National Library of Energy BETA

Sample records for thin film deposition

  1. Vapor deposition of thin films

    SciTech Connect (OSTI)

    Smith, D.C.; Pattillo, S.G.; Laia, J.R. Jr.; Sattelberger, A.P.

    1990-10-05

    A highly pure thin metal film having a nanocrystalline structure and a process of preparing such highly pure thin metal films of, e.g., rhodium, iridium, molybdenum, tungsten, rhenium, platinum, or palladium by plasma assisted chemical vapor deposition of, e.g., rhodium(allyl){sub 3}, iridium(allyl){sub 3}, molybdenum(allyl){sub 4}, tungsten(allyl){sub 4}, rhenium (allyl){sub 4}, platinum(allyl){sub 2}, or palladium(allyl){sub 2} are disclosed. Additionally, a general process of reducing the carbon content of a metallic film prepared from one or more organometallic precursor compounds by plasma assisted chemical vapor deposition is disclosed.

  2. Vapor deposition of thin films

    DOE Patents [OSTI]

    Smith, David C. (Los Alamos, NM); Pattillo, Stevan G. (Los Alamos, NM); Laia, Jr., Joseph R. (Los Alamos, NM); Sattelberger, Alfred P. (Los Alamos, NM)

    1992-01-01

    A highly pure thin metal film having a nanocrystalline structure and a process of preparing such highly pure thin metal films of, e.g., rhodium, iridium, molybdenum, tungsten, rhenium, platinum, or palladium by plasma assisted chemical vapor deposition of, e.g., rhodium(allyl).sub.3, iridium(allyl).sub.3, molybdenum(allyl).sub.4, tungsten(allyl).sub.4, rhenium(allyl).sub.4, platinum(allyl).sub.2, or palladium(allyl).sub.2 are disclosed. Additionally, a general process of reducing the carbon content of a metallic film prepared from one or more organometallic precursor compounds by plasma assisted chemical vapor deposition is disclosed.

  3. Solvothermal Thin Film Deposition of Electron Blocking Layers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solvothermal Thin Film Deposition of Electron Blocking Layers Home > Research > ANSER Research Highlights > Solvothermal Thin Film Deposition of Electron Blocking Layers...

  4. Solvothermal Thin Film Deposition of Electron Blocking Layers | ANSER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center | Argonne-Northwestern National Laboratory Solvothermal Thin Film Deposition of Electron Blocking Layers Home > Research > ANSER Research Highlights > Solvothermal Thin Film Deposition of Electron Blocking Layers

  5. Substrate heater for thin film deposition

    DOE Patents [OSTI]

    Foltyn, Steve R. (111 Beryl St., Los Alamos, NM 87544)

    1996-01-01

    A substrate heater for thin film deposition of metallic oxides upon a target substrate configured as a disk including means for supporting in a predetermined location a target substrate configured as a disk, means for rotating the target substrate within the support means, means for heating the target substrate within the support means, the heating means about the support means and including a pair of heating elements with one heater element situated on each side of the predetermined location for the target substrate, with one heater element defining an opening through which desired coating material can enter for thin film deposition and with the heating means including an opening slot through which the target substrate can be entered into the support means, and, optionally a means for thermal shielding of the heating means from surrounding environment is disclosed.

  6. Apparatus for laser assisted thin film deposition

    DOE Patents [OSTI]

    Warner, B.E.; McLean, W. II

    1996-02-13

    A pulsed laser deposition apparatus uses fiber optics to deliver visible output beams. One or more optical fibers are coupled to one or more laser sources, and delivers visible output beams to a single chamber, to multiple targets in the chamber or to multiple chambers. The laser can run uninterrupted if one of the deposition chambers ceases to operate because other chambers can continue their laser deposition processes. The laser source can be positioned at a remote location relative to the deposition chamber. The use of fiber optics permits multi-plexing. A pulsed visible laser beam is directed at a generally non-perpendicular angle upon the target in the chamber, generating a plume of ions and energetic neutral species. A portion of the plume is deposited on a substrate as a thin film. A pulsed visible output beam with a high pulse repetition frequency is used. The high pulse repetition frequency is greater than 500 Hz, and more preferably, greater than about 1000 Hz. Diamond-like-carbon (DLC) is one of the thin films produced using the apparatus. 9 figs.

  7. Apparatus for laser assisted thin film deposition

    DOE Patents [OSTI]

    Warner, Bruce E. (Pleasanton, CA); McLean, II, William (Oakland, CA)

    1996-01-01

    A pulsed laser deposition apparatus uses fiber optics to deliver visible output beams. One or more optical fibers are coupled to one or more laser sources, and delivers visible output beams to a single chamber, to multiple targets in the chamber or to multiple chambers. The laser can run uninterrupted if one of the deposition chambers ceases to operate because other chambers can continue their laser deposition processes. The laser source can be positioned at a remote location relative to the deposition chamber. The use of fiber optics permits multi-plexing. A pulsed visible laser beam is directed at a generally non-perpendicular angle upon the target in the chamber, generating a plume of ions and energetic neutral species. A portion of the plume is deposited on a substrate as a thin film. A pulsed visible output beam with a high pulse repetition frequency is used. The high pulse repetition frequency is greater than 500 Hz, and more preferably, greater than about 1000 Hz. Diamond-like-carbon (DLC) is one of the thin films produced using the apparatus.

  8. Glow discharge plasma deposition of thin films

    DOE Patents [OSTI]

    Weakliem, Herbert A. (Pennington, NJ); Vossen, Jr., John L. (Bridgewater, NJ)

    1984-05-29

    A glow discharge plasma reactor for deposition of thin films from a reactive RF glow discharge is provided with a screen positioned between the walls of the chamber and the cathode to confine the glow discharge region to within the region defined by the screen and the cathode. A substrate for receiving deposition material from a reactive gas is positioned outside the screened region. The screen is electrically connected to the system ground to thereby serve as the anode of the system. The energy of the reactive gas species is reduced as they diffuse through the screen to the substrate. Reactive gas is conducted directly into the glow discharge region through a centrally positioned distribution head to reduce contamination effects otherwise caused by secondary reaction products and impurities deposited on the reactor walls.

  9. Ultrashort pulse laser deposition of thin films

    DOE Patents [OSTI]

    Perry, Michael D.; Banks, Paul S.; Stuart, Brent C.

    2002-01-01

    Short pulse PLD is a viable technique of producing high quality films with properties very close to that of crystalline diamond. The plasma generated using femtosecond lasers is composed of single atom ions with no clusters producing films with high Sp.sup.3 /Sp.sup.2 ratios. Using a high average power femtosecond laser system, the present invention dramatically increases deposition rates to up to 25 .mu.m/hr (which exceeds many CVD processes) while growing particulate-free films. In the present invention, deposition rates is a function of laser wavelength, laser fluence, laser spot size, and target/substrate separation. The relevant laser parameters are shown to ensure particulate-free growth, and characterizations of the films grown are made using several diagnostic techniques including electron energy loss spectroscopy (EELS) and Raman spectroscopy.

  10. Dual Layer Solid State Thin Film Deposition - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Energy Storage Find More Like This Return to Search Dual Layer Solid State Thin Film Deposition National Renewable Energy Laboratory Contact NREL About This Technology <em>The dual-layered electrolyte material can be deposited at different vacuum pressures to suit desired physical properties such as high ionic conductivity, mechanical fracture toughness, and low diffusion constant for atmospheric gases. </em> The dual-layered electrolyte material can be deposited at

  11. Sputter deposition for multi-component thin films

    DOE Patents [OSTI]

    Krauss, Alan R. (Plainfield, IL); Auciello, Orlando (Cary, NC)

    1990-01-01

    Ion beam sputter-induced deposition using a single ion beam and a multicomponent target is capable of reproducibly producing thin films of arbitrary composition, including those which are close to stoichiometry. Using a quartz crystal deposition monitor and a computer controlled, well-focused ion beam, this sputter-deposition approach is capable of producing metal oxide superconductors and semiconductors of the superlattice type such as GaAs-AlGaAs as well as layered metal/oxide/semiconductor/superconductor structures. By programming the dwell time for each target according to the known sputtering yield and desired layer thickness for each material, it is possible to deposit composite films from a well-controlled sub-monolayer up to thicknesses determined only by the available deposition time. In one embodiment, an ion beam is sequentially directed via a set of X-Y electrostatic deflection plates onto three or more different element or compound targets which are constituents of the desired film. In another embodiment, the ion beam is directed through an aperture in the deposition plate and is displaced under computer control to provide a high degree of control over the deposited layer. In yet another embodiment, a single fixed ion beam is directed onto a plurality of sputter targets in a sequential manner where the targets are each moved in alignment with the beam under computer control in forming a multilayer thin film. This controlled sputter-deposition approach may also be used with laser and electron beams.

  12. Sputter deposition for multi-component thin films

    DOE Patents [OSTI]

    Krauss, A.R.; Auciello, O.

    1990-05-08

    Ion beam sputter-induced deposition using a single ion beam and a multicomponent target is capable of reproducibly producing thin films of arbitrary composition, including those which are close to stoichiometry. Using a quartz crystal deposition monitor and a computer controlled, well-focused ion beam, this sputter-deposition approach is capable of producing metal oxide superconductors and semiconductors of the superlattice type such as GaAs-AlGaAs as well as layered metal/oxide/semiconductor/superconductor structures. By programming the dwell time for each target according to the known sputtering yield and desired layer thickness for each material, it is possible to deposit composite films from a well-controlled sub-monolayer up to thicknesses determined only by the available deposition time. In one embodiment, an ion beam is sequentially directed via a set of X-Y electrostatic deflection plates onto three or more different element or compound targets which are constituents of the desired film. In another embodiment, the ion beam is directed through an aperture in the deposition plate and is displaced under computer control to provide a high degree of control over the deposited layer. In yet another embodiment, a single fixed ion beam is directed onto a plurality of sputter targets in a sequential manner where the targets are each moved in alignment with the beam under computer control in forming a multilayer thin film. This controlled sputter-deposition approach may also be used with laser and electron beams. 10 figs.

  13. Substrates suitable for deposition of superconducting thin films

    DOE Patents [OSTI]

    Feenstra, Roeland; Boatner, Lynn A.

    1993-01-01

    A superconducting system for the lossless transmission of electrical current comprising a thin film of superconducting material Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.7-x epitaxially deposited upon a KTaO.sub.3 substrate. The KTaO.sub.3 is an improved substrate over those of the prior art since the it exhibits small lattice constant mismatch and does not chemically react with the superconducting film.

  14. Low Temperature Chemical Vapor Deposition Of Thin Film Magnets

    DOE Patents [OSTI]

    Miller, Joel S.; Pokhodnya, Kostyantyn I.

    2003-12-09

    A thin-film magnet formed from a gas-phase reaction of tetracyanoetheylene (TCNE) OR (TCNQ), 7,7,8,8-tetracyano-P-quinodimethane, and a vanadium-containing compound such as vanadium hexcarbonyl (V(CO).sub.6) and bis(benzene)vanalium (V(C.sub.6 H.sub.6).sub.2) and a process of forming a magnetic thin film upon at least one substrate by chemical vapor deposition (CVD) at a process temperature not exceeding approximately 90.degree. C. and in the absence of a solvent. The magnetic thin film is particularly suitable for being disposed upon rigid or flexible substrates at temperatures in the range of 40.degree. C. and 70.degree. C. The present invention exhibits air-stable characteristics and qualities and is particularly suitable for providing being disposed upon a wide variety of substrates.

  15. Properties of zirconia thin films deposited by laser ablation

    SciTech Connect (OSTI)

    Cancea, V. N.; Filipescu, M.; Colceag, D.; Dinescu, M.; Mustaciosu, C.

    2013-11-13

    Zirconia thin films have been deposited by laser ablation of a ceramic ZrO{sub 2} target in vacuum or in oxygen background at 0.01 mbar. The laser beam generated by an ArF laser (?=193 nm, ?=40 Hz) has been focalized on the target through a spherical lens at an incident angle of 45. The laser fluence has been established to a value from 2.0 to 3.4 Jcm{sup ?2}. A silicon (100) substrate has been placed parallel to the target, at a distance of 4 cm, and subsequently has been heated to temperatures ranging between 300 C and 600 C. Thin films morphology has been characterized by atomic force microscopy and secondary ion mass spectrometry. Biocompatibility of these thin films has been assessed by studying the cell attachment of L929 mouse fibroblasts.

  16. Microwave plasma assisted supersonic gas jet deposition of thin film materials

    DOE Patents [OSTI]

    Schmitt, III, Jerome J. (New Haven, CT); Halpern, Bret L. (Bethany, CT)

    1993-01-01

    An apparatus for fabricating thin film materials utilizing high speed gas dynamics relies on supersonic free jets of carrier gas to transport depositing vapor species generated in a microwave discharge to the surface of a prepared substrate where the vapor deposits to form a thin film. The present invention generates high rates of deposition and thin films of unforeseen high quality at low temperatures.

  17. Atomic layer deposition of superparamagnetic and ferrimagnetic magnetite thin films

    SciTech Connect (OSTI)

    Zhang, Yijun; Liu, Ming E-mail: wren@mail.xjtu.edu.cn Ren, Wei E-mail: wren@mail.xjtu.edu.cn; Zhang, Yuepeng; Chen, Xing; Ye, Zuo-Guang E-mail: wren@mail.xjtu.edu.cn

    2015-05-07

    One of the key challenges in realizing superparamagnetism in magnetic thin films lies in finding a low-energy growth way to create sufficiently small grains and magnetic domains which allow the magnetization to randomly and rapidly reverse. In this work, well-defined superparamagnetic and ferrimagnetic Fe{sub 3}O{sub 4} thin films are successfully prepared using atomic layer deposition technique by finely controlling the growth condition and post-annealing process. As-grown Fe{sub 3}O{sub 4} thin films exhibit a conformal surface and poly-crystalline nature with an average grain size of 7 nm, resulting in a superparamagnetic behavior with a blocking temperature of 210 K. After post-annealing in H{sub 2}/Ar at 400 °C, the as-grown α−Fe{sub 2}O{sub 3} sample is reduced to Fe{sub 3}O{sub 4} phase, exhibiting a ferrimagnetic ordering and distinct magnetic shape anisotropy. Atomic layer deposition of magnetite thin films with well-controlled morphology and magnetic properties provides great opportunities for integrating with other order parameters to realize magnetic nano-devices with potential applications in spintronics, electronics, and bio-applications.

  18. Studies on atomic layer deposition of IRMOF-8 thin films

    SciTech Connect (OSTI)

    Salmi, Leo D. Heikkil, Mikko J.; Vehkamki, Marko; Puukilainen, Esa; Ritala, Mikko; Sajavaara, Timo

    2015-01-15

    Deposition of IRMOF-8 thin films by atomic layer deposition was studied at 260320?C. Zinc acetate and 2,6-naphthalenedicarboxylic acid were used as the precursors. The as-deposited amorphous films were crystallized in 70% relative humidity at room temperature resulting in an unknown phase with a large unit cell. An autoclave with dimethylformamide as the solvent was used to recrystallize the films into IRMOF-8 as confirmed by grazing incidence x-ray diffraction. The films were further characterized by high temperature x-ray diffraction (HTXRD), field emission scanning electron microscopy, Fourier transform infrared spectroscopy (FTIR), time-of-flight elastic recoil detection analysis (TOF-ERDA), nanoindentation, and energy-dispersive x-ray spectroscopy. HTXRD measurements revealed similar behavior to bulk IRMOF-8. According to TOF-ERDA and FTIR, composition of the films was similar to IRMOF-8. Through-porosity was confirmed by loading the films with palladium using Pd(thd){sub 2} (thd?=?2,2,6,6-tetramethyl-3,5-heptanedionato) as the precursor.

  19. Microwave plasma assisted supersonic gas jet deposition of thin film materials

    DOE Patents [OSTI]

    Schmitt, J.J. III; Halpern, B.L.

    1993-10-26

    An apparatus for fabricating thin film materials utilizing high speed gas dynamics relies on supersonic free jets of carrier gas to transport depositing vapor species generated in a microwave discharge to the surface of a prepared substrate where the vapor deposits to form a thin film. The present invention generates high rates of deposition and thin films of unforeseen high quality at low temperatures. 5 figures.

  20. Optical Properties of Zn(O,S) Thin Films Deposited by RF Sputtering, Atomic Layer Deposition, and Chemical Bath Deposition: Preprint

    SciTech Connect (OSTI)

    Li, J.; Glynn, S.; Christensen, S.; Mann, J.; To, B.; Ramanathan, K.; Noufi, R.; Furtak, T. E.; Levi, D.

    2012-06-01

    Zn(O,S) thin films 27 - 100 nm thick were deposited on glass or Cu(InxGa1-x)Se2/Molybdenum/glass with RF sputtering, atomic layer deposition, and chemical bath deposition.

  1. Process for thin film deposition of cadmium sulfide

    DOE Patents [OSTI]

    Muruska, H. Paul (East Windsor, NJ); Sansregret, Joseph L. (Scotch Plains, NJ); Young, Archie R. (Montclair, NJ)

    1982-01-01

    The present invention teaches a process for depositing layers of cadmium sulfide. The process includes depositing a layer of cadmium oxide by spray pyrolysis of a cadmium salt in an aqueous or organic solvent. The oxide film is then converted into cadmium sulfide by thermal ion exchange of the O.sup.-2 for S.sup.-2 by annealing the oxide layer in gaseous sulfur at elevated temperatures.

  2. Evaporation system and method for gas jet deposition of thin film materials

    DOE Patents [OSTI]

    Schmitt, Jerome J. (New Haven, CT); Halpern, Bret L. (Bethany, CT)

    1994-01-01

    A method and apparatus for depositing thin films of materials such as metals, oxides and nitrides at low temperature relies on a supersonic free jet of inert carrier gas to transport vapor species generated from an evaporation source to the surface of a substrate. Film deposition vapors are generated from solid film precursor materials, including those in the form of wires or powders. The vapor from these sources is carried downstream in a low pressure supersonic jet of inert gas to the surface of a substrate where the vapors deposit to form a thin film. A reactant gas can be introduced into the gas jet to form a reaction product with the evaporated material. The substrate can be moved from the gas jet past a gas jet containing a reactant gas in which a discharge has been generated, the speed of movement being sufficient to form a thin film which is chemically composed of the evaporated material and reactant gases.

  3. Pulsed laser deposition of AlMgB14 thin films

    SciTech Connect (OSTI)

    Russell, Alan; Bastawros, Ashraf; Tan, Xiaoli

    2008-11-18

    Hard, wear-resistant coatings of thin film borides based on AlMgB{sub 14} have the potential to be applied industrially to improve the tool life of cutting tools and pump vanes and may account for several million dollars in savings as a result of reduced wear on these parts. Past work with this material has shown that it can have a hardness of up to 45GPa and be fabricated into thin films with a similar hardness using pulsed laser deposition. These films have already been shown to be promising for industrial applications. Cutting tools coated with AlMgB{sub 14} used to mill titanium alloys have been shown to substantially reduce the wear on the cutting tool and extend its cutting life. However, little research into the thin film fabrication process using pulsed laser deposition to make AlMgB{sub 14} has been conducted. In this work, research was conducted into methods to optimize the deposition parameters for the AlMgB{sub 14} films. Processing methods to eliminate large particles on the surface of the AlMgB{sub 14} films, produce films that were at least 1m thick, reduce the surface roughness of the films, and improve the adhesion of the thin films were investigated. Use of a femtosecond laser source rather than a nanosecond laser source was found to be effective in eliminating large particles considered detrimental to wear reduction properties from the films. Films produced with the femtosecond laser were also found to be deposited at a rate 100 times faster than those produced with the nanosecond laser. However, films produced with the femtosecond laser developed a relatively high RMS surface roughness around 55nm. Attempts to decrease the surface roughness were largely unsuccessful. Neither increasing the surface temperature of the substrate during deposition nor using a double pulse to ablate the material was found to be extremely successful to reduce the surface roughness. Finally, the adhesion of the thin films to M2 tool steel substrates, assessed using the Rockwell C indentation adhesion test, was found to be substantially improved by the deposition of a titanium interlayer, but unaffected by increasing the temperature of the substrates. The titanium was found to improve the adhesion strength of the films because it reacted with both the steel and the AlMgB{sub 14} compound to form new compounds. Ultimately, it was concluded that the films with the best properties were produced with a femtosecond pulsed laser and were deposited on top of a titanium interlayer to improve the thin film adhesion.

  4. Optical and mechanical properties of nanocrystalline ZrC thin films grown by pulsed laser deposition.

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Craciun, D.; Socol, G.; Lambers, E.; McCumiskey, E. J.; Taylor, C. R.; Martin, C.; Argibay, Nicolas; Craciun, V.; Tanner, D. B.

    2015-01-17

    Thin ZrC films (<500 nm) were grown on (100) Si substrates at a substrate temperature of 500 °C by the pulsed laser deposition (PLD) technique using a KrF excimer laser under different CH4 pressures. Glancing incidence X-ray diffraction showed that films were nanocrystalline, while X-ray reflectivity studies found out films were very dense and exhibited a smooth surface morphology. Optical spectroscopy data shows that the films have high reflectivity (>90%) in the infrared region, characteristic of metallic behavior. Nanoindentation results indicated that films deposited under lower CH4 pressures exhibited slightly higher nanohardness and Young modulus values than films deposited undermore » higher pressures. As a result, tribological characterization revealed that these films exhibited relatively high wear resistance and steady-state friction coefficients on the order of μ = 0.4.« less

  5. Underpotential deposition-mediated layer-by-layer growth of thin films

    DOE Patents [OSTI]

    Wang, Jia Xu; Adzic, Radoslav R.

    2015-05-19

    A method of depositing contiguous, conformal submonolayer-to-multilayer thin films with atomic-level control is described. The process involves the use of underpotential deposition of a first element to mediate the growth of a second material by overpotential deposition. Deposition occurs between a potential positive to the bulk deposition potential for the mediating element where a full monolayer of mediating element forms, and a potential which is less than, or only slightly greater than, the bulk deposition potential of the material to be deposited. By cycling the applied voltage between the bulk deposition potential for the mediating element and the material to be deposited, repeated desorption/adsorption of the mediating element during each potential cycle can be used to precisely control film growth on a layer-by-layer basis. This process is especially suitable for the formation of a catalytically active layer on core-shell particles for use in energy conversion devices such as fuel cells.

  6. Development and Characterization of a Spray Deposited CNT/PVDF Thin Film.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: Development and Characterization of a Spray Deposited CNT/PVDF Thin Film. Citation Details In-Document Search Title: Development and Characterization of a Spray Deposited CNT/PVDF Thin Film. Abstract not provided. Authors: Loyola, Bryan R. ; Briggs, Timothy M. ; Sugar, Joshua Daniel ; O'Bryan, Greg Publication Date: 2014-05-01 OSTI Identifier: 1146176 Report Number(s): SAND2014-4420C 519435 DOE Contract Number: DE-AC04-94AL85000 Resource Type:

  7. Pulsed laser deposition and characterization of conductive RuO{sub 2} thin films

    SciTech Connect (OSTI)

    Iembo, A.; Fuso, F.; Arimondo, E.; Ciofi, C.; Pennelli, G.; Curro, G.M.; Neri, F.; Allegrini, M. |

    1997-06-01

    RuO{sub 2} thin films have been produced on silicon-based substrates by {ital in situ} pulsed laser deposition for the first time. The electrical properties, the surface characteristics, the crystalline structure, and the film-substrate interface of deposited samples have been investigated by 4-probe resistance versus temperature technique, scanning electron microscopy, x-ray photoelectron spectroscopy, x-ray diffraction, and transmission electron microscopy, respectively. The films show good electrical properties. The RuO{sub 2}-substrate interface is very thin ({approx}3 nm), since not degraded by any annealing process. These two characteristics render our films suitable to be used as electrodes in PZT-based capacitors.{copyright} {ital 1997 Materials Research Society.}

  8. Mechanical properties of vapor-deposited thin metallic films: a status report

    SciTech Connect (OSTI)

    Adler, P.H.

    1982-12-17

    The mechanical properties of vapor-deposited thin metallic films are being studied in conjunction with the target fabrication group associated with the laser-fusion energy program. The purpose of the work is to gain an understanding as to which metals are structurally best suited to contain a glass microsphere filled with deuterium-tritium (D-T) gas at large internal pressures.

  9. Homogeneous, dual layer, solid state, thin film deposition for structural and/or electrochemical characteristics

    DOE Patents [OSTI]

    Pitts, J. Roland; Lee, Se-Hee; Tracy, C. Edwin; Li, Wenming

    2014-04-08

    Solid state, thin film, electrochemical devices (10) and methods of making the same are disclosed. An exemplary device 10 includes at least one electrode (14) and an electrolyte (16) deposited on the electrode (14). The electrolyte (16) includes at least two homogenous layers of discrete physical properties. The two homogenous layers comprise a first dense layer (15) and a second porous layer (16).

  10. Method and apparatus for fabricating a thin-film solar cell utilizing a hot wire chemical vapor deposition technique

    DOE Patents [OSTI]

    Wang, Qi; Iwaniczko, Eugene

    2006-10-17

    A thin-film solar cell is provided. The thin-film solar cell comprises an a-SiGe:H (1.6 eV) n-i-p solar cell having a deposition rate of at least ten (10) .ANG./second for the a-SiGe:H intrinsic layer by hot wire chemical vapor deposition. A method for fabricating a thin film solar cell is also provided. The method comprises depositing a n-i-p layer at a deposition rate of at least ten (10) .ANG./second for the a-SiGe:H intrinsic layer.

  11. Evaporation system and method for gas jet deposition of thin film materials

    DOE Patents [OSTI]

    Schmitt, J.J.; Halpern, B.L.

    1994-10-18

    A method and apparatus are disclosed for depositing thin films of materials such as metals, oxides and nitrides at low temperature relies on a supersonic free jet of inert carrier gas to transport vapor species generated from an evaporation source to the surface of a substrate. Film deposition vapors are generated from solid film precursor materials, including those in the form of wires or powders. The vapor from these sources is carried downstream in a low pressure supersonic jet of inert gas to the surface of a substrate where the vapors deposit to form a thin film. A reactant gas can be introduced into the gas jet to form a reaction product with the evaporated material. The substrate can be moved from the gas jet past a gas jet containing a reactant gas in which a discharge has been generated, the speed of movement being sufficient to form a thin film which is chemically composed of the evaporated material and reactant gases. 8 figs.

  12. Structural and optical studies of chemically deposited Sn{sub 2}S{sub 3} thin films

    SciTech Connect (OSTI)

    Gneri, Emine; Gde, Fatma; Boyarbay, Behiye; Gm?, Cebrail

    2012-11-15

    Highlights: ? Sn{sub 2}S{sub 3} films were deposited at 30 C by chemical bath deposition. ? The deposition time of the chemical bath was adjusted to 20 h, 22 h, and 24 h. ? Effect of deposition time on structural and optical properties of Sn{sub 2}S{sub 3} thin films were investigated. ? The presence of characteristic bonds of Sn{sub 2}S{sub 3} was observed from Raman shift experiment. ? The direct band gap of thin films constant were calculated. -- Abstract: Sn{sub 2}S{sub 3} thin films were grown on commercial glass substrates by chemical bath deposition at room temperature. The structural and optical properties of Sn{sub 2}S{sub 3} thin films were studied as a function of deposition time. The thin films were characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and UVvis spectroscopy. The XRD pattern showed that the Sn{sub 2}S{sub 3} thin films had an orthorhombic polycrystalline structure. The lattice constants of the thin films were a = 8.741 ?, b = 14.034 ? and c = 3.728 ?. The characteristic bonds of Sn{sub 2}S{sub 3} were observed at 66.3, 111.7, 224.7 and 308.9 cm{sup ?1} using Raman shift experiment. The optical energy band gap of the thin films decreased from 2.12 eV to 2.03 eV with increasing deposition time from 20 to 24 h. The optical constants of the thin films were obtained using the experimentally recorded transmission data as a function of the wavelength.

  13. Industrial Application of Thin Films (TiAl)N Deposited on Thermo-Wells

    SciTech Connect (OSTI)

    Velez, G.; Jaramillo, S.; Arango, Y. C.; Devia, D.; Quintero, J.; Devia, A.

    2006-12-04

    The thermo-well is formed by two layers, one layer is a ceramic and the other layer is anviloy (comprised tungsten). They are used to coat the thermocouple in the control temperature system during the Aluminum-Silicon alloy melting process. After two weeks of continuous work at 750 deg. C of temperature (the alloy temperature), a high wear in this material is observed, affecting the ceramic. (TiAl)N thin films are deposited directly on the anviloy substrates by the PAPVD (Plasma Assisted Physics Vapor Deposition) in arc pulsed technique, using a TiAl target in a mono-vaporizer system, composed by a reactor and a power controlled system. Two opposite electrodes are placed into the reactor and discharge is produced by a controlled power system. The XRD (X-ray diffraction) patterns show the presence of the (TiAl)N thin film peaks. The morphological characteristics are studied by the scanning probe microscopy (SPM)

  14. Atomic layer deposition of aluminum sulfide thin films using trimethylaluminum and hydrogen sulfide

    SciTech Connect (OSTI)

    Sinha, Soumyadeep; Sarkar, Shaibal K.; Mahuli, Neha

    2015-01-15

    Sequential exposures of trimethylaluminum and hydrogen sulfide are used to deposit aluminum sulfide thin films by atomic layer deposition (ALD) in the temperature ranging from 100 to 200?C. Growth rate of 1.3 per ALD cycle is achieved by in-situ quartz crystal microbalance measurements. It is found that the growth rate per ALD cycle is highly dependent on the purging time between the two precursors. Increased purge time results in higher growth rate. Surface limited chemistry during each ALD half cycle is studied by in-situ Fourier transformed infrared vibration spectroscopy. Time of flight secondary ion-mass spectroscopy measurement is used to confirm elemental composition of the deposited films.

  15. Structural and optical properties of CdO thin films deposited by RF magnetron sputtering technique

    SciTech Connect (OSTI)

    Kumar, G. Anil Reddy, M. V. Ramana; Reddy, Katta Narasimha

    2014-04-24

    Cadmium oxide (CdO) thin films were deposited on glass substrate by r.f. magnetron sputtering technique using a high purity (99.99%) Cd target of 2-inch diameter and 3 mm thickness in an Argon and oxygen mixed atmosphere with sputtering power of 50W and sputtering pressure of 210{sup ?2} mbar. The prepared films were characterized by X-ray diffraction (XRD), optical spectroscopy and scanning electron microscopy (SEM). The XRD analysis reveals that the films were polycrystalline with cubic structure. The visible range transmittance was found to be over 70%. The optical band gap increased from 2.7 eV to2.84 eV with decrease of film thickness.

  16. Innovative Thin Films LLC | Open Energy Information

    Open Energy Info (EERE)

    Thin Films LLC Place: Toledo, Ohio Zip: 43607 Product: Provider of altnernative energy thin film deposition technology. Coordinates: 46.440613, -122.847838 Show Map Loading...

  17. Hybrid deposition of thin film solid oxide fuel cells and electrolyzers

    DOE Patents [OSTI]

    Jankowski, Alan F. (Livermore, CA); Makowiecki, Daniel M. (Livermore, CA); Rambach, Glenn D. (Livermore, CA); Randich, Erik (Endinboro, PA)

    1999-01-01

    The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated.

  18. Hybrid deposition of thin film solid oxide fuel cells and electrolyzers

    DOE Patents [OSTI]

    Jankowski, A.F.; Makowiecki, D.M.; Rambach, G.D.; Randich, E.

    1998-05-19

    The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated. 8 figs.

  19. Hybrid deposition of thin film solid oxide fuel cells and electrolyzers

    DOE Patents [OSTI]

    Jankowski, Alan F. (Livermore, CA); Makowiecki, Daniel M. (Livermore, CA); Rambach, Glenn D. (Livermore, CA); Randich, Erik (Endinboro, PA)

    1998-01-01

    The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated.

  20. Niobium thin film coating on a 500-MHz copper cavity by plasma deposition

    SciTech Connect (OSTI)

    Haipeng Wang; Genfa Wu; H. Phillips; Robert Rimmer; Anne-Marie Valente; Andy Wu

    2005-05-16

    A system using an Electron Cyclotron Resonance (ECR) plasma source for the deposition of a thin niobium film inside a copper cavity for superconducting accelerator applications has been designed and is being constructed. The system uses a 500-MHz copper cavity as both substrate and vacuum chamber. The ECR plasma will be created to produce direct niobium ion deposition. The central cylindrical grid is DC biased to control the deposition energy. This paper describes the design of several subcomponents including the vacuum chamber, RF supply, biasing grid and magnet coils. Operational parameters are compared between an operating sample deposition system and this system. Engineering work progress toward the first plasma creation will be reported here.

  1. Niobium Thin Film Coating on a 500-MHz Copper Cavity by Plasma Deposition

    SciTech Connect (OSTI)

    Haipeng Wang; Genfa Wu; H. Phillips; Robert Rimmer; Anne-Marie Valente; Andy Wu

    2005-05-16

    A system using an Electron Cyclotron Resonance (ECR) plasma source for the deposition of a thin niobium film inside a copper cavity for superconducting accelerator applications has been designed and is being constructed. The system uses a 500-MHz copper cavity as both substrate and vacuum chamber. The ECR plasma will be created to produce direct niobium ion deposition. The central cylindrical grid is DC biased to control the deposition energy. This paper describes the design of several subcomponents including the vacuum chamber, RF supply, biasing grid and magnet coils. Operational parameters are compared between an operating sample deposition system and this system. Engineering work progress toward the first plasma creation will be reported here.

  2. Investigation of the nonlocal nonlinear optical response of copper nanostructured thin films prepared by pulsed laser deposition

    SciTech Connect (OSTI)

    Farmanfarmaei, B; RashidianVaziri, M R; Hajiesmaeilbaigi, F [Laser and Optics Research School, P.O. Box 14155-1339, Tehran (Iran, Islamic Republic of)

    2014-11-30

    Nanostructured copper thin films have been prepared using the pulsed laser deposition method. Optical absorption spectra of these films exhibit plasmonic absorption peaks around 619 nm, which suggests the formation of copper nanoparticles on their surfaces. Scanning electron micrographs of the films confirm the nanoparticle formation on the films surfaces. After laser beam passing through the thin films, the observed diffraction rings on a far-field screen have been recorded. Despite the smallness of the maximal axial phase shifts of the films, which have been obtained using the nonlocal z-scan theory, a series of low-intensity rings can be observed on the far field screen for some specific positions of the thin films from the focal point. It is shown that the best approach to determining the sign and magnitude of the nonlinear refractive index of thin samples is the application of the conventional closeaperture z-scan method. (nanostructures)

  3. Uncooled thin film infrared imaging device with aerogel thermal isolation: Deposition and planarization techniques

    SciTech Connect (OSTI)

    Ruffner, J.A.; Clem, P.G.; Tuttle, B.A.; Brinker, C.J. [Sandia National Labs., Albuquerque, NM (United States); Sriram, C.S. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering; Bullington, J.A. [AMMPEC, Inc., Albuquerque, NM (United States)

    1998-04-01

    The authors have successfully integrated a thermally insulating silica aerogel thin film into a new uncooled monolithic thin film infrared (IR) imaging device. Compared to other technologies (bulk ceramic and microbridge), use of an aerogel layer provides superior thermal isolation of the pyroelectric imaging element from the relatively massive heat sinking integrated circuit. This results in significantly higher thermal and temporal resolutions. They have calculated noise equivalent temperature differences of 0.04--0.10 C from a variety of Pb{sub x}Zr{sub y}Ti{sub 1{minus}y}O{sub 3} (PZT) and Pb{sub x}La{sub 1{minus}x}Zr{sub y}Ti{sub 1{minus}y}O{sub 3} (PLZT) pyroelectric imaging elements in monolithic structures. In addition, use of aerogels results in an easier, less expensive fabrication process and a more robust device. Fabrication of these monolithic devices entails sol-gel deposition of the aerogel, sputter deposition of the electrodes, and solution chemistry deposition of the pyroelectric imaging elements. Uniform pyroelectric response is achieved across the device by use of appropriate planarization techniques. These deposition and planarization techniques are described. Characterization of the individual layers and monolithic structure using scanning electron microscopy, atomic force microscopy and Byer-Roundy techniques also is discussed.

  4. Use of supercritical fluid solution expansion processes for drug delivery, particle synthesis, and thin film deposition

    SciTech Connect (OSTI)

    Hybertson, B.M.

    1992-01-01

    Properties of the gases and aerosols resulting from the expansion of supercritical fluid solutions were studied. Film deposition, particle formation, and drug delivery processes using supercritical fluids were developed. Thin films of palladium, copper, aluminum, silver, and silicon dioxide were deposited by a method called supercritical fluid transport-chemical deposition (SFT-CD). In each case, a precursor compound was dissolved in a supercritical fluid and the solution was allowed to expand through a restrictor nozzle into a reaction chamber at subcritical pressure, resulting in the formation of aerosol particles of the precursor. A chemical reaction was induced to occur at the surface of a substrate, resulting in deposition of a thin film. Micron-sized particles of aluminum fluoride and copper oxide were synthesized by a method called supercritical fluid transport-chemical formation of particles (SFT-CFP). The process was similar to that in SFT-CD, but the chemical reactions were induced to occur in the gas phase instead of at a substrate surface, resulting in the formation of fine particles. A new method of pulmonary drug delivery called supercritical fluid drug delivery (SFDD) was conceived and demonstrated. In SFDD a drug compound is dissolved in a supercritical fluid, and the solution is allowed to expand through a restrictor nozzle. The resultant aerosol is directly inhaled by a human or animal subject and the fine drug particles are deposited in the lungs. Menthol, vanillin, camphor, cholesterol, Sudan III, and Oil Blue N were used as model drug compounds for SFDD. Delivery of [alpha]-tocopherol to rat lung tissue was demonstrated, with observed increases of 80-290% above background levels.

  5. Thin film deposition behavior of lubricants as a function of temperature - Lubricant stability maps

    SciTech Connect (OSTI)

    Klaus, E.E.; Wang, J.C.; Duda, J.L. )

    1992-07-01

    The relative rates of evaporation and oxidative or thermal decomposition in lubricants are investigated experimentally at elevated temperatures. Thin films of lubricant are exposed to air at high temperatures, and attention is given to the amount of solid deposit rendered and the amount of evaporated material. The effects of volatility, oxidative stability, and thermal stability are assessed with the help of stability maps for liquid lubricants. The concept of fluid-stability maps based on deposit formation as a function of temperature is shown to be effective. At 200-425 C lubricant deposit formation in the presence of air is a function of lubricant volatility, oxidation rate, the rate of thermal degradation, and the effect of the bearing surface. Some materials are listed that can mitigate the effects of oxidation on lubricant performance which can be used for a range of aerospace applications. 16 refs.

  6. Surface smoothing effect of an amorphous thin film deposited by atomic layer deposition on a surface with nano-sized roughness

    SciTech Connect (OSTI)

    Lau, W. S. Wan, X.; Xu, Y.; Wong, H.; Zhang, J.; Luo, J. K.; Institute of Renewable Energy and Environment Technology, Bolton University, Deane Road, Bolton BL3 5 AB

    2014-02-15

    Previously, Lau (one of the authors) pointed out that the deposition of an amorphous thin film by atomic layer deposition (ALD) on a substrate with nano-sized roughness probably has a surface smoothing effect. In this letter, polycrystalline zinc oxide deposited by ALD onto a smooth substrate was used as a substrate with nano-sized roughness. Atomic force microscopy (AFM) and cross-sectional transmission electron microscopy (XTEM) were used to demonstrate that an amorphous aluminum oxide thin film deposited by ALD can reduce the surface roughness of a polycrystalline zinc oxide coated substrate.

  7. Research Update: Atmospheric pressure spatial atomic layer deposition of ZnO thin films: Reactors, doping, and devices

    SciTech Connect (OSTI)

    Hoye, Robert L. Z. E-mail: jld35@cam.ac.uk; MacManus-Driscoll, Judith L. E-mail: jld35@cam.ac.uk; Muoz-Rojas, David; Nelson, Shelby F.; Illiberi, Andrea; Poodt, Paul

    2015-04-01

    Atmospheric pressure spatial atomic layer deposition (AP-SALD) has recently emerged as an appealing technique for rapidly producing high quality oxides. Here, we focus on the use of AP-SALD to deposit functional ZnO thin films, particularly on the reactors used, the film properties, and the dopants that have been studied. We highlight how these films are advantageous for the performance of solar cells, organometal halide perovskite light emitting diodes, and thin-film transistors. Future AP-SALD technology will enable the commercial processing of thin films over large areas on a sheet-to-sheet and roll-to-roll basis, with new reactor designs emerging for flexible plastic and paper electronics.

  8. Maskless deposition technique for the physical vapor deposition of thin film and multilayer coatings with subnanometer precision and accuracy

    DOE Patents [OSTI]

    Vernon, Stephen P. (Pleasanton, CA); Ceglio, Natale M. (Livermore, CA)

    2000-01-01

    The invention is a method for the production of axially symmetric, graded and ungraded thickness thin film and multilayer coatings that avoids the use of apertures or masks to tailor the deposition profile. A motional averaging scheme permits the deposition of uniform thickness coatings independent of the substrate radius. Coating uniformity results from an exact cancellation of substrate radius dependent terms, which occurs when the substrate moves at constant velocity. If the substrate is allowed to accelerate over the source, arbitrary coating profiles can be generated through appropriate selection and control of the substrate center of mass equation of motion. The radial symmetry of the coating profile is an artifact produced by orbiting the substrate about its center of mass; other distributions are obtained by selecting another rotation axis. Consequently there is a direct mapping between the coating thickness and substrate equation of motion which can be used to tailor the coating profile without the use of masks and apertures.

  9. Characterization of electrospray ion-beam-deposited CdSe/ZnS quantum dot thin films from a colloidal solution

    SciTech Connect (OSTI)

    Tani, Yuki; Kobayashi, Satoshi; Kawazoe, Hiroshi

    2008-07-15

    Colloidal semiconductor quantum dot (QD) nanocrystals can be deposited in the form of inorganic thin films using the ion beam direct deposition method. To simultaneously preserve the nanocrystal configuration and remove the organics derived from the ligand and solvent, the authors used an electrospray technique and an ion beam technique. These techniques provided a soft-ionization process to obtain nanocrystalline ions and a collision process to attain a nonequilibrium state of the deposits, respectively. Because of the nature of the soft-ionization process, the electrospray phenomenon resulted in various forms of QD ions that depended on the preparation of the colloidal solution source and spraying conditions. The authors concentrated on finding operational conditions of the system that deposited thin films with reduced organics concentrations by examining the correlation between fast Fourier transform infrared absorption spectroscopy and photoluminescence intensity. The morphology of the deposited films was observed using an atomic force microscope.

  10. Reactive sputter deposition of pyrite structure transition metal disulfide thin films: Microstructure, transport, and magnetism

    SciTech Connect (OSTI)

    Baruth, A.; Manno, M.; Narasimhan, D.; Shankar, A.; Zhang, X.; Johnson, M.; Aydil, E. S.; Leighton, C. [Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2012-09-01

    Transition metal disulfides crystallizing in the pyrite structure (e.g., TMS{sub 2}, with TM = Fe, Co, Ni, and Cu) are a class of materials that display a remarkably diverse array of functional properties. These properties include highly spin-polarized ferromagnetism (in Co{sub 1-x}Fe{sub x}S{sub 2}), superconductivity (in CuS{sub 2}), an antiferromagnetic Mott insulating ground state (in NiS{sub 2}), and semiconduction with close to optimal parameters for solar absorber applications (in FeS{sub 2}). Exploitation of these properties in heterostructured devices requires the development of reliable and reproducible methods for the deposition of high quality pyrite structure thin films. In this manuscript, we report on the suitability of reactive sputter deposition from metallic targets in an Ar/H{sub 2}S environment as a method to achieve exactly this. Optimization of deposition temperature, Ar/H{sub 2}S pressure ratio, and total working gas pressure, assisted by plasma optical emission spectroscopy, reveals significant windows over which deposition of single-phase, polycrystalline, low roughness pyrite films can be achieved. This is illustrated for the test cases of the ferromagnetic metal CoS{sub 2} and the diamagnetic semiconductor FeS{sub 2}, for which detailed magnetic and transport characterization are provided. The results indicate significant improvements over alternative deposition techniques such as ex situ sulfidation of metal films, opening up exciting possibilities for all-sulfide heterostructured devices. In particular, in the FeS{sub 2} case it is suggested that fine-tuning of the sputtering conditions provides a potential means to manipulate doping levels and conduction mechanisms, critical issues in solar cell applications. Parenthetically, we note that conditions for synthesis of phase-pure monosulfides and thiospinels are also identified.

  11. Low temperature atomic layer deposited ZnO photo thin film transistors

    SciTech Connect (OSTI)

    Oruc, Feyza B.; Aygun, Levent E.; Donmez, Inci; Biyikli, Necmi; Okyay, Ali K.; Yu, Hyun Yong

    2015-01-01

    ZnO thin film transistors (TFTs) are fabricated on Si substrates using atomic layer deposition technique. The growth temperature of ZnO channel layers are selected as 80, 100, 120, 130, and 250?C. Material characteristics of ZnO films are examined using x-ray photoelectron spectroscopy and x-ray diffraction methods. Stoichiometry analyses showed that the amount of both oxygen vacancies and interstitial zinc decrease with decreasing growth temperature. Electrical characteristics improve with decreasing growth temperature. Best results are obtained with ZnO channels deposited at 80?C; I{sub on}/I{sub off} ratio is extracted as 7.8 10{sup 9} and subthreshold slope is extracted as 0.116 V/dec. Flexible ZnO TFT devices are also fabricated using films grown at 80?C. I{sub D}V{sub GS} characterization results showed that devices fabricated on different substrates (Si and polyethylene terephthalate) show similar electrical characteristics. Sub-bandgap photo sensing properties of ZnO based TFTs are investigated; it is shown that visible light absorption of ZnO based TFTs can be actively controlled by external gate bias.

  12. Heteroepitaxial growth of highly conductive metal oxide RuO{sub 2} thin films by pulsed laser deposition

    SciTech Connect (OSTI)

    Jia, Q.X.; Wu, X.D.; Foltyn, S.R.; Findikoglu, A.T.; Tiwari, P.; Zheng, J.P.; Jow, T.R.

    1995-09-18

    Highly conductive ruthenium oxide (RuO{sub 2}) has been epitaxially grown on LaAlO{sub 3} substrates by pulsed laser deposition. The RuO{sub 2} film is ({ital h}00) oriented normal to the substrate surface. The heteroepitaxial growth of RuO{sub 2} on LaAlO{sub 3} is demonstrated by the strong in-plane orientation of thin films with respect to the major axes of the substrate. High crystallinity of RuO{sub 2} thin films is also determined from Rutherford backscattering channeling measurements. Electrical measurements on the RuO{sub 2} thin films demonstrate a quite low room-temperature resistivity of 35{plus_minus}2 {mu}{Omega} cm at deposition temperatures of above 500 {degree}C. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  13. Current transport mechanisms in plasma-enhanced atomic layer deposited AlN thin films

    SciTech Connect (OSTI)

    Altuntas, Halit E-mail: biyikli@unam.bilkent.edu.tr; Ozgit-Akgun, Cagla; Donmez, Inci; Biyikli, Necmi E-mail: biyikli@unam.bilkent.edu.tr

    2015-04-21

    Here, we report on the current transport mechanisms in AlN thin films deposited at a low temperature (i.e., 200?C) on p-type Si substrates by plasma-enhanced atomic layer deposition. Structural characterization of the deposited AlN was carried out using grazing-incidence X-ray diffraction, revealing polycrystalline films with a wurtzite (hexagonal) structure. Al/AlN/ p-Si metal-insulator-semiconductor (MIS) capacitor structures were fabricated and investigated under negative bias by performing current-voltage measurements. As a function of the applied electric field, different types of current transport mechanisms were observed; i.e., ohmic conduction (15.221.5 MV/m), Schottky emission (23.639.5 MV/m), Frenkel-Poole emission (63.8211.8 MV/m), trap-assisted tunneling (226280 MV/m), and Fowler-Nordheim tunneling (290447 MV/m). Electrical properties of the insulating AlN layer and the fabricated Al/AlN/p-Si MIS capacitor structure such as dielectric constant, flat-band voltage, effective charge density, and threshold voltage were also determined from the capacitance-voltage measurements.

  14. Thin-film optical initiator

    DOE Patents [OSTI]

    Erickson, Kenneth L.

    2001-01-01

    A thin-film optical initiator having an inert, transparent substrate, a reactive thin film, which can be either an explosive or a pyrotechnic, and a reflective thin film. The resultant thin-film optical initiator system also comprises a fiber-optic cable connected to a low-energy laser source, an output charge, and an initiator housing. The reactive thin film, which may contain very thin embedded layers or be a co-deposit of a light-absorbing material such as carbon, absorbs the incident laser light, is volumetrically heated, and explodes against the output charge, imparting about 5 to 20 times more energy than in the incident laser pulse.

  15. Process and Hardware for Deposition of Complex Thin-film Alloys...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fabrication, photovoltaic fabrication, and packaging (e.g., aluminum coating on plastic for potato chip bags). Benefits Scalable, fast, and able to deposit alloyed films...

  16. Building a Better Capacitor with Thin-Film Atomic Layer Deposition Processing

    SciTech Connect (OSTI)

    Pike, Christopher

    2015-08-28

    The goal of this research is to determine procedures for creating ultra-high capacity supercapacitors by using nanofabrication techniques and high k-value dielectrics. One way to potentially solve the problem of climate change is to switch the source of energy to a source that doesnt release many tons of greenhouse gases, gases which cause global warming, into the Earths atmosphere. These trap in more heat from the Suns solar energy and cause global temperatures to rise. Atomic layer deposition will be used to create a uniform thin-film of dielectric to greatly enhance the abilities of our capacitors and will build them on the nanoscale.

  17. Measurement Of Hydrogen Capacities And Stability In Thin Films Of AlH Deposited By Magnetron Sputtering

    SciTech Connect (OSTI)

    Dissanayake, A.; AlFaify, S.; Garratt, E.; Nandasiri, M. I.; Taibu, R.; Tecos, G.; Kayani, A.; Hamdan, N. M.

    2011-06-01

    Thin, hydrogenated aluminum hydride films were deposited on silicon substrates using unbalanced magnetron (UBM) sputtering of a high purity aluminum target under electrically grounded conditions. Argon was used as sputtering gas and hydrogenation was carried out by diluting the growth plasma with hydrogen. The effect of hydrogen partial pressure on the final concentration of trapped elements including hydrogen has been studied using ion beam analysis (IBA) techniques. Moreover, in-situ thermal stability of trapped hydrogen in the film was carried out using Rutherford Backscattering Spectrometry (RBS), Non-Rutherford Backscattering Spectrometry (NRBS) and Elastic Recoil Detection Analysis (ERDA). Microstructure of the film was investigated by SEM analysis. Hydrogen content in the thin films was found decreasing as the films were heated above 110 deg. C in vacuum.

  18. Apparatus and method for selective area deposition of thin films on electrically biased substrates

    DOE Patents [OSTI]

    Zuhr, R.A.; Haynes, T.E.; Golanski, A.

    1999-06-08

    An ion beam deposition process for selective area deposition on a polarized substrate uses a potential applied to the substrate which allows the ionized particles to reach into selected areas for film deposition. Areas of the substrate to be left uncoated are held at a potential that repels the ionized particles. 3 figs.

  19. Apparatus and method for selective area deposition of thin films on electrically biased substrates

    DOE Patents [OSTI]

    Zuhr, Raymond A. (Oak Ridge, TN); Haynes, Tony E. (Knoxville, TN); Golanski, Andrzej (Le Cheylas, FR)

    1999-01-01

    An ion beam deposition process for selective area deposition on a polarized substrate uses a potential applied to the substrate which allows the ionized particles to reach into selected areas for film deposition. Areas of the substrate to be left uncoated are held at a potential that repells the ionized particles.

  20. Apparatus and method for selective area deposition of thin films on electrically biased substrates

    DOE Patents [OSTI]

    Zuhr, Raymond A. (Oak Ridge, TN); Haynes, Tony E. (Knoxville, TN); Golanski, Andrzej (Cheylas, FR)

    1994-01-01

    An ion beam deposition process for selective area deposition on a polarized substrate uses a potential applied to the substrate which allows the ionized particles to reach into selected areas for film deposition. Areas of the substrate to be left uncoated are held at a potential that repells the ionized particles.

  1. Properties of Ta{sub 2}O{sub 5} thin films prepared by ion-assisted deposition

    SciTech Connect (OSTI)

    Farhan, Mansour S. [College of Engineering, Wasit University (Iraq); Zalnezhad, E., E-mail: erfan_zalnezhad@yahoo.com [Center of Advanced Manufacturing and Material Processing, Department of Engineering Design and Manufacture, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Bushroa, A.R. [Center of Advanced Manufacturing and Material Processing, Department of Engineering Design and Manufacture, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia)

    2013-10-15

    Graphical abstract: - Highlights: Investigating the effect of ion-beam parameters on optical properties. Exploring the effect of ion-beam parameters on structural properties. Studying XRD patterns of Ta{sub 2}O{sub 5} films deposited at different ion energies. - Abstract: Tantalum penta-oxide (Ta{sub 2}O{sub 5}) thin films were deposited onto highly polished and clean, fused silica glass substrates via ion beam-assisted deposition at room temperature using a high-vacuum coater equipped with an electron beam gun. The effects of ion beam parameters, oxygen flow rate, and deposition rate on the optical and structural properties as well as the stress of Ta{sub 2}O{sub 5} films were studied. It has been revealed that Ta{sub 2}O{sub 5} thin films deposited at 300 eV ion beam energy, 60 ?A/cm{sup 2} ion current density, 20 sccm oxygen flow rate and 0.6 nm/s deposition rate demonstrated excellent optical, structural and compressive stress.

  2. Infrared and thermoelectric power generation in thin atomic layer deposited Nb-doped TiO{sub 2} films

    SciTech Connect (OSTI)

    Mann, Harkirat S.; Lang, Brian N.; Schwab, Yosyp; Scarel, Giovanna; Niemel, Janne-Petteri; Karppinen, Maarit

    2015-01-15

    Infrared radiation is used to radiatively transfer heat to a nanometric power generator (NPG) device with a thermoelectric Nb-doped TiO{sub 2} film deposited by atomic layer deposition (ALD) as the active element, onto a borosilicate glass substrate. The linear rise of the produced voltage with respect to the temperature difference between the hot and cold junctions, typical of the Seebeck effect, is missing. The discovery of the violation of the Seebeck effect in NPG devices combined with the ability of ALD to tune thermoelectric thin film properties could be exploited to increase the efficiency of these devices for energy harvesting purposes.

  3. Low temperature thin film transistors with hollow cathode plasma-assisted atomic layer deposition based GaN channels

    SciTech Connect (OSTI)

    Bolat, S. E-mail: aokyay@ee.bilkent.edu.tr; Tekcan, B.; Ozgit-Akgun, C.; Biyikli, N.; Okyay, A. K. E-mail: aokyay@ee.bilkent.edu.tr

    2014-06-16

    We report GaN thin film transistors (TFT) with a thermal budget below 250?C. GaN thin films are grown at 200?C by hollow cathode plasma-assisted atomic layer deposition (HCPA-ALD). HCPA-ALD-based GaN thin films are found to have a polycrystalline wurtzite structure with an average crystallite size of 9.3?nm. TFTs with bottom gate configuration are fabricated with HCPA-ALD grown GaN channel layers. Fabricated TFTs exhibit n-type field effect characteristics. N-channel GaN TFTs demonstrated on-to-off ratios (I{sub ON}/I{sub OFF}) of 10{sup 3} and sub-threshold swing of 3.3?V/decade. The entire TFT device fabrication process temperature is below 250?C, which is the lowest process temperature reported for GaN based transistors, so far.

  4. Thin film ion conducting coating

    DOE Patents [OSTI]

    Goldner, Ronald B. (Lexington, MA); Haas, Terry (Sudbury, MA); Wong, Kwok-Keung (Watertown, MA); Seward, George (Arlington, MA)

    1989-01-01

    Durable thin film ion conducting coatings are formed on a transparent glass substrate by the controlled deposition of the mixed oxides of lithium:tantalum or lithium:niobium. The coatings provide durable ion transport sources for thin film solid state storage batteries and electrochromic energy conservation devices.

  5. Glancing angle deposition of SiO{sub 2} thin film microstructures: Investigations of optical and morphological properties

    SciTech Connect (OSTI)

    Tokas, R. B. E-mail: tokasstar@gmail.com; Jena, S. E-mail: tokasstar@gmail.com; Sarkar, P. E-mail: tokasstar@gmail.com; Thakur, S. E-mail: tokasstar@gmail.com; Sahoo, N. K. E-mail: tokasstar@gmail.com

    2014-04-24

    In present work, the optical and the morphological properties of micro-structured SiO{sub 2} thin films fabricated by using glancing angle deposition (GLAD) technique has been carried out. The results are compared with the normally deposited SiO{sub 2} films for the gained advantages. The influence of the glancing angle on the refractive index of porous SiO{sub 2} film was investigated by the spectral transmission measurement in 400950 nm wavelength regimes. The refractive index has been found to be 1.14@532 nm for the porous SiO{sub 2} film deposited at a glancing angle of 85. The density and surface qualities of these samples were primarily investigated by using grazing angle X-ray reflectivity (GIXR) and atomic force microscope (AFM) measurements. Results indicate a substantial decrease in film density and refractive index and increase in surface roughness and grain size for GLAD SiO{sub 2} compared to normally deposited SiO{sub 2} films.

  6. Coexistence of colossal stress and texture gradients in sputter deposited nanocrystalline ultra-thin metal films

    SciTech Connect (OSTI)

    Kuru, Yener; Welzel, Udo; Mittemeijer, Eric J.

    2014-12-01

    This paper demonstrates experimentally that ultra-thin, nanocrystalline films can exhibit coexisting colossal stress and texture depth gradients. Their quantitative determination is possible by X-ray diffraction experiments. Whereas a uniform texture by itself is known to generally cause curvature in so-called sin{sup 2}? plots, it is shown that the combined action of texture and stress gradients provides a separate source of curvature in sin{sup 2}? plots (i.e., even in cases where a uniform texture does not induce such curvature). On this basis, the texture and stress depth profiles of a nanocrystalline, ultra-thin (50?nm) tungsten film could be determined.

  7. X-ray absorption spectroscopy studies of electrochemically deposited thin oxide films.

    SciTech Connect (OSTI)

    Balasubramanian, M.

    1998-06-02

    We have utilized ''in situ'' X-ray Absorption Fine Structure Spectroscopy to investigate the structure and composition of thin oxide films of nickel and iron that have been prepared by electrodeposition on a graphite substrate from aqueous solutions. The films are generally disordered. Structural information has been obtained from the analysis of the data. We also present initial findings on the local structure of heavy metal ions, e.g. Sr and Ce, incorporated into the electrodeposited nickel oxide films. Our results are of importance in a number of technological applications, among them, batteries, fuel cells, electrochromic and ferroelectric materials, corrosion protection, as well as environmental speciation and remediation.

  8. Optical characteristics of nanocrystalline Al{sub x}Ga{sub 1?x}N thin films deposited by hollow cathode plasma-assisted atomic layer deposition

    SciTech Connect (OSTI)

    Goldenberg, Eda; Ozgit-Akgun, Cagla; Biyikli, Necmi; Kemal Okyay, Ali

    2014-05-15

    Gallium nitride (GaN), aluminum nitride (AlN), and Al{sub x}Ga{sub 1?x}N films have been deposited by hollow cathode plasma-assisted atomic layer deposition at 200?C on c-plane sapphire and Si substrates. The dependence of film structure, absorption edge, and refractive index on postdeposition annealing were examined by x-ray diffraction, spectrophotometry, and spectroscopic ellipsometry measurements, respectively. Well-adhered, uniform, and polycrystalline wurtzite (hexagonal) GaN, AlN, and Al{sub x}Ga{sub 1?x}N films were prepared at low deposition temperature. As revealed by the x-ray diffraction analyses, crystallite sizes of the films were between 11.7 and 25.2?nm. The crystallite size of as-deposited GaN film increased from 11.7 to 12.1 and 14.4?nm when the annealing duration increased from 30?min to 2?h (800?C). For all films, the average optical transmission was ?85% in the visible (VIS) and near infrared spectrum. The refractive indices of AlN and Al{sub x}Ga{sub 1?x}N were lower compared to GaN thin films. The refractive index of as-deposited films decreased from 2.33 to 2.02 (??=?550?nm) with the increased Al content x (0???x???1), while the extinction coefficients (k) were approximately zero in the VIS spectrum (>400?nm). Postdeposition annealing at 900?C for 2?h considerably lowered the refractive index value of GaN films (2.331.92), indicating a significant phase change. The optical bandgap of as-deposited GaN film was found to be 3.95?eV, and it decreased to 3.90?eV for films annealed at 800?C for 30?min and 2?h. On the other hand, this value increased to 4.1?eV for GaN films annealed at 900?C for 2?h. This might be caused by Ga{sub 2}O{sub 3} formation and following phase change. The optical bandgap value of as-deposited Al{sub x}Ga{sub 1?x}N films decreased from 5.75 to 5.25?eV when the x values decreased from 1 to 0.68. Furthermore, postdeposition annealing did not affect the bandgap of Al-rich films.

  9. Growth mechanism and optical properties of Ti thin films deposited onto fluorine-doped tin oxide glass substrate

    SciTech Connect (OSTI)

    Einollahzadeh-Samadi, Motahareh; Dariani, Reza S.

    2015-03-15

    In this work, a detailed study of the influence of the thickness on the morphological and optical properties of titanium (Ti) thin films deposited onto rough fluorine-doped tin oxide glass by d.c. magnetron sputtering is carried out. The films were characterized by several methods for composition, crystallinity, morphology, and optical properties. Regardless of the deposition time, all the studied Ti films of 400, 1500, 2000, and 2500?nm in thickness were single crystalline in the ?-Ti phase and also very similar to each other with respect to composition. Using the atomic force microscopy (AFM) technique, the authors analyzed the roughness evolution of the Ti films characteristics as a function of the film thickness. By applying the dynamic scaling theory to the AFM images, a steady growth roughness exponent ??=?0.72??0.02 and a dynamic growth roughness exponent ??=?0.22??0.02 were determined. The value of ? and ? are consistent with nonlinear growth model incorporating random deposition with surface diffusion. Finally, measuring the reflection spectra of the samples by a spectrophotometer in the spectral range of 3001100?nm allowed us to investigate the optical properties. The authors observed the increments of the reflection of Ti films with thickness, which by employing the effective medium approximation theory showed an increase in thickness followed by an increase in the volume fraction of metal.

  10. Epitaxial thin films

    DOE Patents [OSTI]

    Hunt, Andrew Tye; Deshpande, Girish; Lin, Wen-Yi; Jan, Tzyy-Jiuan

    2006-04-25

    Epitatial thin films for use as buffer layers for high temperature superconductors, electrolytes in solid oxide fuel cells (SOFC), gas separation membranes or dielectric material in electronic devices, are disclosed. By using CCVD, CACVD or any other suitable deposition process, epitaxial films having pore-free, ideal grain boundaries, and dense structure can be formed. Several different types of materials are disclosed for use as buffer layers in high temperature superconductors. In addition, the use of epitaxial thin films for electrolytes and electrode formation in SOFCs results in densification for pore-free and ideal gain boundary/interface microstructure. Gas separation membranes for the production of oxygen and hydrogen are also disclosed. These semipermeable membranes are formed by high-quality, dense, gas-tight, pinhole free sub-micro scale layers of mixed-conducting oxides on porous ceramic substrates. Epitaxial thin films as dielectric material in capacitors are also taught herein. Capacitors are utilized according to their capacitance values which are dependent on their physical structure and dielectric permittivity. The epitaxial thin films of the current invention form low-loss dielectric layers with extremely high permittivity. This high permittivity allows for the formation of capacitors that can have their capacitance adjusted by applying a DC bias between their electrodes.

  11. Transparent and conductive indium doped cadmium oxide thin films prepared by pulsed filtered cathodic arc deposition

    SciTech Connect (OSTI)

    Zhu, Yuankun; Mendelsberg, Rueben J.; Zhu, Jiaqi; Han, Jiecai; Anders, Andr

    2012-11-26

    Indium doped cadmium oxide (CdO:In) films with different In concentrations were prepared on low-cost glass substrates by pulsed filtered cathodic arc deposition (PFCAD). In this study, it is shown that polycrystalline CdO:In films with smooth surface and dense structure are obtained. In-doping introduces extra electrons leading to remarkable improvements of electron mobility and conductivity, as well as improvement in the optical transmittance due to the Burstein Moss effect. CdO:In films on glass substrates with thickness near 230 nm show low resistivity of 7.23 x 10-5 ?cm, high electron mobility of 142 cm2/Vs, and mean transmittance over 80% from 500-1250 nm (including the glass substrate). These high quality pulsed arc-grown CdO:In films are potentially suitable for high efficiency multi-junction solar cells that harvest a broad range of the solar spectrum.

  12. Plasma enhanced chemical vapor deposition (PECVD) method of forming vanadium oxide films and vanadium oxide thin-films prepared thereby

    DOE Patents [OSTI]

    Zhang, Ji-Guang (Golden, CO); Tracy, C. Edwin (Golden, CO); Benson, David K. (Golden, CO); Turner, John A. (Littleton, CO); Liu, Ping (Lakewood, CO)

    2000-01-01

    A method is disclosed of forming a vanadium oxide film on a substrate utilizing plasma enhanced chemical vapor deposition. The method includes positioning a substrate within a plasma reaction chamber and then forming a precursor gas comprised of a vanadium-containing chloride gas in an inert carrier gas. This precursor gas is then mixed with selected amounts of hydrogen and oxygen and directed into the reaction chamber. The amounts of precursor gas, oxygen and hydrogen are selected to optimize the final properties of the vanadium oxide film An rf plasma is generated within the reaction chamber to chemically react the precursor gas with the hydrogen and the oxygen to cause deposition of a vanadium oxide film on the substrate while the chamber deposition pressure is maintained at about one torr or less. Finally, the byproduct gases are removed from the plasma reaction chamber.

  13. Comparative studies of optical and elastic properties of ZrO{sub 2} thin films prepared under normal and oblique incidence deposition geometries

    SciTech Connect (OSTI)

    Sarkar, P. Tokas, R. B. Jena, S. Thakur, S. Sahoo, N. K.

    2014-04-24

    Oblique angle deposited optical thin films have attracted recent researchers interest because of their attractive optical, micro-structural, mechanical properties and more importantly because of their great potential in achieving tunability in refractive index. These properties in turn make it important in case of designing different optical devices. In the present work, ZrO{sub 2} thin films have been deposited on fused silica substrate by electron beam evaporation technique in normal as well as oblique angle deposition configurations. Optical properties, especially refractive index of the films have been estimated by fitting the measured transmission spectra with suitable theoretical dispersion models. Atomic force microscopy has been employed to characterize morphological properties of samples. The elastic properties of both the films are estimated by Atomic Force Acoustic Microscopy, a new and highly sensitive technique for thin films.

  14. Method for microwave plasma assisted supersonic gas jet deposition of thin films

    DOE Patents [OSTI]

    Schmitt, J.J. III; Halpern, B.L.

    1994-10-18

    A thin film is formed on a substrate positioned in a vacuum chamber by use of a gas jet apparatus affixed to a vacuum chamber port and having an outer nozzle with an interior cavity into which carrier gas is fed, an inner nozzle located within the outer nozzle interior cavity into which reactant gas is introduced, a tip of the inner nozzle being recessed from the vacuum chamber port within the outer nozzle interior cavity, and a microwave discharge device configured about the apparatus for generating a discharge in the carrier gas and reactant gas only in a portion of the outer nozzle interior cavity extending from approximately the inner nozzle tip towards the vacuum chamber. A supersonic free jet of carrier gas transports vapor species generated in the microwave discharge to the surface of the substrate to form a thin film on the substrate. The substrate can be translated from the supersonic jet to a second supersonic jet in less time than needed to complete film formation so that the film is chemically composed of chemical reaction products of vapor species in the jets. 5 figs.

  15. Method for microwave plasma assisted supersonic gas jet deposition of thin films

    DOE Patents [OSTI]

    Schmitt, III, Jerome J. (New Haven, CT); Halpern, Bret L. (Bethany, CT)

    1994-01-01

    A thin film is formed on a substrate positioned in a vacuum chamber by use of a gas jet apparatus affixed to a vacuum chamber port and having an outer nozzle with an interior cavity into which carrier gas is fed, an inner nozzle located within the outer nozzle interior cavity into which reactant gas is introduced, a tip of the inner nozzle being recessed from the vacuum chamber port within the outer nozzle interior cavity, and a microwave discharge device configured about the apparatus for generating a discharge in the carrier gas and reactant gas only in a portion of the outer nozzle interior cavity extending from approximately the inner nozzle tip towards the vacuum chamber. A supersonic free jet of carrier gas transports vapor species generated in the microwave discharge to the surface of the substrate to form a thin film on the substrate. The substrate can be translated from the supersonic jet to a second supersonic jet in less time than needed to complete film formation so that the film is chemically composed of chemical reaction products of vapor species in the jets.

  16. Influence of aluminium doping on thermoelectric performance of atomic layer deposited ZnO thin films

    SciTech Connect (OSTI)

    Ruoho, Mikko Pale, Ville; Erdmanis, Mikhail; Tittonen, Ilkka

    2013-11-11

    We study the effect of Al doping on thermoelectric power factor of ZnO films grown using atomic layer deposition method. The overall doping level is tuned by either varying the precursor pulsing sequence or by varying the number of precursor pulses while keeping the sequence unchanged. We observe that commonly utilized doping approach when periodic dopant layers are densely packed results in reduced power factor. At the same time, we find that thermoelectric performance can be improved by clustering the dopants. In addition, the clustering was found to tune the preferred crystal orientation of the polycrystalline film.

  17. Effect of deposition pressure on the microstructure and thermoelectric properties of epitaxial ScN(001) thin films sputtered onto MgO(001) substrates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Burmistrova, Polina V.; Zakharov, Dmitri N.; Favaloro, Tela; Mohammed, Amr; Stach, Eric A.; Shakouri, Ali; Sands, Timothy D.

    2015-03-14

    Four epitaxial ScN(001) thin films were successfully deposited on MgO(001) substrates by dc reactive magnetron sputtering at 2, 5, 10, and 20 mTorr in an Ar/N2 ambient atmosphere at 650 °C. The microstructure of the resultant films was analyzed by x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Electrical resistivity, electron mobility and concentration were measured using the room temperature Hall technique, and temperature dependent in-plain measurements of the thermoelectric properties of the ScN thin films were performed. The surface morphology and film crystallinity significantly degrade with increasing deposition pressure. The ScN thin film deposited at 20 mTorr exhibitsmore » the presence of <221> oriented secondary grains resulting in decreased electric properties and a low thermoelectric power factor of 0.5 W/m-K² at 800 K. ScN thin films grown at 5 and 10 mTorr are single crystalline, yielding the power factor of approximately 2.5 W/m-K² at 800 K. The deposition performed at 2 mTorr produces the highest quality ScN thin film with the electron mobility of 98 cm² V⁻¹ s⁻¹ and the power factor of 3.3 W/m-K² at 800 K.« less

  18. Transition in electron scattering mechanism in atomic layer deposited Nb:TiO{sub 2} thin films

    SciTech Connect (OSTI)

    Niemel, Janne-Petteri; Karppinen, Maarit; Hirose, Yasushi; Hasegawa, Tetsuya

    2015-01-26

    We characterized transport and optical properties of atomic layer deposited Nb:TiO{sub 2} thin films on glass substrates. These promising transparent conducting oxide (TCO) materials show minimum resistivity of 1.0??10{sup ?3?}??cm at 300?K and high transmittance in the visible range. Low-temperature (2300?K) Hall measurements and the Drude fitting of the Vis-NIR optical spectra indicate a transition in the scattering mechanism from grain boundary scattering to intra-grain scattering with increasing Nb content, thus underlining enhancement of the grain size in the low doping regime as the key for further improved TCO properties.

  19. High mobility single-crystalline-like GaAs thin films on inexpensive flexible metal substrates by metal-organic chemical vapor deposition

    SciTech Connect (OSTI)

    Dutta, P. Rathi, M.; Gao, Y.; Yao, Y.; Selvamanickam, V.; Zheng, N.; Ahrenkiel, P.; Martinez, J.

    2014-09-01

    We demonstrate heteroepitaxial growth of single-crystalline-like n and p-type doped GaAs thin films on inexpensive, flexible, and light-weight metal foils by metal-organic chemical vapor deposition. Single-crystalline-like Ge thin film on biaxially textured templates made by ion beam assisted deposition on metal foil served as the epitaxy enabling substrate for GaAs growth. The GaAs films exhibited strong (004) preferred orientation, sharp in-plane texture, low grain misorientation, strong photoluminescence, and a defect density of ?10{sup 7?}cm{sup ?2}. Furthermore, the GaAs films exhibited hole and electron mobilities as high as 66 and 300?cm{sup 2}/V-s, respectively. High mobility single-crystalline-like GaAs thin films on inexpensive metal substrates can pave the path for roll-to-roll manufacturing of flexible III-V solar cells for the mainstream photovoltaics market.

  20. Transparent and conductive indium doped cadmium oxide thin films prepared by pulsed filtered cathodic arc deposition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhu, Yuankun; Mendelsberg, Rueben J.; Zhu, Jiaqi; Han, Jiecai; Anders, André

    2012-11-26

    Indium doped cadmium oxide (CdO:In) films with different In concentrations were prepared on low-cost glass substrates by pulsed filtered cathodic arc deposition (PFCAD). In this study, it is shown that polycrystalline CdO:In films with smooth surface and dense structure are obtained. In-doping introduces extra electrons leading to remarkable improvements of electron mobility and conductivity, as well as improvement in the optical transmittance due to the Burstein Moss effect. CdO:In films on glass substrates with thickness near 230 nm show low resistivity of 7.23 x 10-5 Ωcm, high electron mobility of 142 cm2/Vs, and mean transmittance over 80% from 500-1250 nmmore » (including the glass substrate). These high quality pulsed arc-grown CdO:In films are potentially suitable for high efficiency multi-junction solar cells that harvest a broad range of the solar spectrum.« less

  1. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); Hoffheins, Barbara S. (Knoxville, TN); Fleming, Pamela H. (Oak Ridge, TN)

    1994-01-01

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed.

  2. On the thermal stability of physical vapor deposited oxide-hardened nanocrystalline gold thin films

    SciTech Connect (OSTI)

    Argibay, Nicolas; Mogonye, J. E.; Michael, Joseph R.; Goeke, Ronald S.; Kotula, Paul G.; Scharf, T. W.; Dugger, Michael Thomas; Prasad, Somuri V.

    2015-04-08

    We describe a correlation between electrical resistivity and grain size for PVD synthesized polycrystalline oxide-hardened metal-matrix thin films in oxide-dilute (<5 vol. % oxide phase) compositions. The correlation is based on the Mayadas-Shatzkes (M-S) electron scattering model, predictive of grain size evolution as a function of composition in the oxide-dilute regime for 2 ?m thick Au-ZnO films. We describe a technique to investigate grain boundary (GB) mobility and the thermal stability of GBs based on in situelectrical resistivity measurements during annealing experiments, interpreted using a combination of the M-S model and the Michels et al. model describing solute drag stabilized grain growth kinetics. Using this technique, activation energy and pre-exponential Arrhenius parameter values of Ea = 21.6 kJ/mol and Ao = 2.3 1017 m2/s for Au-1 vol. % ZnO and Ea =12.7 kJ/mol and Ao = 3.1 1018 m2/s for Au-2 vol.% ZnO were determined. In the oxide-dilute regime, the grain size reduction of the Au matrix yielded a maximum hardness of 2.6 GPa for 5 vol. % ZnO. A combined model including percolation behavior and grain refinement is presented that accurately describes the composition dependent change in electrical resistivity throughout the entire composition range for Au-ZnO thin films. As a result, the proposed correlations are supported by microstructural characterization using transmission electron microscopy and electron diffraction mapping for grain size determination.

  3. On the thermal stability of physical vapor deposited oxide-hardened nanocrystalline gold thin films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Argibay, Nicolas; Mogonye, J. E.; Michael, Joseph R.; Goeke, Ronald S.; Kotula, Paul G.; Scharf, T. W.; Dugger, Michael Thomas; Prasad, Somuri V.

    2015-04-08

    We describe a correlation between electrical resistivity and grain size for PVD synthesized polycrystalline oxide-hardened metal-matrix thin films in oxide-dilute (<5 vol. % oxide phase) compositions. The correlation is based on the Mayadas-Shatzkes (M-S) electron scattering model, predictive of grain size evolution as a function of composition in the oxide-dilute regime for 2 μm thick Au-ZnO films. We describe a technique to investigate grain boundary (GB) mobility and the thermal stability of GBs based on in situelectrical resistivity measurements during annealing experiments, interpreted using a combination of the M-S model and the Michels et al. model describing solute drag stabilizedmore » grain growth kinetics. Using this technique, activation energy and pre-exponential Arrhenius parameter values of Ea = 21.6 kJ/mol and Ao = 2.3 × 10-17 m2/s for Au-1 vol. % ZnO and Ea =12.7 kJ/mol and Ao = 3.1 × 10-18 m2/s for Au-2 vol.% ZnO were determined. In the oxide-dilute regime, the grain size reduction of the Au matrix yielded a maximum hardness of 2.6 GPa for 5 vol. % ZnO. A combined model including percolation behavior and grain refinement is presented that accurately describes the composition dependent change in electrical resistivity throughout the entire composition range for Au-ZnO thin films. As a result, the proposed correlations are supported by microstructural characterization using transmission electron microscopy and electron diffraction mapping for grain size determination.« less

  4. Correlations between 1/f noise and thermal treatment of Al-doped ZnO thin films deposited by direct current sputtering

    SciTech Connect (OSTI)

    Barhoumi, A. Guermazi, S.; Leroy, G.; Gest, J.; Carru, J. C.; Yang, L.; Boughzala, H.; Duponchel, B.

    2014-05-28

    Al-doped ZnO thin films (AZO) have been deposited on amorphous glass substrates by DC sputtering at different substrate temperatures T{sub s}. X-Ray diffraction results reveal that AZO thin films have a hexagonal wurtzite structure with (002) preferred orientation. (002) peaks indicate that the crystalline structure of the films is oriented with c-axis perpendicular to the substrate. Three-dimensional (3D) atomic force microscopy images of AZO thin films deposited on glass substrate at 200?C, 300?C, and 400?C, respectively, shows the improvement of the crystallinity and the homogeneity of AZO thin films with T{sub s} which is in agreement with the noise measurements. The noise was characterized between 1?Hz and 100?kHz and we have obtained 1/f spectra. The noise is very sensitive to the crystal structure especially to the orientation of the crystallites which is perpendicular to the substrate and to the grain boundaries which generate a high current flow and a sharp increase in noise. Through time, R{sub sh} and [??]{sub eff} increase with the modification of the crystallinity of AZO thin films. Study of noise aging shows that the noise is more sensitive than resistivity for all AZO thin films.

  5. Enhanced stability against bias-stress of metal-oxide thin film transistors deposited at elevated temperatures

    SciTech Connect (OSTI)

    Fakhri, M.; Goerrn, P.; Riedl, T. [Institute of Electronic Devices, University of Wuppertal, Rainer-Gruenter-St. 21, 42119 Wuppertal (Germany); Weimann, T.; Hinze, P. [Physikalisch-Technische Bundesanstalt Braunschweig, Bundesallee 100, 38116 Braunschweig (Germany)

    2011-09-19

    Transparent zinc-tin-oxide (ZTO) thin film transistors (TFTs) have been prepared by DC magnetron sputtering. Compared to reference devices with a channel deposited at room temperature and subsequently annealing at 400 deg. C, a substantially enhanced stability against bias stress is evidenced for devices with in-situ substrate heating during deposition (400 deg. C). A reduced density of sub-gap defect states in TFT channels prepared with in-situ substrate heating is found. Concomitantly, a reduced sensitivity to the adsorption of ambient gases is evidenced for the in-situ heated devices. This finding is of particular importance for an application as driver electronics for organic light emitting diode displays.

  6. Low work function, stable thin films

    DOE Patents [OSTI]

    Dinh, Long N. (Concord, CA); McLean, II, William (Oakland, CA); Balooch, Mehdi (Berkeley, CA); Fehring, Jr., Edward J. (Dublin, CA); Schildbach, Marcus A. (Livermore, CA)

    2000-01-01

    Generation of low work function, stable compound thin films by laser ablation. Compound thin films with low work function can be synthesized by simultaneously laser ablating silicon, for example, and thermal evaporating an alkali metal into an oxygen environment. For example, the compound thin film may be composed of Si/Cs/O. The work functions of the thin films can be varied by changing the silicon/alkali metal/oxygen ratio. Low work functions of the compound thin films deposited on silicon substrates were confirmed by ultraviolet photoelectron spectroscopy (UPS). The compound thin films are stable up to 500.degree. C. as measured by x-ray photoelectron spectroscopy (XPS). Tests have established that for certain chemical compositions and annealing temperatures of the compound thin films, negative electron affinity (NEA) was detected. The low work function, stable compound thin films can be utilized in solar cells, field emission flat panel displays, electron guns, and cold cathode electron guns.

  7. Electronic and optical device applications of hollow cathode plasma assisted atomic layer deposition based GaN thin films

    SciTech Connect (OSTI)

    Bolat, Sami Tekcan, Burak; Ozgit-Akgun, Cagla; Biyikli, Necmi; Okyay, Ali Kemal

    2015-01-15

    Electronic and optoelectronic devices, namely, thin film transistors (TFTs) and metalsemiconductormetal (MSM) photodetectors, based on GaN films grown by hollow cathode plasma-assisted atomic layer deposition (PA-ALD) are demonstrated. Resistivity of GaN thin films and metal-GaN contact resistance are investigated as a function of annealing temperature. Effect of the plasma gas and postmetallization annealing on the performances of the TFTs as well as the effect of the annealing on the performance of MSM photodetectors are studied. Dark current to voltage and responsivity behavior of MSM devices are investigated as well. TFTs with the N{sub 2}/H{sub 2} PA-ALD based GaN channels are observed to have improved stability and transfer characteristics with respect to NH{sub 3} PA-ALD based transistors. Dark current of the MSM photodetectors is suppressed strongly after high-temperature annealing in N{sub 2}:H{sub 2} ambient.

  8. Atmospheric Pressure Chemical Vapor Deposition of High Silica SiO2-TiO2 Antireflective Thin Films for Glass Based Solar Panels

    SciTech Connect (OSTI)

    Klobukowski, Erik R; Tenhaeff, Wyatt E; McCamy, James; Harris, Caroline; Narula, Chaitanya Kumar

    2013-01-01

    The atmospheric pressure chemical vapor deposition (APCVD) of SiO2-TiO2 thin films employing [[(tBuO)3Si]2O-Ti(OiPr)2], which can be prepared from commercially available materials, results in antireflective thin films on float glass under industrially relevant manufacturing conditions. It was found that while the deposition temperature had an effect on the SiO2:TiO2 ratio, the thickness was dependent on the time of deposition. This study shows that it is possible to use APCVD employing a single source precursor containing titanium and silicon to produce thin films on float glass with high SiO2:TiO2 ratios.

  9. Thin film deposition by electric and magnetic crossed-field diode sputtering

    DOE Patents [OSTI]

    Welch, Kimo M. (Mountain View, CA)

    1980-01-01

    Applying a thin film coating to the surface of a workpiece, in particular, applying a coating of titanium nitride to a klystron window by means of a crossed-field diode sputtering array. The array is comprised of a cohesive group of numerous small hollow electrically conducting cylinders and is mounted so that the open ends of the cylinders on one side of the group are adjacent a titanium cathode plate. The workpiece is mounted so as to face the open ends of the other side of the group. A magnetic field is applied to the array so as to be coaxial with the cylinders and a potential is applied across the cylinders and the cathode plate, the cylinders as an anode being positive with respect to the cathode plate. The cylinders, the cathode plate and the workpiece are situated in an atmosphere of nitrogen which becomes ionized such as by field emission because of the electric field between the cylinders and cathode plate, thereby establishing an anode-cathode discharge that results in sputtering of the titanium plate. The sputtered titanium coats the workpiece and chemically combines with the nitrogen to form a titanium nitride coating on the workpiece. Gas pressure, gas mixtures, cathode material composition, voltages applied to the cathode and anode, the magnetic field, cathode, anode and workpiece spacing, and the aspect ratio (ratio of length to inner diameter) of the anode cylinders, all may be controlled to provide consistent optimum thin film coatings of various compositions and thicknesses. Another facet of the disclosure is the coating of microwave components per se with titanium nitride to reduce multipactoring under operating conditions of the components.

  10. A simple method to deposit palladium doped SnO{sub 2} thin films using plasma enhanced chemical vapor deposition technique

    SciTech Connect (OSTI)

    Kim, Young Soon; Wahab, Rizwan; Shin, Hyung-Shik [School of Chemical Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Ansari, S. G.; Ansari, Z. A. [Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025 (India)

    2010-11-15

    This work presents a simple method to deposit palladium doped tin oxide (SnO{sub 2}) thin films using modified plasma enhanced chemical vapor deposition as a function of deposition temperature at a radio frequency plasma power of 150 W. Stannic chloride (SnCl{sub 4}) was used as precursor and oxygen (O{sub 2}, 100 SCCM) (SCCM denotes cubic centimeter per minute at STP) as reactant gas. Palladium hexafluroacetyleacetonate (Pd(C{sub 5}HF{sub 6}O{sub 2}){sub 2}) was used as a precursor for palladium. Fine granular morphology was observed with tetragonal rutile structure. A peak related to Pd{sub 2}Sn is observed, whose intensity increases slightly with deposition temperature. Electrical resistivity value decreased from 8.6 to 0.9 m{Omega} cm as a function of deposition temperature from 400 to 600 deg. C. Photoelectron peaks related to Sn 3d, Sn 3p3, Sn 4d, O 1s, and C 1s were detected with varying intensities as a function of deposition temperature.

  11. Porous thin films

    DOE Patents [OSTI]

    Xu, Ting

    2015-11-17

    Compositions of porous thin films and methods of making are provided. The methods involve self-assembly of a cyclic peptide in the presence of a block copolymer.

  12. Rapid Deposition Technology Holds the Key for the World's Largest Manufacturer of Thin-Film Solar Modules (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-08-01

    First Solar, Inc. has been collaborating with NREL since 1991, advancing its thin-film cadmium telluride solar technology to grow from a startup company to become one of the world's largest manufacturers of solar modules, and the world's largest manufacturer of thin-film solar modules.

  13. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Lauf, R.J.; Hoffheins, B.S.; Fleming, P.H.

    1994-11-22

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed. 6 figs.

  14. Thin film buried anode battery

    DOE Patents [OSTI]

    Lee, Se-Hee (Lakewood, CO); Tracy, C. Edwin (Golden, CO); Liu, Ping (Denver, CO)

    2009-12-15

    A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

  15. Thin films of mixed metal compounds

    DOE Patents [OSTI]

    Mickelsen, Reid A. (Bellevue, WA); Chen, Wen S. (Seattle, WA)

    1985-01-01

    A compositionally uniform thin film of a mixed metal compound is formed by simultaneously evaporating a first metal compound and a second metal compound from independent sources. The mean free path between the vapor particles is reduced by a gas and the mixed vapors are deposited uniformly. The invention finds particular utility in forming thin film heterojunction solar cells.

  16. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Cheng, Yang-Tse (Rochester Hills, MI); Poli, Andrea A. (Livonia, MI); Meltser, Mark Alexander (Pittsford, NY)

    1999-01-01

    A thin film hydrogen sensor, includes: a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end.

  17. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Cheng, Y.T.; Poli, A.A.; Meltser, M.A.

    1999-03-23

    A thin film hydrogen sensor includes a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end. 5 figs.

  18. Thermal stability of sputter-deposited 330 austenitic stainless-steel thin films with nanoscale growth twins

    SciTech Connect (OSTI)

    Zhang, X.; Misra, A.; Wang, H.; Swadener, J.G.; Lima, A.L.; Hundley, M.F.; Hoagland, R.G.

    2005-12-05

    We have explored the thermal stability of nanoscale growth twins in sputter-deposited 330 stainless-steel (SS) films by vacuum annealing up to 500 deg. C. In spite of an average twin spacing of only 4 nm in the as-deposited films, no detectable variation in the twin spacing or orientation of twin interfaces was observed after annealing. An increase in the average columnar grain size was observed after annealing. The hardness of 330 SS films increases after annealing, from 7 GPa for as-deposited films to around 8 GPa for annealed films, while the electrical resistivity decreases slightly after annealing. The changes in mechanical and electrical properties after annealing are interpreted in terms of the corresponding changes in the residual stress and microstructure of the films.

  19. Multifunctional thin film surface

    DOE Patents [OSTI]

    Brozik, Susan M.; Harper, Jason C.; Polsky, Ronen; Wheeler, David R.; Arango, Dulce C.; Dirk, Shawn M.

    2015-10-13

    A thin film with multiple binding functionality can be prepared on an electrode surface via consecutive electroreduction of two or more aryl-onium salts with different functional groups. This versatile and simple method for forming multifunctional surfaces provides an effective means for immobilization of diverse molecules at close proximities. The multifunctional thin film has applications in bioelectronics, molecular electronics, clinical diagnostics, and chemical and biological sensing.

  20. Thin film production method and apparatus

    DOE Patents [OSTI]

    Loutfy, Raouf O. (Tucson, AZ); Moravsky, Alexander P. (Tucson, AZ); Hassen, Charles N. (Tucson, AZ)

    2010-08-10

    A method for forming a thin film material which comprises depositing solid particles from a flowing suspension or aerosol onto a filter and next adhering the solid particles to a second substrate using an adhesive.

  1. Method and system using power modulation for maskless vapor deposition of spatially graded thin film and multilayer coatings with atomic-level precision and accuracy

    DOE Patents [OSTI]

    Montcalm, Claude (Livermore, CA); Folta, James Allen (Livermore, CA); Tan, Swie-In (San Jose, CA); Reiss, Ira (New City, NY)

    2002-07-30

    A method and system for producing a film (preferably a thin film with highly uniform or highly accurate custom graded thickness) on a flat or graded substrate (such as concave or convex optics), by sweeping the substrate across a vapor deposition source operated with time-varying flux distribution. In preferred embodiments, the source is operated with time-varying power applied thereto during each sweep of the substrate to achieve the time-varying flux distribution as a function of time. A user selects a source flux modulation recipe for achieving a predetermined desired thickness profile of the deposited film. The method relies on precise modulation of the deposition flux to which a substrate is exposed to provide a desired coating thickness distribution.

  2. Fluorination of amorphous thin-film materials with xenon fluoride

    DOE Patents [OSTI]

    Weil, R.B.

    1987-05-01

    A method is disclosed for producing fluorine-containing amorphous semiconductor material, preferably comprising amorphous silicon. The method includes depositing amorphous thin-film material onto a substrate while introducing xenon fluoride during the film deposition process.

  3. Fluorination of amorphous thin-film materials with xenon fluoride

    DOE Patents [OSTI]

    Weil, Raoul B. (Haifa, IL)

    1988-01-01

    A method is disclosed for producing fluorine-containing amorphous semiconductor material, preferably comprising amorphous silicon. The method includes depositing amorphous thin-film material onto a substrate while introducing xenon fluoride during the film deposition process.

  4. Photochemical Deposition of Semiconductor Thin Films and Their Application for Solar Cells and Gas Sensors

    SciTech Connect (OSTI)

    Ichimura, M.; Gunasekaran, M.; Sueyoshi, T.

    2009-06-01

    The photochemical deposition (PCD) technique was applied for solar cells and gas sensors. CdS and Cd{sub 1-x}Zn{sub x}S were deposited by PCD. Thiosulfate ions S{sub 2}O{sub 3}{sup 2-} act as a reductant and a sulfur source. The SnS absorption layer was deposited by three-step pulse electrochemical deposition. For the CdS/SnS structure, the best cell showed an efficiency of about 0.2%, while for the Cd{sub 1-x}Zn{sub x}S/SnS structure, an efficiency of up to 0.7% was obtained. For the gas sensor application, SnO{sub 2} was deposited by PCD from a solution containing SnSO{sub 4} and HNO{sub 3}. To enhance the sensitivity to hydrogen, Pd was doped by the photochemical doping method. The current increased by a factor of 10{sup 4} upon exposure to 5000 ppm hydrogen within 1 min at room temperature. 10{sup 3} times conductivity increase was observed even for 50 ppm hydrogen.

  5. Chemistry, phase formation, and catalytic activity of thin palladium-containing oxide films synthesized by plasma-assisted physical vapor deposition

    SciTech Connect (OSTI)

    Anders, Andre

    2010-11-26

    The chemistry, microstructure, and catalytic activity of thin films incorporating palladium were studied using scanning and transmission electron microscopies, X-ray diffraction, spectrophotometry, 4-point probe and catalytic tests. The films were synthesized using pulsed filtered cathodic arc and magnetron sputter deposition, i.e. techniques far from thermodynamic equilibrium. Catalytic particles were formed by thermally cycling thin films of the Pd-Pt-O system. The evolution and phase formation in such films as a function of temperature were discussed in terms of the stability of PdO and PtO2 in air. The catalytic efficiency was found to be strongly affected by the chemical composition, with oxidized palladium definitely playing a major role in the combustion of methane. Reactive sputter deposition of thin films in the Pd-Zr-Y-O system allowed us forming microstructures ranging from nanocrystalline zirconia to palladium nanoparticles embedded in a (Zr,Y)4Pd2O matrix. The sequence of phase formation is put in relation to simple thermodynamic considerations.

  6. Microwave Plasma Chemical Vapor Deposition of Nano-Structured Sn/C Composite Thin-Film Anodes for Li-ion Batteries

    SciTech Connect (OSTI)

    Stevenson, Cynthia; Marcinek, M.; Hardwick, L.J.; Richardson, T.J.; Song, X.; Kostecki, R.

    2008-02-01

    In this paper we report results of a novel synthesis method of thin-film composite Sn/C anodes for lithium batteries. Thin layers of graphitic carbon decorated with uniformly distributed Sn nanoparticles were synthesized from a solid organic precursor Sn(IV) tert-butoxide by a one step microwave plasma chemical vapor deposition (MPCVD). The thin-film Sn/C electrodes were electrochemically tested in lithium half cells and produced a reversible capacity of 440 and 297 mAhg{sup -1} at C/25 and 5C discharge rates, respectively. A long term cycling of the Sn/C nanocomposite anodes showed 40% capacity loss after 500 cycles at 1C rate.

  7. ATOMIC LAYER DEPOSITION OF TITANIUM OXIDE THIN FILMS ONNANOPOROUS ALUMINA TEMPLATES FOR MEDICAL APPLICATIONS

    SciTech Connect (OSTI)

    Brigmon, R.

    2009-05-05

    Nanostructured materials may play a significant role in controlled release of pharmacologic agents for treatment of cancer. Many nanoporous polymer materials are inadequate for use in drug delivery. Nanoporous alumina provides several advantages over other materials for use in controlled drug delivery and other medical applications. Atomic layer deposition was used to coat all the surfaces of the nanoporous alumina membrane in order to reduce the pore size in a controlled manner. Both the 20 nm and 100 nm titanium oxide-coated nanoporous alumina membranes did not exhibit statistically lower viability compared to the uncoated nanoporous alumina membrane control materials. In addition, 20 nm pore size titanium oxide-coated nanoporous alumina membranes exposed to ultraviolet light demonstrated activity against Escherichia coli and Staphylococcus aureus bacteria. Nanostructured materials prepared using atomic layer deposition may be useful for delivering a pharmacologic agent at a precise rate to a specific location in the body. These materials may serve as the basis for 'smart' drug delivery devices, orthopedic implants, or self-sterilizing medical devices.

  8. Thin film photovoltaic device

    DOE Patents [OSTI]

    Catalano, Anthony W.; Bhushan, Manjul

    1982-01-01

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids.

  9. Thin film photovoltaic device

    DOE Patents [OSTI]

    Catalano, A.W.; Bhushan, M.

    1982-08-03

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids. 5 figs.

  10. Room temperature atomic layerlike deposition of ZnS on organic thin films: Role of substrate functional groups and precursors

    SciTech Connect (OSTI)

    Shi, Zhiwei; Walker, Amy V.

    2015-09-15

    The room temperature atomic layerlike deposition (ALLD) of ZnS on functionalized self-assembled monolayers (SAMs) was investigated, using diethyl zinc (DEZ) and in situ generated H{sub 2}S as reactants. Depositions on SAMs with three different terminal groups, –CH{sub 3,} –OH, and –COOH, were studied. It was found that the reaction of DEZ with the SAM terminal group is critical in determining the film growth rate. Little or no deposition is observed on –CH{sub 3} terminated SAMs because DEZ does not react with the methyl terminal group. ZnS does deposit on both –OH and –COOH terminated SAMs, but the grow rate on –COOH terminated SAMs is ∼10% lower per cycle than on –OH terminated SAMs. DEZ reacts with the hydroxyl group on –OH terminated SAMs, while on –COOH terminated SAMs it reacts with both the hydroxyl and carbonyl bonds of the terminal groups. The carbonyl reaction is found to lead to the formation of ketones rather than deposition of ZnS, lowering the growth rate on –COOH terminated SAMs. SIMS spectra show that both –OH and –COOH terminated SAMs are covered by the deposited ZnS layer after five ALLD cycles. In contrast to ZnO ALLD where the composition of the film differs for the first few layers on –COOH and –OH terminated SAMs, the deposited film composition is the same for both –COOH and –OH terminated SAMs. The deposited film is found to be Zn-rich, suggesting that the reaction of H{sub 2}S with the Zn-surface adduct may be incomplete.

  11. NMR characterization of thin films

    DOE Patents [OSTI]

    Gerald, II, Rex E. (Brookfield, IL); Klingler, Robert J. (Glenview, IL); Rathke, Jerome W. (Homer Glen, IL); Diaz, Rocio (Chicago, IL); Vukovic, Lela (Westchester, IL)

    2008-11-25

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  12. NMR characterization of thin films

    DOE Patents [OSTI]

    Gerald II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2010-06-15

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  13. Thin film photovoltaic cell

    DOE Patents [OSTI]

    Meakin, John D. (Newark, DE); Bragagnolo, Julio (Newark, DE)

    1982-01-01

    A thin film photovoltaic cell having a transparent electrical contact and an opaque electrical contact with a pair of semiconductors therebetween includes utilizing one of the electrical contacts as a substrate and wherein the inner surface thereof is modified by microroughening while being macro-planar.

  14. Understanding the Mechanism of Solvent-Mediated Adhesion of Vacuum Deposited Au and Pt Thin Films onto PMMA Substrates

    SciTech Connect (OSTI)

    Mo, Alan K [ORNL; Brown, Victoria L. [James Madison University; Rugg, Brandon K. [James Madison University; Devore, Prof. Thomas C. [James Madison University; Meyer III, Harry M [ORNL; Hu, Dr. Xiaofeng [James Madison University; Hughes, Prof. W. Christopher [James Madison University; Augustine, Prof. Brian H. [James Madison University

    2012-01-01

    The adhesion of 100 nm thick electron-beam deposited Au and Pt and magnetron sputtered Au thin films onto poly(methyl methacrylate) (PMMA) substrates can be significantly enhanced to over 90% adhesion by either spin-casting or vapor-exposure to hydrohalocarbon solvents prior to metal deposition compared to samples that are either cleaned in isopropyl alcohol or pre-treated with a remote O2 plasma. X-ray photoelectron spectroscopy (XPS) and evolved gas Fourier transform infrared spectroscopy (EGA-FTIR) reveal the presence of residual halogenated solvent molecules at the PMMA surface which chemically activates the surface to produce a stable chemical interaction between the noble metal film and the PMMA. Density functional theory (DFT) calculations show that the halogenated solvent molecules preferentially form a Lewis acid-base adduct with the oxygen atoms in the ester group in PMMA which is consistent with the measured enthalpy of desorption of chloroform (CHCl3) on PMMA determined by EGA-FTIR to be 36 kJ mol-1. The DFT model also supports the experimentally observed change in the high resolution XPS O 1s peak at 533.77 eV after metallization attributed to a change in the local bonding environment of the bridging O in the PMMA ester group. DFT also predicts that the deposited metal atom (M) inserts into the C-X bond where X is the halogen atom on either CHCl3 or bromoform (CHBr3) to form a O M X interaction that is observed by a M-X bond in the high resolution XPS Cl 2p3/2 peak at 198.03 eV and Br 3p3/2 peak at 182.06 eV. A range of solvents with differing polarities for PMMA pre-treatment have been used and it is proposed that non-complexing solvents result in significant metal adhesion improvement. The Gutmann acceptor number can be used to predict the effectiveness of solvent treatment for noble metal adhesion. A model is proposed in which the bond energy of the C-X bond of the solvent must be sufficiently low so that the C-X bond can be cleaved to form the M-X bond. Supporting this model, a negative control of vapor phase exposure to fluoroform (CHF3) is shown to have no effect on noble metal adhesion due to the higher bond dissociation energy of the C-F bond compared to the C-Cl and C-Br bond energy. The surface activation of vapor-phase exposed PMMA surfaces is technologically significant for the fabrication of polymer microdevices requiring Au or Pt metallization.

  15. Low-temperature growth and orientational control in RuO{sub 2} thin films by metal-organic chemical vapor deposition

    SciTech Connect (OSTI)

    Bai, G.R.; Wang, A.; Foster, C.M.; Vetrone, J.; Patel, J.; Wu, X.

    1996-08-01

    For growth temperatures in the range of 275 C to 425 C, highly conductive RuO{sub 2} thin films with either (110)- or (101)-textured orientations have been grown by metal-organic chemical vapor deposition (MOCVD) on both SiO{sub 2}/Si(001) and Pt/Ti/SiO{sub 2}/Si(001) substrates. Both the growth temperature and growth rate were used to control the type and degree of orientational texture of the RuO{sub 2} films. In the upper part of this growth temperature range ({approximately} 350 C) and at a low growth rate (< 30 {angstrom}/min.), the RuO{sub 2} films favored a (110)-textured. In contrast, at the lower part of this growth temperature range ({approximately} 300 C) and at a high growth rate (> 30 {angstrom}/min.), the RuO{sub 2} films favored a (101)-textured. In contrast, a higher growth temperatures (> 425 C) always produced randomly-oriented polycrystalline films. For either of these low-temperature growth processes, the films produced were crack-free, well-adhered to the substrates, and had smooth, specular surfaces. Atomic force microscopy showed that the films had a dense microstructure with an average grain size of 50--80 nm and a rms. surface roughness of {approximately} 3--10 nm. Four-probe electrical transport measurements showed that the films were highly conductive with resistivities of 34--40 {micro}{Omega}-cm ({at} 25 C).

  16. Structural, magnetic, and electronic properties of GdTiO{sub 3} Mott insulator thin films grown by pulsed laser deposition

    SciTech Connect (OSTI)

    Grisolia, M. N.; Bruno, F. Y.; Sando, D.; Jacquet, E.; Barthlmy, A.; Bibes, M.; Zhao, H. J.; Chen, X. M.; Bellaiche, L.

    2014-10-27

    We report on the optimization process to synthesize epitaxial thin films of GdTiO{sub 3} on SrLaGaO{sub 4} substrates by pulsed laser deposition. Optimized films are free of impurity phases and are fully strained. They possess a magnetic Curie temperature T{sub C}?=?31.8?K with a saturation magnetization of 4.2??{sub B} per formula unit at 10?K. Transport measurements reveal an insulating response, as expected. Optical spectroscopy indicates a band gap of ?0.7?eV, comparable to the bulk value. Our work adds ferrimagnetic orthotitanates to the palette of perovskite materials for the design of emergent strongly correlated states at oxide interfaces using a versatile growth technique such as pulsed laser deposition.

  17. Thin film superconductor magnetic bearings

    DOE Patents [OSTI]

    Weinberger, Bernard R. (Avon, CT)

    1995-12-26

    A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

  18. Annealed CVD molybdenum thin film surface

    DOE Patents [OSTI]

    Carver, Gary E. (Tucson, AZ); Seraphin, Bernhard O. (Tucson, AZ)

    1984-01-01

    Molybdenum thin films deposited by pyrolytic decomposition of Mo(CO).sub.6 attain, after anneal in a reducing atmosphere at temperatures greater than 700.degree. C., infrared reflectance values greater than reflectance of supersmooth bulk molybdenum. Black molybdenum films deposited under oxidizing conditions and annealed, when covered with an anti-reflecting coating, approach the ideal solar collector characteristic of visible light absorber and infrared energy reflector.

  19. Thin films and uses

    DOE Patents [OSTI]

    Baskaran, Suresh (Kennewick, WA); Graff, Gordon L. (Kennewick, WA); Song, Lin (Richland, WA)

    1998-01-01

    The invention provides a method for synthesizing a titanium oxide-containing film comprising the following steps: (a) preparing an aqueous solution of a titanium chelate with a titanium molarity in the range of 0.01M to 0.6M. (b) immersing a substrate in the prepared solution, (c) decomposing the titanium chelate to deposit a film on the substrate. The titanium chelate maybe decomposed acid, base, temperature or other means. A preferred method provides for the deposit of adherent titanium oxide films from C2 to C5 hydroxy carboxylic acids. In another aspect the invention is a novel article of manufacture having a titanium coating which protects the substrate against ultraviolet damage. In another aspect the invention provides novel semipermeable gas separation membranes, and a method for producing them.

  20. Structural characterisation of BaTiO{sub 3} thin films deposited on SrRuO{sub 3}/YSZ buffered silicon substrates and silicon microcantilevers

    SciTech Connect (OSTI)

    Colder, H.; Jorel, C. Mchin, L.; Domengs, B.; Marie, P.; Boisserie, M.; Guillon, S.; Nicu, L.; Galdi, A.

    2014-02-07

    We report on the progress towards an all epitaxial oxide layer technology on silicon substrates for epitaxial piezoelectric microelectromechanical systems. (101)-oriented epitaxial tetragonal BaTiO{sub 3} (BTO) thin films were deposited at two different oxygen pressures, 5.10{sup ?2} mbar and 5.10{sup ?3} mbar, on SrRuO{sub 3}/Yttria-stabilized zirconia (YSZ) buffered silicon substrates by pulsed laser deposition. The YSZ layer full (001) orientation allowed the further growth of a fully (110)-oriented conductive SrRuO{sub 3} electrode as shown by X-ray diffraction. The tetragonal structure of the BTO films, which is a prerequisite for the piezoelectric effect, was identified by Raman spectroscopy. In the BTO film deposited at 5.10{sup ?2} mbar strain was mostly localized inside the BTO grains whereas at 5.10{sup ?3} mbar, it was localized at the grain boundaries. The BTO/SRO/YSZ layers were finally deposited on Si microcantilevers at an O{sub 2} pressure of 5.10{sup ?3} mbar. The strain level was low enough to evaluate the BTO Young modulus. Transmission electron microscopy (TEM) was used to investigate the epitaxial quality of the layers and their epitaxial relationship on plain silicon wafers as well as on released microcantilevers, thanks to Focused-Ion-Beam TEM lamella preparation.

  1. Thin film composite electrolyte

    DOE Patents [OSTI]

    Schucker, Robert C. (The Woodlands, TX)

    2007-08-14

    The invention is a thin film composite solid (and a means for making such) suitable for use as an electrolyte, having a first layer of a dense, non-porous conductive material; a second layer of a porous ionic conductive material; and a third layer of a dense non-porous conductive material, wherein the second layer has a Coefficient of thermal expansion within 5% of the coefficient of thermal expansion of the first and third layers.

  2. Epitaxial c-axis oriented BaTiO{sub 3} thin films on SrTiO{sub 3}-buffered Si(001) by atomic layer deposition

    SciTech Connect (OSTI)

    Ngo, Thong Q.; McDaniel, Martin D.; Ekerdt, John G., E-mail: ekerdt@che.utexas.edu [Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Posadas, Agham B.; Demkov, Alexander A. [Department of Physics, The University of Texas at Austin, Austin, Texas 78712 (United States); Hu, Chengqing; Yu, Edward T. [Department of Electrical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Bruley, John [IBM Research Division, Yorktown Heights, New York 10593 (United States)

    2014-02-24

    Atomic layer deposition (ALD) of epitaxial c-axis oriented BaTiO{sub 3} (BTO) on Si(001) using a thin (1.6?nm) buffer layer of SrTiO{sub 3} (STO) grown by molecular beam epitaxy is reported. The ALD growth of crystalline BTO films at 225??C used barium bis(triisopropylcyclopentadienyl), titanium tetraisopropoxide, and water as co-reactants. X-ray diffraction (XRD) reveals a high degree of crystallinity and c-axis orientation of as-deposited BTO films. Crystallinity is improved after vacuum annealing at 600??C. Two-dimensional XRD confirms the tetragonal structure and orientation of 720-nm thick films. The effect of the annealing process on the BTO structure is discussed. A clean STO/Si interface is found using in-situ X-ray photoelectron spectroscopy and confirmed by cross-sectional scanning transmission electron microscopy. The capacitance-voltage characteristics of 720?nm-thick BTO films are examined and show an effective dielectric constant of ?660 for the heterostructure.

  3. Study of optical properties of asymmetric bipolar pulse DC magnetron sputtered Ta{sub 2}O{sub 5} thin film as a function of oxygen content in deposition ambient

    SciTech Connect (OSTI)

    Haque, S. Maidul Shinde, D. D. Misal, J. S.; Bhattacharyya, D.; Sahoo, N. K.

    2014-04-24

    Tantalum penta-oxide thin films have been deposited by reactive sputtering technique using asymmetric bipolar pulsed DC source at various oxygen percentage viz. 0 to 50 %. The optical properties of the films have been studied by spectroscopic ellipsometry measurements. It has been observed that compact films with low void fraction, high refractive index and band gap can be obtained by the above technique with oxygen percentage in the range of 3040%. The films deposited with zero or very low oxygen content have high deposition rate and yield metal rich films with large voids, defects, low band gap and high refractive index. Similarly films deposited with >40% oxygen content again contain voids and defects due to the presence of large amount of gas molecules in the sputtering ambient.

  4. Raman Spectroscopy of the Reaction of Thin Films of Solid-State Benzene with Vapor-Deposited Ag, Mg, and Al

    SciTech Connect (OSTI)

    Schalnat, Matthew C.; Hawkridge, Adam M.; Pemberton, Jeanne E.

    2011-07-21

    Thin films of solid-state benzene at 30 K were reacted with small quantities of vapor-deposited Ag, Mg, and Al under ultrahigh vacuum, and products were monitored using surface Raman spectroscopy. Although Ag and Mg produce small amounts of metalbenzene adduct products, the resulting Raman spectra are dominated by surface enhancement of the normal benzene modes from metallic nanoparticles suggesting rapid Ag or Mg metallization of the film. In contrast, large quantities of Al adduct products are observed. Vibrational modes of the products in all three systems suggest adducts that are formed through a pathway initiated by an electron transfer reaction. The difference in reactivity between these metals is ascribed to differences in ionization potential of the metal atoms; ionization potential values for Ag and Mg are similar but larger than that for Al. These studies demonstrate the importance of atomic parameters, such as ionization potential, in solid-state metalorganic reaction chemistry.

  5. Liquid-Phase Deposition of Silicon Nanocrystal Films - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Liquid-Phase Deposition of Silicon Nanocrystal Films University of Minnesota DOE Grant Recipients Contact GRANT About This Technology Technology Marketing Summary Silicon Nanocrystal Deposition A method to deposit colloidal silicon nanocrystal thin films using a liquid-phase process has been developed. The method lowers costs because the films are deposited unfunctionalized (no insulating ligand termination). The process allows for precise control of the size of the crystals; giving

  6. Preparation of thin film high temperature superconductors

    SciTech Connect (OSTI)

    VenKatesan, X.X.T.; Li, Q.; Findikoglu, A.; Hemmick, D. . Dept. of Physics); Wu, X.D. ); Inam, A.; Chang, C.C.; Ramesh, R.; Hwang, D.M.; Ravi, T.S.; Etemad, S.; Martinez, J.A.; Wilkens, B. )

    1991-03-01

    This paper addresses fundamental issues in preparing high quality high T{sub c} YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} thin films. The techniques of inverted cylindrical magnetron sputtering and pulsed laser deposition are chosen as successful examples to illustrate how the key problems can be solved. The fabrication of YBa{sub 2}Cu{sub 3}O{sub 7{minus}x}/PrBa{sub 2}Cu{sub 3}O{sub 7{minus}x} superlattices where superconductivity in a single unit cell layer of YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} was observed demonstrates the state of the art of thin film deposition of high T{sub c} materials. Systematic variations of the deposition parameters result in changes of superconducting and structural properties of the films that correlate with their microwave and infrared characteristics.

  7. Thin film hydrous metal oxide catalysts

    DOE Patents [OSTI]

    Dosch, Robert G. (Albuquerque, NM); Stephens, Howard P. (Albuquerque, NM)

    1995-01-01

    Thin film (<100 nm) hydrous metal oxide catalysts are prepared by 1) synthesis of a hydrous metal oxide, 2) deposition of the hydrous metal oxide upon an inert support surface, 3) ion exchange with catalytically active metals, and 4) activating the hydrous metal oxide catalysts.

  8. Tungsten-doped thin film materials

    DOE Patents [OSTI]

    Xiang, Xiao-Dong; Chang, Hauyee; Gao, Chen; Takeuchi, Ichiro; Schultz, Peter G.

    2003-12-09

    A dielectric thin film material for high frequency use, including use as a capacitor, and having a low dielectric loss factor is provided, the film comprising a composition of tungsten-doped barium strontium titanate of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3, where X is between about 0.5 and about 1.0. Also provided is a method for making a dielectric thin film of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3 and doped with W, where X is between about 0.5 and about 1.0, a substrate is provided, TiO.sub.2, the W dopant, Ba, and optionally Sr are deposited on the substrate, and the substrate containing TiO.sub.2, the W dopant, Ba, and optionally Sr is heated to form a low loss dielectric thin film.

  9. Superconducting thin films on potassium tantalate substrates

    DOE Patents [OSTI]

    Feenstra, Roeland; Boatner, Lynn A.

    1992-01-01

    A superconductive system for the lossless transmission of electrical current comprising a thin film of superconducting material Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.7-x epitaxially deposited upon a KTaO.sub.3 substrate. The KTaO.sub.3 is an improved substrate over those of the prior art since the it exhibits small lattice constant mismatch and does not chemically react with the superconducting film.

  10. Photovoltaic properties of Aurivillius phase Bi{sub 5}FeTi{sub 3}O{sub 15} thin films grown by pulsed laser deposition

    SciTech Connect (OSTI)

    Kooriyattil, Sudheendran; Katiyar, Rajesh K.; Pavunny, Shojan P. E-mail: shojanpp@gmail.com; Morell, Gerardo; Katiyar, Ram S. E-mail: shojanpp@gmail.com

    2014-08-18

    We report a remarkable photovoltaic effect in pulsed laser deposited multiferroic aurivillius phase Bi{sub 5}FeTi{sub 3}O{sub 15} (BFTO) thin films sandwiched between ZnO:Al transparent conductive oxide top electrode and SrRuO{sub 3} bottom electrode fabricated on amorphous fused silica substrates. The structural and micro structural properties of these films were analysed by X-ray diffraction and atomic force microscopy techniques. The films were showing a photo sensitive ferroelectric behaviour with a notable apparent polarization in the range of 1015??C/cm{sup 2}. These films also exhibited a switchable photo-response and this parameter was observed to be sensitive to polarisation field and the polarization direction. The device shows a large ON/OFF photo current ratio with an open circuit voltage of 0.14?V. The photo response at zero bias of this BFTO based heterostructures showed rapid increase to a saturation value of 6??A at zero bias.

  11. Structures for dense, crack free thin films

    DOE Patents [OSTI]

    Jacobson, Craig P. (Lafayette, CA); Visco, Steven J. (Berkeley, CA); De Jonghe, Lutgard C. (Lafayette, CA)

    2011-03-08

    The process described herein provides a simple and cost effective method for making crack free, high density thin ceramic film. The steps involve depositing a layer of a ceramic material on a porous or dense substrate. The deposited layer is compacted and then the resultant laminate is sintered to achieve a higher density than would have been possible without the pre-firing compaction step.

  12. Thin Film Solar Technologies | Open Energy Information

    Open Energy Info (EERE)

    help OpenEI by expanding it. Thin Film Solar Technologies is a company located in South Africa . References "Thin Film Solar Technologies" Retrieved from "http:...

  13. Ferromagnetic thin films

    DOE Patents [OSTI]

    Krishnan, K.M.

    1994-12-20

    A ferromagnetic [delta]-Mn[sub 1[minus]x]Ga[sub x] thin film having perpendicular anisotropy is described which comprises: (a) a GaAs substrate, (b) a layer of undoped GaAs overlying said substrate and bonded thereto having a thickness ranging from about 50 to about 100 nanometers, (c) a layer of [delta]-Mn[sub 1[minus]x]Ga[sub x] overlying said layer of undoped GaAs and bonded thereto having a thickness ranging from about 20 to about 30 nanometers, and (d) a layer of GaAs overlying said layer of [delta]-Mn[sub 1[minus]x]Ga[sub x] and bonded thereto having a thickness ranging from about 2 to about 5 nanometers, wherein x is 0.4[+-]0.05. 7 figures.

  14. Method of producing solution-derived metal oxide thin films

    DOE Patents [OSTI]

    Boyle, Timothy J. (Albuquerque, NM); Ingersoll, David (Albuquerque, NM)

    2000-01-01

    A method of preparing metal oxide thin films by a solution method. A .beta.-metal .beta.-diketonate or carboxylate compound, where the metal is selected from groups 8, 9, 10, 11, and 12 of the Periodic Table, is solubilized in a strong Lewis base to form a homogeneous solution. This precursor solution forms within minutes and can be deposited on a substrate in a single layer or a multiple layers to form a metal oxide thin film. The substrate with the deposited thin film is heated to change the film from an amorphous phase to a ceramic metal oxide and cooled.

  15. Polymer-assisted aqueous deposition of metal oxide films

    DOE Patents [OSTI]

    Li, DeQuan (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM)

    2003-07-08

    An organic solvent-free process for deposition of metal oxide thin films is presented. The process includes aqueous solutions of necessary metal precursors and an aqueous solution of a water-soluble polymer. After a coating operation, the resultant coating is fired at high temperatures to yield optical quality metal oxide thin films.

  16. Method for synthesizing thin film electrodes

    DOE Patents [OSTI]

    Boyle, Timothy J. (Albuquerque, NM)

    2007-03-13

    A method for making a thin-film electrode, either an anode or a cathode, by preparing a precursor solution using an alkoxide reactant, depositing multiple thin film layers with each layer approximately 500 1000 .ANG. in thickness, and heating the layers to above 600.degree. C. to achieve a material with electrochemical properties suitable for use in a thin film battery. The preparation of the anode precursor solution uses Sn(OCH.sub.2C(CH.sub.3).sub.3).sub.2 dissolved in a solvent in the presence of HO.sub.2CCH.sub.3 and the cathode precursor solution is formed by dissolving a mixture of (Li(OCH.sub.2C(CH.sub.3).sub.3)).sub.8 and Co(O.sub.2CCH.sub.3).H.sub.2O in at least one polar solvent.

  17. Rechargeable thin film battery and method for making the same

    DOE Patents [OSTI]

    Goldner, Ronald B.; Liu, Te-Yang; Goldner, Mark A.; Gerouki, Alexandra; Haas, Terry E.

    2006-01-03

    A rechargeable, stackable, thin film, solid-state lithium electrochemical cell, thin film lithium battery and method for making the same is disclosed. The cell and battery provide for a variety configurations, voltage and current capacities. An innovative low temperature ion beam assisted deposition method for fabricating thin film, solid-state anodes, cathodes and electrolytes is disclosed wherein a source of energetic ions and evaporants combine to form thin film cell components having preferred crystallinity, structure and orientation. The disclosed batteries are particularly useful as power sources for portable electronic devices and electric vehicle applications where high energy density, high reversible charge capacity, high discharge current and long battery lifetimes are required.

  18. Uncooled thin film pyroelectric IR detector with aerogel thermal isolation

    DOE Patents [OSTI]

    Ruffner, Judith A. (Albuquerque, NM); Bullington, Jeff A. (Albuquerque, NM); Clem, Paul G. (Albuquerque, NM); Warren, William L. (Albuquerque, NM); Brinker, C. Jeffrey (Albuquerque, NM); Tuttle, Bruce A. (Albuquerque, NM); Schwartz, Robert W. (Seneca, SC)

    1999-01-01

    A monolithic infrared detector structure which allows integration of pyroelectric thin films atop low thermal conductivity aerogel thin films. The structure comprises, from bottom to top, a substrate, an aerogel insulating layer, a lower electrode, a pyroelectric layer, and an upper electrode layer capped by a blacking layer. The aerogel can offer thermal conductivity less than that of air, while providing a much stronger monolithic alternative to cantilevered or suspended air-gap structures for pyroelectric thin film pixel arrays. Pb(Zr.sub.0.4 Ti.sub.0.6)O.sub.3 thin films deposited on these structures displayed viable pyroelectric properties, while processed at 550.degree. C.

  19. Chemical surface deposition of ultra-thin semiconductors

    DOE Patents [OSTI]

    McCandless, Brian E. (243 W. Main St., Elkton, MD 21921); Shafarman, William N. (1905 N. Van Buren St., Wilmington, DE 19802)

    2003-03-25

    A chemical surface deposition process for forming an ultra-thin semiconducting film of Group IIB-VIA compounds onto a substrate. This process eliminates particulates formed by homogeneous reactions in bath, dramatically increases the utilization of Group IIB species, and results in the formation of a dense, adherent film for thin film solar cells. The process involves applying a pre-mixed liquid coating composition containing Group IIB and Group VIA ionic species onto a preheated substrate. Heat from the substrate causes a heterogeneous reaction between the Group IIB and VIA ionic species of the liquid coating composition, thus forming a solid reaction product film on the substrate surface.

  20. Photobiomolecular deposition of metallic particles and films

    DOE Patents [OSTI]

    Hu, Zhong-Cheng

    2005-02-08

    The method of the invention is based on the unique electron-carrying function of a photocatalytic unit such as the photosynthesis system I (PSI) reaction center of the protein-chlorophyll complex isolated from chloroplasts. The method employs a photo-biomolecular metal deposition technique for precisely controlled nucleation and growth of metallic clusters/particles, e.g., platinum, palladium, and their alloys, etc., as well as for thin-film formation above the surface of a solid substrate. The photochemically mediated technique offers numerous advantages over traditional deposition methods including quantitative atom deposition control, high energy efficiency, and mild operating condition requirements.

  1. Effect of postdeposition annealing on the electrical properties of ?-Ga{sub 2}O{sub 3} thin films grown on p-Si by plasma-enhanced atomic layer deposition

    SciTech Connect (OSTI)

    Altuntas, Halit; Donmez, Inci; Ozgit-Akgun, Cagla; Biyikli, Necmi

    2014-07-01

    Ga{sub 2}O{sub 3} dielectric thin films were deposited on (111)-oriented p-type silicon wafers by plasma-enhanced atomic layer deposition using trimethylgallium and oxygen plasma. Structural analysis of the Ga{sub 2}O{sub 3} thin films was carried out using grazing-incidence x-ray diffraction. As-deposited films were amorphous. Upon postdeposition annealing at 700, 800, and 900?C for 30?min under N{sub 2} ambient, films crystallized into ?-form monoclinic structure. Electrical properties of the ?-Ga{sub 2}O{sub 3} thin films were then investigated by fabricating and characterizing Al/?-Ga{sub 2}O{sub 3}/p-Si metaloxide-semiconductor capacitors. The effect of postdeposition annealing on the leakage current densities, leakage current conduction mechanisms, dielectric constants, flat-band voltages, reverse breakdown voltages, threshold voltages, and effective oxide charges of the capacitors were presented. The effective oxide charges (Q{sub eff}) were calculated from the capacitancevoltage (C-V) curves using the flat-band voltage shift and were found as 2.6??10{sup 12}, 1.9??10{sup 12}, and 2.5??10{sup 12} cm{sup ?2} for samples annealed at 700, 800, and 900?C, respectively. Effective dielectric constants of the films decreased with increasing annealing temperature. This situation was attributed to the formation of an interfacial SiO{sub 2} layer during annealing process. Leakage mechanisms in the regions where current increases gradually with voltage were well fitted by the Schottky emission model for films annealed at 700 and 900?C, and by the FrenkelPoole emission model for film annealed at 800?C. Leakage current density was found to improve with annealing temperature. ?-Ga{sub 2}O{sub 3} thin film annealed at 800?C exhibited the highest reverse breakdown field value.

  2. Variable temperature semiconductor film deposition

    DOE Patents [OSTI]

    Li, X.; Sheldon, P.

    1998-01-27

    A method of depositing a semiconductor material on a substrate is disclosed. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.

  3. Variable temperature semiconductor film deposition

    DOE Patents [OSTI]

    Li, Xiaonan (Golden, CO); Sheldon, Peter (Lakewood, CO)

    1998-01-01

    A method of depositing a semiconductor material on a substrate. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.

  4. Method of improving field emission characteristics of diamond thin films

    DOE Patents [OSTI]

    Krauss, A.R.; Gruen, D.M.

    1999-05-11

    A method of preparing diamond thin films with improved field emission properties is disclosed. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display. 3 figs.

  5. Method of improving field emission characteristics of diamond thin films

    DOE Patents [OSTI]

    Krauss, Alan R. (Naperville, IL); Gruen, Dieter M. (Downer Grove, IL)

    1999-01-01

    A method of preparing diamond thin films with improved field emission properties. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display.

  6. Quick, Efficient Film Deposition for Nanomaterials - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Quick, Efficient Film Deposition for Nanomaterials Oak Ridge National Laboratory Contact ORNL About This Technology Publications: PDF Document Publication Quick, Efficient Film Deposition for Nanomaterials (900 KB) Technology Marketing SummaryResearchers at ORNL developed a process for manufacturing a thin film from a layer of particles, as well as complex three dimensional devices. The nanomaterials are

  7. Rechargeable Thin-film Lithium Batteries

    DOE R&D Accomplishments [OSTI]

    Bates, J. B.; Gruzalski, G. R.; Dudney, N. J.; Luck, C. F.; Yu, Xiaohua

    1993-08-01

    Rechargeable thin film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have recently been developed. The batteries, which are typically less than 6 {mu}m thick, can be fabricated to any specified size, large or small, onto a variety of substrates including ceramics, semiconductors, and plastics. The cells that have been investigated include Li TiS{sub 2}, Li V{sub 2}O{sub 5}, and Li Li{sub x}Mn{sub 2}O{sub 4}, with open circuit voltages at full charge of about 2.5, 3.6, and 4.2, respectively. The development of these batteries would not have been possible without the discovery of a new thin film lithium electrolyte, lithium phosphorus oxynitride, that is stable in contact with metallic lithium at these potentials. Deposited by rf magnetron sputtering of Li{sub 3}PO{sub 4} in N{sub 2}, this material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25{degrees}C of 2 {mu}S/cm. The maximum practical current density obtained from the thin film cells is limited to about 100 {mu}A/cm{sup 2} due to a low diffusivity of Li{sup +} ions in the cathodes. In this work, the authors present a short review of their work on rechargeable thin film lithium batteries.

  8. Highly-enhanced reflow characteristics of sputter deposited Cu alloy thin films for large scale integrated interconnections

    SciTech Connect (OSTI)

    Onishi, Takashi; Mizuno, Masao; Yoshikawa, Tetsuya; Munemasa, Jun; Mizuno, Masataka; Kihara, Teruo; Araki, Hideki; Shirai, Yasuharu

    2011-08-01

    An attempt to improve the reflow characteristics of sputtered Cu films was made by alloying the Cu with various elements. We selected Y, Sb, Nd, Sm, Gd, Dy, In, Sn, Mg, and P for the alloys, and ''the elasto-plastic deformation behavior at high temperature'' and ''the filling level of Cu into via holes'' were estimated for Cu films containing each of these elements. From the results, it was found that adding a small amount of Sb or Dy to the sputtered Cu was remarkably effective in improve the reflow characteristics. The microstructure and imperfections in the Cu films before and after high-temperature high-pressure annealing were investigated by secondary ion micrographs and positron annihilation spectroscopy. The results imply that the embedding or deformation mechanism is different for the Cu-Sb alloy films compared to the Cu-Dy alloy films. We consider that the former is embedded by softening or deformation of the Cu matrix, which has a polycrystalline structure, and the latter is embedded by grain boundary sliding.

  9. Solid-solution CrCoCuFeNi high-entropy alloy thin films synthesized by sputter deposition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    An, Zhinan; Jia, Haoling; Wu, Yueying; Rack, Philip D.; Patchen, Allan D.; Liu, Yuzi; Ren, Yang; Li, Nan; Liaw, Peter K.

    2015-05-04

    The concept of high configurational entropy requires that the high-entropy alloys (HEAs) yield single-phase solid solutions. However, phase separations are quite common in bulk HEAs. A five-element alloy, CrCoCuFeNi, was deposited via radio frequency magnetron sputtering and confirmed to be a single-phase solid solution through the high-energy synchrotron X-ray diffraction, energy-dispersive spectroscopy, wavelength-dispersive spectroscopy, and transmission electron microscopy. The formation of the solid-solution phase is presumed to be due to the high cooling rate of the sputter-deposition process.

  10. Method for high-precision multi-layered thin film deposition for deep and extreme ultraviolet mirrors

    DOE Patents [OSTI]

    Ruffner, J.A.

    1999-06-15

    A method for coating (flat or non-flat) optical substrates with high-reflectivity multi-layer coatings for use at Deep Ultra-Violet (DUV) and Extreme Ultra-Violet (EUV) wavelengths. The method results in a product with minimum feature sizes of less than 0.10 [micro]m for the shortest wavelength (13.4 nm). The present invention employs a computer-based modeling and deposition method to enable lateral and vertical thickness control by scanning the position of the substrate with respect to the sputter target during deposition. The thickness profile of the sputter targets is modeled before deposition and then an appropriate scanning algorithm is implemented to produce any desired, radially-symmetric thickness profile. The present invention offers the ability to predict and achieve a wide range of thickness profiles on flat or figured substrates, i.e., account for 1/R[sup 2] factor in a model, and the ability to predict and accommodate changes in deposition rate as a result of plasma geometry, i.e., over figured substrates. 15 figs.

  11. Method for high-precision multi-layered thin film deposition for deep and extreme ultraviolet mirrors

    DOE Patents [OSTI]

    Ruffner, Judith Alison (Albuquerque, NM)

    1999-01-01

    A method for coating (flat or non-flat) optical substrates with high-reflectivity multi-layer coatings for use at Deep Ultra-Violet ("DUV") and Extreme Ultra-Violet ("EUV") wavelengths. The method results in a product with minimum feature sizes of less than 0.10-.mu.m for the shortest wavelength (13.4-nm). The present invention employs a computer-based modeling and deposition method to enable lateral and vertical thickness control by scanning the position of the substrate with respect to the sputter target during deposition. The thickness profile of the sputter targets is modeled before deposition and then an appropriate scanning algorithm is implemented to produce any desired, radially-symmetric thickness profile. The present invention offers the ability to predict and achieve a wide range of thickness profiles on flat or figured substrates, i.e., account for 1/R.sup.2 factor in a model, and the ability to predict and accommodate changes in deposition rate as a result of plasma geometry, i.e., over figured substrates.

  12. Thin film-coated polymer webs

    DOE Patents [OSTI]

    Wenz, Robert P.; Weber, Michael F.; Arudi, Ravindra L.

    1992-02-04

    The present invention relates to thin film-coated polymer webs, and more particularly to thin film electronic devices supported upon a polymer web, wherein the polymer web is treated with a purifying amount of electron beam radiation.

  13. Semiconductor-nanocrystal/conjugated polymer thin films

    DOE Patents [OSTI]

    Alivisatos, A. Paul (Oakland, CA); Dittmer, Janke J. (Munich, DE); Huynh, Wendy U. (Munich, DE); Milliron, Delia (Berkeley, CA)

    2010-08-17

    The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

  14. Thin film cadmium telluride and zinc phosphide solar cells

    SciTech Connect (OSTI)

    Chu, T.

    1984-10-01

    This report describes research performed from June 1982 to October 1983 on the deposition of cadmium telluride films by direct combination of the cadmium and tellurium vapor on foreign substrates. Nearly stoichiometric p-type cadmium telluride films and arsenic-doped p-type films have been prepared reproducibly. Major efforts were directed to the deposition and characterization of heterojunction window materials, indium tin oxide, fluorine-doped tin oxide, cadmium oxide, and zinc oxide. A number of heterojunction solar cells were prepared, and the best thin-film ITO/CdTe solar cells had an AMl efficiency of about 7.2%. Zinc phosphide films were deposited on W/steel substrates by the reaction of zinc and phosphine in a hydrogen flow. Films without intentional doping had an electrical resistivity on the order of 10/sup 6/ ohm-cm, and this resistivity may be reduced to about 5 x 10/sup 4/ ohm-cm by adding hydrogen chloride or hydrogen bromide to the reaction mixture. Lower resistivity films were deposited by adding a controlled amount of silver nitrate solution on to the substrate surface. Major efforts were directed to the deposition of low-resistivity zinc selenide in order to prepare ZnSe/An/sub 3/P/sub 2/ heterojunction thin-film solar cells. However, zinc selenide films deposited by vacuum evaporation and chemical vapor deposition techniques were all of high resistivity.

  15. Thin film polymeric gel electrolytes

    DOE Patents [OSTI]

    Derzon, D.K.; Arnold, C. Jr.; Delnick, F.M.

    1996-12-31

    Novel hybrid thin film electrolytes, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities {approx_equal}10{sup {minus}3}{Omega}{sup {minus}1} cm{sup {minus}1} are useful as electrolytes for rechargeable lithium batteries. 1 fig.

  16. Thin film polymeric gel electrolytes

    DOE Patents [OSTI]

    Derzon, Dora K.; Arnold, Jr., Charles; Delnick, Frank M.

    1996-01-01

    Novel hybrid thin film electrolyte, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities .apprxeq.10.sup.-3 .OMEGA..sup.-1 cm.sup.-1 are useful as electrolytes for rechargeable lithium batteries.

  17. TI--CR--AL--O thin film resistors

    DOE Patents [OSTI]

    Jankowski, Alan F. (Livermore, CA); Schmid, Anthony P. (Solana Beach, CA)

    2000-01-01

    Thin films of Ti--Cr--Al--O are used as a resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O.sub.2. Resistivity values from 10.sup.4 to 10.sup.10 Ohm-cm have been measured for Ti--Cr--Al--O film <1 .mu.m thick. The film resistivity can be discretely selected through control of the target composition and the deposition parameters. The application of Ti--Cr--Al--O as a thin film resistor has been found to be thermodynamically stable, unlike other metal-oxide films. The Ti--Cr--Al--O film can be used as a vertical or lateral resistor, for example, as a layer beneath a field emission cathode in a flat panel display; or used to control surface emissivity, for example, as a coating on an insulating material such as vertical wall supports in flat panel displays.

  18. Nucleation of fcc Ta when heating thin films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Janish, Matthew T.; Mook, William M.; Carter, C. Barry

    2014-10-25

    Thin tantalum films have been studied during in-situ heating in a transmission electron microscope. Diffraction patterns from the as-deposited films were typical of amorphous materials. Crystalline grains were observed to form when the specimen was annealed in-situ at 450°C. Particular attention was addressed to the formation and growth of grains with the face-centered cubic (fcc) crystal structure. As a result, these observations are discussed in relation to prior work on the formation of fcc Ta by deformation and during thin film deposition.

  19. Simple flash evaporator for making thin films of compounds

    SciTech Connect (OSTI)

    Hemanadhan, M.; Bapanayya, Ch.; Agarwal, S. C. [Department of Physics, Indian Institute of Technology, Kanpur 208016 (India)

    2010-07-15

    A simple and compact arrangement for flash evaporation is described. It uses a cell phone vibrator for powder dispensing that can be incorporated into a vacuum deposition chamber without any major alterations. The performance of the flash evaporation system is checked by making thin films of the optical memory chalcogenide glass Ge{sub 2}Sb{sub 2}Te{sub 5} (GST). Energy dispersive x-ray analysis shows that the flash evaporation preserves the stoichiometry in thin films.

  20. Flexible cadmium telluride thin films grown on electron-beam-irradiated graphene/thin glass substrates

    SciTech Connect (OSTI)

    Seo, Won-Oh; Kim, Jihyun, E-mail: hyunhyun7@korea.ac.kr [Department of Chemical and Biological Engineering, Korea University, Anam-dong, Sungbuk-gu, Seoul 136-713 (Korea, Republic of); Koo, Yong Hwan; Kim, Byungnam; Lee, Byung Cheol [Radiation Integrated System Research Division, Korea Atomic Energy Research Institute (KAERI), Daejeon 305-353 (Korea, Republic of); Kim, Donghwan [Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of)

    2014-08-25

    We demonstrate the close-spaced sublimation growth of polycrystalline cadmium telluride (CdTe) thin films on a flexible graphene electrode/thin glass substrate structure. Prior to the growth of CdTe films, chemical-vapor-deposited graphene was transferred onto a flexible glass substrate and subjected to electron-beam irradiation at an energy of 0.2?MeV in order to intentionally introduce the defects into it in a controlled manner. Micro-Raman spectroscopy and sheet resistance measurements were employed to monitor the damage and disorder in the electron-beam irradiated graphene layers. The morphology and optical properties of the CdTe thin films deposited on a graphene/flexible glass substrate were systematically characterized. The integration of the defective graphene layers with a flexible glass substrate can be a useful platform to grow various thin-film structures for flexible electronic and optoelectronic devices.

  1. Active superconducting devices formed of thin films

    DOE Patents [OSTI]

    Martens, Jon S. (Madison, WI); Beyer, James B. (Madison, WI); Nordman, James E. (Madison, WI); Hohenwarter, Gert K. G. (Madison, WI)

    1991-05-28

    Active superconducting devices are formed of thin films of superconductor which include a main conduction channel which has an active weak link region. The weak link region is composed of an array of links of thin film superconductor spaced from one another by voids and selected in size and thickness such that magnetic flux can propagate across the weak link region when it is superconducting. Magnetic flux applied to the weak link region will propagate across the array of links causing localized loss of superconductivity in the links and changing the effective resistance across the links. The magnetic flux can be applied from a control line formed of a superconducting film deposited coplanar with the main conduction channel and weak link region on a substrate. The devices can be formed of any type to superconductor but are particularly well suited to the high temperature superconductors since the devices can be entirely formed from coplanar films with no overlying regions. The devices can be utilized for a variety of electrical components, including switching circuits, amplifiers, oscillators and modulators, and are well suited to microwave frequency applications.

  2. Generation of low work function, stable compound thin films by laser ablation

    DOE Patents [OSTI]

    Dinh, Long N. (Concord, CA); McLean, II, William (Oakland, CA); Balooch, Mehdi (Berkeley, CA); Fehring, Jr., Edward J. (Dublin, CA); Schildbach, Marcus A. (Livermore, CA)

    2001-01-01

    Generation of low work function, stable compound thin films by laser ablation. Compound thin films with low work function can be synthesized by simultaneously laser ablating silicon, for example, and thermal evaporating an alkali metal into an oxygen environment. For example, the compound thin film may be composed of Si/Cs/O. The work functions of the thin films can be varied by changing the silicon/alkali metal/oxygen ratio. Low work functions of the compound thin films deposited on silicon substrates were confirmed by ultraviolet photoelectron spectroscopy (UPS). The compound thin films are stable up to 500.degree. C. as measured by x-ray photoelectron spectroscopy (XPS). Tests have established that for certain chemical compositions and annealing temperatures of the compound thin films, negative electron affinity (NEA) was detected. The low work function, stable compound thin films can be utilized in solar cells, field emission flat panel displays, electron guns, and cold cathode electron guns.

  3. Thin film photovoltaic device and process of manufacture

    DOE Patents [OSTI]

    Albright, S.P.; Chamberlin, R.

    1997-10-07

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells. 13 figs.

  4. Thin film photovoltaic device and process of manufacture

    DOE Patents [OSTI]

    Albright, S.P.; Chamberlin, R.

    1999-02-09

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells. 13 figs.

  5. Thin film photovoltaic device and process of manufacture

    DOE Patents [OSTI]

    Albright, Scot P. (Lakewood, CO); Chamberlin, Rhodes (El Paso, TX)

    1997-10-07

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells.

  6. Thin film photovoltaic device and process of manufacture

    DOE Patents [OSTI]

    Albright, Scot P. (Lakewood, CO); Chamberlin, Rhodes (El Paso, TX)

    1999-02-09

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells.

  7. Texture evolution in nanocrystalline iron films deposited using biased magnetron sputtering

    SciTech Connect (OSTI)

    Vetterick, G.; Taheri, M. L.; Baldwin, J. K.; Misra, A.

    2014-12-21

    Fe thin films were deposited on sodium chloride (NaCl) substrates using magnetron sputtering to investigate means of texture control in free standing metal films. The Fe thin films were studied using transmission electron microscopy equipped with automated crystallographic orientation microscopy. Using this technique, the microstructure of each film was characterized in order to elucidate the effects of altering deposition parameters. The natural tendency for Fe films grown on (100) NaCl is to form a randomly oriented nanocrystalline microstructure. By careful selection of substrate and deposition conditions, it is possible to drive the texture of the film toward a single (100) orientation while retaining the nanocrystalline microstructure.

  8. TEM characterization of nanodiamond thin films.

    SciTech Connect (OSTI)

    Qin, L.-C.; Zhou, D.; Krauss, A. R.; Gruen, D. M.; Chemistry

    1998-05-01

    The microstructure of thin films grown by microwave plasma-enhanced chemical vapor deposition (MPCVD) from fullerene C{sub 60} precursors has been characterized by scanning electron microscopy (SEM), selected-area electron diffraction (SAED), bright-field electron microscopy, high-resolution electron microscopy (HREM), and parallel electron energy loss spectroscopy (PEELS). The films are composed of nanosize crystallites of diamond, and no graphitic or amorphous phases were observed. The diamond crystallite size measured from lattice images shows that most grains range between 3-5 nm, reflecting a gamma distribution. SAED gave no evidence of either sp2-bonded glassy carbon or sp3-bonded diamondlike amorphous carbon. The sp2-bonded configuration found in PEELS was attributed to grain boundary carbon atoms, which constitute 5-10% of the total. Occasionally observed larger diamond grains tend to be highly faulted.

  9. Sputtered Thin Film Photovoltaics - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    highly toxic chemicals (H2Se gas, potassium cyanide) Applications and Industries High-efficiency thin film photovoltaics Flexible photovoltaics More Information References:...

  10. Effects of laser energy fluence on the onset and growth of the Rayleigh-Taylor instabilities and its influence on the topography of the Fe thin film grown in pulsed laser deposition facility

    SciTech Connect (OSTI)

    Mahmood, S. [National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616 (Singapore); Department of Physics, University of Karachi, Karachi 75270 (Pakistan); Rawat, R. S.; Wang, Y.; Lee, S.; Tan, T. L.; Springham, S. V.; Lee, P. [National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616 (Singapore); Zakaullah, M. [Department of Physics, Quaid-i-Azam University, 45320 Islamabad (Pakistan)

    2012-10-15

    The effect of laser energy fluence on the onset and growth of Rayleigh-Taylor (RT) instabilities in laser induced Fe plasma is investigated using time-resolved fast gated imaging. The snow plow and shock wave models are fitted to the experimental results and used to estimate the ablation parameters and the density of gas atoms that interact with the ablated species. It is observed that RT instability develops during the interface deceleration stage and grows for a considerable time for higher laser energy fluence. The effects of RT instabilities formation on the surface topography of the Fe thin films grown in pulsed laser deposition system are investigated (i) using different laser energy fluences for the same wavelength of laser radiation and (ii) using different laser wavelengths keeping the energy fluence fixed. It is concluded that the deposition achieved under turbulent condition leads to less smooth deposition surfaces with bigger sized particle agglomerates or network.

  11. Thin film solar energy collector

    DOE Patents [OSTI]

    Aykan, Kamran (Monmouth Beach, NJ); Farrauto, Robert J. (Westfield, NJ); Jefferson, Clinton F. (Millburn, NJ); Lanam, Richard D. (Westfield, NJ)

    1983-11-22

    A multi-layer solar energy collector of improved stability comprising: (1) a substrate of quartz, silicate glass, stainless steel or aluminum-containing ferritic alloy; (2) a solar absorptive layer comprising silver, copper oxide, rhodium/rhodium oxide and 0-15% by weight of platinum; (3) an interlayer comprising silver or silver/platinum; and (4) an optional external anti-reflective coating, plus a method for preparing a thermally stable multi-layered solar collector, in which the absorptive layer is undercoated with a thin film of silver or silver/platinum to obtain an improved conductor-dielectric tandem.

  12. Thin-film transistors based on p-type Cu{sub 2}O thin films produced at room temperature

    SciTech Connect (OSTI)

    Fortunato, Elvira; Figueiredo, Vitor; Barquinha, Pedro; Elamurugu, Elangovan; Goncalves, Goncalo; Martins, Rodrigo; Park, Sang-Hee Ko; Hwang, Chi-Sun

    2010-05-10

    Copper oxide (Cu{sub 2}O) thin films were used to produce bottom gate p-type transparent thin-film transistors (TFTs). Cu{sub 2}O was deposited by reactive rf magnetron sputtering at room temperature and the films exhibit a polycrystalline structure with a strongest orientation along (111) plane. The TFTs exhibit improved electrical performance such as a field-effect mobility of 3.9 cm{sup 2}/V s and an on/off ratio of 2x10{sup 2}.

  13. Epitaxial single-crystal thin films of MnxTi1-xO2-? grown on (rutile)TiO2 substrates with pulsed laser deposition: Experiment and theory

    SciTech Connect (OSTI)

    Ilton, Eugene S.; Droubay, Timothy C.; Chaka, Anne M.; Kovarik, Libor; Varga, Tamas; Arey, Bruce W.; Kerisit, Sebastien N.

    2015-02-01

    Epitaxial rutile-structured single-crystal MnxTi1-xO2-? films were synthesized on rutile- (110) and -(001) substrates using pulsed laser deposition. The films were characterized by reflection high-energy electron diffraction (RHEED), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and aberration-corrected transmission electron microscopy (ACTEM). Under the present conditions, 400oC and PO2 = 20 mTorr, single crystal epitaxial thin films were grown for x = 0.13, where x is the nominal average mole fraction of Mn. In fact, arbitrarily thick films could be grown with near invariant Mn/Ti concentration profiles from the substrate/film interface to the film surface. In contrast, at x = 0.25, Mn became enriched towards the surface and a secondary nano-scale phase formed which appeared to maintain the basic rutile structure but with enhanced z-contrast in the tunnels, or tetrahedral interstitial sites. Ab initio thermodynamic calculations provided quantitative estimates for the destabilizing effect of expanding the ?-MnO2 lattice parameters to those of TiO2-rutile, the stabilizing effect of diluting Mn with increasing Ti concentration, and competing reaction pathways.

  14. Electrostatic thin film chemical and biological sensor

    DOE Patents [OSTI]

    Prelas, Mark A. (Columbia, MO); Ghosh, Tushar K. (Columbia, MO); Tompson, Jr., Robert V. (Columbia, MO); Viswanath, Dabir (Columbia, MO); Loyalka, Sudarshan K. (Columbia, MO)

    2010-01-19

    A chemical and biological agent sensor includes an electrostatic thin film supported by a substrate. The film includes an electrostatic charged surface to attract predetermined biological and chemical agents of interest. A charge collector associated with said electrostatic thin film collects charge associated with surface defects in the electrostatic film induced by the predetermined biological and chemical agents of interest. A preferred sensing system includes a charge based deep level transient spectroscopy system to read out charges from the film and match responses to data sets regarding the agents of interest. A method for sensing biological and chemical agents includes providing a thin sensing film having a predetermined electrostatic charge. The film is exposed to an environment suspected of containing the biological and chemical agents. Quantum surface effects on the film are measured. Biological and/or chemical agents can be detected, identified and quantified based on the measured quantum surface effects.

  15. Fabrication of ionic liquid electrodeposited Cu--Sn--Zn--S--Se thin films and method of making

    DOE Patents [OSTI]

    Bhattacharya, Raghu Nath

    2016-01-12

    A semiconductor thin-film and method for producing a semiconductor thin-films comprising a metallic salt, an ionic compound in a non-aqueous solution mixed with a solvent and processing the stacked layer in chalcogen that results in a CZTS/CZTSS thin films that may be deposited on a substrate is disclosed.

  16. Geometric shape control of thin film ferroelectrics and resulting structures

    DOE Patents [OSTI]

    McKee, Rodney A. (Kingston, TN); Walker, Frederick J. (Oak Ridge, TN)

    2000-01-01

    A monolithic crystalline structure and a method of making involves a semiconductor substrate, such as silicon, and a ferroelectric film, such as BaTiO.sub.3, overlying the surface of the substrate wherein the atomic layers of the ferroelectric film directly overlie the surface of the substrate. By controlling the geometry of the ferroelectric thin film, either during build-up of the thin film or through appropriate treatment of the thin film adjacent the boundary thereof, the in-plane tensile strain within the ferroelectric film is relieved to the extent necessary to permit the ferroelectric film to be poled out-of-plane, thereby effecting in-plane switching of the polarization of the underlying substrate material. The method of the invention includes the steps involved in effecting a discontinuity of the mechanical restraint at the boundary of the ferroelectric film atop the semiconductor substrate by, for example, either removing material from a ferroelectric film which has already been built upon the substrate, building up a ferroelectric film upon the substrate in a mesa-shaped geometry or inducing the discontinuity at the boundary by ion beam deposition techniques.

  17. Uncooled thin film pyroelectric IR detector with aerogel thermal isolation

    SciTech Connect (OSTI)

    Ruffner, J.A.; Clem, P.G.; Tuttle, B.A. [and others

    1998-01-01

    Uncooled pyroelectric IR imaging systems, such as night vision goggles, offer important strategic advantages in battlefield scenarios and reconnaissance surveys. Until now, the current technology for fabricating these devices has been limited by low throughput and high cost which ultimately limit the availability of these sensor devices. We have developed and fabricated an alternative design for pyroelectric IR imaging sensors that utilizes a multilayered thin film deposition scheme to create a monolithic thin film imaging element on an active silicon substrate for the first time. This approach combines a thin film pyroelectric imaging element with a thermally insulating SiO{sub 2} aerogel thin film to produce a new type of uncooled IR sensor that offers significantly higher thermal, spatial, and temporal resolutions at a substantially lower cost per unit. This report describes the deposition, characterization and optimization of the aerogel thermal isolation layer and an appropriate pyroelectric imaging element. It also describes the overall integration of these components along with the appropriate planarization, etch stop, adhesion, electrode, and blacking agent thin film layers into a monolithic structure. 19 refs., 8 figs., 6 tabs.

  18. Thin Film Si Bottom Cells for Tandem Device Structures: Final Technical Report, 15 December 2003 - 15 October 2007

    SciTech Connect (OSTI)

    Yelundur, V.; Hegedus, S.; Rohatgi, A.; Birkmire, R.

    2008-11-01

    GIT and IEC developed thin-film Si bottom cell and showed that deposition of top cell in tandem device did not reduce bottom cell performance.

  19. Method for making dense crack free thin films

    DOE Patents [OSTI]

    Jacobson, Craig P. (Lafayette, CA); Visco, Steven J. (Berkeley, CA); De Jonghe, Lutgard C. (Lafayette, CA)

    2007-01-16

    The process described herein provides a simple and cost effective method for making crack free, high density thin ceramic film. The steps involve depositing a layer of a ceramic material on a porous or dense substrate. The deposited layer is compacted and then the resultant laminate is sintered to achieve a higher density than would have been possible without the pre-firing compaction step.

  20. Formation of thin-film resistors on silicon substrates

    DOE Patents [OSTI]

    Schnable, George L. (Montgomery County, PA); Wu, Chung P. (Hamilton Township, Mercer County, NJ)

    1988-11-01

    The formation of thin-film resistors by the ion implantation of a metallic conductive layer in the surface of a layer of phosphosilicate glass or borophosphosilicate glass which is deposited on a silicon substrate. The metallic conductive layer materials comprise one of the group consisting of tantalum, ruthenium, rhodium, platinum and chromium silicide. The resistor is formed and annealed prior to deposition of metal, e.g. aluminum, on the substrate.

  1. Multifunctional thin film surface (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Multifunctional thin film surface Citation Details In-Document Search Title: Multifunctional thin film surface You are accessing a document from the Department of Energy's (DOE)...

  2. NREL: Photovoltaics Research - Polycrystalline Thin-Film Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the area of polycrystalline thin-film materials and devices. Printable Version Photovoltaics Research Home Silicon Polycrystalline Thin Films Multijunctions New Materials,...

  3. Epitaxial ternary nitride thin films prepared by a chemical solution...

    Office of Scientific and Technical Information (OSTI)

    Epitaxial ternary nitride thin films prepared by a chemical solution method Citation Details In-Document Search Title: Epitaxial ternary nitride thin films prepared by a chemical...

  4. Semiconductor-nanocrystal/conjugated polymer thin films (Patent...

    Office of Scientific and Technical Information (OSTI)

    Semiconductor-nanocrystalconjugated polymer thin films Citation Details In-Document Search Title: Semiconductor-nanocrystalconjugated polymer thin films You are accessing a...

  5. Thin Film Femtosecond Laser Damage Competition

    SciTech Connect (OSTI)

    Stolz, C J; Ristau, D; Turowski, M; Blaschke, H

    2009-11-14

    In order to determine the current status of thin film laser resistance within the private, academic, and government sectors, a damage competition was started at the 2008 Boulder Damage Symposium. This damage competition allows a direct comparison of the current state of the art of high laser resistance coatings since they are tested using the same damage test setup and the same protocol. In 2009 a high reflector coating was selected at a wavelength of 786 nm at normal incidence at a pulse length of 180 femtoseconds. A double blind test assured sample and submitter anonymity so only a summary of the results are presented here. In addition to the laser resistance results, details of deposition processes, coating materials and layer count, and spectral results will also be shared.

  6. Thin films of mixed metal compounds

    DOE Patents [OSTI]

    Mickelsen, R.A.; Chen, W.S.

    1985-06-11

    Disclosed is a thin film heterojunction solar cell, said heterojunction comprising a p-type I-III-IV[sub 2] chalcopyrite substrate and an overlying layer of an n-type ternary mixed metal compound wherein said ternary mixed metal compound is applied to said substrate by introducing the vapor of a first metal compound to a vessel containing said substrate from a first vapor source while simultaneously introducing a vapor of a second metal compound from a second vapor source of said vessel, said first and second metals comprising the metal components of said mixed metal compound; independently controlling the vaporization rate of said first and second vapor sources; reducing the mean free path between vapor particles in said vessel, said gas being present in an amount sufficient to induce homogeneity of said vapor mixture; and depositing said mixed metal compound on said substrate in the form of a uniform composition polycrystalline mixed metal compound. 5 figs.

  7. Preparation of a semiconductor thin film

    DOE Patents [OSTI]

    Pehnt, Martin; Schulz, Douglas L.; Curtis, Calvin J.; Ginley, David S.

    1998-01-01

    A process for the preparation of a semiconductor film. The process comprises depositing nanoparticles of a semiconductor material onto a substrate whose surface temperature during nanoparticle deposition thereon is sufficient to cause substantially simultaneous fusion of the nanoparticles to thereby coalesce with each other and effectuate film growth.

  8. Preparation of a semiconductor thin film

    DOE Patents [OSTI]

    Pehnt, M.; Schulz, D.L.; Curtis, C.J.; Ginley, D.S.

    1998-01-27

    A process is disclosed for the preparation of a semiconductor film. The process comprises depositing nanoparticles of a semiconductor material onto a substrate whose surface temperature during nanoparticle deposition thereon is sufficient to cause substantially simultaneous fusion of the nanoparticles to thereby coalesce with each other and effectuate film growth.

  9. Structural characterization of thin film photonic crystals

    SciTech Connect (OSTI)

    Subramania, G.; Biswas, R.; Constant, K.; Sigalas, M. M.; Ho, K. M.

    2001-06-15

    We quantitatively analyze the structure of thin film inverse-opal photonic crystals composed of ordered arrays of air pores in a background of titania. Ordering of the sphere template and introduction of the titania background were performed simultaneously in the thin film photonic crystals. Nondestructive optical measurements of backfilling with high refractive index liquids, angle-resolved reflectivity, and optical spectroscopy were combined with band-structure calculations. The analysis reveals a thin film photonic crystal structure with a very high filling fraction (92{endash}94%) of air and a substantial compression along the c axis ({similar_to}22{endash}25%).

  10. High-temperature superconducting thin-film-based electronic devices

    SciTech Connect (OSTI)

    Wu, X.D; Finokoglu, A.; Hawley, M.; Jia, Q.; Mitchell, T.; Mueller, F.; Reagor, D.; Tesmer, J.

    1996-09-01

    This the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project involved optimization of processing of Y123 and Tl-2212 thin films deposited on novel substrates for advanced electronic devices. The Y123 films are the basis for development of Josephson Junctions to be utilized in magnetic sensors. Microwave cavities based on the Tl-2212 films are the basis for subsequent applications as communication antennas and transmitters in satellites.

  11. Oriented niobate ferroelectric thin films for electrical and optical devices

    DOE Patents [OSTI]

    Wessels, Bruce W. (Wilmette, IL); Nystrom, Michael J. (Chicago, IL)

    2001-01-01

    Sr.sub.x Ba.sub.1-x Nb.sub.2 O.sub.6, where x is greater than 0.25 and less than 0.75, and KNbO.sub.3 ferroelectric thin films metalorganic chemical vapor deposited on amorphous or cyrstalline substrate surfaces to provide a crystal axis of the film exhibiting a high dielectric susceptibility, electro-optic coefficient, and/or nonlinear optic coefficient oriented preferentially in a direction relative to a crystalline or amorphous substrate surface. Such films can be used in electronic, electro-optic, and frequency doubling components.

  12. Method for fabricating thin films of pyrolytic carbon

    DOE Patents [OSTI]

    Brassell, Gilbert W. (Lenoir City, TN); Lewis, Jr., John (Oak Ridge, TN); Weber, Gary W. (Amherst, NY)

    1982-01-01

    The present invention relates to a method for fabricating ultra-thin films of pyrolytic carbon. Pyrolytic carbon is vapor deposited onto a concave surface of a heated substrate to a total uniform thickness in the range of about 0.1 to 1.0 micrometer. The carbon film on the substrate is provided with a layer of adherent polymeric resin. The resulting composite film of pyrolytic carbon and polymeric resin is then easily separated from the substrate by shrinking the polymeric resin coating with thermally induced forces.

  13. Polymer-assisted deposition of films

    DOE Patents [OSTI]

    McCleskey, Thomas M. (Los Alamos, NM); Burrell; Anthony K. (Los Alamos, NM); Jia; Quanxi (Los Alamos, NM); Lin; Yuan (Los Alamos, NM)

    2009-10-20

    A polymer assisted deposition process for deposition of metal oxide films and the like is presented. The process includes solutions of one or more metal precursor and soluble polymers having binding properties for the one or more metal precursor. After a coating operation, the resultant coating is heated at high temperatures to yield metal oxide films and the like. Such films can be epitaxial in structure and can be of optical quality. The process can be organic solvent-free.

  14. Polymer-assisted deposition of films

    DOE Patents [OSTI]

    McCleskey, Thomas M. (Los Alamos, NM); Burrell, Anthony K. (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Lin, Yuan (Los Alamos, NM)

    2008-04-29

    A polymer assisted deposition process for deposition of metal oxide films is presented. The process includes solutions of one or more metal precursor and soluble polymers having binding properties for the one or more metal precursor. After a coating operation, the resultant coating is heated at high temperatures to yield metal oxide films. Such films can be epitaxial in structure and can be of optical quality. The process can be organic solvent-free.

  15. A low-temperature method for improving the performance of sputter-deposited ZnO thin-film transistors with supercritical fluid

    SciTech Connect (OSTI)

    Chen Minchen; Huang Shengyao; Chen Shihching; Chang Tingchang; Chang Kuanchang; Li Hungwei; Lu Jin; Shi Yi

    2009-04-20

    A low-temperature method, supercritical CO{sub 2} (SCCO{sub 2}) fluid technology, is employed to improve the device properties of ZnO TFT at 150 deg. C. In this work, the undoped ZnO films were deposited by sputter at room temperature and treated by SCCO{sub 2} fluid which is mixed with 5 ml pure H{sub 2}O. After SCCO{sub 2} treatment, the on/off current ratios and threshold voltage of the device were improved significantly. From x-ray photoelectron spectroscopy analyses, the enhancements were attributed to the stronger Zn-O bonds, the hydrogen-related donors, and the reduction in dangling bonds at the grain boundary by OH passivation.

  16. Effects of aging on the characteristics of TiNiPd shape memory alloy thin films

    SciTech Connect (OSTI)

    Zhang Congchun

    2008-07-15

    TiNiPd thin films have been deposited on glass substrate using R.F. magnetron sputtering. Effects of annealing and aging on the microstructure, phase transformation behaviors and shape memory effects of these thin films have been studied by X-ray diffractometry, differential scanning calorimeter, tensile tests and internal friction characteristics. The TiNiPd thin films annealed at 750 deg. C exhibit uniform martensite/austenite transformations and shape memory effect. Aging at 450 deg. C for 1 h improved the uniformity of transformations and shape memory effect. Long time aging decreased transformation temperatures and increased the brittleness of TiNiPd thin films.

  17. Preparation of W-Ta thin-film thermocouple on diamond anvil cell for

    Office of Scientific and Technical Information (OSTI)

    in-situ temperature measurement under high pressure (Journal Article) | SciTech Connect Preparation of W-Ta thin-film thermocouple on diamond anvil cell for in-situ temperature measurement under high pressure Citation Details In-Document Search Title: Preparation of W-Ta thin-film thermocouple on diamond anvil cell for in-situ temperature measurement under high pressure In this paper, a W-Ta thin-film thermocouple has been integrated on a diamond anvil cell by thin-film deposition and

  18. Permanent laser conditioning of thin film optical materials

    DOE Patents [OSTI]

    Wolfe, C.R.; Kozlowski, M.R.; Campbell, J.H.; Staggs, M.; Rainer, F.

    1995-12-05

    The invention comprises a method for producing optical thin films with a high laser damage threshold and the resulting thin films. The laser damage threshold of the thin films is permanently increased by irradiating the thin films with a fluence below an unconditioned laser damage threshold. 9 figs.

  19. Permanent laser conditioning of thin film optical materials

    DOE Patents [OSTI]

    Wolfe, C. Robert (Palo Alto, CA); Kozlowski, Mark R. (Pleasanton, CA); Campbell, John H. (Livermore, CA); Staggs, Michael (Tracy, CA); Rainer, Frank (Livermore, CA)

    1995-01-01

    The invention comprises a method for producing optical thin films with a high laser damage threshold and the resulting thin films. The laser damage threshold of the thin films is permanently increased by irradiating the thin films with a fluence below an unconditioned laser damage threshold.

  20. Polycrystalline Thin-Film Multijunction Solar Cells

    SciTech Connect (OSTI)

    Noufi, R.; Wu, X.; Abu-Shama, J.; Ramanathan, K; Dhere, R.; Zhou, J.; Coutts, T.; Contreras, M.; Gessert, T.; Ward, J. S.

    2005-11-01

    We present a digest of our research on the thin-film material components that comprise the top and bottom cells of three different material systems and the tandem devices constructed from them.

  1. Low-temperature plasma-deposited silicon epitaxial films: Growth...

    Office of Scientific and Technical Information (OSTI)

    Low-temperature plasma-deposited silicon epitaxial films: Growth and properties Citation Details In-Document Search Title: Low-temperature plasma-deposited silicon epitaxial films:...

  2. Method for bonding thin film thermocouples to ceramics

    DOE Patents [OSTI]

    Kreider, Kenneth G. (Potomac, MD)

    1993-01-01

    A method is provided for adhering a thin film metal thermocouple to a ceramic substrate used in an environment up to 700 degrees Centigrade, such as at a cylinder of an internal combustion engine. The method includes the steps of: depositing a thin layer of a reactive metal on a clean ceramic substrate; and depositing thin layers of platinum and a platinum-10% rhodium alloy forming the respective legs of the thermocouple on the reactive metal layer. The reactive metal layer serves as a bond coat between the thin noble metal thermocouple layers and the ceramic substrate. The thin layers of noble metal are in the range of 1-4 micrometers thick. Preferably, the ceramic substrate is selected from the group consisting of alumina and partially stabilized zirconia. Preferably, the thin layer of reactive metal is in the range of 0.015-0.030 micrometers (15-30 nanometers) thick. The preferred reactive metal is chromium. Other reactive metals may be titanium or zirconium. The thin layer of reactive metal may be deposited by sputtering in ultra high purity argon in a vacuum of approximately 2 milliTorr (0.3 Pascals).

  3. Thin film cadmium telluride, zinc telluride, and mercury zinc telluride solar cells

    SciTech Connect (OSTI)

    Chu, T.L. )

    1992-04-01

    This report describes research to demonstrate (1) thin film cadmium telluride solar cells with a quantum efficiency of 75% or higher at 0. 44 {mu}m and a photovoltaic efficiency of 11.5% or greater, and (2) thin film zinc telluride and mercury zinc telluride solar cells with a transparency to sub-band-gap radiation of 65% and a photovoltaic conversion efficiency of 5% and 8%, respectively. Work was directed at (1) depositing transparent conducting semiconductor films by solution growth and metal-organic chemical vapor deposition (MOCVD) technique, (2) depositing CdTe films by close-spaced sublimation (CSS) and MOCVD techniques, (3) preparing and evaluating thin film CdTe solar cells, and (4) preparing and characterizing thin film ZnTe, CD{sub 1-x}Zn{sub 1-x}Te, and Hg{sub 1-x}Zn{sub x}Te solar cells. The deposition of CdS films from aqueous solutions was investigated in detail, and their crystallographic, optical, and electrical properties were characterized. CdTe films were deposited from DMCd and DIPTe at 400{degrees}C using TEGa and AsH{sub 3} as dopants. CdTe films deposited by CSS had significantly better microstructures than those deposited by MOCVD. Deep energy states in CdTe films deposited by CSS and MOCVD were investigated. Thin films of ZnTe, Cd{sub 1- x}Zn{sub x}Te, and Hg{sub 1-x}Zn{sub x}Te were deposited by MOCVD, and their crystallographic, optical, and electrical properties were characterized. 67 refs.

  4. 200-keV He sup + -ion irradiation effects on the properties of pulsed-laser-deposited YBa sub 2 Cu sub 3 O sub 7 minus x thin films

    SciTech Connect (OSTI)

    Vadlamannati, S. ); England, P.; Stoffel, N.G. Bellcore, Red Bank, New Jersey 07701 ); Findikoglu, A.; Li, Q. ); Venkatesan, T. Bellcore, Red Bank, New Jersey 07701 ); McLean, W.L. )

    1991-03-01

    We report the effects of 200-keV He{sup +}-ion irradiation on the properties of high-quality YBa{sub 2}Cu{sub 3}O{sub 7{minus}{ital x}} thin films made {ital in} {ital situ} by pulsed-laser deposition. There is no significant change in {ital T}{sub {ital c}} or the normal-state resistivity for fluences up to 1{times}10{sup 14} He{sup +}/cm{sup 2}. There is only a small increase in the critical current density {ital J}{sub {ital c}} measured at 60 K for fluences up to 3{times}10{sup 13} He{sup +}/cm{sup 2} and in nonzero magnetic fields. At fluences above 1{times}10{sup 14} He{sup +}/cm{sup 2}, the induced changes are more rapid and have a deleterious effect on the superconducting properties.

  5. Polymer-assisted deposition of films

    DOE Patents [OSTI]

    McCleskey,Thomas M. (Los Alamos, NM); Burrell,Anthony K. (Los Alamos, NM); Jia,Quanxi (Los Alamos, NM); Lin,Yuan (Chandler, AZ)

    2012-02-28

    A polymer assisted deposition process for deposition of metal nitride films and the like is presented. The process includes solutions of one or more metal precursor and soluble polymers having binding properties for the one or more metal precursor. After a coating operation, the resultant coating is heated at high temperatures under a suitable atmosphere to yield metal nitride films and the like. Such films can be conformal on a variety of substrates including non-planar substrates. In some instances, the films can be epitaxial in structure and can be of optical quality. The process can be organic solvent-free.

  6. Amorphous semiconducting and conducting transparent metal oxide thin films and production thereof

    DOE Patents [OSTI]

    Perkins, John (Boulder, CO); Van Hest, Marinus Franciscus Antonius Maria (Lakewood, CO); Ginley, David (Evergreen, CO); Taylor, Matthew (Golden, CO); Neuman, George A. (Holland, MI); Luten, Henry A. (Holland, MI); Forgette, Jeffrey A. (Hudsonville, MI); Anderson, John S. (Holland, MI)

    2010-07-13

    Metal oxide thin films and production thereof are disclosed. An exemplary method of producing a metal oxide thin film may comprise introducing at least two metallic elements and oxygen into a process chamber to form a metal oxide. The method may also comprise depositing the metal oxide on a substrate in the process chamber. The method may also comprise simultaneously controlling a ratio of the at least two metallic elements and a stoichiometry of the oxygen during deposition. Exemplary amorphous metal oxide thin films produced according to the methods herein may exhibit highly transparent properties, highly conductive properties, and/or other opto-electronic properties.

  7. Thin film absorber for a solar collector

    DOE Patents [OSTI]

    Wilhelm, William G. (Cutchogue, NY)

    1985-01-01

    This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  8. Method for making thin polypropylene film

    DOE Patents [OSTI]

    Behymer, R.D.; Scholten, J.A.

    1985-11-21

    An economical method is provided for making uniform thickness polypropylene film as thin as 100 Angstroms. A solution of polypropylene dissolved in xylene is formed by mixing granular polypropylene and xylene together in a flask at an elevated temperature. A substrate, such as a glass plate or microscope slide is immersed in the solution. When the glass plate is withdrawn from the solution at a uniform rate, a thin polypropylene film forms on a flat surface area of the glass plate as the result of xylene evaporation. The actual thickness of the polypropylene film is functional of the polypropylene in xylene solution concentration, and the particular withdrawal rate of the glass plate from the solution. After formation, the thin polypropylene film is floated from the glass plate onto the surface of water, from which it is picked up with a wire hoop.

  9. Ambient pressure process for preparing aerogel thin films reliquified sols useful in preparing aerogel thin films

    DOE Patents [OSTI]

    Brinker, Charles Jeffrey; Prakash, Sai Sivasankaran

    1999-01-01

    A method for preparing aerogel thin films by an ambient-pressure, continuous process. The method of this invention obviates the use of an autoclave and is amenable to the formation of thin films by operations such as dip coating. The method is less energy intensive and less dangerous than conventional supercritical aerogel processing techniques.

  10. Modulated IR radiometry for determining thermal properties and basic characteristics of titanium thin films

    SciTech Connect (OSTI)

    Apreutesei, Mihai; Lopes, Claudia; Vaz, Filipe; Macedo, Francisco; Borges, Joel

    2014-07-01

    Titanium thin films of different thicknesses were prepared by direct current magnetron sputtering to study modulated infrared (IR) radiometry as a tool for analyzing film thickness. Thickness was varied by regularly increasing the deposition time, keeping all the other deposition parameters constant. The influence of film thickness on morphological, structural, and electrical properties of the titanium coatings also was investigated. The experimental results revealed a systematic grain growth with increasing film thickness, along with enhanced film crystallinity, which led to increased electrical conductivity. Using the results obtained by modulated IR radiometry, the thickness of each thin film was calculated. These thickness values were then compared with the coating thickness measurements obtained by scanning electron microscopy. The values confirmed the reliability of modulated IR radiometry as an analysis tool for thin films and coatings, and for determining thicknesses in the micrometer range, in particular.

  11. Method of preparing high-temperature-stable thin-film resistors

    DOE Patents [OSTI]

    Raymond, Leonard S. (Tucson, AZ)

    1983-01-01

    A chemical vapor deposition method for manufacturing tungsten-silicide thin-film resistors of predetermined bulk resistivity and temperature coefficient of resistance (TCR). Gaseous compounds of tungsten and silicon are decomposed on a hot substrate to deposit a thin-film of tungsten-silicide. The TCR of the film is determined by the crystallinity of the grain structure, which is controlled by the temperature of deposition and the tungsten to silicon ratio. The bulk resistivity is determined by the tungsten to silicon ratio. Manipulation of the fabrication parameters allows for sensitive control of the properties of the resistor.

  12. Method of preparing high-temperature-stable thin-film resistors

    DOE Patents [OSTI]

    Raymond, L.S.

    1980-11-12

    A chemical vapor deposition method for manufacturing tungsten-silicide thin-film resistors of predetermined bulk resistivity and temperature coefficient of resistance (TCR) is disclosed. Gaseous compounds of tungsten and silicon are decomposed on a hot substrate to deposit a thin-film of tungsten-silicide. The TCR of the film is determined by the crystallinity of the grain structure, which is controlled by the temperature of deposition and the tungsten to silicon ratio. The bulk resistivity is determined by the tungsten to silicon ratio. Manipulation of the fabrication parameters allows for sensitive control of the properties of the resistor.

  13. MultiLayer solid electrolyte for lithium thin film batteries (Patent) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Patent: MultiLayer solid electrolyte for lithium thin film batteries Citation Details In-Document Search Title: MultiLayer solid electrolyte for lithium thin film batteries A lithium metal thin-film battery composite structure is provided that includes a combination of a thin, stable, solid electrolyte layer [18] such as Lipon, designed in use to be in contact with a lithium metal anode layer; and a rapid-deposit solid electrolyte layer [16] such as LiAlF.sub.4 in contact

  14. Thin film composition with biological substance and method of making

    SciTech Connect (OSTI)

    Campbell, A.A.; Song, L.

    1999-09-28

    The invention provides a thin-film composition comprising an underlying substrate of a first material including a plurality of attachment sites; a plurality of functional groups chemically attached to the attachment sites of the underlying substrate; and a thin film of a second material deposited onto the attachment sites of the underlying substrate, and a biologically active substance deposited with the thin-film. Preferably the functional groups are attached to a self assembling monolayer attached to the underlying substrate. Preferred functional groups attached to the underlying substrate are chosen from the group consisting of carboxylates, sulfonates, phosphates, optionally substituted, linear or cyclo, alkyl, alkene, alkyne, aryl, alkylaryl, amine, hydroxyl, thiol, silyl, phosphoryl, cyano, metallocenyl, carbonyl, and polyphosphate. Preferred materials for the underlying substrate are selected from the group consisting of a metal, a metal alloy, a plastic, a polymer, a proteic film, a membrane, a glass or a ceramic. The second material is selected from the group consisting of inorganic crystalline structures, inorganic amorphous structures, organic crystalline structures, and organic amorphous structures. Preferred second materials are phosphates, especially calcium phosphates and most particularly calcium apatite. The biologically active molecule is a protein, peptide, DNA segment, RNA segment, nucleotide, polynucleotide, nucleoside, antibiotic, antimicrobial, radioisotope, chelated radioisotope, chelated metal, metal salt, anti-inflammatory, steroid, nonsteroid anti-inflammatory, analgesic, antihistamine, receptor binding agent, or chemotherapeutic agent, or other biologically active material. Preferably the biologically active molecule is an osteogenic factor consisting of the compositions listed above.

  15. Thin film composition with biological substance and method of making

    DOE Patents [OSTI]

    Campbell, Allison A. (Kennewick, WA); Song, Lin (Richland, WA)

    1999-01-01

    The invention provides a thin-film composition comprising an underlying substrate of a first material including a plurality of attachment sites; a plurality of functional groups chemically attached to the attachment sites of the underlying substrate; and a thin film of a second material deposited onto the attachment sites of the underlying substrate, and a biologically active substance deposited with the thin-film. Preferably the functional groups are attached to a self assembling monolayer attached to the underlying substrate. Preferred functional groups attached to the underlying substrate are chosen from the group consisting of carboxylates, sulfonates, phosphates, optionally substituted, linear or cyclo, alkyl, alkene, alkyne, aryl, alkylaryl, amine, hydroxyl, thiol, silyl, phosphoryl, cyano, metallocenyl, carbonyl, and polyphosphate. Preferred materials for the underlying substrate are selected from the group consisting of a metal, a metal alloy, a plastic, a polymer, a proteic film, a membrane, a glass or a ceramic. The second material is selected from the group consisting of inorganic crystalline structures, inorganic amorphus structures, organic crystalline structures, and organic amorphus structures. Preferred second materials are phosphates, especially calcium phosphates and most particularly calcium apatite. The biologically active molecule is a protein, peptide, DNA segment, RNA segment, nucleotide, polynucleotide, nucleoside, antibiotic, antimicrobal, radioisotope, chelated radioisotope, chelated metal, metal salt, anti-inflamatory, steriod, nonsteriod anti-inflammatory, analgesic, antihistamine, receptor binding agent, or chemotherapeutic agent, or other biologically active material. Preferably the biologically active molecule is an osteogenic factor the compositions listed above.

  16. Ultra-high current density thin-film Si diode

    DOE Patents [OSTI]

    Wang, Qi

    2008-04-22

    A combination of a thin-film .mu.c-Si and a-Si:H containing diode structure characterized by an ultra-high current density that exceeds 1000 A/cm.sup.2, comprising: a substrate; a bottom metal layer disposed on the substrate; an n-layer of .mu.c-Si deposited the bottom metal layer; an i-layer of .mu.c-Si deposited on the n-layer; a buffer layer of a-Si:H deposited on the i-layer, a p-layer of .mu.c-Si deposited on the buffer layer; and a top metal layer deposited on the p-layer.

  17. High-field magnets using high-critical-temperature superconducting thin films

    DOE Patents [OSTI]

    Mitlitsky, Fred (Livermore, CA); Hoard, Ronald W. (Livermore, CA)

    1994-01-01

    High-field magnets fabricated from high-critical-temperature superconducting ceramic (HTSC) thin films which can generate fields greater than 4 Tesla. The high-field magnets are made of stackable disk-shaped substrates coated with HTSC thin films, and involves maximizing the critical current density, superconducting film thickness, number of superconducting layers per substrate, substrate diameter, and number of substrates while minimizing substrate thickness. The HTSC thin films are deposited on one or both sides of the substrates in a spiral configuration with variable line widths to increase the field.

  18. High-field magnets using high-critical-temperature superconducting thin films

    DOE Patents [OSTI]

    Mitlitsky, F.; Hoard, R.W.

    1994-05-10

    High-field magnets fabricated from high-critical-temperature superconducting ceramic (HTSC) thin films which can generate fields greater than 4 Tesla are disclosed. The high-field magnets are made of stackable disk-shaped substrates coated with HTSC thin films, and involves maximizing the critical current density, superconducting film thickness, number of superconducting layers per substrate, substrate diameter, and number of substrates while minimizing substrate thickness. The HTSC thin films are deposited on one or both sides of the substrates in a spiral configuration with variable line widths to increase the field. 4 figures.

  19. Photovoltaic Polycrystalline Thin-Film Cell Basics | Department of Energy

    Energy Savers [EERE]

    Polycrystalline Thin-Film Cell Basics Photovoltaic Polycrystalline Thin-Film Cell Basics August 20, 2013 - 2:36pm Addthis Polycrystalline thin-film cells are made of many tiny crystalline grains of semiconductor materials. The materials used in these cells have properties that are different from those of silicon. Thin-film cells have many advantages over their thick-film counterparts. For example, they use much less material. The cell's active area is usually only 1 to 10 micrometers thick,

  20. Thin film dielectric composite materials

    DOE Patents [OSTI]

    Jia, Quanxi (Los Alamos, NM); Gibbons, Brady J. (Los Alamos, NM); Findikoglu, Alp T. (Los Alamos, NM); Park, Bae Ho (Los Alamos, NM)

    2002-01-01

    A dielectric composite material comprising at least two crystal phases of different components with TiO.sub.2 as a first component and a material selected from the group consisting of Ba.sub.1-x Sr.sub.x TiO.sub.3 where x is from 0.3 to 0.7, Pb.sub.1-x Ca.sub.x TiO.sub.3 where x is from 0.4 to 0.7, Sr.sub.1-x Pb.sub.x TiO.sub.3 where x is from 0.2 to 0.4, Ba.sub.1-x Cd.sub.x TiO.sub.3 where x is from 0.02 to 0.1, BaTi.sub.1-x Zr.sub.x O.sub.3 where x is from 0.2 to 0.3, BaTi.sub.1-x Sn.sub.x O.sub.3 where x is from 0.15 to 0.3, BaTi.sub.1-x Hf.sub.x O.sub.3 where x is from 0.24 to 0.3, Pb.sub.1-1.3x La.sub.x TiO.sub.3+0.2x where x is from 0.23 to 0.3, (BaTiO.sub.3).sub.x (PbFeo.sub.0.5 Nb.sub.0.5 O.sub.3).sub.1-x where x is from 0.75 to 0.9, (PbTiO.sub.3).sub.- (PbCo.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.1 to 0.45, (PbTiO.sub.3).sub.x (PbMg.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.2 to 0.4, and (PbTiO.sub.3).sub.x (PbFe.sub.0.5 Ta.sub.0.5 O.sub.3).sub.1-x where x is from 0 to 0.2, as the second component is described. The dielectric composite material can be formed as a thin film upon suitable substrates.

  1. Supercritical fluid molecular spray thin films and fine powders

    DOE Patents [OSTI]

    Smith, Richard D.

    1988-01-01

    Solid films are deposited, or fine powders formed, by dissolving a solid material into a supercritical fluid solution at an elevated pressure and then rapidly expanding the solution through a short orifice into a region of relatively low pressure. This produces a molecular spray which is directed against a substrate to deposit a solid thin film thereon, or discharged into a collection chamber to collect a fine powder. The solvent is vaporized and pumped away. Solution pressure is varied to determine, together with flow rate, the rate of deposition and to control in part whether a film or powder is produced and the granularity of each. Solution temperature is varied in relation to formation of a two-phase system during expansion to control porosity of the film or powder. A wide variety of film textures and powder shapes are produced of both organic and inorganic compounds. Films are produced with regular textural feature dimensions of 1.0-2.0 .mu.m down to a range of 0.01 to 0.1 .mu.m. Powders are formed in very narrow size distributions, with average sizes in the range of 0.02 to 5 .mu.m.

  2. Durable silver thin film coating for diffraction gratings

    DOE Patents [OSTI]

    Wolfe, Jesse D. (Discovery Bay, CA); Britten, Jerald A. (Oakley, CA); Komashko, Aleksey M. (San Diego, CA)

    2006-05-30

    A durable silver film thin film coated non-planar optical element has been developed to replace Gold as a material for fabricating such devices. Such a coating and resultant optical element has an increased efficiency and is resistant to tarnishing, can be easily stripped and re-deposited without modifying underlying grating structure, improves the throughput and power loading of short pulse compressor designs for ultra-fast laser systems, and can be utilized in variety of optical and spectrophotometric systems, particularly high-end spectrometers that require maximized efficiency.

  3. Effects of high-temperature thermal annealing on the electronic properties of In-Ga-Zn oxide thin films

    SciTech Connect (OSTI)

    Li, Qin; Song, Zhong Xiao; Ma, Fei E-mail: liyhemail@gmail.com; Li, Yan Huai E-mail: liyhemail@gmail.com; Xu, Ke Wei

    2015-03-15

    Indium gallium zinc oxide (IGZO) thin films were deposited by radio-frequency magnetron sputtering at room-temperature. Then, thermal annealing was conducted to improve the structural ordering. X-ray diffraction and high-resolution transmission electron microscopy demonstrated that the as-deposited IGZO thin films were amorphous and crystallization occurred at 800 and 950?C. As a result of crystallization at high temperature, the carrier concentration and the Hall mobility of IGZO thin films were sharply increased, which could be ascribed to the increased oxygen vacancies and improved structural ordering of the thin films.

  4. Oriented niobate ferroelectric thin films for electrical and optical devices and method of making such films

    DOE Patents [OSTI]

    Wessels, B.W.; Nystrom, M.J.

    1998-05-19

    Sr{sub x}Ba{sub 1{minus}x}Nb{sub 2}O{sub 6}, where x is greater than 0.25 and less than 0.75, and KNbO{sub 3} ferroelectric thin films metalorganic chemical vapor deposited on amorphous or crystalline substrate surfaces to provide a crystal axis of the film exhibiting a high dielectric susceptibility, electro-optic coefficient, and/or nonlinear optic coefficient oriented preferentially in a direction relative to a crystalline or amorphous substrate surface are disclosed. Such films can be used in electronic, electro-optic, and frequency doubling components. 8 figs.

  5. Oriented niobate ferroelectric thin films for electrical and optical devices and method of making such films

    DOE Patents [OSTI]

    Wessels, Bruce W. (Wilmette, IL); Nystrom, Michael J. (Germantown, MD)

    1998-01-01

    Sr.sub.x Ba.sub.1-x Nb.sub.2 O.sub.6, where x is greater than 0.25 and less than 0.75, and KNbO.sub.3 ferroelectric thin films metalorganic chemical vapor deposited on amorphous or crystalline substrate surfaces to provide a crystal axis of the film exhibiting a high dielectric susceptibility, electro-optic coefficient, and/or nonlinear optic coefficient oriented preferentially in a direction relative to a crystalline or amorphous substrate surface. Such films can be used in electronic, electro-optic, and frequency doubling components.

  6. Institute of Photo Electronic Thin Film Devices and Technology...

    Open Energy Info (EERE)

    Place: Tianjin Municipality, China Zip: 300071 Sector: Solar Product: A thin-film solar cell research institute in China. References: Institute of Photo-Electronic Thin...

  7. Mesoscale morphologies in polymer thin films.

    SciTech Connect (OSTI)

    Ramanathan, M.; Darling, S. B. (Center for Nanoscale Materials)

    2011-06-01

    In the midst of an exciting era of polymer nanoscience, where the development of materials and understanding of properties at the nanoscale remain a major R&D endeavor, there are several exciting phenomena that have been reported at the mesoscale (approximately an order of magnitude larger than the nanoscale). In this review article, we focus on mesoscale morphologies in polymer thin films from the viewpoint of origination of structure formation, structure development and the interaction forces that govern these morphologies. Mesoscale morphologies, including dendrites, holes, spherulites, fractals and honeycomb structures have been observed in thin films of homopolymer, copolymer, blends and composites. Following a largely phenomenological level of description, we review the kinetic and thermodynamic aspects of mesostructure formation outlining some of the key mechanisms at play. We also discuss various strategies to direct, limit, or inhibit the appearance of mesostructures in polymer thin films as well as an outlook toward potential areas of growth in this field of research.

  8. Vibration welding system with thin film sensor

    DOE Patents [OSTI]

    Cai, Wayne W; Abell, Jeffrey A; Li, Xiaochun; Choi, Hongseok; Zhao, Jingzhou

    2014-03-18

    A vibration welding system includes an anvil, a welding horn, a thin film sensor, and a process controller. The anvil and horn include working surfaces that contact a work piece during the welding process. The sensor measures a control value at the working surface. The measured control value is transmitted to the controller, which controls the system in part using the measured control value. The thin film sensor may include a plurality of thermopiles and thermocouples which collectively measure temperature and heat flux at the working surface. A method includes providing a welder device with a slot adjacent to a working surface of the welder device, inserting the thin film sensor into the slot, and using the sensor to measure a control value at the working surface. A process controller then controls the vibration welding system in part using the measured control value.

  9. Thin Film Transistors On Plastic Substrates

    DOE Patents [OSTI]

    Carey, Paul G. (Mountain View, CA); Smith, Patrick M. (San Ramon, CA); Sigmon, Thomas W. (Portola Valley, CA); Aceves, Randy C. (Livermore, CA)

    2004-01-20

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The silicon based thin film transistor produced by the process includes a low temperature substrate incapable of withstanding sustained processing temperatures greater than about 250.degree. C., an insulating layer on the substrate, a layer of silicon on the insulating layer having sections of doped silicon, undoped silicon, and poly-silicon, a gate dielectric layer on the layer of silicon, a layer of gate metal on the dielectric layer, a layer of oxide on sections of the layer of silicon and the layer of gate metal, and metal contacts on sections of the layer of silicon and layer of gate metal defining source, gate, and drain contacts, and interconnects.

  10. Solar Thin Films Inc formerly American United Global Inc | Open...

    Open Energy Info (EERE)

    Films Inc formerly American United Global Inc Jump to: navigation, search Name: Solar Thin Films Inc (formerly American United Global Inc) Place: New York, New York Zip: 10038...

  11. High Temperature Thin Film Polymer Dielectric Based Capacitors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for HEV Power Electronic Systems High Temperature Thin Film Polymer Dielectric Based ... More Documents & Publications High Temperature Polymer Capacitor Dielectric Films High ...

  12. A review of basic phenomena and techniques for sputter-deposition of high temperature superconducting films

    SciTech Connect (OSTI)

    Auciello, O. North Carolina State Univ., Raleigh, NC . Dept. of Materials Science and Engineering); Ameen, M.S.; Kingon, A.I.; Lichtenwalner, D.J. . Dept. of Materials Science and Engineering); Krauss, A.R. )

    1990-01-01

    The processes involved in plasma and ion beam sputter-deposition of high temperature superconducting thin films are critically reviewed. Recent advances in the development of these techniques are discussed in relation to basic physical phenomena, specific to each technique, which must be understood before high quality films can be produced. Control of film composition is a major issue in sputter-deposition of multicomponent materials. Low temperature processing of films is a common goal for each technique, particularly in relation to integrating high temperature superconducting films with the current microelectronics technology. It has been understood for some time that for Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7} deposition, the most intensely studied high-{Tc} compound, incorporation of sufficient oxygen into the film during deposition is necessary to produce as-deposited superconducting films at relatively substrate temperatures. Recent results have shown that with the use of suitable buffer layers, high quality Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7} sputtered films can be obtained on Si substrates without the need for post-deposition anneal processing. This review is mainly focussed on issues related to sputter-deposition of Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7} thin films, although representative results concerning the bismuth and thallium based compounds are included. 143 refs., 11 figs.

  13. Microenergetic shock initiation studies on deposited films of PETN.

    SciTech Connect (OSTI)

    Long, Gregory T.; Knepper, Robert; Jones, David Alexander; Brundage, Aaron L.; Trott, Wayne Merle; Wixom, Ryan R.; Tappan, Alexander Smith

    2009-07-01

    Films of the high explosive PETN (pentaerythritol tetranitrate) up to 500-{micro}m thick have been deposited through physical vapor deposition, with the intent of creating well-defined samples for shock-initiation studies. PETN films were characterized with surface profilometry, scanning electron microscopy, x-ray diffraction, and focused ion beam nanotomography. These high-density films were subjected to strong shocks in both the in-plane and out-of-plane orientations. Initiation behavior was monitored with high-speed framing and streak camera photography. Direct initiation with a donor explosive (either RDX with binder, or CL-20 with binder) was possible in both orientations, but with the addition of a thin aluminum buffer plate (in-plane configuration only), initiation proved to be difficult due to the attenuated shock and the high density of the PETN films. Mesoscale models of microenergetic samples were created using the shock physics code CTH and compared with experimental results. The results of these experiments will be discussed in the context of small sample geometry, deposited film morphology, and density.

  14. MultiLayer solid electrolyte for lithium thin film batteries...

    Office of Scientific and Technical Information (OSTI)

    Patent: MultiLayer solid electrolyte for lithium thin film batteries Citation Details In-Document Search Title: MultiLayer solid electrolyte for lithium thin film batteries You...

  15. SAW determination of surface area of thin films

    DOE Patents [OSTI]

    Frye, Gregory C. (Albuquerque, NM); Martin, Stephen J. (Albuquerque, NM); Ricco, Antonio J. (Albuquerque, NM)

    1990-01-01

    N.sub.2 adsorption isotherms are measured from thin films on SAW devices. The isotherms may be used to determine the surface area and pore size distribution of thin films.

  16. Guided Self-Assembly of Gold Thin Films

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guided Self-Assembly of Gold Thin Films Guided Self-Assembly of Gold Thin Films Print Wednesday, 21 November 2012 12:18 Nanoparticles-man-made atoms with unique optical,...

  17. Multiferroic oxide thin films and heterostructures (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Title: Multiferroic oxide thin films and heterostructures Multiferroic materials promise a tantalizing ... Huazhong University of Science and Technology, Wuhan 430074 ...

  18. Atomistic surface erosion and thin film growth modelled over...

    Office of Scientific and Technical Information (OSTI)

    Language: English Subject: 36 MATERIALS SCIENCE; 37 ... MAGNETRONS; MATERIALS; MOLECULAR DYNAMICS ... FAULTS; SURFACES; THIN FILMS; VACANCIES Word Cloud More ...

  19. A Sensitivity Analysis of a Thin Film Conductivity Estimation...

    Office of Scientific and Technical Information (OSTI)

    ... Language: English Subject: 36 MATERIALS SCIENCE; CONVECTION; SENSITIVITY ANALYSIS; SPECIFIC HEAT; SUBSTRATES; THERMAL CONDUCTIVITY; THERMODYNAMIC PROPERTIES; THICKNESS; THIN FILMS; ...

  20. Method for formation of thin film transistors on plastic substrates

    DOE Patents [OSTI]

    Carey, Paul G. (Mountain View, CA); Smith, Patrick M. (San Ramon, CA); Sigmon, Thomas W. (Portola Valley, CA); Aceves, Randy C. (Livermore, CA)

    1998-10-06

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The process relies on techniques for depositing semiconductors, dielectrics, and metals at low temperatures; crystallizing and doping semiconductor layers in the TFT with a pulsed energy source; and creating top-gate self-aligned as well as back-gate TFT structures. The process enables the fabrication of amorphous and polycrystalline channel silicon TFTs at temperatures sufficiently low to prevent damage to plastic substrates. The process has use in large area low cost electronics, such as flat panel displays and portable electronics.

  1. Method for formation of thin film transistors on plastic substrates

    DOE Patents [OSTI]

    Carey, P.G.; Smith, P.M.; Sigmon, T.W.; Aceves, R.C.

    1998-10-06

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The process relies on techniques for depositing semiconductors, dielectrics, and metals at low temperatures; crystallizing and doping semiconductor layers in the TFT with a pulsed energy source; and creating top-gate self-aligned as well as back-gate TFT structures. The process enables the fabrication of amorphous and polycrystalline channel silicon TFTs at temperatures sufficiently low to prevent damage to plastic substrates. The process has use in large area low cost electronics, such as flat panel displays and portable electronics. 5 figs.

  2. Stable thin film resistors using double layer structure

    SciTech Connect (OSTI)

    Jia, Q.X.; Lee, H.J.; Ma, E.; Anderson, W.A.; Collins, F.M.

    1995-06-01

    Highly stable bilayer thin film resistors, which consist of an underlying layer of tantalum nitride and of a capping layer of ruthenium oxide, were developed by taking advantage of the desired characteristics of two different materials in a single system. The resistors fabricated in such a way were highly stable under power loading or thermal cycling. Resistors with one digit temperature coefficient of resistance could be easily controlled by the layer thickness ratio of the tantalum nitride to the ruthenium oxide and the {ital ex} {ital situ} annealing temperature or duration. Auger electron spectroscopy depth profile on the thin films indicates that the ruthenium oxide layer is well defined for the as-deposited form. Nevertheless, interdiffusion takes place after thermal treatment of the bilayer which is used to tune the temperature coefficient of resistance and to stabilize the resistance of the resistors.

  3. Process for producing Ti-Cr-Al-O thin film resistors

    DOE Patents [OSTI]

    Jankowski, Alan F. (Livermore, CA); Schmid, Anthony P. (Solana Beach, CA)

    2001-01-01

    Thin films of Ti-Cr-Al-O are used as a resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O.sub.2. Resistivity values from 10.sup.4 to 10.sup.10 Ohm-cm have been measured for Ti-Cr-Al-O film <1 .mu.m thick. The film resistivity can be discretely selected through control of the target composition and the deposition parameters. The application of Ti-Cr-Al-O as a thin film resistor has been found to be thermodynamically stable, unlike other metal-oxide films. The Ti-Cr-Al-O film can be used as a vertical or lateral resistor, for example, as a layer beneath a field emission cathode in a flat panel display; or used to control surface emissivity, for example, as a coating on an insulating material such as vertical wall supports in flat panel displays.

  4. Flat panel display using Ti-Cr-Al-O thin film

    DOE Patents [OSTI]

    Jankowski, Alan F. (Livermore, CA); Schmid, Anthony P. (Solan Beach, CA)

    2002-01-01

    Thin films of Ti--Cr--Al--O are used as a resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O.sub.2. Resistivity values from 10.sup.4 to 10.sup.10 Ohm-cm have been measured for Ti--Cr--Al--O film <1 .mu.m thick. The film resistivity can be discretely selected through control of the target composition and the deposition parameters. The application of Ti--Cr--Al--O as a thin film resistor has been found to be thermodynamically stable, unlike other metal-oxide films. The Ti--Cr--Al--O film can be used as a vertical or lateral resistor, for example, as a layer beneath a field emission cathode in a flat panel display; or used to control surface emissivity, for example, as a coating on an insulating material such as vertical wall supports in flat panel displays.

  5. Thin film solar energy collector

    SciTech Connect (OSTI)

    Farrauto, R.J.; Myers, H.; Williams, J.C.

    1982-03-23

    A solar energy collector has improved absorptance and emissivity levels comprising: (1) a silver-copper oxide-rhodium oxide solar absorption film, (2) a cerium oxide interlayer and a substrate of quartz, silica glass or metal. The cerium oxide interlayer minimizes agglomeration of the metal particles, maintains a relatively low thermal emittance and improves overall stability.

  6. Fully Integrated Applications of Thin Films on Low Temperature Cofired Ceramic (LTCC)

    SciTech Connect (OSTI)

    Ambrose Wolf; Ken Peterson; Matt O'Keefe; Wayne Huebner; Bill Kuhn

    2012-04-19

    Thin film multilayers have previously been introduced on multilayer low temperature cofired ceramic (LTCC), as well as initial thin film capacitors on LTCC. The ruggedness of a multipurpose Ti-Cu-Pt-Au stack for connectivity and RF conductivity has continued to benefit fabrication and reliability in state of-the-art modules, while the capacitors have followed the traditional Metal-Insulator-Metal (MIM) style. The full integration of thin film passives with thin film connectivity traces is presented. Certain passives, such as capacitors, require specifically tailored and separately patterned thin film (multi-)layers, including a dielectric. Different capacitance values are achieved by variation of both the insulator layer thickness and the active area of the capacitor. Other passives, such as filters, require only the conductor - a single thin film multilayer. This can be patterned from the same connectivity thin film material (Ti-Cu-Pt-Au), or a specially tailored thin film material (e.g. Ti-Cu-Au) can be deposited. Both versions are described, including process and integration details. Examples are discussed, ranging from patterning for maximum tolerances, to space and performance-optimized designs. Cross-sectional issues associated with integration are also highlighted in the discussion.

  7. Apparatus and process for deposition of hard carbon films

    DOE Patents [OSTI]

    Nyaiesh, Ali R. (Menlo Park, CA); Garwin, Edward L. (Los Altos, CA)

    1989-01-01

    A process and an apparatus for depositing thin, amorphous carbon films having extreme hardness on a substrate is described. An enclosed chamber maintained at less than atmospheric pressure houses the substrate and plasma producing elements. A first electrode is comprised of a cavity enclosed within an RF coil which excites the plasma. A substrate located on a second electrode is excited by radio frequency power applied to the substrate. A magnetic field confines the plasma produced by the first electrode to the area away from the walls of the chamber and focuses the plasma onto the substrate thereby yielding film deposits having higher purity and having more rapid buildup than other methods of the prior art.

  8. MultiLayer solid electrolyte for lithium thin film batteries

    DOE Patents [OSTI]

    Lee, Se -Hee; Tracy, C. Edwin; Pitts, John Roland; Liu, Ping

    2015-07-28

    A lithium metal thin-film battery composite structure is provided that includes a combination of a thin, stable, solid electrolyte layer [18] such as Lipon, designed in use to be in contact with a lithium metal anode layer; and a rapid-deposit solid electrolyte layer [16] such as LiAlF.sub.4 in contact with the thin, stable, solid electrolyte layer [18]. Batteries made up of or containing these structures are more efficient to produce than other lithium metal batteries that use only a single solid electrolyte. They are also more resistant to stress and strain than batteries made using layers of only the stable, solid electrolyte materials. Furthermore, lithium anode batteries as disclosed herein are useful as rechargeable batteries.

  9. Low Cost Fabrication of Thin-Film Ceramic Membranes for Nonshrinking

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Substrates - Energy Innovation Portal Low Cost Fabrication of Thin-Film Ceramic Membranes for Nonshrinking Substrates Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryCertain fuel cell manufacturing specifications require deposition of a thin ceramic membrane onto a substrate that doesn't shrink over it's lifetime. Pre-firing the substrate improves substrate reliability and may lower its cost. This requires a film that has minimal volume

  10. Characteristics of conductive SrRuO{sub 3} thin films with different microstructures

    SciTech Connect (OSTI)

    Jia, Q.X.; Chu, F.; Adams, C.D.; Wu, X.D.; Hawley, M.; Cho, J.H.; Findikoglu, A.T.; Foltyn, S.R.; Smith, J.L.; Mitchell, T.E.

    1996-09-01

    Conductive SrRuO{sub 3} thin films were epitaxially grown on (100) LaAlO{sub 3} substrates by pulsed laser deposition over a temperature range from 650{degree}C to 825{degree}C. Well-textured films exhibiting a strong orientation relationship to the underlying substrate could be obtained at a deposition temperature as low as 450{degree}C. The degree of crystallinity of the films improved with increasing deposition temperature as confirmed by x-ray diffraction, transmission electron microscopy, and scanning tunneling microscopy. Scanning electron microscopy revealed no particulates on the film surface. The resistivity of the SrRuO{sub 3} thin films was found to be a strong function of the crystallinity of the film and hence the substrate temperature during film deposition. A residual resistivity ratio (RRR={rho}{sub 300K}/{rho}{sub 4.2K}) of more than 8 was obtained for the SrRuO{sub 3} thin films deposited under optimized processing conditions. {copyright} {ital 1996 Materials Research Society.}

  11. Thin palladium films on silicon and titanium

    SciTech Connect (OSTI)

    Harris, L.A.

    1982-12-01

    Films of Pd from 20 to 160A thick were deposited on sputter-etched Si and on Ti films of Si and then tested electrochemically in 0.5M H/sub 2/SO/sub 4/. The behavior characteristic of Pd metal was lost with prolonged storage or with extended electrochemical cycling. The thinner films produced oxidation and reduction peaks in the voltammograms similar to the hydrogen peaks observed with Pt. Hydrogen sorption measured from voltammograms at different sweep rates and by pulse measurements indicates a definite diffusion component that begins to limit hydrogen sorption for P films thicker than about 80A. Shifts of the oxygen reduction peak indicate an increase in oxygen bonding strength as the films are made thinner.

  12. Spectroscopic ellipsometry characterization of thin-film silicon nitride

    SciTech Connect (OSTI)

    Jellison, G.E. Jr.; Modine, F.A.; Doshi, P.; Rohatgi, A.

    1997-05-01

    We have measured and analyzed the optical characteristics of a series of silicon nitride thin films prepared by plasma-enhanced chemical vapor deposition on silicon substrates for photovoltaic applications. Spectroscopic ellipsometry measurements were made by using a two-channel spectroscopic polarization modulator ellipsometer that measures N, S, and C data simultaneously. The data were fit to a model consisting of air / roughness / SiN / crystalline silicon. The roughness was modeled using the Bruggeman effective medium approximation, assuming 50% SiN, 50% voids. The optical functions of the SiN film were parameterized using a model by Jellison and Modine. All the {Chi}{sup 2} are near 1, demonstrating that this model works extremely well for all SiN films. The measured dielectric functions were used to make optimized SiN antireflection coatings for crystalline silicon solar cells.

  13. Long-laser-pulse method of producing thin films

    DOE Patents [OSTI]

    Balooch, Mehdi (Berkeley, CA); Olander, Donald K. (Berkeley, CA); Russo, Richard E. (Walnut Creek, CA)

    1991-01-01

    A method of depositing thin films by means of laser vaporization employs a long-pulse laser (Nd-glass of about one millisecond duration) with a peak power density typically in the range 10.sup.5 -10.sup.6 W/cm.sup.2. The method may be used to produce high T.sub.c superconducting films of perovskite material. In one embodiment, a few hundred nanometers thick film of YBa.sub.2 Cu.sub.3 O.sub.7-x is produced on a SrTiO.sub.3 crystal substrate in one or two pulses. In situ-recrystallization and post-annealing, both at elevated temperature and in the presence of an oxidizing agen The invention described herein arose in the course of, or under, Contract No. DE-C03-76SF0098 between the United States Department of Energy and the University of California.

  14. Effects of Ar plasma treatment for deposition of ruthenium film by remote plasma atomic layer deposition

    SciTech Connect (OSTI)

    Park, Taeyong; Lee, Jaesang; Park, Jingyu; Jeon, Heeyoung; Jeon, Hyeongtag; Lee, Ki-Hoon; Cho, Byung-Chul; Kim, Moo-Sung; Ahn, Heui-Bok

    2012-01-15

    Ruthenium thin films were deposited on argon plasma-treated SiO{sub 2} and untreated SiO{sub 2} substrates by remote plasma atomic layer deposition using bis(ethylcyclopentadienyl)ruthenium [Ru(EtCp){sub 2}] as a Ru precursor and ammonia plasma as a reactant. The results of in situ Auger electron spectroscopy (AES) analysis indicate that the initial transient region of Ru deposition was decreased by Ar plasma treatment at 400 deg. C, but did not change significantly at 300 deg. C The deposition rate exhibited linearity after continuous film formation and the deposition rates were about 1.7 A/cycle and 0.4 A/cycle at 400 deg. C and 300 deg. C, respectively. Changes of surface energy and polar and dispersive components were measured by the sessile drop test. The quantity of surface amine groups was measured from the surface nitrogen concentration with AES. Furthermore, the Ar plasma-treated SiO{sub 2} contained more amine groups and less hydroxyl groups on the surface than on untreated SiO{sub 2}. Auger spectra exhibited chemical shifts by Ru-O bonding, and larger shifts were observed on untreated substrates due to the strong adhesion of Ru films.

  15. NREL: Photovoltaics Research - Thin Film Photovoltaic Partnership Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thin Film Photovoltaic Partnership Project NREL's Thin Film Photovoltaic (PV) Partnership Project led R&D on emerging thin-film solar technologies in the United States from 1994 to 2009. The project made many advances in thin-film PV technologies that allowed the United States to attain world leadership in this area of solar technology. Three national R&D teams focused on thin-film semiconductor materials: amorphous silicon (a-Si), cadmium telluride (CdTe), and copper indium gallium

  16. Influence of sputtering power on the optical properties of ITO thin films

    SciTech Connect (OSTI)

    K, Aijo John; M, Deepak T, Manju; Kumar, Vineetha V.

    2014-10-15

    Tin doped indium oxide films are widely used in transparent conducting coatings such as flat panel displays, crystal displays and in optical devices such as solar cells and organic light emitting diodes due to the high electrical resistivity and optical transparency in the visible region of solar spectrum. The deposition parameters have a commendable influence on the optical and electrical properties of the thin films. In this study, ITO thin films were prepared by RF magnetron sputtering. The properties of the films prepared under varying sputtering power were compared using UV- visible spectrophotometry. Effect of sputtering power on the energy band gap, absorption coefficient and refractive index are investigated.

  17. Thin film heterojunction photovoltaic cells and methods of making the same

    DOE Patents [OSTI]

    Basol, Bulent M. (Los Angeles, CA); Tseng, Eric S. (Los Angeles, CA); Rod, Robert L. (Los Angeles, CA)

    1983-06-14

    A method of fabricating a thin film heterojunction photovoltaic cell which comprises depositing a film of a near intrinsic or n-type semiconductor compound formed of at least one of the metal elements of Class II B of the Periodic Table of Elements and at least tellurium and then heating said film at a temperature between about 250.degree. C. and 500.degree. C. for a time sufficient to convert said film to a suitably low resistivity p-type semiconductor compound. Such film may be deposited initially on the surface of an n-type semiconductor substrate. Alternatively, there may be deposited on the converted film a layer of n-type semiconductor compound different from the film semiconductor compound. The resulting photovoltaic cell exhibits a substantially increased power output over similar cells not subjected to the method of the present invention.

  18. Structural and optical properties of DC reactive magnetron sputtered zinc aluminum oxide thin films

    SciTech Connect (OSTI)

    Kumar, B. Rajesh; Rao, T. Subba

    2014-10-15

    Highly transparent conductive Zinc Aluminum Oxide (ZAO) thin films have been deposited on glass substrates using DC reactive magnetron sputtering method. The thin films were deposited at 200 C and post-deposition annealing from 15 to 90 min. XRD patterns of ZAO films exhibit only (0 0 2) diffraction peak, indicating that they have c-axis preferred orientation perpendicular to the substrate. Scanning electron microscopy (SEM) is used to study the surface morphology of the films. The grain size obtained from SEM images of ZAO thin films are found to be in the range of 20 - 26 nm. The minimum resistivity of 1.74 10{sup ?4} ? cm and an average transmittance of 92% are obtained for the thin film post annealed for 30 min. The optical band gap of ZAO thin films increased from 3.49 to 3.60 eV with the increase of annealing time due to Burstein-Moss effect. The optical constants refractive index (n) and extinction coefficient (k) were also determined from the optical transmission spectra.

  19. Precursors for the polymer-assisted deposition of films (Patent...

    Office of Scientific and Technical Information (OSTI)

    A polymer assisted deposition process for deposition of metal oxide films is presented. The process includes solutions of one or more metal precursor and soluble polymers having ...

  20. Thin-Film Solar Cell Fabricated on a Flexible Metallic Substrate

    DOE Patents [OSTI]

    Tuttle, J. R.; Noufi, R.; Hasoon, F. S.

    2006-05-30

    A thin-film solar cell (10) is provided. The thin-film solar cell (10) comprises a flexible metallic substrate (12) having a first surface and a second surface. A back metal contact layer (16) is deposited on the first surface of the flexible metallic substrate (12). A semiconductor absorber layer (14) is deposited on the back metal contact. A photoactive film deposited on the semiconductor absorber layer (14) forms a heterojunction structure and a grid contact (24) deposited on the heterjunction structure. The flexible metal substrate (12) can be constructed of either aluminium or stainless steel. Furthermore, a method of constructing a solar cell is provided. The method comprises providing an aluminum substrate (12), depositing a semiconductor absorber layer (14) on the aluminum substrate (12), and insulating the aluminum substrate (12) from the semiconductor absorber layer (14) to inhibit reaction between the aluminum substrate (12) and the semiconductor absorber layer (14).

  1. Thin-film solar cell fabricated on a flexible metallic substrate

    DOE Patents [OSTI]

    Tuttle, John R.; Noufi, Rommel; Hasoon, Falah S.

    2006-05-30

    A thin-film solar cell (10) is provided. The thin-film solar cell (10) comprises a flexible metallic substrate (12) having a first surface and a second surface. A back metal contact layer (16) is deposited on the first surface of the flexible metallic substrate (12). A semiconductor absorber layer (14) is deposited on the back metal contact. A photoactive film deposited on the semiconductor absorber layer (14) forms a heterojunction structure and a grid contact (24) deposited on the heterjunction structure. The flexible metal substrate (12) can be constructed of either aluminium or stainless steel. Furthermore, a method of constructing a solar cell is provided. The method comprises providing an aluminum substrate (12), depositing a semiconductor absorber layer (14) on the aluminum substrate (12), and insulating the aluminum substrate (12) from the semiconductor absorber layer (14) to inhibit reaction between the aluminum substrate (12) and the semiconductor absorber layer (14).

  2. Plasma deposited diamond-like carbon films for large neutralarrays

    SciTech Connect (OSTI)

    Brown, I.G.; Blakely, E.A.; Bjornstad, K.A.; Galvin, J.E.; Monteiro, O.R.; Sangyuenyongpipat, S.

    2004-07-15

    To understand how large systems of neurons communicate, we need to develop methods for growing patterned networks of large numbers of neurons. We have found that diamond-like carbon thin films formed by energetic deposition from a filtered vacuum arc carbon plasma can serve as ''neuron friendly'' substrates for the growth of large neural arrays. Lithographic masks can be used to form patterns of diamond-like carbon, and regions of selective neuronal attachment can form patterned neural arrays. In the work described here, we used glass microscope slides as substrates on which diamond-like carbon was deposited. PC-12 rat neurons were then cultured on the treated substrates and cell growth monitored. Neuron growth showed excellent contrast, with prolific growth on the treated surfaces and very low growth on the untreated surfaces. Here we describe the vacuum arc plasma deposition technique employed, and summarize results demonstrating that the approach can be used to form large patterns of neurons.

  3. Electrohydrodynamic instabilities in thin liquid trilayer films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Roberts, Scott A.; Kumar, Satish

    2010-12-09

    Experiments by Dickey and Leach show that novel pillar shapes can be generated from electrohydrodynamic instabilities at the interfaces of thin polymer/polymer/air trilayer films. In this paper, we use linear stability analysis to investigate the effect of free charge and ac electric fields on the stability of trilayer systems. Our work is also motivated by our recent theoretical study which demonstrates how ac electric fields can be used to increase control over the pillar formation process in thin liquid bilayer films. For perfect dielectric films, the effect of an AC electric field can be understood by considering an equivalent DCmore » field. Leaky dielectric films yield pillar configurations that are drastically different from perfect dielectric films, and AC fields can be used to control the location of free charge within the trilayer system. This can alter the pillar instability modes and generate smaller diameter pillars when conductivities are mismatched. The results presented may be of interest for the creation of complex topographical patterns on polymer coatings and in microelectronics.« less

  4. Electrohydrodynamic instabilities in thin liquid trilayer films

    SciTech Connect (OSTI)

    Roberts, Scott A.; Kumar, Satish

    2010-01-01

    Experiments by Dickey and Leach show that novel pillar shapes can be generated from electrohydrodynamic instabilities at the interfaces of thin polymer/polymer/air trilayer films. In this paper, we use linear stability analysis to investigate the effect of free charge and ac electric fields on the stability of trilayer systems. Our work is also motivated by our recent theoretical study which demonstrates how ac electric fields can be used to increase control over the pillar formation process in thin liquid bilayer films. For perfect dielectric films, the effect of an AC electric field can be understood by considering an equivalent DC field. Leaky dielectric films yield pillar configurations that are drastically different from perfect dielectric films, and AC fields can be used to control the location of free charge within the trilayer system. This can alter the pillar instability modes and generate smaller diameter pillars when conductivities are mismatched. The results presented here may be of interest for the creation of complex topographical patterns on polymer coatings and in microelectronics.

  5. High sensitive formaldehyde graphene gas sensor modified by atomic layer deposition zinc oxide films

    SciTech Connect (OSTI)

    Mu, Haichuan; Zhang, Zhiqiang; Wang, Keke; Xie, Haifen, E-mail: hfxie@ecust.edu.cn [Department of Physics, School of Science, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China); Zhao, Xiaojing; Liu, Feng [Department of Physics, Shanghai Normal University, 100 Guilin Road, Shanghai 200234 (China)

    2014-07-21

    Zinc oxide (ZnO) thin films with various thicknesses were fabricated by Atomic Layer Deposition on Chemical Vapor Deposition grown graphene films and their response to formaldehyde has been investigated. It was found that 0.5?nm ZnO films modified graphene sensors showed high response to formaldehyde with the resistance change up to 52% at the concentration of 9 parts-per-million (ppm) at room temperature. Meanwhile, the detection limit could reach 180 parts-per-billion (ppb) and fast response of 36?s was also obtained. The high sensitivity could be attributed to the combining effect from the highly reactive, top mounted ZnO thin films, and high conductive graphene base network. The dependence of ZnO films surface morphology and its sensitivity on the ZnO films thickness was also investigated.

  6. Tailoring of absorption edge by thermal annealing in tin oxide thin films

    SciTech Connect (OSTI)

    Thakur, Anup; Gautam, Sanjeev; Kumar, Virender; Chae, K. H.; Lee, Ik-Jae; Shin, Hyun Joon

    2015-05-15

    Tin oxide (SnO{sub 2}) thin films were deposited by radio-frequency (RF) magnetron sputtering on silicon and glass substrates in different oxygen-to-argon gas-flow ratio (O{sub 2}-to-Ar = 0%, 10%, 50%). All films were deposited at room temperature and fixed working pressures, 10 mTorr. The X-ray diffraction (XRD) measurement suggests that all films were crystalline in nature except film deposited in argon environment. Thin films were annealed in air at 200 C, 400 C and 600 C for two hours. All films were highly transparent except the film deposited only in the argon environment. It was also observed that transparency was improved with annealing due to decrease in oxygen vacancies. Atomic force microscopy (AFM), results showed that the surface of all the films were highly flat and smooth. Blue shift was observed in the absorption edge with annealing temperature. It was also observed that there was not big change in the absorption edge with annealing for films deposited in 10% and 50% oxygen-to-argon gas-flow ratio.

  7. A Sensitivity Analysis of a Thin Film Conductivity Estimation Method

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: A Sensitivity Analysis of a Thin Film Conductivity Estimation Method Citation Details In-Document Search Title: A Sensitivity Analysis of a Thin Film Conductivity Estimation Method An analysis method was developed for determining the thermal conductivity of a thin film on a substrate of known thermal properties using the flash diffusivity method. In order to determine the thermal conductivity of the film using this method, the volumetric heat

  8. Silicon Oxynitride Thin Film Barriers for PV Packaging (Poster)

    SciTech Connect (OSTI)

    del Cueto, J. A.; Glick, S. H.; Terwilliger, K. M.; Jorgensen, G. J.; Pankow, J. W.; Keyes, B. M.; Gedvilas, L. M.; Pern, F. J.

    2006-10-03

    Dielectric, adhesion-promoting, moisture barriers comprised of silicon oxynitride thin film materials (SiOxNy with various material stoichiometric compositions x,y) were applied to: 1) bare and pre-coated soda-lime silicate glass (coated with transparent conductive oxide SnO2:F and/or aluminum), and polymer substrates (polyethylene terephthalate, PET, or polyethylene napthalate, PEN); plus 2) pre- deposited photovoltaic (PV) cells and mini-modules consisting of amorphous silicon (a-Si) and copper indium gallium diselenide (CIGS) thin-film PV technologies. We used plasma enhanced chemical vapor deposition (PECVD) process with dilute silane, nitrogen, and nitrous oxide/oxygen gas mixtures in a low-power (< or = 10 milliW per cm2) RF discharge at ~ 0.2 Torr pressure, and low substrate temperatures < or = 100(degrees)C, over deposition areas ~ 1000 cm2. Barrier properties of the resulting PV cells and coated-glass packaging structures were studied with subsequent stressing in damp-heat exposure at 85(degrees)C/85% RH. Preliminary results on PV cells and coated glass indicate the palpable benefits of the barriers in mitigating moisture intrusion and degradation of the underlying structures using SiOxNy coatings with thicknesses in the range of 100-200 nm.

  9. MEMS-based thin-film fuel cells

    DOE Patents [OSTI]

    Jankowksi, Alan F.; Morse, Jeffrey D.

    2003-10-28

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  10. Thin film photovoltaic panel and method

    DOE Patents [OSTI]

    Ackerman, Bruce; Albright, Scot P.; Jordan, John F.

    1991-06-11

    A thin film photovoltaic panel includes a backcap for protecting the active components of the photovoltaic cells from adverse environmental elements. A spacing between the backcap and a top electrode layer is preferably filled with a desiccant to further reduce water vapor contamination of the environment surrounding the photovoltaic cells. The contamination of the spacing between the backcap and the cells may be further reduced by passing a selected gas through the spacing subsequent to sealing the backcap to the base of the photovoltaic panels, and once purged this spacing may be filled with an inert gas. The techniques of the present invention are preferably applied to thin film photovoltaic panels each formed from a plurality of photovoltaic cells arranged on a vitreous substrate. The stability of photovoltaic conversion efficiency remains relatively high during the life of the photovoltaic panel, and the cost of manufacturing highly efficient panels with such improved stability is significantly reduced.

  11. Multiferroic oxide thin films and heterostructures

    SciTech Connect (OSTI)

    Lu, Chengliang E-mail: Tao.Wu@kaust.edu.sa; Hu, Weijin; Wu, Tom E-mail: Tao.Wu@kaust.edu.sa; Tian, Yufeng

    2015-06-15

    Multiferroic materials promise a tantalizing perspective of novel applications in next-generation electronic, memory, and energy harvesting technologies, and at the same time they also represent a grand scientific challenge on understanding complex solid state systems with strong correlations between multiple degrees of freedom. In this review, we highlight the opportunities and obstacles in growing multiferroic thin films with chemical and structural integrity and integrating them in functional devices. Besides the magnetoelectric effect, multiferroics exhibit excellent resistant switching and photovoltaic properties, and there are plenty opportunities for them to integrate with other ferromagnetic and superconducting materials. The challenges include, but not limited, defect-related leakage in thin films, weak magnetism, and poor control on interface coupling. Although our focuses are Bi-based perovskites and rare earth manganites, the insights are also applicable to other multiferroic materials. We will also review some examples of multiferroic applications in spintronics, memory, and photovoltaic devices.

  12. Packaging material for thin film lithium batteries

    DOE Patents [OSTI]

    Bates, John B. (116 Baltimore Dr., Oak Ridge, TN 37830); Dudney, Nancy J. (11634 S. Monticello Rd., Knoxville, TN 37922); Weatherspoon, Kim A. (223 Wadsworth Pl., Oak Ridge, TN 37830)

    1996-01-01

    A thin film battery including components which are capable of reacting upon exposure to air and water vapor incorporates a packaging system which provides a barrier against the penetration of air and water vapor. The packaging system includes a protective sheath overlying and coating the battery components and can be comprised of an overlayer including metal, ceramic, a ceramic-metal combination, a parylene-metal combination, a parylene-ceramic combination or a parylene-metal-ceramic combination.

  13. Method of synthesizing a plurality of reactants and producing thin films of electro-optically active transition metal oxides

    DOE Patents [OSTI]

    Tracy, C.E.; Benson, D.K.; Ruth, M.R.

    1985-08-16

    A method of synthesizing a plurality of reactants by inducing a reaction by plasma deposition among the reactants. The plasma reaction is effective for consolidating the reactants and producing thin films of electro-optically active transition metal oxides.

  14. Supercritical fluid molecular spray film deposition and powder formation

    DOE Patents [OSTI]

    Smith, Richard D.

    1986-01-01

    Solid films are deposited, or fine powders formed, by dissolving a solid material into a supercritical fluid solution at an elevated pressure and then rapidly expanding the solution through a short orifice into a region of relatively low pressure. This produces a molecular spray which is directed against a substrate to deposit a solid thin film thereon, or discharged into a collection chamber to collect a fine powder. Upon expansion and supersonic interaction with background gases in the low pressure region, any clusters of solvent are broken up and the solvent is vaporized and pumped away. Solute concentration in the solution is varied primarily by varying solution pressure to determine, together with flow rate, the rate of deposition and to control in part whether a film or powder is produced and the granularity of each. Solvent clustering and solute nucleation are controlled by manipulating the rate of expansion of the solution and the pressure of the lower pressure region. Solution and low pressure region temperatures are also controlled.

  15. Low temperature photochemical vapor deposition of alloy and mixed metal oxide films

    DOE Patents [OSTI]

    Liu, D.K.

    1992-12-15

    Method and apparatus are described for formation of an alloy thin film, or a mixed metal oxide thin film, on a substrate at relatively low temperatures. Precursor vapor(s) containing the desired thin film constituents is positioned adjacent to the substrate and irradiated by light having wavelengths in a selected wavelength range, to dissociate the gas(es) and provide atoms or molecules containing only the desired constituents. These gases then deposit at relatively low temperatures as a thin film on the substrate. The precursor vapor(s) is formed by vaporization of one or more precursor materials, where the vaporization temperature(s) is selected to control the ratio of concentration of metals present in the precursor vapor(s) and/or the total precursor vapor pressure. 7 figs.

  16. Low temperature photochemical vapor deposition of alloy and mixed metal oxide films

    DOE Patents [OSTI]

    Liu, David K.

    1992-01-01

    Method and apparatus for formation of an alloy thin film, or a mixed metal oxide thin film, on a substrate at relatively low temperatures. Precursor vapor(s) containing the desired thin film constituents is positioned adjacent to the substrate and irradiated by light having wavelengths in a selected wavelength range, to dissociate the gas(es) and provide atoms or molecules containing only the desired constituents. These gases then deposit at relatively low temperatures as a thin film on the substrate. The precursor vapor(s) is formed by vaporization of one or more precursor materials, where the vaporization temperature(s) is selected to control the ratio of concentration of metals present in the precursor vapor(s) and/or the total precursor vapor pressure.

  17. Superconducting thin films of (100) and (111) oriented indium doped topological crystalline insulator SnTe

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Si, W.; Zhang, C.; Wu, L.; Ozaki, T.; Gu, G.; Li, Q.

    2015-09-01

    Recent discovery of the topological crystalline insulator SnTe has triggered a search for topological superconductors, which have potential application to topological quantum computing. The present work reports on the superconducting properties of indium doped SnTe thin films. The (100) and (111) oriented thin films were epitaxially grown by pulsed-laser deposition on (100) and (111) BaF2 crystalline substrates respectively. The onset superconducting transition temperatures are about 3.8 K for (100) and 3.6 K for (111) orientations, slightly lower than that of the bulk. Magneto-resistive measurements indicate that these thin films may have upper critical fields higher than that of the bulk.more » With large surface-to-bulk ratio, superconducting indium doped SnTe thin films provide a rich platform for the study of topological superconductivity and potential device applications based on topological superconductors.« less

  18. Synthesis and characterization of titanium-alloyed hematite thin films for photoelectrochemical water splitting

    SciTech Connect (OSTI)

    Tang Houwen; Matin, M. A.; Wang, Heli; Deutsch, Todd; Al-Jassim, Mowafak; Turner, John; Yan, Yanfa

    2011-12-15

    We have synthesized pure and Ti-alloyed hematite thin films on F doped SnO{sub 2} coated glass substrates by radio frequency magnetron co-sputtering of iron oxide and titanium targets in mixed Ar/O{sub 2} and mixed N{sub 2}/O{sub 2} ambient. We found that the hematite films deposited in the N{sub 2}/O{sub 2} ambient exhibit much poorer crystallinity than the films deposited in the Ar/O{sub 2} ambient. We determined that Ti alloying leads to increased electron carrier concentration and crystallinity, and reduced bandgaps. Moreover, Ti-alloyed hematite thin films exhibited improved photoelectrochemical performance as compared with the pure hematite films: The photocurrents were enhanced and the photocurrent onset shifted to less positive potentials.

  19. Process for forming epitaxial perovskite thin film layers using halide precursors

    DOE Patents [OSTI]

    Clem, Paul G. (Albuquerque, NM); Rodriguez, Mark A. (Albuquerque, NM); Voigt, James A. (Corrales, NM); Ashley, Carol S. (Albuquerque, NM)

    2001-01-01

    A process for forming an epitaxial perovskite-phase thin film on a substrate. This thin film can act as a buffer layer between a Ni substrate and a YBa.sub.2 Cu.sub.3 O.sub.7-x superconductor layer. The process utilizes alkali or alkaline metal acetates dissolved in halogenated organic acid along with titanium isopropoxide to dip or spin-coat the substrate which is then heated to about 700.degree. C. in an inert gas atmosphere to form the epitaxial film on the substrate. The YBCO superconductor can then be deposited on the layer formed by this invention.

  20. Frequency dispersion of nonlinear response of thin superconducting films in

    Office of Scientific and Technical Information (OSTI)

    the Berezinskii-Kosterlitz-Thouless state (Journal Article) | SciTech Connect Journal Article: Frequency dispersion of nonlinear response of thin superconducting films in the Berezinskii-Kosterlitz-Thouless state Citation Details In-Document Search Title: Frequency dispersion of nonlinear response of thin superconducting films in the Berezinskii-Kosterlitz-Thouless state The effects of microwave radiation on transport properties of atomically thin La2-xSrxCuO₄ films were studied in the

  1. Orientational Analysis of Molecules in Thin Films | Stanford Synchrotron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Lightsource Orientational Analysis of Molecules in Thin Films Monday, September 17, 2012 - 10:00am SSRL Bldg. 137, room 226 Daniel Kaefer The synchrotron-based X-ray absorption spectroscopy is a very powerful tool to unravel the orientation of organic molecules on surfaces or in thin films. This information on the alignment of - most often - highly anisotropic molecules can become crucial if an epitaxial or even crystalline organic growth is desired, if such thin film should serve

  2. Frequency dispersion of nonlinear response of thin superconducting films in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Berezinskii-Kosterlitz-Thouless state (Journal Article) | SciTech Connect Journal Article: Frequency dispersion of nonlinear response of thin superconducting films in the Berezinskii-Kosterlitz-Thouless state Citation Details In-Document Search Title: Frequency dispersion of nonlinear response of thin superconducting films in the Berezinskii-Kosterlitz-Thouless state The effects of microwave radiation on transport properties of atomically thin La2-xSrxCuO₄ films were studied in the

  3. Frequency dispersion of nonlinear response of thin superconducting films in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Berezinskii-Kosterlitz-Thouless state (Journal Article) | DOE PAGES Frequency dispersion of nonlinear response of thin superconducting films in the Berezinskii-Kosterlitz-Thouless state Title: Frequency dispersion of nonlinear response of thin superconducting films in the Berezinskii-Kosterlitz-Thouless state The effects of microwave radiation on transport properties of atomically thin La2-xSrxCuO₄ films were studied in the 0.1-20 GHz frequency range. Resistance changes induced by

  4. Overview and Challenges of Thin Film Solar Electric Technologies

    SciTech Connect (OSTI)

    Ullal, H. S.

    2008-12-01

    In this paper, we report on the significant progress made worldwide by thin-film solar cells, namely, amorphous silicon (a-Si), cadmium telluride (CdTe), and copper indium gallium diselenide (CIGS). Thin-film photovoltaic (PV) technology status is also discussed in detail. In addition, R&D and technology challenges in all three areas are elucidated. The worldwide estimated projection for thin-film PV technology production capacity announcements are estimated at more than 5000 MW by 2010.

  5. Thin film polycrystalline silicon: Promise and problems in displays and solar cells

    SciTech Connect (OSTI)

    Fonash, S.J.

    1995-08-01

    Thin film polycrystalline Si (poly-Si) with its carrier mobilities, potentially good stability, low intragrain defect density, compatibility with silicon processing, and ease of doping activation is an interesting material for {open_quotes}macroelectronics{close_quotes} applications such as TFTs for displays and solar cells. The poly-Si films needed for these applications can be ultra-thin-in the 500{Angstrom} to 1000{Angstrom} thickness range for flat panel display TFTs and in the 4{mu}m to 10{mu}m thickness range for solar cells. Because the films needed for these microelectronics applications can be so thin, an effective approach to producing the films is that of crystallizing a-Si precursor material. Unlike cast materials, poly-Si films made this way can be produced using low temperature processing. Unlike deposited poly-Si films, these crystallized poly-Si films can have grain widths that are much larger than the film thickness and almost atomically smooth surfaces. This thin film poly-Si crystallized from a-Si precursor films, and its promise and problems for TFTs and solar cells, is the focus of this discussion.

  6. Guided Self-Assembly of Gold Thin Films

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Berkeley Lab and UC Berkeley scientists have made progress toward this goal, successfully directing the self--assembly of nanoparticles into device-ready thin films, which have...

  7. Utility-scale flat-plate thin film photovoltaics

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The thin-film photovoltaics section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  8. Fast lithium-ion conducting thin film electrolytes integrated...

    Office of Scientific and Technical Information (OSTI)

    Fast lithium-ion conducting thin film electrolytes integrated directly on flexible substrates for high power solid-state batteries. Citation Details In-Document Search Title: Fast ...

  9. Photovoltaic Single-Crystalline, Thin-Film Cell Basics

    Broader source: Energy.gov [DOE]

    Single-crystalline thin films are made from gallium arsenide (GaAs), a compound semiconductor that is a mixture of gallium and arsenic.

  10. Tax Credits Give Thin-Film Solar a Big Boost

    Broader source: Energy.gov [DOE]

    California company will expand its capacity to make its thin-film solar panels by more than ten times, thanks to two Recovery Act tax credits.

  11. Multifunctional thin film surface (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    The multifunctional thin film has applications in bioelectronics, molecular electronics, clinical diagnostics, and chemical and biological sensing. Authors: Brozik, Susan M. ; ...

  12. Rechargeable thin-film electrochemical generator

    DOE Patents [OSTI]

    Rouillard, Roger; Domroese, Michael K.; Hoffman, Joseph A.; Lindeman, David D.; Noel, Joseph-Robert-Gaetan; Radewald, Vern E.; Ranger, Michel; Sudano, Anthony; Trice, Jennifer L.; Turgeon, Thomas A.

    2000-09-15

    An improved electrochemical generator is disclosed. The electrochemical generator includes a thin-film electrochemical cell which is maintained in a state of compression through use of an internal or an external pressure apparatus. A thermal conductor, which is connected to at least one of the positive or negative contacts of the cell, conducts current into and out of the cell and also conducts thermal energy between the cell and thermally conductive, electrically resistive material disposed on a vessel wall adjacent the conductor. The thermally conductive, electrically resistive material may include an anodized coating or a thin sheet of a plastic, mineral-based material or conductive polymer material. The thermal conductor is fabricated to include a resilient portion which expands and contracts to maintain mechanical contact between the cell and the thermally conductive material in the presence of relative movement between the cell and the wall structure. The electrochemical generator may be disposed in a hermetically sealed housing.

  13. Influence of substrate temperature and deposition rate on the structure of erbium films deposited on glass and a -C substrates

    SciTech Connect (OSTI)

    Savaloni, H.; Player, M.A.; Gu, E.; Marr, G.V. )

    1992-01-01

    The structure of erbium films of 600 nm thickness deposited onto carbon ({ital a}-C) and glass substrates at 0.55 and 2.5 nm/s deposition rates for varying substrate temperatures is investigated. The cross section and surface structures are examined by electron microscope. Energy-dispersive x-ray diffraction is utilized for the structure analysis of these films. Results are compared with the results presented in H. Savaloni, M. A. Player, E. Gu, and G. V. Marr (to be published), for erbium films on molybdenum substrates. It is found that to produce films with strong preferred orientation on glass substrates low deposition rate (0.55 nm/s) is favorable. This is opposite to erbium on molybdenum substrates. The grain size of erbium films produced at higher deposition rate is much larger than those at lower deposition rate. The structure of thin films has implications for performance of multilayer reflectors, and preferred orientation may have other applications to x-ray instrumentation.

  14. Process for making dense thin films

    DOE Patents [OSTI]

    Jacobson, Craig P.; Visco, Steven J.; DeJonghe, Lutgard C.

    2005-07-26

    Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for firing of device substrate to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.

  15. System and Method for Sealing a Vapor Deposition Source - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    costs and minimizes system downtime for cleaning Applications and Industries Thin film solar Deposition of any thin film Patents and Patent Applications ID Number Title and...

  16. Nanoscale compositional analysis of NiTi shape memory alloy films deposited by DC magnetron sputtering

    SciTech Connect (OSTI)

    Sharma, S. K.; Mohan, S.; Bysakh, S.; Kumar, A.; Kamat, S. V.

    2013-11-15

    The formation of surface oxide layer as well as compositional changes along the thickness for NiTi shape memory alloy thin films deposited by direct current magnetron sputtering at substrate temperature of 300 C in the as-deposited condition as well as in the postannealed (at 600 C) condition have been thoroughly studied by using secondary ion mass spectroscopy, x-ray photoelectron spectroscopy, and scanning transmission electron microscopy-energy dispersive x-ray spectroscopy techniques. Formation of titanium oxide (predominantly titanium dioxide) layer was observed in both as-deposited and postannealed NiTi films, although the oxide layer was much thinner (8 nm) in as-deposited condition. The depletion of Ti and enrichment of Ni below the oxide layer in postannealed films also resulted in the formation of a graded microstructure consisting of titanium oxide, Ni{sub 3}Ti, and B2 NiTi. A uniform composition of B2 NiTi was obtained in the postannealed film only below a depth of 200250 nm from the surface. Postannealed film also exhibited formation of a ternary silicide (Ni{sub x}Ti{sub y}Si) at the filmsubstrate interface, whereas no silicide was seen in the as-deposited film. The formation of silicide also caused a depletion of Ni in the film in a region ?250300 nm just above the film substrate interface.

  17. Magnetoelectric coupling of multiferroic chromium doped barium titanate thin film probed by magneto-impedance spectroscopy

    SciTech Connect (OSTI)

    Shah, Jyoti Kotnala, Ravinder K. E-mail: rkkotnala@gmail.com

    2014-04-07

    Thin film of BaTiO{sub 3} doped with 0.1 at. % Cr (Cr:BTO) has been prepared by pulsed laser deposition technique. Film was deposited on Pt/SrTiO{sub 3} substrate at 500 °C in 50 mTorr Oxygen gas pressure using KrF (298 nm) laser. Polycrystalline growth of single phase Cr:BTO thin film has been confirmed by grazing angle X-ray diffraction. Cr:BTO film exhibited remnant polarization 6.4 μC/cm{sup 2} and 0.79 MV/cm coercivity. Magnetization measurement of Cr:BTO film showed magnetic moment 12 emu/cc. Formation of weakly magnetic domains has been captured by magnetic force microscopy. Theoretical impedance equation fitted to experimental data in Cole-Cole plot for thin film in presence of transverse magnetic field resolved the increase in grain capacitance from 4.58 × 10{sup −12} to 5.4 × 10{sup −11} F. Film exhibited high value 137 mV/cm-Oe magneto-electric (ME) coupling coefficient at room temperature. The high value of ME coupling obtained can reduce the typical processing steps involved in multilayer deposition to obtain multiferrocity in thin film. Barium titanate being best ferroelectric material has been tailored to be multiferroic by non ferromagnetic element, Cr, doping in thin film form opens an avenue for more stable and reliable spintronic material for low power magnetoelectric random excess memory applications.

  18. Processing and modeling issues for thin-film solar cell devices. Final report

    SciTech Connect (OSTI)

    Birkmire, R.W.; Phillips, J.E.

    1997-11-01

    During the third phase of the subcontract, IEC researchers have continued to provide the thin film PV community with greater depth of understanding and insight into a wide variety of issues including: the deposition and characterization of CuIn{sub 1-x}Ga{sub x}Se{sub 2}, a-Si, CdTe, CdS, and TCO thin films; the relationships between film and device properties; and the processing and analysis of thin film PV devices. This has been achieved through the systematic investigation of all aspects of film and device production and through the analysis and quantification of the reaction chemistries involved in thin film deposition. This methodology has led to controlled fabrications of 15% efficient CuIn{sub 1-x}Ga{sub x}Se{sub 2} solar cells over a wide range of Ga compositions, improved process control of the fabrication of 10% efficient a-Si solar cells, and reliable and generally applicable procedures for both contacting and doping films. Additional accomplishments are listed below.

  19. Method for continuous control of composition and doping of pulsed laser deposited films by pressure control

    DOE Patents [OSTI]

    Lowndes, Douglas H. (Knoxville, TN); McCamy, James W. (Knoxville, TN)

    1996-01-01

    A method for growing a deposit upon a substrate of semiconductor material involves the utilization of pulsed laser deposition techniques within a low-pressure gas environment. The substrate and a target of a first material are positioned within a deposition chamber and a low-pressure gas atmosphere is developed within the chamber. The substrate is then heated, and the target is irradiated, so that atoms of the target material are ablated from the remainder of the target, while atoms of the gas simultaneously are adsorbed on the substrate/film surface. The ablated atoms build up upon the substrate, together with the adsorbed gas atoms to form the thin-film deposit on the substrate. By controlling the pressure of the gas of the chamber atmosphere, the composition of the formed deposit can be controlled, and films of continuously variable composition or doping can be grown from a single target of fixed composition.

  20. Method for continuous control of composition and doping of pulsed laser deposited films

    DOE Patents [OSTI]

    Lowndes, Douglas H. (Knoxville, TN); McCamy, James W. (Knoxville, TN)

    1995-01-01

    A method for growing a deposit upon a substrate of semiconductor material involves the utilization of pulsed laser deposition techniques within a low-pressure gas environment. The substrate and a target of a first material are positioned within a deposition chamber and a low-pressure gas atmosphere is developed within the chamber. The substrate is then heated, and the target is irradiated, so that atoms of the target material are ablated from the remainder of the target, while atoms of the gas simultaneously are adsorbed on the substrate/film surface. The ablated atoms build up upon the substrate, together with the adsorbed gas atoms to form the thin-film deposit on the substrate. By controlling the pressure of the gas of the chamber atmosphere, the composition of the formed deposit can be controlled, and films of continuously variable composition or doping can be grown from a single target of fixed composition.

  1. Rechargeable thin-film lithium batteries

    SciTech Connect (OSTI)

    Bates, J.B.; Gruzalski, G.R.; Dudney, N.J.; Luck, C.F.; Yu, X.

    1993-09-01

    Rechargeable thin-film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have been fabricated and characterized. These include Li-TiS{sub 2}, Li-V{sub 2}O{sub 5}, and Li-Li{sub x}Mn{sub 2}O{sub 4} cells with open circuit voltages at full charge of about 2.5 V, 3.7 V, and 4.2 V, respectively. The realization of these robust cells, which can be cycled thousands of times, was possible because of the stability of the amorphous lithium electrolyte, lithium phosphorus oxynitride. This material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46}and a conductivity at 25 C of 2 {mu}S/cm. The thin-film cells have been cycled at 100% depth of discharge using current densities of 5 to 100 {mu}A/cm{sup 2}. Over most of the charge-discharge range, the internal resistance appears to be dominated by the cathode, and the major source of the resistance is the diffusion of Li{sup +} ions from the electrolyte into the cathode. Chemical diffusion coefficients were determined from ac impedance measurements.

  2. Electro-deposition of superconductor oxide films

    DOE Patents [OSTI]

    Bhattacharya, Raghu N. (Littleton, CO)

    2001-01-01

    Methods for preparing high quality superconducting oxide precursors which are well suited for further oxidation and annealing to form superconducting oxide films. The method comprises forming a multilayered superconducting precursor on a substrate by providing an electrodeposition bath comprising an electrolyte medium and a substrate electrode, and providing to the bath a plurality of precursor metal salts which are capable of exhibiting superconducting properties upon subsequent treatment. The superconducting precursor is then formed by electrodepositing a first electrodeposited (ED) layer onto the substrate electrode, followed by depositing a layer of silver onto the first electrodeposited (ED) layer, and then electrodepositing a second electrodeposited (ED) layer onto the Ag layer. The multilayered superconducting precursor is suitable for oxidation at a sufficient annealing temperature in air or an oxygen-containing atmosphere to form a crystalline superconducting oxide film.

  3. The Morphology and Microstructure of Thin-Film GaAs on Mo Substrates

    SciTech Connect (OSTI)

    Jones, K. M.; Al-Jassim, M. M.; Hasoon, F. S.; Venkatasubramanian, R.

    1999-04-26

    The growth of GaAs thin films on Molybdenum foils was investigated in an attempt to find a low-cost substrate for GaAs. The films were grown by metalorganic chemical vapor deposition (MOCVD). The film thickness was in the 2-4{micro}m range, while the deposition temperature was in the 650-825 C range. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to investigate the film morphology and microstructure, respectively. The film morphology in general, and the grain size in particular, were found to be strongly dependent on the growth temperature. However, the defect structure observed in these films was relatively insensitive to the growth conditions.

  4. Conductive atomic force microscopy study of local electronic transport in ZnTe thin films

    SciTech Connect (OSTI)

    Kshirsagar, Sachin D.; Krishna, M. Ghanashyam; Tewari, Surya P.

    2013-02-05

    ZnTe thin films obtained by the electron beam evaporation technique were subjected to thermal annealing at 500 Degree-Sign C for 2 hours. The as deposited films were amorphous but transformed to the crystalline state under influence of the thermal treatment. There is increase in optical absorption due to the heat treatment caused by increase in free carrier concentration. Conductive atomic force microscopy shows the presence of electronic inhomogeneities in the films. This is attributed to local compositional variations in the films. I-V analysis in these systems indicates formation of Schottky junction at the metal semiconductor (M-S) interface.

  5. Boulder damage symposium annual thin film laser damage competition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stolz, Christopher J.

    2012-11-28

    Optical instruments and laser systems are often fluence-limited by multilayer thin films deposited on the optical surfaces. When comparing publications within the laser damage literature, there can be confusing and conflicting laser damage results. This is due to differences in testing protocols between research groups studying very different applications. In this series of competitions, samples from multiple vendors are compared under identical testing parameters and a single testing service. Unlike a typical study where a hypothesis is tested within a well-controlled experiment with isolated variables, this competition isolates the laser damage testing variables so that trends can be observed betweenmore » different deposition processes, coating materials, cleaning techniques, and multiple coating suppliers. The resulting series of damage competitions has also been designed to observe general trends of damage morphologies and mechanisms over a wide range of coating types (high reflector and antireflector), wavelengths (193 to 1064 nm), and pulse lengths (180 fs to 13 ns). A double blind test assured sample and submitter anonymity were used in each of the competitions so only a summary of the deposition process, coating materials, layer count and spectral results are presented. Laser resistance was strongly affected by substrate cleaning, coating deposition method, and coating material selection whereas layer count and spectral properties had minimal impact.« less

  6. Influence of nanostructure on charge transport in RuO{sub 2} thin films

    SciTech Connect (OSTI)

    Steeves, M. M.; Lad, R. J.

    2010-07-15

    Polycrystalline thin films of RuO{sub 2} were grown on fused-quartz substrates and a parametric study was carried out to probe the influence of film nanostructure on the four-point Van der Pauw resistivity and Hall coefficient. The films were grown via reactive rf magnetron sputtering of a Ru target in an Ar/O{sub 2} plasma using deposition rates from 0.27 to 3.5 A/s and substrate temperatures from 16 to 500 deg. C Room-temperature resistivities of the RuO{sub 2} films ranged from 58 to 360 {mu}{Omega} cm. Upon first heating following deposition, some films showed decreasing resistivity with increasing temperature, but the resistivities also decreased upon subsequent cooling suggesting that the annealing treatment reduces the film defect density. The temperature coefficient of resistance was found to be small (<0.001 K{sup -1}) in agreement with previous investigations. Hall coefficient measurements of the polycrystalline thin films demonstrated that either n-type or p-type majority carriers can be present depending on deposition conditions and the resulting nanostructure, in contrast to single-crystal RuO{sub 2}, which is an n-type metal. Grain size and homogeneous strain within the films were measured by x-ray diffraction and are correlated to the majority carrier type.

  7. Buffer layer for thin film structures (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Buffer layer for thin film structures Citation Details In-Document Search Title: Buffer layer for thin film structures You are accessing a document from the Department of...

  8. Effect of current injection into thin-film Josephson junctions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kogan, V. G.; Mints, R. G.

    2014-11-11

    New thin-film Josephson junctions have recently been tested in which the current injected into one of the junction banks governs Josephson phenomena. One thus can continuously manage the phase distribution at the junction by changing the injected current. Our method of calculating the distribution of injected currents is also proposed for a half-infinite thin-film strip with source-sink points at arbitrary positions at the film edges. The strip width W is assumed small relative to Λ=2λ2/d;λ is the bulk London penetration depth of the film material and d is the film thickness.

  9. Real time intelligent process control system for thin film solar cell manufacturing

    SciTech Connect (OSTI)

    George Atanasoff

    2010-10-29

    This project addresses the problem of lower solar conversion efficiency and waste in the typical solar cell manufacturing process. The work from the proposed development will lead toward developing a system which should be able to increase solar panel conversion efficiency by an additional 12-15% resulting in lower cost panels, increased solar technology adoption, reduced carbon emissions and reduced dependency on foreign oil. All solar cell manufacturing processes today suffer from manufacturing inefficiencies that currently lead to lower product quality and lower conversion efficiency, increased product cost and greater material and energy consumption. This results in slower solar energy adoption and extends the time solar cells will reach grid parity with traditional energy sources. The thin film solar panel manufacturers struggle on a daily basis with the problem of thin film thickness non-uniformity and other parameters variances over the deposited substrates, which significantly degrade their manufacturing yield and quality. Optical monitoring of the thin films during the process of the film deposition is widely perceived as a necessary step towards resolving the non-uniformity and non-homogeneity problem. In order to enable the development of an optical control system for solar cell manufacturing, a new type of low cost optical sensor is needed, able to acquire local information about the panel under deposition and measure its local characteristics, including the light scattering in very close proximity to the surface of the film. This information cannot be obtained by monitoring from outside the deposition chamber (as traditional monitoring systems do) due to the significant signal attenuation and loss of its scattering component before the reflected beam reaches the detector. In addition, it would be too costly to install traditional external in-situ monitoring systems to perform any real-time monitoring over large solar panels, since it would require significant equipment refurbishing needed for installation of multiple separate ellipsometric systems, and development of customized software to control all of them simultaneously. The proposed optical monitoring system comprises AccuStratas fiber optics sensors installed inside the thin film deposition equipment, a hardware module of different components (beyond the scope of this project) and our software program with iterative predicting capability able to control material bandgap and surface roughness as films are deposited. Our miniature fiber optics monitoring sensors are installed inside the vacuum chamber compartments in very close proximity where the independent layers are deposited (an option patented by us in 2003). The optical monitoring system measures two of the most important parameters of the photovoltaic thin films during deposition on a moving solar panel - material bandgap and surface roughness. In this program each sensor array consists of two fiber optics sensors monitoring two independent areas of the panel under deposition. Based on the monitored parameters and their change in time and from position to position on the panel, the system is able to provide to the equipment operator immediate information about the thin films as they are deposited. This DoE Supply Chain program is considered the first step towards the development of intelligent optical control system capable of dynamically adjusting the manufacturing process on-the-fly in order to achieve better performance. The proposed system will improve the thin film solar cell manufacturing by improving the quality of the individual solar cells and will allow for the manufacturing of more consistent and uniform products resulting in higher solar conversion efficiency and manufacturing yield. It will have a significant impact on the multibillion-dollar thin film solar market. We estimate that the financial impact of these improvements if adopted by only 10% of the industry ($7.7 Billion) would result in about $1.5 Billion in savings by 2015 (at the assumed 20% improvement). This can b

  10. Origin of superstructures in (double) perovskite thin films

    SciTech Connect (OSTI)

    Shabadi, V. Major, M.; Komissinskiy, P.; Vafaee, M.; Radetinac, A.; Baghaie Yazdi, M.; Donner, W.; Alff, L.

    2014-09-21

    We have investigated the origin of superstructure peaks as observed by X-ray diffraction of multiferroic Bi(Fe{sub 0.5}Cr{sub 0.5})O{sub 3} thin films grown by pulsed laser deposition on single crystal SrTiO{sub 3} substrates. The photon energy dependence of the contrast between the atomic scattering factors of Fe and Cr is used to rule out a chemically ordered double perovskite Bi{sub 2}FeCrO{sub 6} (BFCO). Structural calculations suggest that the experimentally observed superstructure occurs due to unequal cation displacements along the pseudo-cubic [111] direction that mimic the unit cell of the chemically ordered compound. This result helps to clarify discrepancies in the correlations of structural and magnetic order reported for Bi{sub 2}FeCrO{sub 6}. The observation of a superstructure in itself is not a sufficient proof of chemical order in double perovskites.

  11. Synthesis and characterization of SnO{sub 2} thin films doped with Fe to 10%

    SciTech Connect (OSTI)

    Lpez, E.; Marn, J.; Osorio, J.

    2014-05-15

    Appropriate conditions for SnO{sub 2} powder synthesis doped with iron to 10% by using sol-gel route are found. The powders obtained have been analyzed by means of analytic spectroscopic techniques: Raman, Mssbauer, diffuse reflectance, Fourier transform infrared, and X-ray diffraction. Sn{sub 0.9}Fe{sub 0.1}O{sub 2} thin films deposited by AC magnetron sputtering on silicon substrates are obtained and characterized. A crystal structure rutile-type was found for thin films.

  12. Process for obtaining multiple sheet resistances for thin film hybrid microcircuit resistors

    DOE Patents [OSTI]

    Norwood, David P.

    1989-01-01

    A standard thin film circuit containing Ta.sub.2 N (100 ohms/square) resirs is fabricated by depositing on a dielectric substrate successive layers of Ta.sub.2 N, Ti and Pd, with a gold layer to provide conductors. The addition of a few simple photoprocessing steps to the standeard TFN manufacturing process enables the formation of Ta.sub.2 N+Ti (10 ohms/square) and Ta.sub.2 N+Ti+Pd (1 ohm/square) resistors in the same otherwise standard thin film circuit structure.

  13. Fabrication and characterization of lithium manganese nickel oxide sputtered thin film cathodes for lithium-ion batteries

    SciTech Connect (OSTI)

    Baggetto, Loic; Unocic, Raymond R; Dudney, Nancy J; Veith, Gabriel M

    2012-01-01

    Li-rich and stoichiometric Li1Mn1.5Ni0.5O4 (LMNO) cathode films have been prepared by magnetron sputtering. Sputtering from a Li stoichiometric target yields Li-rich films composed of spinel, layered and monoclinic phases. Films obtained from a Li deficient target are mostly made of a spinel phase and little layered material. The resulting cathode thin films have good capacity retention and very high rate capability. The reaction mechanism has been investigated by XRD and HRTEM and evidences the reversible formation of a spinel phase, as is also found for the powder samples. The film geometry enables to understand the effect of coatings (ZnO or LiPON). Coating high voltage cathodes reduces the coulombic losses but at the price of rate performance. Nonetheless, these coated sputtered electrode thin films offer a higher rate capability than other LMNO thin films obtained by other physical vapor deposition techniques.

  14. Ferromagnetism of manganese-doped indium tin oxide films deposited on polyethylene naphthalate substrates

    SciTech Connect (OSTI)

    Nakamura, Toshihiro; Isozaki, Shinichi; Tanabe, Kohei; Tachibana, Kunihide

    2009-04-01

    Mn-doped indium tin oxide (ITO) films were deposited on polyethylene naphthalate (PEN) substrates using radio-frequency magnetron sputtering. The magnetic, electrical, and optical properties of the films deposited on PEN substrates were investigated by comparing with the properties of films grown on glass substrates at the same growth conditions. Thin films on PEN substrates exhibited low electrical resistivity of the order of 10{sup -4} {omega} cm and high optical transmittance between 75% and 90% in the visible region. Ferromagnetic hysteresis loops were observed at room temperature for the samples grown on PEN substrates. Mn-doped ITO films can be one of the most promising candidates of transparent ferromagnetic materials for flexible spintronic devices.

  15. Flexible Ultra Moisture Barrier Film for Thin-Film Photovoltaic Applications

    SciTech Connect (OSTI)

    David M. Dean

    2012-10-30

    Flexible Thin-film photovoltaic (TFPV) is a low cost alternative to incumbent c-Si PV products as it requires less volume of costly semiconductor materials and it can potentially reduce installation cost. Among the TFPV options, copper indium gallium diselenide (CIGS) has the highest efficiency and is believed to be one of the most attractive candidates to achieve PV cost reduction. However, CIGS cells are very moisture sensitive and require module water vapor transmission rate (WVTR) of less than 1x10-4 gram of water per square meter per day (g-H2O/m2/day). Successful development and commercialization of flexible transparent ultra moisture barrier film is the key to enable flexible CIGS TFPV products, and thus enable ultimate PV cost reduction. At DuPont, we have demonstrated at lab scale that we can successfully make polymer-based flexible transparent ultra moisture barrier film by depositing alumina on polymer films using atomic layer deposition (ALD) technology. The layer by layer ALD approach results in uniform and amorphous structure which effectively reduces pinhole density of the inorganic coating on the polymer, and thus allow the fabrication of flexible barrier film with WVTR of 10-5 g-H2O/m2/day. Currently ALD is a time-consuming process suitable only for high-value, relatively small substrates. To successfully commercialize the ALD-on-plastic technology for the PV industry, there is the need to scale up this technology and improve throughput. The goal of this contract work was to build a prototype demonstrating that the ALD technology could be scaled-up for commercial use. Unfortunately, the prototype failed to produce an ultra-barrier film by the close of the project.

  16. Microstructure factor and mechanical and electronic properties of hydrogenated amorphous and nanocrystalline silicon thin-films for microelectromechanical systems applications

    SciTech Connect (OSTI)

    Mouro, J.; Gualdino, A.; Chu, V. [Instituto de Engenharia de Sistemas e Computadores Microsistemas e Nanotecnologias (INESC-MN) and IN Institute of Nanoscience and Nanotechnology, 1000-029 Lisbon (Portugal); Conde, J. P. [Instituto de Engenharia de Sistemas e Computadores Microsistemas e Nanotecnologias (INESC-MN) and IN Institute of Nanoscience and Nanotechnology, 1000-029 Lisbon (Portugal); Department of Bioengineering, Instituto Superior Tcnico (IST), 1049-001 Lisbon (Portugal)

    2013-11-14

    Thin-film silicon allows the fabrication of MEMS devices at low processing temperatures, compatible with monolithic integration in advanced electronic circuits, on large-area, low-cost, and flexible substrates. The most relevant thin-film properties for applications as MEMS structural layers are the deposition rate, electrical conductivity, and mechanical stress. In this work, n{sup +}-type doped hydrogenated amorphous and nanocrystalline silicon thin-films were deposited by RF-PECVD, and the influence of the hydrogen dilution in the reactive mixture, the RF-power coupled to the plasma, the substrate temperature, and the deposition pressure on the structural, electrical, and mechanical properties of the films was studied. Three different types of silicon films were identified, corresponding to three internal structures: (i) porous amorphous silicon, deposited at high rates and presenting tensile mechanical stress and low electrical conductivity, (ii) dense amorphous silicon, deposited at intermediate rates and presenting compressive mechanical stress and higher values of electrical conductivity, and (iii) nanocrystalline silicon, deposited at very low rates and presenting the highest compressive mechanical stress and electrical conductivity. These results show the combinations of electromechanical material properties available in silicon thin-films and thus allow the optimized selection of a thin silicon film for a given MEMS application. Four representative silicon thin-films were chosen to be used as structural material of electrostatically actuated MEMS microresonators fabricated by surface micromachining. The effect of the mechanical stress of the structural layer was observed to have a great impact on the device resonance frequency, quality factor, and actuation force.

  17. Thin-film chip-to-substrate interconnect and methods for making same

    DOE Patents [OSTI]

    Tuckerman, D.B.

    1988-06-06

    Integrated circuit chips are electrically connected to a silicon wafer interconnection substrate. Thin film wiring is fabricated down bevelled edges of the chips. A subtractive wire fabrication method uses a series of masks and etching steps to form wires in a metal layer. An additive method direct laser writes or deposits very thin lines which can then be plated up to form wires. A quasi-additive or subtractive/additive method forms a pattern of trenches to expose a metal surface which can nucleate subsequent electrolytic deposition of wires. Low inductance interconnections on a 25 micron pitch (1600 wires on a 1 cm square chip) can be produced. The thin film hybrid interconnect eliminates solder joints or welds, and minimizes the levels of metallization. Advantages include good electrical properties, very high wiring density, excellent backside contact, compactness, and high thermal and mechanical reliability. 6 figs.

  18. Thin-film chip-to-substrate interconnect and methods for making same

    DOE Patents [OSTI]

    Tuckerman, David B. (Livermore, CA)

    1991-01-01

    Integrated circuit chips are electrically connected to a silica wafer interconnection substrate. Thin film wiring is fabricated down bevelled edges of the chips. A subtractive wire fabrication method uses a series of masks and etching steps to form wires in a metal layer. An additive method direct laser writes or deposits very thin metal lines which can then be plated up to form wires. A quasi-additive or subtractive/additive method forms a pattern of trenches to expose a metal surface which can nucleate subsequent electrolytic deposition of wires. Low inductance interconnections on a 25 micron pitch (1600 wires on a 1 cm square chip) can be produced. The thin film hybrid interconnect eliminates solder joints or welds, and minimizes the levels of metallization. Advantages include good electrical properties, very high wiring density, excellent backside contact, compactness, and high thermal and mechanical reliability.

  19. Method for making surfactant-templated thin films

    DOE Patents [OSTI]

    Brinker, C. Jeffrey (Albuquerque, NM); Lu, Yunfeng (New Orleans, LA); Fan, Hong You (Albuquerque, NM)

    2010-08-31

    An evaporation-induced self-assembly method to prepare a porous, surfactant-templated, thin film by mixing a silica sol, a solvent, a surfactant, and an interstitial compound, evaporating a portion of the solvent to form a liquid, crystalline thin film mesophase material, and then removal of the surfactant template. Coating onto a substrate produces a thin film with the interstitial compound either covalently bonded to the internal surfaces of the ordered or disordered mesostructure framework or physically entrapped within the ordered or disordered mesostructured framework. Particles can be formed by aerosol processing or spray drying rather than coating onto a substrate. The selection of the interstitial compound provides a means for developing thin films for applications including membranes, sensors, low dielectric constant films, photonic materials and optical hosts.

  20. Method for making surfactant-templated thin films

    DOE Patents [OSTI]

    Brinker, C. Jeffrey (Albuquerque, NM); Lu, Yunfeng (San Jose, CA); Fan, Hongyou (Albuquerque, NM)

    2002-01-01

    An evaporation-induced self-assembly method to prepare a porous, surfactant-templated, thin film by mixing a silica sol, a solvent, a surfactant, and an interstitial compound, evaporating a portion of the solvent to form a liquid, crystalline thin film mesophase material, and then removal of the surfactant template. Coating onto a substrate produces a thin film with the interstitial compound either covalently bonded to the internal surfaces of the ordered or disordered mesostructure framework or physically entrapped within the ordered or disordered mesostructured framework. Particles can be formed by aerosol processing or spray drying rather than coating onto a substrate. The selection of the interstitial compound provides a means for developing thin films for applications including membranes, sensors, low dielectric constant films, photonic materials and optical hosts.

  1. Epitaxial growth of highly conductive RuO{sub 2} thin films on (100) Si

    SciTech Connect (OSTI)

    Jia, Q.X.; Song, S.G.; Wu, X.D.; Cho, J.H.; Foltyn, S.R.; Findikoglu, A.T.; Smith, J.L.

    1996-02-01

    Conductive RuO{sub 2} thin films have been heteroepitaxially grown by pulsed laser deposition on Si substrates with yttria-stabilized zirconia (YSZ) buffer layers. The RuO{sub 2} thin films deposited under optimized processing conditions are {ital a}-axis oriented normal to the Si substrate surface with a high degree of in-plane alignment with the major axes of the (100) Si substrate. Cross-sectional transmission electron microscopy analysis on the RuO{sub 2}/YSZ/Si multilayer shows an atomically sharp interface between the RuO{sub 2} and the YSZ. Electrical measurements show that the crystalline RuO{sub 2} thin films are metallic over a temperature range from 4.2 to 300 K and are highly conductive with a room-temperature resistivity of 37{plus_minus}2 {mu}{Omega}cm. The residual resistance ratio ({ital R}{sub 300K}/{ital R}{sub 4.2K}) above 5 for our RuO{sub 2} thin films is the highest ever reported for such films on Si substrates. {copyright} {ital 1996 American Institute of Physics.}

  2. Buried anode lithium thin film battery and process for forming the same

    DOE Patents [OSTI]

    Lee, Se-Hee; Tracy, C. Edwin; Liu, Ping

    2004-10-19

    A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

  3. Methods of making copper selenium precursor compositions with a targeted copper selenide content and precursor compositions and thin films resulting therefrom

    DOE Patents [OSTI]

    Curtis, Calvin J.; Miedaner, Alexander; van Hest, Marinus Franciscus Antonius Maria; Ginley, David S.; Leisch, Jennifer; Taylor, Matthew; Stanbery, Billy J.

    2011-09-20

    Precursor compositions containing copper and selenium suitable for deposition on a substrate to form thin films suitable for semi-conductor applications. Methods of forming the precursor compositions using primary amine solvents and methods of forming the thin films wherein the selection of temperature and duration of heating controls the formation of a targeted species of copper selenide.

  4. The state of the art of thin-film photovoltaics

    SciTech Connect (OSTI)

    Surek, T.

    1993-10-01

    Thin-film photovoltaic technologies, based on materials such as amorphous or polycrystalline silicon, copper indium diselenide, cadmium telluride, and gallium arsenide, offer the potential for significantly reducing the cost of electricity generated by photovoltaics. The significant progress in the technologies, from the laboratory to the marketplace, is reviewed. The common concerns and questions raised about thin films are addressed. Based on the progress to date and the potential of these technologies, along with continuing investments by the private sector to commercialize the technologies, one can conclude that thin-film PV will provide a competitive alternative for large-scale power generation in the future.

  5. Influence of hydrogen and hydrogen/methane plasmas on AlN thin films

    SciTech Connect (OSTI)

    Pobedinskas, P. Hardy, A.; Van Bael, M. K.; Haenen, K.; Degutis, G.; Dexters, W.

    2014-02-24

    Polycrystalline aluminum nitride (AlN) thin films are exposed to hydrogen and hydrogen/methane plasmas at different conditions. The latter plays an indispensable role in the subsequent deposition of nanocrystalline diamond thin films on AlN. The changes of AlN properties are investigated by means of Fourier transform infrared (FTIR) and Raman spectroscopies as well as atomic force microscopy. The E{sub 1}(TO) and E{sub 2}{sup 2} phonon mode frequencies blue-shift after the exposure to plasmas. The damping constant of E{sub 1}(TO) phonon, calculated from FTIR transmission spectra using the factorized model of a damped oscillator, and the width of E{sub 2}{sup 2} peak in Raman spectra decrease with increasing substrate temperature till the decomposition of AlN thin film becomes notable. It is proven that these changes are driven by the plasmas as annealing in vacuum does not induce them.

  6. Microstructure, optical property, and electronic band structure of cuprous oxide thin films

    SciTech Connect (OSTI)

    Park, Jun-Woo; Jang, Hyungkeun; Kim, Sung; Choi, Suk-Ho; Lee, Hosun; Kang, Joongoo; Wei, Su-Huai

    2011-11-15

    Cuprous oxide (Cu{sub 2}O) thin films were grown via radio frequency sputtering deposition at various temperatures. The dielectric functions and luminescence properties of the Cu{sub 2}O thin films were measured using spectroscopic ellipsometry and photoluminescence, respectively. High-energy peaks were observed in the photoluminescence spectra. Several critical points (CPs) were found using second derivative spectra of the dielectric functions and the standard critical point model. The electronic band structure and the dielectric functions were calculated using density functional theory, and the CP energies were estimated to compare with the experimental data. We identified the high-energy photoluminescence peaks to quasi-direct transitions which arose from the granular structures of the Cu{sub 2}O thin films.

  7. Thin film electronic devices with conductive and transparent gas and moisture permeation barriers

    DOE Patents [OSTI]

    Simpson, Lin Jay

    2015-07-28

    Thin film electronic devices (or stacks integrated with a substrate) that include a permeation barrier formed of a thin layer of metal that provides a light transmitting and electrically conductive layer, wherein the electrical conductive layer is formed on a surface of the substrate or device layer such as a transparent conducting material layer with pin holes or defects caused by manufacturing and the thin layer of metal is deposited on the conductive layer and formed from a self-healing metal that forms self-terminating oxides. A permeation plug or block is formed in or adjacent to the thin film of metal at or proximate to the pin holes to block further permeation of contaminants through the pin holes.

  8. Deposition of nanostructured photocatalytic zinc ferrite films using solution precursor plasma spraying

    SciTech Connect (OSTI)

    Dom, Rekha; Sivakumar, G.; Hebalkar, Neha Y.; Joshi, Shrikant V.; Borse, Pramod H.

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Highly economic solution precursor route capable of producing films/coating even for mass scale production. Black-Right-Pointing-Pointer Pure spinel phase ZnFe{sub 2}O{sub 4} porous, immobilized films deposited in single step. Black-Right-Pointing-Pointer Parameter optimization yields access to nanostructuring in SPPS method. Black-Right-Pointing-Pointer The ecofriendly immobilized ferrite films were active under solar radiation. Black-Right-Pointing-Pointer Such magnetic system display advantage w.r.t. recyclability after photocatalyst extraction. -- Abstract: Deposition of pure spinel phase, photocatalytic zinc ferrite films on SS-304 substrates by solution precursor plasma spraying (SPPS) has been demonstrated for the first time. Deposition parameters such as precursor solution pH, concentration, film thickness, plasma power and gun-substrate distance were found to control physico-chemical properties of the film, with respect to their crystallinity, phase purity, and morphology. Alkaline precursor conditions (7 < pH {<=} 10) were found to favor oxide film formation. The nanostructured films produced under optimized conditions, with 500 mM solution at pH {approx} 8.0, yielded pure cubic phase ZnFe{sub 2}O{sub 4} film. Very high/low precursor concentrations yielded mixed phase, less adherent, and highly inhomogeneous thin films. Desired spinel phase was achieved in as-deposited condition under appropriately controlled spray conditions and exhibited a band gap of {approx}1.9 eV. The highly porous nature of the films favored its photocatalytic performance as indicated by methylene blue de-coloration under solar radiation. These immobilized films display good potential for visible light photocatalytic applications.

  9. Precursors for the polymer-assisted deposition of films

    DOE Patents [OSTI]

    McCleskey, Thomas M.; Burrell, Anthony K.; Jia, Quanxi; Lin, Yuan

    2013-09-10

    A polymer assisted deposition process for deposition of metal oxide films is presented. The process includes solutions of one or more metal precursor and soluble polymers having binding properties for the one or more metal precursor. After a coating operation, the resultant coating is heated at high temperatures to yield metal oxide films. Such films can be epitaxial in structure and can be of optical quality. The process can be organic solvent-free.

  10. Thin film with oriented cracks on a flexible substrate

    DOE Patents [OSTI]

    Feng, Bao; McGilvray, Andrew; Shi, Bo

    2010-07-27

    A thermoelectric film is disclosed. The thermoelectric film includes a substrate that is substantially electrically non-conductive and flexible and a thermoelectric material that is deposited on at least one surface of the substrate. The thermoelectric film also includes multiple cracks oriented in a predetermined direction.

  11. Reflection High-Energy Electron Diffraction Beam-Induced Structural and Property Changes on WO3 Thin Films

    SciTech Connect (OSTI)

    Du, Yingge; Zhang, Hongliang; Varga, Tamas; Chambers, Scott A.

    2014-08-08

    Reduction of transition metal oxides can greatly change their physical and chemical properties. Using deposition of WO3 as a case study, we demonstrate that reflection high-energy electron diffraction (RHEED), a surface-sensitive tool widely used to monitor thin-film deposition processes, can significantly affect the cation valence and physical properties of the films through electron-beam induced sample reduction. The RHEED beam is found to increase film smoothness during epitaxial growth of WO3, as well as change the electronic properties of the film through preferential removal of surface oxygen.

  12. Reflection high-energy electron diffraction beam-induced structural and property changes on WO{sub 3} thin films

    SciTech Connect (OSTI)

    Du, Y. Varga, T.; Zhang, K. H. L.; Chambers, S. A.

    2014-08-04

    Reduction of transition metal oxides can greatly change their physical and chemical properties. Using deposition of WO{sub 3} as a case study, we demonstrate that reflection high-energy electron diffraction (RHEED), a surface-sensitive tool widely used to monitor thin-film deposition processes, can significantly affect the cation valence and physical properties of the films through electron-beam induced sample reduction. The RHEED beam is found to increase film smoothness during epitaxial growth of WO{sub 3}, as well as change the electronic properties of the film through preferential removal of surface oxygen.

  13. Polycrystalline Thin-Film Research: Cadmium Telluride (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-06-01

    This National Center for Photovoltaics sheet describes the capabilities of its polycrystalline thin-film research in the area of cadmium telluride. The scope and core competencies and capabilities are discussed.

  14. Self-Assembling Process for Fabricating Tailored Thin Films

    ScienceCinema (OSTI)

    Sandia

    2009-09-01

    A simple, economical nanotechnology coating process that enables the development of nanoparticle thin films with architectures and properties unattainable by any other processing method. 2007 R&D 100 winner (SAND2007-1878P)

  15. Self-Assembling Process for Fabricating Tailored Thin Films

    ScienceCinema (OSTI)

    None

    2010-01-08

    A simple, economical nanotechnology coating process that enables the development of nanoparticle thin films with architectures and properties unattainable by any other processing method. 2007 R&D 100 winner (SAND2007-1878P)

  16. Overview and Challenges of Thin Film Solar Electric Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Thin Film Solar Electric Technologies H.S. Ullal Presented at the World Renewable Energy Congress X and Exhibition 2008 Glasgow, Scotland, United Kingdom July 19-25, 2008...

  17. Radiation tolerance of ultra-thin Formvar films (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Here, we study 110-nm-thin free-standing polyvinyl formal (Formvar) films irradiated at room temperature with 1-5 keV electrons or 3 MeV alpha particles. We measure mechanical ...

  18. Guided Self-Assembly of Gold Thin Films

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guided Self-Assembly of Gold Thin Films Print Nanoparticles-man-made atoms with unique optical, electrical, and mechanical properties-have become key components in many fields of...

  19. Orientational Analysis of Molecules in Thin Films | Stanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecules in Thin Films Monday, September 17, 2012 - 10:00am SSRL Bldg. 137, room 226 Daniel Kaefer The synchrotron-based X-ray absorption spectroscopy is a very powerful tool to...

  20. Sol-gel-derived Epitaxial Nanocomposite Thin Films with Large...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sol-gel-derived Epitaxial Nanocomposite Thin Films with Large Sharp Magnetoelectric Effect Home Author: B. Liu, T. Sun, J. He, V. P. Dravid Year: 2010 Abstract: Nanostructures of...

  1. Structure of Molecular Thin Films for Organic Electronics | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation Lightsource Structure of Molecular Thin Films for Organic Electronics Friday, April 6, 2012 - 1:00pm SSRL Conference Room 137-322 Bert Nickel, Physics Faculty and CeNS, Ludwig-Maximilians-University, München Thin films made out of conjugated small molecules and polymers exhibit very interesting semiconducting properties. While some applications such as light emitting diodes (OLED) are already on the market, other application such as solar cells, integrated circuits,

  2. Guided Self-Assembly of Gold Thin Films

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guided Self-Assembly of Gold Thin Films Guided Self-Assembly of Gold Thin Films Print Wednesday, 21 November 2012 12:18 Nanoparticles-man-made atoms with unique optical, electrical, and mechanical properties-have become key components in many fields of science. If nanoparticles could be coaxed into routinely assembling themselves into predictable complex structures and hierarchical patterns, devices could be mass-produced that are one thousand times smaller than today's microtechnologies.

  3. GROWTH AND ELECTROCHEMICAL CHARACTERIZATION OF CARBON NANOSPIKE THIN FILM

    Office of Scientific and Technical Information (OSTI)

    ELECTRODES (Journal Article) | SciTech Connect GROWTH AND ELECTROCHEMICAL CHARACTERIZATION OF CARBON NANOSPIKE THIN FILM ELECTRODES Citation Details In-Document Search Title: GROWTH AND ELECTROCHEMICAL CHARACTERIZATION OF CARBON NANOSPIKE THIN FILM ELECTRODES Authors: Sheridan, Leah B [1] ; Hensley, Dale K [1] ; Lavrik, Nickolay V [1] ; Smith, Sean C [1] ; Schwartz, Viviane [1] ; Liang, Chengdu [1] ; Rondinone, Adam Justin [1] + Show Author Affiliations ORNL Publication Date: 2014-01-01 OSTI

  4. Macrophase Separation of Blends of Diblock Copolymers in Thin Films

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Macrophase Separation of Blends of Diblock Copolymers in Thin Films Citation Details In-Document Search Title: Macrophase Separation of Blends of Diblock Copolymers in Thin Films Authors: Williamson, Lance D. ; Nealey, Paul F. [1] + Show Author Affiliations (UC) Publication Date: 2015-08-26 OSTI Identifier: 1203744 Resource Type: Journal Article Resource Relation: Journal Name: Macromolecules; Journal Volume: 48; Journal Issue: (12) ; 06, 2015 Research

  5. Flexible, transparent thin film transistors raise hopes for flexible

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    screens | Argonne National Laboratory The thin-film transistor is flexible, transparent and performs just as well as commercial versions. Displayed is an array of transistors - each of which are just 10 atomic layers thick. Photo by Mark Lopez/Argonne National Laboratory. Click to enlarge. The thin-film transistor is flexible, transparent and performs just as well as commercial versions. Displayed is an array of transistors - each of which are just 10 atomic layers thick. Photo by Mark

  6. Conductive Polymer/Fullerene Blend Thin Films with Honeycomb Framework -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Advanced Materials Advanced Materials Find More Like This Return to Search Conductive Polymer/Fullerene Blend Thin Films with Honeycomb Framework Brookhaven National Laboratory Contact BNL About This Technology Publications: PDF Document Publication Structural dynamics and charge transfer via complexation with fullerene in large area conjugated polymer honeycomb thin films (728 KB) Technology Marketing Summary This composite conductive polymer/fullerene blend

  7. Enhanced Thin Film Organic Photovoltaic Devices - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Enhanced Thin Film Organic Photovoltaic Devices Brookhaven National Laboratory Contact BNL About This Technology An Embodiment of the Optical Field Confinement Device An Embodiment of the Optical Field Confinement Device Technology Marketing Summary A novel structure design for thin film organic photovoltaic (OPV) devices provides a system for increasing the optical absorption in the active layer. The waveguided structure

  8. Charge Transport in Thin Film Ionomers | Argonne Leadership Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility Model of a thin film Nafion ionomer (green translucent surface) in a fuel cell membrane/catalyst interface Model of a thin film Nafion ionomer (green translucent surface) in a fuel cell membrane/catalyst interface that forms interfaces with both the electrode and air (bottom and top, respectively). Hydrated excess protons (orange meshes) are shown solvated within Nafion water domains (blue translucent surface). Chris Knight, Argonne National Laboratory; John Savage and Gregory Voth,

  9. Stress evolution during electrodeposition of Ni thin films. (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Conference: Stress evolution during electrodeposition of Ni thin films. Citation Details In-Document Search Title: Stress evolution during electrodeposition of Ni thin films. Abstract not provided. Authors: Hearne, Sean Joseph ; Floro, Jerrold Anthony Publication Date: 2004-10-01 OSTI Identifier: 1144066 Report Number(s): SAND2004-5595C 266981 DOE Contract Number: DE-AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: MRS Spring Meeting held March 28-April

  10. Synthesis and tribological behavior of silicon oxycarbonitride thin films

    Office of Scientific and Technical Information (OSTI)

    derived from poly(urea)methyl vinyl silazane. (Journal Article) | SciTech Connect Journal Article: Synthesis and tribological behavior of silicon oxycarbonitride thin films derived from poly(urea)methyl vinyl silazane. Citation Details In-Document Search Title: Synthesis and tribological behavior of silicon oxycarbonitride thin films derived from poly(urea)methyl vinyl silazane. No abstract prepared. Authors: Prasad, Somuri V. ; Tallant, David Robert ; Raj, Rishi [1] ; Cross, Tsali + Show

  11. The origins of growth stresses in amorphous semiconductor thin films.

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: The origins of growth stresses in amorphous semiconductor thin films. Citation Details In-Document Search Title: The origins of growth stresses in amorphous semiconductor thin films. No abstract prepared. Authors: Kotula, Paul Gabriel ; Srolovitz, David J. [1] ; Floro, Jerrold Anthony ; Seel, Steven Craig + Show Author Affiliations (Princeton University, Princeton, NJ) Publication Date: 2003-03-01 OSTI Identifier: 917484 Report Number(s):

  12. Flexible Thin-Film Silicon Solar Cells

    SciTech Connect (OSTI)

    Vijh, Aarohi; Cao, Simon; Mohring, Brad

    2014-01-11

    High fuel costs, environmental concerns and issues of national energy security have brought increasing attention to a distributed generation program for electricity based on solar technology. Rooftop photovoltaic (PV) systems provide distributed generation since the power is consumed at the point of production, thus eliminating the need for costly additional transmission lines. However, most current photovoltaic modules are heavy and require a significant amount of labor and accessory hardware such as mounting frames for installation on rooftops. This makes rooftop systems impractical or cost prohibitive in many instances. Under this project, Xunlight has advanced its manufacturing process for the production of lightweight, flexible thin-film silicon based photovoltaic modules, and has enhanced the reliability and performance of Xunlights products. These modules are easily unrolled and adhered directly to standard commercial roofs without mounting structures or integrated directly into roofing membrane materials for the lowest possible installation costs on the market. Importantly, Xunlight has now established strategic alliances with roofing material manufacturers and other OEMs for the development of building integrated photovoltaic roofing and other PV-enabled products, and has deployed its products in a number of commercial installations with these business partners.

  13. Thin transparent conducting films of cadmium stannate

    DOE Patents [OSTI]

    Wu, Xuanzhi (Golden, CO); Coutts, Timothy J. (Lakewood, CO)

    2001-01-01

    A process for preparing thin Cd.sub.2 SnO.sub.4 films. The process comprises the steps of RF sputter coating a Cd.sub.2 SnO.sub.4 layer onto a first substrate; coating a second substrate with a CdS layer; contacting the Cd.sub.2 SnO.sub.4 layer with the CdS layer in a water- and oxygen-free environment and heating the first and second substrates and the Cd.sub.2 SnO.sub.4 and CdS layers to a temperature sufficient to induce crystallization of the Cd.sub.2 SnO.sub.4 layer into a uniform single-phase spinel-type structure, for a time sufficient to allow full crystallization of the Cd.sub.2 SnO.sub.4 layer at that temperature; cooling the first and second substrates to room temperature; and separating the first and second substrates and layers from each other. The process can be conducted at temperatures less than 600.degree. C., allowing the use of inexpensive soda lime glass substrates.

  14. Bismuth(III) dialkyldithiophosphates: Facile single source precursors for the preparation of bismuth sulfide nanorods and bismuth phosphate thin films

    SciTech Connect (OSTI)

    Biswal, Jasmine B.; Garje, Shivram S.; Nuwad, Jitendra; Pillai, C.G.S.

    2013-08-15

    Two different phase pure materials (Bi{sub 2}S{sub 3} and Bi{sub 2}P{sub 4}O{sub 13}) have been prepared under different conditions using the same single source precursors. Solvothermal decomposition of the complexes, Bi(S{sub 2}P(OR){sub 2}){sub 3} [where, R=Methyl (Me) (1), Ethyl (Et) (2), n-Propyl (Pr{sup n}) (3) and iso-Propyl (Pr{sup i}) (4)] in ethylene glycol gave orthorhombic bismuth sulfide nanorods, whereas aerosol assisted chemical vapor deposition (AACVD) of the same precursors deposited monoclinic bismuth tetraphosphate (Bi{sub 2}P{sub 4}O{sub 13}) thin films on glass substrates. Surface study of the thin films using SEM illustrated the formation of variety of nanoscale morphologies (spherical-, wire-, pendent-, doughnut- and flower-like) at different temperatures. AFM studies were carried out to evaluate quality of the films in terms of uniformity and roughness. Thin films of average roughness as low as 1.4 nm were deposited using these precursors. Photoluminescence studies of Bi{sub 2}P{sub 4}O{sub 13} thin films were also carried out. - Graphical abstract: Solvothermal decomposition of bismuth(III) dialkyldithiophosphates in ethylene glycol gave Bi{sub 2}S{sub 3} nanoparticles, whereas aerosol assisted chemical vapor deposition of these single source precursors deposited Bi{sub 2}P{sub 4}O{sub 13} thin films. Display Omitted - Highlights: Preparation of phase pure orthorhombic Bi{sub 2}S{sub 3} nanorods and monoclinic Bi{sub 2}P{sub 4}O{sub 13} thin films. Use of single source precursors for deposition of bismuth phosphate thin films. Use of solvothermal decomposition and AACVD methods. Morphology controlled synthesis of Bi{sub 2}P{sub 4}O{sub 13} thin films. Bi{sub 2}S{sub 3} nanorods and Bi{sub 2}P{sub 4}O{sub 13} thin films using same single source precursors.

  15. Design and development of an in-line sputtering system and process development of thin film multilayer neutron supermirrors

    SciTech Connect (OSTI)

    Biswas, A.; Sampathkumar, R.; Kumar, Ajaya; Bhattacharyya, D.; Sahoo, N. K.; Lagoo, K. D.; Veerapur, R. D.; Padmanabhan, M.; Puri, R. K.; Bhattacharya, Debarati; Singh, Surendra; Basu, S.

    2014-12-15

    Neutron supermirrors and supermirror polarizers are thin film multilayer based devices which are used for reflecting and polarizing neutrons in various neutron based experiments. In the present communication, the in-house development of a 9 m long in-line dc sputtering system has been described which is suitable for deposition of neutron supermirrors on large size (1500 mm 150 mm) substrates and in large numbers. The optimisation process of deposition of Co and Ti thin film, Co/Ti periodic multilayers, and a-periodic supermirrors have also been described. The system has been used to deposit thin film multilayer supermirror polarizers which show high reflectivity up to a reasonably large critical wavevector transfer of ?0.06 {sup ?1} (corresponding to m = 2.5, i.e., 2.5 times critical wavevector transfer of natural Ni). The computer code for designing these supermirrors has also been developed in-house.

  16. Round robin analyses of hydrogen isotope thin films standards.

    SciTech Connect (OSTI)

    Browning, James Frederick; Doyle, Barney Lee; Wampler, William R.; Wetteland, C. J.; LaDuca, Carol A.; Banks, James Clifford; Wang, Y. Q.; Tesmer, Joseph R.

    2003-06-01

    Hydrogen isotope thin film standards have been manufactured at Sandia National Laboratories for use by the materials characterization community. Several considerations were taken into account during the manufacture of the ErHD standards, with accuracy and stability being the most important. The standards were fabricated by e-beam deposition of Er onto a Mo substrate and the film stoichiometrically loaded with hydrogen and deuterium. To determine the loading accuracy of the standards two random samples were measured by thermal desorption mass spectrometry and atomic absorption spectrometry techniques with a stated combined accuracy of {approx}1.6% (1{sigma}). All the standards were then measured by high energy RBS/ERD and RBS/NRA with the accuracy of the techniques {approx}5% (1{sigma}). The standards were then distributed to the IBA materials characterization community for analysis. This paper will discuss the suitability of the standards for use by the IBA community and compare measurement results to highlight the accuracy of the techniques used.

  17. Thin aerogel films for optical, thermal, acoustic, and electronic applications

    SciTech Connect (OSTI)

    Hrubesh, L.W.; Poco, J.F.

    1994-09-01

    Aerogels are a special class of continuously porous solid materials which are characterized by nanometer size particles and pores. Typically, aerogels are made using sol-gel chemistry to form a solvent filled, high porosity gel that is dried by removing the solvent without collapsing the tenuous solid phase. As bulk materials, aerogels are known to have many exceptional, and even some unique physical properties. Aerogels provide the highest thermal insulation and lowest dielectric constant of any other material known. However, some important applications require the aerogels in the form of thin films or sheets. For example, electronic applications require micrometer thin aerogel films bonded to a substrate, and others require thicker films, either on a substrate or as free standing sheets. Special methods are required to make aerogel thin films or sheets. In this paper, the authors discuss the special conditions needed to fabricate thin aerogel films and they describe methods to make films and thin sheets. They also give some specific applications for which aerogel films are being developed.

  18. Front and backside processed thin film electronic devices

    DOE Patents [OSTI]

    Evans, Paul G. (Madison, WI); Lagally, Max G. (Madison, WI); Ma, Zhenqiang (Middleton, WI); Yuan, Hao-Chih (Lakewood, CO); Wang, Guogong (Madison, WI); Eriksson, Mark A. (Madison, WI)

    2012-01-03

    This invention provides thin film devices that have been processed on their front- and backside. The devices include an active layer that is sufficiently thin to be mechanically flexible. Examples of the devices include back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.

  19. Spectral behavior of the optical constants in the visible/near infrared of GeSbSe chalcogenide thin films grown at glancing angle

    SciTech Connect (OSTI)

    Martin-Palma, R. J.; Ryan, Joseph V.; Pantano, C. G.

    2007-04-23

    GeSbSe chalcogenide thin films were deposited using glancing angle deposition onto transparent glass substrates for the determination of the spectral behavior of the optical constants (index of refraction n and extinction coefficient k) in the visible and near infrared ranges (400-2500 nm) as a function of the deposition angle. Computational simulations based on the matrix method were employed to determine the values of the optical constants of the different films from the experimental reflectance and transmittance spectra. A significant dependence of the overall optical behavior on the deposition angle is found. Furthermore, the band gap of the GeSbSe thin films was calculated. The accurate determination of the optical constants of films grown at glancing angle will enable the development of sculptured thin film fiber-optic chemical sensors and biosensors.

  20. Thin film cadmium telluride, zinc telluride, and mercury zinc telluride solar cells. Final subcontract report, 1 July 1988--31 December 1991

    SciTech Connect (OSTI)

    Chu, T.L.

    1992-04-01

    This report describes research to demonstrate (1) thin film cadmium telluride solar cells with a quantum efficiency of 75% or higher at 0. 44 {mu}m and a photovoltaic efficiency of 11.5% or greater, and (2) thin film zinc telluride and mercury zinc telluride solar cells with a transparency to sub-band-gap radiation of 65% and a photovoltaic conversion efficiency of 5% and 8%, respectively. Work was directed at (1) depositing transparent conducting semiconductor films by solution growth and metal-organic chemical vapor deposition (MOCVD) technique, (2) depositing CdTe films by close-spaced sublimation (CSS) and MOCVD techniques, (3) preparing and evaluating thin film CdTe solar cells, and (4) preparing and characterizing thin film ZnTe, CD{sub 1-x}Zn{sub 1-x}Te, and Hg{sub 1-x}Zn{sub x}Te solar cells. The deposition of CdS films from aqueous solutions was investigated in detail, and their crystallographic, optical, and electrical properties were characterized. CdTe films were deposited from DMCd and DIPTe at 400{degrees}C using TEGa and AsH{sub 3} as dopants. CdTe films deposited by CSS had significantly better microstructures than those deposited by MOCVD. Deep energy states in CdTe films deposited by CSS and MOCVD were investigated. Thin films of ZnTe, Cd{sub 1- x}Zn{sub x}Te, and Hg{sub 1-x}Zn{sub x}Te were deposited by MOCVD, and their crystallographic, optical, and electrical properties were characterized. 67 refs.

  1. Microscopic silicon-based lateral high-aspect-ratio structures for thin film conformality analysis

    SciTech Connect (OSTI)

    Gao, Feng; Arpiainen, Sanna; Puurunen, Riikka L.

    2015-01-15

    Film conformality is one of the major drivers for the interest in atomic layer deposition (ALD) processes. This work presents new silicon-based microscopic lateral high-aspect-ratio (LHAR) test structures for the analysis of the conformality of thin films deposited by ALD and by other chemical vapor deposition means. The microscopic LHAR structures consist of a lateral cavity inside silicon with a roof supported by pillars. The cavity length (e.g., 205000??m) and cavity height (e.g., 2001000?nm) can be varied, giving aspect ratios of, e.g., 20:1 to 25?000:1. Film conformality can be analyzed with the microscopic LHAR by several means, as demonstrated for the ALD Al{sub 2}O{sub 3} and TiO{sub 2} processes from Me{sub 3}Al/H{sub 2}O and TiCl{sub 4}/H{sub 2}O. The microscopic LHAR test structures introduced in this work expose a new parameter space for thin film conformality investigations expected to prove useful in the development, tuning and modeling of ALD and other chemical vapor deposition processes.

  2. Beta (β) tungsten thin films: Structure, electron transport, and giant spin Hall effect

    SciTech Connect (OSTI)

    Hao, Qiang; Chen, Wenzhe; Xiao, Gang

    2015-05-04

    We use a simple magnetron sputtering process to fabricate beta (β) tungsten thin films, which are capable of generating giant spin Hall effect. As-deposited thin films are always in the metastable β-W phase from 3.0 to 26.7 nm. The β-W phase remains intact below a critical thickness of 22.1 nm even after magnetic thermal annealing at 280 °C, which is required to induce perpendicular magnetic anisotropy (PMA) in a layered structure of β-W/Co{sub 40}Fe{sub 40}B{sub 20}/MgO. Intensive annealing transforms the thicker films (>22.1 nm) into the stable α-W phase. We analyze the structure and grain size of both β- and α-W thin films. Electron transport in terms of resistivity and normal Hall effect is studied over a broad temperature range of 10 K to at least 300 K on all samples. Very low switching current densities are achieved in β-W/Co{sub 40}Fe{sub 40}B{sub 20}/MgO with PMA. These basic properties reveal useful behaviors in β-W thin films, making them technologically promising for spintronic magnetic random access memories and spin-logic devices.

  3. Fabrication of stable, wide-bandgap thin films of Mg, Zn and O

    DOE Patents [OSTI]

    Katiyar, Ram S.; Bhattacharya, Pijush; Das, Rasmi R.

    2006-07-25

    A stable, wide-bandgap (approximately 6 eV) ZnO/MgO multilayer thin film is fabricated using pulsed-laser deposition on c-plane Al2O3 substrates. Layers of ZnO alternate with layers of MgO. The thickness of MgO is a constant of approximately 1 nm; the thicknesses of ZnO layers vary from approximately 0.75 to 2.5 nm. Abrupt structural transitions from hexagonal to cubic phase follow a decrease in the thickness of ZnO sublayers within this range. The band gap of the thin films is also influenced by the crystalline structure of multilayer stacks. Thin films with hexagonal and cubic structure have band-gap values of 3.5 and 6 eV, respectively. In the hexagonal phase, Mg content of the films is approximately 40%; in the cubic phase Mg content is approximately 60%. The thin films are stable and their structural and optical properties are unaffected by annealing at 750.degree. C.

  4. Composite polymeric film and method for its use in installing a very-thin polymeric film in a device

    DOE Patents [OSTI]

    Duchane, D.V.; Barthell, B.L.

    1982-04-26

    A composite polymeric film and a method for its use in forming and installing a very thin (< 10 ..mu..m) polymeric film are disclosed. The composite film consists of a thin film layer and a backing layer. The backing layer is soluble in a solvent in which the thin film layer is not soluble. In accordance with the method, the composite film is installed in a device in the same position in which it is sought to finally emplace the thin film. The backing layer is then selectiely dissolved in the solvent to leave the insoluble thin film layer as an unbacked film. The method permits a very thin film to e successfully installed in devices where the fragility of the film would preclude handling and installation by conventional methods.

  5. Deuterium phase behavior in thin-film Pd

    SciTech Connect (OSTI)

    Munter, A.E.; Heuser, B.J.

    1998-07-01

    The absorption of deuterium from the gas phase into two Pd thin films 668 {Angstrom} and 1207 {Angstrom} thick was measured at room temperature with {ital in situ} neutron reflectometry. Room-temperature solubility isothermal curves, out-of-plane film expansion, and deuterium depth profiles were determined from fits to the neutron reflectivity data. The measurements demonstrate that the deuterium solubility behavior, both in solid solution and within the two-phase region, is strongly perturbed by the thin-film geometry, consistent with previous solubility measurements in the published literature. The phase behavior investigated here was observed to depend on film thickness and on deuterium cycling through the two-phase region. The 668-{Angstrom} film exhibited the greatest initial phase perturbation and most significant changes upon cycling. Upon repeated cycling, both films approach nearly identical deuterium isothermal solubility and out-of-plane expansion behaviors. The observed equilibrium out-of-plane expansion behavior was consistent with the films expanding under an in-plane clamping constraint imposed by the substrate. The effect of this substrate constraining force is to amplify the out-of-plane expansion beyond that expected in bulk Pd. Taken together, these measurements implicate the film/substrate interfacial clamping interaction as the origin of the perturbed hydrogen phase behavior in thin-film geometry. {copyright} {ital 1998} {ital The American Physical Society}

  6. Studies on optoelectronic properties of DC reactive magnetron sputtered chromium doped CdO thin films

    SciTech Connect (OSTI)

    Hymavathi, B. Rao, T. Subba; Kumar, B. Rajesh

    2014-10-15

    Cr doped CdO thin films were deposited on glass substrates by DC reactive magnetron sputtering method and subsequently annealed from 200 C to 500 C. X-ray diffraction analysis showed that the films exhibit (1 1 1) preferred orientation. The optical transmittance of the films increases from 64% to 88% with increasing annealing temperature. The optical band gap values were found to be decreased from 2.77 to 2.65 eV with the increase of annealing temperature. The decrease in optical band gap energy with increasing annealing temperature can be attributed to improvement in the crystallinity of the films and may also be due to quantum confinement effect. A minimum resistivity of 2.23 10{sup ?4} ?.cm and sheet resistance of 6.3 ?/sq is obtained for Cr doped CdO film annealed at 500 C.

  7. Thin-film absorber for a solar collector

    SciTech Connect (OSTI)

    Wilhelm, W.G.

    1982-02-09

    This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  8. Shape variation of micelles in polymer thin films

    SciTech Connect (OSTI)

    Zhou, Jiajia Shi, An-Chang

    2014-01-14

    The equilibrium properties of block copolymer micelles confined in polymer thin films are investigated using self-consistent field theory. The theory is based on a model system consisting of AB diblock copolymers and A homopolymers. Two different methods, based on the radius of gyration tensor and the spherical harmonics expansion, are used to characterize the micellar shape. The results reveal that the morphology of micelles in thin films depends on the thickness of the thin films and the selectivity of the confining surfaces. For spherical (cylindrical) micelles, the spherical (cylindrical) symmetry is broken by the presence of the one-dimensional confinement, whereas the top-down symmetry is broken by the selectivity of the confining surfaces. Morphological transitions from spherical or cylindrical micelles to cylinders or lamella are predicted when the film thickness approaches the micellar size.

  9. Thin-film Rechargeable Lithium Batteries for Implantable Devices

    DOE R&D Accomplishments [OSTI]

    Bates, J. B.; Dudney, N. J.

    1997-05-01

    Thin films of LiCoO{sub 2} have been synthesized in which the strongest x ray reflection is either weak or missing, indicating a high degree of preferred orientation. Thin film solid state batteries with these textured cathode films can deliver practical capacities at high current densities. For example, for one of the cells 70% of the maximum capacity between 4.2 V and 3 V ({approximately}0.2 mAh/cm{sup 2}) was delivered at a current of 2 mA/cm{sup 2}. When cycled at rates of 0.1 mA/cm{sup 2}, the capacity loss was 0.001%/cycle or less. The reliability and performance of Li LiCoO{sub 2} thin film batteries make them attractive for application in implantable devices such as neural stimulators, pacemakers, and defibrillators.

  10. Polycrystalline Thin Film Photovoltaics: Research, Development, and Technologies: Preprint

    SciTech Connect (OSTI)

    Ullal, H. S.; Zweibel, K.; von Roedern, B.

    2002-05-01

    II-VI binary thin-film solar cells based on cadmium telluride (CdTe) and I-III-VI ternary thin-film solar cells based on copper indium diselenide (CIS) and related materials have been the subject of intense research and development in the past few years. Substantial progress has been made thus far in the area of materials research, device fabrication, and technology development, and numerous applications based on CdTe and CIS have been deployed worldwide. World record efficiency of 16.5% has been achieved by NREL scientists for a thin-film CdTe solar cell using a modified device structure. Also, NREL scientists achieved world-record efficiency of 21.1% for a thin-film CIGS solar cell under a 14X concentration and AM1.5 global spectrum. When measured under a AM1.5 direct spectrum, the efficiency increases to 21.5%. Pathways for achieving 25% efficiency for tandem polycrystalline thin-film solar cells are elucidated. R&D issues relating to CdTe and CIS are reported in this paper, such as contact stability and accelerated life testing in CdTe, and effects of moisture ingress in thin-film CIS devices. Substantial technology development is currently under way, with various groups reporting power module efficiencies in the range of 7.0% to 12.1% and power output of 40.0 to 92.5 W. A number of lessons learned during the scale-up activities of the technology development for fabrication of thin-film power modules are discussed. The major global players actively involved in the technology development and commercialization efforts using both rigid and flexible power modules are highlighted.

  11. Nanosecond laser-induced phase transitions in pulsed laser deposition-deposited GeTe films

    SciTech Connect (OSTI)

    Sun, Xinxing, E-mail: xinxing.sun@iom-leipzig.de; Thelander, Erik; Lorenz, Pierre; Gerlach, Jrgen W.; Decker, Ulrich; Rauschenbach, Bernd [Leibniz Institute of Surface Modification, Permoserstr. 15, D-04318, Leipzig (Germany)

    2014-10-07

    Phase transformations between amorphous and crystalline states induced by irradiation of pulsed laser deposition grown GeTe thin films with nanosecond laser pulses at 248 nm and pulse duration of 20 ns are studied. Structural and optical properties of the Ge-Te phase-change films were studied by X-ray diffraction and optical reflectivity measurements as a function of the number of laser pulses between 0 and 30 pulses and of the laser fluence up to 195 mJ/cm. A reversible phase transition by using pulse numbers ? 5 at a fluence above the threshold fluence between 11 and 14 mJ/cm for crystallization and single pulses at a fluence between 162 and 182 mJ/cm for amorphization could be proved. For laser fluences from 36 up to 130 mJ/cm, a high optical contrast of 14.7% between the amorphous and crystalline state is measured. A simple model is used that allows the discussion on the distribution of temperature in dependency on the laser fluence.

  12. Demonstration of thin film pair distribution function analysis (tfPDF) for the study of local structure in amorphous and crystalline thin films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jensen, K. M.Ø.; Blichfeld, A. B.; Bauers, S. R.; Wood, S. R.; Dooryhee, E.; Johnson, D. C.; Iversen, B. B.; Billinge, S.

    2015-07-05

    By means of normal incidence, high flux and high energy x-rays, we have obtained total scattering data for Pair Distribution Function (PDF) analysis from thin films (tf), suitable for local structure analysis. By using amorphous substrates as support for the films, the standard Rapid Acquisition PDF setup can be applied and the scattering signal from the film can be isolated from the total scattering data through subtraction of an independently measured background signal. No angular corrections to the data are needed, as would be the case for grazing incidence measurements. We illustrate the ‘tfPDF’ method through studies of as depositedmore » (i.e. amorphous) and crystalline FeSb3 films, where the local structure analysis gives insight into the stabilization of the metastable skutterudite FeSb3 phase. The films were prepared by depositing ultra-thin alternating layers of Fe and Sb, which interdiffuse and after annealing crystallize to form the FeSb3 structure. The tfPDF data show that the amorphous precursor phase consists of corner-sharing FeSb6 octahedra with motifs highly resembling the local structure in crystalline FeSb3. Analysis of the amorphous structure allows predicting whether the final crystalline product will form the FeSb3 phase with or without excess Sb present. The study thus illustrates how analysis of the local structure in amorphous precursor films can help to understand crystallization processes of metastable phases and opens for a range of new local structure studies of thin films.« less

  13. Surface treatment of nanocrystal quantum dots after film deposition

    DOE Patents [OSTI]

    Sykora, Milan; Koposov, Alexey; Fuke, Nobuhiro

    2015-02-03

    Provided are methods of surface treatment of nanocrystal quantum dots after film deposition so as to exchange the native ligands of the quantum dots for exchange ligands that result in improvement in charge extraction from the nanocrystals.

  14. Processing approach towards the formation of thin-film Cu(In,Ga)Se2

    DOE Patents [OSTI]

    Beck, Markus E. (Falkensee, DE); Noufi, Rommel (Golden, CO)

    2003-01-01

    A two-stage method of producing thin-films of group IB-IIIA-VIA on a substrate for semiconductor device applications includes a first stage of depositing an amorphous group IB-IIIA-VIA precursor onto an unheated substrate, wherein the precursor contains all of the group IB and group IIIA constituents of the semiconductor thin-film to be produced in the stoichiometric amounts desired for the final product, and a second stage which involves subjecting the precursor to a short thermal treatment at 420.degree. C.-550.degree. C. in a vacuum or under an inert atmosphere to produce a single-phase, group IB-III-VIA film. Preferably the precursor also comprises the group VIA element in the stoichiometric amount desired for the final semiconductor thin-film. The group IB-IIIA-VIA semiconductor films may be, for example, Cu(In,Ga)(Se,S).sub.2 mixed-metal chalcogenides. The resultant supported group IB-IIIA-VIA semiconductor film is suitable for use in photovoltaic applications.

  15. Highly conducting SrMoO{sub 3} thin films for microwave applications

    SciTech Connect (OSTI)

    Radetinac, Aldin Mani, Arzhang; Ziegler, Jrgen; Alff, Lambert; Komissinskiy, Philipp; Melnyk, Sergiy; Nikfalazar, Mohammad; Zheng, Yuliang; Jakoby, Rolf

    2014-09-15

    We have measured the microwave resistance of highly conducting perovskite oxide SrMoO{sub 3} thin film coplanar waveguides. The epitaxial SrMoO{sub 3} thin films were grown by pulsed laser deposition and showed low mosaicity and smooth surfaces with a root mean square roughness below 0.3?nm. Layer-by-layer growth could be achieved for film thicknesses up to 400?nm as monitored by reflection high-energy electron diffraction and confirmed by X-ray diffraction. We obtained a constant microwave resistivity of 29???cm between 0.1 and 20?GHz by refining the frequency dependence of the transmission coefficients. Our result shows that SrMoO{sub 3} is a viable candidate as a highly conducting electrode material for all-oxide microwave electronic devices.

  16. Temperature dependence of the spin relaxation in highly degenerate ZnO thin films

    SciTech Connect (OSTI)

    Prestgard, M. C.; Siegel, G.; Tiwari, A.; Roundy, R.; Raikh, M.

    2015-02-28

    Zinc oxide is considered a potential candidate for fabricating next-generation transparent spintronic devices. However, before this can be achieved, a thorough scientific understanding of the various spin transport and relaxation processes undergone in this material is essential. In the present paper, we are reporting our investigations into these processes via temperature dependent Hanle experiments. ZnO thin films were deposited on c-axis sapphire substrates using a pulsed laser deposition technique. Careful structural, optical, and electrical characterizations of the films were performed. Temperature dependent non-local Hanle measurements were carried out using an all-electrical scheme for spin injection and detection over the temperature range of 20–300 K. From the Hanle data, spin relaxation time in the films was determined at different temperatures. A detailed analysis of the data showed that the temperature dependence of spin relaxation time follows the linear-in-momentum Dyakonov-Perel mechanism.

  17. Microwave properties of RF- sputtered ZnFe{sub 2}O{sub 4} thin films

    SciTech Connect (OSTI)

    Garg, T. Kulkarni, A. R.; Venkataramani, N.; Sahu, B. N.; Prasad, Shiva

    2014-04-24

    In this work, RF- magnetron sputtering technique has been employed to deposit nanocrystalline ZnFe{sub 2}O{sub 4} thin films at room temperature. The as grown films were ex-situ annealed in air for 2 h at temperatures from 150C to 650C. X-ray diffraction, vibrating sample magnetometer and ferromagnetic resonance were used to analyze the phase formation, magnetic properties and microwave properties respectively. From the hysteresis loops and ferromagnetic resonance spectra taken at room temperature, a systematic study on the effect of O{sub 2} plasma on microwave properties with respect to processing temperature has been carried out.

  18. Preparation and characterization of nanodiamond cores coated with a thin Ni-Zn-P alloy film

    SciTech Connect (OSTI)

    Wang Rui; Ye Weichun; Ma Chuanli; Wang Chunming

    2008-02-15

    Nanodiamond cores coated with a thin Ni-Zn-P alloy film were prepared by an electroless deposition method under the conditions of tin chloride sensitization and palladium chloride activation. The prepared materials were analyzed by Fourier transform infrared (FTIR) spectrometry and X-ray diffraction (XRD). The nanostructure of the materials was then characterized by transmission electron microscopy (TEM). The alloy film composition was characterized by Energy Dispersive X-ray (EDX) analysis. The results indicated the approximate composition 49.84%Ni-37.29%Zn-12.88%P was obtained.

  19. Ageing effect in spray pyrolysed B:SnO{sub 2} thin films for LPG sensing

    SciTech Connect (OSTI)

    Skariah, Benoy E-mail: dr.boben1@gmail.com; Thomas, Boben E-mail: dr.boben1@gmail.com

    2014-10-15

    For LPG sensing, boron doped (0.2 to 0.8 wt. %) polycrystalline tin oxide thin films are deposited by spray pyrolysis in the temperature range 325 - 430 C. Sensor response of 56 % is achieved for 1000 ppm of LPG, at an operating temperature of 350 C. The effects of ageing under ambient conditions on the sensor response are investigated for a storage period of six years. Ageing increases the film resistance but the gas response is lowered. XRD, SEM, FESEM, FTIR and XPS are utilized for structural, morphological and compositional charaterisations.

  20. Research on the electronic and optical properties of polymer and other organic molecular thin films

    SciTech Connect (OSTI)

    1997-02-01

    The main goal of the work is to find materials and methods of optimization of organic layered electroluminescent cells and to study such properties of polymers and other organic materials that can be used in various opto-electronic devices. The summary of results obtained during the first year of work is presented. They are: (1) the possibility to produce electroluminescent cells using a vacuum deposition photoresist technology for commercial photoresists has been demonstrated; (2) the idea to replace the polyaryl polymers by other polymers with weaker hole conductivity for optimization of electroluminescent cells with ITO-Al electrodes has been suggested. The goal is to obtain amorphous processable thin films of radiative recombination layers in electroluminescent devices; (3) procedures of preparation of high-quality vacuum-deposited poly (p-phenylene) (PPP) films on various substrates have been developed; (4) it was found for the first time that the fluorescence intensity of PPP films depends on the degree of polymerization; (5) the role of interfaces between organic compounds, on one side, and metals or semiconductors, on the other side, has been studied and quenching of the fluorescence caused by semiconductor layer in thin sandwiches has been observed; (6) studies of the dynamics of photoexcitations revealed the exciton self-trapping in quasi-one-dimensional aggregates; and (7) conditions for preparation of highly crystalline fullerene C{sub 60} films by vacuum deposition have been found. Composites of C{sub 60} with conjugated polymers have been prepared.

  1. Microstructure, Phase Formation, and Stress of Reactively-Deposited Metal

    Office of Scientific and Technical Information (OSTI)

    Hydride Thin Films (Technical Report) | SciTech Connect Microstructure, Phase Formation, and Stress of Reactively-Deposited Metal Hydride Thin Films Citation Details In-Document Search Title: Microstructure, Phase Formation, and Stress of Reactively-Deposited Metal Hydride Thin Films This document summarizes research of reactively deposited metal hydride thin films and their properties. Reactive deposition processes are of interest, because desired stoichiometric phases are created in a

  2. Thin film electronic devices with conductive and transparent gas and moisture permeation barriers

    DOE Patents [OSTI]

    Simpson, Lin Jay

    2013-12-17

    A thin film stack (100, 200) is provided for use in electronic devices such as photovoltaic devices. The stack (100, 200) may be integrated with a substrate (110) such as a light transmitting/transmissive layer. A electrical conductor layer (120, 220) is formed on a surface of the substrate (110) or device layer such as a transparent conducting (TC) material layer (120,220) with pin holes or defects (224) caused by manufacturing. The stack (100) includes a thin film (130, 230) of metal that acts as a barrier for environmental contaminants (226, 228). The metal thin film (130,230) is deposited on the conductor layer (120, 220) and formed from a self-healing metal such as a metal that forms self-terminating oxides. A permeation plug or block (236) is formed in or adjacent to the thin film (130, 230) of metal at or proximate to the pin holes (224) to block further permeation of contaminants through the pin holes (224).

  3. Thin film seeds for melt processing textured superconductors for practical applications

    DOE Patents [OSTI]

    Veal, Boyd W.; Paulikas, Arvydas; Balachandran, Uthamalingam; Zhong, Wei

    1999-01-01

    A method of fabricating bulk superconducting material such as RBa.sub.2 Cu.sub.3 O.sub.7-.delta. where R is La or Y comprising depositing a thin epitaxially oriented film of Nd or Sm (123) on an oxide substrate. The powder oxides of RBa.sub.2 Cu.sub.3 O.sub.7-.delta. or oxides and/or carbonates of R and Ba and Cu present in mole ratios to form RBa.sub.2 Cu.sub.3 O.sub.7-.delta., where R is Y or La are heated, in physical contact with the thin film of Nd or Sm (123) on the oxide substrate to a temperature sufficient to form a liquid phase in the oxide or carbonate mixture while maintaining the thin film solid to grow a large single domain 123 superconducting material. Then the material is cooled. The thin film is between 200 .ANG. and 2000 .ANG.. A construction prepared by the method is also disclosed.

  4. Thin film seeds for melt processing textured superconductors for practical applications

    DOE Patents [OSTI]

    Veal, B.W.; Paulikas, A.; Balachandran, U.; Zhong, W.

    1999-02-09

    A method of fabricating bulk superconducting material such as RBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} where R is La or Y comprising depositing a thin epitaxially oriented film of Nd or Sm (123) on an oxide substrate is disclosed. The powder oxides of RBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} or oxides and/or carbonates of R and Ba and Cu present in mole ratios to form RBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}}, where R is Y or La are heated, in physical contact with the thin film of Nd or Sm (123) on the oxide substrate to a temperature sufficient to form a liquid phase in the oxide or carbonate mixture while maintaining the thin film solid to grow a large single domain 123 superconducting material. Then the material is cooled. The thin film is between 200 {angstrom} and 2000 {angstrom}. A construction prepared by the method is also disclosed.

  5. PEDOT:PSS emitters on multicrystalline silicon thin-film absorbers for hybrid solar cells

    SciTech Connect (OSTI)

    Junghanns, Marcus; Plentz, Jonathan Andr, Gudrun; Gawlik, Annett; Hger, Ingmar; Falk, Fritz

    2015-02-23

    We fabricated an efficient hybrid solar cell by spin coating poly(3,4-ethylene-dioxythiophene):polystyrenesulfonate (PEDOT:PSS) on planar multicrystalline Si (mc-Si) thin films. The only 5??m thin Si absorber layers were prepared by diode laser crystallization of amorphous Si deposited by electron beam evaporation on glass. On these absorber layers, we studied the effect of SiO{sub x} and Al{sub 2}O{sub 3} terminated Si surfaces. The short circuit density and power conversion efficiency (PCE) of the mc-Si/Al{sub 2}O{sub 3}/PEDOT:PSS solar cell increase from 20.6 to 25.4?mA/cm{sup 2} and from 7.3% to 10.3%, respectively, as compared to the mc-Si/SiO{sub x}/PEDOT:PSS cell. Al{sub 2}O{sub 3} lowers the interface recombination and improves the adhesion of the polymer film on the hydrophobic mc-Si thin film. Open circuit voltages up to 604?mV were reached. This study demonstrates the highest PCE so far of a hybrid solar cell with a planar thin film Si absorber.

  6. Effects on crystal structure of CZTS thin films owing to deionized water and sulfurization treatment

    SciTech Connect (OSTI)

    Nadi, Samia Ahmed; Chelvanathan, Puvaneswaran; Islam, M. A.; Sopian, Kamruzzaman; Yusoff, Yulisa; Amin, Nowshad

    2015-05-15

    To condense the cost and increase the production, using abundantly obtainable non-toxic elements, Cu{sub 2}ZnSnS{sub 4} (CZTS) seem to be a strong contender among the photovoltaic thin film technologies. Cu{sub 2}ZnSnS{sub 4} thin films were fabricated by RF magnetron sputtering system. CZTS were sputtered on Molybdenum (Mo) coated soda lime glass (SLG) using a single target sputtering technique. The sputtering parameters (base pressure, working pressure, Argon (Ar) flow rate, RF power and sputtering time) were kept same for all three types of films. For sulfurization, the temperature used was 500 C. Finally, As-deposited film was immersed in DIW before undergoing identical sulfurization profile. As-deposited film (Sample A), sulfurized films (Sample B) and sulfurized plus DIW treated (Sample C) were compared in terms of their structural properties by means of X-Ray Diffraction (XRD) measurement and Atomic Force Microscopy (AFM). Sample B and C showed peak of (1 1 2) planes of CZTS which are characteristics of stannite structure. Post deposition treatment on CZTS films proved to be beneficial as evident from the observed enhancement in the crystallinity and grain growth. Significant difference on grain size and area roughness could be observed from the AFM measurement. The roughness of Sample A, B and C increased from 5.007?nm to 20.509?nm and 14.183?nm accordingly. From XRD data secondary phases of Cu{sub x}MoS{sub x} could be observed.

  7. Characterization of piesoelectric ZnO thin films and the fabrication of piezoelectric micro-cantilevers

    SciTech Connect (OSTI)

    Johnson, Raegan Lynn

    2005-08-01

    In Atomic Force Microscopy (AFM), a microcantilever is raster scanned across the surface of a sample in order to obtain a topographical image of the sample's surface. In a traditional, optical AFM, the sample rests on a bulk piezoelectric tube and a control loop is used to control the tip-sample separation by actuating the piezo-tube. This method has several disadvantages--the most noticeable one being that response time of the piezo-tube is rather long which leads to slow imaging speeds. One possible solution aimed at improving the speed of imaging is to incorporate a thin piezoelectric film on top of the cantilever beam. This design not only improves the speed of imaging because the piezoelectric film replaces the piezo-tube as an actuator, but the film can also act as a sensor. In addition, the piezoelectric film can excite the cantilever beam near its resonance frequency. This project aims to fabricate piezoelectric microcantilevers for use in the AFM. Prior to fabricating the cantilevers and also part of this project, a systematic study was performed to examine the effects of deposition conditions on the quality of piezoelectric ZnO thin films deposited by RF sputtering. These results will be presented. The deposition parameters that produced the highest quality ZnO film were used in the fabrication of the piezoelectric cantilevers. Unfortunately, the fabricated cantilevers warped due to the intrinsic stress of the ZnO film and were therefore not usable in the AFM. The complete fabrication process will be detailed, the results will be discussed and reasons for the warping will be examined.

  8. Highly textured oxypnictide superconducting thin films on metal substrates

    SciTech Connect (OSTI)

    Iida, Kazumasa, E-mail: iida@nuap.nagoya-u.ac.jp; Kurth, Fritz; Grinenko, Vadim; Hnisch, Jens [Institute for Metallic Materials, IFW Dresden, D-01171 Dresden (Germany); Chihara, Masashi; Sumiya, Naoki; Hatano, Takafumi; Ikuta, Hiroshi [Department of Crystalline Materials Science, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Ichinose, Ataru; Tsukada, Ichiro [Central Research Institute of Electric Power Industry, 2-6-1 Nagasaka, Yokosuka, Kanagawa 240-0196 (Japan); Matias, Vladimir [iBeam Materials, Inc., 2778A Agua Fria Street, Santa Fe, New Mexico 87507 (United States); Holzapfel, Bernhard [Institute for Technical Physics, Karlsruhe Institute of Technology, Hermann von Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)

    2014-10-27

    Highly textured NdFeAs(O,F) thin films have been grown on ion beam assisted deposition-MgO/Y{sub 2}O{sub 3}/Hastelloy substrates by molecular beam epitaxy. The oxypnictide coated conductors showed a superconducting transition temperature (T{sub c}) of 43?K with a self-field critical current density (J{sub c}) of 7.010{sup 4}?A/cm{sup 2} at 5?K, more than 20 times higher than powder-in-tube processed SmFeAs(O,F) wires. Albeit higher T{sub c} as well as better crystalline quality than Co-doped BaFe{sub 2}As{sub 2} coated conductors, in-field J{sub c} of NdFeAs(O,F) was lower than that of Co-doped BaFe{sub 2}As{sub 2}. These results suggest that grain boundaries in oxypnictides reduce J{sub c} significantly compared to that in Co-doped BaFe{sub 2}As{sub 2} and, hence biaxial texture is necessary for high J{sub c.}.

  9. Thin-film fiber optic hydrogen and temperature sensor system

    DOE Patents [OSTI]

    Nave, Stanley E. (Evans, GA)

    1998-01-01

    The invention discloses a sensor probe device for monitoring of hydrogen gas concentrations and temperatures by the same sensor probe. The sensor probe is constructed using thin-film deposition methods for the placement of a multitude of layers of materials sensitive to hydrogen concentrations and temperature on the end of a light transparent lens located within the sensor probe. The end of the lens within the sensor probe contains a lens containing a layer of hydrogen permeable material which excludes other reactive gases, a layer of reflective metal material that forms a metal hydride upon absorbing hydrogen, and a layer of semi-conducting solid that is transparent above a temperature dependent minimum wavelength for temperature detection. The three layers of materials are located at the distal end of the lens located within the sensor probe. The lens focuses light generated by broad-band light generator and connected by fiber-optics to the sensor probe, onto a reflective metal material layer, which passes through the semi-conducting solid layer, onto two optical fibers located at the base of the sensor probe. The reflected light is transmitted over fiberoptic cables to a spectrometer and system controller. The absence of electrical signals and electrical wires in the sensor probe provides for an elimination of the potential for spark sources when monitoring in hydrogen rich environments, and provides a sensor free from electrical interferences.

  10. Thin-film fiber optic hydrogen and temperature sensor system

    DOE Patents [OSTI]

    Nave, S.E.

    1998-07-21

    The invention discloses a sensor probe device for monitoring of hydrogen gas concentrations and temperatures by the same sensor probe. The sensor probe is constructed using thin-film deposition methods for the placement of a multitude of layers of materials sensitive to hydrogen concentrations and temperature on the end of a light transparent lens located within the sensor probe. The end of the lens within the sensor probe contains a lens containing a layer of hydrogen permeable material which excludes other reactive gases, a layer of reflective metal material that forms a metal hydride upon absorbing hydrogen, and a layer of semi-conducting solid that is transparent above a temperature dependent minimum wavelength for temperature detection. The three layers of materials are located at the distal end of the lens located within the sensor probe. The lens focuses light generated by broad-band light generator and connected by fiber-optics to the sensor probe, onto a reflective metal material layer, which passes through the semi-conducting solid layer, onto two optical fibers located at the base of the sensor probe. The reflected light is transmitted over fiber optic cables to a spectrometer and system controller. The absence of electrical signals and electrical wires in the sensor probe provides for an elimination of the potential for spark sources when monitoring in hydrogen rich environments, and provides a sensor free from electrical interferences. 3 figs.

  11. Ambipolar charge transport in microcrystalline silicon thin-film transistors

    SciTech Connect (OSTI)

    Knipp, Dietmar; Marinkovic, M.; Chan, Kah-Yoong; Gordijn, Aad; Stiebig, Helmut

    2011-01-15

    Hydrogenated microcrystalline silicon ({mu}c-Si:H) is a promising candidate for thin-film transistors (TFTs) in large-area electronics due to high electron and hole charge carrier mobilities. We report on ambipolar TFTs based on {mu}c-Si:H prepared by plasma-enhanced chemical vapor deposition at temperatures compatible with flexible substrates. Electrons and holes are directly injected into the {mu}c-Si:H channel via chromium drain and source contacts. The TFTs exhibit electron and hole charge carrier mobilities of 30-50 cm{sup 2}/V s and 10-15 cm{sup 2}/V s, respectively. In this work, the electrical characteristics of the ambipolar {mu}c-Si:H TFTs are described by a simple analytical model that takes the ambipolar charge transport into account. The analytical expressions are used to model the transfer curves, the potential and the net surface charge along the channel of the TFTs. The electrical model provides insights into the electronic transport of ambipolar {mu}c-Si:H TFTs.

  12. HiPIMS: a New Generation of Film Deposition Techniques for SRF Applications

    SciTech Connect (OSTI)

    Valente-Feliciano, Anne-Marie

    2013-09-01

    Over the years, Nb/Cu technology, despite its shortcomings due to the commonly used magnetron sputtering, has positioned itself as an alternative route for the future of accelerator superconducting structures. Avenues for the production of thin films tailored for Superconducting RF (SRF) applications are showing promise with recent developments in ionized PVD coating techniques, i.e. vacuum deposition techniques using energetic ions. Among these techniques, High power impulse magnetron sputtering (HiPIMS) is a promising emerging technique which combines magnetron sputtering with a pulsed power approach. This contribution describes the benefits of energetic condensation for SRF films and the characteristics of the HiPIMS technology. It describes the on-going efforts pursued in different institutions to exploit the potential of this technology to produce bulk-like Nb films and go beyond Nb performance with the development of film systems, based on other superconducting materials and multilayer structures.

  13. Sharp semiconductor-to-metal transition of VO{sub 2} thin films on glass substrates

    SciTech Connect (OSTI)

    Jian, Jie; Chen, Aiping [Department of Electrical and Computer Engineering, Texas A and M University, College Station, Texas 77843-3128 (United States); Zhang, Wenrui [Material Science and Engineering Program, Texas A and M University, College Station, Texas 77843-3128 (United States); Wang, Haiyan, E-mail: wangh@ece.tamu.edu [Department of Electrical and Computer Engineering, Texas A and M University, College Station, Texas 77843-3128 (United States); Material Science and Engineering Program, Texas A and M University, College Station, Texas 77843-3128 (United States)

    2013-12-28

    Outstanding phase transition properties of vanadium dioxide (VO{sub 2}) thin films on amorphous glass were achieved and compared with the ones grown on c-cut sapphire and Si (111) substrates, all by pulsed laser deposition. The films on glass substrate exhibit a sharp semiconductor-to-metal transition (?4.3?C) at a near bulk transition temperature of ?68.4?C with an electrical resistance change as high as 3.2??10{sup 3} times. The excellent phase transition properties of the films on glass substrate are correlated with the large grain size and low defects density achieved. The phase transition properties of VO{sub 2} films on c-cut sapphire and Si (111) substrates were found to be limited by the high defect density.

  14. Fabrication of polycrystalline thin films by pulsed laser processing

    DOE Patents [OSTI]

    Mitlitsky, F.; Truher, J.B.; Kaschmitter, J.L.; Colella, N.J.

    1998-02-03

    A method is disclosed for fabricating polycrystalline thin films on low-temperature (or high-temperature) substrates which uses processing temperatures that are low enough to avoid damage to the substrate, and then transiently heating select layers of the thin films with at least one pulse of a laser or other homogenized beam source. The pulse length is selected so that the layers of interest are transiently heated to a temperature which allows recrystallization and/or dopant activation while maintaining the substrate at a temperature which is sufficiently low to avoid damage to the substrate. This method is particularly applicable in the fabrication of solar cells. 1 fig.

  15. Fabrication of polycrystalline thin films by pulsed laser processing

    DOE Patents [OSTI]

    Mitlitsky, Fred (Livermore, CA); Truher, Joel B. (San Rafael, CA); Kaschmitter, James L. (Pleasanton, CA); Colella, Nicholas J. (Livermore, CA)

    1998-02-03

    A method for fabricating polycrystalline thin films on low-temperature (or high-temperature) substrates which uses processing temperatures that are low enough to avoid damage to the substrate, and then transiently heating select layers of the thin films with at least one pulse of a laser or other homogenized beam source. The pulse length is selected so that the layers of interest are transiently heated to a temperature which allows recrystallization and/or dopant activation while maintaining the substrate at a temperature which is sufficiently low to avoid damage to the substrate. This method is particularly applicable in the fabrication of solar cells.

  16. A non-destructive method for measuring the mechanical properties of ultrathin films prepared by atomic layer deposition

    SciTech Connect (OSTI)

    Zhang, Qinglin; Xiao, Xingcheng Verbrugge, Mark W.; Cheng, Yang-Tse

    2014-08-11

    The mechanical properties of ultrathin films synthesized by atomic layer deposition (ALD) are critical for the liability of their coated devices. However, it has been a challenge to reliably measure critical properties of ALD films due to the influence from the substrate. In this work, we use the laser acoustic wave (LAW) technique, a non-destructive method, to measure the elastic properties of ultrathin Al{sub 2}O{sub 3} films by ALD. The measured properties are consistent with previous work using other approaches. The LAW method can be easily applied to measure the mechanical properties of various ALD thin films for multiple applications.

  17. Pyroelectric response of lead zirconate titanate thin films on silicon: Effect of thermal stresses

    SciTech Connect (OSTI)

    Kesim, M. T.; Zhang, J.; Alpay, S. P.; Trolier-McKinstry, S.; Mantese, J. V.; Whatmore, R. W.

    2013-11-28

    Ferroelectric lead zirconate titanate [Pb(Zr{sub x}Ti{sub 1-x}O){sub 3}, (PZT x:1-x)] has received considerable interest for applications related to uncooled infrared devices due to its large pyroelectric figures of merit near room temperature, and the fact that such devices are inherently ac coupled, allowing for simplified image post processing. For ferroelectric films made by industry-standard deposition techniques, stresses develop in the PZT layer upon cooling from the processing/growth temperature due to thermal mismatch between the film and the substrate. In this study, we use a non-linear thermodynamic model to investigate the pyroelectric properties of polycrystalline PZT thin films for five different compositions (PZT 40:60, PZT 30:70, PZT 20:80, PZT 10:90, PZT 0:100) on silicon as a function of processing temperature (25800?C). It is shown that the in-plane thermal stresses in PZT thin films alter the out-of-plane polarization and the ferroelectric phase transformation temperature, with profound effect on the pyroelectric properties. PZT 30:70 is found to have the largest pyroelectric coefficient (0.042??C cm{sup ?2}?C{sup ?1}, comparable to bulk values) at a growth temperature of 550?C; typical to what is currently used for many deposition processes. Our results indicate that it is possible to optimize the pyroelectric response of PZT thin films by adjusting the Ti composition and the processing temperature, thereby, enabling the tailoring of material properties for optimization relative to a specific deposition process.

  18. Perovskite phase thin films and method of making

    DOE Patents [OSTI]

    Boyle, Timothy J. (Albuquerque, NM); Rodriguez, Mark A. (Albuquerque, NM)

    2000-01-01

    The present invention comprises perovskite-phase thin films, of the general formula A.sub.x B.sub.y O.sub.3 on a substrate, wherein A is selected from beryllium, magnesium, calcium, strontium, and barium or a combination thereof; B is selected from niobium and tantalum or a combination thereof; and x and y are mole fractions between approximately 0.8 and 1.2. More particularly, A is strontium or barium or a combination thereof and B is niobium or tantalum or a combination thereof. Also provided is a method of making a perovskite-phase thin film, comprising combining at least one element-A-containing compound, wherein A is selected from beryllium, magnesium, calcium, strontium or barium, with at least one element-B-containing compound, wherein B niobium or tantalum, to form a solution; adding a solvent to said solution to form another solution; spin-coating the solution onto a substrate to form a thin film; and heating the film to form the perovskite-phase thin film.

  19. Method of synthesizing a plurality of reactants and producing thin films of electro-optically active transition metal oxides

    DOE Patents [OSTI]

    Tracy, C. Edwin (Golden, CO); Benson, David K. (Golden, CO); Ruth, Marta R. (Golden, CO)

    1987-01-01

    A method of synthesizing electro-optically active reaction products from a plurality of reactants by inducing a reaction by plasma deposition among the reactants. The plasma reaction is effective for consolidating the reactants and producing thin films of electro-optically active transition metal oxides.

  20. Metallic transport and large anomalous Hall effect at room temperature in ferrimagnetic Mn{sub 4}N epitaxial thin film

    SciTech Connect (OSTI)

    Shen, Xi; Shigematsu, Kei; Chikamatsu, Akira Fukumura, Tomoteru; Hirose, Yasushi; Hasegawa, Tetsuya

    2014-08-18

    We report the electrical transport properties of ferrimagnetic Mn{sub 4}N (001) epitaxial thin films grown by pulsed laser deposition on MgO (001) substrates. The Mn{sub 4}N thin films were tetragonally distorted with a ratio of out-of-plane to in-plane lattice constants of 0.987 and showed perpendicular magnetic anisotropy with an effective magnetic anisotropy constant of 0.16?MJ/m{sup 3}, which is comparable with that of a recently reported molecular-beam-epitaxy-grown film. The thin films exhibited metallic transport with a room temperature resistivity of 125??? cm in addition to a large anomalous Hall effect with a Hall angle tangent of 0.023.

  1. Method for producing high quality thin layer films on substrates

    DOE Patents [OSTI]

    Strongin, M.; Ruckman, M.; Strongin, D.

    1994-04-26

    A method for producing high quality, thin layer films of inorganic compounds upon the surface of a substrate is disclosed. The method involves condensing a mixture of preselected molecular precursors on the surface of a substrate and subsequently inducing the formation of reactive species using high energy photon or charged particle irradiation. The reactive species react with one another to produce a film of the desired compound upon the surface of the substrate. 4 figures.

  2. Method for producing high quality thin layer films on substrates

    DOE Patents [OSTI]

    Strongin, Myron (Center Moriches, NY); Ruckman, Mark (Middle Island, NY); Strongin, Daniel (Port Jefferson, NY)

    1994-01-01

    A method for producing high quality, thin layer films of inorganic compounds upon the surface of a substrate is disclosed. The method involves condensing a mixture of preselected molecular precursors on the surface of a substrate and subsequently inducing the formation of reactive species using high energy photon or charged particle irradiation. The reactive species react with one another to produce a film of the desired compound upon the surface of the substrate.

  3. High-throughput characterization of stresses in thin film materials libraries using Si cantilever array wafers and digital holographic microscopy

    SciTech Connect (OSTI)

    Lai, Y. W.; Ludwig, A.; Hamann, S.; Ehmann, M.

    2011-06-15

    We report the development of an advanced high-throughput stress characterization method for thin film materials libraries sputter-deposited on micro-machined cantilever arrays consisting of around 1500 cantilevers on 4-inch silicon-on-insulator wafers. A low-cost custom-designed digital holographic microscope (DHM) is employed to simultaneously monitor the thin film thickness, the surface topography and the curvature of each of the cantilevers before and after deposition. The variation in stress state across the thin film materials library is then calculated by Stoney's equation based on the obtained radii of curvature of the cantilevers and film thicknesses. DHM with nanometer-scale out-of-plane resolution allows stress measurements in a wide range, at least from several MPa to several GPa. By using an automatic x-y translation stage, the local stresses within a 4-inch materials library are mapped with high accuracy within 10 min. The speed of measurement is greatly improved compared with the prior laser scanning approach that needs more than an hour of measuring time. A high-throughput stress measurement of an as-deposited Fe-Pd-W materials library was evaluated for demonstration. The fast characterization method is expected to accelerate the development of (functional) thin films, e.g., (magnetic) shape memory materials, whose functionality is greatly stress dependent.

  4. Influence of substrate properties and annealing temperature on the stress state of magnetron sputtered tungsten thin films

    SciTech Connect (OSTI)

    Oliveira, J. C.; Cavaleiro, A.

    2006-11-15

    The influence of substrate properties and annealing temperature on the stress state of tungsten thin films deposited by dc reactive magnetron sputtering was studied using 310 steel (AISI), Fecralloy registered and Invar registered substrates. Besides elemental tungsten, only residual amounts of contamination elements (O, C, Ar, etc.) were detected by electron probe microanalysis. Only the {alpha}-W crystalline structure, with a preferential <110> orientation, was detected in all the films by x-ray diffraction. The highest lattice parameters were measured for the films deposited on 310 steel substrates, while the smallest values were obtained for the films deposited on Invar registered substrates. These results are closely related to the thermal expansion coefficients of the substrates. All the as-deposited films were in a compressive stress state independent of the substrate type (-3 GPa for 310 steel and Fecralloy registered substrates and -2 GPa for Invar registered substrates). The residual compressive stresses of the films deposited on Fecralloy registered substrates strongly decrease with annealing temperatures up to {approx_equal}-8 GPa at 1175 K. This result shows that the measured compressive stresses are not real, and they are a direct consequence of plastic deformation of the substrate. On the contrary, the compressive stresses measured in the films deposited on Invar registered and 310 steel substrates are real as plastic deformation of the substrates is not observed.

  5. Aerosol chemical vapor deposition of metal oxide films

    DOE Patents [OSTI]

    Ott, Kevin C. (4745 Trinity Dr., Los Alamos, NM 87544); Kodas, Toivo T. (5200 Noreen Dr. NE., Albuquerque, NM 87111)

    1994-01-01

    A process of preparing a film of a multicomponent metal oxide including: forming an aerosol from a solution comprised of a suitable solvent and at least two precursor compounds capable of volatilizing at temperatures lower than the decomposition temperature of said precursor compounds; passing said aerosol in combination with a suitable oxygen-containing carrier gas into a heated zone, said heated zone having a temperature sufficient to evaporate the solvent and volatilize said precursor compounds; and passing said volatilized precursor compounds against the surface of a substrate, said substrate having a sufficient temperature to decompose said volatilized precursor compounds whereby metal atoms contained within said volatilized precursor compounds are deposited as a metal oxide film upon the substrate is disclosed. In addition, a coated article comprising a multicomponent metal oxide film conforming to the surface of a substrate selected from the group consisting of silicon, magnesium oxide, yttrium-stabilized zirconium oxide, sapphire, or lanthanum gallate, said multicomponent metal oxide film characterized as having a substantially uniform thickness upon said FIELD OF THE INVENTION The present invention relates to the field of film coating deposition techniques, and more particularly to the deposition of multicomponent metal oxide films by aerosol chemical vapor deposition. This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  6. Novel wide band gap materials for highly efficient thin film tandem solar cells

    SciTech Connect (OSTI)

    Brian E. Hardin, Stephen T. Connor, Craig H. Peters

    2012-06-11

    Tandem solar cells (TSCs), which use two or more materials to absorb sunlight, have achieved power conversion efficiencies of >25% versus 11-20% for commercialized single junction solar cell modules. The key to widespread commercialization of TSCs is to develop the wide-band, top solar cell that is both cheap to fabricate and has a high open-circuit voltage (i.e. >1V). Previous work in TSCs has generally focused on using expensive processing techniques with slow growth rates resulting in costs that are two orders of magnitude too expensive to be used in conventional solar cell modules. The objective of the PLANT PV proposal was to investigate the feasibility of using Ag(In,Ga)Se2 (AIGS) as the wide-bandgap absorber in the top cell of a thin film tandem solar cell (TSC). Despite being studied by very few in the solar community, AIGS solar cells have achieved one of the highest open-circuit voltages within the chalcogenide material family with a Voc of 949mV when grown with an expensive processing technique (i.e. Molecular Beam Epitaxy). PLANT PVâ??s goal in Phase I of the DOE SBIR was to 1) develop the chemistry to grow AIGS thin films via solution processing techniques to reduce costs and 2) fabricate new device architectures with high open-circuit voltage to produce full tandem solar cells in Phase II. PLANT PV attempted to translate solution processing chemistries that were successful in producing >12% efficient Cu(In,Ga)Se2 solar cells by replacing copper compounds with silver. The main thrust of the research was to determine if it was possible to make high quality AIGS thin films using solution processing and to fully characterize the materials properties. PLANT PV developed several different types of silver compounds in an attempt to fabricate high quality thin films from solution. We found that silver compounds that were similar to the copper based system did not result in high quality thin films. PLANT PV was able to deposit AIGS thin films using a mixture of solution and physical vapor deposition processing, but these films lacked the p-type doping levels that are required to make decent solar cells. Over the course of the project PLANT PV was able to fabricate efficient CIGS solar cells (8.7%) but could not achieve equivalent performance using AIGS. During the nine-month grant PLANT PV set up a variety of thin film characterization tools (e.g. drive-level capacitance profiling) at the Molecular Foundry, a Department of Energy User Facility, that are now available to both industrial and academic researchers via the grant process. PLANT PV was also able to develop the back end processing of thin film solar cells at Lawrence Berkeley National Labs to achieve 8.7% efficient CIGS solar cells. This processing development will be applied to other types of thin film PV cells at the Lawrence Berkeley National Labs. While PLANT PV was able to study AIGS film growth and optoelectronic properties we concluded that AIGS produced using these methods would have a limited efficiency and would not be commercially feasible. PLANT PV did not apply for the Phase II of this grant.

  7. Buffer layer for thin film structures (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Buffer layer for thin film structures Citation Details In-Document Search Title: Buffer layer for thin film structures A composite structure including a base substrate and a layer...

  8. PID Failure of c-Si and Thin-Film Modules and Possible Correlation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PID Failure of c-Si and Thin-Film Modules and Possible Correlation with Leakage Currents PID Failure of c-Si and Thin-Film Modules and Possible Correlation with Leakage Currents ...

  9. Iron Pyrite Thin Films Synthesized from an Fe(acac)[subscript...

    Office of Scientific and Technical Information (OSTI)

    Iron Pyrite Thin Films Synthesized from an Fe(acac)subscript 3 Ink Citation Details In-Document Search Title: Iron Pyrite Thin Films Synthesized from an Fe(acac)subscript 3 Ink...

  10. Cathodic ALD V2O5 thin films for high-rate electrochemical energy...

    Office of Scientific and Technical Information (OSTI)

    Cathodic ALD V2O5 thin films for high-rate electrochemical energy storage Citation Details In-Document Search Title: Cathodic ALD V2O5 thin films for high-rate electrochemical ...

  11. Vapor-deposited porous films for energy conversion

    DOE Patents [OSTI]

    Jankowski, Alan F.; Hayes, Jeffrey P.; Morse, Jeffrey D.

    2005-07-05

    Metallic films are grown with a "spongelike" morphology in the as-deposited condition using planar magnetron sputtering. The morphology of the deposit is characterized by metallic continuity in three dimensions with continuous and open porosity on the submicron scale. The stabilization of the spongelike morphology is found over a limited range of the sputter deposition parameters, that is, of working gas pressure and substrate temperature. This spongelike morphology is an extension of the features as generally represented in the classic zone models of growth for physical vapor deposits. Nickel coatings were deposited with working gas pressures up 4 Pa and for substrate temperatures up to 1000 K. The morphology of the deposits is examined in plan and in cross section views with scanning electron microscopy (SEM). The parametric range of gas pressure and substrate temperature (relative to absolute melt point) under which the spongelike metal deposits are produced appear universal for other metals including gold, silver, and aluminum.

  12. Structural characterization and novel optical properties of defect chalcopyrite ZnGa{sub 2}Te{sub 4} thin films

    SciTech Connect (OSTI)

    Fouad, S.S.; Sakr, G.B.; Yahia, I.S.; Basset, D.M. Abdel

    2011-11-15

    Highlights: {yields} Preparation and characterization of ZnGa{sub 2}Te{sub 4} in powder and thin film forms. {yields} Structure properties such as XRD and EDX. {yields} Optical constant of the as-deposited ZnGa{sub 2}Te{sub 4} for the first time. {yields} Extraction of the optical parameters of the studied films. -- Abstract: Stoichiometric thin film samples of the ternary ZnGa{sub 2}Te{sub 4} defect chalcopyrite compound were prepared and characterized by X-ray diffraction technique. The elemental chemical composition of the prepared bulk material as well as of the as-deposited film was determined by energy-dispersive X-ray spectrometry. ZnGa{sub 2}Te{sub 4} thin films were deposited, by conventional thermal evaporation technique onto highly cleaned glass substrates. The X-ray and electron diffraction studies revealed that the as-deposited and the annealed ZnGa{sub 2}Te{sub 4} films at annealing temperature t{sub a} {<=} 548 K are amorphous, while those annealed at t{sub a} {>=} 573 K (for 1 h), are polycrystalline. The optical properties of the as-deposited films have been investigated for the first time at normal incidence in the spectral range from 500 to 2500 nm. The refractive index dispersion in the transmission and low absorption region is adequately described by the Wemple-DiDomenico single oscillator model, whereby, the values of the oscillator parameters have been calculated. The analysis of the optical absorption coefficient revealed an in-direct optical transition with energy of 1.33 eV for the as-deposited sample. This work suggested that ZnGa{sub 2}Te{sub 4} is a good candidate in solar cell devices as an absorbing layer.

  13. Process for fabricating polycrystalline semiconductor thin-film solar cells, and cells produced thereby

    DOE Patents [OSTI]

    Wu, Xuanzhi (Golden, CO); Sheldon, Peter (Lakewood, CO)

    2000-01-01

    A novel, simplified method for fabricating a thin-film semiconductor heterojunction photovoltaic device includes initial steps of depositing a layer of cadmium stannate and a layer of zinc stannate on a transparent substrate, both by radio frequency sputtering at ambient temperature, followed by the depositing of dissimilar layers of semiconductors such as cadmium sulfide and cadmium telluride, and heat treatment to convert the cadmium stannate to a substantially single-phase material of a spinel crystal structure. Preferably, the cadmium sulfide layer is also deposited by radio frequency sputtering at ambient temperature, and the cadmium telluride layer is deposited by close space sublimation at an elevated temperature effective to convert the amorphous cadmium stannate to the polycrystalline cadmium stannate with single-phase spinel structure.

  14. A Sensitivity Analysis of a Thin Film Conductivity Estimation Method

    SciTech Connect (OSTI)

    McMasters, Robert L; Dinwiddie, Ralph Barton

    2010-01-01

    An analysis method was developed for determining the thermal conductivity of a thin film on a substrate of known thermal properties using the flash diffusivity method. In order to determine the thermal conductivity of the film using this method, the volumetric heat capacity of the film must be known, as determined in a separate experiment. Additionally, the thermal properties of the substrate must be known, including conductivity and volumetric heat capacity. The ideal conditions for the experiment are a low conductivity film adhered to a higher conductivity substrate. As the film becomes thinner with respect to the substrate or, as the conductivity of the film approaches that of the substrate, the estimation of thermal conductivity of the film becomes more difficult. The present research examines the effect of inaccuracies in the known parameters on the estimation of the parameter of interest, the thermal conductivity of the film. As such, perturbations are introduced into the other parameters in the experiment, which are assumed to be known, to find the effect on the estimated thermal conductivity of the film. A baseline case is established with the following parameters: Substrate thermal conductivity 1.0 W/m-K Substrate volumetric heat capacity 106 J/m3-K Substrate thickness 0.8 mm Film thickness 0.2 mm Film volumetric heat capacity 106 J/m3-K Film thermal conductivity 0.01 W/m-K Convection coefficient 20 W/m2-K Magnitude of heat absorbed during the flash 1000 J/m2 Each of these parameters, with the exception of film thermal conductivity, the parameter of interest, is varied from its baseline value, in succession, and placed into a synthetic experimental data file. Each of these data files is individually analyzed by the program to determine the effect on the estimated film conductivity, thus quantifying the vulnerability of the method to measurement errors.

  15. Junction Evolution During Fabrication of CdS/CdTe Thin-film PV Solar Cells (Presentation)

    SciTech Connect (OSTI)

    Gessert, T. A.

    2010-09-01

    Discussion of the formation of CdTe thin-film PV junctions and optimization of CdTe thin-film PV solar cells.

  16. Temperature threshold for nanorod structuring of metal and oxide films grown by glancing angle deposition

    SciTech Connect (OSTI)

    Deniz, Derya; Lad, Robert J.

    2011-01-15

    Thin films of tin (Sn), aluminum (Al), gold (Au), ruthenium (Ru), tungsten (W), ruthenium dioxide (RuO{sub 2}), tin dioxide (SnO{sub 2}), and tungsten trioxide (WO{sub 3}) were grown by glancing angle deposition (GLAD) to determine the nanostructuring temperature threshold, {Theta}{sub T}, above which adatom surface diffusion becomes large enough such that nanorod morphology is no longer formed during growth. The threshold was found to be lower in metals compared to oxides. Films were grown using both dc and pulsed dc magnetron sputtering with continuous substrate rotation over the temperature range from 291 to 866 K. Film morphologies, structures, and compositions were characterized by high resolution scanning electron microscopy, x-ray diffraction, and x-ray photoelectron spectroscopy. Films were also grown in a conventional configuration for comparison. For elemental metals, nanorod structuring occurs for films with melting points higher than that of Al (933 K) when grown at room temperature with a rotation rate of {approx}5 rpm, corresponding to a value of {Theta}{sub T}{approx_equal}0.33{+-}0.01. For the oxide films, a value of {Theta}{sub T}{approx_equal}0.5 was found, above which GLAD nanorod structuring does not occur. The existence of a nanostructuring temperature threshold in both metal and oxide GLAD films can be attributed to greater adatom mobilities as temperature is increased resulting in nonkinetically limited film nucleation and growth processes.

  17. Synthesizing photovoltaic thin films of high quality copper-zinc-tin alloy with at least one chalcogen species

    DOE Patents [OSTI]

    Teeter, Glenn; Du, Hui; Young, Matthew

    2013-08-06

    A method for synthesizing a thin film of copper, zinc, tin, and a chalcogen species ("CZTCh" or "CZTSS") with well-controlled properties. The method includes depositing a thin film of precursor materials, e.g., approximately stoichiometric amounts of copper (Cu), zinc (Zn), tin (Sn), and a chalcogen species (Ch). The method then involves re-crystallizing and grain growth at higher temperatures, e.g., between about 725 and 925 degrees K, and annealing the precursor film at relatively lower temperatures, e.g., between 600 and 650 degrees K. The processing of the precursor film takes place in the presence of a quasi-equilibrium vapor, e.g., Sn and chalcogen species. The quasi-equilibrium vapor is used to maintain the precursor film in a quasi-equilibrium condition to reduce and even prevent decomposition of the CZTCh and is provided at a rate to balance desorption fluxes of Sn and chalcogens.

  18. Front and backside processed thin film electronic devices

    DOE Patents [OSTI]

    Yuan, Hao-Chih (Madison, WI); Wang, Guogong (Madison, WI); Eriksson, Mark A. (Madison, WI); Evans, Paul G. (Madison, WI); Lagally, Max G. (Madison, WI); Ma, Zhenqiang (Middleton, WI)

    2010-10-12

    This invention provides methods for fabricating thin film electronic devices with both front- and backside processing capabilities. Using these methods, high temperature processing steps may be carried out during both frontside and backside processing. The methods are well-suited for fabricating back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.

  19. Method of preparing thin film polymeric gel electrolytes

    DOE Patents [OSTI]

    Derzon, D.K.; Arnold, C. Jr.

    1997-11-25

    Novel hybrid thin film electrolyte is described, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities {approx_equal}10{sup {minus}3}{Omega}{sup {minus}1}cm{sup {minus}1} are useful as electrolytes for rechargeable lithium batteries. 1 fig.

  20. Method of preparing thin film polymeric gel electrolytes

    DOE Patents [OSTI]

    Derzon, Dora K.; Arnold, Jr., Charles

    1997-01-01

    Novel hybrid thin film electrolyte, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities .apprxeq.10.sup.-3 .OMEGA..sup.-1 cm.sup.-1 are useful as electrolytes for rechargeable lithium batteries.

  1. Method for double-sided processing of thin film transistors

    DOE Patents [OSTI]

    Yuan, Hao-Chih (Madison, WI); Wang, Guogong (Madison, WI); Eriksson, Mark A. (Madison, WI); Evans, Paul G. (Madison, WI); Lagally, Max G. (Madison, WI); Ma, Zhenqiang (Middleton, WI)

    2008-04-08

    This invention provides methods for fabricating thin film electronic devices with both front- and backside processing capabilities. Using these methods, high temperature processing steps may be carried out during both frontside and backside processing. The methods are well-suited for fabricating back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.

  2. Tailoring of a metastable material: alfa-FeSi2 thin film

    SciTech Connect (OSTI)

    Cao, Guixin; Singh, David J; Zhang, Xiaoguang; Samolyuk, German D; Qiao, Liang; Parish, Chad M; Ke, Jin; Zhang, Yanwen; Guo, Hangwen; Tang, Siwei; Wang, Wenbin; Yi, Jieyu; Cantoni, Claudia; Siemons, Wolter; Payzant, E Andrew; Biegalski, Michael D; Ward, Thomas Zac; Sales, Brian C; Mandrus, D.; Stocks, George Malcolm; Gai, Zheng

    2015-01-01

    The epitaxially stabilized metallic -FeSi2 thin films on Si(001) were grown using pulsed laser deposition. While the bulk material of -FeSi2 is a high temperature metastable phase and nonmagnetic, the thin film is stabilized at room temperature and shows unusual electronic transport and magnetic properties due to strain modification. The transport renders two different conducting states with a strong crossover at 50 K accompanied by an onset of ferromagnetism as well as a substantial magnetocaloric effect and magnetoresistance. These experimental results are discussed in terms of the unusual electronic structure of -FeSi2 obtained within density functional calculations and Boltzmann transport calculations with and without strain. Our findings provide an example of a tailored material with interesting physics properties for practical applications.

  3. Evaluation of crystallinity and film stress in yttria-stabilized zirconia

    Office of Scientific and Technical Information (OSTI)

    thin films (Journal Article) | SciTech Connect Journal Article: Evaluation of crystallinity and film stress in yttria-stabilized zirconia thin films Citation Details In-Document Search Title: Evaluation of crystallinity and film stress in yttria-stabilized zirconia thin films Yttria (3 mol %)-stabilized zirconia (YSZ) thin films were deposited using radio frequency (rf) magnetron sputtering. The YSZ thin films were deposited over a range of temperatures (22-300 deg. C), pressures (5-25

  4. Equiatomic CoPt thin films with extremely high coercivity

    SciTech Connect (OSTI)

    Varghese, Binni; Piramanayagam, S. N. Yang, Yi; Kai Wong, Seng; Khume Tan, Hang; Kiat Lee, Wee; Okamoto, Iwao

    2014-05-07

    In this paper, magnetic and structural properties of near-equiatomic CoPt thin films, which exhibited a high coercivity in the film-normal directionsuitable for perpendicular magnetic recording media applicationsare reported. The films exhibited a larger coercivity of about 6.5 kOe at 8?nm. The coercivity showed a monotonous decrease as the film thickness was increased. The transmission electron microscopy images indicated that the as fabricated CoPt film generally consists of a stack of magnetically hard hexagonal-close-packed phase, followed by stacking faults and face-centred-cubic phase. The thickness dependent magnetic properties are explained on the basis of exchange-coupled composite media. Epitaxial growth on Ru layers is a possible factor leading to the unusual observation of magnetically hard hcp-phase at high concentrations of Pt.

  5. High quality ZnO:Al transparent conducting oxide films synthesized by pulsed filtered cathodic arc deposition

    SciTech Connect (OSTI)

    Anders, Andre; Lim, Sunnie H.N.; Yu, Kin Man; Andersson, Joakim; Rosen, Johanna; McFarland, Mike; Brown, Jeff

    2009-04-24

    Aluminum-doped zinc oxide, ZnO:Al or AZO, is a well-known n-type transparent conducting oxide with great potential in a number of applications currently dominated by indium tin oxide (ITO). In this study, the optical and electrical properties of AZO thin films deposited on glass and silicon by pulsed filtered cathodic arc deposition are systematically studied. In contrast to magnetron sputtering, this technique does not produce energetic negative ions, and therefore ion damage can be minimized. The quality of the AZO films strongly depends on the growth temperature while only marginal improvements are obtained with post-deposition annealing. The best films, grown at a temperature of about 200?C, have resistivities in the low to mid 10-4 Omega cm range with a transmittance better than 85percent in the visible part of the spectrum. It is remarkable that relatively good films of small thickness (60 nm) can be fabricated using this method.

  6. Method for the preparation of nanocrystalline diamond thin films

    DOE Patents [OSTI]

    Gruen, Dieter M. (Downers Grove, IL); Krauss, Alan R. (Naperville, IL)

    1998-01-01

    A method and system for manufacturing nanocrystalline diamond film on a substrate such as field emission tips. The method involves forming a carbonaceous vapor, providing a gas stream of argon, hydrocarbon and possibly hydrogen, and combining the gas with the carbonaceous vapor, passing the combined carbonaceous vapor and gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the carbonaceous vapor and deposition of a diamond film on the field emission tip.

  7. Method for the preparation of nanocrystalline diamond thin films

    DOE Patents [OSTI]

    Gruen, D.M.; Krauss, A.R.

    1998-06-30

    A method and system are disclosed for manufacturing nanocrystalline diamond film on a substrate such as field emission tips. The method involves forming a carbonaceous vapor, providing a gas stream of argon, hydrocarbon and possibly hydrogen, and combining the gas with the carbonaceous vapor, passing the combined carbonaceous vapor and gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the carbonaceous vapor and deposition of a diamond film on the field emission tip. 40 figs.

  8. Characterization of Thin Films by XAFS: Application to Spintronics Materials

    SciTech Connect (OSTI)

    Heald, Steve M.; Kaspar, Tiffany C.; Droubay, Timothy C.; Chambers, Scott A.

    2009-10-25

    X-ray absorption fine structure (XAFS) has proven very valuable in characterizing thin films. This is illustrated with some examples from the area of diluted magnetic semiconductor (DMS) materials for spintronics applications. A promising route to DMS materials is doping of oxides such as TiO2 and ZnO with magnetic atoms such as Co. These can be grown as epitaxial thin films on various substrates. XAFS is especially valuable for characterizing the dopant atoms. The near edge region is sensitive to the symmetry of the bonding and valence of the dopants, and the extended XAFS can determine the details of the lattice site. XAFS is also valuable for detecting metallic nanoparticles. These can be difficult to detect by other methods, and can give a spurious magnetic signal. The power of XAFS is illustrated by examples from studies on Co doped ZnO films.

  9. Diamond/diamond-like thin film growth in a butane plasma on unetched, unheated, N-type Si(100) substrates

    SciTech Connect (OSTI)

    Williams, E.S.; Richardson, J.S. Jr.; Anderson, D.; Starkey, K.

    1995-06-01

    Deposition of diamond/diamond-like thin films on unetched, unheated, n-type Si(100) substrates in a butane plasma is reported. An interconnection between values of index of refraction, hydrogen flow rate, butane flow rate and Rf power was determined. The H{sub 2} and C{sub 4}H{sub 10} molecules are disassociated by Rf energy to create a plasma. Carbon from the butane forms a thin diamond/diamond-like film on a suitable substrate, which in the current investigation, is n-type Si(100).

  10. Synthesis, structural and optical characterization of undoped, N-doped ZnO and co-doped ZnO thin films

    SciTech Connect (OSTI)

    Pathak, Trilok Kumar Kumar, R.; Purohit, L. P.

    2015-05-15

    ZnO, N-doped ZnO and Al-N co-doped ZnO thin films were deposited on ITO coated corning glass by spin coater using sol-gel method. The films were annealed in air at 450C for one hour. The crystallographic structure and morphology of the films were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM) respectively. The X-ray diffraction results confirm that the thin films are of wurtzite hexagonal with a very small distortion. The optical properties were investigated by transmission spectra of different films using spectrophotometer (Shimadzu UV-VIS-NIR 3600). The results indicate that the N doped ZnO thin films have obviously enhanced transmittance in visible region. Moreover, the thickness of the films has strong influences on the optical constants.

  11. Atomic layer deposited lithium aluminum oxide: (In)dependency of film properties from pulsing sequence

    SciTech Connect (OSTI)

    Miikkulainen, Ville Nilsen, Ola; Fjellvg, Helmer; Li, Han; King, Sean W.; Laitinen, Mikko; Sajavaara, Timo

    2015-01-01

    Atomic layer deposition (ALD) holds markedly high potential of becoming the enabling method for achieving the three-dimensional all-solid-state thin-film lithium ion battery (LiB). One of the most crucial components in such a battery is the electrolyte that needs to hold both low electronic conductivity and at least fair lithium ion conductivity being at the same time pinhole free. To obtain these desired properties in an electrolyte film, one necessarily has to have a good control over the elemental composition of the deposited material. The present study reports on the properties of ALD lithium aluminum oxide (Li{sub x}Al{sub y}O{sub z}) thin films. In addition to LiB electrolyte applications, Li{sub x}Al{sub y}O{sub z} is also a candidate low dielectric constant (low-k) etch stop and diffusion barrier material in nanoelectronics applications. The Li{sub x}Al{sub y}O{sub z} films were deposited employing trimethylaluminum-O{sub 3} and lithium tert-butoxide-H{sub 2}O for Al{sub 2}O{sub 3} and Li{sub 2}O/LiOH, respectively. The composition was aimed to be controlled by varying the pulsing ratio of those two binary oxide ALD cycles. The films were characterized by several methods for composition, crystallinity and phase, electrical properties, hardness, porosity, and chemical environment. Regardless of the applied pulsing ratio of Al{sub 2}O{sub 3} and Li{sub 2}O/LiOH, all the studied ALD Li{sub x}Al{sub y}O{sub z} films of 200 and 400 nm in thickness were polycrystalline in the orthorhombic ?-LiAlO{sub 2} phase and also very similar to each other with respect to composition and other studied properties. The results are discussed in the context of both fundamental ALD chemistry and applicability of the films as thin-film LiB electrolytes and low-k etch stop and diffusion barriers.

  12. Method for fabricating thin films of pyrolytic carbon

    DOE Patents [OSTI]

    Brassell, G.W.; Lewis, J. Jr.; Weber, G.W.

    1980-03-13

    The present invention relates to a method for fabricating ultrathin films of pyrolytic carbon. Pyrolytic carbon is vapor deposited onto a concave surface of a heated substrate to a total uniform thickness in the range of about 0.1 to 1.0 micrometer. The carbon film on the substrate is provided with a layer of adherent polymeric resin. The resulting composite film of pyrolytic carbon and polymeric resin is then easily separated from the substrate by shrinking the 10 polymeric resin coating with thermally induced forces.

  13. Thermal annealing of FePt thin films by millisecond plasma arc pulses

    SciTech Connect (OSTI)

    Inaba, Yuki; Torres, Karen; Cole, Amanda; Ott, Ronald D; Klemmer, Timothy; Harrell, J W; Thompson, Gregory

    2009-01-01

    A series of 20 and 100 nm Fe{sub 53}Pt{sub 47} thin films sputter-deposited onto Si substrates have been thermally annealed using a pulsed thermal plasma arc lamp. A series of one, three or five pulses were applied to the thin films with widths of either 50 or 100 ms. The microstructure and magnetic properties of these annealed Fe{sub 53}Pt{sub 47} films are discussed according to the various annealing conditions and A1 to L1{sub 0} phase transformation. Upon pulse annealing, the average in-plane grain size of 15 nm (nearly equivalent for both film thicknesses) was observed to increase to values near 20 nm. In general, increasing the pulse width or number of pulses increased the L1{sub 0} order parameter, tetragonality of the c/a ratio and coercivity of the specimen. The exception to this trend was for five pulses at 100 ms for both film thicknesses, which indicated a reduction of the order parameter and coercivity. This reduction is believed to be a result of the interdiffusion of Fe and Pt into the Si substrate and the formation of iron oxide clusters in the grain boundaries characterized by atom probe tomography.

  14. Germanium films by polymer-assisted deposition

    DOE Patents [OSTI]

    Jia, Quanxi; Burrell, Anthony K.; Bauer, Eve; Ronning, Filip; McCleskey, Thomas Mark; Zou, Guifu

    2013-01-15

    Highly ordered Ge films are prepared directly on single crystal Si substrates by applying an aqueous coating solution having Ge-bound polymer onto the substrate and then heating in a hydrogen-containing atmosphere. A coating solution was prepared by mixing water, a germanium compound, ethylenediaminetetraacetic acid, and polyethyleneimine to form a first aqueous solution and then subjecting the first aqueous solution to ultrafiltration.

  15. High quality transparent conducting oxide thin films

    DOE Patents [OSTI]

    Gessert, Timothy A. (Conifer, CO); Duenow, Joel N. (Golden, CO); Barnes, Teresa (Evergreen, CO); Coutts, Timothy J. (Golden, CO)

    2012-08-28

    A transparent conducting oxide (TCO) film comprising: a TCO layer, and dopants selected from the elements consisting of Vanadium, Molybdenum, Tantalum, Niobium, Antimony, Titanium, Zirconium, and Hafnium, wherein the elements are n-type dopants; and wherein the transparent conducting oxide is characterized by an improved electron mobility of about 42 cm.sup.2/V-sec while simultaneously maintaining a high carrier density of .about.4.4e.times.10.sup.20 cm.sup.-3.

  16. Germanium films by polymer-assisted deposition (Patent) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Title: Germanium films by polymer-assisted deposition Highly ordered Ge films are prepared directly on single crystal Si substrates by applying an aqueous coating solution having ...

  17. Thin-film encapsulation of the air-sensitive organic-based ferrimagnet vanadium tetracyanoethylene

    SciTech Connect (OSTI)

    Froning, I. H.; Harberts, M.; Yu, H.; Johnston-Halperin, E.; Lu, Y.; Epstein, A. J.

    2015-03-23

    The organic-based ferrimagnet vanadium tetracyanoethylene (V[TCNE]{sub x∼2}) has demonstrated potential for use in both microwave electronics and spintronics due to the combination of high temperature magnetic ordering (T{sub C} > 600 K), extremely sharp ferromagnetic resonance (peak to peak linewidth of 1 G), and low-temperature conformal deposition via chemical vapor deposition (deposition temperature of 50 °C). However, air-sensitivity leads to the complete degradation of the films within 2 h under ambient conditions, with noticeable degradation occurring within 30 min. Here, we demonstrate encapsulation of V[TCNE]{sub x∼2} thin films using a UV-cured epoxy that increases film lifetime to over 710 h (30 days) as measured by the remanent magnetization. The saturation magnetization and Curie temperature decay more slowly than the remanence, and the coercivity is unchanged after 340 h (14 days) of air exposure. Fourier transform infrared spectroscopy indicates that the epoxy does not react with the film, and magnetometry measurements show that the presence of the epoxy does not degrade the magnetic properties. This encapsulation strategy directly enables a host of experimental protocols and investigations not previously feasible for air-sensitive samples and lays the foundation for the development of practical applications for this promising organic-based magnetic material.

  18. Development of a synchrotron biaxial tensile device for in situ characterization of thin films mechanical response

    SciTech Connect (OSTI)

    Geandier, G.; Thiaudiere, D.; Bouaffad, A.; Randriamazaoro, R. N.; Chiron, R.; Castelnau, O.; Faurie, D.; Djaziri, S.; Lamongie, B.; Diot, Y.; Le Bourhis, E.; Renault, P. O.; Goudeau, P.; Hild, F.

    2010-10-15

    We have developed on the DIFFABS-SOLEIL beamline a biaxial tensile machine working in the synchrotron environment for in situ diffraction characterization of thin polycrystalline films mechanical response. The machine has been designed to test compliant substrates coated by the studied films under controlled, applied strain field. Technological challenges comprise the sample design including fixation of the substrate ends, the related generation of a uniform strain field in the studied (central) volume, and the operations from the beamline pilot. Preliminary tests on 150 nm thick W films deposited onto polyimide cruciform substrates are presented. The obtained results for applied strains using x-ray diffraction and digital image correlation methods clearly show the full potentialities of this new setup.

  19. Structural and dielectric properties of Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} thin films grown by PLD

    SciTech Connect (OSTI)

    James, K. K.; Satish, B.; Jayaraj, M. K.

    2014-01-28

    Ferroelectric thin films of Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} (BST) were deposited on Si/SiO{sub 2}/TiO{sub 2}/Pt (PtSi) substrate by pulsed laser deposition (PLD). Crystalline films with perovskite structure were obtained without post-deposition annealing. Phase purity of the deposited films was confirmed by x-ray diffraction. The lowest value of FWHM obtained for the film deposited at oxygen pressure 5.410{sup ?4} mbar and substrate temperature 600C, indicates the high crystallinity of the film. The room temperature dielectric constant at 100 kHz was 85. Butterfly loop, which is the characteristic of ferroelectric materials, was obtained in the regime of ?4 to +4V. The leakage current density was nearly 910{sup ?13} Acm{sup ?2}.

  20. The production of carbon nanofibers and thin films on palladium catalysts from ethylene oxygen mixtures

    SciTech Connect (OSTI)

    Phillips, Jonathan; Doorn, Stephen; Atwater, Mark; Leseman, Zayd; Luhrs, Claudia C; Diez, Yolanda F; Diaz, Angel M

    2009-01-01

    The characteristics of carbonaceous materials deposited in fuel rich ethylene-oxygen mixtures on three types of palladium: foil, sputtered film, and nanopowder, are reported. It was found that the form of palladium has a dramatic influence on the morphology of the deposited carbon. In particular, on sputtered film and powder, tight 'weaves' of sub-micron filaments formed quickly. In contrast, on foils under identical conditions, the dominant morphology is carbon thin films with basal planes oriented parallel to the substrate surface. Temperature, gas flow rate, reactant flow ratio (C2H4:02), and residence time (position) were found to influence both growth rate and type for all three forms of Pd. X-ray diffraction, high-resolution transmission electron microscopy, temperature-programmed oxidation, and Raman spectroscopy were used to assess the crystallinity of the as-deposited carbon, and it was determined that transmission electron microscopy and x-ray diffraction were the most reliable methods for determining crystallinity. The dependence of growth on reactor position, and the fact that no growth was observed in the absence of oxygen support the postulate that the carbon deposition proceeds by combustion generated radical species.

  1. Local elastic modulus of RF sputtered HfO{sub 2} thin film by atomic force acoustic microscopy

    SciTech Connect (OSTI)

    Jena, S. Tokas, R. B. Sarkar, P. Thakur, S.; Sahoo, N. K.; Misal, J. S.; Rao, K. D.

    2014-04-24

    Atomic force acoustic microscopy (AFAM) is a useful nondestructive technique for measurement of local elastic modulus of materials at nano-scale spatial resolution by measuring the contact resonance spectra for higher order modes of the AFM cantilever. The elastic modulus of RF sputtered HfO{sub 2} thin film has been measured quantitatively, using reference approach in which measurements are performed on the test and reference samples. Using AFAM, the measured elastic modulus of the HfO{sub 2} thin film is 22327 GPa, which is in agreement with the literature value of 22040 GPa for atomic layer deposited HfO{sub 2} thin film using nanoindentation technique.

  2. Thin film capillary process and apparatus

    DOE Patents [OSTI]

    Yu, Conrad M.

    2003-11-18

    Method and system of forming microfluidic capillaries in a variety of substrate materials. A first layer of a material such as silicon dioxide is applied to a channel etched in substrate. A second, sacrificial layer of a material such as a polymer is deposited on the first layer. A third layer which may be of the same material as the first layer is placed on the second layer. The sacrificial layer is removed to form a smooth walled capillary in the substrate.

  3. Dual mechanical behaviour of hydrogen in stressed silicon nitride thin films

    SciTech Connect (OSTI)

    Volpi, F. Braccini, M.; Pasturel, A.; Devos, A.; Raymond, G.; Morin, P.

    2014-07-28

    In the present article, we report a study on the mechanical behaviour displayed by hydrogen atoms and pores in silicon nitride (SiN) films. A simple three-phase model is proposed to relate the physical properties (stiffness, film stress, mass density, etc.) of hydrogenated nanoporous SiN thin films to the volume fractions of hydrogen and pores. This model is then applied to experimental data extracted from films deposited by plasma enhanced chemical vapour deposition, where hydrogen content, stress, and mass densities range widely from 11% to 30%, ?2.8 to 1.5?GPa, and 2.0 to 2.8?g/cm{sup 3}, respectively. Starting from the conventional plotting of film's Young's modulus against film porosity, we first propose to correct the conventional calculation of porosity volume fraction with the hydrogen content, thus taking into account both hydrogen mass and concentration. The weight of this hydrogen-correction is found to evolve linearly with hydrogen concentration in tensile films (in accordance with a simple mass correction of the film density calculation), but a clear discontinuity is observed toward compressive stresses. Then, the effective volume occupied by hydrogen atoms is calculated taking account of the bond type (N-H or Si-H bonds), thus allowing a precise extraction of the hydrogen volume fraction. These calculations applied to tensile films show that both volume fractions of hydrogen and porosity are similar in magnitude and randomly distributed against Young's modulus. However, the expected linear dependence of the Young's modulus is clearly observed when both volume fractions are added. Finally, we show that the stiffer behaviour of compressive films cannot be only explained on the basis of this (hydrogen?+?porosity) volume fraction. Indeed this stiffness difference relies on a dual mechanical behaviour displayed by hydrogen atoms against the film stress state: while they participate to the stiffness in compressive films, hydrogen atoms mainly behave like pores in tensile films where they do not participate to the film stiffness.

  4. Method of fabricating conductive electrodes on the front and backside of a thin film structure

    DOE Patents [OSTI]

    Tabada, Phillipe J. (Roseville, CA); Tabada, legal representative, Melody (Roseville, CA); Pannu, Satinderpall S. (Pleasanton, CA)

    2011-05-22

    A method of fabricating a thin film device having conductive front and backside electrodes or contacts. Top-side cavities are first formed on a first dielectric layer, followed by the deposition of a metal layer on the first dielectric layer to fill the cavities. Defined metal structures are etched from the metal layer to include the cavity-filled metal, followed by depositing a second dielectric layer over the metal structures. Additional levels of defined metal structures may be formed in a similar manner with vias connecting metal structures between levels. After a final dielectric layer is deposited, a top surface of a metal structure of an uppermost metal layer is exposed through the final dielectric layer to form a front-side electrode, and a bottom surface of a cavity-filled portion of a metal structure of a lowermost metal layer is also exposed through the first dielectric layer to form a back-side electrode.

  5. Deposition of device quality low H content, amorphous silicon films

    DOE Patents [OSTI]

    Mahan, A.H.; Carapella, J.C.; Gallagher, A.C.

    1995-03-14

    A high quality, low hydrogen content, hydrogenated amorphous silicon (a-Si:H) film is deposited by passing a stream of silane gas (SiH{sub 4}) over a high temperature, 2,000 C, tungsten (W) filament in the proximity of a high temperature, 400 C, substrate within a low pressure, 8 mTorr, deposition chamber. The silane gas is decomposed into atomic hydrogen and silicon, which in turn collides preferably not more than 20--30 times before being deposited on the hot substrate. The hydrogenated amorphous silicon films thus produced have only about one atomic percent hydrogen, yet have device quality electrical, chemical, and structural properties, despite this lowered hydrogen content. 7 figs.

  6. Deposition of device quality low H content, amorphous silicon films

    DOE Patents [OSTI]

    Mahan, Archie H. (Golden, CO); Carapella, Jeffrey C. (Evergreen, CO); Gallagher, Alan C. (Louisville, CO)

    1995-01-01

    A high quality, low hydrogen content, hydrogenated amorphous silicon (a-Si:H) film is deposited by passing a stream of silane gas (SiH.sub.4) over a high temperature, 2000.degree. C., tungsten (W) filament in the proximity of a high temperature, 400.degree. C., substrate within a low pressure, 8 mTorr, deposition chamber. The silane gas is decomposed into atomic hydrogen and silicon, which in turn collides preferably not more than 20-30 times before being deposited on the hot substrate. The hydrogenated amorphous silicon films thus produced have only about one atomic percent hydrogen, yet have device quality electrical, chemical, and structural properties, despite this lowered hydrogen content.

  7. Air stable n-doping of WSe{sub 2} by silicon nitride thin films with tunable fixed charge density

    SciTech Connect (OSTI)

    Chen, Kevin; Kiriya, Daisuke; Hettick, Mark; Tosun, Mahmut; Ha, Tae-Jun; Madhvapathy, Surabhi Rao; Desai, Sujay; Sachid, Angada; Javey, Ali

    2014-09-01

    Stable n-doping of WSe{sub 2} using thin films of SiN{sub x} deposited on the surface via plasma-enhanced chemical vapor deposition is presented. Positive fixed charge centers inside SiN{sub x} act to dope WSe{sub 2} thin flakes n-type via field-induced effect. The electron concentration in WSe{sub 2} can be well controlled up to the degenerate limit by simply adjusting the stoichiometry of the SiN{sub x} through deposition process parameters. For the high doping limit, the Schottky barrier width at the metal/WSe{sub 2} junction is significantly thinned, allowing for efficient electron injection via tunneling. Using this doping scheme, we demonstrate air-stable WSe{sub 2} n-MOSFETs with a mobility of ?70 cm{sup 2}/V?s.

  8. Encapsulation Advancements Extend Life of Thin-Film PV; The Spectrum of Clean Energy Innovation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    Fact sheet describing NREL's transparent metal oxide coating used to protect thin-film photovoltaic modules.

  9. Finite-element analysis of the deformation of thin Mylar films due to

    Office of Scientific and Technical Information (OSTI)

    measurement forces. (Technical Report) | SciTech Connect Finite-element analysis of the deformation of thin Mylar films due to measurement forces. Citation Details In-Document Search Title: Finite-element analysis of the deformation of thin Mylar films due to measurement forces. Significant deformation of thin films occurs when measuring thickness by mechanical means. This source of measurement error can lead to underestimating film thickness if proper corrections are not made. Analytical

  10. Method of fabricating high-efficiency Cu(In,Ga)(Se,S){sub 2} thin films for solar cells

    DOE Patents [OSTI]

    Noufi, R.; Gabor, A.M.; Tuttle, J.R.; Tennant, A.L.; Contreras, M.A.; Albin, D.S.; Carapella, J.J.

    1995-08-15

    A process for producing a slightly Cu-poor thin film of Cu(In,Ga)(Se,S){sub 2} comprises depositing a first layer of (In,Ga){sub x} (Se,S){sub y} followed by depositing just enough Cu+(Se,S) or Cu{sub x} (Se,S) to produce the desired slightly Cu-poor material. In a variation, most, but not all, (about 90 to 99%) of the (In,Ga){sub x} (Se,S){sub y} is deposited first, followed by deposition of all the Cu+(Se,S) or Cu{sub x} (Se,S) to go near stoichiometric, possibly or even preferably slightly Cu-rich, and then in turn followed by deposition of the remainder (about 1 to 10%) of the (In,Ga){sub x} (Se,S){sub y} to end with a slightly Cu-poor composition. In yet another variation, a small portion (about 1 to 10%) of the (In,Ga){sub x} (Se,S){sub y} is first deposited as a seed layer, followed by deposition of all of the Cu+(Se,S) or Cu{sub x} (Se,S) to make a very Cu-rich mixture, and then followed deposition of the remainder of the (In,Ga){sub x} (Se,S){sub y} to go slightly Cu-poor in the final Cu(In,Ga)(Se,S){sub 2} thin film. 5 figs.

  11. Method of fabricating high-efficiency Cu(In,Ga)(SeS).sub.2 thin films for solar cells

    DOE Patents [OSTI]

    Noufi, Rommel; Gabor, Andrew M.; Tuttle, John R.; Tennant, Andrew L.; Contreras, Miguel A.; Albin, David S.; Carapella, Jeffrey J.

    1995-01-01

    A process for producing a slightly Cu-poor thin film of Cu(In,Ga)(Se,S).sub.2 comprises depositing a first layer of (In,Ga).sub.x (Se,S).sub.y followed by depositing just enough Cu+(Se,S) or Cu.sub.x (Se,S) to produce the desired slightly Cu-poor material. In a variation, most, but not all, (about 90 to 99%) of the (In,Ga).sub.x (Se,S).sub.y is deposited first, followed by deposition of all the Cu+(Se,S) or Cu.sub.x (Se,S) to go near stoichiometric, possibly or even preferably slightly Cu-rich, and then in turn followed by deposition of the remainder (about 1 to 10%) of the (In,Ga).sub.x (Se,S).sub.y to end with a slightly Cu-poor composition. In yet another variation, a small portion (about 1 to 10%) of the (In,Ga).sub.x (Se,S).sub.y is first deposited as a seed layer, followed by deposition of all of the Cu+(Se,S) or Cu.sub.x (Se,S) to make a very Cu-rich mixture, and then followed deposition of the remainder of the (In,Ga).sub.x (Se,S).sub.y to go slightly Cu-poor in the final Cu(In,Ga)(Se,S).sub.2 thin film.

  12. Thin film battery and method for making same

    DOE Patents [OSTI]

    Bates, John B. (Oak Ridge, TN); Dudney, Nancy J. (Knoxville, TN); Gruzalski, Greg R. (Oak Ridge, TN); Luck, Christopher F. (Knoxville, TN)

    1994-01-01

    Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between -15.degree. C. and 150.degree. C.

  13. Thin film battery and method for making same

    DOE Patents [OSTI]

    Bates, J.B.; Dudney, N.J.; Gruzalski, G.R.; Luck, C.F.

    1994-08-16

    Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode. Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between [minus]15 C and 150 C. 9 figs.

  14. Thin-Film Reliability Trends Toward Improved Stability: Preprint

    SciTech Connect (OSTI)

    Jordan, D. C.; Kurtz, S. R.

    2011-07-01

    Long-term, stable performance of photovoltaic (PV) modules will be increasingly important to their successful penetration of the power grid. This paper summarizes more than 150 thin-film and more than 1700 silicon PV degradation rates (Rd) quoted in publications for locations worldwide. Partitioning the literature results by technology and date of installation statistical analysis shows an improvement in degradation rate especially for thin-film technologies in the last decade. A CIGS array deployed at NREL for more than 5 years that appears to be stable supports the literature trends. Indoor and outdoor data indicate undetectable change in performance (0.2+/-0.2 %/yr). One module shows signs of slight degradation from what appears to be an initial manufacturing defect, however it has not affected the overall system performance.

  15. Status of High Performance PV: Polycrystalline Thin-Film Tandems

    SciTech Connect (OSTI)

    Symko-Davies, M.

    2005-02-01

    The High-Performance Photovoltaic (HiPerf PV) Project was initiated by the U.S. Department of Energy to substantially increase the viability of photovoltaics (PV) for cost-competitive applications so that PV can contribute significantly to our energy supply and our environment. The HiPerf PV Project aims at exploring the ultimate performance limits of existing PV technologies, approximately doubling their sunlight-to-electricity conversion efficiencies during its course. This work includes bringing thin-film cells and modules toward 25% and 20% efficiencies, respectively, and developing multijunction concentrator cells and modules able to convert more than one-third of the sun's energy to electricity (i.e., 33% efficiency). This paper will address recent accomplishments of the NREL in-house research effort involving polycrystalline thin-film tandems, as well as the research efforts under way in the subcontracted area.

  16. Guided Self-Assembly of Gold Thin Films

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guided Self-Assembly of Gold Thin Films Print Nanoparticles-man-made atoms with unique optical, electrical, and mechanical properties-have become key components in many fields of science. If nanoparticles could be coaxed into routinely assembling themselves into predictable complex structures and hierarchical patterns, devices could be mass-produced that are one thousand times smaller than today's microtechnologies. Berkeley Lab and UC Berkeley scientists have made progress toward this goal,

  17. Guided Self-Assembly of Gold Thin Films

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guided Self-Assembly of Gold Thin Films Print Nanoparticles-man-made atoms with unique optical, electrical, and mechanical properties-have become key components in many fields of science. If nanoparticles could be coaxed into routinely assembling themselves into predictable complex structures and hierarchical patterns, devices could be mass-produced that are one thousand times smaller than today's microtechnologies. Berkeley Lab and UC Berkeley scientists have made progress toward this goal,

  18. Guided Self-Assembly of Gold Thin Films

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guided Self-Assembly of Gold Thin Films Print Nanoparticles-man-made atoms with unique optical, electrical, and mechanical properties-have become key components in many fields of science. If nanoparticles could be coaxed into routinely assembling themselves into predictable complex structures and hierarchical patterns, devices could be mass-produced that are one thousand times smaller than today's microtechnologies. Berkeley Lab and UC Berkeley scientists have made progress toward this goal,

  19. Guided Self-Assembly of Gold Thin Films

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guided Self-Assembly of Gold Thin Films Print Nanoparticles-man-made atoms with unique optical, electrical, and mechanical properties-have become key components in many fields of science. If nanoparticles could be coaxed into routinely assembling themselves into predictable complex structures and hierarchical patterns, devices could be mass-produced that are one thousand times smaller than today's microtechnologies. Berkeley Lab and UC Berkeley scientists have made progress toward this goal,

  20. Guided Self-Assembly of Gold Thin Films

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guided Self-Assembly of Gold Thin Films Print Nanoparticles-man-made atoms with unique optical, electrical, and mechanical properties-have become key components in many fields of science. If nanoparticles could be coaxed into routinely assembling themselves into predictable complex structures and hierarchical patterns, devices could be mass-produced that are one thousand times smaller than today's microtechnologies. Berkeley Lab and UC Berkeley scientists have made progress toward this goal,

  1. Optical sensors and multisensor arrays containing thin film electroluminescent devices

    DOE Patents [OSTI]

    Aylott, Jonathan W. (Ann Arbor, MI); Chen-Esterlit, Zoe (Ann Arbor, MI); Friedl, Jon H. (Ames, IA); Kopelman, Raoul (Ann Arbor, MI); Savvateev, Vadim N. (Ames, IA); Shinar, Joseph (Ames, IA)

    2001-12-18

    Optical sensor, probe and array devices for detecting chemical biological, and physical analytes. The devices include an analyte-sensitive layer optically coupled to a thin film electroluminescent layer which activates the analyte-sensitive layer to provide an optical response. The optical response varies depending upon the presence of an analyte and is detected by a photodetector and analyzed to determine the properties of the analyte.

  2. Synthesis of thin films and materials utilizing a gaseous catalyst

    DOE Patents [OSTI]

    Morse, Daniel E; Schwenzer, Birgit; Gomm, John R; Roth, Kristian M; Heiken, Brandon; Brutchey, Richard

    2013-10-29

    A method for the fabrication of nanostructured semiconducting, photoconductive, photovoltaic, optoelectronic and electrical battery thin films and materials at low temperature, with no molecular template and no organic contaminants. High-quality metal oxide semiconductor, photovoltaic and optoelectronic materials can be fabricated with nanometer-scale dimensions and high dopant densities through the use of low-temperature biologically inspired synthesis routes, without the use of any biological or biochemical templates.

  3. Preparation of redox polymer cathodes for thin film rechargeable batteries

    DOE Patents [OSTI]

    Skotheim, T.A.; Lee, H.S.; Okamoto, Yoshiyuki.

    1994-11-08

    The present invention relates to the manufacture of thin film solid state electrochemical devices using composite cathodes comprising a redox polymer capable of undergoing oxidation and reduction, a polymer solid electrolyte and conducting carbon. The polymeric cathode material is formed as a composite of radiation crosslinked polymer electrolytes and radiation crosslinked redox polymers based on polysiloxane backbones with attached organosulfur side groups capable of forming sulfur-sulfur bonds during electrochemical oxidation.

  4. Guided Self-Assembly of Gold Thin Films

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guided Self-Assembly of Gold Thin Films Print Nanoparticles-man-made atoms with unique optical, electrical, and mechanical properties-have become key components in many fields of science. If nanoparticles could be coaxed into routinely assembling themselves into predictable complex structures and hierarchical patterns, devices could be mass-produced that are one thousand times smaller than today's microtechnologies. Berkeley Lab and UC Berkeley scientists have made progress toward this goal,

  5. Guided Self-Assembly of Gold Thin Films

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guided Self-Assembly of Gold Thin Films Print Nanoparticles-man-made atoms with unique optical, electrical, and mechanical properties-have become key components in many fields of science. If nanoparticles could be coaxed into routinely assembling themselves into predictable complex structures and hierarchical patterns, devices could be mass-produced that are one thousand times smaller than today's microtechnologies. Berkeley Lab and UC Berkeley scientists have made progress toward this goal,

  6. Flexible Thin Film Solid State Lithium Ion Batteries - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Energy Storage Energy Storage Advanced Materials Advanced Materials Find More Like This Return to Search Flexible Thin Film Solid State Lithium Ion Batteries National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Batteries are electrochemical cells which store and supply electrical energy as a product of a chemical reaction. In their simplest conceptualization, batteries have two electrodes, one that supplies electrons by virtue of an

  7. Molecular layer deposition of alucone films using trimethylaluminum and hydroquinone

    SciTech Connect (OSTI)

    Choudhury, Devika; Sarkar, Shaibal K.; Mahuli, Neha

    2015-01-01

    A hybrid organicinorganic polymer film grown by molecular layer deposition (MLD) is demonstrated here. Sequential exposures of trimethylaluminum [Al(CH{sub 3}){sub 3}] and hydroquinone [C{sub 6}H{sub 4}(OH){sub 2}] are used to deposit the polymeric films, which is a representative of a class of aluminum oxide polymers known as alucones. In-situ quartz crystal microbalance (QCM) studies are employed to determine the growth characteristics. An average growth rate of 4.1 per cycle at 150?C is obtained by QCM and subsequently verified with x-ray reflectivity measurements. Surface chemistry during each MLD-half cycle is studied in depth by in-situ Fourier transform infrared (FTIR) vibration spectroscopy. Self limiting nature of the reaction is confirmed from both QCM and FTIR measurements. The conformal nature of the deposit, typical for atomic layer deposition and MLD, is verified with transmission electron microscopy imaging. Secondary ion mass spectroscopy measurements confirm the uniform elemental distribution along the depth of the films.

  8. Preparation of LiMn{sub 2}O{sub 4} cathode thin films for thin film lithium secondary batteries by a mist CVD process

    SciTech Connect (OSTI)

    Tadanaga, Kiyoharu; Yamaguchi, Akihiro; Sakuda, Atsushi; Hayashi, Akitoshi; Tatsumisago, Masahiro; Duran, Alicia; Aparacio, Mario

    2014-05-01

    Highlights: LiMn{sub 2}O{sub 4} thin films were prepared by using the mist CVD process. An aqueous solution of lithium and manganese acetates is used for the precursor solution. The cell with the LiMn{sub 2}O{sub 4} thin films exhibited a capacity of about 80 mAh/g. The cell showed good cycling performance during 10 cycles. - Abstract: LiMn{sub 2}O{sub 4} cathode thin films for thin film lithium secondary batteries were prepared by using so-called the mist CVD process, employing an aqueous solution of lithium acetate and manganese acetate, as the source of Li and Mn, respectively. The aqueous solution of starting materials was ultrasonically atomized to form mist particles, and mists were transferred by nitrogen gas to silica glass substrate to form thin films. FE-SEM observation revealed that thin films obtained by this process were dense and smooth, and thin films with a thickness of about 750 nm were obtained. The electrochemical cell with the thin films obtained by sintering at 700 C exhibited a capacity of about 80 mAh/g, and the cell showed good cycling performance during 10 cycles.

  9. Electrical properties and surface morphology of electron beam evaporated p-type silicon thin films on polyethylene terephthalate for solar cells applications

    SciTech Connect (OSTI)

    Ang, P. C.; Ibrahim, K.; Pakhuruddin, M. Z.

    2015-04-24

    One way to realize low-cost thin film silicon (Si) solar cells fabrication is by depositing the films with high-deposition rate and manufacturing-compatible electron beam (e-beam) evaporation onto inexpensive foreign substrates such as glass or plastic. Most of the ongoing research is reported on e-beam evaporation of Si films on glass substrates to make polycrystalline solar cells but works combining both e-beam evaporation and plastic substrates are still scarce in the literature. This paper studies electrical properties and surface morphology of 1 m electron beam evaporated Al-doped p-type silicon thin films on textured polyethylene terephthalate (PET) substrate for application as an absorber layer in solar cells. In this work, Si thin films with different doping concentrations (including an undoped reference) are prepared by e-beam evaporation. Energy dispersion X-ray (EDX) showed that the Si films are uniformly doped by Al dopant atoms. With increased Al/Si ratio, doping concentration increased while both resistivity and carrier mobility of the films showed opposite relationships. Root mean square (RMS) surface roughness increased. Overall, the Al-doped Si film with Al/Si ratio of 2% (doping concentration = 1.5710{sup 16} atoms/cm{sup 3}) has been found to provide the optimum properties of a p-type absorber layer for fabrication of thin film Si solar cells on PET substrate.

  10. Method of making suspended thin-film semiconductor piezoelectric devices

    DOE Patents [OSTI]

    Casalnuovo, Stephen A.; Frye-Mason, Gregory C.

    2001-01-01

    A process for forming a very thin suspended layer of piezoelectric material of thickness less than 10 microns. The device is made from a combination of GaAs and AlGaAs layers to form either a sensor or an electronic filter. Onto a GaAs substrate is epitaxially deposited a thin (1-5 micron) sacrificial AlGaAs layer, followed by a thin GaAs top layer. In one embodiment the substrate is selectively etched away from below until the AlGaAs layer is reached. Then a second selective etch removes the sacrificial AlGaAs layer, that has acted here as an etch stop, leaving the thin suspended layer of piezoelectric GaAs. In another embodiment, a pattern of small openings is etched through the thin layer of GaAs on top of the device to expose the sacrificial AlGaAs layer. A second selective etch is done through these openings to remove the sacrificial AlGaAs layer, leaving the top GaAs layer suspended over the GaAs substrate. A novel etchant solution containing a surface tension reducing agent is utilized to remove the AlGaAs while preventing buildup of gas bubbles that would otherwise break the thin GaAs layer.

  11. Electrical contacts for a thin-film semiconductor device

    DOE Patents [OSTI]

    Carlson, David E. (Yardley, PA); Dickson, Charles R. (Pennington, NJ); D'Aiello, Robert V. (East Brunswick, NJ)

    1989-08-08

    A method of fabricating spaced-apart back contacts on a thin film of semiconductor material by forming strips of buffer material on top of the semiconductor material in locations corresponding to the desired dividing lines between back contacts, forming a film of metal substantially covering the semiconductor material and buffer strips, and scribing portions of the metal film overlying the buffer strips with a laser without contacting the underlying semiconductor material to separate the metal layer into a plurality of back contacts. The buffer material serves to protect the underlying semiconductor material from being damaged during the laser scribing. Back contacts and multi-cell photovoltaic modules incorporating such back contacts also are disclosed.

  12. Processing and modeling issues for thin-film solar cell devices: Annual subcontract report, January 16, 1995 -- January 15, 1996

    SciTech Connect (OSTI)

    Birkmire, R.W.; Phillips, J.E.; Buchanan, W.A.; Eser, E.; Hegedus, S.S.; McCandless, B.E.; Meyers, P.V.; Shafarman, W.N.

    1996-08-01

    The overall mission of the Institute of Energy Conversion is the development of thin film photovoltaic cells, modules, and related manufacturing technology and the education of students and professionals in photovoltaic technology. The objectives of this four-year NREL subcontract are to advance the state of the art and the acceptance of thin film PV modules in the areas of improved technology for thin film deposition, device fabrication, and material and device characterization and modeling, relating to solar cells based on CuInSe{sub 2} and its alloys, on a-Si and its alloys, and on CdTe. In the area of CuInSe{sub 2} and its alloys, EEC researchers have produced CuIn{sub 1-x}GaxSe{sub 2} films by selenization of elemental and alloyed films with H{sub 2}Se and Se vapor and by a wide variety of process variations employing co-evaporation of the elements. Careful design, execution and analysis of these experiments has led to an improved understanding of the reaction chemistry involved, including estimations of the reaction rate constants. Investigation of device fabrication has also included studies of the processing of the Mo, US and ZnO deposition parameters and their influence on device properties. An indication of the success of these procedures was the fabrication of a 15% efficiency CuIn{sub 1-x}GaxSe{sub 2} solar cell.

  13. MoS{sub 2} functionalization for ultra-thin atomic layer deposited dielectrics

    SciTech Connect (OSTI)

    Azcatl, Angelica; McDonnell, Stephen; Santosh, K.C.; Peng, Xin; Dong, Hong; Qin, Xiaoye; Addou, Rafik; Lu, Ning; Kim, Moon J.; Cho, Kyeongjae; Wallace, Robert M.; Mordi, Greg I.; Kim, Jiyoung

    2014-03-17

    The effect of room temperature ultraviolet-ozone (UV-O{sub 3}) exposure of MoS{sub 2} on the uniformity of subsequent atomic layer deposition of Al{sub 2}O{sub 3} is investigated. It is found that a UV-O{sub 3} pre-treatment removes adsorbed carbon contamination from the MoS{sub 2} surface and also functionalizes the MoS{sub 2} surface through the formation of a weak sulfur-oxygen bond without any evidence of molybdenum-sulfur bond disruption. This is supported by first principles density functional theory calculations which show that oxygen bonded to a surface sulfur atom while the sulfur is simultaneously back-bonded to three molybdenum atoms is a thermodynamically favorable configuration. The adsorbed oxygen increases the reactivity of MoS{sub 2} surface and provides nucleation sites for atomic layer deposition of Al{sub 2}O{sub 3}. The enhanced nucleation is found to be dependent on the thin film deposition temperature.

  14. Process For Direct Integration Of A Thin-Film Silicon P-N Junction Diode With A Magnetic Tunnel Junction

    DOE Patents [OSTI]

    Toet, Daniel (Mountain View, CA); Sigmon, Thomas W. (Albuquerque, NM)

    2005-08-23

    A process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction for use in advanced magnetic random access memory (MRAM) cells for high performance, non-volatile memory arrays. The process is based on pulsed laser processing for the fabrication of vertical polycrystalline silicon electronic device structures, in particular p-n junction diodes, on films of metals deposited onto low temperature-substrates such as ceramics, dielectrics, glass, or polymers. The process preserves underlayers and structures onto which the devices are typically deposited, such as silicon integrated circuits. The process involves the low temperature deposition of at least one layer of silicon, either in an amorphous or a polycrystalline phase on a metal layer. Dopants may be introduced in the silicon film during or after deposition. The film is then irradiated with short pulse laser energy that is efficiently absorbed in the silicon, which results in the crystallization of the film and simultaneously in the activation of the dopants via ultrafast melting and solidification. The silicon film can be patterned either before or after crystallization.

  15. Process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction

    DOE Patents [OSTI]

    Toet, Daniel; Sigmon, Thomas W.

    2004-12-07

    A process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction for use in advanced magnetic random access memory (MRAM) cells for high performance, non-volatile memory arrays. The process is based on pulsed laser processing for the fabrication of vertical polycrystalline silicon electronic device structures, in particular p-n junction diodes, on films of metals deposited onto low temperature-substrates such as ceramics, dielectrics, glass, or polymers. The process preserves underlayers and structures onto which the devices are typically deposited, such as silicon integrated circuits. The process involves the low temperature deposition of at least one layer of silicon, either in an amorphous or a polycrystalline phase on a metal layer. Dopants may be introduced in the silicon film during or after deposition. The film is then irradiated with short pulse laser energy that is efficiently absorbed in the silicon, which results in the crystallization of the film and simultaneously in the activation of the dopants via ultrafast melting and solidification. The silicon film can be patterned either before or after crystallization.

  16. Process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction

    DOE Patents [OSTI]

    Toet, Daniel (Mountain View, CA); Sigmon, Thomas W. (Albuquerque, NM)

    2003-01-01

    A process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction for use in advanced magnetic random access memory (MRAM) cells for high performance, non-volatile memory arrays. The process is based on pulsed laser processing for the fabrication of vertical polycrystalline silicon electronic device structures, in particular p-n junction diodes, on films of metals deposited onto low temperature-substrates such as ceramics, dielectrics, glass, or polymers. The process preserves underlayers and structures onto which the devices are typically deposited, such as silicon integrated circuits. The process involves the low temperature deposition of at least one layer of silicon, either in an amorphous or a polycrystalline phase on a metal layer. Dopants may be introduced in the silicon film during or after deposition. The film is then irradiated with short pulse laser energy that is efficiently absorbed in the silicon, which results in the crystallization of the film and simultaneously in the activation of the dopants via ultrafast melting and solidification. The silicon film can be patterned either before or after crystallization.

  17. Low resistance thin film organic solar cell electrodes

    DOE Patents [OSTI]

    Forrest, Stephen (Princeton, NJ); Xue, Jiangeng (Piscataway, NJ)

    2008-01-01

    A method which lower the series resistance of photosensitive devices includes providing a transparent film of a first electrically conductive material arranged on a transparent substrate; depositing and patterning a mask over the first electrically conductive material, such that openings in the mask have sloping sides which narrow approaching the substrate; depositing a second electrically conductive material directly onto the first electrically conductive material exposed in the openings of the mask, at least partially filling the openings; stripping the mask, leaving behind reentrant structures of the second electrically conductive material which were formed by the deposits in the openings of the mask; after stripping the mask, depositing a first organic material onto the first electrically conductive material in between the reentrant structures; and directionally depositing a third electrically conductive material over the first organic material deposited in between the reentrant structures, edges of the reentrant structures aligning deposition so that the third electrically conductive material does not directly contact the first electrically conductive material, and does not directly contact the second electrically conductive material.

  18. Lattice cluster theory for dense, thin polymer films

    SciTech Connect (OSTI)

    Freed, Karl F.

    2015-04-07

    While the application of the lattice cluster theory (LCT) to study the miscibility of polymer blends has greatly expanded our understanding of the monomer scale molecular details influencing miscibility, the corresponding theory for inhomogeneous systems has not yet emerged because of considerable technical difficulties and much greater complexity. Here, we present a general formulation enabling the extension of the LCT to describe the thermodynamic properties of dense, thin polymer films using a high dimension, high temperature expansion. Whereas the leading order of the LCT for bulk polymer systems is essentially simple Flory-Huggins theory, the highly non-trivial leading order inhomogeneous LCT (ILCT) for a film with L layers already involves the numerical solution of 3(L − 1) coupled, highly nonlinear equations for the various density profiles in the film. The new theory incorporates the essential “transport” constraints of Helfand and focuses on the strict imposition of excluded volume constraints, appropriate to dense polymer systems, rather than the maintenance of chain connectivity as appropriate for lower densities and as implemented in self-consistent theories of polymer adsorption at interfaces. The ILCT is illustrated by presenting examples of the computed profiles of the density, the parallel and perpendicular bonds, and the chain ends for free standing and supported films as a function of average film density, chain length, temperature, interaction with support, and chain stiffness. The results generally agree with expected general trends.

  19. Nanopatterning of ultrananocrystalline diamond thin films via block copolymer lithography.

    SciTech Connect (OSTI)

    Ramanathan, M.; Darling, S. B.; Sumant, A. V.; Auciello, O.

    2010-07-01

    Nanopatterning of diamond surfaces is critical for the development of diamond-based microelectromechanical system/nanoelectromechanical system (MEMS/NEMS), such as resonators or switches. Micro-/nanopatterning of diamond materials is typically done using photolithography or electron beam lithography combined with reactive ion etching (RIE). In this work, we demonstrate a simple process, block copolymer (BCP) lithography, for nanopatterning of ultrananocrystalline diamond (UNCD) films to produce nanostructures suitable for the fabrication of NEMS based on UNCD. In BCP lithography, nanoscale self-assembled polymeric domains serve as an etch mask for pattern transfer. The authors used thin films of a cylinder-forming organic-inorganic BCP, poly(styrene-block-ferrocenyldimethylsilane), PS-b-PFS, as an etch mask on the surface of UNCD films. Orientational control of the etch masking cylindrical PFS blocks is achieved by manipulating the polymer film thickness in concert with the annealing treatment. We have observed that the surface roughness of UNCD layers plays an important role in transferring the pattern. Oxygen RIE was used to etch the exposed areas of the UNCD film underneath the BCP. Arrays of both UNCD posts and wirelike structures have been created using the same starting polymeric materials as the etch mask.

  20. Methods for fabricating thin film III-V compound solar cell

    DOE Patents [OSTI]

    Pan, Noren; Hillier, Glen; Vu, Duy Phach; Tatavarti, Rao; Youtsey, Christopher; McCallum, David; Martin, Genevieve

    2011-08-09

    The present invention utilizes epitaxial lift-off in which a sacrificial layer is included in the epitaxial growth between the substrate and a thin film III-V compound solar cell. To provide support for the thin film III-V compound solar cell in absence of the substrate, a backing layer is applied to a surface of the thin film III-V compound solar cell before it is separated from the substrate. To separate the thin film III-V compound solar cell from the substrate, the sacrificial layer is removed as part of the epitaxial lift-off. Once the substrate is separated from the thin film III-V compound solar cell, the substrate may then be reused in the formation of another thin film III-V compound solar cell.

  1. Effects of annealing on antiwear and antibacteria behaviors of TaN-Cu nanocomposite thin films

    SciTech Connect (OSTI)

    Hsieh, J. H.; Cheng, M. K.; Chang, Y. K.; Li, C.; Chang, C. L.; Liu, P. C.

    2008-07-15

    TaN-Cu nanocomposite films were deposited by reactive cosputtering on Si and tool steel substrates. The films were then annealed using rapid thermal annealing (RTA) at 400 deg. C for 2, 4, and 8 min, respectively, to induce the nucleation and growth of Cu particles in TaN matrix and on film surface. Field emission scanning electron microscopy was applied to characterize Cu nanoparticles emerged on the surface of TaN-Cu thin films. The effects of annealing on the antiwear and antibacterial properties of these films were studied. The results reveal that annealing by RTA can cause Cu nanoparticles to form on the TaN surface. Consequently, the tribological behaviors, as well as the antibacterial behavior may vary depending on particle size, particle distribution, and total exposed Cu amount. For the samples with large Cu particles, the reduction of averaged friction and wear rate is obvious. Apparently, it is due to the smeared Cu particles adhered onto the wear tracks. This Cu layer may act as a solid lubricant. From the antibacterial testing results, it is found that both Cu particle size and total exposed Cu amount are critical in making short-term antibacterial effect. Overall, all the annealed TaN-Cu samples can reach >99% antibacterial efficiency in 24 h, with respect to uncoated Si substrate.

  2. Determination of Grain Boundary Charging in Cu(In,Ga)Se2 Thin Films: Preprint

    SciTech Connect (OSTI)

    Jiang, C. S.; Contreras, M. A.; Repins, I.; Moutinho, H. R.; Noufi, R.; Al-Jassim, M. M.

    2012-06-01

    Surface potential mapping of Cu(In,Ga)Se2 (CIGS) thin films using scanning Kelvin probe force microscopy (SKPFM) aims to understand the minority-carrier recombination at the grain boundaries (GBs) of this polycrystalline material by examining GB charging, which has resulted in a number of publications. However, the reported results are highly inconsistent. In this paper, we report on the potential mapping by measuring wide-bandgap or high-Ga-content films and by using a complementary atomic force microscopy-based electrical technique of scanning capacitance microscopy (SCM). The results demonstrate consistent, positively charged GBs on our high-quality films with minimal surface defects/charges. The potential image taken on a low-quality film with a 1.2-eV bandgap shows significantly degraded potential contrast on the GBs and degraded potential uniformity on grain surfaces, resulting from the surface defects/charges of the low-quality film. In contrast, the potential image on an improved high-quality film with the same wide bandgap shows significantly improved GB potential contrast and surface potential uniformity, indicating that the effect of surface defects is critical when examining GB charging using surface potential data. In addition, we discuss the effect of the SKPFM setup on the validity of potential measurement, to exclude possible artifacts due to improper SKPFM setups. The SKPFM results were corroborated by using SCM measurements on the films with a CdS buffer layer. The SCM image shows clear GB contrast, indicating different electrical impedance on the GB from the grain surface. Further, we found that the GB contrast disappeared when the CdS window layer was deposited after the CIGS film was exposed extensively to ambient, which was caused by the creation of CIGS surface defects by the ambient exposure.

  3. Ultrafast transient reflectance of epitaxial semiconducting perovskite thin films

    SciTech Connect (OSTI)

    Smolin, S. Y.; Guglietta, G. W.; Baxter, J. B. E-mail: smay@coe.drexel.edu; Scafetta, M. D.; May, S. J. E-mail: smay@coe.drexel.edu

    2014-07-14

    Ultrafast pump-probe transient reflectance (TR) spectroscopy was used to study carrier dynamics in an epitaxial perovskite oxide thin film of LaFeO{sub 3} (LFO) with a thickness of 40 unit cells (16?nm) grown by molecular beam epitaxy on (LaAlO{sub 3}){sub 0.3}(Sr{sub 2}AlTaO{sub 6}){sub 0.7} (LSAT). TR spectroscopy shows two negative transients in reflectance with local maxima at ?2.5?eV and ?3.5?eV which correspond to two optical transitions in LFO as determined by ellipsometry. The kinetics at these transients were best fit with an exponential decay model with fast (540 ps), medium (?200 ps), and slow (??3?ns) components that we attribute mainly to recombination of photoexcited carriers. Moreover, these reflectance transients did not completely decay within the observable time window, indicating that ?10% of photoexcited carriers exist for at least 3?ns. This work illustrates that TR spectroscopy can be performed on thin (<20?nm) epitaxial oxide films to provide a quantitative understanding of recombination lifetimes, which are important parameters for the potential utilization of perovskite films in photovoltaic and photocatalytic applications.

  4. Effect of thermal annealing on structure and optical band gap of Se{sub 66}Te{sub 25}In{sub 9} thin films

    SciTech Connect (OSTI)

    Dwivedi, D. K.; Pathak, H. P.; Shukla, Nitesh; Kumar, Vipin

    2015-05-15

    Thin films of a-Se{sub 66}Te{sub 25}In{sub 9} have been deposited onto a chemically cleaned glass substrate by thermal evaporation technique under vacuum. Glassy nature of the films has been ascertained by X-ray diffraction pattern. The analysis of absorption spectra, measured at normal incidence, in the spectral range 400-1100 nm has been used for the optical characterization of thin films under investigation. The effect of thermal annealing on structure and optical band gap (E{sub g}) of a-Se{sub 66}Te{sub 25}In{sub 9} have been studied.

  5. Deployable telescope having a thin-film mirror and metering structure

    DOE Patents [OSTI]

    Krumel, Leslie J. (Cedar Crest, NM); Martin, Jeffrey W. (Albuquerque, NM)

    2010-08-24

    A deployable thin-film mirror telescope comprises a base structure and a metering structure. The base structure houses a thin-film mirror, which can be rolled for stowage and unrolled for deployment. The metering structure is coupled to the base structure and can be folded for stowage and unfolded for deployment. In the deployed state, the unrolled thin-film mirror forms a primary minor for the telescope and the unfolded metering structure positions a secondary minor for the telescope.

  6. Local stress engineering of magnetic anisotropy in soft magnetic thin films

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Local stress engineering of magnetic anisotropy in soft magnetic thin films Citation Details In-Document Search Title: Local stress engineering of magnetic anisotropy in soft magnetic thin films The magnetic anisotropy of amorphous thin films was modified laterally by masked ion irradiation without alteration of the intrinsic magnetic properties. The changes were introduced by local ion implantation in a protection layer, causing additional stress-induced

  7. Electron-beam-evaporated thin films of hafnium dioxide for fabricating

    Office of Scientific and Technical Information (OSTI)

    electronic devices (Journal Article) | SciTech Connect Electron-beam-evaporated thin films of hafnium dioxide for fabricating electronic devices Citation Details In-Document Search This content will become publicly available on June 17, 2016 Title: Electron-beam-evaporated thin films of hafnium dioxide for fabricating electronic devices Thin films of hafnium dioxide (HfO2) are widely used as the gate oxide in fabricating integrated circuits because of their high dielectric constants. In this

  8. Structural Studies of Al:ZnO Powders and Thin Films | Stanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the ZnO lattice, and measure its effect on the crystallinity of thin films prepared by sol-gel techniques, with an aim to understand how these properties affect the film...

  9. Photoelectrochemical etching of epitaxial InGaN thin films: Self...

    Office of Scientific and Technical Information (OSTI)

    lasers with linewidth less than 1 nm. In the initial stages of PEC etching, when the thin film is flat, characteristic voltammogram shapes are observed. At low...

  10. Finite-element analysis of the deformation of thin Mylar films...

    Office of Scientific and Technical Information (OSTI)

    contact deformation, but these solutions assume relatively large geometries. If the film being measured is thin, the analytical Hertzian assumptions are not appropriate....

  11. High Efficiency CdTe and CIGS Thin Film Solar Cells: Highlights...

    Office of Scientific and Technical Information (OSTI)

    High Efficiency CdTe and CIGS Thin Film Solar Cells: Highlights of the Technologies Challenges Acknowledgement: Work performed at NREL for US DOE under contract No....

  12. Preparation of W-Ta thin-film thermocouple on diamond anvil cell...

    Office of Scientific and Technical Information (OSTI)

    MEGA PA 10-100; TANTALUM; TEMPERATURE MEASUREMENT; THERMOCOUPLES; THIN FILMS; TUNGSTEN; ZINC SULFIDES Word Cloud More Like This Full Text Journal Articles DOI: 10.10631.3579515

  13. New Selection Metric for Design of Thin-Film Solar Cell Absorber...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    guidance for the experimental synthesis. New Selection Metric for Design of Thin-Film Solar Cell Absorber Materials Research Details * SLME account s for the physics of...

  14. Accessing a growth window for SrVO3 thin films (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Accessing a growth window for SrVO3 thin films Citation Details In-Document Search This ... Department of Materials Science and Engineering, Pennsylvania State University, University ...

  15. Finite-element analysis of the deformation of thin Mylar films...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 36 MATERIALS SCIENCE; ... SOLVENTS; TESTING; THICKNESS; THIN FILMS Word Cloud More Like This Full Text ...

  16. A review of high magnetic moment thin films for microscale and...

    Office of Scientific and Technical Information (OSTI)

    A review of high magnetic moment thin films for microscale and ... Weizmann Institute of Science, 76100 Rehovot, Israel, ... BT7 1NN, United Kingdom Materials Science Division, ...

  17. Nonlinear optical characterization of ZnS thin film synthesized by chemical spray pyrolysis method

    SciTech Connect (OSTI)

    G, Sreeja V; Anila, E. I. R, Reshmi John, Manu Punnan; V, Sabitha P; Radhakrishnan, P.

    2014-10-15

    ZnS thin film was prepared by Chemical Spray Pyrolysis (CSP) method. The sample was characterized by X-ray diffraction method and Z scan technique. XRD pattern showed that ZnS thin film has hexagonal structure with an average size of about 5.6nm. The nonlinear optical properties of ZnS thin film was studied by open aperture Z-Scan technique using Q-switched Nd-Yag Laser at 532nm. The Z-scan plot showed that the investigated ZnS thin film has saturable absorption behavior. The nonlinear absorption coefficient and saturation intensity were also estimated.

  18. Investigation of the optical properties of MoS{sub 2} thin films...

    Office of Scientific and Technical Information (OSTI)

    ellipsometry Spectroscopic ellipsometry (SE) characterization of layered transition metal dichalcogenide (TMD) thin films grown by vapor phase sulfurization is reported. By...

  19. X-ray microstructural analysis of nanocrystalline TiZrN thin films by diffraction pattern modeling

    SciTech Connect (OSTI)

    Escobar, D.; Ospina, R.; Gmez, A.G.; Restrepo-Parra, E.; Arango, P.J.

    2014-02-15

    A detailed microstructural characterization of nanocrystalline TiZrN thin films grown at different substrate temperatures (T{sub S}) was carried out by X-ray diffraction (XRD). Total diffraction pattern modeling based on more meaningful microstructural parameters, such as crystallite size distribution and dislocation density, was performed to describe the microstructure of the thin films more precisely. This diffraction modeling has been implemented and used mostly to characterize powders, but the technique can be very useful to study hard thin films by taking certain considerations into account. Nanocrystalline films were grown by using the cathodic pulsed vacuum arc technique on stainless steel 316L substrates, varying the temperature from room temperature to 200 C. Further surface morphology analysis was performed to study the dependence of grain size on substrate temperature using atomic force microscopy (AFM). The crystallite and surface grain sizes obtained and the high density of dislocations observed indicate that the films underwent nanostructured growth. Variations in these microstructural parameters as a function of T{sub S} during deposition revealed a competition between adatom mobility and desorption processes, resulting in a specific microstructure. These films also showed slight anisotropy in their microstructure, and this was incorporated into the diffraction pattern modeling. The resulting model allowed for the films' microstructure during synthesis to be better understood according to the experimental results obtained. - Highlights: Mobility and desorption competition generates a critical temperature. A microstructure anisotropy related to the local strain was observed in thin films. Adatom mobility and desorption influence grain size and microstrain.

  20. Atomic Layer Deposition | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atomic Layer Deposition New nanophase thin film materials with properties tailored to specifically meet the needs of industry New software simulates ALD over multiple length scale,...