,000 hour test period; (3) demonstrated thin film encapsulation of a phosphorescent OLED device with 1,500 hours of lifetime at 60 C and 80% RH; (4) demonstrated that a thin film laminate encapsulation, in addition to the direct thin film deposition process, of a polymer OLED device was another feasible packaging strategy for OLED lighting. The thin film laminate strategy was developed to mitigate defects, demonstrate roll-to-roll process capability for high volume throughput (reduce costs) and to support a potential commercial pathway that is less dependent upon integrated manufacturing since the laminate could be sold as a rolled good; (5) demonstrated that low cost 'blue' glass substrates could be coated with a siloxane barrier layer for planarization and ion-protection and used in the fabrication of a polymer OLED lighting device. This study further demonstrated that the substrate cost has potential for huge cost reductions from the white borosilicate glass substrate currently used by the OLED lighting industry; (6) delivered four-square feet of white phosphorescent OLED technology, including novel high efficiency devices with 82 CRI, greater than 50 lm/W efficiency, and more than 1,000 hours lifetime in a product concept model shelf; (7) presented and or published more than twenty internal studies (for private use), three external presentations (OLED workshop-for public use), and five technology-related external presentations (industry conferences-for public use); and (8) issued five patent applications, which are in various maturity stages at time of publication. Delivery of thin film encapsulated white phosphorescent OLED lighting technology remains a challenging technical achievement, and it seems that commercial availability of thin, bright, white OLED light that meets market requirements will continue to require research and development effort. However, there will be glass encapsulated white OLED lighting products commercialized in niche markets during the 2008 calendar year. This commercializ

None

2008-06-30T23:59:59.000Z

332

Co-sputtering yttrium into hafnium oxide thin films to produce ferroelectric properties  

Science Conference Proceedings (OSTI)

Thin film capacitors were fabricated by sputtering TiN-Y doped HfO{sub 2}-TiN stacks on silicon substrates. Yttrium was incorporated into the HfO{sub 2} layers by simultaneously sputtering from Y{sub 2}O{sub 3} and HfO{sub 2} sources. Electric polarization and relative permittivity measurements yield distinct ferroelectric properties as a result of low yttrium dopant concentrations in the range of 0.9-1.9 mol. %. Grazing incidence x-ray diffraction measurements show the formation of an orthorhombic phase in this range. Compared to atomic layer deposition films, the highest remanent polarization and the highest relative permittivity were obtained at significantly lower doping concentrations in these sputtered films.

Olsen, T. [NaMLab gGmbH, 01187 Dresden (Germany); Department of Electrical and Computer Engineering, University of Alberta, Edmonton T6G 2V4 (Canada); Schroeder, U.; Mueller, S.; Krause, A.; Martin, D.; Singh, A. [NaMLab gGmbH, 01187 Dresden (Germany); Mueller, J. [Fraunhofer CNT, 01099 Dresden (Germany); Geidel, M. [Institute of Semiconductors and Microsystems, Technische Universitaet Dresden, 01062 Dresden (Germany); Mikolajick, T. [NaMLab gGmbH, 01187 Dresden (Germany); Institute of Semiconductors and Microsystems, Technische Universitaet Dresden, 01062 Dresden (Germany)

2012-08-20T23:59:59.000Z

333

Junction Transport in Epitaxial Film Silicon Heterojunction Solar Cells: Preprint  

Science Conference Proceedings (OSTI)

We report our progress toward low-temperature HWCVD epitaxial film silicon solar cells on inexpensive seed layers, with a focus on the junction transport physics exhibited by our devices. Heterojunctions of i/p hydrogenated amorphous Si (a-Si) on our n-type epitaxial crystal Si on n++ Si wafers show space-charge-region recombination, tunneling or diffusive transport depending on both epitaxial Si quality and the applied forward voltage.

Young, D. L.; Li, J. V.; Teplin, C. W.; Stradins, P.; Branz, H. M.

2011-07-01T23:59:59.000Z

334

Pulsed laser processing of high temperature superconducting thin films  

SciTech Connect

Systematic studies of the effects of pulsed laser deposition processing parameters on plume dynamics and resultant film properties have been performed. Plume angular distributions, cos{sup m}({theta}), were observed to be variable between 1 > m > 10 depending on laser energy density and spot size. Under optimized conditions, epitaxial, superconducting thin films could be grown in-situ on a variety of single-crystal substrates. High quality, 200 nm thick films were obtained at deposition rates approaching 15 nm/sec. Additionally, the patterning of YBa{sub 2}Cu{sub 3}O{sub 7-x} thin films has been achieved by a process which combines thermal oxygen diffusion and laser annealing. This process is performed under relatively mild conditions which allows the structural integrity of the films to be preserved. 9 refs., 6 figs.

Muenchausen, R.E.; Dye, R.C.; Estler, R.C.; Foltyn, S.; Garcia, A.R.; Hubbard, K.M.; Nogar, N.S.; Wu, X.D. (Los Alamos National Lab., NM (USA)); Carim, A.; Mukherjee, A.; Brueck, S.R.J. (New Mexico Univ., Albuquerque, NM (USA))

1990-01-01T23:59:59.000Z

335

Nanostructured thin films for solid oxide fuel cells  

E-Print Network (OSTI)

The goals of this work were to synthesize high performance perovskite based thin film solid oxide fuel cell (TF-SOFC) cathodes by pulsed laser deposition (PLD), to study the structural, electrical and electrochemical properties of these cathodes and to establish structure-property relations for these cathodes in order to further improve their properties and design new structures. Nanostructured cathode thin films with vertically-aligned nanopores (VANP) were processed using PLD. These VANP structures enhance the oxygen-gas phase diffusivity, thus improve the overall TF-SOFC performance. La0.5Sr0.5CoO3 (LSCO) and La0.4Sr0.6Co0.8Fe0.2O3 (LSCFO) were deposited on various substrates (YSZ, Si and pressed Ce0.9Gd0.1O1.95 (CGO) disks). Microstructures and properties of the nanostructured cathodes were characterized by transmission electron microscope (TEM), high resolution TEM (HRTEM), scanning electron microscope (SEM) and electrochemical impedance spectroscopy (EIS) measurements. A thin layer of vertically-aligned nanocomposite (VAN) structure was deposited in between the CGO electrolyte and the thin film LSCO cathode layer for TF-SOFCs. The VAN structure consists of the electrolyte and the cathode materials in the composition of (CGO) 0.5 (LSCO) 0.5. The self-assembled VAN nanostructures contain highly ordered alternating vertical columns formed through a one-step thin film deposition using a PLD technique. These VAN structures significantly increase the interface area between the electrolyte and the cathode as well as the area of active triple phase boundary (TPB), thus improving the overall TF-SOFC performance at low temperatures, as low as 400oC, demonstrated by EIS measurements. In addition, the binary VAN interlayer could act as the transition layer that improves the adhesion and relieves the thermal stress and lattice strain between the cathode and the electrolyte. The microstructural properties and growth mechanisms of CGO thin film prepared by PLD technique were investigated. Thin film CGO electrolytes with different grain sizes and crystal structures were prepared on single crystal YSZ substrates under different deposition conditions. The effect of the deposition conditions such as substrate temperature and laser ablation energy on the microstructural properties of these films are examined using XRD, TEM, SEM, and optical microscope. CGO thin film deposited above 500 ºC starts to show epitaxial growth on YSZ substrates. The present study suggests that substrate temperature significantly influences the microstructure of the films especially film grain size.

Yoon, Jongsik

2008-12-01T23:59:59.000Z

336

Silicon Film{trademark} photovoltaic manufacturing technology. Semiannual technical progress report, 15 January 1992--15 July 1992  

DOE Green Energy (OSTI)

This report describes work on a project to develop an advanced low-cost manufacturing process for a new utility-scale flatplate module based on thin active layers of polycrystalline silicon on a low-cost substrate. This is called the Silicon-Film{trademark} process. This new power module is based on a new large solar cell that is 675 cm{sup 2} in area. Eighteen of these solar cells form a 170-W module. Twelve ofthese modules form a 2-kW array. The program has three components: (1) development of a Silicon-Film{trademark} wafer machine that can manufacture wafer 675 cm{sup 2} in size with a total product cost reductionof 70%; (2) development of an advanced solar cell manufacturing process that will turn the Silicon-Film{trademark} wafer into a 14%-efficient solar cell; and (3) development of an advanced module design based on these large-area, efficient silicon solar cells with an average power of 170 watts. The completion of these three tasks will lead to a new power module designed for utility and other power applications with asubstantially lower cost.

Bottenberg, W.R.; Hall, R.B.; Jackson, E.L.; Lampo, S.; Mulligan, W.E.; Barnett, A.M. [AstroPower, Inc., Newark, DE (United States)

1993-04-01T23:59:59.000Z

337

Pulsed laser deposition of ITO thin films and their characteristics  

SciTech Connect

The indium tin oxide (ITO) thin films are grown on quartz glass substrates by the pulsed laser deposition method. The structural, electrical, and optical properties of ITO films are studied as a function of the substrate temperature, the oxygen pressure in the vacuum chamber, and the Sn concentration in the target. The transmittance of grown ITO films in the visible spectral region exceeds 85%. The minimum value of resistivity 1.79 Multiplication-Sign 10{sup -4} {Omega} cm has been achieved in the ITO films with content of Sn 5 at %.

Zuev, D. A., E-mail: zuewda@yandex.ru; Lotin, A. A.; Novodvorsky, O. A.; Lebedev, F. V.; Khramova, O. D. [Russian Academy of Sciences, Institute on Laser and Information Technologies (Russian Federation); Petuhov, I. A.; Putilin, Ph. N.; Shatohin, A. N.; Rumyanzeva, M. N.; Gaskov, A. M. [Moscow State University, Faculty of Chemistry (Russian Federation)

2012-03-15T23:59:59.000Z

338

Guided Self-Assembly of Gold Thin Films  

NLE Websites -- All DOE Office Websites (Extended Search)

Guided Self-Assembly of Gold Thin Films Print Guided Self-Assembly of Gold Thin Films Print Nanoparticles-man-made atoms with unique optical, electrical, and mechanical properties-have become key components in many fields of science. If nanoparticles could be coaxed into routinely assembling themselves into predictable complex structures and hierarchical patterns, devices could be mass-produced that are one thousand times smaller than today's microtechnologies. Berkeley Lab and UC Berkeley scientists have made progress toward this goal, successfully directing the self--assembly of nanoparticles into device-ready thin films, which have potential applications in fields ranging from computer memory storage to energy harvesting and storage, from catalysis to light management, and into the emerging new field of plasmonics.

339

Guided Self-Assembly of Gold Thin Films  

NLE Websites -- All DOE Office Websites (Extended Search)

Guided Self-Assembly of Gold Thin Films Print Guided Self-Assembly of Gold Thin Films Print Nanoparticles-man-made atoms with unique optical, electrical, and mechanical properties-have become key components in many fields of science. If nanoparticles could be coaxed into routinely assembling themselves into predictable complex structures and hierarchical patterns, devices could be mass-produced that are one thousand times smaller than today's microtechnologies. Berkeley Lab and UC Berkeley scientists have made progress toward this goal, successfully directing the self--assembly of nanoparticles into device-ready thin films, which have potential applications in fields ranging from computer memory storage to energy harvesting and storage, from catalysis to light management, and into the emerging new field of plasmonics.

340

Guided Self-Assembly of Gold Thin Films  

NLE Websites -- All DOE Office Websites (Extended Search)

Guided Self-Assembly of Gold Thin Films Print Guided Self-Assembly of Gold Thin Films Print Nanoparticles-man-made atoms with unique optical, electrical, and mechanical properties-have become key components in many fields of science. If nanoparticles could be coaxed into routinely assembling themselves into predictable complex structures and hierarchical patterns, devices could be mass-produced that are one thousand times smaller than today's microtechnologies. Berkeley Lab and UC Berkeley scientists have made progress toward this goal, successfully directing the self--assembly of nanoparticles into device-ready thin films, which have potential applications in fields ranging from computer memory storage to energy harvesting and storage, from catalysis to light management, and into the emerging new field of plasmonics.

Note: This page contains sample records for the topic "thin film silicon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Guided Self-Assembly of Gold Thin Films  

NLE Websites -- All DOE Office Websites (Extended Search)

Guided Self-Assembly of Gold Thin Films Print Guided Self-Assembly of Gold Thin Films Print Nanoparticles-man-made atoms with unique optical, electrical, and mechanical properties-have become key components in many fields of science. If nanoparticles could be coaxed into routinely assembling themselves into predictable complex structures and hierarchical patterns, devices could be mass-produced that are one thousand times smaller than today's microtechnologies. Berkeley Lab and UC Berkeley scientists have made progress toward this goal, successfully directing the self--assembly of nanoparticles into device-ready thin films, which have potential applications in fields ranging from computer memory storage to energy harvesting and storage, from catalysis to light management, and into the emerging new field of plasmonics.

342

Low Temperature Chemical Vapor Deposition Of Thin Film Magnets  

DOE Patents (OSTI)

A thin-film magnet formed from a gas-phase reaction of tetracyanoetheylene (TCNE) OR (TCNQ), 7,7,8,8-tetracyano-P-quinodimethane, and a vanadium-containing compound such as vanadium hexcarbonyl (V(CO).sub.6) and bis(benzene)vanalium (V(C.sub.6 H.sub.6).sub.2) and a process of forming a magnetic thin film upon at least one substrate by chemical vapor deposition (CVD) at a process temperature not exceeding approximately 90.degree. C. and in the absence of a solvent. The magnetic thin film is particularly suitable for being disposed upon rigid or flexible substrates at temperatures in the range of 40.degree. C. and 70.degree. C. The present invention exhibits air-stable characteristics and qualities and is particularly suitable for providing being disposed upon a wide variety of substrates.

Miller, Joel S. (Salt Lake City, UT); Pokhodnya, Kostyantyn I. (Salt Lake City, UT)

2003-12-09T23:59:59.000Z

343

SPUTTERED THIN FILM PHOTOVOLTAICS - Home - Energy ...  

for photovoltaic (PV) applications .These processes result in films with better unif ormity over ... ultimately resulting in a more efficient solar ce ...

344

Features of electron mobility in a thin silicon layer in an insulator-silicon-insulator structure  

Science Conference Proceedings (OSTI)

Electron mobility in a thin silicon layer of a metal-insulator-semiconductor-insulator-metal system is studied as a function of longitudinal and transverse electric fields (in wide ranges of their values), temperature in the range 1.7 to 400 K, and changes in {gamma}-ray irradiation conditions. It is shown that, in the temperature range 400 to {approx}100 K, electron mobility increases in accordance with the mechanism of electron scattering at an acoustic phonon, while, with a subsequent decrease in temperature to the temperature of liquid helium, mobility drops because the Coulomb scattering of electrons at charged surface centers starts to dominate. It is demonstrated that as a result of {gamma}-ray irradiation, electron mobility decreases and the degree of this decrease strongly depends on the electrical mode of the sensor during irradiation.

Leonov, A. V., E-mail: lave@sci.lebedev.ru; Mokrushin, A. D.; Omeljanovskaja, N. M. [Russian Academy of Sciences, Institute for Microelectronics Technology and High-Purity Materials (Russian Federation)

2012-04-15T23:59:59.000Z

345

Improving the performance of the organic thin-film transistors with thin insulating lithium fluoride buffer layer  

Science Conference Proceedings (OSTI)

The pentacene-based organic thin-film transistors (OTFTs) with a thin insulating lithium fluoride (LiF) buffer layer between the pentacene and source/drain electrodes were fabricated. Compared with conventional OTFTs, the introduction of the buffer layer ... Keywords: OTFT, Organic thin-film transistor, Pentacene

Wei Hu; Yi Zhao; Jingying Hou; Chunsheng Ma; Shiyong Liu

2007-04-01T23:59:59.000Z

346

Preparation of a semiconductor thin film  

SciTech Connect

A process for the preparation of a semiconductor film. The process comprises depositing nanoparticles of a semiconductor material onto a substrate whose surface temperature during nanoparticle deposition thereon is sufficient to cause substantially simultaneous fusion of the nanoparticles to thereby coalesce with each other and effectuate film growth.

Pehnt, Martin (TuBingen, DE); Schulz, Douglas L. (Denver, CO); Curtis, Calvin J. (Lakewood, CO); Ginley, David S. (Evergreen, CO)

1998-01-01T23:59:59.000Z

347

Effects of acetylacetone additions on PZT thin film processing  

SciTech Connect

Sol-gel processing methods are frequently used for the fabrication of lead zirconate titanate (PZT) thin films for many electronic applications. Our standard approach for film fabrication utilizes lead acetate and acetic acid modified metal alkoxides of zirconium and titanium in the preparation of our precursor solutions. This report highlights some of our recent results on the effects of the addition of a second chelating ligand, acetylacetone, to this process. The authors discuss the changes in film drying behavior, densification and ceramic microstructure which accompany acetylacetone additions to the precursor solution and relate the observed variations in processing behavior to differences in chemical precursor structure induced by the acetylacetone ligand. Improvements in thin film microstructure, ferroelectric and optical properties are observed when acetylacetone is added to the precursor solution.

Schwartz, R.W.; Assink, R.A.; Dimos, D.; Sinclair, M.B.; Boyle, T.J.; Buchheit, C.D.

1995-02-01T23:59:59.000Z

348

Fabrication of polycrystalline thin films by pulsed laser processing  

DOE Patents (OSTI)

A method for fabricating polycrystalline thin films on low-temperature (or high-temperature) substrates which uses processing temperatures that are low enough to avoid damage to the substrate, and then transiently heating select layers of the thin films with at least one pulse of a laser or other homogenized beam source. The pulse length is selected so that the layers of interest are transiently heated to a temperature which allows recrystallization and/or dopant activation while maintaining the substrate at a temperature which is sufficiently low to avoid damage to the substrate. This method is particularly applicable in the fabrication of solar cells.

Mitlitsky, Fred (Livermore, CA); Truher, Joel B. (San Rafael, CA); Kaschmitter, James L. (Pleasanton, CA); Colella, Nicholas J. (Livermore, CA)

1998-02-03T23:59:59.000Z

349

Fabrication of polycrystalline thin films by pulsed laser processing  

DOE Patents (OSTI)

A method is disclosed for fabricating polycrystalline thin films on low-temperature (or high-temperature) substrates which uses processing temperatures that are low enough to avoid damage to the substrate, and then transiently heating select layers of the thin films with at least one pulse of a laser or other homogenized beam source. The pulse length is selected so that the layers of interest are transiently heated to a temperature which allows recrystallization and/or dopant activation while maintaining the substrate at a temperature which is sufficiently low to avoid damage to the substrate. This method is particularly applicable in the fabrication of solar cells. 1 fig.

Mitlitsky, F.; Truher, J.B.; Kaschmitter, J.L.; Colella, N.J.

1998-02-03T23:59:59.000Z

350

Perovskite phase thin films and method of making  

DOE Patents (OSTI)

The present invention comprises perovskite-phase thin films, of the general formula A.sub.x B.sub.y O.sub.3 on a substrate, wherein A is selected from beryllium, magnesium, calcium, strontium, and barium or a combination thereof; B is selected from niobium and tantalum or a combination thereof; and x and y are mole fractions between approximately 0.8 and 1.2. More particularly, A is strontium or barium or a combination thereof and B is niobium or tantalum or a combination thereof. Also provided is a method of making a perovskite-phase thin film, comprising combining at least one element-A-containing compound, wherein A is selected from beryllium, magnesium, calcium, strontium or barium, with at least one element-B-containing compound, wherein B niobium or tantalum, to form a solution; adding a solvent to said solution to form another solution; spin-coating the solution onto a substrate to form a thin film; and heating the film to form the perovskite-phase thin film.

Boyle, Timothy J. (Albuquerque, NM); Rodriguez, Mark A. (Albuquerque, NM)

2000-01-01T23:59:59.000Z

351

Growth of TiO{sub 2} Thin Film on Various Substrates using RF Magnetron Sputtering  

Science Conference Proceedings (OSTI)

The conductivity of Titanium Dioxide (TiO{sub 2}) thin film fabricated using Radio Frequency (RF) Magnetron Sputtering on Silicon (Si), Indium doped--Tin Oxide (ITO) and microscope glass (M) substrates is presented in this paper. The dependant of thin film thickness and type of substrate been discussed. TiO{sub 2} was deposited using Ti target in Ar+O{sub 2}(45:10) mixture at 250 W for 45, 60, 75, 90, 105 and 120 minute. Resultant thickness varies from 295 nm to 724 nm with deposition rate 6.4 nm/min. On the other hand, resistivity, Rs value for ITO substrate is between 5.72x10{sup -7} to 1.54x10{sup -6{Omega}}.m, Si substrate range is between 3.52x10{sup -6} to 1.76x10{sup -5{Omega}}.m and M substrate range is between 99 to 332 {Omega}.m. The value of resistivity increases with the thickness of the thin film.

Ali, Riyaz Ahmad Mohamed; Nayan, Nafarizal [Microelectronic and Nanotechnology-Shamsuddin Research Center (MiNT-SRC), Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia (UTHM), 86400 Batu Pahat, Johor D.T. (Malaysia)

2011-03-30T23:59:59.000Z

352

Experimental thin film deposition and surface analysis techniques  

DOE Green Energy (OSTI)

An attempt has been made to present some of the thin-film deposition and surface analysis techniques which may be useful in growing superionic conducting materials. Emphasis is made on the importance of being careful in selecting process parameters and materials in order to produce films with properties outlined in this article. Also, special care should be given to proper consideration of grain boundary effects.

Collins, W.E.; Rambabu, B.

1986-01-01T23:59:59.000Z

353

Method for producing high quality thin layer films on substrates  

DOE Patents (OSTI)

A method for producing high quality, thin layer films of inorganic compounds upon the surface of a substrate is disclosed. The method involves condensing a mixture of preselected molecular precursors on the surface of a substrate and subsequently inducing the formation of reactive species using high energy photon or charged particle irradiation. The reactive species react with one another to produce a film of the desired compound upon the surface of the substrate. 4 figures.

Strongin, M.; Ruckman, M.; Strongin, D.

1994-04-26T23:59:59.000Z

354

Method for producing high quality thin layer films on substrates  

DOE Patents (OSTI)

A method for producing high quality, thin layer films of inorganic compounds upon the surface of a substrate is disclosed. The method involves condensing a mixture of preselected molecular precursors on the surface of a substrate and subsequently inducing the formation of reactive species using high energy photon or charged particle irradiation. The reactive species react with one another to produce a film of the desired compound upon the surface of the substrate.

Strongin, Myron (Center Moriches, NY); Ruckman, Mark (Middle Island, NY); Strongin, Daniel (Port Jefferson, NY)

1994-01-01T23:59:59.000Z

355

Substrates suitable for deposition of superconducting thin films  

DOE Patents (OSTI)

A superconducting system for the lossless transmission of electrical current comprising a thin film of superconducting material Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.7-x epitaxially deposited upon a KTaO.sub.3 substrate. The KTaO.sub.3 is an improved substrate over those of the prior art since the it exhibits small lattice constant mismatch and does not chemically react with the superconducting film.

Feenstra, Roeland (Oak Ridge, TN); Boatner, Lynn A. (Oak Ridge, TN)

1993-01-01T23:59:59.000Z

356

Fabrication and testing of thermoelectric thin film devices  

DOE Green Energy (OSTI)

Two thin-film thermoelectric devices are experimentally demonstrated. The relevant thermal loads on the cold junction of these devices are determined. The analytical form of the equation that describes the thermal loading of the device enables one to model the performance based on the independently measured electronic properties of the films forming the devices. This model elucidates which parameters determine device performance, and how they can be used to maximize performance.

Wagner, A.V.; Foreman, R.J.; Summers, L.J.; Barbee, T.W. Jr.; Farmer, J.C. [Lawrence Livermore National Lab., CA (United States). Chemistry and Materials Science Dept.

1996-03-01T23:59:59.000Z

357

Initiated chemical vapor deposition of polymeric thin films : mechanism and applications  

E-Print Network (OSTI)

Initiated chemical vapor deposition (iCVD) is a novel technique for depositing polymeric thin films. It is able to deposit thin films of application-specific polymers in one step without using any solvents. Its uniqueness ...

Chan, Kelvin, Ph. D. Massachusetts Institute of Technology

2005-01-01T23:59:59.000Z

358

Characterization of LiNi?.?Mn?.?O? Thin Film Cathode Prepared by Pulsed Laser Deposition  

E-Print Network (OSTI)

LiNi?.?Mn?.?O? thin films have been grown by pulsed laser deposition (PLD) on stainless steel (SS) substrates. The crystallinity and structure of thin films were investigated by X-ray diffraction (XRD). Microstructure and ...

Xia, Hui

359

Orientation of MgO thin films on Si(001) prepared by pulsed laser deposition  

E-Print Network (OSTI)

Pulsed laser deposition method was employed to grow MgO thin films with preferred orientation on bare Si(100) and SiO?/Si(100) substrates. The orientation of MgO thin films was systematically investigated by varying ...

Zhu, Tie-Jun

360

The development of a thin-film rollforming process for pharmaceutical continuous manufacturing  

E-Print Network (OSTI)

In this thesis, a continuous rollforming process for the folding of thin-films was proposed and studied as a key step in the continuous manufacturing of pharmaceutical tablets. HPMC and PEG based polymeric thin-films were ...

Slaughter, Ryan (Ryan R.)

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thin film silicon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Thin-film multichip module packages for high-end IBM servers  

Science Conference Proceedings (OSTI)

A new generation of multilevel thin-film packages has been developed for IBM high-end S/390® and AS/400® systems. Thin-film structures in these packages are nonplanar and can be fabricated by either pattern electroplating ...

E. D. Perfecto; A. P. Giri; R. R. Shields; H. P. Longworth; J. R. Pennacchia; M. P. Jeanneret

1998-09-01T23:59:59.000Z

362

Junction Evolution During Fabrication of CdS/CdTe Thin-film PV Solar Cells (Presentation)  

DOE Green Energy (OSTI)

Discussion of the formation of CdTe thin-film PV junctions and optimization of CdTe thin-film PV solar cells.

Gessert, T. A.

2010-09-01T23:59:59.000Z

363

Development of Y-doped ZnO Thin Films via Novel Ink Jet Printing ...  

Science Conference Proceedings (OSTI)

Synthesis and Characterization of Plasma Polymerized Thin Films Deposited from Benzene and Hexamethyldisiloxane Using (PECVD) Method · Synthesis and ...

364

Some a priori estimates for a singular evolution equation arising in thin-film dynamics  

Science Conference Proceedings (OSTI)

Keywords: finite extinction time, global Harnack inequality, ill-posed problem, porous-medium equation, thin-film dynamics

Stephen H. Davis; Emmanuele DiBenedetto; David J. Diller

1996-05-01T23:59:59.000Z

365

Ultrashort pulse laser deposition of thin films  

DOE Patents (OSTI)

Short pulse PLD is a viable technique of producing high quality films with properties very close to that of crystalline diamond. The plasma generated using femtosecond lasers is composed of single atom ions with no clusters producing films with high Sp.sup.3 /Sp.sup.2 ratios. Using a high average power femtosecond laser system, the present invention dramatically increases deposition rates to up to 25 .mu.m/hr (which exceeds many CVD processes) while growing particulate-free films. In the present invention, deposition rates is a function of laser wavelength, laser fluence, laser spot size, and target/substrate separation. The relevant laser parameters are shown to ensure particulate-free growth, and characterizations of the films grown are made using several diagnostic techniques including electron energy loss spectroscopy (EELS) and Raman spectroscopy.

Perry, Michael D. (Livermore, CA); Banks, Paul S. (Livermore, CA); Stuart, Brent C. (Fremont, CA)

2002-01-01T23:59:59.000Z

366

Method for fabricating thin films of pyrolytic carbon  

DOE Patents (OSTI)

The present invention relates to a method for fabricating ultra-thin films of pyrolytic carbon. Pyrolytic carbon is vapor deposited onto a concave surface of a heated substrate to a total uniform thickness in the range of about 0.1 to 1.0 micrometer. The carbon film on the substrate is provided with a layer of adherent polymeric resin. The resulting composite film of pyrolytic carbon and polymeric resin is then easily separated from the substrate by shrinking the polymeric resin coating with thermally induced forces.

Brassell, Gilbert W. (Lenoir City, TN); Lewis, Jr., John (Oak Ridge, TN); Weber, Gary W. (Amherst, NY)

1982-01-01T23:59:59.000Z

367

Boron arsenide thin film solar cell development. Final report  

DOE Green Energy (OSTI)

Pyrolytic decomposition of diborane and arsine has been used in attempts to grow polycrystalline BAs films. This method, however, produced only amorphous films for deposition temperatures below 920/sup 0/C and polycrystalline boron subarsenide (B/sub 12/As/sub 2/) flms for deposition temperatures above this value. The amorphous films have been determined to have a significant arsenic content but the actual stoichiometry was not obtained. The films were adherent on single crystal sapphire (0001), (111) silicon, (0001) SiC, and polycrystalline SiC but were found not to be adherent to substrates of fused quartz, tungsten, and molybdenum. It was also found that all films deposited above 650/sup 0/C were p-type while those deposited below 600/sup 0/C were usually n-type. Polycrystalline BAs and B/sub 12/As/sub 2/ was produced by reaction of the elements in a closed tube. The amorphous films showed an indirect or non-direct optical bandgap from 1.0 to 1.7 eV with the most probable values between 1.2 to 1.4 eV. The crystalline BAs powder shows a bandgap near 1.0 eV. Photoconductance time constants have been measured for films deposited on (0001) sapphire and (0001) SiC. Attempts at doping the amorphous films were generally unsuccessful. A polycrystalline powder sample was successfully doped with sulfur. Attempts were made to produce a Schottky barrier diode by evaporating Al dots onto an amorphous film on graphite without a post-evaporation anneal. An MIS structure was also attempted by baking an amorphous film in air at 280/sup 0/C before evaporation of aluminum. Although nonlinear characteristics were obtained, none of the devices showed any photovoltaic response. A p-type amorphous film was deposited on an n-type silicon substrate to form a p-n heterojunction. This device did exhibit a photovoltaic response but it is believed that the photogeneration was occurring primarily in the silicon substrate.

Boone, J.L.; Van Doren, T.P.

1980-09-01T23:59:59.000Z

368

Time-Resolved Magnetic Flux and AC-Current Distributions in Superconducting YBCO Thin Films and  

E-Print Network (OSTI)

Time-Resolved Magnetic Flux and AC-Current Distributions in Superconducting YBCO Thin Films magnetic field. We study the interaction behavior of YBCO thin films in an ac transport current and a dc the calibrated field profiles. The current density evolution in YBCO thin films is studied by TRMOI as a function

Lewis, Robert Michael

369

Design and fabrication of photonic crystal thin film photovoltaic cells Guillaume Gomarda,b  

E-Print Network (OSTI)

Design and fabrication of photonic crystal thin film photovoltaic cells Guillaume Gomarda,b , Ounsi of an absorbing planar photonic crystal within a thin film photovoltaic cell. The devices are based on a stack with large areas. Keywords: Photonic crystal, Photovoltaic solar cell, Thin film solar cell, Hydrogenated

Paris-Sud XI, Université de

370

Microwave plasma assisted supersonic gas jet deposition of thin film materials  

DOE Patents (OSTI)

An apparatus for fabricating thin film materials utilizing high speed gas dynamics relies on supersonic free jets of carrier gas to transport depositing vapor species generated in a microwave discharge to the surface of a prepared substrate where the vapor deposits to form a thin film. The present invention generates high rates of deposition and thin films of unforeseen high quality at low temperatures.

Schmitt, III, Jerome J. (New Haven, CT); Halpern, Bret L. (Bethany, CT)

1993-01-01T23:59:59.000Z

371

Identification, Characterization, and Implications of Shadow Degradation in Thin Film Solar Cells  

E-Print Network (OSTI)

that the SD is a generic reliability concern for all thin film PV technologies, however, in this paper we, USA Abstract-- We describe a comprehensive study of intrinsic reliability issue arising from partial reliability concern for thin film solar cell. Keywords ­ Thin film solar cells, voltage stress, performance

Alam, Muhammad A.

372

Schottky barrier amorphous silicon solar cell with thin doped region adjacent metal Schottky barrier  

DOE Patents (OSTI)

A Schottky barrier amorphous silicon solar cell incorporating a thin highly doped p-type region of hydrogenated amorphous silicon disposed between a Schottky barrier high work function metal and the intrinsic region of hydrogenated amorphous silicon wherein said high work function metal and said thin highly doped p-type region forms a surface barrier junction with the intrinsic amorphous silicon layer. The thickness and concentration of p-type dopants in said p-type region are selected so that said p-type region is fully ionized by the Schottky barrier high work function metal. The thin highly doped p-type region has been found to increase the open circuit voltage and current of the photovoltaic device.

Carlson, David E. (Yardley, PA); Wronski, Christopher R. (Princeton, NJ)

1979-01-01T23:59:59.000Z

373

Electrical and optical properties of Ta-Si-N thin films deposited by reactive magnetron sputtering  

SciTech Connect

The electrical and optical properties of Ta{sub x}Si{sub y}N{sub z} thin films deposited by reactive magnetron sputtering from individual Ta and Si targets were studied in order to investigate the effects of nitrogen and silicon contents on both properties and their correlation to the film microstructure. Three sets of fcc-Ta{sub x}Si{sub y}N{sub z} thin films were prepared: sub-stoichiometric Ta{sub x}Si{sub y}N{sub 0.44}, nearly stoichiometric Ta{sub x}Si{sub y}N{sub 0.5}, and over-stoichiometric Ta{sub x}Si{sub y}N{sub 0.56}. The optical properties were investigated by near-normal-incidence reflectivity and ellipsometric measurements in the optical energy range from 0.375 eV to 6.8 eV, while the d.c. electrical resistivity was measured in the van der Pauw configuration from 20 K to 300 K. The optical and electrical measurements were interpreted using the standard Drude-Lorentz model and the so-called grain boundary scattering model, respectively. The electronic properties were closely correlated with the compositional and structural modifications of the Ta{sub x}Si{sub y}N{sub z} films due to variations in the stoichiometry of the fcc-TaN{sub z} system and the addition of Si atoms. According to the nitrogen and silicon contents, fcc-Ta{sub x}Si{sub y}N{sub z} films can exhibit room temperature resistivity values ranging from 10{sup 2} {mu}{Omega} cm to about 6 Multiplication-Sign 10{sup 4} {mu}{Omega} cm. The interpretation of the experimental temperature-dependent resistivity data within the Grain Boundary Scattering model, combined with the results from optical investigations, showed that the mean electron transmission probability G and the free carriers concentration, N, are the main parameters that control the transport properties of these films. The results indicated that the correlation between electrical and optical measurements with the chemical composition and the nanostructure of the Ta{sub x}Si{sub y}N{sub z} thin films provides a pertinent and consistent description of the evolution of the Ta-Si-N system from a solid solution to a nanocomposite material due to the addition of Si atoms.

Oezer, D.; Sanjines, R. [Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Condensed Matter Physics (ICMP), CH-1015 Lausanne (Switzerland); Ramirez, G.; Rodil, S. E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior s/n, CU, Mexico D.F. 04510 (Mexico)

2012-12-01T23:59:59.000Z

374

Thin Films and the Systems-Driven Approach  

DOE Green Energy (OSTI)

A systems-driven approach is used to discern tradeoffs between cost and efficiency improvements for various thin-film module technologies and designs. Prospects for reduced system cost via such strategies are enhanced as balance-of-systems costs decline, and some strategies are identified for greater research focus.

Zweibel, K.

2005-01-01T23:59:59.000Z

375

Method for double-sided processing of thin film transistors  

DOE Patents (OSTI)

This invention provides methods for fabricating thin film electronic devices with both front- and backside processing capabilities. Using these methods, high temperature processing steps may be carried out during both frontside and backside processing. The methods are well-suited for fabricating back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.

Yuan, Hao-Chih (Madison, WI); Wang, Guogong (Madison, WI); Eriksson, Mark A. (Madison, WI); Evans, Paul G. (Madison, WI); Lagally, Max G. (Madison, WI); Ma, Zhenqiang (Middleton, WI)

2008-04-08T23:59:59.000Z

376

Front and backside processed thin film electronic devices  

DOE Patents (OSTI)

This invention provides methods for fabricating thin film electronic devices with both front- and backside processing capabilities. Using these methods, high temperature processing steps may be carried out during both frontside and backside processing. The methods are well-suited for fabricating back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.

Yuan, Hao-Chih (Madison, WI); Wang, Guogong (Madison, WI); Eriksson, Mark A. (Madison, WI); Evans, Paul G. (Madison, WI); Lagally, Max G. (Madison, WI); Ma, Zhenqiang (Middleton, WI)

2010-10-12T23:59:59.000Z

377

Method of preparing thin film polymeric gel electrolytes  

DOE Patents (OSTI)

Novel hybrid thin film electrolyte, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities .apprxeq.10.sup.-3 .OMEGA..sup.-1 cm.sup.-1 are useful as electrolytes for rechargeable lithium batteries.

Derzon, Dora K. (Albuquerque, NM); Arnold, Jr., Charles (Albuquerque, NM)

1997-01-01T23:59:59.000Z

378

Avalanches through windows: Multiscale visualization in magnetic thin films  

E-Print Network (OSTI)

Avalanches through windows: Multiscale visualization in magnetic thin films Alessandro Magni dynamics, but are strongly dependent on the size of the windows chosen. Here we investigate how to properly sub-window of the entire sample. Usually, windows of varying sizes are used, and the distributions

Sethna, James P.

379

Electroplating of Cu(Ag) thin films for interconnect applications  

Science Conference Proceedings (OSTI)

Electromigration effects in interconnect metallizations cause a need for materials with superior resistance against electromigration failure but with adequate electrical properties. In principle, Cu(Ag) alloys are potential candidates to become an interconnect ... Keywords: Copper-silver alloy thin film, Electrochemical deposition, Interconnect material

S. Strehle; S. Menzel; J. W. Bartha; K. Wetzig

2010-02-01T23:59:59.000Z

380

Radiation tolerance of ultra-thin Formvar films  

Science Conference Proceedings (OSTI)

Mechanical behavior of free-standing polymer films with submicron thicknesses exposed to a radiation environment is poorly understood. Here, we study 110-nm-thin free-standing polyvinyl formal (Formvar) films irradiated at room temperature with 1-5 keV electrons or 3 MeV alpha particles. We measure mechanical properties and the elemental composition by spherical indentation and high-energy ion scattering, respectively. Results show that, with increasing radiation dose, the effective failure strain and film thickness decrease monotonically, while the dose dependence of the Young's modulus is non-monotonic. The failure strain and modulus scale with the average energy deposited in the film, while the film thickness exhibits a more complex behavior.

Stadermann, M.; Kucheyev, S. O.; Lewicki, J.; Letts, S. A. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

2012-08-13T23:59:59.000Z

Note: This page contains sample records for the topic "thin film silicon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Tandem photonic-crystal thin films surpassing Lambertian light-trapping limit over broad bandwidth and angular range  

E-Print Network (OSTI)

The maximum absorption of solar radiation over the broadest range of frequencies and incident angles using the thinnest material possible has important applications for renewable-energy generation. Complete random texturing of an optically-thick film's surface to increase the path length of scattered light rays, first proposed nearly thirty years ago, has thus far remained the most effective approach for photon absorption over the widest set of conditions. Recent thin-film nanostructured designs involving resonant wave effects of photons have explored the possibility of superior performance though as of yet no proposal satisfying the dual requirements of enhanced and robust absorption over a large fraction of the solar spectrum has been made. Here using recent advances in computational electrodynamics we describe a general strategy for the design of a silicon thin film applicable to photovoltaic cells based on a quasi-resonant approach to light trapping where two partially-disordered photonic-crystal slabs, s...

Oskooi, Ardavan; Noda, Susumu

2013-01-01T23:59:59.000Z

382

Method for rapid, controllable growth and thickness, of epitaxial silicon films  

DOE Patents (OSTI)

A method of producing epitaxial silicon films on a c-Si wafer substrate using hot wire chemical vapor deposition by controlling the rate of silicon deposition in a temperature range that spans the transition from a monohydride to a hydrogen free silicon surface in a vacuum, to obtain phase-pure epitaxial silicon film of increased thickness is disclosed. The method includes placing a c-Si substrate in a HWCVD reactor chamber. The method also includes supplying a gas containing silicon at a sufficient rate into the reaction chamber to interact with the substrate to deposit a layer containing silicon thereon at a predefined growth rate to obtain phase-pure epitaxial silicon film of increased thickness.

Wang, Qi (Littleton, CO); Stradins, Paul (Golden, CO); Teplin, Charles (Boulder, CO); Branz, Howard M. (Boulder, CO)

2009-10-13T23:59:59.000Z

383

Characterization of Thin Films by XAFS: Application to Spintronics Materials  

SciTech Connect

X-ray absorption fine structure (XAFS) has proven very valuable in characterizing thin films. This is illustrated with some examples from the area of diluted magnetic semiconductor (DMS) materials for spintronics applications. A promising route to DMS materials is doping of oxides such as TiO2 and ZnO with magnetic atoms such as Co. These can be grown as epitaxial thin films on various substrates. XAFS is especially valuable for characterizing the dopant atoms. The near edge region is sensitive to the symmetry of the bonding and valence of the dopants, and the extended XAFS can determine the details of the lattice site. XAFS is also valuable for detecting metallic nanoparticles. These can be difficult to detect by other methods, and can give a spurious magnetic signal. The power of XAFS is illustrated by examples from studies on Co doped ZnO films.

Heald, Steve M.; Kaspar, Tiffany C.; Droubay, Timothy; Chambers, Scott A.

2009-10-25T23:59:59.000Z

384

Miniature supercapacitors based on nanocomposite thin films  

Science Conference Proceedings (OSTI)

This paper reports on the development of a miniature supercapacitor for portable applications such as mobile and wearable energy storage. In a primary embodiment, the developed supercapacitor consists of two flexible electrodes fabricated on thin metal ... Keywords: Carbon nanotubes, Energy storage, Nanocomposite, Supercapacitor

L. Jiang, M. Vangari, T. Pryor, Z. Xiao, N. S. Korivi

2013-11-01T23:59:59.000Z

385

Symposium G: Thin Films and Surface Engineering  

Science Conference Proceedings (OSTI)

Aug 3, 2010 ... The incidence of infections caused by the use of bacterial colonized stainless steel has led ... Excellent antibacterial activities (>99%) against both Gram- negative ... that the films could be used as a active layer for switchable mirror. .... beam vapor deposition system (HCEBVD) under various Ar/N2 flow ratio.

386

Method for forming metallic silicide films on silicon substrates by ion beam deposition  

DOE Patents (OSTI)

Metallic silicide films are formed on silicon substrates by contacting the substrates with a low-energy ion beam of metal ions while moderately heating the substrate. The heating of the substrate provides for the diffusion of silicon atoms through the film as it is being formed to the surface of the film for interaction with the metal ions as they contact the diffused silicon. The metallic silicide films provided by the present invention are contaminant free, of uniform stoichiometry, large grain size, and exhibit low resistivity values which are of particular usefulness for integrated circuit production.

Zuhr, R.A.; Holland, O.W.

1989-01-24T23:59:59.000Z

387

Thin-film metal coated insulation barrier in a Josephson tunnel junction. [Patent application  

DOE Patents (OSTI)

A highly stable, durable, and reproducible Josephson tunnel junction consists of a thin-film electrode of a hard superconductor, a thin oxide insulation layer over the electrode constituting a Josephson tunnel junction barrier, a thin-film layer of stabilizing metal over the barrier, and a second thin-film hard superconductive electrode over the stabilizing film. The thin stabilizing metal film is made only thick enough to limit penetration of the electrode material through the insulation layer so as to prevent a superconductive short.

Hawkins, G.A.; Clarke, J.

1975-10-31T23:59:59.000Z

388

Synthesis, structural and electrochemical properties of electron beam evaporated V{sub 2}O{sub 5} thin films  

Science Conference Proceedings (OSTI)

Vanadium pentoxide is one of the most promising cathode materials because it offers high energy density, low cost, low toxicity over the other cathode materials. Its layered and open structure makes this material in thin film form well suited for electro-chemical insertion reactions with the Li ions. In the present investigation, V{sub 2}O{sub 5} thin films have been prepared by electron beam evaporation technique on gold coated silicon substrates maintained at a substrate temperature of 250 Degree-Sign C in an oxygen partial pressure of 2 Multiplication-Sign 10{sup -4} mbar. The XRD patterns exhibited three predominant diffraction peaks corresponding to (200) (001) and (400) planes of orthorhombic phase of V{sub 2}O{sub 5} with P{sub mnm} space group. The electrochemical characteristics of V{sub 2}O{sub 5} thin films with thickness of 600 nm were examined in non-aqueous region. The film exhibited step wise discharge with two plateaus. The as-deposited film delivered a discharge capacity of 70 {mu}Ah/(cm{sup 2}-{mu}m) at a current density of 30 {mu}A/cm{sup 2}. Annealing of these films at 450 Degree-Sign C exhibited a better discharge capacity of 90 {mu}Ah/(cm{sup 2}-{mu}m).

Hussain, O. M.; Rosaiah, P. [Thin Film Laboratory, Department of Physics, Sri Venkateswara University, Tirupati-517 502 (India)

2012-06-25T23:59:59.000Z

389

Properties of double-layered Ga-doped Al-zinc-oxide/titanium-doped indium-tin-oxide thin films prepared by dc magnetron sputtering applied for Si-based thin film solar cells  

Science Conference Proceedings (OSTI)

In this article, Ga-doped Al-zinc-oxide (GAZO)/titanium-doped indium-tin-oxide (ITIO) bi-layer films were deposited onto glass substrates by direct current (dc) magnetron sputtering. The bottom ITIO film, with a thickness of 200 nm, was sputtered onto the glass substrate. The ITIO film was post-annealed at 350 deg. C for 10-120 min as a seed layer. The effect of post-annealing conditions on the morphologies, electrical, and optical properties of ITIO films was investigated. A GAZO layer with a thickness of 1200 nm was continuously sputtered onto the ITIO bottom layer. The results show that the properties of the GAZO/ITIO films were strongly dependent on the post-annealed conditions. The spectral haze (T{sub diffuse}/T{sub total}) of the GAZO/ITIO bi-layer films increases upon increasing the post-annealing time. The haze and resistivity of the GAZO/ITIO bi-layer films were improved with the post-annealed process. After optimizing the deposition and annealing parameters, the GAZO/ITIO bi-layer film has an average transmittance of 83.20% at the 400-800 nm wavelengths, a maximum haze of 16%, and the lowest resistivity of 1.04 x 10{sup -3}{Omega} cm. Finally, the GAZO/ITIO bi-layer films, as a front electrode for silicon-based thin film solar cells, obtained a maximum efficiency of 7.10%. These encouraging experimental results have potential applications in GAZO/ITIO bi-layer film deposition by in-line sputtering without the wet-etching process and enable the production of highly efficient, low-cost thin film solar cells.

Wang, Chao-Chun; Wuu, Dong-Sing; Lin, Yang-Shih; Lien, Shui-Yang; Huang, Yung-Chuan; Liu, Chueh-Yang; Chen, Chia-Fu; Nautiyal, Asheesh; Lee, Shuo-Jen [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Department of Materials Science and Engineering, MingDao University, Changhua 52345, Taiwan (China); Department of Mechanical Engineering, Yuan Ze University, Taoyuan 320, Taiwan (China)

2011-11-15T23:59:59.000Z

390

Development of recrystallization and thin-film solar cell processes. Final report, October 1, 1977-September 30, 1978  

DOE Green Energy (OSTI)

The program had two thrusts: (1) based upon electron-beam thermal treatment of deposited silicon films, to increase crystallite sizes to the range thought to be useful for polycrystalline, thin-film cell fabrication; and (2) to explore the feasibility of applying the directed-energy technologies of ion implantation and pulsed electron beam activation, previously developed for silicon cell fabrication, to junction formation in III-V compounds. The culmination of the recrystallization effort was demonstrating grains broader than the 30-..mu..m film in which they were regrown. This proof of principle was accomplished by means of two-step thermal process that consisted of large-area pulsed electron beam melting followed by small-area heating in a moving DC electron beam. The pulsed beam treatment reduced the three-dimensional disorder of the initial submicrometer crystallite silicon film to one characterized by submicrometercross-section, full-film-thickness, columnar crystallites. The swept beam treatment allowed coalesence of these columnar crystallites, through directional freezing, in the melt path of the beam. It is believed that this demonstration is the first evidence of greater-than-film thickness recrystallization of useful thickness silicon films other than by extended heat treatment at greater than 1350/sup 0/C. The results of the studies on junction formation in III-V materials, while not so dramatic, have shown that low-energy ion implantation is a potentially viable alternative to liquid or vapor phase epitaxy in the fabrication of GaAs solar cells. Further, the technical feasibility of pulsed electron beam activation of ion implanted junctions in GaAs has been demonstrated. Lastly, the concept of forming front-layer windows of GaP and AlGaAs on GaAs by high-dose ion implantation has been shown to be technically feasible.

Solomon, S.J.

1979-05-01T23:59:59.000Z

391

Institute of Photo Electronic Thin Film Devices and Technology of Nankai  

Open Energy Info (EERE)

Electronic Thin Film Devices and Technology of Nankai Electronic Thin Film Devices and Technology of Nankai University Jump to: navigation, search Name Institute of Photo-Electronic Thin Film Devices and Technology of Nankai University Place Tianjin Municipality, China Zip 300071 Sector Solar Product A thin-film solar cell research institute in China. References Institute of Photo-Electronic Thin Film Devices and Technology of Nankai University[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Institute of Photo-Electronic Thin Film Devices and Technology of Nankai University is a company located in Tianjin Municipality, China . References ↑ "Institute of Photo-Electronic Thin Film Devices and Technology of Nankai University"

392

High quality transparent conducting oxide thin films  

Science Conference Proceedings (OSTI)

A transparent conducting oxide (TCO) film comprising: a TCO layer, and dopants selected from the elements consisting of Vanadium, Molybdenum, Tantalum, Niobium, Antimony, Titanium, Zirconium, and Hafnium, wherein the elements are n-type dopants; and wherein the transparent conducting oxide is characterized by an improved electron mobility of about 42 cm.sup.2/V-sec while simultaneously maintaining a high carrier density of .about.4.4e.times.10.sup.20 cm.sup.-3.

Gessert, Timothy A. (Conifer, CO); Duenow, Joel N. (Golden, CO); Barnes, Teresa (Evergreen, CO); Coutts, Timothy J. (Golden, CO)

2012-08-28T23:59:59.000Z

393

Method for bonding thin film thermocouples to ceramics  

DOE Patents (OSTI)

A method is provided for adhering a thin film metal thermocouple to a ceramic substrate used in an environment up to 700 degrees Centigrade, such as at a cylinder of an internal combustion engine. The method includes the steps of: depositing a thin layer of a reactive metal on a clean ceramic substrate; and depositing thin layers of platinum and a platinum-10% rhodium alloy forming the respective legs of the thermocouple on the reactive metal layer. The reactive metal layer serves as a bond coat between the thin noble metal thermocouple layers and the ceramic substrate. The thin layers of noble metal are in the range of 1-4 micrometers thick. Preferably, the ceramic substrate is selected from the group consisting of alumina and partially stabilized zirconia. Preferably, the thin layer of reactive metal is in the range of 0.015-0.030 micrometers (15-30 nanometers) thick. The preferred reactive metal is chromium. Other reactive metals may be titanium or zirconium. The thin layer of reactive metal may be deposited by sputtering in ultra high purity argon in a vacuum of approximately 2 milliTorr (0.3 Pascals).

Kreider, Kenneth G. (Potomac, MD)

1993-01-01T23:59:59.000Z

394

Thin film transistors and solar cells. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search  

Science Conference Proceedings (OSTI)

The bibliography contains citations of selected patents concerning the fabrication and application methods of thin film transistors and thin film solar cells. Methods of manufacturing thin film transistors for use in electronic display devices are presented. Techniques for continuously producing durable and reliable thin film solar cells are discussed. (Contains 250 citations and includes a subject term index and title list.)

NONE

1995-01-01T23:59:59.000Z

395

Thin film transistors and solar cells. (Latest citations from the US Patent Bibliographic File with Exemplary Claims). Published Search  

SciTech Connect

The bibliography contains citations of selected patents concerning the fabrication and application methods of thin film transistors and thin film solar cells. Methods of manufacturing thin film transistors for use in electronic display devices are presented. Techniques for continuously producing durable and reliable thin film solar cells are discussed. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1993-11-01T23:59:59.000Z

396

Ruthenium-Platinum Thin Film Analysis Using Grazing Incidence X-ray Diffraction  

DOE Green Energy (OSTI)

Ruthenium (Ru, Z = 44) is a Platinum Group Metal that has a standard hexagonal close packed (HCP) crystalline structure. Platinum (Pt, Z = 78) has a face-centered cubic (FCC) crystalline structure. When these metals are co-sputtered onto a silicon substrate, creating a few nm-thin film, they form an alloy with a combination of HCP and FCC structure. Direct methanol fuel cells rely on an anode catalyst to draw hydrogen from liquid methanol. Highly efficient fuel cells based on polymer electrolyte catalysts, known as proton-exchange membrane fuel cells, have been developed, but require large amounts of a costly platinum catalyst. Thin-film nanostructure bimetallic alloys have been produced to reduce the amount of expensive Platinum needed for catalysis, and also to improve the electrochemical properties of the catalyst. Supported RuPt particles have been shown to have superior activity as anode catalysts for methanol electro-oxidation and demonstrate an improvement in resistance to poisoning in comparison to unalloyed Pt. The percentage of Ruthenium in a RuPt thin film and the process by which the alloy is produced will dictate the crystalline structure, and thus the electrochemical properties of the film. Pure Ruthenium, Pure Platinum, and eight intermediate samples at differing percent composition of Ruthenium were characterized by their X-ray diffraction patterns. The incident beam is from the Stanford Synchrotron Radiation Laboratory beam and operates at approximately a 1.4 Angstrom wavelength. The results show that 0% Ru through 46.17% Ru exhibit a majority FCC structure, 56.07% Ru and 60.61% Ru are mixed phase, and from 67.03% Ru through 100% Ru, the samples exhibit a HCP structure.

Jones, L.

2004-09-03T23:59:59.000Z

397

PowerFilm Solar Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Place Boone, Iowa Zip 50036 7538 Product Developer of a method for manufacturing thin-film amorphous silicon modules, from silane gas and plastic substrate, using a...

398

Processing and Gas Barrier Behavior of Multilayer Thin Nanocomposite Films  

E-Print Network (OSTI)

Thin films with the ability to impart oxygen and other types of gas barrier are crucial to commercial packaging applications. Commodity polymers, such as polyethylene (PE), polycarbonate (PC) and polyethylene terephthalate (PET), have insufficient barrier for goods requiring long shelf life. Current gas barrier technologies like plasma-enhanced vapor deposition (PECVD) often create high barrier metal oxide films, which are prone to cracking when flexed. Bulk composites composed of polymer and impermeable nanoparticles show improved barrier, but particle aggregation limits their practical utility for applications requiring high barrier and transparency. Layer-by-layer (LbL) assemblies allow polymers and nanoparticles to be mixed with high particle loadings, creating super gas barrier thin films on substrates normally exhibiting high gas permeability. Branched polyethylenimine (PEI) and poly (acrylic acid) (PAA) were deposited using LbL to create gas barrier films with varying pH combinations. Film thickness and mass fraction of each component was controlled by their combined charge. With lower charge density (PEI at pH 10 and PAA at pH 4), PEI/PAA assemblies exhibit the best oxygen barrier relative to other pH combinations. An 8 BL PEI/PAA film, with a thickness of 451 nm, has an oxygen permeability lower than 4.8 x 10^-21 cm^3 * cm/cm^2 * s * Pa, which is comparable to a 100 nm SiOx nanocoating. Crosslinking these films with glutaraldehyde (GA), 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide methiodide (EDC) or heating forms covalent bonds between PEI and/or PAA. Oxygen transmission rates (OTR) of 8 BL films crosslinked with 0.1M GA or 0.01M EDC show the best oxygen barrier at 100% RH. Graphene oxide (GO) sheets and PEI were deposited via LbL with varying GO concentration. The resulting thin films have an average bilayer thickness from 4.3 to 5.0 nm and a GO mass fraction from 88 to 91wt%. Transmission electron microscopy and atomic force microscopy images reveal a highly-oriented nanobrick wall structure. A 10 BL PEI/GO film that is 91 nm thick, made with a 0.2 wt% GO suspension, exhibits an oxygen permeability of 2.5 x 10^-20 cm^3 * cm/cm^2 * s * Pa. Finally, the influence of deposition time on thin film assembly was examined by depositing montmorillonite (MMT) or laponite (LAP) clays paired with PEI. Film growth and microstructure suggests that smaller aspect ratio LAP clay is more dip-time dependent than MMT and larger aspect ratio MMT has better oxygen barrier. A 30 BL PEI/MMT film made with 10 second dips in PEI has the same undetectable OTR as a film with 5 minute dips (with dips in MMT held at 5 minutes in both cases), indicating LbL gas barrier can be made more quickly than initially thought. These high barrier recipes, with simple and efficient processing conditions, are good candidates for a variety of packaging applications.

Yang, You-Hao

2012-08-01T23:59:59.000Z

399

Organic thin film prehistory: looking towards solution phase aggregation |  

NLE Websites -- All DOE Office Websites (Extended Search)

Organic thin film prehistory: looking towards solution phase aggregation Organic thin film prehistory: looking towards solution phase aggregation Wednesday, November 6, 2013 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Christopher Tassone, SSRL Polymer bulk heterojunction (BHJ) solar cells have attracted significant attention in industry and academia because of their potential for achieving large-area, light-weight, and flexible photovoltaic devices through cost-effective solution deposition techniques. These devices consist of a blend of an absorbing polymer and an electron accepting fullerene, the molecular packing and phase segregation of which heavily influence power conversion efficiency by effecting important processes such as exciton splitting, charge transport, and recombination. Understanding and utilization of molecular interactions to predicatively control the

400

Engineering Thin-Film Oxide Interfaces | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Novel Materials Become Multifunctional at the Ultimate Quantum Limit Novel Materials Become Multifunctional at the Ultimate Quantum Limit Outsmarting Flu Viruses How Lead-Free Solder (Mis)Behaves under Stress Dynamics of Polymer Chains Atop Different Materials Priming the Pump in the Fight against Drug-Resistant Tuberculosis Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed Engineering Thin-Film Oxide Interfaces NOVEMBER 12, 2012 Bookmark and Share LAO thin films on STO substrates are depicted in the top schematics (LAO indicated by blue spheres, STO by green spheres). The top left-hand panel demonstrates a chemically broad interface resulting from conventional growth in a low pressure oxygen environment. In contrast, the top

Note: This page contains sample records for the topic "thin film silicon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Status of High Performance PV: Polycrystalline Thin-Film Tandems  

DOE Green Energy (OSTI)

The High-Performance Photovoltaic (HiPerf PV) Project was initiated by the U.S. Department of Energy to substantially increase the viability of photovoltaics (PV) for cost-competitive applications so that PV can contribute significantly to our energy supply and our environment. The HiPerf PV Project aims at exploring the ultimate performance limits of existing PV technologies, approximately doubling their sunlight-to-electricity conversion efficiencies during its course. This work includes bringing thin-film cells and modules toward 25% and 20% efficiencies, respectively, and developing multijunction concentrator cells and modules able to convert more than one-third of the sun's energy to electricity (i.e., 33% efficiency). This paper will address recent accomplishments of the NREL in-house research effort involving polycrystalline thin-film tandems, as well as the research efforts under way in the subcontracted area.

Symko-Davies, M.

2005-02-01T23:59:59.000Z

402

Thin film battery and method for making same  

DOE Patents (OSTI)

Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode. Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between [minus]15 C and 150 C. 9 figs.

Bates, J.B.; Dudney, N.J.; Gruzalski, G.R.; Luck, C.F.

1994-08-16T23:59:59.000Z

403

Thin film battery and method for making same  

SciTech Connect

Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between -15.degree. C. and 150.degree. C.

Bates, John B. (Oak Ridge, TN); Dudney, Nancy J. (Knoxville, TN); Gruzalski, Greg R. (Oak Ridge, TN); Luck, Christopher F. (Knoxville, TN)

1994-01-01T23:59:59.000Z

404

Polycrystalline thin-film module and system performance  

DOE Green Energy (OSTI)

The Module and System Performance and Engineering Project at the National Renewable Energy Laboratory (NREL) conducts in-situ technical evaluations of photovoltaic (PV) modules and systems (arrays). These evaluations on module/array performance and stability are conducted at the NREL Photovoltaic Outdoor Test Facility (OTF) in Golden, CO. The modules and arrays are located at 39.7{degree}N latitude, 105.2{degree}W longitude, and at 1,782 meters elevation. Currently, two polycrystalline thin-film technologies are the focus of the research presented here. The module structures are copper indium diselenide (CIS) from Siemens Solar Industries and cadmium telluride (CdTe) from Solar Cells, Inc. The research team is attempting to correlate individual module performance with array performance for these two polycrystalline thin-film technologies. This is done by looking at module and array performance over time. Also, temperature coefficients are determined at both the module and array level. Results are discussed.

Strand, T.; Kroposki, B.; Hansen, R.; Mrig, L.

1995-11-01T23:59:59.000Z

405

Epitaxial growth of Dy2O3 thin films on epitaxial Dy-germanide films on Ge(001) substrates  

Science Conference Proceedings (OSTI)

Ultra-thin films of Dy are grown on Ge(001) substrates by molecular beam deposition near room temperature and immediately annealed for solid phase epitaxy at higher temperatures, leading to the formation of DyGe"x films. Thin films of Dy"2O"3 are grown ... Keywords: Dy2O3 film, Ge(001) substrate, High-? oxide, Molecular beam epitaxy (MBE), Structural characterization, Transmission electron microscopy (TEM)

Md. Nurul Kabir Bhuiyan; Mariela Menghini; Jin Won Seo; Jean-Pierre Locquet

2011-04-01T23:59:59.000Z

406

Square wells, quantum wells and ultra-thin metallic films  

E-Print Network (OSTI)

The eigenvalue equations for the energy of bound states of a particle in a square well are solved, and the exact solutions are obtained, as power series. Accurate analytical approximate solutions are also given. The application of these results in the physics of quantum wells are discussed,especially for ultra-thin metallic films, but also in the case of resonant cavities, heterojunction lasers, revivals and super-revivals.

Victor Barsan

2013-07-09T23:59:59.000Z

407

Synthesis of thin films and materials utilizing a gaseous catalyst  

Science Conference Proceedings (OSTI)

A method for the fabrication of nanostructured semiconducting, photoconductive, photovoltaic, optoelectronic and electrical battery thin films and materials at low temperature, with no molecular template and no organic contaminants. High-quality metal oxide semiconductor, photovoltaic and optoelectronic materials can be fabricated with nanometer-scale dimensions and high dopant densities through the use of low-temperature biologically inspired synthesis routes, without the use of any biological or biochemical templates.

Morse, Daniel E; Schwenzer, Birgit; Gomm, John R; Roth, Kristian M; Heiken, Brandon; Brutchey, Richard

2013-10-29T23:59:59.000Z

408

Method for making dense crack free thin films  

DOE Patents (OSTI)

The process described herein provides a simple and cost effective method for making crack free, high density thin ceramic film. The steps involve depositing a layer of a ceramic material on a porous or dense substrate. The deposited layer is compacted and then the resultant laminate is sintered to achieve a higher density than would have been possible without the pre-firing compaction step.

Jacobson, Craig P. (Lafayette, CA); Visco, Steven J. (Berkeley, CA); De Jonghe, Lutgard C. (Lafayette, CA)

2007-01-16T23:59:59.000Z

409

Preparation of redox polymer cathodes for thin film rechargeable batteries  

DOE Patents (OSTI)

The present invention relates to the manufacture of thin film solid state electrochemical devices using composite cathodes comprising a redox polymer capable of undergoing oxidation and reduction, a polymer solid electrolyte and conducting carbon. The polymeric cathode material is formed as a composite of radiation crosslinked polymer electrolytes and radiation crosslinked redox polymers based on polysiloxane backbones with attached organosulfur side groups capable of forming sulfur-sulfur bonds during electrochemical oxidation.

Skotheim, T.A.; Lee, H.S.; Okamoto, Yoshiyuki.

1994-11-08T23:59:59.000Z

410

Growth and Characterization of Epitaxial Oxide Thin Films  

E-Print Network (OSTI)

of these morphological changes was found to be dependent on a number of factors including deposition rates, flux and energy of bombarding ions, and the average angle of incidence of Glow Discharge Glow Discharge -V (DC) Cathode (Target) Insulation Substrates Anode Vacuum... techniques such as reflected high energy electron diffraction (RHEED) and low energy electron diffraction (LEED) can give valuable information about the initial growth mechanisms and surface structure of the very thin films during growth in an in-situ manner...

Garg, Ashish

411

Optical sensors and multisensor arrays containing thin film electroluminescent devices  

DOE Patents (OSTI)

Optical sensor, probe and array devices for detecting chemical biological, and physical analytes. The devices include an analyte-sensitive layer optically coupled to a thin film electroluminescent layer which activates the analyte-sensitive layer to provide an optical response. The optical response varies depending upon the presence of an analyte and is detected by a photodetector and analyzed to determine the properties of the analyte.

Aylott, Jonathan W. (Ann Arbor, MI); Chen-Esterlit, Zoe (Ann Arbor, MI); Friedl, Jon H. (Ames, IA); Kopelman, Raoul (Ann Arbor, MI); Savvateev, Vadim N. (Ames, IA); Shinar, Joseph (Ames, IA)

2001-12-18T23:59:59.000Z

412

Hysteresis in Thin-Film Rechargeable Lithium Batteries  

SciTech Connect

Discharge - charge cycling of thin-film rechargeable lithium batteries with an amorphous or nanocrystalline LiXMn2.Y04 cathode reveals evidence for a true hysteresis in the lithium insertion reaction. This is compared with an apparent hysteresis attributed to a kinetically hindered phase transition near 3 V for batteries with either a crystalline or a nanocrystalline LiJ@Yo4 cathode.

Bates, J.B.; Dudney, N.J.; Evans, C.D.; Hart, F.X.

1999-04-25T23:59:59.000Z

413

Evaluation of crystallinity and film stress in yttria-stabilized zirconia thin films  

Science Conference Proceedings (OSTI)

Yttria (3 mol %)-stabilized zirconia (YSZ) thin films were deposited using radio frequency (rf) magnetron sputtering. The YSZ thin films were deposited over a range of temperatures (22-300 deg. C), pressures (5-25 mTorr), and gas compositions (Ar/O ratio). Initial studies characterized a select set of properties in relation to deposition parameters including: refractive index, structure, and film stress. X-ray diffraction (XRD) showed that the films are comprised of mainly monoclinic and tetragonal crystal phases. The film refractive index determined by prism coupling, depends strongly on deposition conditions and ranged from 1.959 to 2.223. Wafer bow measurements indicate that the sputtered YSZ films can have initial stress ranging from 86 MPa tensile to 192 MPa compressive, depending on the deposition parameters. Exposure to ambient conditions (25 deg. C, 75% relative humidity) led to large increase ({approx}100 MPa) in the compressive stress of the films. Environmental aging suggests the change in compressive stress was related to water vapor absorption. These effects were then evaluated for films formed under different deposition parameters with varying density (calculated packing density) and crystal structure (XRD)

Piascik, Jeffrey R.; Thompson, Jeffrey Y.; Bower, Christopher A.; Stoner, Brian R. [Curriculum of Applied and Material Science, University of North Carolina, Chapel Hill, North Carolina 27599 and RTI International, Center for Materials and Electronic Technologies, Research Triangle Park, North Carolina 27709 (United States); Curriculum of Applied and Material Science, and School of Dentistry, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); RTI International, Center for Materials and Electronic Technologies, Research Triangle Park, North Carolina 27709 (United States); RTI International, Center for Materials and Electronic Technologies, Research Triangle Park, North Carolina, 27709 and Curriculum of Applied and Material Science, University of North Carolina, Chapel Hill, North Carolina 27599 (United States)

2005-09-15T23:59:59.000Z

414

Thin Single Crystal Silicon Solar Cells on Ceramic Substrates: November 2009 - November 2010  

Science Conference Proceedings (OSTI)

In this program we have been developing a technology for fabricating thin (cost raw materials. This 'handling layer' has sufficient strength for device and module processing and fabrication. Successful production of full sized (125 mm X 125 mm) silicon on ceramic wafers with 50 micrometre thick single crystal silicon has been achieved and device process flow developed for solar cell fabrication. Impurity transfer from the ceramic to the silicon during the elevated temperature consolidation process has resulted in very low minority carrier lifetimes and resulting low cell efficiencies. Detailed analysis of minority carrier lifetime, metals analysis and device characterization have been done. A full sized solar cell efficiency of 8% has been demonstrated.

Kumar, A.; Ravi, K. V.

2011-06-01T23:59:59.000Z

415

Development of Thin-Window Silicon Drift Detector for X-ray Spectroscopy  

Science Conference Proceedings (OSTI)

A new set of thin-window silicon drift detectors composed of an array of hexagonal shaped detectors has been designed, constructed and tested for X-ray spectroscopy. Each individual ThinWinSDD has a thin entrance window on one side and a spiral shaped hexagonal cathode around a center anode on the other side. To produce the thin entrance window a 10 keV implantation of boron through a 500 A silicon dioxide was used. The implantation was followed by an annealing at 700 C for 30 min and a reactive ion etching step to ensure the removal of silicon dioxide from the smallest feature (5 mum). An aluminum layer is coated in the same vacuum system after back-sputtering. This step involves removing the native oxide that has formed on the top of the silicon substrate and then sputtering a 1100 A thick layer of aluminum onto the X-ray entrance window. The aluminum layer must be thick enough to block visible light, but thin enough to be transparent to soft X-rays down to 280 eV. We discuss first test results that include detector leakage current measurements and the response for multiple detectors exposed to the National Synchrotron Light Source's UV beam line U3C located at Brookhaven National Laboratory for X-ray energies as low as 280 eV.

Chen, W.; Carini, G.A.; De Geronimo, G.; Fried, J.; Gaskin, J.A.; Keister, J.W.; Li, Z.; Ramsey, B.D.; Rehak, P.; Siddons, D.P.

2009-10-01T23:59:59.000Z

416

Using Thin Films to Screen Possible Scintillator Materials  

SciTech Connect

The discovery and optimization of new scintillators has traditionally been a rather slow process due to the difficulties of single crystal growth. This paper discusses the production of polycrystalline scintillator thin films (a few microns thick) which were tested in order to determine what characterizations could be made concerning a material’s ultimate potential as a scintillator prior to pursuing crystal growth. Thin films of CaF2(Eu), CeF3, and CeCl3, all known scintillators, were produced by vapor deposition. The hygroscopic CeCl3 was coated with multiple polymer-aluminum oxide bi-layers. Emission spectra peak wavelengths and decay times agreed with single crystal values. The films were too thin to measure gamma photopeaks, but using alpha energy deposition peaks, one could compare the relative photon yield/MeV between materials. The values obtained appear to give a relevant indication of a material’s light yield potential. The technique also appears useful for quickly determining the proper dopant amount for a given material.

Milbrath, Brian D.; Caggiano, Joseph A.; Engelhard, Mark H.; Joly, Alan G.; Matson, Dean W.; Nachimuthu, Ponnusamy; Olsen, Larry C.

2009-06-30T23:59:59.000Z

417

Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts  

DOE Patents (OSTI)

High performance photovoltaic modules are produced with improved interconnects by a special process. Advantageously, the photovoltaic modules have a dual layer back (rear) contact and a front contact with at least one layer. The front contact and the inner layer of the back contact can comprise a transparent conductive oxide. The outer layer of the back contact can comprise a metal or metal oxide. The front contact can also have a dielectric layer. In one form, the dual layer back contact comprises a zinc oxide inner layer and an aluminum outer layer and the front contact comprises a tin oxide inner layer and a silicon dioxide dielectric outer layer. One or more amorphous silicon-containing thin film semiconductors can be deposited between the front and back contacts. The contacts can be positioned between a substrate and an optional superstrate. During production, the transparent conductive oxide layer of the front contact is scribed by a laser, then the amorphous silicon-containing semiconductors and inner layer of the dual layer back contact are simultaneously scribed and trenched (drilled) by the laser and the trench is subsequently filled with the same metal as the outer layer of the dual layer back contact to provide a superb mechanical and electrical interconnect between the front contact and the outer layer of the dual layer back contact. The outer layer of the dual layer back contact can then be scribed by the laser. For enhanced environmental protection, the photovoltaic modules can be encapsulated.

Jansen, Kai W. (Lawrenceville, NJ); Maley, Nagi (Exton, PA)

2000-01-01T23:59:59.000Z

418

Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts  

DOE Patents (OSTI)

High performance photovoltaic modules are produced with improved interconnects by a special process. Advantageously, the photovoltaic modules have a dual layer back (rear) contact and a front contact with at least one layer. The front contact and the inner layer of the back contact can comprise a transparent conductive oxide. The outer layer of the back contact can comprise a metal or metal oxide. The front contact can also have a dielectric layer. In one form, the dual layer back contact comprises a zinc oxide inner layer and an aluminum outer layer and the front contact comprises a tin oxide inner layer and a silicon dioxide dielectric outer layer. One or more amorphous silicon-containing thin film semiconductors can be deposited between the front and back contacts. The contacts can be positioned between a substrate and an optional superstrate. During production, the transparent conductive oxide layer of the front contact is scribed by a laser, then the amorphous silicon-containing semiconductors and inner layer of the dual layer back contact are simultaneously scribed and trenched (drilled) by the laser and the trench is subsequently filled with the same metal as the outer layer of the dual layer back contact to provide a superb mechanical and electrical interconnect between the front contact and the outer layer of the dual layer back contact. The outer layer of the dual layer back contact can then be scribed by the laser. For enhanced environmental protection, the photovoltaic modules can be encapsulated.

Jansen, Kai W. (Lawrenceville, NJ); Maley, Nagi (Exton, PA)

2001-01-01T23:59:59.000Z

419

Supercritical fluid molecular spray thin films and fine powders  

DOE Patents (OSTI)

Solid films are deposited, or fine powders formed, by dissolving a solid material into a supercritical fluid solution at an elevated pressure and then rapidly expanding the solution through a short orifice into a region of relatively low pressure. This produces a molecular spray which is directed against a substrate to deposit a solid thin film thereon, or discharged into a collection chamber to collect a fine powder. The solvent is vaporized and pumped away. Solution pressure is varied to determine, together with flow rate, the rate of deposition and to control in part whether a film or powder is produced and the granularity of each. Solution temperature is varied in relation to formation of a two-phase system during expansion to control porosity of the film or powder. A wide variety of film textures and powder shapes are produced of both organic and inorganic compounds. Films are produced with regular textural feature dimensions of 1.0-2.0 .mu.m down to a range of 0.01 to 0.1 .mu.m. Powders are formed in very narrow size distributions, with average sizes in the range of 0.02 to 5 .mu.m.

Smith, Richard D. (Richland, WA)

1988-01-01T23:59:59.000Z

420

Sputter deposition for multi-component thin films  

DOE Patents (OSTI)

Ion beam sputter-induced deposition using a single ion beam and a multicomponent target is capable of reproducibly producing thin films of arbitrary composition, including those which are close to stoichiometry. Using a quartz crystal deposition monitor and a computer controlled, well-focused ion beam, this sputter-deposition approach is capable of producing metal oxide superconductors and semiconductors of the superlattice type such as GaAs-AlGaAs as well as layered metal/oxide/semiconductor/superconductor structures. By programming the dwell time for each target according to the known sputtering yield and desired layer thickness for each material, it is possible to deposit composite films from a well-controlled sub-monolayer up to thicknesses determined only by the available deposition time. In one embodiment, an ion beam is sequentially directed via a set of X-Y electrostatic deflection plates onto three or more different element or compound targets which are constituents of the desired film. In another embodiment, the ion beam is directed through an aperture in the deposition plate and is displaced under computer control to provide a high degree of control over the deposited layer. In yet another embodiment, a single fixed ion beam is directed onto a plurality of sputter targets in a sequential manner where the targets are each moved in alignment with the beam under computer control in forming a multilayer thin film. This controlled sputter-deposition approach may also be used with laser and electron beams.

Krauss, Alan R. (Plainfield, IL); Auciello, Orlando (Cary, NC)

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "thin film silicon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Amorphous carbon thin films for optoelectric device application  

Science Conference Proceedings (OSTI)

Thin films of amorphous carbon (a-C and a-C:H) have been deposited using different carbon precursor materials such as camphor--a natural source, graphite and CH{sub 4}/H{sub 2} mixture by different deposition methods, such as ion beam sputtering, pyrolysis, pulsed laser deposition and r.f. plasma CVD. The films are subjected to various standard characterization techniques in order to tailor the required structural and opto-electrical properties for device applications. The effects of deposition parameters and annealing temperatures on the properties of carbon thin films have been investigated. Both p- and n- type of carbon films have been obtained either through controlling the deposition parameters of a particular method or by doping. Solar cells of various configurations, such as n-C/p-Si, p-C/n-Si and n-C/p-C/p-Si, have been fabricated and their photoresponse characteristics are studied. An efficiency of 1.52% has been obtained, so far, for the cell of configuration n-C/p-C/p-Si. Effects of substrate temperature on the photovoltaic properties are also outlined in brief.

Soga, T.; Jimbo, T.; Krishna, K.M.; Umeno, M.

2000-01-30T23:59:59.000Z

422

Study of lithium diffusion in RF sputtered Nickel/Vanadium mixed oxides thin films  

E-Print Network (OSTI)

Study of lithium diffusion in RF sputtered NickelÁ/Vanadium mixed oxides thin films F. Artuso a lithium insertion inside RF sputtered Ni/V mixed oxides thin films have been investigated employing, showed three steps clearly involved in the intercalation mechanism of lithium in the oxide films: (i

Artuso, Florinda

423

Oriented niobate ferroelectric thin films for electrical and optical devices and method of making such films  

DOE Patents (OSTI)

Sr{sub x}Ba{sub 1{minus}x}Nb{sub 2}O{sub 6}, where x is greater than 0.25 and less than 0.75, and KNbO{sub 3} ferroelectric thin films metalorganic chemical vapor deposited on amorphous or crystalline substrate surfaces to provide a crystal axis of the film exhibiting a high dielectric susceptibility, electro-optic coefficient, and/or nonlinear optic coefficient oriented preferentially in a direction relative to a crystalline or amorphous substrate surface are disclosed. Such films can be used in electronic, electro-optic, and frequency doubling components. 8 figs.

Wessels, B.W.; Nystrom, M.J.

1998-05-19T23:59:59.000Z

424

Atmospheric Pressure Plasma CVD of Amorphous Hydrogenated Silicon Carbonitride (a-SiCN:H) Films Using Triethylsilane and Nitrogen  

SciTech Connect

Amorphous hydrogenated silicon carbonitride (a-SiCN:H) thin films are synthesized by atmospheric pressure plasma enhanced chemical vapor (AP-PECVD) deposition using the Surfx Atomflow{trademark} 250D APPJ source with triethylsilane (HSiEt{sub 3}, TES) and nitrogen as the precursor and the reactive gases, respectively. The effect of the substrate temperature (T{sub s}) on the growth characteristics and the properties of a-SiCN:H films was evaluated. The properties of the films were investigated via scanning electron microscopy (SEM), atomic force microscopy (AFM) for surface morphological analyses, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) for chemical and compositional analyses; spectroscopic ellipsometry for optical properties and thickness determination and nanoindentation to determine the mechanical properties of the a-SiCN:H films. Films deposited at low T{sub s} depict organic like features, while the films deposited at high T{sub s} depict ceramic like features. FTIR and XPS studies reveal that an increases in T{sub s} helps in the elimination of organic moieties and incorporation of nitrogen in the film. Films deposited at T{sub s} of 425 C have an index of refraction (n) of 1.84 and hardness (H) of 14.8 GPa. A decrease in the deposition rate between T{sub s} of 25 and 250 C and increase in deposition rate between T{sub s} of 250 and 425 C indicate that the growth of a-SiCN:H films at lower T{sub s} are surface reaction controlled, while at high temperatures film growth is mass-transport controlled. Based on the experimental results, a potential route for film growth is proposed.

Srinivasan Guruvenket; Steven Andrie; Mark Simon; Kyle W. Johnson; Robert A. Sailer

2011-10-04T23:59:59.000Z

425

Outdoor Performance of a Thin-Film Gallium-Arsenide Photovoltaic Module  

SciTech Connect

We deployed a 855 cm2 thin-film, single-junction gallium arsenide (GaAs) photovoltaic (PV) module outdoors. Due to its fundamentally different cell technology compared to silicon (Si), the module responds differently to outdoor conditions. On average during the test, the GaAs module produced more power when its temperature was higher. We show that its maximum-power temperature coefficient, while actually negative, is several times smaller in magnitude than that of a Si module used for comparison. The positive correlation of power with temperature in GaAs is due to temperature-correlated changes in the incident spectrum. We show that a simple correction based on precipitable water vapor (PWV) brings the photocurrent temperature coefficient into agreement with that measured by other methods and predicted by theory. The low operating temperature and small temperature coefficient of GaAs give it an energy production advantage in warm weather.

Silverman, T. J.; Deceglie, M. G.; Marion, B.; Cowley, S.; Kayes, B.; Kurtz, S.

2013-06-01T23:59:59.000Z

426

Aging phenomena in PMMA thin films -- memory and rejuvenation effects  

E-Print Network (OSTI)

Aging dynamics in thin films of poly(methyl methacrylate) (PMMA) have been investigated through dielectric measurements for different types of aging processes. The dielectric constant was found to decrease with increasing aging time at an aging temperature in many cases. An increase in the dielectric constant was also observed in the long time region ($\\ge$11h) near the glass transition temperature for thin films with thickness less than 26nm. In the constant rate mode including a temporary stop at a temperature $T_a$, the memory of the aging at $T_a$ was found to be kept and then to be recalled during the subsequent heating process. In the negative temperature cycling process, a strong rejuvenation effect has been observed after the temperature shift from the initial temperature $T_1$ to the second temperature $T_2$($=T_1+\\Delta T$) when $\\Delta T\\approx -20$K. Furthermore, a full memory effect has also been observed for the temperature shift from $T_2$ to $T_1$. This suggests that the aging at $T_1$ is totally independent of that at $T_2$ for $\\Delta T\\approx -20$K. As $|\\Delta T|$ decreases, the independence of the aging between the two temperatures was found to be weaken, $i.e.,$ the effective time, which is a measure of the contribution of the aging at $T_1$ to that at $T_2$, is a decreasing function of $|\\Delta T|$ in the negative region of $\\Delta T$. As the film thickness decreases from 514nm to 26nm, the $|\\Delta T|$ dependence of the effective time was found to become much stronger. The contribution of the aging at $T_2$ to that at $T_1$ disappears more rapidly with increasing $|\\Delta T|$ in thin film geometry than in the bulk state.

Koji Fukao; Aiko Sakamoto

2004-10-23T23:59:59.000Z

427

Sputter deposition and characterization of lithium cobalt oxide thin films and their applications in thin-film rechargeable lithium batteries  

DOE Green Energy (OSTI)

Li Co oxide thin films were deposited by rf magnetron sputtering of a LiCoO{sub 2} target in a 3:1 Ar/O{sub 2} mixture gas. From proton-induced gamma-ray emission analysis and Rutherford backscattering spectrometry, the average composition of these films was determined to be Li{sub 1.15}CoO{sub 2.16}. X-ray powder diffraction patterns of films annealed in air at 500-700 C were consistent with regular rhombohedral structure of crystalline LiCoO{sub 2}. Discharge curves of thin film lithium cells with amoprohous LiCoO{sub 2} showed no obvious structural transition between 4.2 and 1.5 V. Shape of discharge curves of cells with polycrystalline cathodes were consistent with a two-phase voltage plateau at {similar_to}3.9 V with a relatively large capacity and two additional smaller plateaus at higher voltages. Cells with the 700 C annealed cathodes showed a capacity loss of {similar_to} after 1000 cycles between 4.2 and 3.0 V.

Wang, B.; Bates, J.B.; Luck, C.F.; Sales, B.C.; Zuhr, R.A. [Oak Ridge National Lab., TN (United States); Robertson, J.D. [Kentucky Univ., Lexington, KY (United States). Dept. of Chemistry

1996-01-01T23:59:59.000Z

428

A large polarization in Ce-modified bismuth ferrite thin films  

Science Conference Proceedings (OSTI)

Bi{sub 0.95}Ce{sub 0.05}FeO{sub 3} (BCFO) thin films were grown on SrRuO{sub 3}/TiO{sub 2}/SiO{sub 2}/Si(100) substrates via radio frequency sputtering. The BCFO thin film has a (111) orientation with a high phase purity. Improved dielectric behavior is observed for the BCFO thin film as compared with that of pure bismuth ferrite thin film. A large remanent polarization of 2P{sub r} {approx} 183.9 {mu}C/cm{sup 2} is induced in the BCFO thin film, owing to the (111) orientation and the introduction of Ce. The local phase decomposition induced by larger depolarization fields and the oxygen vacancies dominates the fatigue resistance of the BCFO thin film.

Wang Yuanyu [College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550003 (China)

2011-06-15T23:59:59.000Z

429

Solar Thin Films Inc formerly American United Global Inc | Open Energy  

Open Energy Info (EERE)

Films Inc formerly American United Global Inc Films Inc formerly American United Global Inc Jump to: navigation, search Name Solar Thin Films Inc (formerly American United Global Inc) Place New York, New York Zip 10038 Sector Solar Product A US-based solar manufacturing equipment supplier. References Solar Thin Films Inc (formerly American United Global Inc)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Solar Thin Films Inc (formerly American United Global Inc) is a company located in New York, New York . References ↑ "Solar Thin Films Inc (formerly American United Global Inc)" Retrieved from "http://en.openei.org/w/index.php?title=Solar_Thin_Films_Inc_formerly_American_United_Global_Inc&oldid=351338

430

Microwave plasma assisted supersonic gas jet deposition of thin film materials  

DOE Patents (OSTI)

An apparatus for fabricating thin film materials utilizing high speed gas dynamics relies on supersonic free jets of carrier gas to transport depositing vapor species generated in a microwave discharge to the surface of a prepared substrate where the vapor deposits to form a thin film. The present invention generates high rates of deposition and thin films of unforeseen high quality at low temperatures. 5 figures.

Schmitt, J.J. III; Halpern, B.L.

1993-10-26T23:59:59.000Z

431

Deployable telescope having a thin-film mirror and metering structure  

Science Conference Proceedings (OSTI)

A deployable thin-film mirror telescope comprises a base structure and a metering structure. The base structure houses a thin-film mirror, which can be rolled for stowage and unrolled for deployment. The metering structure is coupled to the base structure and can be folded for stowage and unfolded for deployment. In the deployed state, the unrolled thin-film mirror forms a primary minor for the telescope and the unfolded metering structure positions a secondary minor for the telescope.

Krumel, Leslie J. (Cedar Crest, NM); Martin, Jeffrey W. (Albuquerque, NM)

2010-08-24T23:59:59.000Z

432

Carbon-coated silicon nanowire array films for high-performance lithium-ion battery anodes  

Science Conference Proceedings (OSTI)

Carbon-coated silicon nanowire array films prepared by metal catalytic etching of silicon wafers and pyrolyzing of carbon aerogel were used for lithium-ion battery anodes. The films exhibited an excellent first discharge capacity of 3344 ? mAh ? g ? 1 with a Coulombic efficiency of 84% at a rate of 150 ? mA ? g ? 1 between 2 and 0.02 V and a significantly enhanced cycling performance

Rui Huang; Xing Fan; Wanci Shen; Jing Zhu

2009-01-01T23:59:59.000Z

433

Optical and electronic properties of Ti{sub 1-x}Nb{sub x}N thin films  

Science Conference Proceedings (OSTI)

Ti{sub 1-x}Nb{sub x}N thin films with x=0, 0.26, 0.41, 0.58 and 1 were deposited on silicon (311) substrate by RF magnetron sputtering. The dielectric functions of these films were calculated by fitting measured reflectance spectra to the Drude-Lorentz model. The measured reflectance spectra exhibits a minimum in the visible region and this feature shifts to higher energy (shorter wavelength) with increase in x. The observed behavior can be modeled as the response of four Lorentz oscillators. The real part of the dielectric function is characterized by a screened plasma energy of 2.26 eV for x=0 which increased to 2.80 eV for x=0.58 in the Ti{sub 1-x}Nb{sub x}N film.

Vasu, K.; Gopikrishnan, G. M.; Krishna, M. Ghanashyam; Padmanabhan, K. A. [School of Physics, Centre for Nanotechnology, University of Hyderabad, Hyderabad-500 046 (India); School of Physics, University of Hyderabad, Hyderabad-500 046 (India); School of Physics, Centre for Nanotechnology, University of Hyderabad, Hyderabad-500 046 (India); Centre for Nanotechnology, School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad-500 046 (India)

2012-06-05T23:59:59.000Z

434

Development of large-area monolithically integrated silicon-film photovoltaic modules. Annual subcontract report, 1 May 1991--15 November 1991  

DOE Green Energy (OSTI)

This report describes work to develop Silicon-Film Product III into a low-cost, stable device for large-scale terrestrial power applications. The Product III structure is a thin (< 100 {mu}m) polycrystalline silicon layer on a non-conductive supporting ceramic substrate. The presence of the substrate allows cells to be isolated and in interconnected monolithically in various series/parallel configurations. The long-term goal for the product is efficiencies over 18% on areas greater than 1200 cm{sup 2}. The high efficiency is made possible through the benefits of using polycrystalline thin silicon incorporated into a light-trapping structure with a passivated back surface. Short-term goals focused on the development of large-area ceramics, a monolithic interconnection process, and 100 cm{sup 2} solar cells. Critical elements of the monolithically integrated device were developed, and an insulating ceramic substrate was developed and tested. A monolithic interconnection process was developed that will isolate and interconnect individual cells on the ceramic surface. Production-based, low-cost process steps were used, and the process was verified using free-standing silicon wafers to achieve an open-circuit voltage (V{sub oc}) of 8.25 V over a 17-element string. The overall efficiency of the silicon-film materials was limited to 6% by impurities. Improved processing and feedstock materials are under investigation.

Rand, J.A.; Bacon, C.; Cotter, J.E.; Lampros, T.H.; Ingram, A.E.; Ruffins, T.R.; Hall, R.B.; Barnett, A.M. [AstroPower, Inc., Newark, DE (United States)

1992-07-01T23:59:59.000Z

435

Atmospheric Pressure Chemical Vapor Deposition of High Silica SiO2-TiO2 Antireflective Thin Films for Glass Based Solar Panels  

SciTech Connect

The atmospheric pressure chemical vapor deposition (APCVD) of SiO2-TiO2 thin films employing [[(tBuO)3Si]2O-Ti(OiPr)2], which can be prepared from commercially available materials, results in antireflective thin films on float glass under industrially relevant manufacturing conditions. It was found that while the deposition temperature had an effect on the SiO2:TiO2 ratio, the thickness was dependent on the time of deposition. This study shows that it is possible to use APCVD employing a single source precursor containing titanium and silicon to produce thin films on float glass with high SiO2:TiO2 ratios.

Klobukowski, Erik R [ORNL; Tenhaeff, Wyatt E [ORNL; McCamy, James [PPG; Harris, Caroline [PPG; Narula, Chaitanya Kumar [ORNL

2013-01-01T23:59:59.000Z

436

Effect of Heat Treatment on Cyclic Fatigue Properties of Thin Films of ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Mobile devices, such as cellphones, notebook and tablet computers, have become daily necessities. Small switches made from thin films of ...

437

The Effects of Interfaces on the Ultrafast Irradiation of Thin Films  

Science Conference Proceedings (OSTI)

Presentation Title, The Effects of Interfaces on the Ultrafast Irradiation of Thin Films ... Abstract Scope, The ultrafast laser irradiation of bulk materials is a ...

438

Electrochemical kinetics of thin film vanadium pentoxide cathodes for lithium batteries  

E-Print Network (OSTI)

Electrochemical experiments were performed to investigate the processing-property-performance relations of thin film vanadium pentoxide cathodes used in lithium batteries. Variations in microstructures were achieved via ...

Mui, Simon C., 1976-

2005-01-01T23:59:59.000Z

439

Thin-Film Fiber Optic Sensors for Power Control and Fault Detection. Final Report  

Science Conference Proceedings (OSTI)

Described is the development of an optical current measurement device, an active power conditioning system, and sol gel type thin films for the detection of magnetic fields.

Duncan, Paul Grems

2003-09-30T23:59:59.000Z

440

Highly Transparent and Conducting ALD of Doped ZnO Thin Films ...  

Science Conference Proceedings (OSTI)

... and Conducting ALD of Doped ZnO Thin Films for TCO Applications · Hybrid Aerogel/Nanorod Functional Materials for Energy and Sensing Applications.

Note: This page contains sample records for the topic "thin film silicon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Stress Management: X-Rays Reveal Si Thin-Film Defects  

Science Conference Proceedings (OSTI)

Stress Management: X-Rays Reveal Si Thin-Film Defects. ... Advanced Photon Source, and supported in part by the Department of Energy. ...

2011-04-26T23:59:59.000Z

442

Design Method for Light Absorption Enhancement in Ultra-Thin Film ...  

Science Conference Proceedings (OSTI)

ultra-thin film organic solar cells (OSCs) to improve the light absorption. ... In the promising field of solar cells, organic solar cells (OSCs) are advantageous in its ...

443

Polycrystalline Thin Film Photovoltaics: From the Laboratory to Solar Fields; Preprint  

DOE Green Energy (OSTI)

We review the status of commercial polycrystalline thin-film solar cells and photovoltaic (PV) modules, including current and projected commercialization activities.

von Roedern, B.; Ullal, H. S.; Zweibel, K.

2006-05-01T23:59:59.000Z

444

Minutes of the 2007 Spring Meeting TMS Thin Films and Interfaces ...  

Science Conference Proceedings (OSTI)

Minutes of the 2007 Spring Meeting. TMS Thin Films and Interfaces Committee. Orlando, FL. February 25, 2007. 3:00-4:00 pm. Present: DP Field (Washington ...

445

N-1: Use of Nanostructured Sn Thin Film Anodes for Lithium Ion ...  

Science Conference Proceedings (OSTI)

XRD analyses proved that the thin film was made of nano crystalline Sn particles. The galvanostatic charge discharge results showed that the nano porous Sn ...

446

The Role of Line Defects on the Conductivity of Thin-film Yttria ...  

Science Conference Proceedings (OSTI)

Presentation Title, The Role of Line Defects on the Conductivity of Thin-film Yttria- stabilized Zirconia. Author(s), Edmund Mills, Nigel Browning, Yayoi Takamura, ...

447

Titanium Oxides Thin Film Anodes for All-Solid-State Lithium Ion ...  

Science Conference Proceedings (OSTI)

Metallic lithium is not a suitable anode material for all-solid-state thin film batteries ... Application of Biomass Waste Materials in the Nano Mineral Synthesis.

448

Thin-film alternating current nanocalorimeter for low temperatures and high magnetic fields  

SciTech Connect

Thin-film nanocalorimeter for low temperatures and high magnetic fields is described. The calorimeter is based on a commercial microchip module (thermal conductivity vacuum gauge TCG 3880 from Xensor Integration, NL). The gauge consists of submicron silicon nitride membrane with a film-thermopile and a resistive film-heater with dimensions of 50x100 {mu}m{sup 2} located at the center of the membrane. The gauge is mounted in a thermostat filled with helium exchange gas. The method of alternating current (ac) calorimetry is applied for heat capacity measurements. The noise-floor sensitivity of the calorimeter is better than 1 nJ/K below 100 K and about 3 nJ/K at 300 K. This allows for reliable measurements to be performed on sub-microgram samples. It is proved that the method is applicable for heat capacity measurements at temperatures in the range of 5-300 K and in high magnetic fields up to 8 T. We present a theoretical analysis of the thermal processes in the gauge-sample-surrounding gas system. On this basis a calibration method has been developed. We demonstrate that the technique yields correct heat capacity for test samples and that in special cases the thermal conductivity and the magnetostriction of the sample can be measured simultaneously with the heat capacity.

Minakov, A.A.; Roy, S.B.; Bugoslavsky, Y.V.; Cohen, L.F. [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BZ (United Kingdom)

2005-04-01T23:59:59.000Z

449

Hot-Wire Deposition of Hydrogenated Nanocrystalline SiGe Films for Thin-Film Si Based Solar Cells  

E-Print Network (OSTI)

Hot-Wire Deposition of Hydrogenated Nanocrystalline SiGe Films for Thin-Film Si Based Solar Cells bandgap absorber in an a-Si/a-SiGe/nc-SiGe(nc- Si) triple-junction solar cell due to its higher optical investigations of nc-SiGe:H thin films made by hot-wire chemical vapor deposition (HWCVD) with a coil

Deng, Xunming

450

Apparatus and method for the determination of grain size in thin films  

DOE Patents (OSTI)

A method for the determination of grain size in a thin film sample comprising the steps of measuring first and second changes in the optical response of the thin film, comparing the first and second changes to find the attenuation of a propagating disturbance in the film and associating the attenuation of the disturbance to the grain size of the film. The second change in optical response is time delayed from the first change in optical response.

Maris, Humphrey J (Barrington, RI)

2000-01-01T23:59:59.000Z

451

Apparatus and method for the determination of grain size in thin films  

DOE Patents (OSTI)

A method for the determination of grain size in a thin film sample comprising the steps of measuring first and second changes in the optical response of the thin film, comparing the first and second changes to find the attenuation of a propagating disturbance in the film and associating the attenuation of the disturbance to the grain size of the film. The second change in optical response is time delayed from the first change in optical response.

Maris, Humphrey J (Barrington, RI)

2001-01-01T23:59:59.000Z

452

Dynamics of gravity driven three-dimensional thin films on hydrophilic-hydrophobic patterned substrates  

E-Print Network (OSTI)

We investigate numerically the dynamics of unstable gravity driven three-dimensional thin liquid films on hydrophilic-hydrophobic patterned substrates of longitudinal stripes and checkerboard arrangements. The thin film can be guided preferentially on hydrophilic longitudinal stripes, while fingers develop on adjacent hydrophobic stripes if their width is large enough. On checkerboard patterns, the film fingering occurs on hydrophobic domains, while lateral spreading is favoured on hydrophilic domains, providing a mechanism to tune the growth rate of the film. By means of kinematical arguments, we quantitatively predict the growth rate of the contact line on checkerboard arrangements, providing a first step towards potential techniques that control thin film growth in experimental setups.

Rodrigo Ledesma-Aguilar; Aurora Hernandez-Machado; Ignacio Pagonabarraga

2010-01-20T23:59:59.000Z

453

Formation of thin-film high T/sub c/ superconductors by metalorganic deposition  

Science Conference Proceedings (OSTI)

Metalorganic deposition (MOD) is a nonvacuum method of thin-film deposition which allows easy alteration of chemical components and is compatible with thin-film processing. We report the preparation of thin-film superconductors by MOD. Rutherford backscattering spectrometry was used to determine film compositions and thicknesses. Films, approximately 500 nm thick, of YBa/sub 2/Cu/sub 4/O/sub z/ (z undetermined) were deposited on single-crystal SrTiO/sub 3/. A superconducting onset temperature of 90 K was measured with 37 K the zero resistance temperature. Scanning electron microscopy revealed grain sizes approximately 250 nm in diameter.

Hamdi, A.H.; Mantese, J.V.; Micheli, A.L.; Laugal, R.C.O.; Dungan, D.F.; Zhang, Z.H.; Padmanabhan, K.R.

1987-12-21T23:59:59.000Z

454

Kinetics of hydrogen desorption in surface-limited thin-film growth of SiGe alloys  

DOE Green Energy (OSTI)

The kinetics of hydrogen desorption in surface-limited thin-film growth of SiGe alloys from binary mixtures of disilane and digermane was investigated by surface differential reflectance. The hydrogen desorption process from the alloy surface was found to consist of two components. Both components are thermally activated, but the activation energies appear to equal neither the hydrogen desorption energy from pure silicon nor that from pure germanium surfaces. We suggest that the two components represent Ge- and Si-mediated hydrogen desorption, with the former being more rapid than the latter.

Sharp, J.W. (Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996 (United States)); Eres, G. (Oak Ridge National Laboratory, P. O. Box 2008, Solid State Division, Bldg. 2000 MS 6056, Oak Ridge, Tennessee 37831-6056 (United States))

1993-05-31T23:59:59.000Z

455

Overview and Challenges of Thin Film Solar Electric Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

and Challenges of Thin and Challenges of Thin Film Solar Electric Technologies H.S. Ullal Presented at the World Renewable Energy Congress X and Exhibition 2008 Glasgow, Scotland, United Kingdom July 19-25, 2008 Conference Paper NREL/CP-520-43355 December 2008 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (ASE), a contractor of the US Government under Contract No. DE-AC36-08-GO28308. Accordingly, the US Government and ASE retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any

456

Investigation of multi-layer thin films for energy storage.  

DOE Green Energy (OSTI)

We investigate here the feasibility of increasing the energy density of thin-film capacitors by construction of a multi-layer capacitor device through ablation and redeposition of the capacitor materials using a high-power pulsed ion beam. The deposition experiments were conducted on the RHEPP-1 facility at Sandia National Laboratories. The dielectric capacitor filler material was a composition of Lead-Lanthanum-Zirconium-Titanium oxide (PLZT). The energy storage can be increased by using material of intrinsically high dielectric constant, and constructing many thin layers of this material. For successful device construction, there are a number of challenging requirements including correct stoichiometric and crystallographic composition of the deposited PLZT. This report details some success in satisfying these requirements, even though the attempt at device manufacture was unsuccessful. The conclusion that 900 C temperatures are necessary to reconstitute the deposited PLZT has implications for future manufacturing capability.

Renk, Timothy Jerome; Monson, Todd

2009-01-01T23:59:59.000Z

457

90-Degree Bragg Reflection from a Thin Crystalline Film  

SciTech Connect

Experimental observations of synchrotron radiation diffraction from a thin surface layer at a 90-degree Bragg reflection are reported and discussed. The synchrotron experiments were performed using a bending magnet source at the European Synchrotron Radiation Facility (ESRF) in France and undulator sources at the Advanced Photon Source (APS) in the U.S. and SPring-8 in Japan. Thin (0.5, 1.0 and 1.5 micron) InGaAs films deposited on a GaAs (100) substrate were studied near the 90- degree using the GaAs (800) reflection. A slight, less than 0.1%, difference in the lattice spacing between the layer and the substrate is sufficient to allow a direct and exclusive observation of the diffraction profile from a thin layer as if it was a 'free-standing' thin crystal. This research opens new possibilities for x-ray optical schemes and the development of novel analytical techniques for surface/interface x-ray diffraction studies.

Nikulin, A.Y.; Davis, J.R.; Usher, B.F.; Freund, A.K.; Ishikawa, T.

2001-09-11T23:59:59.000Z

458

Stripe Domain-Structures in a Thin Ferromagnetic Film  

E-Print Network (OSTI)

We present a theory of the stripe domain structure in a thin ferromagnetic film with single-ion easy-axis magnetic anisotropy and long-range dipole interactions, for a wide range of temperatures and applied magnetic field. The domains exist at temperatures below the reorientational phase transition from out-of-plane to in-plane magnetization. The system of stripes can be described as a liquid crystal with a preferred domain-wall orientation. The positional order is destroyed by both thermodynamical meandering of domain walls and by the proliferation of dislocations. Spatial anisotropy generated by the fourth-order exchange energy stabilizes the stripe domain structure and pins its orientation. For any temperature below the reorientational phase transition there exists a critical perpendicular-to-plane magnetic field, which separates multidomain and monodomain states of the film. The theory explains recent experimental observations.

KASHUBA, AB; Pokrovsky, Valery L.

1993-01-01T23:59:59.000Z

459

Post-growth surface smoothing of thin films of diindenoperylene  

Science Conference Proceedings (OSTI)

We applied in situ x-ray reflectivity and ultraviolet photoelectron spectroscopy to study the impact of annealing on low temperature (200 K) deposited organic thin films of diindenoperylene (DIP) on SiO{sub 2} and indium tin oxide (ITO). At 200 K, DIP is crystalline on SiO{sub 2} and amorphous on ITO. Upon heating to room temperature, the roughness of DIP is reduced on both substrates, from 1.5 nm to 0.75 nm (SiO{sub 2}) and from 0.90 nm to 0.45 nm (ITO). The smoothing is accompanied by crystallization of the surface molecules, whereas the bulk structure of the films does not strongly reorganize.

Hinderhofer, A. [Institute for Applied Physics, University of Tuebingen, Auf der Morgenstelle 10, Tuebingen 72076 (Germany); Graduate School of Advanced Integration Science, Chiba University,1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Hosokai, T. [Department of Materials and Science, Iwate University, Ueda 4-3-5, Morioka, Iwate 0208551 (Japan); Yonezawa, K.; Kato, K.; Kera, S.; Ueno, N. [Graduate School of Advanced Integration Science, Chiba University,1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Gerlach, A.; Broch, K.; Frank, C.; Schreiber, F. [Institute for Applied Physics, University of Tuebingen, Auf der Morgenstelle 10, Tuebingen 72076 (Germany); Novak, J. [Institute for Applied Physics, University of Tuebingen, Auf der Morgenstelle 10, Tuebingen 72076 (Germany); European Synchrotron Radiation Facility (ESRF), BP 220, Grenoble 38043 (France)

2012-07-16T23:59:59.000Z

460

Epitaxial EuO thin films on GaAs  

SciTech Connect

We demonstrate the epitaxial growth of EuO on GaAs by reactive molecular beam epitaxy. Thin films are grown in an adsorption-controlled regime with the aid of an MgO diffusion barrier. Despite the large lattice mismatch, it is shown that EuO grows well on MgO(001) with excellent magnetic properties. Epitaxy on GaAs is cube-on-cube and longitudinal magneto-optic Kerr effect measurements demonstrate a large Kerr rotation of 0.57 deg., a significant remanent magnetization, and a Curie temperature of 69 K.

Swartz, A. G.; Ciraldo, J.; Wong, J. J. I.; Li Yan; Han Wei; Lin Tao; Shi, J.; Kawakami, R. K. [Department of Physics and Astronomy, University of California, Riverside, California 92521 (United States); Mack, S.; Awschalom, D. D. [Center for Spintronics and Quantum Computation, University of California, Santa Barbara, California 93106 (United States)

2010-09-13T23:59:59.000Z

Note: This page contains sample records for the topic "thin film silicon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Thin film solar cell including a spatially modulated intrinsic layer  

SciTech Connect

One or more thin film solar cells in which the intrinsic layer of substantially amorphous semiconductor alloy material thereof includes at least a first band gap portion and a narrower band gap portion. The band gap of the intrinsic layer is spatially graded through a portion of the bulk thickness, said graded portion including a region removed from the intrinsic layer-dopant layer interfaces. The band gap of the intrinsic layer is always less than the band gap of the doped layers. The gradation of the intrinsic layer is effected such that the open circuit voltage and/or the fill factor of the one or plural solar cell structure is enhanced.

Guha, Subhendu (Troy, MI); Yang, Chi-Chung (Troy, MI); Ovshinsky, Stanford R. (Bloomfield Hills, MI)

1989-03-28T23:59:59.000Z

462

Thin-film electrochemical power cells. Final report  

SciTech Connect

Fundamental properties of research cells were correlated with the projected performance of full scale power sources, considering both battery and supercapacitor concepts. In addition to establishing the data base for modelling and performance projections, the program had the additional objective of identifying loss mechanisms and degradation reactions, especially those unique to polymer thin film cell designs. Because of the intrinsic high electrode/electrolyte interface areas, interfacial reactions must be understood. Many applications require power under extreme conditions, and low temperature performance needs to be improved.

Owens, B.B.; Smyrl, W.H.

1991-01-01T23:59:59.000Z

463

Thin Film Absorbers Based on Plasmonic Phase Resonances  

E-Print Network (OSTI)

We demonstrate an efficient double-layer light absorber by exciting plasmonic phase resonances. We show that the addition of grooves can cause mode splitting of the plasmonic waveguide cavity modes and all the new resonant modes exhibit large absorptivity greater than 90%. Some of the generated absorption peaks have wide-angle characteristics. Furthermore, we find that the proposed structure is fairly insensitive to the alignment error between different layers. The proposed plasmonic nano-structure designs may have exciting potential applications in thin film solar cells, thermal emitters, novel infrared detectors, and highly sensitive bio-sensors.

Cui, Yanxia; Xu, Jun; He, Sailing; Fang, Nicholas X

2010-01-01T23:59:59.000Z

464

Preparation of thin ceramic films via an aqueous solution route  

DOE Patents (OSTI)

A new chemical method of forming thin ceramic films has been developed. An aqueous solution of metal nitrates or other soluble metal salts and a low molecular weight amino acid is coated onto a substrate and pyrolyzed. The amino acid serves to prevent precipitation of individual solution components, forming a very viscous, glass-like material as excess water is evaporated. Using metal nitrates and glycine, the method has been demonstrated for zirconia with various levels of yttria stabilization, for lanthanum-strontium chromites, and for yttrium-barium-copper oxide superconductors on various substrates.

Pederson, Larry R. (Kennewick, WA); Chick, Lawrence A. (Richland, WA); Exarhos, Gregory J. (Richland, WA)

1989-01-01T23:59:59.000Z

465

Drying radioactive wastewater salts using a thin film dryer  

SciTech Connect

This paper describes the operational experience in drying brines generated at a radioactive wastewater treatment facility. The brines are composed of aqueous ammonium sulfate/sodium sulfate and aqueous sodium nitrate/sodium sulfate, The brine feeds receive pretreatment to preclude dryer bridging and fouling. The dryer products are a distillate and a powder. The dryer is a vertical thin film type consisting of a steam heated cylinder with rotor. Maintenance on the dryer has been minimal. Although many operability problems have had to be overcome, dryer performance can now be said to be highly reliable.

Scully, D.E.

1998-03-19T23:59:59.000Z

466

Thin film superconductors and process for making same  

DOE Patents (OSTI)

A process for the preparation of oxide superconductors from high-viscosity non-aqueous solution is described. Solutions of lanthanide nitrates, alkaline earth nitrates and copper nitrates in a 1:2:3 stoichiometric ratio, when added to ethylene glycol containing citric acid solutions, have been used to prepare highly viscous non-aqueous solutions of metal mixed nitrates-citrates. Thin films of these compositions are produced when a layer of the viscous solution is formed on a substrate and subjected to thermal decomposition.

Nigrey, P.J.

1988-01-21T23:59:59.000Z

467

Hydrogen adsorption in thin films of Prussian blue analogue  

DOE Green Energy (OSTI)

Quartz crystal microbalance with dissipation (QCM-D) measurement was used to investigate the kinetics of the molecular hydrogen adsorption into thin films of prussian blue analogues - Cu{sub 3}[Co(CN){sub