Sample records for thin film silicon

  1. Efficient light trapping structure in thin film silicon solar cells

    E-Print Network [OSTI]

    Sheng, Xing

    Thin film silicon solar cells are believed to be promising candidates for continuing cost reduction in photovoltaic panels because silicon usage could be greatly reduced. Since silicon is an indirect bandgap semiconductor, ...

  2. Black Silicon Enhanced Thin Film Silicon Photovoltaic Devices

    SciTech Connect (OSTI)

    Martin U. Pralle; James E. Carey

    2010-07-31T23:59:59.000Z

    SiOnyx has developed an enhanced thin film silicon photovoltaic device with improved efficiency. Thin film silicon solar cells suffer from low material absorption characteristics resulting in poor cell efficiencies. SiOnyx’s approach leverages Black Silicon, an advanced material fabricated using ultrafast lasers. The laser treated films show dramatic enhancement in optical absorption with measured values in excess of 90% in the visible spectrum and well over 50% in the near infrared spectrum. Thin film Black Silicon solar cells demonstrate 25% higher current generation with almost no impact on open circuit voltage as compared with representative control samples. The initial prototypes demonstrated an improvement of nearly 2 percentage points in the suns Voc efficiency measurement. In addition we validated the capability to scale this processing technology to the throughputs (< 5 min/m2) required for volume production using state of the art commercially available high power industrial lasers. With these results we clearly demonstrate feasibility for the enhancement of thin film solar cells with this laser processing technique.

  3. CHARACTERIZATION OF URANIUM, URANIUM OXIDE AND SILICON MULTILAYER THIN FILMS

    E-Print Network [OSTI]

    Hart, Gus

    CHARACTERIZATION OF URANIUM, URANIUM OXIDE AND SILICON MULTILAYER THIN FILMS by David T. Oliphant. Woolley Dean, College of Physical and Mathematical Sciences #12;ABSTRACT CHARACTERIZATION OF URANIUM, URANIUM OXIDE AND SILICON MULTILAYER THIN FILMS David T. Oliphant Department of Physics and Astronomy

  4. amorphous silicon thin-film: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    amorphous silicon Kanicki, Jerzy 17 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  5. Anti-reflection zinc oxide nanocones for higher efficiency thin-film silicon solar cells

    E-Print Network [OSTI]

    Mailoa, Jonathan P

    2012-01-01T23:59:59.000Z

    Thin film silicon solar cells, which are commonly made from microcrystalline silicon ([mu]c-Si) or amorphous silicon (a-Si), have been considered inexpensive alternatives to thick polycrystalline silicon (polysilicon) solar ...

  6. Amorphous silicon thin film transistor as nonvolatile device. 

    E-Print Network [OSTI]

    Nominanda, Helinda

    2008-10-10T23:59:59.000Z

    n-channel and p-channel amorphous-silicon thin-film transistors (a-Si:H TFTs) with copper electrodes prepared by a novel plasma etching process have been fabricated and studied. Their characteristics are similar to those of TFTs with molybdenum...

  7. Growth of GaN Thin Films on Silicon Using Single Source Precursors

    E-Print Network [OSTI]

    Boo, Jin-Hyo

    Growth of GaN Thin Films on Silicon Using Single Source Precursors and Development of New We have grown the GaN thin films on silicon substrates using the newly developed single source precursors by thermal MOCVD method. Highly oriented GaN thin films in the [002] direction with hexagonal

  8. Anisotropic dewetting in ultra-thin single-crystal silicon-on-insulator films

    E-Print Network [OSTI]

    Danielson, David T. (David Thomas)

    2008-01-01T23:59:59.000Z

    The single crystal silicon-on-insulator thin film materials system represents both an ideal model system for the study of anisotropic thin film dewetting as well as a technologically important system for the development ...

  9. Formation of thin-film resistors on silicon substrates

    DOE Patents [OSTI]

    Schnable, George L. (Montgomery County, PA); Wu, Chung P. (Hamilton Township, Mercer County, NJ)

    1988-11-01T23:59:59.000Z

    The formation of thin-film resistors by the ion implantation of a metallic conductive layer in the surface of a layer of phosphosilicate glass or borophosphosilicate glass which is deposited on a silicon substrate. The metallic conductive layer materials comprise one of the group consisting of tantalum, ruthenium, rhodium, platinum and chromium silicide. The resistor is formed and annealed prior to deposition of metal, e.g. aluminum, on the substrate.

  10. CRYSTALLINE SILICON THIN-FILM SOLAR CELLS FROM THE POROUS SILICON PROCESS APPLYING CONVECTION ASSISTED CHEMICAL VAPOR DEPOSITION

    E-Print Network [OSTI]

    . An industrial exploitation of these properties for solar cell production currently lacks of a cost effectiveCRYSTALLINE SILICON THIN-FILM SOLAR CELLS FROM THE POROUS SILICON PROCESS APPLYING CONVECTION for the first time to monocrystalline Si thin-film solar cells from the porous silicon (PSI) layer transfer

  11. Highly Ordered Vertical Silicon Nanowire Array Composite Thin Films for Thermoelectric Devices

    E-Print Network [OSTI]

    Bowers, John

    Highly Ordered Vertical Silicon Nanowire Array Composite Thin Films for Thermoelectric Devices for thermoelectric devices are presented. Inter- ference lithography was used to pattern square lattice photoresist device. Key words: Silicon nanowires, thermoelectrics, cross-plane measurements, nanowire composite

  12. Extended light scattering model incorporating coherence for thin-film silicon solar cells

    E-Print Network [OSTI]

    Lenstra, Arjen K.

    Extended light scattering model incorporating coherence for thin-film silicon solar cells Thomas film solar cells. The model integrates coherent light propagation in thin layers with a direct, non efficiency spectra of state-of-the-art microcrystalline silicon solar cells. The simulations agree very well

  13. Silicon Oxynitride Thin Film Barriers for PV Packaging (Poster)

    SciTech Connect (OSTI)

    del Cueto, J. A.; Glick, S. H.; Terwilliger, K. M.; Jorgensen, G. J.; Pankow, J. W.; Keyes, B. M.; Gedvilas, L. M.; Pern, F. J.

    2006-10-03T23:59:59.000Z

    Dielectric, adhesion-promoting, moisture barriers comprised of silicon oxynitride thin film materials (SiOxNy with various material stoichiometric compositions x,y) were applied to: 1) bare and pre-coated soda-lime silicate glass (coated with transparent conductive oxide SnO2:F and/or aluminum), and polymer substrates (polyethylene terephthalate, PET, or polyethylene napthalate, PEN); plus 2) pre- deposited photovoltaic (PV) cells and mini-modules consisting of amorphous silicon (a-Si) and copper indium gallium diselenide (CIGS) thin-film PV technologies. We used plasma enhanced chemical vapor deposition (PECVD) process with dilute silane, nitrogen, and nitrous oxide/oxygen gas mixtures in a low-power (< or = 10 milliW per cm2) RF discharge at ~ 0.2 Torr pressure, and low substrate temperatures < or = 100(degrees)C, over deposition areas ~ 1000 cm2. Barrier properties of the resulting PV cells and coated-glass packaging structures were studied with subsequent stressing in damp-heat exposure at 85(degrees)C/85% RH. Preliminary results on PV cells and coated glass indicate the palpable benefits of the barriers in mitigating moisture intrusion and degradation of the underlying structures using SiOxNy coatings with thicknesses in the range of 100-200 nm.

  14. Two-and three-dimensional folding of thin film single-crystalline silicon for photovoltaic

    E-Print Network [OSTI]

    Lewis, Jennifer

    Two- and three-dimensional folding of thin film single-crystalline silicon for photovoltaic power of a functional, nonpla- nar photovoltaic (PV) device. A mechanics model based on the theory of thin plates self-folding photovoltaics capillary force Silicon, in crystalline and amorphous forms, is currently

  15. Study of plasma enhanced chemical vapor deposition of boron-doped hydrogenated amorphous silicon thin films and the application to p-channel thin film transistor

    E-Print Network [OSTI]

    Nominanda, Helinda

    2004-01-01T23:59:59.000Z

    The material and process characteristics of boron doped hydrogenated amorphous silicon (a-Si:H) thin film deposited by plasma enhanced chemical vapor deposition technique (PECVD) have been studied. The goal is to apply the high quality films...

  16. Optimization of the absorption efficiency of an amorphous-silicon thin-film tandem solar cell

    E-Print Network [OSTI]

    to bring down the cost of photovoltaic (PV) solar cells has gained huge momentum, and many strategiesOptimization of the absorption efficiency of an amorphous-silicon thin-film tandem solar cell-wave approach was used to compute the plane-wave absorptance of a thin-film tandem solar cell with a metallic

  17. NANO-INDENTATION OF COPPER THIN FILMS ON SILICON SUBSTRATES

    E-Print Network [OSTI]

    Suresh, Subra

    on the nano-indentation of polycrystalline Cu thin films, of three different thicknesses) Si substrates. The films were then vacuum-annealed at 475°C for 1 h. The resulting polycrystalline. A diamond Berkovich pyramid indentor with a tip radius, R 50 nm, was used. It is known from nano

  18. Bendable single crystal silicon thin film transistors formed by printing on plastic substrates

    E-Print Network [OSTI]

    Rogers, John A.

    Bendable single crystal silicon thin film transistors formed by printing on plastic substrates E on plastic substrates using an efficient dry transfer printing technique. In these devices, free standing-Si is then transferred, to a specific location and with a controlled orientation, onto a thin plastic sheet

  19. THE ELECTRICAL AND OPTICAL PROPERTIES OF THIN FILM DIAMOND IMPLANTED WITH SILICON

    E-Print Network [OSTI]

    Kolodzey, James

    devices. The C:Si alloys were formed by the implantation of Si into polycrystalline diamond films grownTHE ELECTRICAL AND OPTICAL PROPERTIES OF THIN FILM DIAMOND IMPLANTED WITH SILICON K. J. Roe and J and electrical properties of diamond make it an attractive material for use in extreme conditions. Diamond

  20. The origin of white luminescence from silicon oxycarbide thin films

    SciTech Connect (OSTI)

    Nikas, V.; Gallis, S., E-mail: sgalis@us.ibm.com; Huang, M.; Kaloyeros, A. E. [College of Nanoscale Sciences and Engineering, State University of New York, Albany, New York 12203 (United States); Nguyen, A. P. D.; Stesmans, A.; Afanas'ev, V. V. [Department of Physics and Astronomy, University of Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium)

    2014-02-10T23:59:59.000Z

    Silicon oxycarbide (SiC{sub x}O{sub y}) is a promising material for achieving strong room-temperature white luminescence. The present work investigated the mechanisms for light emission in the visible/ultraviolet range (1.5–4.0?eV) from chemical vapor deposited amorphous SiC{sub x}O{sub y} thin films, using a combination of optical characterizations and electron paramagnetic resonance (EPR) measurements. Photoluminescence (PL) and EPR studies of samples, with and without post-deposition passivation in an oxygen and forming gas (H{sub 2} 5 at.?% and N{sub 2} 95 at.?%) ambient, ruled out typical structural defects in oxides, e.g., Si-related neutral oxygen vacancies or non-bridging oxygen hole centers, as the dominant mechanism for white luminescence from SiC{sub x}O{sub y}. The observed intense white luminescence (red, green, and blue emission) is believed to arise from the generation of photo-carriers by optical absorption through C-Si-O related electronic transitions, and the recombination of such carriers between bands and/or at band tail states. This assertion is based on the realization that the PL intensity dramatically increased at an excitation energy coinciding with the E{sub 04} band gaps of the material, as well as by the observed correlation between the Si-O-C bond density and the PL intensity. An additional mechanism for the existence of a blue component of the white emission is also discussed.

  1. Towards high efficiency thin-film crystalline silicon solar cells: The roles of light trapping and non-radiative recombinations

    E-Print Network [OSTI]

    important evaluation criterion for photovoltaic (PV) technology. Therefore, research on novel structuresTowards high efficiency thin-film crystalline silicon solar cells: The roles of light trapping February 2014; published online 3 March 2014) Thin-film solar cells based on silicon have emerged

  2. Thermodynamic limits of nanophotonic light trapping in thin film silicon solar cells1

    E-Print Network [OSTI]

    Schiff, Eric A.

    with solar tracking may realize the predicted JSC improvement. PACS Nos.: 88.40.jj, 42.79.Dj, 88.05.De to a significant improvement in light-trapping for cells used with solar trackingARTICLE Thermodynamic limits of nanophotonic light trapping in thin film silicon solar cells1 Brian

  3. A Review of Thin Film Crystalline Silicon for Solar Cell Applications. Part 1 : Native Substrates.

    E-Print Network [OSTI]

    A Review of Thin Film Crystalline Silicon for Solar Cell Applications. Part 1 : Native Substrates. Michelle J. Mc Cann, Kylie R. Catchpole, Klaus J. Weber and Andrew W. Blakers Centre for Sustainable Energy Systems Engineering Department, The Australian National University, ACT 0200, Australia. Email : michelle

  4. Low-cost, deterministic quasi-periodic photonic structures for light trapping in thin film silicon solar cells

    E-Print Network [OSTI]

    Sheng, Xing

    Light trapping has been an important issue for thin film silicon solar cells because of the low absorption coefficient in the near infrared range. In this paper, we present a photonic structure which combines anodic aluminum ...

  5. Impact of dislocations and dangling bond defects on the electrical performance of crystalline silicon thin films

    SciTech Connect (OSTI)

    Steffens, S.; Becker, C., E-mail: christiane.becker@helmholtz-berlin.de; Amkreutz, D.; Schnegg, A.; Abou-Ras, D.; Lips, K.; Rech, B. [Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin (Germany); Klossek, A. [Brandenburgische Technische Universität, Cottbus (Germany); Kittler, M. [Brandenburgische Technische Universität, Cottbus (Germany); IHP Microelectronics, Frankfurt (Oder) (Germany); Chen, Y.-Y. [Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin (Germany); Green Energy and Environment Research Labs, Industrial Technology Research Institute, Hsinchu, Taiwan (China); Klingsporn, M. [IHP Microelectronics, Frankfurt (Oder) (Germany)

    2014-07-14T23:59:59.000Z

    A wide variety of liquid and solid phase crystallized silicon films are investigated in order to determine the performance limiting defect types in crystalline silicon thin-film solar cells. Complementary characterization methods, such as electron spin resonance, photoluminescence, and electron microscopy, yield the densities of dangling bond defects and dislocations which are correlated with the electronic material quality in terms of solar cell open circuit voltage. The results indicate that the strongly differing performance of small-grained solid and large-grain liquid phase crystallized silicon can be explained by intra-grain defects like dislocations rather than grain boundary dangling bonds. A numerical model is developed containing both defect types, dislocations and dangling bonds, describing the experimental results.

  6. Mechanisms for fatigue and wear of polysilicon structural thin films

    E-Print Network [OSTI]

    Alsem, Daniel Henricus

    2006-01-01T23:59:59.000Z

    of single-crystal silicon thin films from 1991 to 2006. Thefor polycrystalline silicon thin films After the initialThis mechanism is specific to thin-film silicon where cracks

  7. Microstructure factor and mechanical and electronic properties of hydrogenated amorphous and nanocrystalline silicon thin-films for microelectromechanical systems applications

    SciTech Connect (OSTI)

    Mouro, J.; Gualdino, A.; Chu, V. [Instituto de Engenharia de Sistemas e Computadores – Microsistemas e Nanotecnologias (INESC-MN) and IN – Institute of Nanoscience and Nanotechnology, 1000-029 Lisbon (Portugal); Conde, J. P. [Instituto de Engenharia de Sistemas e Computadores – Microsistemas e Nanotecnologias (INESC-MN) and IN – Institute of Nanoscience and Nanotechnology, 1000-029 Lisbon (Portugal); Department of Bioengineering, Instituto Superior Técnico (IST), 1049-001 Lisbon (Portugal)

    2013-11-14T23:59:59.000Z

    Thin-film silicon allows the fabrication of MEMS devices at low processing temperatures, compatible with monolithic integration in advanced electronic circuits, on large-area, low-cost, and flexible substrates. The most relevant thin-film properties for applications as MEMS structural layers are the deposition rate, electrical conductivity, and mechanical stress. In this work, n{sup +}-type doped hydrogenated amorphous and nanocrystalline silicon thin-films were deposited by RF-PECVD, and the influence of the hydrogen dilution in the reactive mixture, the RF-power coupled to the plasma, the substrate temperature, and the deposition pressure on the structural, electrical, and mechanical properties of the films was studied. Three different types of silicon films were identified, corresponding to three internal structures: (i) porous amorphous silicon, deposited at high rates and presenting tensile mechanical stress and low electrical conductivity, (ii) dense amorphous silicon, deposited at intermediate rates and presenting compressive mechanical stress and higher values of electrical conductivity, and (iii) nanocrystalline silicon, deposited at very low rates and presenting the highest compressive mechanical stress and electrical conductivity. These results show the combinations of electromechanical material properties available in silicon thin-films and thus allow the optimized selection of a thin silicon film for a given MEMS application. Four representative silicon thin-films were chosen to be used as structural material of electrostatically actuated MEMS microresonators fabricated by surface micromachining. The effect of the mechanical stress of the structural layer was observed to have a great impact on the device resonance frequency, quality factor, and actuation force.

  8. Method of fabrication of display pixels driven by silicon thin film transistors

    DOE Patents [OSTI]

    Carey, Paul G. (Mountain View, CA); Smith, Patrick M. (San Ramon, CA)

    1999-01-01T23:59:59.000Z

    Display pixels driven by silicon thin film transistors are fabricated on plastic substrates for use in active matrix displays, such as flat panel displays. The process for forming the pixels involves a prior method for forming individual silicon thin film transistors on low-temperature plastic substrates. Low-temperature substrates are generally considered as being incapable of withstanding sustained processing temperatures greater than about 200.degree. C. The pixel formation process results in a complete pixel and active matrix pixel array. A pixel (or picture element) in an active matrix display consists of a silicon thin film transistor (TFT) and a large electrode, which may control a liquid crystal light valve, an emissive material (such as a light emitting diode or LED), or some other light emitting or attenuating material. The pixels can be connected in arrays wherein rows of pixels contain common gate electrodes and columns of pixels contain common drain electrodes. The source electrode of each pixel TFT is connected to its pixel electrode, and is electrically isolated from every other circuit element in the pixel array.

  9. Structural origins of intrinsic stress in amorphous silicon thin films

    E-Print Network [OSTI]

    Johlin, Eric (Eric Carl)

    Hydrogenated amorphous silicon (a-Si:H) refers to a broad class of atomic configurations, sharing a lack of long-range order, but varying significantly in material properties, including optical constants, porosity, hydrogen ...

  10. Microstructure and properties of copper thin films on silicon substrates

    E-Print Network [OSTI]

    Jain, Vibhor Vinodkumar

    2009-05-15T23:59:59.000Z

    representation of four point probe .................................................... 45 20. X-Ray results of Cu film deposited on Si (100) substrate at 100W, 200W, 600W deposition power... ........................................................................................ 46 21. X-Ray results of Cu film deposited on Si (110) substrate at 100W, 200W, 600W deposition power ........................................................................................ 47 22. X-Ray results of Cu film deposited on SiO 2...

  11. Electronic passivation of silicon surfaces by thin films of atomic layer deposited gallium oxide

    SciTech Connect (OSTI)

    Allen, T. G., E-mail: thomas.allen@anu.edu.au; Cuevas, A. [Research School of Engineering, Australian National University, Canberra 0200 (Australia)

    2014-07-21T23:59:59.000Z

    This paper proposes the application of gallium oxide (Ga{sub 2}O{sub 3}) thin films to crystalline silicon solar cells. Effective passivation of n- and p-type crystalline silicon surfaces has been achieved by the application of very thin Ga{sub 2}O{sub 3} films prepared by atomic layer deposition using trimethylgallium (TMGa) and ozone (O{sub 3}) as the reactants. Surface recombination velocities as low as 6.1?cm/s have been recorded with films less than 4.5?nm thick. A range of deposition parameters has been explored, with growth rates of approximately 0.2?Å/cycle providing optimum passivation. The thermal activation energy for passivation of the Si-Ga{sub 2}O{sub 3} interface has been found to be approximately 0.5?eV. Depassivation of the interface was observed for prolonged annealing at increased temperatures. The activation energy for depassivation was measured to be 1.9?eV.

  12. Synthesis and characterization of inorganic silicon oxycarbide glass thin films by reactive rf-magnetron sputtering

    SciTech Connect (OSTI)

    Ryan, Joseph V.; Pantano, C. G.

    2007-01-03T23:59:59.000Z

    Silicon oxycarbide glasses have been of interest because of the potential range of properties they might exhibit through a change in carbon-to-oxygen ratio. They are metastable materials and, as such, their structures and properties are very dependent upon the synthesis method. Silicon oxycarbide bonding has been seen in materials made by melting, oxidation, polycarbosilane or sol/gel pyrolysis, and chemical vapor deposition. In this work, the radio-frequency reactive sputtering of silicon carbide targets was explored for synthesis of amorphous silicon oxycarbide thin films. SiO (2?2x) Cx films, with a continuous range of compositions where 0film compositions, structures, and properties were performed using x-ray photoelectron spectroscopy, infrared spectroscopy, nuclear magnetic resonance, profilometry, electron microscopy, grazing incidence x-ray reflectivity, and UV-visible transmission and reflection. The compositional range obtainable by this rf sputtering method is much wider than that of other synthesis methods. It is shown here that for oxygen-to-carbon ratios between *0.10 and 10.0, silicon oxycarbide bonding comprises 55%-95% of the material structure. These sputter-deposited materials were also found to have significantly less free carbon as compared to those produced by other methods. Thus, the unique properties for these novel oxycarbide materials can now be established.

  13. High efficiency thin film silicon solar cells with novel light trapping : principle, design and processing

    E-Print Network [OSTI]

    Zeng, Lirong, Ph. D. Massachusetts Institute of Technology

    2008-01-01T23:59:59.000Z

    One major efficiency limiting factor in thin film solar cells is weak absorption of long wavelength photons due to the limited optical path length imposed by the thin film thickness. This is especially severe in Si because ...

  14. Thin Film Encapsulation Methods for Large Area MEMS Packaging

    E-Print Network [OSTI]

    Mahajerin, Armon

    2012-01-01T23:59:59.000Z

    P. J. French, “Robust Wafer-Level Thin-Film Encapsulation ofThe Elastic Properties of Thin- Film Silicon Nitride,” IEEELPCVD Silicon Nitride Thin Films at Cryogenic Temperatures,”

  15. Synthesis and characterization of large-grain solid-phase crystallized polycrystalline silicon thin films

    SciTech Connect (OSTI)

    Kumar, Avishek, E-mail: avishek.kumar@nus.edu.sg, E-mail: dalapatig@imre.a-star.edu.sg [Solar Energy Research Institute of Singapore, National University of Singapore, 7 Engineering Drive 1, Block E3A, #06-01, Singapore 117574 (Singapore); Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583 (Singapore); Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore); Law, Felix; Widenborg, Per I. [Solar Energy Research Institute of Singapore, National University of Singapore, 7 Engineering Drive 1, Block E3A, #06-01, Singapore 117574 (Singapore); Dalapati, Goutam K., E-mail: avishek.kumar@nus.edu.sg, E-mail: dalapatig@imre.a-star.edu.sg; Subramanian, Gomathy S.; Tan, Hui R. [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore); Aberle, Armin G. [Solar Energy Research Institute of Singapore, National University of Singapore, 7 Engineering Drive 1, Block E3A, #06-01, Singapore 117574 and Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583 (Singapore)

    2014-11-01T23:59:59.000Z

    n-type polycrystalline silicon (poly-Si) films with very large grains, exceeding 30??m in width, and with high Hall mobility of about 71.5?cm{sup 2}/V s are successfully prepared by the solid-phase crystallization technique on glass through the control of the PH{sub 3} (2% in H{sub 2})/SiH{sub 4} gas flow ratio. The effect of this gas flow ratio on the electronic and structural quality of the n-type poly-Si thin film is systematically investigated using Hall effect measurements, Raman microscopy, and electron backscatter diffraction (EBSD), respectively. The poly-Si grains are found to be randomly oriented, whereby the average area weighted grain size is found to increase from 4.3 to 18??m with increase of the PH{sub 3} (2% in H{sub 2})/SiH{sub 4} gas flow ratio. The stress in the poly-Si thin films is found to increase above 900?MPa when the PH{sub 3} (2% in H{sub 2})/SiH{sub 4} gas flow ratio is increased from 0.025 to 0.45. Finally, high-resolution transmission electron microscopy, high angle annular dark field-scanning tunneling microscopy, and EBSD are used to identify the defects and dislocations caused by the stress in the fabricated poly-Si films.

  16. Modeling and control of thin film surface morphology: application to thin film solar cells

    E-Print Network [OSTI]

    Huang, Jianqiao

    2012-01-01T23:59:59.000Z

    of a p-i-n thin-film solar cell with front transparent con-for thin-film a-si:h solar cells. Progress in Photovoltaics,in thin-film silicon solar cells. Optics Communications,

  17. Growth of nano-and microcrystalline silicon thin films at low temperature by pulsed electron deposition

    E-Print Network [OSTI]

    Zexian, Cao

    crystallites (heating-film silicon solar cells take a larger market share than the single- and polycrystalline silicon solar cells industry. In all the efforts, substrate heating or post-annealing at a temperature higher than 300 1C

  18. Process For Direct Integration Of A Thin-Film Silicon P-N Junction Diode With A Magnetic Tunnel Junction

    DOE Patents [OSTI]

    Toet, Daniel (Mountain View, CA); Sigmon, Thomas W. (Albuquerque, NM)

    2005-08-23T23:59:59.000Z

    A process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction for use in advanced magnetic random access memory (MRAM) cells for high performance, non-volatile memory arrays. The process is based on pulsed laser processing for the fabrication of vertical polycrystalline silicon electronic device structures, in particular p-n junction diodes, on films of metals deposited onto low temperature-substrates such as ceramics, dielectrics, glass, or polymers. The process preserves underlayers and structures onto which the devices are typically deposited, such as silicon integrated circuits. The process involves the low temperature deposition of at least one layer of silicon, either in an amorphous or a polycrystalline phase on a metal layer. Dopants may be introduced in the silicon film during or after deposition. The film is then irradiated with short pulse laser energy that is efficiently absorbed in the silicon, which results in the crystallization of the film and simultaneously in the activation of the dopants via ultrafast melting and solidification. The silicon film can be patterned either before or after crystallization.

  19. Process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction

    DOE Patents [OSTI]

    Toet, Daniel (Mountain View, CA); Sigmon, Thomas W. (Albuquerque, NM)

    2003-01-01T23:59:59.000Z

    A process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction for use in advanced magnetic random access memory (MRAM) cells for high performance, non-volatile memory arrays. The process is based on pulsed laser processing for the fabrication of vertical polycrystalline silicon electronic device structures, in particular p-n junction diodes, on films of metals deposited onto low temperature-substrates such as ceramics, dielectrics, glass, or polymers. The process preserves underlayers and structures onto which the devices are typically deposited, such as silicon integrated circuits. The process involves the low temperature deposition of at least one layer of silicon, either in an amorphous or a polycrystalline phase on a metal layer. Dopants may be introduced in the silicon film during or after deposition. The film is then irradiated with short pulse laser energy that is efficiently absorbed in the silicon, which results in the crystallization of the film and simultaneously in the activation of the dopants via ultrafast melting and solidification. The silicon film can be patterned either before or after crystallization.

  20. Process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction

    DOE Patents [OSTI]

    Toet, Daniel; Sigmon, Thomas W.

    2004-12-07T23:59:59.000Z

    A process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction for use in advanced magnetic random access memory (MRAM) cells for high performance, non-volatile memory arrays. The process is based on pulsed laser processing for the fabrication of vertical polycrystalline silicon electronic device structures, in particular p-n junction diodes, on films of metals deposited onto low temperature-substrates such as ceramics, dielectrics, glass, or polymers. The process preserves underlayers and structures onto which the devices are typically deposited, such as silicon integrated circuits. The process involves the low temperature deposition of at least one layer of silicon, either in an amorphous or a polycrystalline phase on a metal layer. Dopants may be introduced in the silicon film during or after deposition. The film is then irradiated with short pulse laser energy that is efficiently absorbed in the silicon, which results in the crystallization of the film and simultaneously in the activation of the dopants via ultrafast melting and solidification. The silicon film can be patterned either before or after crystallization.

  1. Dual mechanical behaviour of hydrogen in stressed silicon nitride thin films

    SciTech Connect (OSTI)

    Volpi, F., E-mail: fabien.volpi@simap.grenoble-inp.fr; Braccini, M.; Pasturel, A. [Univ. Grenoble Alpes, SIMAP, F-38000 Grenoble (France); CNRS, SIMAP, F-38000 Grenoble (France); Devos, A. [IEMN, UMR 8520 CNRS, Avenue Poincarré - CS 60069 - 59652 Villeneuve d'Ascq Cedex (France); Raymond, G. [Univ. Grenoble Alpes, SIMAP, F-38000 Grenoble (France); CNRS, SIMAP, F-38000 Grenoble (France); STMicroelectronics, 850 rue Jean Monnet, 38926 Crolles Cedex (France); Morin, P. [STMicroelectronics, 850 rue Jean Monnet, 38926 Crolles Cedex (France)

    2014-07-28T23:59:59.000Z

    In the present article, we report a study on the mechanical behaviour displayed by hydrogen atoms and pores in silicon nitride (SiN) films. A simple three-phase model is proposed to relate the physical properties (stiffness, film stress, mass density, etc.) of hydrogenated nanoporous SiN thin films to the volume fractions of hydrogen and pores. This model is then applied to experimental data extracted from films deposited by plasma enhanced chemical vapour deposition, where hydrogen content, stress, and mass densities range widely from 11% to 30%, ?2.8 to 1.5?GPa, and 2.0 to 2.8?g/cm{sup 3}, respectively. Starting from the conventional plotting of film's Young's modulus against film porosity, we first propose to correct the conventional calculation of porosity volume fraction with the hydrogen content, thus taking into account both hydrogen mass and concentration. The weight of this hydrogen-correction is found to evolve linearly with hydrogen concentration in tensile films (in accordance with a simple “mass correction” of the film density calculation), but a clear discontinuity is observed toward compressive stresses. Then, the effective volume occupied by hydrogen atoms is calculated taking account of the bond type (N-H or Si-H bonds), thus allowing a precise extraction of the hydrogen volume fraction. These calculations applied to tensile films show that both volume fractions of hydrogen and porosity are similar in magnitude and randomly distributed against Young's modulus. However, the expected linear dependence of the Young's modulus is clearly observed when both volume fractions are added. Finally, we show that the stiffer behaviour of compressive films cannot be only explained on the basis of this (hydrogen?+?porosity) volume fraction. Indeed this stiffness difference relies on a dual mechanical behaviour displayed by hydrogen atoms against the film stress state: while they participate to the stiffness in compressive films, hydrogen atoms mainly behave like pores in tensile films where they do not participate to the film stiffness.

  2. Suppressing light reflection from polycrystalline silicon thin films through surface texturing and silver nanostructures

    SciTech Connect (OSTI)

    Akhter, Perveen [Department of Physics, University at Albany-SUNY, Albany, New York 12222 (United States); Huang, Mengbing, E-mail: mhuang@albany.edu; Kadakia, Nirag; Spratt, William; Malladi, Girish; Bakhru, Hassarum [SUNY College of Nanoscale Science and Engineering, Albany, New York 12203 (United States)

    2014-09-21T23:59:59.000Z

    This work demonstrates a novel method combining ion implantation and silver nanostructures for suppressing light reflection from polycrystalline silicon thin films. Samples were implanted with 20-keV hydrogen ions to a dose of 10{sup 17}/cm{sup 2}, and some of them received an additional argon ion implant to a dose of 5?×?10{sup 15} /cm{sup 2} at an energy between 30 and 300?keV. Compared to the case with a single H implant, the processing involved both H and Ar implants and post-implantation annealing has created a much higher degree of surface texturing, leading to a more dramatic reduction of light reflection from polycrystalline Si films over a broadband range between 300 and 1200?nm, e.g., optical reflection from the air/Si interface in the AM1.5 sunlight condition decreasing from ?30% with an untextured surface to below 5% for a highly textured surface after post-implantation annealing at 1000?°C. Formation of Ag nanostructures on these ion beam processed surfaces further reduces light reflection, and surface texturing is expected to have the benefit of diminishing light absorption losses within large-size (>100?nm) Ag nanoparticles, yielding an increased light trapping efficiency within Si as opposed to the case with Ag nanostructures on a smooth surface. A discussion of the effects of surface textures and Ag nanoparticles on light trapping within Si thin films is also presented with the aid of computer simulations.

  3. amorphous-silicon-based thin-film photovoltaic: Topics by E-print...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    devices have been obtained by a direct polymerization of undoped (or p-type doped) thin film (CH)x layer onto a polycrystalline cadmium sulfide film Paris-Sud XI, Universit...

  4. amorphous silicon thin: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    values previously Hellman, Frances 6 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  5. Low emissivity high-temperature tantalum thin film coatings for silicon devices

    E-Print Network [OSTI]

    Rinnerbauer, Veronika

    The authors study the use of thin ( ? 230?nm) tantalum (Ta) layers on silicon (Si) as a low emissivity (high reflectivity) coating for high-temperature Si devices. Such coatings are critical to reduce parasitic radiation ...

  6. P-type and N-type multi-gate polycrystalline silicon vertical thin film transistors based on low-temperature technology

    E-Print Network [OSTI]

    Boyer, Edmond

    is obtained. P-type and N-type vertical TFTs have shown symmetric electrical characteristics. DifferentP-type and N-type multi-gate polycrystalline silicon vertical thin film transistors based on low) ABSTRACT P-type and N-type multi-gate vertical thin film transistors (vertical TFTs) have been fabricated

  7. Investigation of porous alumina as a self-assembled diffractive element to facilitate light trapping in thin film silicon solar cells

    E-Print Network [OSTI]

    Coronel, Naomi (Naomi Cristina)

    2009-01-01T23:59:59.000Z

    Thin film solar cells are currently being investigated as an affordable alternative energy source because of the reduced material cost. However, these devices suffer from low efficiencies, compared to silicon wafer solar ...

  8. Laser-induced self-organization in silicon-germanium thin films

    SciTech Connect (OSTI)

    Weizman, M.; Nickel, N. H.; Sieber, I. [Hahn-Meitner-Institut Berlin, Kekulestr. 5, D-12489 Berlin (Germany); Yan, B. [United Solar Ovonic Corp., 1100 West Maple Road, Troy, Michigan 48084 (United States)

    2008-05-01T23:59:59.000Z

    We report on the formation of self-organized structures in thin films of silicon-germanium (Si{sub 1-x}Ge{sub x}) with 0.3films to laser irradiation. Amorphous SiGe samples that are exposed to a single laser pulse exhibit a ripple structure that changes to a hillock structure when the samples are irradiated with additional laser pulses. The topographic structure is coupled to a periodic compositional variation of the SiGe alloy. The periodicity length of the structure after a single laser pulse is in the range of 0.3-1.1 {mu}m, depending on Ge content, layer thickness, and laser fluence, and rapidly grows with increasing number of laser pulses. In situ conductivity measurements during solidification support the theoretical instability analysis that we have done, based on the Mullins-Sekerka theory, to elucidate the nature of this phenomenon. Moreover, as theoretically predicted, the self-organization phenomenon can be turned off by increasing the solidification velocity.

  9. amorphous silicon film: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    values previously Hellman, Frances 8 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  10. amorphous silicon films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    values previously Hellman, Frances 8 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  11. Low work function, stable thin films

    DOE Patents [OSTI]

    Dinh, Long N. (Concord, CA); McLean, II, William (Oakland, CA); Balooch, Mehdi (Berkeley, CA); Fehring, Jr., Edward J. (Dublin, CA); Schildbach, Marcus A. (Livermore, CA)

    2000-01-01T23:59:59.000Z

    Generation of low work function, stable compound thin films by laser ablation. Compound thin films with low work function can be synthesized by simultaneously laser ablating silicon, for example, and thermal evaporating an alkali metal into an oxygen environment. For example, the compound thin film may be composed of Si/Cs/O. The work functions of the thin films can be varied by changing the silicon/alkali metal/oxygen ratio. Low work functions of the compound thin films deposited on silicon substrates were confirmed by ultraviolet photoelectron spectroscopy (UPS). The compound thin films are stable up to 500.degree. C. as measured by x-ray photoelectron spectroscopy (XPS). Tests have established that for certain chemical compositions and annealing temperatures of the compound thin films, negative electron affinity (NEA) was detected. The low work function, stable compound thin films can be utilized in solar cells, field emission flat panel displays, electron guns, and cold cathode electron guns.

  12. Growth direction of oblique angle electron beam deposited silicon monoxide thin films identified by optical second-harmonic generation

    SciTech Connect (OSTI)

    Vejling Andersen, Søren; Lund Trolle, Mads; Pedersen, Kjeld [Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4A, DK-9220 Aalborg Øst (Denmark)] [Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4A, DK-9220 Aalborg Øst (Denmark)

    2013-12-02T23:59:59.000Z

    Oblique angle deposited (OAD) silicon monoxide (SiO) thin films forming tilted columnar structures have been characterized by second-harmonic generation. It was found that OAD SiO leads to a rotationally anisotropic second-harmonic response, depending on the optical angle of incidence. A model for the observed dependence of the second-harmonic signal on optical angle of incidence allows extraction of the growth direction of OAD films. The optically determined growth directions show convincing agreement with cross-sectional scanning electron microscopy images. In addition to a powerful characterization tool, these results demonstrate the possibilities for designing nonlinear optical devices through SiO OAD.

  13. Thin, High Lifetime Silicon Wafers with No Sawing; Re-crystallization in a Thin Film Capsule

    SciTech Connect (OSTI)

    Emanuel Sachs

    2013-01-16T23:59:59.000Z

    The project fits within the area of renewable energy called photovoltaics (PV), or the generation of electricity directly from sunlight using semiconductor devices. PV has the greatest potential of any renewable energy technology. The vast majority of photovoltaic modules are made on crystalline silicon wafers and these wafers accounts for the largest fraction of the cost of a photovoltaic module. Thus, a method of making high quality, low cost wafers would be extremely beneficial to the PV industry The industry standard technology creates wafers by casting an ingot and then sawing wafers from the ingot. Sawing rendered half of the highly refined silicon feedstock as un-reclaimable dust. Being a brittle material, the sawing is actually a type of grinding operation which is costly both in terms of capital equipment and in terms of consumables costs. The consumables costs associated with the wire sawing technology are particularly burdensome and include the cost of the wire itself (continuously fed, one time use), the abrasive particles, and, waste disposal. The goal of this project was to make wafers directly from molten silicon with no sawing required. The fundamental concept was to create a very low cost (but low quality) wafer of the desired shape and size and then to improve the quality of the wafer by a specialized thermal treatment (called re-crystallization). Others have attempted to create silicon sheet by recrystallization with varying degrees of success. Key among the difficulties encountered by others were: a) difficulty in maintaining the physical shape of the sheet during the recrystallization process and b) difficulty in maintaining the cleanliness of the sheet during recrystallization. Our method solved both of these challenges by encapsulating the preform wafer in a protective capsule prior to recrystallization (see below). The recrystallization method developed in this work was extremely effective at maintaining the shape and the cleanliness of the wafer. In addition, it was found to be suitable for growing very large crystals. The equipment used was simple and inexpensive to operate. Reasonable solar cells were fabricated on re-crystallized material.

  14. Modeling and control of thin film surface morphology: application to thin film solar cells

    E-Print Network [OSTI]

    Huang, Jianqiao

    2012-01-01T23:59:59.000Z

    Solar Energy Materials and Solar Cells, 86:207–216, 2005. [silicon thin films and solar cells. Journal of Appliedof a p-i-n thin-film solar cell with front transparent con-

  15. Development of Thin Film Silicon Solar Cell Using Inkjet Printed Silicon and Other Inkjet Processes: Cooperative Research and Development Final Report, CRADA Number CRD-07-260

    SciTech Connect (OSTI)

    Sopori, B.

    2012-04-01T23:59:59.000Z

    The cost of silicon photovoltaics (Si-PV) can be greatly lowered by developing thin-film crystalline Si solar cells on glass or an equally lower cost substrate. Typically, Si film is deposited by thermal evaporation, plasma enhanced chemical vapor deposition, and sputtering. NREL and Silexos have worked under a CRADA to develop technology to make very low cost solar cells using liquid organic precursors. Typically, cyclopentasilane (CPS) is deposited on a glass substrate and then converted into an a-Si film by UV polymerization followed by low-temperature optical process that crystallizes the amorphous layer. This technique promises to be a very low cost approach for making a Si film.

  16. Angular behavior of the absorption limit in thin film silicon solar cells

    E-Print Network [OSTI]

    Naqavi, Ali; Söderström, Karin; Battaglia, Corsin; Paeder, Vincent; Scharf, Toralf; Herzig, Hans Peter; Ballif, Christophe

    2013-01-01T23:59:59.000Z

    We investigate the angular behavior of the upper bound of absorption provided by the guided modes in thin film solar cells. We show that the 4n^2 limit can be potentially exceeded in a wide angular and wavelength range using two-dimensional periodic thin film structures. Two models are used to estimate the absorption enhancement; in the first one, we apply the periodicity condition along the thickness of the thin film structure but in the second one, we consider imperfect confinement of the wave to the device. To extract the guided modes, we use an automatized procedure which is established in this work. Through examples, we show that from the optical point of view, thin film structures have a high potential to be improved by changing their shape. Also, we discuss the nature of different optical resonances which can be potentially used to enhance light trapping in the solar cell. We investigate the two different polarization directions for one-dimensional gratings and we show that the transverse magnetic pola...

  17. Epitaxial ferromagnetic oxide thin films on silicon with atomically sharp interfaces

    SciTech Connect (OSTI)

    Coux, P. de [Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Barcelona (Spain); CEMES-CNRS, 29 rue Jeanne Marvig, BP 94347, Toulouse Cedex 4 (France); Bachelet, R.; Fontcuberta, J.; Sánchez, F., E-mail: fsanchez@icmab.es [Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Barcelona (Spain); Warot-Fonrose, B. [CEMES-CNRS, 29 rue Jeanne Marvig, BP 94347, Toulouse Cedex 4 (France); Skumryev, V. [Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain and Dep. de Física, Univ. Autònoma de Barcelona, 08193 Bellaterra (Spain); Lupina, L.; Niu, G.; Schroeder, T. [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany)

    2014-07-07T23:59:59.000Z

    A bottleneck in the integration of functional oxides with silicon, either directly grown or using a buffer, is the usual formation of an amorphous interfacial layer. Here, we demonstrate that ferromagnetic CoFe{sub 2}O{sub 4} films can be grown epitaxially on Si(111) using a Y{sub 2}O{sub 3} buffer layer, and remarkably the Y{sub 2}O{sub 3}/Si(111) interface is stable and remains atomically sharp. CoFe{sub 2}O{sub 4} films present high crystal quality and high saturation magnetization.

  18. Development of Commercial Technology for Thin Film Silicon Solar Cells on Glass: Cooperative Research and Development Final Report, CRADA Number CRD-07-209

    SciTech Connect (OSTI)

    Sopori, B.

    2013-03-01T23:59:59.000Z

    NREL has conducted basic research relating to high efficiency, low cost, thin film silicon solar cell design and the method of making solar cells. Two patents have been issued to NREL in the above field. In addition, specific process and metrology tools have been developed by NREL. Applied Optical Sciences Corp. (AOS) has expertise in the manufacture of solar cells and has developed its own unique concentrator technology. AOS wants to complement its solar cell expertise and its concentrator technology by manufacturing flat panel thin film silicon solar cell panels. AOS wants to take NREL's research to the next level, using it to develop commercially viable flat pane, thin film silicon solar cell panels. Such a development in equipment, process, and metrology will likely produce the lowest cost solar cell technology for both commercial and residential use. NREL's fundamental research capability and AOS's technology and industrial background are complementary to achieve this product development.

  19. Electrochemical thinning of silicon

    DOE Patents [OSTI]

    Medernach, John W. (Albuquerque, NM)

    1994-01-01T23:59:59.000Z

    Porous semiconducting material, e.g. silicon, is formed by electrochemical treatment of a specimen in hydrofluoric acid, using the specimen as anode. Before the treatment, the specimen can be masked. The porous material is then etched with a caustic solution or is oxidized, depending of the kind of structure desired, e.g. a thinned specimen, a specimen, a patterned thinned specimen, a specimen with insulated electrical conduits, and so on. Thinned silicon specimen can be subjected to tests, such as measurement of interstitial oxygen by Fourier transform infra-red spectroscopy (FTIR).

  20. Electrochemical thinning of silicon

    DOE Patents [OSTI]

    Medernach, J.W.

    1994-01-11T23:59:59.000Z

    Porous semiconducting material, e.g. silicon, is formed by electrochemical treatment of a specimen in hydrofluoric acid, using the specimen as anode. Before the treatment, the specimen can be masked. The porous material is then etched with a caustic solution or is oxidized, depending of the kind of structure desired, e.g. a thinned specimen, a specimen, a patterned thinned specimen, a specimen with insulated electrical conduits, and so on. Thinned silicon specimen can be subjected to tests, such as measurement of interstitial oxygen by Fourier transform infra-red spectroscopy (FTIR). 14 figures.

  1. Thin Film Transistors On Plastic Substrates

    DOE Patents [OSTI]

    Carey, Paul G. (Mountain View, CA); Smith, Patrick M. (San Ramon, CA); Sigmon, Thomas W. (Portola Valley, CA); Aceves, Randy C. (Livermore, CA)

    2004-01-20T23:59:59.000Z

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The silicon based thin film transistor produced by the process includes a low temperature substrate incapable of withstanding sustained processing temperatures greater than about 250.degree. C., an insulating layer on the substrate, a layer of silicon on the insulating layer having sections of doped silicon, undoped silicon, and poly-silicon, a gate dielectric layer on the layer of silicon, a layer of gate metal on the dielectric layer, a layer of oxide on sections of the layer of silicon and the layer of gate metal, and metal contacts on sections of the layer of silicon and layer of gate metal defining source, gate, and drain contacts, and interconnects.

  2. CdS thin films on LiNbO{sub 3} (1 0 4) and silicon (1 1 1) substrates prepared through an atom substitution method

    SciTech Connect (OSTI)

    Qin Haiming; Zhao Yue [State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100 (China); Liu Hong, E-mail: hongliu@sdu.edu.c [State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100 (China); Gao Zheng [State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100 (China); Wang Jiyang, E-mail: Jywang@sdu.edu.c [State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100 (China); Liu Duo; Sang Yuanhua; Yao Bin [State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100 (China); Boughton, Robert I. [Center for Material Science, Bowling Green State University, Bowling Green, OH 43403 (United States)

    2011-03-15T23:59:59.000Z

    CdS thin films on LiNbO{sub 3} (1 0 4) and silicon (1 1 1) substrates were prepared through an atom substitution technique using cadmium nitrate as a reactant in an H{sub 2}S atmosphere at 230 {sup o}C. X-ray diffraction, scanning electron microscopy and transmission microscopy results indicate that the CdS film grows on LiNbO{sub 3} oriented along the [0 0 1] axis in form of crystallized nanoplates, while that deposited on silicon forms randomly oriented nanoparticles. Investigation of the precursor thin film suggests that CdS forms from the O in the CdO precursor thin film being substituted by S from H{sub 2}S in the surrounding environment, which is designated as an atom substitution process. This novel method involving an atom substitution reaction between the CdO precursor thin film and its environment can provide a new low cost approach to the preparation of chalcogenide or other compound thin films. A schematic illustration and corresponding mechanism describing the details of this method are proposed. -- Graphical abstract: Elemental O in CdO is substituted by elemental S from the atmosphere in the apparatus, which is designated as an atom substitution process. This novel method involving an atom substitution reaction between the CdO precursor thin film and its environment can provide a new low cost approach to the preparation of chalcogenide or other compound thin films. Display Omitted Research highlights: {yields} An atom substitution method for thin film preparation was demonstrated. {yields} Combination of the atom substitution and spin coating method was achieved. {yields} Well oriented CdS thin film was prepared on LiNbO{sub 3} substrate. {yields} The atom substitution method could be used for many compound systems.

  3. Structural characterisation of BaTiO{sub 3} thin films deposited on SrRuO{sub 3}/YSZ buffered silicon substrates and silicon microcantilevers

    SciTech Connect (OSTI)

    Colder, H.; Jorel, C., E-mail: corentin.jorel@unicaen.fr; Méchin, L. [GREYC, UMR 6072, CNRS, ENSICAEN, UCBN, 6 bd du Maréchal Juin, 14050 Caen Cedex (France); Domengès, B. [LAMIPS, CRISMAT-NXP Semiconductors-Presto Engineering laboratory, CNRS-UMR 6508, ENSICAEN, UCBN, 2 rue de la Girafe, 14 000 Caen (France); Marie, P.; Boisserie, M. [CIMAP, UMR 6252, CNRS, ENSICAEN, UCBN, CEA, 6 bd du Maréchal Juin, 14050 Caen Cedex (France); Guillon, S.; Nicu, L. [LAAS, CNRS, Univ de Toulouse, 7 avenue du Colonel Roche, 31400 Toulouse (France); Galdi, A. [GREYC, UMR 6072, CNRS, ENSICAEN, UCBN, 6 bd du Maréchal Juin, 14050 Caen Cedex (France); Department of Industrial Engineering, CNR-SPIN Salerno, Università di Salerno, 84084 Fisciano, Salerno (Italy)

    2014-02-07T23:59:59.000Z

    We report on the progress towards an all epitaxial oxide layer technology on silicon substrates for epitaxial piezoelectric microelectromechanical systems. (101)-oriented epitaxial tetragonal BaTiO{sub 3} (BTO) thin films were deposited at two different oxygen pressures, 5.10{sup ?2} mbar and 5.10{sup ?3} mbar, on SrRuO{sub 3}/Yttria-stabilized zirconia (YSZ) buffered silicon substrates by pulsed laser deposition. The YSZ layer full (001) orientation allowed the further growth of a fully (110)-oriented conductive SrRuO{sub 3} electrode as shown by X-ray diffraction. The tetragonal structure of the BTO films, which is a prerequisite for the piezoelectric effect, was identified by Raman spectroscopy. In the BTO film deposited at 5.10{sup ?2} mbar strain was mostly localized inside the BTO grains whereas at 5.10{sup ?3} mbar, it was localized at the grain boundaries. The BTO/SRO/YSZ layers were finally deposited on Si microcantilevers at an O{sub 2} pressure of 5.10{sup ?3} mbar. The strain level was low enough to evaluate the BTO Young modulus. Transmission electron microscopy (TEM) was used to investigate the epitaxial quality of the layers and their epitaxial relationship on plain silicon wafers as well as on released microcantilevers, thanks to Focused-Ion-Beam TEM lamella preparation.

  4. Boron- and phosphorus-doped silicon germanium alloy nanocrystals—Nonthermal plasma synthesis and gas-phase thin film deposition

    SciTech Connect (OSTI)

    Rowe, David J., E-mail: rowex108@umn.edu, E-mail: kortshagen@umn.edu; Kortshagen, Uwe R., E-mail: rowex108@umn.edu, E-mail: kortshagen@umn.edu [Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2014-02-01T23:59:59.000Z

    Alloyed silicon-germanium (SiGe) nanostructures are the topic of renewed research due to applications in modern optoelectronics and high-temperature thermoelectric materials. However, common techniques for producing nanostructured SiGe focus on bulk processing; therefore little is known of the physical properties of SiGe nanocrystals (NCs) synthesized from molecular precursors. In this letter, we synthesize and deposit thin films of doped SiGe NCs using a single, flow-through nonthermal plasma reactor and inertial impaction. Using x-ray and vibrational analysis, we show that the SiGe NC structure appears truly alloyed for Si{sub 1?x}Ge{sub x} for 0.16 < x < 0.24, and quantify the atomic dopant incorporation within the SiGe NC films.

  5. Experimental and computational analysis of laser melting of thin silicon films

    SciTech Connect (OSTI)

    Grigoropoulos, C.P.; Dutcher, W.E. Jr.; Emery, A.F. (Univ. of Washington, Seattle (USA))

    1991-02-01T23:59:59.000Z

    Recrystallization of thin semiconductor films can yield improved electrical and crystalline properties. The recrystallization is often effected by using a laser source to melt the semiconductor that has been deposited on an amorphous insulating substrate. This paper describes detailed experimental observations of the associated phase-change process. A computational conductive heat transfer model is presented. The numerical predictions are compared to the experimental results and good agreement is obtained.

  6. The Effects of Damage on Hydrogen-Implant-Induced Thin-Film Separation from Bulk Silicon Carbide

    SciTech Connect (OSTI)

    Gregory, R.B.; Holland, O.W.; Thomas, D.K.; Wetteroth, T.A.; Wilson, S.R.

    1999-04-05T23:59:59.000Z

    Exfoliation of Sic by hydrogen implantation and subsequent annealing forms the basis for a thin-film separation process which, when combined with hydrophilic wafer bonding, can be exploited to produce silicon-carbide-on-insulator, SiCOI. Sic thin films produced by this process exhibit unacceptably high resistivity because defects generated by the implant neutralize electrical carriers. Separation occurs because of chemical interaction of hydrogen with dangling bonds within microvoids created by the implant, and physical stresses due to gas-pressure effects during post-implant anneal. Experimental results show that exfoliation of Sic is dependent upon the concentration of implanted hydrogen, but the damage generated by the implant approaches a point when exfoliation is, in fact, retarded. This is attributed to excessive damage at the projected range of the implant which inhibits physical processes of implant-induced cleaving. Damage is controlled independently of hydrogen dosage by elevating the temperature of the SiC during implant in order to promote dynamic annealing. The resulting decrease in damage is thought to promote growth of micro-cracks which form a continuous cleave. Channeled H{sup +} implantation enhances the cleaving process while simultaneously minimizing residual damage within the separated film. It is shown that high-temperature irradiation and channeling each reduces the hydrogen fluence required to affect separation of a thin film and results in a lower concentration of defects. This increases the potential for producing SiC01 which is sufficiently free of defects and, thus, more easily electrically activated.

  7. Effects of surface pretreatments on interface structure during formation of ultra-thin yttrium silicate dielectric films on silicon

    E-Print Network [OSTI]

    Garfunkel, Eric

    silicate dielectric films on silicon J. J. Chambers Department of Chemical Engineering, North Carolina indicates that the yttrium silicate films are amorphous with uniform contrast throughout the layer. MEIS (10 Ã?) SiO2 film and oxidized, a yttrium silicate film is formed with bonding and composition similar

  8. amorphous-nanocrystalline silicon thin: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    THE POROUS SILICON PROCESS APPLYING CONVECTION for the first time to monocrystalline Si thin-film solar cells from the porous silicon (PSI) layer transfer for manufacturing high...

  9. Producer-Focused Life Cycle Assessment of Thin-Film Silicon Photovoltaic Systems

    E-Print Network [OSTI]

    Zhang, Teresa Weirui

    2011-01-01T23:59:59.000Z

    microcrystalline- silicon photovoltaic cell, B) range ofpayback of roof mounted photovoltaic cells. Boustead, I. andmicrocrystalline-silicon photovoltaic cell, B) range of

  10. Structural, electrical, and thermoelectric properties of bismuth telluride: Silicon/carbon nanocomposites thin films

    SciTech Connect (OSTI)

    Agarwal, Khushboo; Mehta, B. R., E-mail: brmehta@physics.iitd.ac.in [Thin Film Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016 (India)

    2014-08-28T23:59:59.000Z

    In this study, the effect of the presence of secondary phases on the structural, electrical, and thermoelectric properties of nanocomposite Bi{sub 2}Te{sub 3} films prepared by co-sputtering of silicon and carbon with Bi{sub 2}Te{sub 3} has been investigated. Growth temperature and the presence of Si and C phase are observed to have a strong effect on the topography and orientation of crystallites. X-ray diffraction study demonstrates that Bi{sub 2}Te{sub 3} and Bi{sub 2}Te{sub 3}:C samples have preferred (0 0 15) orientation in comparison to Bi{sub 2}Te{sub 3}:Si sample, which have randomly oriented crystallites. Atomic force, conducting atomic force, and scanning thermal microscopy analysis show significant differences in topographical, electrical, and thermal conductivity contrasts in Bi{sub 2}Te{sub 3}:Si and Bi{sub 2}Te{sub 3}:C samples. Due to the randomly oriented crystallites and the presence of Si along the crystallite boundaries, appreciable Seebeck coefficient, higher electrical conductivity, and lower thermal conductivity is achieved resulting in relatively higher value of power factor (3.71 mW K{sup ?2} m{sup ?1}) for Bi{sub 2}Te{sub 3}:Si sample. This study shows that by incorporating a secondary phase along crystallite boundaries, microstructural, electrical, and thermoelectric properties of the composite samples can be modified.

  11. Optimal design of one-dimensional photonic crystal back reflectors for thin-film silicon solar cells

    SciTech Connect (OSTI)

    Chen, Peizhuan; Hou, Guofu, E-mail: gfhou@nankai.edu.cn; Zhang, Jianjun, E-mail: jjzhang@nankai.edu.cn; Zhang, Xiaodan; Zhao, Ying [Institute of Photoelectronics and Tianjin Key Laboratory of Photoelectronic Thin-film Devices and Technique, Nankai University, Tianjin 300071 (China)

    2014-08-14T23:59:59.000Z

    For thin-film silicon solar cells (TFSC), a one-dimensional photonic crystal (1D PC) is a good back reflector (BR) because it increases the total internal reflection at the back surface. We used the plane-wave expansion method and the finite difference time domain (FDTD) algorithm to simulate and analyze the photonic bandgap (PBG), the reflection and the absorption properties of a 1D PC and to further explore the optimal 1D PC design for use in hydrogenated amorphous silicon (a-Si:H) solar cells. With identified refractive index contrast and period thickness, we found that the PBG and the reflection of a 1D PC are strongly influenced by the contrast in bilayer thickness. Additionally, light coupled to the top three periods of the 1D PC and was absorbed if one of the bilayers was absorptive. By decreasing the thickness contrast of the absorptive layer relative to the non-absorptive layer, an average reflectivity of 96.7% was achieved for a 1D PC alternatively stacked with a-Si:H and SiO{sub 2} in five periods. This reflectivity was superior to a distributed Bragg reflector (DBR) structure with 93.5% and an Ag film with 93.4%. n-i-p a-Si:H solar cells with an optimal 1D PC-based BR offer a higher short-circuit current density than those with a DBR-based BR or an AZO/Ag-based BR. These results provide new design rules for photonic structures in TFSC.

  12. almgb14 thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

  13. aggase2 thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

  14. area thin film: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

  15. aluminide thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

  16. antiferroelectric thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

  17. ain thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

  18. advanced thin film: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

  19. Temperature dependence of magnetic properties of La0.7Sr0.3MnO3SrTiO3 thin films on silicon substrates

    E-Print Network [OSTI]

    Boyer, Edmond

    by a 20-nm-thick SrTiO3 001 buffer layer. X-ray diffraction and atomic force microscopy studies. INTRODUCTION Perovskite manganites RE 1-x AE xMnO3, where RE =rare earth and AE=alkaline earth formTemperature dependence of magnetic properties of La0.7Sr0.3MnO3Ã?SrTiO3 thin films on silicon

  20. Thin crystalline silicon solar cells based on epitaxial films grown at 165C by RF PECVD

    E-Print Network [OSTI]

    doped p-type (100) crystalline silicon substrates. We have studied the effect of the epitaxial intrinsic The photovoltaic industry has been growing with astonishing rates over the past years, but expansion plans

  1. Thin crystalline silicon solar cells based on epitaxial films grown at 165C by RF PECVD

    E-Print Network [OSTI]

    doped p-type (100) crystalline silicon substrates. We have studied the effect of the epitaxial intrinsic-2263" DOI : 10.1016/j.solmat.2011.03.038 #12;2 1. Introduction The photovoltaic industry has been growing

  2. Experimental Investigation of Size Effects on the Thermal Conductivity of Silicon-Germanium Alloy Thin Films

    E-Print Network [OSTI]

    Cheaito, Ramez

    We experimentally investigate the role of size effects and boundary scattering on the thermal conductivity of silicon-germanium alloys. The thermal conductivities of a series of epitaxially grown Si[subscript 1-x] Ge[subscript ...

  3. Epitaxial growth of zinc blende and wurtzitic allied nitride thin films on (001) silicon

    E-Print Network [OSTI]

    Moustakas, Theodore

    hasbeenreported to be grown on ,@SiCand MgO( 100) substrates,"'which are closely lat- tice matchedto &GaN, and on GaAs substrate,"*" which has a significant mismatch to P-GaN. Growth of GaN onto silicon expansioncoefficient,it is rather difficult to epitaxially grow GaN on Si substrate. Early attempts have led

  4. CFN | Thin Films Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Synthesis and Characterization Facility Thin-Film Processing Facility Online Manager (FOM) website FOM manual ESR for lab 1L32 (High-Resolution SEM and x-ray...

  5. Thin Film Photovoltaics Research

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) supports research and development of four thin-film technologies on the path to achieving cost-competitive solar energy, including:

  6. Picosecond and nanosecond laser annealing and simulation of amorphous silicon thin films for solar cell applications

    SciTech Connect (OSTI)

    Theodorakos, I.; Zergioti, I.; Tsoukalas, D.; Raptis, Y. S., E-mail: yraptis@central.ntua.gr [Physics Department, National Technical University of Athens, Heroon Polytechniou 9, 15780 Zographou, Athens (Greece); Vamvakas, V. [Heliosphera SA, Industrial Area of Tripolis, 8th Building Block, 5th Road, GR-221 00 Tripolis (Greece)

    2014-01-28T23:59:59.000Z

    In this work, a picosecond diode pumped solid state laser and a nanosecond Nd:YAG laser have been used for the annealing and the partial nano-crystallization of an amorphous silicon layer. These experiments were conducted as an alternative/complementary to plasma-enhanced chemical vapor deposition method for fabrication of micromorph tandem solar cell. The laser experimental work was combined with simulations of the annealing process, in terms of temperature distribution evolution, in order to predetermine the optimum annealing conditions. The annealed material was studied, as a function of several annealing parameters (wavelength, pulse duration, fluence), as far as it concerns its structural properties, by X-ray diffraction, SEM, and micro-Raman techniques.

  7. {sup 1}H NMR electron-nuclear cross relaxation in thin films of hydrogenated amorphous silicon

    SciTech Connect (OSTI)

    Su Tining; Taylor, P. C.; Ganguly, G.; Carlson, D. E.; Bobela, D. C.; Hari, P. [Department of Physics, Colorado School of Mines, Golden, Colorado 80401 (United States); BP Solar, Toano, Virginia 23168 (United States); Department of Physics, University of Utah, Salt Lake City, Utah 84112 (United States); Department of Physics and Engineering Physics, University of Tulsa, Tulsa, Oklahoma 74104 (United States)

    2007-12-15T23:59:59.000Z

    We investigate the spin-lattice relaxation of the dipolar order in {sup 1}H NMR in hydrogenated amorphous silicon (a-Si:H). We find that the relaxation is dominated by the cross relaxation between the hydrogen nuclei and the paramagnetic states. The relaxation is inhomogeneous, and can be described as a stretched exponential function. We proposed a possible mechanism for this relaxation. This mechanism applies to a rather broad range of paramagnetic states, including the deep neutral defects (dangling bonds), the light-induced metastable defects, the defects created by doping, and the singly occupied, localized band-tail states populated by light at low temperatures. The cross relaxation is only sensitive to the bulk spin density, and the surface spins have a negligible effect on the relaxation.

  8. Graphene-silicon layered structures on single-crystalline Ir(111) thin films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Que, Yande D.; Tao, Jing; Zhang, Yong; Wang, Yeliang L.; Wu, Lijun J.; Zhu, Yimei M.; Kim, Kisslinger; Weinl, Michael; Schreck, Matthias; Shen, Chengmin M.; et al

    2015-02-01T23:59:59.000Z

    Epitaxial growth of graphene on transition metal crystals, such as Ru,?¹?³? Ir,????? and Ni,??? provides large-area, uniform graphene layers with controllable defect density, which is crucial for practical applications in future devices. To decrease the high cost of single-crystalline metal bulks, single-crystalline metal films are strongly suggested as the substrates for epitaxial growth large-scale high-quality graphene.???¹?? Moreover, in order to weaken the interactions of graphene with its metal host, which may result in a suppression of the intrinsic properties of graphene,?¹¹ ¹²? the method of element intercalation of semiconductors at the interface between an epitaxial graphene layer and a transitionmore »metal substrate has been successfully realized.?¹³?¹??« less

  9. High efficiency low cost thin film silicon solar cell design and method for making

    DOE Patents [OSTI]

    Sopori, Bhushan L. (Denver, CO)

    1999-01-01T23:59:59.000Z

    A semiconductor device having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer.

  10. High efficiency low cost thin film silicon solar cell design and method for making

    DOE Patents [OSTI]

    Sopori, B.L.

    1999-04-27T23:59:59.000Z

    A semiconductor device is described having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer. 9 figs.

  11. High efficiency, low cost, thin film silicon solar cell design and method for making

    DOE Patents [OSTI]

    Sopori, Bhushan L. (Denver, CO)

    2001-01-01T23:59:59.000Z

    A semiconductor device having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer.

  12. Effect of deposition temperature on electron-beam evaporated polycrystalline silicon thin-film and crystallized by diode laser

    SciTech Connect (OSTI)

    Yun, J., E-mail: j.yun@unsw.edu.au; Varalmov, S.; Huang, J.; Green, M. A. [School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, New South Wales 2052 (Australia); Kim, K. [School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, New South Wales 2052 (Australia); Suntech R and D Australia, Botany, New South Wales 2019 (Australia)

    2014-06-16T23:59:59.000Z

    The effects of the deposition temperature on the microstructure, crystallographic orientation, and electrical properties of a 10-?m thick evaporated Si thin-film deposited on glass and crystallized using a diode laser, are investigated. The crystallization of the Si thin-film is initiated at a deposition temperature between 450 and 550?°C, and the predominant (110) orientation in the normal direction is found. Pole figure maps confirm that all films have a fiber texture and that it becomes stronger with increasing deposition temperature. Diode laser crystallization is performed, resulting in the formation of lateral grains along the laser scan direction. The laser power required to form lateral grains is higher in case of films deposited below 450?°C for all scan speeds. Pole figure maps show 75% occupancies of the (110) orientation in the normal direction when the laser crystallized film is deposited above 550?°C. A higher density of grain boundaries is obtained when the laser crystallized film is deposited below 450?°C, which limits the solar cell performance by n?=?2 recombination, and a performance degradation is expected due to severe shunting.

  13. Thin film photovoltaic device

    DOE Patents [OSTI]

    Catalano, Anthony W. (Wilmington, DE); Bhushan, Manjul (Wilmington, DE)

    1982-01-01T23:59:59.000Z

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids.

  14. Thin film photovoltaic device

    DOE Patents [OSTI]

    Catalano, A.W.; Bhushan, M.

    1982-08-03T23:59:59.000Z

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids. 5 figs.

  15. Epitaxial thin films

    DOE Patents [OSTI]

    Hunt, Andrew Tye; Deshpande, Girish; Lin, Wen-Yi; Jan, Tzyy-Jiuan

    2006-04-25T23:59:59.000Z

    Epitatial thin films for use as buffer layers for high temperature superconductors, electrolytes in solid oxide fuel cells (SOFC), gas separation membranes or dielectric material in electronic devices, are disclosed. By using CCVD, CACVD or any other suitable deposition process, epitaxial films having pore-free, ideal grain boundaries, and dense structure can be formed. Several different types of materials are disclosed for use as buffer layers in high temperature superconductors. In addition, the use of epitaxial thin films for electrolytes and electrode formation in SOFCs results in densification for pore-free and ideal gain boundary/interface microstructure. Gas separation membranes for the production of oxygen and hydrogen are also disclosed. These semipermeable membranes are formed by high-quality, dense, gas-tight, pinhole free sub-micro scale layers of mixed-conducting oxides on porous ceramic substrates. Epitaxial thin films as dielectric material in capacitors are also taught herein. Capacitors are utilized according to their capacitance values which are dependent on their physical structure and dielectric permittivity. The epitaxial thin films of the current invention form low-loss dielectric layers with extremely high permittivity. This high permittivity allows for the formation of capacitors that can have their capacitance adjusted by applying a DC bias between their electrodes.

  16. Thin-film optical initiator

    DOE Patents [OSTI]

    Erickson, Kenneth L. (Albuquerque, NM)

    2001-01-01T23:59:59.000Z

    A thin-film optical initiator having an inert, transparent substrate, a reactive thin film, which can be either an explosive or a pyrotechnic, and a reflective thin film. The resultant thin-film optical initiator system also comprises a fiber-optic cable connected to a low-energy laser source, an output charge, and an initiator housing. The reactive thin film, which may contain very thin embedded layers or be a co-deposit of a light-absorbing material such as carbon, absorbs the incident laser light, is volumetrically heated, and explodes against the output charge, imparting about 5 to 20 times more energy than in the incident laser pulse.

  17. NMR characterization of thin films

    DOE Patents [OSTI]

    Gerald II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2010-06-15T23:59:59.000Z

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  18. NMR characterization of thin films

    DOE Patents [OSTI]

    Gerald, II, Rex E. (Brookfield, IL); Klingler, Robert J. (Glenview, IL); Rathke, Jerome W. (Homer Glen, IL); Diaz, Rocio (Chicago, IL); Vukovic, Lela (Westchester, IL)

    2008-11-25T23:59:59.000Z

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  19. A thin film transistor driven microchannel device 

    E-Print Network [OSTI]

    Lee, Hyun Ho

    2005-02-17T23:59:59.000Z

    perturbation, an amorphous silicon (a-Si:H) thin film transistor (TFT) was connected to the microchannel device. The self-aligned a-Si:H TFT was fabricated with a two-photomask process. The result shows that the attachment of the TFT successfully suppressed...

  20. INTERFERENCE Interference from Thin Films

    E-Print Network [OSTI]

    La Rosa, Andres H.

    INTERFERENCE Interference from Thin Films Lecture notes La Rosa Portland State University PH-213 through, a sheet of glass #12;Out of phase #12;In phase #12;#12;Interference from thin films Key reasoning for analyzing interference in a thin film: Waves undergo phase shift due to i) reflections at a interface

  1. Thin film photovoltaic cell

    DOE Patents [OSTI]

    Meakin, John D. (Newark, DE); Bragagnolo, Julio (Newark, DE)

    1982-01-01T23:59:59.000Z

    A thin film photovoltaic cell having a transparent electrical contact and an opaque electrical contact with a pair of semiconductors therebetween includes utilizing one of the electrical contacts as a substrate and wherein the inner surface thereof is modified by microroughening while being macro-planar.

  2. Thin film solar cells using impure polycrystalline silicon M. Rodot (1), M. Barbe (1), J. E. Bouree (1), V. Perraki (*) (1), G. Revel (2),R. Kishore (2) (**), J. L. Pastol (2), R. Mertens (3), M. Caymax (3) and M. Eyckmans

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    687 Thin film solar cells using impure polycrystalline silicon M. Rodot (1), M. Barbe (1), J. E avec les autres aptes à l'utilisation de Si-UMG bon marché. Abstract. 2014 Epitaxial solar cells have and electron diffusion length adequate to produce good solar cells. 10.3 % efficiency cells have been obtained

  3. Thin film superconductor magnetic bearings

    DOE Patents [OSTI]

    Weinberger, Bernard R. (Avon, CT)

    1995-12-26T23:59:59.000Z

    A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

  4. A survey of thin-film solar photovoltaic industry & technologies

    E-Print Network [OSTI]

    Grama, Sorin

    2007-01-01T23:59:59.000Z

    A new type of solar cell technology using so-called thin-film solar photovoltaic material has the potential to make a great impact on our lives. Because it uses very little or no silicon at all, thin- film (TF) solar ...

  5. amorphous thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Amorphous Silicon Thin-Film Transistor Pixel.S.A. 1 LG Philips LCD Research and Development Center, An-Yang, 431-080, Korea (Received July 23, 2006; accepted October 31, 2006;...

  6. amorphous thin film: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Amorphous Silicon Thin-Film Transistor Pixel.S.A. 1 LG Philips LCD Research and Development Center, An-Yang, 431-080, Korea (Received July 23, 2006; accepted October 31, 2006;...

  7. Recent technological advances in thin film solar cells

    SciTech Connect (OSTI)

    Ullal, H.S.; Zwelbel, K.; Surek, T.

    1990-03-01T23:59:59.000Z

    High-efficiency, low-cost thin film solar cells are an exciting photovoltaic technology option for generating cost-effective electricity in 1995 and beyond. This paper reviews the substantial advances made by several thin film solar cell technologies, namely, amorphous silicon, copper indium diselenide, cadmium telluride, and polycrystalline silicon. Recent examples of utility demonstration projects of these emerging materials are also discussed. 8 refs., 4 figs.

  8. Thin film composite electrolyte

    DOE Patents [OSTI]

    Schucker, Robert C. (The Woodlands, TX)

    2007-08-14T23:59:59.000Z

    The invention is a thin film composite solid (and a means for making such) suitable for use as an electrolyte, having a first layer of a dense, non-porous conductive material; a second layer of a porous ionic conductive material; and a third layer of a dense non-porous conductive material, wherein the second layer has a Coefficient of thermal expansion within 5% of the coefficient of thermal expansion of the first and third layers.

  9. Generation of low work function, stable compound thin films by laser ablation

    DOE Patents [OSTI]

    Dinh, Long N. (Concord, CA); McLean, II, William (Oakland, CA); Balooch, Mehdi (Berkeley, CA); Fehring, Jr., Edward J. (Dublin, CA); Schildbach, Marcus A. (Livermore, CA)

    2001-01-01T23:59:59.000Z

    Generation of low work function, stable compound thin films by laser ablation. Compound thin films with low work function can be synthesized by simultaneously laser ablating silicon, for example, and thermal evaporating an alkali metal into an oxygen environment. For example, the compound thin film may be composed of Si/Cs/O. The work functions of the thin films can be varied by changing the silicon/alkali metal/oxygen ratio. Low work functions of the compound thin films deposited on silicon substrates were confirmed by ultraviolet photoelectron spectroscopy (UPS). The compound thin films are stable up to 500.degree. C. as measured by x-ray photoelectron spectroscopy (XPS). Tests have established that for certain chemical compositions and annealing temperatures of the compound thin films, negative electron affinity (NEA) was detected. The low work function, stable compound thin films can be utilized in solar cells, field emission flat panel displays, electron guns, and cold cathode electron guns.

  10. abrasion-resistant thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

  11. al-cu-fe thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

  12. alendronate-hydroxyapatite thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

  13. ag-in-se thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

  14. Vertically Aligned Nanocomposite Thin Films 

    E-Print Network [OSTI]

    Bi, Zhenxing

    2012-07-16T23:59:59.000Z

    microstructure is a brand new architecture in thin films and an exciting approach that promises tunable material functionalities as well as novel nanostructures....

  15. Multi-resonant silver nano-disk patterned thin film hydrogenated amorphous silicon solar cells for Staebler-Wronski effect compensation

    E-Print Network [OSTI]

    Vora, Ankit; Pearce, Joshua M; Bergstrom, Paul L; Güney, Durdu Ö

    2014-01-01T23:59:59.000Z

    We study polarization independent improved light trapping in commercial thin film hydrogenated amorphous silicon (a-Si:H) solar photovoltaic cells using a three-dimensional silver array of multi-resonant nano-disk structures embedded in a silicon nitride anti-reflection coating (ARC) to enhance optical absorption in the intrinsic layer (i-a-Si:H) for the visible spectrum for any polarization angle. Predicted total optical enhancement (OE) in absorption in the i-a-Si:H for AM-1.5 solar spectrum is 18.51% as compared to the reference, and producing a 19.65% improvement in short-circuit current density (JSC) over 11.7 mA/cm2 for a reference cell. The JSC in the nano-disk patterned solar cell (NDPSC) was found to be higher than the commercial reference structure for any incident angle. The NDPSC has a multi-resonant optical response for the visible spectrum and the associated mechanism for OE in i-a-Si:H layer is excitation of Fabry-Perot resonance facilitated by surface plasmon resonances. The detrimental Staebl...

  16. Metallophthalocyanine thin films : structure and physical properties

    E-Print Network [OSTI]

    Colesniuc, Corneliu Nicolai

    2011-01-01T23:59:59.000Z

    in copper phthalocyanine thin film transistors”, J. Park, J.free phthalocyanine thin films”, F. I. Bohrer, A. Sharoni,copper phthalocyanine thin-film transistors”, R. D. Yang, J.

  17. Doping in Zinc Oxide Thin Films

    E-Print Network [OSTI]

    Yang, Zheng

    2009-01-01T23:59:59.000Z

    properties of ZnO:Mn thin films were comprehensivelyd exchange in ZnO:Mn DMS thin films. Both the ordinary andspin-obital ferromagnetism in ZnO:Mn DMS thin films.

  18. Effects of thickness on the piezoelectric and dielectric properties of lead zirconate titanate thin films

    E-Print Network [OSTI]

    Sottos, Nancy R.

    Lead zirconate titanate PZT thin films with a Zr/Ti ratio of 52/48 were deposited on platinized silicon. Both the piezoelectric properties and the dielectric constants of the PZT thin films were found thin films. The measured changes in properties with thickness were correlated with the residual stress

  19. Thin film microcalorimeter for heat capacity measurements from 1.5 to 800 K

    E-Print Network [OSTI]

    Hellman, Frances

    Thin film microcalorimeter for heat capacity measurements from 1.5 to 800 K , D. W. Denlinger, E. N for publication 13 January 1994) A new microcalorimeter for measuring heat capacity of thin films in the range 1 silicon nitride membrane as the sample substrate, a Pt thin film resistor for temperatures greater than 40

  20. Accounting for Localized Defects in the Optoelectronic Design of Thin-Film Solar Cells

    E-Print Network [OSTI]

    Deceglie, Michael G.

    2014-01-01T23:59:59.000Z

    silicon thin film solar cells," Solar Energy, vol. 77, pp.nano-crystalline silicon n–i–p solar cells," Solar EnergyMaterials and Solar Cells, vol. 93, pp. H. Sakai, T.

  1. Thin film ion conducting coating

    DOE Patents [OSTI]

    Goldner, Ronald B. (Lexington, MA); Haas, Terry (Sudbury, MA); Wong, Kwok-Keung (Watertown, MA); Seward, George (Arlington, MA)

    1989-01-01T23:59:59.000Z

    Durable thin film ion conducting coatings are formed on a transparent glass substrate by the controlled deposition of the mixed oxides of lithium:tantalum or lithium:niobium. The coatings provide durable ion transport sources for thin film solid state storage batteries and electrochromic energy conservation devices.

  2. Mode Splitting for Efficient Plasmoinc Thin-film Solar Cell

    E-Print Network [OSTI]

    Li, Tong; Jiang, Chun

    2010-01-01T23:59:59.000Z

    We propose an efficient plasmonic structure consisting of metal strips and thin-film silicon for solar energy absorption. We numerically demonstrate the absorption enhancement in symmetrical structure based on the mode coupling between the localized plasmonic mode in Ag strip pair and the excited waveguide mode in silicon slab. Then we explore the method of symmetry-breaking to excite the dark modes that can further enhance the absorption ability. We compare our structure with bare thin-film Si solar cell, and results show that the integrated quantum efficiency is improved by nearly 90% in such thin geometry. It is a promising way for the solar cell.

  3. Fabrication and Characterization of Titanium-doped Hydroxyapatite Thin Films

    E-Print Network [OSTI]

    Desai, Amit Y

    . Thin films of titanium-doped hydroxyapatite (HA-Ti) have been deposited onto silicon substrates at three different compositions. With direct current (dc) power to the Ti target of 5, 10, and 15W films with compositions of 0.7, 1.7 and 2.0 at.% titanium...

  4. Plasma polymerization of C[subscript 4]F[subscript 8] thin film on high aspect ratio silicon molds

    E-Print Network [OSTI]

    Yeo, L. P.

    High aspect ratio polymeric micro-patterns are ubiquitous in many fields ranging from sensors, actuators, optics, fluidics and medical. Second generation PDMS molds are replicated against first generation silicon molds ...

  5. PV prospects: thinPV prospects: thin--film cellsfilm cells Si cell costs

    E-Print Network [OSTI]

    Pulfrey, David L.

    1 PV prospects: thinPV prospects: thin--film cellsfilm cells LECTURE 8 · Si cell costs · optimizing://www.solarbuzz.com/Moduleprices.htm #12;6 Cost of PV modulesCost of PV modules The lowest retail price for a multicrystalline silicon for a monocrystalline silicon module is $1.48 per watt (1.04 per watt), from an Asian retailer. Brand, technical

  6. Efficient Light Trapping in Inverted Nanopyramid Thin Crystalline Silicon Membranes for Solar Cell Applications

    E-Print Network [OSTI]

    Mavrokefalos, Anastassios

    Thin-film crystalline silicon (c-Si) solar cells with light-trapping structures can enhance light absorption within the semiconductor absorber layer and reduce material usage. Here we demonstrate that an inverted nanopyramid ...

  7. Vertically Aligned Nanocomposite Thin Films

    E-Print Network [OSTI]

    Bi, Zhenxing

    2012-07-16T23:59:59.000Z

    and epitaxial growth ability on given substrates. In the present work, we investigated unique epitaxial two-phase VAN (BiFeO3)x:(Sm2O3)1-x and (La0.7Sr0.3MnO3)x:(Mn3O4)1-x thin film systems by pulsed laser deposition. These VAN thin films exhibit a highly...

  8. Thin-film silicon triple-junction solar cell with 12.5% stable efficiency on innovative flat light-scattering substrate

    E-Print Network [OSTI]

    Psaltis, Demetri

    solar cells Appl. Phys. Lett. 101, 221110 (2012) Error analysis for concentrated solar collectors JThin-film silicon triple-junction solar cell with 12.5% stable efficiency on innovative flat light of organic solar cells APL: Org. Electron. Photonics 5, 251 (2012) Effects of the Al cathode evaporation rate

  9. Vapor deposition of thin films

    DOE Patents [OSTI]

    Smith, David C. (Los Alamos, NM); Pattillo, Stevan G. (Los Alamos, NM); Laia, Jr., Joseph R. (Los Alamos, NM); Sattelberger, Alfred P. (Los Alamos, NM)

    1992-01-01T23:59:59.000Z

    A highly pure thin metal film having a nanocrystalline structure and a process of preparing such highly pure thin metal films of, e.g., rhodium, iridium, molybdenum, tungsten, rhenium, platinum, or palladium by plasma assisted chemical vapor deposition of, e.g., rhodium(allyl).sub.3, iridium(allyl).sub.3, molybdenum(allyl).sub.4, tungsten(allyl).sub.4, rhenium(allyl).sub.4, platinum(allyl).sub.2, or palladium(allyl).sub.2 are disclosed. Additionally, a general process of reducing the carbon content of a metallic film prepared from one or more organometallic precursor compounds by plasma assisted chemical vapor deposition is disclosed.

  10. A study of laser annealing effects in boron ion implanted polycrystalline silicon films

    E-Print Network [OSTI]

    Suh, Inhak Harry

    1982-01-01T23:59:59.000Z

    , large-grain polycrysta11ine silicon has potential use for large volume production of low cost solar cells [1-3] . Polycrystalline silicon is easy to prepare and is compa- tible with monolithic silicon integrated circuit technology; however... of 2O pico second [5]. The MOSFET's fabricated to date on thin films of polycrystalline silicon have also exhibited poor transconductance [5J. It has been reported that the electrical properties of ion implanted polycrystalline silicon can...

  11. 304 JOURNAL OF DISPLAY TECHNOLOGY, VOL. 3, NO. 3, SEPTEMBER 2007 Amorphous Silicon Thin-Film Transistor Backplanes

    E-Print Network [OSTI]

    Physics Laboratory, Princeton University, Princeton, NJ. A. Z. Kattamis, I.-C. Cheng, K. Long, B-Film Transistor Backplanes Deposited at 200 C on Clear Plastic for Lamination to Electrophoretic Displays Alex Z. Kattamis, I-Chun Cheng, Ke Long, Bahman Hekmatshoar, Kunigunde H. Cherenack, Sigurd Wagner, James C. Sturm

  12. In-situ Spectroscopic Reflectometry for Polycrystalline Silicon Thin Film Etch Rate Determination During Reactive Ion Etching

    E-Print Network [OSTI]

    Terry, Fred L.

    for low-cost, high-speed film thickness measurement systems. We have used spectroscopic reflectometry (SR features in the fabrication process of microelectronic devices and circuitry. As the integrated circuits industry continues its progress toward higher performance circuitry, circuit designers are pushing

  13. Enhanced breakdown voltage and reduced self-heating effects in thin-film lateral bipolar transistors: Design and

    E-Print Network [OSTI]

    Kumar, M. Jagadesh

    Enhanced breakdown voltage and reduced self-heating effects in thin-film lateral bipolar breakdown and self-heating characteristics of a new collector-tub three-zone step doped thin-film lateral-doping; Collector-tub; Silicon-on-insulator; Self-heating 1. Introduction High voltage thin-film (

  14. Thin film-coated polymer webs

    DOE Patents [OSTI]

    Wenz, Robert P. (Cottage Grove, MN); Weber, Michael F. (Shoreview, MN); Arudi, Ravindra L. (Woodbury, MN)

    1992-02-04T23:59:59.000Z

    The present invention relates to thin film-coated polymer webs, and more particularly to thin film electronic devices supported upon a polymer web, wherein the polymer web is treated with a purifying amount of electron beam radiation.

  15. Nanomechanical properties of hydrated organic thin films

    E-Print Network [OSTI]

    Choi, Jae Hyeok

    2007-01-01T23:59:59.000Z

    Hydrated organic thin films are biological or synthetic molecularly thin coatings which impart a particular functionality to an underlying substrate and which have discrete water molecules associated with them. Such films ...

  16. Semiconductor-nanocrystal/conjugated polymer thin films

    DOE Patents [OSTI]

    Alivisatos, A. Paul (Oakland, CA); Dittmer, Janke J. (Munich, DE); Huynh, Wendy U. (Munich, DE); Milliron, Delia (Berkeley, CA)

    2010-08-17T23:59:59.000Z

    The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

  17. Polycrystalline thin-film solar cells and modules

    SciTech Connect (OSTI)

    Ullal, H.S.; Stone, J.L.; Zweibel, K.; Surek, T.; Mitchell, R.L.

    1991-12-01T23:59:59.000Z

    This paper describes the recent technological advances in polycrystalline thin-film solar cells and modules. Three thin film materials, namely, cadmium telluride (CdTe), copper indium diselenide (CuInSe{sub 2}, CIS) and silicon films (Si-films) have made substantial technical progress, both in device and module performance. Early stability results for modules tested outdoors by various groups worldwide are also encouraging. The major global players actively involved in the development of the these technologies are discussed. Technical issues related to these materials are elucidated. Three 20-kW polycrystalline thin-film demonstration photovoltaic (PV) systems are expected to be installed in Davis, CA in 1992 as part of the Photovoltaics for Utility-Scale Applications (PVUSA) project. This is a joint project between the US Department of Energy (DOE), Pacific Gas and Electric (PG&E), Electric Power Research Institute (EPRI), California Energy Commission (CEC), and a utility consortium.

  18. Polycrystalline thin-film solar cells and modules

    SciTech Connect (OSTI)

    Ullal, H.S.; Stone, J.L.; Zweibel, K.; Surek, T.; Mitchell, R.L.

    1991-12-01T23:59:59.000Z

    This paper describes the recent technological advances in polycrystalline thin-film solar cells and modules. Three thin film materials, namely, cadmium telluride (CdTe), copper indium diselenide (CuInSe{sub 2}, CIS) and silicon films (Si-films) have made substantial technical progress, both in device and module performance. Early stability results for modules tested outdoors by various groups worldwide are also encouraging. The major global players actively involved in the development of the these technologies are discussed. Technical issues related to these materials are elucidated. Three 20-kW polycrystalline thin-film demonstration photovoltaic (PV) systems are expected to be installed in Davis, CA in 1992 as part of the Photovoltaics for Utility-Scale Applications (PVUSA) project. This is a joint project between the US Department of Energy (DOE), Pacific Gas and Electric (PG E), Electric Power Research Institute (EPRI), California Energy Commission (CEC), and a utility consortium.

  19. Thin film cracking and ratcheting caused by temperature cycling

    E-Print Network [OSTI]

    Suo, Zhigang

    Thin film cracking and ratcheting caused by temperature cycling M. Huang and Z. Suo Mechanical caused by ratcheting in an adjacent ductile layer. For example, on a silicon die directly attached corners. Aided by cycling temperature, the shear stresses cause ratcheting in the aluminum pads

  20. Picoseconds-Laser Modification of Thin Films

    SciTech Connect (OSTI)

    Gakovic, Biljana; Trtica, Milan [Institute of Nuclear Sciences 'VINCA' 522, 11001 Belgrade (Serbia and Montenegro); Batani, Dimitri; Desai, Tara; Redaelli, Renato [Dipartimento di Fisica 'G. Occhialini', Universita' degli Studi Milano-Bicocca, Piazza della Scienza 3, Milan 20126 (Italy)

    2006-04-07T23:59:59.000Z

    The interaction of a Nd:YAG laser, pulse duration of 40 ps, with a titanium nitride (TiN) and tungsten-titanium (W-Ti) thin films deposited at silicon was studied. The peak intensity on targets was up to 1012 W/cm2. Results have shown that the TiN surface was modified, by the laser beam, with energy density of {>=}0.18 J/cm2 ({lambda}laser= 532 nm) as well as of 30.0 J/cm2 ({lambda}laser= 1064 nm). The W-Ti was surface modified with energy density of 5.0 J/cm2 ({lambda}laser= 532 nm). The energy absorbed from the Nd:YAG laser beam is partially converted to thermal energy, which generates a series of effects such as melting, vaporization of molten materials, dissociation and ionization of the vaporized material, appearance of plasma, etc. The following morphological changes of both targets were observed: (i) The appearance of periodic microstructures, in the central zone of the irradiated area, for laser irradiation at 532 nm. Accumulation of great number of laser pulses caused film ablation and silicon modification. (ii) Hole formation on the titanium nitride/silicon target was registered at 1064 nm. The process of the Nd:YAG laser interaction with both targets was accompanied by plasma formation above the target.

  1. Shielding superconductors with thin films

    E-Print Network [OSTI]

    Posen, Sam; Catelani, Gianluigi; Liepe, Matthias U; Sethna, James P

    2015-01-01T23:59:59.000Z

    Determining the optimal arrangement of superconducting layers to withstand large amplitude AC magnetic fields is important for certain applications such as superconducting radiofrequency cavities. In this paper, we evaluate the shielding potential of the superconducting film/insulating film/superconductor (SIS') structure, a configuration that could provide benefits in screening large AC magnetic fields. After establishing that for high frequency magnetic fields, flux penetration must be avoided, the superheating field of the structure is calculated in the London limit both numerically and, for thin films, analytically. For intermediate film thicknesses and realistic material parameters we also solve numerically the Ginzburg-Landau equations. It is shown that a small enhancement of the superheating field is possible, on the order of a few percent, for the SIS' structure relative to a bulk superconductor of the film material, if the materials and thicknesses are chosen appropriately.

  2. Thin film polymeric gel electrolytes

    DOE Patents [OSTI]

    Derzon, Dora K. (1554 Rosalba St. NE., Albuquerque, Bernalillo County, NM 87112); Arnold, Jr., Charles (3436 Tahoe, NE., Albuquerque, Bernalillo County, NM 87111); Delnick, Frank M. (9700 Fleming Rd., Dexter, MI 48130)

    1996-01-01T23:59:59.000Z

    Novel hybrid thin film electrolyte, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities .apprxeq.10.sup.-3 .OMEGA..sup.-1 cm.sup.-1 are useful as electrolytes for rechargeable lithium batteries.

  3. Thin film polymeric gel electrolytes

    DOE Patents [OSTI]

    Derzon, D.K.; Arnold, C. Jr.; Delnick, F.M.

    1996-12-31T23:59:59.000Z

    Novel hybrid thin film electrolytes, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities {approx_equal}10{sup {minus}3}{Omega}{sup {minus}1} cm{sup {minus}1} are useful as electrolytes for rechargeable lithium batteries. 1 fig.

  4. Thin films and uses

    DOE Patents [OSTI]

    Baskaran, Suresh (Kennewick, WA); Graff, Gordon L. (Kennewick, WA); Song, Lin (Richland, WA)

    1998-01-01T23:59:59.000Z

    The invention provides a method for synthesizing a titanium oxide-containing film comprising the following steps: (a) preparing an aqueous solution of a titanium chelate with a titanium molarity in the range of 0.01M to 0.6M. (b) immersing a substrate in the prepared solution, (c) decomposing the titanium chelate to deposit a film on the substrate. The titanium chelate maybe decomposed acid, base, temperature or other means. A preferred method provides for the deposit of adherent titanium oxide films from C2 to C5 hydroxy carboxylic acids. In another aspect the invention is a novel article of manufacture having a titanium coating which protects the substrate against ultraviolet damage. In another aspect the invention provides novel semipermeable gas separation membranes, and a method for producing them.

  5. High Efficiency, Low Cost Solar Cells Manufactured Using 'Silicon Ink' on Thin Crystalline Silicon Wafers

    SciTech Connect (OSTI)

    Antoniadis, H.

    2011-03-01T23:59:59.000Z

    Reported are the development and demonstration of a 17% efficient 25mm x 25mm crystalline Silicon solar cell and a 16% efficient 125mm x 125mm crystalline Silicon solar cell, both produced by Ink-jet printing Silicon Ink on a thin crystalline Silicon wafer. To achieve these objectives, processing approaches were developed to print the Silicon Ink in a predetermined pattern to form a high efficiency selective emitter, remove the solvents in the Silicon Ink and fuse the deposited particle Silicon films. Additionally, standard solar cell manufacturing equipment with slightly modified processes were used to complete the fabrication of the Silicon Ink high efficiency solar cells. Also reported are the development and demonstration of a 18.5% efficient 125mm x 125mm monocrystalline Silicon cell, and a 17% efficient 125mm x 125mm multicrystalline Silicon cell, by utilizing high throughput Ink-jet and screen printing technologies. To achieve these objectives, Innovalight developed new high throughput processing tools to print and fuse both p and n type particle Silicon Inks in a predetermined pat-tern applied either on the front or the back of the cell. Additionally, a customized Ink-jet and screen printing systems, coupled with customized substrate handling solution, customized printing algorithms, and a customized ink drying process, in combination with a purchased turn-key line, were used to complete the high efficiency solar cells. This development work delivered a process capable of high volume producing 18.5% efficient crystalline Silicon solar cells and enabled the Innovalight to commercialize its technology by the summer of 2010.

  6. Fabrication and Characterization of Spinel Magnetic Nanoparticle Thin Film Transmission Lines

    E-Print Network [OSTI]

    Papapolymerou, Ioannis "John"

    - Munich 2003 1307 #12;2 the glass slide. By altemating from a solution of amine-coated nanoparticles1 Fabrication and Characterization of Spinel Magnetic Nanoparticle Thin Film Transmission Lines-Spinel magnetic nanoparticle thin films were fabricated on high resistivity silicon substrates. TRL (through

  7. SEARCH FOR CHARGED -PARTICLE d -d FUSION PRODUCTS IN AN ENCAPSULATED Pd THIN FILM

    E-Print Network [OSTI]

    Neuhauser, Barbara

    SEARCH FOR CHARGED - PARTICLE d - d FUSION PRODUCTS IN AN ENCAPSULATED Pd THIN FILM E. López, B the possibility of deuteron-deuteron (d-d) fusion at room temperature within the bulk palladium electrode / Pd ratio exceeding 100 %. The palladium film was encapsulated with a thin layer of silicon nitride

  8. Optimization-based design of surface textures for thin-film Si solar cells

    E-Print Network [OSTI]

    Sheng, Xing

    We numerically investigate the light-absorption behavior of thin-film silicon for normal-incident light, using surface textures to enhance absorption. We consider a variety of texture designs, such as simple periodic ...

  9. Integrated photonic structures for light trapping in thin-film Si solar cells

    E-Print Network [OSTI]

    Sheng, Xing

    We explore the mechanisms for an efficient light trapping structure for thin-film silicon solar cells. The design combines a distributed Bragg reflector (DBR) and periodic gratings. Using photonic band theories and numerical ...

  10. Thin film buried anode battery

    DOE Patents [OSTI]

    Lee, Se-Hee (Lakewood, CO); Tracy, C. Edwin (Golden, CO); Liu, Ping (Denver, CO)

    2009-12-15T23:59:59.000Z

    A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

  11. Geometric shape control of thin film ferroelectrics and resulting structures

    DOE Patents [OSTI]

    McKee, Rodney A. (Kingston, TN); Walker, Frederick J. (Oak Ridge, TN)

    2000-01-01T23:59:59.000Z

    A monolithic crystalline structure and a method of making involves a semiconductor substrate, such as silicon, and a ferroelectric film, such as BaTiO.sub.3, overlying the surface of the substrate wherein the atomic layers of the ferroelectric film directly overlie the surface of the substrate. By controlling the geometry of the ferroelectric thin film, either during build-up of the thin film or through appropriate treatment of the thin film adjacent the boundary thereof, the in-plane tensile strain within the ferroelectric film is relieved to the extent necessary to permit the ferroelectric film to be poled out-of-plane, thereby effecting in-plane switching of the polarization of the underlying substrate material. The method of the invention includes the steps involved in effecting a discontinuity of the mechanical restraint at the boundary of the ferroelectric film atop the semiconductor substrate by, for example, either removing material from a ferroelectric film which has already been built upon the substrate, building up a ferroelectric film upon the substrate in a mesa-shaped geometry or inducing the discontinuity at the boundary by ion beam deposition techniques.

  12. Large area ceramic thin films on plastics: A versatile route via solution processing

    SciTech Connect (OSTI)

    Kozuka, H.; Yamano, A.; Uchiyama, H.; Takahashi, M. [Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, 564-8680 (Japan); Fukui, T.; Yoki, M.; Akase, T. [Graduate School of Science and Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, 564-8680 (Japan)

    2012-01-01T23:59:59.000Z

    A new general route for large area, submicron thick ceramic thin films (crystalline metal oxide thin films) on plastic substrates is presented, where the crystallization of films is guaranteed by a firing process. Gel films are deposited on silicon substrates with a release layer and fired to be ceramic films, followed by transferring onto plastic substrates using adhesives. The ceramic films thus fabricated on plastics exhibit a certain degree of flexibility, implying the possibility of the technique to be applied to high-throughput roll-to-roll processes. Using this technique, we successfully realized transparent anatase thin films that provide high optical reflectance and transparent indium tin oxide thin films that exhibit electrical conductivity on polycarbonate and acrylic resin substrates, respectively. Crystallographically oriented zinc oxide films and patterned zinc oxide films are also demonstrated to be realized on acrylic resin substrates.

  13. Method of preparing high-temperature-stable thin-film resistors

    DOE Patents [OSTI]

    Raymond, Leonard S. (Tucson, AZ)

    1983-01-01T23:59:59.000Z

    A chemical vapor deposition method for manufacturing tungsten-silicide thin-film resistors of predetermined bulk resistivity and temperature coefficient of resistance (TCR). Gaseous compounds of tungsten and silicon are decomposed on a hot substrate to deposit a thin-film of tungsten-silicide. The TCR of the film is determined by the crystallinity of the grain structure, which is controlled by the temperature of deposition and the tungsten to silicon ratio. The bulk resistivity is determined by the tungsten to silicon ratio. Manipulation of the fabrication parameters allows for sensitive control of the properties of the resistor.

  14. Method of preparing high-temperature-stable thin-film resistors

    DOE Patents [OSTI]

    Raymond, L.S.

    1980-11-12T23:59:59.000Z

    A chemical vapor deposition method for manufacturing tungsten-silicide thin-film resistors of predetermined bulk resistivity and temperature coefficient of resistance (TCR) is disclosed. Gaseous compounds of tungsten and silicon are decomposed on a hot substrate to deposit a thin-film of tungsten-silicide. The TCR of the film is determined by the crystallinity of the grain structure, which is controlled by the temperature of deposition and the tungsten to silicon ratio. The bulk resistivity is determined by the tungsten to silicon ratio. Manipulation of the fabrication parameters allows for sensitive control of the properties of the resistor.

  15. Polycrystalline Silicon Solar Cells Fabricated by Pulsed Rapid Thermal Annealing of Amorphous Silicon 

    E-Print Network [OSTI]

    Lee, I-Syuan

    2014-05-07T23:59:59.000Z

    optimized. The novel nickel-induced crystallization with low thermal budget was demonstrated. Polycrystalline silicon thin films were formed from the amorphous silicon thin films by the pulsed rapid thermal annealing process enhanced with a thin nickel...

  16. A thin film transistor driven microchannel device

    E-Print Network [OSTI]

    Lee, Hyun Ho

    2005-02-17T23:59:59.000Z

    .1. Principle of Electrophoresis?????????????? 1.2. Capillary and Microchip Electrophoresis????????... 1.3. Electrophoresis of DNA???????????????.. 2. Plasma Thin Film Deposition Process???????????... 2.1. Fundamentals of Plasma?????????????.?? 2.2. Plasma... Phase Chemical Reactions???????????.. 2.3. Plasma Enhanced Chemical Vapor Deposition??????.. 2.4. PECVD Thin Film?????????????????.. 3. Thin Film Transistor??????????????????.. 7 7 12 17 20 20 23 24 25 29 III...

  17. Oxynitride Thin Film Barriers for PV Packaging

    SciTech Connect (OSTI)

    Glick, S. H.; delCueto, J. A.; Terwilliger, K. M.; Jorgensen, G. J.; Pankow, J. W.; Keyes, B. M.; Gedvilas, L. M.; Pern, F. J.

    2005-11-01T23:59:59.000Z

    Dielectric thin-film barrier and adhesion-promoting layers consisting of silicon oxynitride materials (SiOxNy, with various stoichiometry) were investigated. For process development, films were applied to glass (TCO, conductive SnO2:F; or soda-lime), polymer (PET, polyethylene terephthalate), aluminized soda-lime glass, or PV cell (a-Si, CIGS) substrates. Design strategy employed de-minimus hazard criteria to facilitate industrial adoption and reduce implementation costs for PV manufacturers or suppliers. A restricted process window was explored using dilute compressed gases (3% silane, 14% nitrous oxide, 23% oxygen) in nitrogen (or former mixtures, and 11.45% oxygen mix in helium and/or 99.999% helium dilution) with a worst-case flammable and non-corrosive hazard classification. Method employed low radio frequency (RF) power, less than or equal to 3 milliwatts per cm2, and low substrate temperatures, less than or equal to 100 deg C, over deposition areas less than or equal to 1000 cm2. Select material properties for barrier film thickness (profilometer), composition (XPS/FTIR), optical (refractive index, %T and %R), mechanical peel strength and WVTR barrier performance are presented.

  18. 3D-2D ASYMPTOTIC ANALYSIS FOR INHOMOGENEOUS THIN FILMS

    E-Print Network [OSTI]

    3D-2D ASYMPTOTIC ANALYSIS FOR INHOMOGENEOUS THIN FILMS plate models, periodic pr* *o- files, and within the context of optimal design for thin films 5. Third application - Optimal design of a thin film 19 6. Final Remarks

  19. Laser desorption/ionization from nanostructured surfaces: nanowires, nanoparticle films and silicon microcolumn arrays

    E-Print Network [OSTI]

    Vertes, Akos

    Laser desorption/ionization from nanostructured surfaces: nanowires, nanoparticle films and silicon for soft laser desorption/ionization (SLDI) mass spectrometry. Thin films of gold nanoparticles (with 12 to analyze a series of directly deposited polypeptide samples. In this new SLDI method, the required laser

  20. Thin film solar energy collector

    DOE Patents [OSTI]

    Aykan, Kamran (Monmouth Beach, NJ); Farrauto, Robert J. (Westfield, NJ); Jefferson, Clinton F. (Millburn, NJ); Lanam, Richard D. (Westfield, NJ)

    1983-11-22T23:59:59.000Z

    A multi-layer solar energy collector of improved stability comprising: (1) a substrate of quartz, silicate glass, stainless steel or aluminum-containing ferritic alloy; (2) a solar absorptive layer comprising silver, copper oxide, rhodium/rhodium oxide and 0-15% by weight of platinum; (3) an interlayer comprising silver or silver/platinum; and (4) an optional external anti-reflective coating, plus a method for preparing a thermally stable multi-layered solar collector, in which the absorptive layer is undercoated with a thin film of silver or silver/platinum to obtain an improved conductor-dielectric tandem.

  1. Method for formation of thin film transistors on plastic substrates

    DOE Patents [OSTI]

    Carey, P.G.; Smith, P.M.; Sigmon, T.W.; Aceves, R.C.

    1998-10-06T23:59:59.000Z

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The process relies on techniques for depositing semiconductors, dielectrics, and metals at low temperatures; crystallizing and doping semiconductor layers in the TFT with a pulsed energy source; and creating top-gate self-aligned as well as back-gate TFT structures. The process enables the fabrication of amorphous and polycrystalline channel silicon TFTs at temperatures sufficiently low to prevent damage to plastic substrates. The process has use in large area low cost electronics, such as flat panel displays and portable electronics. 5 figs.

  2. Method for formation of thin film transistors on plastic substrates

    DOE Patents [OSTI]

    Carey, Paul G. (Mountain View, CA); Smith, Patrick M. (San Ramon, CA); Sigmon, Thomas W. (Portola Valley, CA); Aceves, Randy C. (Livermore, CA)

    1998-10-06T23:59:59.000Z

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The process relies on techniques for depositing semiconductors, dielectrics, and metals at low temperatures; crystallizing and doping semiconductor layers in the TFT with a pulsed energy source; and creating top-gate self-aligned as well as back-gate TFT structures. The process enables the fabrication of amorphous and polycrystalline channel silicon TFTs at temperatures sufficiently low to prevent damage to plastic substrates. The process has use in large area low cost electronics, such as flat panel displays and portable electronics.

  3. Uncooled thin film pyroelectric IR detector with aerogel thermal isolation

    SciTech Connect (OSTI)

    Ruffner, J.A.; Clem, P.G.; Tuttle, B.A. [and others

    1998-01-01T23:59:59.000Z

    Uncooled pyroelectric IR imaging systems, such as night vision goggles, offer important strategic advantages in battlefield scenarios and reconnaissance surveys. Until now, the current technology for fabricating these devices has been limited by low throughput and high cost which ultimately limit the availability of these sensor devices. We have developed and fabricated an alternative design for pyroelectric IR imaging sensors that utilizes a multilayered thin film deposition scheme to create a monolithic thin film imaging element on an active silicon substrate for the first time. This approach combines a thin film pyroelectric imaging element with a thermally insulating SiO{sub 2} aerogel thin film to produce a new type of uncooled IR sensor that offers significantly higher thermal, spatial, and temporal resolutions at a substantially lower cost per unit. This report describes the deposition, characterization and optimization of the aerogel thermal isolation layer and an appropriate pyroelectric imaging element. It also describes the overall integration of these components along with the appropriate planarization, etch stop, adhesion, electrode, and blacking agent thin film layers into a monolithic structure. 19 refs., 8 figs., 6 tabs.

  4. Multilayer Thin-Film Thermoelectric Materials for Vehicle Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multilayer Thin-Film Thermoelectric Materials for Vehicle Applications Multilayer Thin-Film Thermoelectric Materials for Vehicle Applications 2004 Diesel Engine Emissions Reduction...

  5. Templating Mesoporous Hierarchies in Silica Thin Films Using...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Templating Mesoporous Hierarchies in Silica Thin Films Using the Thermal Degradation of Cellulose Nitrate. Templating Mesoporous Hierarchies in Silica Thin Films Using the Thermal...

  6. Direct Measurement of Oxygen Incorporation into Thin Film Oxides...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement of Oxygen Incorporation into Thin Film Oxides at Room Temperature Upon Ultraviolet Phton Irradiation. Direct Measurement of Oxygen Incorporation into Thin Film Oxides...

  7. Improved Stability Of Amorphous Zinc Tin Oxide Thin Film Transistors...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stability Of Amorphous Zinc Tin Oxide Thin Film Transistors Using Molecular Passivation. Improved Stability Of Amorphous Zinc Tin Oxide Thin Film Transistors Using Molecular...

  8. High Temperature Thin Film Polymer Dielectric Based Capacitors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Thin Film Polymer Dielectric Based Capacitors for HEV Power Electronic Systems High Temperature Thin Film Polymer Dielectric Based Capacitors for HEV Power...

  9. Electrostatic thin film chemical and biological sensor

    DOE Patents [OSTI]

    Prelas, Mark A. (Columbia, MO); Ghosh, Tushar K. (Columbia, MO); Tompson, Jr., Robert V. (Columbia, MO); Viswanath, Dabir (Columbia, MO); Loyalka, Sudarshan K. (Columbia, MO)

    2010-01-19T23:59:59.000Z

    A chemical and biological agent sensor includes an electrostatic thin film supported by a substrate. The film includes an electrostatic charged surface to attract predetermined biological and chemical agents of interest. A charge collector associated with said electrostatic thin film collects charge associated with surface defects in the electrostatic film induced by the predetermined biological and chemical agents of interest. A preferred sensing system includes a charge based deep level transient spectroscopy system to read out charges from the film and match responses to data sets regarding the agents of interest. A method for sensing biological and chemical agents includes providing a thin sensing film having a predetermined electrostatic charge. The film is exposed to an environment suspected of containing the biological and chemical agents. Quantum surface effects on the film are measured. Biological and/or chemical agents can be detected, identified and quantified based on the measured quantum surface effects.

  10. A monolithic thin film electrochromic window

    SciTech Connect (OSTI)

    Goldner, R.B.; Arntz, F.O.; Berera, G.; Haas, T.E.; Wong, K.K. [Tufts Univ., Medford, MA (United States). Electro-Optics Technology Center; Wei, G. [Mobil Solar Energy Corp., Billerica, MA (United States); Yu, P.C. [PPG Industries, Inc., Monroeville, PA (United States)

    1991-12-31T23:59:59.000Z

    Three closely related thin film solid state ionic devices that are potentially important for applications are: electrochromic smart windows, high energy density thin film rechargeable batteries, and thin film electrochemical sensors. Each usually has at least on mixed ion/electron conductor, an electron-blocking ion conductor, and an ion-blocking electron conductor, and many of the technical issues associated with thin film solid state ionics are common to all three devices. Since the electrochromic window has the added technical requirement of electrically-controlled optical modulation, (over the solar spectrum), and since research at the authors` institution has focused primarily on the window structure, this paper will address the electrochromic window, and particularly a monolithic variable reflectivity electrochromic window, as an illustrative example of some of the challenges and opportunities that are confronting the thin film solid state ionics community. 33 refs.

  11. Thin Single Crystal Silicon Solar Cells on Ceramic Substrates: November 2009 - November 2010

    SciTech Connect (OSTI)

    Kumar, A.; Ravi, K. V.

    2011-06-01T23:59:59.000Z

    In this program we have been developing a technology for fabricating thin (< 50 micrometres) single crystal silicon wafers on foreign substrates. We reverse the conventional approach of depositing or forming silicon on foreign substrates by depositing or forming thick (200 to 400 micrometres) ceramic materials on high quality single crystal silicon films ~ 50 micrometres thick. Our key innovation is the fabrication of thin, refractory, and self-adhering 'handling layers or substrates' on thin epitaxial silicon films in-situ, from powder precursors obtained from low cost raw materials. This 'handling layer' has sufficient strength for device and module processing and fabrication. Successful production of full sized (125 mm X 125 mm) silicon on ceramic wafers with 50 micrometre thick single crystal silicon has been achieved and device process flow developed for solar cell fabrication. Impurity transfer from the ceramic to the silicon during the elevated temperature consolidation process has resulted in very low minority carrier lifetimes and resulting low cell efficiencies. Detailed analysis of minority carrier lifetime, metals analysis and device characterization have been done. A full sized solar cell efficiency of 8% has been demonstrated.

  12. ThinSilicon | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheasternInformationPolicyREDD+ BookThinSilicon Jump to:

  13. Thermal chemistry of Mn{sub 2}(CO){sub 10} during deposition of thin manganese films on silicon oxide and on copper surfaces

    SciTech Connect (OSTI)

    Qin Xiangdong; Sun Huaxing; Zaera, Francisco [Department of Chemistry, University of California, Riverside, California 92521 (United States)

    2012-01-15T23:59:59.000Z

    The surface chemistry of dimanganese decacarbonyl on the native oxide of Si(100) wafers was characterized with the aid of x-ray photoelectron spectroscopy. Initial experiments in a small stainless-steel reactor identified a narrow range of temperatures, between approximately 445 and 465 K, in which the deposition of manganese could be achieved in a self-limiting fashion, as is desirable for atomic layer deposition. Deposition at higher temperatures leads to multilayer growth, but the extent of this Mn deposition reverses at even higher temperatures (about 625 K), and also ifhydrogen is added to the reaction mixture. Extensive decarbonylation takes place below room temperature, but limited C-O bond dissociation and carbon deposition are still seen after high exposures at 625 K. The films deposited at low ({approx}450 K) temperatures are mostly in the form of MnO, but at 625 K that converts to a manganese silicate, and upon higher doses a manganese silicide forms at the SiO{sub 2}/Si(100) interface as well. No metallic manganese could be deposited with this precursor on either silicon dioxide or copper surfaces.

  14. Method of casting silicon into thin sheets

    DOE Patents [OSTI]

    Sanjurjo, Angel (San Jose, CA); Rowcliffe, David J. (Los Altos, CA); Bartlett, Robert W. (Tucson, AZ)

    1982-10-26T23:59:59.000Z

    Silicon (Si) is cast into thin shapes within a flat-bottomed graphite crucible by providing a melt of molten Si along with a relatively small amount of a molten salt, preferably NaF. The Si in the resulting melt forms a spherical pool which sinks into and is wetted by the molten salt. Under these conditions the Si will not react with any graphite to form SiC. The melt in the crucible is pressed to the desired thinness with a graphite tool at which point the tool is held until the mass in the crucible has been cooled to temperatures below the Si melting point, at which point the Si shape can be removed.

  15. Universality of non-Ohmic shunt leakage in thin-film solar cells S. Dongaonkar,1,a

    E-Print Network [OSTI]

    Alam, Muhammad A.

    Universality of non-Ohmic shunt leakage in thin-film solar cells S. Dongaonkar,1,a J. D. Servaites thin-film solar cell types: hydrogenated amorphous silicon a-Si:H p-i-n cells, organic bulk heterojunction BHJ cells, and Cu In,Ga Se2 CIGS cells. All three device types exhibit a significant shunt leakage

  16. Aging phenomena in polystyrene thin films

    E-Print Network [OSTI]

    Koji Fukao; Hiroki Koizumi

    2008-01-05T23:59:59.000Z

    The aging behavior is investigated for thin films of atactic polystyrene through measurements of complex electric capacitance. During isothermal aging process the real part of the electric capacitance increases with aging time, while the imaginary part decreases with aging time. This result suggests that the aging time dependence of the real and imaginary parts are mainly associated with change in thickness and dielectric permittivity, respectively. In thin films, the thickness depends on thermal history of aging even above the glass transition. Memory and `rejuvenation' effects are also observed in the thin films.

  17. Permanent laser conditioning of thin film optical materials

    DOE Patents [OSTI]

    Wolfe, C.R.; Kozlowski, M.R.; Campbell, J.H.; Staggs, M.; Rainer, F.

    1995-12-05T23:59:59.000Z

    The invention comprises a method for producing optical thin films with a high laser damage threshold and the resulting thin films. The laser damage threshold of the thin films is permanently increased by irradiating the thin films with a fluence below an unconditioned laser damage threshold. 9 figs.

  18. Permanent laser conditioning of thin film optical materials

    DOE Patents [OSTI]

    Wolfe, C. Robert (Palo Alto, CA); Kozlowski, Mark R. (Pleasanton, CA); Campbell, John H. (Livermore, CA); Staggs, Michael (Tracy, CA); Rainer, Frank (Livermore, CA)

    1995-01-01T23:59:59.000Z

    The invention comprises a method for producing optical thin films with a high laser damage threshold and the resulting thin films. The laser damage threshold of the thin films is permanently increased by irradiating the thin films with a fluence below an unconditioned laser damage threshold.

  19. Thin Silicon MEMS Contact-Stress Sensor

    SciTech Connect (OSTI)

    Kotovsky, J; Tooker, A; Horsley, D A

    2009-12-07T23:59:59.000Z

    This work offers the first, thin, MEMS contact-stress (CS) sensor capable of accurate in situ measruement of time-varying, contact-stress between two solid interfaces (e.g. in vivo cartilage contact-stress and body armor dynamic loading). This CS sensor is a silicon-based device with a load sensitive diaphragm. The diaphragm is doped to create piezoresistors arranged in a full Wheatstone bridge. The sensor is similar in performance to established silicon pressure sensors, but it is reliably produced to a thickness of 65 {micro}m. Unlike commercial devices or other research efforts, this CS sensor, including packaging, is extremely thin (< 150 {micro}m fully packaged) so that it can be unobtrusively placed between contacting structures. It is built from elastic, well-characterized materials, providing accurate and high-speed (50+ kHz) measurements over a potential embedded lifetime of decades. This work explored sensor designs for an interface load range of 0-2 MPa; however, the CS sensor has a flexible design architecture to measure a wide variety of interface load ranges.

  20. Control of morphology for enhanced electronic transport in PECVD-grown a-Si : H Thin Films

    E-Print Network [OSTI]

    Castro Galnares, Sebastián

    2010-01-01T23:59:59.000Z

    Solar cells have become an increasingly viable alternative to traditional, pollution causing power generation methods. Although crystalline silicon (c-Si) modules make up most of the market, thin films such as hydrogenated ...

  1. Aluminum recycling from reactor walls: A source of contamination in a-Si:H thin films

    SciTech Connect (OSTI)

    Longeaud, C.; Ray, P. P.; Bhaduri, A.; Daineka, D.; Johnson, E. V.; Roca i Cabarrocas, P. [Laboratoire de Genie Electrique de Paris (UMR 8507 CNRS), Supelec, Universites Paris VI and XI, 11 Rue Joliot-Curie, Plateau de Moulon, 91190 Gif sur Yvette (France); Laboratoire de Physique des Interfaces et des Couches Minces (UMR 7647 CNRS), Ecole Polytechnique, 91128 Palaiseau Cedex (France)

    2010-11-15T23:59:59.000Z

    In this article, the authors investigate the contamination of hydrogenated amorphous silicon thin films with aluminum recycled from the walls and electrodes of the deposition reactor. Thin films of hydrogenated amorphous silicon were prepared under various conditions by a standard radio frequency plasma enhanced chemical vapor deposition process in two reactors, the chambers of which were constructed of either aluminum or stainless steel. The authors have studied the electronic properties of these thin films and have found that when using an aluminum reactor chamber, the layers are contaminated with aluminum recycled from the chamber walls and electrode. This phenomenon is observed almost independently of the deposition conditions. The authors show that this contamination results in slightly p-doped films and could be detrimental to the deposition of device grade films. The authors also propose a simple way to control and eventually suppress this contamination.

  2. Creating CZTS Thin Films Via Stacked Metallic CVD and Sulfurization

    E-Print Network [OSTI]

    Bielecki, Anthony

    2013-01-01T23:59:59.000Z

    film solar cells. CIGS solar cell efficiencies have beenCIGS, making it a favorable choice for thin-film solar cells.thin film solar cell [3]. However, use of CIGS has a number

  3. Solid State Thin Film Lithium Microbatteries

    E-Print Network [OSTI]

    Shi, Z.

    Solid state thin film lithium microbatteries fabricated by pulsed-laser deposition (PLD) are suggested. During deposition the following process parameters must be considered, which are laser energy and fluence, laser pulse ...

  4. Thermal Characterizationof Thin Film Superlattice Micro Refrigerators

    E-Print Network [OSTI]

    on a microscopic scale. Semiconductor lasers or other high power devices could also benefit from monolithic. Low contact resistance is essential for thin film coolers [3]. A 100 nm titanium metal layer was first

  5. Visible spectrometer utilizing organic thin film absorption

    E-Print Network [OSTI]

    Tiefenbruck, Laura C. (Laura Christine)

    2004-01-01T23:59:59.000Z

    In this thesis, I modeled and developed a spectrometer for the visible wavelength spectrum, based on absorption characteristics of organic thin films. The device uses fundamental principles of linear algebra to reconstruct ...

  6. Thin-film interference Aditya Joshi

    E-Print Network [OSTI]

    Packard, Richard E.

    , y, z, t) = Eo sin(kx - t)^y (1) It is worth noting what all the symbols stand for. · Eo is the peak of two important effects that will be explained presently. Figure 1: A thin film of oil floating on water that is incident upon the interface between air (na = 1) and a thin film of oil of thickness `t'(for this oil

  7. Eddy Current Testing for Detecting Small Defects in Thin Films

    SciTech Connect (OSTI)

    Obeid, Simon; Tranjan, Farid M. [Electrical and Computer Engineering Department, UNCC (United States); Dogaru, Teodor [Albany Instruments, 426-O Barton Creek, Charlotte, NC 28262 (United States)

    2007-03-21T23:59:59.000Z

    Presented here is a technique of using Eddy Current based Giant Magneto-Resistance sensor (GMR) to detect surface and sub-layered minute defects in thin films. For surface crack detection, a measurement was performed on a copper metallization of 5-10 microns thick. It was done by scanning the GMR sensor on the surface of the wafer that had two scratches of 0.2 mm, and 2.5 mm in length respectively. In another experiment, metal coatings were deposited over the layers containing five defects with known lengths such that the defects were invisible from the surface. The limit of detection (resolution), in terms of defect size, of the GMR high-resolution Eddy Current probe was studied using this sample. Applications of Eddy Current testing include detecting defects in thin film metallic layers, and quality control of metallization layers on silicon wafers for integrated circuits manufacturing.

  8. Thin-Film Reliability Trends Toward Improved Stability

    SciTech Connect (OSTI)

    Jordan, D. C.; Kurtz, S. R.

    2011-01-01T23:59:59.000Z

    Long-term, stable performance of photovoltaic (PV) modules will be increasingly important to their successful penetration of the power grid. This paper summarizes more than 150 thin-film and more than 1700 silicon PV degradation rates (R{sub d}) quoted in publications for locations worldwide. Partitioning the literature results by technology and date of installation statistical analysis shows an improvement in degradation rate especially for thin-film technologies in the last decade. A CIGS array deployed at NREL for more than 5 years that appears to be stable supports the literature trends. Indoor and outdoor data indicate undetectable change in performance (0.2 {+-} 0.2 %/yr). One module shows signs of slight degradation from what appears to be an initial manufacturing defect, however it has not affected the overall system performance.

  9. Thin-Film Reliability Trends Toward Improved Stability: Preprint

    SciTech Connect (OSTI)

    Jordan, D. C.; Kurtz, S. R.

    2011-07-01T23:59:59.000Z

    Long-term, stable performance of photovoltaic (PV) modules will be increasingly important to their successful penetration of the power grid. This paper summarizes more than 150 thin-film and more than 1700 silicon PV degradation rates (Rd) quoted in publications for locations worldwide. Partitioning the literature results by technology and date of installation statistical analysis shows an improvement in degradation rate especially for thin-film technologies in the last decade. A CIGS array deployed at NREL for more than 5 years that appears to be stable supports the literature trends. Indoor and outdoor data indicate undetectable change in performance (0.2+/-0.2 %/yr). One module shows signs of slight degradation from what appears to be an initial manufacturing defect, however it has not affected the overall system performance.

  10. Process for forming silicon carbide films and microcomponents

    DOE Patents [OSTI]

    Hamza, Alex V. (Livermore, CA); Balooch, Mehdi (Berkeley, CA); Moalem, Mehran (Berkeley, CA)

    1999-01-01T23:59:59.000Z

    Silicon carbide films and microcomponents are grown on silicon substrates at surface temperatures between 900 K and 1700 K via C.sub.60 precursors in a hydrogen-free environment. Selective crystalline silicon carbide growth can be achieved on patterned silicon-silicon oxide samples. Patterned SiC films are produced by making use of the high reaction probability of C.sub.60 with silicon at surface temperatures greater than 900 K and the negligible reaction probability for C.sub.60 on silicon dioxide at surface temperatures less than 1250 K.

  11. Process for forming silicon carbide films and microcomponents

    DOE Patents [OSTI]

    Hamza, A.V.; Balooch, M.; Moalem, M.

    1999-01-19T23:59:59.000Z

    Silicon carbide films and microcomponents are grown on silicon substrates at surface temperatures between 900 K and 1700 K via C{sub 60} precursors in a hydrogen-free environment. Selective crystalline silicon carbide growth can be achieved on patterned silicon-silicon oxide samples. Patterned SiC films are produced by making use of the high reaction probability of C{sub 60} with silicon at surface temperatures greater than 900 K and the negligible reaction probability for C{sub 60} on silicon dioxide at surface temperatures less than 1250 K. 5 figs.

  12. Quantification of thin film crystallographic orientation using X-ray diffraction with an area detector

    E-Print Network [OSTI]

    Baker, Jessica L

    2010-01-01T23:59:59.000Z

    elastic  properties of Au thin films by X?ray diffraction interface in  polythiophene thin?film transistors.  Nat copper  phthalocyanine thin films evaporated on amorphous 

  13. Photonic Crystal Cavities in Cubic (3C) Polytype Silicon Carbide Films

    E-Print Network [OSTI]

    Marina Radulaski; Thomas M. Babinec; Sonia Buckley; Armand Rundquist; J Provine; Kassem Alassaad; Gabriel Ferro; Jelena Vu?kovi?

    2013-11-30T23:59:59.000Z

    We present the design, fabrication, and characterization of high quality factor and small mode volume planar photonic crystal cavities from cubic (3C) thin films (thickness ~ 200 nm) of silicon carbide (SiC) grown epitaxially on a silicon substrate. We demonstrate cavity resonances across the telecommunications band, with wavelengths from 1,250 - 1,600 nm. Finally, we discuss possible applications in nonlinear optics, optical interconnects, and quantum information science.

  14. Polycrystalline thin-film technology: Recent progress in photovoltaics

    SciTech Connect (OSTI)

    Mitchell, R.L.; Zweibel, K.; Ullal, H.S.

    1991-12-01T23:59:59.000Z

    Polycrystalline thin films have made significant technical progress in the past year. Three of these materials that have been studied extensively for photovoltaic (PV) power applications are copper indium diselenide (CuInSe{sub 2}), cadmium telluride (CdTe), and thin-film polycrystalline silicon (x-Si) deposited on ceramic substrates. The first of these materials, polycrystalline thin-film CuInSe{sub 2}, has made some rapid advances in terms of high efficiency and long-term reliability. For CuInSe{sub 2} power modules, a world record has been reported on a 0.4-m{sup 2} module with an aperture-area efficiency of 10.4% and a power output of 40.4 W. Additionally, outdoor reliability testing of CuInSe{sub 2} modules, under both loaded and open-circuit conditions, has resulted in only minor changes in module performance after more than 1000 days of continuous exposure to natural sunlight. CdTe module research has also resulted in several recent improvements. Module performance has been increased with device areas reaching nearly 900 cm{sup 2}. Deposition has been demonstrated by several different techniques, including electrodeposition, spraying, and screen printing. Outdoor reliability testing of CdTe modules was also carried out under both loaded and open-circuit conditions, with more than 600 days of continuous exposure to natural sunlight. These tests were also encouraging and indicated that the modules were stable within measurement error. The highest reported aperture-area module efficiency for CdTe modules is 10%; the semiconductor material was deposited by electrodeposition. A thin-film CdTe photovoltaic system with a power output of 54 W has been deployed in Saudi Arabia for water pumping. The Module Development Initiative has made significant progress in support of the Polycrystalline Thin-Film Program in the past year, and results are presented in this paper.

  15. Optical Constants ofOptical Constants of Uranium Nitride Thin FilmsUranium Nitride Thin Films

    E-Print Network [OSTI]

    Hart, Gus

    Optical Constants ofOptical Constants of Uranium Nitride Thin FilmsUranium Nitride Thin FilmsDelta--Beta Scatter Plot at 220 eVBeta Scatter Plot at 220 eV #12;Why Uranium Nitride?Why Uranium Nitride? UraniumUranium, uranium,Bombard target, uranium, with argon ionswith argon ions Uranium atoms leaveUranium atoms leave

  16. Ambient pressure process for preparing aerogel thin films reliquified sols useful in preparing aerogel thin films

    DOE Patents [OSTI]

    Brinker, Charles Jeffrey (Albuquerque, NM); Prakash, Sai Sivasankaran (Minneapolis, MN)

    1999-01-01T23:59:59.000Z

    A method for preparing aerogel thin films by an ambient-pressure, continuous process. The method of this invention obviates the use of an autoclave and is amenable to the formation of thin films by operations such as dip coating. The method is less energy intensive and less dangerous than conventional supercritical aerogel processing techniques.

  17. Thin film absorber for a solar collector

    DOE Patents [OSTI]

    Wilhelm, William G. (Cutchogue, NY)

    1985-01-01T23:59:59.000Z

    This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  18. Thin Films for Microelectronics and Photonics: Physics, Mechanics,

    E-Print Network [OSTI]

    Volinsky, Alex A.

    4 Thin Films for Microelectronics and Photonics: Physics, Mechanics, Characterization, USA bUniversity of South Florida, Tampa, FL, USA 4.1. TERMINOLOGY AND SCOPE 4.1.1. Thin Films Thin practice. The term thin films as used here refers to material layers deposited by vapor

  19. Tungsten-doped thin film materials

    DOE Patents [OSTI]

    Xiang, Xiao-Dong; Chang, Hauyee; Gao, Chen; Takeuchi, Ichiro; Schultz, Peter G.

    2003-12-09T23:59:59.000Z

    A dielectric thin film material for high frequency use, including use as a capacitor, and having a low dielectric loss factor is provided, the film comprising a composition of tungsten-doped barium strontium titanate of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3, where X is between about 0.5 and about 1.0. Also provided is a method for making a dielectric thin film of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3 and doped with W, where X is between about 0.5 and about 1.0, a substrate is provided, TiO.sub.2, the W dopant, Ba, and optionally Sr are deposited on the substrate, and the substrate containing TiO.sub.2, the W dopant, Ba, and optionally Sr is heated to form a low loss dielectric thin film.

  20. SAND2003-8146C Symposium on Thin Films

    E-Print Network [OSTI]

    Volinsky, Alex A.

    SAND2003-8146C Symposium on Thin Films ICM-9 9th International Conference on the Mechanical FRACTURE OF THIN GOLD FILMS N. R. Moody, D. P. Adams*, M. J. Cordill**, D. F. Bahr**, A. A. Volinsky of interfacial fracture energies of thin gold films as a function of film thickness is presented in this paper

  1. Low-Temperature Crystallization of SolGel Processed Pb0.5Ba0.5TiO3: Powders and Oriented Thin Films

    E-Print Network [OSTI]

    for depositing thin-film lead barium titanate has been developed. X-ray diffraction analysis showed perovskite. Deposition of the sol by spin coating on single-crystal and thin-film MgO on silicon resulted in highlyO, whereas entirely (100) films were obtained on thin-film MgO. I. Introduction TO USE Pb0.5Ba0.5TiO3 (PBT

  2. A comparison of thick film and thin film traffic stripes

    E-Print Network [OSTI]

    Keese, Charles J

    1952-01-01T23:59:59.000Z

    Striys. . . Pigmented Bitusmn Stripes . Asphalt %uilt-Upa Striye vith Pigmented Portland Cement Mortar Cover Course 38 . ~ 41 Thin Film Stripes Used for Comparison Results of Comparing Thick Film Stripes and Thin Film Paint Stripes . ~ ~ ~ ~ ~ 43... was aspbaltio oonorets. The pavement in Test Areas 2y 3p and 4 vas portland cesmnh ooncrete, Two test areas (3 and 4) vere located in such manner as to provide uninterrupted flow of traffic over tbs entire length of the test area. The other two test areas (1...

  3. Institute of Photo Electronic Thin Film Devices and Technology...

    Open Energy Info (EERE)

    Place: Tianjin Municipality, China Zip: 300071 Sector: Solar Product: A thin-film solar cell research institute in China. References: Institute of Photo-Electronic Thin...

  4. Thermoelectric effect in very thin film Pt/Au thermocouples

    E-Print Network [OSTI]

    Salvadori, M.C.; Vaz, A.R.; Teixeira, F.S.; Cattani, M.; Brown, I.G.

    2006-01-01T23:59:59.000Z

    TABLE I. Measured thermoelectric power S for samples ofThermoelectric effect in very thin film Pt/Au thermocouplesthickness dependence of the thermoelectric power of Pt films

  5. alumina thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    films Engineering Websites Summary: of domain switching and controllability, preventing thin-film and polycrystalline ferroelectrics from the switching mechanisms of...

  6. acid thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    films Engineering Websites Summary: of domain switching and controllability, preventing thin-film and polycrystalline ferroelectrics from the switching mechanisms of...

  7. ablation thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    films Engineering Websites Summary: of domain switching and controllability, preventing thin-film and polycrystalline ferroelectrics from the switching mechanisms of...

  8. anatase thin film: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    films Engineering Websites Summary: of domain switching and controllability, preventing thin-film and polycrystalline ferroelectrics from the switching mechanisms of...

  9. arsenide thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    films Engineering Websites Summary: of domain switching and controllability, preventing thin-film and polycrystalline ferroelectrics from the switching mechanisms of...

  10. Vibration welding system with thin film sensor

    DOE Patents [OSTI]

    Cai, Wayne W; Abell, Jeffrey A; Li, Xiaochun; Choi, Hongseok; Zhao, Jingzhou

    2014-03-18T23:59:59.000Z

    A vibration welding system includes an anvil, a welding horn, a thin film sensor, and a process controller. The anvil and horn include working surfaces that contact a work piece during the welding process. The sensor measures a control value at the working surface. The measured control value is transmitted to the controller, which controls the system in part using the measured control value. The thin film sensor may include a plurality of thermopiles and thermocouples which collectively measure temperature and heat flux at the working surface. A method includes providing a welder device with a slot adjacent to a working surface of the welder device, inserting the thin film sensor into the slot, and using the sensor to measure a control value at the working surface. A process controller then controls the vibration welding system in part using the measured control value.

  11. Method for synthesizing thin film electrodes

    DOE Patents [OSTI]

    Boyle, Timothy J. (Albuquerque, NM)

    2007-03-13T23:59:59.000Z

    A method for making a thin-film electrode, either an anode or a cathode, by preparing a precursor solution using an alkoxide reactant, depositing multiple thin film layers with each layer approximately 500 1000 .ANG. in thickness, and heating the layers to above 600.degree. C. to achieve a material with electrochemical properties suitable for use in a thin film battery. The preparation of the anode precursor solution uses Sn(OCH.sub.2C(CH.sub.3).sub.3).sub.2 dissolved in a solvent in the presence of HO.sub.2CCH.sub.3 and the cathode precursor solution is formed by dissolving a mixture of (Li(OCH.sub.2C(CH.sub.3).sub.3)).sub.8 and Co(O.sub.2CCH.sub.3).H.sub.2O in at least one polar solvent.

  12. Mesoscale morphologies in polymer thin films.

    SciTech Connect (OSTI)

    Ramanathan, M.; Darling, S. B. (Center for Nanoscale Materials)

    2011-06-01T23:59:59.000Z

    In the midst of an exciting era of polymer nanoscience, where the development of materials and understanding of properties at the nanoscale remain a major R&D endeavor, there are several exciting phenomena that have been reported at the mesoscale (approximately an order of magnitude larger than the nanoscale). In this review article, we focus on mesoscale morphologies in polymer thin films from the viewpoint of origination of structure formation, structure development and the interaction forces that govern these morphologies. Mesoscale morphologies, including dendrites, holes, spherulites, fractals and honeycomb structures have been observed in thin films of homopolymer, copolymer, blends and composites. Following a largely phenomenological level of description, we review the kinetic and thermodynamic aspects of mesostructure formation outlining some of the key mechanisms at play. We also discuss various strategies to direct, limit, or inhibit the appearance of mesostructures in polymer thin films as well as an outlook toward potential areas of growth in this field of research.

  13. Thin film dielectric composite materials

    DOE Patents [OSTI]

    Jia, Quanxi (Los Alamos, NM); Gibbons, Brady J. (Los Alamos, NM); Findikoglu, Alp T. (Los Alamos, NM); Park, Bae Ho (Los Alamos, NM)

    2002-01-01T23:59:59.000Z

    A dielectric composite material comprising at least two crystal phases of different components with TiO.sub.2 as a first component and a material selected from the group consisting of Ba.sub.1-x Sr.sub.x TiO.sub.3 where x is from 0.3 to 0.7, Pb.sub.1-x Ca.sub.x TiO.sub.3 where x is from 0.4 to 0.7, Sr.sub.1-x Pb.sub.x TiO.sub.3 where x is from 0.2 to 0.4, Ba.sub.1-x Cd.sub.x TiO.sub.3 where x is from 0.02 to 0.1, BaTi.sub.1-x Zr.sub.x O.sub.3 where x is from 0.2 to 0.3, BaTi.sub.1-x Sn.sub.x O.sub.3 where x is from 0.15 to 0.3, BaTi.sub.1-x Hf.sub.x O.sub.3 where x is from 0.24 to 0.3, Pb.sub.1-1.3x La.sub.x TiO.sub.3+0.2x where x is from 0.23 to 0.3, (BaTiO.sub.3).sub.x (PbFeo.sub.0.5 Nb.sub.0.5 O.sub.3).sub.1-x where x is from 0.75 to 0.9, (PbTiO.sub.3).sub.- (PbCo.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.1 to 0.45, (PbTiO.sub.3).sub.x (PbMg.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.2 to 0.4, and (PbTiO.sub.3).sub.x (PbFe.sub.0.5 Ta.sub.0.5 O.sub.3).sub.1-x where x is from 0 to 0.2, as the second component is described. The dielectric composite material can be formed as a thin film upon suitable substrates.

  14. Thin film transistors on plastic substrates with reflective coatings for radiation protection

    DOE Patents [OSTI]

    Wolfe, Jesse D. (Fairfield, CA); Theiss, Steven D. (Woodbury, MN); Carey, Paul G. (Mountain View, CA); Smith, Patrick M. (San Ramon, CA); Wickbold, Paul (Walnut Creek, CA)

    2006-09-26T23:59:59.000Z

    Fabrication of silicon thin film transistors (TFT) on low-temperature plastic substrates using a reflective coating so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The TFT can be used in large area low cost electronics, such as flat panel displays and portable electronics such as video cameras, personal digital assistants, and cell phones.

  15. Thin film transistors on plastic substrates with reflective coatings for radiation protection

    DOE Patents [OSTI]

    Wolfe, Jesse D.; Theiss, Steven D.; Carey, Paul G.; Smith, Patrick M.; Wickboldt, Paul

    2003-11-04T23:59:59.000Z

    Fabrication of silicon thin film transistors (TFT) on low-temperature plastic substrates using a reflective coating so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The TFT can be used in large area low cost electronics, such as flat panel displays and portable electronics such as video cameras, personal digital assistants, and cell phones.

  16. SAW determination of surface area of thin films

    DOE Patents [OSTI]

    Frye, Gregory C. (Albuquerque, NM); Martin, Stephen J. (Albuquerque, NM); Ricco, Antonio J. (Albuquerque, NM)

    1990-01-01T23:59:59.000Z

    N.sub.2 adsorption isotherms are measured from thin films on SAW devices. The isotherms may be used to determine the surface area and pore size distribution of thin films.

  17. Guided Self-Assembly of Gold Thin Films

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guided Self-Assembly of Gold Thin Films Guided Self-Assembly of Gold Thin Films Print Wednesday, 21 November 2012 12:18 Nanoparticles-man-made atoms with unique optical,...

  18. Piezoreslstive graphite/polyimide thin films for micromachining applications

    E-Print Network [OSTI]

    Piezoreslstive graphite/polyimide thin films for micromachining applications A. Bruno Frazier) In this work, graphite/polyimide composite thin films are introduced and characterized for micromachining tetracarboxylic dianhydride+xydianiline/metaphenylene diamine polyimide matrix. The resultant material represents

  19. The interplay between spatially separated ferromagnetic and superconducting thin films

    E-Print Network [OSTI]

    Sullivan, Isaac John

    2013-02-22T23:59:59.000Z

    Ferromagnetic thin films have been grown via physical vapor deposition utilizing the technique of flash evaporation and characterized by measuring magnetization as a function of magnetic field. An Al thin film was evaporated atop the ferromagnetic...

  20. au thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    micro-machine (see S. S. Irudayaraj and A. Emadi 15). In general, magnetic thin-film elements are used in many applications Hadiji, Rejeb 29 Thin Films of Chiral Motors...

  1. Conductivity of Oriented Samaria-Doped Ceria Thin Films Grown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conductivity of Oriented Samaria-Doped Ceria Thin Films Grown by Oxygen-plasma-assisted Molecular Beam Epitaxy. Conductivity of Oriented Samaria-Doped Ceria Thin Films Grown by...

  2. aluminium thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 21 Thin-Film Metamaterials called Sculptured Thin Films CERN Preprints Summary: Morphology...

  3. Viscous fingering in volatile thin films

    E-Print Network [OSTI]

    Oded Agam

    2009-02-23T23:59:59.000Z

    A thin water film on a cleaved mica substrate undergoes a first order phase transition between two values of film thickness. By inducing a finite evaporation rate of the water, the interface between the two phases develops a fingering instability similar to that observed in the Saffman-Taylor problem. We draw the connection between the two problems, and construct solutions describing the dynamics of evaporation in this system.

  4. Effects of low temperature annealing on the adhesion of electroless plated copper thin films in TiN deposited silicon integrated circuit substrates 

    E-Print Network [OSTI]

    Tate, Adam Timothy

    2013-02-22T23:59:59.000Z

    current density several orders of magnitude greater than aluminum [1]. Reliability failures caused by electromigration-induced interconnect failures in aluminum-based ICs have motivated circuit manufacturers to choose copper over aluminum... as an interconnect materiaL A bonus effect of the choice of copper over aluminum is copper's lower resistivity (for thin Sm Cu, p = 2. 0 le-cm; for thin Em Al, p = 2. 7-3, 0 ltI2-cm [2, 3]). The change to copper allows manufacturers to take advantage of copper...

  5. amorphous silicon carbon: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 11 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  6. amorphous hydrogenated silicon: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gunther; Baets, Roel 2011-01-01 36 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  7. amorphous silicon pv: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 11 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  8. amorphous silicon epid: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 7 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  9. amorphous silicon arrays: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    amorphous carbon Wang, Zhong L. 8 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  10. amorphous silicon alloy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 11 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  11. amorphous silicon studied: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Yang, Cheng-Chieh 2012-01-01 22 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  12. amorphous silicon sensor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 9 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  13. amorphous silicon nanoparticles: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 9 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  14. amorphous silicon alloys: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 11 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  15. amorphous silicon solar: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 26 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  16. amorphous silicon tft: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 20 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  17. amorphous silicon photovoltaic: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    properties Mazur, Eric 20 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  18. amorphous silicon final: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 7 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  19. amorphous silicon diodes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 9 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  20. amorphous silicon surfaces: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 10 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  1. amorphous silicon technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technologies is presented. Then 11 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  2. amorphous silicon electronic: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technologies is presented. Then 22 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  3. amorphous silicon dioxide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 8 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  4. amorphous silicon oxynitride: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 15 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  5. amorphous silicon schottky: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 13 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  6. amorphous silicon nitride: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Paris-Sud XI, Universit de 26 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  7. amorphous silicon layers: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 16 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  8. amorphous silicon detector: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 7 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  9. area amorphous silicon: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 9 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  10. amorphous silicon measured: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 13 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  11. amorphous silicon deposited: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 23 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  12. amorphous silicon flat: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 7 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  13. amorphous silicon modules: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 10 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  14. amorphous silicon sensors: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 9 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  15. amorphous silicon carbonitride: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 7 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  16. amorphous silicon research: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 9 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  17. amorphous silicon prepared: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nominanda, Helinda 2008-10-10 10 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  18. amorphous silicon microdisk: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 24 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  19. amorphous silicon germanium: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Si-I or Ge Wang, Wei Hua 37 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  20. amorphous silicon radiation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 9 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  1. amorphous silicon multijunction: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 7 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  2. amorphous silicon pixel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 14 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  3. Enhanced efficiency of thin film solar cells using a shifted dual grating plasmonic structure

    E-Print Network [OSTI]

    Levy, Uriel

    .5403) Plasmonics; (310.2790) Guided waves. References and links 1. O. Morton, "Solar energy: A new day dawning Society of America OCIS codes: (350.6050) Solar energy; (050.2770) Gratings; (310.0310) Thin films; (250? Silicon valley sunrise," Nature 443(7107), 19­22 (2006). 2. M. A. Green and S. Pillai, "Harnessing

  4. Dual gratings for enhanced light trapping in thin-film solar cells

    E-Print Network [OSTI]

    , Ireland * christian.schuster@york.ac.uk Abstract: Thin film solar cells benefit significantly from; (350.6050) Solar energy. References and links 1. M. A. Green, J. Zhao, A. Wang, and S. R. Wenham, "Progress and outlook for high-efficiency crystalline silicon solar cells," Sol. Energy Mater. Sol. Cells 65

  5. 3D-2D ASYMPTOTIC ANALYSIS FOR MICROMAGNETIC THIN FILMS

    E-Print Network [OSTI]

    3D-2D ASYMPTOTIC ANALYSIS FOR MICROMAGNETIC THIN FILMS Classification: 35E99, 35M10, 49J45, 74K35. Keywords: -limit, thin films, micromagnetics, relaxation; 1 1. Introduction In recent years the understanding of thin film behavior has been helped

  6. THIN FILM MECHANICS BULGING AND Ph.D Dissertation

    E-Print Network [OSTI]

    Huston, Dryver R.

    THIN FILM MECHANICS ­BULGING AND STRETCHING Ph.D Dissertation Mechanical Engineering University of Vermont Wolfgang Sauter October 2000 #12;ii Abstract Thin films have experienced revolutionary development for the intensive effort in research in materials and processing techniques. Thin film windows are window

  7. Electrified thin films: Global existence of non-negative solutions

    E-Print Network [OSTI]

    Boyer, Edmond

    Electrified thin films: Global existence of non-negative solutions C. Imbert and A. Mellet February 6, 2012 Abstract We consider an equation modeling the evolution of a viscous liquid thin film equation, Non-local equation, Thin film equation, Non-negative solutions MSC: 35G25, 35K25, 35A01, 35B09 1

  8. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF ELECTROPLATED Cu THIN FILMS

    E-Print Network [OSTI]

    Volinsky, Alex A.

    MICROSTRUCTURE AND MECHANICAL PROPERTIES OF ELECTROPLATED Cu THIN FILMS A.A. Volinsky* , J. Vella size, thin film microstructure and mechanical properties have become critical parameters-K dielectric materials and novel interconnects (Cu). For most reliability tests, knowledge of the thin film

  9. Electrified thin films: Global existence of non-negative solutions

    E-Print Network [OSTI]

    Electrified thin films: Global existence of non-negative solutions C. Imbert and A. Mellet August 31, 2011 Abstract We consider an equation modeling the evolution of a viscous liquid thin film equation, Non-local equation, Thin film equation, Non-negative solutions MSC: 35G25, 35K25, 35A01, 35B09 1

  10. Electrified thin films: Global existence of non-negative solutions

    E-Print Network [OSTI]

    Electrified thin films: Global existence of non-negative solutions C. Imbert and A. Mellet February 4, 2011 Abstract We consider an equation modeling the evolution of a viscous liquid thin film equation, Non-local equation, Thin film equation, Non-negative solutions MSC: 35G25, 35K25, 35A01, 35B09 1

  11. SEECOMMENTARYAPPLIEDPHYSICAL The macroscopic delamination of thin films from

    E-Print Network [OSTI]

    Reis, Pedro Miguel

    SEECOMMENTARYAPPLIEDPHYSICAL SCIENCES The macroscopic delamination of thin films from elastic toughness, our analysis suggests a number of design guidelines for the thin films used in flexible fatigue damage, the thin film thickness must be greater than a critical value, which we determine

  12. RisR980(EN) Epitaxy, Thin films and

    E-Print Network [OSTI]

    Risø­R­980(EN) Epitaxy, Thin films and Superlattices Morten Jagd Christensen Risø National of substrates as well as growth of thin films and Fe/V superlattices by molecular beam epitaxy, including in structures were investigated. This thesis, "Epitaxy, Thin films and Superlattices", is written in partial

  13. Polymer-Metal Nanocomposites via Polymer Thin Film

    E-Print Network [OSTI]

    Shyamasundar, R.K.

    Polymer-Metal Nanocomposites via Polymer Thin Film T. P. Radhakrishnan School of Chemistry, University of Hyderabad Polymer-metal nanocomposite thin films are versatile materials that not only Chemistry Inside a Polymer Thin Film P. Radhakrishnan School of Chemistry, University of Hyderabad metal

  14. New techniques for producing thin boron films

    SciTech Connect (OSTI)

    Thomas, G.E.

    1988-01-01T23:59:59.000Z

    A review will be presented of methods for producing thin boron films using an electron gun. Previous papers have had the problem of spattering of the boron source during the evaporation. Methods for reducing this problem will also be presented. 12 refs., 4 figs.

  15. US polycrystalline thin film solar cells program

    SciTech Connect (OSTI)

    Ullal, H.S.; Zweibel, K.; Mitchell, R.L. (Solar Energy Research Inst., Golden, CO (USA)) [Solar Energy Research Inst., Golden, CO (USA)

    1989-11-01T23:59:59.000Z

    The Polycrystalline Thin Film Solar Cells Program, part of the United States National Photovoltaic Program, performs R D on copper indium diselenide and cadmium telluride thin films. The objective of the Program is to support research to develop cells and modules that meet the US Department of Energy's long-term goals by achieving high efficiencies (15%-20%), low-cost ($50/m{sup 2}), and long-time reliability (30 years). The importance of work in this area is due to the fact that the polycrystalline thin-film CuInSe{sub 2} and CdTe solar cells and modules have made rapid advances. They have become the leading thin films for PV in terms of efficiency and stability. The US Department of Energy has increased its funding through an initiative through the Solar Energy Research Institute in CuInSe{sub 2} and CdTe with subcontracts to start in Spring 1990. 23 refs., 5 figs.

  16. Magnetic/metallic thin films and nanostructures

    E-Print Network [OSTI]

    Lewis, Robert Michael

    examples. During the past decade applications of nano-scale magnetic devices to data storage have hadMagnetic/metallic thin films and nanostructures The College of William and MarY;'l Virginia http://www.as.wm.cdu/Faculty/Lukaszcw.html It is widely believed that revolutionary progress can be made as materials and devices are developed to operate

  17. Flexible Solar-Energy Harvesting System on Plastic with Thin-film LC Oscillators Operating Above ft for

    E-Print Network [OSTI]

    Flexible Solar-Energy Harvesting System on Plastic with Thin-film LC Oscillators Operating Above ft- This paper presents an energy-harvesting system consisting of amorphous-silicon (a-Si) solar cells and thin of the energy-harvesting system. The solar module consists of solar cells in series operating at an output

  18. LIQUID PHASE DEPOSITION OF ELECTROCHROMIC THIN FILMS T. J. Richardson and M. D. Rubin

    E-Print Network [OSTI]

    , and readily scalable to larger substrates. Keywords: liquid phase deposition; electrochromic films; thin film

  19. Structural and magnetic properties of NiZn and Zn ferrite thin films obtained by laser ablation deposition

    E-Print Network [OSTI]

    McHenry, Michael E.

    Structural and magnetic properties of NiZn and Zn ferrite thin films obtained by laser ablation ferrite structures. Our investigations were performed on NiZn and Zn ferrite films deposited on silicon of the blocking temperature in both NiZn and Zn ferrite systems. © 2005 American Institute of Physics. DOI: 10

  20. Electronic transport properties of tantalum disilicide thin films

    SciTech Connect (OSTI)

    Huang, M.T.; Martin, T.L.; Malhotra, V.; Mahan, J.E.

    1985-06-01T23:59:59.000Z

    Polycrystalline TaSi/sub 2/ thin films were prepared by furnace reaction of ion-beam-sputtered tantalum layers with silicon surfaces. X-ray-diffraction measurements indicate that the films are single-phase hexagonal disilicide. Impurity levels are at or below the detection limits of Auger spectroscopy. The samples exhibit a room temperature intrinsic resistivity of approx. 40 microohms cm and a residual resistivity component as low as 4 microohms cm. The Hall coefficient is negative, giving an apparent electron concentration of 6.5 x10/sup 22//cm/sup 3/ at room temperature. A representative carrier mobility of 58 cm/sup 2//V s at room temperature (obtained from geometrical magnetoresistance measurements) was much larger than the Hall mobility (1.9 cm/sup 2//V s), suggesting multicarrier effects. The galvanomagnetic properties can be described by the equations for two degenerate, isotropic bands and be given a physical interpretation similar to that of Mott's s-d scattering model. However, it is emphasized that the two-band model is likely only a crude approximation for transition metals and their compounds. A two-layer model shows that in certain instances the apparent transport properties of the films are due to the silicon substrate.

  1. amorphous insulating thin: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chuang3 , Barry G Kanicki, Jerzy 38 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  2. au crystalline thin: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    THE POROUS SILICON PROCESS APPLYING CONVECTION for the first time to monocrystalline Si thin-film solar cells from the porous silicon (PSI) layer transfer for manufacturing high...

  3. applied type thin: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    THE POROUS SILICON PROCESS APPLYING CONVECTION for the first time to monocrystalline Si thin-film solar cells from the porous silicon (PSI) layer transfer for manufacturing high...

  4. DISORDER ENGINEERING FOR LIGHT-TRAPPING IN THIN-FILM SOLAR CELLS P. Kowalczewski, M. Liscidini, and L.C. Andreani

    E-Print Network [OSTI]

    at the significantly reduced computational cost. 3 TAILORING THE ROUGHNESS FOR LIGHT- TRAPPING Solar cell structureDISORDER ENGINEERING FOR LIGHT-TRAPPING IN THIN-FILM SOLAR CELLS P. Kowalczewski, M. Liscidini: In this work we focus on randomly rough textures for light-trapping in thin-film silicon solar cells. We use

  5. Quasi-Reversible Oxygen Exchange of Amorphous IGZO Thin Films

    E-Print Network [OSTI]

    Shahriar, Selim

    MRSEC Quasi-Reversible Oxygen Exchange of Amorphous IGZO Thin Films NSF Grant # 1121262 A. U. Adler Center In situ electrical properties of a-IGZO thin films were carried out at 200ºC as a function/"defect" structure of amorphous oxide films. In situ conductivity of 70 nm a-IGZO thin film at 200oC measured in van

  6. advanced silicon space: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to the astronomical identifications 11 Advanced Multilayer Amorphous Silicon Thin-Film Transistor Structure: Film Thickness Effect on Its Electrical Performance and Contact...

  7. Electrohydrodynamic instabilities in thin liquid trilayer films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Roberts, Scott A. [Sandia National Lab., Albuquerque, NM (United States); Kumar, Satish [Univ. of Minnesota, Minneapolis, MN (United States)

    2010-09-12T23:59:59.000Z

    Experiments by Dickey et al. [Langmuir, 22, 4315 (2006)] and Leach et al. [Chaos, 15, 047506 (2005)] show that novel pillar shapes can be generated from electrohydrodynamic instabilities at the interfaces of thin polymer/polymer/air trilayer films. In this paper, we use linear stability analysis to investigate the effect of free charge and ac electric fields on the stability of trilayer systems. Our work is also motivated by our recent theoretical study [J. Fluid Mech., 631, 255 (2009)] which demonstrates how ac electric fields can be used to increase control over the pillar formation process in thin liquid bilayer films. For perfect dielectric films, the effect of an AC electric field can be understood by considering an equivalent DC field. Leaky dielectric films yield pillar configurations that are drastically different from perfect dielectric films, and AC fields can be used to control the location of free charge within the trilayer system. This can alter the pillar instability modes and generate smaller diameter pillars when conductivities are mismatched. The results presented here may be of interest for the creation of complex topographical patterns on polymer coatings and in microelectronics.

  8. Electrohydrodynamic instabilities in thin liquid trilayer films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Roberts, Scott A.; Kumar, Satish

    2010-01-01T23:59:59.000Z

    Experiments by Dickey and Leach show that novel pillar shapes can be generated from electrohydrodynamic instabilities at the interfaces of thin polymer/polymer/air trilayer films. In this paper, we use linear stability analysis to investigate the effect of free charge and ac electric fields on the stability of trilayer systems. Our work is also motivated by our recent theoretical study which demonstrates how ac electric fields can be used to increase control over the pillar formation process in thin liquid bilayer films. For perfect dielectric films, the effect of an AC electric field can be understood by considering an equivalent DCmore »field. Leaky dielectric films yield pillar configurations that are drastically different from perfect dielectric films, and AC fields can be used to control the location of free charge within the trilayer system. This can alter the pillar instability modes and generate smaller diameter pillars when conductivities are mismatched. The results presented here may be of interest for the creation of complex topographical patterns on polymer coatings and in microelectronics.« less

  9. Electrochromism in copper oxide thin films

    SciTech Connect (OSTI)

    Richardson, T.J.; Slack, J.L.; Rubin, M.D.

    2000-08-15T23:59:59.000Z

    Transparent thin films of copper(I) oxide prepared on conductive SnO2:F glass substrates by anodic oxidation of sputtered copper films or by direct electrodeposition of Cu2O transformed reversibly to opaque metallic copper films when reduced in alkaline electrolyte. In addition, the same Cu2O films transform reversibly to black copper(II) oxide when cycled at more anodic potentials. Copper oxide-to-copper switching covered a large dynamic range, from 85% and 10% photopic transmittance, with a coloration efficiency of about 32 cm2/C. Gradual deterioration of the switching range occurred over 20 to 100 cycles. This is tentatively ascribed to coarsening of the film and contact degradation caused by the 65% volume change on conversion of Cu to Cu2O. Switching between the two copper oxides (which have similar volumes) was more stable and more efficient (CE = 60 cm2/C), but covered a smaller transmittance range (60% to 44% T). Due to their large electrochemical storage capacity and tolerance for alkaline electrolytes, these cathodically coloring films may be useful as counter electrodes for anodically coloring electrode films such as nickel oxide or metal hydrides.

  10. Nitrogen doped zinc oxide thin film

    SciTech Connect (OSTI)

    Li, Sonny X.

    2003-12-15T23:59:59.000Z

    To summarize, polycrystalline ZnO thin films were grown by reactive sputtering. Nitrogen was introduced into the films by reactive sputtering in an NO{sub 2} plasma or by N{sup +} implantation. All ZnO films grown show n-type conductivity. In unintentionally doped ZnO films, the n-type conductivities are attributed to Zn{sub i}, a native shallow donor. In NO{sub 2}-grown ZnO films, the n-type conductivity is attributed to (N{sub 2}){sub O}, a shallow double donor. In NO{sub 2}-grown ZnO films, 0.3 atomic % nitrogen was found to exist in the form of N{sub 2}O and N{sub 2}. Upon annealing, N{sub 2}O decomposes into N{sub 2} and O{sub 2}. In furnace-annealed samples N{sub 2} redistributes diffusively and forms gaseous N{sub 2} bubbles in the films. Unintentionally doped ZnO films were grown at different oxygen partial pressures. Zni was found to form even at oxygen-rich condition and led to n-type conductivity. N{sup +} implantation into unintentionally doped ZnO film deteriorates the crystallinity and optical properties and leads to higher electron concentration. The free electrons in the implanted films are attributed to the defects introduced by implantation and formation of (N{sub 2}){sub O} and Zni. Although today there is still no reliable means to produce good quality, stable p-type ZnO material, ZnO remains an attractive material with potential for high performance short wavelength optoelectronic devices. One may argue that gallium nitride was in a similar situation a decade ago. Although we did not obtain any p-type conductivity, we hope our research will provide a valuable reference to the literature.

  11. Pulsed DC magnetron sputtered piezoelectric thin film aluminum nitride – Technology and piezoelectric properties

    SciTech Connect (OSTI)

    Stoeckel, C., E-mail: chris.stoeckel@zfm.tu-chemnitz.de; Kaufmann, C.; Hahn, R.; Schulze, R. [Center for Microtechnologies, Chemnitz University of Technology, Chemnitz 09126 (Germany); Billep, D. [Fraunhofer Institute for Electronic Nano Systems (ENAS), Chemnitz 09126 (Germany); Gessner, T. [Center for Microtechnologies, Chemnitz University of Technology, Chemnitz 09126 (Germany); Fraunhofer Institute for Electronic Nano Systems (ENAS), Chemnitz 09126 (Germany)

    2014-07-21T23:59:59.000Z

    Pulsed DC magnetron sputtered aluminum nitride (AlN) thin films are prepared on several seed layers and at different sputtering conditions. The piezoelectric c-axis (002) orientation of the AlN is analyzed with X-ray diffraction method. The transverse piezoelectric coefficient d{sub 31} is determined with a Laser-Doppler-Vibrometer at cantilevers and membranes by analytical calculations and finite element method. Additionally, thin film AlN on bulk silicon is used to characterize the longitudinal piezoelectric charge coefficient d{sub 33}.

  12. Polycrystalline thin films FY 1992 project report

    SciTech Connect (OSTI)

    Zweibel, K. [ed.

    1993-01-01T23:59:59.000Z

    This report summarizes the activities and results of the Polycrystalline Thin Film Project during FY 1992. The purpose of the DOE/NREL PV (photovoltaic) Program is to facilitate the development of PV that can be used on a large enough scale to produce a significant amount of energy in the US and worldwide. The PV technologies under the Polycrystalline Thin Film project are among the most exciting ``next-generation`` options for achieving this goal. Over the last 15 years, cell-level progress has been steady, with laboratory cell efficiencies reaching levels of 15 to 16%. This progress, combined with potentially inexpensive manufacturing methods, has attracted significant commercial interest from US and international companies. The NREL/DOE program is designed to support the efforts of US companies through cost-shared subcontracts (called ``government/industry partnerships``) that we manage and fund and through collaborative technology development work among industry, universities, and our laboratory.

  13. Thin film photovoltaic panel and method

    DOE Patents [OSTI]

    Ackerman, Bruce (El Paso, TX); Albright, Scot P. (El Paso, TX); Jordan, John F. (El Paso, TX)

    1991-06-11T23:59:59.000Z

    A thin film photovoltaic panel includes a backcap for protecting the active components of the photovoltaic cells from adverse environmental elements. A spacing between the backcap and a top electrode layer is preferably filled with a desiccant to further reduce water vapor contamination of the environment surrounding the photovoltaic cells. The contamination of the spacing between the backcap and the cells may be further reduced by passing a selected gas through the spacing subsequent to sealing the backcap to the base of the photovoltaic panels, and once purged this spacing may be filled with an inert gas. The techniques of the present invention are preferably applied to thin film photovoltaic panels each formed from a plurality of photovoltaic cells arranged on a vitreous substrate. The stability of photovoltaic conversion efficiency remains relatively high during the life of the photovoltaic panel, and the cost of manufacturing highly efficient panels with such improved stability is significantly reduced.

  14. Structures for dense, crack free thin films

    DOE Patents [OSTI]

    Jacobson, Craig P. (Lafayette, CA); Visco, Steven J. (Berkeley, CA); De Jonghe, Lutgard C. (Lafayette, CA)

    2011-03-08T23:59:59.000Z

    The process described herein provides a simple and cost effective method for making crack free, high density thin ceramic film. The steps involve depositing a layer of a ceramic material on a porous or dense substrate. The deposited layer is compacted and then the resultant laminate is sintered to achieve a higher density than would have been possible without the pre-firing compaction step.

  15. Packaging material for thin film lithium batteries

    DOE Patents [OSTI]

    Bates, John B. (116 Baltimore Dr., Oak Ridge, TN 37830); Dudney, Nancy J. (11634 S. Monticello Rd., Knoxville, TN 37922); Weatherspoon, Kim A. (223 Wadsworth Pl., Oak Ridge, TN 37830)

    1996-01-01T23:59:59.000Z

    A thin film battery including components which are capable of reacting upon exposure to air and water vapor incorporates a packaging system which provides a barrier against the penetration of air and water vapor. The packaging system includes a protective sheath overlying and coating the battery components and can be comprised of an overlayer including metal, ceramic, a ceramic-metal combination, a parylene-metal combination, a parylene-ceramic combination or a parylene-metal-ceramic combination.

  16. Modeling of Substrate-Induced Anisotropy in Through-Plane Thermal Behavior of Polymeric Thin Films

    E-Print Network [OSTI]

    Lee, Jeong-Bong

    Modeling of Substrate-Induced Anisotropy in Through-Plane Thermal Behavior of Polymeric Thin Films, Atlanta, Georgia 30332-0269 SYNOPSIS Polymeric thin films are widely used in microelectronic applications properties of isotropic thin films for single layer (thin film rigidly clamped) and bilayer (thin film

  17. Development of large-area monolithically integrated silicon-film photovoltaic modules

    SciTech Connect (OSTI)

    Rand, J.A.; Bacon, C.; Cotter, J.E.; Lampros, T.H.; Ingram, A.E.; Ruffins, T.R.; Hall, R.B.; Barnett, A.M. (AstroPower, Inc., Newark, DE (United States))

    1992-07-01T23:59:59.000Z

    This report describes work to develop Silicon-Film Product III into a low-cost, stable device for large-scale terrestrial power applications. The Product III structure is a thin (< 100 {mu}m) polycrystalline silicon layer on a non-conductive supporting ceramic substrate. The presence of the substrate allows cells to be isolated and in interconnected monolithically in various series/parallel configurations. The long-term goal for the product is efficiencies over 18% on areas greater than 1200 cm{sup 2}. The high efficiency is made possible through the benefits of using polycrystalline thin silicon incorporated into a light-trapping structure with a passivated back surface. Short-term goals focused on the development of large-area ceramics, a monolithic interconnection process, and 100 cm{sup 2} solar cells. Critical elements of the monolithically integrated device were developed, and an insulating ceramic substrate was developed and tested. A monolithic interconnection process was developed that will isolate and interconnect individual cells on the ceramic surface. Production-based, low-cost process steps were used, and the process was verified using free-standing silicon wafers to achieve an open-circuit voltage (V{sub oc}) of 8.25 V over a 17-element string. The overall efficiency of the silicon-film materials was limited to 6% by impurities. Improved processing and feedstock materials are under investigation.

  18. Hydrogen plasma enhanced crystallization of hydrogenated amorphous silicon films

    E-Print Network [OSTI]

    Hydrogen plasma enhanced crystallization of hydrogenated amorphous silicon films K. Pangal,a) J. C August 1998; accepted for publication 21 October 1998 We report that a room temperature hydrogen plasma thermal crystallization of amorphous silicon time by a factor of five. Exposure to hydrogen plasma reduces

  19. alloys thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: Thin liquid films on surfaces are part of our everyday life, they serve e.g. as coatings or lubricants. The stability of a thin layer is governed by interfacial forces,...

  20. alloy thin film: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: Thin liquid films on surfaces are part of our everyday life, they serve e.g. as coatings or lubricants. The stability of a thin layer is governed by interfacial forces,...

  1. alloy thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: Thin liquid films on surfaces are part of our everyday life, they serve e.g. as coatings or lubricants. The stability of a thin layer is governed by interfacial forces,...

  2. Enhanced Superconducting Properties of Iron Chalcogenide Thin Films 

    E-Print Network [OSTI]

    Chen, Li

    2013-07-26T23:59:59.000Z

    . In this thesis, we first optimized pure FeSe thin films by different growth conditions using pulsed laser deposition (PLD) and post-annealing procedures. The microstructure properties of the films including the epitaxial quality, interface structure and secondary...

  3. Chemical vapor deposition of organosilicon and sacrificial polymer thin films

    E-Print Network [OSTI]

    Casserly, Thomas Bryan

    2005-01-01T23:59:59.000Z

    Chemical vapor deposition (CVD) produced films for a wide array of applications from a variety of organosilicon and organic precursors. The structure and properties of thin films were controlled by varying processing ...

  4. Uncooled thin film pyroelectric IR detector with aerogel thermal isolation

    DOE Patents [OSTI]

    Ruffner, Judith A. (Albuquerque, NM); Bullington, Jeff A. (Albuquerque, NM); Clem, Paul G. (Albuquerque, NM); Warren, William L. (Albuquerque, NM); Brinker, C. Jeffrey (Albuquerque, NM); Tuttle, Bruce A. (Albuquerque, NM); Schwartz, Robert W. (Seneca, SC)

    1999-01-01T23:59:59.000Z

    A monolithic infrared detector structure which allows integration of pyroelectric thin films atop low thermal conductivity aerogel thin films. The structure comprises, from bottom to top, a substrate, an aerogel insulating layer, a lower electrode, a pyroelectric layer, and an upper electrode layer capped by a blacking layer. The aerogel can offer thermal conductivity less than that of air, while providing a much stronger monolithic alternative to cantilevered or suspended air-gap structures for pyroelectric thin film pixel arrays. Pb(Zr.sub.0.4 Ti.sub.0.6)O.sub.3 thin films deposited on these structures displayed viable pyroelectric properties, while processed at 550.degree. C.

  5. applications thin film: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nikolay 27 Solvent-enhanced dye diffusion in polymer thin films for polymer light-emitting diode application Engineering Websites Summary: Solvent-enhanced dye diffusion in...

  6. Inexpensive Production of High Density Thin Ceramic Films on...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inexpensive Production of High Density Thin Ceramic Films on Rigid or Porous Substrates Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing...

  7. Creating CZTS Thin Films Via Stacked Metallic CVD and Sulfurization

    E-Print Network [OSTI]

    Bielecki, Anthony

    2013-01-01T23:59:59.000Z

    Photovoltaics . . . . . . . . . . . . . . . . . . . . . . .2 ZnSnS 4 (CZTS) thin film photovoltaics is an increasinglyfor Large-Scale Photovoltaics Deployment Environ. Sci.

  8. Rechargeable thin film battery and method for making the same

    DOE Patents [OSTI]

    Goldner, Ronald B.; Liu, Te-Yang; Goldner, Mark A.; Gerouki, Alexandra; Haas, Terry E.

    2006-01-03T23:59:59.000Z

    A rechargeable, stackable, thin film, solid-state lithium electrochemical cell, thin film lithium battery and method for making the same is disclosed. The cell and battery provide for a variety configurations, voltage and current capacities. An innovative low temperature ion beam assisted deposition method for fabricating thin film, solid-state anodes, cathodes and electrolytes is disclosed wherein a source of energetic ions and evaporants combine to form thin film cell components having preferred crystallinity, structure and orientation. The disclosed batteries are particularly useful as power sources for portable electronic devices and electric vehicle applications where high energy density, high reversible charge capacity, high discharge current and long battery lifetimes are required.

  9. active thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    behavior Biotechnology Websites Summary: on elastic polymeric membranes. Further development of such muscular thin films for building actuators). The development of such...

  10. antibacterial thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Skovlin, Dean Oliver 2012-06-07 138 Uncooled Thin Film Pyroelectric IR Detector with Aerogel Thermal Isolation CiteSeer Summary: Uncooled pyroelectric IR imaging systems, such...

  11. Tax Credits Give Thin-Film Solar a Big Boost

    Broader source: Energy.gov [DOE]

    California company will expand its capacity to make its thin-film solar panels by more than ten times, thanks to two Recovery Act tax credits.

  12. aln thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    deposited by the reactive dc magnetron sputtering technique at room, amorphous and polycrystalline GaN thin films have been deposited using the magnetron sputtering...

  13. Thickness Dependency of Thin Film Samaria Doped Ceria for Oxygen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High temperature oxygen sensors are widely used for exhaust gas monitoring in automobiles. This particular study explores the use of thin film single crystalline samaria...

  14. Integrated thin film batteries on silicon

    E-Print Network [OSTI]

    Ariel, Nava

    2005-01-01T23:59:59.000Z

    Monolithic integration has been implemented successfully in complementary metal oxide semiconductor (CMOS) technology and led to improved device performance, increased reliability, and overall cost reduction. The next ...

  15. Substrate for thin silicon solar cells

    DOE Patents [OSTI]

    Ciszek, Theodore F. (Evergreen, CO)

    1995-01-01T23:59:59.000Z

    A photovoltaic device for converting solar energy into electrical signals comprises a substrate, a layer of photoconductive semiconductor material grown on said substrate, wherein the substrate comprises an alloy of boron and silicon, the boron being present in a range of from 0.1 to 1.3 atomic percent, the alloy having a lattice constant substantially matched to that of the photoconductive semiconductor material and a resistivity of less than 1.times.10.sup.-3 ohm-cm.

  16. Substrate for thin silicon solar cells

    DOE Patents [OSTI]

    Ciszek, T.F.

    1995-03-28T23:59:59.000Z

    A photovoltaic device for converting solar energy into electrical signals comprises a substrate, a layer of photoconductive semiconductor material grown on said substrate, wherein the substrate comprises an alloy of boron and silicon, the boron being present in a range of from 0.1 to 1.3 atomic percent, the alloy having a lattice constant substantially matched to that of the photoconductive semiconductor material and a resistivity of less than 1{times}10{sup {minus}3} ohm-cm. 4 figures.

  17. Effect of Polarization and Morphology on the Optical Properties of Absorbing Nanoporous Thin Films

    E-Print Network [OSTI]

    Navid, Ashcon; Pilon, Laurent

    2008-01-01T23:59:59.000Z

    TE and TM waves incident on thin films with n c = 4.0, k c =hexagonal mesoporous silica thin films with pore diameter Dabsorbing nanocomposite thin film, graphically depicting the

  18. Charge transport and chemical sensing properties of organic thin-films

    E-Print Network [OSTI]

    Yang, Dengliang

    2007-01-01T23:59:59.000Z

    low Drift in Organic Thin-film Transistor Chemical Sensors”,emitting diodes and thin-film transistors. The electricalLOW DRIFT IN ORGANIC THIN-FILM TRANSISTOR CHEMICAL SENSORS

  19. Distributed Phase Shifter with PyrochloreBismuth Zinc Niobate Thin Films

    E-Print Network [OSTI]

    Park, Jaehoon; Lu, Jiwei; Boesch, Damien; Stemmer, Susanne; York, Robert A

    2006-01-01T23:59:59.000Z

    Bandpass Filter Using Thin-Film Barium-Strontium-Titanate (using Ba x Sr 1 - x TiO 3 thin films," IEEE Microwave GuidedBismuth Zinc Niobate Thin Films," J. Appl. Phys. 97,

  20. Epitaxial Stabilization of a Morphotropic Phase Boundary in Lead-Free Ferroelectric Thin Films

    E-Print Network [OSTI]

    Zeches, Robert James

    2011-01-01T23:59:59.000Z

    1376 (2005). D. L. Smith, Thin-Film Deposition PrinciplesMaterials Science of Thin Films, (Academic Press: San Diego,Laser Deposition of Thin Films, (John Wiley & Sons, Inc. :

  1. Rechargeable thin-film electrochemical generator

    DOE Patents [OSTI]

    Rouillard, Roger (Beloeil, CA); Domroese, Michael K. (South St. Paul, MN); Hoffman, Joseph A. (Minneapolis, MN); Lindeman, David D. (Hudson, WI); Noel, Joseph-Robert-Gaetan (St-Hubert, CA); Radewald, Vern E. (Austin, TX); Ranger, Michel (Lachine, CA); Sudano, Anthony (Laval, CA); Trice, Jennifer L. (Eagan, MN); Turgeon, Thomas A. (Fridley, MN)

    2000-09-15T23:59:59.000Z

    An improved electrochemical generator is disclosed. The electrochemical generator includes a thin-film electrochemical cell which is maintained in a state of compression through use of an internal or an external pressure apparatus. A thermal conductor, which is connected to at least one of the positive or negative contacts of the cell, conducts current into and out of the cell and also conducts thermal energy between the cell and thermally conductive, electrically resistive material disposed on a vessel wall adjacent the conductor. The thermally conductive, electrically resistive material may include an anodized coating or a thin sheet of a plastic, mineral-based material or conductive polymer material. The thermal conductor is fabricated to include a resilient portion which expands and contracts to maintain mechanical contact between the cell and the thermally conductive material in the presence of relative movement between the cell and the wall structure. The electrochemical generator may be disposed in a hermetically sealed housing.

  2. Optical properties of nanostructured silicon-rich silicon dioxide

    E-Print Network [OSTI]

    Stolfi, Michael Anthony

    2006-01-01T23:59:59.000Z

    We have conducted a study of the optical properties of sputtered silicon-rich silicon dioxide (SRO) thin films with specific application for the fabrication of erbium-doped waveguide amplifiers and lasers, polarization ...

  3. Topological transitions in evaporating thin films

    E-Print Network [OSTI]

    Avraham Klein; Oded Agam

    2012-07-31T23:59:59.000Z

    A thin water film evaporating from a cleaved mica substrate undergoes a first-order phase transition between two values of film thickness. During evaporation, the interface between the two phases develops a fingering instability similar to that observed in the Saffman-Taylor problem. The dynamics of the droplet interface is dictated by an infinite number of conserved quantities: all harmonic moments decay exponentially at the same rate. A typical scenario is the nucleation of a dry patch within the droplet domain. We construct solutions of this problem and analyze the toplogical transition occuring when the boundary of the dry patch meets the outer boundary. We show a duality between Laplacian growth and evaporation, and utilize it to explain the behaviour near the transition. We construct a family of problems for which evaporation and Laplacian growth are limiting cases and show that a necessary condition for a smooth topological transition, in this family, is that all boundaries share the same pressure.

  4. Process for making dense thin films

    DOE Patents [OSTI]

    Jacobson, Craig P.; Visco, Steven J.; DeJonghe, Lutgard C.

    2005-07-26T23:59:59.000Z

    Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for firing of device substrate to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.

  5. Method of improving field emission characteristics of diamond thin films

    DOE Patents [OSTI]

    Krauss, A.R.; Gruen, D.M.

    1999-05-11T23:59:59.000Z

    A method of preparing diamond thin films with improved field emission properties is disclosed. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display. 3 figs.

  6. Method of improving field emission characteristics of diamond thin films

    DOE Patents [OSTI]

    Krauss, Alan R. (Naperville, IL); Gruen, Dieter M. (Downer Grove, IL)

    1999-01-01T23:59:59.000Z

    A method of preparing diamond thin films with improved field emission properties. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display.

  7. Thin Solid Films 430 (2003) 125129 0040-6090/03/$ -see front matter 2003 Elsevier Science B.V. All rights reserved.

    E-Print Network [OSTI]

    Deng, Xunming

    for a-Si:H solar cell fabrication. In addition to photovoltaic applications, a-Si:H is also used of amorphous silicon (a-Si:H)-based photovoltaic devices, it is important to deposit high- quality a progress has been made in hydrogenated amorphous silicon (a-Si:H)-based thin film photovoltaic devices

  8. The Electrodeless Discharge Lamps Coated with the Titania Thin Film for Photocatalysis in a Microwave Field

    E-Print Network [OSTI]

    Cirkva, Vladimir

    The Electrodeless Discharge Lamps Coated with the Titania Thin Film for Photocatalysis assisted photocatalysis using TiO2 thin films has been examined. Several factors influencing

  9. Wave propagation in highly inhomogeneous thin films: exactly solvable models

    E-Print Network [OSTI]

    Boyer, Edmond

    Wave propagation in highly inhomogeneous thin films: exactly solvable models Guillaume Petite(1 of wave propagation in some inhomogeneous thin films with highly space- dependent dielectric constant will show that depending on the type of space dependence, an incident wave can either propagate or tunnel

  10. Electrical properties of quench-condensed thin film 

    E-Print Network [OSTI]

    Lee, Kyoungjin

    2009-05-15T23:59:59.000Z

    . The apparatus was shown to operate well for the fabrication of thin films while monitoring the growth in-situ. As a part of the preliminary research, we measured the electrical properties of aluminum thin films at liquid nitrogen temperature by using...

  11. VACUUM PUMPING STUDY OF TITANIUM-ZIRCONIUM-VANADIUM THIN FILMS*

    E-Print Network [OSTI]

    ERL 03-8 VACUUM PUMPING STUDY OF TITANIUM-ZIRCONIUM-VANADIUM THIN FILMS* Yulin Li# and Simon Ho high vacuum. As part of R&D efforts for the proposed Energy Recovery Linac at Cornell, the pumping performance of Titanium- Zirconium-Vanadium (TiZrV) NEG thin films was investigated to provide `engineering

  12. Apparatus for laser assisted thin film deposition

    DOE Patents [OSTI]

    Warner, Bruce E. (Pleasanton, CA); McLean, II, William (Oakland, CA)

    1996-01-01T23:59:59.000Z

    A pulsed laser deposition apparatus uses fiber optics to deliver visible output beams. One or more optical fibers are coupled to one or more laser sources, and delivers visible output beams to a single chamber, to multiple targets in the chamber or to multiple chambers. The laser can run uninterrupted if one of the deposition chambers ceases to operate because other chambers can continue their laser deposition processes. The laser source can be positioned at a remote location relative to the deposition chamber. The use of fiber optics permits multi-plexing. A pulsed visible laser beam is directed at a generally non-perpendicular angle upon the target in the chamber, generating a plume of ions and energetic neutral species. A portion of the plume is deposited on a substrate as a thin film. A pulsed visible output beam with a high pulse repetition frequency is used. The high pulse repetition frequency is greater than 500 Hz, and more preferably, greater than about 1000 Hz. Diamond-like-carbon (DLC) is one of the thin films produced using the apparatus.

  13. Rechargeable thin-film lithium batteries

    SciTech Connect (OSTI)

    Bates, J.B.; Gruzalski, G.R.; Dudney, N.J.; Luck, C.F.; Yu, X.

    1993-09-01T23:59:59.000Z

    Rechargeable thin-film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have been fabricated and characterized. These include Li-TiS{sub 2}, Li-V{sub 2}O{sub 5}, and Li-Li{sub x}Mn{sub 2}O{sub 4} cells with open circuit voltages at full charge of about 2.5 V, 3.7 V, and 4.2 V, respectively. The realization of these robust cells, which can be cycled thousands of times, was possible because of the stability of the amorphous lithium electrolyte, lithium phosphorus oxynitride. This material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46}and a conductivity at 25 C of 2 {mu}S/cm. The thin-film cells have been cycled at 100% depth of discharge using current densities of 5 to 100 {mu}A/cm{sup 2}. Over most of the charge-discharge range, the internal resistance appears to be dominated by the cathode, and the major source of the resistance is the diffusion of Li{sup +} ions from the electrolyte into the cathode. Chemical diffusion coefficients were determined from ac impedance measurements.

  14. Apparatus for laser assisted thin film deposition

    DOE Patents [OSTI]

    Warner, B.E.; McLean, W. II

    1996-02-13T23:59:59.000Z

    A pulsed laser deposition apparatus uses fiber optics to deliver visible output beams. One or more optical fibers are coupled to one or more laser sources, and delivers visible output beams to a single chamber, to multiple targets in the chamber or to multiple chambers. The laser can run uninterrupted if one of the deposition chambers ceases to operate because other chambers can continue their laser deposition processes. The laser source can be positioned at a remote location relative to the deposition chamber. The use of fiber optics permits multi-plexing. A pulsed visible laser beam is directed at a generally non-perpendicular angle upon the target in the chamber, generating a plume of ions and energetic neutral species. A portion of the plume is deposited on a substrate as a thin film. A pulsed visible output beam with a high pulse repetition frequency is used. The high pulse repetition frequency is greater than 500 Hz, and more preferably, greater than about 1000 Hz. Diamond-like-carbon (DLC) is one of the thin films produced using the apparatus. 9 figs.

  15. Method of producing solution-derived metal oxide thin films

    DOE Patents [OSTI]

    Boyle, Timothy J. (Albuquerque, NM); Ingersoll, David (Albuquerque, NM)

    2000-01-01T23:59:59.000Z

    A method of preparing metal oxide thin films by a solution method. A .beta.-metal .beta.-diketonate or carboxylate compound, where the metal is selected from groups 8, 9, 10, 11, and 12 of the Periodic Table, is solubilized in a strong Lewis base to form a homogeneous solution. This precursor solution forms within minutes and can be deposited on a substrate in a single layer or a multiple layers to form a metal oxide thin film. The substrate with the deposited thin film is heated to change the film from an amorphous phase to a ceramic metal oxide and cooled.

  16. Light induced instability in bilayer nc-Si/a-Si thin film transistors M Bauza and A Nathan

    E-Print Network [OSTI]

    Haddadi, Hamed

    silicon (nc-Si:H) have been used as the channel layer in thin film transistors (TFTs) and photovoltaic in the field effect mobility of the device due to the higher contact resistance, it increases the ON/OFF ratio it is important to investigate the effect of TFT stability when subjected to illumination and/or electrical

  17. Controlled nanostructuration of polycrystalline tungsten thin films

    SciTech Connect (OSTI)

    Girault, B. [Institut P' (UPR 3346 CNRS), Universite de Poitiers, ENSMA, Bd Pierre et Marie Curie, 86962 Futuroscope Cedex (France); Institut de Recherche en Genie Civil et Mecanique (UMR CNRS 6183), LUNAM Universite, Universite de Nantes, Centrale Nantes, CRTT, 37 Bd de l'Universite, BP 406, 44602 Saint-Nazaire Cedex (France); Eyidi, D.; Goudeau, P.; Guerin, P.; Bourhis, E. Le; Renault, P.-O. [Institut P' (UPR 3346 CNRS), Universite de Poitiers, ENSMA, Bd Pierre et Marie Curie, 86962 Futuroscope Cedex (France); Sauvage, T. [CEMHTI/CNRS (UPR 3079 CNRS), Universite d'Orleans, 3A rue de la Ferollerie, 45071 Orleans Cedex 2 (France)

    2013-05-07T23:59:59.000Z

    Nanostructured tungsten thin films have been obtained by ion beam sputtering technique stopping periodically the growing. The total thickness was maintained constant while nanostructure control was obtained using different stopping periods in order to induce film stratification. The effect of tungsten sublayers' thicknesses on film composition, residual stresses, and crystalline texture evolution has been established. Our study reveals that tungsten crystallizes in both stable {alpha}- and metastable {beta}-phases and that volume proportions evolve with deposited sublayers' thicknesses. {alpha}-W phase shows original fiber texture development with two major preferential crystallographic orientations, namely, {alpha}-W<110> and unexpectedly {alpha}-W<111> texture components. The partial pressure of oxygen and presence of carbon have been identified as critical parameters for the growth of metastable {beta}-W phase. Moreover, the texture development of {alpha}-W phase with two texture components is shown to be the result of a competition between crystallographic planes energy minimization and crystallographic orientation channeling effect maximization. Controlled grain size can be achieved for the {alpha}-W phase structure over 3 nm stratification step. Below, the {beta}-W phase structure becomes predominant.

  18. Vertically aligned biaxially textured molybdenum thin films

    SciTech Connect (OSTI)

    Krishnan, Rahul [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Riley, Michael [Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Lee, Sabrina [US Army Armament Research, Development and Engineering Center, Benet Labs, Watervliet, New York 12189 (United States); Lu, Toh-Ming [Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2011-09-15T23:59:59.000Z

    Vertically aligned, biaxially textured molybdenum nanorods were deposited using dc magnetron sputtering with glancing flux incidence (alpha = 85 degrees with respect to the substrate normal) and a two-step substrate-rotation mode. These nanorods were identified with a body-centered cubic crystal structure. The formation of a vertically aligned biaxial texture with a [110] out-of-plane orientation was combined with a [-110] in-plane orientation. The kinetics of the growth process was found to be highly sensitive to an optimum rest time of 35 seconds for the two-step substrate rotation mode. At all other rest times, the nanorods possessed two separate biaxial textures each tilted toward one flux direction. While the in-plane texture for the vertical nanorods maintains maximum flux capture area, inclined Mo nanorods deposited at alpha = 85 degrees without substrate rotation display a [-1-1-4] in-plane texture that does not comply with the maximum flux capture area argument. Finally, an in situ capping film was deposited with normal flux incidence over the biaxially textured vertical nanorods resulting in a thin film over the porous nanorods. This capping film possessed the same biaxial texture as the nanorods and could serve as an effective substrate for the epitaxial growth of other functional materials.

  19. Microtensile Testing of Free-standing and Supported Metallic Thin Films

    E-Print Network [OSTI]

    Microtensile Testing of Free-standing and Supported Metallic Thin Films A thesis presented by Denis Films Abstract Mechanical properties of free-standing and supported Cu thin films were investi- gated observed experimentally on thin films. As-deposited Cu films with different film thicknesses on compliant

  20. Scaling law analysis of paraffin thin films on different surfaces

    SciTech Connect (OSTI)

    Dotto, M. E. R.; Camargo, S. S. Jr. [Engenharia Metalurgica e de Materials, Universidade Federal do Rio de Janeiro, Cx. Postal 68505, Rio de Janeiro, RJ, CEP 21945-970 (Brazil)

    2010-01-15T23:59:59.000Z

    The dynamics of paraffin deposit formation on different surfaces was analyzed based on scaling laws. Carbon-based films were deposited onto silicon (Si) and stainless steel substrates from methane (CH{sub 4}) gas using radio frequency plasma enhanced chemical vapor deposition. The different substrates were characterized with respect to their surface energy by contact angle measurements, surface roughness, and morphology. Paraffin thin films were obtained by the casting technique and were subsequently characterized by an atomic force microscope in noncontact mode. The results indicate that the morphology of paraffin deposits is strongly influenced by substrates used. Scaling laws analysis for coated substrates present two distinct dynamics: a local roughness exponent ({alpha}{sub local}) associated to short-range surface correlations and a global roughness exponent ({alpha}{sub global}) associated to long-range surface correlations. The local dynamics is described by the Wolf-Villain model, and a global dynamics is described by the Kardar-Parisi-Zhang model. A local correlation length (L{sub local}) defines the transition between the local and global dynamics with L{sub local} approximately 700 nm in accordance with the spacing of planes measured from atomic force micrographs. For uncoated substrates, the growth dynamics is related to Edwards-Wilkinson model.

  1. Low Cost Thin Film Building-Integrated Photovoltaic Systems

    SciTech Connect (OSTI)

    Dr. Subhendu Guha; Dr. Jeff Yang

    2012-05-25T23:59:59.000Z

    The goal of the program is to develop 'LOW COST THIN FILM BUILDING-INTEGRATED PV SYSTEMS'. Major focus was on developing low cost solution for the commercial BIPV and rooftop PV market and meet DOE LCOE goal for the commercial market segment of 9-12 cents/kWh for 2010 and 6-8 cents/kWh for 2015. We achieved the 2010 goal and were on track to achieve the 2015 goal. The program consists of five major tasks: (1) modules; (2) inverters and BOS; (3) systems engineering and integration; (4) deployment; and (5) project management and TPP collaborative activities. We successfully crossed all stage gates and surpassed all milestones. We proudly achieved world record stable efficiencies in small area cells (12.56% for 1cm2) and large area encapsulated modules (11.3% for 800 cm2) using a triple-junction amorphous silicon/nanocrystalline silicon/nanocrystalline silicon structure, confirmed by the National Renewable Energy Laboratory. We collaborated with two inverter companies, Solectria and PV Powered, and significantly reduced inverter cost. We collaborated with three universities (Syracuse University, University of Oregon, and Colorado School of Mines) and National Renewable Energy Laboratory, and improved understanding on nanocrystalline material properties and light trapping techniques. We jointly published 50 technical papers in peer-reviewed journals and International Conference Proceedings. We installed two 75kW roof-top systems, one in Florida and another in New Jersey demonstrating innovative designs. The systems performed satisfactorily meeting/exceeding estimated kWh/kW performance. The 50/50 cost shared program was a great success and received excellent comments from DOE Manager and Technical Monitor in the Final Review.

  2. Thin-film chip-to-substrate interconnect and methods for making same

    DOE Patents [OSTI]

    Tuckerman, D.B.

    1988-06-06T23:59:59.000Z

    Integrated circuit chips are electrically connected to a silicon wafer interconnection substrate. Thin film wiring is fabricated down bevelled edges of the chips. A subtractive wire fabrication method uses a series of masks and etching steps to form wires in a metal layer. An additive method direct laser writes or deposits very thin lines which can then be plated up to form wires. A quasi-additive or subtractive/additive method forms a pattern of trenches to expose a metal surface which can nucleate subsequent electrolytic deposition of wires. Low inductance interconnections on a 25 micron pitch (1600 wires on a 1 cm square chip) can be produced. The thin film hybrid interconnect eliminates solder joints or welds, and minimizes the levels of metallization. Advantages include good electrical properties, very high wiring density, excellent backside contact, compactness, and high thermal and mechanical reliability. 6 figs.

  3. Glow discharge plasma deposition of thin films

    DOE Patents [OSTI]

    Weakliem, Herbert A. (Pennington, NJ); Vossen, Jr., John L. (Bridgewater, NJ)

    1984-05-29T23:59:59.000Z

    A glow discharge plasma reactor for deposition of thin films from a reactive RF glow discharge is provided with a screen positioned between the walls of the chamber and the cathode to confine the glow discharge region to within the region defined by the screen and the cathode. A substrate for receiving deposition material from a reactive gas is positioned outside the screened region. The screen is electrically connected to the system ground to thereby serve as the anode of the system. The energy of the reactive gas species is reduced as they diffuse through the screen to the substrate. Reactive gas is conducted directly into the glow discharge region through a centrally positioned distribution head to reduce contamination effects otherwise caused by secondary reaction products and impurities deposited on the reactor walls.

  4. Thin films of mixed metal compounds

    DOE Patents [OSTI]

    Mickelsen, R.A.; Chen, W.S.

    1985-06-11T23:59:59.000Z

    Disclosed is a thin film heterojunction solar cell, said heterojunction comprising a p-type I-III-IV[sub 2] chalcopyrite substrate and an overlying layer of an n-type ternary mixed metal compound wherein said ternary mixed metal compound is applied to said substrate by introducing the vapor of a first metal compound to a vessel containing said substrate from a first vapor source while simultaneously introducing a vapor of a second metal compound from a second vapor source of said vessel, said first and second metals comprising the metal components of said mixed metal compound; independently controlling the vaporization rate of said first and second vapor sources; reducing the mean free path between vapor particles in said vessel, said gas being present in an amount sufficient to induce homogeneity of said vapor mixture; and depositing said mixed metal compound on said substrate in the form of a uniform composition polycrystalline mixed metal compound. 5 figs.

  5. Method for making surfactant-templated thin films

    DOE Patents [OSTI]

    Brinker, C. Jeffrey (Albuquerque, NM); Lu, Yunfeng (New Orleans, LA); Fan, Hong You (Albuquerque, NM)

    2010-08-31T23:59:59.000Z

    An evaporation-induced self-assembly method to prepare a porous, surfactant-templated, thin film by mixing a silica sol, a solvent, a surfactant, and an interstitial compound, evaporating a portion of the solvent to form a liquid, crystalline thin film mesophase material, and then removal of the surfactant template. Coating onto a substrate produces a thin film with the interstitial compound either covalently bonded to the internal surfaces of the ordered or disordered mesostructure framework or physically entrapped within the ordered or disordered mesostructured framework. Particles can be formed by aerosol processing or spray drying rather than coating onto a substrate. The selection of the interstitial compound provides a means for developing thin films for applications including membranes, sensors, low dielectric constant films, photonic materials and optical hosts.

  6. Method for making surfactant-templated thin films

    DOE Patents [OSTI]

    Brinker, C. Jeffrey (Albuquerque, NM); Lu, Yunfeng (San Jose, CA); Fan, Hongyou (Albuquerque, NM)

    2002-01-01T23:59:59.000Z

    An evaporation-induced self-assembly method to prepare a porous, surfactant-templated, thin film by mixing a silica sol, a solvent, a surfactant, and an interstitial compound, evaporating a portion of the solvent to form a liquid, crystalline thin film mesophase material, and then removal of the surfactant template. Coating onto a substrate produces a thin film with the interstitial compound either covalently bonded to the internal surfaces of the ordered or disordered mesostructure framework or physically entrapped within the ordered or disordered mesostructured framework. Particles can be formed by aerosol processing or spray drying rather than coating onto a substrate. The selection of the interstitial compound provides a means for developing thin films for applications including membranes, sensors, low dielectric constant films, photonic materials and optical hosts.

  7. Singular Limits for Thin Film Superconductors in Strong Magnetic Fields - Maan Field Model for Thin Films

    E-Print Network [OSTI]

    Stan Alama; Lia Bronsard; Bernardo Galvão-Sousa

    2012-09-17T23:59:59.000Z

    We consider singular limits of the three-dimensional Ginzburg-Landau functional for a superconductor with thin-film geometry, in a constant external magnetic field. The superconducting domain has characteristic thickness on the scale $\\eps>0$, and we consider the simultaneous limit as the thickness $\\eps\\rightarrow 0$ and the Ginzburg-Landau parameter $\\kappa\\rightarrow\\infty$. We assume that the applied field is strong (on the order of $\\eps^{-1}$ in magnitude) in its components tangential to the film domain, and of order $\\log\\kappa$ in its dependence on $\\kappa$. We prove that the Ginzburg-Landau energy $\\Gamma$-converges to an energy associated with a two-obstacle problem, posed on the planar domain which supports the thin film. The same limit is obtained regardless of the relationship between $\\eps$ and $\\kappa$ in the limit. Two illustrative examples are presented, each of which demonstrating how the curvature of the film can induce the presence of both (positively oriented) vortices and (negatively oriented) antivortices coexisting in a global minimizer of the energy.

  8. Transparent conducting thin films for spacecraft applications

    SciTech Connect (OSTI)

    Perez-Davis, M.E.; Malave-Sanabria, T.; Hambourger, P.; Rutledge, S.K.; Roig, D.; Degroh, K.K.; Hung, C.

    1994-01-01T23:59:59.000Z

    Transparent conductive thin films are required for a variety of optoelectronic applications: automotive and aircraft windows, and solar cells for space applications. Transparent conductive coatings of indium-tin-oxide (ITO)-magnesium fluoride (MgF2) and aluminum doped zinc oxide (AZO) at several dopant levels are investigated for electrical resistivity (sheet resistance), carrier concentration, optical properties, and atomic oxygen durability. The sheet resistance values of ITO-MgF2 range from 10[sup 2] to 10[sup 11] ohms/square, with transmittance of 75 to 86 percent. The AZO films sheet resistances range from 10[sup 7] to 10[sup 11] ohms/square with transmittances from 84 to 91 percent. It was found that in general, with respect to the optical properties, the zinc oxide (ZnO), AZO, and the high MgF2 content ITO-MgF2 samples, were all durable to atomic oxygen plasma, while the low MgF2 content of ITO-MgF2 samples were not durable to atomic oxygen plasma exposure.

  9. A Free Energy Model for Thin-film Shape Memory Alloys Jordan E. Massad*1

    E-Print Network [OSTI]

    Mechanical & Aerospace Engineering Dept., UCLA, Los Angeles, CA 90095 ABSTRACT Thin-film shape memory alloysA Free Energy Model for Thin-film Shape Memory Alloys Jordan E. Massad*1 , Ralph C. Smith1 and Greg comparison with thin-film NiTi superelastic hysteresis data. Keywords: Shape memory alloy model; thin film

  10. Effects of stretching and cycling on the fatigue behavior of polymer-supported Ag thin films

    E-Print Network [OSTI]

    Effects of stretching and cycling on the fatigue behavior of polymer-supported Ag thin films Gi March 2013 Keywords: Fatigue Thin films Fatigue crack initiation Intergranular failure Ductile fracture on characterizing the mechanical behavior of thin metal films and have observed that metals in thin-film form can

  11. Crystallization and Martensitic Transformation Behavior of NiTi Shape Memory Alloy Thin Films

    E-Print Network [OSTI]

    Crystallization and Martensitic Transformation Behavior of NiTi Shape Memory Alloy Thin Films Alloy Thin Films Abstract The microstructure evolution and shape memory properties of near-equiatomic Ni-Ti thin films were investigated. Ni-Ti thin films sputter-deposited at room tem- perature are usually

  12. DISSERTATION DEVICE PHYSICS OF Cu(In,Ga)Se2 THIN-FILM SOLAR CELLS

    E-Print Network [OSTI]

    Sites, James R.

    DISSERTATION DEVICE PHYSICS OF Cu(In,Ga)Se2 THIN-FILM SOLAR CELLS Submitted by Markus Gloeckler PHYSICS OF Cu(In,Ga)Se2 THIN-FILM SOLAR CELLS BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS OF Cu(In,Ga)Se2 THIN-FILM SOLAR CELLS Thin-film solar cells have the potential to be an important

  13. Strain Relaxation and Vacancy Creation in Thin Platinum Films

    SciTech Connect (OSTI)

    Gruber, W.; Chakravarty, S.; Schmidt, H. [Technische Universitaet Clausthal, Institut fuer Metallurgie, Clausthal-Zellerfeld (Germany); Baehtz, C. [Helmholtz Zentrum Dresden Rossendorf, Institute of Ion Beam Physics and Materials Research, Dresden (Germany); Leitenberger, W. [Universitaet Potsdam, Institut fuer Physik und Astronomie, Potsdam (Germany); Bruns, M. [Karlsruher Institut fuer Technologie, Institute for Applied Materials, Eggenstein-Leopoldshafen (Germany); Karlsruher Institut fuer Technologie, Karlsruher Micro Nano Facility, Eggenstein-Leopoldshafen (Germany); Kobler, A.; Kuebel, C. [Karlsruher Institut fuer Technologie, Institute of Nanotechnology, Eggenstein-Leopoldshafen (Germany); Karlsruher Institut fuer Technologie, Karlsruher Micro Nano Facility, Eggenstein-Leopoldshafen (Germany)

    2011-12-23T23:59:59.000Z

    Synchrotron based combined in situ x-ray diffractometry and reflectometry is used to investigate the role of vacancies for the relaxation of residual stress in thin metallic Pt films. From the experimentally determined relative changes of the lattice parameter a and of the film thickness L the modification of vacancy concentration and residual strain was derived as a function of annealing time at 130 deg. C. The results indicate that relaxation of strain resulting from compressive stress is accompanied by the creation of vacancies at the free film surface. This proves experimentally the postulated dominant role of vacancies for stress relaxation in thin metal films close to room temperature.

  14. Thin film photovoltaic device and process of manufacture

    DOE Patents [OSTI]

    Albright, S.P.; Chamberlin, R.

    1999-02-09T23:59:59.000Z

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells. 13 figs.

  15. Thin film photovoltaic device and process of manufacture

    DOE Patents [OSTI]

    Albright, Scot P. (Lakewood, CO); Chamberlin, Rhodes (El Paso, TX)

    1997-10-07T23:59:59.000Z

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells.

  16. Thin film photovoltaic device and process of manufacture

    DOE Patents [OSTI]

    Albright, Scot P. (Lakewood, CO); Chamberlin, Rhodes (El Paso, TX)

    1999-02-09T23:59:59.000Z

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells.

  17. Deposition of device quality low H content, amorphous silicon films

    DOE Patents [OSTI]

    Mahan, A.H.; Carapella, J.C.; Gallagher, A.C.

    1995-03-14T23:59:59.000Z

    A high quality, low hydrogen content, hydrogenated amorphous silicon (a-Si:H) film is deposited by passing a stream of silane gas (SiH{sub 4}) over a high temperature, 2,000 C, tungsten (W) filament in the proximity of a high temperature, 400 C, substrate within a low pressure, 8 mTorr, deposition chamber. The silane gas is decomposed into atomic hydrogen and silicon, which in turn collides preferably not more than 20--30 times before being deposited on the hot substrate. The hydrogenated amorphous silicon films thus produced have only about one atomic percent hydrogen, yet have device quality electrical, chemical, and structural properties, despite this lowered hydrogen content. 7 figs.

  18. Deposition of device quality low H content, amorphous silicon films

    DOE Patents [OSTI]

    Mahan, Archie H. (Golden, CO); Carapella, Jeffrey C. (Evergreen, CO); Gallagher, Alan C. (Louisville, CO)

    1995-01-01T23:59:59.000Z

    A high quality, low hydrogen content, hydrogenated amorphous silicon (a-Si:H) film is deposited by passing a stream of silane gas (SiH.sub.4) over a high temperature, 2000.degree. C., tungsten (W) filament in the proximity of a high temperature, 400.degree. C., substrate within a low pressure, 8 mTorr, deposition chamber. The silane gas is decomposed into atomic hydrogen and silicon, which in turn collides preferably not more than 20-30 times before being deposited on the hot substrate. The hydrogenated amorphous silicon films thus produced have only about one atomic percent hydrogen, yet have device quality electrical, chemical, and structural properties, despite this lowered hydrogen content.

  19. Processing and Gas Barrier Behavior of Multilayer Thin Nanocomposite Films 

    E-Print Network [OSTI]

    Yang, You-Hao

    2012-10-19T23:59:59.000Z

    Thin films with the ability to impart oxygen and other types of gas barrier are crucial to commercial packaging applications. Commodity polymers, such as polyethylene (PE), polycarbonate (PC) and polyethylene terephthalate (PET), have insufficient...

  20. Effective Optical Properties of Highly Ordered Mesoporous Thin Films

    E-Print Network [OSTI]

    Hutchinson, Neal J.; Coquil, Thomas; Navid, Ashcon; Pilon, Laurent

    2010-01-01T23:59:59.000Z

    a solid-state dye-sensitized solar cells”, Thin Solid Films,tions include dye-sensitized solar cells [8– 10], low-ke?ciency solar cell based on dye- a sensitized colloidal

  1. Laser Induced Breakdown Spectroscopy and Applications Toward Thin Film Analysis

    E-Print Network [OSTI]

    Owens, Travis Nathan

    2011-01-01T23:59:59.000Z

    on the surface. Ultrafast laser pulses are shorter than thethe advantages of ultrafast laser pulses for thin film LIBS,each time. While ultrafast laser pulses are effective in

  2. Nanostructured thin films for solid oxide fuel cells 

    E-Print Network [OSTI]

    Yoon, Jongsik

    2009-05-15T23:59:59.000Z

    The goals of this work were to synthesize high performance perovskite based thin film solid oxide fuel cell (TF-SOFC) cathodes by pulsed laser deposition (PLD), to study the structural, electrical and electrochemical properties of these cathodes...

  3. Modeling of thin-film solar thermoelectric generators

    E-Print Network [OSTI]

    Weinstein, Lee Adragon

    Recent advances in solar thermoelectric generator (STEG) performance have raised their prospect as a potential technology to convert solar energy into electricity. This paper presents an analysis of thin-film STEGs. ...

  4. Scanned pulsed laser annealing of Cu thin films

    E-Print Network [OSTI]

    Verma, Harsh Anand, 1980-

    2005-01-01T23:59:59.000Z

    As the microelectronics industry has moved to Cu as the conductor material, there has been much research into microstructure control in Cu thin films, primarily because grain sizes affect resistivity. Also with Cu-based ...

  5. Direct printing of lead zirconate titanate thin films

    E-Print Network [OSTI]

    Bathurst, Stephen, 1980-

    2008-01-01T23:59:59.000Z

    Thus far, use of lead zirconate titanate (PZT) in MEMS has been limited due to the lack of process compatibility with existing MEMS manufacturing techniques. Direct printing of thin films eliminates the need for photolithographic ...

  6. Functionality Tuning in Vertically Aligned Nanocomposite Thin Films 

    E-Print Network [OSTI]

    Chen, Aiping

    2013-04-04T23:59:59.000Z

    Vertically aligned nanocomposite (VAN) oxide thin films are unique nanostructures with two-phase self-assembled, heteroepitaxially grown on single-crystal substrates. Both phases tend to grow vertically and simultaneously on a given substrate...

  7. Structure of Molecular Thin Films for Organic Electronics | Stanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organic Electronics Friday, April 6, 2012 - 1:00pm SSRL Conference Room 137-322 Bert Nickel, Physics Faculty and CeNS, Ludwig-Maximilians-University, Mnchen Thin films made out...

  8. Properties and sensor performance of zinc oxide thin films

    E-Print Network [OSTI]

    Min, Yongki, 1965-

    2003-01-01T23:59:59.000Z

    Reactively sputtered ZnO thin film gas sensors were fabricated onto Si wafers. The atmosphere dependent electrical response of the ZnO micro arrays was examined. The effects of processing conditions on the properties and ...

  9. The macroscopic delamination of thin films from elastic substrates

    E-Print Network [OSTI]

    Reis, Pedro Miguel

    The wrinkling and delamination of stiff thin films adhered to a polymer substrate have important applications in “flexible electronics.” The resulting periodic structures, when used for circuitry, have remarkable mechanical ...

  10. Flexible, transparent thin film transistors raise hopes for flexible...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the thin-film transistor, fabricated using single-atom-thick layers of graphene and tungsten diselenide, among other materials. The white scale bar shows 5 microns, which is...

  11. Steering and Separating Excitons in Organic Thin Films and Devices...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Steering and Separating Excitons in Organic Thin Films and Devices October 26, 2010 at 3pm36-428 Mark Thompson University of Southern California (USC) thompson abstract: We have...

  12. Structural, magnetic, and optical properties of orthoferrite thin films

    E-Print Network [OSTI]

    Supplee, William Wagner

    2007-01-01T23:59:59.000Z

    Pulsed laser deposition was used to create thin films of Ce-Fe-O and Y-Fe-O systems. Deposition temperature and ambient oxygen pressure were varied systematically between samples to determine which deposition conditions ...

  13. Guided Self-Assembly of Gold Thin Films

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guided Self-Assembly of Gold Thin Films Print Nanoparticles-man-made atoms with unique optical, electrical, and mechanical properties-have become key components in many fields of...

  14. Orientational Analysis of Molecules in Thin Films | Stanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Orientational Analysis of Molecules in Thin Films Monday, September 17, 2012 - 10:00am SSRL Bldg. 137, room 226 Daniel Kaefer The synchrotron-based X-ray absorption spectroscopy is...

  15. Antimony-Doped Tin(II) Sulfide Thin Films

    E-Print Network [OSTI]

    Chakraborty, Rupak

    Thin-film solar cells made from earth-abundant, inexpensive, and nontoxic materials are needed to replace the current technologies whose widespread use is limited by their use of scarce, costly, and toxic elements. Tin ...

  16. Homogenization studies for optical sensors based on sculptured thin films 

    E-Print Network [OSTI]

    Jamaian, Siti Suhana

    2013-07-01T23:59:59.000Z

    In this thesis we investigate theoretically various types of sculptured thin film (STF) envisioned as platforms for optical sensing. A STF consists of an array of parallel nanowires which can be grown on a substrate using ...

  17. Multimonth controlled small molecule release from biodegradable thin films

    E-Print Network [OSTI]

    Hammond, Paula T.

    Long-term, localized delivery of small molecules from a biodegradable thin film is challenging owing to their low molecular weight and poor charge density. Accomplishing highly extended controlled release can facilitate ...

  18. Initiated chemical vapor deposition of functional polyacrylic thin films

    E-Print Network [OSTI]

    Mao, Yu, 1975-

    2005-01-01T23:59:59.000Z

    Initiated chemical vapor deposition (iCVD) was explored as a novel method for synthesis of functional polyacrylic thin films. The process introduces a peroxide initiator, which can be decomposed at low temperatures (<200?C) ...

  19. Functionalized multilayer thin films for protection against acutely toxic agents

    E-Print Network [OSTI]

    Krogman, Kevin Christopher

    2009-01-01T23:59:59.000Z

    The recently developed practice of spraying polyelectrolyte solutions onto a substrate in order to construct thin films via the Layer-by-Layer (LbL) technique has been further investigated and extended. In this process a ...

  20. al thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dalek@eee.hku.hk , C. Y. Kwong, T. W. Lau, L. S. M. Lam, and W. K 276 DEFECT-FREE THIN FILM MEMBRANES FOR H2 SEPARATION AND ISOLATION Energy Storage, Conversion and...

  1. al thin film: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dalek@eee.hku.hk , C. Y. Kwong, T. W. Lau, L. S. M. Lam, and W. K 276 DEFECT-FREE THIN FILM MEMBRANES FOR H2 SEPARATION AND ISOLATION Energy Storage, Conversion and...

  2. Polycrystalline Thin-Film Research: Cadmium Telluride (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-06-01T23:59:59.000Z

    This National Center for Photovoltaics sheet describes the capabilities of its polycrystalline thin-film research in the area of cadmium telluride. The scope and core competencies and capabilities are discussed.

  3. TiNi-based thin films for MEMS applications

    E-Print Network [OSTI]

    Fu, Yongqing

    In this paper, some critical issues and problems in the development of TiNi thin films were discussed, including preparation and characterization considerations, residual stress and adhesion, frequency improvement, fatigue ...

  4. Enabling integration of vapor-deposited polymer thin films

    E-Print Network [OSTI]

    Petruczok, Christy D. (Christy Danielle)

    2014-01-01T23:59:59.000Z

    Initiated Chemical Vapor Deposition (iCVD) is a versatile, one-step process for synthesizing conformal and functional polymer thin films on a variety of substrates. This thesis emphasizes the development of tools to further ...

  5. ag thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MgO, Ref. 21 Marcon, Marco 2 Multi-level surface enhanced Raman scattering using AgOx thin film Physics Websites Summary: by applying laser-direct writing (LDW) technique on...

  6. Self-Assembling Process for Fabricating Tailored Thin Films

    ScienceCinema (OSTI)

    None

    2010-01-08T23:59:59.000Z

    A simple, economical nanotechnology coating process that enables the development of nanoparticle thin films with architectures and properties unattainable by any other processing method. 2007 R&D 100 winner (SAND2007-1878P)

  7. Self-Assembling Process for Fabricating Tailored Thin Films

    ScienceCinema (OSTI)

    Sandia

    2009-09-01T23:59:59.000Z

    A simple, economical nanotechnology coating process that enables the development of nanoparticle thin films with architectures and properties unattainable by any other processing method. 2007 R&D 100 winner (SAND2007-1878P)

  8. Nonlinear viscoelastic characterization of thin films using dynamic mechanical analysis

    E-Print Network [OSTI]

    Payne, Debbie Flowers

    1993-01-01T23:59:59.000Z

    NONLINEAR VISCOELASTIC CHARACTERIZATION OF THIN FILMS USING DYNAMIC MECHANICAL ANALYSIS A Thesis by DEBBIE FLOWERS PAYNE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE AUGUST 1993 Major Subject: Aerospace Engineering NONLINEAR VISCOELASTIC CHARACTERIZATION OF THIN FILMS USING DYNAMIC MECHANICAL ANALYSIS A Thesis by DEBBIE FLOWERS PAYNE Approved as to style and content by: Thomas W...

  9. Templated dewetting of thin solid films

    E-Print Network [OSTI]

    Giermann, Amanda L. (Amanda Leah)

    2009-01-01T23:59:59.000Z

    The dewetting of solid metal polycrystalline films to form metal nanoparticles occurs by the nucleation and growth of holes in the film. For typical films on flat substrates, this process is not well-controlled and results ...

  10. Silicon epitaxy below 200C: Towards thin crystalline solar cells R. Carioua,b

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Silicon epitaxy below 200°C: Towards thin crystalline solar cells R. Carioua,b , R. Ruggeria,c , P spectroscopic ellipsometry and HRTEM measurements. Moreover, we build heterojunction solar cells with intrinsic of current devices. KEYWORDS Silicon epitaxy, RF-PECVD, low temperature, thin crystalline solar cells

  11. Thin aerogel films for optical, thermal, acoustic, and electronic applications

    SciTech Connect (OSTI)

    Hrubesh, L.W.; Poco, J.F. [Lawrence Livermore National Lab., CA (United States). Chemistry and Material Sciences Dept.

    1994-09-01T23:59:59.000Z

    Aerogels are a special class of continuously porous solid materials which are characterized by nanometer size particles and pores. Typically, aerogels are made using sol-gel chemistry to form a solvent filled, high porosity gel that is dried by removing the solvent without collapsing the tenuous solid phase. As bulk materials, aerogels are known to have many exceptional, and even some unique physical properties. Aerogels provide the highest thermal insulation and lowest dielectric constant of any other material known. However, some important applications require the aerogels in the form of thin films or sheets. For example, electronic applications require micrometer thin aerogel films bonded to a substrate, and others require thicker films, either on a substrate or as free standing sheets. Special methods are required to make aerogel thin films or sheets. In this paper, the authors discuss the special conditions needed to fabricate thin aerogel films and they describe methods to make films and thin sheets. They also give some specific applications for which aerogel films are being developed.

  12. Composite polymeric film and method for its use in installing a very-thin polymeric film in a device

    DOE Patents [OSTI]

    Duchane, D.V.; Barthell, B.L.

    1982-04-26T23:59:59.000Z

    A composite polymeric film and a method for its use in forming and installing a very thin (< 10 ..mu..m) polymeric film are disclosed. The composite film consists of a thin film layer and a backing layer. The backing layer is soluble in a solvent in which the thin film layer is not soluble. In accordance with the method, the composite film is installed in a device in the same position in which it is sought to finally emplace the thin film. The backing layer is then selectiely dissolved in the solvent to leave the insoluble thin film layer as an unbacked film. The method permits a very thin film to e successfully installed in devices where the fragility of the film would preclude handling and installation by conventional methods.

  13. Front and backside processed thin film electronic devices

    DOE Patents [OSTI]

    Evans, Paul G. (Madison, WI); Lagally, Max G. (Madison, WI); Ma, Zhenqiang (Middleton, WI); Yuan, Hao-Chih (Lakewood, CO); Wang, Guogong (Madison, WI); Eriksson, Mark A. (Madison, WI)

    2012-01-03T23:59:59.000Z

    This invention provides thin film devices that have been processed on their front- and backside. The devices include an active layer that is sufficiently thin to be mechanically flexible. Examples of the devices include back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.

  14. Thin transparent conducting films of cadmium stannate

    DOE Patents [OSTI]

    Wu, Xuanzhi (Golden, CO); Coutts, Timothy J. (Lakewood, CO)

    2001-01-01T23:59:59.000Z

    A process for preparing thin Cd.sub.2 SnO.sub.4 films. The process comprises the steps of RF sputter coating a Cd.sub.2 SnO.sub.4 layer onto a first substrate; coating a second substrate with a CdS layer; contacting the Cd.sub.2 SnO.sub.4 layer with the CdS layer in a water- and oxygen-free environment and heating the first and second substrates and the Cd.sub.2 SnO.sub.4 and CdS layers to a temperature sufficient to induce crystallization of the Cd.sub.2 SnO.sub.4 layer into a uniform single-phase spinel-type structure, for a time sufficient to allow full crystallization of the Cd.sub.2 SnO.sub.4 layer at that temperature; cooling the first and second substrates to room temperature; and separating the first and second substrates and layers from each other. The process can be conducted at temperatures less than 600.degree. C., allowing the use of inexpensive soda lime glass substrates.

  15. Adhesion and Thin-Film Module Reliability

    SciTech Connect (OSTI)

    McMahon, T. J.; Jorgenson, G. J.

    2006-01-01T23:59:59.000Z

    Among the infrequently measured but essential properties for thin-film (T-F) module reliability are the interlayer adhesion and cohesion within a layer. These can be cell contact layers to glass, contact layers to the semiconductor, encapsulant to cell, glass, or backsheet, etc. We use an Instron mechanical testing unit to measure peel strengths at 90deg or 180deg and, in some cases, a scratch and tape pull test to evaluate inter-cell layer adhesion strengths. We present peel strength data for test specimens laminated from the three T-F technologies, before and after damp heat, and in one instance at elevated temperatures. On laminated T-F cell samples, failure can occur uniformly at any one of the many interfaces, or non-uniformly across the peel area at more than one interface. Some peel strengths are Lt1 N/mm. This is far below the normal ethylene vinyl acetate/glass interface values of >10 N/mm. We measure a wide range of adhesion strengths and suggest that adhesion measured under higher temperature and relative humidity conditions is more relevant for module reliability.

  16. Critical fields in ferromagnetic thin films: Identification of four regimes

    E-Print Network [OSTI]

    Otto, Felix

    Critical fields in ferromagnetic thin films: Identification of four regimes Rub´en Cantero­film elements is a paradigm for a multi­scale pattern­forming system. On one hand, there is a material length functional ceases to be positive definite. The degenerate subspace consists of the "unstable modes

  17. Atomic-scale Structural Characterizations of Functional Epitaxial Thin Films

    E-Print Network [OSTI]

    Zhu, Yuanyuan

    2013-06-03T23:59:59.000Z

    ................................................................ 10 1.3.1 Superconducting FeSe0.5Te0.5 epitaxial films........................................ 10 1.3.2 YBa2Cu3O7-x(YBCO) epitaxial thin films and flux-pinning effects ...... 14 1.3.3 Perovskite oxide epitaxial thin films... ...................................... 22 Figure 1.9. (a) Schematic illustration of ABO3 perovskite structure. (b) The corner -sharing oxygen octahedra in perovskite structure. . ................................... 23 Figure 1.10. (a) A HRTEM micrograph,67 (b) a Cs-corrected HRTEM image...

  18. Flexible cadmium telluride thin films grown on electron-beam-irradiated graphene/thin glass substrates

    SciTech Connect (OSTI)

    Seo, Won-Oh; Kim, Jihyun, E-mail: hyunhyun7@korea.ac.kr [Department of Chemical and Biological Engineering, Korea University, Anam-dong, Sungbuk-gu, Seoul 136-713 (Korea, Republic of); Koo, Yong Hwan; Kim, Byungnam; Lee, Byung Cheol [Radiation Integrated System Research Division, Korea Atomic Energy Research Institute (KAERI), Daejeon 305-353 (Korea, Republic of); Kim, Donghwan [Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of)

    2014-08-25T23:59:59.000Z

    We demonstrate the close-spaced sublimation growth of polycrystalline cadmium telluride (CdTe) thin films on a flexible graphene electrode/thin glass substrate structure. Prior to the growth of CdTe films, chemical-vapor-deposited graphene was transferred onto a flexible glass substrate and subjected to electron-beam irradiation at an energy of 0.2?MeV in order to intentionally introduce the defects into it in a controlled manner. Micro-Raman spectroscopy and sheet resistance measurements were employed to monitor the damage and disorder in the electron-beam irradiated graphene layers. The morphology and optical properties of the CdTe thin films deposited on a graphene/flexible glass substrate were systematically characterized. The integration of the defective graphene layers with a flexible glass substrate can be a useful platform to grow various thin-film structures for flexible electronic and optoelectronic devices.

  19. Switchable diode effect and ferroelectric resistive switching in epitaxial BiFeO3 thin films

    E-Print Network [OSTI]

    Tian, Weidong

    Switchable diode effect and ferroelectric resistive switching in epitaxial BiFeO3 thin films Can observed in epitaxial multiferroic BiFeO3 BFO thin films. The forward direction of the rectifying current the switchable diode effect and the ferroelectric resistive switching in epitaxially BFO thin films. BFO thin

  20. Novel Structure and Dynamics of Polymer Thin Films in Supercritical Fluids-Effect of Density Fluctuation

    SciTech Connect (OSTI)

    Koga,T.

    2004-01-01T23:59:59.000Z

    Supercritical carbon dioxide (scCO2) is being used increasingly as a green solvent in polymer processing. The major disadvantage thus far is that only a limited class of polymers, such as fluorinated or silicone-based polymers, can be dissolved in CO2. Here I show that large density fluctuations in scCO2 can significantly enhance the solubility of scCO2 in polymer thin films even when the bulk polymers have very poor miscibility with CO2. By using in situ neutron reflectivity, I found that a wide variety of polymer thin films can swell as much as 30-60% when exposed to scCO2 within a narrow temperature and pressure regime, known as the 'density fluctuation ridge', which defines the maximum density fluctuation amplitude in CO2. Furthermore, the swollen structures induced by the density fluctuation could be frozen by a flash evaporation of CO2 via the vitrification process of the polymer without a formation of void structures. X-ray reflectivity clearly showed that the scCO2 process could be used to produce uniform low-density polymer thin films. I also found that other properties of the vitrified films, such as index of refraction, dielectric constant and glass transition, were correlated with the low-density density profile.

  1. Gas Sensing Mechanism in Chemiresistive Cobalt and Metal-Free Phthalocyanine Thin Films

    E-Print Network [OSTI]

    Kummel, Andrew C.

    Gas Sensing Mechanism in Chemiresistive Cobalt and Metal-Free Phthalocyanine Thin Films Forest I-free phthalocyanine (H2- Pc) thin films were investigated with respect to analyte basicity. Chemiresistive sensors However, when Pc thin films are exposed to O2, the films become doped and the conductivity increases

  2. Determination of refractive index, thickness, and the optical losses of thin films from

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Determination of refractive index, thickness, and the optical losses of thin films from prism­film.4760, 300.1030. 1. Introduction Transparent thin films find wide applications in optics: coating, sensors and optical losses. The optical losses of a thin film have three different origins: sur- face scattering due

  3. Microwave Planar Capacitors Employing Low Loss, High-K, and Tunable BZN Thin Films

    E-Print Network [OSTI]

    York, Robert A.

    Microwave Planar Capacitors Employing Low Loss, High-K, and Tunable BZN Thin Films Jaehoon Park) thin films deposited by RF magnetron sputtering. Device Q factors (QDUT) and capacitances (CDUT) were films can be the alternative to conventional BST thin films. Index Terms -- Dielectric properties

  4. DISSERTATION ELECTRON-REFLECTOR STRATEGY FOR CdTe THIN-FILM SOLAR CELLS

    E-Print Network [OSTI]

    Sites, James R.

    DISSERTATION ELECTRON-REFLECTOR STRATEGY FOR CdTe THIN-FILM SOLAR CELLS Submitted by Kuo-Jui Hsiao ELECTRON- REFLECTOR STRATEGY FOR CdTe THIN-FILM SOLAR CELLS BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS-FILM SOLAR CELLS The CdTe thin-film solar cell has a large absorption coefficient and high theoretical

  5. Damage mechanisms in thin film solar cells during sputtering deposition of transparent conductive coatings

    SciTech Connect (OSTI)

    Fan Qihua; Liao Xianbo [Department of Physics and Astronomy, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606 (United States); Deng, Michael [Xunlight Corporation, 3145 Nebraska Avenue, Toledo, Ohio 43607 (United States); Deng Xunming [Department of Physics and Astronomy, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606 (United States); Xunlight Corporation, 3145 Nebraska Avenue, Toledo, Ohio 43607 (United States)

    2009-02-01T23:59:59.000Z

    Amorphous silicon (a-Si) based thin film solar cell grown on flexible stainless steel substrate is one of the most promising energy conversion devices in the future. This type of solar cell uses a transparent conductive oxide (TCO) film as top electrode. It has been a widely accepted opinion that the radio frequency sputtering deposition of the TCO film produces a higher yield than direct current sputtering, and the reason is not clear. Here we show that the damage to the solar cell during the sputtering process is caused by a reverse bias applied to the n-i-p junction. This reverse bias is related to the characteristics of plasma discharge. The mechanism we reveal may significantly affect the solar cell process.

  6. Cobalt disilicide buffer layer for YBCO film on silicon

    SciTech Connect (OSTI)

    Belousov, I.; Rudenko, E. [Institute for Physic Metals, Kiev (Ukraine); Linzen, S.; Seidel, P. [Friedrich-Schiller-Universitaet Jena (Germany)] [Friedrich-Shiller-Universitaet Jena (Germany)

    1997-02-01T23:59:59.000Z

    The CoSi{sub 2} films were used as buffer layers of YBCO/CoSi{sub 2}/Si(100), YBCO/ZrO{sub 2}/CoSi{sub 2}/Si(100) and YBCO/CeO{sub 2}/YSZ/CoSi{sub 2}/epi-Si/Al{sub 2}O{sub 3} heterostructures in this work. Transition temperatures of YBCO films were obtained up to 86K for YBCO films deposited by laser ablation on the top of CeO{sub 2}/YSZ/CoSi{sub 2}/Si/Al{sub 2}O{sub 3} structure. Local nucleation on the crystal defects of silicon, the phenomenon of lateral directed growth (DLG) and agglomeration of CoSi{sub 2} phase are responsible for grain boundaries (GB) position in CoSi{sub 2} layer and its roughness. The roughness was decreased using an additional Zr film on the top structure.

  7. Thin Film Packaging Solutions for High Efficiency OLED Lighting Products

    SciTech Connect (OSTI)

    None

    2008-06-30T23:59:59.000Z

    The objective of the 'Thin Film Packaging Solutions for High Efficiency OLED Lighting Products' project is to demonstrate thin film packaging solutions based on SiC hermetic coatings that, when applied to glass and plastic substrates, support OLED lighting devices by providing longer life with greater efficiency at lower cost than is currently available. Phase I Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on optical glass with lifetime of 1,000 hour life, CRI greater than 75, and 15 lm/W. Phase II Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on plastic or glass composite with 25 lm/W, 5,000 hours life, and CRI greater than 80. Phase III Objective: Demonstrate 2 x 2 ft{sup 2} thin film encapsulated working phosphorescent OLED with 40 lm/W, 10,000 hour life, and CRI greater than 85. This report details the efforts of Phase III (Budget Period Three), a fourteen month collaborative effort that focused on optimization of high-efficiency phosphorescent OLED devices and thin-film encapsulation of said devices. The report further details the conclusions and recommendations of the project team that have foundation in all three budget periods for the program. During the conduct of the Thin Film Packaging Solutions for High Efficiency OLED Lighting Products program, including budget period three, the project team completed and delivered the following achievements: (1) a three-year marketing effort that characterized the near-term and longer-term OLED market, identified customer and consumer lighting needs, and suggested prototype product concepts and niche OLED applications lighting that will give rise to broader market acceptance as a source for wide area illumination and energy conservation; (2) a thin film encapsulation technology with a lifetime of nearly 15,000 hours, tested by calcium coupons, while stored at 16 C and 40% relative humidity ('RH'). This encapsulation technology was characterized as having less than 10% change in transmission during the 15,000 hour test period; (3) demonstrated thin film encapsulation of a phosphorescent OLED device with 1,500 hours of lifetime at 60 C and 80% RH; (4) demonstrated that a thin film laminate encapsulation, in addition to the direct thin film deposition process, of a polymer OLED device was another feasible packaging strategy for OLED lighting. The thin film laminate strategy was developed to mitigate defects, demonstrate roll-to-roll process capability for high volume throughput (reduce costs) and to support a potential commercial pathway that is less dependent upon integrated manufacturing since the laminate could be sold as a rolled good; (5) demonstrated that low cost 'blue' glass substrates could be coated with a siloxane barrier layer for planarization and ion-protection and used in the fabrication of a polymer OLED lighting device. This study further demonstrated that the substrate cost has potential for huge cost reductions from the white borosilicate glass substrate currently used by the OLED lighting industry; (6) delivered four-square feet of white phosphorescent OLED technology, including novel high efficiency devices with 82 CRI, greater than 50 lm/W efficiency, and more than 1,000 hours lifetime in a product concept model shelf; (7) presented and or published more than twenty internal studies (for private use), three external presentations (OLED workshop-for public use), and five technology-related external presentations (industry conferences-for public use); and (8) issued five patent applications, which are in various maturity stages at time of publication. Delivery of thin film encapsulated white phosphorescent OLED lighting technology remains a challenging technical achievement, and it seems that commercial availability of thin, bright, white OLED light that meets market requirements will continue to require research and development effort. However, there will be glass encapsulated white OLED lighting products commercialized in niche markets during the 2008 calendar year. This commercializ

  8. Micrometer-Thin Crystalline-Silicon Solar Cells Integrating Numerically Optimized 2-D Photonic Crystals

    E-Print Network [OSTI]

    Depauw, V; Daif, O El; Gomard, G; Lalouat, L; Drouard, E; Trompoukis, C; Fave, A; Seassal, C; Gordon, I

    2013-01-01T23:59:59.000Z

    A 2-D photonic crystal was integrated experimentally into a thin-film crystalline-silicon solar cell of 1-{\\mu}m thickness, after numerical optimization maximizing light absorption in the active material. The photonic crystal boosted the short-circuit current of the cell, but it also damaged its open-circuit voltage and fill factor, which led to an overall decrease in performances. Comparisons between modeled and actual optical behaviors of the cell, and between ideal and actual morphologies, show the global robustness of the nanostructure to experimental deviations, but its particular sensitivity to the conformality of the top coatings and the spread in pattern dimensions, which should not be neglected in the optical model. As for the electrical behavior, the measured internal quantum efficiency shows the strong parasitic absorptions from the transparent conductive oxide and from the back-reflector, as well as the negative impact of the nanopattern on surface passivation. Our exemplifying case, thus, illustr...

  9. Thermoelectric effect in very thin film Pt/Au thermocouples

    SciTech Connect (OSTI)

    Salvadori, M.C.; Vaz, A.R.; Teixeira, F.S.; Cattani, M.; Brown,I.G.

    2006-01-10T23:59:59.000Z

    The thickness dependence of the thermoelectric power of Pt films of variable thickness on a reference Au film has been determined for the case when the Pt film thickness, t, is not large compared to the charge carrier mean free path, {ell}, that is, t/{ell}. Pt film thicknesses down to 2.2 nm were investigated. We find that {Delta}S{sub F} = S{sub B}-S{sub F} (where S{sub B} and S{sub F} are the thermopowers of the Pt bulk and film, respectively) does not vary linearly as 1/t as is the case for thin film thermocouples when the film thickness is large compared to the charge carrier mean free path.

  10. Effects of neutron irradiation of ultra-thin HfO{sub 2} films

    SciTech Connect (OSTI)

    Hsu, K.-W.; Bian, S.; Shohet, J. L. [Plasma Processing and Technology Laboratory and Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Ren, H. [Applied Materials, Sunnyvale, California 94085 (United States); Agasie, R. J. [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Nishi, Y. [Stanford University, Stanford, California 94305 (United States)

    2014-01-20T23:59:59.000Z

    Neutron irradiation at low fluence decreases the Pb-type and E? defect levels in ultra-thin hafnium dioxide films because electrons can fill existing states. These electrons come from electron-hole pairs generated by neutron interactions with silicon and oxygen. Thus, a low fluence of neutrons “anneals” the sample. However, when neutron fluence increases, more neutrons collide with oxygen atoms and cause them to leave the lattice or to transmute into different atoms. This causes the E? states to increase. As defect-state concentrations increase, leakage currents increase, but since the E? is much lower than the Pb concentration, this is not a dominant factor.

  11. Characterization of diamond-like nanocomposite thin films grown by plasma enhanced chemical vapor deposition

    SciTech Connect (OSTI)

    Santra, T. S.; Liu, C. H. [Institute of Nanoengineering and Microsystems (NEMS), National Tsing Hua University, Hsinchu, Taiwan 30043 (China); Bhattacharyya, T. K. [Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology, Kharagpur 721302, West Bengal (India); Patel, P. [Department of Electrical and Computer Engineering, University of Illinois at Urbana Champaign, Urbana, Illinois 61801 (United States); Barik, T. K. [School of Applied Sciences, Haldia Institute of Technology, Haldia 721657, Purba Medinipur, West Bengal (India)

    2010-06-15T23:59:59.000Z

    Diamond-like nanocomposite (DLN) thin films, comprising the networks of a-C:H and a-Si:O were deposited on pyrex glass or silicon substrate using gas precursors (e.g., hexamethyldisilane, hexamethyldisiloxane, hexamethyldisilazane, or their different combinations) mixed with argon gas, by plasma enhanced chemical vapor deposition technique. Surface morphology of DLN films was analyzed by atomic force microscopy. High-resolution transmission electron microscopic result shows that the films contain nanoparticles within the amorphous structure. Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and x-ray photoelectron spectroscopy (XPS) were used to determine the structural change within the DLN films. The hardness and friction coefficient of the films were measured by nanoindentation and scratch test techniques, respectively. FTIR and XPS studies show the presence of C-C, C-H, Si-C, and Si-H bonds in the a-C:H and a-Si:O networks. Using Raman spectroscopy, we also found that the hardness of the DLN films varies with the intensity ratio I{sub D}/I{sub G}. Finally, we observed that the DLN films has a better performance compared to DLC, when it comes to properties like high hardness, high modulus of elasticity, low surface roughness and low friction coefficient. These characteristics are the critical components in microelectromechanical systems (MEMS) and emerging nanoelectromechanical systems (NEMS).

  12. Fatigue failure in thin-film polysilicon is due to subcriticalcracking within the oxide layer

    SciTech Connect (OSTI)

    Alsem, D.H.; Muhlstein, C.L.; Stach, E.A.; Ritchie, R.O.

    2005-01-11T23:59:59.000Z

    It has been established that microelectromechanical systems (MEMS) created from polycrystalline silicon thin-films are subject to cyclic fatigue. Prior work by the authors has suggested that although bulk silicon is not susceptible to fatigue failure in ambient air, fatigue in micron-scale silicon is a result of a ''reaction-layer'' process, whereby high stresses induce a thickening of the post-release oxide at stress concentrations such as notches, which subsequently undergoes moisture-assisted cracking. However, there exists some controversy regarding the post-release oxide thickness of the samples used in the prior study. In this Letter, we present data from devices from a more recent fabrication run that confirm our prior observations. Additionally, new data from tests in high vacuum show that these devices do not fatigue when oxidation and moisture are suppressed. Each of these observations lends credence to the '''reaction-layer'' mechanism. Recent advances in the design of microelectromechanical systems (MEMS) have increased the demand for more reliable microscale structures. Although silicon is an effective and widely used structural material at the microscale, it is very brittle. Consequently, reliability is a limiting factor for commercial and defense applications. Since the surface to volume ratio of these structural films is very large, classical models for failure modes in bulk materials cannot always be applied. For example, whereas bulk silicon is immune to cyclic fatigue failure thin micron-scale structural films of silicon appear to be highly susceptible. It is clear that at these size scales, surface effects may become dominant in controlling mechanical properties. The main reliability issues for MEMS are stiction, fatigue and wear. Fatigue is important in cases where devices are subjected to a large number of loading cycles with amplitudes below their (single-cycle) fracture stress, which may arise due to vibrations intentionally induced in the structure (i.e. a resonator) or those which arise from the service environment. While the reliability of MEMS has received extensive attention, the physical mechanisms responsible for these failure modes have yet to be conclusively determined. This is particularly true for fatigue, where the mechanisms have been subject to intense debate. Recently we have proposed that the fatigue of micron-scale polysilicon is associated with stress-induced surface oxide thickening and moisture-assisted subcritical cracking in the amorphous SiO{sub 2} oxide layer (''reaction-layer'' fatigue). The mechanism of oxide thickening is as yet unknown, but is likely related to some form of stress-assisted diffusion. Allameh et al. suggest a complementary mechanism involving stress-assisted oxide thickening, caused by dissolution of the surface oxide which forms deep grooves that are sites for crack initiation. Kahn et al. have criticized these mechanisms and proposed that, instead, fatigue is caused by subcritical cracking due to contacting surface asperities in the compressive part of the cycle. To the authors' knowledge, there is no direct experimental observation of such asperity contact. Also, their model cannot explain why micron-scale silicon, and not bulk silicon, is susceptible to fatigue. Moreover, Kahn et al. do not acknowledge the role of stress-induced oxide thickening, which has been observed directly using TEM and indirectly using atomic-force microscope measurements by several investigators, and have questioned whether the materials utilized by Muhlstein et al. and Allameh et al. were representative due to the relatively thick oxide scales. Accordingly, the goal of the present research is to seek a definitive understanding of the physical mechanisms responsible for fatigue in polysilicon structural thin-films. Our approach is to combine on-chip testing methods with electron microscopy by fatiguing thin-film samples and observing them, in an unthinned condition, using high-voltage transmission electron microscopy (HVTEM). Two principal results are found from this work: (1

  13. Doped tantalum oxide high K dielectric thin films

    E-Print Network [OSTI]

    Donnelly, Joseph Patrick

    2000-01-01T23:59:59.000Z

    , it was doped with varying amounts of titanium oxide, aluminum oxide and silicon dioxide. The composite oxide films were deposited by reactive radio frequency (RF) cc-sputtering of two targets in a variety of oxygen and argon feed gas mixtures. The targets used...

  14. as2s3 thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    films Engineering Websites Summary: of domain switching and controllability, preventing thin-film and polycrystalline ferroelectrics from the switching mechanisms of...

  15. Low Temperature Chemical Vapor Deposition Of Thin Film Magnets

    DOE Patents [OSTI]

    Miller, Joel S. (Salt Lake City, UT); Pokhodnya, Kostyantyn I. (Salt Lake City, UT)

    2003-12-09T23:59:59.000Z

    A thin-film magnet formed from a gas-phase reaction of tetracyanoetheylene (TCNE) OR (TCNQ), 7,7,8,8-tetracyano-P-quinodimethane, and a vanadium-containing compound such as vanadium hexcarbonyl (V(CO).sub.6) and bis(benzene)vanalium (V(C.sub.6 H.sub.6).sub.2) and a process of forming a magnetic thin film upon at least one substrate by chemical vapor deposition (CVD) at a process temperature not exceeding approximately 90.degree. C. and in the absence of a solvent. The magnetic thin film is particularly suitable for being disposed upon rigid or flexible substrates at temperatures in the range of 40.degree. C. and 70.degree. C. The present invention exhibits air-stable characteristics and qualities and is particularly suitable for providing being disposed upon a wide variety of substrates.

  16. Electrochromism in copper oxide thin films

    E-Print Network [OSTI]

    Richardson, Thomas J.; Slack, Jonathan L.; Rubin, Michael D.

    2000-01-01T23:59:59.000Z

    by a variety of routes, and electrochromic behavior has beenof Cu x O films, electrochromic devices based onbeen investigated. Unlike electrochromic devices based on

  17. Laser processing of polymer nanocomposite thin films A. T. Sellinger, E. M. Leveugle, K. Gogick, L. V. Zhigilei, and J. M. Fitz-Geralda

    E-Print Network [OSTI]

    Zhigilei, Leonid V.

    that nanocomposite thin films tend to exhibit.6­12 Poly- mer thin films infused with carbon nanotubes CNTs often

  18. Carrier Dynamics in a-Fe2O3 (0001) Thin Films and Single Crystals...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carrier Dynamics in a-Fe2O3 (0001) Thin Films and Single Crystals Probed by Femtosecond Transient Absorption and Reflectivity. Carrier Dynamics in a-Fe2O3 (0001) Thin Films and...

  19. ZnS Thin Films Deposited by a Spin Successive Ionic Layer Adsorption...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ZnS Thin Films Deposited by a Spin Successive Ionic Layer Adsorption and Reaction Process. ZnS Thin Films Deposited by a Spin Successive Ionic Layer Adsorption and Reaction...

  20. Adsorption of iso-/n-butane on an Anatase Thin Film: A Molecular...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    iso-n-butane on an Anatase Thin Film: A Molecular Beam Scattering and TDS Study. Adsorption of iso-n-butane on an Anatase Thin Film: A Molecular Beam Scattering and TDS Study....

  1. Two-color Laser Desorption of Nanostructured MgO Thin Films....

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two-color Laser Desorption of Nanostructured MgO Thin Films. Two-color Laser Desorption of Nanostructured MgO Thin Films. Abstract: Neutral magnesium atom emission from...

  2. Epoxy/Single Walled Carbon Nanotube Nanocomposite Thin Films for Composites Reinforcement

    E-Print Network [OSTI]

    Warren, Graham

    2010-07-14T23:59:59.000Z

    This work is mainly focused upon the preparation, processing and evaluation of mechanical and material properties of epoxy/single walled carbon nanotube (SWCNT) nanocomposite thin films. B-staged epoxy/SWCNT nanocomposite thin films at 50% of cure...

  3. Characterization of LiNi?.?Mn?.?O? Thin Film Cathode Prepared by Pulsed Laser Deposition

    E-Print Network [OSTI]

    Xia, Hui

    LiNi?.?Mn?.?O? thin films have been grown by pulsed laser deposition (PLD) on stainless steel (SS) substrates. The crystallinity and structure of thin films were investigated by X-ray diffraction (XRD). Microstructure and ...

  4. Study of Martensitic Phase transformation in a NiTiCu Thin Film...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Martensitic Phase transformation in a NiTiCu Thin Film Shape Memory Alloy Using Photoelectron Emission Microscopy. Study of Martensitic Phase transformation in a NiTiCu Thin Film...

  5. The development of a thin-film rollforming process for pharmaceutical continuous manufacturing

    E-Print Network [OSTI]

    Slaughter, Ryan (Ryan R.)

    2013-01-01T23:59:59.000Z

    In this thesis, a continuous rollforming process for the folding of thin-films was proposed and studied as a key step in the continuous manufacturing of pharmaceutical tablets. HPMC and PEG based polymeric thin-films were ...

  6. Layer-by-Layer Assembly of Clay-filled Polymer Nanocomposite Thin Films

    E-Print Network [OSTI]

    Jang, Woo-Sik

    2010-01-14T23:59:59.000Z

    robotic dipping system, for the preparation of these thin films, was built. The robot alternately dips a substrate into aqueous mixtures with rinsing and drying in between. Thin films of sodium montmorillonite clay and cationic polymer were grown...

  7. Influence of samaria doping on the resistance of ceria thin films...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    doping on the resistance of ceria thin films and its implications to the planar oxygen sensing devices. Influence of samaria doping on the resistance of ceria thin films and...

  8. Growth of Epitaxial Thin Pd(111) Films on Pt(111) and Oxygen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Growth of Epitaxial Thin Pd(111) Films on Pt(111) and Oxygen-Terminated FeO(111) Surfaces . Growth of Epitaxial Thin Pd(111) Films on Pt(111) and Oxygen-Terminated FeO(111)...

  9. On the room-temperature ferromagnetism of Zn1-xCrxO thin films...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    On the room-temperature ferromagnetism of Zn1-xCrxO thin films deposited by reactive co-sputtering. On the room-temperature ferromagnetism of Zn1-xCrxO thin films deposited by...

  10. Initiated chemical vapor deposition of polymeric thin films : mechanism and applications

    E-Print Network [OSTI]

    Chan, Kelvin, Ph. D. Massachusetts Institute of Technology

    2005-01-01T23:59:59.000Z

    Initiated chemical vapor deposition (iCVD) is a novel technique for depositing polymeric thin films. It is able to deposit thin films of application-specific polymers in one step without using any solvents. Its uniqueness ...

  11. Thin Metal Oxide Films to Modify a Window Layer in CdTe-Based...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thin Metal Oxide Films to Modify a Window Layer in CdTe-Based Solar Cells for Improved Performance. Thin Metal Oxide Films to Modify a Window Layer in CdTe-Based Solar Cells for...

  12. Fabrication of polycrystalline thin films by pulsed laser processing

    DOE Patents [OSTI]

    Mitlitsky, F.; Truher, J.B.; Kaschmitter, J.L.; Colella, N.J.

    1998-02-03T23:59:59.000Z

    A method is disclosed for fabricating polycrystalline thin films on low-temperature (or high-temperature) substrates which uses processing temperatures that are low enough to avoid damage to the substrate, and then transiently heating select layers of the thin films with at least one pulse of a laser or other homogenized beam source. The pulse length is selected so that the layers of interest are transiently heated to a temperature which allows recrystallization and/or dopant activation while maintaining the substrate at a temperature which is sufficiently low to avoid damage to the substrate. This method is particularly applicable in the fabrication of solar cells. 1 fig.

  13. Fabrication of polycrystalline thin films by pulsed laser processing

    DOE Patents [OSTI]

    Mitlitsky, Fred (Livermore, CA); Truher, Joel B. (San Rafael, CA); Kaschmitter, James L. (Pleasanton, CA); Colella, Nicholas J. (Livermore, CA)

    1998-02-03T23:59:59.000Z

    A method for fabricating polycrystalline thin films on low-temperature (or high-temperature) substrates which uses processing temperatures that are low enough to avoid damage to the substrate, and then transiently heating select layers of the thin films with at least one pulse of a laser or other homogenized beam source. The pulse length is selected so that the layers of interest are transiently heated to a temperature which allows recrystallization and/or dopant activation while maintaining the substrate at a temperature which is sufficiently low to avoid damage to the substrate. This method is particularly applicable in the fabrication of solar cells.

  14. Far From Threshold Buckling Analysis of Thin Films

    E-Print Network [OSTI]

    Benny Davidovitch; Robert D. Schroll; Dominic Vella; Mokhtar Adda-Bedia; Enrique Cerda

    2010-08-17T23:59:59.000Z

    Thin films buckle easily and form wrinkled states in regions of well defined size. The extent of a wrinkled region is typically assumed to reflect the zone of in-plane compressive stresses prior to buckling, but recent experiments on ultrathin sheets have shown that wrinkling patterns are significantly longer and follow different scaling laws than those predicted by standard buckling theory. Here we focus on a simple setup to show the striking differences between near-threshold buckling and the analysis of wrinkle patterns in very thin films, which are typically far from threshold.

  15. Perovskite phase thin films and method of making

    DOE Patents [OSTI]

    Boyle, Timothy J. (Albuquerque, NM); Rodriguez, Mark A. (Albuquerque, NM)

    2000-01-01T23:59:59.000Z

    The present invention comprises perovskite-phase thin films, of the general formula A.sub.x B.sub.y O.sub.3 on a substrate, wherein A is selected from beryllium, magnesium, calcium, strontium, and barium or a combination thereof; B is selected from niobium and tantalum or a combination thereof; and x and y are mole fractions between approximately 0.8 and 1.2. More particularly, A is strontium or barium or a combination thereof and B is niobium or tantalum or a combination thereof. Also provided is a method of making a perovskite-phase thin film, comprising combining at least one element-A-containing compound, wherein A is selected from beryllium, magnesium, calcium, strontium or barium, with at least one element-B-containing compound, wherein B niobium or tantalum, to form a solution; adding a solvent to said solution to form another solution; spin-coating the solution onto a substrate to form a thin film; and heating the film to form the perovskite-phase thin film.

  16. Experimental thin film deposition and surface analysis techniques

    SciTech Connect (OSTI)

    Collins, W.E.; Rambabu, B.

    1986-01-01T23:59:59.000Z

    An attempt has been made to present some of the thin-film deposition and surface analysis techniques which may be useful in growing superionic conducting materials. Emphasis is made on the importance of being careful in selecting process parameters and materials in order to produce films with properties outlined in this article. Also, special care should be given to proper consideration of grain boundary effects.

  17. Electrical properties of quench-condensed thin film

    E-Print Network [OSTI]

    Lee, Kyoungjin

    2009-05-15T23:59:59.000Z

    cryopump is used for high vacuum pumping. Materials to be evaporated (evaporant) are held by evaporation sources, like a crucible, boat or wire coil. Tungsten wire is commonly used as an evaporation source for materials like aluminum, nickel, chromium... films were evaporated at room temperature with NRC 3114 commercial thermal evaporator. We deposited aluminum and nickel thin films in a form of bar with shadow mask. A commercial tungsten basket was used for the evaporation source. The evaporation...

  18. Substrates suitable for deposition of superconducting thin films

    DOE Patents [OSTI]

    Feenstra, Roeland (Oak Ridge, TN); Boatner, Lynn A. (Oak Ridge, TN)

    1993-01-01T23:59:59.000Z

    A superconducting system for the lossless transmission of electrical current comprising a thin film of superconducting material Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.7-x epitaxially deposited upon a KTaO.sub.3 substrate. The KTaO.sub.3 is an improved substrate over those of the prior art since the it exhibits small lattice constant mismatch and does not chemically react with the superconducting film.

  19. Preparation of a semiconductor thin film

    DOE Patents [OSTI]

    Pehnt, M.; Schulz, D.L.; Curtis, C.J.; Ginley, D.S.

    1998-01-27T23:59:59.000Z

    A process is disclosed for the preparation of a semiconductor film. The process comprises depositing nanoparticles of a semiconductor material onto a substrate whose surface temperature during nanoparticle deposition thereon is sufficient to cause substantially simultaneous fusion of the nanoparticles to thereby coalesce with each other and effectuate film growth.

  20. Preparation of a semiconductor thin film

    DOE Patents [OSTI]

    Pehnt, Martin (TuBingen, DE); Schulz, Douglas L. (Denver, CO); Curtis, Calvin J. (Lakewood, CO); Ginley, David S. (Evergreen, CO)

    1998-01-01T23:59:59.000Z

    A process for the preparation of a semiconductor film. The process comprises depositing nanoparticles of a semiconductor material onto a substrate whose surface temperature during nanoparticle deposition thereon is sufficient to cause substantially simultaneous fusion of the nanoparticles to thereby coalesce with each other and effectuate film growth.

  1. Resonant cavity enhanced light harvesting in flexible thin-film organic solar cells

    E-Print Network [OSTI]

    Fan, Shanhui

    Optical Society of America OCIS codes: (310.7005) Transparent conductive coatings; (310.6845) Thin film

  2. Mechanisms of Zinc Oxide Nanocrystalline Thin Film Formation by Thermal Degradation of Metal-Loaded Hydrogels

    E-Print Network [OSTI]

    electrode in flat- panel displays,1 solar cells, and thin-film transistors.2,3 Other recent reports account

  3. area multicrystalline silicon: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SOLAR CELLS FROM THE POROUS SILICON PROCESS APPLYING CONVECTION for the first time to monocrystalline Si thin-film solar cells from the porous silicon (PSI) layer transfer for...

  4. aastaks silicon valleysse: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SOLAR CELLS FROM THE POROUS SILICON PROCESS APPLYING CONVECTION for the first time to monocrystalline Si thin-film solar cells from the porous silicon (PSI) layer transfer for...

  5. assisted grown silicon: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SOLAR CELLS FROM THE POROUS SILICON PROCESS APPLYING CONVECTION for the first time to monocrystalline Si thin-film solar cells from the porous silicon (PSI) layer transfer for...

  6. acid modified silicone: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SOLAR CELLS FROM THE POROUS SILICON PROCESS APPLYING CONVECTION for the first time to monocrystalline Si thin-film solar cells from the porous silicon (PSI) layer transfer for...

  7. athermal silicon microring: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SOLAR CELLS FROM THE POROUS SILICON PROCESS APPLYING CONVECTION for the first time to monocrystalline Si thin-film solar cells from the porous silicon (PSI) layer transfer for...

  8. EARTH ABUNDANT MATERIALS FOR HIGH EFFICIENCY HETEROJUNCTION THIN FILM SOLAR CELLS

    E-Print Network [OSTI]

    Ceder, Gerbrand

    materials for thin film solar cells such as CdTe and CIGS suffer from concerns over resource scarcity (eEARTH ABUNDANT MATERIALS FOR HIGH EFFICIENCY HETEROJUNCTION THIN FILM SOLAR CELLS Yun Seog Lee 1 conversion efficiencies should be increased. In terms of reducing module cost, thin film solar cells

  9. A Homogenized Free Energy Model for Hysteresis in Thin-film Shape Memory Alloys

    E-Print Network [OSTI]

    A Homogenized Free Energy Model for Hysteresis in Thin-film Shape Memory Alloys Jordan E. Massad1-8205 Abstract Thin-film shape memory alloys (SMAs) have become excellent candidates for mi- croactuator- lustrate aspects of the model through comparison with thin-film SMA superelastic and shape memory effect

  10. Barium ferrite thin film media with perpendicular c-axis orientation and small grain size

    E-Print Network [OSTI]

    Laughlin, David E.

    Barium ferrite thin film media with perpendicular c-axis orientation and small grain size Zailong, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 Barium ferrite thin films with perpendicular c conditions. The c-axis orientation of barium ferrite thin films is most sensitive to the oxygen partial

  11. Design and fabrication of photonic crystal thin film photovoltaic cells Guillaume Gomarda,b

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Design and fabrication of photonic crystal thin film photovoltaic cells Guillaume Gomarda,b , Ounsi of an absorbing planar photonic crystal within a thin film photovoltaic cell. The devices are based on a stack with large areas. Keywords: Photonic crystal, Photovoltaic solar cell, Thin film solar cell, Hydrogenated

  12. Time-Resolved Magnetic Flux and AC-Current Distributions in Superconducting YBCO Thin Films and

    E-Print Network [OSTI]

    Shaw, Leah B.

    Time-Resolved Magnetic Flux and AC-Current Distributions in Superconducting YBCO Thin Films magnetic field. We study the interaction behavior of YBCO thin films in an ac transport current and a dc the calibrated field profiles. The current density evolution in YBCO thin films is studied by TRMOI as a function

  13. Hybrid spectral/finite element analysis of dynamic delamination of patterned thin films

    E-Print Network [OSTI]

    Sottos, Nancy R.

    Hybrid spectral/finite element analysis of dynamic delamination of patterned thin films Phuong Tran Accepted 10 March 2008 Available online 20 March 2008 Keywords: Thin film Adhesion Delamination Dynamic analysis is performed to investigate the dynamic edge delamination of patterned thin films from a substrate

  14. X-ray Absorption Spectroscopy of Transition Metal-Magnesium Hydride Thin Films

    E-Print Network [OSTI]

    X-ray Absorption Spectroscopy of Transition Metal-Magnesium Hydride Thin Films T. J. Richardsona@lbl.gov Abstract Mixed metal thin films containing magnesium and a first-row transition element exhibit very large of magnesium hydride. Keywords: A. hydrogen storage materials, thin films; C. EXAFS, NEXAFS, X-ray diffraction

  15. Influence of stoichiometry on the dielectric properties of sputtered strontium titanate thin films

    E-Print Network [OSTI]

    York, Robert A.

    Influence of stoichiometry on the dielectric properties of sputtered strontium titanate thin films.1063/1.1598274 INTRODUCTION SrTiO3 thin films have been widely studied for their high dielectric constants and potential temperature superconductors. The dielectric permittivity of SrTiO3 thin films is significantly smaller than

  16. THE THIN FILM EQUATION WITH "BACKWARDS" FORCING AMY NOVICK-COHEN

    E-Print Network [OSTI]

    Novick-Cohen, Amy

    THE THIN FILM EQUATION WITH "BACKWARDS" FORCING AMY NOVICK-COHEN DEPARTMENT OF MATHEMATICS TECHNION-2007) Abstract. In this paper, we focus on the thin film equation with lower order "backwards" diffusion which can describe, for example, structure formation in biofilms and the evolution of thin viscous films

  17. THIN FILM EPITAXY WITH OR WITHOUT SLOPE SELECTION BO LI AND JIAN-GUO LIU

    E-Print Network [OSTI]

    Soatto, Stefano

    THIN FILM EPITAXY WITH OR WITHOUT SLOPE SELECTION BO LI AND JIAN-GUO LIU Abstract. Two nonlinear diffusion equations for thin film epitaxy, with or without slope se- lection, are studied in this work = - · h 1 + | h|2 + h (1.1) and th = - · 1 - | h|2 h + h (1.2) that model epitaxial growth of thin films

  18. Thin film ZT characterization using transient Harman technique Zhixi Bian, Yan Zhang, Holger Schmidt, Ali Shakouri

    E-Print Network [OSTI]

    Thin film ZT characterization using transient Harman technique Zhixi Bian, Yan Zhang, Holger Street, Santa Cruz, CA 95064 Email: ali@soe.ucsc.edu, phone: (831) 459-3821 Abstract Thin-film to the freedom of tailoring the electron and heat transport. The characterization of these thin films

  19. Mathematical Model of Charge and Density Distributions in Interfacial Polymerization of Thin Films

    E-Print Network [OSTI]

    Freger, Viatcheslav "Slava"

    Mathematical Model of Charge and Density Distributions in Interfacial Polymerization of Thin Films INTRODUCTION Interfacial polymerization (IP) as a method of prepa- ration of thin film composite (TFC- tion. It has been shown that the formation of a thin film occurs very quickly and often results

  20. REVIEW OF SCIENTIFIC INSTRUMENTS 82, 023908 (2011) Calorimetry of epitaxial thin films

    E-Print Network [OSTI]

    Hellman, Frances

    2011-01-01T23:59:59.000Z

    REVIEW OF SCIENTIFIC INSTRUMENTS 82, 023908 (2011) Calorimetry of epitaxial thin films David W 2011; accepted 22 January 2011; published online 24 February 2011) Thin film growth allows. Microcalorimetry and nanocalorimetry techniques exist for the measurements of thin films but rely on an amorphous

  1. Thin-Film Solid-Phase Extraction To Measure Fugacities of Organic

    E-Print Network [OSTI]

    Gobas, Frank

    Thin-Film Solid-Phase Extraction To Measure Fugacities of Organic Chemicals with Low Volatility organic chemicals ranging in octanol-air partition coefficients from 105.6 to 109.2. Thin films feasibility, equilibration times, reproducibility, and property characteristics of the thin films

  2. Impact of thermal strain on the dielectric constant of sputtered barium strontium titanate thin films

    E-Print Network [OSTI]

    York, Robert A.

    thin films were deposited by sputtering on Pt/SiO2 structures using five different host substrates.1063/1.1459482 Oxide thin films remain very attractive to researchers due to their wide range of useful physical properties. Most groups have focused on the fabrication of thin films for op- tical and dielectric

  3. Hole Growth as a Microrheological Probe to Measure the Viscosity of Polymers Confined to Thin Films

    E-Print Network [OSTI]

    Dutcher, John

    Hole Growth as a Microrheological Probe to Measure the Viscosity of Polymers Confined to Thin Films thin freely-standing films revealed that hole formation and growth occurs only at temperatures: 3011­3021, 2006 Keywords: glass transition; nanoscale confinement; rheology; thin films; viscoelastic

  4. Sculptured thin films and glancing angle deposition: Growth mechanics and applications

    E-Print Network [OSTI]

    Robbie, Kevin

    Sculptured thin films and glancing angle deposition: Growth mechanics and applications K. Robbiea thin films with three dimensional microstructure controlled on the 10 nm scale were fabricated'' columnar thin film microstructure into desired forms ranging from zigzag shaped to helical to four

  5. Phase Transformations in Pulsed Laser Deposited Nanocrystalline Tin Oxide Thin Films

    E-Print Network [OSTI]

    Reid, Scott A.

    Phase Transformations in Pulsed Laser Deposited Nanocrystalline Tin Oxide Thin Films Haiyan Fan August 20, 2002. Revised Manuscript Received November 11, 2002 Thin SnOx films have been synthesized of reducing gases,1-3 and thin films have been synthesized by various means including evapora- tion,4

  6. Low-Loss, Tunable Microwave Capacitors Using Bismuth Zinc Niobate Thin Films

    E-Print Network [OSTI]

    York, Robert A.

    Low-Loss, Tunable Microwave Capacitors Using Bismuth Zinc Niobate Thin Films Jaehoon Park, Jiwei in the measured frequency range. The results show that BZN thin films have great potential for low loss, tunable microwave devices. Keyword: low loss, thin film, capacitors, dielectric properties, bismuth zinc niobate I

  7. ASC2014-4EPo2G-04 1 Aging of Ultra-Thin Niobium Films

    E-Print Network [OSTI]

    Prober, Daniel E.

    ASC2014-4EPo2G-04 1 Aging of Ultra-Thin Niobium Films Daniel F. Santavicca and Daniel E. Prober Abstract-- We characterize the evolution of the electrical properties of ultra-thin niobium films stored. Index Terms--Niobium, superconducting thin films, superconducting devices, nanofabrication I

  8. Microwave plasma assisted supersonic gas jet deposition of thin film materials

    DOE Patents [OSTI]

    Schmitt, III, Jerome J. (New Haven, CT); Halpern, Bret L. (Bethany, CT)

    1993-01-01T23:59:59.000Z

    An apparatus for fabricating thin film materials utilizing high speed gas dynamics relies on supersonic free jets of carrier gas to transport depositing vapor species generated in a microwave discharge to the surface of a prepared substrate where the vapor deposits to form a thin film. The present invention generates high rates of deposition and thin films of unforeseen high quality at low temperatures.

  9. Remote plasma enhanced atomic layer deposition of ZnO for thin film electronic applications

    E-Print Network [OSTI]

    Zheludev, Nikolay

    Remote plasma enhanced atomic layer deposition of ZnO for thin film electronic applications S: Available online 28 May 2012 Keywords: Remote plasma Atomic layer deposition (ALD) ZnO Thin film transistor of various reactant plasma parameters of remote plasma enhanced ALD (PEALD) on the ZnO thin film properties

  10. DETERMINING OPTICAL CONSTANTS OF URANIUM NITRIDE THIN FILMS IN THE EXTREME

    E-Print Network [OSTI]

    Hart, Gus

    DETERMINING OPTICAL CONSTANTS OF URANIUM NITRIDE THIN FILMS IN THE EXTREME ULTRAVIOLET (1.6-35 NM deposition and characterization of reactively-sputtered uranium nitride thin films. I also report optical.1 Application 1 1.2 Optical Constants 2 1.3 Project Focus 7 2 Uranium Nitride Thin Films 8 2.1 Sputtering 8 2

  11. Metal-black scattering centers to enhance light harvesting by thin-film solar cells

    E-Print Network [OSTI]

    Peale, Robert E.

    Metal-black scattering centers to enhance light harvesting by thin-film solar cells Deep Panjwania as scattering centers to increase the effective optical thickness of thin-film solar cells. The particular type. Gold-black was deposited on commercial thin-film solar cells using a thermal evaporator in nitrogen

  12. B{sub 4}C thin films for neutron detection

    SciTech Connect (OSTI)

    Hoeglund, Carina [European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden); Department of Physics, Chemistry and Biology (IFM), Thin Film Physics Division, Linkoeping University, SE-581 83 Linkoeping (Sweden); Birch, Jens; Jensen, Jens; Hultman, Lars [Department of Physics, Chemistry and Biology (IFM), Thin Film Physics Division, Linkoeping University, SE-581 83 Linkoeping (Sweden); Andersen, Ken; Hall-Wilton, Richard [European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden); Bigault, Thierry; Buffet, Jean-Claude; Correa, Jonathan; Esch, Patrick van; Guerard, Bruno; Piscitelli, Francesco [Institute Laue Langevin, Rue Jules Horowitz, FR-380 00 Grenoble (France); Khaplanov, Anton [European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden); Institute Laue Langevin, Rue Jules Horowitz, FR-380 00 Grenoble (France); Vettier, Christian [European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden); European Synchrotron Radiation Facility, BP 220, FR-380 43 Grenoble Cedex 9 (France); Vollenberg, Wilhelmus [Vacuum, Surfaces and Coatings Group (TE/VSC), CERN, CH-1211 Geneva 23 (Switzerland)

    2012-05-15T23:59:59.000Z

    Due to the very limited availability of {sup 3}He, new kinds of neutron detectors, not based on {sup 3}He, are urgently needed. Here, we present a method to produce thin films of {sup 10}B{sub 4}C, with maximized detection efficiency, intended to be part of a new generation of large area neutron detectors. B{sub 4}C thin films have been deposited onto Al-blade and Si wafer substrates by dc magnetron sputtering from {sup nat}B{sub 4}C and {sup 10}B{sub 4}C targets in an Ar discharge, using an industrial deposition system. The films were characterized with scanning electron microscopy, elastic recoil detection analysis, x-ray reflectivity, and neutron radiography. We show that the film-substrate adhesion and film purity are improved by increased substrate temperature and deposition rate. A deposition rate of 3.8 A/s and substrate temperature of 400 deg. C result in films with a density close to bulk values and good adhesion to film thickness above 3 {mu}m. Boron-10 contents of almost 80 at. % are obtained in 6.3 m{sup 2} of 1 {mu}m thick {sup 10}B{sub 4}C thin films coated on Al-blades. Initial neutron absorption measurements agree with Monte Carlo simulations and show that the layer thickness, number of layers, neutron wavelength, and amount of impurities are determining factors. The study also shows the importance of having uniform layer thicknesses over large areas, which for a full-scale detector could be in total {approx}1000 m{sup 2} of two-side coated Al-blades with {approx}1 {mu}m thick {sup 10}B{sub 4}C films.

  13. Electrochromic control of thin film light scattering

    SciTech Connect (OSTI)

    Lindstroem, T.; Kullman, L.; Roennow, D.; Ribbing, C.; Granqvist, C.G. [Department of Technology, Uppsala University, P.O. Box 534, S-752 21, Uppsala (Sweden)] [Department of Technology, Uppsala University, P.O. Box 534, S-752 21, Uppsala (Sweden)

    1997-02-01T23:59:59.000Z

    Total and diffuse reflectance spectra were measured on Al surfaces covered with electrochromic W oxide films in colored and bleached states. Vector perturbation theory was used for analyzing the spectra. The diffuse reflectance appeared to originate from correlated (uncorrelated) interface roughness when the W oxide film was fully colored (bleached). Assuming partially correlated interfaces led to agreement between experimental and calculated spectra. The use of an electrochromic film appears a promising method to control the relative contributions of the interfaces to the resulting scattering. {copyright} {ital 1997 American Institute of Physics.}

  14. An improved thin film approximation to accurately determine the optical conductivity of graphene from infrared transmittance

    SciTech Connect (OSTI)

    Weber, J. W.; Bol, A. A. [Department of Applied Physics, Eindhoven University of Technology, Den Dolech 2, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Sanden, M. C. M. van de [Department of Applied Physics, Eindhoven University of Technology, Den Dolech 2, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Dutch Institute for Fundamental Energy Research (DIFFER), Nieuwegein (Netherlands)

    2014-07-07T23:59:59.000Z

    This work presents an improved thin film approximation to extract the optical conductivity from infrared transmittance in a simple yet accurate way. This approximation takes into account the incoherent reflections from the backside of the substrate. These reflections are shown to have a significant effect on the extracted optical conductivity and hence on derived parameters as carrier mobility and density. By excluding the backside reflections, the error for these parameters for typical chemical vapor deposited (CVD) graphene on a silicon substrate can be as high as 17% and 45% for the carrier mobility and density, respectively. For the mid- and near-infrared, the approximation can be simplified such that the real part of the optical conductivity is extracted without the need for a parameterization of the optical conductivity. This direct extraction is shown for Fourier transform infrared (FTIR) transmittance measurements of CVD graphene on silicon in the photon energy range of 370–7000?cm{sup ?1}. From the real part of the optical conductivity, the carrier density, mobility, and number of graphene layers are determined but also residue, originating from the graphene transfer, is detected. FTIR transmittance analyzed with the improved thin film approximation is shown to be a non-invasive, easy, and accurate measurement and analysis method for assessing the quality of graphene and can be used for other 2-D materials.

  15. Control of magnetization reversal in oriented strontium ferrite thin films

    SciTech Connect (OSTI)

    Roy, Debangsu, E-mail: debangsu@physics.iisc.ernet.in; Anil Kumar, P. S. [Department of Physics, Indian Institute of Science, Bangalore 560012 (India)

    2014-02-21T23:59:59.000Z

    Oriented Strontium Ferrite films with the c axis orientation were deposited with varying oxygen partial pressure on Al{sub 2}O{sub 3}(0001) substrate using Pulsed Laser Deposition technique. The angle dependent magnetic hysteresis, remanent coercivity, and temperature dependent coercivity had been employed to understand the magnetization reversal of these films. It was found that the Strontium Ferrite thin film grown at lower (higher) oxygen partial pressure shows Stoner-Wohlfarth type (Kondorsky like) reversal. The relative importance of pinning and nucleation processes during magnetization reversal is used to explain the type of the magnetization reversal with different oxygen partial pressure during growth.

  16. Oriented niobate ferroelectric thin films for electrical and optical devices

    DOE Patents [OSTI]

    Wessels, Bruce W. (Wilmette, IL); Nystrom, Michael J. (Chicago, IL)

    2001-01-01T23:59:59.000Z

    Sr.sub.x Ba.sub.1-x Nb.sub.2 O.sub.6, where x is greater than 0.25 and less than 0.75, and KNbO.sub.3 ferroelectric thin films metalorganic chemical vapor deposited on amorphous or cyrstalline substrate surfaces to provide a crystal axis of the film exhibiting a high dielectric susceptibility, electro-optic coefficient, and/or nonlinear optic coefficient oriented preferentially in a direction relative to a crystalline or amorphous substrate surface. Such films can be used in electronic, electro-optic, and frequency doubling components.

  17. Crystallization and phase transformations in amorphous NiTi thin films for microelectromechanical systems

    SciTech Connect (OSTI)

    Lee, Hoo-Jeong; Ramirez, Ainissa G. [Department of Mechanical Engineering, Yale University, New Haven, Connecticut 06520 (United States)

    2004-08-16T23:59:59.000Z

    Amorphous sputtered nickel-titanium thin films were deposited onto micromachined silicon-nitride membranes and subjected to heating and cooling conditions. Their associated microstructure was monitored directly and simultaneously with in situ transmission electron microscopy. These electron-transparent membranes constrained the NiTi films and rendered it possible for observation of the complete transformation cycle, which includes: the crystallization of the amorphous phase to austenite phase (cubic B2 structure) with heating; and the conversion of austenite (B2) to martensite (monoclinic B19{sup '} structure) with cooling. Electron micrographs show the nucleation and growth of grains occurs at a temperature of 470 deg. C and at a rate that indicates a polymorphic transformation. The onset of martensitic transformation occurs between 25 and 35 deg. C. Calorimetric measurements are consistent with the observed crystallization.

  18. Ferromagnetism and Nonmetallic Transport of Thin-Film ? - FeSi 2 : A Stabilized Metastable Material

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cao, Guixin; Singh, D.?J.; Zhang, X.-G.; Samolyuk, German; Qiao, Liang; Parish, Chad; Jin, Ke; Zhang, Yanwen; Guo, Hangwen; Tang, Siwei; Wang, Wenbin; Yi, Jieyu; Cantoni, Claudia; Siemons, Wolter; Payzant, E. Andrew; Biegalski, Michael; Ward, T.?Z.; Mandrus, David; Stocks, G.?M.; Gai, Zheng

    2015-04-01T23:59:59.000Z

    A metastable phase ?-FeSi? was epitaxially stabilized on a silicon substrate using pulsed laser deposition. Nonmetallic and ferromagnetic behaviors are tailored on ?-FeSi? (111) thin films, while the bulk material of ?-FeSi? is metallic and nonmagnetic. The transport property of the films renders two different conducting states with a strong crossover at 50 K, which is accompanied by the onset of a ferromagnetic transition as well as a substantial magnetoresistance. These experimental results are discussed in terms of the unusual electronic structure of ?-FeSi? obtained within density functional calculations and Boltzmann transport calculations with and without strain. Our finding sheds light on achieving ferromagnetic semiconductors through both their structure and doping tailoring, and provides an example of a tailored material with rich functionalities for both basic research and practical applications.

  19. Ultrashort pulse laser deposition of thin films

    DOE Patents [OSTI]

    Perry, Michael D. (Livermore, CA); Banks, Paul S. (Livermore, CA); Stuart, Brent C. (Fremont, CA)

    2002-01-01T23:59:59.000Z

    Short pulse PLD is a viable technique of producing high quality films with properties very close to that of crystalline diamond. The plasma generated using femtosecond lasers is composed of single atom ions with no clusters producing films with high Sp.sup.3 /Sp.sup.2 ratios. Using a high average power femtosecond laser system, the present invention dramatically increases deposition rates to up to 25 .mu.m/hr (which exceeds many CVD processes) while growing particulate-free films. In the present invention, deposition rates is a function of laser wavelength, laser fluence, laser spot size, and target/substrate separation. The relevant laser parameters are shown to ensure particulate-free growth, and characterizations of the films grown are made using several diagnostic techniques including electron energy loss spectroscopy (EELS) and Raman spectroscopy.

  20. Silicon-on-glass pore network micromodels with oxygen-sensing fluorophore films for chemical imaging and defined spatial structure

    SciTech Connect (OSTI)

    Grate, Jay W.; Kelly, Ryan T.; Suter, Jonathan D.; Anheier, Norman C.

    2012-11-21T23:59:59.000Z

    Pore network microfluidic models were fabricated by a silicon-on-glass technique that provides the precision advantage of dry etched silicon while creating a structure that is transparent across all microfluidic channels and pores, and can be imaged from either side. A silicon layer is bonded to an underlying borosilicate glass substrate and thinned to the desired height of the microfluidic channels and pores. The silicon is then patterned and through-etched by deep reactive ion etching (DRIE), with the underlying glass serving as an etch stop. After bonding on a transparent glass cover plate, one obtains a micromodel in oxygen impermeable materials with water wet surfaces where the microfluidic channels are transparent and structural elements such as the pillars creating the pore network are opaque. The micromodel can be imaged from either side. The advantageous features of this approach in a chemical imaging application are demonstrated by incorporating a Pt porphyrin fluorophore in a PDMS film serving as the oxygen sensing layer and a bonding surface, or in a polystyrene film coated with a PDMS layer for bonding. The sensing of a dissolved oxygen gradient was demonstrated using fluorescence lifetime imaging, and it is shown that different matrix polymers lead to optimal use in different ranges dissolved oxygen concentration. Imaging with the opaque pillars in between the observation direction and the continuous fluorophore film yields images that retain spatial information in the sensor image.

  1. Tandem photonic-crystal thin films surpassing Lambertian light-trapping limit over broad bandwidth and angular range

    E-Print Network [OSTI]

    Oskooi, Ardavan; Noda, Susumu

    2013-01-01T23:59:59.000Z

    The maximum absorption of solar radiation over the broadest range of frequencies and incident angles using the thinnest material possible has important applications for renewable-energy generation. Complete random texturing of an optically-thick film's surface to increase the path length of scattered light rays, first proposed nearly thirty years ago, has thus far remained the most effective approach for photon absorption over the widest set of conditions. Recent thin-film nanostructured designs involving resonant wave effects of photons have explored the possibility of superior performance though as of yet no proposal satisfying the dual requirements of enhanced and robust absorption over a large fraction of the solar spectrum has been made. Here using recent advances in computational electrodynamics we describe a general strategy for the design of a silicon thin film applicable to photovoltaic cells based on a quasi-resonant approach to light trapping where two partially-disordered photonic-crystal slabs, s...

  2. Vacuum fluctuation forces between ultra-thin films

    E-Print Network [OSTI]

    Andrea Benassi; Carlo Calandra

    2008-08-18T23:59:59.000Z

    We have investigated the role of the quantum size effects in the evaluation of the force caused by electromagnetic vacuum fluctuations between ultra-thin films, using the dielectric tensor derived from the particle in a box model. Comparison with the results obtained by adopting a continuum dielectric model shows that, for film thicknesses of 1-10 nm, the electron confinement causes changes in the force intensity with respect to the isotropic plasma model which range from 40% to few percent depending upon the film electron density and the film separation. The calculated force shows quantum size oscillations, which can be significant for film separation distances of several nanometers. The role of electron confinement in reducing the large distance Casimir force is discussed.

  3. Equiatomic CoPt thin films with extremely high coercivity

    SciTech Connect (OSTI)

    Varghese, Binni; Piramanayagam, S. N., E-mail: Prem-SN@dsi.a-star.edu.sg; Yang, Yi; Kai Wong, Seng; Khume Tan, Hang; Kiat Lee, Wee [Data Storage Institute, (A-STAR) Agency for Science, Technology and Research, DSI Building, 5, Engineering Drive 1, Singapore 117608 (Singapore); Okamoto, Iwao [Western Digital Corporation, Singapore 638552 (Singapore)

    2014-05-07T23:59:59.000Z

    In this paper, magnetic and structural properties of near-equiatomic CoPt thin films, which exhibited a high coercivity in the film-normal direction—suitable for perpendicular magnetic recording media applications—are reported. The films exhibited a larger coercivity of about 6.5 kOe at 8?nm. The coercivity showed a monotonous decrease as the film thickness was increased. The transmission electron microscopy images indicated that the as fabricated CoPt film generally consists of a stack of magnetically hard hexagonal-close-packed phase, followed by stacking faults and face-centred-cubic phase. The thickness dependent magnetic properties are explained on the basis of exchange-coupled composite media. Epitaxial growth on Ru layers is a possible factor leading to the unusual observation of magnetically hard hcp-phase at high concentrations of Pt.

  4. High-throughput characterization of stresses in thin film materials libraries using Si cantilever array wafers and digital holographic microscopy

    SciTech Connect (OSTI)

    Lai, Y. W.; Ludwig, A. [Institute for Materials, Chair for Materials for Microsystems, Ruhr-Universitaet Bochum, 44780 Bochum (Germany); Materials Research Department, Ruhr-Universitaet Bochum, 44780 Bochum (Germany); Hamann, S.; Ehmann, M. [Institute for Materials, Chair for Materials for Microsystems, Ruhr-Universitaet Bochum, 44780 Bochum (Germany)

    2011-06-15T23:59:59.000Z

    We report the development of an advanced high-throughput stress characterization method for thin film materials libraries sputter-deposited on micro-machined cantilever arrays consisting of around 1500 cantilevers on 4-inch silicon-on-insulator wafers. A low-cost custom-designed digital holographic microscope (DHM) is employed to simultaneously monitor the thin film thickness, the surface topography and the curvature of each of the cantilevers before and after deposition. The variation in stress state across the thin film materials library is then calculated by Stoney's equation based on the obtained radii of curvature of the cantilevers and film thicknesses. DHM with nanometer-scale out-of-plane resolution allows stress measurements in a wide range, at least from several MPa to several GPa. By using an automatic x-y translation stage, the local stresses within a 4-inch materials library are mapped with high accuracy within 10 min. The speed of measurement is greatly improved compared with the prior laser scanning approach that needs more than an hour of measuring time. A high-throughput stress measurement of an as-deposited Fe-Pd-W materials library was evaluated for demonstration. The fast characterization method is expected to accelerate the development of (functional) thin films, e.g., (magnetic) shape memory materials, whose functionality is greatly stress dependent.

  5. Crystalline Thin Films Formed by Supramolecular Assembly for

    E-Print Network [OSTI]

    Gao, Hongjun

    with crystalline materials.[9] In contrast with small-mole- cule materials, supramolecular materials, which combineCrystalline Thin Films Formed by Supramolecular Assembly for Ultrahigh-Density Data Storage in this digital age, there is an urgent need to develop new technologies and materials. In the past decade

  6. THE ELECTRICAL BEHAVIOR OF SUPERCONDUCTING THIN-FILM MICROBRIDGES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    19 THE ELECTRICAL BEHAVIOR OF SUPERCONDUCTING THIN-FILM MICROBRIDGES SELF-HEATING below Tc their behavior is found to be dominated by the effects of self-heating. At low voltages near Tc. t Danforth Fellow. electrical behavior of these microbridges is largely dominated by the effects of self-heating

  7. Micromachined thin-film gas flow sensor for microchemical reactors

    E-Print Network [OSTI]

    Besser, Ronald S.

    Micromachined thin-film gas flow sensor for microchemical reactors W C Shin and R S Besser New applications not practical before such as highly compact, non-invasive pressure sensors, accelerometers and gas power consumption, fast response, and low-cost batch production [1-4]. Spurred by the development

  8. Atomic-scale Structural Characterizations of Functional Epitaxial Thin Films 

    E-Print Network [OSTI]

    Zhu, Yuanyuan

    2013-06-03T23:59:59.000Z

    by computer .......................................... 157 7.3.2. Thin films and TEM samples preparation ......................................... 158 7.3.3. Cs-corrected STEM and quantitative image processing .................... 159 7.4 Results... ......................................................................................................... 28 Figure 1.13. HR-STEM micrograph of Graphene (a) before83 and (b) after84 probe CS-correction. ............................................................................................ 29 Figure 2.1. Schematic diagram of the pulsed laser...

  9. Long-wave models of thin film fluid dynamics

    E-Print Network [OSTI]

    A. J. Roberts

    1994-11-04T23:59:59.000Z

    Centre manifold techniques are used to derive rationally a description of the dynamics of thin films of fluid. The derived model is based on the free-surface $\\eta(x,t)$ and the vertically averaged horizontal velocity $\\avu(x,t)$. The approach appears to converge well and has significant differences from conventional depth-averaged models.

  10. Nonlinear viscoelastic characterization of thin films using dynamic mechanical analysis 

    E-Print Network [OSTI]

    Payne, Debbie Flowers

    1993-01-01T23:59:59.000Z

    manner similar to the traditional time temperature superposition principle for linear viscoelastic materials where stress systematically compresses or expands the time scale. From dynamic mechanical testing and analysis, the experimental viscoelastic.... D. Nonlinear Characterization of Thin Film Materials. . . . Nonlinear Viscoelastic Models . Dynamic Mechanical Testing. Summary of Literature Reviewed. 5 5 7 8 III THEORETICAL ANALYSIS . A. B. C. D. Conversion of Experimental Values...

  11. Thin Films and the Systems-Driven Approach

    SciTech Connect (OSTI)

    Zweibel, K.

    2005-01-01T23:59:59.000Z

    A systems-driven approach is used to discern tradeoffs between cost and efficiency improvements for various thin-film module technologies and designs. Prospects for reduced system cost via such strategies are enhanced as balance-of-systems costs decline, and some strategies are identified for greater research focus.

  12. INTERFACIAL STABILITY OF THIN FILM FIBER-OPTIC HYDROGEN SENSORS

    E-Print Network [OSTI]

    INTERFACIAL STABILITY OF THIN FILM FIBER-OPTIC HYDROGEN SENSORS R. Davis Smith, Ping Liu, Se and utility of these sensors, especially in the configuration that is based upon the optical response hydrogen sensors for use as safety monitors wherever hydrogen is used, stored, or produced. Prior work has

  13. Stripe Domain-Structures in a Thin Ferromagnetic Film

    E-Print Network [OSTI]

    KASHUBA, AB; Pokrovsky, Valery L.

    1993-01-01T23:59:59.000Z

    We present a theory of the stripe domain structure in a thin ferromagnetic film with single-ion easy-axis magnetic anisotropy and long-range dipole interactions, for a wide range of temperatures and applied magnetic field. The domains exist...

  14. Method of preparing thin film polymeric gel electrolytes

    DOE Patents [OSTI]

    Derzon, Dora K. (Albuquerque, NM); Arnold, Jr., Charles (Albuquerque, NM)

    1997-01-01T23:59:59.000Z

    Novel hybrid thin film electrolyte, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities .apprxeq.10.sup.-3 .OMEGA..sup.-1 cm.sup.-1 are useful as electrolytes for rechargeable lithium batteries.

  15. Synthesis and Characterization of Functional Nanostructured Zinc Oxide Thin Films

    E-Print Network [OSTI]

    Chow, Lee

    and development of alternative energy technologies, such as low cost flat-panel solar cells thin film devices and structural requirements of their applications in gas sensors and solar cells. The rapid photothermalV) and GaN (21eV), is of interest for various high tech applications, such as optical devices (1), solar

  16. Method of preparing thin film polymeric gel electrolytes

    DOE Patents [OSTI]

    Derzon, D.K.; Arnold, C. Jr.

    1997-11-25T23:59:59.000Z

    Novel hybrid thin film electrolyte is described, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities {approx_equal}10{sup {minus}3}{Omega}{sup {minus}1}cm{sup {minus}1} are useful as electrolytes for rechargeable lithium batteries. 1 fig.

  17. university-logo Numerical stability analysis for thin film flow

    E-Print Network [OSTI]

    Marzuola, Jeremy

    university-logo Numerical stability analysis for thin film flow: toward rigorous verification Blake Barker Indiana University October 2, 2013 B. Rigorous verification #12;university-logo Viscous roll waves (Picture courtesy Neil Balmforth, UBC.) B. Rigorous verification #12;university-logo Viscous roll waves 0 2

  18. Mechanical properties of nanocrystalline and epitaxial TiN films on (100) silicon

    E-Print Network [OSTI]

    Wei, Qiuming

    Mechanical properties of nanocrystalline and epitaxial TiN films on (100) silicon H. Wang, A 2001) We investigated mechanical properties of TiN as a function of microstructure varying from nanocrystalline to single crystal TiN films deposited on (100) silicon substrates. By varying the substrate

  19. Method for rapid, controllable growth and thickness, of epitaxial silicon films

    DOE Patents [OSTI]

    Wang, Qi (Littleton, CO); Stradins, Paul (Golden, CO); Teplin, Charles (Boulder, CO); Branz, Howard M. (Boulder, CO)

    2009-10-13T23:59:59.000Z

    A method of producing epitaxial silicon films on a c-Si wafer substrate using hot wire chemical vapor deposition by controlling the rate of silicon deposition in a temperature range that spans the transition from a monohydride to a hydrogen free silicon surface in a vacuum, to obtain phase-pure epitaxial silicon film of increased thickness is disclosed. The method includes placing a c-Si substrate in a HWCVD reactor chamber. The method also includes supplying a gas containing silicon at a sufficient rate into the reaction chamber to interact with the substrate to deposit a layer containing silicon thereon at a predefined growth rate to obtain phase-pure epitaxial silicon film of increased thickness.

  20. An investigation of thin-film coating/substrate systems by nanoindentation

    SciTech Connect (OSTI)

    Li, J.; Thostenson, E.T.; Chou, T.W. [Univ. of Delaware, Newark, DE (United States); Riester, L. [Oak Ridge National Lab., TN (United States)

    1998-04-01T23:59:59.000Z

    The indentation load-displacement behavior of three material systems tested with a Berkovich indenter has been examined. The materials studied were the substrate materials--silicon and polycarbonate, and the coating/substrate systems--diamond-like carbon (DLC) coating on silicon, and DLC coating on polycarbonate. They represent three material systems, namely, bulk, soft-coating/hard-substrate, and hard-coating on soft-substrate. Delaminations in the soft-coating/hard-substrate (DLC/Si) system and cracking in the hard-coating/soft-substrate system (DLC/Polycarbonate) were observed. Parallel to the experimental work, an elastic analytical effort has been made to examine the influence of the film thickness and the properties of the coating/substrate systems. Comparisons between the experimental data and analytical solutions of the load-displacement curves during unloading show good agreement. The analytical solution also suggests that the Young`s modulus and hardness of the thin film can not be measured accurately using Sneddon`s solution for bulk materials when the thickness of the film is comparable to the loading contact radius of the indenter. The elastic stress field analysis provides a basis for understanding the experimentally observed delaminations and cracking of the coating/substrate systems.