Sample records for thin film photovoltaic

  1. Thin film photovoltaic cell

    DOE Patents [OSTI]

    Meakin, John D. (Newark, DE); Bragagnolo, Julio (Newark, DE)

    1982-01-01T23:59:59.000Z

    A thin film photovoltaic cell having a transparent electrical contact and an opaque electrical contact with a pair of semiconductors therebetween includes utilizing one of the electrical contacts as a substrate and wherein the inner surface thereof is modified by microroughening while being macro-planar.

  2. Thin film photovoltaic device

    DOE Patents [OSTI]

    Catalano, Anthony W. (Wilmington, DE); Bhushan, Manjul (Wilmington, DE)

    1982-01-01T23:59:59.000Z

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids.

  3. Thin film photovoltaic device

    DOE Patents [OSTI]

    Catalano, A.W.; Bhushan, M.

    1982-08-03T23:59:59.000Z

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids. 5 figs.

  4. Thin Film Photovoltaics Research

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) supports research and development of four thin-film technologies on the path to achieving cost-competitive solar energy, including:

  5. Thin film photovoltaic panel and method

    DOE Patents [OSTI]

    Ackerman, Bruce (El Paso, TX); Albright, Scot P. (El Paso, TX); Jordan, John F. (El Paso, TX)

    1991-06-11T23:59:59.000Z

    A thin film photovoltaic panel includes a backcap for protecting the active components of the photovoltaic cells from adverse environmental elements. A spacing between the backcap and a top electrode layer is preferably filled with a desiccant to further reduce water vapor contamination of the environment surrounding the photovoltaic cells. The contamination of the spacing between the backcap and the cells may be further reduced by passing a selected gas through the spacing subsequent to sealing the backcap to the base of the photovoltaic panels, and once purged this spacing may be filled with an inert gas. The techniques of the present invention are preferably applied to thin film photovoltaic panels each formed from a plurality of photovoltaic cells arranged on a vitreous substrate. The stability of photovoltaic conversion efficiency remains relatively high during the life of the photovoltaic panel, and the cost of manufacturing highly efficient panels with such improved stability is significantly reduced.

  6. NREL: Photovoltaics Research - Thin Film Photovoltaic Partnership Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit |Infrastructure JohnEnergyThin Film Photovoltaic

  7. Thin film photovoltaic device and process of manufacture

    DOE Patents [OSTI]

    Albright, S.P.; Chamberlin, R.

    1999-02-09T23:59:59.000Z

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells. 13 figs.

  8. Thin film photovoltaic device and process of manufacture

    DOE Patents [OSTI]

    Albright, Scot P. (Lakewood, CO); Chamberlin, Rhodes (El Paso, TX)

    1997-10-07T23:59:59.000Z

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells.

  9. Thin film photovoltaic device and process of manufacture

    DOE Patents [OSTI]

    Albright, Scot P. (Lakewood, CO); Chamberlin, Rhodes (El Paso, TX)

    1999-02-09T23:59:59.000Z

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells.

  10. A survey of thin-film solar photovoltaic industry & technologies

    E-Print Network [OSTI]

    Grama, Sorin

    2007-01-01T23:59:59.000Z

    A new type of solar cell technology using so-called thin-film solar photovoltaic material has the potential to make a great impact on our lives. Because it uses very little or no silicon at all, thin- film (TF) solar ...

  11. Design and fabrication of photonic crystal thin film photovoltaic cells Guillaume Gomarda,b

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Design and fabrication of photonic crystal thin film photovoltaic cells Guillaume Gomarda,b , Ounsi of an absorbing planar photonic crystal within a thin film photovoltaic cell. The devices are based on a stack with large areas. Keywords: Photonic crystal, Photovoltaic solar cell, Thin film solar cell, Hydrogenated

  12. Bill Shafarman 1 May 15, 2013 Thin Film Photovoltaics Research at the

    E-Print Network [OSTI]

    Firestone, Jeremy

    Bill Shafarman 1 May 15, 2013 Thin Film Photovoltaics Research at the Institute of Energy of Photovoltaics 2. IEC: History and Capabilities 3. Current Research at IEC #12;Bill Shafarman 2 May 15, 2013 Concentrators #12;Bill Shafarman 5 May 15, 2013 Thin Film Photovoltaics Potential for low cost PV using " a

  13. Polycrystalline thin-film technology: Recent progress in photovoltaics

    SciTech Connect (OSTI)

    Mitchell, R.L.; Zweibel, K.; Ullal, H.S.

    1991-12-01T23:59:59.000Z

    Polycrystalline thin films have made significant technical progress in the past year. Three of these materials that have been studied extensively for photovoltaic (PV) power applications are copper indium diselenide (CuInSe{sub 2}), cadmium telluride (CdTe), and thin-film polycrystalline silicon (x-Si) deposited on ceramic substrates. The first of these materials, polycrystalline thin-film CuInSe{sub 2}, has made some rapid advances in terms of high efficiency and long-term reliability. For CuInSe{sub 2} power modules, a world record has been reported on a 0.4-m{sup 2} module with an aperture-area efficiency of 10.4% and a power output of 40.4 W. Additionally, outdoor reliability testing of CuInSe{sub 2} modules, under both loaded and open-circuit conditions, has resulted in only minor changes in module performance after more than 1000 days of continuous exposure to natural sunlight. CdTe module research has also resulted in several recent improvements. Module performance has been increased with device areas reaching nearly 900 cm{sup 2}. Deposition has been demonstrated by several different techniques, including electrodeposition, spraying, and screen printing. Outdoor reliability testing of CdTe modules was also carried out under both loaded and open-circuit conditions, with more than 600 days of continuous exposure to natural sunlight. These tests were also encouraging and indicated that the modules were stable within measurement error. The highest reported aperture-area module efficiency for CdTe modules is 10%; the semiconductor material was deposited by electrodeposition. A thin-film CdTe photovoltaic system with a power output of 54 W has been deployed in Saudi Arabia for water pumping. The Module Development Initiative has made significant progress in support of the Polycrystalline Thin-Film Program in the past year, and results are presented in this paper.

  14. Black Silicon Enhanced Thin Film Silicon Photovoltaic Devices

    SciTech Connect (OSTI)

    Martin U. Pralle; James E. Carey

    2010-07-31T23:59:59.000Z

    SiOnyx has developed an enhanced thin film silicon photovoltaic device with improved efficiency. Thin film silicon solar cells suffer from low material absorption characteristics resulting in poor cell efficiencies. SiOnyx’s approach leverages Black Silicon, an advanced material fabricated using ultrafast lasers. The laser treated films show dramatic enhancement in optical absorption with measured values in excess of 90% in the visible spectrum and well over 50% in the near infrared spectrum. Thin film Black Silicon solar cells demonstrate 25% higher current generation with almost no impact on open circuit voltage as compared with representative control samples. The initial prototypes demonstrated an improvement of nearly 2 percentage points in the suns Voc efficiency measurement. In addition we validated the capability to scale this processing technology to the throughputs (< 5 min/m2) required for volume production using state of the art commercially available high power industrial lasers. With these results we clearly demonstrate feasibility for the enhancement of thin film solar cells with this laser processing technique.

  15. Investigation of Solar Energy Transfer through Plasmonic Au Nanoparticle-doped Sol-derived TiO? Thin Films in Photocatalysis and Photovoltaics /

    E-Print Network [OSTI]

    Zelinski, Andrew

    2013-01-01T23:59:59.000Z

    TiO 2 Thin Films in Photocatalysis and Photovoltaics ATiO 2 Thin Films in Photocatalysis and Photovoltaics by

  16. Two-and three-dimensional folding of thin film single-crystalline silicon for photovoltaic

    E-Print Network [OSTI]

    Lewis, Jennifer

    Two- and three-dimensional folding of thin film single-crystalline silicon for photovoltaic power of a functional, nonpla- nar photovoltaic (PV) device. A mechanics model based on the theory of thin plates self-folding photovoltaics capillary force Silicon, in crystalline and amorphous forms, is currently

  17. Junctionless thin-film ferroelectric oxides for photovoltaic energy Farnood K. Rezaie*a

    E-Print Network [OSTI]

    Peale, Robert E.

    , and the conditions for ideal poling. Photovoltaic characterization of KBNNO cells will determine the efficiency, and cell fill factor (FF). Keywords: Bulk photovoltaics, Perovskite oxide, Ferroelectric thin-film, KBNNO. This creates opportunities for innovation in photovoltaic cells and state of the art optoelectronic devices

  18. DOE/SERI polycrystalline thin-film photovoltaic research

    SciTech Connect (OSTI)

    Hermann, A.; Zweibel, K.; Mitchell, R.

    1984-05-01T23:59:59.000Z

    This paper presents recent results, status, and future prospects for the US Department of Energy's (DOE's) Polycrystalline Thin Film Photovoltaic program, managed by the Solar Energy Research Institute (SERI). The devices being studied most intensively are heterojunctions based on CuInSe/sub 2/ and on CdTe. Both materials have attained over 10% efficiency in polycrystalline form. The main emphasis is on CuInSe/sub 2/, for which Boeing has reported an 11%-efficient device (AMl ELH simulation). Important work is being done on studies of the composition/electronic properties of CuInSe/sub 2/ and its response to post-deposition annealing. In the CdTe research, ohmic, stable back-contacting and control of p-type doping are being investigated. New efforts to study polycrystalline two-junction stacked cells are underway with two-terminal cells (at IEC) and with four-terminal cells (at SMU). This preliminary work is expected to be expanded, with emphasis on CdTe and other top-cell (high-bandgap) materials. These efforts introduce a number of new research areas (e.g., transparent ohmic contacts to p-CdTe and sub-bandgap light-losses in polycrystalline materials). The aim of the program is to produce stable, high-efficiency (15%), thin-film cells that can be deposited inexpensively by techniques that are scalable to large areas.

  19. Enhanced absorption of thin-film photovoltaic cells using an optical cavity

    E-Print Network [OSTI]

    Hsu, Wei-Chun

    We show via numerical simulations that the absorption and solar energy conversion efficiency of a thin-film photovoltaic (PV) cell can be significantly enhanced by embedding it into an optical cavity. A reflective ...

  20. Method and apparatus for increasing the durability and yield of thin film photovoltaic devices

    DOE Patents [OSTI]

    Phillips, James E. (Newark, DE); Lasswell, Patrick G. (Newark, DE)

    1987-01-01T23:59:59.000Z

    Thin film photovoltaic cells having a pair of semiconductor layers between an opaque and a transparent electrical contact are manufactured in a method which includes the step of scanning one of the semiconductor layers to determine the location of any possible shorting defect. Upon the detection of such defect, the defect is eliminated to increase the durability and yield of the photovoltaic device.

  1. Predictive Modeling for Glass-Side Laser Scribing of Thin Film Photovoltaic Cells

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    with reduced thermal effect. Film side laser scribing is governed by heating, melting and vaporizing of selective films. Glass side laser scribing is a thermal-mechanical process which involves stress inducedPredictive Modeling for Glass-Side Laser Scribing of Thin Film Photovoltaic Cells Hongliang Wang

  2. DOE/SERI polycrystalline thin-film photovoltaic research

    SciTech Connect (OSTI)

    Hermann, A.; Mitchell, R.; Zwelbel, K.

    1984-05-01T23:59:59.000Z

    This paper presents recent results, status, and future prospects for the U.S. Department of Energy's (DOE's) Polycrystalline Thin Film Photovoltaic Program, managed by the Solar Energy Research Institute (SERI). The devices being studied most intensively are heterojunctions based on CuInSe/sub 2/ and on CdTe. Both materials have attained over 10% efficiency in polycrystalline form. The main emphasis is on CuInSe/sub 2/, for which Boeing has reported an 11%-efficient device (AM) ELH simulation). Important work is being done on studies of the composition/electronic properties of CuInSe/sub 2/ and its response to post-deposition annealing. In the CdTe research, ohmic, stable back-contacting and control of p-type doping are being investigated. New efforts to study polycrystalline two-junction stacked cells are underway with two-terminal cells (at IEC) and with four-terminal cells (at SMU). This preliminary work is expected to be expanded, with emphasis on CdTe and other top-cell (high-bandgap) materials. These efforts introduce a number of new research areas (e.g., transparent ohmic contacts to p-CdTe and sub-bandgap light-losses in polycrystalline materials). The aim of the program is to produce stable, high-efficieny (15%), thinfilm cells that can be deposited inexpensively by techniques that are scalable to large areas.

  3. Thin Film Materials and Processing Techniques for a Next Generation Photovoltaic Device: Cooperative Research and Development Final Report, CRADA Number CRD-12-470

    SciTech Connect (OSTI)

    van Hest, M.

    2013-08-01T23:59:59.000Z

    This research extends thin film materials and processes relevant to the development and production of a next generation photovoltaic device.

  4. Method for producing textured substrates for thin-film photovoltaic cells

    DOE Patents [OSTI]

    Lauf, R.J.

    1994-04-26T23:59:59.000Z

    The invention pertains to the production of ceramic substrates used in the manufacture of thin-film photovoltaic cells used for directly converting solar energy to electrical energy. Elongated ribbon-like sheets of substrate precursor containing a mixture of ceramic particulates, a binder, and a plasticizer are formed and then while green provided with a mechanically textured surface region used for supporting the thin film semiconductor of the photovoltaic cell when the sheets of the substrate precursor are subsequently cut into substrate-sized shapes and then sintered. The textured surface pattern on the substrate provides enhanced light trapping and collection for substantially increasing the solar energy conversion efficiency of thin-film photovoltaic cells. 4 figures.

  5. Method for producing textured substrates for thin-film photovoltaic cells

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN)

    1996-01-01T23:59:59.000Z

    The invention pertains to the production of ceramic substrates used in the manufacture of thin-film photovoltaic cells used for directly converting solar energy to electrical energy. Elongated ribbon-like sheets of substrate precursor containing a mixture of ceramic particulates, a binder, and a plasticizer are formed and then while green provided with a mechanically textured surface region used for supporting the thin film semiconductor of the photovoltaic cell when the sheets of the substrate precursor are subsequently cut into substrate-sized shapes and then sintered. The textured surface pattern on the substrate provides enhanced light trapping and collection for substantially increasing the, solar energy conversion efficiency of thin-film photovoltaic cells.

  6. Method for producing textured substrates for thin-film photovoltaic cells

    DOE Patents [OSTI]

    Lauf, R.J.

    1996-04-02T23:59:59.000Z

    The invention pertains to the production of ceramic substrates used in the manufacture of thin-film photovoltaic cells used for directly converting solar energy to electrical energy. Elongated ribbon-like sheets of substrate precursor containing a mixture of ceramic particulates, a binder, and a plasticizer are formed and then while green provided with a mechanically textured surface region used for supporting the thin film semiconductor of the photovoltaic cell when the sheets of the substrate precursor are subsequently cut into substrate-sized shapes and then sintered. The textured surface pattern on the substrate provides enhanced light trapping and collection for substantially increasing the, solar energy conversion efficiency of thin-film photovoltaic cells. 4 figs.

  7. Method for producing textured substrates for thin-film photovoltaic cells

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN)

    1994-01-01T23:59:59.000Z

    The invention pertains to the production of ceramic substrates used in the manufacture of thin-film photovoltaic cells used for directly converting solar energy to electrical energy. Elongated ribbon-like sheets of substrate precursor containing a mixture of ceramic particulates, a binder, and a plasticizer are formed and then while green provided with a mechanically textured surface region used for supporting the thin film semiconductor of the photovoltaic cell when the sheets of the substrate precursor are subsequently cut into substrate-sized shapes and then sintered. The textured surface pattern on the substrate provides enhanced light trapping and collection for substantially increasing the solar energy conversion efficiency of thin-film photovoltaic cells.

  8. Functional requirements for component films in a solar thin-film photovoltaic/thermal panel

    SciTech Connect (OSTI)

    Johnston, David [Power and Energy Research Group, School of Engineering, Northumbria University, Ellison Place, Newcastle upon Tyne NE1 8ST (United Kingdom)

    2010-03-15T23:59:59.000Z

    The functional requirements of the component films of a solar thin-film photovoltaic/thermal panel were considered. Particular emphasis was placed on the new functions, that each layer is required to perform, in addition to their pre-existing functions. The cut-off wavelength of the window layer, required for solar selectivity, can be achieved with charge carrier concentrations typical of photovoltaic devices, and thus does not compromise electrical efficiency. The upper (semiconductor) absorber layer has a sufficiently high thermal conductivity that there is negligible temperature difference across the film, and thus negligible loss in thermal performance. The lower (cermet) absorber layer can be fabricated with a high ceramic content, to maintain high solar selectivity, without significant increase in electrical resistance. A thin layer of molybdenum-based cermet at the top of this layer can provide an Ohmic contact to the upper absorber layer. A layer of aluminium nitride between the metal substrate and the back metal contact can provide electrical isolation to avoid short-circuiting of series-connected cells, while maintaining a thermal path to the metal substrate and heat extraction systems. Potential problems of differential contraction of heated films and substrates were identified, with a recommendation that fabrication processes, which avoid heating, are preferable. (author)

  9. Method and apparatus for increasing the durability and yield of thin film photovoltaic devices

    DOE Patents [OSTI]

    Phillips, J.E.; Lasswell, P.G.

    1987-02-03T23:59:59.000Z

    Thin film photovoltaic cells having a pair of semiconductor layers between an opaque and a transparent electrical contact are manufactured in a method which includes the step of scanning one of the semiconductor layers to determine the location of any possible shorting defect. Upon the detection of such defect, the defect is eliminated to increase the durability and yield of the photovoltaic device. 10 figs.

  10. Thin film heterojunction photovoltaic cells and methods of making the same

    DOE Patents [OSTI]

    Basol, Bulent M. (Los Angeles, CA); Tseng, Eric S. (Los Angeles, CA); Rod, Robert L. (Los Angeles, CA)

    1983-06-14T23:59:59.000Z

    A method of fabricating a thin film heterojunction photovoltaic cell which comprises depositing a film of a near intrinsic or n-type semiconductor compound formed of at least one of the metal elements of Class II B of the Periodic Table of Elements and at least tellurium and then heating said film at a temperature between about 250.degree. C. and 500.degree. C. for a time sufficient to convert said film to a suitably low resistivity p-type semiconductor compound. Such film may be deposited initially on the surface of an n-type semiconductor substrate. Alternatively, there may be deposited on the converted film a layer of n-type semiconductor compound different from the film semiconductor compound. The resulting photovoltaic cell exhibits a substantially increased power output over similar cells not subjected to the method of the present invention.

  11. Progress Toward a Stabilization and Preconditioning Protocol for Polycrystalline Thin-Film Photovoltaic Modules

    SciTech Connect (OSTI)

    del Cueto, J. A.; Deline, C. A.; Rummel, S. R.; Anderberg, A.

    2010-08-01T23:59:59.000Z

    Cadmium telluride (CdTe) and copper indium gallium diselenide (CIGS) thin-film photovoltaic (PV) modules can exhibit substantial variation in measured performance depending on prior exposure history. This study examines the metastable performance changes in these PV modules with the goal of establishing standard preconditioning or stabilization exposure procedures to mitigate measured variations prior to current-voltage (IV) measurements.

  12. Flexible Ultra Moisture Barrier Film for Thin-Film Photovoltaic Applications

    SciTech Connect (OSTI)

    David M. Dean

    2012-10-30T23:59:59.000Z

    Flexible Thin-film photovoltaic (TFPV) is a low cost alternative to incumbent c-Si PV products as it requires less volume of costly semiconductor materials and it can potentially reduce installation cost. Among the TFPV options, copper indium gallium diselenide (CIGS) has the highest efficiency and is believed to be one of the most attractive candidates to achieve PV cost reduction. However, CIGS cells are very moisture sensitive and require module water vapor transmission rate (WVTR) of less than 1x10-4 gram of water per square meter per day (g-H2O/m2/day). Successful development and commercialization of flexible transparent ultra moisture barrier film is the key to enable flexible CIGS TFPV products, and thus enable ultimate PV cost reduction. At DuPont, we have demonstrated at lab scale that we can successfully make polymer-based flexible transparent ultra moisture barrier film by depositing alumina on polymer films using atomic layer deposition (ALD) technology. The layer by layer ALD approach results in uniform and amorphous structure which effectively reduces pinhole density of the inorganic coating on the polymer, and thus allow the fabrication of flexible barrier film with WVTR of 10-5 g-H2O/m2/day. Currently ALD is a time-consuming process suitable only for high-value, relatively small substrates. To successfully commercialize the ALD-on-plastic technology for the PV industry, there is the need to scale up this technology and improve throughput. The goal of this contract work was to build a prototype demonstrating that the ALD technology could be scaled-up for commercial use. Unfortunately, the prototype failed to produce an ultra-barrier film by the close of the project.

  13. THE PERFORMANCE OF THIN FILM SOLAR CELLS EMPLOYING PHOTOVOLTAIC Cu22014x Te-CdTe HETEROJUNCTIONS (1)

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    195 THE PERFORMANCE OF THIN FILM SOLAR CELLS EMPLOYING PHOTOVOLTAIC Cu22014x Te the theore- tical optimum for conversion of solar energy by the intrinsic photovoltaic effect and lower degradation rates to penetrating radiation and 2) shorter minority carrier lifetimes are per

  14. High efficiency thin-film multiple-gap photovoltaic device

    DOE Patents [OSTI]

    Dalal, Vikram L. (Newark, DE)

    1983-01-01T23:59:59.000Z

    A photovoltaic device includes at least two solar cells made from Group IV elements or their alloys in the amorphous state mounted on a substrate. The outermost or first cell has a larger bandgap than the second cell. Various techniques are utilized to improve the efficiency of the device.

  15. Low Cost Thin Film Building-Integrated Photovoltaic Systems

    SciTech Connect (OSTI)

    Dr. Subhendu Guha; Dr. Jeff Yang

    2012-05-25T23:59:59.000Z

    The goal of the program is to develop 'LOW COST THIN FILM BUILDING-INTEGRATED PV SYSTEMS'. Major focus was on developing low cost solution for the commercial BIPV and rooftop PV market and meet DOE LCOE goal for the commercial market segment of 9-12 cents/kWh for 2010 and 6-8 cents/kWh for 2015. We achieved the 2010 goal and were on track to achieve the 2015 goal. The program consists of five major tasks: (1) modules; (2) inverters and BOS; (3) systems engineering and integration; (4) deployment; and (5) project management and TPP collaborative activities. We successfully crossed all stage gates and surpassed all milestones. We proudly achieved world record stable efficiencies in small area cells (12.56% for 1cm2) and large area encapsulated modules (11.3% for 800 cm2) using a triple-junction amorphous silicon/nanocrystalline silicon/nanocrystalline silicon structure, confirmed by the National Renewable Energy Laboratory. We collaborated with two inverter companies, Solectria and PV Powered, and significantly reduced inverter cost. We collaborated with three universities (Syracuse University, University of Oregon, and Colorado School of Mines) and National Renewable Energy Laboratory, and improved understanding on nanocrystalline material properties and light trapping techniques. We jointly published 50 technical papers in peer-reviewed journals and International Conference Proceedings. We installed two 75kW roof-top systems, one in Florida and another in New Jersey demonstrating innovative designs. The systems performed satisfactorily meeting/exceeding estimated kWh/kW performance. The 50/50 cost shared program was a great success and received excellent comments from DOE Manager and Technical Monitor in the Final Review.

  16. Chapter 1.19: Cadmium Telluride Photovoltaic Thin Film: CdTe

    SciTech Connect (OSTI)

    Gessert, T. A.

    2012-01-01T23:59:59.000Z

    The chapter reviews the history, development, and present processes used to fabricate thin-film, CdTe-based photovoltaic (PV) devices. It is intended for readers who are generally familiar with the operation and material aspects of PV devices but desire a deeper understanding of the process sequences used in CdTe PV technology. The discussion identifies why certain processes may have commercial production advantages and how the various process steps can interact with each other to affect device performance and reliability. The chapter concludes with a discussion of considerations of large-area CdTe PV deployment including issues related to material availability and energy-payback time.

  17. Metastable Changes to the Temperature Coefficients of Thin-Film Photovoltaic Modules

    SciTech Connect (OSTI)

    Deceglie, M. G.; Silverman, T. J.; Marion, B.; Kurtz, S. R.

    2014-07-01T23:59:59.000Z

    Transient changes in the performance of thin-film modules with light exposure are a well-known and widely reported phenomenon. These changes are often the result of reversible metastabilities rather than irreversible changes. Here we consider how these metastable changes affect the temperature dependence of photovoltaic performance. We find that in CIGS modules exhibiting a metastable increase in performance with light exposure, the light exposure also induces an increase in the magnitude of the temperature coefficient. It is important to understand such changes when characterizing temperature coefficients and when analyzing the outdoor performance of newly installed modules.

  18. Comparative alternative materials assessment to screen toxicity hazards in the life cycle of CIGS thin film photovoltaics

    E-Print Network [OSTI]

    Eisenberg, DA; Yu, M; Lam, CW; Ogunseitan, OA; Schoenung, JM

    2013-01-01T23:59:59.000Z

    Ga)(S,Se) 2 based thin ?lm photovoltaics: present status andcycle of CIGS thin ?lm photovoltaics Daniel A. Eisenberg a ,selenium–sul?de Thin ?lm photovoltaics Life cycle thinking a

  19. The research field of thin-film photovoltaics of the department of energy-and semiconductor research (EHF) of the institute of physics at the Carl-von-Ossietzky University of Oldenburg

    E-Print Network [OSTI]

    Peinke, Joachim

    The research field of thin-film photovoltaics of the department of energy- and semiconductor and calibration of an optical simulation for thin-film solar cells In recent years, the photovoltaic has become is necessary to let photovoltaic remain economical attractive. Thin-film solar cells on basis of Cu(In,Ga)Se2

  20. Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts

    DOE Patents [OSTI]

    Jansen, Kai W. (Lawrenceville, NJ); Maley, Nagi (Exton, PA)

    2001-01-01T23:59:59.000Z

    High performance photovoltaic modules are produced with improved interconnects by a special process. Advantageously, the photovoltaic modules have a dual layer back (rear) contact and a front contact with at least one layer. The front contact and the inner layer of the back contact can comprise a transparent conductive oxide. The outer layer of the back contact can comprise a metal or metal oxide. The front contact can also have a dielectric layer. In one form, the dual layer back contact comprises a zinc oxide inner layer and an aluminum outer layer and the front contact comprises a tin oxide inner layer and a silicon dioxide dielectric outer layer. One or more amorphous silicon-containing thin film semiconductors can be deposited between the front and back contacts. The contacts can be positioned between a substrate and an optional superstrate. During production, the transparent conductive oxide layer of the front contact is scribed by a laser, then the amorphous silicon-containing semiconductors and inner layer of the dual layer back contact are simultaneously scribed and trenched (drilled) by the laser and the trench is subsequently filled with the same metal as the outer layer of the dual layer back contact to provide a superb mechanical and electrical interconnect between the front contact and the outer layer of the dual layer back contact. The outer layer of the dual layer back contact can then be scribed by the laser. For enhanced environmental protection, the photovoltaic modules can be encapsulated.

  1. Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts

    DOE Patents [OSTI]

    Jansen, Kai W. (Lawrenceville, NJ); Maley, Nagi (Exton, PA)

    2000-01-01T23:59:59.000Z

    High performance photovoltaic modules are produced with improved interconnects by a special process. Advantageously, the photovoltaic modules have a dual layer back (rear) contact and a front contact with at least one layer. The front contact and the inner layer of the back contact can comprise a transparent conductive oxide. The outer layer of the back contact can comprise a metal or metal oxide. The front contact can also have a dielectric layer. In one form, the dual layer back contact comprises a zinc oxide inner layer and an aluminum outer layer and the front contact comprises a tin oxide inner layer and a silicon dioxide dielectric outer layer. One or more amorphous silicon-containing thin film semiconductors can be deposited between the front and back contacts. The contacts can be positioned between a substrate and an optional superstrate. During production, the transparent conductive oxide layer of the front contact is scribed by a laser, then the amorphous silicon-containing semiconductors and inner layer of the dual layer back contact are simultaneously scribed and trenched (drilled) by the laser and the trench is subsequently filled with the same metal as the outer layer of the dual layer back contact to provide a superb mechanical and electrical interconnect between the front contact and the outer layer of the dual layer back contact. The outer layer of the dual layer back contact can then be scribed by the laser. For enhanced environmental protection, the photovoltaic modules can be encapsulated.

  2. Outdoor Performance of a Thin-Film Gallium-Arsenide Photovoltaic Module

    SciTech Connect (OSTI)

    Silverman, T. J.; Deceglie, M. G.; Marion, B.; Cowley, S.; Kayes, B.; Kurtz, S.

    2013-06-01T23:59:59.000Z

    We deployed a 855 cm2 thin-film, single-junction gallium arsenide (GaAs) photovoltaic (PV) module outdoors. Due to its fundamentally different cell technology compared to silicon (Si), the module responds differently to outdoor conditions. On average during the test, the GaAs module produced more power when its temperature was higher. We show that its maximum-power temperature coefficient, while actually negative, is several times smaller in magnitude than that of a Si module used for comparison. The positive correlation of power with temperature in GaAs is due to temperature-correlated changes in the incident spectrum. We show that a simple correction based on precipitable water vapor (PWV) brings the photocurrent temperature coefficient into agreement with that measured by other methods and predicted by theory. The low operating temperature and small temperature coefficient of GaAs give it an energy production advantage in warm weather.

  3. Process Development for CIGS Based Thin Film Photovoltaics Modules, Phase II Technical Report

    SciTech Connect (OSTI)

    Britt, J.; Wiedeman, S.; Albright, S.

    2000-11-09T23:59:59.000Z

    As a technology partner with NREL, Global Solar Energy (GSE) has initiated an extensive and systematic plan to accelerate the commercialization of thin-film photovoltaics (PV) based on copper indium gallium diselenide (CIGS). The distinguishing feature of the GSE manufacturing process is the exclusive use of lightweight, flexible substrates. GSE has developed the technology to fabricate CIGS photovoltaics on both stainless-steel and polymer substrates. CIGS deposited on flexible substrates can be fabricated into either flexible or rigid modules. Low-cost, rigid PV panels for remote power, bulk/utility, telecommunication, and rooftop applications have been produced by affixing the flexible substrate to an inexpensive rigid panel by lamination or adhesive. Stainless-steel-based PV modules are fabricated by a novel interconnect method that avoids the use of wires or foils and soldered connections. In the case of polymer-based PV modules, the continuous roll is not sectioned into individual panels until the module buss and power leads are attached. Roll-to-roll vacuum deposition has several advantages that translate directly to reduced capital costs, greater productivity, improved yield, greater reliability, lower maintenance, and a larger volume of PV material. In combination with roll-to-roll processing, GSE has developed evaporation deposition operations that enable low-cost and high-efficiency CIGS modules. The CIGS deposition process relies heavily on effusion source technology developed at GSE, and solving numerous problems was an integral part of the source development effort. Cell interconnection for thin-film CIGS modules on a polyimide substrate presents a considerable challenge.

  4. Creating CZTS Thin Films Via Stacked Metallic CVD and Sulfurization

    E-Print Network [OSTI]

    Bielecki, Anthony

    2013-01-01T23:59:59.000Z

    Photovoltaics . . . . . . . . . . . . . . . . . . . . . . .2 ZnSnS 4 (CZTS) thin film photovoltaics is an increasinglyfor Large-Scale Photovoltaics Deployment Environ. Sci.

  5. Lessons Learned from the Photovoltaic Manufacturing Technology/PV Manufacturing R&D and Thin Film PV Partnership Projects

    SciTech Connect (OSTI)

    Margolis, R.; Mitchell, R.; Zweibel, K.

    2006-09-01T23:59:59.000Z

    As the U.S. Department of Energy's (DOE's) Solar Energy Technologies Program initiates new cost-shared solar energy R&D under the Solar America Initiative (SAI), it is useful to analyze the experience gained from cost-shared R&D projects that have been funded through the program to date. This report summarizes lessons learned from two DOE-sponsored photovoltaic (PV) projects: the Photovoltaic Manufacturing Technology/PV Manufacturing R&D (PVMaT/PVMR&D) project and the Thin-Film PV Partnership project. During the past 10-15 years, these two projects have invested roughly $330 million of government resources in cost-shared R&D and leveraged another $190 million in private-sector PV R&D investments. Following a description of key findings and brief descriptions of the PVMaT/PVMR&D and Thin-Film PV Partnership projects, this report presents lessons learned from the projects.

  6. amorphous-silicon-based thin-film photovoltaic: Topics by E-print...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    devices have been obtained by a direct polymerization of undoped (or p-type doped) thin film (CH)x layer onto a polycrystalline cadmium sulfide film Paris-Sud XI, Universit...

  7. High-efficiency thin-film cadmium telluride photovoltaic cells. Annual technical report, January 20, 1996--January 19, 1997

    SciTech Connect (OSTI)

    Compaan, A.D.; Bohn, R.G.; Contreras-Puente, G. [Univ. of Toledo, OH (United States)] [Univ. of Toledo, OH (United States)

    1997-08-01T23:59:59.000Z

    The University of Toledo photovoltaics group has been instrumental in developing rf sputtering for CDs/CdTe thin-film solar cells. During the third phase of the present contract our work focussed on efforts to determine factors which limit the efficiency in our {open_quotes}all-sputtered{close_quotes} thin-film CdTe solar cells on soda-lime glass. We find that our all-sputtered cells, which are deposited at substantially lower temperature than those by sublimation or vapor deposition, require less aggressive CdCl{sub 2} treatments than do other deposition techniques and this is presumably related to CDs/CdTe interdiffusion. The CDs/CdTe interdiffusion process has been studied by several methods, including photoluminescence and capacitance-voltage measurements. Furthermore, we have deposited special thin bilayer films on quartz and borosilicate glass. Interdiffusion in these thin bilayers have been probed by Rutherford backscattering, with collaborators at Case Western Reserve University, and grazing incidence x-ray scattering (GIXS), with collaborators at the University at Buffalo and Brookhaven National Lab. Also, in order better to understand the properties of the ternary alloy material, we used laser physical vapor deposition to prepare a series of CdS{sub x}Te{sub 1-x} films on borosilicate glass. The composition of the alloy films was determined by wavelength dispersive x-ray spectroscopy at NREL. These films are currently being investigated by us and other groups at NREL and IEC.

  8. Modeling and control of thin film surface morphology: application to thin film solar cells

    E-Print Network [OSTI]

    Huang, Jianqiao

    2012-01-01T23:59:59.000Z

    of a p-i-n thin-film solar cell with front transparent con-for thin-film a-si:h solar cells. Progress in Photovoltaics,in thin-film silicon solar cells. Optics Communications,

  9. Thin-film CdTe and CuInSe{sub 2} photovoltaic technologies

    SciTech Connect (OSTI)

    Ullal, H.S.; Zweibel, K.; von Roedern, B.G.

    1993-08-01T23:59:59.000Z

    Total-area conversion efficiency of 15%--15.8% have been achieved for thin-film CdTe and CIS solar cells. Modules with power output of 5--53 W have been demonstrated by several groups world-wide. Critical processes and reaction pathways for achieving excellent PV devices have been eluciated. Research, development and technical issues have been identified, which could result in potential improvements in device and module performance. A 1-kW thin-film CdTe array has been installed and is being tested. Multimegawatt thin-film CdTe manufacturing plants are expected to be completed in 1-2 years.

  10. Stability Issues of Transparent Conducting Oxides (TCOs) for Thin-Film Photovoltaics (Presentation)

    SciTech Connect (OSTI)

    Pern, J.

    2008-12-01T23:59:59.000Z

    Study of stability issues of TCOs for thin-film PV, including degradation of optical, electrical, and structural properties of TCOs in damp heat and required encapsulation to prevent moisture egress.

  11. Defect engineering of cuprous oxide thin-films for photovoltaic applications

    E-Print Network [OSTI]

    Lee, Yun Seog

    2013-01-01T23:59:59.000Z

    Thin-film solar cells are promising for renewable-energy applications due to their low material usage and inexpensive manufacturing potential, making them compatible with terawatts-level deployment. Cuprous oxide (Cu?O) ...

  12. Producer-Focused Life Cycle Assessment of Thin-Film Silicon Photovoltaic Systems

    E-Print Network [OSTI]

    Zhang, Teresa Weirui

    2011-01-01T23:59:59.000Z

    Best research photovoltaic efficiencies (Kazmerski,Best research photovoltaic efficiencies (Kazmerski, 2011).

  13. Producer-Focused Life Cycle Assessment of Thin-Film Silicon Photovoltaic Systems

    E-Print Network [OSTI]

    Zhang, Teresa Weirui

    2011-01-01T23:59:59.000Z

    emissions of pv systems. Progress in Photovoltaics: Researchpv system flatcon. Progress in Photovoltaics: Research and

  14. In-Line Post-Process Scribing for Reducing Cell to Module Efficiency Gap in Monolithic Thin Film Photovoltaics

    E-Print Network [OSTI]

    Dongaonkar, Sourabh

    2013-01-01T23:59:59.000Z

    The gap between cell and module efficiency is a major challenge for all photovoltaic (PV) technologies. For monolithic thin film PV modules, a significant fraction of this gap has been attributed to parasitic shunts, and other defects, distributed across the module. In this paper, we show that it is possible to contain or isolate these shunt defects, using the state of the art laser scribing processes, after the fabrication of the series connected module is finished. We discuss three possible alternatives, and quantify the performance gains for each technique. We demonstrate that using these techniques, it is possible to recover up to 50% of the power lost to parasitic shunts, which results in 1-2% (absolute) increase in module efficiencies for typical thin film PV technologies.

  15. The Effects of Non-Uniform Electronic Properties on Thin Film Photovoltaics

    E-Print Network [OSTI]

    Brown, Gregory Ferguson

    2011-01-01T23:59:59.000Z

    Third   Generation  Photovoltaics:  Advanced  Solar  R.   Noufi,  Prog.  Photovoltaics  16,  235-­?239  (2008).  M.  Green,  Prog.  Photovoltaics  17,  183-­?189  (2009).  

  16. Producer-Focused Life Cycle Assessment of Thin-Film Silicon Photovoltaic Systems

    E-Print Network [OSTI]

    Zhang, Teresa Weirui

    2011-01-01T23:59:59.000Z

    microcrystalline- silicon photovoltaic cell, B) range ofpayback of roof mounted photovoltaic cells. Boustead, I. andmicrocrystalline-silicon photovoltaic cell, B) range of

  17. Producer-Focused Life Cycle Assessment of Thin-Film Silicon Photovoltaic Systems

    E-Print Network [OSTI]

    Zhang, Teresa Weirui

    2011-01-01T23:59:59.000Z

    of pv systems. Progress in Photovoltaics: Research andand Alsema, E. (2006). Photovoltaics energy payback times,emissions from photovoltaics. Environmental Science and

  18. Producer-Focused Life Cycle Assessment of Thin-Film Silicon Photovoltaic Systems

    E-Print Network [OSTI]

    Zhang, Teresa Weirui

    2011-01-01T23:59:59.000Z

    installed power from photovoltaic systems worldwide fromBest research photovoltaic efficiencies (Kazmerski,as a function of time for numerous types of photovoltaic

  19. Investigation of Solar Energy Transfer through Plasmonic Au Nanoparticle-doped Sol-derived TiO? Thin Films in Photocatalysis and Photovoltaics /

    E-Print Network [OSTI]

    Zelinski, Andrew

    2013-01-01T23:59:59.000Z

    in Photocatalysis and Photovoltaics A Thesis submitted inFilms in Photocatalysis and Photovoltaics by Andrew Zelinskiinvestigated for use in photovoltaics and as photocatalysts,

  20. Producer-Focused Life Cycle Assessment of Thin-Film Silicon Photovoltaic Systems

    E-Print Network [OSTI]

    Zhang, Teresa Weirui

    2011-01-01T23:59:59.000Z

    of photovoltaic modules: comparison of mc-si, ingapand ingap/mc-si solar modules. Progress in Photovoltaics:

  1. Heterojunction thin films based on multifunctional metal oxides for photovoltaic application

    SciTech Connect (OSTI)

    Prabhu, M.; Soundararajan, N.; Ramachandran, K. [School of Physics, Madurai Kamaraj University, Madurai - 625021 (India); Marikkannan, M.; Mayandi, J. [School of Chemistry, Madurai Kamaraj University, Madurai - 625021 (India)

    2014-04-24T23:59:59.000Z

    Metal oxides based multifunctional heterojunction thin films of ZnO/SnO{sub 2} and ZnO/SnO{sub 2}/CuO QDs were prepared by spin-coating technique. The crystallographic properties and the surface morphologies of the films were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The optical absorption studies revealed that the film thickness has considerable effect on the band gap values and is found to be in the range of 3.73–3.48 eV. The photoluminescence spectra showed several weak visible emission peaks related to the deep level defects (450-575 nm). Finally, the current density-voltage (J-V) characteristic of ZnO/SnO{sub 2}/CuO QDs (ZSCI) based heterojunction thin film coated on ITO is also reported.

  2. Method for making photovoltaic devices using oxygenated semiconductor thin film layers

    DOE Patents [OSTI]

    Johnson, James Neil; Albin, David Scott; Feldman-Peabody, Scott; Pavol, Mark Jeffrey; Gossman, Robert Dwayne

    2014-12-16T23:59:59.000Z

    A method for making a photovoltaic device is presented. The method includes steps of disposing a window layer on a substrate and disposing an absorber layer on the window layer. Disposing the window layer, the absorber layer, or both layers includes introducing a source material into a deposition zone, wherein the source material comprises oxygen and a constituent of the window layer, of the absorber layer or of both layers. The method further includes step of depositing a film that comprises the constituent and oxygen.

  3. Semiconductor-nanocrystal/conjugated polymer thin films

    DOE Patents [OSTI]

    Alivisatos, A. Paul (Oakland, CA); Dittmer, Janke J. (Munich, DE); Huynh, Wendy U. (Munich, DE); Milliron, Delia (Berkeley, CA)

    2010-08-17T23:59:59.000Z

    The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

  4. 22nd European Photovoltaic Solar Energy Conference, Milan, 3-7 September 2007 Cu(InGa)Se2 THIN-FILM SOLAR CELLS

    E-Print Network [OSTI]

    22nd European Photovoltaic Solar Energy Conference, Milan, 3-7 September 2007 Cu(InGa)Se2 THIN from the National Renewable Energy Laboratory and Global Solar Energy, we examined the life-cycle Cd-FILM SOLAR CELLS: COMPARATIVE LIFE-CYCLE ANALYSIS OF BUFFER LAYERS Vasilis M. Fthenakis and Hyung Chul Kim

  5. General method for simultaneous optimization of light trapping and carrier collection in an ultra-thin film organic photovoltaic cell

    SciTech Connect (OSTI)

    Tsai, Cheng-Chia, E-mail: ct2443@columbia.edu; Grote, Richard R.; Beck, Jonathan H.; Kymissis, Ioannis [Department of Electrical Engineering, Columbia University, New York, New York 10027 (United States); Osgood, Richard M. [Department of Electrical Engineering, Columbia University, New York, New York 10027 (United States); Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States); Englund, Dirk [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2014-07-14T23:59:59.000Z

    We describe a general method for maximizing the short-circuit current in thin planar organic photovoltaic (OPV) heterojunction cells by simultaneous optimization of light absorption and carrier collection. Based on the experimentally obtained complex refractive indices of the OPV materials and the thickness-dependence of the internal quantum efficiency of the OPV active layer, we analyze the potential benefits of light trapping strategies for maximizing the overall power conversion efficiency of the cell. This approach provides a general strategy for optimizing the power conversion efficiency of a wide range of OPV structures. In particular, as an experimental trial system, the approach is applied here to a ultra-thin film solar cell with a SubPc/C{sub 60} photovoltaic structure. Using a patterned indium tin oxide (ITO) top contact, the numerically optimized designs achieve short-circuit currents of 0.790 and 0.980?mA/cm{sup 2} for 30?nm and 45?nm SubPc/C{sub 60} heterojunction layer thicknesses, respectively. These values correspond to a power conversion efficiency enhancement of 78% for the 30?nm thick cell, but only of 32% for a 45?nm thick cell, for which the overall photocurrent is actually higher. Applied to other material systems, the general optimization method can elucidate if light trapping strategies can improve a given cell architecture.

  6. High-efficiency, thin-film cadmium telluride photovoltaic cells. Annual subcontract report, 20 January 1994--19 January 1995

    SciTech Connect (OSTI)

    Compaan, A.D.; Bohn, R.G.; Rajakarunanayake, Y. [Toledo Univ., OH (United States)

    1995-08-01T23:59:59.000Z

    This report describes work performed to develop and optimize the process of radio frequency (RF) sputtering for the fabrication of thin-film solar cells on glass. The emphasis is on CdTe-related materials including CdTe, CdS, ZnTe, and ternary alloy semiconductors. Pulsed laser physical vapor deposition (LPVD) was used for exploratory work on these materials, especially where alloying or doping are involved, and for the deposition of cadmium chloride layers. For the sputtering work, a two-gun sputtering chamber was implemented, with optical access for monitoring temperature and growth rate. We studied the optical and electrical properties of the plasmas produced by two different kinds of planar magnetron sputter guns with different magnetic field configurations and strengths. Using LPVD, we studied alloy semiconductors such as CdZnTe and heavily doped semiconductors such as ZnTe:Cu for possible incorporation into graded band gap CdTe-based photovoltaic devices.

  7. The Effects of Non-Uniform Electronic Properties on Thin Film Photovoltaics

    E-Print Network [OSTI]

    Brown, Gregory Ferguson

    2011-01-01T23:59:59.000Z

    Photovoltaics     There  are  two  requirements  for  designing  a  high  efficiency  photovoltaics.    These   modeling  efforts  are  important  not  only  for  future  efficiency  photovoltaics,  typically  made  with  CIGS  and  CdTe   absorber  layers,  are  promising  sources  of  renewable  energy  due  to  their  high   efficiencies  (

  8. Thin Film CIGS and CdTe Photovoltaic Technologies: Commercialization, Critical Issues, and Applications; Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in theTheoreticalEnergy InnovationThin Film CIGS and

  9. Producer-Focused Life Cycle Assessment of Thin-Film Silicon Photovoltaic Systems

    E-Print Network [OSTI]

    Zhang, Teresa Weirui

    2011-01-01T23:59:59.000Z

    V. (2005). Environmental impacts from the solar energysolar cells for large-scale photovoltaics; the determination of environmentalsolar technologies are not without their own environmental

  10. Material Needs for Thin-Film and Concentrator Photovoltaic Modules (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.

    2009-12-04T23:59:59.000Z

    This presentation describes the ongoing needs (manufacturability, availability, low cost, performance, and reliability) that drive the development of new photovoltaic materials.

  11. Final Technical Progress Report: High-Efficiency Low-Cost Thin-Film GaAs Photovoltaic Module Development Program; July 14, 2010 - January 13, 2012

    SciTech Connect (OSTI)

    Mattos, L.

    2012-03-01T23:59:59.000Z

    This is the final technical progress report of the High-Efficiency Low-Cost Thin-Film GaAs Photovoltaic Module Development Program. Alta Devices has successfully completed all milestones and deliverables established as part of the NREL PV incubator program. During the 18 months of this program, Alta has proven all key processes required to commercialize its solar module product. The incubator focus was on back end process steps directed at conversion of Alta's high quality solar film into high efficiency 1-sun PV modules. This report describes all program deliverables and the work behind each accomplishment.

  12. Synthesizing photovoltaic thin films of high quality copper-zinc-tin alloy with at least one chalcogen species

    DOE Patents [OSTI]

    Teeter, Glenn; Du, Hui; Young, Matthew

    2013-08-06T23:59:59.000Z

    A method for synthesizing a thin film of copper, zinc, tin, and a chalcogen species ("CZTCh" or "CZTSS") with well-controlled properties. The method includes depositing a thin film of precursor materials, e.g., approximately stoichiometric amounts of copper (Cu), zinc (Zn), tin (Sn), and a chalcogen species (Ch). The method then involves re-crystallizing and grain growth at higher temperatures, e.g., between about 725 and 925 degrees K, and annealing the precursor film at relatively lower temperatures, e.g., between 600 and 650 degrees K. The processing of the precursor film takes place in the presence of a quasi-equilibrium vapor, e.g., Sn and chalcogen species. The quasi-equilibrium vapor is used to maintain the precursor film in a quasi-equilibrium condition to reduce and even prevent decomposition of the CZTCh and is provided at a rate to balance desorption fluxes of Sn and chalcogens.

  13. Thin film photovoltaic cells having increased durability and operating life and method for making same

    DOE Patents [OSTI]

    Barnett, Allen M. (Newark, DE); Masi, James V. (Wilmington, DE); Hall, Robert B. (Newark, DE)

    1980-12-16T23:59:59.000Z

    A solar cell having a copper-bearing absorber is provided with a composite transparent encapsulating layer specifically designed to prevent oxidation of the copper sulfide. In a preferred embodiment, the absorber is a layer of copper sulfide and the composite layer comprises a thin layer of copper oxide formed on the copper sulfide and a layer of encapsulating glass formed on the oxide. It is anticipated that such devices, when exposed to normal operating conditions of various terrestrial applications, can be maintained at energy conversion efficiencies greater than one-half the original conversion efficiency for periods as long as thirty years.

  14. Investigation of Solar Energy Transfer through Plasmonic Au Nanoparticle-doped Sol-derived TiO? Thin Films in Photocatalysis and Photovoltaics /

    E-Print Network [OSTI]

    Zelinski, Andrew

    2013-01-01T23:59:59.000Z

    Titanium Dioxide (TiO 2 ) films were elaborated using the Sol-Gel technique and subsequently used to study plasmonic photovoltaic and photocatalytic energy

  15. Solution deposited NiO thin-films as hole transport layers in organic photovoltaics

    SciTech Connect (OSTI)

    Steirer, K. Xerxes [Colorado School of Mines, Golden, CO (United States); Chesin, Jordan P. [Division of Engineering, Brown Univ., Providence, RI (United States); Widjonarko, N. Edwin [University of Colorado, Dept of Physics, Boulder, CO (United States); Berry, Joseph J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Miedaner, Alexander [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ginley, David S. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Olson, Dana C. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2010-01-01T23:59:59.000Z

    Organic solar cells require suitable anode surface modifiers in order to selectively collect positive charge carriers and improve device performance. We employ a nickel metal organic ink precursor to fabricate NiO hole transport layers on indium tin oxide anodes. This solution deposited NiO annealed at 250 °C and plasma treated, achieves similar OPV device results reported with NiO films from PLD as well as PEDOT:PSS. We demonstrate a tunable work function by post-processing the NiO with an O{sub 2}-plasma surface treatment of varied power and time. We find that plasma treatment is necessary for optimal device performance. Optimal devices utilizing a solution deposited NiO hole transport layer show lower series resistance and increased fill factor when compared to solar cells with PEDOT:PSS.

  16. Thin film photovoltaic cells

    DOE Patents [OSTI]

    Rothwarf, Allen (Philadelphia, PA)

    1981-01-01T23:59:59.000Z

    A solar cell has as its transparent electrical contact a grid made from a non-noble metal by providing a layer of copper oxide between the transparent electrical contact and the absorber-generator.

  17. Photovoltaic effect in multiphase Bi-Mn-O thin J. P. Chakrabartty,1

    E-Print Network [OSTI]

    Photovoltaic effect in multiphase Bi-Mn-O thin films J. P. Chakrabartty,1 R. Nechache,2,4 C and therefore the photovoltaic conversion efficiency. Specifically, a higher Bi/Mn ratio (towards unity separation. ©2013 Optical Society of America OCIS codes: (040.5350) Photovoltaic; (160.2260) Ferroelectrics

  18. Thin-film photovoltaic partnership -- Apollo{reg{underscore}sign} thin film process development: Phase 1 Technical Report, May 1998--April 1999

    SciTech Connect (OSTI)

    Cunningham, D.W.; Skinner, D.E.

    1999-10-26T23:59:59.000Z

    The objective of this Phase 1 subcontract was to establish an efficient production plating system capable of depositing thin-film CdTe and CdS on substrates up to 0.55 m{sup 2}. This baseline would then be used to build on and extend deposition areas to 0.94 m{sup 2} in the next two phases. The following achievements have been demonstrated: {sm{underscore}bullet} Chemical-bath deposition of CdS and electrochemical deposition of CdTe was demonstrated on 0.55 m{sup 2} substrates. The films were characterized using optical and electrical techniques, to increase the understanding of the materials and aid in loss analysis. {sm{underscore}bullet} A stand-alone, prototype CdTe reaction tank was built and commissioned, allowing the BP Solar team to perform full-scale trials as part of this subcontract. {sm{underscore}bullet} BP Solar installed two outdoor systems for reliability and performance testing. {sm{underscore}bullet} The 2-kW, ground-mounted, grid-connected system contains seventy-two 0.43-m{sup 2} Apollo{reg{underscore}sign} module interconnects. {sm{underscore}bullet} Two modules have been supplied to NREL for evaluation on their Performance and Energy Rating Test bed (PERT) for kWh evaluation. {sm{underscore}bullet} BP Solar further characterized the process waste stream with the aim to close-loop the system. Currently, various pieces of equipment are being investigated for suitability of particle and total organic compound removal.

  19. Photovoltaic properties of Aurivillius phase Bi{sub 5}FeTi{sub 3}O{sub 15} thin films grown by pulsed laser deposition

    SciTech Connect (OSTI)

    Kooriyattil, Sudheendran [Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, P.O. Box 70377, San Juan, Puerto Rico 00936-8377 (United States); Department of Physics, Sree Kerala Varma College, Thrissur 680011, Kerala (India); Katiyar, Rajesh K.; Pavunny, Shojan P., E-mail: rkatiyar@uprrp.edu, E-mail: shojanpp@gmail.com; Morell, Gerardo; Katiyar, Ram S., E-mail: rkatiyar@uprrp.edu, E-mail: shojanpp@gmail.com [Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, P.O. Box 70377, San Juan, Puerto Rico 00936-8377 (United States)

    2014-08-18T23:59:59.000Z

    We report a remarkable photovoltaic effect in pulsed laser deposited multiferroic aurivillius phase Bi{sub 5}FeTi{sub 3}O{sub 15} (BFTO) thin films sandwiched between ZnO:Al transparent conductive oxide top electrode and SrRuO{sub 3} bottom electrode fabricated on amorphous fused silica substrates. The structural and micro structural properties of these films were analysed by X-ray diffraction and atomic force microscopy techniques. The films were showing a photo sensitive ferroelectric behaviour with a notable apparent polarization in the range of 10–15??C/cm{sup 2}. These films also exhibited a switchable photo-response and this parameter was observed to be sensitive to polarisation field and the polarization direction. The device shows a large ON/OFF photo current ratio with an open circuit voltage of 0.14?V. The photo response at zero bias of this BFTO based heterostructures showed rapid increase to a saturation value of 6??A at zero bias.

  20. DISSERTATION DEVICE CHARACTERIZATION OF CADMIUM TELLURIDE PHOTOVOLTAICS

    E-Print Network [OSTI]

    Sites, James R.

    DISSERTATION DEVICE CHARACTERIZATION OF CADMIUM TELLURIDE PHOTOVOLTAICS Submitted by Russell M Reserved #12;ABSTRACT DEVICE CHARACTERIZATION OF CADMIUM TELLURIDE PHOTOVOLTAICS Thin-film photovoltaics

  1. Photovoltaic mechanisms in polycrystalline thin-film solar cells. Final report, 28 September 1978-28 September 1979

    SciTech Connect (OSTI)

    Zanio, K.

    1980-03-01T23:59:59.000Z

    Studies were undertaken to examine grain boundaries in polycrystalline material and apply these results to the development of thin-film solar cells using InP as the absorber layers. A model was developed which related material parameters to leakage currents in a thin-film polycrystalline p-n junction. In this model, the grain boundary was treated as a semiconductor with bandgap lower than that of the surrounding bulk. Since a leakage current at the grain boundary might decrease for a wider bandgap material, InGaP was considered and deposited by planar reactive deposition (PRD) on a single-crystal InP and lattice-matched GaAs. X-ray analysis and Hall measurements indicated that the quality of the epitaxy on GaAs was superior to that on InP, presumably due to a closer lattice match. Parallel etching studies to preferentially remove the grain boundaries showed that a 5HCl: 3HNO/sub 3/ : 4HF etch was highly selective in attacking the grain boundaries in bulk polycrystalline InP. Canyons with depths greater than 10 ..mu..m and widths on the order of 1 ..mu..m are the most common form of attack.

  2. Enhancement of current collection in epitaxial lift-off InAs/GaAs quantum dot thin film solar cell and concentrated photovoltaic study

    SciTech Connect (OSTI)

    Sogabe, Tomah, E-mail: sogabe@mbe.rcast.u-tokyo.ac.jp; Shoji, Yasushi; Tamayo, Efrain; Okada, Yoshitaka [Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8504 (Japan); Mulder, Peter; Schermer, John [Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands)

    2014-09-15T23:59:59.000Z

    We report the fabrication of a thin film InAs/GaAs quantum dot solar cell (QD cell) by applying epitaxial lift-off (ELO) approach to the GaAs substrate. We confirmed significant current collection enhancement (?0.91?mA/cm{sup 2}) in the ELO-InAs QD cell within the wavelength range of 700?nm–900?nm when compared to the ELO-GaAs control cell. This is almost six times of the sub-GaAs bandgap current collection (?0.16?mA/cm{sup 2}) from the wavelength range of 900?nm and beyond, we also confirmed the ELO induced resonance cavity effect was able to increase the solar cell efficiency by increasing both the short circuit current and open voltage. The electric field intensity of the resonance cavity formed in the ELO film between the Au back reflector and the GaAs front contact layer was analyzed in detail by finite-differential time-domain (FDTD) simulation. We found that the calculated current collection enhancement within the wavelength range of 700?nm–900?nm was strongly influenced by the size and shape of InAs QD. In addition, we performed concentrated light photovoltaic study and analyzed the effect of intermediate states on the open voltage under varied concentrated light intensity for the ELO-InAs QD cell.

  3. Polycrystalline Thin-Film Research: Cadmium Telluride (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-06-01T23:59:59.000Z

    This National Center for Photovoltaics sheet describes the capabilities of its polycrystalline thin-film research in the area of cadmium telluride. The scope and core competencies and capabilities are discussed.

  4. Efficient light trapping structure in thin film silicon solar cells

    E-Print Network [OSTI]

    Sheng, Xing

    Thin film silicon solar cells are believed to be promising candidates for continuing cost reduction in photovoltaic panels because silicon usage could be greatly reduced. Since silicon is an indirect bandgap semiconductor, ...

  5. CFN | Thin Films Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Synthesis and Characterization Facility Thin-Film Processing Facility Online Manager (FOM) website FOM manual ESR for lab 1L32 (High-Resolution SEM and x-ray...

  6. Swiss Federal Laboratories for Materials Science and Technology Advances in Thin Film PV: CIGS & CdTe

    E-Print Network [OSTI]

    Canet, Léonie

    and Photovoltaics Thin film solar cells based on compound semiconductor absorbers: CIGS and CdTe High efficiency and Photovoltaics Swiss Federal Laboratories for Material Science and Technology Key issues in high efficiency CIGSTe Laboratory for Thin Films and Photovoltaics Empa- Swiss Federal Laboratories for Material Science

  7. Sustainable Retrofit of Residential Roofs Using Metal Roofing Panels, Thin-Film Photovoltaic Laminates, and PCM Heat Sink Technology

    SciTech Connect (OSTI)

    Kosny, Jan [ORNL] [ORNL; Miller, William A [ORNL] [ORNL; Childs, Phillip W [ORNL] [ORNL; Biswas, Kaushik [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    During September-October 2009, research teams representing Metal Construction Association (the largest North American trade association representing metal building manufacturers, builders, and material suppliers), CertainTeed (one of the largest U.S. manufacturers of thermal insulation and building envelope materials), Unisolar (largest U.S. producer of amorphous silicone photo-voltaic (PV) laminates), Phase Change Energy (manufacturer of bio-based PCM), and Oak Ridge National Laboratory (ORNL) installed three experimental attics utilizing different roof retrofit strategies in the ORNL campus. The main goal of this project was experimental evaluation of a newly-developed sustainable re-roofing technology utilizing amorphous silicone PV laminates integrated with metal roof and PCM heat sink. The experimental attic with PV laminate was expected to work during the winter time as a passive solar collector with PCM storing solar heat, absorbed during the day, and increasing overall attic air temperature during the night.

  8. Electrochromic-photovoltaic film for light-sensitive control of optical transmittance

    SciTech Connect (OSTI)

    Branz, Howard M. (Boulder, CO); Crandall, Richard S. (Golden, CO); Tracy, C. Edwin (Golden, CO)

    1994-01-01T23:59:59.000Z

    A variable transmittance optical component includes an electrochromic material and a photovoltaic device-type thin film solar cell deposited in a tandem type, monolithic single coating over the component. A bleed resistor of a predetermined value is connected in series across the electrochromic material and photovoltaic device controlling the activation and deactivation of the electrochromic material. The electrical conductivity between the electrochromic material and the photovoltaic device is enhanced by interposing a transparent electrically conductive layer.

  9. Electrochromic-photovoltaic film for light-sensitive control of optical transmittance

    DOE Patents [OSTI]

    Branz, H.M.; Crandall, R.S.; Tracy, C.E.

    1994-12-27T23:59:59.000Z

    A variable transmittance optical component includes an electrochromic material and a photovoltaic device-type thin film solar cell deposited in a tandem type, monolithic single coating over the component. A bleed resistor of a predetermined value is connected in series across the electrochromic material and photovoltaic device controlling the activation and deactivation of the electrochromic material. The electrical conductivity between the electrochromic material and the photovoltaic device is enhanced by interposing a transparent electrically conductive layer. 5 figures.

  10. New measurement capability measures semiconductor minority-carrier lifetimes in conditions that simulate thin-film

    E-Print Network [OSTI]

    that simulate thin-film photovoltaic manufacturing environments. National Renewable Energy Laboratory (NREL of conditions in a thin-film photovoltaic (PV) manufacturing line. NREL's work in recent years has demonstrated system. The system, shown below, couples femtosecond laser pulses with optical fibers while avoiding

  11. Integrated optical and electrical modeling of plasmon-enhanced thin film photovoltaics: A case-study on organic devices

    SciTech Connect (OSTI)

    Rourke, Devin [Department of Physics, University of Colorado, Boulder, Colorado 80309-0390 (United States); Ahn, Sungmo [Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, Colorado 80309-0425 (United States); Nardes, Alexandre M.; Lagemaat, Jao van de; Kopidakis, Nikos [National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401 (United States); Park, Wounjhang, E-mail: won.park@colorado.edu [Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, Colorado 80309-0425 (United States); Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80303 (United States)

    2014-09-21T23:59:59.000Z

    The nanoscale light control for absorption enhancement of organic photovoltaic (OPV) devices inevitably produces strongly non-uniform optical fields. These non-uniformities due to the localized optical modes are a primary route toward absorption enhancement in OPV devices. Therefore, a rigorous modeling tool taking into account the spatial distribution of optical field and carrier generation is necessary. Presented here is a comprehensive numerical model to describe the coupled optical and electrical behavior of plasmon-enhanced polymer:fullerene bulk heterojunction (BHJ) solar cells. In this model, a position-dependent electron-hole pair generation rate that could become highly non-uniform due to photonic nanostructures is directly calculated from the optical simulations. By considering the absorption and plasmonic properties of nanophotonic gratings included in two different popular device architectures, and applying the Poisson, current continuity, and drift/diffusion equations, the model predicts quantum efficiency, short-circuit current density, and desired carrier mobility ratios for bulk heterojunction devices incorporating nanostructures for light management. In particular, the model predicts a significant degradation of device performance when the carrier species with lower mobility are generated far from the collecting electrode. Consequently, an inverted device architecture is preferred for materials with low hole mobility. This is especially true for devices that include plasmonic nanostructures. Additionally, due to the incorporation of a plasmonic nanostructure, we use simulations to theoretically predict absorption band broadening of a BHJ into energies below the band gap, resulting in a 4.8% increase in generated photocurrent.

  12. Low-Cost Photovoltaics: Luminescent Solar Concentrators And Colloidal Quantum Dot Solar Cells

    E-Print Network [OSTI]

    Leow, Shin Woei

    2014-01-01T23:59:59.000Z

    using front-facing photovoltaic cell luminescent solarwith front-facing photovoltaic cells using weighted Montefor tandem photovoltaic cells,” Thin Solid Films, vol. 516,

  13. Nanopillar Photovoltaics: Photon Management and Junction Engineering for Next-Generation Solar Cells

    E-Print Network [OSTI]

    Mariani, Giacomo

    2013-01-01T23:59:59.000Z

    for efficient photovoltaic cells, Nat. Nanotechnol. 6, 568-for efficient photovoltaic cells, Nat. Nanotechnol. 6, 568-trapping in thin-film photovoltaic cells, Opt. Express 8,

  14. Rational Design and Preparation of Organic Semiconductors for use in Field Effect Transistors and Photovoltaic Cells

    E-Print Network [OSTI]

    Mauldin, Clayton Edward

    2010-01-01T23:59:59.000Z

    in thin film organic photovoltaic cells (OPVs) is presented.efficient organic photovoltaic cells with power conversionEffect Transistors and Photovoltaic Cells By Clayton Edward

  15. Rational Design and Preparation of Organic Semiconductors for use in Field Effect Transistors and Photovoltaic Cells

    E-Print Network [OSTI]

    Mauldin, Clayton Edward

    2010-01-01T23:59:59.000Z

    in thin film organic photovoltaic cells (OPVs) is presented.Effect Transistors and Photovoltaic Cells By Clayton EdwardEffect Transistors and Photovoltaic Cells By Clayton Edward

  16. Epitaxial thin films

    DOE Patents [OSTI]

    Hunt, Andrew Tye; Deshpande, Girish; Lin, Wen-Yi; Jan, Tzyy-Jiuan

    2006-04-25T23:59:59.000Z

    Epitatial thin films for use as buffer layers for high temperature superconductors, electrolytes in solid oxide fuel cells (SOFC), gas separation membranes or dielectric material in electronic devices, are disclosed. By using CCVD, CACVD or any other suitable deposition process, epitaxial films having pore-free, ideal grain boundaries, and dense structure can be formed. Several different types of materials are disclosed for use as buffer layers in high temperature superconductors. In addition, the use of epitaxial thin films for electrolytes and electrode formation in SOFCs results in densification for pore-free and ideal gain boundary/interface microstructure. Gas separation membranes for the production of oxygen and hydrogen are also disclosed. These semipermeable membranes are formed by high-quality, dense, gas-tight, pinhole free sub-micro scale layers of mixed-conducting oxides on porous ceramic substrates. Epitaxial thin films as dielectric material in capacitors are also taught herein. Capacitors are utilized according to their capacitance values which are dependent on their physical structure and dielectric permittivity. The epitaxial thin films of the current invention form low-loss dielectric layers with extremely high permittivity. This high permittivity allows for the formation of capacitors that can have their capacitance adjusted by applying a DC bias between their electrodes.

  17. Thin-film optical initiator

    DOE Patents [OSTI]

    Erickson, Kenneth L. (Albuquerque, NM)

    2001-01-01T23:59:59.000Z

    A thin-film optical initiator having an inert, transparent substrate, a reactive thin film, which can be either an explosive or a pyrotechnic, and a reflective thin film. The resultant thin-film optical initiator system also comprises a fiber-optic cable connected to a low-energy laser source, an output charge, and an initiator housing. The reactive thin film, which may contain very thin embedded layers or be a co-deposit of a light-absorbing material such as carbon, absorbs the incident laser light, is volumetrically heated, and explodes against the output charge, imparting about 5 to 20 times more energy than in the incident laser pulse.

  18. NMR characterization of thin films

    DOE Patents [OSTI]

    Gerald II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2010-06-15T23:59:59.000Z

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  19. NMR characterization of thin films

    DOE Patents [OSTI]

    Gerald, II, Rex E. (Brookfield, IL); Klingler, Robert J. (Glenview, IL); Rathke, Jerome W. (Homer Glen, IL); Diaz, Rocio (Chicago, IL); Vukovic, Lela (Westchester, IL)

    2008-11-25T23:59:59.000Z

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  20. INTERFERENCE Interference from Thin Films

    E-Print Network [OSTI]

    La Rosa, Andres H.

    INTERFERENCE Interference from Thin Films Lecture notes La Rosa Portland State University PH-213 through, a sheet of glass #12;Out of phase #12;In phase #12;#12;Interference from thin films Key reasoning for analyzing interference in a thin film: Waves undergo phase shift due to i) reflections at a interface

  1. Synthesis and Characterization of Earth Abundant and Nontoxic Metal Chalcogenides Produced via Aerosol Spray Pyrolysis for Photovoltaic Applications

    E-Print Network [OSTI]

    Davis, Patrick John

    2013-01-01T23:59:59.000Z

    thin film photovoltaic device with an efficiency of merely .silicon photovoltaic device achieves >25% efficiency [7,10].a photovoltaic device it has a theoretical efficiency limit

  2. Photovoltaic devices comprising cadmium stannate transparent conducting films and method for making

    DOE Patents [OSTI]

    Wu, X.; Coutts, T.J.; Sheldon, P.; Rose, D.H.

    1999-07-13T23:59:59.000Z

    A photovoltaic device is disclosed having a substrate, a layer of Cd[sub 2]SnO[sub 4] disposed on said substrate as a front contact, a thin film comprising two or more layers of semiconductor materials disposed on said layer of Cd[sub 2]SnO[sub 4], and an electrically conductive film disposed on said thin film of semiconductor materials to form a rear electrical contact to said thin film. The device is formed by RF sputter coating a Cd[sub 2]SnO[sub 4] layer onto a substrate, depositing a thin film of semiconductor materials onto the layer of Cd[sub 2]SnO[sub 4], and depositing an electrically conductive film onto the thin film of semiconductor materials. 10 figs.

  3. Photovoltaic devices comprising cadmium stannate transparent conducting films and method for making

    DOE Patents [OSTI]

    Wu, Xuanzhi (Golden, CO); Coutts, Timothy J. (Lakewood, CO); Sheldon, Peter (Lakewood, CO); Rose, Douglas H. (Golden, CO)

    1999-01-01T23:59:59.000Z

    A photovoltaic device having a substrate, a layer of Cd.sub.2 SnO.sub.4 disposed on said substrate as a front contact, a thin film comprising two or more layers of semiconductor materials disposed on said layer of Cd.sub.2 SnO.sub.4, and an electrically conductive film disposed on said thin film of semiconductor materials to form a rear electrical contact to said thin film. The device is formed by RF sputter coating a Cd.sub.2 SnO.sub.4 layer onto a substrate, depositing a thin film of semiconductor materials onto the layer of Cd.sub.2 SnO.sub.4, and depositing an electrically conductive film onto the thin film of semiconductor materials.

  4. Thin film superconductor magnetic bearings

    DOE Patents [OSTI]

    Weinberger, Bernard R. (Avon, CT)

    1995-12-26T23:59:59.000Z

    A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

  5. Temperature-Dependent Electron Transport in Quantum Dot Photovoltaics

    E-Print Network [OSTI]

    Padilla, Derek

    2013-01-01T23:59:59.000Z

    to enhanced photovoltaic device efficiency. ACS nano, 2(11):Photovoltaic Devices Introduction Thin-film quantum dot (QD) photovoltaics provide the potential to create high-efficiencyefficiency under such illumina- tion. A non-ideal model of a photovoltaic

  6. Polycrystalline thin-film solar cells and modules

    SciTech Connect (OSTI)

    Ullal, H.S.; Stone, J.L.; Zweibel, K.; Surek, T.; Mitchell, R.L.

    1991-12-01T23:59:59.000Z

    This paper describes the recent technological advances in polycrystalline thin-film solar cells and modules. Three thin film materials, namely, cadmium telluride (CdTe), copper indium diselenide (CuInSe{sub 2}, CIS) and silicon films (Si-films) have made substantial technical progress, both in device and module performance. Early stability results for modules tested outdoors by various groups worldwide are also encouraging. The major global players actively involved in the development of the these technologies are discussed. Technical issues related to these materials are elucidated. Three 20-kW polycrystalline thin-film demonstration photovoltaic (PV) systems are expected to be installed in Davis, CA in 1992 as part of the Photovoltaics for Utility-Scale Applications (PVUSA) project. This is a joint project between the US Department of Energy (DOE), Pacific Gas and Electric (PG&E), Electric Power Research Institute (EPRI), California Energy Commission (CEC), and a utility consortium.

  7. Polycrystalline thin-film solar cells and modules

    SciTech Connect (OSTI)

    Ullal, H.S.; Stone, J.L.; Zweibel, K.; Surek, T.; Mitchell, R.L.

    1991-12-01T23:59:59.000Z

    This paper describes the recent technological advances in polycrystalline thin-film solar cells and modules. Three thin film materials, namely, cadmium telluride (CdTe), copper indium diselenide (CuInSe{sub 2}, CIS) and silicon films (Si-films) have made substantial technical progress, both in device and module performance. Early stability results for modules tested outdoors by various groups worldwide are also encouraging. The major global players actively involved in the development of the these technologies are discussed. Technical issues related to these materials are elucidated. Three 20-kW polycrystalline thin-film demonstration photovoltaic (PV) systems are expected to be installed in Davis, CA in 1992 as part of the Photovoltaics for Utility-Scale Applications (PVUSA) project. This is a joint project between the US Department of Energy (DOE), Pacific Gas and Electric (PG E), Electric Power Research Institute (EPRI), California Energy Commission (CEC), and a utility consortium.

  8. Recent technological advances in thin film solar cells

    SciTech Connect (OSTI)

    Ullal, H.S.; Zwelbel, K.; Surek, T.

    1990-03-01T23:59:59.000Z

    High-efficiency, low-cost thin film solar cells are an exciting photovoltaic technology option for generating cost-effective electricity in 1995 and beyond. This paper reviews the substantial advances made by several thin film solar cell technologies, namely, amorphous silicon, copper indium diselenide, cadmium telluride, and polycrystalline silicon. Recent examples of utility demonstration projects of these emerging materials are also discussed. 8 refs., 4 figs.

  9. Thin film composite electrolyte

    DOE Patents [OSTI]

    Schucker, Robert C. (The Woodlands, TX)

    2007-08-14T23:59:59.000Z

    The invention is a thin film composite solid (and a means for making such) suitable for use as an electrolyte, having a first layer of a dense, non-porous conductive material; a second layer of a porous ionic conductive material; and a third layer of a dense non-porous conductive material, wherein the second layer has a Coefficient of thermal expansion within 5% of the coefficient of thermal expansion of the first and third layers.

  10. Photovoltaic Films - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPOPetroleum Reserves Vision,4newsSolar Photovoltaic Solar

  11. DISSERTATION ANALYSIS OF IMPACT OF NON-UNIFORMITIES ON THIN-FILM SOLAR CELLS

    E-Print Network [OSTI]

    Sites, James R.

    DISSERTATION ANALYSIS OF IMPACT OF NON-UNIFORMITIES ON THIN-FILM SOLAR CELLS AND MODULES WITH 2-D-FILM SOLAR CELLS AND MODULES WITH 2-D SIMULATIONS BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS-UNIFORMITIES ON THIN-FILM SOLAR CELLS AND MODULES WITH 2-D SIMULATIONS Clean and environmentally friendly photovoltaic

  12. Synthesis of thin films and materials utilizing a gaseous catalyst

    DOE Patents [OSTI]

    Morse, Daniel E; Schwenzer, Birgit; Gomm, John R; Roth, Kristian M; Heiken, Brandon; Brutchey, Richard

    2013-10-29T23:59:59.000Z

    A method for the fabrication of nanostructured semiconducting, photoconductive, photovoltaic, optoelectronic and electrical battery thin films and materials at low temperature, with no molecular template and no organic contaminants. High-quality metal oxide semiconductor, photovoltaic and optoelectronic materials can be fabricated with nanometer-scale dimensions and high dopant densities through the use of low-temperature biologically inspired synthesis routes, without the use of any biological or biochemical templates.

  13. Electrochemical photovoltaic cell having ternary alloy film

    DOE Patents [OSTI]

    Russak, Michael A. (Farmingdale, NY)

    1984-01-01T23:59:59.000Z

    A thin film compound semiconductor electrode comprising CdSe.sub.1-x Te.sub.x (0.ltoreq.x.ltoreq.1) is deposited on a transparent conductive substrate. An electrolyte contacts the film to form a photoactive site. The semiconductor material has a narrow energy bandgap permitting high efficiency for light conversion. The film may be fabricated by: (1) co-evaporation of two II-VI group compounds with a common cation, or (2) evaporation of three elements, concurrenty.

  14. Vertically Aligned Nanocomposite Thin Films 

    E-Print Network [OSTI]

    Bi, Zhenxing

    2012-07-16T23:59:59.000Z

    microstructure is a brand new architecture in thin films and an exciting approach that promises tunable material functionalities as well as novel nanostructures....

  15. Project Profile: Evaluating the Causes of Photovoltaics Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    progress observed for photovoltaics (PV) over the past half century. Motivation Photovoltaic technologies, including silicon and thin film solar cells, have experienced...

  16. Metallophthalocyanine thin films : structure and physical properties

    E-Print Network [OSTI]

    Colesniuc, Corneliu Nicolai

    2011-01-01T23:59:59.000Z

    in copper phthalocyanine thin film transistors”, J. Park, J.free phthalocyanine thin films”, F. I. Bohrer, A. Sharoni,copper phthalocyanine thin-film transistors”, R. D. Yang, J.

  17. Doping in Zinc Oxide Thin Films

    E-Print Network [OSTI]

    Yang, Zheng

    2009-01-01T23:59:59.000Z

    properties of ZnO:Mn thin films were comprehensivelyd exchange in ZnO:Mn DMS thin films. Both the ordinary andspin-obital ferromagnetism in ZnO:Mn DMS thin films.

  18. US polycrystalline thin film solar cells program

    SciTech Connect (OSTI)

    Ullal, H.S.; Zweibel, K.; Mitchell, R.L. (Solar Energy Research Inst., Golden, CO (USA)) [Solar Energy Research Inst., Golden, CO (USA)

    1989-11-01T23:59:59.000Z

    The Polycrystalline Thin Film Solar Cells Program, part of the United States National Photovoltaic Program, performs R D on copper indium diselenide and cadmium telluride thin films. The objective of the Program is to support research to develop cells and modules that meet the US Department of Energy's long-term goals by achieving high efficiencies (15%-20%), low-cost ($50/m{sup 2}), and long-time reliability (30 years). The importance of work in this area is due to the fact that the polycrystalline thin-film CuInSe{sub 2} and CdTe solar cells and modules have made rapid advances. They have become the leading thin films for PV in terms of efficiency and stability. The US Department of Energy has increased its funding through an initiative through the Solar Energy Research Institute in CuInSe{sub 2} and CdTe with subcontracts to start in Spring 1990. 23 refs., 5 figs.

  19. Polycrystalline thin films FY 1992 project report

    SciTech Connect (OSTI)

    Zweibel, K. [ed.

    1993-01-01T23:59:59.000Z

    This report summarizes the activities and results of the Polycrystalline Thin Film Project during FY 1992. The purpose of the DOE/NREL PV (photovoltaic) Program is to facilitate the development of PV that can be used on a large enough scale to produce a significant amount of energy in the US and worldwide. The PV technologies under the Polycrystalline Thin Film project are among the most exciting ``next-generation`` options for achieving this goal. Over the last 15 years, cell-level progress has been steady, with laboratory cell efficiencies reaching levels of 15 to 16%. This progress, combined with potentially inexpensive manufacturing methods, has attracted significant commercial interest from US and international companies. The NREL/DOE program is designed to support the efforts of US companies through cost-shared subcontracts (called ``government/industry partnerships``) that we manage and fund and through collaborative technology development work among industry, universities, and our laboratory.

  20. Thin film ion conducting coating

    DOE Patents [OSTI]

    Goldner, Ronald B. (Lexington, MA); Haas, Terry (Sudbury, MA); Wong, Kwok-Keung (Watertown, MA); Seward, George (Arlington, MA)

    1989-01-01T23:59:59.000Z

    Durable thin film ion conducting coatings are formed on a transparent glass substrate by the controlled deposition of the mixed oxides of lithium:tantalum or lithium:niobium. The coatings provide durable ion transport sources for thin film solid state storage batteries and electrochromic energy conservation devices.

  1. Hall mobility of cuprous oxide thin films deposited by reactive direct-current magnetron sputtering

    E-Print Network [OSTI]

    Lee, Yun Seog

    Cuprous oxide (Cu[subscript 2]O) is a promising earth-abundant semiconductor for photovoltaic applications. We report Hall mobilities of polycrystalline Cu[subscript 2]O thin films deposited by reactive dc magnetron ...

  2. Simulation and optimization of ultra thin photovoltaics.

    SciTech Connect (OSTI)

    Cruz-Campa, Jose Luis

    2010-12-01T23:59:59.000Z

    Sandia National Laboratories (SNL) conducts pioneering research and development in Micro-Electro-Mechanical Systems (MEMS) and solar cell research. This dissertation project combines these two areas to create ultra-thin small-form-factor crystalline silicon (c-Si) solar cells. These miniature solar cells create a new class of photovoltaics with potentially novel applications and benefits such as dramatic reductions in cost, weight and material usage. At the beginning of the project, unusually low efficiencies were obtained in the research group. The intention of this research was thus to investigate the main causes of the low efficiencies through simulation, design, fabrication, and characterization. Commercial simulation tools were used to find the main causes of low efficiency. Once the causes were identified, the results were used to create improved designs and build new devices. In the simulations, parameters were varied to see the effect on the performance. The researched parameters were: resistance, wafer lifetime, contact separation, implant characteristics (size, dosage, energy, ratio between the species), contact size, substrate thickness, surface recombination, and light concentration. Out of these parameters, it was revealed that a high quality surface passivation was the most important for obtaining higher performing cells. Therefore, several approaches for enhancing the passivation were tried, characterized, and tested on cells. In addition, a methodology to contact and test the performance of all the cells presented in the dissertation under calibrated light was created. Also, next generation cells that could incorporate all the optimized layers including the passivation was designed, built, and tested. In conclusion, through this investigation, solar cells that incorporate optimized designs and passivation schemes for ultrathin solar cells were created for the first time. Through the application of the methods discussed in this document, the efficiency of the solar cells increased from below 1% to 15% in Microsystems Enabled Photovoltaic (MEPV) devices.

  3. Fully Solution-Processed Copper Chalcopyrite Thin Film Solar Cells: Materials Chemistry, Processing, and Device Physics

    E-Print Network [OSTI]

    Chung, Choong-Heui

    2012-01-01T23:59:59.000Z

    films. Photovoltaic devices with power conversion efficiencyhigh efficiency fully solution-deposited CISS photovoltaic

  4. Optimization of the absorption efficiency of an amorphous-silicon thin-film tandem solar cell

    E-Print Network [OSTI]

    to bring down the cost of photovoltaic (PV) solar cells has gained huge momentum, and many strategiesOptimization of the absorption efficiency of an amorphous-silicon thin-film tandem solar cell-wave approach was used to compute the plane-wave absorptance of a thin-film tandem solar cell with a metallic

  5. Nanostructured columnar heterostructures of TiO2 and Cu2O enabled by a thin-film self-assembly approach: Potential for photovoltaics

    E-Print Network [OSTI]

    Pennycook, Steve

    -assembly approach: Potential for photovoltaics O¨ zgu¨ r Polat a,b,1 , Tolga Aytug a, *, Andrew R. Lupini a , Parans vertical oxide heterostructures for photovoltaic applica- tions. Rather, in recent years the development silicon technologies. Presently, CIGS has demonstrated the highest lab-scale cell efficiency at 19.9% [3

  6. Photovoltaic cell with thin CS layer

    DOE Patents [OSTI]

    Jordan, John F. (El Paso, TX); Albright, Scot P. (El Paso, TX)

    1994-01-18T23:59:59.000Z

    An improved photovoltaic panel and method of forming a photovoltaic panel are disclosed for producing a high efficiency CdS/CdTe photovoltaic cell. The photovoltaic panel of the present invention is initially formed with a substantially thick Cds layer, and the effective thickness of the CdS layer is substantially reduced during regrowth to both form larger diameter CdTe crystals and substantially reduce the effective thickness of the C This invention was made with Government support under Subcontract No. ZL-7-06031-3 awarded by the Department of Energy. The Government has certain rights in this invention.

  7. Microstructured porous ZnO thin film for increased light scattering and improved

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    for enhancing light scattering and efficiency in inverted organic photovoltaics. High degree of porosity. References and links 1. S. R. Forrest, "The limits to organic photovoltaic cell efficiency," MRS Bull. 30Microstructured porous ZnO thin film for increased light scattering and improved efficiency

  8. Vertically Aligned Nanocomposite Thin Films

    E-Print Network [OSTI]

    Bi, Zhenxing

    2012-07-16T23:59:59.000Z

    and epitaxial growth ability on given substrates. In the present work, we investigated unique epitaxial two-phase VAN (BiFeO3)x:(Sm2O3)1-x and (La0.7Sr0.3MnO3)x:(Mn3O4)1-x thin film systems by pulsed laser deposition. These VAN thin films exhibit a highly...

  9. Vapor deposition of thin films

    DOE Patents [OSTI]

    Smith, David C. (Los Alamos, NM); Pattillo, Stevan G. (Los Alamos, NM); Laia, Jr., Joseph R. (Los Alamos, NM); Sattelberger, Alfred P. (Los Alamos, NM)

    1992-01-01T23:59:59.000Z

    A highly pure thin metal film having a nanocrystalline structure and a process of preparing such highly pure thin metal films of, e.g., rhodium, iridium, molybdenum, tungsten, rhenium, platinum, or palladium by plasma assisted chemical vapor deposition of, e.g., rhodium(allyl).sub.3, iridium(allyl).sub.3, molybdenum(allyl).sub.4, tungsten(allyl).sub.4, rhenium(allyl).sub.4, platinum(allyl).sub.2, or palladium(allyl).sub.2 are disclosed. Additionally, a general process of reducing the carbon content of a metallic film prepared from one or more organometallic precursor compounds by plasma assisted chemical vapor deposition is disclosed.

  10. Femtosecond laser processing of photovoltaic and transparent materials

    E-Print Network [OSTI]

    Ahn, Sanghoon

    2013-01-01T23:59:59.000Z

    20%  efficiency.  Progress  in  Photovoltaics.  2004;12:efficiency   tables  (version  39).  Progress  in  Photovoltaics.  efficiency   for   Cu(In,Ga)Se-­?2   thin-­?film   solar   cells   beyond   20%.   Progress   in   Photovoltaics.  

  11. Ris Energy Report 5 Photovoltaics 6.3.1 Photovoltaics

    E-Print Network [OSTI]

    Risø Energy Report 5 Photovoltaics 6.3.1 Photovoltaics TOM MARkVART, UNIVERsITy OF s kREbs, RIsø NATIONAL LAbORATORy, DENMARk The market for photovoltaics (PV, or solar cells) has grown. The European Photovoltaic Industry Association esti- mates that the share of thin-film technologies

  12. Thin film-coated polymer webs

    DOE Patents [OSTI]

    Wenz, Robert P. (Cottage Grove, MN); Weber, Michael F. (Shoreview, MN); Arudi, Ravindra L. (Woodbury, MN)

    1992-02-04T23:59:59.000Z

    The present invention relates to thin film-coated polymer webs, and more particularly to thin film electronic devices supported upon a polymer web, wherein the polymer web is treated with a purifying amount of electron beam radiation.

  13. Nanomechanical properties of hydrated organic thin films

    E-Print Network [OSTI]

    Choi, Jae Hyeok

    2007-01-01T23:59:59.000Z

    Hydrated organic thin films are biological or synthetic molecularly thin coatings which impart a particular functionality to an underlying substrate and which have discrete water molecules associated with them. Such films ...

  14. Low work function, stable thin films

    DOE Patents [OSTI]

    Dinh, Long N. (Concord, CA); McLean, II, William (Oakland, CA); Balooch, Mehdi (Berkeley, CA); Fehring, Jr., Edward J. (Dublin, CA); Schildbach, Marcus A. (Livermore, CA)

    2000-01-01T23:59:59.000Z

    Generation of low work function, stable compound thin films by laser ablation. Compound thin films with low work function can be synthesized by simultaneously laser ablating silicon, for example, and thermal evaporating an alkali metal into an oxygen environment. For example, the compound thin film may be composed of Si/Cs/O. The work functions of the thin films can be varied by changing the silicon/alkali metal/oxygen ratio. Low work functions of the compound thin films deposited on silicon substrates were confirmed by ultraviolet photoelectron spectroscopy (UPS). The compound thin films are stable up to 500.degree. C. as measured by x-ray photoelectron spectroscopy (XPS). Tests have established that for certain chemical compositions and annealing temperatures of the compound thin films, negative electron affinity (NEA) was detected. The low work function, stable compound thin films can be utilized in solar cells, field emission flat panel displays, electron guns, and cold cathode electron guns.

  15. Shielding superconductors with thin films

    E-Print Network [OSTI]

    Posen, Sam; Catelani, Gianluigi; Liepe, Matthias U; Sethna, James P

    2015-01-01T23:59:59.000Z

    Determining the optimal arrangement of superconducting layers to withstand large amplitude AC magnetic fields is important for certain applications such as superconducting radiofrequency cavities. In this paper, we evaluate the shielding potential of the superconducting film/insulating film/superconductor (SIS') structure, a configuration that could provide benefits in screening large AC magnetic fields. After establishing that for high frequency magnetic fields, flux penetration must be avoided, the superheating field of the structure is calculated in the London limit both numerically and, for thin films, analytically. For intermediate film thicknesses and realistic material parameters we also solve numerically the Ginzburg-Landau equations. It is shown that a small enhancement of the superheating field is possible, on the order of a few percent, for the SIS' structure relative to a bulk superconductor of the film material, if the materials and thicknesses are chosen appropriately.

  16. Thin film polymeric gel electrolytes

    DOE Patents [OSTI]

    Derzon, Dora K. (1554 Rosalba St. NE., Albuquerque, Bernalillo County, NM 87112); Arnold, Jr., Charles (3436 Tahoe, NE., Albuquerque, Bernalillo County, NM 87111); Delnick, Frank M. (9700 Fleming Rd., Dexter, MI 48130)

    1996-01-01T23:59:59.000Z

    Novel hybrid thin film electrolyte, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities .apprxeq.10.sup.-3 .OMEGA..sup.-1 cm.sup.-1 are useful as electrolytes for rechargeable lithium batteries.

  17. Thin film polymeric gel electrolytes

    DOE Patents [OSTI]

    Derzon, D.K.; Arnold, C. Jr.; Delnick, F.M.

    1996-12-31T23:59:59.000Z

    Novel hybrid thin film electrolytes, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities {approx_equal}10{sup {minus}3}{Omega}{sup {minus}1} cm{sup {minus}1} are useful as electrolytes for rechargeable lithium batteries. 1 fig.

  18. Towards high efficiency thin-film crystalline silicon solar cells: The roles of light trapping and non-radiative recombinations

    E-Print Network [OSTI]

    important evaluation criterion for photovoltaic (PV) technology. Therefore, research on novel structuresTowards high efficiency thin-film crystalline silicon solar cells: The roles of light trapping February 2014; published online 3 March 2014) Thin-film solar cells based on silicon have emerged

  19. Thin Solid Films 430 (2003) 125129 0040-6090/03/$ -see front matter 2003 Elsevier Science B.V. All rights reserved.

    E-Print Network [OSTI]

    Deng, Xunming

    for a-Si:H solar cell fabrication. In addition to photovoltaic applications, a-Si:H is also used of amorphous silicon (a-Si:H)-based photovoltaic devices, it is important to deposit high- quality a progress has been made in hydrogenated amorphous silicon (a-Si:H)-based thin film photovoltaic devices

  20. Thin films and uses

    DOE Patents [OSTI]

    Baskaran, Suresh (Kennewick, WA); Graff, Gordon L. (Kennewick, WA); Song, Lin (Richland, WA)

    1998-01-01T23:59:59.000Z

    The invention provides a method for synthesizing a titanium oxide-containing film comprising the following steps: (a) preparing an aqueous solution of a titanium chelate with a titanium molarity in the range of 0.01M to 0.6M. (b) immersing a substrate in the prepared solution, (c) decomposing the titanium chelate to deposit a film on the substrate. The titanium chelate maybe decomposed acid, base, temperature or other means. A preferred method provides for the deposit of adherent titanium oxide films from C2 to C5 hydroxy carboxylic acids. In another aspect the invention is a novel article of manufacture having a titanium coating which protects the substrate against ultraviolet damage. In another aspect the invention provides novel semipermeable gas separation membranes, and a method for producing them.

  1. Thin film buried anode battery

    DOE Patents [OSTI]

    Lee, Se-Hee (Lakewood, CO); Tracy, C. Edwin (Golden, CO); Liu, Ping (Denver, CO)

    2009-12-15T23:59:59.000Z

    A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

  2. Fabrication of stable, large-area, thin-film CdTe photovoltaic modules. Annual subcontract report, 10 May 1991--9 May 1992

    SciTech Connect (OSTI)

    Nolan, J.F.; Meyers, P.V. [Solar Cells, Inc., Toledo, OH (United States)

    1992-09-01T23:59:59.000Z

    Solar Cells, Inc (SCI) has a program to produce 60 cm X 120 cm solar modules based on CdTe films. The method of choice for semiconductor deposition is condensation from high temperature vapor`s. Early work focussed on Close Spaced Sublimation and Chemical Vapor Deposition using elemental sources, but later equipment designs no longer strictly conform to either category. Small area efficiency has been confirmed by NREL at 9.3% on a 0.22 cm{sup 2} device (825 mV Voc, 18.2 mA/cm{sup 2} Jsc, and 0.62 FF) deposited on a 100 cm{sup 2} substrate. On 8 cell, 64 cm{sup 2} submodules, the best result to date is 7.3% (5.9 V Voc, 130 mA Isc, and 0.61 FF). CdS, CdTe, and ZnTe films have been deposited onto 60 cm X 120 cm substrates - single cells produced from this material have exceeded 8% efficiency, 64 cm{sup 2} submodules have exceeded 5%. Module efficiency is limited by mechanical defects - mostly shunts - associated with processing after deposition of the semiconductor layer`s. Present best result is 1.4% total area efficiency. In anticipation of more advanced designs, CdTe films have also been deposited from apparatus employing elemental sources. This project is in an early stage and has produced only rudimentary results. A pro-active Safety, Health, Environmental and Disposal program has been developed. Results to date indicate that both employees and the environment have been protected against overexposure to hazards including toxic chemicals.

  3. Photovoltaic effect of lead-free (Na{sub 0.82}K{sub 0.18}){sub 0.5}Bi{sub 4.5}Ti{sub 4}O{sub 15} ferroelectric thin film using Pt and indium tin oxide top electrodes

    SciTech Connect (OSTI)

    Seok Woo, Won; Sik Won, Sung; Won Ahn, Chang; Chae, Song A; Won Kim, Ill, E-mail: kimiw@mail.ulsan.ac.kr [Department of Physics and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, Ulsan 680-749 (Korea, Republic of); Ullah, Aman [Department of Physics, University of Science and Technology, Bannu, Khyber Pakhtunkhwa (Pakistan)

    2014-01-21T23:59:59.000Z

    We have grown a Bi-layer structure (Na{sub 0.82}K{sub 0.18}){sub 0.5}Bi{sub 4.5}Ti{sub 4}O{sub 15} (NKBiT) ferroelectric thin film on Pt(111)/TiO{sub 2}/SiO{sub 2}/Si(100) substrate by using the chemical solution deposition method and deposited two kinds of thin Pt and indium tin oxide (ITO) top electrodes. The photovoltaic behaviors of Pt/NKBiT/Pt and ITO/NKBit/Pt capacitors were investigated over the wavelength range of 300–500?nm. When NKBiT thin film is illuminated by the corresponding wavelength of the film's energy band gap (E{sub g}), a photocurrent is generated due to the Schottky barrier between electrode and film, and an internal electric field is originated by the depolarization field. The maximum photocurrent density and power conversion efficiency of the ITO/NKBiT/Pt capacitor in the poled-up state are obtained as 45.75?nA/cm{sup 2} and 0.035%, respectively, at 352?nm. The photocurrent density and power conversion efficiency of the ITO/NKBiT/Pt capacitor increased to 3.5 times higher than that of the Pt/NKBiT/Pt capacitor.

  4. Modeling and control of thin film surface morphology: application to thin film solar cells

    E-Print Network [OSTI]

    Huang, Jianqiao

    2012-01-01T23:59:59.000Z

    Solar Energy Materials and Solar Cells, 86:207–216, 2005. [silicon thin films and solar cells. Journal of Appliedof a p-i-n thin-film solar cell with front transparent con-

  5. A thin film transistor driven microchannel device

    E-Print Network [OSTI]

    Lee, Hyun Ho

    2005-02-17T23:59:59.000Z

    .1. Principle of Electrophoresis?????????????? 1.2. Capillary and Microchip Electrophoresis????????... 1.3. Electrophoresis of DNA???????????????.. 2. Plasma Thin Film Deposition Process???????????... 2.1. Fundamentals of Plasma?????????????.?? 2.2. Plasma... Phase Chemical Reactions???????????.. 2.3. Plasma Enhanced Chemical Vapor Deposition??????.. 2.4. PECVD Thin Film?????????????????.. 3. Thin Film Transistor??????????????????.. 7 7 12 17 20 20 23 24 25 29 III...

  6. Infiltrating Semiconducting Polymers into Self-Assembled Mesoporous Titania Films for Photovoltaic Applications**

    E-Print Network [OSTI]

    McGehee, Michael

    Infiltrating Semiconducting Polymers into Self-Assembled Mesoporous Titania Films for Photovoltaic. Introduction A promising approach for making inexpensive photovoltaic cells is to fill nanoporous titania films there have been several reports on photovoltaic cells made in this way, there have been no studies that show

  7. Thin Film Encapsulation Methods for Large Area MEMS Packaging

    E-Print Network [OSTI]

    Mahajerin, Armon

    2012-01-01T23:59:59.000Z

    P. J. French, “Robust Wafer-Level Thin-Film Encapsulation ofThe Elastic Properties of Thin- Film Silicon Nitride,” IEEELPCVD Silicon Nitride Thin Films at Cryogenic Temperatures,”

  8. 3D-2D ASYMPTOTIC ANALYSIS FOR INHOMOGENEOUS THIN FILMS

    E-Print Network [OSTI]

    3D-2D ASYMPTOTIC ANALYSIS FOR INHOMOGENEOUS THIN FILMS plate models, periodic pr* *o- files, and within the context of optimal design for thin films 5. Third application - Optimal design of a thin film 19 6. Final Remarks

  9. Mechanisms for fatigue and wear of polysilicon structural thin films

    E-Print Network [OSTI]

    Alsem, Daniel Henricus

    2006-01-01T23:59:59.000Z

    of single-crystal silicon thin films from 1991 to 2006. Thefor polycrystalline silicon thin films After the initialThis mechanism is specific to thin-film silicon where cracks

  10. Thin film solar energy collector

    DOE Patents [OSTI]

    Aykan, Kamran (Monmouth Beach, NJ); Farrauto, Robert J. (Westfield, NJ); Jefferson, Clinton F. (Millburn, NJ); Lanam, Richard D. (Westfield, NJ)

    1983-11-22T23:59:59.000Z

    A multi-layer solar energy collector of improved stability comprising: (1) a substrate of quartz, silicate glass, stainless steel or aluminum-containing ferritic alloy; (2) a solar absorptive layer comprising silver, copper oxide, rhodium/rhodium oxide and 0-15% by weight of platinum; (3) an interlayer comprising silver or silver/platinum; and (4) an optional external anti-reflective coating, plus a method for preparing a thermally stable multi-layered solar collector, in which the absorptive layer is undercoated with a thin film of silver or silver/platinum to obtain an improved conductor-dielectric tandem.

  11. Thin-Film Reliability Trends Toward Improved Stability

    SciTech Connect (OSTI)

    Jordan, D. C.; Kurtz, S. R.

    2011-01-01T23:59:59.000Z

    Long-term, stable performance of photovoltaic (PV) modules will be increasingly important to their successful penetration of the power grid. This paper summarizes more than 150 thin-film and more than 1700 silicon PV degradation rates (R{sub d}) quoted in publications for locations worldwide. Partitioning the literature results by technology and date of installation statistical analysis shows an improvement in degradation rate especially for thin-film technologies in the last decade. A CIGS array deployed at NREL for more than 5 years that appears to be stable supports the literature trends. Indoor and outdoor data indicate undetectable change in performance (0.2 {+-} 0.2 %/yr). One module shows signs of slight degradation from what appears to be an initial manufacturing defect, however it has not affected the overall system performance.

  12. Thin-Film Reliability Trends Toward Improved Stability: Preprint

    SciTech Connect (OSTI)

    Jordan, D. C.; Kurtz, S. R.

    2011-07-01T23:59:59.000Z

    Long-term, stable performance of photovoltaic (PV) modules will be increasingly important to their successful penetration of the power grid. This paper summarizes more than 150 thin-film and more than 1700 silicon PV degradation rates (Rd) quoted in publications for locations worldwide. Partitioning the literature results by technology and date of installation statistical analysis shows an improvement in degradation rate especially for thin-film technologies in the last decade. A CIGS array deployed at NREL for more than 5 years that appears to be stable supports the literature trends. Indoor and outdoor data indicate undetectable change in performance (0.2+/-0.2 %/yr). One module shows signs of slight degradation from what appears to be an initial manufacturing defect, however it has not affected the overall system performance.

  13. Multilayer Thin-Film Thermoelectric Materials for Vehicle Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multilayer Thin-Film Thermoelectric Materials for Vehicle Applications Multilayer Thin-Film Thermoelectric Materials for Vehicle Applications 2004 Diesel Engine Emissions Reduction...

  14. Templating Mesoporous Hierarchies in Silica Thin Films Using...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Templating Mesoporous Hierarchies in Silica Thin Films Using the Thermal Degradation of Cellulose Nitrate. Templating Mesoporous Hierarchies in Silica Thin Films Using the Thermal...

  15. Direct Measurement of Oxygen Incorporation into Thin Film Oxides...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement of Oxygen Incorporation into Thin Film Oxides at Room Temperature Upon Ultraviolet Phton Irradiation. Direct Measurement of Oxygen Incorporation into Thin Film Oxides...

  16. Improved Stability Of Amorphous Zinc Tin Oxide Thin Film Transistors...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stability Of Amorphous Zinc Tin Oxide Thin Film Transistors Using Molecular Passivation. Improved Stability Of Amorphous Zinc Tin Oxide Thin Film Transistors Using Molecular...

  17. High Temperature Thin Film Polymer Dielectric Based Capacitors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Thin Film Polymer Dielectric Based Capacitors for HEV Power Electronic Systems High Temperature Thin Film Polymer Dielectric Based Capacitors for HEV Power...

  18. Electrostatic thin film chemical and biological sensor

    DOE Patents [OSTI]

    Prelas, Mark A. (Columbia, MO); Ghosh, Tushar K. (Columbia, MO); Tompson, Jr., Robert V. (Columbia, MO); Viswanath, Dabir (Columbia, MO); Loyalka, Sudarshan K. (Columbia, MO)

    2010-01-19T23:59:59.000Z

    A chemical and biological agent sensor includes an electrostatic thin film supported by a substrate. The film includes an electrostatic charged surface to attract predetermined biological and chemical agents of interest. A charge collector associated with said electrostatic thin film collects charge associated with surface defects in the electrostatic film induced by the predetermined biological and chemical agents of interest. A preferred sensing system includes a charge based deep level transient spectroscopy system to read out charges from the film and match responses to data sets regarding the agents of interest. A method for sensing biological and chemical agents includes providing a thin sensing film having a predetermined electrostatic charge. The film is exposed to an environment suspected of containing the biological and chemical agents. Quantum surface effects on the film are measured. Biological and/or chemical agents can be detected, identified and quantified based on the measured quantum surface effects.

  19. DOI: 10.1002/adem.200800289 Dewetting of an Organic Semiconductor Thin Film Observed

    E-Print Network [OSTI]

    Peters, Achim

    with controlled lateral distances and size. It has recently been shown that dewetting and thermal stability such as thin film transistors,[6] organic photovoltaics and organic light emitting diodes. In this paper we study the planar aromatic molecule diindenoperylene (DIP) as a model system, which has been shown

  20. Sputtered Thin Film Photovoltaics - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900 Special Report:Spotlight: Bryantis here April 15,Solar

  1. A monolithic thin film electrochromic window

    SciTech Connect (OSTI)

    Goldner, R.B.; Arntz, F.O.; Berera, G.; Haas, T.E.; Wong, K.K. [Tufts Univ., Medford, MA (United States). Electro-Optics Technology Center; Wei, G. [Mobil Solar Energy Corp., Billerica, MA (United States); Yu, P.C. [PPG Industries, Inc., Monroeville, PA (United States)

    1991-12-31T23:59:59.000Z

    Three closely related thin film solid state ionic devices that are potentially important for applications are: electrochromic smart windows, high energy density thin film rechargeable batteries, and thin film electrochemical sensors. Each usually has at least on mixed ion/electron conductor, an electron-blocking ion conductor, and an ion-blocking electron conductor, and many of the technical issues associated with thin film solid state ionics are common to all three devices. Since the electrochromic window has the added technical requirement of electrically-controlled optical modulation, (over the solar spectrum), and since research at the authors` institution has focused primarily on the window structure, this paper will address the electrochromic window, and particularly a monolithic variable reflectivity electrochromic window, as an illustrative example of some of the challenges and opportunities that are confronting the thin film solid state ionics community. 33 refs.

  2. Evaluation of the commercial potential of novel organic photovoltaic technologies

    E-Print Network [OSTI]

    Barr, Jonathan (Jonathan Allan)

    2005-01-01T23:59:59.000Z

    Photovoltaic cells based on organic semiconducting materials have the potential to compete with the more mature crystalline and thin film based photovoltaic technologies in the future primarily due to the expectation of ...

  3. Aging phenomena in polystyrene thin films

    E-Print Network [OSTI]

    Koji Fukao; Hiroki Koizumi

    2008-01-05T23:59:59.000Z

    The aging behavior is investigated for thin films of atactic polystyrene through measurements of complex electric capacitance. During isothermal aging process the real part of the electric capacitance increases with aging time, while the imaginary part decreases with aging time. This result suggests that the aging time dependence of the real and imaginary parts are mainly associated with change in thickness and dielectric permittivity, respectively. In thin films, the thickness depends on thermal history of aging even above the glass transition. Memory and `rejuvenation' effects are also observed in the thin films.

  4. Permanent laser conditioning of thin film optical materials

    DOE Patents [OSTI]

    Wolfe, C.R.; Kozlowski, M.R.; Campbell, J.H.; Staggs, M.; Rainer, F.

    1995-12-05T23:59:59.000Z

    The invention comprises a method for producing optical thin films with a high laser damage threshold and the resulting thin films. The laser damage threshold of the thin films is permanently increased by irradiating the thin films with a fluence below an unconditioned laser damage threshold. 9 figs.

  5. Permanent laser conditioning of thin film optical materials

    DOE Patents [OSTI]

    Wolfe, C. Robert (Palo Alto, CA); Kozlowski, Mark R. (Pleasanton, CA); Campbell, John H. (Livermore, CA); Staggs, Michael (Tracy, CA); Rainer, Frank (Livermore, CA)

    1995-01-01T23:59:59.000Z

    The invention comprises a method for producing optical thin films with a high laser damage threshold and the resulting thin films. The laser damage threshold of the thin films is permanently increased by irradiating the thin films with a fluence below an unconditioned laser damage threshold.

  6. Presented at the 28 IEEE Photovoltaics Specialists Conference, Anchorage Alaska, September 17-22, 2000

    E-Print Network [OSTI]

    Sites, James R.

    Presented at the 28 th IEEE Photovoltaics Specialists Conference, Anchorage Alaska, September 17. Tarrant, Siemens Solar Industries, Camarillo, CA 93012 ABSTRACT Many thin-film CIS photovoltaic devices behavior. INTRODUCTION The modest transient behavior exhibited by many thin-film CIS photovoltaic devices

  7. Effect of deposition times on structure of Ga-doped ZnO thin films as humidity sensor

    SciTech Connect (OSTI)

    Khalid, Faridzatul Shahira; Awang, Rozidawati [School of Applied Physics, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2014-09-03T23:59:59.000Z

    Gallium doped zinc oxide (GZO) has good electrical property. It is widely used as transparent electrode in photovoltaic devices, and sensing element in gas and pressure sensors. GZO thin film was prepared using magnetron sputtering. Film deposition times were set at 10, 15, 20, 25 and 30 minutes to get samples of different thickness. X-ray diffraction (XRD) was used to determine the structure of GZO thin films. Structure for GZO thin film is hexagonal wurtzite structure. Morphology and thickness of GZO thin films was observed from FESEM micrographs. Grain size and thickness of thin films improved with increasing deposition times. However, increasing the thickness of thin films occur below 25 minutes only. Electrical properties of GZO thin films were studied using a four-point probe technique. The changes in the structure of the thin films lead to the changed of their electrical properties resulting in the reduction of the film resistance. These thin films properties significantly implying the potential application of the sample as a humidity sensor.

  8. Creating CZTS Thin Films Via Stacked Metallic CVD and Sulfurization

    E-Print Network [OSTI]

    Bielecki, Anthony

    2013-01-01T23:59:59.000Z

    film solar cells. CIGS solar cell efficiencies have beenCIGS, making it a favorable choice for thin-film solar cells.thin film solar cell [3]. However, use of CIGS has a number

  9. Solid State Thin Film Lithium Microbatteries

    E-Print Network [OSTI]

    Shi, Z.

    Solid state thin film lithium microbatteries fabricated by pulsed-laser deposition (PLD) are suggested. During deposition the following process parameters must be considered, which are laser energy and fluence, laser pulse ...

  10. Thermal Characterizationof Thin Film Superlattice Micro Refrigerators

    E-Print Network [OSTI]

    on a microscopic scale. Semiconductor lasers or other high power devices could also benefit from monolithic. Low contact resistance is essential for thin film coolers [3]. A 100 nm titanium metal layer was first

  11. Visible spectrometer utilizing organic thin film absorption

    E-Print Network [OSTI]

    Tiefenbruck, Laura C. (Laura Christine)

    2004-01-01T23:59:59.000Z

    In this thesis, I modeled and developed a spectrometer for the visible wavelength spectrum, based on absorption characteristics of organic thin films. The device uses fundamental principles of linear algebra to reconstruct ...

  12. Thin-film interference Aditya Joshi

    E-Print Network [OSTI]

    Packard, Richard E.

    , y, z, t) = Eo sin(kx - t)^y (1) It is worth noting what all the symbols stand for. · Eo is the peak of two important effects that will be explained presently. Figure 1: A thin film of oil floating on water that is incident upon the interface between air (na = 1) and a thin film of oil of thickness `t'(for this oil

  13. Quantification of thin film crystallographic orientation using X-ray diffraction with an area detector

    E-Print Network [OSTI]

    Baker, Jessica L

    2010-01-01T23:59:59.000Z

    elastic  properties of Au thin films by X?ray diffraction interface in  polythiophene thin?film transistors.  Nat copper  phthalocyanine thin films evaporated on amorphous 

  14. Optical Constants ofOptical Constants of Uranium Nitride Thin FilmsUranium Nitride Thin Films

    E-Print Network [OSTI]

    Hart, Gus

    Optical Constants ofOptical Constants of Uranium Nitride Thin FilmsUranium Nitride Thin FilmsDelta--Beta Scatter Plot at 220 eVBeta Scatter Plot at 220 eV #12;Why Uranium Nitride?Why Uranium Nitride? UraniumUranium, uranium,Bombard target, uranium, with argon ionswith argon ions Uranium atoms leaveUranium atoms leave

  15. Ambient pressure process for preparing aerogel thin films reliquified sols useful in preparing aerogel thin films

    DOE Patents [OSTI]

    Brinker, Charles Jeffrey (Albuquerque, NM); Prakash, Sai Sivasankaran (Minneapolis, MN)

    1999-01-01T23:59:59.000Z

    A method for preparing aerogel thin films by an ambient-pressure, continuous process. The method of this invention obviates the use of an autoclave and is amenable to the formation of thin films by operations such as dip coating. The method is less energy intensive and less dangerous than conventional supercritical aerogel processing techniques.

  16. Investigations of CuInSe sub 2 thin films and contacts

    SciTech Connect (OSTI)

    Nicolet, M.A. (California Inst. of Tech., Pasadena, CA (United States))

    1991-10-01T23:59:59.000Z

    This report describes research into electrical contacts for copper indium diselenide (CuInSe{sub 2}) polycrystalline thin films used for solar cell applications. Molybdenum contacts have historically been the most promising for heterojunction solar cells. This program studied contact stability by investigating thermally induced bilayer reactions between molybdenum and copper, indium, and selenium. Because selenization is widely used to fabricate CuInSe{sub 2} thin films for photovoltaic cells, a second part of the program investigated how the morphologies, phases, and reactions of pre-selenization Cu-In structures are affected by the deposition process and heat treatments. 7 refs., 6 figs.

  17. Thin film absorber for a solar collector

    DOE Patents [OSTI]

    Wilhelm, William G. (Cutchogue, NY)

    1985-01-01T23:59:59.000Z

    This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  18. Thin Films for Microelectronics and Photonics: Physics, Mechanics,

    E-Print Network [OSTI]

    Volinsky, Alex A.

    4 Thin Films for Microelectronics and Photonics: Physics, Mechanics, Characterization, USA bUniversity of South Florida, Tampa, FL, USA 4.1. TERMINOLOGY AND SCOPE 4.1.1. Thin Films Thin practice. The term thin films as used here refers to material layers deposited by vapor

  19. Tungsten-doped thin film materials

    DOE Patents [OSTI]

    Xiang, Xiao-Dong; Chang, Hauyee; Gao, Chen; Takeuchi, Ichiro; Schultz, Peter G.

    2003-12-09T23:59:59.000Z

    A dielectric thin film material for high frequency use, including use as a capacitor, and having a low dielectric loss factor is provided, the film comprising a composition of tungsten-doped barium strontium titanate of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3, where X is between about 0.5 and about 1.0. Also provided is a method for making a dielectric thin film of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3 and doped with W, where X is between about 0.5 and about 1.0, a substrate is provided, TiO.sub.2, the W dopant, Ba, and optionally Sr are deposited on the substrate, and the substrate containing TiO.sub.2, the W dopant, Ba, and optionally Sr is heated to form a low loss dielectric thin film.

  20. SAND2003-8146C Symposium on Thin Films

    E-Print Network [OSTI]

    Volinsky, Alex A.

    SAND2003-8146C Symposium on Thin Films ICM-9 9th International Conference on the Mechanical FRACTURE OF THIN GOLD FILMS N. R. Moody, D. P. Adams*, M. J. Cordill**, D. F. Bahr**, A. A. Volinsky of interfacial fracture energies of thin gold films as a function of film thickness is presented in this paper

  1. A comparison of thick film and thin film traffic stripes

    E-Print Network [OSTI]

    Keese, Charles J

    1952-01-01T23:59:59.000Z

    Striys. . . Pigmented Bitusmn Stripes . Asphalt %uilt-Upa Striye vith Pigmented Portland Cement Mortar Cover Course 38 . ~ 41 Thin Film Stripes Used for Comparison Results of Comparing Thick Film Stripes and Thin Film Paint Stripes . ~ ~ ~ ~ ~ 43... was aspbaltio oonorets. The pavement in Test Areas 2y 3p and 4 vas portland cesmnh ooncrete, Two test areas (3 and 4) vere located in such manner as to provide uninterrupted flow of traffic over tbs entire length of the test area. The other two test areas (1...

  2. PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS Prog. Photovolt: Res. Appl. 2004; 12:93111 (DOI: 10.1002/pip.527)

    E-Print Network [OSTI]

    Romeo, Alessandro

    PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS Prog. Photovolt: Res. Appl. 2004; 12(In,Ga)Se2; thin-films; photovoltaics; solar energy INTRODUCTION P olycrystalline thin-film solar cells the complete solar spectrum for photovoltaic power conversion. There are several chalcopyr

  3. Photovoltaic cells employing zinc phosphide

    DOE Patents [OSTI]

    Barnett, Allen M. (Newark, DE); Catalano, Anthony W. (Wilmington, DE); Dalal, Vikram L. (Newark, DE); Masi, James V. (Wilbraham, MA); Meakin, John D. (Newark, DE); Hall, Robert B. (Newark, DE)

    1984-01-01T23:59:59.000Z

    A photovoltaic cell having a zinc phosphide absorber. The zinc phosphide can be a single or multiple crystal slice or a thin polycrystalline film. The cell can be a Schottky barrier, heterojunction or homojunction device. Methods for synthesizing and crystallizing zinc phosphide are disclosed as well as a method for forming thin films.

  4. Institute of Photo Electronic Thin Film Devices and Technology...

    Open Energy Info (EERE)

    Place: Tianjin Municipality, China Zip: 300071 Sector: Solar Product: A thin-film solar cell research institute in China. References: Institute of Photo-Electronic Thin...

  5. Thermoelectric effect in very thin film Pt/Au thermocouples

    E-Print Network [OSTI]

    Salvadori, M.C.; Vaz, A.R.; Teixeira, F.S.; Cattani, M.; Brown, I.G.

    2006-01-01T23:59:59.000Z

    TABLE I. Measured thermoelectric power S for samples ofThermoelectric effect in very thin film Pt/Au thermocouplesthickness dependence of the thermoelectric power of Pt films

  6. alumina thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    films Engineering Websites Summary: of domain switching and controllability, preventing thin-film and polycrystalline ferroelectrics from the switching mechanisms of...

  7. acid thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    films Engineering Websites Summary: of domain switching and controllability, preventing thin-film and polycrystalline ferroelectrics from the switching mechanisms of...

  8. ablation thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    films Engineering Websites Summary: of domain switching and controllability, preventing thin-film and polycrystalline ferroelectrics from the switching mechanisms of...

  9. anatase thin film: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    films Engineering Websites Summary: of domain switching and controllability, preventing thin-film and polycrystalline ferroelectrics from the switching mechanisms of...

  10. arsenide thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    films Engineering Websites Summary: of domain switching and controllability, preventing thin-film and polycrystalline ferroelectrics from the switching mechanisms of...

  11. Vibration welding system with thin film sensor

    DOE Patents [OSTI]

    Cai, Wayne W; Abell, Jeffrey A; Li, Xiaochun; Choi, Hongseok; Zhao, Jingzhou

    2014-03-18T23:59:59.000Z

    A vibration welding system includes an anvil, a welding horn, a thin film sensor, and a process controller. The anvil and horn include working surfaces that contact a work piece during the welding process. The sensor measures a control value at the working surface. The measured control value is transmitted to the controller, which controls the system in part using the measured control value. The thin film sensor may include a plurality of thermopiles and thermocouples which collectively measure temperature and heat flux at the working surface. A method includes providing a welder device with a slot adjacent to a working surface of the welder device, inserting the thin film sensor into the slot, and using the sensor to measure a control value at the working surface. A process controller then controls the vibration welding system in part using the measured control value.

  12. Method for synthesizing thin film electrodes

    DOE Patents [OSTI]

    Boyle, Timothy J. (Albuquerque, NM)

    2007-03-13T23:59:59.000Z

    A method for making a thin-film electrode, either an anode or a cathode, by preparing a precursor solution using an alkoxide reactant, depositing multiple thin film layers with each layer approximately 500 1000 .ANG. in thickness, and heating the layers to above 600.degree. C. to achieve a material with electrochemical properties suitable for use in a thin film battery. The preparation of the anode precursor solution uses Sn(OCH.sub.2C(CH.sub.3).sub.3).sub.2 dissolved in a solvent in the presence of HO.sub.2CCH.sub.3 and the cathode precursor solution is formed by dissolving a mixture of (Li(OCH.sub.2C(CH.sub.3).sub.3)).sub.8 and Co(O.sub.2CCH.sub.3).H.sub.2O in at least one polar solvent.

  13. Thin Film Transistors On Plastic Substrates

    DOE Patents [OSTI]

    Carey, Paul G. (Mountain View, CA); Smith, Patrick M. (San Ramon, CA); Sigmon, Thomas W. (Portola Valley, CA); Aceves, Randy C. (Livermore, CA)

    2004-01-20T23:59:59.000Z

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The silicon based thin film transistor produced by the process includes a low temperature substrate incapable of withstanding sustained processing temperatures greater than about 250.degree. C., an insulating layer on the substrate, a layer of silicon on the insulating layer having sections of doped silicon, undoped silicon, and poly-silicon, a gate dielectric layer on the layer of silicon, a layer of gate metal on the dielectric layer, a layer of oxide on sections of the layer of silicon and the layer of gate metal, and metal contacts on sections of the layer of silicon and layer of gate metal defining source, gate, and drain contacts, and interconnects.

  14. Mesoscale morphologies in polymer thin films.

    SciTech Connect (OSTI)

    Ramanathan, M.; Darling, S. B. (Center for Nanoscale Materials)

    2011-06-01T23:59:59.000Z

    In the midst of an exciting era of polymer nanoscience, where the development of materials and understanding of properties at the nanoscale remain a major R&D endeavor, there are several exciting phenomena that have been reported at the mesoscale (approximately an order of magnitude larger than the nanoscale). In this review article, we focus on mesoscale morphologies in polymer thin films from the viewpoint of origination of structure formation, structure development and the interaction forces that govern these morphologies. Mesoscale morphologies, including dendrites, holes, spherulites, fractals and honeycomb structures have been observed in thin films of homopolymer, copolymer, blends and composites. Following a largely phenomenological level of description, we review the kinetic and thermodynamic aspects of mesostructure formation outlining some of the key mechanisms at play. We also discuss various strategies to direct, limit, or inhibit the appearance of mesostructures in polymer thin films as well as an outlook toward potential areas of growth in this field of research.

  15. Thin film dielectric composite materials

    DOE Patents [OSTI]

    Jia, Quanxi (Los Alamos, NM); Gibbons, Brady J. (Los Alamos, NM); Findikoglu, Alp T. (Los Alamos, NM); Park, Bae Ho (Los Alamos, NM)

    2002-01-01T23:59:59.000Z

    A dielectric composite material comprising at least two crystal phases of different components with TiO.sub.2 as a first component and a material selected from the group consisting of Ba.sub.1-x Sr.sub.x TiO.sub.3 where x is from 0.3 to 0.7, Pb.sub.1-x Ca.sub.x TiO.sub.3 where x is from 0.4 to 0.7, Sr.sub.1-x Pb.sub.x TiO.sub.3 where x is from 0.2 to 0.4, Ba.sub.1-x Cd.sub.x TiO.sub.3 where x is from 0.02 to 0.1, BaTi.sub.1-x Zr.sub.x O.sub.3 where x is from 0.2 to 0.3, BaTi.sub.1-x Sn.sub.x O.sub.3 where x is from 0.15 to 0.3, BaTi.sub.1-x Hf.sub.x O.sub.3 where x is from 0.24 to 0.3, Pb.sub.1-1.3x La.sub.x TiO.sub.3+0.2x where x is from 0.23 to 0.3, (BaTiO.sub.3).sub.x (PbFeo.sub.0.5 Nb.sub.0.5 O.sub.3).sub.1-x where x is from 0.75 to 0.9, (PbTiO.sub.3).sub.- (PbCo.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.1 to 0.45, (PbTiO.sub.3).sub.x (PbMg.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.2 to 0.4, and (PbTiO.sub.3).sub.x (PbFe.sub.0.5 Ta.sub.0.5 O.sub.3).sub.1-x where x is from 0 to 0.2, as the second component is described. The dielectric composite material can be formed as a thin film upon suitable substrates.

  16. SAW determination of surface area of thin films

    DOE Patents [OSTI]

    Frye, Gregory C. (Albuquerque, NM); Martin, Stephen J. (Albuquerque, NM); Ricco, Antonio J. (Albuquerque, NM)

    1990-01-01T23:59:59.000Z

    N.sub.2 adsorption isotherms are measured from thin films on SAW devices. The isotherms may be used to determine the surface area and pore size distribution of thin films.

  17. Guided Self-Assembly of Gold Thin Films

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guided Self-Assembly of Gold Thin Films Guided Self-Assembly of Gold Thin Films Print Wednesday, 21 November 2012 12:18 Nanoparticles-man-made atoms with unique optical,...

  18. Piezoreslstive graphite/polyimide thin films for micromachining applications

    E-Print Network [OSTI]

    Piezoreslstive graphite/polyimide thin films for micromachining applications A. Bruno Frazier) In this work, graphite/polyimide composite thin films are introduced and characterized for micromachining tetracarboxylic dianhydride+xydianiline/metaphenylene diamine polyimide matrix. The resultant material represents

  19. The interplay between spatially separated ferromagnetic and superconducting thin films

    E-Print Network [OSTI]

    Sullivan, Isaac John

    2013-02-22T23:59:59.000Z

    Ferromagnetic thin films have been grown via physical vapor deposition utilizing the technique of flash evaporation and characterized by measuring magnetization as a function of magnetic field. An Al thin film was evaporated atop the ferromagnetic...

  20. au thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    micro-machine (see S. S. Irudayaraj and A. Emadi 15). In general, magnetic thin-film elements are used in many applications Hadiji, Rejeb 29 Thin Films of Chiral Motors...

  1. Conductivity of Oriented Samaria-Doped Ceria Thin Films Grown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conductivity of Oriented Samaria-Doped Ceria Thin Films Grown by Oxygen-plasma-assisted Molecular Beam Epitaxy. Conductivity of Oriented Samaria-Doped Ceria Thin Films Grown by...

  2. aluminium thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 21 Thin-Film Metamaterials called Sculptured Thin Films CERN Preprints Summary: Morphology...

  3. Light induced instability in bilayer nc-Si/a-Si thin film transistors M Bauza and A Nathan

    E-Print Network [OSTI]

    Haddadi, Hamed

    silicon (nc-Si:H) have been used as the channel layer in thin film transistors (TFTs) and photovoltaic in the field effect mobility of the device due to the higher contact resistance, it increases the ON/OFF ratio it is important to investigate the effect of TFT stability when subjected to illumination and/or electrical

  4. INCREASED CELL EFFICIENCY IN InGaAs THIN FILM SOLAR CELLS WITH DIELECTRIC AND METAL BACK REFLECTORS

    E-Print Network [OSTI]

    Atwater, Harry

    INCREASED CELL EFFICIENCY IN InGaAs THIN FILM SOLAR CELLS WITH DIELECTRIC AND METAL BACK REFLECTORS solar cells enable very high photovoltaic efficiencies by virtue of employing different band gap materials in series- connected tandem cells to access the full solar spectrum. Researchers focused

  5. Viscous fingering in volatile thin films

    E-Print Network [OSTI]

    Oded Agam

    2009-02-23T23:59:59.000Z

    A thin water film on a cleaved mica substrate undergoes a first order phase transition between two values of film thickness. By inducing a finite evaporation rate of the water, the interface between the two phases develops a fingering instability similar to that observed in the Saffman-Taylor problem. We draw the connection between the two problems, and construct solutions describing the dynamics of evaporation in this system.

  6. 3D-2D ASYMPTOTIC ANALYSIS FOR MICROMAGNETIC THIN FILMS

    E-Print Network [OSTI]

    3D-2D ASYMPTOTIC ANALYSIS FOR MICROMAGNETIC THIN FILMS Classification: 35E99, 35M10, 49J45, 74K35. Keywords: -limit, thin films, micromagnetics, relaxation; 1 1. Introduction In recent years the understanding of thin film behavior has been helped

  7. THIN FILM MECHANICS BULGING AND Ph.D Dissertation

    E-Print Network [OSTI]

    Huston, Dryver R.

    THIN FILM MECHANICS ­BULGING AND STRETCHING Ph.D Dissertation Mechanical Engineering University of Vermont Wolfgang Sauter October 2000 #12;ii Abstract Thin films have experienced revolutionary development for the intensive effort in research in materials and processing techniques. Thin film windows are window

  8. Electrified thin films: Global existence of non-negative solutions

    E-Print Network [OSTI]

    Boyer, Edmond

    Electrified thin films: Global existence of non-negative solutions C. Imbert and A. Mellet February 6, 2012 Abstract We consider an equation modeling the evolution of a viscous liquid thin film equation, Non-local equation, Thin film equation, Non-negative solutions MSC: 35G25, 35K25, 35A01, 35B09 1

  9. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF ELECTROPLATED Cu THIN FILMS

    E-Print Network [OSTI]

    Volinsky, Alex A.

    MICROSTRUCTURE AND MECHANICAL PROPERTIES OF ELECTROPLATED Cu THIN FILMS A.A. Volinsky* , J. Vella size, thin film microstructure and mechanical properties have become critical parameters-K dielectric materials and novel interconnects (Cu). For most reliability tests, knowledge of the thin film

  10. Electrified thin films: Global existence of non-negative solutions

    E-Print Network [OSTI]

    Electrified thin films: Global existence of non-negative solutions C. Imbert and A. Mellet August 31, 2011 Abstract We consider an equation modeling the evolution of a viscous liquid thin film equation, Non-local equation, Thin film equation, Non-negative solutions MSC: 35G25, 35K25, 35A01, 35B09 1

  11. Electrified thin films: Global existence of non-negative solutions

    E-Print Network [OSTI]

    Electrified thin films: Global existence of non-negative solutions C. Imbert and A. Mellet February 4, 2011 Abstract We consider an equation modeling the evolution of a viscous liquid thin film equation, Non-local equation, Thin film equation, Non-negative solutions MSC: 35G25, 35K25, 35A01, 35B09 1

  12. SEECOMMENTARYAPPLIEDPHYSICAL The macroscopic delamination of thin films from

    E-Print Network [OSTI]

    Reis, Pedro Miguel

    SEECOMMENTARYAPPLIEDPHYSICAL SCIENCES The macroscopic delamination of thin films from elastic toughness, our analysis suggests a number of design guidelines for the thin films used in flexible fatigue damage, the thin film thickness must be greater than a critical value, which we determine

  13. RisR980(EN) Epitaxy, Thin films and

    E-Print Network [OSTI]

    Risø­R­980(EN) Epitaxy, Thin films and Superlattices Morten Jagd Christensen Risø National of substrates as well as growth of thin films and Fe/V superlattices by molecular beam epitaxy, including in structures were investigated. This thesis, "Epitaxy, Thin films and Superlattices", is written in partial

  14. Polymer-Metal Nanocomposites via Polymer Thin Film

    E-Print Network [OSTI]

    Shyamasundar, R.K.

    Polymer-Metal Nanocomposites via Polymer Thin Film T. P. Radhakrishnan School of Chemistry, University of Hyderabad Polymer-metal nanocomposite thin films are versatile materials that not only Chemistry Inside a Polymer Thin Film P. Radhakrishnan School of Chemistry, University of Hyderabad metal

  15. Silicon Oxynitride Thin Film Barriers for PV Packaging (Poster)

    SciTech Connect (OSTI)

    del Cueto, J. A.; Glick, S. H.; Terwilliger, K. M.; Jorgensen, G. J.; Pankow, J. W.; Keyes, B. M.; Gedvilas, L. M.; Pern, F. J.

    2006-10-03T23:59:59.000Z

    Dielectric, adhesion-promoting, moisture barriers comprised of silicon oxynitride thin film materials (SiOxNy with various material stoichiometric compositions x,y) were applied to: 1) bare and pre-coated soda-lime silicate glass (coated with transparent conductive oxide SnO2:F and/or aluminum), and polymer substrates (polyethylene terephthalate, PET, or polyethylene napthalate, PEN); plus 2) pre- deposited photovoltaic (PV) cells and mini-modules consisting of amorphous silicon (a-Si) and copper indium gallium diselenide (CIGS) thin-film PV technologies. We used plasma enhanced chemical vapor deposition (PECVD) process with dilute silane, nitrogen, and nitrous oxide/oxygen gas mixtures in a low-power (< or = 10 milliW per cm2) RF discharge at ~ 0.2 Torr pressure, and low substrate temperatures < or = 100(degrees)C, over deposition areas ~ 1000 cm2. Barrier properties of the resulting PV cells and coated-glass packaging structures were studied with subsequent stressing in damp-heat exposure at 85(degrees)C/85% RH. Preliminary results on PV cells and coated glass indicate the palpable benefits of the barriers in mitigating moisture intrusion and degradation of the underlying structures using SiOxNy coatings with thicknesses in the range of 100-200 nm.

  16. Studies on optoelectronic properties of DC reactive magnetron sputtered CdTe thin films

    SciTech Connect (OSTI)

    Kumar, B. Rajesh, E-mail: rajphyind@gmail.com [Department of Physics, Sri Venkateswara University, Tirupati - 517 502, A.P, India and Department of Physics, Sri Krishnadevaraya University, Anantapur - 515 003, A.P (India); Hymavathi, B.; Rao, T. Subba [Department of Physics, Sri Krishnadevaraya University, Anantapur - 515 003, A.P (India)

    2014-01-28T23:59:59.000Z

    Cadmium telluride continues to be a leading candidate for the development of cost effective photovoltaics for terrestrial applications. In the present work two individual metallic targets of Cd and Te were used for the deposition of CdTe thin films on mica substrates from room temperature to 300 °C by DC reactive magnetron sputtering method. XRD patterns of CdTe thin films deposited on mica substrates exhibit peaks at 2? = 27.7°, 46.1° and 54.6°, which corresponds to reflection on (1 1 1), (2 2 0) and (3 1 1) planes of CdTe cubic structure. The intensities of XRD patterns increases with the increase of substrate temperature upto 150 °C and then it decreases at higher substrate temperatures. The conductivity of CdTe thin films measured from four probe method increases with the increase of substrate temperature. The activation energies (?E) are found to be decrease with the increase of substrate temperature. The optical transmittance spectra of CdTe thin films deposited on mica have a clear interference pattern in the longer wavelength region. The films have good transparency (T > 85 %) exhibiting interference pattern in the spectral region between 1200 – 2500 nm. The optical band gap of CdTe thin films are found to be in the range of 1.48 – 1.57. The refractive index, n decreases with the increase of wavelength, ?. The value of n and k increases with the increase of substrate temperature.

  17. New techniques for producing thin boron films

    SciTech Connect (OSTI)

    Thomas, G.E.

    1988-01-01T23:59:59.000Z

    A review will be presented of methods for producing thin boron films using an electron gun. Previous papers have had the problem of spattering of the boron source during the evaporation. Methods for reducing this problem will also be presented. 12 refs., 4 figs.

  18. Magnetic/metallic thin films and nanostructures

    E-Print Network [OSTI]

    Lewis, Robert Michael

    examples. During the past decade applications of nano-scale magnetic devices to data storage have hadMagnetic/metallic thin films and nanostructures The College of William and MarY;'l Virginia http://www.as.wm.cdu/Faculty/Lukaszcw.html It is widely believed that revolutionary progress can be made as materials and devices are developed to operate

  19. A thin film transistor driven microchannel device 

    E-Print Network [OSTI]

    Lee, Hyun Ho

    2005-02-17T23:59:59.000Z

    perturbation, an amorphous silicon (a-Si:H) thin film transistor (TFT) was connected to the microchannel device. The self-aligned a-Si:H TFT was fabricated with a two-photomask process. The result shows that the attachment of the TFT successfully suppressed...

  20. LIQUID PHASE DEPOSITION OF ELECTROCHROMIC THIN FILMS T. J. Richardson and M. D. Rubin

    E-Print Network [OSTI]

    , and readily scalable to larger substrates. Keywords: liquid phase deposition; electrochromic films; thin film

  1. Iron Chalcogenide Photovoltaic Absorbers

    SciTech Connect (OSTI)

    Yu, Liping [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lany, Stephan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kykyneshi, Robert [Oregon State Univ., Corvallis, OR (United States); Jieratum, Vorranutch [Oregon State Univ., Corvallis, OR (United States); Ravichandran, Ram [Oregon State Univ., Corvallis, OR (United States); Pelatt, Brian [Oregon State Univ., Corvallis, OR (United States); Altschul, Emmeline [Oregon State Univ., Corvallis, OR (United States); Platt, Heather A. S. [Oregon State Univ., Corvallis, OR (United States); Wager, John F. [Oregon State Univ., Corvallis, OR (United States); Keszler, Douglas A. [Oregon State Univ., Corvallis, OR (United States); Zunger, Alex [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2011-10-01T23:59:59.000Z

    An integrated computational and experimental study of FeS? pyrite reveals that phase coexistence is an important factor limiting performance as a thin-film solar absorber. This phase coexistence is suppressed with the ternary materials Fe?SiS? and Fe?GeS?, which also exhibit higher band gaps than FeS?. Thus, the ternaries provide a new entry point for development of thin-film absorbers and high-efficiency photovoltaics.

  2. IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 2, NO. 2, APRIL 2012 123 Gallium Arsenide Solar Cell Absorption

    E-Print Network [OSTI]

    Grandidier, Jonathan

    IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 2, NO. 2, APRIL 2012 123 Gallium Arsenide Solar Cell Absorption--Gallium arsenide, nanospheres, photovoltaic systems, whispering gallery modes (WGMs). I. INTRODUCTION THE route as the active layer is thinned [2]. Thin-film photovoltaics offer the possibility to significantly reduce

  3. Quasi-Reversible Oxygen Exchange of Amorphous IGZO Thin Films

    E-Print Network [OSTI]

    Shahriar, Selim

    MRSEC Quasi-Reversible Oxygen Exchange of Amorphous IGZO Thin Films NSF Grant # 1121262 A. U. Adler Center In situ electrical properties of a-IGZO thin films were carried out at 200ºC as a function/"defect" structure of amorphous oxide films. In situ conductivity of 70 nm a-IGZO thin film at 200oC measured in van

  4. Investigation of deep level defects in CdTe thin films

    SciTech Connect (OSTI)

    Shankar, H.; Castaldini, A. [Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, I-40127 Bologna (Italy); Dieguez, E.; Rubio, S. [Crystal Growth Lab, Department of Materials Physics, Faculty of Science, University Autonoma of Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid (Spain); Dauksta, E.; Medvid, A. [Institute of Technical Physics, Riga Technical University, 14 Azenes Str, Riga, Latvia, Department of Materials (Latvia); Cavallini, A. [Department of Physics and Astronomy,University of Bologna, Viale Berti Pichat 6/2, I-40127 Bologna (Italy)

    2014-02-21T23:59:59.000Z

    In the past few years, a large body of work has been dedicated to CdTe thin film semiconductors, as the electronic and optical properties of CdTe nanostructures make them desirable for photovoltaic applications. The performance of semiconductor devices is greatly influenced by the deep levels. Knowledge of parameters of deep levels present in as-grown materials and the identification of their origin is the key factor in the development of photovoltaic device performance. Photo Induced Current Transient Spectroscopy technique (PICTS) has proven to be a very powerful method for the study of deep levels enabling us to identify the type of traps, their activation energy and apparent capture cross section. In the present work, we report the effect of growth parameters and LASER irradiation intensity on the photo-electric and transport properties of CdTe thin films prepared by Close-Space Sublimation method using SiC electrical heating element. CdTe thin films were grown at three different source temperatures (630, 650 and 700 °C). The grown films were irradiated with Nd:YAG LASER and characterized by Photo-Induced Current Transient Spectroscopy, Photocurrent measurementand Current Voltage measurements. The defect levels are found to be significantly influenced by the growth temperature.

  5. Electrohydrodynamic instabilities in thin liquid trilayer films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Roberts, Scott A. [Sandia National Lab., Albuquerque, NM (United States); Kumar, Satish [Univ. of Minnesota, Minneapolis, MN (United States)

    2010-09-12T23:59:59.000Z

    Experiments by Dickey et al. [Langmuir, 22, 4315 (2006)] and Leach et al. [Chaos, 15, 047506 (2005)] show that novel pillar shapes can be generated from electrohydrodynamic instabilities at the interfaces of thin polymer/polymer/air trilayer films. In this paper, we use linear stability analysis to investigate the effect of free charge and ac electric fields on the stability of trilayer systems. Our work is also motivated by our recent theoretical study [J. Fluid Mech., 631, 255 (2009)] which demonstrates how ac electric fields can be used to increase control over the pillar formation process in thin liquid bilayer films. For perfect dielectric films, the effect of an AC electric field can be understood by considering an equivalent DC field. Leaky dielectric films yield pillar configurations that are drastically different from perfect dielectric films, and AC fields can be used to control the location of free charge within the trilayer system. This can alter the pillar instability modes and generate smaller diameter pillars when conductivities are mismatched. The results presented here may be of interest for the creation of complex topographical patterns on polymer coatings and in microelectronics.

  6. Electrohydrodynamic instabilities in thin liquid trilayer films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Roberts, Scott A.; Kumar, Satish

    2010-01-01T23:59:59.000Z

    Experiments by Dickey and Leach show that novel pillar shapes can be generated from electrohydrodynamic instabilities at the interfaces of thin polymer/polymer/air trilayer films. In this paper, we use linear stability analysis to investigate the effect of free charge and ac electric fields on the stability of trilayer systems. Our work is also motivated by our recent theoretical study which demonstrates how ac electric fields can be used to increase control over the pillar formation process in thin liquid bilayer films. For perfect dielectric films, the effect of an AC electric field can be understood by considering an equivalent DCmore »field. Leaky dielectric films yield pillar configurations that are drastically different from perfect dielectric films, and AC fields can be used to control the location of free charge within the trilayer system. This can alter the pillar instability modes and generate smaller diameter pillars when conductivities are mismatched. The results presented here may be of interest for the creation of complex topographical patterns on polymer coatings and in microelectronics.« less

  7. Electrochromism in copper oxide thin films

    SciTech Connect (OSTI)

    Richardson, T.J.; Slack, J.L.; Rubin, M.D.

    2000-08-15T23:59:59.000Z

    Transparent thin films of copper(I) oxide prepared on conductive SnO2:F glass substrates by anodic oxidation of sputtered copper films or by direct electrodeposition of Cu2O transformed reversibly to opaque metallic copper films when reduced in alkaline electrolyte. In addition, the same Cu2O films transform reversibly to black copper(II) oxide when cycled at more anodic potentials. Copper oxide-to-copper switching covered a large dynamic range, from 85% and 10% photopic transmittance, with a coloration efficiency of about 32 cm2/C. Gradual deterioration of the switching range occurred over 20 to 100 cycles. This is tentatively ascribed to coarsening of the film and contact degradation caused by the 65% volume change on conversion of Cu to Cu2O. Switching between the two copper oxides (which have similar volumes) was more stable and more efficient (CE = 60 cm2/C), but covered a smaller transmittance range (60% to 44% T). Due to their large electrochemical storage capacity and tolerance for alkaline electrolytes, these cathodically coloring films may be useful as counter electrodes for anodically coloring electrode films such as nickel oxide or metal hydrides.

  8. Nitrogen doped zinc oxide thin film

    SciTech Connect (OSTI)

    Li, Sonny X.

    2003-12-15T23:59:59.000Z

    To summarize, polycrystalline ZnO thin films were grown by reactive sputtering. Nitrogen was introduced into the films by reactive sputtering in an NO{sub 2} plasma or by N{sup +} implantation. All ZnO films grown show n-type conductivity. In unintentionally doped ZnO films, the n-type conductivities are attributed to Zn{sub i}, a native shallow donor. In NO{sub 2}-grown ZnO films, the n-type conductivity is attributed to (N{sub 2}){sub O}, a shallow double donor. In NO{sub 2}-grown ZnO films, 0.3 atomic % nitrogen was found to exist in the form of N{sub 2}O and N{sub 2}. Upon annealing, N{sub 2}O decomposes into N{sub 2} and O{sub 2}. In furnace-annealed samples N{sub 2} redistributes diffusively and forms gaseous N{sub 2} bubbles in the films. Unintentionally doped ZnO films were grown at different oxygen partial pressures. Zni was found to form even at oxygen-rich condition and led to n-type conductivity. N{sup +} implantation into unintentionally doped ZnO film deteriorates the crystallinity and optical properties and leads to higher electron concentration. The free electrons in the implanted films are attributed to the defects introduced by implantation and formation of (N{sub 2}){sub O} and Zni. Although today there is still no reliable means to produce good quality, stable p-type ZnO material, ZnO remains an attractive material with potential for high performance short wavelength optoelectronic devices. One may argue that gallium nitride was in a similar situation a decade ago. Although we did not obtain any p-type conductivity, we hope our research will provide a valuable reference to the literature.

  9. Structures for dense, crack free thin films

    DOE Patents [OSTI]

    Jacobson, Craig P. (Lafayette, CA); Visco, Steven J. (Berkeley, CA); De Jonghe, Lutgard C. (Lafayette, CA)

    2011-03-08T23:59:59.000Z

    The process described herein provides a simple and cost effective method for making crack free, high density thin ceramic film. The steps involve depositing a layer of a ceramic material on a porous or dense substrate. The deposited layer is compacted and then the resultant laminate is sintered to achieve a higher density than would have been possible without the pre-firing compaction step.

  10. Packaging material for thin film lithium batteries

    DOE Patents [OSTI]

    Bates, John B. (116 Baltimore Dr., Oak Ridge, TN 37830); Dudney, Nancy J. (11634 S. Monticello Rd., Knoxville, TN 37922); Weatherspoon, Kim A. (223 Wadsworth Pl., Oak Ridge, TN 37830)

    1996-01-01T23:59:59.000Z

    A thin film battery including components which are capable of reacting upon exposure to air and water vapor incorporates a packaging system which provides a barrier against the penetration of air and water vapor. The packaging system includes a protective sheath overlying and coating the battery components and can be comprised of an overlayer including metal, ceramic, a ceramic-metal combination, a parylene-metal combination, a parylene-ceramic combination or a parylene-metal-ceramic combination.

  11. Modeling of Substrate-Induced Anisotropy in Through-Plane Thermal Behavior of Polymeric Thin Films

    E-Print Network [OSTI]

    Lee, Jeong-Bong

    Modeling of Substrate-Induced Anisotropy in Through-Plane Thermal Behavior of Polymeric Thin Films, Atlanta, Georgia 30332-0269 SYNOPSIS Polymeric thin films are widely used in microelectronic applications properties of isotropic thin films for single layer (thin film rigidly clamped) and bilayer (thin film

  12. Resource recovery from urban stock, the example of cadmium and tellurium from thin film module recycling

    SciTech Connect (OSTI)

    Simon, F.-G., E-mail: franz-georg.simon@bam.de [BAM Federal Institute for Materials Research and Testing, Division 4.3 Contaminant Transfer and Environmental Technologies, Unter den Eichen 87, 12205 Berlin (Germany); Holm, O.; Berger, W. [BAM Federal Institute for Materials Research and Testing, Division 4.3 Contaminant Transfer and Environmental Technologies, Unter den Eichen 87, 12205 Berlin (Germany)

    2013-04-15T23:59:59.000Z

    Highlights: ? The semiconductor layer on thin-film photovoltaic modules can be removed from the glass-plate by vacuum blast cleaning. ? The separation of blasting agent and semiconductor can be performed using flotation with a valuable yield of 55%. ? PV modules are a promising source for the recovery of tellurium in the future. - Abstract: Raw material supply is essential for all industrial activities. The use of secondary raw material gains more importance since ore grade in primary production is decreasing. Meanwhile urban stock contains considerable amounts of various elements. Photovoltaic (PV) generating systems are part of the urban stock and recycling technologies for PV thin film modules with CdTe as semiconductor are needed because cadmium could cause hazardous environmental impact and tellurium is a scarce element where future supply might be constrained. The paper describes a sequence of mechanical processing techniques for end-of-life PV thin film modules consisting of sandblasting and flotation. Separation of the semiconductor material from the glass surface was possible, however, enrichment and yield of valuables in the flotation step were non-satisfying. Nevertheless, recovery of valuable metals from urban stock is a viable method for the extension of the availability of limited natural resources.

  13. Processing approach towards the formation of thin-film Cu(In,Ga)Se2

    DOE Patents [OSTI]

    Beck, Markus E. (Falkensee, DE); Noufi, Rommel (Golden, CO)

    2003-01-01T23:59:59.000Z

    A two-stage method of producing thin-films of group IB-IIIA-VIA on a substrate for semiconductor device applications includes a first stage of depositing an amorphous group IB-IIIA-VIA precursor onto an unheated substrate, wherein the precursor contains all of the group IB and group IIIA constituents of the semiconductor thin-film to be produced in the stoichiometric amounts desired for the final product, and a second stage which involves subjecting the precursor to a short thermal treatment at 420.degree. C.-550.degree. C. in a vacuum or under an inert atmosphere to produce a single-phase, group IB-III-VIA film. Preferably the precursor also comprises the group VIA element in the stoichiometric amount desired for the final semiconductor thin-film. The group IB-IIIA-VIA semiconductor films may be, for example, Cu(In,Ga)(Se,S).sub.2 mixed-metal chalcogenides. The resultant supported group IB-IIIA-VIA semiconductor film is suitable for use in photovoltaic applications.

  14. alloys thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: Thin liquid films on surfaces are part of our everyday life, they serve e.g. as coatings or lubricants. The stability of a thin layer is governed by interfacial forces,...

  15. alloy thin film: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: Thin liquid films on surfaces are part of our everyday life, they serve e.g. as coatings or lubricants. The stability of a thin layer is governed by interfacial forces,...

  16. alloy thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: Thin liquid films on surfaces are part of our everyday life, they serve e.g. as coatings or lubricants. The stability of a thin layer is governed by interfacial forces,...

  17. Enhanced Superconducting Properties of Iron Chalcogenide Thin Films 

    E-Print Network [OSTI]

    Chen, Li

    2013-07-26T23:59:59.000Z

    . In this thesis, we first optimized pure FeSe thin films by different growth conditions using pulsed laser deposition (PLD) and post-annealing procedures. The microstructure properties of the films including the epitaxial quality, interface structure and secondary...

  18. Chemical vapor deposition of organosilicon and sacrificial polymer thin films

    E-Print Network [OSTI]

    Casserly, Thomas Bryan

    2005-01-01T23:59:59.000Z

    Chemical vapor deposition (CVD) produced films for a wide array of applications from a variety of organosilicon and organic precursors. The structure and properties of thin films were controlled by varying processing ...

  19. Uncooled thin film pyroelectric IR detector with aerogel thermal isolation

    DOE Patents [OSTI]

    Ruffner, Judith A. (Albuquerque, NM); Bullington, Jeff A. (Albuquerque, NM); Clem, Paul G. (Albuquerque, NM); Warren, William L. (Albuquerque, NM); Brinker, C. Jeffrey (Albuquerque, NM); Tuttle, Bruce A. (Albuquerque, NM); Schwartz, Robert W. (Seneca, SC)

    1999-01-01T23:59:59.000Z

    A monolithic infrared detector structure which allows integration of pyroelectric thin films atop low thermal conductivity aerogel thin films. The structure comprises, from bottom to top, a substrate, an aerogel insulating layer, a lower electrode, a pyroelectric layer, and an upper electrode layer capped by a blacking layer. The aerogel can offer thermal conductivity less than that of air, while providing a much stronger monolithic alternative to cantilevered or suspended air-gap structures for pyroelectric thin film pixel arrays. Pb(Zr.sub.0.4 Ti.sub.0.6)O.sub.3 thin films deposited on these structures displayed viable pyroelectric properties, while processed at 550.degree. C.

  20. applications thin film: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nikolay 27 Solvent-enhanced dye diffusion in polymer thin films for polymer light-emitting diode application Engineering Websites Summary: Solvent-enhanced dye diffusion in...

  1. Inexpensive Production of High Density Thin Ceramic Films on...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inexpensive Production of High Density Thin Ceramic Films on Rigid or Porous Substrates Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing...

  2. Rechargeable thin film battery and method for making the same

    DOE Patents [OSTI]

    Goldner, Ronald B.; Liu, Te-Yang; Goldner, Mark A.; Gerouki, Alexandra; Haas, Terry E.

    2006-01-03T23:59:59.000Z

    A rechargeable, stackable, thin film, solid-state lithium electrochemical cell, thin film lithium battery and method for making the same is disclosed. The cell and battery provide for a variety configurations, voltage and current capacities. An innovative low temperature ion beam assisted deposition method for fabricating thin film, solid-state anodes, cathodes and electrolytes is disclosed wherein a source of energetic ions and evaporants combine to form thin film cell components having preferred crystallinity, structure and orientation. The disclosed batteries are particularly useful as power sources for portable electronic devices and electric vehicle applications where high energy density, high reversible charge capacity, high discharge current and long battery lifetimes are required.

  3. active thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    behavior Biotechnology Websites Summary: on elastic polymeric membranes. Further development of such muscular thin films for building actuators). The development of such...

  4. antibacterial thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Skovlin, Dean Oliver 2012-06-07 138 Uncooled Thin Film Pyroelectric IR Detector with Aerogel Thermal Isolation CiteSeer Summary: Uncooled pyroelectric IR imaging systems, such...

  5. Tax Credits Give Thin-Film Solar a Big Boost

    Broader source: Energy.gov [DOE]

    California company will expand its capacity to make its thin-film solar panels by more than ten times, thanks to two Recovery Act tax credits.

  6. almgb14 thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

  7. aggase2 thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

  8. aln thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    deposited by the reactive dc magnetron sputtering technique at room, amorphous and polycrystalline GaN thin films have been deposited using the magnetron sputtering...

  9. area thin film: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

  10. aluminide thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

  11. antiferroelectric thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

  12. ain thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

  13. advanced thin film: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

  14. Thickness Dependency of Thin Film Samaria Doped Ceria for Oxygen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High temperature oxygen sensors are widely used for exhaust gas monitoring in automobiles. This particular study explores the use of thin film single crystalline samaria...

  15. alternating langmuir-blodgett thin: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rays is used. Photovoltaics currently relies on three technologies. Monocrystalline and polycrystalline cells are silicon-based. Thin-film cells use semi-conductor materials....

  16. Effect of Polarization and Morphology on the Optical Properties of Absorbing Nanoporous Thin Films

    E-Print Network [OSTI]

    Navid, Ashcon; Pilon, Laurent

    2008-01-01T23:59:59.000Z

    TE and TM waves incident on thin films with n c = 4.0, k c =hexagonal mesoporous silica thin films with pore diameter Dabsorbing nanocomposite thin film, graphically depicting the

  17. Charge transport and chemical sensing properties of organic thin-films

    E-Print Network [OSTI]

    Yang, Dengliang

    2007-01-01T23:59:59.000Z

    low Drift in Organic Thin-film Transistor Chemical Sensors”,emitting diodes and thin-film transistors. The electricalLOW DRIFT IN ORGANIC THIN-FILM TRANSISTOR CHEMICAL SENSORS

  18. Distributed Phase Shifter with PyrochloreBismuth Zinc Niobate Thin Films

    E-Print Network [OSTI]

    Park, Jaehoon; Lu, Jiwei; Boesch, Damien; Stemmer, Susanne; York, Robert A

    2006-01-01T23:59:59.000Z

    Bandpass Filter Using Thin-Film Barium-Strontium-Titanate (using Ba x Sr 1 - x TiO 3 thin films," IEEE Microwave GuidedBismuth Zinc Niobate Thin Films," J. Appl. Phys. 97,

  19. Epitaxial Stabilization of a Morphotropic Phase Boundary in Lead-Free Ferroelectric Thin Films

    E-Print Network [OSTI]

    Zeches, Robert James

    2011-01-01T23:59:59.000Z

    1376 (2005). D. L. Smith, Thin-Film Deposition PrinciplesMaterials Science of Thin Films, (Academic Press: San Diego,Laser Deposition of Thin Films, (John Wiley & Sons, Inc. :

  20. Rechargeable thin-film electrochemical generator

    DOE Patents [OSTI]

    Rouillard, Roger (Beloeil, CA); Domroese, Michael K. (South St. Paul, MN); Hoffman, Joseph A. (Minneapolis, MN); Lindeman, David D. (Hudson, WI); Noel, Joseph-Robert-Gaetan (St-Hubert, CA); Radewald, Vern E. (Austin, TX); Ranger, Michel (Lachine, CA); Sudano, Anthony (Laval, CA); Trice, Jennifer L. (Eagan, MN); Turgeon, Thomas A. (Fridley, MN)

    2000-09-15T23:59:59.000Z

    An improved electrochemical generator is disclosed. The electrochemical generator includes a thin-film electrochemical cell which is maintained in a state of compression through use of an internal or an external pressure apparatus. A thermal conductor, which is connected to at least one of the positive or negative contacts of the cell, conducts current into and out of the cell and also conducts thermal energy between the cell and thermally conductive, electrically resistive material disposed on a vessel wall adjacent the conductor. The thermally conductive, electrically resistive material may include an anodized coating or a thin sheet of a plastic, mineral-based material or conductive polymer material. The thermal conductor is fabricated to include a resilient portion which expands and contracts to maintain mechanical contact between the cell and the thermally conductive material in the presence of relative movement between the cell and the wall structure. The electrochemical generator may be disposed in a hermetically sealed housing.

  1. Thin film electronic devices with conductive and transparent gas and moisture permeation barriers

    DOE Patents [OSTI]

    Simpson, Lin Jay

    2013-12-17T23:59:59.000Z

    A thin film stack (100, 200) is provided for use in electronic devices such as photovoltaic devices. The stack (100, 200) may be integrated with a substrate (110) such as a light transmitting/transmissive layer. A electrical conductor layer (120, 220) is formed on a surface of the substrate (110) or device layer such as a transparent conducting (TC) material layer (120,220) with pin holes or defects (224) caused by manufacturing. The stack (100) includes a thin film (130, 230) of metal that acts as a barrier for environmental contaminants (226, 228). The metal thin film (130,230) is deposited on the conductor layer (120, 220) and formed from a self-healing metal such as a metal that forms self-terminating oxides. A permeation plug or block (236) is formed in or adjacent to the thin film (130, 230) of metal at or proximate to the pin holes (224) to block further permeation of contaminants through the pin holes (224).

  2. Topological transitions in evaporating thin films

    E-Print Network [OSTI]

    Avraham Klein; Oded Agam

    2012-07-31T23:59:59.000Z

    A thin water film evaporating from a cleaved mica substrate undergoes a first-order phase transition between two values of film thickness. During evaporation, the interface between the two phases develops a fingering instability similar to that observed in the Saffman-Taylor problem. The dynamics of the droplet interface is dictated by an infinite number of conserved quantities: all harmonic moments decay exponentially at the same rate. A typical scenario is the nucleation of a dry patch within the droplet domain. We construct solutions of this problem and analyze the toplogical transition occuring when the boundary of the dry patch meets the outer boundary. We show a duality between Laplacian growth and evaporation, and utilize it to explain the behaviour near the transition. We construct a family of problems for which evaporation and Laplacian growth are limiting cases and show that a necessary condition for a smooth topological transition, in this family, is that all boundaries share the same pressure.

  3. Process for making dense thin films

    DOE Patents [OSTI]

    Jacobson, Craig P.; Visco, Steven J.; DeJonghe, Lutgard C.

    2005-07-26T23:59:59.000Z

    Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for firing of device substrate to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.

  4. Identification of critical stacking faults in thin-film CdTe solar cells

    SciTech Connect (OSTI)

    Yoo, Su-Hyun; Walsh, Aron, E-mail: a.walsh@bath.ac.uk [Global E3 Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Bath BA2 7AY (United Kingdom); Butler, Keith T. [Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Bath BA2 7AY (United Kingdom); Soon, Aloysius [Global E3 Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Abbas, Ali; Walls, John M., E-mail: j.m.wall@loughborough.ac.uk [Centre for Renewable Energy Systems Technology, School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom)

    2014-08-11T23:59:59.000Z

    Cadmium telluride (CdTe) is a p-type semiconductor used in thin-film solar cells. To achieve high light-to-electricity conversion, annealing in the presence of CdCl{sub 2} is essential, but the underlying mechanism is still under debate. Recent evidence suggests that a reduction in the high density of stacking faults in the CdTe grains is a key process that occurs during the chemical treatment. A range of stacking faults, including intrinsic, extrinsic, and twin boundary, are computationally investigated to identify the extended defects that limit performance. The low-energy faults are found to be electrically benign, while a number of higher energy faults, consistent with atomic-resolution micrographs, are predicted to be hole traps with fluctuations in the local electrostatic potential. It is expected that stacking faults will also be important for other thin-film photovoltaic technologies.

  5. Method of improving field emission characteristics of diamond thin films

    DOE Patents [OSTI]

    Krauss, A.R.; Gruen, D.M.

    1999-05-11T23:59:59.000Z

    A method of preparing diamond thin films with improved field emission properties is disclosed. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display. 3 figs.

  6. Method of improving field emission characteristics of diamond thin films

    DOE Patents [OSTI]

    Krauss, Alan R. (Naperville, IL); Gruen, Dieter M. (Downer Grove, IL)

    1999-01-01T23:59:59.000Z

    A method of preparing diamond thin films with improved field emission properties. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display.

  7. Photovoltaic Energy Program Overview Fiscal Year 1996

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    Significant activities in the National Photovoltaic Program are reported for each of the three main program elements. In Research and Development, advances in thin-film materials and crystalline silicon materials are described. The Technology Development report describes activities in photovoltaic manufacturing technology, industrial expansion, module and array development, and testing photovoltaic system components. Systems Engineering and Applications projects described include projects with government agencies, projects with utilities, documentation of performance for international applications, and product certification.

  8. The Electrodeless Discharge Lamps Coated with the Titania Thin Film for Photocatalysis in a Microwave Field

    E-Print Network [OSTI]

    Cirkva, Vladimir

    The Electrodeless Discharge Lamps Coated with the Titania Thin Film for Photocatalysis assisted photocatalysis using TiO2 thin films has been examined. Several factors influencing

  9. Wave propagation in highly inhomogeneous thin films: exactly solvable models

    E-Print Network [OSTI]

    Boyer, Edmond

    Wave propagation in highly inhomogeneous thin films: exactly solvable models Guillaume Petite(1 of wave propagation in some inhomogeneous thin films with highly space- dependent dielectric constant will show that depending on the type of space dependence, an incident wave can either propagate or tunnel

  10. CHARACTERIZATION OF URANIUM, URANIUM OXIDE AND SILICON MULTILAYER THIN FILMS

    E-Print Network [OSTI]

    Hart, Gus

    CHARACTERIZATION OF URANIUM, URANIUM OXIDE AND SILICON MULTILAYER THIN FILMS by David T. Oliphant. Woolley Dean, College of Physical and Mathematical Sciences #12;ABSTRACT CHARACTERIZATION OF URANIUM, URANIUM OXIDE AND SILICON MULTILAYER THIN FILMS David T. Oliphant Department of Physics and Astronomy

  11. Electrical properties of quench-condensed thin film 

    E-Print Network [OSTI]

    Lee, Kyoungjin

    2009-05-15T23:59:59.000Z

    . The apparatus was shown to operate well for the fabrication of thin films while monitoring the growth in-situ. As a part of the preliminary research, we measured the electrical properties of aluminum thin films at liquid nitrogen temperature by using...

  12. VACUUM PUMPING STUDY OF TITANIUM-ZIRCONIUM-VANADIUM THIN FILMS*

    E-Print Network [OSTI]

    ERL 03-8 VACUUM PUMPING STUDY OF TITANIUM-ZIRCONIUM-VANADIUM THIN FILMS* Yulin Li# and Simon Ho high vacuum. As part of R&D efforts for the proposed Energy Recovery Linac at Cornell, the pumping performance of Titanium- Zirconium-Vanadium (TiZrV) NEG thin films was investigated to provide `engineering

  13. Apparatus for laser assisted thin film deposition

    DOE Patents [OSTI]

    Warner, Bruce E. (Pleasanton, CA); McLean, II, William (Oakland, CA)

    1996-01-01T23:59:59.000Z

    A pulsed laser deposition apparatus uses fiber optics to deliver visible output beams. One or more optical fibers are coupled to one or more laser sources, and delivers visible output beams to a single chamber, to multiple targets in the chamber or to multiple chambers. The laser can run uninterrupted if one of the deposition chambers ceases to operate because other chambers can continue their laser deposition processes. The laser source can be positioned at a remote location relative to the deposition chamber. The use of fiber optics permits multi-plexing. A pulsed visible laser beam is directed at a generally non-perpendicular angle upon the target in the chamber, generating a plume of ions and energetic neutral species. A portion of the plume is deposited on a substrate as a thin film. A pulsed visible output beam with a high pulse repetition frequency is used. The high pulse repetition frequency is greater than 500 Hz, and more preferably, greater than about 1000 Hz. Diamond-like-carbon (DLC) is one of the thin films produced using the apparatus.

  14. Rechargeable thin-film lithium batteries

    SciTech Connect (OSTI)

    Bates, J.B.; Gruzalski, G.R.; Dudney, N.J.; Luck, C.F.; Yu, X.

    1993-09-01T23:59:59.000Z

    Rechargeable thin-film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have been fabricated and characterized. These include Li-TiS{sub 2}, Li-V{sub 2}O{sub 5}, and Li-Li{sub x}Mn{sub 2}O{sub 4} cells with open circuit voltages at full charge of about 2.5 V, 3.7 V, and 4.2 V, respectively. The realization of these robust cells, which can be cycled thousands of times, was possible because of the stability of the amorphous lithium electrolyte, lithium phosphorus oxynitride. This material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46}and a conductivity at 25 C of 2 {mu}S/cm. The thin-film cells have been cycled at 100% depth of discharge using current densities of 5 to 100 {mu}A/cm{sup 2}. Over most of the charge-discharge range, the internal resistance appears to be dominated by the cathode, and the major source of the resistance is the diffusion of Li{sup +} ions from the electrolyte into the cathode. Chemical diffusion coefficients were determined from ac impedance measurements.

  15. Apparatus for laser assisted thin film deposition

    DOE Patents [OSTI]

    Warner, B.E.; McLean, W. II

    1996-02-13T23:59:59.000Z

    A pulsed laser deposition apparatus uses fiber optics to deliver visible output beams. One or more optical fibers are coupled to one or more laser sources, and delivers visible output beams to a single chamber, to multiple targets in the chamber or to multiple chambers. The laser can run uninterrupted if one of the deposition chambers ceases to operate because other chambers can continue their laser deposition processes. The laser source can be positioned at a remote location relative to the deposition chamber. The use of fiber optics permits multi-plexing. A pulsed visible laser beam is directed at a generally non-perpendicular angle upon the target in the chamber, generating a plume of ions and energetic neutral species. A portion of the plume is deposited on a substrate as a thin film. A pulsed visible output beam with a high pulse repetition frequency is used. The high pulse repetition frequency is greater than 500 Hz, and more preferably, greater than about 1000 Hz. Diamond-like-carbon (DLC) is one of the thin films produced using the apparatus. 9 figs.

  16. Method of producing solution-derived metal oxide thin films

    DOE Patents [OSTI]

    Boyle, Timothy J. (Albuquerque, NM); Ingersoll, David (Albuquerque, NM)

    2000-01-01T23:59:59.000Z

    A method of preparing metal oxide thin films by a solution method. A .beta.-metal .beta.-diketonate or carboxylate compound, where the metal is selected from groups 8, 9, 10, 11, and 12 of the Periodic Table, is solubilized in a strong Lewis base to form a homogeneous solution. This precursor solution forms within minutes and can be deposited on a substrate in a single layer or a multiple layers to form a metal oxide thin film. The substrate with the deposited thin film is heated to change the film from an amorphous phase to a ceramic metal oxide and cooled.

  17. Method for manufacturing electrical contacts for a thin-film semiconductor device

    DOE Patents [OSTI]

    Carlson, David E. (Yardley, PA); Dickson, Charles R. (Pennington, NJ); D'Aiello, Robert V. (East Brunswick, NJ)

    1988-11-08T23:59:59.000Z

    A method of fabricating spaced-apart back contacts on a thin film of semiconductor material by forming strips of buffer material on top of the semiconductor material in locations corresponding to the desired dividing lines between back contacts, forming a film of metal substantially covering the semiconductor material and buffer strips, and scribing portions of the metal film overlying the buffer strips with a laser without contacting the underlying semiconductor material to separate the metal layer into a plurality of back contacts. The buffer material serves to protect the underlying semiconductor material from being damaged during the laser scribing. Back contacts and multi-cell photovoltaic modules incorporating such back contacts also are disclosed.

  18. Controlled nanostructuration of polycrystalline tungsten thin films

    SciTech Connect (OSTI)

    Girault, B. [Institut P' (UPR 3346 CNRS), Universite de Poitiers, ENSMA, Bd Pierre et Marie Curie, 86962 Futuroscope Cedex (France); Institut de Recherche en Genie Civil et Mecanique (UMR CNRS 6183), LUNAM Universite, Universite de Nantes, Centrale Nantes, CRTT, 37 Bd de l'Universite, BP 406, 44602 Saint-Nazaire Cedex (France); Eyidi, D.; Goudeau, P.; Guerin, P.; Bourhis, E. Le; Renault, P.-O. [Institut P' (UPR 3346 CNRS), Universite de Poitiers, ENSMA, Bd Pierre et Marie Curie, 86962 Futuroscope Cedex (France); Sauvage, T. [CEMHTI/CNRS (UPR 3079 CNRS), Universite d'Orleans, 3A rue de la Ferollerie, 45071 Orleans Cedex 2 (France)

    2013-05-07T23:59:59.000Z

    Nanostructured tungsten thin films have been obtained by ion beam sputtering technique stopping periodically the growing. The total thickness was maintained constant while nanostructure control was obtained using different stopping periods in order to induce film stratification. The effect of tungsten sublayers' thicknesses on film composition, residual stresses, and crystalline texture evolution has been established. Our study reveals that tungsten crystallizes in both stable {alpha}- and metastable {beta}-phases and that volume proportions evolve with deposited sublayers' thicknesses. {alpha}-W phase shows original fiber texture development with two major preferential crystallographic orientations, namely, {alpha}-W<110> and unexpectedly {alpha}-W<111> texture components. The partial pressure of oxygen and presence of carbon have been identified as critical parameters for the growth of metastable {beta}-W phase. Moreover, the texture development of {alpha}-W phase with two texture components is shown to be the result of a competition between crystallographic planes energy minimization and crystallographic orientation channeling effect maximization. Controlled grain size can be achieved for the {alpha}-W phase structure over 3 nm stratification step. Below, the {beta}-W phase structure becomes predominant.

  19. Oxynitride Thin Film Barriers for PV Packaging

    SciTech Connect (OSTI)

    Glick, S. H.; delCueto, J. A.; Terwilliger, K. M.; Jorgensen, G. J.; Pankow, J. W.; Keyes, B. M.; Gedvilas, L. M.; Pern, F. J.

    2005-11-01T23:59:59.000Z

    Dielectric thin-film barrier and adhesion-promoting layers consisting of silicon oxynitride materials (SiOxNy, with various stoichiometry) were investigated. For process development, films were applied to glass (TCO, conductive SnO2:F; or soda-lime), polymer (PET, polyethylene terephthalate), aluminized soda-lime glass, or PV cell (a-Si, CIGS) substrates. Design strategy employed de-minimus hazard criteria to facilitate industrial adoption and reduce implementation costs for PV manufacturers or suppliers. A restricted process window was explored using dilute compressed gases (3% silane, 14% nitrous oxide, 23% oxygen) in nitrogen (or former mixtures, and 11.45% oxygen mix in helium and/or 99.999% helium dilution) with a worst-case flammable and non-corrosive hazard classification. Method employed low radio frequency (RF) power, less than or equal to 3 milliwatts per cm2, and low substrate temperatures, less than or equal to 100 deg C, over deposition areas less than or equal to 1000 cm2. Select material properties for barrier film thickness (profilometer), composition (XPS/FTIR), optical (refractive index, %T and %R), mechanical peel strength and WVTR barrier performance are presented.

  20. Vertically aligned biaxially textured molybdenum thin films

    SciTech Connect (OSTI)

    Krishnan, Rahul [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Riley, Michael [Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Lee, Sabrina [US Army Armament Research, Development and Engineering Center, Benet Labs, Watervliet, New York 12189 (United States); Lu, Toh-Ming [Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2011-09-15T23:59:59.000Z

    Vertically aligned, biaxially textured molybdenum nanorods were deposited using dc magnetron sputtering with glancing flux incidence (alpha = 85 degrees with respect to the substrate normal) and a two-step substrate-rotation mode. These nanorods were identified with a body-centered cubic crystal structure. The formation of a vertically aligned biaxial texture with a [110] out-of-plane orientation was combined with a [-110] in-plane orientation. The kinetics of the growth process was found to be highly sensitive to an optimum rest time of 35 seconds for the two-step substrate rotation mode. At all other rest times, the nanorods possessed two separate biaxial textures each tilted toward one flux direction. While the in-plane texture for the vertical nanorods maintains maximum flux capture area, inclined Mo nanorods deposited at alpha = 85 degrees without substrate rotation display a [-1-1-4] in-plane texture that does not comply with the maximum flux capture area argument. Finally, an in situ capping film was deposited with normal flux incidence over the biaxially textured vertical nanorods resulting in a thin film over the porous nanorods. This capping film possessed the same biaxial texture as the nanorods and could serve as an effective substrate for the epitaxial growth of other functional materials.

  1. Microtensile Testing of Free-standing and Supported Metallic Thin Films

    E-Print Network [OSTI]

    Microtensile Testing of Free-standing and Supported Metallic Thin Films A thesis presented by Denis Films Abstract Mechanical properties of free-standing and supported Cu thin films were investi- gated observed experimentally on thin films. As-deposited Cu films with different film thicknesses on compliant

  2. Sandia National Laboratories: thin-film technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology Combining 'Tinkertoy' Materials with Solar Cells for Increased Photovoltaic Efficiency On December 4, 2014, in Energy, Materials Science, News, News & Events,...

  3. High-performance Si microwire photovoltaics Michael D. Kelzenberg,a

    E-Print Network [OSTI]

    Atwater, Harry

    High-performance Si microwire photovoltaics Michael D. Kelzenberg,a Daniel B. Turner-Evans,a Morgan for low- cost, thin-film photovoltaics. Here, we demonstrate VLS-grown Si microwires that have suitable electrical properties for high-perfor- mance photovoltaic applications, including long minority

  4. Glow discharge plasma deposition of thin films

    DOE Patents [OSTI]

    Weakliem, Herbert A. (Pennington, NJ); Vossen, Jr., John L. (Bridgewater, NJ)

    1984-05-29T23:59:59.000Z

    A glow discharge plasma reactor for deposition of thin films from a reactive RF glow discharge is provided with a screen positioned between the walls of the chamber and the cathode to confine the glow discharge region to within the region defined by the screen and the cathode. A substrate for receiving deposition material from a reactive gas is positioned outside the screened region. The screen is electrically connected to the system ground to thereby serve as the anode of the system. The energy of the reactive gas species is reduced as they diffuse through the screen to the substrate. Reactive gas is conducted directly into the glow discharge region through a centrally positioned distribution head to reduce contamination effects otherwise caused by secondary reaction products and impurities deposited on the reactor walls.

  5. Thin films of mixed metal compounds

    DOE Patents [OSTI]

    Mickelsen, R.A.; Chen, W.S.

    1985-06-11T23:59:59.000Z

    Disclosed is a thin film heterojunction solar cell, said heterojunction comprising a p-type I-III-IV[sub 2] chalcopyrite substrate and an overlying layer of an n-type ternary mixed metal compound wherein said ternary mixed metal compound is applied to said substrate by introducing the vapor of a first metal compound to a vessel containing said substrate from a first vapor source while simultaneously introducing a vapor of a second metal compound from a second vapor source of said vessel, said first and second metals comprising the metal components of said mixed metal compound; independently controlling the vaporization rate of said first and second vapor sources; reducing the mean free path between vapor particles in said vessel, said gas being present in an amount sufficient to induce homogeneity of said vapor mixture; and depositing said mixed metal compound on said substrate in the form of a uniform composition polycrystalline mixed metal compound. 5 figs.

  6. Back contact to film silicon on metal for photovoltaic cells

    DOE Patents [OSTI]

    Branz, Howard M.; Teplin, Charles; Stradins, Pauls

    2013-06-18T23:59:59.000Z

    A crystal oriented metal back contact for solar cells is disclosed herein. In one embodiment, a photovoltaic device and methods for making the photovoltaic device are disclosed. The photovoltaic device includes a metal substrate with a crystalline orientation and a heteroepitaxial crystal silicon layer having the same crystal orientation of the metal substrate. A heteroepitaxial buffer layer having the crystal orientation of the metal substrate is positioned between the substrate and the crystal silicon layer to reduce diffusion of metal from the metal foil into the crystal silicon layer and provide chemical compatibility with the heteroepitaxial crystal silicon layer. Additionally, the buffer layer includes one or more electrically conductive pathways to electrically couple the crystal silicon layer and the metal substrate.

  7. Method for making surfactant-templated thin films

    DOE Patents [OSTI]

    Brinker, C. Jeffrey (Albuquerque, NM); Lu, Yunfeng (New Orleans, LA); Fan, Hong You (Albuquerque, NM)

    2010-08-31T23:59:59.000Z

    An evaporation-induced self-assembly method to prepare a porous, surfactant-templated, thin film by mixing a silica sol, a solvent, a surfactant, and an interstitial compound, evaporating a portion of the solvent to form a liquid, crystalline thin film mesophase material, and then removal of the surfactant template. Coating onto a substrate produces a thin film with the interstitial compound either covalently bonded to the internal surfaces of the ordered or disordered mesostructure framework or physically entrapped within the ordered or disordered mesostructured framework. Particles can be formed by aerosol processing or spray drying rather than coating onto a substrate. The selection of the interstitial compound provides a means for developing thin films for applications including membranes, sensors, low dielectric constant films, photonic materials and optical hosts.

  8. Method for making surfactant-templated thin films

    DOE Patents [OSTI]

    Brinker, C. Jeffrey (Albuquerque, NM); Lu, Yunfeng (San Jose, CA); Fan, Hongyou (Albuquerque, NM)

    2002-01-01T23:59:59.000Z

    An evaporation-induced self-assembly method to prepare a porous, surfactant-templated, thin film by mixing a silica sol, a solvent, a surfactant, and an interstitial compound, evaporating a portion of the solvent to form a liquid, crystalline thin film mesophase material, and then removal of the surfactant template. Coating onto a substrate produces a thin film with the interstitial compound either covalently bonded to the internal surfaces of the ordered or disordered mesostructure framework or physically entrapped within the ordered or disordered mesostructured framework. Particles can be formed by aerosol processing or spray drying rather than coating onto a substrate. The selection of the interstitial compound provides a means for developing thin films for applications including membranes, sensors, low dielectric constant films, photonic materials and optical hosts.

  9. Singular Limits for Thin Film Superconductors in Strong Magnetic Fields - Maan Field Model for Thin Films

    E-Print Network [OSTI]

    Stan Alama; Lia Bronsard; Bernardo Galvão-Sousa

    2012-09-17T23:59:59.000Z

    We consider singular limits of the three-dimensional Ginzburg-Landau functional for a superconductor with thin-film geometry, in a constant external magnetic field. The superconducting domain has characteristic thickness on the scale $\\eps>0$, and we consider the simultaneous limit as the thickness $\\eps\\rightarrow 0$ and the Ginzburg-Landau parameter $\\kappa\\rightarrow\\infty$. We assume that the applied field is strong (on the order of $\\eps^{-1}$ in magnitude) in its components tangential to the film domain, and of order $\\log\\kappa$ in its dependence on $\\kappa$. We prove that the Ginzburg-Landau energy $\\Gamma$-converges to an energy associated with a two-obstacle problem, posed on the planar domain which supports the thin film. The same limit is obtained regardless of the relationship between $\\eps$ and $\\kappa$ in the limit. Two illustrative examples are presented, each of which demonstrating how the curvature of the film can induce the presence of both (positively oriented) vortices and (negatively oriented) antivortices coexisting in a global minimizer of the energy.

  10. Transparent conducting thin films for spacecraft applications

    SciTech Connect (OSTI)

    Perez-Davis, M.E.; Malave-Sanabria, T.; Hambourger, P.; Rutledge, S.K.; Roig, D.; Degroh, K.K.; Hung, C.

    1994-01-01T23:59:59.000Z

    Transparent conductive thin films are required for a variety of optoelectronic applications: automotive and aircraft windows, and solar cells for space applications. Transparent conductive coatings of indium-tin-oxide (ITO)-magnesium fluoride (MgF2) and aluminum doped zinc oxide (AZO) at several dopant levels are investigated for electrical resistivity (sheet resistance), carrier concentration, optical properties, and atomic oxygen durability. The sheet resistance values of ITO-MgF2 range from 10[sup 2] to 10[sup 11] ohms/square, with transmittance of 75 to 86 percent. The AZO films sheet resistances range from 10[sup 7] to 10[sup 11] ohms/square with transmittances from 84 to 91 percent. It was found that in general, with respect to the optical properties, the zinc oxide (ZnO), AZO, and the high MgF2 content ITO-MgF2 samples, were all durable to atomic oxygen plasma, while the low MgF2 content of ITO-MgF2 samples were not durable to atomic oxygen plasma exposure.

  11. Picoseconds-Laser Modification of Thin Films

    SciTech Connect (OSTI)

    Gakovic, Biljana; Trtica, Milan [Institute of Nuclear Sciences 'VINCA' 522, 11001 Belgrade (Serbia and Montenegro); Batani, Dimitri; Desai, Tara; Redaelli, Renato [Dipartimento di Fisica 'G. Occhialini', Universita' degli Studi Milano-Bicocca, Piazza della Scienza 3, Milan 20126 (Italy)

    2006-04-07T23:59:59.000Z

    The interaction of a Nd:YAG laser, pulse duration of 40 ps, with a titanium nitride (TiN) and tungsten-titanium (W-Ti) thin films deposited at silicon was studied. The peak intensity on targets was up to 1012 W/cm2. Results have shown that the TiN surface was modified, by the laser beam, with energy density of {>=}0.18 J/cm2 ({lambda}laser= 532 nm) as well as of 30.0 J/cm2 ({lambda}laser= 1064 nm). The W-Ti was surface modified with energy density of 5.0 J/cm2 ({lambda}laser= 532 nm). The energy absorbed from the Nd:YAG laser beam is partially converted to thermal energy, which generates a series of effects such as melting, vaporization of molten materials, dissociation and ionization of the vaporized material, appearance of plasma, etc. The following morphological changes of both targets were observed: (i) The appearance of periodic microstructures, in the central zone of the irradiated area, for laser irradiation at 532 nm. Accumulation of great number of laser pulses caused film ablation and silicon modification. (ii) Hole formation on the titanium nitride/silicon target was registered at 1064 nm. The process of the Nd:YAG laser interaction with both targets was accompanied by plasma formation above the target.

  12. A Free Energy Model for Thin-film Shape Memory Alloys Jordan E. Massad*1

    E-Print Network [OSTI]

    Mechanical & Aerospace Engineering Dept., UCLA, Los Angeles, CA 90095 ABSTRACT Thin-film shape memory alloysA Free Energy Model for Thin-film Shape Memory Alloys Jordan E. Massad*1 , Ralph C. Smith1 and Greg comparison with thin-film NiTi superelastic hysteresis data. Keywords: Shape memory alloy model; thin film

  13. Effects of stretching and cycling on the fatigue behavior of polymer-supported Ag thin films

    E-Print Network [OSTI]

    Effects of stretching and cycling on the fatigue behavior of polymer-supported Ag thin films Gi March 2013 Keywords: Fatigue Thin films Fatigue crack initiation Intergranular failure Ductile fracture on characterizing the mechanical behavior of thin metal films and have observed that metals in thin-film form can

  14. Crystallization and Martensitic Transformation Behavior of NiTi Shape Memory Alloy Thin Films

    E-Print Network [OSTI]

    Crystallization and Martensitic Transformation Behavior of NiTi Shape Memory Alloy Thin Films Alloy Thin Films Abstract The microstructure evolution and shape memory properties of near-equiatomic Ni-Ti thin films were investigated. Ni-Ti thin films sputter-deposited at room tem- perature are usually

  15. DISSERTATION DEVICE PHYSICS OF Cu(In,Ga)Se2 THIN-FILM SOLAR CELLS

    E-Print Network [OSTI]

    Sites, James R.

    DISSERTATION DEVICE PHYSICS OF Cu(In,Ga)Se2 THIN-FILM SOLAR CELLS Submitted by Markus Gloeckler PHYSICS OF Cu(In,Ga)Se2 THIN-FILM SOLAR CELLS BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS OF Cu(In,Ga)Se2 THIN-FILM SOLAR CELLS Thin-film solar cells have the potential to be an important

  16. Strain Relaxation and Vacancy Creation in Thin Platinum Films

    SciTech Connect (OSTI)

    Gruber, W.; Chakravarty, S.; Schmidt, H. [Technische Universitaet Clausthal, Institut fuer Metallurgie, Clausthal-Zellerfeld (Germany); Baehtz, C. [Helmholtz Zentrum Dresden Rossendorf, Institute of Ion Beam Physics and Materials Research, Dresden (Germany); Leitenberger, W. [Universitaet Potsdam, Institut fuer Physik und Astronomie, Potsdam (Germany); Bruns, M. [Karlsruher Institut fuer Technologie, Institute for Applied Materials, Eggenstein-Leopoldshafen (Germany); Karlsruher Institut fuer Technologie, Karlsruher Micro Nano Facility, Eggenstein-Leopoldshafen (Germany); Kobler, A.; Kuebel, C. [Karlsruher Institut fuer Technologie, Institute of Nanotechnology, Eggenstein-Leopoldshafen (Germany); Karlsruher Institut fuer Technologie, Karlsruher Micro Nano Facility, Eggenstein-Leopoldshafen (Germany)

    2011-12-23T23:59:59.000Z

    Synchrotron based combined in situ x-ray diffractometry and reflectometry is used to investigate the role of vacancies for the relaxation of residual stress in thin metallic Pt films. From the experimentally determined relative changes of the lattice parameter a and of the film thickness L the modification of vacancy concentration and residual strain was derived as a function of annealing time at 130 deg. C. The results indicate that relaxation of strain resulting from compressive stress is accompanied by the creation of vacancies at the free film surface. This proves experimentally the postulated dominant role of vacancies for stress relaxation in thin metal films close to room temperature.

  17. High mobility single-crystalline-like GaAs thin films on inexpensive flexible metal substrates by metal-organic chemical vapor deposition

    SciTech Connect (OSTI)

    Dutta, P., E-mail: pdutta2@central.uh.edu; Rathi, M.; Gao, Y.; Yao, Y.; Selvamanickam, V. [Department of Mechanical Engineering, University of Houston, Houston, Texas 77204 (United States); Zheng, N.; Ahrenkiel, P. [Department of Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701 (United States); Martinez, J. [Materials Evaluation Laboratory, NASA Johnson Space Center, Houston, Texas 77085 (United States)

    2014-09-01T23:59:59.000Z

    We demonstrate heteroepitaxial growth of single-crystalline-like n and p-type doped GaAs thin films on inexpensive, flexible, and light-weight metal foils by metal-organic chemical vapor deposition. Single-crystalline-like Ge thin film on biaxially textured templates made by ion beam assisted deposition on metal foil served as the epitaxy enabling substrate for GaAs growth. The GaAs films exhibited strong (004) preferred orientation, sharp in-plane texture, low grain misorientation, strong photoluminescence, and a defect density of ?10{sup 7?}cm{sup ?2}. Furthermore, the GaAs films exhibited hole and electron mobilities as high as 66 and 300?cm{sup 2}/V-s, respectively. High mobility single-crystalline-like GaAs thin films on inexpensive metal substrates can pave the path for roll-to-roll manufacturing of flexible III-V solar cells for the mainstream photovoltaics market.

  18. This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE JOURNAL OF PHOTOVOLTAICS 1

    E-Print Network [OSTI]

    Atwater, Harry

    as presented, with the exception of pagination. IEEE JOURNAL OF PHOTOVOLTAICS 1 Gallium Arsenide Solar Cell--Gallium arsenide, nanospheres, photovoltaic systems, whispering gallery modes (WGMs). I. INTRODUCTION THE route as the active layer is thinned [2]. Thin-film photovoltaics offer the possibility to significantly reduce

  19. Cadmium-free junction fabrication process for CuInSe.sub.2 thin film solar cells

    DOE Patents [OSTI]

    Ramanathan, Kannan V. (Lakewood, CA); Contreras, Miguel A. (Golden, CA); Bhattacharya, Raghu N. (Littleton, CA); Keane, James (Lakewood, CA); Noufi, Rommel (Golden, CA)

    1999-01-01T23:59:59.000Z

    The present invention provides an economical, simple, dry and controllable semiconductor layer junction forming process to make cadmium free high efficiency photovoltaic cells having a first layer comprised primarily of copper indium diselenide having a thin doped copper indium diselenide n-type region, generated by thermal diffusion with a group II(b) element such as zinc, and a halide, such as chlorine, and a second layer comprised of a conventional zinc oxide bilayer. A photovoltaic device according the present invention includes a first thin film layer of semiconductor material formed primarily from copper indium diselenide. Doping of the copper indium diselenide with zinc chloride is accomplished using either a zinc chloride solution or a solid zinc chloride material. Thermal diffusion of zinc chloride into the copper indium diselenide upper region creates the thin n-type copper indium diselenide surface. A second thin film layer of semiconductor material comprising zinc oxide is then applied in two layers. The first layer comprises a thin layer of high resistivity zinc oxide. The second relatively thick layer of zinc oxide is doped to exhibit low resistivity.

  20. Processing and Gas Barrier Behavior of Multilayer Thin Nanocomposite Films 

    E-Print Network [OSTI]

    Yang, You-Hao

    2012-10-19T23:59:59.000Z

    Thin films with the ability to impart oxygen and other types of gas barrier are crucial to commercial packaging applications. Commodity polymers, such as polyethylene (PE), polycarbonate (PC) and polyethylene terephthalate (PET), have insufficient...

  1. Effective Optical Properties of Highly Ordered Mesoporous Thin Films

    E-Print Network [OSTI]

    Hutchinson, Neal J.; Coquil, Thomas; Navid, Ashcon; Pilon, Laurent

    2010-01-01T23:59:59.000Z

    a solid-state dye-sensitized solar cells”, Thin Solid Films,tions include dye-sensitized solar cells [8– 10], low-ke?ciency solar cell based on dye- a sensitized colloidal

  2. Laser Induced Breakdown Spectroscopy and Applications Toward Thin Film Analysis

    E-Print Network [OSTI]

    Owens, Travis Nathan

    2011-01-01T23:59:59.000Z

    on the surface. Ultrafast laser pulses are shorter than thethe advantages of ultrafast laser pulses for thin film LIBS,each time. While ultrafast laser pulses are effective in

  3. Nanostructured thin films for solid oxide fuel cells 

    E-Print Network [OSTI]

    Yoon, Jongsik

    2009-05-15T23:59:59.000Z

    The goals of this work were to synthesize high performance perovskite based thin film solid oxide fuel cell (TF-SOFC) cathodes by pulsed laser deposition (PLD), to study the structural, electrical and electrochemical properties of these cathodes...

  4. Modeling of thin-film solar thermoelectric generators

    E-Print Network [OSTI]

    Weinstein, Lee Adragon

    Recent advances in solar thermoelectric generator (STEG) performance have raised their prospect as a potential technology to convert solar energy into electricity. This paper presents an analysis of thin-film STEGs. ...

  5. Scanned pulsed laser annealing of Cu thin films

    E-Print Network [OSTI]

    Verma, Harsh Anand, 1980-

    2005-01-01T23:59:59.000Z

    As the microelectronics industry has moved to Cu as the conductor material, there has been much research into microstructure control in Cu thin films, primarily because grain sizes affect resistivity. Also with Cu-based ...

  6. Direct printing of lead zirconate titanate thin films

    E-Print Network [OSTI]

    Bathurst, Stephen, 1980-

    2008-01-01T23:59:59.000Z

    Thus far, use of lead zirconate titanate (PZT) in MEMS has been limited due to the lack of process compatibility with existing MEMS manufacturing techniques. Direct printing of thin films eliminates the need for photolithographic ...

  7. Functionality Tuning in Vertically Aligned Nanocomposite Thin Films 

    E-Print Network [OSTI]

    Chen, Aiping

    2013-04-04T23:59:59.000Z

    Vertically aligned nanocomposite (VAN) oxide thin films are unique nanostructures with two-phase self-assembled, heteroepitaxially grown on single-crystal substrates. Both phases tend to grow vertically and simultaneously on a given substrate...

  8. Structure of Molecular Thin Films for Organic Electronics | Stanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organic Electronics Friday, April 6, 2012 - 1:00pm SSRL Conference Room 137-322 Bert Nickel, Physics Faculty and CeNS, Ludwig-Maximilians-University, Mnchen Thin films made out...

  9. Properties and sensor performance of zinc oxide thin films

    E-Print Network [OSTI]

    Min, Yongki, 1965-

    2003-01-01T23:59:59.000Z

    Reactively sputtered ZnO thin film gas sensors were fabricated onto Si wafers. The atmosphere dependent electrical response of the ZnO micro arrays was examined. The effects of processing conditions on the properties and ...

  10. The macroscopic delamination of thin films from elastic substrates

    E-Print Network [OSTI]

    Reis, Pedro Miguel

    The wrinkling and delamination of stiff thin films adhered to a polymer substrate have important applications in “flexible electronics.” The resulting periodic structures, when used for circuitry, have remarkable mechanical ...

  11. Flexible, transparent thin film transistors raise hopes for flexible...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the thin-film transistor, fabricated using single-atom-thick layers of graphene and tungsten diselenide, among other materials. The white scale bar shows 5 microns, which is...

  12. Steering and Separating Excitons in Organic Thin Films and Devices...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Steering and Separating Excitons in Organic Thin Films and Devices October 26, 2010 at 3pm36-428 Mark Thompson University of Southern California (USC) thompson abstract: We have...

  13. Structural, magnetic, and optical properties of orthoferrite thin films

    E-Print Network [OSTI]

    Supplee, William Wagner

    2007-01-01T23:59:59.000Z

    Pulsed laser deposition was used to create thin films of Ce-Fe-O and Y-Fe-O systems. Deposition temperature and ambient oxygen pressure were varied systematically between samples to determine which deposition conditions ...

  14. Guided Self-Assembly of Gold Thin Films

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guided Self-Assembly of Gold Thin Films Print Nanoparticles-man-made atoms with unique optical, electrical, and mechanical properties-have become key components in many fields of...

  15. Orientational Analysis of Molecules in Thin Films | Stanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Orientational Analysis of Molecules in Thin Films Monday, September 17, 2012 - 10:00am SSRL Bldg. 137, room 226 Daniel Kaefer The synchrotron-based X-ray absorption spectroscopy is...

  16. Antimony-Doped Tin(II) Sulfide Thin Films

    E-Print Network [OSTI]

    Chakraborty, Rupak

    Thin-film solar cells made from earth-abundant, inexpensive, and nontoxic materials are needed to replace the current technologies whose widespread use is limited by their use of scarce, costly, and toxic elements. Tin ...

  17. Homogenization studies for optical sensors based on sculptured thin films 

    E-Print Network [OSTI]

    Jamaian, Siti Suhana

    2013-07-01T23:59:59.000Z

    In this thesis we investigate theoretically various types of sculptured thin film (STF) envisioned as platforms for optical sensing. A STF consists of an array of parallel nanowires which can be grown on a substrate using ...

  18. Multimonth controlled small molecule release from biodegradable thin films

    E-Print Network [OSTI]

    Hammond, Paula T.

    Long-term, localized delivery of small molecules from a biodegradable thin film is challenging owing to their low molecular weight and poor charge density. Accomplishing highly extended controlled release can facilitate ...

  19. amorphous thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Amorphous Silicon Thin-Film Transistor Pixel.S.A. 1 LG Philips LCD Research and Development Center, An-Yang, 431-080, Korea (Received July 23, 2006; accepted October 31, 2006;...

  20. amorphous thin film: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Amorphous Silicon Thin-Film Transistor Pixel.S.A. 1 LG Philips LCD Research and Development Center, An-Yang, 431-080, Korea (Received July 23, 2006; accepted October 31, 2006;...

  1. Initiated chemical vapor deposition of functional polyacrylic thin films

    E-Print Network [OSTI]

    Mao, Yu, 1975-

    2005-01-01T23:59:59.000Z

    Initiated chemical vapor deposition (iCVD) was explored as a novel method for synthesis of functional polyacrylic thin films. The process introduces a peroxide initiator, which can be decomposed at low temperatures (<200?C) ...

  2. Functionalized multilayer thin films for protection against acutely toxic agents

    E-Print Network [OSTI]

    Krogman, Kevin Christopher

    2009-01-01T23:59:59.000Z

    The recently developed practice of spraying polyelectrolyte solutions onto a substrate in order to construct thin films via the Layer-by-Layer (LbL) technique has been further investigated and extended. In this process a ...

  3. al thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dalek@eee.hku.hk , C. Y. Kwong, T. W. Lau, L. S. M. Lam, and W. K 276 DEFECT-FREE THIN FILM MEMBRANES FOR H2 SEPARATION AND ISOLATION Energy Storage, Conversion and...

  4. al thin film: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dalek@eee.hku.hk , C. Y. Kwong, T. W. Lau, L. S. M. Lam, and W. K 276 DEFECT-FREE THIN FILM MEMBRANES FOR H2 SEPARATION AND ISOLATION Energy Storage, Conversion and...

  5. TiNi-based thin films for MEMS applications

    E-Print Network [OSTI]

    Fu, Yongqing

    In this paper, some critical issues and problems in the development of TiNi thin films were discussed, including preparation and characterization considerations, residual stress and adhesion, frequency improvement, fatigue ...

  6. Enabling integration of vapor-deposited polymer thin films

    E-Print Network [OSTI]

    Petruczok, Christy D. (Christy Danielle)

    2014-01-01T23:59:59.000Z

    Initiated Chemical Vapor Deposition (iCVD) is a versatile, one-step process for synthesizing conformal and functional polymer thin films on a variety of substrates. This thesis emphasizes the development of tools to further ...

  7. ag thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MgO, Ref. 21 Marcon, Marco 2 Multi-level surface enhanced Raman scattering using AgOx thin film Physics Websites Summary: by applying laser-direct writing (LDW) technique on...

  8. Self-Assembling Process for Fabricating Tailored Thin Films

    ScienceCinema (OSTI)

    None

    2010-01-08T23:59:59.000Z

    A simple, economical nanotechnology coating process that enables the development of nanoparticle thin films with architectures and properties unattainable by any other processing method. 2007 R&D 100 winner (SAND2007-1878P)

  9. Self-Assembling Process for Fabricating Tailored Thin Films

    ScienceCinema (OSTI)

    Sandia

    2009-09-01T23:59:59.000Z

    A simple, economical nanotechnology coating process that enables the development of nanoparticle thin films with architectures and properties unattainable by any other processing method. 2007 R&D 100 winner (SAND2007-1878P)

  10. Tandem photonic-crystal thin films surpassing Lambertian light-trapping limit over broad bandwidth and angular range

    E-Print Network [OSTI]

    Oskooi, Ardavan; Noda, Susumu

    2013-01-01T23:59:59.000Z

    The maximum absorption of solar radiation over the broadest range of frequencies and incident angles using the thinnest material possible has important applications for renewable-energy generation. Complete random texturing of an optically-thick film's surface to increase the path length of scattered light rays, first proposed nearly thirty years ago, has thus far remained the most effective approach for photon absorption over the widest set of conditions. Recent thin-film nanostructured designs involving resonant wave effects of photons have explored the possibility of superior performance though as of yet no proposal satisfying the dual requirements of enhanced and robust absorption over a large fraction of the solar spectrum has been made. Here using recent advances in computational electrodynamics we describe a general strategy for the design of a silicon thin film applicable to photovoltaic cells based on a quasi-resonant approach to light trapping where two partially-disordered photonic-crystal slabs, s...

  11. Nonlinear viscoelastic characterization of thin films using dynamic mechanical analysis

    E-Print Network [OSTI]

    Payne, Debbie Flowers

    1993-01-01T23:59:59.000Z

    NONLINEAR VISCOELASTIC CHARACTERIZATION OF THIN FILMS USING DYNAMIC MECHANICAL ANALYSIS A Thesis by DEBBIE FLOWERS PAYNE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE AUGUST 1993 Major Subject: Aerospace Engineering NONLINEAR VISCOELASTIC CHARACTERIZATION OF THIN FILMS USING DYNAMIC MECHANICAL ANALYSIS A Thesis by DEBBIE FLOWERS PAYNE Approved as to style and content by: Thomas W...

  12. Templated dewetting of thin solid films

    E-Print Network [OSTI]

    Giermann, Amanda L. (Amanda Leah)

    2009-01-01T23:59:59.000Z

    The dewetting of solid metal polycrystalline films to form metal nanoparticles occurs by the nucleation and growth of holes in the film. For typical films on flat substrates, this process is not well-controlled and results ...

  13. PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS Prog. Photovolt: Res. Appl. 2004; 12:3338 (DOI: 10.1002/pip.525)

    E-Print Network [OSTI]

    Romeo, Alessandro

    PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS Prog. Photovolt: Res. Appl. 2004; 12 INTRODUCTION T he polycrystalline CdTe/CdS thin-film solar cell is one of the most important photovoltaic,2 Recent measure- ments of the photovoltaic performance of CdTe solar cells irradiated with high

  14. Reconfigurable p-n junction diodes and the photovoltaic effect in exfoliated MoS{sub 2} films

    SciTech Connect (OSTI)

    Sutar, Surajit; Agnihotri, Pratik; Comfort, Everett; Ung Lee, Ji, E-mail: jlee1@albany.edu [The College of Nanoscale Science and Engineering (CNSE), SUNY at Albany, Albany, New York 12203 (United States); Taniguchi, T.; Watanabe, K. [National Institute of Materials Science, 1-2-1 Sengen, Tsukuba-city, Ibaraki 305-0047 (Japan)

    2014-03-24T23:59:59.000Z

    Realizing basic semiconductor devices such as p-n junctions are necessary for developing thin-film and optoelectronic technologies in emerging planar materials such as MoS{sub 2}. In this work, electrostatic doping by buried gates is used to study the electronic and optoelectronic properties of p-n junctions in exfoliated MoS{sub 2} flakes. Creating a controllable doping gradient across the device leads to the observation of the photovoltaic effect in monolayer and bilayer MoS{sub 2} flakes. For thicker flakes, strong ambipolar conduction enables realization of fully reconfigurable p-n junction diodes with rectifying current-voltage characteristics, and diode ideality factors as low as 1.6. The spectral response of the photovoltaic effect shows signatures of the predicted band gap transitions. For the first excitonic transition, a shift of >4{sub kB}T is observed between monolayer and bulk devices, indicating a thickness-dependence of the excitonic coulomb interaction.

  15. Thin aerogel films for optical, thermal, acoustic, and electronic applications

    SciTech Connect (OSTI)

    Hrubesh, L.W.; Poco, J.F. [Lawrence Livermore National Lab., CA (United States). Chemistry and Material Sciences Dept.

    1994-09-01T23:59:59.000Z

    Aerogels are a special class of continuously porous solid materials which are characterized by nanometer size particles and pores. Typically, aerogels are made using sol-gel chemistry to form a solvent filled, high porosity gel that is dried by removing the solvent without collapsing the tenuous solid phase. As bulk materials, aerogels are known to have many exceptional, and even some unique physical properties. Aerogels provide the highest thermal insulation and lowest dielectric constant of any other material known. However, some important applications require the aerogels in the form of thin films or sheets. For example, electronic applications require micrometer thin aerogel films bonded to a substrate, and others require thicker films, either on a substrate or as free standing sheets. Special methods are required to make aerogel thin films or sheets. In this paper, the authors discuss the special conditions needed to fabricate thin aerogel films and they describe methods to make films and thin sheets. They also give some specific applications for which aerogel films are being developed.

  16. Geometric shape control of thin film ferroelectrics and resulting structures

    DOE Patents [OSTI]

    McKee, Rodney A. (Kingston, TN); Walker, Frederick J. (Oak Ridge, TN)

    2000-01-01T23:59:59.000Z

    A monolithic crystalline structure and a method of making involves a semiconductor substrate, such as silicon, and a ferroelectric film, such as BaTiO.sub.3, overlying the surface of the substrate wherein the atomic layers of the ferroelectric film directly overlie the surface of the substrate. By controlling the geometry of the ferroelectric thin film, either during build-up of the thin film or through appropriate treatment of the thin film adjacent the boundary thereof, the in-plane tensile strain within the ferroelectric film is relieved to the extent necessary to permit the ferroelectric film to be poled out-of-plane, thereby effecting in-plane switching of the polarization of the underlying substrate material. The method of the invention includes the steps involved in effecting a discontinuity of the mechanical restraint at the boundary of the ferroelectric film atop the semiconductor substrate by, for example, either removing material from a ferroelectric film which has already been built upon the substrate, building up a ferroelectric film upon the substrate in a mesa-shaped geometry or inducing the discontinuity at the boundary by ion beam deposition techniques.

  17. Composite polymeric film and method for its use in installing a very-thin polymeric film in a device

    DOE Patents [OSTI]

    Duchane, D.V.; Barthell, B.L.

    1982-04-26T23:59:59.000Z

    A composite polymeric film and a method for its use in forming and installing a very thin (< 10 ..mu..m) polymeric film are disclosed. The composite film consists of a thin film layer and a backing layer. The backing layer is soluble in a solvent in which the thin film layer is not soluble. In accordance with the method, the composite film is installed in a device in the same position in which it is sought to finally emplace the thin film. The backing layer is then selectiely dissolved in the solvent to leave the insoluble thin film layer as an unbacked film. The method permits a very thin film to e successfully installed in devices where the fragility of the film would preclude handling and installation by conventional methods.

  18. Front and backside processed thin film electronic devices

    DOE Patents [OSTI]

    Evans, Paul G. (Madison, WI); Lagally, Max G. (Madison, WI); Ma, Zhenqiang (Middleton, WI); Yuan, Hao-Chih (Lakewood, CO); Wang, Guogong (Madison, WI); Eriksson, Mark A. (Madison, WI)

    2012-01-03T23:59:59.000Z

    This invention provides thin film devices that have been processed on their front- and backside. The devices include an active layer that is sufficiently thin to be mechanically flexible. Examples of the devices include back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.

  19. Thin transparent conducting films of cadmium stannate

    DOE Patents [OSTI]

    Wu, Xuanzhi (Golden, CO); Coutts, Timothy J. (Lakewood, CO)

    2001-01-01T23:59:59.000Z

    A process for preparing thin Cd.sub.2 SnO.sub.4 films. The process comprises the steps of RF sputter coating a Cd.sub.2 SnO.sub.4 layer onto a first substrate; coating a second substrate with a CdS layer; contacting the Cd.sub.2 SnO.sub.4 layer with the CdS layer in a water- and oxygen-free environment and heating the first and second substrates and the Cd.sub.2 SnO.sub.4 and CdS layers to a temperature sufficient to induce crystallization of the Cd.sub.2 SnO.sub.4 layer into a uniform single-phase spinel-type structure, for a time sufficient to allow full crystallization of the Cd.sub.2 SnO.sub.4 layer at that temperature; cooling the first and second substrates to room temperature; and separating the first and second substrates and layers from each other. The process can be conducted at temperatures less than 600.degree. C., allowing the use of inexpensive soda lime glass substrates.

  20. Adhesion and Thin-Film Module Reliability

    SciTech Connect (OSTI)

    McMahon, T. J.; Jorgenson, G. J.

    2006-01-01T23:59:59.000Z

    Among the infrequently measured but essential properties for thin-film (T-F) module reliability are the interlayer adhesion and cohesion within a layer. These can be cell contact layers to glass, contact layers to the semiconductor, encapsulant to cell, glass, or backsheet, etc. We use an Instron mechanical testing unit to measure peel strengths at 90deg or 180deg and, in some cases, a scratch and tape pull test to evaluate inter-cell layer adhesion strengths. We present peel strength data for test specimens laminated from the three T-F technologies, before and after damp heat, and in one instance at elevated temperatures. On laminated T-F cell samples, failure can occur uniformly at any one of the many interfaces, or non-uniformly across the peel area at more than one interface. Some peel strengths are Lt1 N/mm. This is far below the normal ethylene vinyl acetate/glass interface values of >10 N/mm. We measure a wide range of adhesion strengths and suggest that adhesion measured under higher temperature and relative humidity conditions is more relevant for module reliability.

  1. NANO-INDENTATION OF COPPER THIN FILMS ON SILICON SUBSTRATES

    E-Print Network [OSTI]

    Suresh, Subra

    on the nano-indentation of polycrystalline Cu thin films, of three different thicknesses) Si substrates. The films were then vacuum-annealed at 475°C for 1 h. The resulting polycrystalline. A diamond Berkovich pyramid indentor with a tip radius, R 50 nm, was used. It is known from nano

  2. Fabrication and Characterization of Titanium-doped Hydroxyapatite Thin Films

    E-Print Network [OSTI]

    Desai, Amit Y

    . Thin films of titanium-doped hydroxyapatite (HA-Ti) have been deposited onto silicon substrates at three different compositions. With direct current (dc) power to the Ti target of 5, 10, and 15W films with compositions of 0.7, 1.7 and 2.0 at.% titanium...

  3. Critical fields in ferromagnetic thin films: Identification of four regimes

    E-Print Network [OSTI]

    Otto, Felix

    Critical fields in ferromagnetic thin films: Identification of four regimes Rub´en Cantero­film elements is a paradigm for a multi­scale pattern­forming system. On one hand, there is a material length functional ceases to be positive definite. The degenerate subspace consists of the "unstable modes

  4. Calcium Film Based Testing of Edge-Seal Materials for Photovoltaic Applications (Presentation)

    SciTech Connect (OSTI)

    Kempe, M.; Dameron, A.; Reese, M.

    2011-04-01T23:59:59.000Z

    Because of the sensitivity of some photovoltaic devices to moisture-induced corrosion, they are packaged using impermeable front- and back-sheets with an edge seal to prevent moisture ingress. Evaluation of edge seal materials can be difficult because of the low permeation rates involved and/or non-Fickian behavior. Here, using a Ca film deposited on a glass substrate, we demonstrate the evaluation of edge seal materials in a manner that effectively duplicates their use in a photovoltaic application and compare the results with standard methods for measuring water vapor transport. We demonstrate how moisture permeation data from polymer films can be used to estimate moisture ingress rates and compare the results of these two methods. Encapsulant materials were also evaluated for comparison and to highlight the need for edge seals. Of the materials studied, dessicant-filled polyisobutene materials demonstrate by far the best potential to keep moisture out for a 20 to 30 year lifetime.

  5. Mode Splitting for Efficient Plasmoinc Thin-film Solar Cell

    E-Print Network [OSTI]

    Li, Tong; Jiang, Chun

    2010-01-01T23:59:59.000Z

    We propose an efficient plasmonic structure consisting of metal strips and thin-film silicon for solar energy absorption. We numerically demonstrate the absorption enhancement in symmetrical structure based on the mode coupling between the localized plasmonic mode in Ag strip pair and the excited waveguide mode in silicon slab. Then we explore the method of symmetry-breaking to excite the dark modes that can further enhance the absorption ability. We compare our structure with bare thin-film Si solar cell, and results show that the integrated quantum efficiency is improved by nearly 90% in such thin geometry. It is a promising way for the solar cell.

  6. Atomic-scale Structural Characterizations of Functional Epitaxial Thin Films

    E-Print Network [OSTI]

    Zhu, Yuanyuan

    2013-06-03T23:59:59.000Z

    ................................................................ 10 1.3.1 Superconducting FeSe0.5Te0.5 epitaxial films........................................ 10 1.3.2 YBa2Cu3O7-x(YBCO) epitaxial thin films and flux-pinning effects ...... 14 1.3.3 Perovskite oxide epitaxial thin films... ...................................... 22 Figure 1.9. (a) Schematic illustration of ABO3 perovskite structure. (b) The corner -sharing oxygen octahedra in perovskite structure. . ................................... 23 Figure 1.10. (a) A HRTEM micrograph,67 (b) a Cs-corrected HRTEM image...

  7. Flexible cadmium telluride thin films grown on electron-beam-irradiated graphene/thin glass substrates

    SciTech Connect (OSTI)

    Seo, Won-Oh; Kim, Jihyun, E-mail: hyunhyun7@korea.ac.kr [Department of Chemical and Biological Engineering, Korea University, Anam-dong, Sungbuk-gu, Seoul 136-713 (Korea, Republic of); Koo, Yong Hwan; Kim, Byungnam; Lee, Byung Cheol [Radiation Integrated System Research Division, Korea Atomic Energy Research Institute (KAERI), Daejeon 305-353 (Korea, Republic of); Kim, Donghwan [Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of)

    2014-08-25T23:59:59.000Z

    We demonstrate the close-spaced sublimation growth of polycrystalline cadmium telluride (CdTe) thin films on a flexible graphene electrode/thin glass substrate structure. Prior to the growth of CdTe films, chemical-vapor-deposited graphene was transferred onto a flexible glass substrate and subjected to electron-beam irradiation at an energy of 0.2?MeV in order to intentionally introduce the defects into it in a controlled manner. Micro-Raman spectroscopy and sheet resistance measurements were employed to monitor the damage and disorder in the electron-beam irradiated graphene layers. The morphology and optical properties of the CdTe thin films deposited on a graphene/flexible glass substrate were systematically characterized. The integration of the defective graphene layers with a flexible glass substrate can be a useful platform to grow various thin-film structures for flexible electronic and optoelectronic devices.

  8. NREL: Photovoltaics Research - Polycrystalline Thin-Film Materials and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit |Infrastructure John Wohlgemuth,NewsDevices

  9. Photovoltaic Polycrystalline Thin-Film Cell Basics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHA Administrative Judgea. Part

  10. Photovoltaic Polycrystalline Thin-Film Cell Basics | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCO Overview OCHCO OCHCOControlGuide to aEnergy Living

  11. Enhanced Thin Film Organic Photovoltaic Devices - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000ConsumptionInnovation Portal Industrial(2) Cu (3) O

  12. Switchable diode effect and ferroelectric resistive switching in epitaxial BiFeO3 thin films

    E-Print Network [OSTI]

    Tian, Weidong

    Switchable diode effect and ferroelectric resistive switching in epitaxial BiFeO3 thin films Can observed in epitaxial multiferroic BiFeO3 BFO thin films. The forward direction of the rectifying current the switchable diode effect and the ferroelectric resistive switching in epitaxially BFO thin films. BFO thin

  13. Gas Sensing Mechanism in Chemiresistive Cobalt and Metal-Free Phthalocyanine Thin Films

    E-Print Network [OSTI]

    Kummel, Andrew C.

    Gas Sensing Mechanism in Chemiresistive Cobalt and Metal-Free Phthalocyanine Thin Films Forest I-free phthalocyanine (H2- Pc) thin films were investigated with respect to analyte basicity. Chemiresistive sensors However, when Pc thin films are exposed to O2, the films become doped and the conductivity increases

  14. Determination of refractive index, thickness, and the optical losses of thin films from

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Determination of refractive index, thickness, and the optical losses of thin films from prism­film.4760, 300.1030. 1. Introduction Transparent thin films find wide applications in optics: coating, sensors and optical losses. The optical losses of a thin film have three different origins: sur- face scattering due

  15. Microwave Planar Capacitors Employing Low Loss, High-K, and Tunable BZN Thin Films

    E-Print Network [OSTI]

    York, Robert A.

    Microwave Planar Capacitors Employing Low Loss, High-K, and Tunable BZN Thin Films Jaehoon Park) thin films deposited by RF magnetron sputtering. Device Q factors (QDUT) and capacitances (CDUT) were films can be the alternative to conventional BST thin films. Index Terms -- Dielectric properties

  16. DISSERTATION ELECTRON-REFLECTOR STRATEGY FOR CdTe THIN-FILM SOLAR CELLS

    E-Print Network [OSTI]

    Sites, James R.

    DISSERTATION ELECTRON-REFLECTOR STRATEGY FOR CdTe THIN-FILM SOLAR CELLS Submitted by Kuo-Jui Hsiao ELECTRON- REFLECTOR STRATEGY FOR CdTe THIN-FILM SOLAR CELLS BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS-FILM SOLAR CELLS The CdTe thin-film solar cell has a large absorption coefficient and high theoretical

  17. Thin Film Packaging Solutions for High Efficiency OLED Lighting Products

    SciTech Connect (OSTI)

    None

    2008-06-30T23:59:59.000Z

    The objective of the 'Thin Film Packaging Solutions for High Efficiency OLED Lighting Products' project is to demonstrate thin film packaging solutions based on SiC hermetic coatings that, when applied to glass and plastic substrates, support OLED lighting devices by providing longer life with greater efficiency at lower cost than is currently available. Phase I Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on optical glass with lifetime of 1,000 hour life, CRI greater than 75, and 15 lm/W. Phase II Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on plastic or glass composite with 25 lm/W, 5,000 hours life, and CRI greater than 80. Phase III Objective: Demonstrate 2 x 2 ft{sup 2} thin film encapsulated working phosphorescent OLED with 40 lm/W, 10,000 hour life, and CRI greater than 85. This report details the efforts of Phase III (Budget Period Three), a fourteen month collaborative effort that focused on optimization of high-efficiency phosphorescent OLED devices and thin-film encapsulation of said devices. The report further details the conclusions and recommendations of the project team that have foundation in all three budget periods for the program. During the conduct of the Thin Film Packaging Solutions for High Efficiency OLED Lighting Products program, including budget period three, the project team completed and delivered the following achievements: (1) a three-year marketing effort that characterized the near-term and longer-term OLED market, identified customer and consumer lighting needs, and suggested prototype product concepts and niche OLED applications lighting that will give rise to broader market acceptance as a source for wide area illumination and energy conservation; (2) a thin film encapsulation technology with a lifetime of nearly 15,000 hours, tested by calcium coupons, while stored at 16 C and 40% relative humidity ('RH'). This encapsulation technology was characterized as having less than 10% change in transmission during the 15,000 hour test period; (3) demonstrated thin film encapsulation of a phosphorescent OLED device with 1,500 hours of lifetime at 60 C and 80% RH; (4) demonstrated that a thin film laminate encapsulation, in addition to the direct thin film deposition process, of a polymer OLED device was another feasible packaging strategy for OLED lighting. The thin film laminate strategy was developed to mitigate defects, demonstrate roll-to-roll process capability for high volume throughput (reduce costs) and to support a potential commercial pathway that is less dependent upon integrated manufacturing since the laminate could be sold as a rolled good; (5) demonstrated that low cost 'blue' glass substrates could be coated with a siloxane barrier layer for planarization and ion-protection and used in the fabrication of a polymer OLED lighting device. This study further demonstrated that the substrate cost has potential for huge cost reductions from the white borosilicate glass substrate currently used by the OLED lighting industry; (6) delivered four-square feet of white phosphorescent OLED technology, including novel high efficiency devices with 82 CRI, greater than 50 lm/W efficiency, and more than 1,000 hours lifetime in a product concept model shelf; (7) presented and or published more than twenty internal studies (for private use), three external presentations (OLED workshop-for public use), and five technology-related external presentations (industry conferences-for public use); and (8) issued five patent applications, which are in various maturity stages at time of publication. Delivery of thin film encapsulated white phosphorescent OLED lighting technology remains a challenging technical achievement, and it seems that commercial availability of thin, bright, white OLED light that meets market requirements will continue to require research and development effort. However, there will be glass encapsulated white OLED lighting products commercialized in niche markets during the 2008 calendar year. This commercializ

  18. Real time intelligent process control system for thin film solar cell manufacturing

    SciTech Connect (OSTI)

    George Atanasoff

    2010-10-29T23:59:59.000Z

    This project addresses the problem of lower solar conversion efficiency and waste in the typical solar cell manufacturing process. The work from the proposed development will lead toward developing a system which should be able to increase solar panel conversion efficiency by an additional 12-15% resulting in lower cost panels, increased solar technology adoption, reduced carbon emissions and reduced dependency on foreign oil. All solar cell manufacturing processes today suffer from manufacturing inefficiencies that currently lead to lower product quality and lower conversion efficiency, increased product cost and greater material and energy consumption. This results in slower solar energy adoption and extends the time solar cells will reach grid parity with traditional energy sources. The thin film solar panel manufacturers struggle on a daily basis with the problem of thin film thickness non-uniformity and other parameters variances over the deposited substrates, which significantly degrade their manufacturing yield and quality. Optical monitoring of the thin films during the process of the film deposition is widely perceived as a necessary step towards resolving the non-uniformity and non-homogeneity problem. In order to enable the development of an optical control system for solar cell manufacturing, a new type of low cost optical sensor is needed, able to acquire local information about the panel under deposition and measure its local characteristics, including the light scattering in very close proximity to the surface of the film. This information cannot be obtained by monitoring from outside the deposition chamber (as traditional monitoring systems do) due to the significant signal attenuation and loss of its scattering component before the reflected beam reaches the detector. In addition, it would be too costly to install traditional external in-situ monitoring systems to perform any real-time monitoring over large solar panels, since it would require significant equipment refurbishing needed for installation of multiple separate ellipsometric systems, and development of customized software to control all of them simultaneously. The proposed optical monitoring system comprises AccuStrata’s fiber optics sensors installed inside the thin film deposition equipment, a hardware module of different components (beyond the scope of this project) and our software program with iterative predicting capability able to control material bandgap and surface roughness as films are deposited. Our miniature fiber optics monitoring sensors are installed inside the vacuum chamber compartments in very close proximity where the independent layers are deposited (an option patented by us in 2003). The optical monitoring system measures two of the most important parameters of the photovoltaic thin films during deposition on a moving solar panel - material bandgap and surface roughness. In this program each sensor array consists of two fiber optics sensors monitoring two independent areas of the panel under deposition. Based on the monitored parameters and their change in time and from position to position on the panel, the system is able to provide to the equipment operator immediate information about the thin films as they are deposited. This DoE Supply Chain program is considered the first step towards the development of intelligent optical control system capable of dynamically adjusting the manufacturing process “on-the-fly” in order to achieve better performance. The proposed system will improve the thin film solar cell manufacturing by improving the quality of the individual solar cells and will allow for the manufacturing of more consistent and uniform products resulting in higher solar conversion efficiency and manufacturing yield. It will have a significant impact on the multibillion-dollar thin film solar market. We estimate that the financial impact of these improvements if adopted by only 10% of the industry ($7.7 Billion) would result in about $1.5 Billion in savings by 2015 (at the assumed 20% improvement). This can b

  19. Methods for forming thin-film heterojunction solar cells from I-III-VI.sub. 2

    DOE Patents [OSTI]

    Mickelsen, Reid A. (Bellevue, WA) [Bellevue, WA; Chen, Wen S. (Seattle, WA) [Seattle, WA

    1985-08-13T23:59:59.000Z

    An improved thin-film, large area solar cell, and methods for forming the same, having a relatively high light-to-electrical energy conversion efficiency and characterized in that the cell comprises a p-n type heterojunction formed of: (i) a first semiconductor layer comprising a photovoltaic active material selected from the class of I-III-VI.sub.2 chalcopyrite ternary materials which is vacuum deposited in a thin "composition-graded" layer ranging from on the order ot about 2.5 microns to about 5.0 microns (.congruent.2.5 .mu.m to .congruent.5.0 .mu.m) and wherein the lower region of the photovoltaic active material preferably comprises a low resistivity region of p-type semiconductor material having a superimposed region of relatively high resistivity, transient n-type semiconductor material defining a transient p-n homojunction; and (ii), a second semiconductor layer comprising a low resistivity n-type semiconductor material; wherein interdiffusion (a) between the elemental constituents of the two discrete juxtaposed regions of the first semiconductor layer defining a transient p-n homojunction layer, and (b) between the transient n-type material in the first semiconductor layer and the second n-type semiconductor layer, causes the The Government has rights in this invention pursuant to Contract No. EG-77-C-01-4042, Subcontract No. XJ-9-8021-1 awarded by the U.S. Department of Energy.

  20. Methods for forming thin-film heterojunction solar cells from I-III-VI{sub 2}

    DOE Patents [OSTI]

    Mickelsen, R.A.; Chen, W.S.

    1985-08-13T23:59:59.000Z

    An improved thin-film, large area solar cell, and methods for forming the same are disclosed, having a relatively high light-to-electrical energy conversion efficiency and characterized in that the cell comprises a p-n type heterojunction formed of: (i) a first semiconductor layer comprising a photovoltaic active material selected from the class of I-III-VI{sub 2} chalcopyrite ternary materials which is vacuum deposited in a thin ``composition-graded`` layer ranging from on the order of about 2.5 microns to about 5.0 microns ({approx_equal}2.5 {mu}m to {approx_equal}5.0 {mu}m) and wherein the lower region of the photovoltaic active material preferably comprises a low resistivity region of p-type semiconductor material having a superimposed region of relatively high resistivity, transient n-type semiconductor material defining a transient p-n homojunction; and (ii) a second semiconductor layer comprising a low resistivity n-type semiconductor material; wherein interdiffusion occurs (a) between the elemental constituents of the two discrete juxtaposed regions of the first semiconductor layer defining a transient p-n homojunction layer, and (b) between the transient n-type material in the first semiconductor layer and the second n-type semiconductor layer. 16 figs.

  1. Methods for forming thin-film heterojunction solar cells from I-III-VI[sub 2

    DOE Patents [OSTI]

    Mickelsen, R.A.; Chen, W.S.

    1982-06-15T23:59:59.000Z

    An improved thin-film, large area solar cell, and methods for forming the same are disclosed, having a relatively high light-to-electrical energy conversion efficiency and characterized in that the cell comprises a p-n type heterojunction formed of: (1) a first semiconductor layer comprising a photovoltaic active material selected from the class of I-III-VI[sub 2] chalcopyrite ternary materials which is vacuum deposited in a thin composition-graded'' layer ranging from on the order of about 2.5 microns to about 5.0 microns ([approx equal]2.5[mu]m to [approx equal]5.0[mu]m) and wherein the lower region of the photovoltaic active material preferably comprises a low resistivity region of p-type semiconductor material having a superimposed region of relatively high resistivity, transient n-type semiconductor material defining a transient p-n homojunction; and (2), a second semiconductor layer comprising a low resistivity n-type semiconductor material; wherein interdiffusion (a) between the elemental constituents of the two discrete juxtaposed regions of the first semiconductor layer defining a transient p-n homojunction layer, and (b) between the transient n-type material in the first semiconductor layer and the second n-type semiconductor layer, is allowed.

  2. Methods for forming thin-film heterojunction solar cells from I-III-VI.sub. 2

    DOE Patents [OSTI]

    Mickelsen, Reid A. (Bellevue, WA); Chen, Wen S. (Seattle, WA)

    1982-01-01T23:59:59.000Z

    An improved thin-film, large area solar cell, and methods for forming the same, having a relatively high light-to-electrical energy conversion efficiency and characterized in that the cell comprises a p-n type heterojunction formed of: (i) a first semiconductor layer comprising a photovoltaic active material selected from the class of I-III-VI.sub.2 chalcopyrite ternary materials which is vacuum deposited in a thin "composition-graded" layer ranging from on the order of about 2.5 microns to about 5.0 microns (.congruent.2.5.mu.m to .congruent.5.0.mu.m) and wherein the lower region of the photovoltaic active material preferably comprises a low resistivity region of p-type semiconductor material having a superimposed region of relatively high resistivity, transient n-type semiconductor material defining a transient p-n homojunction; and (ii), a second semiconductor layer comprising a low resistivity n-type semiconductor material; wherein interdiffusion (a) between the elemental constituents of the two discrete juxtaposed regions of the first semiconductor layer defining a transient p-n homojunction layer, and (b) between the transient n-type material in the first semiconductor layer and the second n-type semiconductor layer, causes the transient n-type material in The Government has rights in this invention pursuant to Contract No. EG-77-C-01-4042, Subcontract No. XJ-9-8021-1 awarded by the U.S. Department of Energy.

  3. Thermoelectric effect in very thin film Pt/Au thermocouples

    SciTech Connect (OSTI)

    Salvadori, M.C.; Vaz, A.R.; Teixeira, F.S.; Cattani, M.; Brown,I.G.

    2006-01-10T23:59:59.000Z

    The thickness dependence of the thermoelectric power of Pt films of variable thickness on a reference Au film has been determined for the case when the Pt film thickness, t, is not large compared to the charge carrier mean free path, {ell}, that is, t/{ell}. Pt film thicknesses down to 2.2 nm were investigated. We find that {Delta}S{sub F} = S{sub B}-S{sub F} (where S{sub B} and S{sub F} are the thermopowers of the Pt bulk and film, respectively) does not vary linearly as 1/t as is the case for thin film thermocouples when the film thickness is large compared to the charge carrier mean free path.

  4. Uncooled thin film pyroelectric IR detector with aerogel thermal isolation

    SciTech Connect (OSTI)

    Ruffner, J.A.; Clem, P.G.; Tuttle, B.A. [and others

    1998-01-01T23:59:59.000Z

    Uncooled pyroelectric IR imaging systems, such as night vision goggles, offer important strategic advantages in battlefield scenarios and reconnaissance surveys. Until now, the current technology for fabricating these devices has been limited by low throughput and high cost which ultimately limit the availability of these sensor devices. We have developed and fabricated an alternative design for pyroelectric IR imaging sensors that utilizes a multilayered thin film deposition scheme to create a monolithic thin film imaging element on an active silicon substrate for the first time. This approach combines a thin film pyroelectric imaging element with a thermally insulating SiO{sub 2} aerogel thin film to produce a new type of uncooled IR sensor that offers significantly higher thermal, spatial, and temporal resolutions at a substantially lower cost per unit. This report describes the deposition, characterization and optimization of the aerogel thermal isolation layer and an appropriate pyroelectric imaging element. It also describes the overall integration of these components along with the appropriate planarization, etch stop, adhesion, electrode, and blacking agent thin film layers into a monolithic structure. 19 refs., 8 figs., 6 tabs.

  5. as2s3 thin films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    films Engineering Websites Summary: of domain switching and controllability, preventing thin-film and polycrystalline ferroelectrics from the switching mechanisms of...

  6. Thin films of gallium arsenide on low-cost substrates. Final technical report, July 5, 1976-December 5, 1978

    SciTech Connect (OSTI)

    Ruth, R.P.; Dapkus, P.D.; Dupuis, R.D.; Johnson, R.E.; Moudy, L.A.; Yang, J.J.; Yingling, R.D.

    1980-03-01T23:59:59.000Z

    The MO-CVD technique was applied to the growth of thin films of GaAs and GaAl As on inexpensive polycrystalline or amorphous substrate materials (primarily glasses and metals) for use in fabrication of large-area low-cost photovoltaic device structures. Trimethylgallium, arsine, and trimethylaluminum are mixed in appropriate concentrations at room temperature in the gaseous state and pyrolyzed at the substrate, which is heated in a vertical reactor chamber to temperatures of 700 to 750/sup 0/C, to produce the desired film composition and properties. Studies of the properties of grain boundaries in polycrystalline GaAs films by the use of transport measurements as a function of temperature indicated that the grain boundary regions are depleted of majority carriers by a large density of neutral traps at the grain boundary interface, causing a barrier to majority carrier flow in the material. Schottky-barrier solar cells of approx. 3 percent efficiency (simulated AM0 illumination, no AR coating) were demonstrated on thin-film polycrystalline GaAs n/n/sup +/ structures on Mo sheet, Mo film/glass, and graphite substrates. Substantial enhancement of average grain size in polycrystalline MO-CVD GaAs films on Mo sheet was obtained by the addition of HCl to the growth atmosphere during deposition. Extensive investigation of polycrystalline thin-film p-n junctions indicated that the forward voltage of such devices is apparently limited to 0.5 to 0.6V. A laboratory-type deposition apparatus for the formation of TiO/sub 2/ antireflection (AR) coatings by pyrolysis of titanium isopropoxide was assembled and tested. Detailed analyses were made of the materials and labor costs involved in the laboratory-scale fabrication of MO-CVD thin-film GaAs solar cells. Details are presented. (WHK)

  7. GaN/Cu[subscript 2]O Heterojunctions for Photovoltaic Applications

    E-Print Network [OSTI]

    Hering, K.P.

    Several growth methods were employed to investigate the photovoltaic behavior of GaN/Cu[subscript 2]O heterojunctions by depositing cuprous oxide thin films on top of gallium nitride templates. The templates consist of a ...

  8. An analysis of the photovoltaic value chain for reviewing solar energy policy in Massachusetts

    E-Print Network [OSTI]

    Dean, Ryan, S. B. (Ryan G.) Massachusetts Institute of Technology

    2008-01-01T23:59:59.000Z

    We explore the photovoltaic value chain for 1st generation crystalline silicon, 2nd generation thin film and 3rd generation organic/ dye-sensitized PV in an effort to evaluate two levels of policy options intended to create ...

  9. Elucidating efficiency losses in cuprous oxide (Cu?O) photovoltaics and identifying strategies for efficiency improvement

    E-Print Network [OSTI]

    Brandt, Riley Eric

    2013-01-01T23:59:59.000Z

    In this thesis, I fabricated and characterized a series of thin-film cuprous oxide (Cu?O) photovoltaic devices. I constructed several different device designs, using sputtered and electrochemically deposited Cu?O. ...

  10. Thin Metal Oxide Films to Modify a Window Layer in CdTe-Based Solar Cells for Improved Performance

    SciTech Connect (OSTI)

    Lemmon, John P.; Polikarpov, Evgueni; Bennett, Wendy D.; Kovarik, Libor

    2012-05-05T23:59:59.000Z

    We report on CdS/CdTe photovoltaic devices that contain a thin Ta2O5 film deposited onto the CdS window layer by sputtering. We show that for thicknesses below 5 nm, Ta2O5 films between CdS and CdTe positively affect the solar cell performance, improving JSC, VOC, and the cell power conversion efficiency despite the insulating nature of the interlayer material. Using the Ta2O5 interlayer, a VOC gain of over 100 mV was demonstrated compared to a CdTe/CdS baseline. Application of a 1nm Ta2O5 interlayer enabled the fabrication of CdTe solar cells with extremely thin (less than 30 nm) CdS window layers. The efficiency of these cells exceeded that of a base line cell with 95 nm of CdS.

  11. Photovoltaic device having light transmitting electrically conductive stacked films

    DOE Patents [OSTI]

    Weber, Michael F. (St. Paul, MN); Tran, Nang T. (St. Paul, MN); Jeffrey, Frank R. (St. Paul, MN); Gilbert, James R. (St. Paul, MN); Aspen, Frank E. (St. Paul, MN)

    1990-07-10T23:59:59.000Z

    A light transmitting electrically conductive stacked film, useful as a light transmitting electrode, including a first light transmitting electrically conductive layer, having a first optical thickness, a second light transmitting layer, having a second optical thickness different from the optical thickness of the first layer, and an electrically conductive metallic layer interposed between and in initimate contact with the first and second layers.

  12. Light induced phase change in Cu{sub 2?x}Zn{sub 1.3}SnS{sub 4} thin films

    SciTech Connect (OSTI)

    Kumar Samji, Sunil; Tiwari, Brajesh; Krishna Surendra, M.; Ramachandra Rao, M. S., E-mail: msrrao@iitm.ac.in [Department of Physics and Nano Functional Materials Technology Centre, Indian Institute of Technology Madras, Chennai–600036 (India)

    2014-04-14T23:59:59.000Z

    Cu{sub 2}ZnSnS{sub 4} and its alloy based thin film solar cells have shown better photovoltaic performance under Cu-poor and Zn-rich conditions. However, the effect of Cu-stoichiometry on the coexistence of kesterite (KS), stannite and/or partially disordered kesterite (PD-KS) phases and their influence on photovoltaic performance is not clearly understood. Raman studies were carried out on Cu{sub 2?x}Zn{sub 1.3}SnS{sub 4} (x?=?0, 0.3, and 0.5) thin films by changing the intensity of the incident laser beam. It was observed that both Cu-stoichiometry and incident laser beam intensity induce a disorder in the system. Disorder induced transformation of KS (I4{sup ¯}) to PD-KS (I4{sup ¯}2m) is explained by Raman studies.

  13. Low Temperature Chemical Vapor Deposition Of Thin Film Magnets

    DOE Patents [OSTI]

    Miller, Joel S. (Salt Lake City, UT); Pokhodnya, Kostyantyn I. (Salt Lake City, UT)

    2003-12-09T23:59:59.000Z

    A thin-film magnet formed from a gas-phase reaction of tetracyanoetheylene (TCNE) OR (TCNQ), 7,7,8,8-tetracyano-P-quinodimethane, and a vanadium-containing compound such as vanadium hexcarbonyl (V(CO).sub.6) and bis(benzene)vanalium (V(C.sub.6 H.sub.6).sub.2) and a process of forming a magnetic thin film upon at least one substrate by chemical vapor deposition (CVD) at a process temperature not exceeding approximately 90.degree. C. and in the absence of a solvent. The magnetic thin film is particularly suitable for being disposed upon rigid or flexible substrates at temperatures in the range of 40.degree. C. and 70.degree. C. The present invention exhibits air-stable characteristics and qualities and is particularly suitable for providing being disposed upon a wide variety of substrates.

  14. Electrochromism in copper oxide thin films

    E-Print Network [OSTI]

    Richardson, Thomas J.; Slack, Jonathan L.; Rubin, Michael D.

    2000-01-01T23:59:59.000Z

    by a variety of routes, and electrochromic behavior has beenof Cu x O films, electrochromic devices based onbeen investigated. Unlike electrochromic devices based on

  15. Laser processing of polymer nanocomposite thin films A. T. Sellinger, E. M. Leveugle, K. Gogick, L. V. Zhigilei, and J. M. Fitz-Geralda

    E-Print Network [OSTI]

    Zhigilei, Leonid V.

    that nanocomposite thin films tend to exhibit.6­12 Poly- mer thin films infused with carbon nanotubes CNTs often

  16. Carrier Dynamics in a-Fe2O3 (0001) Thin Films and Single Crystals...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carrier Dynamics in a-Fe2O3 (0001) Thin Films and Single Crystals Probed by Femtosecond Transient Absorption and Reflectivity. Carrier Dynamics in a-Fe2O3 (0001) Thin Films and...

  17. ZnS Thin Films Deposited by a Spin Successive Ionic Layer Adsorption...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ZnS Thin Films Deposited by a Spin Successive Ionic Layer Adsorption and Reaction Process. ZnS Thin Films Deposited by a Spin Successive Ionic Layer Adsorption and Reaction...

  18. Adsorption of iso-/n-butane on an Anatase Thin Film: A Molecular...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    iso-n-butane on an Anatase Thin Film: A Molecular Beam Scattering and TDS Study. Adsorption of iso-n-butane on an Anatase Thin Film: A Molecular Beam Scattering and TDS Study....

  19. Two-color Laser Desorption of Nanostructured MgO Thin Films....

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two-color Laser Desorption of Nanostructured MgO Thin Films. Two-color Laser Desorption of Nanostructured MgO Thin Films. Abstract: Neutral magnesium atom emission from...

  20. Epoxy/Single Walled Carbon Nanotube Nanocomposite Thin Films for Composites Reinforcement

    E-Print Network [OSTI]

    Warren, Graham

    2010-07-14T23:59:59.000Z

    This work is mainly focused upon the preparation, processing and evaluation of mechanical and material properties of epoxy/single walled carbon nanotube (SWCNT) nanocomposite thin films. B-staged epoxy/SWCNT nanocomposite thin films at 50% of cure...

  1. Characterization of LiNi?.?Mn?.?O? Thin Film Cathode Prepared by Pulsed Laser Deposition

    E-Print Network [OSTI]

    Xia, Hui

    LiNi?.?Mn?.?O? thin films have been grown by pulsed laser deposition (PLD) on stainless steel (SS) substrates. The crystallinity and structure of thin films were investigated by X-ray diffraction (XRD). Microstructure and ...

  2. Generation of low work function, stable compound thin films by laser ablation

    DOE Patents [OSTI]

    Dinh, Long N. (Concord, CA); McLean, II, William (Oakland, CA); Balooch, Mehdi (Berkeley, CA); Fehring, Jr., Edward J. (Dublin, CA); Schildbach, Marcus A. (Livermore, CA)

    2001-01-01T23:59:59.000Z

    Generation of low work function, stable compound thin films by laser ablation. Compound thin films with low work function can be synthesized by simultaneously laser ablating silicon, for example, and thermal evaporating an alkali metal into an oxygen environment. For example, the compound thin film may be composed of Si/Cs/O. The work functions of the thin films can be varied by changing the silicon/alkali metal/oxygen ratio. Low work functions of the compound thin films deposited on silicon substrates were confirmed by ultraviolet photoelectron spectroscopy (UPS). The compound thin films are stable up to 500.degree. C. as measured by x-ray photoelectron spectroscopy (XPS). Tests have established that for certain chemical compositions and annealing temperatures of the compound thin films, negative electron affinity (NEA) was detected. The low work function, stable compound thin films can be utilized in solar cells, field emission flat panel displays, electron guns, and cold cathode electron guns.

  3. Study of Martensitic Phase transformation in a NiTiCu Thin Film...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Martensitic Phase transformation in a NiTiCu Thin Film Shape Memory Alloy Using Photoelectron Emission Microscopy. Study of Martensitic Phase transformation in a NiTiCu Thin Film...

  4. The development of a thin-film rollforming process for pharmaceutical continuous manufacturing

    E-Print Network [OSTI]

    Slaughter, Ryan (Ryan R.)

    2013-01-01T23:59:59.000Z

    In this thesis, a continuous rollforming process for the folding of thin-films was proposed and studied as a key step in the continuous manufacturing of pharmaceutical tablets. HPMC and PEG based polymeric thin-films were ...

  5. Anisotropic dewetting in ultra-thin single-crystal silicon-on-insulator films

    E-Print Network [OSTI]

    Danielson, David T. (David Thomas)

    2008-01-01T23:59:59.000Z

    The single crystal silicon-on-insulator thin film materials system represents both an ideal model system for the study of anisotropic thin film dewetting as well as a technologically important system for the development ...

  6. Layer-by-Layer Assembly of Clay-filled Polymer Nanocomposite Thin Films

    E-Print Network [OSTI]

    Jang, Woo-Sik

    2010-01-14T23:59:59.000Z

    robotic dipping system, for the preparation of these thin films, was built. The robot alternately dips a substrate into aqueous mixtures with rinsing and drying in between. Thin films of sodium montmorillonite clay and cationic polymer were grown...

  7. Influence of samaria doping on the resistance of ceria thin films...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    doping on the resistance of ceria thin films and its implications to the planar oxygen sensing devices. Influence of samaria doping on the resistance of ceria thin films and...

  8. Growth of Epitaxial Thin Pd(111) Films on Pt(111) and Oxygen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Growth of Epitaxial Thin Pd(111) Films on Pt(111) and Oxygen-Terminated FeO(111) Surfaces . Growth of Epitaxial Thin Pd(111) Films on Pt(111) and Oxygen-Terminated FeO(111)...

  9. On the room-temperature ferromagnetism of Zn1-xCrxO thin films...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    On the room-temperature ferromagnetism of Zn1-xCrxO thin films deposited by reactive co-sputtering. On the room-temperature ferromagnetism of Zn1-xCrxO thin films deposited by...

  10. Initiated chemical vapor deposition of polymeric thin films : mechanism and applications

    E-Print Network [OSTI]

    Chan, Kelvin, Ph. D. Massachusetts Institute of Technology

    2005-01-01T23:59:59.000Z

    Initiated chemical vapor deposition (iCVD) is a novel technique for depositing polymeric thin films. It is able to deposit thin films of application-specific polymers in one step without using any solvents. Its uniqueness ...

  11. Thin Metal Oxide Films to Modify a Window Layer in CdTe-Based...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thin Metal Oxide Films to Modify a Window Layer in CdTe-Based Solar Cells for Improved Performance. Thin Metal Oxide Films to Modify a Window Layer in CdTe-Based Solar Cells for...

  12. High efficiency thin film silicon solar cells with novel light trapping : principle, design and processing

    E-Print Network [OSTI]

    Zeng, Lirong, Ph. D. Massachusetts Institute of Technology

    2008-01-01T23:59:59.000Z

    One major efficiency limiting factor in thin film solar cells is weak absorption of long wavelength photons due to the limited optical path length imposed by the thin film thickness. This is especially severe in Si because ...

  13. Fabrication of polycrystalline thin films by pulsed laser processing

    DOE Patents [OSTI]

    Mitlitsky, F.; Truher, J.B.; Kaschmitter, J.L.; Colella, N.J.

    1998-02-03T23:59:59.000Z

    A method is disclosed for fabricating polycrystalline thin films on low-temperature (or high-temperature) substrates which uses processing temperatures that are low enough to avoid damage to the substrate, and then transiently heating select layers of the thin films with at least one pulse of a laser or other homogenized beam source. The pulse length is selected so that the layers of interest are transiently heated to a temperature which allows recrystallization and/or dopant activation while maintaining the substrate at a temperature which is sufficiently low to avoid damage to the substrate. This method is particularly applicable in the fabrication of solar cells. 1 fig.

  14. Fabrication of polycrystalline thin films by pulsed laser processing

    DOE Patents [OSTI]

    Mitlitsky, Fred (Livermore, CA); Truher, Joel B. (San Rafael, CA); Kaschmitter, James L. (Pleasanton, CA); Colella, Nicholas J. (Livermore, CA)

    1998-02-03T23:59:59.000Z

    A method for fabricating polycrystalline thin films on low-temperature (or high-temperature) substrates which uses processing temperatures that are low enough to avoid damage to the substrate, and then transiently heating select layers of the thin films with at least one pulse of a laser or other homogenized beam source. The pulse length is selected so that the layers of interest are transiently heated to a temperature which allows recrystallization and/or dopant activation while maintaining the substrate at a temperature which is sufficiently low to avoid damage to the substrate. This method is particularly applicable in the fabrication of solar cells.

  15. Far From Threshold Buckling Analysis of Thin Films

    E-Print Network [OSTI]

    Benny Davidovitch; Robert D. Schroll; Dominic Vella; Mokhtar Adda-Bedia; Enrique Cerda

    2010-08-17T23:59:59.000Z

    Thin films buckle easily and form wrinkled states in regions of well defined size. The extent of a wrinkled region is typically assumed to reflect the zone of in-plane compressive stresses prior to buckling, but recent experiments on ultrathin sheets have shown that wrinkling patterns are significantly longer and follow different scaling laws than those predicted by standard buckling theory. Here we focus on a simple setup to show the striking differences between near-threshold buckling and the analysis of wrinkle patterns in very thin films, which are typically far from threshold.

  16. Process for fabricating polycrystalline semiconductor thin-film solar cells, and cells produced thereby

    DOE Patents [OSTI]

    Wu, Xuanzhi (Golden, CO); Sheldon, Peter (Lakewood, CO)

    2000-01-01T23:59:59.000Z

    A novel, simplified method for fabricating a thin-film semiconductor heterojunction photovoltaic device includes initial steps of depositing a layer of cadmium stannate and a layer of zinc stannate on a transparent substrate, both by radio frequency sputtering at ambient temperature, followed by the depositing of dissimilar layers of semiconductors such as cadmium sulfide and cadmium telluride, and heat treatment to convert the cadmium stannate to a substantially single-phase material of a spinel crystal structure. Preferably, the cadmium sulfide layer is also deposited by radio frequency sputtering at ambient temperature, and the cadmium telluride layer is deposited by close space sublimation at an elevated temperature effective to convert the amorphous cadmium stannate to the polycrystalline cadmium stannate with single-phase spinel structure.

  17. A non-resonant dielectric metamaterial for enhancement of thin-film solar cells

    E-Print Network [OSTI]

    Omelyanovich, Mikhail; Simovski, Constantin

    2014-01-01T23:59:59.000Z

    Recently, we have suggested dielectric metamaterial composed as an array of submicron dielectric spheres located on top of an amorphous thin-film solar cell. We have theoretically shown that this metamaterial can decrease the reflection and simultaneously can suppress the transmission through the photovoltaic layer because it transforms the incident plane wave into a set of focused light beams. This theoretical concept has been strongly developed and experimentally confirmed in the present paper. Here we consider the metamaterial for oblique angle illumination, redesign the solar cell and present a detailed experimental study of the whole structure. In contrast to our precedent theoretical study we show that our omnidirectional light-trapping structure may operate better than the optimized flat coating obtained by plasma-enhanced chemical vapor deposition.

  18. Multilayer nanoparticle arrays for broad spectrum absorption enhancement in thin film solar cells

    E-Print Network [OSTI]

    Krishnan, Aravind; Krishna, Siva Rama; Khan, Mohammed Zafar Ali

    2013-01-01T23:59:59.000Z

    In this paper, we present a theoretical study on the absorption efficiency enhancement of a thin film amorphous Silicon (a-Si) photovoltaic cell over a broad spectrum of wavelengths using multiple nanoparticle arrays. The light absorption efficiency is enhanced in the lower wavelengths by a nanoparticle array on the surface and in the higher wavelengths by another nanoparticle array embedded in the active region. The efficiency at intermediate wavelengths is enhanced by the constructive interference of plasmon coupled light. We optimize this design by tuning the radius of particles in both arrays, the period of the array and the distance between the two arrays. The optimization results in 61.44% increase in total quantum efficiency for a 500 nm thick a-Si substrate.

  19. Perovskite phase thin films and method of making

    DOE Patents [OSTI]

    Boyle, Timothy J. (Albuquerque, NM); Rodriguez, Mark A. (Albuquerque, NM)

    2000-01-01T23:59:59.000Z

    The present invention comprises perovskite-phase thin films, of the general formula A.sub.x B.sub.y O.sub.3 on a substrate, wherein A is selected from beryllium, magnesium, calcium, strontium, and barium or a combination thereof; B is selected from niobium and tantalum or a combination thereof; and x and y are mole fractions between approximately 0.8 and 1.2. More particularly, A is strontium or barium or a combination thereof and B is niobium or tantalum or a combination thereof. Also provided is a method of making a perovskite-phase thin film, comprising combining at least one element-A-containing compound, wherein A is selected from beryllium, magnesium, calcium, strontium or barium, with at least one element-B-containing compound, wherein B niobium or tantalum, to form a solution; adding a solvent to said solution to form another solution; spin-coating the solution onto a substrate to form a thin film; and heating the film to form the perovskite-phase thin film.

  20. Experimental thin film deposition and surface analysis techniques

    SciTech Connect (OSTI)

    Collins, W.E.; Rambabu, B.

    1986-01-01T23:59:59.000Z

    An attempt has been made to present some of the thin-film deposition and surface analysis techniques which may be useful in growing superionic conducting materials. Emphasis is made on the importance of being careful in selecting process parameters and materials in order to produce films with properties outlined in this article. Also, special care should be given to proper consideration of grain boundary effects.

  1. Electrical properties of quench-condensed thin film

    E-Print Network [OSTI]

    Lee, Kyoungjin

    2009-05-15T23:59:59.000Z

    cryopump is used for high vacuum pumping. Materials to be evaporated (evaporant) are held by evaporation sources, like a crucible, boat or wire coil. Tungsten wire is commonly used as an evaporation source for materials like aluminum, nickel, chromium... films were evaporated at room temperature with NRC 3114 commercial thermal evaporator. We deposited aluminum and nickel thin films in a form of bar with shadow mask. A commercial tungsten basket was used for the evaporation source. The evaporation...

  2. Substrates suitable for deposition of superconducting thin films

    DOE Patents [OSTI]

    Feenstra, Roeland (Oak Ridge, TN); Boatner, Lynn A. (Oak Ridge, TN)

    1993-01-01T23:59:59.000Z

    A superconducting system for the lossless transmission of electrical current comprising a thin film of superconducting material Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.7-x epitaxially deposited upon a KTaO.sub.3 substrate. The KTaO.sub.3 is an improved substrate over those of the prior art since the it exhibits small lattice constant mismatch and does not chemically react with the superconducting film.

  3. Preparation of a semiconductor thin film

    DOE Patents [OSTI]

    Pehnt, M.; Schulz, D.L.; Curtis, C.J.; Ginley, D.S.

    1998-01-27T23:59:59.000Z

    A process is disclosed for the preparation of a semiconductor film. The process comprises depositing nanoparticles of a semiconductor material onto a substrate whose surface temperature during nanoparticle deposition thereon is sufficient to cause substantially simultaneous fusion of the nanoparticles to thereby coalesce with each other and effectuate film growth.

  4. Preparation of a semiconductor thin film

    DOE Patents [OSTI]

    Pehnt, Martin (TuBingen, DE); Schulz, Douglas L. (Denver, CO); Curtis, Calvin J. (Lakewood, CO); Ginley, David S. (Evergreen, CO)

    1998-01-01T23:59:59.000Z

    A process for the preparation of a semiconductor film. The process comprises depositing nanoparticles of a semiconductor material onto a substrate whose surface temperature during nanoparticle deposition thereon is sufficient to cause substantially simultaneous fusion of the nanoparticles to thereby coalesce with each other and effectuate film growth.

  5. Resonant cavity enhanced light harvesting in flexible thin-film organic solar cells

    E-Print Network [OSTI]

    Fan, Shanhui

    Optical Society of America OCIS codes: (310.7005) Transparent conductive coatings; (310.6845) Thin film

  6. Mechanisms of Zinc Oxide Nanocrystalline Thin Film Formation by Thermal Degradation of Metal-Loaded Hydrogels

    E-Print Network [OSTI]

    electrode in flat- panel displays,1 solar cells, and thin-film transistors.2,3 Other recent reports account

  7. Photovoltaic Subcontract Program

    SciTech Connect (OSTI)

    Surek, Thomas; Catalano, Anthony

    1993-03-01T23:59:59.000Z

    This report summarizes the fiscal year (FY) 1992 progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Crystalline Materials and Advanced Concepts project, the Polycrystalline Thin Films project, Amorphous Silicon Research project, the Photovoltaic Manufacturing Technology (PVMaT) project, PV Module and System Performance and Engineering project, and the PV Analysis and Applications Development project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1992, and future research directions.

  8. EARTH ABUNDANT MATERIALS FOR HIGH EFFICIENCY HETEROJUNCTION THIN FILM SOLAR CELLS

    E-Print Network [OSTI]

    Ceder, Gerbrand

    materials for thin film solar cells such as CdTe and CIGS suffer from concerns over resource scarcity (eEARTH ABUNDANT MATERIALS FOR HIGH EFFICIENCY HETEROJUNCTION THIN FILM SOLAR CELLS Yun Seog Lee 1 conversion efficiencies should be increased. In terms of reducing module cost, thin film solar cells

  9. A Homogenized Free Energy Model for Hysteresis in Thin-film Shape Memory Alloys

    E-Print Network [OSTI]

    A Homogenized Free Energy Model for Hysteresis in Thin-film Shape Memory Alloys Jordan E. Massad1-8205 Abstract Thin-film shape memory alloys (SMAs) have become excellent candidates for mi- croactuator- lustrate aspects of the model through comparison with thin-film SMA superelastic and shape memory effect

  10. Barium ferrite thin film media with perpendicular c-axis orientation and small grain size

    E-Print Network [OSTI]

    Laughlin, David E.

    Barium ferrite thin film media with perpendicular c-axis orientation and small grain size Zailong, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 Barium ferrite thin films with perpendicular c conditions. The c-axis orientation of barium ferrite thin films is most sensitive to the oxygen partial

  11. Time-Resolved Magnetic Flux and AC-Current Distributions in Superconducting YBCO Thin Films and

    E-Print Network [OSTI]

    Shaw, Leah B.

    Time-Resolved Magnetic Flux and AC-Current Distributions in Superconducting YBCO Thin Films magnetic field. We study the interaction behavior of YBCO thin films in an ac transport current and a dc the calibrated field profiles. The current density evolution in YBCO thin films is studied by TRMOI as a function

  12. Hybrid spectral/finite element analysis of dynamic delamination of patterned thin films

    E-Print Network [OSTI]

    Sottos, Nancy R.

    Hybrid spectral/finite element analysis of dynamic delamination of patterned thin films Phuong Tran Accepted 10 March 2008 Available online 20 March 2008 Keywords: Thin film Adhesion Delamination Dynamic analysis is performed to investigate the dynamic edge delamination of patterned thin films from a substrate

  13. X-ray Absorption Spectroscopy of Transition Metal-Magnesium Hydride Thin Films

    E-Print Network [OSTI]

    X-ray Absorption Spectroscopy of Transition Metal-Magnesium Hydride Thin Films T. J. Richardsona@lbl.gov Abstract Mixed metal thin films containing magnesium and a first-row transition element exhibit very large of magnesium hydride. Keywords: A. hydrogen storage materials, thin films; C. EXAFS, NEXAFS, X-ray diffraction

  14. Influence of stoichiometry on the dielectric properties of sputtered strontium titanate thin films

    E-Print Network [OSTI]

    York, Robert A.

    Influence of stoichiometry on the dielectric properties of sputtered strontium titanate thin films.1063/1.1598274 INTRODUCTION SrTiO3 thin films have been widely studied for their high dielectric constants and potential temperature superconductors. The dielectric permittivity of SrTiO3 thin films is significantly smaller than

  15. Effects of thickness on the piezoelectric and dielectric properties of lead zirconate titanate thin films

    E-Print Network [OSTI]

    Sottos, Nancy R.

    Lead zirconate titanate PZT thin films with a Zr/Ti ratio of 52/48 were deposited on platinized silicon. Both the piezoelectric properties and the dielectric constants of the PZT thin films were found thin films. The measured changes in properties with thickness were correlated with the residual stress

  16. THE THIN FILM EQUATION WITH "BACKWARDS" FORCING AMY NOVICK-COHEN

    E-Print Network [OSTI]

    Novick-Cohen, Amy

    THE THIN FILM EQUATION WITH "BACKWARDS" FORCING AMY NOVICK-COHEN DEPARTMENT OF MATHEMATICS TECHNION-2007) Abstract. In this paper, we focus on the thin film equation with lower order "backwards" diffusion which can describe, for example, structure formation in biofilms and the evolution of thin viscous films

  17. THIN FILM EPITAXY WITH OR WITHOUT SLOPE SELECTION BO LI AND JIAN-GUO LIU

    E-Print Network [OSTI]

    Soatto, Stefano

    THIN FILM EPITAXY WITH OR WITHOUT SLOPE SELECTION BO LI AND JIAN-GUO LIU Abstract. Two nonlinear diffusion equations for thin film epitaxy, with or without slope se- lection, are studied in this work = - · h 1 + | h|2 + h (1.1) and th = - · 1 - | h|2 h + h (1.2) that model epitaxial growth of thin films

  18. Thin film ZT characterization using transient Harman technique Zhixi Bian, Yan Zhang, Holger Schmidt, Ali Shakouri

    E-Print Network [OSTI]

    Thin film ZT characterization using transient Harman technique Zhixi Bian, Yan Zhang, Holger Street, Santa Cruz, CA 95064 Email: ali@soe.ucsc.edu, phone: (831) 459-3821 Abstract Thin-film to the freedom of tailoring the electron and heat transport. The characterization of these thin films

  19. Mathematical Model of Charge and Density Distributions in Interfacial Polymerization of Thin Films

    E-Print Network [OSTI]

    Freger, Viatcheslav "Slava"

    Mathematical Model of Charge and Density Distributions in Interfacial Polymerization of Thin Films INTRODUCTION Interfacial polymerization (IP) as a method of prepa- ration of thin film composite (TFC- tion. It has been shown that the formation of a thin film occurs very quickly and often results

  20. REVIEW OF SCIENTIFIC INSTRUMENTS 82, 023908 (2011) Calorimetry of epitaxial thin films

    E-Print Network [OSTI]

    Hellman, Frances

    2011-01-01T23:59:59.000Z

    REVIEW OF SCIENTIFIC INSTRUMENTS 82, 023908 (2011) Calorimetry of epitaxial thin films David W 2011; accepted 22 January 2011; published online 24 February 2011) Thin film growth allows. Microcalorimetry and nanocalorimetry techniques exist for the measurements of thin films but rely on an amorphous

  1. Thin film microcalorimeter for heat capacity measurements from 1.5 to 800 K

    E-Print Network [OSTI]

    Hellman, Frances

    Thin film microcalorimeter for heat capacity measurements from 1.5 to 800 K , D. W. Denlinger, E. N for publication 13 January 1994) A new microcalorimeter for measuring heat capacity of thin films in the range 1 silicon nitride membrane as the sample substrate, a Pt thin film resistor for temperatures greater than 40

  2. Thin-Film Solid-Phase Extraction To Measure Fugacities of Organic

    E-Print Network [OSTI]

    Gobas, Frank

    Thin-Film Solid-Phase Extraction To Measure Fugacities of Organic Chemicals with Low Volatility organic chemicals ranging in octanol-air partition coefficients from 105.6 to 109.2. Thin films feasibility, equilibration times, reproducibility, and property characteristics of the thin films

  3. Impact of thermal strain on the dielectric constant of sputtered barium strontium titanate thin films

    E-Print Network [OSTI]

    York, Robert A.

    thin films were deposited by sputtering on Pt/SiO2 structures using five different host substrates.1063/1.1459482 Oxide thin films remain very attractive to researchers due to their wide range of useful physical properties. Most groups have focused on the fabrication of thin films for op- tical and dielectric

  4. Hole Growth as a Microrheological Probe to Measure the Viscosity of Polymers Confined to Thin Films

    E-Print Network [OSTI]

    Dutcher, John

    Hole Growth as a Microrheological Probe to Measure the Viscosity of Polymers Confined to Thin Films thin freely-standing films revealed that hole formation and growth occurs only at temperatures: 3011­3021, 2006 Keywords: glass transition; nanoscale confinement; rheology; thin films; viscoelastic

  5. Sculptured thin films and glancing angle deposition: Growth mechanics and applications

    E-Print Network [OSTI]

    Robbie, Kevin

    Sculptured thin films and glancing angle deposition: Growth mechanics and applications K. Robbiea thin films with three dimensional microstructure controlled on the 10 nm scale were fabricated'' columnar thin film microstructure into desired forms ranging from zigzag shaped to helical to four

  6. Phase Transformations in Pulsed Laser Deposited Nanocrystalline Tin Oxide Thin Films

    E-Print Network [OSTI]

    Reid, Scott A.

    Phase Transformations in Pulsed Laser Deposited Nanocrystalline Tin Oxide Thin Films Haiyan Fan August 20, 2002. Revised Manuscript Received November 11, 2002 Thin SnOx films have been synthesized of reducing gases,1-3 and thin films have been synthesized by various means including evapora- tion,4

  7. Low-Loss, Tunable Microwave Capacitors Using Bismuth Zinc Niobate Thin Films

    E-Print Network [OSTI]

    York, Robert A.

    Low-Loss, Tunable Microwave Capacitors Using Bismuth Zinc Niobate Thin Films Jaehoon Park, Jiwei in the measured frequency range. The results show that BZN thin films have great potential for low loss, tunable microwave devices. Keyword: low loss, thin film, capacitors, dielectric properties, bismuth zinc niobate I

  8. ASC2014-4EPo2G-04 1 Aging of Ultra-Thin Niobium Films

    E-Print Network [OSTI]

    Prober, Daniel E.

    ASC2014-4EPo2G-04 1 Aging of Ultra-Thin Niobium Films Daniel F. Santavicca and Daniel E. Prober Abstract-- We characterize the evolution of the electrical properties of ultra-thin niobium films stored. Index Terms--Niobium, superconducting thin films, superconducting devices, nanofabrication I

  9. Microwave plasma assisted supersonic gas jet deposition of thin film materials

    DOE Patents [OSTI]

    Schmitt, III, Jerome J. (New Haven, CT); Halpern, Bret L. (Bethany, CT)

    1993-01-01T23:59:59.000Z

    An apparatus for fabricating thin film materials utilizing high speed gas dynamics relies on supersonic free jets of carrier gas to transport depositing vapor species generated in a microwave discharge to the surface of a prepared substrate where the vapor deposits to form a thin film. The present invention generates high rates of deposition and thin films of unforeseen high quality at low temperatures.

  10. Remote plasma enhanced atomic layer deposition of ZnO for thin film electronic applications

    E-Print Network [OSTI]

    Zheludev, Nikolay

    Remote plasma enhanced atomic layer deposition of ZnO for thin film electronic applications S: Available online 28 May 2012 Keywords: Remote plasma Atomic layer deposition (ALD) ZnO Thin film transistor of various reactant plasma parameters of remote plasma enhanced ALD (PEALD) on the ZnO thin film properties

  11. DETERMINING OPTICAL CONSTANTS OF URANIUM NITRIDE THIN FILMS IN THE EXTREME

    E-Print Network [OSTI]

    Hart, Gus

    DETERMINING OPTICAL CONSTANTS OF URANIUM NITRIDE THIN FILMS IN THE EXTREME ULTRAVIOLET (1.6-35 NM deposition and characterization of reactively-sputtered uranium nitride thin films. I also report optical.1 Application 1 1.2 Optical Constants 2 1.3 Project Focus 7 2 Uranium Nitride Thin Films 8 2.1 Sputtering 8 2

  12. Metal-black scattering centers to enhance light harvesting by thin-film solar cells

    E-Print Network [OSTI]

    Peale, Robert E.

    Metal-black scattering centers to enhance light harvesting by thin-film solar cells Deep Panjwania as scattering centers to increase the effective optical thickness of thin-film solar cells. The particular type. Gold-black was deposited on commercial thin-film solar cells using a thermal evaporator in nitrogen

  13. Growth of GaN Thin Films on Silicon Using Single Source Precursors

    E-Print Network [OSTI]

    Boo, Jin-Hyo

    Growth of GaN Thin Films on Silicon Using Single Source Precursors and Development of New We have grown the GaN thin films on silicon substrates using the newly developed single source precursors by thermal MOCVD method. Highly oriented GaN thin films in the [002] direction with hexagonal

  14. B{sub 4}C thin films for neutron detection

    SciTech Connect (OSTI)

    Hoeglund, Carina [European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden); Department of Physics, Chemistry and Biology (IFM), Thin Film Physics Division, Linkoeping University, SE-581 83 Linkoeping (Sweden); Birch, Jens; Jensen, Jens; Hultman, Lars [Department of Physics, Chemistry and Biology (IFM), Thin Film Physics Division, Linkoeping University, SE-581 83 Linkoeping (Sweden); Andersen, Ken; Hall-Wilton, Richard [European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden); Bigault, Thierry; Buffet, Jean-Claude; Correa, Jonathan; Esch, Patrick van; Guerard, Bruno; Piscitelli, Francesco [Institute Laue Langevin, Rue Jules Horowitz, FR-380 00 Grenoble (France); Khaplanov, Anton [European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden); Institute Laue Langevin, Rue Jules Horowitz, FR-380 00 Grenoble (France); Vettier, Christian [European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden); European Synchrotron Radiation Facility, BP 220, FR-380 43 Grenoble Cedex 9 (France); Vollenberg, Wilhelmus [Vacuum, Surfaces and Coatings Group (TE/VSC), CERN, CH-1211 Geneva 23 (Switzerland)

    2012-05-15T23:59:59.000Z

    Due to the very limited availability of {sup 3}He, new kinds of neutron detectors, not based on {sup 3}He, are urgently needed. Here, we present a method to produce thin films of {sup 10}B{sub 4}C, with maximized detection efficiency, intended to be part of a new generation of large area neutron detectors. B{sub 4}C thin films have been deposited onto Al-blade and Si wafer substrates by dc magnetron sputtering from {sup nat}B{sub 4}C and {sup 10}B{sub 4}C targets in an Ar discharge, using an industrial deposition system. The films were characterized with scanning electron microscopy, elastic recoil detection analysis, x-ray reflectivity, and neutron radiography. We show that the film-substrate adhesion and film purity are improved by increased substrate temperature and deposition rate. A deposition rate of 3.8 A/s and substrate temperature of 400 deg. C result in films with a density close to bulk values and good adhesion to film thickness above 3 {mu}m. Boron-10 contents of almost 80 at. % are obtained in 6.3 m{sup 2} of 1 {mu}m thick {sup 10}B{sub 4}C thin films coated on Al-blades. Initial neutron absorption measurements agree with Monte Carlo simulations and show that the layer thickness, number of layers, neutron wavelength, and amount of impurities are determining factors. The study also shows the importance of having uniform layer thicknesses over large areas, which for a full-scale detector could be in total {approx}1000 m{sup 2} of two-side coated Al-blades with {approx}1 {mu}m thick {sup 10}B{sub 4}C films.

  15. Electrochromic control of thin film light scattering

    SciTech Connect (OSTI)

    Lindstroem, T.; Kullman, L.; Roennow, D.; Ribbing, C.; Granqvist, C.G. [Department of Technology, Uppsala University, P.O. Box 534, S-752 21, Uppsala (Sweden)] [Department of Technology, Uppsala University, P.O. Box 534, S-752 21, Uppsala (Sweden)

    1997-02-01T23:59:59.000Z

    Total and diffuse reflectance spectra were measured on Al surfaces covered with electrochromic W oxide films in colored and bleached states. Vector perturbation theory was used for analyzing the spectra. The diffuse reflectance appeared to originate from correlated (uncorrelated) interface roughness when the W oxide film was fully colored (bleached). Assuming partially correlated interfaces led to agreement between experimental and calculated spectra. The use of an electrochromic film appears a promising method to control the relative contributions of the interfaces to the resulting scattering. {copyright} {ital 1997 American Institute of Physics.}

  16. Control of magnetization reversal in oriented strontium ferrite thin films

    SciTech Connect (OSTI)

    Roy, Debangsu, E-mail: debangsu@physics.iisc.ernet.in; Anil Kumar, P. S. [Department of Physics, Indian Institute of Science, Bangalore 560012 (India)

    2014-02-21T23:59:59.000Z

    Oriented Strontium Ferrite films with the c axis orientation were deposited with varying oxygen partial pressure on Al{sub 2}O{sub 3}(0001) substrate using Pulsed Laser Deposition technique. The angle dependent magnetic hysteresis, remanent coercivity, and temperature dependent coercivity had been employed to understand the magnetization reversal of these films. It was found that the Strontium Ferrite thin film grown at lower (higher) oxygen partial pressure shows Stoner-Wohlfarth type (Kondorsky like) reversal. The relative importance of pinning and nucleation processes during magnetization reversal is used to explain the type of the magnetization reversal with different oxygen partial pressure during growth.

  17. Oriented niobate ferroelectric thin films for electrical and optical devices

    DOE Patents [OSTI]

    Wessels, Bruce W. (Wilmette, IL); Nystrom, Michael J. (Chicago, IL)

    2001-01-01T23:59:59.000Z

    Sr.sub.x Ba.sub.1-x Nb.sub.2 O.sub.6, where x is greater than 0.25 and less than 0.75, and KNbO.sub.3 ferroelectric thin films metalorganic chemical vapor deposited on amorphous or cyrstalline substrate surfaces to provide a crystal axis of the film exhibiting a high dielectric susceptibility, electro-optic coefficient, and/or nonlinear optic coefficient oriented preferentially in a direction relative to a crystalline or amorphous substrate surface. Such films can be used in electronic, electro-optic, and frequency doubling components.

  18. Thin-film 'Thermal Well' Emitters and Absorbers for High-Efficiency Thermophotovoltaics

    E-Print Network [OSTI]

    Tong, Jonathan K; Huang, Yi; Boriskina, Svetlana V; Chen, Gang

    2015-01-01T23:59:59.000Z

    A new approach is introduced to significantly improve the performance of thermophotovoltaic (TPV) systems by using low-dimensional thermal emitters and photovoltaic (PV) cells. By reducing the thickness of both the emitter and the PV cell, strong spectral selectivity in both thermal emission and absorption can be achieved by confining photons in trapped waveguide modes inside the thin-films that act as thermal analogs to quantum wells. Simultaneously, photo-excited carriers travel shorter distances across the thin-films reducing bulk recombination losses resulting in a lower saturation current in the PV cell. We predict a TPV efficiency enhancement with near-field coupling between the thermal emitter and the PV cell of up to 38.7% using a germanium (Ge) emitter at 1000 K and a gallium antimonide (GaSb) cell with optimized thicknesses separated by 100 nm. Even in the far-field limit, the efficiency is predicted to reach 31.5%, which is an order of magnitude higher than the Shockley Queisser limit of 1.6% for a...

  19. Ultrashort pulse laser deposition of thin films

    DOE Patents [OSTI]

    Perry, Michael D. (Livermore, CA); Banks, Paul S. (Livermore, CA); Stuart, Brent C. (Fremont, CA)

    2002-01-01T23:59:59.000Z

    Short pulse PLD is a viable technique of producing high quality films with properties very close to that of crystalline diamond. The plasma generated using femtosecond lasers is composed of single atom ions with no clusters producing films with high Sp.sup.3 /Sp.sup.2 ratios. Using a high average power femtosecond laser system, the present invention dramatically increases deposition rates to up to 25 .mu.m/hr (which exceeds many CVD processes) while growing particulate-free films. In the present invention, deposition rates is a function of laser wavelength, laser fluence, laser spot size, and target/substrate separation. The relevant laser parameters are shown to ensure particulate-free growth, and characterizations of the films grown are made using several diagnostic techniques including electron energy loss spectroscopy (EELS) and Raman spectroscopy.

  20. Vacuum fluctuation forces between ultra-thin films

    E-Print Network [OSTI]

    Andrea Benassi; Carlo Calandra

    2008-08-18T23:59:59.000Z

    We have investigated the role of the quantum size effects in the evaluation of the force caused by electromagnetic vacuum fluctuations between ultra-thin films, using the dielectric tensor derived from the particle in a box model. Comparison with the results obtained by adopting a continuum dielectric model shows that, for film thicknesses of 1-10 nm, the electron confinement causes changes in the force intensity with respect to the isotropic plasma model which range from 40% to few percent depending upon the film electron density and the film separation. The calculated force shows quantum size oscillations, which can be significant for film separation distances of several nanometers. The role of electron confinement in reducing the large distance Casimir force is discussed.

  1. Equiatomic CoPt thin films with extremely high coercivity

    SciTech Connect (OSTI)

    Varghese, Binni; Piramanayagam, S. N., E-mail: Prem-SN@dsi.a-star.edu.sg; Yang, Yi; Kai Wong, Seng; Khume Tan, Hang; Kiat Lee, Wee [Data Storage Institute, (A-STAR) Agency for Science, Technology and Research, DSI Building, 5, Engineering Drive 1, Singapore 117608 (Singapore); Okamoto, Iwao [Western Digital Corporation, Singapore 638552 (Singapore)

    2014-05-07T23:59:59.000Z

    In this paper, magnetic and structural properties of near-equiatomic CoPt thin films, which exhibited a high coercivity in the film-normal direction—suitable for perpendicular magnetic recording media applications—are reported. The films exhibited a larger coercivity of about 6.5 kOe at 8?nm. The coercivity showed a monotonous decrease as the film thickness was increased. The transmission electron microscopy images indicated that the as fabricated CoPt film generally consists of a stack of magnetically hard hexagonal-close-packed phase, followed by stacking faults and face-centred-cubic phase. The thickness dependent magnetic properties are explained on the basis of exchange-coupled composite media. Epitaxial growth on Ru layers is a possible factor leading to the unusual observation of magnetically hard hcp-phase at high concentrations of Pt.

  2. Crystalline Thin Films Formed by Supramolecular Assembly for

    E-Print Network [OSTI]

    Gao, Hongjun

    with crystalline materials.[9] In contrast with small-mole- cule materials, supramolecular materials, which combineCrystalline Thin Films Formed by Supramolecular Assembly for Ultrahigh-Density Data Storage in this digital age, there is an urgent need to develop new technologies and materials. In the past decade

  3. THE ELECTRICAL BEHAVIOR OF SUPERCONDUCTING THIN-FILM MICROBRIDGES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    19 THE ELECTRICAL BEHAVIOR OF SUPERCONDUCTING THIN-FILM MICROBRIDGES SELF-HEATING below Tc their behavior is found to be dominated by the effects of self-heating. At low voltages near Tc. t Danforth Fellow. electrical behavior of these microbridges is largely dominated by the effects of self-heating

  4. Micromachined thin-film gas flow sensor for microchemical reactors

    E-Print Network [OSTI]

    Besser, Ronald S.

    Micromachined thin-film gas flow sensor for microchemical reactors W C Shin and R S Besser New applications not practical before such as highly compact, non-invasive pressure sensors, accelerometers and gas power consumption, fast response, and low-cost batch production [1-4]. Spurred by the development

  5. Atomic-scale Structural Characterizations of Functional Epitaxial Thin Films 

    E-Print Network [OSTI]

    Zhu, Yuanyuan

    2013-06-03T23:59:59.000Z

    by computer .......................................... 157 7.3.2. Thin films and TEM samples preparation ......................................... 158 7.3.3. Cs-corrected STEM and quantitative image processing .................... 159 7.4 Results... ......................................................................................................... 28 Figure 1.13. HR-STEM micrograph of Graphene (a) before83 and (b) after84 probe CS-correction. ............................................................................................ 29 Figure 2.1. Schematic diagram of the pulsed laser...

  6. Long-wave models of thin film fluid dynamics

    E-Print Network [OSTI]

    A. J. Roberts

    1994-11-04T23:59:59.000Z

    Centre manifold techniques are used to derive rationally a description of the dynamics of thin films of fluid. The derived model is based on the free-surface $\\eta(x,t)$ and the vertically averaged horizontal velocity $\\avu(x,t)$. The approach appears to converge well and has significant differences from conventional depth-averaged models.

  7. Nonlinear viscoelastic characterization of thin films using dynamic mechanical analysis 

    E-Print Network [OSTI]

    Payne, Debbie Flowers

    1993-01-01T23:59:59.000Z

    manner similar to the traditional time temperature superposition principle for linear viscoelastic materials where stress systematically compresses or expands the time scale. From dynamic mechanical testing and analysis, the experimental viscoelastic.... D. Nonlinear Characterization of Thin Film Materials. . . . Nonlinear Viscoelastic Models . Dynamic Mechanical Testing. Summary of Literature Reviewed. 5 5 7 8 III THEORETICAL ANALYSIS . A. B. C. D. Conversion of Experimental Values...

  8. Thin Films and the Systems-Driven Approach

    SciTech Connect (OSTI)

    Zweibel, K.

    2005-01-01T23:59:59.000Z

    A systems-driven approach is used to discern tradeoffs between cost and efficiency improvements for various thin-film module technologies and designs. Prospects for reduced system cost via such strategies are enhanced as balance-of-systems costs decline, and some strategies are identified for greater research focus.

  9. Thin film cracking and ratcheting caused by temperature cycling

    E-Print Network [OSTI]

    Suo, Zhigang

    Thin film cracking and ratcheting caused by temperature cycling M. Huang and Z. Suo Mechanical caused by ratcheting in an adjacent ductile layer. For example, on a silicon die directly attached corners. Aided by cycling temperature, the shear stresses cause ratcheting in the aluminum pads

  10. INTERFACIAL STABILITY OF THIN FILM FIBER-OPTIC HYDROGEN SENSORS

    E-Print Network [OSTI]

    INTERFACIAL STABILITY OF THIN FILM FIBER-OPTIC HYDROGEN SENSORS R. Davis Smith, Ping Liu, Se and utility of these sensors, especially in the configuration that is based upon the optical response hydrogen sensors for use as safety monitors wherever hydrogen is used, stored, or produced. Prior work has

  11. Stripe Domain-Structures in a Thin Ferromagnetic Film

    E-Print Network [OSTI]

    KASHUBA, AB; Pokrovsky, Valery L.

    1993-01-01T23:59:59.000Z

    We present a theory of the stripe domain structure in a thin ferromagnetic film with single-ion easy-axis magnetic anisotropy and long-range dipole interactions, for a wide range of temperatures and applied magnetic field. The domains exist...

  12. Method of preparing thin film polymeric gel electrolytes

    DOE Patents [OSTI]

    Derzon, Dora K. (Albuquerque, NM); Arnold, Jr., Charles (Albuquerque, NM)

    1997-01-01T23:59:59.000Z

    Novel hybrid thin film electrolyte, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities .apprxeq.10.sup.-3 .OMEGA..sup.-1 cm.sup.-1 are useful as electrolytes for rechargeable lithium batteries.

  13. Synthesis and Characterization of Functional Nanostructured Zinc Oxide Thin Films

    E-Print Network [OSTI]

    Chow, Lee

    and development of alternative energy technologies, such as low cost flat-panel solar cells thin film devices and structural requirements of their applications in gas sensors and solar cells. The rapid photothermalV) and GaN (21eV), is of interest for various high tech applications, such as optical devices (1), solar

  14. Amorphous silicon thin film transistor as nonvolatile device. 

    E-Print Network [OSTI]

    Nominanda, Helinda

    2008-10-10T23:59:59.000Z

    n-channel and p-channel amorphous-silicon thin-film transistors (a-Si:H TFTs) with copper electrodes prepared by a novel plasma etching process have been fabricated and studied. Their characteristics are similar to those of TFTs with molybdenum...

  15. Method of preparing thin film polymeric gel electrolytes

    DOE Patents [OSTI]

    Derzon, D.K.; Arnold, C. Jr.

    1997-11-25T23:59:59.000Z

    Novel hybrid thin film electrolyte is described, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities {approx_equal}10{sup {minus}3}{Omega}{sup {minus}1}cm{sup {minus}1} are useful as electrolytes for rechargeable lithium batteries. 1 fig.

  16. university-logo Numerical stability analysis for thin film flow

    E-Print Network [OSTI]

    Marzuola, Jeremy

    university-logo Numerical stability analysis for thin film flow: toward rigorous verification Blake Barker Indiana University October 2, 2013 B. Rigorous verification #12;university-logo Viscous roll waves (Picture courtesy Neil Balmforth, UBC.) B. Rigorous verification #12;university-logo Viscous roll waves 0 2

  17. Proc. of the 24th IEEE Photovoltaic Specialists Conference (IEEE, New York, 1995), pp. 291-294. ADMITTANCE MEASUREMENTS ON Cu(In,Ga)Se2 POLYCRYSTALLINE THIN-

    E-Print Network [OSTI]

    Scofield, John H.

    for approximately 30 CIS and CIGS polycrystalline thin film solar cells having efficiencies of 12% or better-294. ADMITTANCE MEASUREMENTS ON Cu(In,Ga)Se2 POLYCRYSTALLINE THIN- FILM SOLAR CELLS John H. Scofield Physics-16.4% efficient, 0.43 cm2 area, polycrystalline, thin-film solar cells solar cells from 16 different CuInSe2 (CIS

  18. PV prospects: thinPV prospects: thin--film cellsfilm cells Si cell costs

    E-Print Network [OSTI]

    Pulfrey, David L.

    1 PV prospects: thinPV prospects: thin--film cellsfilm cells LECTURE 8 · Si cell costs · optimizing://www.solarbuzz.com/Moduleprices.htm #12;6 Cost of PV modulesCost of PV modules The lowest retail price for a multicrystalline silicon for a monocrystalline silicon module is $1.48 per watt (1.04 per watt), from an Asian retailer. Brand, technical

  19. Energetic condensation growth of Nb thin films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Krishnan, M.; Valderrama, E.; James, C.; Zhao, X.; Spradlin, J.; Feliciano, A-M Valente; Phillips, L.; Reece, C. E.; Seo, K.; Sung, Z. H.

    2012-03-01T23:59:59.000Z

    This paper describes energetic condensation growth of Nb films using a cathodic arc plasma, whose 60–120 eV ions penetrate a few monolayers into the substrate and enable sufficient surface mobility to ensure that the lowest energy state (crystalline structure with minimal defects) is accessible to the film. Heteroepitaxial films of Nb were grown on ?-plane sapphire and MgO crystals with good superconducting properties and crystal size (10??mm × 20??mm ) limited only by substrate size. The substrates were heated to temperatures of up to 700°C and coated at 125°C, 300°C, 500°C, and 700°C . Film thickness was varied from ?0.25???m to >3???m . Residual resistivity ratio (RRR) values (up to a record (RRR)=587 on MgO and (RRR)=328 on ?-sapphire) depend strongly on substrate annealing and deposition temperatures. X-ray diffraction spectra and pole figures reveal that RRR increases as the crystal structure of the Nb film becomes more ordered, consistent with fewer defects and, hence, longer electron mean-free path. A transition from Nb(110) to Nb(100) orientation on the MgO(100) lattice occurs at higher temperatures. This transition is discussed in light of substrate heating and energetic condensation physics. Electron backscattered diffraction and scanning electron microscope images complement the XRD data.

  20. Photovoltaic cell

    DOE Patents [OSTI]

    Gordon, Roy G. (Cambridge, MA); Kurtz, Sarah (Somerville, MA)

    1984-11-27T23:59:59.000Z

    In a photovoltaic cell structure containing a visibly transparent, electrically conductive first layer of metal oxide, and a light-absorbing semiconductive photovoltaic second layer, the improvement comprising a thin layer of transition metal nitride, carbide or boride interposed between said first and second layers.

  1. Study of plasma enhanced chemical vapor deposition of boron-doped hydrogenated amorphous silicon thin films and the application to p-channel thin film transistor

    E-Print Network [OSTI]

    Nominanda, Helinda

    2004-01-01T23:59:59.000Z

    The material and process characteristics of boron doped hydrogenated amorphous silicon (a-Si:H) thin film deposited by plasma enhanced chemical vapor deposition technique (PECVD) have been studied. The goal is to apply the high quality films...

  2. Thin film porous membranes for catalytic sensors

    SciTech Connect (OSTI)

    Hughes, R.C.; Boyle, T.J.; Gardner, T.J. [and others

    1997-06-01T23:59:59.000Z

    This paper reports on new and surprising experimental data for catalytic film gas sensing resistors coated with nanoporous sol-gel films to impart selectivity and durability to the sensor structure. This work is the result of attempts to build selectivity and reactivity to the surface of a sensor by modifying it with a series of sol-gel layers. The initial sol-gel SiO{sub 2} layer applied to the sensor surprisingly showed enhanced O{sub 2} interaction with H{sub 2} and reduced susceptibility to poisons such as H{sub 2}S.

  3. Integration of Self-Assembled Porous Alumina and Distributed Bragg Reflector for Light Trapping in Si Photovoltaic Devices

    E-Print Network [OSTI]

    Sheng, Xing

    Light trapping is an important issue for thin film silicon photovoltaic cells due to the limited absorption coefficient for near infrared light. In this letter, we present a photonic structure that combines porous anodic ...

  4. Characterization on RF magnetron sputtered niobium pentoxide thin films

    SciTech Connect (OSTI)

    Usha, N. [Department of Physics, Alagappa University, Karaikudi - 630 004 (India); Sivakumar, R., E-mail: krsivakumar1979@yahoo.com [Directorate of Distance Education, Alagappa University, Karaikudi - 630 004 (India); Sanjeeviraja, C. [Department of Physics, Alagappa Chettiar College of Engineering and Technology, Karaikudi - 630 004 (India)

    2014-10-15T23:59:59.000Z

    Niobium pentoxide (Nb{sub 2}O{sub 5}) thin films with amorphous nature were deposited on microscopic glass substrates at 100°C by rf magnetron sputtering technique. The effect of rf power on the structural, morphological, optical, and vibrational properties of Nb{sub 2}O{sub 5} films have been investigated. Optical study shows the maximum average transmittance of about 87% and the optical energy band gap (indirect allowed) changes between 3.70 eV and 3.47 eV. AFM result indicates the smooth surface nature of the samples. Photoluminescence measurement showed the better optical quality of the deposited films. Raman spectra show the LO-TO splitting of Nb-O stretching of Nb{sub 2}O{sub 5} films.

  5. Improvement in electrochromic stability of electrodeposited nickel hydroxide thin film

    SciTech Connect (OSTI)

    Natarajan, C.; Matsumoto, H.; Nogami, G. [Kyushu Inst. of Tech., Kitakyushu (Japan). Dept. of Electrical Engineering

    1997-01-01T23:59:59.000Z

    The electrochromic nickel hydroxide thin film was anodically deposited from an aqueous solution. The effect of solution temperature, postheat-treatment temperature, and addition of cadmium on the electrochromic behavior (color/bleach durability cycle, response time, and coloration efficiency of the nickel hydroxide films in NaOH) were investigated. A significant increase in the color/bleach durability cycle from 500 (for the as-deposited film) to more than 5000 cycles (for the heat-treated film) was observed. The addition of cadmium increased the utilization of the active materials. It was found that the coloration efficiency was 40 cm{sup 2}/C and coloration and bleaching response time were 20 to 30 s and 8 to 10 s, respectively. The change in the electrochromic properties with heat-treatment temperature is discussed based on the physical and electrochemical analysis.

  6. Method for bonding thin film thermocouples to ceramics

    DOE Patents [OSTI]

    Kreider, Kenneth G. (Potomac, MD)

    1993-01-01T23:59:59.000Z

    A method is provided for adhering a thin film metal thermocouple to a ceramic substrate used in an environment up to 700 degrees Centigrade, such as at a cylinder of an internal combustion engine. The method includes the steps of: depositing a thin layer of a reactive metal on a clean ceramic substrate; and depositing thin layers of platinum and a platinum-10% rhodium alloy forming the respective legs of the thermocouple on the reactive metal layer. The reactive metal layer serves as a bond coat between the thin noble metal thermocouple layers and the ceramic substrate. The thin layers of noble metal are in the range of 1-4 micrometers thick. Preferably, the ceramic substrate is selected from the group consisting of alumina and partially stabilized zirconia. Preferably, the thin layer of reactive metal is in the range of 0.015-0.030 micrometers (15-30 nanometers) thick. The preferred reactive metal is chromium. Other reactive metals may be titanium or zirconium. The thin layer of reactive metal may be deposited by sputtering in ultra high purity argon in a vacuum of approximately 2 milliTorr (0.3 Pascals).

  7. High quality transparent conducting oxide thin films

    DOE Patents [OSTI]

    Gessert, Timothy A. (Conifer, CO); Duenow, Joel N. (Golden, CO); Barnes, Teresa (Evergreen, CO); Coutts, Timothy J. (Golden, CO)

    2012-08-28T23:59:59.000Z

    A transparent conducting oxide (TCO) film comprising: a TCO layer, and dopants selected from the elements consisting of Vanadium, Molybdenum, Tantalum, Niobium, Antimony, Titanium, Zirconium, and Hafnium, wherein the elements are n-type dopants; and wherein the transparent conducting oxide is characterized by an improved electron mobility of about 42 cm.sup.2/V-sec while simultaneously maintaining a high carrier density of .about.4.4e.times.10.sup.20 cm.sup.-3.

  8. Compositional depth profiling of TaCN thin films

    SciTech Connect (OSTI)

    Adelmann, Christoph; Conard, Thierry; Franquet, Alexis; Brijs, Bert; Munnik, Frans; Burgess, Simon; Witters, Thomas; Meersschaut, Johan; Kittl, Jorge A.; Vandervorst, Wilfried; Van Elshocht, Sven [Imec, B-3001 Leuven (Belgium); Forschungszentrum Dresden-Rossendorf, D-01314 Dresden (Germany); Oxford Instruments NanoAnalysis, High Wycombe, HP12 3SE (United Kingdom); Imec, B-3001 Leuven (Belgium); Imec, B-3001 Leuven, Belgium and Instituut voor Kern- en Stralingsfysica, Katholieke Universiteit Leuven, B-3001 Leuven (Belgium); Imec, B-3001 Leuven (Belgium)

    2012-07-15T23:59:59.000Z

    The composition profiling of thin TaCN films was studied. For the composition profile determination using x-ray photoemission spectrometry (XPS) in combination with Ar sputtering, preferential sputtering effects of N with respect to Ta and C were found to lead to inaccurate elemental concentrations. Sputter yield calculations for the given experimental conditions allowed for the correction of a part of the error, leading to fair accuracy by reference-free measurements. Further improvement of the accuracy was demonstrated by the calibration of the XPS compositions against elastic recoil detection analysis (ERDA) results. For Auger electron spectrometry (AES) in combination with Ar sputtering, accurate results required the calibration against ERDA. Both XPS and AES allowed for a reliable and accurate determination of the compositional profiles of TaCN-based thin films after calibration. Time-of-flight secondary-ion mass spectrometry was also used to assess the composition of the TaCN films. However, the analysis was hampered by large matrix effects due to small unintentional oxygen contents in the films. Energy-dispersive x-ray spectrometry is also discussed, and it is shown that an accurate reference-free measurement of the average film concentration can be achieved.

  9. Liquid phase deposition synthesis of hexagonal molybdenum trioxide thin films

    SciTech Connect (OSTI)

    Deki, Shigehito; Beleke, Alexis Bienvenu; Kotani, Yuki [Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokko, Nada, Kobe 657-8501 (Japan); Mizuhata, Minoru, E-mail: mizuhata@kobe-u.ac.j [Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokko, Nada, Kobe 657-8501 (Japan)

    2009-09-15T23:59:59.000Z

    Hexagonal molybdenum trioxide thin films with good crystallinity and high purity have been fabricated by the liquid phase deposition (LPD) technique using molybdic acid (H{sub 2}MoO{sub 4}) dissolved in 2.82% hydrofluoric acid (HF) and H{sub 3}BO{sub 3} as precursors. The crystal was found to belong to a hexagonal hydrate system MoO{sub 3}.nH{sub 2}O (napprox0.56). The unit cell lattice parameters are a=10.651 A, c=3.725 A and V=365.997 A{sup 3}. Scanning electron microscope (SEM) images of the as-deposited samples showed well-shaped hexagonal rods nuclei that grew and where the amount increased with increase in reaction time. X-ray photon electron spectroscopy (XPS) spectra showed a Gaussian shape of the doublet of Mo 3d core level, indicating the presence of Mo{sup 6+} oxidation state in the deposited films. The deposited films exhibited an electrochromic behavior by lithium intercalation and deintercalation, which resulted in coloration and bleaching of the film. Upon dehydration at about 450 deg. C, the hexagonal MoO{sub 3}.nH{sub 2}O was transformed into the thermodynamically stable orthorhombic phase. - Abstract: SEM photograph of typical h-MoO{sub 3}.nH{sub 2}O thin film nuclei obtained after 36 h at 40 deg. C by the LPD method. Display Omitted

  10. Fractal-Mound Growth of Pentacene Thin Films

    E-Print Network [OSTI]

    Serkan Zorba; Yonathan Shapir; Yongli Gao

    2006-10-19T23:59:59.000Z

    The growth mechanism of pentacene film formation on SiO2 substrate was investigated with a combination of atomic force microscopy measurements and numerical modeling. In addition to the diffusion-limited aggregation (DLA) that has already been shown to govern the growth of the ordered pentacene thin films, it is shown here for the first time that the Schwoebel barrier effect steps in and disrupts the desired epitaxial growth for the subsequent layers, leading to mound growth. The terraces of the growing mounds have a fractal dimension of 1.6, indicating a lateral DLA shape. This novel growth morphology thus combines horizontal DLA-like growth with vertical mound growth.

  11. Mechanics of large folds in thin interfacial films

    E-Print Network [OSTI]

    Vincent Démery; Benny Davidovitch; Christian D. Santangelo

    2014-07-16T23:59:59.000Z

    A thin film at a liquid interface responds to uniaxial confinement by wrinkling and then by folding; its shape and energy have been computed exactly before self contact. Here, we address the mechanics of large folds, i.e. folds that absorb a length much larger than the wrinkle wavelength. With scaling arguments and numerical simulations, we show that the antisymmetric fold is energetically favorable and can absorb any excess length at zero pressure. Then, motivated by puzzles arising in the comparison of this simple model to experiments on lipid monolayers and capillary rafts, we discuss how to incorporate film weight, self-adhesion and energy dissipation.

  12. Durable silver thin film coating for diffraction gratings

    DOE Patents [OSTI]

    Wolfe, Jesse D. (Discovery Bay, CA); Britten, Jerald A. (Oakley, CA); Komashko, Aleksey M. (San Diego, CA)

    2006-05-30T23:59:59.000Z

    A durable silver film thin film coated non-planar optical element has been developed to replace Gold as a material for fabricating such devices. Such a coating and resultant optical element has an increased efficiency and is resistant to tarnishing, can be easily stripped and re-deposited without modifying underlying grating structure, improves the throughput and power loading of short pulse compressor designs for ultra-fast laser systems, and can be utilized in variety of optical and spectrophotometric systems, particularly high-end spectrometers that require maximized efficiency.

  13. Large area ceramic thin films on plastics: A versatile route via solution processing

    SciTech Connect (OSTI)

    Kozuka, H.; Yamano, A.; Uchiyama, H.; Takahashi, M. [Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, 564-8680 (Japan); Fukui, T.; Yoki, M.; Akase, T. [Graduate School of Science and Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, 564-8680 (Japan)

    2012-01-01T23:59:59.000Z

    A new general route for large area, submicron thick ceramic thin films (crystalline metal oxide thin films) on plastic substrates is presented, where the crystallization of films is guaranteed by a firing process. Gel films are deposited on silicon substrates with a release layer and fired to be ceramic films, followed by transferring onto plastic substrates using adhesives. The ceramic films thus fabricated on plastics exhibit a certain degree of flexibility, implying the possibility of the technique to be applied to high-throughput roll-to-roll processes. Using this technique, we successfully realized transparent anatase thin films that provide high optical reflectance and transparent indium tin oxide thin films that exhibit electrical conductivity on polycarbonate and acrylic resin substrates, respectively. Crystallographically oriented zinc oxide films and patterned zinc oxide films are also demonstrated to be realized on acrylic resin substrates.

  14. Photovoltaic Materials

    SciTech Connect (OSTI)

    Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

    2012-10-15T23:59:59.000Z

    The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNL’s unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporation’s Electronic, Color and Glass Materials (“ECGM”) business unit is currently the world’s largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferro’s ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational cells and modules in the field for 25 years. Under this project, Ferro leveraged world leading analytical capabilities at ORNL to characterize the paste-to-silicon interface microstructure and develop high efficiency next generation contact pastes. Ampulse Corporation is developing a revolutionary crystalline-silicon (c-Si) thin-film solar photovoltaic (PV) technology. Utilizing uniquely-textured substrates and buffer materials from the Oak Ridge National Laboratory (ORNL), and breakthroughs in Hot-Wire Chemical Vapor Deposition (HW-CVD) techniques in epitaxial silicon developed at the National Renewable Energy Laboratory (NREL), Ampulse is creating a solar technology that is tunable in silicon thickness, and hence in efficiency and economics, to meet the specific requirements of multiple solar PV applications. This project focused on the development of a high rate deposition process to deposit Si, Ge, and Si1-xGex films as an alternate to hot-wire CVD. Mossey Creek Solar is a start-up company with great expertise in the solar field. The primary interest is to create and preserve jobs in the solar sector by developing high-yield, low-cost, high-efficiency solar cells using MSC-patented and -proprietary technologies. The specific goal of this project was to produce large grain formation in thin, net-shape-thickness mc-Si wafers processed with high-purity silicon powder and ORNL's plasma arc lamp melting without introducing impurities that compromise absorption coefficient and carrier lifetime. As part of this project, ORNL also added specific pieces of equipment to enhance our ability to provide unique insight for the solar industry. These capabilities include a moisture barrier measurement system, a combined physical vapor deposition and sputtering system dedicated to cadmium-containing deposits, adeep level transient spectroscopy system useful for identifying defects, an integrating sphere photoluminescence system, and a high-speed ink jet printing system. These tools were combined with others to study the effect of defects on the performance of crystalline silicon and

  15. Innovative Thin Films LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWPIndiantown,Innoferm GmbH Jump to:Energy SolutionsThin

  16. Method for formation of thin film transistors on plastic substrates

    DOE Patents [OSTI]

    Carey, P.G.; Smith, P.M.; Sigmon, T.W.; Aceves, R.C.

    1998-10-06T23:59:59.000Z

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The process relies on techniques for depositing semiconductors, dielectrics, and metals at low temperatures; crystallizing and doping semiconductor layers in the TFT with a pulsed energy source; and creating top-gate self-aligned as well as back-gate TFT structures. The process enables the fabrication of amorphous and polycrystalline channel silicon TFTs at temperatures sufficiently low to prevent damage to plastic substrates. The process has use in large area low cost electronics, such as flat panel displays and portable electronics. 5 figs.

  17. Eddy Current Testing for Detecting Small Defects in Thin Films

    SciTech Connect (OSTI)

    Obeid, Simon; Tranjan, Farid M. [Electrical and Computer Engineering Department, UNCC (United States); Dogaru, Teodor [Albany Instruments, 426-O Barton Creek, Charlotte, NC 28262 (United States)

    2007-03-21T23:59:59.000Z

    Presented here is a technique of using Eddy Current based Giant Magneto-Resistance sensor (GMR) to detect surface and sub-layered minute defects in thin films. For surface crack detection, a measurement was performed on a copper metallization of 5-10 microns thick. It was done by scanning the GMR sensor on the surface of the wafer that had two scratches of 0.2 mm, and 2.5 mm in length respectively. In another experiment, metal coatings were deposited over the layers containing five defects with known lengths such that the defects were invisible from the surface. The limit of detection (resolution), in terms of defect size, of the GMR high-resolution Eddy Current probe was studied using this sample. Applications of Eddy Current testing include detecting defects in thin film metallic layers, and quality control of metallization layers on silicon wafers for integrated circuits manufacturing.

  18. Method for formation of thin film transistors on plastic substrates

    DOE Patents [OSTI]

    Carey, Paul G. (Mountain View, CA); Smith, Patrick M. (San Ramon, CA); Sigmon, Thomas W. (Portola Valley, CA); Aceves, Randy C. (Livermore, CA)

    1998-10-06T23:59:59.000Z

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The process relies on techniques for depositing semiconductors, dielectrics, and metals at low temperatures; crystallizing and doping semiconductor layers in the TFT with a pulsed energy source; and creating top-gate self-aligned as well as back-gate TFT structures. The process enables the fabrication of amorphous and polycrystalline channel silicon TFTs at temperatures sufficiently low to prevent damage to plastic substrates. The process has use in large area low cost electronics, such as flat panel displays and portable electronics.

  19. Thin film battery and method for making same

    DOE Patents [OSTI]

    Bates, John B. (Oak Ridge, TN); Dudney, Nancy J. (Knoxville, TN); Gruzalski, Greg R. (Oak Ridge, TN); Luck, Christopher F. (Knoxville, TN)

    1994-01-01T23:59:59.000Z

    Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between -15.degree. C. and 150.degree. C.

  20. Thin film battery and method for making same

    DOE Patents [OSTI]

    Bates, J.B.; Dudney, N.J.; Gruzalski, G.R.; Luck, C.F.

    1994-08-16T23:59:59.000Z

    Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode. Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between [minus]15 C and 150 C. 9 figs.

  1. Chemical deposition of thin films of lead selenide

    E-Print Network [OSTI]

    Skovlin, Dean Oliver

    1956-01-01T23:59:59.000Z

    LIBRARY A A IN COLLEGE OF TEXAS CHEMICAL DEPOSITIOH OF THIN FILMS OF LEAD SELEHIDE A THESIS DEAN OLIVER SEOVLIH Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements..., the author is indebted for her encouragenent and understanding which wade this study possible. iv I INTRODUCTIOW . I I LITERATURE SURVEY. I II EXP ERIMEHTAL Page 1. Choice of Reagents. 2. The Reaction of DMS and Lead Ritrate in Aqueous Solution. 3...

  2. Formation of thin-film resistors on silicon substrates

    DOE Patents [OSTI]

    Schnable, George L. (Montgomery County, PA); Wu, Chung P. (Hamilton Township, Mercer County, NJ)

    1988-11-01T23:59:59.000Z

    The formation of thin-film resistors by the ion implantation of a metallic conductive layer in the surface of a layer of phosphosilicate glass or borophosphosilicate glass which is deposited on a silicon substrate. The metallic conductive layer materials comprise one of the group consisting of tantalum, ruthenium, rhodium, platinum and chromium silicide. The resistor is formed and annealed prior to deposition of metal, e.g. aluminum, on the substrate.

  3. Strain mapping on gold thin film buckling and siliconblistering

    SciTech Connect (OSTI)

    Goudeau, P.; Tamura, N.; Parry, G.; Colin, J.; Coupeau, C.; Cleymand, F.; Padmore, H.

    2005-09-01T23:59:59.000Z

    Stress/Strain fields associated with thin film buckling induced by compressive stresses or blistering due to the presence of gas bubbles underneath single crystal surfaces are difficult to measure owing to the microscale dimensions of these structures. In this work, we show that micro Scanning X-ray diffraction is a well suited technique for mapping the strain/stress tensor of these damaged structures.

  4. Preparation of redox polymer cathodes for thin film rechargeable batteries

    DOE Patents [OSTI]

    Skotheim, T.A.; Lee, H.S.; Okamoto, Yoshiyuki.

    1994-11-08T23:59:59.000Z

    The present invention relates to the manufacture of thin film solid state electrochemical devices using composite cathodes comprising a redox polymer capable of undergoing oxidation and reduction, a polymer solid electrolyte and conducting carbon. The polymeric cathode material is formed as a composite of radiation crosslinked polymer electrolytes and radiation crosslinked redox polymers based on polysiloxane backbones with attached organosulfur side groups capable of forming sulfur-sulfur bonds during electrochemical oxidation.

  5. Method for making dense crack free thin films

    DOE Patents [OSTI]

    Jacobson, Craig P. (Lafayette, CA); Visco, Steven J. (Berkeley, CA); De Jonghe, Lutgard C. (Lafayette, CA)

    2007-01-16T23:59:59.000Z

    The process described herein provides a simple and cost effective method for making crack free, high density thin ceramic film. The steps involve depositing a layer of a ceramic material on a porous or dense substrate. The deposited layer is compacted and then the resultant laminate is sintered to achieve a higher density than would have been possible without the pre-firing compaction step.

  6. Optical sensors and multisensor arrays containing thin film electroluminescent devices

    DOE Patents [OSTI]

    Aylott, Jonathan W. (Ann Arbor, MI); Chen-Esterlit, Zoe (Ann Arbor, MI); Friedl, Jon H. (Ames, IA); Kopelman, Raoul (Ann Arbor, MI); Savvateev, Vadim N. (Ames, IA); Shinar, Joseph (Ames, IA)

    2001-12-18T23:59:59.000Z

    Optical sensor, probe and array devices for detecting chemical biological, and physical analytes. The devices include an analyte-sensitive layer optically coupled to a thin film electroluminescent layer which activates the analyte-sensitive layer to provide an optical response. The optical response varies depending upon the presence of an analyte and is detected by a photodetector and analyzed to determine the properties of the analyte.

  7. Plasticity contributions to interface adhesion in thin-film interconnect structures

    E-Print Network [OSTI]

    Vainchtein, Anna

    Plasticity contributions to interface adhesion in thin-film interconnect structures Michael Lanea of plasticity in thin copper layers on the interface fracture resistance in thin-film interconnect structures yield properties together with a plastic flow model for the metal layers were used to predict

  8. MEMS-based thin-film fuel cells

    DOE Patents [OSTI]

    Jankowksi, Alan F.; Morse, Jeffrey D.

    2003-10-28T23:59:59.000Z

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  9. LBIC ANALYSIS OF THIN-FILM POLYCRYSTALLINE SOLAR CELLS James R. Sites and Timothy J. Nagle

    E-Print Network [OSTI]

    Sites, James R.

    -film polycrystalline solar cells, such as CdTe and CIGS, and the overall performance of these cells. LBIC is uniquelyLBIC ANALYSIS OF THIN-FILM POLYCRYSTALLINE SOLAR CELLS James R. Sites and Timothy J. Nagle Physics response map, was developed and used to map defects in thin-film solar cells [4]. Improvements to the two

  10. Ferroelectrics 342:73-82, 2006 Computational Modeling of Ferromagnetic Shape Memory Thin Films

    E-Print Network [OSTI]

    Luskin, Mitchell

    1 Ferroelectrics 342:73-82, 2006 Computational Modeling of Ferromagnetic Shape Memory Thin Films J films of Ni2MnGa ferromagnetic shape memory alloys in response to the application of a magnetic field: ferromagnetic, shape memory, active thin film, computational modeling INTRODUCTION The Ni2MnGa ferromagnetic

  11. Influence of Ba content on grain size and dynamics of crystallization in barium ferrite thin films

    E-Print Network [OSTI]

    Laughlin, David E.

    Influence of Ba content on grain size and dynamics of crystallization in barium ferrite thin films of the crystallization process, which ultimately determines the grain size, were studied in barium ferrite thin films. Rapid thermal annealing was used to crystallize the amorphous as-deposited barium ferrite films

  12. Study of lithium diffusion in RF sputtered Nickel/Vanadium mixed oxides thin films

    E-Print Network [OSTI]

    Artuso, Florinda

    Study of lithium diffusion in RF sputtered NickelÁ/Vanadium mixed oxides thin films F. Artuso a lithium insertion inside RF sputtered Ni/V mixed oxides thin films have been investigated employing, showed three steps clearly involved in the intercalation mechanism of lithium in the oxide films: (i

  13. METAL BLACKS AS SCATTERING CENTERS TO INCREASE THE EFFICIENCY OF THIN FILM SOLAR CELLS

    E-Print Network [OSTI]

    Peale, Robert E.

    METAL BLACKS AS SCATTERING CENTERS TO INCREASE THE EFFICIENCY OF THIN FILM SOLAR CELLS by DEEP R surface of thin-film solar cells to improve efficiency. The principle is that scattering, which film solar cell. The particular types of particles investigated here are known as "metal-black", well

  14. Plasticity in Cu thin films: an experimental investigation of the effect of microstructure

    E-Print Network [OSTI]

    Plasticity in Cu thin films: an experimental investigation of the effect of microstructure A thesis Author Joost J. Vlassak Yong Xiang Plasticity in Cu thin films: an experimental investigation is constructed. The elastic-plastic behavior of Cu films is studied with emphasis on the effects

  15. Transparent Conducting ZnO Thin Films Doped with Al and Mo

    SciTech Connect (OSTI)

    Duenow, J.; Gessert, T.; Wood, D.; Young, D.; Coutts, T.

    2007-01-01T23:59:59.000Z

    Transparent conducting oxide (TCO) thin films are a vital part of photovoltaic cells, flat-panel displays, and electrochromic windows. ZnO-based TCOs, due to the relative abundance of Zn, may reduce production costs compared to those of the prevalent TCO In2O3:Sn (ITO). Undoped ZnO, ZnO:Al (0.5, 1, and 2 wt.% Al2O3), and ZnO:Mo (2 wt.%) films were deposited by RF magnetron sputtering. Controlled incorporation of H2 in the Ar sputtering ambient increased mobility of undoped ZnO by a factor of ~20 to 48 cm2V-1s-1. H2 also appears to catalyze ionization of dopants. This enabled lightly doped ZnO:Al to provide comparable conductivity to the standard 2 wt.%-doped ZnO:Al while demonstrating reduced infrared absorption. Mo was found to be an n-type dopant of ZnO, though material properties did not match those of ZnO:Al. Scattering mechanisms were investigated using temperature-dependent Hall measurements and the method of four coefficients. This abstract is subject to government rights.

  16. Oriented niobate ferroelectric thin films for electrical and optical devices and method of making such films

    DOE Patents [OSTI]

    Wessels, B.W.; Nystrom, M.J.

    1998-05-19T23:59:59.000Z

    Sr{sub x}Ba{sub 1{minus}x}Nb{sub 2}O{sub 6}, where x is greater than 0.25 and less than 0.75, and KNbO{sub 3} ferroelectric thin films metalorganic chemical vapor deposited on amorphous or crystalline substrate surfaces to provide a crystal axis of the film exhibiting a high dielectric susceptibility, electro-optic coefficient, and/or nonlinear optic coefficient oriented preferentially in a direction relative to a crystalline or amorphous substrate surface are disclosed. Such films can be used in electronic, electro-optic, and frequency doubling components. 8 figs.

  17. Oriented niobate ferroelectric thin films for electrical and optical devices and method of making such films

    DOE Patents [OSTI]

    Wessels, Bruce W. (Wilmette, IL); Nystrom, Michael J. (Germantown, MD)

    1998-01-01T23:59:59.000Z

    Sr.sub.x Ba.sub.1-x Nb.sub.2 O.sub.6, where x is greater than 0.25 and less than 0.75, and KNbO.sub.3 ferroelectric thin films metalorganic chemical vapor deposited on amorphous or crystalline substrate surfaces to provide a crystal axis of the film exhibiting a high dielectric susceptibility, electro-optic coefficient, and/or nonlinear optic coefficient oriented preferentially in a direction relative to a crystalline or amorphous substrate surface. Such films can be used in electronic, electro-optic, and frequency doubling components.

  18. Long-laser-pulse method of producing thin films

    DOE Patents [OSTI]

    Balooch, Mehdi (Berkeley, CA); Olander, Donald K. (Berkeley, CA); Russo, Richard E. (Walnut Creek, CA)

    1991-01-01T23:59:59.000Z

    A method of depositing thin films by means of laser vaporization employs a long-pulse laser (Nd-glass of about one millisecond duration) with a peak power density typically in the range 10.sup.5 -10.sup.6 W/cm.sup.2. The method may be used to produce high T.sub.c superconducting films of perovskite material. In one embodiment, a few hundred nanometers thick film of YBa.sub.2 Cu.sub.3 O.sub.7-x is produced on a SrTiO.sub.3 crystal substrate in one or two pulses. In situ-recrystallization and post-annealing, both at elevated temperature and in the presence of an oxidizing agen The invention described herein arose in the course of, or under, Contract No. DE-C03-76SF0098 between the United States Department of Energy and the University of California.

  19. Decay Processes in the Presence of Thin Superconducting Films

    E-Print Network [OSTI]

    Per K. Rekdal; Bo-Sture K. Skagerstam

    2006-09-20T23:59:59.000Z

    In a recent paper [Phys. Rev. Lett. 97, 070401 (2006)] the transition rate of magnetic spin-flip of a neutral two-level atom trapped in the vicinity of a thick superconducting body was studied. In the present paper we will extend these considerations to a situation with an atom at various distances from a dielectric film. Rates for the corresponding electric dipole-flip transition will also be considered. The rates for these atomic flip transitions can be reduced or enhanced, and in some situations they can even be completely suppressed. For a superconducting film or a thin film of a perfect conducting material various analytical expressions are derived that reveals the dependence of the physical parameters at hand.

  20. Methods for fabricating thin film III-V compound solar cell

    DOE Patents [OSTI]

    Pan, Noren; Hillier, Glen; Vu, Duy Phach; Tatavarti, Rao; Youtsey, Christopher; McCallum, David; Martin, Genevieve

    2011-08-09T23:59:59.000Z

    The present invention utilizes epitaxial lift-off in which a sacrificial layer is included in the epitaxial growth between the substrate and a thin film III-V compound solar cell. To provide support for the thin film III-V compound solar cell in absence of the substrate, a backing layer is applied to a surface of the thin film III-V compound solar cell before it is separated from the substrate. To separate the thin film III-V compound solar cell from the substrate, the sacrificial layer is removed as part of the epitaxial lift-off. Once the substrate is separated from the thin film III-V compound solar cell, the substrate may then be reused in the formation of another thin film III-V compound solar cell.